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FACOPT: A User Friendly FACility Layout OPTimization System 
 

 

 

Abstract 

 

The facility layout problem is a well researched one. However few effective and user 

friendly approaches have been proposed.  Since it is an NP hard problem, various 

optimization approaches for small problems and heuristic approaches for the larger 

problems have been proposed. For the most part the more effective algorithms are not 

user friendly. On the other hand user friendly methods have not been effective in 

handling the intricacies such as unequal department sizes. In this research we present 

FACOPT, a heuristic approach that is effective and user friendly. The software uses 

two methods, Simulated Annealing and  Genetic Algorithm to solve the facility layout 

problem. Computational tests are also done to identify good parameter values and to 

compare the performance of the two algorithms. 

 

 

Scope and Purpose 
 

Various methods have been proposed for facility layout where departments are laid 

out within a facility. However many of them are not flexible enough to handle 

intricacies such as unequal department sizes. Others do not provide user-friendly 

interfaces. Thus there is a need for user-friendly software incorporating effective and 

flexible procedures. In this research we present FACOPT, a heuristic approach that is 

effective and user friendly. The software uses two different approaches to solve the 

facility layout problem effectively. FACOPT has a Visual BASIC interface and runs 

under a Windows environment for ease of use.  

 

 

Keywords:  Facility Layout, Simulated Annealing, Genetic Algorithms, Software, 

User -friendly 
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FACOPT: A User Friendly FACility Layout OPTimization System 

 

Introduction 

The static plant layout problem (SPLP) is a well-researched problem. 

Koopmans and Beckman [1957] first modeled it as a quadratic assignment problem 

(QAP) because the objective function is a second-degree function of the variables 

while the constraints are linear.  

The SPLP is a difficult problem to solve optimally due to its structure. Hence, 

heuristic algorithms have been proposed to solve the problem. Many of these can 

handle only equal sized departments but others can handle the more practical case 

where the department sizes are unequal. In this paper we assume that department sizes 

are unequal.  

Two methods, simulated annealing and genetic algorithms are used to solve 

the SPLP. The software described here, FACOPT, can use either algorithm to obtain a 

good solution.  In addition, FACOPT has the following features that make it of much 

practical use to the decision-maker: 

 FACOPT  can handle facilities with large numbers of departments. The test 

problems had as many as 30 departments 

 In FACOPT, the user may employ more than one algorithm and specify parameter 

values other than default values for a chosen algorithm.  

 FACOPT retains ten layout solutions in each session. The user can switch from 

one to another and compare different layouts. 

 FACOPT accepts both manual entry and automatic generation of space-filling 

curves. The concept of space-filling curves will be discussed later in this paper. 
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 FACOPT allows users to fine-tune a layout by forcing the exchange of the 

department locations. 

 FACOPT permits fixed departments and is flexible enough to consider other 

layout design considerations. 

 The user interface in Visual Basic for Windows with its ability to use color allows 

for ease of use. 

 

The Static Plant Layout Problem 

 A rectangular layout with six locations is shown in Figure 1. The locations are all 

equal in size. There are six departments  (1 though 6) that have to be assigned to the six 

locations. One such assignment is shown in the figure.  

 

 

 This is only one out of the 6! or 720 combinations that exist for this layout. Each 

combination represents a different static layout (though in this particular example due to 

symmetry there are only 120 unique layouts). There is material handling flow between 

the different departments and a cost associated with the unit material handling flow per 

unit distance. Thus different layouts can have different total material handling costs 

1 2 3

4 5 6

Figure 1: An example layout
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depending on the relative location of the departments. The mathematical programming 

formulation (QAP) for this problem is as follows: 
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where 

 

Equation (1), the objective function minimizes the sum of the flow cost over 

every pair of departments. Equation (2) ensures that each location contains only one 

department. Equation (3) ensures that each department is placed only at one location.  

The problem investigated in this paper is an extension of this problem. In the 

QAP each department is assumed to be of equal size (equal sized layout). In practice 

departments may be of varying sizes (unequal sized layout). The unequal sized layout 

problem may be modelled as a QAP problem by dividing the areas into a grid with 

equal sized squares. Each department would occupy different numbers of squares 

depending on its size. This is seen in Figure 2 where department 2 occupies squares 

B, C and E while department 1 occupies squares A and D. The shapes of the 

n : Number of departments in the layout

i,k : Departments in the layout

j,l : Locations in the layout 

fik : Flow cost from department i to k

djl : Distance from location j to l

Xij : 0,1 variable for locating department i at location j
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departments can be made more accurate by using smaller grids. But this will further 

increase the size of the problem and the resultant computation time. 

