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Abstract 

We will discuss group-blind multiuser detectors which can reduce intra-cell and 

inter-cell interference efficiently. These detectors have better performance com- 

pared to conventional multiuser detectors and combat the near-far problem. 

Estimated groupblind multiuser detectors which use blind channel estimation 

and subspace tracking algorithm are proposed for real time implementation in 

DS-CDMA systems. These estimated group-blind multiuser detectors have rea- 

sonable performance with low calculation complexity. 

Due to the asymmetric allocation of uplink and downlink time slots in Univer- 

sal Mobile Telecommunications System Terrestrial Radio Access Time Division 

Duplex (UTRA-TDD), the performance of mobile stations can be degraded se- 

riously by inter-cell interference. Groupblind multiuser detectors are therefore 

proposed to mitigate this problem. 
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Chapter 1 

Direct Sequence Code Division 

Multiple Access (DS-CDMA) 

1.1 Introduction 

Over the last decade, the demand for wireless communications has increased dra- 

matically. To meet the demand for wireless communications, many techniques 

have been developed. People want to communicate with anyone, a t  any time, 

and anywhere. To meet these goals, better communications techniques should 

be developed. Wireless communications technology is generally more expensive, 

and its quality is generally inferior to wired communications technology. In addi- 

tion, as bandwidth is at a premium, spectral efficiency is increasingly important. 

Therefore, research is needed to improve wireless communications technology. 
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Among varieties of code division multiple access (CDM-4) technology, direct 

sequence code division multiple access (DS-CDMA) is a popular and new wire- 

less technology. The basic concept of CDMA is to multiplex users by unique 

spreading codes. This is unlike frequency division multiple access (FDMA) and 

time division multiple access (TDMA). The significant improvement in perfor- 

mance and capacity is the most attractive property of DS-CDMA systems. 

Multiple access interference (MAI) is the most significant capacity limiting 

factor in a conventional DS-CDMA system. To mitigate MAI, many multiuser 

detectors have been introduced such as the optimum multiuser detector, subop 

timum multiuser detectors, and blind multiuser detectors. 

1.2 CDMA Systems 

1.2.1 History of CDMA 

Spread spectrum communications originated in the military field. Due to the 

anti-jamming property, spread spectrum communications is well suited for telecom- 

munications applications where there exist dispersive channels in cellular sys- 

tems. 

CDMA developed fiom the Shannon theorem [I]. In 1949, the basic ideas of 

CDMA were introduced by Claude Shannon and Robert Pierce. They described 

the interference averaging effect and graceful degradation of CDMA [2]. A direct 



1.2 CDMA Systems 3 

sequence spread spectrum system was proposed by Tosa-Rogoff in 1950, and the 

processing gain equation and noise multiplexing idea were introduced [3]. In 

1956, Price and Green patented the anti-multipath "Rake" receiver, which can 

resolve signals fiom different propagation paths. Magnuski first mentioned the 

near-far problem, i.e., a high power interference degrading a weak signal [3]. 

In 1978, Cooper and Nettleton introduced spread spectrum communications for 

cellular applications [4]. Qualcomm developed DSCDMA techniques during the 

1980s, which made the commercialization of cellular spread spectrum commu- 

nications possible. In 1996, commercial operation of narrowband CDMA IS-95 

systems began. Verdu introduced optimum multiuser detection in an additive 

white Gaussian noise channel in 1986 and extensive research followed [5]. 

During the 1990s, wideband CDMA was developed over the world: cdma2000 

and W-CDMA/NA in the United States, UTRA in Europe, W-CDMA in Japan, 

TD-SCDMA in China, and CDMA I and CDMA I1 in Korea. Commercial 

operation of wideband CDMA is expected to commence in 2001. 

1.2.2 CDMA concept 

In CDMA, each user is allocated a unique spreading code to spread his infor- 

mation bits. At the receiver, the unique spreading code is used to despread 

the information bits. Small correlation between this unique spreading code and 

that of other users make this possible. CDMA is also known spread spectrum 
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communications because it spreads the information bit with a unique spreading 

code and makes the bandwidth of the information bit larger. CDMA is often 

called spread spectrum multiple access (SSMA) . 

Spread spreading techniques make multiple access possible because of the 

unique spreading sequence. A spread spectrum technique must satisfy following 

properties: 

a The bandwidth of the transmitted signal must be larger that the band- 

width of the information bits. 

a The radio-frequency bandwidth does not depend on the bandwidth of the 

information bits. 

The processing gain is the ratio of the bandwidth of the spread signal to the 

bandwidth of information bits: 

Where Bs is the bandwidth of the spread signal and Bi is the bandwidth of the 

information bit. Since a spread spectrum signal has a much larger bandwidth 

than the narrow bandwidth signal, there are many features characterizing a 

spread spectrum signal. The features of the spread spectrum technique are 

described as follows. 

a Multiple Access: Spread spectrum techniques have multiple access ca- 
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sum despreading 

Figure 1.1: Principle of spread spectrum multiple access 

pability Although multiple users transmit their signals a t  the same time 

and with the same frequency, the receiver can recognize desired users sig- 

nal exactly because it  uses a unique spreading code. Figure 1.1 shows that 

the multiple access capability of spread spectrum technique. Each spread 

signal was sent through channels and the received signal is the summation 

of two spread signals (1&2). At the receiver, the signal of user 1 can be 

extracted by despreading the spread signal remaining the signal of user 2 

spread. This is the principle of spread spectrum multiple access. 

Multipat h Interference Resistance: There are some different paths 

between transmitter and receiver in a radio channel because of reflections, 

diffraction, and scattering. The signals fiom different paths are all copies 

of the same transmitted signal with different amplitudes, phases, delays, 

and arrival angles. At the receiver, the sum of these signals result in a 

dispersed signal. Spread spectrum technique can combat this multipath 

interference well. 
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0 Interference Rejection: Interference can be reduced by despreading 

at the receiver. Cross-correlating interference will spread the power of 

interference over the noise level. 

Anti-Jamming: If interference was made by an enemy on purpose in a 

military scenario, cross-correlating this interference will reduce the power 

of interference. This is very attractive in military field. 

a Privacy: The transmitted signal can only be despread with its own 

spreading code. 

There are many techniques to generate the spread spectrum signals: direct 

sequence spread spectrum, frequency hopping spread spectrum, time hopping 

spreading spectrum, and hybrid spread spectrum. In next section, we will dis- 

cuss direct sequence spread spectrum briefly. 

1.2.3 DS-CDMA 

In DS-CDMA systems, the data signal is directly spread by a digital spreading 

code. In most cases, the data signal is digital. Figure 1.2(a) depicts a block 

diagram of a DS-CDMA transmitter. The data signal is spread by a spreading 

code consisting of a number of code bits called "chips". Then the spread signal 

modulates a radio frequency carrier. The chip rate of the spreading code should 

be much higher than that of information bits to obtain the desired spreading 
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of the signal. For the spreading modulation, various modulation techniques 

are used such as binary phase shift keying (BPSK), differential binary phase 

shift keying (D-BPSK) , quadrature phase shift keying (QPSK) , or minimum 

shift keying (MSK). In Figure 1.2(b), the receiver employ demodulation first 

and uses coherent demodulation to despread the spread spectrum signal. The 

receiver must not only generate the spreading code but dso  synchronize the 

spreading code with the received signal. After synchronization, the tracking 

is used to maintain the synchronization. After despread, the transmitted data 

signal is obtained. 

We have discussed the features of spread spectrum signals in previous section, 

Now, we describe some advantages and drawbacks. First of all, the advantages 

are as follows: 

It is possible to demodulate coherently. 

a No synchronization is needed among many users 

a By simple multiplication, spreading can be implemented easily 

All users share the same frequency. So, the frequency synthesizer is simple. 

Second of all, the drawbacks are as follows. 

a There exists the near-far problem. If we assume that all users transmit 

the same power, the received power of the users close to the base station 



1.3 Summary of the Literature 8 

are much higher than the users far kom the base station. The users close 

to the base station may seriously interfere with the users far from the base 

station. This near-far problem can be solved by power control or multiuser 

detection. 

a It is difficult to acquire and maintain the synchronization of the received 

signal and the spreading code. 

1.3 Summary of the Literature 

Over the last decade, many alternative receivers to improve DS-CDMA systems 

have been studied. For cases in which the spreading codes of other users are 

not available, single-user detectors which improve upon the conventional detec- 

tor have been proposed [6, 7, 81. Verdu first introduced the optimum multiuser 

detector, which consists of a bank of matched filters followed by a Viterbi al- 

gorithm [5].  This detector uses maximum likelihood sequence detection which 

has exponential calculation complexity with respect to the number of users. 

With this detector, performance increases dramatically at the risk of calculation 

complexity. For the trade-off between calculation complexity and performance, 

many suboptimum multiuser detectors have been studied. 

We can classify most of the proposed detectors in one of two categories: 

linear multiuser detectors and subtractive interference cancellation detectors. 
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The basic idea of subtractive interference cancellation detection is the creation of 

separate estimates of the MA1 in order to subtract out the MA1 seen by each user. 

The successive interference cancellation (SIC) detector was introduced in [9, 

101. This detector subtracts out the MA1 successively. The parallel interference 

cancellation (PIC) detector was introduced in (10, 111. This detector subtracts 

out the MA1 in parallel. For linear multiuser detection, a linear mapping is 

applied to the soft outputs matched filters or to the received signal directly so 

as to reduce the MAI. Since the MAI is time varying, this strategy involves the 

difficulty of computing the linear mapping in real time. 

The decorrelating detector (zero-forcing detector) was introduced in [12] and 

was analyzed by Lupas and Verdu for synchronous [13] and asynchronous [14] 

channels. The basic idea of the decorrelating detector is to map the inverse 

matrix R (cross-correlat ion matrix of spreading codes) so as to decorrelate the 

users. This detector has substantial performance gains over the conventional 

detector and near-far problem resistance while maintaining lower complexity 

than the optimum detector. However, it has the drawback of enhancing the 

noise. Another suboptimum multiuser detector is the minimum mean square 

error (MMSE) detector, which applies a modified the inverse matrix of R to the 

matched filter outputs [15]. This detector has near-far problem resistance and 

better performance than the decorrelating detector in the presence of noise. 

The blind MMSE multiuser detection was introduced by M. Honig [16]. This 
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detector can reduce the MA1 with the prior knowledge of only the signature 

waveform. A blind MMSE multiuser detector based on signal subspace esti- 

mation, which has a high-resolution, was introduced by Wang and Poor [17]. 

