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Abstract

The SEE Software Engineering Environment is a practical, portable, soft-

ware development environment whose tools and concepts are nearly inde-

pendent of the edited programming language and the supporting host edi-

tor environment. The SEE environment is a software engineering environ-

ment which manipulates components of the software lifecycle, in contrast to

programming environments which manipulate structured programming lan-

guages. Three prominent features of SEE which distinguish it from other

environments are the use of a standard software module structure to support

lifecycle-oriented software tools, the use of source code as a vehicle for the

collection and analysis of project size and time cost data, and the use of tools

which preserve the developer's mental train of thought and display screen

context. SEE supports the four major project activities of design, imple-

mentation, documentation, and project management by providing tools and

procedures which simplify or automate many common tasks. The porta-

bility of the SEE environment is evaluated based on experiences gained in

moving the core of the original environment from a Lisp-based mainframe

editor to a C-based microcomputer editor, and the utility of the environment

is evaluated on the basis of several commercial, institutional, real-time, and

application projects.
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Introduction

Research on the design and implementation of software development envi-

ronments has increased signi�cantly during the last decade, generally moti-

vated by statistics which indicate that software costs are responsible for a

rapidly increasing fraction of computing budgets. For example, Boehm [9]

indicates that the overall ratio of software to hardware costs has changed

from 15:85 in 1955 to 85:15 in 1985, and that by 1995, a 20% improvement

in software productivity will be worth an estimated $90 billion worldwide.

While many approaches to programming support environments can be

found in the research literature, only a few have developed active research

histories which span more than a few years. Several of the more interesting

ones are summarized below. Each approach emphasizes a di�erent method

or type of software development, a di�erent set of supported programming

languages, a di�erent internal representation of the software, and a di�erent

set of tools to support the chosen approach.

One of the most successful approaches to machine-assisted software de-

velopment is collectively exempli�ed by the family of Interlisp programming

environments [19],[34]. These systems provide extensive integrated support

for software development of an incremental and experimental nature in the

Lisp programming language. Interlisp editors use a structured tree as the

internal representation of software, implying that the primitive functions

of the editors are highly coupled to the structure of the Lisp language. A

wide variety of user-level tools in these environments support development

activities characteristic of experimental Lisp programming. Tools oriented

toward conventional lifecycle management (such as support for speci�cation

and design) are less plentiful. Interlisp systems are good examples of the

state of the art in Lisp programming environments.

A second prominent approach to development environments is charac-

teristized by the family of extensible Emacs editor environments (Teco,

Emacs[31], Multics Emacs[22][23], Zwei[38], Zmacs[33], Gnu Emacs[32]).
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These environments support a conventional software development model,

unlike the experimental model associated with Interlisp systems. Emacs

environments di�er from Interlisp environments in their internal represen-

tation of software; editor bu�er contents are represented as a doubly-linked

list of text lines, regardless of whether the bu�er holds software written

in a structured programming language or a document written in English

text. An important consequence of the choice to use textual representation

is that it allows the construction of language independent editor primitive

functions. Thus Emacs editors can e�ectively support a wide variety of pro-

gramming languages, in contrast to the Interlisp systems described above

and the language-speci�c syntax directed editors described below. However,

since use of a textual representation precludes the structure-oriented edit-

ing of bu�er contents with editor primitive functions, Emacs editors have

traditionally supported a set of optional higher level tools which manipu-

late the editor bu�er contents in a structured, grammar dependent fashion.

Lisp-based Emacs environments contain a variety of tools which support the

conventional software development process, including special editor modes

which support the edit-compile cycle. Tools for experimental programming

such as the Interlisp undo, advise, and history list facilities [19] are generally

absent in most Emacs implementations, but some can be found in more mod-

ern systems [35]. Well-implemented Lisp-based Emacs environments may be

viewed as examples close to the state of the art in conventional programming

environments [22][23][32][33], and in Lisp environments [33][38][35].

Syntax-directed editing environments [17] [12] [20][21] [26][27][28] have

traditionally supported variations of a top-down re�nement approach to

software development, one in which programs are developed in a top down

fashion by expanding syntactic templates. These environments, like the

Interlisp family, use a structured tree as the internal representation of soft-

ware, and thus are highly coupled to the grammar of the language for which

they were designed. This limitation has been mitigated by the introduction

of generator programs which are capable of constructing completely new

environments from language grammar speci�cations [20] [26]. While most

syntax directed environments have provided scarce support beyond the edit-

ing task, at least one of them [16] o�ers wider development support in the

form of facilities such as con�guration management and source code access

control.

The knowledge based development environment described in [29], [36],

and [37] supports a conventional development process which emphasizes the

construction of software through use of an intelligent programmer's assistant
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which understands common programming cliches (ie. models) such as se-

quential search. This environment uses a textual representation of software

at the lowest level, as it is implemented in the form of extensions to a Lisp-

based Emacs editor [38], but at a higher level, the real work of the knowledge

based environment is done using a \plan formalism" or \plan calculus" rep-

resentation of the software [29] which represents the logical properties of

algorithms explicitly [36]. KBEmacs supports Lisp and limited dialects of

some procedural languages such as ADA.

Environments based on the automated transformation of software speci-

�cations are also subjects of active research. These systems [2][14] [4][6] [11]

emphasize the partial or fully automated transformation of program speci-

�cations into acceptable executable forms, usually by successive re�nement

of intermediate representations. The transformation process is completely

automated in some cases [6], but requires human assistance in others [2] [11].

Several themes are visible in the environments described above. First,

many development environments which see heavy everyday use in educa-

tional, research, and commercial applications are Lisp-based systems. This

is largely due to the extensibility and power of such environments, but is

also a result of long term development in the research community (at least

a decade for both Interlisp and Emacs). A large community of knowledge-

able developer-users has played a signi�cant role in the growth and power

of these Lisp development environments.

Second, the generality inherent in the textual vs. grammatical represen-

tation of software is clearly shown by comparing Emacs environments with

those which use structured internal representations (Interlisp [19], Cornell

Synthesizer[27], Gandalf ALOE[21]). A comparison shows that Lisp-based

Emacs environments which use textual representations support many lan-

guages, and are easily extended by the user to provide new facilities of

arbitrary complexity (eg. KBEmacs[37]), whereas structure oriented en-

vironments whose internal representation is based on the grammar of the

edited language necessarily support only one language, and in several cases

(Interlisp excepted) are not easily extended by the user because they lack

good extension languages.

