
Self-Stabilizing Token Circulation on Anonymous Message Passing

Rings

(Extended Abstract)

Lisa Higham�

Dept. Of Comp. Sc.

University of Calgary

Calgary, Alberta, Canada

Steven Myersy

Dept. Of Comp. Sc.

University of Torontoz

Toronto, Ontario, Canada

February 18, 1999

Abstract

A self-stabilizing algorithm that solves the problems of token circulation and leader election

on anonymous and uniform, unidirectional, message passing rings of arbitrary, but known, size

is developed. From any initial con�guration, the expected time to stabilization on a ring of size

n is in O(n logn). Furthermore, the size of the con�guration of the system remains constant

throughout the execution; each processor state and message state has size in O(logn). The

correctness of the algorithm relies upon a novel duality between messages and processes.

�Email: higham@cpsc.ucalgary.ca, Research was supported in part by Natural Sciences and Engineering Research

Council of Canada grant OGP0041900.
yEmail: myers@cs.toronto.edu, Research was supported in part by Natural Sciences and Engineering Research

Council of Canada grant OGP0041900, by a university of Calgary research grant, and by a STEP grant.
zMost of this work was completed while the author was at the University of Calgary.

1 Introduction

Many protocols for distributed computing assume the existence of primitives such as token circula-

tion and leader election. Leader election requires that a unique processor be identi�ed as the leader,

from a set of indistinguishable processors. Anonymous networks use leader election as a �rst step

in assigning session speci�c identities to processors. The token circulation problem requires that a

token be circulated by all of the processors in some fair fashion. A token circulation algorithm is

often used as a basis for solving the mutual exclusion problem.

Such primitives should be able to withstand the transient faults to which distributed systems

are susceptible. To this end, Dijkstra [4] de�ned a distributed system to be self-stabilizing if, when

started from an arbitrary con�guration, the system is guaranteed to reach a legitimate con�guration,

as execution progresses. Algorithms with small stabilization times are desireable because a system

will make progress provided that the time between its faults is longer than the time necessary for

it to stabilize.

We present a self-stabilizing algorithm that solves the problems of token circulation and leader

election on anonymous, unidirectional, message passing rings of arbitrary, but known, size. From

any initial con�guration, the expected time until our algorithm stabilizes on a ring of size n is

in O(n logn). (Henceforth, ring size is denoted by n.) Because, as noted by Gouda and Multari

[9], there can be no purely asynchronous self-stabilizing protocols for message passing models,

we augment our system with a time-out mechanism. In fact, we present our algorithm in the

synchronous model; however, it can be easily adapted for an asynchronous model provided with

a time-out mechanism that detect deadlocks. Since it is impossible to deterministically break

symmetry on an anonymous ring [3] randomization is used. Randomization also allows us to

circumvent the deterministic lower bound of Dolev, Israeli, and Moran [7], who show that the

con�guration size of any deterministic, self-stabilizing, message driven protocol that solves a weak

exclusion task (of which token passing is an example) grows logarithmically with time. In our

algorithm the size of each processor state and message state is bounded by O(log n).

Self-stabilizing token circulation and leader election have been well studied. Much of this

1

research (see [10] for an extensive bibliography) has assumed Dijkstra's original composite atomicity

([5]) shared memory model, where an atomic step may contain both a read and a write operation,

and has focused on various additional factors (such as graph topology, existence of identi�ers, type

of scheduling deamon, use of randomization, and properties of the ring size) and goals (minimizing

state space and stabilization time). In contrast, for these problems, fewer algorithms exist for the

weaker read/write atomic shared register model [5, 6, 8].

Although it has been established that self-stabilizing algorithms for the atomic read/write shared

memory model can be transformed to ones for message passing models (see [14, 12, 13]), these trans-

formations require either bidirectional links or identi�ers, (or both) or incurr substantial overhead.

This leaves open the question of e�cient, self-stabilizing token circulation and leader election al-

gorithms for anonymous unidirectional message-passing networks, although a few papers address

self-stabilizing solutions for some other problems in the message passing model [7, 2, 9, 13, 1].

2 Model

We assume a synchronous, unidirectional ring consisting of n anonymous processors. At each time

step, a processor can send a message which, barring any transient faults, will arrive at its successor

in the next time step. Each processor has access to a statistically independent random bit generator

which can produce one bit per processor per time step. It is convenient to think of messages as

being contained in envelopes that circulate around the ring. The receiving processor may change

the envelope contents prior to forwarding it in the next step, or it may destroy the envelope (and

its contents). Also, processors may create new envelopes, initialize their contents and add them to

the circulating collection of envelopes.

Since token circulation and leader election are closely releated [15], it is not surprising that

one algorithm can solve both problems. At any point in our algorithm, some processors may

be producers. For leader election, the producers are the candidate leaders; for token circulation,

the envelopes are the tokens. Eventually there will remain exactly one producer and exactly one

circulating envelope, thus solving both problems.

2

In the self-stabilizing model, an initial period, during which the problem requirements are

not met, is permitted, so long as there is a guarantee that after a �nite amount of time they

will be met, and remain met. Therefore, for the leader election (respectively, the token circulation)

problem, there initially may be system con�gurations with no producers or more than one producer

(respectively, no envelopes, or more than one envelope) but it must be guaranteed that eventually

all succeeding con�gurations have exactly one producer (respectively, envelope).

3 Self-Stabilizing Token Circulation

3.1 Intuition for SSTC

Our algorithm builds upon a randomized basic attrition protocol [11] for reliable asynchronous mes-

sage passing networks. When basic attrition is initiated by any non-empty collection of processors,

called producers, we are guaranteed to eventually be left with exactly one producer, which continues

to circulate a single envelope around the ring. Unfortunately, basic attrition is not self-stabilizing;

we �rst describe basic attrition and then the enhancements required to make it so.