Semi-blind multiuser detectors using the subspace method were proposed by 

Hest-Madsen in [19]. The name of these detectors were changed to groupblind 

multiuser detectors because they group known users and unknown users from 

adjacent cells. These detectors are well suited for base stations and use blind 

techniques to suppress the inter-cell interference from adjacent cells and zero- 

forcing/MMSE techniques to eliminate intra-cell interference of known users. 

The group-blind multiuser detector has extended for asynchronous DS-CDMA 

system with multipath channels in [20]. For real time systems, subspace tracking 

algorithms in groupblind multiuser detectors were considered in 121, 22, 231. As 

well, the performance of blind and group-blind multiuser detectors were recently 

studied [24]. 

1.4 Objectives 

The objective of this thesis is to make some further developments of the group 

blind multiuser detector for applications in practical CDMA systems. We will 

make two developments in this direction: development of subspace tracking 

algorithms and analyzing application of the groupblind multiuser detector to 

UTR4-TDD. 
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First, we will make two developments of subspace tracking algorithms: FASIR 

and NA-CSVD. Due to changing multipath and moving mobile stations in wire- 

less communications, the channel is non-stationary. In addition, using SVD 

for subspace decomposition in non-stationaq channel is too complex and time- 

consuming. Therefore, a tracking algorithm tracking the exact channel and 

reducing the calculation complexity for the non-stationary channel is needed. 

Second, we will analyze the application of the group-blind multiuser detec- 

tor to UTRA-TDD. UTRA-TDD systems have a serious inter-cell intederence 

problem because of asymmetric uplink and downlink allocation. An applica- 

tion of the groupblind multiuser detector, which has a good performance in the 

presence of inter-cell interference, will be analyzed. 

Out line 

In Chapter 2, multiuser detectors in synchronous DS-CDMA systems will be 

introduced and evaluated by performance analysis. Chapter 3 introduces mul- 

tiuser detectors in asynchronous DS-CDMA systems and analyzes their perfor- 

mance. In Chapter 4, multiuser detectors using the estimated correlation matrix 

will be discussed. Channel estimation and the subspace tracking algorithm is 

introduced. In Chapter 5, we discuss the groupblind multiuser detection for 

UTRA-TDD. Chapter 6 discusses some final considerations. 
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Chapter 2 

Multiuser Detect ion for 

Synchronous DS-CDMA Systems 

There are two types of system models in DS-CDMA systems: a synchronous 

system model, and an asynchronous system model. The synchronous system 

model is well suited for mobile stations because the received signal at the mo- 

bile stations is synchronous. The asynchronous system model is well suited for 

base stations because the transmitted signals from the mobile stations is asyn- 

chronous. Muitiuser detectors for synchronous systems are introduced in this 

chapter. In chapter 3, multiuser detectors for asynchronous systems will be 

introduced. 
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Figure 2.1: A cellular system model with intra-cell and inter-cell interference 

2.1 Synchronous System Model 

We first consider multiuser detectors in synchronous DS-CDM A systems. Al- 

though system models for base stations should be asynchronous in practice, 

we will start with a simple synchronous system model for easy understanding. 

Figure 2.1 shows a cellular system which has 4 users in one cell and inter-cell 

interference of 4 unknown users from adjacent cells. Consider a synchronous 

DS-CDMA system with K known users within the cell , inter-cell interference 

of K users from adjacent cells, and white Gaussian noise. The received signal 
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from all users can be described as 

where 6k is the information bit of the known users, bj the information bit of 

inter-cell interference, Ak, Aj are the received amplitude, &, Bk are the spreading 

sequences, and n(t) is the white Gaussian noise with unit power. In DS-CDMA 

systems, spreading sequences can be expressed as 

& (t) = Zj (t) = C;$J (t - i T / N )  

where c is the code information, f 1, $ is the chip pulse waveform, T is the 

symbol duration, and N is the processing gain. 

For a simple calculation, we suggest a vector communications system model 

where the received signal is a vector at time t. The received signal3n vector 

form is 

- - 
where s is the matrix consisting of column vectors Bb , i.e., S = [sl B2 - - sK], S 

is the matrix consisting of column vectors Bk, i.e., s = [gl a2 - - SKI, A, A are 



2.1 Synchronous System Model 16 

the diagonal matrices consisting of At, Ak respectively: 

A = diag(Al,A2,-.. ,AK)  

A = diag ( A ~ ,  A2, - - - , ii8) 9 (2-4) 

and 6, b are the information symbols for known users and unknown users. The 

matrices, S and A, including the property of both known users and unknown 

users can be expressed as 

For the derivation of multiuser detectors, there are two useful lemmas. The 

correlation matrix of the received signal can be expressed with the matrices of 

the spreading codes and the received amplitudes. 

Lemma 1 The correlation matrix of the received signal r can be described as 
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Proof: The correlation matrix of the received signal can be written as  

R = I3[rrT] = E SA~; + SA6 + on) ( S A ~  + SAG + on 

From the assumption that the information bits of users are independent and the 

information bits and noise are independent, we can obtain following equations: 

From (2.8), the correlation matrix of the received signal can be derived as 
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Q.E.D. 

For the high resolution of calculation, the correlation matrix of the received 

signal should be decomposed by eigenvalue decomposition or singular value de- 

composition. 

Lemma 2 (Subspace concept 1): The correlation matrix R can be decom- 

posed into a signal subspace and noise subspace as 

where Us is the signal subspace ezgenvector matrix, Un is the noise subspace 

ezgenvector matrix, A, is the signal subspace eigenvalue matrix, and A, is the 

noise subspace eigenvalue matrix. 

As depicted in Figure 2.2, the bases of signal space are the column vectors of 

S or Us and the bases of noise space are U,. As well, the signal subspace and 

noise subspace are orthogonal. 
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Noise subsp8cs 

Noise Subpace 

Signal Subs- 
Signal Subspace 

Basis: S or U , 

Figure 2.2: Subspace Concept 1 

2.2 Linear Detectors 

In this thesis, all multiuser detectors are linear detectors which use simple map 

ping to estimate the information bits. The estimated information bit of linear 

detectors for user k is given by 

A 

where wk is the vector for user k and & is the estimated information bit for user 

k. Simple linear detectors have lower complexity and worse performance than 

the optimum detector. 
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Figure 2.3: The conventional detector for DS-CDMA 

D 

r 

2.3 Conventional Detector 

In IS-95 DS-CDMA systems, the conventional detector, single user detector, 

is employed. The conventional detector consists of a matched filter which can 

despread the data signal as depicted in Figure 2.3. The regenerated spreading 

code is correlated with the received signal. After correlation, the decision of data 

is made by either hard decision or soft decision. The received signal is given in 

a vector form as 

Decision 

The estimated information bit of the conventional detector is given by 

m 
Data 

The conventional detector is easy to implement with a matched filter (correla- 

tor). Although the conventional detector is used in IS-95 DS-CDMA systems, 
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it has poor performance when there exists interference from other users. 

2.4 Problem of MA1 

The conventional detector has a problem of MA1 due to the nonorthogonality 

of spreading codes of users. From the fact that S& = 1, the output of the 

conventional detector for user 1 can be expressed as 

j=1 -L=2 - 
intra-cell MA1 inter-cell MA1 

In (2.14), the first term represents the desired data for the user, the second term 

represents intra-cell interference from the other users of a cell, the third term 

represents inter-cell interference from the users of adjacent cells, and the last 

term represents noise multiplied by $. 

MA1 is the most significant problem in DS-CDMA systems. To reduce MAI, 

some approaches, such as a good cross-correlation spreading code, power control, 

and multiuser detection, have been introduced. In this thesis, we concentrate 

on multiuser detection to reduce both intra-cell and inter-cell intefierence. 
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2.5 Blind Linear Multiuser Detectors 

Since base stations do not send the spreading codes of other users to mobile 

stations, the mobile stations should suppress interference blindly. In multiuser 

detection, 'blind' means that detectors know only their spreading codes and 

do not know the spreading codes of other users. There are two types of blind 

linear detectors: the blind linear minimum mean square error (MMSE) detector 

and the blind linear zero-forcing detector. The blind linear MMSE detector can 

reduce interference from all users without the spreading codes of interfering users 

from a MMSE perspective. The blind linear zero-forcing detect or can suppress 

interference from all users without the spreading codes of interfering users in the 

sense that it forces the other users interference to zero. 

2.5.1 Blind Linear MMSE Multiuser Detectors 

Blind linear MMSE detectors can be defined in the sense that they minimize the 

mean squared error between a real information bit and an estimated informa- 

tion bit, as depicted in Figure 2.4. The problem is to find the mapping which 

minimizes the MSE. 

Definition 1 The vector of blind linear MMSE detectors can be obtazned by 
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Blind MUSE 

Figure 2.4: Blind MMSE detector 

solving the minimization problem of the Mean Squared Error: 

T 2  wk = arg min E [(& - wk r) ] . 
W ~ E R ~  

There are two types of methods applicable to blind linear MMSE detec- 

tors: the direct met hod, using the correlation matrix directly, and the subspace 

method, using the signal subspace for high resolution of calculations. 

Proposition 1 (Direct method for the blind &inear MMSE detector): 

The estimated information bit of the blind Linear MMSE detector using the direct 

method can be written as 

- 
& = sgn ( s Z R - ~ ~ )  . 
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Pro06 The mean squared error between the real information bit and the esti- 

mated bit is 

T T  = E [ ( 6 ~  + wk rr w k  - ~ & W ; ( S A ~  + S A ~  + an))] 

From the assumption that the information bits of users are independent and the 

information bits and noise are independent, we can obtain following expecta- 

t ions: 
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Since R is positive definite, the above function is convex and the vector mini- 

mizing the above function can be expressed as 

In this detector, we did not consider Ak because the detector uses a hard decision 

method. 

Q.E.D. 

Proposition 2 (Subspace method for the blind MMSE detector ): The 

estimated infomation bit of the blind linear MMSE detector using the subspace 

method can be written as 

Pro08 The solution of the subspace method for the blind linear MMSE detector 

can be derived by substituting the result of Lemma 2 for R and using the fact 
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that = 0 from Proposition 1. The inverse matrix of R can be derived as 

from Lemma 2. 

Q.E.D. 

2.5.2 Blind Linear Zero-forcing Multiuser Detect or 

Blind linear zero-forcing detectors can be defined in the sense of the minimization 

problem with a constraint as depicted in Figure 2.5. 

Definition 2 The vector of the blind linear zero-forcing detector can be defined 

as 
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Figure 2.5: Blind zero-forcing detector 

By using above definition and Lemma 2, the blind linear zero-forcing detector 

using the subspace method can be derived. 