Third, the importance of structure oriented editing tools are illustrated

by their presence in all but one (automated transformation) of the environ-

ments discussed above, and then only because human manipulation of struc-

tured software is not a large part of transformation environments. Rather,

the speci�cation language is generally entered once and thereafter manipu-

lated through machine-assisted transformation processes. It is highly proba-
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ble that such environments could also bene�t from structure oriented editing

tools in situations where human manipulation of the speci�cation language

is required.

In summary, the last decade of research has produced several promi-

nent approaches to the problem of programming environment design. The

approaches most visible in the literature are characterized by Lisp based en-

vironments for Lisp programming (Interlisp[19]), Lisp based environments

for conventional multi-language programming (Emacs[31]), syntax directed

environments dedicated to one language (Cornell Synthesizer[27], Gandalf

ALOE[21], many others), automated transformation and re�nement sys-

tems ([2], PSI/SYN [4][6], PDS [11]), and knowledge based `programmer

apprentice' environments (KBEmacs[37]). These environments suggest that

Lisp environments are very capable of supporting practical software devel-

opment environments (Interlisp, Emacs), that the use of a textual, language

independent representation adds considerable generality to an environment

(Emacs), and that structure oriented editing tools are of signi�cant utility

(Interlisp, Emacs, and many syntax directed environments).

Several key issues in the design of programming environments can be

identi�ed in the environments summarized above. These issues concern

� the type of software development, and thus the speci�c development

activities, to support (experimental programming vs. conventional

application development)

� the type of internal software representation to use (textual vs. struc-

tured)

� the generality of the environment (support one language or many lan-

guages), and

� the capacity of the environment to accommodate user written func-

tions which extend or modify the functionality of the original environ-

ment (extensibility).

Outstanding Problems

While the programming environments discussed above represent very com-

petent solutions for experimental Lisp programming and for manipulating

structured languages in general, they do not address many of the outstand-

ing problems commonly cited in the current software literature. A partial
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list of such problems could include high development and maintenance costs,

out of date documentation, lack of standardization in software development,

and the di�culty of tracking development progress.

The SEE environment described in the rest of this paper is primarily

intended to address these outstanding problems, and di�ers from previous

environments in several fundamental ways:

� The SEE environment contains no editing, compiling, or debugging

facilities of its own; its tools and concepts must be supported by a

host editor environment. In contrast, other environments typically

concentrate on providing these features.

� The SEE environment is not intended to be a programming environ-

ment for the structured editing and debugging of programs in a par-

ticular structured programming language; instead, it is intended to be

a software engineering environment which manipulates components of

the software lifecycle (software, software modules, project documents,

and project cost/metric data) throughout a large portion of the life-

cyle.

� In contrast to other environments, which emphasize the structure and

grammar of a programming language statement for better treatment

by the editor, the SEE environment de-emphasizes the structure and

grammar of statements in the programming language. Instead, the

SEE environment emphasizes the meaning of the statement from a

lifecycle or software engineering point of view for better treatment by

lifecycle oriented tools.

� The developer's freedom to choose various programming styles, docu-

mentation styles, and project reporting styles in other environments is

limited in the SEE environment in favor of standard models of software

module structure and project documents.

In what follows, the SEE environment is introduced with presentations

of the project design objectives and of the software representation models

used by the environment. Subsequent sections of the paper describe the SEE

environment from various lifecycle viewpoints and evaluate the environment

on the basis of several development projects. The closing sections of the

paper discuss the transport of SEE concepts to other environments, the

contributions made by this work, and possible future research directions.
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Chapter 1

The SEE Environment

1.1 Summary of SEE Design Objectives

The major design objective of the SEE project was to implement an envi-

ronment of concepts and tools which would address several classic industry

problems:

� High production costs

� Lack of product documentation

� High maintenance costs

� Lack of project management information

The SEE environment addresses these problems in the context of projects

sta�ed by one individual, or by a small team of developers (programming in

the small).

Secondary design objectives were to

� build a practical, realistic environment which could be understood and

e�ectively utilized on real world projects by individual developers who

lacked an extensive educational background in software engineering.

� implement an environment whose concepts and tools could be easily

moved to any reasonable machine environment, thus preserving invest-

ments in software and training across machine environments.

� implement an environment whose concepts and tools could be used

with a variety of modern programming languages, thus preserving in-

vestments across programming languages.
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� represent software in a standard format which would emphasize the

concepts embodied in the software and deemphasize the actual pro-

gramming language. Such a standard format could be manipulated

by software tools and would improve the readability of software by

emphasizing important information for human developers.

� construct tools which would directly implement, as a single atomic

operation, manual command sequences which represent but one con-

ceptual operation to the developer. Such tools would signi�cantly

increase productivity by replacing several commands with one, and

would preserve the developer's mental abstraction level by handling

the concept implementation details.

The only constraint on the project was a low implementation budget (one

developer). This lack of resources forced the implementation approach to

emphasize low overhead, low implementation costs, simplicity of represen-

tation, and practicality of new concepts and tools. The limitation did not

adversely a�ect the project { instead it focussed e�ort on productive and

useful development activities.

1.2 Summary of the Emacs Editor Host Environ-

ment

The SEE environment described in this paper was implemented as a mode

package in the Multics Emacs editor environment described below. Some

tools were implemented in PL/1 so they could also be used outside of the

editor environment.

The Multics Emacs editor is an extensible, Lisp-based editor which was

written in 1978 for the Honeywell Multics operating system. The normal

capabilities of the editor can be augmented simply by loading new Lisp func-

tions into the Lisp editor environment, where they become indistinguishable

from other editor functions. While any Lisp function can be loaded indi-

vidually, extensions which involve a large collection of related functions are

typically placed in one �le and loaded as a group.