 

One problem in modeling the problem in this manner is to ensure that the all 

the squares representing one department remain contiguous when the algorithm is 

searching for solutions. This is done using space-filling curves (SFC).  These were 

developed by Bartholdi and Platzman [1982] for the travelling salesman  (TSP) and 

shortest path problems. It was extended to facility layout by Bozer et al.. These curves 

are formed by connecting a series of Hilbert curves. Kochhar et al. point out that these 

curves can be generated only in the absence of fixed departments, blocked areas, or 

irregularities. However, psuedo-Hilbert curves may be drawn by hand (Figure 3). 

Hand drawn curves can follow a sweeping pattern, spiraling pattern or a space-filling 

pattern producing different final solutions.  

A (1) B(2) C(2)

D(1) E(2) F(3)

G(6) H(5) I(3)

J(7) K(4) L(4)

Figure 2: An example of a twelve square layout and a SFC
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We now demonstrate how SFCs can be applied. Figure 2 shows a grid with 12 

locations (squares), A through L. The SFC forms a continuous curve that traverses 

through all the squares in the grid in such a way that it goes through neighboring 

squares before moving to non-neighboring ones. If departments are located along 

neighboring locations on the SFC, we are guaranteed a feasible solution where the 

locations that contain the same department are contiguous. For example in Figure 2, 

department 1 is located at A and D which are neighboring squares on the SFC.  

 

Literature Review 

In addition to the QAP, the layout problem has been modeled as a quadratic 

set-covering problem (Bazaraa [1975]), linear integer programming (Lawler [1963]), 

mixed integer programming (Kaufman and Broeckx [1978]), and a graph theoretic 

problem (Leung [1992]) among others. Sahni and Gonzalez ([1976]) showed that the 

QAP is NP complete. Thus the largest problem solved optimally contained only 

fifteen departments (Kusiak and Heragu [1987]). Thus, problems with more than 

twenty facilities are unlikely to be solved optimally. The main types of algorithms 

(a) (b) (c)

Figure 3: Psuedo-Hilbert curve
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used to solve the problem optimally may include branch-and-bound, and cutting plane 

algorithms. 

Since optimal methods are limited in the number of departments that can be 

included, substantial research has be done in developing sub-optimal algorithms that 

can solve larger problems. These are basically of two types: construction algorithms 

where a layout is constructed from scratch, and improvement algorithms where an 

existing solution is improved. HC66 (Hillier and Connors [1966]) is an example of  a 

construction algorithm. CRAFT (Armour and Buffa [1963]) is an early example of a 

improvement algorithm while HOPE (Kochhar et al. [1998]) is a recent one. 

SPACECRAFT (Johnson [1982]) is one of the earlier examples of a three-

dimensional improvement algorithm, which can handle multiple floors. MULTIPLE 

(Bozer et al. [1994]) and MULTI-HOPE (Kochhar and Heragu [1998]) are some 

recent examples of multiple floor layout algorithms. Researchers have also applied the 

more recent search techniques, which have proved to be effective, such as simulated 

annealing (Jajodia et al. [1992]), neural networks (Tsuchiya et al. [1996]), genetic 

algorithms (Kochhar et al.), and tabu-search (Skorin-Kapov [1994]). Detailed reviews 

of the facility layout literature can be found in Kusiak and Heragu [1987] and Meller 

and Gau [1996]. However, many of these procedures are difficult to use since the 

software implementation is not user friendly. In this paper we propose a user-friendly 

algorithm that uses some of the effective techniques that exist in the literature.  

 

FACOPT’s Algorithms 

FACOPT considers two of the more recent search algorithms: simulated 

annealing and genetic algorithms. In the computational studies found in the literature, 
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these have proved to be among the more effective. In this section, we briefly describe 

these algorithms and discuss the determination of various parameter values. 

Simulated Annealing (SA) 

Kirkpatrick et al. [1982] introduced the concepts of SA in combinatorial 

optimization.  An excellent discussion on the use of SA in Operations Research can 

be found in Eglese [1990]. SA is a type of local search algorithm. In the facility layout 

problem, a particular solution can be likened to the properties of a solid at a 

temperature, T. A lower energy state would be a lower cost solution. Thus „cooling‟ is 

the process of obtaining better solutions. The process starts with a relatively high 

value of T (which in facility layout would be a control parameter) to avoid being 

prematurely stuck in a local optimum. The SA algorithm then performs a 

neighborhood search at each temperature and the temperature is gradually lowered. 