During each turn, each producer independently tosses an unbiased coin, sends the outcome to

the next producer (via the intervening non-producers) and waits to receive the coin toss generated

by the preceding producer. A producer becomes a non-producer for the remainder of basic attrition

if and only if it sent a tail and received a head. Otherwise it proceeds to its next turn. If, in a �xed

turn, all producers have the same ip, then each remains a producer for the next turn; if not all

ips are the same, then those that ipped heads are guaranteed to be producers for another turn.

Therefore, not all producers can become non-producers. The probability that a given producer

sends a tail and receives a head is 1=4 so long as there is more than one producer. Hence, with

probability 1, the number of producers and envelopes decreases to exactly one.

Notice that every time a producer is eliminated, a circulating envelope is also destroyed. Hence,

basic attrition maintains a one-to-one correspondence between envelopes and producers, which is

crucial for its correctness. If initially this correspondence does not hold, basic attrition will remove

3

either all envelopes or all producers. Our enhancement of basic attrition to make it self-stabilizing

is to detect and correct con�gurations where there are either no envelopes or no producers.

Unfortunately, the absence of envelopes cannot be detected on a purely asynchronous message-

driven system; that is why we focus our attention on synchronous systems. Counters are added to

both the processors and the messages in the envelopes. A message counter is set to n whenever

a message is sent by a producer, and is decremented by 1 each time the message is forwarded

by a non-producer. Hence, if a message's counter ever reaches 1, the envelope has not passed

a producer for its entire journey around the ring. It therefore causes the receiving processor to

become a producer, ensuring that there is at least one producer. Similarly, a producer sets its

counter to n when it sends an envelope, and decrements its counter each time step when it does not

receive an envelope. Hence, if a producer's counter ever reaches 1, it has not received an envelope

during an interval long enough for the last one it sent to circulate back to it. It therefore creates

a new envelope, ensuring that there is at least one. Finally, a non-producer behaves similarly to

a producer except that it sets its counter to 2n rather than n when it sends an envelope, which

impedes any non-producer from creating a new envelope and becoming a producer when a producer

already exists.

3.2 Speci�cation of SSTC

Each processor on a ring of size n maintains a counter, and each producer stores the result of a

coin ip. Thus, a processor-state is a triple (Prod?, proc ip, proc count). For processor �, the

value of �:Prod? 2 ftrue, falseg is true if and only if � is a producer. If � is a producer,

the value of �:proc ip 2 fheads, tails, �g is the current coin ip of �; if � is a non-producer,

it is �. The value of �:proc count 2 Z is the value of the counter of �, which always satis�es

1 � �:proc count � 2n if � is a non-producer, and it satis�es and 1 � �:proc count � n if � is a

producer.

Each envelope carries a message consisting of a coin ip and a counter. Thus, a message-state

is a pair (mess ip, mess count). For message m, the value of m:mess ip 2 fheads, tailsg

4

is the coin ip of m, and the value or m:mess count 2 Z is the counter value of m, where

1 � m: mess count � n.

At each time step the action of a processor � is determined by the value of the pair (�.Prod?,�.Mess?),

where Mess? is true if and only if � received an envelope in the given time step. The function

coin-ip returns a value chosen randomly and independently from the uniform distribution over

fheads, tailsg. The function set updates the processor-state. The function send creates an enve-

lope, inserts a message with the given state and sends it. Each processor in the ring executes the

algorithm SSTC .

Algorithm 1 SSTC
1 repeat for every time step:

2 let (Prod?, proc ip, proc count) be the current processor state

3 if a message is received

4 let (mess ip, mess count) be the state of the message

5 Mess? true

6 else Mess? false

7 case (Prod?, Mess?) of

8 (true, true)

9 fif not (mess ip=heads and proc ip=tails) . Producer and message survive

10 ip � coin-ip

11 set (true, ip, n) ; send (ip, n)

12 else . Producer and message killed

13 set (false, *, 2n)g
14 (false, true)

15 fif (mess count=1) . Message times-out

16 ip � coin-ip

17 set (true, ip, n) ; send (ip, n)

18 else . Pass on Message

19 set (false, *, 2n) ; send (mess ip, mess count�1) g
20 (true, false)

21 fif (proc count=1) . Producer times-out

22 ip � coin-ip

23 set (true, ip, n) ; send (ip, n)

24 else

25 set (true, proc ip, proc count�1) g
26 (false, false)

27 fif (proc count=1) . Non-producer times-out

28 ip � coin-ip

29 set (true, ip, n) ; send (ip, n)

30 else

31 set (false, *, proc count�1)g

5

4 Correctness of SSTC

To prove the correctness of SSTC , we establish that the di�erence between the number of producers

and the number of envelopes never increases, and with probability 1 decreases as time progresses, so

long as the di�erence is greater than zero. We next show that if the di�erence between the number

of producers and envelopes is zero, then with probability 1 the number of producers (and thus

number of envelopes) reaches one and remains at one for the remainder of the execution. Due to

space constraints, some proofs of lemmas are omitted. All missing proofs are provided in Appendix

A.

For the purpose of the proof imagine that the processors are numbered from 1 to n. A con�gu-

ration of the ring is given by a sequence of n pairs, where the ith pair is a description of the state

of processor i and the state of the message at processor i, if there is one. (If there is no envelope

at a processor then the message-state is null.) Execution of SSTC starts from an arbitrary initial

con�guration denoted by �. Given � and an in�nite sequence of coin ips, E, the con�guration

immediately following � is determined by applying the repeat loop SSTC once to each processor.