Proposition 3 (Subspuce method for the blind zero-forcing detector): 

From (2.23) and Lemma 2, the estimated information bit of the blind linear zero- 

forcing detector using subspace method is 
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Prooj Since vector wk E range(U.), we can write wk = Use. By inserting wk 

into (2.23), we obtain the minimization problem with a constraint: 

c = arg min [((u,c)~(sA))~] s-t .  (u , c )~ s~  = 1 
ce92K 

2 T = arg rnin [(u,c)~(sA S )(u,c)] s.t. cTu:sk = 1 
C € R K  

T T- = arg min cT [U:(SA~S~)U,] c S-t. c Us sk = 1. (2.25) 
c € R K  

From Lemma 2, this problem can be written as 

c = arg min cT [uT(u~A~uT + o2unu: - o ~ I ~ ) u . ]  c s.t. cTu:sk = 1 
c € R K  

= arg min c*(A, - a21K)c s.t. cTuTsk = 1. (2.26) 
c f  R K  

By the Lagrange multiplier met hod, the minimization problem with a constraint 

(2.26) can be solved as 

Thus, 
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and p can be omitted because of the sgn processing for the detection. 

Q.E.D. 
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Group-Blind Multiuser Detection 

Consider a synchronous DS-CDMA cellular system which uses the same channel 

for all users. Due to the nonorthogonality of spreading codes in the uplink of 

DS-CDMA systems, there exist two types of interference: intra-cell interference 

from the cell where the desired user is located and inter-cell interference from 

adjacent cells. Although a base station knows all spreading codes of the users 

within the cell, it typically does not know the spreading codes of the interfer- 

ing users from adjacent cells. So far, many multiuser detectors consider only 

intra-cell interference because they only know the spreading codes of the users 

in the cell. Therefore, they have shown a poor performance when there exists 

unknown users' interference, i.e., inter-cell interference because inter-cell inter- 

ference can not be suppressed by traditional multiuser detectors. To overcome 

this problem, blind multiuser detectors that suppress intra-cell interference and 

inter-cell interference with only its own spreading code were developed. But, 

these have not been sufficient because they do not use the other users' spreading 

codes in the cell where the desired user is located. Therefore, to improve per- 

formance efficiency, groupblind multiuser detectors were introduced by Anders 

Host-Madsen in 1998 [19]. These detectors use the spreading codes of known 

users to eliminate intra-cell interference and use a blind technique to suppress 

int er-cell interference. 

There is another subspace concept for groupblind multiuser detectors. The 



2.6 GroupBlind Multiuser Detection 31 

basic idea is that after projecting the correlation matrix onto the orthogonal 

subspace of S, we can decompose the orthogonally projected correlation matrix 

to signal subspace of s and noise subspace. 

Lemma 3 (Subspace wncept 2): The orthogonally projected correlation ma- 

trix of received signal can be expressed as 

Proof: The projection matrix of s is 

p = S(sTS)-lsT, 

and the ort hogond projection matrix is 

pl = 1 - p .  

Since fiL projects R onto orthogonal subspace of S, only subspace of s and 

noise space are remained. Hence, the orthogonally projected correlation matrix 
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can be decomposed as 

Q.E.D. 

The following multiuser detectors were derived for the synchronous case from 

the original works by Hmt-Madsen and Wang in 1999, and these detectors have 

the best performance in the environment where the inter-cell interference exists. 

There are two forms of multiuser detectors. Form I uses subspace concept 2 

and form I1 uses subspace concept 1. Although the form I and form I1 detector 

have the same performance, the calculation complexity in eigenvalue decompe 

sition (EVD) or singular value decomposition (SVD) of form I is lower than 

that of form 11. Form 11 detectors are efficient if we must estimate the channel 

response because the estimation of the channel response needs the SVD or EVD 

of Lemma 2. In the case of form I detectors, two iterations of SVD or EVD 

should be implemented for Lemma 2 and Lemma 3. 
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2.6.1 Group-Blind Linear Zero-forcing Multiuser Detec- 

tion 

The groupblind linear zero-forcing detector can be defined as eliminating intra- 

cell interference and minimizing inter-cell interference with a zero-forcing tech- 

nique. 

Definition 3 (Group-blind Linear Zerw-forcing Detector:) The vector 

of the group-blind linear zero-forcing detector can be def ied as 

wk = arg min [(W:(SA))~] , subject to W ~ S  = It. 
w k € ~ ~ n € P ( s )  

The group-blind linear zero-forcing detector has two forms. First, it uses sub- 

space concept 2 (Lemma 3) with a lower calculation complexity. 

Proposition 4 (Form I of the Group-blind Linear Zero-foming De- 

tector) The estimated information bit of the group-blind linear zero- forcing de- 

tector can be written as 
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Proof: Assume that wk has two components, Wk irk range(s) and wk E range(uS). 

Then w k  can be expressed as the summation of two components , i.e., w k  = 

w + w w k  can be obtained from the constraint of (2.33) using the pseudo 

inverse of S: 

Then w k  = u8ck + %irk, for some c k  E ?RB. ck can be found by inserting wk to 

the minimization of (2.33) : 

The derivative of (2.36) is 

By solving the above equation, we see 
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From P + pL = I, EP = 0, c k  can be written as 

By using Lemma 3 and cwk = 0, c k  can be obtained from 

-1 
c k  = - (dl -021) u : ( R - ~ ~ I ) * ~  

Finally wk can be written as 

Q.E.D. 

Second, form I1 of the group-blind linear zero-forcing detector uses subspace 

concept 1 (Lemma 2). 

Proposition 5 ( F o m  11 of the Group-blind Linear Zero-forcing De- 

tector): The estimated information bit of the group-blind linear zero-forcing 

detector can be written as 

tk = sgn (1: [STU. (As - 0 2 1 ) - I  C S ]  (A. - 0 2 1 ) - I  c r  (2.42) ) 
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Prooj We utilize the Lagrange multiplier method to solve the constrained opti- 

mization problem (2.33). Therefore, w k  is 

w k  = arg min W ~ S A ~ S ~ W ~  + (sTwk - 
wkEnngc(S1 

By substituting (2.43) into sTwk = 4, we obtain A = [ S ~ ( S A ~ S ~ ) ~ S ] - ' ~ ~ .  

Thus, the solution for groupblind linear zero-forcing detector for user k is 

from Lemma 2 and the fact that CS = 0. 

Q.E.D. 

2.6.2 GroupBlind Linear Hybrid Multiuser Detection 

The groupblind linear hybrid detector can be defined in the sense that it min- 

imizes inter-cell interference with the MMSE method and minimizes intra-cell 

interference with the zero-forcing technique. 

Definition 4 (Group-blind Linear Hgbrid Detector): The vector of the 
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group-blznd Linear hybrid detector can be defined us 

There are two forms of detector for the group-blind linear hybrid detector. Form 

I of the detector uses projection method and can be expressed as follows: 

Proposition 6 (Form I of the Gmup-blind Linear Hybrid Detector): 

The esthated information b2t of the group-blind linear hybrid detector can be 

written as 

Proof: Assume that w k  has two components, w k  E  range(^) and Gk ?r* rrange(u,). 

Then wk can be expressed as the summation of two components , i.e., w k  = 

w + w .  wk can be obtained from the constraint of (2.45) using the pseudo 

inverse of S: 
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Then the vector for user k is w k  = u.cx + w k 7  for some ck E RK- c k  can be 

found by inserting wk to the minimization of (2.45): 

ck = arg miq E 
CERK 

{I bk [i] - (0.c + h) I*} 

From the fact, P + PL = I, CP = 0 , and Lemma 3, c k  is 

Hence, the w k  cab be written as 

Q.E.D. 

Form I1 of the detector uses Lemma 2. 

Proposition 7 (Form I1 of the Group-blind Linear Hybrid Detector): 
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The estimated information bit of the group-blind linear hybrid detector can b 

expressed as 

Proof: The constrained optimization problem (2.45) can be solved by Lagrange 

multiplier method. Thus the problem (2.45) can be written as  

wk = arg miq E {I bk [i] - wTr [ill ') + iT (sTw - l r )  
w€RK 

- - arg min W ~ R W  - 2 ~ 3 ~ 7  + iT (STw - lk) 
WERK 

= arg miq W ~ R W  + A* (sTw - lk) = R-~SA* (2.52) 
~€92" 

where - 21k. Substituting (2.52) into the constraint that sTwk = lk, we 

obtain = (S*R-'S)-'~~. Hence, w k  can be written as 

using the fact that KS = 0 and Lemma 2. 
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2.6.3 GroupBlind Linear MMSE Multiuser Detection 

The groupblind linear MMSE detector can be defined in the sense that it mini- 

mizes inter-cell interference and intra-cell interference with MMSE method. Let 

- - -  
t [i] = SAb[i] + v[i] be the component of r[i], i.e., known users' signal and noise 

of r[i]. Then the groupblind linear MUSE detector can be defined as follows. 

Definition 5 (Group-blind L i n e  MMSE Detector) The vector of the 

group-blind linear MMSE detector for user k can be defined using the fact that 

w k  = w k  + wk, where wk ir, s a d  wk E u., such that 

Form I of the group-blind linear MMSE detector uses Lemma 3, and form I1 of 

this detector uses Lemma 2. 

Proposition 8 (Fonn I of the Group-blind Linear MMSE Detector): 

The estimated information bit of the group-blind linear MMSE detector can be 

derived as follows: 
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Proof: From the (2.54), we can find wk. We assume wk = S E ~  because w k  E S, 

and 8 has full column rank f. We can get ck by substituting w k  into (2.54): 

From the same derivation as (2.49), we can write ek = && = - A ; ~ ~ R W ~ ,  

and w k  is thus the summation of these two results: 

Q.E.D. 

Proposition 9 (Form I1 of the Group-blind Linear MMSE Detector): 

The estimated information bit of the group-blind linear MMSE detector can be 

written as 
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Proof: By using Us, we need to find a basis for the range(uS). As well, from 

Lemma 3, range (PI&) = range(uS). Consider the (rank-deficient) QR factor- 

ization of the matrix (PLUS) : 

Then the columns of the matrix Qs are the bases of the range@,). The solution 

of this detector can thus be derived from (2.58) and the vector can be written 

as 

For the high-resolution calculation, QTRQ, can be changed with Us and Lemma 

QTRQ, = 4: (usASuF + o2u,u:) Qs 

From UsQs = 0,  P + PL = I, and PQ, = 0, QTRQ, can be written as 
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By inserting (2.63) to (2.61), we obtain the result (2.59) 

Q.E.D. 

