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Abstract 

In this thesis an integrated approach to predict the effective thermal conductivity of porous media 

is presented. A pore scale level heat transfer model is developed and used to generate a custom 

mixing rule for thermal conductivity prediction. The novel mixing rule is developed based on 

particle size distribution data for unconsolidated porous media. The fluid and solid phase are 

considered, with fluid phase being stagnant. The point contact between the grains and spherical 

shape of the grains are also assumed. The model and mixing rule are validated and sensitivity 

analysis is performed. 

The question of upscaling the results of pore scale level modeling is also addressed. Two 

approaches are presented: equivalent network model and upscaling using computer tomography 

images. Equivalent network model was validated using model-by-model validation approach. 

Computer tomography images upscaling approach was applied to predict the scaled up thermal 

conductivity of oil sand core samples. 
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Chapter 1: Introduction 

Energy is one of the key factors for sustainable development of any country in the modern world. 

Natural resources such as oil and gas are the main contributors to the energy industry of all 

leading countries. According to Oil and Gas Journal (Xu and Bell 2014) Canada has estimated 

proven reserves around 172.5 billion barrels of oil. Proven reserves are reserves which can be 

recovered in an economic manner. Canadian estimated remaining ultimate potential is 339 

billion barrels as of December 2012. Oil sands bitumen is the major source of crude oil in 

Canada: 90% of total reserves, 98% of proven reserves (National Energy Board 2013). 

Alberta and Saskatchewan are the two main heavy oil and bitumen provinces in Canada. Alberta 

accounts for the most of the oil sands reserves. The three main oil sands areas in Alberta are 

Athabasca, Cold Lake and Peace River (Figure 1-1). Athabasca can be subdivided into three 

regions: Athabasca North, Wabiskaw and Conklin (Figure 1-2). 

 

Figure 1-1 – ERCB designated oil sands area 
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Figure 1-2 – Alberta’s oil sands areas 

Heavy oil and bitumen recovery technologies can be divided into two main categories: mining 

and in-situ. Mining involves truck and shovel technology to deliver oil sand to an extraction 

facility, where the bitumen is cleaned of sand and then refined or upgraded. In-situ is the 

technology of bitumen recovery by means of wells. In-situ methods can be classified into two 

major types: primary/enhanced oil recovery and thermal recovery techniques. Primary/enhanced 

oil recovery techniques include primary recovery (pressure drive, gas drive, water drive, etc.) 

and secondary and tertiary (enhanced) oil recovery (waterflooding, gas injection, chemical 

(polymer/surfactant/alkali/foam) flooding, etc.). The key point of thermal recovery methods is to 

heat the reservoir to the temperature at which the viscosity of heavy oil reduces enough for it to 

become mobile. Thermal recovery techniques include cyclic steam stimulation (CSS), steam 

assisted gravity drainage (SAGD) and their modifications. 

Cyclic steam stimulation uses one well as an injector and producer. Production goes in cycles. A 

cycle begins with the first stage where steam is injected for a period of time into a formation 

under high pressure which causes the fracture of formation and thus propagation of steam for a 

longer distance. The second stage is soaking, when the steam gives its latent heat to formation. 



 

3 

The final stage of a cycle is production of heated oil for a period of time. Schematically stages 

are presented in Figure 1-3. After a period of time the cycle is repeated. 

 

Figure 1-3 – Typical CSS cycle 

Steam assisted gravity drainage uses two horizontal wells (injector and producer) one above the 

other. The top well is injector and the bottom well is producer (see Figure 1-4). Typical length of 

the horizontal section is 500 to 1000 meters. The reservoir is heated by steam injection through 

the top well and after a period of time a so-called steam chamber develops. Steam gives its latent 

heat to the formation at the edge of the steam chamber where bitumen drains under the forces of 

gravity into the production well. 
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Figure 1-4 – SAGD diagram 

According to the Alberta Department of Energy (Holly, Mader and Toor 2012) in 2010 the 

compounded growth rate was 34.2% for SAGD, 7.6% for Primary/enhanced oil recovery, 5.9% 

for mining and 5.3% for CSS. Also SAGD shows exponential growth, while the other types of 

production show linear trends. These parameters indicate that SAGD becomes more and more 

applicable and economically viable nowadays. 