If processor i requires a coin ip, it takes the value of the ith bit of E. After the application, E

is updated by removing its �rst n bits. Given a initial con�guration � and an in�nite sequence of

coin ips, E, the con�guration that results after t time steps is determined by repeating the above

t times, and is denoted Con�g(�;E; t).

The �rst three lemmas establish that within the �rst 3n time steps, a con�guration is achieved

such that each envelope has been sent by a producer, and each processor has sent an envelope and

non-producers will henceforth only act as relays. This allows us to argue that there is a correlation

between some of the message and processor states after 3n time steps.

Lemma 4.1 For any initial con�guration � and any coin-ip sequence E and for all r � n, all

envelopes in Con�g(�;E; r) have been sent by a producer.

Lemma 4.2 For any initial con�guration �, and any coin-ip sequence E, every processor has

sent an envelope by time step 3n.

6

Say that a processor (respectively, envelope) times-out when its counter reaches 1 and it does

not receive an envelope (respectively, arrive at a producer).

Lemma 4.3 A non-producer cannot time-out after time 3n.

Given an execution from an initial con�guration �, and assuming some coin-ip sequence E, let

Prod(�; r) denote the number of producers in Con�g(�;E; r), and let Env(�; r) denote the number

of envelopes in Con�g(�;E; r).

Consider any con�guration, �, arising after time 3n, and having at least as many producers

as envelopes. The following lemma shows that the next time-out cannot be an envelope time-out.

Only an envelope time-out, however, can increase the number of producers while leaving the number

of envelopes unchanged. Thus the di�erence between the number of producers and the number of

envelopes cannot increase. Furthermore, a con�guration with more envelopes than producers can

never succeed �.

Lemma 4.4 For every con�guration � and for every r � 3n, if Prod(�; r) � Env(�; r) then no

envelopes time-out in the �rst round after r in which any time-outs occur.

Lemma 4.5 For every con�guration � and for every r � 3n, if Prod(�; r) > Env(�; r) and the

�rst time-out after r is at time T , then Prod(�; T) � Env(�; T).

After the initial 3n steps when non-producers cease timing out, and act only as relays, there

is no substantial di�erence between the state and behaviour of producers and that of messages.

That is, the con�guration that results from interchanging the role of producers and messages and

sending messages backwards, is the same as that obtained from the original con�guration and

sending messages forward. The next two lemmas are dual to the previous two for the case when, at

some time r, the number of envelopes is at least as big as the number of producers, and their proofs

can be derived as a consequence of this duality between envelopes and producers. The theorem

that establishes this duality is proved in the appendix.

7

Lemma 4.6 For every con�guration � and for every r � 3n, if Env(�; r) � Prod(�; r) then no

producers time-out in the �rst round after r in which any time-outs occur.

Lemma 4.7 For every con�guration � and for every r � 3n, if Env(�; r) > Prod(�; r) and the

�rst time-out after r is at time T , then Env(�; T) � Prod(�; T).

The four Lemmas 4.4, 4.5, 4.6, and 4.7 form the core of the proof of correctness of algorithm

SSTC . They allow us to argue that as the computation progresses, steps arise that either decrease

the di�erence between the number of producers and envelopes or decrease the total number of

producers and envelopes until eventually exactly one producer with a matching envelope remains.

A competition takes place when a producer receives an envelope. Call any time-out or any

competition a signi�cant event, and call a time step t signi�cant if a signi�cant event occurs at

time t. Observe that the number of envelopes or producers can change only at signi�cant time

steps. The proof of the next lemma is obvious.

Lemma 4.8 For any initial con�guration, signi�cant events are guaranteed to continually arise at

intervals of at most 2n.

Let R0 = 3n, and let Ri be the i
th signi�cant time step after R0.

Lemma 4.9 If for some con�guration � and for some t � 0, Prod(�;Rt) = Env(�;Rt) then for

every j � t, Prod(�;Rj) = Env(�;Rj) and, with probability 1, there is a k such that for every l � k

Prod(�;Rl) = Env(�;Rl) = 1.

Proof: Consider step Rt+1. By Lemma 4.3 there cannot be a non-producer time-out; by

Lemma 4.6 there cannot be a producer time-out; by Lemma 4.4 there cannot be an envelope

time-out. Therefore, the next signi�cant event must be a competition, and so there must be at

least one producer and one envelope. However, every competition that is won leaves the number

of producers and envelopes unchanged, and every competition that is lost removes exactly one

producer and one envelope. Hence, Prod(�;Rt+1) = Env(�;Rt+1). It follows by induction that for

every j � t, Prod(�;Rj) = Env(�;Rj). Furthermore, if Prod(�;Rj) = Env(�;Rj) = s � 2 then,

8

with probability at least 1=4, Prod(�;Rj+1) < s. So with probability 1, eventually, say at step Rk,

there will be one producer and one envelope. Every competition that follows will be won, ensuring

that for every l � k, Prod(�;Rl) = Env(�;Rl) = 1.

Theorem 4.10 For any initial con�guration �, algorithm SSTC eventually converges to (and

henceforth remains in) a con�guration with one envelope and one producer.

Proof: There are three cases depending upon the relationship between Prod(�;R0) and

Env(�;R0). If Prod(�;R0) = Env(�;R0) then the theorem follows from Lemma 4.9.

Suppose that Prod(�;R0) > Env(�;R0). We show that, with probability 1, there is a k > 0

such that Prod(�;Rk) = Env(�;Rk). The theorem will then follow from Lemma 4.9.