One of the features of SA is that during the cooling process occasionally a poorer 

solution than the existing one may be accepted. This may prevent the procedure from 

being trapped by local optima. In such a procedure the poorer the solution, the less 

likely it is to be chosen. Also as T decreases, the probability of accepting poorer 

solutions decreases. 

Our SA is similar to SABLE (Meller and Bozer [1996]). The pseudo-code in 

Figure 4 is adopted from Tompkins et al. [1996]. Specifically, SA takes a layout and 

perturbs it randomly into a new layout in the neighborhood of the original one if the 

new layout has a lower cost. As mentioned, a poorer layout may be retained. The 

algorithm moves to a lower temperature state when the mean improvement it finds 

between a neighbourhood group (epoch) searched and the overall mean is less than a 

threshold value for a temperature state. The epoch length denotes the maximum 
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number of accepted moves made in a neighbourhood that forms a group for 

calculation of the mean improvement. The SA terminates in two ways: either when a 

pre-specified number of successive temperature reductions without improvement is 

reached, or when the total number of epochs searched reaches the pre-defined limit. 

 

 Figure 4: A SA pseudo-code 

Step 1.

Create the initial layout sequence randomly as the current sequence s and compute the layout cost f(s)

using a given SFC and the size requirements of departments. Set the temperature counter  i = 1 and

temperature is ti .

Step 2.

Randomly choose two departments in the current sequence s, exchange their position in the sequence.

Store the resulting sequence as the candidate sequence s .

Step 3a.

Compute the decrease in the layout cost, i.e., f = f(s) –f(s ). If f  0, go to step 3c.

Step 3b.

Accept this non-improving layout by going to step 3c with probability exp ( f / t0( )
i
), where t0 is the

initial temperature,  is the temperature reduction factor, and ; otherwise, go to step 2 to generate another

one.

Step 3c.

Accept the candidate sequence and also take it as the current sequence. If the cost for the current sequence

is lower than that of the “current best” sequence, update the "current best" sequence. If e candidate

layouts have been accepted, go to step 4; otherwise, go to step 2, where e is the fixed epoch length. Let

mfe  be the mean cost of the e layouts accepted in this epoch. Let  mfa  be the mean cost of the  layouts

accepted previous to this epoch.

Step 4.

If  | mfe - mfa|/ mfa =>  , equilibrium has not been reached at temperature ti;  reset the counter for accepted

candidate solutions and go to step 2 to generate e more accepted solutions. Otherwise, set i = i + 1 and

update ti = t1
i-1

; if the maximum number of successive non-improving temperatures has been reached,

STOP, otherwise go to step 5.

Step 5.

If the total number of epochs examined has reached its pre-defined limit, STOP; otherwise, go to step 2.
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    In SA, the user is required to specify several parameters. A set of parameters must 

be empirically found to substantially reduce the initial layout bias and generally 

generate a “good” solution. Based on Tompkins ET al. [1996], and Kim and Kim 

[1998], the number of choices was narrowed down. In addition, testing for parameter 

values was done using the Tam _30 problem set (Tam [1992]). In Tables 1-3, two of 

the six parameters are varied while holding the others constant.  As seen in the three 

tables, this involved a total of 66 different setting. The solutions for different settings 

of the parameters are shown as percentages above the best solution. The parameter 

combination that gave the best solution was used as part of the fixed parameter setting 

in the subsequent tables. For example in Table 1,   = 0.90 and  t0 = 0.6  gave the best 

solution of 48571.95. Thus this combination is part of the fixed parameters in Tables 

2 and 3. Based on Tables 1-3, it was decided to use the following parameter values: 

 

 temperature reduction factor:  = 0.90 

 initial temperature: t0 = 0.6 

 epoch length: e = 30 

 equilibrium threshold value:   = 0.05 

 maximum number of epochs  to be considered: M = 37 

 maximum number of non-improving solutions: N = 5. 