The term `editor mode package' is often used to describe such a group

of related Lisp extensions in the Multics Emacs environment. Mode pack-

age functions typically manipulate the bu�er contents in a structured man-

ner based on intrinsic knowledge of the bu�er contents, but may also be

designed for other non-editing purposes. The generality and 
exibility of
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the Lisp extension mechanism allows the construction of very powerful and

knowledgeable tools.

The Multics Emacs editor can support very complex mode package func-

tions. For example, complete electronic mail system interfaces have been

written in the form of editor extensions, as have electronic meeting and op-

erating system interfaces. Each mode package allows the user to interact

with the mode-supported system through the medium of an editor bu�er.

In the domain of programming support, mode packages have been writ-

ten for (among many others) the Lisp, PL/1, and Fortran languages (eg.

lisp-mode, electric-pl1-mode). Each mode package typically provides func-

tions for compiling source code bu�ers without leaving the editor, for auto-

matic indenting of code as it is entered, and in some cases, for automatically

generating parameter lists and attributes in declarations of system subrou-

tines and external variables.

Lisp extension functions written in the Multics Emacs editor environ-

ment have access to a large set of primitive cursor navigation and text ma-

nipulation functions, as well as to many operating system functions through

the Lisp editor's own interfaces. Moreover, the functions have access to the

full Lisp environment in which the editor resides. This virtually seamless

interface across the editor and operating system is a signi�cant conceptual

and practical advantage to the extension writer.

1.3 Summary of the SEE Representation Model

The SEE environment uses a standard software module structure as its

internal and external software representation. Stated simply, the standard

module structure consists of a normal software module with special `header

comments' and `task de�nitions' (or `task comments') inserted at various

places in the text of the module. A sample PL/1 module in standard format

is shown in Section A.1 on page 32. Header comments and task de�nitions

de�ned by the standard format model are listed and described in Section A.2

on page 35.

The main function of header and task comments is to tag conceptu-

ally important information in the software module. Such tagging supports

both humans and software tools in their attempts to locate and manipulate

interesting information.

Header comments, as a class, are generally associated with the declar-

ative information of a module. For example, the Function header tags a
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textual description of the module function. Similarly, the `Privileged Init'

header tags parameter and variable initializations upon which other initial-

ization statements in the `Init Storage' section depend.

In contrast to the association of header comments with declarative in-

formation, task comments are intimately associated with the executable in-

formation of a module. They represent a step by step English description

of the module's algorithm, and, ideally, are conceptually associated with

the executable code lines which immediately follow them. Thus each line of

executable code in the module should be performing some function which

is directly related to the description given in the immediately preceding

task comment. The next few paragraphs more fully explain the role of task

comments in the SEE environment. Afterwards, the paper continues by

describing other general features of the standard format.

The physical and conceptual binding of executable code to preceding

task comments has several bene�ts. First, the physical proximity of the

two components not only ensures that each section of executable code is

accompanied by a conceptual description in the form of task comments, but

also helps the developer to match the conceptual levels of code and task

comments. A developer who sets the conceptual level of task comments

too low �nds that a (redundant) task comment is necessary for each line

of code; too high, and task comments approach the conceptual level of the

function description, covering many lines of code without really describing

the algorithmic steps involved.

Second, since the task comments (entered during the detailed design

phase) are physically interleaved with the code as it is added in the imple-

mentation phase, deviations from the detailed design during implementation

are instantly obvious to the developer { the code lines being generated do not

functionally support the preceding task de�nitions. This is an immediate

and unmistakable signal to the developer that the current implementation

is inconsistent with the intended program design.

Finally, the proximity of a task comment to its related code ensures that

maintenance changes to the code are easily compared with, and cheaply

propagated to, the associated task comment documentation vehicle. In con-

trast to the SEE approach, methods which advocate placing a large block

of pseudo code at the beginning of a module do not share this ease of com-

parison and modi�cation, particularly if modi�cation work is done on an

80x25 display screen { associated components of documentation and code

are often separated by several display-screens of intervening text. This sep-

aration, though seemingly small, is very likely a signi�cant factor in the

10



problem of out-of-date documentation; the SEE approach reduces it to a

minimum value.

One generally signi�cant feature of the standard format is that it tends to

make most software similar in appearance. Over a wide range of languages,

program applications, and machine environments, the location of important

conceptual information is relatively constant and clearly marked by header

comments.

Another advantage of the standard format is that the header comments

serve to mark the absence of information as well as the presence of informa-

tion. Developers are not required to search the entire set of declarations in

a module for a particular type of information. The location of information,

whether present or absent, is constant and clearly marked. For example, the

dependency of a module on system subroutines is clearly indicated by the

code (or lack of it) appearing below the System Dependencies header.

Finally, the presence of standard headers in every module stub encour-

ages the developer to complete the template module form by entering ap-

propriate information under the visible headers, thus improving the overall

level of product documentation. Software tools provide aid by automatically

installing the headers as part of the stubbing process, and by positioning

the display cursor on �elds which should always be completed.

The general scenario model supported by the standard module structure

is one in which a software tool textually searches in the editor bu�er for

a speci�c header comment before manipulating the information associated

with the header. For example, an editor extension which supports the en-

try of declaration statements collects declaration information from the user,

saves the current cursor location, moves the internal cursor to the appro-

priate header by means of a textual string search, formats and installs the

declaration into the bu�er below the header, and �nally, restores the inter-

nal cursor to its original position. Paraphrased Lisp code for such a tool is

shown in Section A.3 on page 37.

One advantage of implementing headers in the form of textual com-

ments is that it provides an e�ective, near language-independent means of

supporting machine assisted manipulation of interesting information. Tex-

tual header comments allow simple tools to e�ectively manipulate infor-

mation which is spatially associated with a header comment in the editor

bu�er, whether or not the information can be represented in the program-

ming language grammar. This is a signi�cant advantage, as it allows non-

grammatical, lifecycle-oriented information to be brought into the realm of

machine-assisted processing. In the past, such information has traditionally
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been carried in the form of unstructured, untagged comments, thus forcing

manual processing and increased development costs.

A second advantage is that the approach o�ers increased portability be-

tween language environments. Modifying the headers and associated tools

for use with a new programming language typically involves simple changes

related to comment syntax instead of large changes related to language gram-

mar. For the most part, tools and headers in the SEE environment are table

driven with the particular comment symbols of the edited language. Head-

ers and tools in the SEE environment have been used with several modern

programming languages (PL/1, Pascal, C).