It follows from Lemmas 4.3, 4.4 and 4.5 that all time-outs after step R0 must be producer

time-outs. Hence, all signi�cant events in the computation after time R0 are either competitions or

producer time-outs. Let �t = Prod(�;Rt)�Env(�;Rt) and consider how �t changes over time. Each

competition leaves �t unchanged. Each producer time-out increases the number of envelopes by one

and leaves the number of producers unchanged, so each time-out reduces �t by one. Furthermore,

it follows from induction, Lemma 4.9 and Lemma 4.5, that Prod(�;Rt) � Env(�;Rt), so �t � 0 for

all t. Therefore, there can be at most Prod(�;R0)� Env(�;R0) time-outs.

Each competition that is lost removes exactly one envelope and one producer. So after any time

Rt there can be at most Env(�;Rt) lost competitions before another producer time-out occurs. Since

competitions are lost with probability 1=4 as long as there is more than one envelope or producer,

there are a bounded number of competitions expected before the next producer time-out as long

as Prod(�;Rt) � 2. Thus with probability 1 there will eventually be a k such that �k = 0.

The proof for the �nal case when Env(�;R0) > Prod(�;R0) follows from that of the previous

case and the duality theorem.

5 Stabilization Complexity

Theorem 5.1 For any ring of size n, in any initial con�guration, the expected time until SSTC

9

stabilizes to a con�guration with exactly one producer and one envelope is O(n logn).

Proof: Consider the number of producers and envelopes in the con�guration achieved after the

�rst 3n time steps.

CASE 1. Con�guration has at least as many envelopes as producers.

Let M = fm1;m2; :::;mkg be the set of envelopes in . We assume that jMj � 2, since

otherwise the theorem holds trivially. Let SSTC run for an additional 2n steps. Then partition

M into two sets A and B where A is the set of envelopes that did not have a competition during

the 2n steps, and B is the set that did.

Claim 5.2 For every envelope in A , there is a unique envelope in B that was eliminated during

the 2n time steps.

Proof: Any envelope m 2 A cannot be received by a producer in the �rst n steps, therefore it

has timed-out at some processor � by step n, forcing � to become a producer. However m cannot

be received by any producer by step 2n, which implies that � is no longer a producer. The only

way � could have become a non-producer is through a lost competition with an envelope m�, in

which m� also would have been eliminated. So it su�ces to show that m� 2 B . Because the 2n

time steps were applied to con�guration , which arose after SSTC had executed for 3n steps, we

know by Lemmas 4.3, 4.4, 4.5, 4.9 that non-producers and producers did not time out during the

2n time steps. Since the only way to create a new envelope is by a processor time-out, we conclude

that m� was in and therefore m� 2 B .

To determine a lower bound on the expected number of envelopes eliminated after the 2n steps,

set xi to 1 if mi is in a lost competition in the 2n steps. Otherwise set xi to 0. Let x =
P

i xi

be the number messages in lost competitions during the 2n steps. Let RA be a random set, which

contains the messages that will be in A at the end of the 2n steps. Conditioned on belonging to

RA we assign probabilities to xi. Since every envelope in RA will not have had any competitions

during the 2n steps, the probability of any of these envelopes being in a lost competition is 0. Since

jMj � 2, the coin tosses of all producers and envelopes holding competitions are independent, and

10

so the probability of being in a lost competition is at least 1

4
. We have:

Pr[xi = 1jmi 2 RA] = 0 and Pr[xi = 1jmi =2 RA] �
1

4

We now determine a lower bound on the expected value of x conditional on RA , and use it to

derive a lower bound on the expectation of x.

E [xjRA] = E [
P

i xijRA] = E
hP

mi2RA
xijmi 2 RA

i
+ E

hP
mi =2RA

xijmi =2 RA

i

=
X

mi2RA

E [xijmi 2 RA] +
X

mi =2RA

E [xijmi =2 RA]

=
X

mi2RA

1 � Pr[xi = 1jmi 2 RA] +
X

mi =2RA

1 � Pr[xi = 1jmi =2 RA]

� 0 +
1

4
(jM n RA j) =

1

4
(jMj � jRA j) =

1

4
jMj �

1

4
jRA j

Because every envelope in RA is on the ring at the end of the 2n steps, and because there is a

unique envelope m̂ that is killed for every envelopem 2 RA it follows that jRA j � 1

2
jMj. Therefore

the expected value for x conditioned on RA is bounded by E [xjRA] � 1

4
jMj � 1

4
jRA j � 1

8
jMj

which is independent of RA . This implies that E [x] � 1

8
jMj.

Call each 2n steps a phase. By the proof of correctness in section 4, the con�guration resulting

after the phase must also have at least as many envelopes as producers. Therefore the argument

can be iterated, reducing the number of remaining messages with each 2n time steps. Let 	i be

the con�guration at the end of phase i. Let Y i be the number of envelopes in 	i, and let Xi be the

number of envelopes that have lost a competition by the end of phase i. If M = jMj is the number

of envelopes initially in , then Xi + Y i =M , and so, provided M � 2;E
�
Y i+1jY i =M

�
< 7

8
M .

This inequality leads to E
�
Y i+1

�
< 7

8
E
�
Y i
�
(see the full version of this paper for details).

Since there are at most n envelopes in , after at most log 8

7

n phases we expect at most 2

envelopes to remain on the ring. Thus, after log 8

7

n phases the probability that there are more than

4 envelopes remaining is less than 1=2. Thus the expected number of phases until there are at most

4 envelopes is c log 8

7

n for a small constant c. It is easy to see that in an additional expected O(1)

phases the number of messages will reduce to 1. So in expected time (2nc log 8

7

n+O(n)) 2 O(n logn)

the number of messages will be reduced to 1, and the ring will be stabilized.

CASE 2. There are at least as many producers as messages at time 3n.

11

This follows as a result of the duality theorem and the proof of CASE 1.

6 Acknowledgements

The authors thank Zhiying Liang for her early involvement in the project, and Eric Ruppert, and

Wayne Eberly for their comments and suggestions, which have improved the �nal version of this

paper.