2.7 Performance Analysis 

In this section, we analyze the performance of multiuser detectors. The esti- 

mated information data of a linear detector for user 1 can be given by 

El [i] = sgn (w?[i]) . (2.64) 

From (2.3), the received signal is 

Thus the output of the linear detector can be written as 

- - . - 

wTr[i] = [i]Alw;Ilsl + C 6 [i]Akw:iZk + C 6 j [ i ] A j ~ T ~ j  + m T ~ ( 2 . 6 6 )  
k=2 j=1 * - - noise 

intra-cell MAX inter-cell MAX 
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Assuming that the user information data are independent and that the noise 

is independent of user information data, the signal-to-interference-plus-noise ra- 

tio(S1NR) at the output of the linear detector is obtained using 

SINR(wl) = 
E {w~r[q16~ [ill2 

Var { w> [2] 1 hl [i] ) 

In this thesis, we assume that there are 6 users in the cell of interest and 4 

inter-cell interfering users from adjacent cells. For simplicity, the BPSK modula- 

tion scheme is used. The processing gain is 31, the received amplitude of in-cell 

users is 1, and the received amplitude of out-cell users is I/&. Randomly gen- 

erated spreading codes are used for comparison with different cross-correlation 

of spreading codes. SINR for each multiuser detector is obtained from (2.67). 

From the evaluation of minimum SINR of the detectors, we can find the perfor- 

mance in the worst case, i.e., high cross-correlation between spreading codes in 

synchronous systems. The bit error rate can be obtained by & ( d m )  where 

Q is the Q function of the Gaussian probability density function. 

Figure 2.6 shows the performance of the hybrid groupblind multiuser de- 

tector in the case of high and low cross-correlation of spreading codes. In this 

figure, 'single' means that the conventional detector is using a matched filter, 

'partial' means that it uses the spreading codes of known users, and 'full' means 
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that it uses the spreading codes of known and unknown users, i.e., the ideal 

case. The minimum SINR of the hybrid groupblind multiuser detector is better 

than that of the conventional detector a t  SN- 2dB and the partial-MMSE 

detector at SNRZ 6dB. However, the hybrid groupblind multiuser detector 

has a lower SINR than the conventional detector and the partial-MMSE detec- 

tor at low SNRs. The maximum SINRs of the hybrid groupblind multiuser 

detector have almost the same values as the full MMSE detector a t  d l  SNRs. 

In Figure 2.7, the SINRs of the groupblind MMSE multiuser detector have al- 

most the same values as the ideal full MMSE detector and the subspace based 

blind MMSE detector. Due to the high cross-correlation of spreading codes, the 

minimum SINRs of the groupblind MMSE detector have lower SINR difference 

than maximum SINRs. Figure 2.8 shows a performance comparison of group 

blind multiuser detectors. We can see that the groupblind MMSE multiuser 

detector has the best performance compared to other group-blind multiuser de- 

tectors in the worst case (high cross-correlation of spreading codes). However, 

group-blind multiuser detectors have almost the same performance in the best 

case (low cross-correlation of spreading codes). 
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Figure 2.6: Performance of the hybrid group-blind multiuser detector compared 
to conventional multiuser detectors (Synchronous system, N=31,6 known users, 
4 unknown users, SIR(intra-cell)=OdB, SIR(inter-cell)=BdB, 100 ensemble) 
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Figure 2.7: Performance of the groupblind MMSE multiuser detector com- 
pared to conventional multiuser detectors (Synchronous system, N=31, 6 known 
users, 4 unknown users, SIR(intra-cell)=OdB, SIR(inter-cell)=3dB, 100 ensem- 
ble) 
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Figure 2.8: Performance comparison of groupblind multiuser detectors (Syn- 
chronous system, N=31, 6 known users, 4 unknown users, SIR(intra-cell) =OdB, 
SIR(inter-cell) =3dB, 100 ensemble) 



Chapter 3 

Multiuser Detect ion for 

Asynchronous DS-CDMA 

Systems 

In cellular systems, the transmitted signals from mobile stations are asynchronous. 

Even if they transmit their signals synchronously, the transmitted signals are 

delayed by multipath caused by reflection, diffraction, and scattering as depicted 

in Figure 3.2. In addition, each user has his own delay as described in Figure 3.1. 

Therefore, asynchronous system models are well suited for base stations. In this 

chapter, we consider an asynchronous system model that includes multipaths, 

the propagation delay of each user, and fading. In Chapter 4 and 5, we will 

discuss many multiuser detectors for an asynchronous system model. 



3.1 Amchronous Sinnal Model 50 

Figure 3.1: Timing diagram for asynchronous systems 

3.1 Asynchronous Signal Model 

Consider an asynchronous DS-CDMA system with intra-cell interference of K 

known users within a cell and inter-cell interference of K unknown users from 

adjacent cells. The transmitted signals from all users pass through their mul- 

tipat h channels with additive Gaussian noise. The transmitted signal from the 

k-th user can be written a s  

where dk is the delay of the k-th user, T denotes the duration of symbol, sk is 

the spreading sequence, bk is the symbol stream, M is the frame length, and Ak 

denotes amplitude. The spreading sequence for k-th user is given by 
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where N is the processing gain, Tc is the chip duration (Tc = $), qb is the 

chip waveform, and ck  is the f 1 signature sequence. The impulse response of 

multipath channel for user k can be written as 

where a k l  is the complex path gain, ~ k l  denotes the delay of k-th user's 1-th 

path, and L is the number of paths. The impulse response of multipath channel 

is depicted in Figure 3.2. The transmitted signals of raised cosine shape go 

through each path and are summed a t  the receiver. By using (3.1) and (3.3), 

the component of the received signal from the k-th user can be obtained from 

where * denotes the convolution. From (3.2), hk(t) can be rewritten as 
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path 1 

path 3 

(a) Multi-path channel 

(b) Response of each path (c) total response of all paths 

Figure 3.2: Response of multi-path channel 

In (3.5), gk (t) is the composite channel response, considering the transmitted 

amplitude, the waveform of the chip pulse, and the multipath channel: 
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Finally, the received signal of the K known users and K unknown users can be 

described as 

where v(t) is a complex Gaussian noise process with zero-mean. The sampling 

A 
time interval of the received signal is A = = $, where P = pN.  Therefore, 

the n-th sample of i-th symbol for the received signal is given by 

Denote ~k rdk+Tg+Tc]. From (3.4), the component of each user, yk [i, n] can 

be expressed in the form 

S Lk 

= bk b] ht (iT + nA - jT) = h&, n] bk [i - j], (3.9) 
j=a- ~k 

* j=O 
h k [ i - j , n l  
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by using the fact that hr(t) is zero outside the in t end  [0, (L* + 1)T]. For the 

k-th user, the received signal can be expressed as 

where the second term is the inter symbol interference (ISI) fkom the previous 

symbol of the k-th user and the third term is the multiple-access interference 

(MAI) fkom the other users. For the convenience of the calculation, we use the 

vector form of the received signai. Let 

P x l  ~ [ i ,  P - P x l  K x l  

hllj,O] *-• 

, j = 0, I , * - -  ,Lk.  

h ~ b l  P - 11 

Then from (3.8) and(3.9) we can express the received signal in the form of the 

convolution: 

A 
Define L = max { t k )  F'rom the assumption that the i-th symbol is spread over 

15kSK 

the previous symbol and next symbol, we must consider the m received signal 

vectors. Define 
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b[i - L] H[L] - . - H[O] - -  - 
r x l  b[i + m - Pmxr  0 .-- H[L] - - -  E[O] 

A 
where r = K(m+ L ) .  We can then write (3.11) in matrix form: 

In (3.12), the smoothing factor m is chosen from the fact that m = [Hl L. 

A Note the matrix H is a "tall" matrix, which means Pm 2 T = K(m + L ) .  

For the high resolution of calculation, the correlation matrix of the received 

signal should be decomposed using eigenvalue decomposition or singular value 

decomposition. 

Lemma 4 (Subepuce concept 3): The correlation matrix R can be decom- 

posed into signal subspace and nozse subspuce as 
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where Us is the signal subspuce eigenuector matrix, U, is the noise subspace 

eigenuector matrix? As is the signal subspace eigenualue matrix, and is the 

noise subspace eigenvalue matrix. 
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3.2 Linear Detectors 

Linear detectors which have linear calculation complexity with respect to the 

number of users for the asynchronous system can be written as 

CI 

& = sgn (wfr) 

where w k  is the vector for user k. Although linear detectors have lower complex- 

ity than the optimum detector, they have performance inferior to the optimum 

detector. 

3.3 Blind Linear Multiuser Detectors 

There are two blind linear detectors, the blind linear MMSE detector and the 

blind linear zero-forcing detector. The blind linear MMSE detector can reduce 

the interference from all users with the knowledge of its own spreading code in 

terms of Minimum Mean Squared Error (MMSE). The blind linear zero-forcing 

detector can suppress the interference from all users with the knowledge of its 

own spreading code in the sense that it forces the other users interference to 

zero. 
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3.3.1 Blind Linear MMSE Multiuser Detector 

There are two types of method for blind linear MMSE detector: direct method, 

using the correlation matrix directly, and subspace method, using the signal 

subspace. 

Definition 6 The vector of blind linear MMSE detectors can be defined as a 

minimization of Mean Squared Error; 

Proposition 10 (Direet Method for the Blind Linear MMSE detec- 

tor): The estimated information bit of the blind linear MMSE detector with 

direct method can be written as 

A 

6k = sgn ( h f ~ - l r )  
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Proof The mean squared error between the real information bit and the esti- 

mated information bit is 

Since R is positive definite, the above function is convex and the vector mini- 

mizing the above function can be found using 

(3.17) 

Q.E.D. 
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Proposition 11 (Subspace Method for the Blind MMSE detector): 

The estimated information bit of the blind linear MMSE detector uszng the sub- 

space method can be written as 

,. 
6 k  = sgn ( h : ~ , ~ ; ' ~ f r )  

Proof: The solution of the subspace method for the blind linear MMSE detector 

can be derived by substituting the result of Lemma 4 for R and using the fact 

that h f ~ ,  = 0. The inverse matrix of R can be derived as 

from Lemma 4. 

Q.E.D. 

3.3.2 Blind Linear Zero-forcing Multiuser Detector 

The blind linear zero-forcing detector can be defined in the sense of the mini- 

mization problem with a constraint. 
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Definition 7 The vector of the blind zero-forcing detector can be defilaed as 

Proposition 12 (Subspuce method for the blind linear zeem- forcing 

detector): From (3.20) and Lemma 4, the estimated information bit of blind 

linear zero-forcing detector using subspace method is given by 

- 
& = sgn (~:U,(A, - O~I)-~U:~)  . 

