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Abstract 

The finite element method was shown to be applicable to the investigation of Earth 

deformation problems. The main advantages of this technique are that thin-plate 

theory does not have to be assumed and that lateral variations in the Earth's 

properties can easily be taken into account. 

The characteristic pattern of foreland basins due to advancing thrust loads was then 

analyzed for the Alberta Foreland Basin using the finite element method. The effects 

of a viscoelastic lithosphere resting over a relaxed mantle and supported purely by 

buoyancy was considered for this area. By applying a load history L(x,t) for the 

advancing thrust sheets of the Rocky Mountain Fold and Thrust Belt, the stratigraphy 

of the adjacent foreland basin was related to the structure through the deformation of 

the lithosphere. Both uniformly thick models and eastward thickening models were 

considered. The preferred model was found to have an eastward thickening lithos-

phere with a thickness of >200 km beneath the craton which supports the tectosphere 

model proposed by T.H. Jordan. The model also correctly predicts the absence of any 

appreciable present-day peripheral bulge within Alberta and Saskatchewan which is 

usually associated with other (uniform) flexural models. This is consistent with 

current observations of the stratigraphy which do not support the existence of a 

prominent forebulge within the basin. 

One implication of this work has been to support a new and profound understanding of 

the dynamics of plate-plate interaction for continental tectonics. A thick-lithosphere 

model has significant implications in the study of plate-plate interaction and crustal 



dynamics. In order to have continental lithospheres with cold deep roots extending to 

depths greater than 200 km, it was necessary to postulate a model consisting of 

continental plates actually sitting on the denser mantle. The oceanic lithosphere was 

still envisaged as a rigid plate floating on a fluid asthenosphere. The cold roots of the 

continents, however, are dragged through the more viscous lower mantle and are 

consequently impeded from moving at the same plate velocities observed for their 

oceanic counterparts. This hypothesis is further supported by observations of three-

dimensional inversion (tomography) of surface-wave data by J.H. Woodhouse and 

A.M. Dziewonski. 
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Résumé 

La méthode des éléments finis se révèle particulièrement adaptée a la resolution des 
problèmes de deformation de la Terre. Les principaux avantages de cette technique 

sont d'une part son indépendance par rapport a la théorie de la deformation d'une 

plaque mince et d'autre part la prise en compte aisé des variations latérales des 

propriétés de la Terre. 

Ainsi, l'évolution caractéristique d'un bassin d'avant-pays créé sous 1'effet du poids de 

nappes chevauchantes qui s'avancent a été analysée dans le cas du Bassin d'Avant-

pays de l'Alberta a l'aide de la m&hode des éléments finis. 

Le cas d'une lithosphere viscoélastique reposant sur un manteau fluide et supportée 

purement par flottabilité a été retenu pour cette region. En appliquant une histoire de 

charge L(x,t) pourles nappes charriées formant la ceinture de Pus et Chevauchements 

des Montagnes Rocheuses , la stratigraphie dubassin d'avant-pays adjacent est reliée 

a 1'activité structurale a travers la deformation de la lithosphere. 

Des modèles a lithosphere d'épaisseur constante ou bien a épaississement vers lEst 
ont été testes. Le modèle retenu se trouve avoir une lithospère s'épaississant vers 

lEst avec une épaisseur supérieure a 200 km sous le craton, choix qui s'accorde avec 
le modéle de tectosphère propose par T. H. Jordan. 

En outre, le modèle a prédit correctement l'absence d'un bombement peripherique 

actuel sensible en Alberta et en Saskatchewan qui habituellement est associé avec 

les modèles flexuraux uniformes. De plus, ce résultat est coherent avec l'analyse 
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stratigraphique qui dément l'existence d'un tel bombement dans les bassin. 

Ce travail entre autres consequences, propose une vision nouvelle et une comprChen-

sion plus profonde de la dynamique des interactions plaque-plaque et de leur influence 

sur la tectonique intracontinentale. En effet un modèle a lithosphere épaisse a 
d'importantes implications sur la dynamique crustale et les interactions entres 

plaques. Afin de représenter des lithosphères continentales possédant des racines 

froides et profondes jusqu'a plus de 200 km, ii faut postuler un modèle i oti les plaques 
continentales sont littéralement échouées sur un manteau inférieur plus dense. La 

lithosphere océanique est cependant toujours considérée comme plaque rigide flottant 

sur le manteau supérieur, l'asthenosphère fluide. En revanche, les froides racines des 

plaques continentales labourent le manteau inférieur plus visqueux qui, par consC-

quent les empèche de se déplacer a la même vitesse observée chez leur homologues 
océaniques. 

Cette hypothése est renforcée par des observations de donñées d'inversion tri-dimen-

sionelle (tomographie) éstablies a partir des ondes de surfaces par J.H. Woodhouse 
et A.M. Dziewonski. 

traduit par M. Villéger. 
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"Neither you nor anyone else knows with 
any certainty what is going on inside the Earth" 

Jules Verne (1864), 
Journey to the Centre of the Earth 
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1. Deformation of the Earth 

Geo dynamics is the study of global Earth movements and the forces driving them. 

The science aims at explaining present-day surface features which are presumably 

caused by internal forces. This thesis focuses on an aspect of geodynamics where the 

forces are due to externally applied surface loads. 

The Earth is continuously being deformed by surface loads. Some examples of these 

loads include: those caused by pluvial lakes, glaciers and continental ice sheets which 

are all related to major climatic changes; tidal loading and oceanic islands; and 

sedimentary basin fills which are related to adjacent orogenic events. Our main 

concern was the latter type of surface load and the Alberta Foreland Basin will be 

considered in detail. 

One important aspect in the modelling of these deformations is what constitutes an ap-

propriate model for the rheology of the planetary interior. The Earth is known to 

respond elastically to short period loads but it also has an anelastic (i.e. creep) 

response. Direct evidence for anelastic behaviour is abundant for both short charac-

teristic timescales (dispersion of body wave velocities, spatial attenuation of surfaée 

waves, seismic attenuation in seismic field measurements) as well as longer 

characteristic timescales (post-glacial rebound, secular deformation of the Earth, 

crustal bending). Another manifestation of creep processes in the mantle is plate 

tectonics. This process could not occur unless it was possible for mantle material to 

deform continuously in a fluid-like fashion over long periods of time. Although there 

has been considerable debate as to what constitutes a sensible working model of 

viscoelastic behaviour (Peltier et al., 1981), the usefulness of linear viscoelastic 

models for surface loading problems has long been recognized. These types of models 

have been fully exploited in the context of analyses of the post-glacial rebound 
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problem (Peltier, 1974). The simplest rheological model is the Maxwell body and such 

a model was assumed throughout this work. 

In the past, viscoelastic deformation modelling was limited by the assumption that the 

Earth is laterally homogenous (Farrell, 1972; Wu, 1978; Passey, 1981; Beaumont, 

1981; Cant and Stockmal, 1989). To a second order, this limiting factor constrained 

the hypotheses and the rigour with which they could be tested against observation. In 

this text the effects of modelling a continental lithosphere that allows lateral in-

homogeneities will be explored. The finite element method will be used in this 

modelling. 

Chapter 2 provides a review of some pertinent theoretical foundations of deformation 

problems in geodynamics. The purpose of this review is twofold: to state clearly the 

assumptions underlying the theory; and to provide the basis for a comparison of the 

finite element method. By starting with the elastic and viscous equations of motion, 

the differences between them are first pointed out and then the viscoelastic equation 

is derived using the correspondence principle. The concepts of flexure, flexural 

parameter and peripheral bulge were also introduced in this section. 

In chapter 3, the finite element method is given credibility by comparing finite element 

results with the analytical results derived in the previous chapter. This provides the 

confidence necessary to move on to other, yet untried, laterally heterogeneous models. 

Having clearly established both the advantages and limitations of this numerical 

method, the next step was to apply it using relevant geological data. This brings us to 

the primary purpose of this study. 

The objective of chapter 4 was to describe a more realistic representation of basin 

evolution through lithospheric flexure. Flexure can be described as "regional isostacy" 

which takes the strength of the lithosphere into account. It is this lithospheric flexure 

that distributes the subsidence associated with orogenesis and glacial, sediment and 

eustatic loading over an area. Flexural modelling allowed us to simulate this regional 

isostatic response to loading for a given set of lithospheric parameters. Data from the 
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Alberta Foreland Basin were used to probe the characteristic properties of the North 

American cratonic lithosphere. The outputs of this model include: a predictive model 

of the paleogeography of the Alberta Foreland Basin; an estimate of the burial history 

which is necessary to calculate hydrocarbon maturation; a better understanding of the 

load history of the Rocky Mountain Fold and Thrust Belt; and, most importantly, a 

working rheological model showing lateral inhomogeneities in cratonic lithospheres. 

From this study, it is shown that the lithospheric model of the North American plate 

must thicken to the east to satisfy best the observed data. This hypothesis was 

tested in detail and forms the bulk of this work. 

Final conclusions are then drawn in chapter 5 where the ideas are integrated into a 

larger geodynamic context. Future work where the finite element method can be used 

for different types of geodynamic modelling is also suggested as a direct result of this 

study. 

Throughout this work, S.I. units were used except in some instances of time, where 

millions of years (Ma) were used for relaxation time as this was considered more 

meaningful than seconds. Large distances associated with cross-sections were also 

given in kilometres instead of metres. An attempt was also made to use different 

symbols for different notation whenever possible. The notation is clearly explained in 

the text as it is introduced and there should be no ambiguity: 



"If geophysics requires mathematics for its treatment. 
it is the Earth that is responsible 

not the Geophysicist" 

Sir Harold JetTrevs. 
Cambridge University 
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2. Physical and Mathematical Foundations 

This chapter introduces the necessary mathematical and physical background required 

to develop the geological models used in subsequent chapters. It also serves to check 

the finite elements results of Chapter 3 by comparing simple numerical models with 

analytical predictions. This will give us added confidence in the finite element results 

before going on to more complicated models. 

The mechanical state of a body is specified by means of kinematic and dynamic 

quantities. The former refers to motion (i.e. displacement, velocity and acceleration), 

the latter to forces of various types. In the study of rheology we establish basic 

relations between kinematic and dynamic quantities for continuous media, analyze 

their meaning and implications and subsequently make use of their consequences. 

The basic dynamic quantity is stress t and the basic kinematic quantity is strain c (or 

strain rate dc/dt). Both of these are tensors of rank two or second-order tensors 

(scalars and vectors are sometimes called zeroth- and first-order tensors respec-

tively). Stress is related to the surface force, and strain is related to deformation 

within the body. 

In this thesis we will be dealing with the deformation of a viscoelastic Maxwell body 

which behaves like a Hookean elastic body at short time scales but like a fluid at long 

time scales. This type of deformation will be described by applying the correspon-

dence principle to the elastic equation of motion and this chapter will form the basis of 

the theory while clearly stating the assumptions and approximations behind them. It 

will naturally lead into chapter 3 where the usefulness and limitations of the finite 

element method will be compared with these analytical results in detail. 
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In section 2.1 the linearized equations of motion are reproduced after Cathies (1975) 

for simple elastic and viscous Earth models. In Section 2.2 dimensional analysis was 

used to compare the contribution of each of the terms in these equations of motion. 

These results will then be used as the basis for the theoretical development of the 

static deformation of an isotropic, elastic half-space. This problem is associated with 

the name of Boussinesq (Farrell, 1972) who first studied it in 1885, and is sum-

marized in section 2.3. In sections 2.4 and 2.5, an extended form of the Correspon-

dence Principle will be employed to derive the quasi-static deformation of isotropic, vis-

coelastic half-space Earth models by mass loads applied to the surface. Finally, 

section 2.6 will address the characteristics of the thin plate approximation for the 

flexural model of an infinite plate with a load that has a large lateral extent when 

compared with the thickness of the plate itself. It is in this section that the concepts 

such as flexure, flexural rigidity, and peripheral bulge are introduced. 

2.1 Linearized Equations of Motion.  

The elastic equation of motion is required to describe the behaviour of the Earth at 

short time scales and the viscous equation is necessary for the behaviour in the 

viscous limit. The transition between these two states however, is taken into account 

by the correspondence principle. 

For a continuous body to be in equilibrium, the resultant of all body and surface forces, 

and the resultant moment about any axis, must vanish. The linearized elastic and 

viscous equations of motion in a pre-stressed, self-gravitating Earth model can be 

written as (Cathles, 1975): 

V.'r - poV(gou) + gopo(V.u) z - poV4 1 = 0 

V.t + gopo(V.u) z - poV4 1 = 0 
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respectively. In these equations, r is the stress tensor, Po and g0 are the unperturbed 

(zeroth-order) density and gravity values respectively and the quantity is the 

perturbed gtavitational potential which is defined by Poisson's equation V2 i = 4itGp 1 

where G = 6.6732x 10-11 N rn-2 kg-2 (the Universal Gravitational constant) and p, is 

the perturbed density. 

The elastic equation of motion (2.1.1) incorporates four terms. These terms in the 

order they appear, are due to the: divergence of stress; advection of pre-stress; 

buoyancy force; and perturbation of gravity. The equation of motion for the viscous self-

gravitating medium (2.1.2) however, does not have the pre-stress advection term. 

The advection term arises in equation 2.1.1 because, for an elastic solid, the displace-

ment is instantaneous and carries the initial pre-stress along. In the viscous equation 

of motion however, the displacement cannot be sudden and hence the advection term 

does not appear (Cathies, 1975). The elastic problem and the viscous problem also 

have different boundary conditions. In the elastic problem, the boundary conditions are 

the continuity of displacements and stresses. In the viscous problem, the buoyancy 

force across the boundary must also be included in the continuity of the normal stress. 

By starting with the elastic equation of motion and applying the Correspondence 

Principle, the advection of pre-stress term becomes the gradient of the buoyancy force 

across the boundary in the viscous limit. This term is combined with V.t to give the 

divergence of the viscous stress (Wu and Peltier, 1982). In other words, the 

advection of pre-stress term is necessary in the viscoelastic problem to satisfy the 

boundary conditions in the viscous limit. 
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2.2 Scale Analysis of Elastostatic Equation 

A scale analysis of the equation of motion for a self-gravitating elastic body gives an 

estimate of the individual contributions of the divergence of stress; advection of pre-

stress; buoyancy and the perturbation of gravity with respect to the size, or character-

istic wavelength, of the load. In the following it will be shown that the perturbation of 

gravity termcan be neglected for loads having a short characteristic wavelength. 

Using the same notation as in section 2. 1, it was stated that equation (2.1.1) 

describing elastostatic equilibrium constituted four terms. Each of the four terms of 

equation (2.1.1) contributes to a specific physical property as shown below: 

Divergence 
of stress 

- poV(gou) + gopo(V.u) z - p0V4 1 

Advection of 
pre-stress 

Buoyancy Perturbation of 
force gravity 

=0 
(2.1.1). 

Let us now define a cylindrical coordinate system with basis vectors z, r and 8. In 

order to solve for the dimensions of stress t, gravitational potential 01 and density Pi' 

we require the following three relations: 

and 

tijA.Crröi+ 21.LEij (2.2.1) 

= 4icGp1 (2.2.2) 

p1=—poV.u—upo (2.2.3). 