References

[1] Y. Afex, A. Bremler, \Self-Stabilizing Unidirectional Network Algorithms by Power-Supply",

Proceedings of the Symposium on Discrete Algorithms, 1997

[2] Y. Afek, G.M. Brown, \Self-Stabilization over unreliable communication media", Distributed

Computing, Vol. 7, 1993, pp. 27-34

[3] D. Angluin, \Local and Global Properties in Networks of Processors", Proceedings of the 12

ACM Symposium on Theory of Computing , 1980, pages 82-93

[4] E.W. Dijkstra, \Self-stabilizing Systems in Spite of Distributed Control", Communications of

the ACM, November 1974, pp. 643-644

[5] S. Dolev, A. Israeli, S. Moran, \Self-Stabilization of dynamic systems assuming only read/write

atomicity", Distributed Computing, Vol.1, 1993, pp. 3-16

[6] S. Dolev, A. Israeli, S. Moran, \Uniform Self-Stabilizing Leader Election Part 1: Complete

Graph Protocols", World Wide Web, [http://www.cs.bgu.ac.il/~dolev], 1995

[7] S. Dolev, A. Israeli, S. Moran, \Resource Bounds for Self-Stabilizing Message Driven Proto-

cols", SIAM Journal of Computing, Vol.26, No. 1, 1997, pp. 273-290

[8] S. Dolev, A. Israeli, S. Moran, \Uniform Dynamic Self-Stabilizing Leader Election", IEEE

Transactions on Parallel and Distributed Computing, Vol.8, No. 4, 1997, pp. 424-440

[9] M. G. Gouda and N.J. Multari, \Stabilizing communication protocols",IEEE Transactions on

Computing, Vol.40,1991, pp.448-458

[10] T. Herman, \Comprehensive Self-Stabilization Bibliography",

http://www.cs.uiowa.edu/ftp/selfstab/bibliography/, October 1997

[11] L. Higham, D.Kirkpatrick, K.Abrahamson, and A.Adler. \The Bit Complexity of Randomized

Leader Election on a Ring", SIAM Journal of Computing , Vol. 18,No. 1, 1989

[12] S.T. Huang, L.C. Wuu, M.S. Tsai, \Distributed Execution Model for Self-Stabilizing Systems",

Proc. Int'l Conf. Distributed Computing Systems, 1994, pp. 432-439

[13] S. Katz, K.J. Perry, \Self-Stabilizing extensions for message-passing systems", Distributed

Computing, Vol. 7, 1993, pp. 17-26

12

[14] M. Mizuno, H. Kakugawa, \A Transformation of Self-Stabilizing Programs for Distributed

Computing Environments", Proc. 10 Int'l Workshop Distributed Algorthims, 1996.

[15] A. Mayer, Y. Ofek, R. Ostrovsky, M. Yung , \Self-Stabilizing Symmetry breaking in Constant

Space", Distributed Computing, Vol. 7, 1993, pp. 17-26

13

7 Appendix A: Details for the Proof of Correctness

Say that an envelope is sent by a producer if either it is created or the message insided the envelope

is changed by a processor that becomes or remains a producer (lines 11,17,23,29). Similarly an

envelope is received by a producer (respectively non-producer), if line 8 (respectively line 14) is

executed. A processor times-out at step t if at the start of step t its counter is one and it does not

receive an envelope. That is, a producer (respectively, non-producer) times-out if it executes lines

23 (respectively, line 29), in which it becomes a producer and creates a new envelope on the ring.

An envelope times-out at step t if at the start of step t the counter of the message contained in the

envelope is one, and the envelope is received by a non-producer (line 17). An envelope is sent by

a non-producer if a non-producer receives a message and the message does not time-out (line 19 is

executed).

A competition occurs when a producer receives an envelope. The competition is lost if the

envelope contains a message with a ip that is heads and the receiving producer has a ip that

is tails (line 13 is executed). In this case the envelope is destroyed and the producer becomes a

non-producer, and we say that the envelope and the producer are killed. Otherwise the competition

is won (line 11 is executed), and the processor and envelope have survived the competition.

A processor z is between processors x and y, if an envelope starting at x and traveling in the

direction of the ring arrives at z before y. The span(x; y) is the set of processors on the ring between

processors x and y, and the span[x; y] is processors x and y together with span(x; y). The distance

between processors s and y is de�ned by dist(x; y) = jspan[x; y]j � 1. If x and y are envelopes at

processors w and z respectively at a given time step, then in that time step dist(x; y) = dist(w; z).

Lemma 7.1 For any initial con�guration � and any coin-ip sequence E and for all r � n, all

envelopes in Con�g(�;E; r) have been sent by a producer.

Proof: Consider any envelope m in Con�g(�;E; r) that was in the initial con�guration �. If m

is not sent by a producer within n time steps then it will time-out executing line 17. Any envelope

m0 in Con�g(�;E; r) not in �, must have been created during the run, which implies line 23 or 29

14

was executed.

Lemma 7.2 For any initial con�guration �, and any coin-ip sequence E, every processor has

sent an envelope by round 3n.

Proof: Every processor is either a producer or a non-producer in �. Since any non-producer � has

a counter with initial value c� � 2n, if � has not received an envelope (and thus sent an envelope

by line 17 or 19)by time c� it will time-out and send an envelope (line 29).

Any producer � in � has a counter with initial value c� � n. If � has not received an envelope

by time c�, it will time-out and send one (line 23). Alternatively if � does receive an envelope by

time c�, then a competition is held. Two cases arise, either the competition is won and � sends

an envelope (line 11), or it is lost and � becomes a non-producer. In the latter case the previous

argument implies it will send an envelope within the next 2n steps. Thus within 3n steps all

processors have sent an envelope.