 

It is also seen that depending on the parameter setting, the solution may be as high as 

8.5% above the best solution. Thus in practice, it might also be useful to run the 

solution with a few different parameter settings to examine whether  better solutions 

can be obtained. 
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/ t0 0.2 0.4 0.6 0.8 

0.8 2.1% 1.7% 5.6% 5.6% 

0.85 1.9% 1.1% 2.3% 7.6% 

0.9 4.6% 2.9% 0.0%
1 

8.5% 

0.95 4.6% 3.0% 1.5% 8.5% 
1 This setting provided the best value of 48571.95 

Table 1: e=30, M=37, N=5, =0.05 

 

 

 

e / M e+3 e+5 e+7 e+9 e+11 

20 8.1% 4.2% 4.3% 5.2% 1.9% 

25 3.0% 7.3% 2.6% 5.8% 1.4% 

30 5.1% 1.7% 0.0%
1
 5.9% 3.7% 

35 8.1% 3.9% 7.7% 5.3% 4.1% 

40 3.3% 7.8% 5.6% 6.0% 1.6% 
1 This setting provided the best value of 48571.95 

Table 2: =0.9, t0=0.6, N=5, =0.05 

 

 

 

 

 

  / N 1 3 5 7 9 

0.01 7.9% 1.5% 3.0% 6.7% 6.6% 

0.03 7.2% 1.9% 6.3% 4.4% 4.6% 

0.05 7.3% 2.2% 0.0%
1
 5.6% 5.6% 

0.07 1.6% 6.7% 5.2% 7.3% 7.2% 

0.09 7.9% 4.9% 5.9% 3.1% 4.3% 
1 This setting provided the best value of 48571.95 

Table 3: e=30, M=37, N=5, =0.05, =0.9, t0=0.6 
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Genetic Algorithms (GA) 

A GA based procedure (Holland [1975]) requires that an initial population of 

feasible solutions be generated. It codes a solution as a finite-length string composed 

of some finite alphabets. Each feasible solution may be a parent. The population is 

also known as the parent pool. The procedure uses a fitness function (that is 

constructed based on the layout objective function) to determine the fitness of each 

potential parent. It obtains better solutions through selection, reproduction, crossover, 

and mutation. Our GA code is given in Figure 5. 

 

 

 

 

Figure 5. A GA pseudo-code 
 

 

 

 

Step1.

Initialize the parent population pool.

Step 2.

Evaluate the fitness values of all individuals in the parent population pool.

Step 3.

Select two parents for the reproduction process (including crossover and possibly mutation) to

produce their offspring.

Step 4.

Evaluate the offspring produced.

Step 5.

Replace the worst parent with the offspring produced.

Step 6.

If the pre-determined number of generations is not reached, go to Step 3; otherwise, STOP.
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Typically, the parent population is composed of many individuals. Randomly 

generate department sequences form the parent pool. A department sequence, 

department sizes, and a pre-defined SFC are used to obtain a layout solution.  

The fitness function determines the probability of an individual being chosen for 

reproduction. The fitness function used is the objective function of SPLP (Equation 

1). 

The roulette wheel method is used to select the parents for crossover and the 

crossover procedure is similar to the one found in HOPE (Kochhar et al.) 

Occasionally mutation is applied to the child layout after crossover.  The mutation 

process introduces diversity. This helps prevent the algorithm from converging too 

quickly to a local optimum. 

The new child can then be used to replace the parent with the highest cost in the 

parent pool. The GA is terminated when a specified number of generations is reached. 

The basic operator for producing a child is crossover. It randomly selects one of 

the two parents as parent 1. Then, it randomly chooses a department from the 

department sequence of parent 1 and places it in the child department sequence in the 

same location as it existed in parent 1. This process is continued for n/2 departments 

where n is the number of departments. The departments missing in the child‟s 

department sequence are filled in the same order as they appear in parent 2.  
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Consider the two parents in Figure 6. The letters in each parent represent a 

department sequence. To construct the child, four departments are randomly picked 

from parent 1 and placed in the new offspring. Assume departments A, C, D, and H 

are selected. The partial child‟s department sequence is shown in Figure 7. The 

missing departments in the department sequence are then filled in the same order as 

they appear in parent 2. The complete department sequence is shown in Figure 8. 

 

Figure 7: Partial Child

Figure 8. A complete child

A C D H

A E C D B HFG

Figure 6. Two parents‟ department sequences for crossover

A B C D E HGFParent 1:

H C E B D FGAParent 2:
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 Mutation is a random process that is occasionally applied to introduce 

diversity. Our mutation procedure is simple. Two departments in a department 

sequence are swapped to produce a new genetic structure. The mutation rate is the 

pre-specified probability determining how frequently mutation takes place. The 

decision process includes two steps: (a) generate a random number, r, such that 0  r 

 1 and (b) if the random number r is less than or equal to the pre-specified mutation 

rate, perform the mutation.  