Equation 2.2.1 is the relation between stress and strain, or displacement, while 

equation 2.2.3 can be derived by linearizing the usual conservation of mass equation. 
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Using braces to denote dimension and the notation [L] for the dimension of the 

characteristic wavelength, equation 2.2.1 has a dimensional relationship given by: 

(2.2.4). 

Given that g0 = (4/3) itGap where a is the equatorial radius of the Earth and p is the 

average density from the surface down to the depth of penetration due to [LI, equation 

2.2.2 yields 

1•' I = [A.] ILI lul (2.2.5). 

Equation 2.2.3 gives the dimensions of the perturbed density in terms of the zeroth-

order density as [Pu] = - [p][u]/{L] 

Hence equation 2.1.1 along with the appropriate substitutions, reduces to 

[j.t]i +[][go] 
[Q2 ILI 

Divergence Advection of 
of stress pre-stress 

+ Im I gol Lul 
ILI 

Buoyancy 
force 

— [][go][] =0 

Perturbation of 
gravity 

(2.2.6), 

where the contribution of each term is explicitly shown. Defining the quantity [i} by 

[i3] [LI [P0] [go]  
[p.] 

(2.2.7), 

and normalizing the divergence-of-stress term gives the following relative dimensional 

contributions: 
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EL] [] = 

[a] 
Divergence Advection of Buoyancy Perturbation of 
of stress pre-stress force gravity 

(2.2.8). 

Equation 2.2.8 shows that both the buoyancy term and the advection of pre-stress 

term have the same order of magnitude but that the contribution due to the perturba-

tion of gravity field term is much smaller provided [L]/[a] << 1. 

Given that [a] = 6•3781x106 rn, some typical values for [i5l[L/a] are given in Table 

2.2.1. Assuming that [P] is as tabulated and measured in kg rn-3; [.t] = 10" Pa; [g0] 

10 m s2, then [i] indicates where contributions from the buoyancy, advection of 

pre-stress and gravity perturbation terms become important. From Table 2.2.1, it is 

shown that the last term is negligible for loads smaller than the Fennoscandia ice 

sheets and therefore will be ignored throughout this study. Its contribution is 

equivalent to = 3% of the dominant divergence of stress term for a loading problem 

with a characteristic wavelength similar to the Alberta Foreland Basin. This ap-

proximation results in an equation that is appropriate tor modelling a flat Earth with a 

constant gravity field. 

Location Characteristic [p] p. [i] [i}{L/a] 
Wavelength L (kg rn-3) (Pa) 

(km) x10 10 

Laurentide 3000 4448 17.26 077 036 
Fennoscandia 2000 4037 13.01 &62 019 
Alberta Basin 550 3450 7.70 025 003 
Lake Bonneville 200 3200 6.25 010 0003 

Table 2.2.1. Typical characteristic wavelengths L and ratios [i] and 
[i3][L/a] for several loading experiments at various locations. The 
perturbed gravity field may be neglected for [i][L/a] << 1. 
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• Finally, if we also assume that the halfspace is incompressible, i.e. V.0 = 0, then 

equation (2.1.1) is further reduced to 

V.'r —V(gou) = 0 (2.2.9). 

Table 2.2. 1 shows that the advection of pre-stress term is also small for both Lake 

Bonneville and the Alberta Foreland Basin (25% of the V.t contribution) in the elastic 

problem. When this term is neglected, the problems are reduced to Boussinesq's 

problem and the plate flexure problem which are discussed in the following sections. 

2.3 Boussinesq's Problem 

In this section, Boussinesq's problem, where an elastic halfspace is perturbed by a 

surface load, will be reviewed (Boussinesq, 1885). Application of the Correspondence 

Principle, described in section 2.4, will subsequently allow us to derive the solution of 

a viscoelastic halfspace perturbed by a similar surface load (section 2.5). Both of 

these analytical results will be used to test the limitations of the finite element in 

chapter 3. 

Let us consider the static equation for a Hookean elastic flat Earth model in the 

absence of gravity. Thus (2.2.9) reduces to V.t = 0. By taking the divergence of the 

stress tensor in the constitutive relation for an elastic solid (2.2.1) and equating it to 

zero, we obtain, using the indicial notation, 

tij,k = ak(xc rr31j + 2i.ic) = 0 

Utilizing the definition of the strain tensor 
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Eij = I Iasi + (2.3.2), 
21axi x) 

where s is the displacement, we obtain the following 

tij,k = (A.+p$jr,,. + .La1SJk = 0 (2.3.3 a) 

which, when expressed in the more familiar vector notation becomes (Farrell, 1972) 

(X+2p.)VV.s - S = 0 (2.3.3b). 

Equation (2.3.3b) is identical to the familiar Naviér-Stokes equation of motion for 

seismic. (elastic) wave propagation with the acceleration term set to zero. This is the 

elastostatic equation for a Hookean elastic solid without any body forces. The 

displacement s can be found by solving for (s,s,$) using the appropriate boundary 

conditions. Note that there is no time dependence in the displacement vector s since 

elastic deformation is instantaneous. 

Let z ≤ 0 be the volume occupied by the halfspace. For the time being, we seek 

solutions to (2.3.3) under th&condition that the free surface be stress-free except for a 

disc load of radius a at the origin. Since the problem is axially symmetric, there is no 0 

dependence and therefore we let the displacement s be the sum of two orthogonal 

displacements such that 

s = u (z,r) z + v (z, r) r (2.3.4). 

Following Farrell (1972), it can be shown that the final solution for the displacements 

produced at the surface of a semi-infinite isotropic elastic solid is: 
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u (0, r) 

v(0,r) 

a  E(L) 
) 2a 

Tzz (0, r) = 

a  IE(L)_ 1 
r 

r  
41t11a2 

1  
41trjr 

( I 
I ita 

1 0 

r<a 

r≥a 

r<a 

r≥a 

r<a 

r≥a 

(2.3.5). 

Equation (2.3.5) is expressed in terms of the elliptical integrals E(), K() and the 

terms a = (?+2.t) and r = (?.+p). 

This problem was first studied by J. Boussinesq in 1885 and later on by others (Lamb, 

1902; Farrell, 1972; Peltier, 1974). Further work has also been done on Boussinesq's 

problem with an external gravity field term included (Wolf, 1985). Since our intention 

is to treat the viscoelastic problem analytically, the natural next step in our discussion 

is to use the Correspondence Principle and apply it to equation (2.3.5) to obtain the 

associated viscoelastic solution. This is the topic of the next section. 
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2.4 The Correspondence Principle 

As illustrated in the last section, the solution to the elastic problem can be obtained 

when the equation of motion is combined with the constitutive relation (2.2.1) and 

solved with the appropriate boundary conditions. For a viscoelastic body, the 

constitutive relation contains terms involving the rate of change of stress and strain 

(see 2.4.1) and thus the problem becomes more complicated. The Correspondence 

Principle however, makes the solution more tractable. Essentially the Correspon-

dence Principle says that, in the transformed domain, the viscoelastic problem reduces 

to an "associated" elastic problem which can be solved with the techniques known for 

elastic problems. The following shows how this comes about (Cathles, 1975). 

The one-dimensional analogue of the linear viscoelastic model otherwise known as the 

Maxwell solid can be represented by a spring and a dashpot in series as illustrated in 

Figure 2.4.1. 

Viscous Elastic 

11 

Figure 2.4.1. One-dimensional spring and dashpot analogue for a linear 
viscoelastic (Maxwell) solid. The parameters describing the Maxwell 
solid are the elastic parameters ?, jt (N m 2) and viscosity (Pa s). 

The constitutive relation for a three-dimensional Maxwell body (Cathles, 1975) is: 
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XSk1Crr + 29k1 = tk1 + tk1 - trr8k1} 

Taking the Laplace transform of (2.4. 1) gives 

?k1S Err + 2j.s Ck1 = tklS + {'tk1 - trr8kl} (2.4.2), 

where tilde denotes the Laplace transformed variable and s is the transform variable. 

This can be written in contracted form and substituted back into equation (2.4.1) to 

give 

I2Vs+u.Kl _ IIVS___ 

sV+L jErrök1+2[S•]k1 (2.4.3) 

where K is the bulk modulus. By comparing (2.4.3) with the constitutive relation for 

an elastic solid (i.e. equation 2.2.1), we can identify the terms in square braces to be 

?(s) and p.(s), which are the appropriate compliances for the associated problem. 

These compliances are given by: 

2VS+JIK 

SV+.L 

(2.4.4). 

S V+Ji. 

The equation of motion in the transformed domain is the same as (2.1.1) except that 

ji and 0, are variables in the transformed domain. 

Hence we can treat the viscoelastic problem by direct analogy with the elastic problem 

using the Correspondence Principle. The basis for this principle is that with zero 

initial conditions the Laplace or Fourier time-transformed viscoelastic equations and 

boundary conditions are formally identical with the equations for an elastic body of the 
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same geometry (Peltier, 1974). Hence, if the solution of the elastic problem is known, 

then by substituting the elastic constants 2. and .t by the operational modulii or 

compliances X(s) and j.i(s), and replacing the time dependence of the prescribed 

loading and displacements by transformed quantities, the viscoelastic problem in the 

transformed domain can be obtained. This solution however, has to be inverted to the 

time domain. 
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2.5 Static Equilibrium Equation for a Viscoelastic Halfspace 

Using the same notation as previously, let us find the solution at the surface for u(z=O, 

r, t). Equation (2.3.5) can be rewritten in the transformed Laplace domain, where the 

elastic constants ? and g are replaced by their compliances ?(s) and g(s) to give 

u(O,r,$)= 
Fi(s)  E(.) 

2iI(s)fl(s) a 

Fir  
a2 1 r r2) r 

r<a 

r≥a 

Also assume for the moment that r < a. By substituting the appropriate modulii of 

elasticity we obtain an expression which is in the form of a quadratic in s divided by 

another quadratic in s. Explicitly written, this becomes: 

E() [(+2) IK1' 
- 

u(O,r,$) - ____  V J' Vi  
- [2a] s{(+)s+j J.LK1 

which is difficult to invert as it stands. 

(2.5.2), 

The inverse Laplace transform of equation 2.5.2 is the solution to the viscoelastic 

problem. In order to take the inverse Laplace transform of this expression, we must 

first reduce the order of the numerator. This is accomplished by first finding the elastic 

asymptote by taking the limit s - (which implies that t - 0 ) as follows (Wu and 

Peltier, 1982): 

lini 
E(L\ 

a) a 
s —  oo JC2 j 

E(.) (+2)  

t2a 
(2.5.3) 
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This term is independent of s and inversion will give the same term back, multiplied by 

a delta function in time. The second step is to subtract equation 2.5.3 from u(O, r, s) to 

obtain the viscous portion ui"(O, r, s) of the solution. We can then take the inverse 

Laplace transform of the viscous portion of the solution using Cauchy's residual 

theorem or other standard methods 

Etr\ (11-)[(11cL+TiK+aK)s +1( -)K]  

nis(ns+p.) 
(2.5.4) 

to obtain the impulse response. Adding back the time-domain elastic contribution 

gives the total solution for the displacement due to an impulsive load. This can be 

written as 

E(2 I  ?+2i  (t)+   u(O,r<a,t) E( = 
2a (+) 

(2.5.5). 
A = (ha + ri + (XK) 

B= TIK-

LK 

V 

Since we are interested in the response due to a disc load left on the Earth's surface 

over a period of time T = t, we must convolve the solution 2.5.5 with a Heaviside 

function H(t). This gives the following (Peltier, 1974): 

N_•L)u(O,r<a,t)=—'lI  X.+2ji.  + 1[h Al(1 Ctj] 2+t) —-j —e (2.5.6 a). 

This equation represents the displacement at the surface due to a disc load of radius a 

placed over an infinite viscoelastic halfspace for a period of time t. Applying the same 

procedure for r ≥ a gives the rest of the solution which only differs by the coefficient 

outside the braces. The solution of u(O, r > a, t) is given by 
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u(0,r>a,r)=—  r  [E (11 
,2 a2 r' r2 r)j 

J  7+2j.i. .LK [h1 _ -j AI(1 Ct _e) 71 

(2.5.6 b). 

These expressions for the viscoelastic halfspace reduce to the elastic solution if we 

choose time t = 0 since by definition an elastic medium must adjust instantaneously to 

an applied load. 

2.6 Thin Layer Plate Approximation 

For loads of duration much longer than the relaxation time r(k) of the upper mantle for 

that load wavelength, the 'Earth can be represented by using a rigid lithosphere 

overlying a fluid mantle. In contrast to the last problem, a buoyancy force is included 

here due to the density contrast of the lighter load displacing the denser mantle 

material. If this load has a characteristic length much greater than the thickness of the 

lithosphere, we can approximate the model by a thin plate supported by a fluid mantle. 

For this problem, the upper mantle is completely relaxed; thus we cannot "see" the 

mantle viscosity but we can use the information from this type of loading experiment 

to study the properties of the lithosphere. If we consider small deflections in a thin 

plate, thereby assuming that (i) the fibre stresses r and yy vary linearly throughout 

the thickness of the plate, (ii) there are no shear stresses ru , and (iii) the in-plane 

normal stress rzz = 0, we can write the equilibrium equation for two-dimensional 

flexuring of plates as (Turcotte and Schubert, 1981): 

D d4w(x) =q(x)P' 
dx4 dx2 
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where w(x) is the vertical displacement, q(x) is the vertically applied load, and P is 

the horizontal force. D is a quantity known as the flexural rigidity which quantifies the 

lithospheric stiffness and is usually expressed in Newton metres (N m). The flexural 

rigidity D is defined by: 

E d'  
12(1_v2) 

for a given Young's modulus E, Poisson's ratio v and lithospheric thickness d. 

(2.6.2) 

For our surface loading problem, take the horizontal forces P = 0 and a load q(x) that 

is applied vertically. The load is supported by the plate and the buoyancy force. Thus 

for a mantle density pm, sediment density ps and density of water p., the net force 

q(x) is q(x) - (Pm pw)gw(x) for the oceanic lithosphere case and q(x) - (Dm 

p5)gw(x) for the continental crust case. Hence the fourth-order differential equation 

describing the displacement due to vertical loading with a buoyancy term counteracting 

it (Walcott, 1970) can be written as: 

D d4w(x) (PmP) g w(x) = qa(x) 
dx4 

where the replacement density pw or ps has been written as pf for generality. 

(2.6.3), 

For a loading problem in cylindrical coordinates, the boundary conditions are as 

follows: 

(1) dw/dr = 0 at the centre, at r = 0. 

(ii) w, dw/dr and d2w/dr2 are all continuous at the load edge, r = A 

(iii) and the displacement w = 0 at r = oo. 

In the following, the functions ber, bei, ker and kei are the Bessel-Kelvin transcen-

dental functions of zero order. The solution for (2.6.3) takes a particularly simple form 

qa12 
for axisymmetrical loads (Brotchie and Silvester, 1969). For a point load w = 2D kei 



22 

() where 1 is the radius of relative stiffness. 1 has dimensions of metres and is 

defined by 14 = D/(Pm - pf)g where pf is once again the fill-in density. Note that for 

two dimensional problems, as in chapter 4, the flexural wavelength 12D is more 

appropriate and is defined by 142D = 4D/(Pm - pf)g. For a uniform disc load of density 

p, height 5 and radius A, the deflection at r ≤ A is 

w= [1+Ciber(t-I+C2 bei(L)] (2.6.4a) 
(PmPf) ii 

and at r > A the deflection is 

W = [C3 ker (L' + C4 kei () } 
(PmPf) \1J 

(2.6.4 b). 