Proof: Since vector w k  E range(U,), we can write w k  = U,c. By inserting w k  

into (3.20), we obtain the minimization problem with a constraint: 

c = arg min [((U,C)~(H))*] s.t. (u,c)~& = 1 
cEC' 

= arg mig [(u,c)~(HH~)(u,c)] s-t. cHu,Hhk = I 
cEC' 

= arg mil? cH [U;(HH~)U~] c ~ . t .  cHu,Hhk = 1  
cECr 

= arg min cH [ u ~ ( u ~ A ~ u ~  + 02unu,H - Q ~ I ~ ) U ~ ]  c 
CEC" 

s.t. cMu,HiL; = 1 

= arg min cH(hS - 4 1 ~ ) c  s.t. cHu;hk = 1 
CEC" 
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where F = ~ ( m  + L ) .  By the Lagrange multiplier method, the minimization 

problem with a constraint (3.22) can be solved as 

Thus, 

W V ~  = =Us (As - 4 1 ~ ) - l ~ f h ~  

and p can be omitted because of the sgn processing for detection. 

Q.E.D. 
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Group-Blind Multiuser Detect ion 

Consider an asynchronous DS-CDMA cellular system which has intra-cell inter- 

ference and inter-cell interference. Unlike the groupblind multiuser detectors 

for the synchronous system, the groupblind multiuser detection for the asyn- 

chronous system considers inter symbol interference (1%) and multiple access 

interference (MAI). The channel matrix H includes the multi-path channel re- 

sponses and the spreading codes for known users. In this section, we assume 

that this channel matrix is known. In Chapter 4, we will introduce blind channel 

estimation. 

There is another subspace concept for groupblind multiuser detectors. The 

basic idea is that after projection of the correlation matrix onto orthogonal 

subspace of H, we can decompose the orthogonally projected correlation matrix 

to signal subspace of H and noise subspace. 

Lemma 5 (Subspace concept 4): The orthogonally projected correlation ma- 

trix of the received signal can be expressed as 
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Proog The projection matrix of H is 

and the orthogonal projection matrix is 

Since pL projects R onto orthogonal subspace of 8, only subspace of H and 

noise space are remained. Hence, the orthogonally projected correlation matrix 

can be decomposed as 

Q.E.D. 

The following work has been completed by Anders Hast-Madsen and Xiaodong 

MTang in 1999, and these detectors have the best performance in the presence of 

inter-cell interference. 
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3.4.1 Group-Blind Linear Zero-forcing Multiuser Detec- 

tion 

The group blind linear zer~forcing detector eliminates int ra-cell interference and 

minimizes inter-cell interference using a zero-forcing technique. 

Definition 8 (Group- blind Linear Zero- forcing Detector) : The vector 

of group-blind linear zero-forcing detector can be defined by 

rnin [ d H ~ 1 2  , subject to d H ~  = 1zb+&. 
= arg dE-ge(H) 

(3.29) 

The groupblind linear zero-forcing detector has two forms. First, form I of the 

detector uses subspace concept 4 (Lemma 5) with a lower calculation complexity. 

Proposition 13 (Form I of the Group-blind Linear Zero-forcing De- 

tector): The estimated infomation bit of group-blind linear zero-forcing detec- 

tor can be written as 

Proof: Assume that w k  has two components, wk E  range(^) and wk E range(uS). 

Then w k  can be expressed as the summation of two components , i.e., wk = 
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wk + wk. wk can be obtained from the constraint of (3.29) using the pseudo 

inverse of fi: 

Then w k  = a c k  + ek, for some c k  E C' where i: = ~ ( m  + L ) .  c k  can be found 

by inserting wk to the minimization of (3.29): 

The derivative of (3.32) is 

By soiving the above equation, we get 
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from the fact that P + PL = I, U ~ P  = 0, and arwk = 0. Finally w k  can be 

written as 

Q.E.D. 

Second, form I1 of the detector uses subspace concept 3 (Lemma 4). 

Proposition 14 ( F o m  I .  of the Group-blind Linear Zero-foreing De- 

tector) The estimated infomation bit of group-blind linear zero-forcing detector 

can be written as 

Proof: We utilize the Lagrange multiplier method to solve the constrained opti- 

mization problem (3.29). Therefore, w k  is 

w k  = arg min W , R H H ~ W ~  + \H (iiHwk - lKL+k) 
wk€mnge(H) 
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By substituting (3.37) into H ~ W ~  = 1 ~ & + ~ ,  we obtain = [ H ~ ( H H ~ ) ~ H ] - ' ~ ~ ~ + ~ .  

Thus, the solution for groupblind linear zero-forcing detector for user k is 

from Lemma 4 and the fact that U ~ H  = 0. 

Q.E.D. 

3.4.2 Group-Blind Linear Hybrid Multiuser Detection 

The group-blind linear hybrid detector minimizes inter-cell interference with 

the MbISE method and minimizes intra-cell interference with the zero-forcing 

technique. 

Definition 9 (Gmup-blind Linear Hgbrid Detector): The group- blind 

Linear hybrid detector can be defined as 

~k = arg min E ( 1  bk[i] - w,~r[i] 1 ') , subject to w H ~  = 1zL+,. (3.39) 
w€range(ii) 

There are two forms of detector for the groupblind linear hybrid detector. Form 

I of the detector uses the projection method and can be proposed as follows: 
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Proposition 15 (Form I of the Gmup- blind Linear Hgbrid Detector): 

The estimated information bit of the group-blind linear hybrid detector can be 

written as  

Proof: Assume that wk has two components, w k  irk range(@ and wk E range(uS). 

Then w k  can be e-qressed as the summation of two components , i.e., w k  = 

wk + wk. w k  can be obtained from the constraint of (3.39) using the pseudo 

inverse of R: 

Thus the vector for user k is w k  = user + I%&, for some c k  E Ci. ck can be 

found by inserting w k  to the minimization of (3.39): 
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from the fact that P + PL = I, U ~ P  = 0 ,u:& = 0, and Lemma 5. Hence, 

the wk can be written as 

Q.E.D. 

Proposition 16 (Form II of the Group-blind Linear Hybrid Detec- 

tor): The estimated information bit of the group-blind linear hybrid detector 

can be expressed as 

Proof: The constrained optimization problem (3.39) can be solved using the 

Lagrange multiplier method. Thus the problem (3.39) can be written as 

w k  = arg miq E {I bk [i] - wHr [i] 1 2, + A* ( H ~ W  - lKL+k) 
wECr 

- arg miq W*RW - 2RFw + ( H ~ W  - lRL+J 
wECr 

- - argrniqwH~w (RHw - lRb+k) = R- HA, 
wccr 

(3.45) 
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A - where = - 2 1 ~ ' + ~ .  Substituting (3.45) into the constraint that aHwk = 

1 ~ ~ + ~ ,  we obtain = ( H ~ R - ~ H ) - ~ I ~ , + ~ .  Hence, w k  can be written as 

using the fact t h a t ~ f ~  = 0 and Lemma 4. 

Q.E.D. 

3.4.3 Group-Blind Linear MMSE Multiuser Detection 

The groupblind linear MMSE multiuser detector minimizes inter-cell interfer- 

ence and intra-cell interference with the MMSE method. 

Let t[i] = ~ b [ i ]  + v[i] be the component of r[i], i.e., known users' signal 

and noise of r[i] . Then the group-blind linear MMSE multiuser detector can be 

defined as follows: 

Definition 10 (Group-blind Lineav MMSE Detector): The group-blind 

linear MMSE detector for user k can be defined as w k  = w k + w k ,  where wk irk H 

and wk E u,, such that 

air = arg min- E ~ k ~ i ~ - ~ w + ~ k ~ H r ~ i l ~ 2 ) .  (3.48) 
w~nnge(U, )  
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Proposition 17 (Form I of the Group-blind Linear MMSE Detector) 

The estimated infomation bit of the group-blind linear MMSE detector can be 

expressed as 

Proof: From (3.477, we can find w k .  We assume wk = =RE* because w k  E H, 

and H has full column rank ? = K(m + L) .  We can find c k  by substituting wk 

into (3.48): 

~ k  = argmin cEc+ E {1bk[ i ] -  C ~ H ~ P [ ~ ] ~ ~ )  

= arg rnin cH [ H ~  (RRH + a21) H ]  c - 2 1 E , + k ~ H ~ ~  
CERK 

= [(RHFX) (H"H) + dRH8]- l  ( x ~ H )  1 ~ ~ + ~  

F'rom the same derivation as (3.42), we can write wk = Q,E& = - A ; ~ U : R W ~ ,  
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and w k  is the summation of these two results: 

Q.E.D. 

Proposition 18 (Form II of the Group-blind Linear MMSE Detec- 

tor): The estimated data of the group-blind linear MMSE detector can be written 

as 

Proof: With Us, we need to first find a basis for the range(&). Clearly, 

range (plus) = range(uS). Consider the (rank-deficient) QR factorization of 

the matrix (P~u,) : 
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From the same derivation of (3.51) 

Furthermore, 

Q.E.D. 

3.5 Performance Analysis 

In this section, we analyze the performance of multiuser detectors. The esti- 

mated information data of a linear detector for user 1 is given by 
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From (3.4) and (3.7), the received signal is 

Thus the output of the linear detector can be written as 

wpr[i] = 6,[i]wF& + C & [ ~ ] W ~ & + C ~ ~ [ ~ ] W F ~ ~ + C T W ~ ~ .  (3.58) 
k=2 j=1 - - - noise 

Assuming that the user information data are independent and that the noise 

is independent of user information data, the signal-to-interference-plusnoise ra- 

tio(S1NR) at the output of the linear detector is obtained using 

E {wfr[i] [ i ~ ) ~  
S I N R ( w l )  = 

Var {wrr[i] [i]) 

In this thesis, we assume an asynchronous system which has 6 users in the cell 

of interest and 4 inter-cell interfering users from adjacent cells. For simplicity, 

the BPSK modulation scheme is used. The processing gain is 31, the received 

amplitude of in-cell users is 1 + jl, and the received amplitude of out-cell users 

is I/&+ jl/\/Z. Randomly generated spreading codes are used for comparison 

with different cross-correlation of spreading codes. The chip pulse is a raised 
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cosine pulse with roll-off factor 0.5. The number of paths is 3. The delay of 

each user dk is uniformly distributed on [O, 4Tc] and the delay of each path rk , l  

is uniformly distributed on [0, 4Tc]. The fading gain of each path is generated 

from a complex gaussian distribution The oversampling factor p is 2 and the 

smoothing factor m is 2. SINRs for each multiuser detector are obtained from 

(3.59). From the evaluation of the minimum SINR of the detectors, we can find 

the performance in the worst case, i-e., high cross-correlation between spreading 

codes. The bit error rate can be obtained by Q( d m )  where Q is the Q 

function of the Gaussian probability density function. 