In a reference case (WTI Oil Price $110 USD/bbl, Henry Hub Natural Gas Price $6.2 

USD/MMBtu) crude oil production will increase by 75% (to 5.8 MMBD) in 2035. The oil sands 

portion of production will increase from 57% in 2012 to 86% in 2035 (Figure 1-5). Investments 

in oil sands tend to shift from mining towards in-situ SAGD (National Energy Board 2013). It 

should be mentioned that low oil prices of 2015 will definitely adjust the forecast, but the trend 

will remain the same (Canadian Association of Petroleum Producers 2015). 
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Figure 1-5 – Crude oil forecast to 2035 (National Energy Board 2013) 

Energy efficiency and steam to oil ratio (SOR) are the most important economic parameters in 

evaluating SAGD field application. The net energy return (NER) ratio shows the amount of 

energy produced per amount of energy consumed (in GJ/GJ) by the technology. For SAGD NER 

varies from 4 to 7 GJ/GJ (Brandt, Englander and Bharadwaj 2013). Cumulative steam to oil ratio 

(CSOR) shows the amount of steam in cold water equivalents injected to oil produced (in m3/m3) 

for the production period of a well pair. Average CSOR of a SAGD well pair decreases with time 

and stabilizes around 3-4 m3/m3 (Gates and Larter 2014). These two parameters among others 

indicate that SAGD is very sensitive to the economic situation, in particular to market price of 

crude oil and natural gas. Thereby any enhancement to SAGD technology that will allow to 

improve accuracy of prediction of SAGD production rates is worth of effort and time. 

Thermal recovery methods use different sources of energy to increase the temperature of heavy 

oil, the viscosity of which significantly decreases with temperature (several orders of 

magnitude). In a SAGD project the latent heat of steam is used to increase the temperature of 

heavy oil. 

Typical SAGD project consists of a start-up phase, an intermediate phase and the normal SAGD 

phase. During the start-up phase steam is circulated in both horizontal wells to establish thermal 

communication between injector and producer. Heat is transferred primarily by conduction 

during the start-up phase. It is known that the effective thermal conductivity of oil sand changes 

with temperature (Butler 1991). During the intermediate phase (steam boost) the steam is 
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injected into the reservoir and displaces bitumen towards the producer. Heat is transferred by 

conduction and convection. As a result a so-called steam chamber develops. It is believed that 

mature steam chamber consists of sand, residual oil saturation, condensate and steam. The final 

phase is a normal SAGD production when the steam chamber is already developed. During this 

phase steam gives its latent heat to bitumen and condenses at the edge of the steam chamber. 

Condensate and heated oil drain towards the producer under the force of gravity. Heat is 

conducted from the edge of steam chamber toward the reservoir outside of steam chamber. In 

terms of composition the edge of steam chamber represents an intermediate zone between steam 

chamber and reservoir. 

As shown above, thermal conduction plays an important role during each phase of a SAGD 

project. In composite materials such as oil sands heat conduction equation is usually written in 

terms of effective thermal conductivity of that material. It is known that thermal conductivity of 

oil sand depends on thermal conductivity of components (water, oil, gas and sand), temperature 

of oil sand material, contact area between the grains, porosity and fluid saturations (Butler 1991). 

The term mixing rule will be used for any formula which will allow to calculate effective thermal 

conductivity of porous media based on the parameters listed above. 
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1.1 Objectives 

The primary goal of this thesis is to propose and develop an integrated approach of calculating 

the effective thermal conductivity of porous media type materials. In order to reach the goal of 

this thesis a set objectives was addressed: 

 Set up a heat transfer model at a pore scale level 

 Implement this model in virtual porous media 

 Develop novel mixing rule for unconsolidated porous media based on particle size 

distribution of the media 

 Validate the mixing rule with literature and experimental data 

 Analyze the effects of meshing on the effective thermal conductivity 

 Set up a heat transfer model at a core scale level 

 Apply scaling up techniques to upscale the effective thermal conductivity from the pore 

scale level to the core scale level 
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1.2 Thesis organization 

Chapter 1 of the thesis contains introduction to heavy oil industry in Canada, description of oil 

sands reserves, forecast in production and major thermal recovery methods. SAGD process is 

described in some details. Shortcomings in using effective thermal conductivity to model SAGD 

are discussed. The objectives of the thesis are set. 

Chapter 2 describes the Fourier’s Law at the pore and at the core scale levels. Literature review 

on calculations and measurements of effective thermal conductivity of porous media is 

presented. Measurement approaches and mixing rules are discussed as well as their applicability. 