The constants Ci are evaluated from the appropriate boundary conditions ,and are 

given by the following 

Cl = 
1 

C2 = - - kei' I (A) 
i 

C3 = - ber' I (A) u 
C4= bei'•A) 

l 

(2.6.4 c), 

where the primes indicate derivatives with respect to the argument (All) of the Bessel-

Kelvin functions. 

For a thicker lithospheric plate the thin layer approximation does not hold and 

equations 2.6.1 and 2.6.3 are no longer valid. Note that the viscosity of the mantle 

does not come into the solutions of 2.6.1 since we assume the mantle is an inviscid 

fluid. 
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A plot of the deformation of a thin plate due to a point load is shown in Figure 2.6.1. 

The values used in this figure are a flexural parameter 1disc = 1022 km and a flexural 

rigidity D = 3•64x1024 N m. The deflections due to point loads —q = 1 08x10'8 N and 
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Figure 2.6.1. Rigid elastic lithosphere with 1 = 102-2 km and D = 
3-64x 1024 N m overlying a fluid mantle. [Above] The flexure of the 
unbroken lithosphere for point loads —q = 1 08x 1018 N and —2q at x = 0 
gives maximum displacements of w0 = —387 m and —774 m at r = 0 
respectively. There is zero displacement at x0 = 400 km and a 
peripheral bulge with a maximum height of W(Xb) = 553 m and 11-06 m, 
respectively, at Xb = 504 km. [Below] Enlarged portion of the same 
plot showing the deflection near the surface around x0 and Xb. 
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—2q = 216x10' 8 N, both located at x = 0 km, correspond to —387 m and —774 m 

respectively. 

Some important features of Figure 2.6.1 are the location of the cross-over distance at 

x0 = 400 km; the location of the peripheral bulge at Xb = 504 km; and the maximum 

displacements W(Xb) = 553 m and 1106 m for each of the two loads respectively. The 

locations at x0 and Xb are related to I (and hence the flexural rigidity D and plate 

thickness d) and do not change when the load magnitude varies. Thus the location of 

the peripheral bulge contains information on the lithosphere. The maximum deflection 

WO = w(0) and the height of the peripheral bulge W(Xb) however, both depend on the 

applied load magnitude. 

The effects of having a disc load rather than a point load are shown in Figure 2.6.2. In 
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Figure 2.6.2. Deflection of a disc load of radius 200 km and a mass —q 
= 375x 1012 N. Notice that the deflection w0 is smaller at x = 0 km and 
that the deformation is spread out further. The locations x0 and Xb are 
different than those calculated for a point load. The flexure due to a 
point load —q is also shown in dashed for comparison. 
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this figure, the disc has the same weight — q as the point load of —q but with the 

pressure distributed over a disc radius of 200 km. The deflection due to the point load 

—q , as taken from Figure 2.6.1, is roughly twice as great as the deflection produced 

by the distributed load which is shown in the dashed line for comparison. 

Theoretical locations of the zero crossing x0 and the peaks of the arch x'b, Xb for both a 

point load and a disc load using an axisymmetrical coordinate system are given in 

Table 2.6.1 (McNutt and Menard, 1982): 

Point Load Disc Load 

x0=3915 1 

Xb49321 

where 

1c3\1 
xO = + tan 

tan (-b_)=Ii+  1  
a 2Xb +1+2tan'-

a 8 •C4J 

Xb = Xb 

a a 
7 7ctan ci 
8 C4 

Table 2.6.1. The locations of the zero crossing x0 and the peak of the 

peripheral bulge X'b and Xb for a point load and a disc load respectively 
using an axisymmetric coordinate system. (see Appendix A, pp 363-
394, McNutt and Menard, 1982). 



"ABC as we build blocks 123" 

Fred (1984), 
from the Book of Fred 
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3. The Finite Element Method 

In this chapter we will focus on the finite element method as it applies to structural 

analysis and we will show how we can apply the method to obtain numerical solutions 

to problems in geophysics. After a brief introduction to the finite element method and 

the underlying principles governing it, the analytical solutions of the previous chapter 

will be used to check the accuracy of the finite element method. Once the accuracy of 

the finite element method is established, it will be used to solve more difficult 

problems such as models that incorporate lateral in homogeneities. 

The finite element method falls into the broader category of discretization methods in 

the theory of continuum mechanics (see for example, Zienkiewicz, 1975). The idea 

behind continuum mechanics is to obtain a field function (such as a displacement or 

stress field function) over the continuous domain occupied by the medium. Mathe-

matically these fields are governed by differential and integral equations. The 

solutions of these equations in real life situations are complex and generally not 

obtainable using known, closed form analytical functions. The use of the methods of 

discretization and numerical approximation to solve these problems has therefore 

been a fertile research field. Among the various discretization procedures available, 

one may also include: power series expansion methods,, where the solution is 

expanded in a Taylor series; the finite difference method, where differentials are ap-

proximated by difference quotients; and Ritz's and other methods of the calculus of 

variations in which one starts with a variation-like principle (such as minimum 

potential energy, etc.) and assumes a solution to belong to a family of smooth 

functions. The finite element method is formally connected to the Ritz method. 

In the finite element technique, the Earth is discretized into a number of elements. 

Each element contains information on geometry and material property. Each of these 

elements are interconnected by nodal points. For a certain loading problem, nodal 
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forces act at these nodal points, and at each nodal point the nodes are allowed to 

move in a number of directions (determined by the degrees of freedom). Within the 

elements, the displacement field is obtained by interpolation between the displace-

ments at the nodes. Hence a standard set of simultaneous equations can be for-

mulated at each element that relates the nodal forces, nodal displacements, and 

material properties. Physically assembling these elements to form the whole 

structure is equivalent to mathematically superimposing the element equations. The 

result is a large number of simultaneous equations which are suited for solution by 

computer. The result given is a distribution of the stress field or displacement field 

that closely approximates the correct solution. 

3.1 Basic Structural Concepts 

The basis of the finite element method lies in the principle of virtual work. The 

Principle of Virtual Work essentially solves V.'t +f= 0 in integral form. In order to 

explain the Principle of Virtual Work we must define virtual displacement. Virtual 

displacement can be loosely defined as a small smooth displacement field on the 

structure that is compatible with its supports. This means that it cannot violate the 

support conditions. It follows then that virtual work is the work done on the body due 

to this virtual displacement field (6U). The external forces on a body are the body 

forces 1b (due to its own weight); surface tractions f5 (force per unit area at the 

surface) and concentrated, or point, forces F1 (where distributed forces may be 

modelled as a series of concentrated forces). 'These external forces do work called 

external virtual work. Since the body is not perfectly rigid, any virtual work due to an 

infinitesimal displacement field will give rise to a stress field and subsequently a 

virtual strain field (3c). The internal virtual work is the work performed as a result of 

this stress field. 
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The principle of virtual work asserts that this stress field is in equilibrium with given 

external forces (F1, fb and if and only if, the internal virtual work (IVW) is 

identically equal to the external virtual work (EVW) for all possible displacements. It 

can be shown that the principle of virtual work (PYW) reduces to the equilibrium 

equations. Different numerical procedures for finding the solution exist. Of the more 

common methods, one is to approximate partial derivatives with finite quotients (finite 

difference method); and another is to make an approximation to the principle of virtual 

work and use the finite element method. Both methods will converge to the required 

solution. 

An approximation to the principle of virtual work is the Ritz Approximation, and is 

made to convert equation 2.2.9 into integral form. Mathematically, the principle of 

virtual work can be stated as follows: 

IVW =1V [t6c] 
EVW= (fb)T{6u}dv+ I (f)T(8U )dS+ (F.)T(8U. ) 

V is jI 

(3.1.1). 

In this equation, V is the volume and S is the surface of the body and superscript T 

represents the transpose of the matrix. 
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3.2 Comparison of Finite Element Method Results 

In order to determine how well the results of the finite element method compare with 

the exact analytical solutions derived in the previous chapter, let us consider the 

following numerical example using some typical Earth parameters. Assume an infinite 

halfspace in a cylindrical coordinate system (r, 8) with a modulus of elasticity ?. = 

796x1010 N rn-2 and a modulus of rigidity j..t = 6•25x1010 N rn-2. Consider a rigid disc 

load having the same Lake Bonneville Basin dimensions as given in Table 2.2.1. The 

pluvial lake roughly corresponds to an evenly distributed mass of 1015x10 15 kg 

covering a circular area of radius A = 80 km (Passey, 1981). 

(a) Elastic Deformation (Boussinesq's Problem): 

In this subsection, first assume that the infinite halfspace is completely elastic. 

Since the computer mesh must be finite in dimension, infinity for the model is 

considered to be any point beyond which the effects of the load will not be felt. The 

edges of the model therefore, were taken to be 25A in both the horizontal and vertical 

directions. This lateral extent was known to be sufficiently far away using the analytic 

(elastic) solution given in equation 2.3.5. 

Each element was chosen to be 10 km2 in cross-section and axisymmetric about the 

azimuth 0. Hence the elements at the centre are discs of radius 10 km and all others 

are toroids. 

Such a disc load will theoretically give rise to the non-physical result of a discon-

tinuous stress drop between (A-6r) <x < (A+r) as 5r- 0. Figure 3.2.1 shows how 

the finite element treats the problem of this distributed load type using the work-load 

equivalent method. 
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Figure 3.2.1. Comparison of normal stress as a function of distance 
(dimensionless) using both analytic and finite element methods. The 
finite element method makes use of the work-load equivalent method 
across the discontinuity. The abscissa (nA) is plotted on a logarithmic 
scale. 

Substituting the numerical values given above into equation 2.3.5 gives the theoretical 

displacement u(r) as a function of the distance r from the centre. A comparison of the 

analytic results with the finite element results can be seen in Figure 3.2.2. The radius 

r in both Figures 3.2.1 and 3.2.2 is dimensionless as it was normalized by the disc 

radius A. The abscissa is also plotted on a logarithmic scale to emphasize the 

results within the disc (nA < 1). The finite element results were found to compare 

quite well with the exact solution. A plot of the difference between the analytically 

derived displacements and the numerical modelling results is shown in Figure 3.2.3. It 

should be noted that the finite element model had a maximum discrepancy of - 018 m 

(5%) occurring at the edge of the load where r = A. 
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Figure 3.2.2. Vertical displacement versus (normalized) distance from 
centre due to a uniform disc load over a Hookean halfspace. The model, 
which uses the same order-of-magnitude parameters as for the Lake 
Bonneville Basin, compares well with the solution to Boussinesq's 
problem derived in section 2.3. 
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Figure 3.2.3. Difference in vertical displacement between analytical 
solution and finite element method for elastic experiment. The largest 
discrepancy occurs at the edge of the load (i.e. at nA = 1) with a 
difference of-0.18 m. 
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(b) Viscoelastic Deformation: 

Let us compare the results of the viscoelastic solution by assuming a creep 

experiment consisting of an infinite viscoelastic halfspace with a viscosity of 1021 Pa s 

and a total creep time of T = 41 1x10 1' s (13 000 years). The elastic parameters 2 

and were assumed to have the same values as for the elastic case. The model has 

the same shape as in the previous case but the lateral extent is greater to allow for 

more deformation. The new model extent was 50A in the horizontal direction since, 

for the viscoelastic creep experiment, the amplitude was greater. The theoretical 

displacement was given by equation 2.5.6. The displacement shown in Figure 3.2.4 is 

the result of the elastic component of displacement added to the viscous (or creep) 

component caused by the fluid mantle flow during the 13 ka period. The elastic 

component was found to be around - 454 m at r = 0 while the total maximum 

displacement was around - 80 m at the centre. 

The displacement u(r, z) does not theoretically fall to < 01 m before about r = 500A 

when using a creep time of 13 ka. Hence our notion of "infinity" for the computer 

model was difficult to achieve in practice. (There was a trade-off between obtaining 

elements of a reasonable size for a load of only 80 km and the size of the total model 

with respect to computer time). At the surface boundary edge of our model i.e. at 

coordinate (r = 4x106 m, e, z = 0 m) the theoretical displacement was - 0868 m 

whereas the finite element model was forced to be 0000 m. The results were found to 

be quite good despite this limitation and are shown in Figure 3.2.4. 

Although it is difficult to see, the finite element results in Figure 3.2.4 started to show 

a slight positive bulge beyond r = 17A. This was attributed to the fact that, in the 

finite element model, the mantle was not great enough in depth and extent and hence 

some material flowed and accumulated outside the load. 
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Figure 3.2.4. Comparison of the displacement profile of analytical 
results (solid line) with numerical or finite element method results 
(dashed) for a Maxwell body loaded by a disc for a total loading period 
of 13 ka. The parameters used were taken from Lake Bonneville Basin. 

Figure 3.2.5 shows how well the finite element results compare with theory. The 

difference between the exact theoretical results and the finite element results was 

plotted in metres as a function of radial distance r which once again was normalized by 

A and plotted on a logarithmic scale. The maximum difference between the results 

was of the order of - 5 m and occurred at the edge of the load. 
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Figure 3.2.5. Difference between the displacements derived from the 
analytical results and finite element results shown in Figure 3.3.4. The 
largest error was a difference of - 473 m (= 59 %)at the load edge 
where nA = 1. 

To summarize, the mean of the differences was - 012 ± 002 m for the Hookean solid 

and - 2•95 ± 0•72 m for the Maxwell Earth after 13 ka creep. The maximum discrepan-

cies in these results were found to be - 018 m for the elastic analysis and - 473 m for 

the creep experiment. Both of these errors occurred at the disc edge where nA = 1 

and were smaller elsewhere. 

In conclusion, a comparison of the displacements obtained using finite element 

modelling with the analytical solution for both an elastic halfsp.ace and a viscoelastic 

halfspace shows that the finite element method can give a good approximation to the 

analytical results. 
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3.3 Thin Layer Model 

Let us now consider an Earth model consisting of an elastic lithosphere supported by 

a fluid mantle as described in Section 2.6. In that section we stated that for a load of a 

long time duration (say a few times the relaxation time), and a radius A that is much 

greater than the lithospheric thickness d, the model can be approximated by the 

bending of a thin elastic plate supported by buoyancy forces. 