An important underlying philosophy of the SEE environment represen-

tation is to keep useful information in the source code wherever possible.

This includes project documentation, design information, and project time

costing data. The major advantage of this philosophy is that embedded

information is not easily separated from the executable code { thus invest-

ments in documentation and time cost records will not be separated and lost

during the product's lifetime. Rather, the information will be preserved for

analysis and future reference. A second advantage is that such online infor-

mation is easily manipulated by software tools for updating and reprinting.

In contrast, o�ine documentation stored in binders is not always updated,

and almost never reprinted once it falls out of date. Many graphical design

documents fall into this latter category.

On the negative side, the philosophy has several disadvantages. First,

embedding information clearly results in larger �les which often require 50-

100% or more disk space. Second, the development and maintenance of

modules in standard format is more costly than traditional methods if no

tools are available to manipulate the standard format. (In the SEE envi-

ronment, the converse is true because extensive tool support is available).

Finally, some developers object to the relatively heavy levels of documenta-

tion in the module, claiming that the code should be self-documenting and

that the header sections and task comments only make it more di�cult to

understand the code.

1.4 A Note on SEE Design Phase Practices

Not all design phase activities in the SEE development model are the same as

those in the conventional lifecycle model. Instead, some activities which are

normally associated with the conventional implementation phase are classed
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as design phase activities in the SEE model. This is because the SEE devel-

opment model expresses the program design in the form of software module

stubs, whereas normal development practices tend to express the program

design in a written or graphical non-software form. Thus the creation of

module stubs is viewed as a design phase activity in the SEE development

model and an implementation phase activity in the conventional model.

This practice is feasible because the SEE environment provides mechanisms

for automatically generating conventional design documents from the infor-

mation contained in the module stubs, and is signi�cant in that it provides

an alternative to normal design documentation practices. The conventional

and SEE approaches both yield comparable design documents.

The next sections of the paper discuss SEE environment support for the

project activities of design, implementation, documentation, and project

management.
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Chapter 2

Lifecycle Support in the SEE

Environment

2.1 Support for Design Activities

Three main design activities which are supported by tools in the SEE envi-

ronment are the creation of module stubs, the organization of those stubs

into a hierarchical calling structure, and the generation of calling tree reports

from existing collections of modules.

The creation of module stubs in the SEE environment is supported by

a tool which generates compilable module stubs in the standard format de-

scribed earlier. The tool prompts the developer for a module name, a list

of parameters, and a list of `include �le' names. Once the necessary infor-

mation has been obtained, the tool creates the stub and, if necessary, adds

declarative statements to describe the module parameters. The developer

is not required to specify attributes for parameters whose names and at-

tributes are known to the declaration tools. The tools match each incoming

name against a list of known, user-de�ned names, and for each recognized

name automatically insert the appropriate attributes and descriptive com-

ments into the bu�er. This approach frees the developer from the tedium

of repeatedly documenting common variables and enhances the overall level

of product documentation.

After the stub is created, the cursor is left in the Function description

section of the module, encouraging the developer to immediately enter a

description of the module function. Obtaining this description from the

developer is important because the information plays an important role in all

14



subsequent lifecyle phases. General editing of the module stub is possible at

this time, allowing the developer to enter more text or otherwise manipulate

the module before writing it out to disk storage. The number of keystrokes

required to create a standard module stub using this method is easily an

order of magnitude smaller than the number of characters in the created

stub.

A second design activity supported by the SEE environment is the or-

ganization of modules into a connected `calling tree' which represents the

hierarchical calling structure of the program. The developer proceeds by en-

tering declarative statements (external function declarations) into modules

which call other modules. This activity makes use of the SEE declaration

tools, so attributes for user de�ned names are automatically entered as the

names are recognized. The developer manually enters attributes for un-

recognized names. As was the case with the stubbing activity, the size of

the keystroke input during this process can also be an order of magnitude

smaller than the number of characters in the inserted declarations. Hun-

dreds of cursor movement operations are saved during this process because

declarations can be inserted from any point within the �le.

Finally, the production of a calling tree report is supported by a tool

which attempts to build a tree on the basis of the external declarations con-

tained in the modules which are to be in the tree. The tool obtains a list

of all source �le names in the current working directory, extracts the decla-

rations in the System and External Dependencies sections of each module,

and constructs a tree using the extracted dependency information. Modules

which have not been bound into the calling tree with declarations are dis-

played separately, thus helping the developer to detect omitted declarations.

Operating system functions are specially marked in the calling tree to distin-

guish them from application functions, providing a quick visual indication

of the program's operating system subroutine dependencies.

Generation of a calling tree report is possible at any time during the

lifecycle, and is always based on the modules in the working directory. Thus

interesting partial calling trees may be constructed by controlling the module

population of the directory. A calling tree report for the project document

is created by this tool as part of the automated project document creation

process (described below).
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2.2 Support for Implementation Activities

Many implementation phase activities are supported by tools in the SEE

environment; several of them are discussed below.

Declaring variables and function calls is a common operation in projects

which use modern typed languages, and hence is of signi�cant interest from

both the viewpoints of product documentation and development e�ciency.

A typical conventional declaration sequence requires the developer to move

the cursor to the declaration statements at the top of the module or �le,

enter the declaration, and then reposition the cursor in the original context.

Often an initialization statement for the newly declared variable must also

be created. The sequence is tedious because of its frequency, high keystroke

cost, and strong impact on the developer's train of thought. Thought pro-

cesses are frozen in stasis while the developer manually searches, searches,

for the proper place to insert the declaration.

In contrast, declaration tools in the SEE environment preserve the devel-

oper's train of thought and display screen context during declaration activ-

ities by obtaining information from the developer via the Emacs minibu�er

(message area) before inserting the declaration under the appropriate stan-

dard module header. The original display context is undisturbed. Fur-

thermore, executable statements required to initialize newly declared vari-

ables are also collected and installed as part of the declaration process.

This method preserves the developer's thought and cursor context, greatly

reduces the number of keystrokes required to declare a variable, and en-

courages better documentation by prompting the developer for descriptive

comments which are added to the declaration. Paraphrased Lisp code for

such a tool is shown in Section A.3 on page 37.