In Chapter 3 the pore scale modelling is addressed in detail. Methods of generation of virtual 

porous media geometry are provided. A pore level heat transfer model is presented. Modelling 

results are compared to existing mixing rules. Voxel based and geometry based meshing 

approaches are compared. 

Chapter 4 contains a novel effective thermal conductivity mixing rule and physical explanation 

of its parameters. The mixing rule is based on the particle size distribution of a porous medium. 

Comparison of the novel mixing rule to available literature data is provided. 

In Chapter 5 the scale up algorithm is presented which allows to propagate rock properties from 

pore scale level to core scale level and further to grid block size. A scale up approach using 

computer tomography (CT) images of core is described. 

Main results, conclusions and recommendations for future work are presented in Chapter 6. 
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Chapter 2: Overview of heat transfer in porous media 

Heat transfer in porous media is a complex process. It can include the following heat transfer 

related phenomena: 

1. Heat transfer by conduction within fluid(s), within solids and from solid(s) to fluid(s) 

2. Heat transfer by convection of fluid(s) (forced and natural) 

3. Heat transfer by radiation from the solid surface 

4. Viscous heat dissipation 

Figure 2-1 shows an example of microscopic structure of porous media. Fluid is represented by 

blue color and solid by grey. Heat conduction occurs in the fluid, in the solid and at the 

interphase between fluid and solid (area A on Figure 2-1). Heat transfer by convection can be 

further subdivided into heat transfer by forced convection and by natural convection. Forced 

convection occurs where the fluid flows in porous media under external driving forces (area B on 

Figure 2-1), such as a pressure gradient. Natural convection occurs due to the buoyancy force 

which is caused by density differences in the fluid(s). Density difference in single fluid flow is 

caused by of non-uniform temperature distribution in the fluid and as a result of variable thermal 

expansion within the fluid. Heat radiation is the heat transfer phenomenon when heat is 

transferred from the surface of a body by emission of electromagnetic waves. Radiation becomes 

significant at high temperatures. 

For the purposes of this thesis only heat conduction in porous media with a single stagnant fluid 

is considered. In the next section approaches and equations that describe heat conduction in 

porous media are discussed. 

 

Figure 2-1 – Heat transport in porous media  
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2.1 Fourier’s Law 

Fourier’s Law of heat conduction states that heat flux through a material is proportional to the 

temperature gradient. The general form of Fourier’s Law for an anisotropic homogeneous 

medium is 

𝒒 = −𝒌 ∙ ∇𝑇 2.1 

where 

𝒒 = [𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧]
′ is a three-dimensional heat flux vector, 

𝒌 = [

𝑘𝑥𝑥 𝑘𝑥𝑦 𝑘𝑥𝑧
𝑘𝑦𝑥 𝑘𝑦𝑦 𝑘𝑦𝑧
𝑘𝑧𝑥 𝑘𝑧𝑦 𝑘𝑧𝑧

] is a symmetric second order tensor called the thermal conductivity tensor, 

∇𝑇 = [
𝜕𝑇

𝜕𝑥
,
𝜕𝑇

𝜕𝑦
,
𝜕𝑇

𝜕𝑧
]
′

 is a three-dimensional temperature gradient vector, 

𝑇 = 𝑇(𝑥, 𝑦, 𝑧) is a spatial distribution of temperature in a medium. 

Using full notation the Fourier’s Law can be rewritten as follows: 

𝑞𝑥 = −(𝑘𝑥𝑥
𝜕𝑇

𝜕𝑥
+ 𝑘𝑥𝑦

𝜕𝑇

𝜕𝑦
+ 𝑘𝑥𝑧

𝜕𝑇

𝜕𝑧
)

𝑞𝑦 = −(𝑘𝑦𝑥
𝜕𝑇

𝜕𝑥
+ 𝑘𝑦𝑦

𝜕𝑇

𝜕𝑦
+ 𝑘𝑦𝑧

𝜕𝑇

𝜕𝑧
)

𝑞𝑧 = −(𝑘𝑧𝑥
𝜕𝑇

𝜕𝑥
+ 𝑘𝑧𝑦

𝜕𝑇

𝜕𝑦
+ 𝑘𝑧𝑧

𝜕𝑇

𝜕𝑧
)

 
2.2 

In a simple case when the one dimensional heat conduction in isotropic media is considered the 

Fourier’s Law takes the following form: 

𝑞 = −𝑘∇𝑇 2.3 

where 

𝑞 is the heat flux in direction of heat flow, 

𝑘 is the thermal conductivity of media, 

∇𝑇 is the temperature gradient in the direction of heat flow. 