The numerical model chosen for comparison was a 40-km thick elastic lithosphere 

supported by a fluid mantle exerting a restoring force proportional to (Pm p5)g where 

the density of the mantle pm was 3400 kg rn-3 and there was noreplacement density P 

(implying that there were no sediments deposited). The finite element model will be 

used since it does not require that the plate is thin. The disc of radius A = 240 km 

exerted a pressure of pgS = 10 MPa on the surface. This is equivalent to a seamount 
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Figure 3.3.1. Comparison of the finite element method with analytical 
results for the displacement of a thin elastic lithosphere overlying a fluid 
mantle. The load exerted a 10 MPa pressure and consisted of a disc of 
radius 240 km. 
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load of average basaltic density 2800 kg rn -3 and height S of 357 m measured from the 

seafloor. The axisymmetric model consisted of fifty elements across and four 

elements down. Each element was 40 km long by 10 km deep to simulate a lithos-

pheric model that was 2000 km long and 40 km thick. Other parameters used were 

Young's modulus E = 08x10 11 N rn-2 and Poisson's ratio v = 028. The imposed 

boundary conditions were that the outer model circumference was constrained in both 

the x- and z-directions. The buoyancy force was modelled by using an elastic or 

Winkler foundation (Kerr, 1964) beneath the lithosphere that exerted a restoring force 

proportional to the displacement. The radius of relative stiffness 1 of the elastic 

lithosphere was calculated to be 61•02 km and hence the flexural rigidity D was 

463x1023 N m. The results in Figure 3.3.1 show a very good match between the 

solution derived in Equation 2.6.4 and the finite element method. This shows that the 

plate approximation is valid when All = 4. The maximum (analytical) displacement at 

the centre is - 337•3 m below the surface. The height of the forebulge is 6.24 m and 

0 200 400 600 800 1000 r(km) 

Figure 3.3.2. Difference between the approximate (see text) analytical 
results and the finite element method for the viscous model described in 
text. The maximum discrepancies found at the centre and load edges 
are around —13 m and +13 m respectively. 

occurs at r = 44716 km. The displacement, which oscillates between negative and 

positive due to the nature of the ber(A/1) and bei(A/1) functions, is heavily damped and 

has a first zero crossing at about r = 383 km. The difference between the analytical 
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results and the numerical modelling results is shown in Figure 3.3.2 above. It should 

be noted that both the finite element and the analytical results are only an approxima-

tion to the rigorous flexure problem (Lambeck and Nakiboglu, 1980). The difference in 

the two methods ranges from - 126 m at the centre to 128 m at r = A = 240 km (i.e. 

the disc edge). 

For progressively thicker plates, the thin plate approximation used in the analytical 

derivation did not hold. As lithospheric thicknesses increase from 80 km to 120 km 

and 246 km, the corresponding flexural parameters become 180 = 102•63, 1120 = 13910, 

1240 = 23394 km respectively, hence the corresponding ratios A/I become = 234, 173, 

and 103 for each of the three lithospheric thicknesses. Consequently, the thin plate 

results steadily deviated from the finite element results as All decreased (see Figure 

3.3.3).. The maximum discrepancies occurred at the centre and are 409 m, 833 m and 

1201 m for each of the increasingly thickening lithospheres respectively. 
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Figure 3.3.3. Comparison of thin plate theory with thick plate modelling 
for three different lithospheric thicknesses holding all other variables 
constant. (Top) Lithosphere is 80 km thick and A/i = 234; [Overleaf] 
(Top) Lithosphere is 120 km thick and All = 1.73; (Bottom) Lithos-
phere is 240 km thick and All = 1 03. 
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Figure 3.3.3. Comparison of thin plate theory with thick plate modelling 
for three different lithospheric thicknesses holding all other variables 
constant [...continued] (Above) Lithosphere is 120 km thick and A/l= 
1•73. (Bottom) Lithosphere is 240 km thick and All = 1.03. 
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3.4 Conclusions on the Use of the Finite Element Method 

The finite element method was found to work quite well for the cases of an elastic 

halfspace; a viscoelastic halfspace; and an elastic plate overlying a fluid halfspace. 

The errors introduced by using this method were no more than 5% for the elastic 

halfspace and 6% for the viscoelastic halfspace. These maximum errors occurred near 

the edge of the disc load (nA = 1) for reasons explained below and were significantly 

less elsewhere. The higher percentage error for the viscoelastic model was attributed 

to the fact that the model was limited in size and depth with respect to the amplitude 

of the deformation. Hence, model extent was an important parameter in using the 

finite element method. 

In order for the numerical approximation to work well, it was necessary to choose an 

appropriate mesh and element size subject to the speed and memory limitations of the 

computer. In order for the solution to converge, the mesh was chosen to be as uniform 

as possible with each of the elements being as square as possible. Furthermore, the 

elements which constituted the mesh were chosen to be sufficiently small. In order to 

ensure that a finite element solution is acceptable, the finite element code must be run 

with a progressively finer grid mesh and larger lateral extents until the solution 

becomes insensitive to these refinements. Elements that are too coarse would have 

resulted in a poorly interpolated displacement profile across the nodes especially 

when the deformational gradient is large. It is because of this that the discrepancies 

between the theoretical and numerical models are large at the edge of the load since 

the displacement gradient was the highest there. 

There is a trade off between (i) an appropriate model extent, (ii) the appropriate 

element sizes, (iii) the aspect ratio of these elements and (iv) the amount of computer 

time used in finding a solution. These four factors must be considered before setting up 

the initial mesh and their contributions weighed against the desired accuracy. 
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In the finite element program ABAQUS, the accuracy of the solution to the elastic 

loading problem depends on PTOL (Pressure TOLerance) the tolerance on individual 

force components. Throughout this work, the force tolerance was set to PTOL ≤ 0•1% 

of the total pressure exerted by the load. For example, for a load exerting a pressure 

of 4-7xJ07 Pa acting downwards on one face of an element 50 km in length, the cor-

responding PTOL value was set to be 24x109 N. (This corresponded to a tolerance 

that is 01% of 47x 10 Nm-1 x 50,000 m). Small displacement theory, which uses a 

linear approximation, was used throughout this study. This required that the nodal 

displacement remain small when compared with the dimension of the element which 

can be justified in posterior. Large displacement solutions also exist in finite element 

code. 

To solve viscoelastic problems, ABAQUS uses explicit time integration (forward 

difference) or implicit integration. The accuracies of the creep problem depended on 

PTOL and on the parameter CETOL (.rE.ep TOLerance) which is the tolerance in 

creep strain increment during the time period of integration. This creep tolerance was 

calculated to be about 0l % x C. For example, using a strain rate of 1.5x 10-15 s 1, 

which was dependent on the viscosity, and a creep time period T = 10 Ma, a creep 

tolerance CETOL = 5x10-4 (i.e. 0.1% x 315x10 14 s x 15x10' 5 s1) was used. 

Setting CETOL too small resulted in a failure to converge to a solution within a pre-

determined number of attempts (in a pseudo-time domain used by ABAQUS) and the 

program failed to converge and aborted. These values for creep tolerance and creep 

increment were reasonable and any further refinement did not enhance the results. 

In conclusion, the percentage error introduced by using the finite element technique 

was found to be well within the limits of most of the geological assumptions that were 

used to create the models (such as estimations of the exact locations of paleo-

shorelines, extent and amount of tectonic loads, and the exact stratigraphy, for 

example). Substantial advantages of using the finite element technique to qualitative-

ly test different geodynamical models included the ability to: use thick plate theory 

instead of being restricted to thin plate theory; use more complex models not 

restricted to lateral homogeneity; and test nonlinear rheologies which are becoming 
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increasingly favourable in current research. 

In the following chapter, the finite element method was used exclusively to test 

various geodynamic deformation cases for true Earth models. As an extention of this 

work, some of the following models will also utilize lateral heterogeneities that cannot 

otherwise be modelled theoretically. 



"You can kick at the darkness until it bleeds davli'/u" 

Bruce Cockburn (1986). 
World of Wonders 
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4. Flexure of the Lithosphere and Formation of 

the Alberta Sedimentary Basin 

Improved geophysical observations, continuum mechanical modelling, and the 

application of laboratory measurements of mechanical properties of rocks have led to 

advances in our understanding of the rheology of the Earth's lithosphere. Ocanic 

lithospheres are generally better understood than continental, or cratorlic, lithospheres 

because the thickness of the oceanic lithosphere is determined by cooling and this is 

related to its age. The concept of rigid plates constituting a lithosphere overlying a 

more fluid-like asthenosphere has been most successful in describing the tectonics of 

oceanic basins, owing in part to the relatively high strength of the oceanic lithosphere. 

Due to the far more complex thermal history and heterogeneous composition of the con-

tinents however, significant developments in our understanding of the continental 

lithosphere remains slow. Simple mechanical plate models employing elastic, viscous, 

viscoelastic and plastic rheologies have been used to address: subsidence of continen-

tal plate margins during rifting and crustal thinning associated with thermal heating 

and extension (Park and Westbrook, 1983; Braun and Beaumont, 1990); the develop-

ment of large-scale intracon tine ntal basins (Bills, 1983; Garner and Turcotte, 1984); 

and the response of the continental crust to vertical loads associated with surface 

topography including erosion (Stephenson, 1984), fold-thrust belts (Beaumont, 1981), 

and plate-scale faulting (Owens, 1983). These models of the lithosphere are usually 

homogeneous and few previous works have addressed the effects of laterally varying 

lithospheric properties. One of the aims of this chapter is to investigate this lateral 

variation beneath Western Canada. 
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4.1 The Cratonic Lithosphere 

The lithosphere is defined to be the mechanically strong outer shell of the Earth that 

can support stresses elastically. It is not to be confused with the crust which is a 

chemically distinct layer. The inferred thickness d of the lithosphere is related to the 

thickness of the thermal and chemical boundary layers and the duration of the load. 

The thickness of the lithosphere is mentioned throughout this chapter and will 

therefore be explained in more detail in this section. 

Since viscosity is thermally activated, any vertical variation of the temperature T(z) 

will give a viscosity profile (z) as (Turcotte and Schubert, 1981): 

r 1 T1(z) = Tlo (E* +p v*)  
expt RT(z) j (4.1.1). 

In this equation, lo is the reference viscosity (i.e. the viscosity at a specific depth z0 

by which the viscosity profile 11(z) is normalized); E* is the activation energy per mole 

measured in J mol-1; V* is the activation volume per mole measured in m3 mol-1; R is 

the universal gas constant equal to 8317 J K-1 m01 1; and p is the pressure gradient. 

The activation energy parameter E is usually empirically determined and is = 123 kJ 

mol-' (granite), 260 kJ mol -1 (dolerite), and 523-540 kJ mo1' (olivine) (see Tables 

10.1 and 10.2 in Ranalli, 1987). At pressures typical of the upper mantle, the pV* 

term is only about 10 to 20% of E* (Turcotte and Schubert, 1981). 

The relaxation time t(z) decreases as a function of depth since viscosity and 

relaxation time are related by r o (11 / .t). This relationship with depth can be seen in 

Figure 4.1.1. For a load of duration T, the upper part of the Earth that has a relaxation 

time much longer than T will be seen as the elastic lithosphere. Therefore the 

thickness of the elastic lithosphere inferred from short period glacial loads (10 - 10 

a) is found to be greater than that inferred from longer term tectonic loads (106 a). 

Below the elastic lithosphere, there is a viscoelastic part which initially supports the 
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load (for time durations < T), but which later on relaxes viscoelastically. The elastic 

and viscoelastic parts of the lithosphere together define the thickness d of the 

lithosphere. Below the viscoelastic part lies the inviscid upper mantle whose relaxa-

tion time is too short (tmanLlc <<T) to influence the deformation. 

Temperature (K) 

C'1 00 0 - - t-
cn '0 - - - C'l c•' c' 
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Figure 4.1.1. Plots of temperature (K) and viscosity i (Pa s) or 
relaxation time t (Ma) vs. depth z (km) with reference to a mantle 
viscosity of 1021 Pa s at 250 km and an assumed geotherm T(z). The 
effective relaxation time of the cratonic lithosphere c (Ma) depends on 
the duration of the load and is measured over the viscoelastic portion 
while the lithospheric thickness d applies to the whole outer boundary. 

When there is a lateral change in the temperature profile T(x,z), then there will be a 

corresponding lateral change in the thickness d(x) of the lithosphere. In order to 

investigate the lateral changes in the lithosphere, we will parameterize the vertical 
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variation by an effective thickness d as explained above and an effective relaxation 

time t which takes into account the viscoelastic portion of the deformation. A plot of 

this parameterized lithosphere can be seen in Figure 4.1.1 for one particular location. 

4.2 Evidence Supporting a Thick Cratonic Lithosphere 

There is evidence that the continental lithosphere under North America thickens 

towards the old craton around Hudson's Bay. This section reviews such evidence 

using both mechanical evidence and chemical arguments. Finally a link between 

mechanical and chemical definitions is brought forward. 

(a) Mechanical Evidence of a Thickening Lithosphere: 

Fulton and Walcott (1975) used glacial loads to infer that the thickness of the 

lithosphere in British Columbia is about 30 km. Wu and Peltier (1983) however, 

modelled the relative sea level changes following the last glacial period and concluded 

that, in order to fit the observed sea level data along the east coast of the United 

States, the lithosphere has to be close to 240 km thick underneath the craton. Thus 

one does not expect the same lithospheric thickness on the west and east ends of the 

North American Plate. 

Further evidence supporting a thick cratonic lithosphere comes from secular motion of 

the Earth's rotational pole (i.e. polar wander). Wu and Peltier (1984) pointed out that 

in order to simultaneously explain the observed speed of polar wander, the free air 

gravity anomaly and the relative sea level change at the deglaciation centre, the 

average continental lithospheric thickness has to be close to 200 km. 
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Glaciers however, have a period of loading of about 1 - 10 ka whereas tPie period of 

loading for sedimentary basins is about 103 to 106 ka. The lithospheric thickness as 

inferred from the evolution of sedimentary basins is therefore expected to be different. 

(b) Chemical (Seismic) Evidence: 

Nicholls et al., (1982) studied petrologic variations using xenoliths of ultra-

mafic rocks and estimated that the lithosphere beneath the Omineca Core Zone (west 

of the Rocky Mountain Fold and Thrust Belt) is less than 35 km thick. 

There is seismic (chemical) evidence however, that supports a cold and deep chemical 

root lying beneath the North American craton. Using the time differences between the 

(almost) vertically propagating ScS phase and their multiples, the average traveltimes 

of shear waves moving vertically through the (old) Pacific Plate were found to be 

about 4 s greater than the corresponding traveltimes under cratons. This large 

difference in traveltime could not be explained solely by the presence of a low velocity 

zone underneath oceans (Sipkin and Jordan, 1980). They concluded that in order to 

reconcile the ScS data with surface wave data, significant chemical contrasts between 

oceanic and craton'ic lithosphere that persist to depths exceeding 200 km were 

required. 

Another line of chemical evidence comes from three dimensional inversion of surface 

wave data. Woodhouse and Dziewonski (1984) used these data to construct a 

tomographic image of the upper mantle. In their models, a fast region below the North 

American craton is found down to a depth of 350 km and possibly 550 km. This 

anomously high velocity was interpreted to be due to a cold deep chemical root. 