To set up the GA procedure, we will have to analyze the effect of mutation rates 

and population pool sizes for a given number of generations (iterations) on the quality 

of solutions. The Tam_30 data set is used. The summary of the computational results 

is given in Table 4 with the best result highlighted. The given number of generations 

was set as 4500 since we found that it was sufficient to achieve convergence. Based 

on this result, the following parameter values were selected: 

 Population size, N = 35 

 Mutation rate, Pm=0.09 

 Number of generations = 4500. 
 

 

 

 
 

Pm\N 15 20 25 30 35 40 45 

0.002 7.1% 5.0% 7.3% 4.4% 4.1% 1.9% 2.9% 

0.004 8.9% 5.0% 1.6% 2.5% 2.2% 2.4% 1.5% 

0.006 5.9% 5.4% 4.0% 1.4% 3.8% 5.8% 3.1% 

0.008 8.6% 4.1% 9.3% 7.4% 1.8% 2.4% 0.6% 

0.01 9.3% 3.6% 8.7% 5.3% 4.4% 1.5% 4.3% 

0.03 8.1% 2.9% 5.5% 5.1% 0.5% 3.4% 3.7% 

0.05 6.6% 4.7% 3.8% 4.3% 1.1% 1.3% 3.3% 

0.07 3.0% 1.6% 5.4% 0.7% 0.0%
1 

1.9% 2.0% 

0.09 1.6% 3.5% 4.8% 4.8% 2.0% 3.8% 3.8% 

 
1
 This setting provided the best value of 42638.63 

Table 4: GA parameter selection 
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   Again, it is seen that depending on the setting the solution can be as high as 9.3 

above the best solution obtained. Thus in practice, it might be worthwhile solving the 

problem with a few different parameter settings to examine whether better solutions 

can be obtained. 

 

   The tests also show the advantage of having more than one method to solve the 

problem. Depending on the parameter setting, one method may do better or worse 

than another algorithm. For example when: e=30, M=37, N=5, =0.05, =0.9 and , 

t0=0.8, (Table 1) the SA method gives a value of 52700.22 which is almost 24% 

higher than the best GA solution of 42638.63 (Table 4). When e=30, M=37, N=5, 

=0.05, =0.9 and , t0=0.6, the SA method gives a value of 48571.95 which is only 

about 1% higher than the worst GA solution of  46604.29. Though  the GA performed 

better than the SA in this problem set, given the wide variance between the solutions 

from each parameter setting,  there is no guarantee that GA will perform better in 

every situation. Thus it is useful to have more than one method available. This aspect 

is also seen in our main experiment. 

 

    Since in the main experiment, we modified the original Kim and Kim [1998] 

problems, the Tam_30 data set (which was not modified) also serves as a benchmark 

for our procedure. The best solution obtained in Tam was 48072.92 which is about 

13% higher than our best GA solution of  42638.63. However our best SA solution of  

48571.95 was about 1% higher than the best Tam solution. 
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Computational Results 

 The  60 problems obtained from Kim and Kim [1998] were modified by 

restricting department sizes to an integral number of square units and making some 

problems feasible. The problem sizes examined are shown in Table 5. 

 

 

Problem Numbers Departments 

1 – 5 

16 – 20 

31 – 35 

46 - 50 

 

10 

6 – 10 

21 – 25 

36 – 40 

51 - 55 

20 

11 – 15 

26 – 30 

41 – 45 

56 - 60 

 

30 

 

Table 5:  Problem Sizes 

 

The computational results are tabulated in Table 6. These results are obtained using 

the parameter values determined by the experiments described in the last section. 

However, the FACOPT system allows the user to use different parameter values.  

 

      For the 10 department problems the SA took 5 CPU seconds on average to reach 

the final solution while the corresponding value for the GA was 13 CPU seconds. For 

the 20 department problems, the SA took an average of 1230 CPU seconds while the 
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GA took an average of 1460 CPU seconds.  For the 30 department problems, the SA 

took 3360 CPU seconds while the GA took 6460 CPU seconds. Thus from a 

computational viewpoint SA was more economical. But since facility layout is a 

design issue where the solution is not re-computed often,  the solution quality is more 

important. From this viewpoint, GA did better, as shown in Table 6. 