The negative sign is because heat flux and temperature gradient has different directions. With 

respect to heat transfer “isotropic” means that thermal conductivity is the same in all directions, 

thus 𝑘 is a scalar. Thermal conductivity of homogeneous material is a property of that material 
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and generally it depends on temperature and pressure. For materials such as rock minerals and 

liquid fluids, dependence on pressure can be neglected with good accuracy. 
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2.2 Transient heat conduction 

The general form of the heat transfer shell balance equation for representative elementary 

volume is as follows (Bird, Stewart and Lightfoot 2007): 

{

𝑟𝑎𝑡𝑒 𝑜𝑓
𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛

𝑏𝑦 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

}− {

𝑟𝑎𝑡𝑒 𝑜𝑓
𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑢𝑡
𝑏𝑦 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

} + {

𝑟𝑎𝑡𝑒 𝑜𝑓
𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛

𝑏𝑦 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

}− {

𝑟𝑎𝑡𝑒 𝑜𝑓
𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑢𝑡
𝑏𝑦 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

} +

+ {
𝑟𝑎𝑡𝑒 𝑜𝑓
𝑒𝑛𝑒𝑟𝑔𝑦

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
} = {

𝑟𝑎𝑡𝑒 𝑜𝑓
𝑒𝑛𝑒𝑟𝑔𝑦 𝑐ℎ𝑎𝑛𝑔𝑒
𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚

}  

Using the general form of shell balance equation and considering heat conduction only with no 

convection and no heat generation one can write the following transient heat conduction 

equation: 

This equation describes time dependent temperature distribution profiles in media due to heat 

conduction. In order to solve the above equation appropriate boundary conditions are required. 

  

(𝜌𝑐𝑝)
𝜕𝑇

𝜕𝑡
= ∇ ∙ 𝑘∇𝑇 

2.4 
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2.3 Heat conduction in porous media 

For heterogeneous media such as fully saturated porous media thermal conductivity depends on 

pore space structure and the thermal conductivity of constituents (rock, oil, water, gas). 

Usually porous media are presented in terms of continuous media with effective properties. 

Given that the size of pores is much smaller than the size of whole system one can average the 

microscopic heterogeneous properties and derive equations in terms of effective (averaged 

properties). One of the well-known examples is Darcy’s equation of flow. The same approach is 

applicable for heat transfer through porous media. 

For each phase transient heat conduction equation can be written as 

(𝜌𝑐𝑝)𝑠

𝜕𝑇𝑠
𝜕𝑡
= ∇ ∙ 𝑘𝑠∇𝑇𝑠  

2.5 

(𝜌𝑐𝑝)𝑓

𝜕𝑇𝑓
𝜕𝑡
= ∇ ∙ 𝑘𝑓∇𝑇𝑓 

2.6 

Boundary conditions on the interface between rock and fluid are continuity of temperature and 

heat flux: 

𝑇𝑠 = 𝑇𝑓 2.7 

𝑛𝑓𝑠 ∙ 𝑘𝑓∇𝑇𝑓 = 𝑛𝑓𝑠 ∙ 𝑘𝑠∇𝑇𝑠 2.8 

Assuming local thermal equilibrium (negligible local temperature difference between the phases) 

and applying local volume averaging (Kaviany 1999) one can derive the following equation for 

porous media in terms of its effective properties: 

(𝜌𝑐𝑝)𝑒

𝜕𝑇

𝜕𝑡
= ∇ ∙ (𝑘𝑒∇𝑇)  

2.9 

where 

(𝜌𝑐𝑝)𝑒  is the effective volumetric heat capacity of porous media, 

𝑘𝑒 is the effective thermal conductivity of porous media. 

Effective volumetric heat capacity of porous media can be easily determined through the 

properties of constituents as follows: 

(𝜌𝑐𝑝)𝑒 = 𝜙
(𝜌𝑐𝑝)𝑓 +

(1 − 𝜙)(𝜌𝑐𝑝)𝑠  
2.10 

where  

𝜙 is the porosity of the medium (fraction of void space), 
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(𝜌𝑐𝑝)𝑓  is the volumetric specific heat capacity of the fluid, 

(𝜌𝑐𝑝)𝑠 is the volumetric specific heat capacity of the solid. 