Lemma 7.3 A non-producer cannot time-out after time 3n.

Proof: To achieve a contradiction, assume that � is the non-producer that is the �rst to time-out

after time 3n and let T > 3n be the time of this time-out. Therefore at time T � 2n, �.proc count

was set to 2n (line 13 or 19). For � to time-out at time T , it must not receive an envelope during

the interval [T � 2n+1 : T]. However, the following argument shows that in all cases � will receive

an envelope during this interval, ensuring a contradiction.

Let � be the processor preceding �. Then at time T � 2n � received an envelope m from �,

and therefore � must have sent m at time T � 2n� 1.

Case 1: � was a non-producer when it sent m.

Then, �.proc count = 2n� 1 at time T � 2n. If � does not receive an envelope during the interval

[T � 2n : T � 1], then � will time-out at time T � 1 sending an envelope that arrives at � at time

T . Alternatively if � does receive an envelope at some time in the interval [T � 2n : T � 1], then �

forwards it to � which receives it one step later in the interval [T � 2n+ 1 : T].

15

Case 2: � was a producer when it sent m.

Then �.proc count = n� 1 at time T � 2n. If � does not receive an envelope during the interval

[T � 2n : T �n� 1], then � will time-out at time T �n� 1 sending an envelope to � which arrives

at time T � n.

If � does receive an envelope m̂ during the interval, then there is a competition. If the competi-

tion is won, then the envelope m̂ survives and is received by � during the interval [T�2n+1 : T�n].

The only remaining situation is when producer � received m̂ during the interval [T � 2n : T � n� 1]

and the competition was lost. In this case m̂.mess ip must have been heads. Since T � 2n � n,

we know by Lemma 7.1 that m̂ has been sent by a producer. Let be the last producer that sent

m̂ before it arrived at �. Let d = dist(; �) and let T̂ be the time at which m̂ was sent by .

We know that T � 2n � T̂ + d � T � n � 1, because m̂ is received by � in the interval

[T � 2n : T �n� 1]. There are two subcases depending upon whether or not receives an envelope

in the time interval [T̂ + 1 : T̂ + n].

If receives an envelope in the interval [T̂ + 1 : T̂ + n] then it is impossible that the �rst such

envelope �m is killed because :proc flip must be the same as the ip in the last envelope that

sent. The last envelope which sent is m̂ with m̂.mess ip = heads, therefore the competition

between �m and must be won. This implies that �m will be sent by at some time �T satisfying

T̂ + 1 � �T � T̂ + n.

If receives no envelope during the interval [T̂ + 1 : T̂ + n], then will time-out sending an

envelope at time �T = T̂ + n.

In either case, the envelope sent by at time �T will arrive at � after an additional d+1 steps.

However,

T � 2n+ 1 � T̂ + d+ 1 � �T + d+ 1 � T̂ + n+ d+ 1 = (T̂ + d) + n+ 1 � T � n� 1 + n+ 1 = T:

So the envelope is guaranteed to arrive at � in the interval [T � 2n+ 1 : T].

Lemma 7.4 For every con�guration � and for every r � 3n, if Prod(�; r) � Env(�; r) then no

envelopes time-out in the �rst round after r in which any time-outs occur.

16

Proof: Let T be the �rst round after r in which anything times-out. Let S = max(T � n; r), and

observe that if Prod(�; r) � Env(�; r) then Prod(�; S) � Env(�; S) as there are no time-outs in

the interval [r : S], and therefore the di�erence between the number of envelopes and the number

of producers in the interval is a constant. Suppose for the purpose of contradiction that r > n,

Prod(�; r) � Env(�; r), and at time T an envelope m times-out at a processor �. Then � is a

non-producer, otherwise m would not have timed out. Since r > n, we know that m has been

sent by a producer (lemma 7.1). Since m times-out at � it must be the case that � was the last

producer to send m, which it did at time T � n. Let � be the processor which received m at time

S, and consider the ring broken into three sections (�; �], (�; �), [�; �] at time r; we show that it

must be the case that Env(�; S) > Prod(�; S) contradicting our assumption. To �nish the proof of

the lemma consider the following two claims.

Claim 7.5 At time S the number of envelopes in the span (�; �] must be greater than or equal to

the number of producers in the span.

Proof: There can be no time-outs in the interval [S : T � 1], so no new envelopes or producers

are created in the interval. However at time T we know that m will time-out at processor �, which

means that it will not have any competitions in the interval. Therefore each producer in the span

(�; �] must have held a lost competition by the time it receives m in the interval. When each

producer held a lost competition a unique envelope must have also been killed. Therefore there

must be at least as many envelopes as producers at time S.

Claim 7.6 At time S the number of envelopes in the span (�; �) must be greater than or equal to

the number of producers in the span.

Proof: All processors in the span (�; �) were non-producers when they last sent m. Further when

the processors sent m they reset their counters to 2n (line19), therefore they have not timed-out

since they sent m. This implies that all producers in the span (�; �) were created by envelope

time-outs. Further each producer must have been created by a unique envelope, because the �rst

17

time an envelope timed-out it would have reset its counter to n > S � (T � n), preventing it from

further time-outs before time S. Finally any producers or envelopes in the span which are killed

in the interval [T � n : S], are killed in a 1-1 fashion as the only way to remove an envelope or a

producer is by losing a competition, which removes both an envelope and a producer.

Continuing the proof of lemma 7.4 we observe that the only section of the ring left is the

processor � which must be a non-producer to ensure that m times-out at �. Further there is an

envelope at � namely m. Since the number of envelopes in the spans (�; �) and (�; �] is greater

than or equal to the number of producers, and there are strictly more envelopes than producers on

the span [�; �] it is the case that Env(�; S) > Prod(�; S).