Finally, a deep "chemical root" is also suggested from studies in shear wave splitting 

of SKS phases. Silver and Chan (1988) argued that the seismic anisotropy that 

causes shear-wave splitting must be confined to lie near the top 200 to 250 km 

beneath the North American craton. 
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It should be pointed out that a deep chemical root does not necessarily imply a thick, 

mechanically strong lithosphere. However, Jordan (1978), showed that there is a 

strong correlation between vertical shear-wave traveltimes and mantle heat flow for 

different types of crustal rocks. This suggests that either the thickness of the 

chemical root controls the temperature structure of the mantle or vice versa. This is 

also implied by the correlation between the ScS traveltimes and seismic attenuation 

(Jordan, 1981). Since the mechanical strength of the plate is determined by its 

temperature profile, the correlation between the thickness of chemical roots and 

temperature implies that a thick, mechanically strong lithosphere must also exist 

beneath cratons with thick chemical roots. This tectosphere model proposed by Jordan 

is consistent with the mechanical evidence presented above. 

Having introduced the concept of thickness of cratonic lithospheres and shown some 

evidence favouring thick, cold cratonic lithospheres, the primary aims of this chapter 

are to: 

(a) refine Beaumont's search for a uniformly-thick lithospheric model to 
see if the results can be improved in the Alberta Foreland Basin 

(b) test whether an eastward thickening lithosphere is able to fit the 
stratigraphic data given the aforementioned evidence supporting a thick 
lithosphere. 

and, (c) determine which of the two models above has a better fit to the 
observed data. 
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4.3 Foreland Basins and the Alberta Foreland Basin 

(a) Foreland Basins and Adjacent Orogens: 

The characteristic pattern of subsidence, deformation and uplifts of foreland 

basins has long been recognized qualitatively by geologists. Some classic works 

describing geological models (see Aubouin, 1965, for a comprehensive review of these 

ideas) have provided grounds for quantitative modelling. Several studies have been 

made to date that realize the importance of rigorous modelling (Beaumont, 1981; Cant 

and Stockmal, 1989). 

As pointed out by Price (1973) and modelled by Beaumont (1981), foreland basins 

form at the site of a downwardly flexed lithosphere in response to passive loading by 

adjacent supralithospheric mass loads. These tectonic loads may be due to fold-belt 

thrusting caused by continental collision or accretion of terranes (Cant and Stockmal, 

1989). The tectonic loading history may be determined from palinspastic reconstruc-

tions of geological cross-sections (Price and Mountjoy, 1970; Bally et al., 1966). 

Besides the tectonic load, the sediment which fills the foredeep further loads the 

lithosphere. The amount of sediment however, depends on the amount of flexure 

which depends on the strength of the lithosphere itself. Schematically, the process of 

generating a foreland basin is as follows: 

Load 

4 
advancing 
thrust sheet 

deformation 

further 
deformation 

Foredeep 

i 
foredeep fills 
with sediments 
hence extra 

load 
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The sedimentation process is an important aspect of the cycle as it provides a 

distributed load throughout the foredeep. Assuming an isostatic equilibrium model, 

this additional load may increase the total downwarping by 25 times (when compared 

with a similar foredeep filled with water). The sediments which fill foreland basins 

also result in a stratigraphic record containing the history of the orogen and hence 

provide a complete coupling between the stratigraphy of the basin and its adjacent 

orogen. Hence, we are able to deduce the tectonic history and the characteristic 

properties of the lithosphere from the stratigraphy. In the rest of this chapter we will 

specifically address the Alberta Foreland Basin and the underlying North American 

Craton. 

(b) Alberta Foreland Basin: 

The Alberta Foreland Basin is located on the east side of the Canadian 

Cordillera. The schematic model depicted in Figure 4.3.1 is the assumed present-day 

working model for the central part of the Alberta Foreland Basin. The Juan de Fuca 

West 

Oceanic 
Lithosphere 

CCB RMF 
IZ lB TB OZ 

Foreland Basin 

/ 
East 

? Continental Lithosphere 

Figure 4.3.1. Conceptual illustration of the present-day Alberta Basin. 
Subducting oceanic plate produces bathymetry due to thermal uplift 
(core zone) and a fold-thrust belt west of the foreland basin (foredeep in 
black). The five zones which comprise the Cordillera are the Insular 
Zone (IZ), Coastal Crystalline Belt (CCB), Intermontane Belt (IB), 
Omineca Zone (OZ), and. the Rocky Mountain Fold and Thrust Belt 
(RMFTB). 
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Plate is subducted beneath the North American cratonic lithosphere causing the trench 

west of Vancouver Island. The Cordillera is divided into five major zones also shown 

in Figure 4.3.1. At the west end, where subduction is known to take place, the 

continental lithosphere is broken and the edge is subject to a counter-clockwise torque 

produced by motion of the denser plate. 

Similar to Beaumont (1981), a cross-section coincident with .Gussow's (1962) geologi-

cal section was chosen for two-dimensional modelling of the Alberta Foreland Basin. 

The location of the cross-section along BB', shown in Figure 4.3.2, is roughly 

SASKATCHEWAN MANITOBA 

B' 

Figure 4.3.2. Location of the cross-section used for modelling the 
Alberta Foreland Basin. Note that the line BB' is roughly perpendicular 
to strike. The contours map the Precambrian sedimentary basement at 
1000 m intervals (0 m on east end) (after Gussow, 1962). 
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perpendicular to the edge of the load and is across strike through the depositional 

basin. The observed cross-section constructed by Gussow and reproduced in Figure 

4.3.3 will be used to constrain the load history and the properties of the lithosphere. 

The subduction zone is at x = 0 km and, proceeding eastwards along BB' (of Figure 

4.3.2), the eastern limit of overthrusting is situated at x = 1050 km in the Foothills and 

the Alberta-Saskatchewan border, or 4 th Meridian, was located at 1550 km. The 

features in Figure 4.3.3 may be divided into first-order features, which are defined here 

to be features primarily caused by the geodynamic deformation process and which are 

are directly related to the tectonics, and hence the flexure of the foredeep; and second-

order features, which are defined here to be features that are mainly controlled by the 

depositional processes. 

Three important observations of the geological cross-section in Figure 4.3.3 are 

described in Table 4.3.1. 

[i] The depth of the top Jurassic section at x = 1050 km, i.e. at the 
load edge, is about 2400 m below present-day sea level. The depth of 
the Jurassic at the load edge will be referred to as the amplitude of the 
load. 

[ii] The individual units all dip towards the west in the geological 
section. This implies that a present-day forebulge peak, if it existed, 
must be to the east of x = 1650 km otherwise the units would have an 
eastward dip. 

[iii] The general shape of the Mississippian unconformity is as 
shown and is a direct result of the flexural response to loading. This 
flexure is dominated by the first-order effects and is the least affected 
by the mechanics of sedimentary infilling and erosion. 

Table 4.3.1. A list of three important features of the Alberta Foreland 
Basin taken from Gussow's (1962) geological cross-section. These 
features were primarily a result of the deformation process and were 
used as the criteria for accepting or rejecting various models. 



54 

It is this flexure which controls the shape of the foredeep that the sediments fill. Note 

that until deposition of the Paskapoo Formation during the Paleocene stage, the sedi-

ments were dominantly marine with the exception of the Upper Colorado Group. 

Between 1450 km < x < 1650 km in Figure 4.3.3, salt dissolution resulted in the 

collapse of the Mississippian. This is a second-order geologic feature caused by 

dissolution of the Elk Point Group evaporites and should not be confused with an 

eroded peripheral bulge (Meijer Drees, 1986). It is for this reason that it could not be 

included as one of the tectonically controlled features listed in Table 4.3.1. 

Later, it will also be shown that both (a) second-order depositional parameters and 

(b) the present-day height of the mountains also had to be considered in order to 

obtain an acceptable model. 

In this chapter, it will be shown that a uniform model does not satisfy the data as well 

as an eastward thickening (stiffening) lithosphere using a Maxwell-type rheology. 

Due to the strong dependence of rI(x,z) on the temperature T(x,z), an eastward 

stiffening model is also more realistic since an eastward thickening lithosphere is 

probably the result of an eastward decrease in the thermal gradient. All the forthcom-

ing models utilize the finite element method described in chapter 3. 
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4.4 The Finite Element Model 

The finite element method was used to compute the deformation at the surface by 

utilizing the tectonic and sedimentary load histories coupled with the lithospheric 

model. The input is the tectonic load history L(x,t) which corresponds to the advanc-

ing imbricate stack sheets during thrusting. The way this input to the model was 

treated will be explained in section 4.5. 

The lithosphere was modelled assuming a Maxwell type viscoelastic rheology 

parameterized by an effective relaxation time t. The effective viscosity 1 is related to 

the effective relaxation time t (measured in seconds) by c = 311/E Pa s, where a value 

of E = 113x1O 11 Pa (Turcotte and Schubert, 1981) was used for Young's modulus. 

The finite element method allowed us to model a compressible lithosphere by using a 

value of v = O28 for Poisson's ratio (Turcotte and Schubert, 1981). This value of 

Poisson's ratio is not inconsistent with the earlier assumption (section 2.2) of an in-

compressible lithosphere. The assumption that (V.u)pg = 0 in section 2.2 was 

required since the finite element method does not automatically account for the 

buoyancy force term. By choosing a value for v # 05, a compressible lithosphere (but 

without the buoyancy forces of section 2.2) is implied. 

Although some of the beam theory assumptions were valid (i.e. deflections remained 

small when compared to the thickness of the plate; plane sections remained plane 

after deformation; and the in-plane forces acting on the middle plate were negligible), 

the assumption that the plate thickness remains much smaller than the characteristic 

wavelength of the load was not valid during the first three loading steps. Later on it 

will be shown that the thrust sheets had wavelengths that were smaller than a mean 

plate thickness of 100 km between 140 and 103 Ma. Hence the finite element method 

was used throughout our modelling. 
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The lithospheric models were 3000 km in length and varied from 30 km to 300 km in 

thickness. The finite element mesh comprising these lithospheric models all contained 

60 elements horizontally and 8 elements vertically. The elements were two-dimen-

sional plane strain type elements each 50 km in length and with an aspect ratio 

ranging from 1-3 to 4 (depending on the thickness). The top of the undeformed model, 

which was initially assumed to be the undeformed Mississippian unconformity, will be 

referred to as the baseline. The baseline corresponded to z = 0 m where the z-axis is 

measured positive in the upward direction. The horizontal, or x-axis, was measured 

from 0 km at the west end and increased linearly towards the east. 

Consistent with geological observations, our lithospheric model was broken at x = 0 

km at the western edge. This coincides with where the Juan de Fuca Plate subducts 

beneath the cratonic lithosphere causing it to bend in the anticlockwise sense. This 

torque gives a moment acting on a thin lithosphere at the site of subduction west of 

the Insular Zone and which would be incapable of producing any significant deforma-

tion to the west of the Rocky Mountains. As a result, the imposed boundary condition 

was to allow the western boundary to move freely in the vertical direction. Rigid 

boundary conditions around northern Québec at x = 3000 km restrained the eastern 

side from any vertical or horizontal motion. This distancewas considered to be far 

enough away from the basin so as to not interfere with the deformational processes. 

The inviscid upper mantle density was assumed to be Pm = 3400 kg rn-3 while the 

density of the lithosphere was chosen to be Plitho = 2400 kg m 3 (Turcotte and 

Schubert, 1981). It was the density contrast (Pm P1Ith) = p = 1000 kg m 3 that 

was responsible for the buoyancy force at the lithosphere-mantle boundary. This 

buoyancy force was therefore equal to zpgu(x,z) where u(x,z) is the vertical 

component of the displacement at this boundary. The inviscid mantle was modelled by 

using a Winkler foundation that exerted an upward buoyancy force equal to (Pm 

p11th0)g = 9820 N rn-3 multiplied by u(x,z,t), the vertical component of displacement. 

On the top of the lithosphere there is another buoyancy force. Wherever there was 

sediment accumulation above the lithosphere, the buoyancy force is proportional to 

(Plltho Psed)g = 0 N rn-3. However, under the load where sediments could not ac-
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cumulate, the buoyancy force is Plitho g u(x,z). Due to the movement of the load, the 

boundary condition is more complicated and will be discussed in the next section. 

To a first-order approximation the basin was assumed to be contemporaneously filled 

with sediments having an average density of Psed = 2400 kg rn-3. Since the sediments 

deposited in the foredeep (caused by the input tectonic load) provided an additional 

4r- RMFTB 

eline 

x=750  

baseline 

Zt_;2M-_ 

--

3000 km 

Figure 4.4.1 Two lithospheric models used. [Top] lithospheric model 
with uniform thickness d and [Bottom] an eastward thickening lithos-
phere with a slope m of Az/Ax measured in m km -1. The boundary 
conditions are: the broken continental lithosphere on the western edge; 
the fixed North American Craton on the east; the mantle-lithosphere 
interface (large springs) on the bottom; and the buoyancy forces due to 
the lithospheric-sedimentary interface east of the RMFTB (small 
springs). 

distributed load which in turn affected the flexural results, the modelling procedure 

was clearly non-linear. The Omineca Belt to the west of the load was not filled with 
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sediments since it was argued that pre-existing topography from uplift in the core zone 

was sufficiently high to prevent any sediment accumulation. The effects of any 

sediments that did accumulate however, would have an extremely small effect within 

the basin (Beaumont, 1981). 

Figure 4.4.1 shows the finite element models for a uniform lithosphere having a 

thickness d [Top] and an eastward thickening lithosphere with a slope of m m km-1 

[Bottom]. The boundary conditions on the west end, east end and bottom are also 

shown. The surficial boundary condition was more complicated and will be discussed 

separately. Table 4.4.1 gives a comprehensive list of the parameters used in all the 

finite element modelling. 

Fixed: 

Variable: 

Dependent: 

Psed 
Plitho 
Pm 
E 
V 

= 2400 kg m 3 
= 2400 kg m 3 
= 3400 kg m 3 
= 113xlO 11 N m 2 
= 025 

teff 
d All varied in the 
m parameter search 
L(x,t) ) 

= (P1Ih - Psed) = 0 kg m 3 
leff (teff E)/3 Pa s 

Table 4.4.1 Summary of the parameters that were used in the finite 
element lithospheric models to arrive at a first-order approximation to 
the Alberta Foreland Basin. The first five parameters were fixed and 
while the next four parameters were varied in subsequent parameter 
searches. 
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4.5 Input to the Finite Element Model 

As explained in section 4.3, the lithosphere responded to two types of loads: (i) the 

advancing thrust sheets known as the tectonic or applied load; and (ii) the weight of 

the distributed sedimentary deposits that filled the basin. 

The applied load can be deduced from a palinspastic reconstruction of the Fold and 

Thrust Belts (see, for example, Bally et al., 1966, plate 13). Variations of the load in 

the crystalline core zone (i.e. x < 750 km) were neglected since the lithosphere could 

not spread the deformation out towards the foredeep. Deformation inside the basin 

due to the load outside the Front Ranges is comparatively small (< 5 m). Using beam 

theory, it can be shown that for a 100 km thick lithosphere, the contribution is small 

with 

W700(1050)  

W1050(1050) 

where w(xo) is the displacement at x = x0 due to a unit load situated at x = x km. 

(a) The Applied or Tectonic Load. 

Beaumont (1981) divided the applied load into six load columns each 50 km in 

width. The load was then divided into eleven time steps, the first one starting at 140 

Ma which is when the inception of thrusting is believed to have taken place (Dickin-

son, 1976). Each load column was made up of thrust sheets of a given height 

assuming an initial average density PL The heights of the loads can be seen in Table 

4.5.1 and were used as the initial input to the models. The horizontal dotted lines 

delineate the advancing thrust sheets through time and correspond to different 

orogenic events shown. The different loads were not meant to be interpreted as 
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individual sheets at any particular time but rather the total weight for any given time. 