Figure 3.3 shows the performance of hybrid groupblind multiuser detectors 

in the case of the best situation (low cross-correlation, small delays of paths, and 

small fading) and the worst situation (high cross-correlation, large path delays, 

and serious fading). The minimum SINR of the hybrid groupblind multiuser 

detector is better than that of the conventional detector and the partia3-MMSE 

detector at around SNRZ 2dB. However, the hybrid group-blind multiuser 

detector has a lower SINR than the conventional detector and the partial-MMSE 

detector at the low SNRs. The maximum SINRs of the hybrid groupblind 

multiuser detector have almost the same values as the full MMSE detector at  all 

SNRs. In Figure 3.4, the SIN& of the groupblind MMSE multiuser detector 

have almost the same values as the ideal full MMSE detector and subspace based 

blind MMSE detector. In the worst case, the minimum SINRs of the groupblind 



3.5 Performance Analysis 77 

MMSE detector have a lower SINR difference than maximum SINRs. Figure 3.5 

shows a performance comparison of groupblind multiuser detectors. We can 

see that the groupblind MMSE multiuser detector has the best performance 

compared to other groupblind multiuser detectors in the worst case. However, 

groupblind multiuser detectors have almost the same performance at the best 

case. 
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(a) M i u m  SINR 

:lo -5 0 5 10 IS M 
SNR 

(b) Maximum SINR 

Figure 3.3: Performance of the hybrid group-blind multiuser detector compared 
to conventional multiuser detectors (Asynchronous system, N=31, 6 known 
users, 4 unknown users, SIR(intra-cell) =OdB, SIR(inter-cell) =3dB, 100 ensem- 
ble) 
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1 ! 
-5 0 5 10 15 20 

SNR 

(a) Minimum SIMt 

(b) Maximum SINR 

Figure 3.4: Performance of the group-blind MMSE multiuser detector com- 
pared to conventional multiuser detectors (Asynchronous system, N=3 1, 6 
known users, 4 unknown users, SiR(intra-cell) =OdB , SIR(inter-cell) =3dB, 100 
ensemble) 
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-1 0 -6 0 5 I0 15 20 
SNR 

(a) Minimum SINR 

I 
-10 -5 0 5 10 15 20 

SNR 

(b) Maximum SINR 

Figure 3.5: Performance comparison of groupblind multiuser detectors (Asyn- 
chronous system, N=31, 6 known users, 4 unknown users, SIR(intra-cell)=OdB, 
SIR(inter-cell) =3dB, 100 ensemble) 



Chapter 4 

Estimated Detectors 

4.1 Estimation of the Correlation Matrix 

So far, we have assumed that the correlation matrix R of the received signal is 

known: 

However, in real systems, the correlation matrix of the received signal should be 

estimated. One way to estimate the correlation matrix is using a time average. 

The estimated correlation matrix of the received signal can be obtained by 
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The estimated correlation matrix can be decomposed to the eigen components: 

For form I groupblind multiuser detectors, the orthogonally projected and es- 

timated correlation matrix can be decomposed as 

For the groupblind MMSE multiuser detector, QR factorization of the ma- 

trix (plus [n]) can factorized as 

Figure 4.1 shows the structure of the estimated groupblind multiuser de- 

tectors. From the received signal, the correlation matrix is estimated. And by 

using SVD or subspace tracking, the eigen component of the correlation matrix 
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Figure 4.1: Estimated groupblind multiuser detector 

is found. With the eigen component and the received signal, we can estimate 

the information data. 

@ 

4.2 Synchronous Estimated Detectors 

cakum 
E i m  

-POnm 
wfth S W  
sum=. 
Tracking 

The estimated multiuser detectors for the synchronous system are listed as fol- 

Iows: 

E8timate 
C o t T e I ~  

matrlx R 

Blind Linear MMSE detector: Direct method 

Group=blind 
MUD 

& [n] = sgn (s~R- '  [n] r [n] ) 

e 

Blind MMSE detector: subspace method 

% w = sgn (s~u, [n] A; [n] c[n]r[n]) 

4 
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Blind Linear Zero-forcing detector: Subspace method 

Groupblind Linear Zero-forcing Detector: Form I 

A 

T -Ts -1-T 6[n] = sgn (1, (S S 

x [I - ~ [ n ]  6, [la] (is [n] - b21) -'u: [n]]r [n] 

Groupblind Linear Zer-forcing Detector: Form I1 

Group-blind Linear Hybrid Detector: Form I 
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Group-blind Linear Hybrid Detector: Form I1 

Group-blind Linear MMSE Detector: Form I 

Group-blind Linear MMSE Detector: Form I1 

4.3 Asynchronous Estimated Detectors 

The estimated multiuser detectors for the asynchronous system are as follows. 

a Blind Linear MMSE detector: Direct method 

& [n] = sgn [n] r [ I )  



4.3 Asvnchronous Estimated Detectors 86 

Blind MMSE detector: subspace method 

$[n] = sgn (hf~,[n]A;'[n]~f[n]r[n]) 

Blind Linear Zero-forcing detector: Subspace method 

ik [n] = sgn (~,Hu, [n] (A, [n] - BZI)  -'u,H [n] r [n]) (4.17) 

a Group-blind Linear Zero-forcing Detector: Form I 

gc[n] = s g n ( ~ $ ~ + ~ ( R ~ R ) - l ~ ~  

x [I - ~ [ n ]  U, [n] (A, [n] - d21) -6: [n] ] r [n] 

Group-blind Linear Zero-forcing Detector: Form I1 

Groupblind Linear Hybrid Detector: Form I 
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Group-blind Linear Hybrid Detector: Form I1 

Bk [n] = s p n  ( I$~+, [HHU. [n]~;  [n]~ ,"  [ n ] ~ ]  

Group-blind Linear MMSE Detector: Form I 

C 

( T ( i jq + &)-I HH 6 k b I  = sgn I,,, 

' * ) ) (4.22) x (I - b [ n ] ~ . [ n ] ~ ,  [n]Us [n] r[n] 

Group-blind Linear MMSE Detector: Form I1 

- 
bk[n] = sgn (~TK,,, ( H ~ H + C ~ I ) - ' H ~  [I - ( ~ . [ n ] i ~ ; ~ [ n ] )  

x (fi [n] A, [n] fir [n]) (4. [n]~;~[n]) fi[n]] r [n]) (4.23) 

4.4 Simulation Results 

In this simulation, several multiuser detectors are compared with the conven- 

tional detector, the partial-MMSE detector, and the full MMSE detector. While 

the partial MMSE detector can reduce only intra-cell interference, the full MMSE 

detector can reduce both intra-cell interference and inter-cell interference with 

the assumption that all spreading codes of both known and unknown users are 
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known. 

In Figure 4.2 and 4.4, the performance of the blind MMSE multiuser detec- 

tors were evaluated. For both synchronous systems and asynchronous systems, 

the blind MMSE multiuser detector using the subspace method outperforms the 

blind MMSE multiuser detector using the direct method because it gains high 

resolution from the subspace decomposition. After some symbols, the SINR of 

the blind MMSE detector using the subspace method crosses over the partial 

MMSE detector and converges to the full MMSE detector. In the case of random 

code, it crosses over the partial MMSE detector and the conventional detector 

faster than in the case of gold code because the partial MMSE detector and the 

conventional detector have worse performance in the case of random code. 

Figure 4.3 and 4.5 show performances of groupblind multiuser detectors. In 

most cases, the groupblind multiuser detectors outperform the blind MMSE 

detector using the subspace method. 
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(a) gold code 

(b) random code 

Figure 4.2: Estimated blind MMSE multiuser detectors in synchronous 
DS-CDMA systems ( N=31, 6 known users, 4 unknown users, SIR=3dB, 
SNR=20dB) 
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(a) gold code 

(b) random code 

Figure 4.3: Estimated hybrid groupblind multiuser detectors in synchronous 
DS-CDMA systems ( N=31, 6 known users, 4 unknown users, SIR=3dB, 
SNR=BOdB) 
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(a) gold code 

(b) random code 

Figure 4.4: Estimated blind MMSE multiuser detectors in asynchronous 
DS-CDMA systems ( N=31, 6 known users, 4 unknown users, SIR=3dB, 
SNR=SOdB) 
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(a) gold code 

(b) random code 

Figure 4.5: Estimated hybrid groupblind multiuser detectors in asynchronous 
DS-CDMA systems ( N=31, 6 known users, 4 unknown users, SIR=3dB, 
SNR=20dB) 
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4.5 Blind Channel Estimation 

In this section, we will discuss the estimation problem of the channel of a desired 

user in asynchronous DS-CDMA systems. The channel of a desired user can be 

estimated blindly with the knowledge of its own spreading code and the received 

signal. The performance of the blind multiuser detector and the group-blind 

multiuser detector will be evaluated by a simulation. To solve this problem, we 

introduce the discrete time channel model in 4.5.1. 

4.5.1 Discrete-time Channel Model 

F'rom (3.5) and (3.9) , the n-th composite channel response during j-th symbol 

is given by 

where j = O , - - =  ,6k; n = O,--- . P  - 1. Decimation of hkb7n] into p sub- 

sequences is written as 
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From the fact that T = NTc and Tc = PA, hk,& i] can be given by 

From the composite channel response ~ ( t )  given in (3.6), The sequence gk[2] is 

obtained by sampling at rate & = e: 

The length @pk) of the sequence {ijk[i]) is determined by the length of support 

of &(t). Since gk(t) is non-zero only on the interval [dk + T ~ I ,  dk + r k ~  + Tc], we 

have 

The sequences gk,&] in (4.27) are obtained by down-sampling the sequence 

{&[i]) by a factor of p, i.e., gki*,[i] = gk[ip+q], i = 0, -#  , w - 1; q = 0, * - .  ,p-1. 
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From (4.27), ha, can be expressed as the convolution of q and a,,: 

Denote 

Then (4.29) can be written in matrix form as 
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Finally, denote 

Then, the composite channel matrix can be written as 

where ek is an ( L ~  + 1) P x ppk matrix formed from the spreading code of k-th 

user. For instance, when the over-sampling factor p = 2, we have 

For other values of p, the matrix Cr is similarly constructed. Suppose that the 
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user k is the user of interest and his spreading sequence (ck[O], - , c k [ N  - 11) 

is known to the receiver (and therefore ck is known). We next consider the 

problem of estimating the channel vector & in (4.31) based on the received 

signal r[i] in (3.12). 