As for the effective thermal conductivity of porous media there is no easy formula that can be 

derived as in case of effective volumetric heat capacity. The attempts to predict the effective 

thermal conductivity of porous materials are discussed in the next subsection. 

In the assumption of steady state heat conduction equation 2.9 can be written as 

∇ ∙ (𝑘𝑒∇𝑇) = 0 2.11 

Finally assuming the isotropic media we obtain the steady state heat transfer equation which 

describes temperature distribution in isotropic porous media: 

∇2𝑇 = 0 2.12 

  



 

15 

2.4 Prediction of the effective thermal conductivity of porous media 

In heat conduction in porous media the effective thermal conductivity is the main parameter that 

affects the temperature distribution profiles. There are two main approaches to determine 

effective thermal conductivity of a porous material: 

1. Conduct experiments 

2. Apply correlations 

 There are two types of porous materials: with internal porosity and with external porosity 

(Carson, et al. 2005). Porous media with internal porosity can be described as materials with 

interconnected solid matrix that contain pores/bubbles (i.e. sponge). Porous media with external 

porosity can be described as granular materials with fluid in-between (i.e. oil sands). In the first 

case the solid phase is continuous and the fluid phase can be either dispersed or continuous. In 

the second case the fluid phase is continuous and the solid phase can be either dispersed or 

continuous. Dispersed phase (as opposed to continuous) means that there is no continuous 

pathway from inlet to outlet. 

There are many correlations available in the literature, which allow prediction of effective 

thermal conductivity of porous materials given other known properties. Effective thermal 

conductivity (𝑘𝑒) depends on the following parameters: 

 porosity (𝜙) 

 thermal conductivity of fluid (𝑘𝑓), thermal conductivity of solid (𝑘𝑠) 

 structure of pore space 

 contact area between grains 

 shape of grains 

 grains size distribution 

In terms of physics involved the effective thermal conductivity depends on: 

 heat conduction 

 heat convection 

 heat radiation 

 viscous heat dissipation 
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Correlations that allow prediction of one property of a mixture through properties of their 

constituents are usually called “mixing rules”. Thermal conductivity mixing rules can be 

classified into the following categories (Tsotsas and Martin 1987): 

 Type I – solution of Laplace equation either analytical or numerical. 

 Type II – porous media are represented as a combination of thermal conductivities 

partially in parallel and partially in series. 

 Type III – porous media are represented as a repeated unit cell for which exact or 

approximate solution is obtained. 

The normalized effective thermal conductivities of the medium and the solid are defined as 

follows. Normalized thermal conductivity of solid and solid to fluid ratio will be used 

interchangeably throughout the text of the thesis. 

𝐾𝑒 =
𝑘𝑒
𝑘𝑓

 
2.13 

𝐾𝑠 =
𝑘𝑠
𝑘𝑓

 
2.14 

It should also be mentioned that any mixing rule to be universal should satisfy the following 

limiting relations: 

1. If 𝜙 → 0, then 𝑘𝑒 → 𝑘𝑠 (𝐾𝑒 → 𝐾𝑠) 

2. If 𝜙 → 1, then 𝑘𝑒 → 𝑘𝑓 (𝐾𝑒 → 1) 

3. If 𝑘𝑠 = 𝑘𝑓  (𝐾𝑠 = 1), then 𝑘𝑒 = 𝑘𝑠 = 𝑘𝑓  (𝐾𝑒 = 1) 

4. If 𝑘𝑓 → ∞ 

a. then 𝑘𝑒 → ∞ if fluid is the continuous phase 

b. then 𝑘𝑒 is finite if fluid is the dispersed phase 

5. If 𝑘𝑠 → ∞ 

a. then 𝑘𝑒 → ∞ if solid is the continuous phase 

b. then 𝑘𝑒 is finite if solid is the dispersed phase 

6. If 𝑘𝑓 → 0 

a. then 𝑘𝑒 → 0 if solid is the dispersed phase 

b. then 𝑘𝑒 is finite if solid is the continuous phase 

7. If 𝑘𝑠 → 0 
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a. then 𝑘𝑒 → 0 if fluid is the dispersed phase 

b. then 𝑘𝑒 is finite if fluid is the continuous phase 

The first limiting relationship means that when the material porosity approaches zero, the overall 

effective thermal conductivity approaches the solid material thermal conductivity. The second 

limiting relationship means that when the porosity of material approaches one, the fluid fills 

more and more space and the effective thermal conductivity approaches that of the fluid. The 

third relationship shows that if the porous material components have the same thermal 

conductivity, then the composite material also has the same effective thermal conductivity 

(assuming there is no thermal resistance layer on the contact between the fluid and solid). 