Multiple or group declarations may be initiated with one command in

the SEE environment. For example, all functions necessary for simple i/o

processing (abbreviated as `sio' in the SEE environment) may be declared

with one command; the keystroke sequence "esc-x dcl sio" inserts ten docu-

mented PL/1 declarations for procedures which open, close, read, and write

�les, for input and output bu�er declarations, and for input and output

�lenames and �le variables.

At its best, a declaration sequence in the SEE environment only requires

the developer to type, in context, the name to be declared, and then to in-

voke the declaration tool through its key binding. The tool extracts the word

to the left of the cursor from the bu�er, compares it against the interest-

ing name list, and completes the declaration automatically where possible.
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Where automatic declaration is not possible, the user is prompted for the

necessary information before the declaration is inserted. The display screen

and mental context of the developer remain unchanged during declaration

operations.

The documentation of module modi�cations to produce a historical record

of module development can often provide useful information to maintenance

and testing personnel. In some cases, such as for the US National Computer

Security Center B2 security rating [42], formal mechanisms for this activity

are required. The SEE environment (informally) supports this activity with

tools which are modelled after the declaration tools discussed above. The

developer is prompted in the minubu�er for a history comment type (eg.

Create, Design, Test) and a text description of the modi�cation. Default

values are o�ered for the date, author, and time cost of the activity. Sample

history comments are shown in Section A.1 on page 32.

The detection and correction of common programming errors during im-

plementation activities is supported by a simple code auditing facility which

can be invoked on the current editor bu�er (at any time, but usually just

before a compilation attempt). The auditor corrects the errors which it

understands, and reports errors which are beyond its ability to �x. The

current auditor checks for run-time faults such as uninitialized parameters,

variables, and pointers, as well as for documentation faults such as undocu-

mented parameters.

For example, the current auditor obtains a list of parameter names from

the Parameters section and then checks the Privileged Init section for state-

ments which initialize each parameter. The developer is noti�ed of any

pointer parameters which are not initialized or referenced in the Privileged

Init section. To ensure that a module's parameters are documented, the au-

ditor identi�es parameter declarations in the Parameters section which are

not accompanied by a descriptive comment. The auditor prompts the user

in the editor minibu�er for a descriptive comment and places the comment

beside the appropriate parameter.

The production of well organized and easily read code is supported by

text and code formatting tools built into the SEE environment. One such

function sorts declaration statements in alphabetical order by variable name

and spaces out task comments in a controlled fashion before passing the mod-

ule to the operating system code formatter for more complete formatting.

After external formatting is completed, the function loads the module back

into the original editor bu�er and leaves the cursor at (or near) its original

position in the unformatted module. A convenient \clean up" tool combines
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the functions of the code auditor, formatter, and other \�xup" tools into a

single conceptual function.

Module cloning activities often take place during the implementation

phase when it becomes necessary to create a module which partially shares

the structure or function of an existing module. Sometimes cloning oper-

ations are used to instantiate template functions. In either of the above

cases, the fastest way to create a module B might be to clone a module A

and modify it to �t the new situation.

Module cloning is implemented in the SEE environment as a two step

process. During the �rst step, the cloning tools copy most of the contents of

the old module A into the newly created module B. Executable code in mod-

ule A is temporarily left behind. As part of the copying process, the tools

perform a series of editing tasks often associated with cloning operations.

In particular, the tools will add parameters to the module interface, en-

ter new declaration statements, and perform string substitutions under the

guidance of the developer. Once the automated editing tasks are completed,

the tools place the cursor in the Function section of the new module so the

developer can manually edit the new module. Changes are typically made

to the Function, Subsystem Documentation, Notes, and History sections, as

appropriate to the new situation.

The second step of the cloning operation deals with transporting exe-

cutable code frommodule A to a module B. Once the documentation changes

are completed, the algorithm of the new module B can be modi�ed by edit-

ing the task comments copied from module A. Task comments are added,

deleted, and modi�ed until the new algorithm is adequately described. The

second automated step of the cloning process is completed by a function

which, for each task comment present in both A and B, copies the code

associated with the task comment in A to the corresponding location in B.

In this way only the useful code related to B's new algorithm is copied to

the new module, and the developer is freed from handling unwanted code

while designing the new algorithm in B. The �nal code, of course, must

be inspected for correctness; the cloning operation can leave needed code

behind or bring over too much, as the task comments dictate.

Finally, global editing of project �les is supported by a tool which in-

vokes an arbitrarily complex Lisp editing function on each �le contained in

the working directory. The tool sequentially reads each �le in the direc-

tory into an editor bu�er, invokes the indicated function, and examines the

`bu�er-modi�ed' 
ag after execution of the function has completed. If the

�le has been modi�ed by the editing function, it is written out before the
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next �le is loaded. Otherwise, the unmodi�ed bu�er and �le are discarded.

This tool is extremely useful to application functions which must examine

or manipulate the project �les as a group. In particular, since the edit-

ing function can perform an arbitrary number of tests before it decides to

process the current bu�er, the developer has the ability to write `test-before-

processing' functions which will selectively process only those modules which

meet interesting selection criteria.

In the SEE environment this mechanism is used to invoke a design doc-

umentation extraction tool on each project source code module during the

project document updating process. The extraction tool gathers design in-

formation from the module and stores it in another editor bu�er for later

addition to the project document. The mechanism is also used to apply the

calling tree tool to source code �les for calling tree report generation.

2.3 Support for Documentation Activities

The SEE environment supports documentation activities with two types

of tools. The �rst type of tool supports the collection of documentation

information during the normal course of development, whereas the second

type of tool extracts and presents the information gathered by tools of the

�rst type. An example of a collective tool in the �rst set is the tool which

supports declaration activities, and an example of an extractive tool is the

calling tree report generator.

The main operational model of documentation tools in the extractive

class is based on the global �le editing tool described above. An overseer

function uses the global �le editing tool to apply an extraction tool to a set

of modules, and then processes and formats the results for �nal presentation.