Lemma 7.7 For every con�guration � and for every r � 3n, if Prod(�; r) > Env(�; r) and the

�rst time-out after r is at time T , then Prod(�; T) � Env(�; T).

Proof: By Lemma 7.4 no envelopes time-out at time T . Further by Lemma 7.3 non-producers

cannot time-out at time T . Therefore it must be producers which time-out at T . Suppose k

producers time-out at T , we call these producers marked.

It su�ces to show that for every envelope � at time S there is a unique unmarked producer

that corresponds to �. This implies that at time T there is a unique unmarked producer for every

message, and thus even when every marked producer times out creating new messages there are

still as many producers as there are messages.

Let S = maxfT � n; rg and consider Con�g(�;E; S). Because there are no time-outs before T ,

and only producer time-outs at time T there are no new producers created in the interval [S : T].

Therefore each producer at time T was a producer at time S. Furthermore, Prod(�; S)�Env(�; S) =

Prod(�; r) � Env(�; r) = � > 0. Each marked producer last sent an envelope at time T � n � S.

So each marked producer has counter value T � S at time S.

Consider at time S any envelope m for which there exists a processor a marked producer � such

that dist(m; �) � T � S. Since m cannot reach � before T (otherwise � would not time-out) it

must be that m is in a lost competition with some non marked producer before reaching �. Since

18

 is killed when it competes with m, we know that kills m and only m in the interval [S : T].

Therefore m has a unique unmarked producer which corresponds to it.

For each marked producer, �, de�ne the span I� = [�; ��] of processors, where �� is a processor

s.t. dist(�; ��) = n� (T � S). For every envelope m̂ and every marked producer �̂ at time S such

that dist(m̂; �̂) > T � S we know that m̂ is in the span I� at time S. Therefore it su�ces to show

that for every envelope in I� at time S there is a unique unmarked producer which corresponds to

the envelope.

Since I� times-out at time T , it must send a envelope at time T �n, and not send any envelopes

in the time interval [T � n + 1 : T]. Observe that any envelope that is in the span I� at time

T � n+1 has been sent by ��, or lost a competition by time S. Therefore any envelope in span I�

at time S must have been created by a producer time-out, which implies that for every envelope in

span I� at time S there is a unique producer which corresponds to it.

We have seen that the number of unmarked producers is at least as great as the number of

envelopes. Hence the number of marked producers is a most Prod(�; S)� Env(�; S) = �. That is,

Prod(�; T)� Env(�; T) � 0.

Lemma 7.8 For every con�guration � and for every r � 3n, if Env(�; r) � Prod(�; r) then no

producers time-out in the �rst round after r in which any time-outs occur.

Lemma 7.9 For every con�guration � and for every r � 3n, if Env(�; r) > Prod(�; r) and the

�rst time-out after r is at time T , then Env(�; T) � Prod(�; T).

(Note: Lemma 7.8 is a dual to Lemma 7.4, and Lemma 7.9 is a dual to Lemma 7.7.)

8 Appendix B: The Duality Theorem

In algorithm SSTC , there is a duality between the behaviour of messages and producers after a

small initial time interval. We �rst described and prove this duality, and then exploit it to get

simple proofs of Lemmas 4.6 and 4.7.

19

It is helpful to represent non-messages explicitly in order to highlight the duality. Thus,

we rede�ne a message-state as a triple (Mess?, mess ip, mess count). For message m the

value of m:Mess? 2 f true, false g is true i� m is a message. The value or m:mess ip 2

f head, tail,�g is the current coin ip of m, if m is a message, and � if it is not a message, and

the value or m:mess count 2 Z [f�g is the current counter value of m, 1 � m:mess count < N , if

m is a message and is � otherwise.

Also recall that after time 3N non-producers cannot time out (Lemma 4.3). This means that

after 3N steps, the counters of non-producers can be ignored since they no longer will ever reach

one and thus will not inuence the behaviour of the algorithm. Therefore, by eliminating non-

producer counters and by \sending" non-messages, algorithm SSTC can be rewritten (slightly),

without changing its behaviour for use after time 3N , as follows:

Algorithm 2 Dual-SSTC
1 processor (Prod?, proc ip, proc count) receives message (Mess?, mess ip, mess count)

2 case (Prod?, Mess?) of

3 (true, true)

4 fif not (mess ip=head and proc ip=tail)

5 ip coin-ip

6 (new-proc, new-mess) ((true, ip, N), (true, ip, N))

7 else

8 (new-proc, new-mess) � ((false, *, *), (false, *, *)g
9 (false, true)

10 fif (mess count=1)

11 ip coin-ip

12 (new-proc, new-mess) ((true, ip, N), (true, ip, N))

13 else

14 (new-proc, new-mess) ((false, *, *), (true, mess ip, mess count�1)) g
15 (true, false)

16 fif (proc count=1)

17 ip coin-ip

18 (new-proc, new-mess) ((true, ip, N), (true, ip, N))

19 else

20 (new-proc, new-mess) ((true, proc ip, proc count�1), (false, *, *)) g
21 (false, false)

22 f (new-proc, new-mess) ((false, *, *), (false, *, *)) g
23 processor-state new-proc; send (new-mess)

Algorithm Dual-SSTC (for use after time 3N)

De�ne a local con�guration of a processor, �, to be a pair (PS;MS) where PS is the processor-

state of � and MS is the message-state of the message at �. (If there is no message at processor �

then the message-state at � is represented by (false, *,*).) A con�guration of the ring is given

20

by a cyclic sequence of N local con�gurations.