Relations 4 and 5 are similar but apply to different phases (solid and fluid) and mean that when 

thermal conductivity of the continuous phase approaches infinity the overall effective thermal 

conductivity approaches infinity as well. In contrast when the thermal conductivity of the 

dispersed phase approaches infinity the overall effective thermal conductivity stays finite and 

depends on the thermal conductivity of the continuous phase. Relationships 6 and 7 are similar 

but also apply to different phases (fluid and solid) and mean that when the thermal conductivity 

of one phase approaches zero the overall effective thermal conductivity depends on the 

continuity of the other phase. The distinction between materials in terms of internal vs. external 

porosity can be made based on limiting relationships that apply to that material. For materials 

with internal porosity 4b, 5a, 6b, 7a apply, while for materials with external porosity 4a, 5b, 6, 7b 

apply. 

There are a lot of mixing rules available in the literature. The most commonly used are discussed 

below. All the mixing rules were normalized by the fluid thermal conductivity. 
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Parallel model 

The parallel model assumes fluid and solid are arranged in layers which are parallel to heat flow. 

This model predicts the maximum effective thermal conductivity. The model is presented in 

Figure 2-2. The parallel model fulfills limiting relations 1-3, 4a, 5a, 6b, 7b. 

𝐾𝑒 = 𝜙 + (1 − 𝜙)𝐾𝑠 2.15 

 

 

Figure 2-2 – Parallel model  
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Series model 

The series model assumes the arrangement of fluid and solid in layers which are perpendicular to 

heat flow. This model predicts the minimum effective thermal conductivity. The model is 

presented in Figure 2-3. The series model fulfills limiting relations 1-3, 4b, 5b, 6a, 7a. 

𝐾𝑒 =
1

𝜙 +
1 − 𝜙
𝐾𝑠

 
2.16 

 

 

Figure 2-3 – Series model  
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Geometric mean model 

The geometric mean model (Nield 1991) does not have any underlying structure of fluid and 

liquid, rather than common sense, as the weighted geometric mean lies between weighted 

harmonic mean (series model) and weighted arithmetic mean (parallel model). The model is 

presented in Figure 2-4. Geometric mean model fulfills limiting relations 1-3, 4a, 5a, 6a, 7a. 

𝐾𝑒 = 𝐾𝑠
1−𝜙

 2.17 

 

 

Figure 2-4 – Geometric mean model  
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Maxwell models 

The model was originally developed by Maxwell (Maxwell 1873). It assumes that the dispersed 

phase is loosely packed so each grain does not affect the temperature profiles of the neighboring 

grains. Thus the Maxwell model is applicable to porous media with high porosity. This model is 

also known in the literature as the Hashin-Shtrinkman model (Hashin and Shtrikman 1962) 

which is mathematically equivalent to the Maxwell model, but was derived using a different 

approach. Eucken extended the Maxwell model to the case of multiple phases (Eucken 1932). In 

the case of 𝑘𝑐𝑜𝑛𝑡 > 𝑘𝑑𝑖𝑠𝑝  equation 2.18 should be used and in the case of 𝑘𝑐𝑜𝑛𝑡 < 𝑘𝑑𝑖𝑠𝑝  equation 

2.19 should be used. Let us define these two cases as Maxwell-1 and Maxwell-2 models 

respectively. Both models are presented in Figure 2-5. The Maxwell-1 model fulfills limiting 

relations 1-3, 4a, 5b, 6a, 7b. The Maxwell-2 model fulfills limiting relations 1-3, 4b, 5a, 6b, 7a. 