The major documentation activity in the SEE environment, producing

a current project document, is supported by a tool which oversees the con-

struction of a full project document from components stored in the project

directories. The tool locates or generates the needed document components,

generates or modi�es all date-speci�c information, initiates the processing of

the document by a system word processor, and �nally assembles the system

output �les into a uni�ed whole. A current, comprehensive project document

can thus be constructed in a few minutes. Since the tool extracts interesting

documentation directly from the source code, all function, design, history,

time cost, and algorithmic information in the project document is as current

as the information contained in the source code.
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In particular, this mechanism mitigates the industry problem of out of

date design documentation. Since the interleaving of task comments and

code makes detailed design information directly accessible to developers at

the exact time when they modify the code, keeping the low level design in-

formation up to date is a very inexpensive and error free process. As a con-

sequence, it reasonable to expect both that documentation (task comment)

changes will actually be made during maintenance, and that the automated

extraction process will propagate such changes to the project document.

2.4 Support for Management Activities

Two general types of project management support are provided by the SEE

environment. The �rst kind of support is oriented toward the generation and

maintenance of the project document, whereas the second is oriented toward

the collection and analysis of project cost and size data as represented by

history comment entries and module line counts. Since an overview of the

project document facilities has already been presented above, the following

sections only describe management supports which concern project metric

data.

Project time cost data for interesting project phases is collected and

recorded in the History section of the module with the aid of the modi�cation

history tool described above. Sample entries are shown in Section A.1 on

page 32. At any later time, internal editor tools and external system tools

may be used to extract and summarize this information into a simple chart

of project activity by time cost. It is also possible to specify particular dates

and modules to the tools, allowing developers to determine how much time

has been charged against a set of modules by various development activities

on any particular day.

Project size metrics in the form of module and source line counts are

generated by tools which count lines in the project source code �les. The

current line counting tool generates counts for modules, prose (multi-line)

comments, in-line comments, blank lines, code lines, and task comments.

This data can be used to plot source code size against time to provide

a visual representation of project code growth, or can be used to update

software cost estimations made with line count estimation models such as

COCOMO [8].

The value of these management oriented tools is that they provide an

inexpensive and e�cient means of collecting and analyzing project size and
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time cost data, and so can be regularly used by developers to monitor project

performance. The usefulness of the output is, of course, directly dependent

on the accuracy of the input entered by the developer. Metric data can

be conveniently collected from the source code at the end of each working

session by a batch �le containing commands to process the information of

interest. The time cost of such an analysis (measured in seconds) is relatively

low compared to the value of the information gained.
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Chapter 3

Experience with the SEE

Environment

The concepts and tools in the SEE environment have been used on a variety

of development projects. During its development, a partial SEE environment

was used to develop an 11,000 line time management application program

written in PL/1. After completion, the full environment was used to develop

a 9000 line PL/1 simulation of the commodities futures market [15] and a

portion of a commercial real-time X25 networking software product (C, 5000

lines). The development principles, standard module structure, and limited

(microcomputer) versions of the environment were later used to develop

a simple editor (Pascal, 5000 lines), a simple expert system (Pascal, 5000

lines), and a commercial real-time livestock feeding system (C, 5000 lines).

All developers involved with the projects voluntarily adopted the stan-

dard module format quickly, along with all of the declaration tools which

were available in the (sometimes limited) environments in which they worked.

The limited environments were hosted on microcomputers, and thus did not

have the support of a true Lisp-based Emacs editor. Instead, simple tools

for stubbing, formatting, declaring, line counting, time costing, and his-

tory comment entering were developed either as normal operating system

tools, or as extensions to the public domain MicroEmacs editor. No project

document tools were developed for use in the limited environments.
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3.1 Problems With The SEE Environment

Experience with the SEE environment indicates that there is room for im-

provement in subsequent versions.

The current calling tree tool generates a true tree in which all subtrees

and leaves are expanded, one module name per line. No module function

comments or parameter lists appear in the output. A better tool would

allow the user to mark subtrees which should not be expanded each time

they appear in the tree. For example, the full expansion of subtrees which

represent heavily used utility functions greatly reduces the utility of the

output; their frequent appearance masks the true program architecture.

The standard module format should be modi�ed to include a short (eg.

40-character) description of the module function. This short form could be

printed out beside each function in the calling tree, signi�cantly improving

the value of the report in cases where the module function is not obvi-

ous from the name alone. Parameter lists printed beside the module name

would also improve the utility of the output, although the combined length

of indentation, module name, parameter list, and short descriptive com-

ment would frequently exceed 80 columns. Optional parameter lists would

facilitate viewing on an 80 column monitor.

Experience has shown that some developers avoid using the time costing

tools because they are not convinced of the bene�t of time cost data, or

because they feel too much labor is involved. In practice, the labor required

by the tools is inconsequential on any realistic scale, indicating that the

underlying issue is possibly one of desire for performance analysis.

Another signi�cant human factors issue is that users of the environment

must relinquish old preferences in coding and module formatting styles in

favor of the standard module format which supports the software tools in

the environment. Most developers initially resisted the new format because

of its apparent verbosity. However, their resistance usually disappeared

once they had actually used the tools to improve their productivity and

understood how the format supported the tools. It is interesting to note

that theoretical discussion alone was almost never successful in this regard;

skeptical developers were rarely convinced until they had actually used the

tools.

In closing this section, it can be said that most of the tools and methods

in the SEE environment have worked well. In particular, the utility of the

standard module structure, declaration tools, and history comment tools

surpassed initial expectations, and has led to their almost universal accep-
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tance by developers who have actually used them. Other tools may have

enjoyed higher usage rates had their operation been properly documented.

(This is the one area in which the limited development resources were a

signi�cant factor.)

3.2 Extension of SEE Concepts To Other Environ-

ments

The portability of SEE concepts and tools across machine and language en-

vironments is primarily a result of the textual model of software structure

used by the environment. As a consequence, modifying the SEE environ-

ment for use with a new programming language usually only requires simple

changes in comment syntax.

E�ective subsets of the full SEE environment can be implemented on

other machines using di�erent editor software, as illustrated by the partial

environments created on personal computers using the MicroEmacs editor

and external tools. Note that a Lisp-based editor is not required to support

SEE concepts (MicroEmacs is written in C), and that many of the tools

need not be editor-resident (only the declaration tools were made resident

in MicroEmacs). In principle, it should be possible to implement all the

tools and models in a non-Lisp, non-Emacs editor environment. However,

such a complete editor-resident implementation has not been attempted as

of this writing.