Let � = (PS1;MS1); � � � ; (PSN ;MSN) be a ring con�guration. Given � the algorithm Dual-

SSTC determines the new ring-con�guration,

1. updating each local con�guration (PS;MS) in � according to which of the four possible boolean

combinations holds for (PS.Proc?, MS.Mess?). Let u denote the updating function that

replaces a local con�guration (PS;MS) with the local con�guration obtained by applying the

appropriate case from the code for algorithmDual-SSTC . Let U denote the update function

given by

U ((PS1;MS1); � � � ; (PSN ;MSN)) = (u(PS1;MS1); � � � ;u(PSN ;MSN)) :

2. shifting each message component in u(PSi;MSi) to be paired with the processor PSi+1 one

position to the right. Let Sh denote the shift function given by

Sh ((PS1;MS1); � � � ; (PSN ;MSN)) = ((PS1;MSN); � � � ; (PSN ;MSN�1)) :

Further, de�ne:

The interchange function C by: C(�) = (MS1;PS1); � � � ; (MSN ;PSN).

The reverse-shift function RSh by: RSh(�) = (PS1;MS2); � � � ; (PSN ;MS1).

The inverse function Inv by: Inv(�) = (PSn;MSn); � � � ; (PS1;MS1).

For any con�guration �, let (f � g)(�) denote the function composition f(g(�)).

Claim 8.1 Let � be any con�guration, t be any time step greater than 3N , and E be a �xed in�nite

sequence of coin tosses. Then

Con�g(�;E; t + 1) = (Sh � U)(Con�g(�;E; t))

= (Sh � C � U � C)(Con�g(�;E; t)):

21

Proof: Since t � 3N , Con�g(�;E; t+ 1) can be computed using algorithm Dual-SSTC .

Therefore, the �rst equality follows from the preceding description of one step of Dual-SSTC .

The second equality follows by examining algorithm Dual-SSTC . For all cases of (Prod?, Mess?),

after one iteration beginning with processor-state PSand message-state MS, (new-proc, new-mess)

= u(PS;MS) = C(u(MS;PS)).

Let id denote the identity function. The following identities are immediate from the de�nitions.

identity 1 id = Inv � Inv

identity 2 id = C � C

identity 3 Inv � U = U � Inv

identity 4 Inv � C = C � Inv

identity 5 Sh = Inv � RSh � Inv

identity 6 RSh = C � Sh � C

Theorem 8.2 Let � be any con�guration, t be any time step greater than 3N , and E be a �xed

in�nite sequence of coin tosses. Then for every s � 0

Con�g(�;E; t + s) = (Inv � C) (Con�g((C � Inv)(Con�g(�;E; t); E; s))) :1

Proof: Using claim 8.1, the con�guration s steps after Con�g(�;E; t) is produced by s applications

of (Sh � U). That is Con�g(�;E; t+ s) = (Sh � U)s(Con�g(�;E; t)). However,

Sh � U = Inv � RSh � Inv � C � U � C by identity 5 and claim 8.1

= Inv � C � Sh � C � Inv � C � U � C by identity 6

= Inv � C � Sh � Inv � U � C by identities 4 and 2

= Inv � C � Sh � U � C � Inv by identities 3 and 4.

1We assume that E always denotes the remaining sequence of coin-ips; the ones already used are deleted from

the front of the sequence

22

Therefore,

Con�g(�;E; t+ s) = (Sh � U)s(Con�g(�;E; t))

= (Inv � C � Sh � U � C � Inv)s(Con�g(�;E; t))

= (Inv � C) � (Sh � U)s � (C � Inv)(Con�g(�;E; t)))

by identities 1 and 2.

= (Inv � C) (Con�g((C � Inv)(Con�g(�;E; t)); E; s)) :

Lemma 8.3 For every con�guration � and for every r > 3N , if Env(�; r) � Prod(�; r) then no

producers time-out in the �rst round after r in which any time-outs occur.

Proof: Let � be a con�guration satisfying Env(�; r) � Prod(�; r) for r � 3N , and suppose that

the �rst time-out after r is at time r+s. Let �̂ = (C � Inv)(Con�g(�;E; r)). Note that Env(�̂; 0) �

Prod(�̂; 0). By Theorem 8.2, Con�g(�;E; r + s) = (Inv � C)(Con�g(�̂; E; s)). Thus, if the time-out

at step r+ s from � is a producer, then there is a producer time-out for (Inv � C)(Con�g(�̂; E; s)).

implying that there is a message-time out at step s from �̂. Furthermore, this must be the �rst

time-out for �̂ since otherwise there would have been a time-out earlier than s steps after r for �.

However, by lemma 4.4, the �rst thing to time out for �̂ cannot be a message, implying that the

time out for � was not a producer.

Lemma 8.4 For every con�guration and for every � r � 3N , if Env(�; r) > Prod(�; r) and the

�rst time-out after r is at time T , then Env(�; T) � Prod(�; T).

Proof: Let � be a con�guration satisfying Env(�; r) > Prod(�; r) for r � 3N , and suppose that

the �rst time out after r is at time r+ t. Let �̂ = (C � Inv)(Con�g(�;E; r)). Note that Env(�̂; 0) <

Prod(�̂; 0). By Theorem 8.2, Con�g(�;E; r + t) = (Inv � C)(Con�g(�̂; E; t)). By Lemma 4.5, at

the �rst time-out, at time t̂, Env(�̂; t̂) � Prod(�̂; t̂). Furthermore t̂ must equal t because otherwise

Theorem 8.2 implies there would have been an earlier time out for �. So Env(�̂; t) � Prod(�̂; t)

23

and thus the number of producers in (Inv � C)(Con�g(�̂; E; t)) is less than or equal to the number

of messages in (Inv � C)(Con�g(�̂; E; t)). That is Env(�; r + t) � Prod(�; r + t).

24