4.5.2 Blind Channel Estimation in White Noise 

The correlation matrix of the received signal r[t] can be written as 

where U, is the signal subspace orthonormal eigenvectors, U, is the noise sub- 

space orthonormal eigenvectors, and A, is the signal subspace diagonal eigen- 

value matrix. Fkom this the channel response gk can be estimated from the 

orthogonality relationship [20] : 

since U, is orthogonal to the column space of Hz and hk is in the column 

space of H. Thus an estimation of the channel response gk can be obtained by 

computing the minimum eigenvector of the matrix ( c~u~u ,c~) .  We are here 

using Kalman tracking [28] for the channel estimation. Kalman tracking has 
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8 ( N  x pk) complexity where pk is the length of the impulse response gk. 

The estimation of the signal subspace Us will be outlined below. The pro- 

jected received signal z( i)  onto the noise subspace is obtained from 

from the fact that U,U: = I - u , U ~ .  Using (4.33), we have 

We consider the following constrained adaptive filtering technique to estimate 

the channel state: 

min E { ~ ~ ~ c ~ z ( z )  I*) 
gk 

subject to 1 lgkll = 1. 

Among a number of algorithms that can be employed to solve the above con- 

strained optimization problem. Here we use the following Kalman-type of algorithm[28] 

for channel estimation. 
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with the initial condition K(0) = I. Once an estimate of the channel state gk 

is obtained, the composite signature waveform of the desired user is given by 

4.6 Subspace Tracking 

Due to change of multipath and moving mobile stations, the channel for a user is 

non-stationary in a real communications environment. SVD or EVD is need for 

the high resolution of estimation. However, the calculation complexity of SVD 

or EVD is very high ( 0(N3),  where N is the dimension of the correlation matrix 

of the received signal). Therefore, in a real-time implementation of the group 

bIind multiuser detector, a reduced complexity updating algorithm for finding 

the eigenvalues and eigenvectors is needed. There exist many subspace tracking 

algorithms in the literature with various complexities, i. e., O ( N K )  , O(N K2), 

0(N2K),  or 0(N2). A survey of subspace tracking algorithms can be founded 

in [29]. in the next two sections, we will briefly introduce two subspace tracking 
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algorithms which are well suited for the group-blind multiuser detectors. 

4.6.1 FASIR Algorithm 

FASIR stands for FAst Subspace Iteration with Ritz acceleration which has 

6(NK2) complexity where N is the processing gain and K is the number of 

known users. Consider the class of matrices of rank K: 

fP ( t )  = us ( t )  C ,  ( t ) 2 ~ s  ( t )  (4.38) 

where Us(t)  is an N by K matrix with orthonormal columns and C,(t) is diag- 

onal real. If R(t)  is replaced by its low-rank approximation, then we have 

R(t)  c &(t) is "the FASIR approximation." This shows why the approxima- 

tions of FASIR and R(t - l)Us(t - 1 )  = U.(t - l)A,(t - 1 )  are equivalent if 

attention is restricted to the subspace iteration. A simple algorithm [29] can be 
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given by 

U.(O) arbitrary m x K ;  U.(O)~U.(O) = I; 

C(0) = I, the identity matrix 

For t  = 0,1,2, - - - 

w = [BU.(t - l ) E , ( t  - I), r( t ) ] ;  

Compute the N x K and K x K matrixUs ( t )  , C ,  ( t )  , 

In the SVD u.(~)c, ( t ) y H  = W 

goto t  = t  + 1 ,  (4.40) 

where p = 0.99. The FASIR algorithm should satisfy following conditions: 

Compute only a restricted subset of K eigenpairs, in order to decrease the 

complexity. 

Use the estimate of the previous time step (t - 1) as initial guess at  step 

a If possible, compute the K left singular pairs of a matrix D instead, such 

that D D ~  = R, in order to reduce rounding errors. 
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- - - 

4.6.2 Noise Average Cross-terms Singular Value Decom- 

position (NA-CSVD) 

Although the PASTd (Projection Approximation Subspace Tkacking with defla- 

tion technique) algorithm [32] has a O ( N K )  complexity, the deflation technique 

causes stronger loss of orthonormality between eigen vectors and a slightly in- 

creased computational complexity if N >> K. On the other hand, the NA- 

CSVD algorithm has the advantage of maintaining the orthonormality of eigen 

vectors and the descending order of eigen values by careful choice of the type of 

Givens rotation. In addition, it has a O ( N K )  complexity. This led us to choose 

the NA-CSVD algorithm. The NA-CSVD algorithm can be described as follows 

[311. 

InitiaIizat ion 

- 
Initialize withus = U N ~ ~ ,  C = C K + I ~ K + I  

F o r n = l ,  ... ,oo 

xs = u,nx 

z=x-Usxs 

V~ = ~ / l l ~ l l  
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QR step 

compute the angle 4i to zero y ( 2 )  as  in 

end 

Refinement step 

for I = K downto 1 

Choose the type of rotation 

end 

End 

For the hybrid groupblind multiuser detectors, (4.11) and (4.20), the input 

to the N.4-CSVD algorithm is the projection of the received signal onto the 
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subspace orthogonal to subspace spanned by known users: 

In the hybrid group-blind multiuser detectors, (4.11) and (4.20), the matrix 

Us(n)  is the direct output of U(n)  of the NA-CSVD algorithm, while As(n) = 

C(n)2. 

In the NA-CSVD algorithm, we assume that the number of users, i.e., the 

dimension of the signal subspace, is fixed and known. However, in real CDMA 

systems, it is possible for some users to appear and disappear. Therefore, another 

algorithm to find the number of users is needed. Rank estimation of the signal 

subspace with the NA-CSVD algorithm was developed by P. A. Pango [30] and 

the hybrid groupblind detector using NA-CSVD with the rank estimation could 

be further studied. 

4.7 Simulation Results for Synchronous DS-CDMA 

systems 

We consider CDMA systems with a variable number of both known and unknown 

users to compare the performance between them. The users are assigned purely 

random codes of length N = 31. 

An ensemble of 50 different random code assignments for each user is gener- 
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ated. To investigate the subspace tracking ability, bit-by-bit detect ion is imple- 

mented. The mean signal to interference and noise ratio (SINR) is calculated 

over all known users with a moving window which has the length of 20. 

Figure 4.6, Figure 4.7, and Figure 4.8 show the performance comparison 

among Werent multiuser detectors with a various number of both known and 

unknown users. It has previously been shown that the hybrid groupblind de- 

tector using the SVD algorithm has better performance than other detectors. In 

this section, the performance of the hybrid groupblind multiuser detector using 

the NA-CSVD is evaluated. Since the NA-CSVD algorithm has a low complex- 

ity, i.e., it is less accurate, the performance of the hybrid groupblind detector 

using the NA-CSM algorithm is of course worse than when the SVD or FASIR 

algorithms are used. However, in all cases, it still has a better performance 

than the partial MMSE (non-blind MMSE) detector and has the advantage of 

low complexity. Also, it is better than the blind MMSE detector for the case 

of K = 7,k = 4. &om the three figures, we can easily recognize that the 

performance of the NA-CSVD algorithm critically depends on the subspace di- 

mension. As the subspace dimension increases, the performance decreases. As 

can be seen from the figures, it is obvious that the hybrid groupblind multiuser 

detector using the NA-CSVD has a much better performance than the blind 

MMSE detector using the NA-CSVD. The reason is that the hybrid groupblind 

detector need only track K eigenvalues and eigenvectors, while the blind MMSE 
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detector must track K + K eigendues and eigenvectors. 

Figure 4.9 shows the BER performance of multiuser detectors. 100 different 

ensembles of 10,000 bits for each user were generated. For each ensemble of 

10,000 bits, the detectors were estimated over the first 300 bits. Figure 4.9 

shows that the hybrid groupblind detector has better performance than the 

blind MMSE detector. In most cases, the hybrid groupblind detector and the 

blind MMSE detector using the NA-CSVD are worse than when using SVD 

or FASIR. However, the hybrid groupblind detector using the NA-CSVD has 

the advantage of low complexity. While this conclusion applies only to the 

NA-CSVD, it can be expected to hold true for other low complexity subspace 

tracking algorithms, as these seem to work best for low subspace dimensions. 

Thus, because of the lower subspace dimension in group-blind type algorithms, 

these can be expected to work considerably better than the blind algorithms. 

4.8 Simulation Results for Asynchronous DS- 

CDMA systems 

We consider an asynchronous CDMA system with 7 known users and 3 unknown 

users. The users are assigned purely random codes of length N = 31. The chip 

pulse is a raised cosine pulse which has roll-off factor 0.5. Each user's initial 

delay dk is uniform on [0,4Tc]. The channel of each user has L = 3 paths. The 
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delay of each path T-J is uniform on [0, 4Tc]. Hence the maximum delay spread 

is 8Tc. The fading gain of each path in each user's channel is generated from a 

complex Gaussian distribution and fixed over the duration of one signal frame. 

The path gains in each user's channel are normalized so that each user's signal 

arrives at the receiver with the same power. An ensemble of 50 different random 

code assignments for each user is generated. To investigate the subspace tracking 

ability, bit-by-bit detection is implemented. The mean signal to interference and 

noise ratio (SINR) is calculated as a moving average over all known users with 

a window length of 20. 

Figure 4.10 shows a performance comparison for different multiuser detec- 

tors. It has previously been shown that the groupblind multiuser detector using 

the SVD algorithm has better performance than other detectors. Although the 

FASIR algorithm has low complexity, it has very good performance as can be 

seen in previous work [22]. But, because of the inaccuracy of the channel esti- 

mation, the performance of the groupblind multiuser detector using the FASIR 

algorithm is worse than when using SVD. However, in all cases, it still has a - 
better performance than the non-blind MMSE detector and has the advantage 

of low complexity. Also, it is better than the blind MMSE detector in the case 

of K = 7,W = 3 .  