Load 
Column 1 2 3 4 5 6 

140 

130 

110 

103 

100 
CA 
= 79 

- 72 

70 

65 

35 

15 

0 

 2 ilntermontane Superterrane 
: 

2 Bridge River 

2 1 1 

2 1 1 

2 3 3 Cascadia 
'-  Insular 

2 3 5 2 ' Superterrane 

2 3 5 2.25 0.25 
Pacific 

2 3 6 7.25 4.25 I Rim 

2 3 6 14.25 11.25 6 

2 3 4.5 6.55 6.15 5.1 

2 3 2.9 4.55 4.15 3.1 

1 

2 

3 

4 

5 

7 

8 

9 

10 

11 

U Jurassic 

110 Ma 

B lairmore 

L Colorado 

U Colorado 

Lea Park 

Belly River 

Edmonton 

Paskapoo 

Paskapoo 

Paskapoo 

Table 4.5.1 Beaumont's load history L1(x,t) showing the total height 
of the load (km) at each of the six load columns vs time (Ma). The 
dashed lines delineate the eastward advancing thrust sheets and 
correspond to significant orogenic events throughout time. 

Note that the characteristic wavelength of the applied load in Table 4.5.1 is between 

50 km and 300 km. Assuming a 100 km thick uniform lithosphere and the values 

shown in Table 4.4.1, a flexural rigidity of D = 1025 N m corresponding to a radius of 

relative stiffness of 1 = 180 km is implied. This gives values of 03 <A/I < 17 during 

all loading time steps. In section 3.3 however, it was shown that in an axisymmetric 

coordinate system the thin plate approximation holds for values of All ≥ 4. Since 12D = 
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42 1, then the thin plate approximation holds for A/l2D ≥ 55 for this problem. Hence 

the thin plate approximation is not valid in this problem. 

(b) The Distributed Sedimentary Load: 

Deposition of the sediments was assumed to fill up to the baseline in the finite 

element model as flexure occurred. This was only an approximation however, since it 

was recognized that the actual baseline did not remain constant through time. The 

extra sediment load due to the change from the fixed baseline to the new baseline 

could be divided into (i) a uniformly thick package between the two baselines, and (ii) 

a small wedge of sediments above or below the new baseline. These two regions are 

illustrated in Figure 4.5.1. 

New Baseline (ii) 

(i) Uniform bulk shift 

Figure 4.5.1. Effect of second-order sediments caused by eustasy and 
terrigenous deposits. Sedimentary deposits placed in region (i) result 
in a uniform load that contributes to a uniform bulk shift while sediments 
in region (ii) are relatively small and can be ignored. 

The sedimentary load in region (i) is uniform and results in a uniform bulk shift in 
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displacement while that in region (ii) is small and was ignored. 

Modelling the sedimentary load to properly establish the boundary condition at the 

surface was more complicated and was divided into three regions. The first region cor-

responded to the surface west of the RMFTB, the second corresponded to the surface 

beneath the advancing RMFTB and the third corresponded to the surface east of this 

applied tectonic load. 

The first region was situated west of the RMFTB (i.e. 0 km <x < 750 km). It was 

assumed that no sediments were deposited in this region and hence this surface was 

modelled using a Winkler foundation with an upward buoyancy force of Plitho u g. In 

the distal portion of the basin east of the present-day load edge (the third region 

defined by x > 1050 km) however, sediments were coevally deposited and this region 

was modelled using a Winkler foundation exerting a (restoring) buoyancy force of 

Apuz g in the upward direction where AP = (Plitho - Psd) Hence when flexure 

occurred at any time step, the foredeep was automatically filled up to the baseline with 

sediments having an average density of 2400 kg m 3. 

Beneath the advancing load in the second region, defined by 750 km <x < 1050 km, 

the boundary conditions varied temporally as the thrust sheets advanced. Consider 

Figure 4.5.2 which shows the load advancing over node 2 at three consecutive time 

steps labelled A - C. 

During time step A node 2 was in the distal portion of the basin because the tectonic 

load M 1 lies to the left of node 1 and sediments were simultaneously deposited on 

either side of node 2. Hence the buoyancy force at node 2 was proportional to Apg 

acting in the upward direction. 

At time B, the tectonic load has advanced to node 2, so sediments are still being 

deposited to the right of node 2 and the applied load plus the previously deposited 

sediments sit on the left of node 2. The forces acting on this node were an upward 

buoyancy force equal to - Plitho u z g due to the sediments on the left plus - tp u z g = 
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o N due to the sediments on the right counteracted by a force of - M2*g due to the 

total load on the left. M2* is used to denote the tectonic load of mass M2 (as shown in 

the load history table) plus the load due to the sediments that were deposited over 

half that element at time A. 

Finally, at time C, an advancing tectonic load of mass M3 has completely covered the 

sediments that were deposited at times A and B to the right of node 2. These 

Applied Load 
(shaded) 

A M 

Elements 

Figure 4.5.2. Three time steps as the thrust sheet advances. Node 2 
has different buoyancy forces acting on it for each time step as 
explained in text. Time A: node 2 has sediments on either side. Time 
B: node 2 bears an applied load on one half and buoyancy forces 
(sediment load) on the other half. Time C: node 2 is beneath the 
applied load. 
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sediments thus became part of the total load M3**. Hence, by the work-load 

equivalent method, the forces acting on node 2 are - (tvl,*+M3**)g counteracted by a 

buoyancy force equal to Plitho u g. 

Therefore, using the loading history L(x,t) as the input to the model described in 

section 4.4, the output of the finite element modelling procedure gives both the 

deformational history through time and the approximate sedimentary load for any 

given lithospheric model. This approximate sedimentary load also gives a first-order 

stratigraphic model where the term first-order is used to indicate only those factors 

which influence flexure. 

4.6 Accommodation Control 

So far we have discussed a lithospheric model having an associated foredeep that is 

assumed to be completely filled with sediments (i.e. up to a fixed baseline) for each of 

the units corresponding to the eleven time steps. As pointed out by Beaumont (1981) 

however, second-order parameters significantly affect the depositional history and 

must also be taken into account. The above simple sedimentation model therefore, 

was too restrictive to be realistic. Since the flexure gives a first-order estimate of the 

thickness of each formation, by incorporating second-order effects such as eustasy, 

incomplete deposition, compaction and partial erosion, we can produce a more realistic 

depositional model. This section deals with the input to such a model and a detailed 

explanation of each of the four parameters. 
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(a) Eustatic Sea-Level Variations: 

Eustasy affected the depositional history during times when the basin was 

connected to open seaways and hence marine deposition occurred. The algebraic sum 

of tectonic subsidence, due to lithospheric flexure and computed by the finite element 

model, plus the eustatic changes in sea level provide the amount of accommodation or 

total "space available" for depositing acquatic sediments. 

The relative changes in sea level are small when compared to the flexure immediately 

adjacent to the load but become increasingly important in the distal portion of the 

basin where eustatic variations are comprable to the amount of flexure. The eustatic 
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Figure 4.6.1. First-order (megacycle) and second-order (s upercycle) 
eustasy curves. Megacycles are to the order of 65 Ma (Tejas) and 90 
Ma (Zuni) and supercycles are to the order of 10 Ma (TB3 and ZC-4). 
Third-order cycles have a period of < 4 Ma and are not included here 
except for ZC-4.4 at 73 Ma during Maastrichtian time. 
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curve, modified after Haq cc al. (1987), was "blocked" into the same eleven time steps 

used for the loading history in Table 4.5.1. Figure 4.6.1 shows the eustatic variations 

after Haq et al. along with the blocked curve (dashed line) used in our model. The 

names of the corresponding supercycles are given in the right-hand column for 

reference. Notice that only the supercycles were considered except at 73 Ma where 

the ZC-4.4 (a third-order cycle), was necessary to explain the fit to the observed 

stratigraphy at Maastrichtian time. 

(b) Incomplete Basinal Deposition and Secondary Sources: 

A starved basin due to incomplete deposition was modelled to occur if the time 

period between successive loads was considered to be too short to fill the additional 

space available. This was not only reasonable but necessary since some seaways 

such as Bearpaw (the last marine incursion) between 76 Ma and 72 Ma were as deep 

as 100 to 200 m in places and it is not conceivable that they were ever completely 

filled (Hills, L.V., pers. Comm., 1989). Although the main sediment supply was from 

the west, progradation of some marine deposits was also allowed to come in from the 

east. The Lea Park is an example where a secondary source allowed clastic sedi-

ments to prograde from the east but not extend all the way to the west. 

(c) Partial Erosion: 

Partial erosion was the third parameter included in our model. Although partial 

erosion is geologically quite different from incomplete deposition, it was mathemati-

cally treated in a similar way. Partial denudation of the sediments lying above the 

paleosea-level was assumed in the depositional spreadsheet. As for the case of 

sedimentary deposition however, these weathered sediments were not always 

completely eroded (consider, for example, present-day Alberta and Saskatchewan 

which have an erosional surface above present-day sea-level). 
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(d) Compaction of Sediments: 

Physical models for compaction were the most subjective of the parameters 

included in our model. This was due to the fact that a time-dependent physical model 

that explains compaction of sediments at depth could not be invoked without making 

additional assumptions with respect to facies. The net effect of compaction however, 

could be considered together with partial erosion. For our purposes, a model that 

expresses an isopach thirning due to partial erosion is formally identical to one that is 

explained by compaction. The simple manner in which compaction was treated 

therefore, was to assume that the sediments were proportionally compacted as a 

function of their thickness. 

These four secondary parameters were used in a spreadsheet to arrive at an accep-

table depositional model. The net effect of incorporating these second-order para-

meters, was to fine-tune the thicknesses of the individual units. Given that these 

thicknesses are correct, then the location of the outcrops and the angles of dip of these 

units were not controlled by the accommodation model but rather by the flexure. 

Having established a finite element model with the appropriate boundary conditions 

and a depositional model using this spreadsheet, and using the loading history as the 

input to the working model, we can proceed with our first objective which was to refine 

Beaumont's model using the above improvements. 



69 

4.7 Uniform Lithospheric Models 

Beaumont (1981) used the thin plate approximation to model the flexure of a uniformly 

thick viscoelastic lithosphere which overlies an inviscid asthenosphere (or upper 

mantle). In his model, which was based on the analytic solution to the flexural 

problem, the plate was assumed to be incompressible and infinitely long in either 

direction with fixed boundary conditions at x = ±00. His best lithospheric model was 

found to have a relaxation time of 275 Ma with a flexural rigidity of D = 1025 N m. 

This flexural rigidity implied a thickness of d = 100 km when values of 115x10 11 N 

rn-2 and 05 were used for Young's modulus and Poisson's ratio respectively. 

In -this section, Beaumont's model is first reproduced using the finite element model 

described earlier along with the boundary conditions discussed in sections 4.4 (west, 

east, and bottom) and 4.5 (surface). Beaumont's parameter search is then refined to 

produce a uniform lithospheric model that more closely matches Gussow's obser-

vations. This refined uniform lithospheric model will be subsequently used to compare 

with an eastward-thickening lithospheric model. 

The stratigraphy in these models was generated using the spreadsheet described in 

section 4.6. It was recognized however, that (a) the position of the present-day sea 

level with respect to the Mississippian "baseline" was not known and (b) the eustasy 

curve itself has limited accuracy. Consequently, the results of the initial models were 

subjected to vertical shifts of up to 250 m either way (the maximum amplitude of the 

eustasy curve over the last 140 Ma) and the true location of the zero crossing of the 

peripheral bulge (with respect to sea level rather than the baseline) was not 

definitively known (although the point at which the dip of the units changed direction 

going from west to east was observable). The spreadsheet therefore also allowed for 

such a vertical bulk shift so that the Mississippian at x = 1500 km matches the 

observed height of the present-day erosional surface in Gussow's section. 
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The predicted stratigraphy reproduced using the finite element model and aforemen-

tioned spreadsheet, is shown in Figure 4.7.1. The model was adjusted by lowering 

the sea level down 400 m with respect to the baseline in order to better match the 

amplitude at the load edge (the deformation at x = 1050 km was —1705 m with respect 

to the baseline). This adjustment results in a poor fit in the height of the Mississip-

pian unconformity for x> 1500 km 

When compared to Gussow's (1962) geological cross-section (Figure 4.3.3), certain 

inadequacies of the model in Figure 4.7.1 immediately become apparent. Firstly, the 

locations of the outcrops in the model are too close to the mountain range which 

means that the predicted present-day forebulge is closer to the load than what is 

actually observed. This implies that the value of the flexural rigidity is too small since 

the location of the forebulge is directly related to the flexural stiffness (see Figures 

2.6.1 and 2.6.2). Secondly, towards the east, close to the Alberta-Saskatchewan 

border (4th Meridian), the modelled horizons dip eastwards. This again is due to the 

fact that we are on the other side of the peak of the peripheral bulge and all formations 

dip eastward. This is contrary to the observation where all formations dip to the west 

and a stronger lithosphere would spread the deformation further from the load. Again 

this implies that this model of the lithosphere is too thin and weak. 

Figure 4.7.2 shows the burial history at the load edge at x = 1050 km, and at the 5th 

and 4th Meridians respectively. The deflection to the right of the dashed line cor-

responds to a positive deflection with respect to the z = 0 fixed model baseline. The 

profiles at the load edge and the 5th Meridian show that between 140 Ma < t < 35 Ma 

there was an increasing burial of sediments followed by uplift between 35 Ma < t <0 

Ma. At the 4th Meridian however, the sediments were found to remain close to the 

surface (to within ±250 m). When combined with the thermal history of the basin, this 

burial information can be used to estimate the level of organic metamorphism (LOM) 

of the source-prone sediments. 
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Figure 4.7.1. Reproduction of Beaumont's (19X 1) best model but using finite elements and improved boundary 
conditions. The units have approximately the correct thickness but the wrong shape. The outcrops are in the 
wrong location and the units incorrectly dip eastward at the Alberta-Saskatchewan border. The model predicts 
the existence of a prominent peripheral bulge too close to the mountains (compare with Figure 4.3.3). 
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Figure 4.7.2. Temporal flexure of the surface of the lithosphere using 
Beaumont's (1981) model. The curves, which correspond to the edge of 
the load, the 5th Meridian and the 4th Meridian (the Alberta-
Saskatchewan Border), show the rate of burial with respect to the 
baseline at these three locations. 
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4.8 Search of Uniform Lithospheric Models. 

From the results of the last section, it was clearly shown that the lithospheric model 

having a value of c = 275 Ma and d = 100 km is too weak. In order to determine a 

better uniform lithospheric model for the Alberta Foreland Basin, a systematic search 

of various parameters was made. In the parameter search of this new lithospheric 

model, the variables involved were: the effective relaxation time t of the viscolastic 

lithosphere as described previously; the lithospheric thickness d; and the loading 

history L(x,t). The parameter search attempted to match the present-day Mississip-

pian since it was not affected by secondary sedimentation processes such as the 

overburden. 