From Table 6 it can be observed that the GA algorithm performs better than 

the SA for every problem. Further, it can be observed that the difference between the 

two algorithms was as low as 0.1% (problem 31) and as high as 25.8% (problem 29). 

Thus, as in the Tam_30 test problem, the wide variance indicates that it may be 

difficult to predict whether GA will always do better than SA since this also depends 

on the selection of parameters as explained earlier while discussing the Tam 30 result. 

Thus in our software, both algorithms are included as this provides more options for 

the decision maker. The user may employ any one of these algorithms to generate a 

layout. Ten layouts may be kept for further user examination.  
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P-No GA SA P-No GA SA 

1 4150.12 4201.45 31 4493.59 4497.70 

2 3158.82 3305.54 32 5684.89 5809.46 

3 3683.63 3842.31 33 4826.32 4937.33 

4 4269.05 4327.84 34 4487.43 4504.32 

5 4708.32 4957.72 35 4661.97 5092.51 

6 19828.69 22104.24 36 17465.01 20193.86 

7 15800.95 18259.73 37 18175.31 20803.27 

8 17187.54 20535.32 38 17172.77 18732.07 

9 18626.38 21070.31 39 18708.79 21675.81 

10 17970.19 21313.79 40 18806.7 21855.57 

11 44724.58 51369.36 41 47924.74 55020.7 

12 36471.04 45028.93 42 45100.47 51053.63 

13 43435.84 49722.27 43 49502.04 55825.95 

14 43927.72 52394.14 44 47399.37 52196.54 

15 46529.55 50925.1 45 45588.01 53117.86 

16 5885.17 6292.84 46 5319.50 5482.38 

17 4667.71 4682.58 47 5824.70 6025.85 

18 4892.28 5050.67 48 5085.11 5338.88 

19 4222.84 4550.42 49 5602.67 5746.99 

20 4949.51 5052.91 50 4813.97 4978.14 

21 17217.12 18780.97 51 21258.04 23809.86 

22 19976.92 22808.87 52 20857.52 23197.31 

23 20173.4 22575.49 53 19299.85 21611.83 

24 21601.97 24787.97 54 20111.66 22428.83 

25 18944.4 20096.39 55 20704 22627.26 

26 38719.82 45269.24 56 50641.78 54747.39 

27 41547.04 45647.26 57 45592.81 50103.29 

28 38042.81 44953.6 58 48050.14 54523.93 

29 45590.98 57341.05 59 46072.62 50284.91 

30 39823.41 46267.34 60 50240.57 56295.52 

 

Table 6: Modified literature problems 
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The  FACOPT Software 

In this section, the features of the FACOPT software is explained. The system 

was developed in Visual Basic and runs under Windows.  

 

Figure 9: Numbers of columns, rows, and entrances 

 

The user may retrieve a previously created work file or create a new one. In 

this example, the user is required to enter the number of rows and columns, and the 

number of entrances (Figure 9). In Figure 10, the user enters department names and 

sizes and indicates whether a department is fixed. The data entered for a department 

can be changed by double clicking the department. All entered data will be lost if a 

reset button is chosen. 
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Figure 10: Department names and sizes, and specifying fixed departments 

 

 The material flow and unit cost between pairs of departments and those 

between a department and an entrance may be entered as shown in Figure 11. A SFC 

can be manually drawn or automatically generated as shown in Figure 12. The user 

can then select SA or GA as the algorithm. Default parameter values are used. 

However, the user can change the parameter values (Figure 13). 

 

 

Figure 11: Entering the material flows 
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Figure 12: Specifying departments and entrances, and drawing a SFC 

 

 

 

  

Figure 13: Changing the parameter values 
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Figure 14: The resulting layout 

 

 In Figure 14, Form A is the resulting layout in which each department is 

represented by a number of square units of  the same color. Form B is the department 

reference. If the user clicks on a department, the color of the department will be 

shown. Form C shows the average distance and the cost of the material flows between  

departments. Form D keeps different layout solutions. Ten candidate solutions may be 

saved. 

Form B 
Form A 

Form C 

Form D 
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Conclusion 

 In this paper, a flexible and user-friendly approach using Visual Basic under 

Windows to solve the static facility layout problem was proposed. Two effective 

algorithms can be used to generate heuristic layout solutions.  The software was also 

described. We believe that the proposed system will be useful to layout planners as it 

is effective and easy to use. Further improvements could include the addition to the 

software of more solution algorithms such as tabu-search and neural networks for 

increased flexibility, and enhancements to the software itself. 
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