Figure 4.11 shows the BER performance of multiuser detectors. 100 differ- 

ent ensembles of 10,000 bits for each user were generated. For each ensemble of 
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10,000 bits, the detectors were estimated over the first 1000 bits. As can be seen 

for Fig. 4-11, the groupblind multiuser detector has better performance than 

the blind MMSE detector. In most cases, the groupbli~1.d multiuser detector 

and the blind MMSE detector using the FASIR algorithm have worse perfor- 

mance than using SVD. However, the groupblind detector using the FASIR 

algorithm has the advantage of low complexiiy. Unlike the synchronous case 

[22], blind channel estimation is the main performance degradation factor in the 

asynchronous CDMA systems model. 
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Figure 4.6: Performance comparison of multiuser detectors with respect to 
bits: K = 7, K = 4, and SNR=20dB 

Figure 4.7: Performance comparison of multiuser detectors with respect to 
bits: K = 7, K = 10, and SNR=2OdB 
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Figure 4.8: Performance comparison of multiuser detectors with respect to 
bits: K = 2, K = 10, and SNR=20dB 

. .  - .. B-MMSE: FASIR 
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Figure 4.9: BER of multiuser detectors with respect to SNR: K = 7, K = 4 
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Figure 4.10: Performaace of the Group-blind linear hybrid detector imple- 
mented by the FASIR algorithm and Kalman tracking: SNR=POdB, 7 known 
users and 3 unknown users 

Figure 4.11: BER performance of multiuser detectors with respect to SNR: 
K = 7 ,  k = 3  



Chapter 5 

Group-blind Multiuser Detection 

for UTRA-TDD 

5.1 UMTS Terrestrial Radio Access 

In the European third generation mobile radio system, Universal Mobile Telecom- 

munications System (UMTS), there is a complex UMTS air interface called 

UMTS Terrestrial Radio Access (UTRA) for the requirements of different ser- 

vices. The UTRA consists of two modes, the UTRA-FDD (Frequency Division 

Duplex) [25] which uses the different frequencies for the uplink and downlink 

transmissions and UTRA-TDD (Time Division Duplex) [26] which uses the same 

frequency for the uplink and downlink transmissions. The UMTS spectrum was 

depicted in Figure 5.1. The basic technologies for the UTRA are wideband code 
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1- 1- 1- m o  larr nto 1170 m 

Figure 5.1: UMTS spectrum allocation 

division multiple access (WCDMA) for the FDD mode and time-division CDMA 

(TD-CDMA) for the TDD mode as described in Figure 5.2. 

Duplex Scheme UTRA-FDD UTRA-TDD 
Multiple Access Scheme WCDMA TD-CDMA 
hlodulation QPSK QPSK 
Frame Length 10 ms 10 ms 
Pulse Shaping Root Raise Cosine, r=0.22 Root Raise Cosine, r=0.22 
Number of time slots per frame 15 slots 15 slots 
Chip rate 3.84 Mchips/s 3.84 Mchips/s 
Bandwidth 5MEz  5 MHz 
Multirate concept multicode multicode , multislot 

and orthogonal variable and OVSF 
spreading factor (OVSF) 

Channel allocation no dynamic channel slow and fast 
allocation (DCA) required DCA supported 

Capacity allocation 5 MHz for uplink 5 MHz carrier divided 
between uplink and 5 MHz for downlink between uplink and downlink 
downlink (2-14 out of 15 slots) 

Table 5.1: Basic system parameters of UTRA-TDD and FDD 

The basic system parameters of UTRA-TDD and FDD are described in Table 

5.1 There are some characteristics of UTRA-TDD systems listed below. 

a Reciprocal channel: In UTRA-FDD, the fast fading of uplink is different 

from down link because the fast fading is up to the frequency. However, the 

same frequency is employed in both uplink and downlink in UTRA-TDD, 

the fast fading is the same in both uplink and downlink. This enables 

the transceiver to estimate the fast fading for its transmission from the 
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received signal. 

a Unpaired band: While UTRA-FDD requires a pair of bands, UTRA- 

TDD can be implemented on an unpaired band. 

a Flexible capacity allocation: In UTRA-TDD, there exists flexible ca- 

pacity allocation between the uplink and the downlink. If the capacity 

requirement is asymmetric between the uplink and the downlink, the ca- 

pacity can be adjusted by duplex switching point. 

a Interference between uplink and d o d n k :  Since both uplink and 

downlink use the same frequency, the transmitted signal of uplink can 

interfere with the received signal of downlink, and vice versa. 

In UTRA-TDD mode , the duration of a frame is lOms and it is subdivided 

into 15 time slots of 625ps duration. Within each time slot, orthogonal variable 

spreading factor (OVSF) codes of length 16 are used for user signal separation. 

The TDD frame is divided into downlink and uplink parts as depicted in Figure 

5.3. To change the transmit direction, the switching points (SWPs) are used. By 

varying the position of the SWP, asymmetrical data rates can easily be realized. 

There are two benefits in UTRA-TDD mode. First, the TDD mode is well 

suited for microcell/picocell environment for high bit rates and low mobility 

applications through the use of variable asymmetric t r d c .  Second, the TDD 

mode benefits from the reciprocal nature of the channel, i.e., we can use the 
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impulse response of the uplink channel for the downlink channel of a user. 

5.2 Interference between Uplink and Downlink 

in UTRA-TDD 

The primary limiting factors of the TDD mode are synchronization difficulties 

and the associated interference problems. The asymmetric allocation of traffic 

leads to an interference scenario that will impact the overall spectral efficiency 

of a TDD mode. Figure 5.4 depicts this scenario. two neighboring cells use 

the same frequency and have different uplink/downlink asymmetric traffic and 

the MS2 is near border of cell and transmitting signal with full power. MS1 

has more downlink traffic than MS2. In this case, the uplink transmission from 

MS2 to BS2 can block the downlink transmission from BS1 to MS1 causing the 

inter-cell interference. the inter-cell interference can be avoided using a dynamic 

resource allocation (DRA) algorithm. 

5.3 Group-Blind Multiuser Detection for UTRA- 

TDD 

In this section, we will discuss the groupblind linear hybrid multiuser detector 

in UTRA-TDD mode. Consider an asynchronous time duplex code division mul- 
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tiple access (TD-CDMA) system with K known users in a cell and K interfering 

users from adjacent cells. To use QPSK modulation, complex values are used 

for data symbols The received signal can be expressed as 

where H and fi are the channel matrices for the in-cell users and other-cell 

users, b and 6 are the data symbols, v is the additive Gaussian noise with unit 

power, and a2 is the variance of noise. The data symbols consist of asymmetric 

uplink/downlink time slots as depicted in Figure 5.4. Let pL be the orthogond 

projection onto the space orthogonal to the in-cell users channel matrix H given 

by 

where I is the identity matrix. The orthogonal projection of the correlation 

matrix R = E[rrH] can then be decomposed as 

- - 
u," 

u,H 

u; - - 

PLRfiL = [uuu]  

r - 
A, 0  0  

0 $1 ,, 
0 0 0  - - 
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where us, u ~ ,  A, are the signal subspace eigenvector matrix, the noise subspace 

eigenvector matrix, and the signal subspace eigenvalue matrix, respectively. The 

exact groupblind hybrid multiuser detector [20] is then given by 

The groupblind linear hybrid multiuser detector can reduce intra-cell interfer- 

ence from the c e l  and the inter-cell interference from adjacent cells efficiently. 

Figure 5 -5 compares the performance of the exact groupblind multiuser de- 

tector with the performance of the traditional partial MMSE detector, which 

ignores interference from adjacent cells. It is seen that the group-blind linear 

hybrid multiuser detector has a better performance than the partial MMSE de- 

tector for the time slots 4-10 where the information is seriously corrupted by 

interfering users from adjacent cells. While the partial MMSE detector can only 

reduce intra-cell interference, the groupblind linear hybrid multiuser detector 

can reduce both intra-cell and inter-cell interference. The correlation matrix 

was estimated in each time slot for the estimated groupblind linear hybrid mul- 

tiuser detector. The estimated groupblind linear hybrid multiuser detector can 

be expressed as 
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Figure 5.6 shows a performance of the estimated hybrid groupblind multiuser 

detector with respect to time slots. After time slot 5, the SINR of the estimated 

group-blind linear hybrid group-blind multiuser detector cross over the SINR of 

the partial MMSE detector. In the time slot 11-15, sincc! there are no interfering 

users from adjacent cells, the groupblind linear hybrid multiuser detector is the 

same as the zero-forcing detector, i.e., &[n] = sgn (1; ( g H $ % ) - l ~ H r  [n]) . Thus, 

the problem of UTRA-TDD can be solved with the group-blind linear hybrid 

multiuser detector. 
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Figure 5.2: UMTS Terrestrial Radio Access (UTRA) 

Figure 5.3: Frame structure of UTRA-TDD 
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Figure 5.4: Interference scenario and UTRA-TDD frame structure 

Time Slots 

1 -3 I I 4-1 0 11-15 
I I I 

500 low lSOO 2006 2500 
symbo's 

Figure 5.5: Performance of the exact group-blind linear hybrid detector in the 
UTRA-TDD mode with SIR=-20dB, SNR=20dB, 6 in-cell users, and 4 interfer- 
ing users from adjacent cells. 
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Figure 5.6: Performance of the estimated group-blind linear hybrid detector 
in the UTRA-TDD mode with SIR=-20dB, SNR=20dB, 6 in-cell users, and 4 
interfering users from adjacent cells. 



Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

In this thesis, we have demonstrated that group-blind multiuser detectors reduce 

both intra-cell and inter-cell interference efficiently. The groupblind multiuser 

detectors were introduced and evaluated for both synchronous and asynchronous 

systems. In most cases, the groupblind multiuser detectors have better perfor- 

mance compared to traditional multiuser detectors such as the conventional 

detector, the blind MMSE detector, and the partial MMSE detector. 

Exact groupblind multiuser detectors which use the exact correlation matrix 

have the same SINR as the ideal full MMSE detector when inter-cell interference 

occurs. However, estimated groupblind multiuser detectors need to be trained 

to get the exact correlation matrix with the time average method. But they 
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converge in performance to the ideal full MMSE detector. Blind channel esti- 

mation and subspace tracking algorithms to update the eigen components with 

low calculation complexities have been studied. 

Because the hybrid groupblind multiuser detector has an excellent perfor- 

mance when the time slots are corrupted by inter-cell interference, the hybrid 

group- blind multiuser detector is effective for UTRA-TDD systems which suffer 

from serious inter-cell interference. 

In this thesis, my contributions axe an adaptation of two subspace tracking 

algorithms to groupblind multiuser detection to reduce calculation complexity, 

and the application of group-blind multiuser detection in UTR-4-TDD. 

6.2 Future Work 

In this thesis, we assumed that the number of users in the received signal is 

known to the receiver. However, a user can appear or disappear in cellular 

systems. This information is very important for proper separation of the noise 

subspace and signal subspace in SVD or subspace tracking. An estimation of the 

number of users required to implement a group-blind multiuser detector should 

be examined. 

So far, the groupblind multiuser detector considers one antenna. A perfor- 

mance improvement is expected when space-time signal processing with lower 

complexity is used. Although there axe fast DSP processors available, the devel- 
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opment of a complexity reduced subspace tracking algorithm and an iterative 

implementation of the groupblind multiuser detector are suggested. 
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