(a) Parameter Search in d-t Space: 

Assuming a uniform lithospheric model for the moment, a search in d-t space 

was first attempted. Given an initial lithospheric thickness of d = 100 km and 

Beaumont's load history Lj(x,t) as described in Table 4.5.1, several models with 

different relaxation times were generated. Figure 4.8.1 shows the results of varying 

the relaxation times when the predicted shape of the Mississippian is compared to the 

observed (Gussow's section). The models with a relaxation time 't < 50 Ma predicted 

a final Mississippian that was too weak with a prominent peripheral bulge well within 

the basin (x < 1500 km). They clearly did not match the observed Mississippian in 

Gussow's section. Models with t> 100 Ma predict a peripheral bulge that is east of x 

> 1650 km however, they were too stiff and did not correctly , match the gradient 

between 1050 km <x < 1250 km. This can be seen for the model with 'r = 125 Ma 

where a change in the load would adjust the amplitude at x = 1050 km but would not 

improve the deflection profile. Relaxation times bracketed by 50 Ma < c < 100 Ma 

were hence used as an approximate match to the observations from Gussow's section. 

The uniform model with t = 75 Ma matched the data quite well between 1150 km < x 
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< 1450 km. A suite of uniform models was then generated for various thicknesses d 

using 'c = 75 Ma. Figure 4.8.2 shows the flexure results for three thicknesses between 
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Figure 4.8.1. Plots showing results of varying r for a uniformly thick 
lithosphere with d = 100 km. The observed Mississippian is shown in 
bold solid line. There was a best match by the model with t = 75 Ma. 
Note that while the amplitude at x = 1050 km was not affected by 
varying t, the gradient of the Mississippian was affected significantly. 

50 km <d < 150 km. It was evident that for lower values of d, the flexural model 

predicted a significant peripheral bulge that was too close to the load. Thus, a thin 

(weak) lithosphere behaved in the same way as one with low vilues of 'c. Increasing 

the value of d ≥ 150 km however, resulted in insufficient flexure throughout the 

foredeep. This was the result of a mechanical lithosphere that was too strong. A 

value of d = 100 km provided a good first-order fit to the present-day Mississippian. 

Nonetheless, some discrepancies in amplitude were evident at x < 1150 km near the 

load edge. Note that the peak of the forebulge still lies within the Alberta Foreland 

Basin. 
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Figure 4.8.2. Thickness search using 'c = 75 Ma and various values for 
d. The best value for d was found to be 100 km (thick dashed). There 
is still an amplitude discrepancy at the load edge that is largely 
controlled by the load history. The Mississippian from Gussow's 
section is shown in bold. 

The results of Figure 4.8. 1 and 4.8.2 are summarized in the d-t space in Figure 4.8.3. 

All values that mapped outside the hatched lines in this d-'t domain would result in a 

worse fit than the d = 100 km, t = 75 Ma model and were immediately ruled out. 

Models within this d-t domain having a short c and/or small d value (i.e. the lower left-

hand quadrant), did not match observations between 1150 km <x < 1450 km. Those 

models in the long c and/or thick d region (upper right quadrant) provided an ill fit for x 

< 1150 km and x > 1450 km. For those models between the hatched lines, there are 

still some mismatches, namely the difference in the amplitude of the deformation near 

the edge of the load at x = 1050 km. Since the magnitude of this amplitude is mainly 

controlled by the applied or tectonic load, a search in L('x,t) space was then performed. 
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Figure 4.8.3. d-t search space showing the best models using uniform 
lithospheric models. The schematic shows ranges of the lithosphere 
modelled with d = 100 km while varying t and models with ' = 75 Ma 
while varying d. These models gave results that only satisfied some of 
the criteria. For shortcomings of the models within this domain see 
text. 

(b) Load L(x,t) Search: 

The next logical step in the analysis was to try and find an appropriate load 

history L(x,t) so that the discrepancies in the amplitude will be minimized. A load 

model which gives an acceptable deflection of the Mississippian at the load edge (i.e. 

2400 m below sea level) was sought. This was accomplished by adjusting the 

heights of the loads but staying within the error bar limitations placed by Beaumont 

(Beaumont, 1981, obtained the correct mountain height). The load search consisted of 

L1(x,t), which was the same as the load history defined in Beaumont's (1981) paper, 

as well as five additional load histories labelled L2(x,t) through L6(x,t). The 

definitions of these load histories are given in Table 4.8.1 below: 

The results of using some of these load histories with a uniform lithospheric model 
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that was 100 km thick and with a relaxation time of 75 Ma are shown in Figure 4.8.4 

for loads L1(x,t) and L4(x,t) - L6(x,t). Loads L2(x,t) and L3(x,r) were very similar to 

L2(x,t): Same as Beaumont's load history L1(x,t) defined in Table 4.5.1 
except 'that at time step 9, load 6 was changed from 941x107 Pa to 
141x108 Pa. This extra 4•70x107 Pa was left on until step 11 where 
2-35x J07 Pa were removed. The overall height of load column 6 was 
increased by 1 km when using densities from Beaumont's load history. 

L3(x,t): Same as above except that at time step 7, load 5 was changed 
from 588x106 to 7.64xIO7 Pa. The load causing this extra pressure was 
left on until step 11 where it was then eroded. The overall height of 
load column 5 remained the same as L1(x,t) but column 5 was still 
higher as was the case in L7(x,t). 

L4'x,t): 4'70x107 Pa were added to L2(x,t) at load column 6 between 
35 Ma and Present. 

L5(x,t): 4'70x107 Pa were added to load columns 4 and 5 from 65 Ma to 
Present and another 4-7OxlO7 Pa were added to load column 6 from 35 
Ma until Present. 

L6(x,t): 3.53xIO7 Pa were added to load columns 4 and 5 from 65 Ma to 
Present time and 3'53x107 Pa added to load column 6 from 35 Ma to 
Present. 

Table 4.8.1. Modified tectonic or applied load histories L1(x,t) to 
L6(x,t) showing the various changes in the applied load used by 
Beaumont (1981). These load histories were used in the load search in 
order to produce the correct amplitude of downwarp close to the 
mountain edge at  = 1050 km. 

Beaumont's Lj(x,r) load and could not be discerned on this plot scale. Load history 

L6(x,t) resulted in a deflection of 2350 km at the load edge while L4(x,t) resulted in a 
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deflection of 2045 km and L5(x,t) deflected the Mississippian by 2563 km at x = 1050 

km. Variations in the load were found to control the amplitude but did not change the 

overall shape. Note how the general profile for all loads remained reasonably intact 

for large x with the largest departure at x = 1050 km. Table 4.8.2, shows the load 

history L6(x,t) chosen from the load parameter search since it best matched the 

amplitude at the edge of the load. The load values that differ from Table 4.5.1 with 

Beaumont's L1(x,t) load history are shown in bold in Table 4.8.2. Although this load 

is heavier overall, it will be left until later to show whether this load satisfies the 

observed gravity profile of the present-day mountain height. 
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Figure 4.8.4. Deflection of the Mississippian for a uniform lithosphere 
of 100 km thickness and r = 75 Ma using various load histories L1(x,t) 
(after Beaumont, 1981) and L4(x,t) through L6(x,t). Load 6 best 
matched the observed deflection of the Mississippian at the load edge. 
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Table 4.8.2. Load history 6 showing the total height of load (km) for 
each of the six load columns at different ages in time. The dashed line 
delineates the eastward advancing thrust sheets associated with 
different orogenic events while bold values represent changes from 
L1(x,t) in Table 4.5.1. 

(c) Results of Improved Uniform Lithospheric Model: 

The temporal deflection of the Mississippian was plotted at the Alberta-

Saskatchewan border using the lithospheric model with d = 100 km. t = 75 Ma and 

L6(x,t). Figure 4.8.5 shows that the deflection at the Alberta-Saskatchewan border, 

i.e. at x = 1500 km, was positive with respect to the original baseline at every time 

except between about 65 Ma and 28 Ma before present. The height of the peripheral 
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bulge was predicted to be as high as 150 m relative to the baseline at present time: 

Figure 4.8.6 shows that the peak of the peripheral bulge first migrated away from the 

load through time and then back towards the load stopping at present. 
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Figure 4.8.5. The deflection for a uniform 100 km thick lithosphere at x 
= 1500 km near the 4th Meridian using r = 75 Ma and L6(x,t). The 
deflection indicates a positive deflection with respect to the fixed 
baseline at every time except where shaded between 65 Ma and 28 Ma. 
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Figure 4.8.6. Migration of the peak arch during loading (solid lines) 
and unloading (dashed lines) around the Alberta-Saskatchewan border 
(x = 1550 km). The model was uniform, 100 km thick with c = 75 Ma 
and using load history L6(x,t). 

Figure 4.8.7 shows the final stratigraphy after the second-order sedimentation model 

was incorporated using the spreadsheet described in 4.6. The units in this model 

predict a present-day eastward dip on the Mississippian at x > 1550 km which is 

contrary to what is observed (Figure 4.2.2). It can be seen that using the new loading 

history L6(x,r) the stratigraphic units still crop out at the wrong location (the eastern 

limit of the Lea Park actually crops out about 40 km west of the Alberta-

Saskatchewan border rather than 50 km east of it as in this model). It is also evident 

from this figure and the enlarged portion shown in Figure 4.8.8, that the basin is still 

too short since the peripheral bulge is at x < 1650 km. This must be true since the 

Blairmore unit was found to actually thicken as it dipped eastwards beyond x = 1650 

km rather than thinning and subcropping at x = 1650 km as in Figure 4.3.3. 
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Figure 4.8.8. Enhanced view of the stratigraphy at the Alberta-Sas-
katchewan border predicted by using a uniform lithosphere 100 km thick 
with a relaxation time of 75 Ma. This model was rejected since the 
model forces the units to dip to the east atx> 1550 km. 

In conclusion, it was found that a uniformly-thick lithospheric model that has the 

correct thickness for each formation, does not simultaneously have the correct dip 

direction east of the Alberta-Saskatchewan border and the correct outcrop location. 

From the searches in d and L(x,t) space, it was shown that, by increasing the 

thickness of the uniform lithosphere, the deformation could be spread out further (thus 

eliminating the eastward dip in sediments) but with a resultant insufficient flexure at 

the load edge. 

As proposed in section 4.2, an eastward thickening lithosphere (as shown in Figure 

4.4.1 [Bottom]) was next used to model the Alberta Foreland Basin. 



84 

4.9 Eastward Stiffening Lithosphere 

As discussed in section 4.2, the second aim of this chapter is to investigate whether 

an eastward stiffening lithosphere can fit the observations. The simplest model is to 

have an eastward thickening lithosphere with a constant slope M. This will spread the 

deformation away from the load while maintaining a reasonable deflection at the edge 

of the load. The model is shown in Figure 4.9.1 and it has a constant thickness on the 

west, and then linearly thickened towards the east. To the east, well into the interior 

x=0 

Applied Load 

500 km 

West 

500 km 

Alberta Saskatchewan East BC 

2000 km 3000 km 

B   B' 

Gussow's 
Section 

Figure 4.9.1. [Top] Finite element lithospheric model for the cratonic 
lithosphere beneath the west side of the North American Plate. The 
lithosphere is a viscoelastic continuum with a relaxation time of 75 Ma. 
[Bottom] Typical deformation for one load (no scale is inferred since 
deformation is very small when compared to the whole model). 
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of the craton, the lithospheric thickness was once again assumed to be constant 

(Figure 4.9.1 [Top]) since the thickness would otherwise be too great and the 

deflection is not strongly influenced by the thickness here. Figure 4.9.1 [Bottom] is a 

schematic showing a typical deformation of the lithosphere after the first loading time 

step. This has been exaggerated in the vertical direction by a scaling factor. In 

reality, the deflection is very small when compared to the dimensions of the lithos-

phere itself. 

(a) Slope m Search: 

A slope m search was therefore performed using values of t = 75 Ma and 

L6(x,t) as for the improved uniform lithosphere. Figure 4.9.2 which is divided into 

[Top] and [Bottom] for clarity, shows the results of this slope search where the 

thickness of the lithosphere at x = 1050 km was fixed to be d = 100 km. Maintaining 

the thickness of the lithosphere at the load edge to be 1OO km while using load 

history L6(x,t), ensured that the deflection at the edge of the load would be about 2400 

M. 

It was found that the m = 62 m km-1 and the m = 86 m km-1 models were not thick 

enough in the east and still produced a slight eastward dip beyond x = 1500 km. The 

models in Figure 4.9.2 [Bottom] do not show an eastward dip. However, the m = 189 

mkm-1 model thickened too rapidly and the deformation was too deep between 1150 

<x < 1400 km. Both the m = 114 m km-1 and the m = 158 m knr' models were in 

"good agreement" with the observed flexure of the Mississippian and hence con-

sidered to be possible lithospheric models. 

Having determined an eastward thickening lithosphere which predicted a Mississip-

pian having a good fit to the present-day observed Mississippian, a realistic sedimen-

tation model was then added to the 114 m km-1 model to see whether the stratigraphy 

could be correctly matched. 
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Figure 4.9.2. Models showing the effects of varying the slope m. The 
mean thickness of the lithosphere is 100 km at x = 1050 km (i.e. at the 
load edge). The uneven Mississippian was partially attributed to pre-
existing topography. [Top] Results of two eastward thickening 
lithospheric models. [Bottom] Results of three lithospheric models 
using steeper slopes. 
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(b) Results of Laterally Varying Lithosphere: 

The temporal flexure due to the laterally varying lithospheric model having a 

thickening slope of m = 114 m km-1 was plotted at three different locations, namely at 

the edge of the load (x = 1050 km); the 5th Meridian (x = 1200 km); and the Alberta-

Saskatchewan border (x = 1500 km). Figure 4.9.3 shows the results of the litho-

spheric flexure through time at these sites along with the eustatic curve of Figure 

4.6.1. The eustatic curve was plotted at the same scale to show the magnitude of its 

contribution in relation to the amount of flexure. The amount of space between the 

eustatic curve and the flexure curve is the amount of accommodation available for 

marine 

Accomodation (m) 

-4000 -3000 -2000 -1000 
150 

- ZC-4.4 

Figure 4.9.3. Accommodation control at three different locations. The 
amount of space between tectonic subsidence and eustatic changes in 
sea level represents the permitted amount of marine deposits for 
various times. Note that there is no peripheral bulge for the m = 114 m 
km-1 model at any time. The eustatic curve showing first-order 
variations is taken from Figure 4.6.1. 
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deposits. It can be seen that eustasy is especially important at the Alberta-Sas-

katchewan border throughout time since it is comparable to the amount of flexure that 

took place throughout time. Note also that at = 72 Ma, the Zuni C-4.4 (second-order) 

cycle was included. The reason for including this will become clear later. The 

resulting stratigraphy was therefore inferred by combining the results of this flexural 

model with the depositional model as described in section 4.6. In this manner, the 

stratigraphy of the adjacent foreland basin was tied to the structure through the 

deformation of the lithosphere. 