Upgrading an editor to use SEE concepts and tools does not a�ect its

regular operation in any way; the editor remains as general as it was in

its unmodi�ed state. Moreover, an upgraded editor can be e�ectively used

on projects in progress; new modules can be created in the SEE format

without converting the rest of the application. If desired, existing software

can be upgraded to the SEE standard format by adding an appropriate

set of standard module headers and task comments, and by placing code

lines under the appropriate task comment. However, the addition of task

comments requires patience in cases where the original commenting style is

not close to the standard SEE task comment style, and is a tedious chore in

cases where the original module is undocumented.
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3.3 Achievement of Design Goals

Three of the four major design objectives have been achieved and strongly

demonstrated by the SEE environment. Production costs were clearly re-

duced by tools which automated many activities throughout the lifecycle,

the level of product documentation was signi�cantly increased at low cost

by use of a standard module format and documentation tools, and the level

of and access to project metric data was improved through simple and in-

expensive time costing and project size metering mechanisms.

The fourth objective of improved maintenance productivity has not been

demonstrated as strongly. Whereas the attainment of other objectives is eas-

ily understood through the environment's visible mechanisms of automation

and report production, the environment only provides indirect evidence for

improved maintenance productivity.

The objective of increased maintenance productivity is indirectly sup-

ported in that systems produced in the SEE environment have a relatively

high level of well-organized internal documentation as compared to many

other software products known to the author (several commercial operating

systems, editors, networking products, graphics systems, business applica-

tions, and real time systems). The environment also supports the design

objective with its capacity to generate current design documentation from

products well into the maintenance phase of their lifecycle. Since accurate

product documentation undeniably shortens the learning curve faced by new

product maintainers, the environment provides strong, though indirect, ev-

idence for increased maintenance productivity.

All �ve secondary design objectives were achieved and demonstrated by

the environment.

The environment is practical and easy to learn. It has been used and

accepted by a variety of developers on di�erent machines, di�erent projects,

and in di�erent programming languages. The transportability of the en-

vironment across machine environments and programming languages has

been strongly demonstrated, as has the usefulness of a standard module

structure which can tag and emphasize important conceptual information

for humans and software tools. Many tools directly implement high level

conceptual operations and thus make signi�cant contributions to increased

software development productivity.

25



3.4 Summary

The SEE environment consists of a practical, portable set of concepts and

tools for supporting software development in a variety of editor and pro-

gramming language environments.

Several important concepts have been introduced and implemented in

the SEE environment. First, the work has introduced the concept of a

standard module structure, and has illustrated the importance of such a

structure in supporting the use of advanced development tools throughout

the software lifecycle. In particular, the work has shown that a simple

textual model of standard software structure is strong enough to support

a wide variety of tools, yet 
exible enough to be easily moved between

programming languages and editing environments.

Second, the environment has introduced the concepts of representing the

system design document in the form of documentation contained in compil-

able modules and of generating a conventional project document from infor-

mation embedded in source code �les. Assuming developers update inter-

leaved task comments during maintenance (a reasonable assumption given

their proximity to the changed code), the extraction method signi�cantly

reduces the problem of out of date design documentation.

Third, the environment has introduced a series of tools which demon-

strate that it is possible to preserve the developer's train of thought and

display screen context in many common situations. For example, SEE tools

preserve the display screen context through all declaration operations, and

support the developer's mental level of abstraction during stubbing and

cloning operations by automating several detailed processes which would

normally require the developer's manual attention.

Finally, the SEE environment has introduced and implemented the con-

cept of using the source code as a vehicle for the collection and analysis of

project time cost data.

In conclusion, this paper has described and presented the SEE environ-

ment in the context of the four project lifecycle activities of design, imple-

mentation, documentation, and project management, and has evaluated the

portability of the SEE environment on the basis of its partial reimplemen-

tation in, and application to, several modern programming languages. The

utility of the environment has been evaluated on the basis of several real-life

development projects.

The SEE environment was found to signi�cantly improve productivity

on a broad, lifecycle-oriented basis in the small projects on which it was
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used. Several SEE concepts and tools enjoyed near universal acceptance

among the developers who tried them.

3.5 Future Research

Future environments which attempt to support a signi�cant portion of the

software lifecycle will possibly use increasingly stringent user, software, and

project models in order to better support development activities. A key

concept is that the support level which can be o�ered by software tools is

directly related to the strength of the supported model. The complement of

this assertion is that to be acceptable, increasingly stringent models must

have increasingly useful tool support. Enforcing a more stringent model

without corresponding tool support will cost more, not less, than using no

model at all.

Development environments which make no assumptions about program-

ming method or style are generally bound to use the grammar of the edited

language as their (minimal) model. This tends to limit the support which

can be o�ered by software tools, as grammatical models have di�culty rep-

resenting lifecycle activities. Conversely, structural and procedural models

which go beyond grammatical models to encompass lifecycle-oriented infor-

mation o�er many more opportunities for software tool support.
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Appendix A

Examples

A.1 A PL/1 Module In Standard Format

bc: proc (p_input, p_output) returns (bit (1));

/* FUNCTION

This program oversees the determination of the biconnected components

in an undirected, unconnected graph.

*/

/* SUBSYSTEM DOCUMENTATION

LIMITATIONS

Maximum vertex and edge limitations are set in the main data structure

file which declares the command_environment structure. Please refer

to that section of the code for current limit values.

<other program documentation would go here>

*/

/* NOTES

This module shows the standard module structure in a PL/1

context. Code has been removed to facilitate publication.