The process of gradually filling in the sediments through time was repeated until the 

present time was reached. Figures 4.9.4 (a-d) show the predicted basin evolution 

during the end of Kimmeridgian (140 Ma); end of Early Albian (103 Ma); end of Cam-

panian (79 Ma); and the end of Early Maastrichtian times (72 Ma) respectively. At 

the time of initial thrusting, during the Jurassic, when the mountains were beginning to 

form, the Jurassic Kootenay and Fernie Formations were predicted to b'e deposited in 

a shallow marine environment extending as far as the middle of Saskatchewan (about 

x = 1750 km) and later were predicted to erode. The Early Albian was accompanied 

by a gradual relative sea level rise of about 35 m. Hence Blairmore sediments were 

predicted to be more distal with respect to the limit of thrusting and fill the foredeep as 

far as the Alberta-Saskatchewan border (Rudkin, 1964, chapter 11). 

An intermittent high stand of relative sea level of around 195 m (with respect to 

present-day sea level) at =91-5 Ma is predicted to result in deep marine sediments 

such as the Viking Shale (Albian) and Lower Colorado to be deposited. Ignoring the 

short term eustatic changes, relative sea level fell steadily between 9l5 Ma and 

about 84 Ma. The continued deepening of the seaway brought in the Joli Fou, Viking 

and Lower Colorado Shale which are all marine deposits. 
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Early Maastrichtian time. Note that the predicted non-marine Upper Colorado and the narrower marine fairway 
during the Lea Park both agree with observations. The load columns were taken from our loading history L6(x,t). CO 
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During Campanian (79 Ma), relative sea level had fallen. The effect of this was to 

drop the water depth by = 250 m, a net gain of about 75 m with respect to Early Albian 

but nonetheless a relative drop with respect to Turonian (see Figure 4.9.4c). This 

time marked commencement of deposition of the Post Colorado Supergroup, which is 

dominantly non-marine near the Foothills. Towards the east however, this gives way 

to a marginal marine facies. The Lower Colorado is shown highlighted in this figure for 

clarity. 

Finally, during the Maastrichtian, the last of our paleogeographic sections (Figure 

4.9.3d) shows deposition of the Lea Park (highlighted in black) which is mainly marine. 

Note that Figure 4.9.4d predicts that the Lea Park is made up of an older shoreline 

denoted as 1 at about x = 1500 km and a younger one denoted as 2 at about x = 1250 

km. 

A high-stand of relative sea level produced a fluctuation of roughly 50 m lasting 

between 75 Ma and 71 Ma reaching a maximum at 73 Ma (cycle Zuni C-4.4). This is 

the only explanation for the older (raised) shoreline at 1500 km. The high-stand would 

have raised the sea level by 50 m in this short-order (2 Ma) cycle to result in a 

widening of the marine fairway. Then it would have dropped 50 m just as suddenly to 

the original, more proximal shoreline of the eastern basin margin. Introducing this 

second-order eustatic cycle was necessary to better approximate the present-day 

cross-section. 

Also shown in the paleogeographic sections, are the respective predicted heights of 

the Rocky Mountain Fold and Thrust Belt as it evolved. These are shown as the total 

column of sediments and thrust sheet using a combined average density of 2400 kg 

M-3. In the next section it will be shown that this process of mountain building will in 

fact result in a reasonable present-day mountain height. 

Creating the depositional history step by step through time enabled us to reconstruct 

the present-day Alberta Foreland basin. The result of this best present-day model is 

shown in Figure 4.9.5 (for a direct comparison with the observations of 4.3.3). Figure 
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Figure 4.9.5. Our best model using an eastward thickening lithosphere with m = 114 in knit,= 75 Ma and 
load history 6. The units have the correct shape and thickness and outcrop in the right location. The peak of' the 
peripheral bulge lies east of x = 1650 km. Notice that the emergence of the Lea Park at the 
Alberta-Saskatchewan border implies the correct basin extent ( compare with Figure 4.3.3). 
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4.9.5 shows that the thickness of the units are approximately correct while simul-

taneously maintaining the correct dip and outcrop locations of these units. Notice that 

the peripheral bulge must be east of x = 1650 km since the Mississippian does not 

show evidence of any eastward dip. The Lea Park (shaded) emerges at the Alberta-

Saskatchewan border implying the correct extent of the basin. 

4.10 Rocky Mountain Height 

In order to show that the load model L6(x,t) was entirely reasonable and that internal 

consistencies can be achieved with the lithospheric models, the predicted present-day 

heights of the mountains were then compared for both the uniformly-thick model (d = 

100 km; t = 75 Ma) and the eastward thickening lithospheric model (m = 114 m km-l-, 

= 75 Ma). The height of the tectonic load L6(x,t), given in Table 4.8.1, was added to 

the height of the sediment load assuming densities of both 2300 kg rn-3 and 2400 kg-

M-3 in order to test the sensitivity of density variations. Figure 4.10.1 gives the 

predicted height of the Rocky Mountain Fold and Thrust Belt along BB'. The values 

for the heights in kilometres above sea level were found to be: 

X = 750 800 850 900 950 1000 km 

Load Column 1 2 3 4 5 6 

m = 114 m km 1 084 159 102 268 253 252 (p = 2400) 
model 093 165 1•04 269 255 254 (p = 2300) 

Uniform 089 153 098 265 2•50 2•51 (p = 2400) 
model 093 l65 0.94 258 243 248 (p = 2300) 

Another result of this analysis was an upper estimate of the volume of sediments that 

were deposited beneath the RMFTB in Belly River Group time and earlier (i.e. before 
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Figure 4.10.1. Mountain load showing the six load columns for L6(x,t) 
with densites of 2300 and 2400 kg rn-3 and the topography produced by 
joining the mid-points of these load columns. The match with present-
day observations was good except for a possible deficiency of 1-6 km 
of sediment in column 3 at x = 850 km. The Lea Park was deposited as 
far west as x = 900 km (shaded). 
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72 Ma). Not many wells which penetrate these sediment depths (i.e. deeper than 

about 4000 m) are drilled beneath the Rocky Mountains and hence this prediction may 

be useful in showing how much sediment was likely to have been deposited. The 

volume of hydrocarbon source rocks that were deposited beneath the Rocky Moun-

tains could then be calculated and, from this estimate, the volume of hydrocarbons 

yielded could be obtained. (The hydrocarbons that the source-prone rocks yielded 

would necessarily migrate updip towards the basin). This would give only order-of-

magnitude estimates since the RMFTB is actually a series of duplex structures with 

thrust sheets of Mississippian and older rocks thrust near vertical to the surface. 

In these two models, the base of the lithosphere is generally parallel to the modelled 

Mississippian (i.e. the original model baseline). It can be seen from Figure 4.10.1 that 

the profile of the deformed Mississippian is roughly reflected in the mountain height 

and erosional surface. Hence it could be argued that by adopting Airy's hypothesis of 

how isostatic compensation is maintained, the mountains and sediments are compen-

sated by the buoyancy forces arising from the displaced mantle. Airy's hypothesis 

assumes a series of floating blocks each compensated by buoyancy. The situation is 

somewhat more complicated here since the stiffness of the lithosphere has to be taken 

into account too. It is therefore proposed that the depth of compensation of the lithos-

pheric root may be better realized using this type of modelling rather than the 

simplified Airy hypothesis used in the past. 

4.11 Lithospheric Modelling Conclusions 

In this chapter, a comprehensive study of the characteristic properties of a cratonic 

lithosphere was made. The experimental site chosen, the Alberta Foreland Basin, 

had two distinct advantages: the first was that there is extremely good control in this 

well studied, mature basin and the second was that we were able to build on existing 
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work done by Beaumont (1981). 

Fundamentally, the procedure incorporated three different inputs, namely the loading 

history of the Rocky Mountain Fold and Thrust Belt; the parameterized lithospheric 

model; and the depositional mechanism in the adjacent foredeep. In our procedure we 

assumed a loading history without assuming any a priori knowledge of the flexural 

model. We consequently predicted a suite of possible lithospheric models. Having 

determined possible lithospheric models based on the shape of the Mississippian, the 

next step was to apply a reasonable depositional style. This procedure allowed us to 

characterize the properties of the lithosphere while taking advantage of the finite 

element method. 

Assuming a viscoelastic rheology, various lithospheric models were developed with 

some enhancements over Beaumont's (1981) best model. The finite element method 

was used in lieu of thin plate theory; a compressible lithosphere using v = 025 was 

adopted; and the boundary conditions were greatly improved - particularly on the west 

end of the model, even though the effect of this boundary condition is small. A 

parameter search was used to systematically study the effects of varying the mean 

thickness d, relaxation time t (and therefore viscosity), and the load history L(x,t) for 

these models. 

It was found that our best uniform lithospheric model with d = 100 km; t = 75 Ma and 

a loading history L6(x,t) matched the observations reasonably well between 1050 km < 

x < 1550 km. The units below the Belly River Formation however, still cropped out 

roughly 90 km too far west when compared to the observed data despite a lateral 

resolution of 50 km. Beyond x > 1550 km the units also showed an eastward dip 

which could only be removed by assuming an increasing eastward height in the 

Mississippian paleo-topography. Unless this increase in topography was strictly east 

of x = 1500 km, this assumption would push all the younger outcrops further west if 

the correct thicknesses of the units was maintained. This would mean the outcrop 

locations of the units would be pushed even further west which would result in a 

worse fit. 
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The effect of lateral variations in the thickness was then studied by varying the slope 

m. This model was used to parameterize a single viscoelastic layer with an effective 

relaxation time t = 75 Ma (corresponding to an effective viscosity of = 8x1025 Pa s) 

which closely follows this depth profile. A lithospheric model that thickened from 37 

km at x.= 500 km to about 210 km at x = 2000 km (i.e. with a slope of 114 m km-1) 

was found to best fit the observations. It was shown that by using a reasonable 

depositional history this model was able to better match current-day observations. 

The location of the outcrops as well as the dip and thicknesses of the units were in 

good agreement with observations. 

In conclusion, an eastward thickening lithosphere can match the present-day observa-

tions of the Alberta Foreland Basin. The eastward thickening lithospheric models 

also seemed to work better (i.e. with fewer assumptions) than the uniform lithos-

pheric models. The two eastward thickening lithospheric models with m = 114 m km' 

and 158 m km-1 were found to fit the Mississippian data. If the lithosphere thickens 

x— 1050 km 1550 km 2000 k 

Figure 4.11.1. Sensitivity of the eastward thickening lithospheric 
models showing the critical distance x of thickening and the limits of 
this thickness with all other parameters constant. The thickest part of 
the lithosphere is 180 km < d < 300 km with this thickness occurring 
between 1500 km <x <2000 km. 
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linearly eastwards with these slopes then a cratonic lithosphere ranging between 300 

km < d < 180 km in thickness must exist beneath the North American Craton starting 

somewhere between 1500 km ≤ x ≤ 2000 km. This lateral variation in the thickness of 

the lithosphere having an effective viscosity of 8x 1025 Pa s implies a deep and cold 

root below the North American Cratonic plate that penetrates down into the mantle. 

North of this line of section BB' lies the Peace River Arch and south of BB' lies the 

Sweetgrass Arch. At these locations the applied load is different and there is also 

interference in the Sweetgrass Arch caused by Williston Basin. Hence it should be 

emphasised that the line of section chosen lies in the undisturbed portion of the craton. 



"We cannot direct the wind 
'but we can adjust the sails" 

Anonymous (1990). 
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5. Discussion and Conclusions 

The main thrust of the work done in this study can be divided into two distinct parts. 

In chapters 2 and 3, the finite element method was compared with simple theoretical 

continuum mechanical models. It was found that the results compared well with 

theory. The numerical errors introduced were generally found to be smaller than the 

geophysical measurement being made. The advantages of the finite element models 

were that thin plate theory was not assumed and that the models did not neccessarily 

require. uniform lateral properties. In the second part, in chapter 4, several Maxwell-

type viscoelastic models were considered for the deformation of a cratonic lithosphere. 

The Alberta Foreland Basin was used for our model of a typical cratonic lithosphere. 

The result of this modelling in chapter 4 shows that cratonic lithospheres having cold 

deep roots extending to depths greater than 200 km can satisfy the observations. 

This finding is also corroborated by the seismic and chemical evidence presented in 

section 4.2. Three-dimensional inversion of surface waves data by Woodhouse and 

Dziewonski (1984) generally show high velocity perturbations in surface waves 

travelling beneath shields. The difference in velocities is mainly attributed to the 

temperature differences between continental and oceanic lithospheres. The chemical 

composition of colder continental lithospheres also affect velocity and thus propagate 

surface waves at relatively higher velocities. Upon closer inspection of depth slices of 

their models M84A and M84C, it was found that the deep cold roots do not extend 

straight down but rather are offset with increasing depth. The direction of offset at 

depth corresponds with the direction of movement of the plates. 

One implication of this present study therefore, was to postulate a model where 

continental plates actually sit on the denser uppermost mantle. The thick, cold roots 

of the continental plates are dragged through the asthenosphere and lower mantle as 
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shown in Figure 5.1.1. This may account for the fact that plates with continents move 

Oceanic 

Asthenosphere 

Xx 

Mantle 

Deep Cratonic 
Root 

Figure 5.1.1. Schematic of the proposed plate tectonic model showing 
cratonic lithospheres as they are dragged through the upper mantle 
while the oceanic lithospheres float on the asthenosphere. Velocities of 
plates bearing continents are impeded from moving as fast as younger 
(and thinner) oceanic lithospheres. 

at much lower speeds than oceanic plates (with the exception of the Indian Plate). 

The observation which regards continental lithospheres as a thick plate imbedded 

within the mantle and the relatively high speed of the Indian Plate warrants further 

work. 

Throughout the evolution of this work, several interesting diversions were en-

countered and as a result some ideas for important future work were identified. 

Further work in geodynamics that takes advantage of the finite element formulation 

could involve several themes such as using the finite element method to: 

(i) Investigate the effects of lateral temperature and chemical variations in a 

uniformly-thick viscoelastic layer overlying a fluid upper mantle. This would be a 

natural extension of the present work and would not require our assumption that 
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relates the thickness of the lithosphere to the viscosity profile of the lithosphere. 

(ii) Model a stratified lithosphere consisting of an elastic upper lithosphere ('r = oo) 

overlying an increasingly less viscous lithosphere with depth. This model is more 

realistic and does not require the introduction of an effective viscosity or relaxation 

time. This type of a model would be applicable to loads having different characteristic 

wavelengths since the load would "see" the appropriate depth. 

(iii) Include the effects of non-linear rheology in the lithosphere and upper mantle 

since deformation of rocks in the lithosphere and mantle are better described by a 

power-law creep. An implication of these types of models would be to have a litho-

spheric model that is applicable to any load period. 

These suggestions for future work are all conducive to using the finite element method 

since both heat flow and multi-layering can be modelled without much extra effort or 

any modification to the software. From our dimensional analysis however, it was also 

found that, for larger loads, the advection of pre-stress and the perturbation due to 

gravity become increasingly important. Therefore, in order to use the finite element 

method for such large-scale Earth loads (?. >> 1000 km), these additional terms must 

be incorporated into the finite element code. Hence, it is proposed that the finite 

element code could be re-written to include these two terms. Finite element codes are 

traditionally written by engineers where these terms are not necessary and hence 

they are not included in generic market software. 
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