*/

/* HISTORY

Test___ 07 mar 87 (0.20) kj: test with isolated nodes

Test___ 07 mar 87 (0.20) kj: ok if initial node is a bicon component

Integ__ 07 mar 87 (2.00) kj: forgot to init stack pointer

32



Test___ 07 mar 87 (0.50) kj: ok on connected Sedgewick graph

Doc____ 23 feb 87 (1.00) kj: algorithm, limitations, error msg doc

Incr___ 23 feb 87 (0.30) kj: output formatting

Design_ 22 feb 87 (0.10) kj:

Created 21 feb 87 (0.10) KJameson: with stub tool

*/

/* PARAMETERS */

dcl p_input fixed bin; /* an input parameter */

dcl p_output fixed bin; /* an output parameter */

/* SYSTEM DEPENDENCIES */

/* EXTERNAL DEPENDENCIES */

dcl build_adjlist entry (ptr, ptr) returns (bit (1));

dcl visit entry (fixed bin) returns (fixed bin);

dcl write_out entry (char (*) var);

/* MISC */

dcl FAILS bit (1) init ("0"b);

dcl WINS bit (1) init ("1"b);

dcl i fixed bin; /* loop variable */

dcl temp fixed bin; /* dummy variable */

dcl testfile ptr; /* contains test suite */

dcl testmode fixed bin; /* set = 1 for testing */

/* PRIVILEGED INIT */

p_output = 0; /* init output parameter */

/* INIT STORAGE */

testmode = 0;

testfile = null ();

/* : allocate and initialize the main data structure */

allocate cmd_env set(cmd_env_ptr); /* alloc based storage */

cmd_env.max_vertices = MAX_VERTICES;

cmd_env.vertex_id = 0; /* depth first search id */

cmd_env.n_edges = 0;

cmd_env.n_vertices = 0;

/* : parse and load the command line arguments */

if bc_parse_args (cmd_env_ptr, testfile, testmode) = FAILS then do;

call write_out ("Unable to parse command line arguments.");

return (FAILS); /* quit the program */

end;

/* : with protest, open the input file */
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if open_i_file (cmd_env.infile, cmd_env.infilename) = FAILS then do;

call write_out ("Unable to open input file. " ||

cmd_env.infilename);

return (FAILS);

end;

/* : build the adjacency list */

if build_adjlist (cmd_env_ptr, cmd_env.infile) = FAILS then do;

call write_out ("Unable to build adjacency list from file: " ||

cmd_env.infilename);

return (FAILS);

end;

/* : write output header */

call write_out ("BICONNECTED COMPONENTS (One per line)");

/* : set values for all vertices to zero */

do i = 1 to cmd_env.n_vertices;

cmd_env.dfs_order (i) = 0;

cmd_env.father (i) = 0;

end;

/* : perform the depth first search on each vertex */

do i = 1 to cmd_env.n_vertices;

if cmd_env.dfs_order (i) = 0 then /* if not visited, */

temp = visit (i); /* visit and print */

end;

/* : free the storage */

free cmd_env;

/* : return success */

return (WINS);

/* INTERNAL PROCEDURES */

/* DATA DEPENDENCIES */

%include bc_cmd_env; /* main data structure */

end;
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A.2 Standard Module Headers

� Function Tags and bounds a textual description of module function.

� Parameters Tags and collects module parameter declarations.

� Subsystem Documentation Tags and bounds a text description of

the major facilities provided by the interface of the module containing

the documentation. This header is only followed by text in modules

which implement a major subsystem of a larger system, and forms

part of a documentation layer at the subsystem abstraction level.

� Notes Tags and bounds a text description of information peculiar to

the module which contains the header. For example, interface assump-

tions and operational caveats are placed in this section. In conjunction

with the Function section, this section forms part of a documentation

layer at the module abstraction level.

� History Tags and bounds a text description of the modi�cation

history of the module and the time costs charged against the module

during various lifecycle phases.

� System Dependencies Tags and collects operating system depen-

dencies in the form of declarations of system subroutine interfaces.

� External Dependencies Tags and collects external dependencies

in the form of declarations of external subroutine interfaces.

� Data Dependencies Tags and collects data template dependencies

in the form of type and structure declarations contained in include

�les.

� Misc Tags and collects all local variables declared by the module.

� Privileged Init Tags and collects all executable statements which

initialize parameters or variables which are used in initialization state-

ments in the `Init Storage' section.

� Init Storage Tags and collects regular variable initialization state-

ments.

� Internal Procedures Tags and collects internal procedure declara-

tions in languages which support them.
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� Task De�nitions Special comments which document the algorithms

and actions of a module. These comments are �rst entered during the

detailed design phase, and are updated during maintenance activities.

Each comment is directly and functionally related to the executable

code statements which immediately follow it. Task comments are rec-

ognized by the colon (:) which follows the comment-start character

sequence. (`/* :' for PL/1, `(* :' for Pascal, `{ :' for ADA, etc).
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A.3 A Lisp Function for Entering Declaration State-

ments

;;; This paraphrased Lisp function inserts a formatted PL/1 declaration

;;; statement below a standard header in a PL/1 module. The caller of

;;; this function supplies a name to be declared and a header variable.

;;;

;;; The save-excursion Lisp form preserves the current cursor

;;; position for the duration of execution of all forms inside

;;; the save-excursion form. The cursor position is restored as

;;; execution exits the save-excursion form.

;;;

;;; This paraphrased function does not handle variable initializations.

(defun dcl (name hdr-abbrev)

(save-excursion ;restore cursor afterwards

(go-to-beginning-of-buffer) ;start at top of buffer

(let ((hdr (expand-abbrev hdr-abbrev))) ;generate search string

;;; Search for the header from the top of the buffer, and if

;;; found, open up a blank line just below the header. Indent

;;; an appropriate amount, and insert a formatted declaration

;;; based on information obtained from the user.

(cond ((forward-search hdr)

(search-for-blank-line) ;go to end of dcls

(open-space) ;open up a blank line

(indent-relative)

(insert-string

(catenate ;build formatted dcl

"dcl " (get_pname name)

SPACE

(expand-dcl-abbrevs ;attrs can be abbreviated,

(minibuffer-response ;eg. `fb' for `fixed bin'.

(catenate

"Dcl attributes for "

(get_pname name) "? ") NL))

SPACE

(minibuffer-response ;get descriptive comment

(catenate "Comment? " NL))) SEMI))

;;; Display an error message and fail safely if no header is found.

(t (display-error-noabort hdr " header not found.")

(ring-tty-bell)))

))) ;replace cursor afterwards
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