𝐾𝑒 =
2 + 𝐾𝑠 − 2(1 − 𝐾𝑠)(1 − 𝜙)

2 + 𝐾𝑠 + (1 − 𝐾𝑠)(1 − 𝜙)
  

2.18 

𝐾𝑒 =
2 + 1/𝐾𝑠  − 2(1 − 1/𝐾𝑠 )𝜙

2 + 1/𝐾𝑠  + (1 − 1/𝐾𝑠 )𝜙
  

2.19 

 

 

Figure 2-5 – Maxwell models  
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Kunii-Smith model 

Kunii and Smith developed the following correlation assuming each phase acting separately and 

combined them as a combination of parallel and series models described above (Kunii and Smith 

1960). 

𝐾𝑒 = 𝜙 +
𝑎1(1 − 𝜙)

𝑎3 +
𝑎2
𝐾𝑠

 
2.20 

𝑎1 = 1, 𝑎2 =
2

3
, 𝑎3 = 𝜙2 + 4.63 ⋅ (𝜙 − 0.26)(𝜙1 − 𝜙2) 2.21 

𝜙1,2 =
0.5(

𝐾𝑠−1

𝐾𝑠
)
2
sin2 𝜃0

ln(𝐾𝑠−(𝐾𝑠−1) cos𝜃0)−
𝐾𝑠−1

𝐾𝑠
(1−cos𝜃0)

−
2

3𝐾𝑠
, sin2 𝜃0 =

1

𝑛
 

2.22 

where 𝑛 = 1.5 corresponds to 𝜙1 and 𝑛 = 4√3 to 𝜙2. Kunii and Smith model is valid for the 

range of porosity from 0.26 to 0.476. It is recommended to use 𝑎3 = 𝜙2 for 𝜙 < 0.26 and 𝑎3 =

𝜙1 for 𝜙 > 0.476. The model is presented in Figure 2-6. The Kunii-Smith model fulfills the 

limiting relations 2, 3, 4a, 5a, 6a, 7b. 

 

Figure 2-6 – Kunii-Smith model  
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Krupiczka model 

The equations were derived for packings of long cylinders and cubic packings of spheres and 

then solutions were approximated by one correlation (Krupiczka 1967). The correlation is valid 

for the range of porosity from 0.215 to 0.476. The model is presented in Figure 2-7. Krupiczka 

model fulfills limiting relations 3, 4b, 5b, 6b, 7b. 

𝐾𝑒 = 𝐾𝑠
0.280−0.7571⋅log(𝜙)−0.057⋅log(𝐾𝑠) 2.23 

 

 

Figure 2-7 – Krupiczka model  



 

24 

Zehner-Schlunder model 

Zehner and Schlunder assumed a unit cell of cylindrical shape with spherical particles inside 

(Zehner and Schlunder 1970). The heat transfer was considered through two parallel pathways: 

through the solid and fluid phase (near the center of cylinder) and through the fluid phase (near 

the edge of the cylinder). The model is presented in Figure 2-8. Zehner-Schlunder model fulfills 

limiting relations 1-3, 4a, 5a, 6a, 7b. 

𝐾𝑒 =

(

 
 
1 − (1 − 𝜙)0.5 +

2(1 − 𝜙)0.5

1 −
𝐵
𝐾𝑠

(
(1 −

1
𝐾𝑠
)𝐵

(1 −
𝐵
𝐾𝑠
)
2 ln (

𝐾𝑠
𝐵
) −

𝐵 + 1

2
−
𝐵 − 1

1 −
𝐵
𝐾𝑠

)

)

 
 

 

2.24 

𝐵 = 1.25 (
1 − 𝜙

𝜙
)

10
9

 

2.25 

 

 

Figure 2-8 – Zehner-Schlunder model  
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Woodside-Messmer model 

Woodside and Messmer assumed an equivalent electrical resistivity model for conducting 

particles in a conducting electrolyte (Woodside and Messmer 1961). The equivalent model 

resulted in the following expression for the effective thermal conductivity: 

𝐾𝑒 =
𝑎𝐾𝑠

𝐾𝑠(1 − 𝑑) + 𝑑
+ 𝑐 

2.26 

𝑐 = 𝜙 − 0.03, 𝑎 = 1 − 𝑐, 𝑑 =
1−𝜙

𝑎
 2.27 

The model is presented in Figure 2-9. The Woodside-Messmer model fulfills limiting relations 2, 

3, 4a, 5b, 6a, 7b. 

 

Figure 2-9 – Woodside-Messmer model  
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Effective Medium Theory model 

Effective Medium Theory assumes random distribution of two phases within the whole volume. 

The model was developed for the case of electrical conductivity and is mentioned in Hashin and 

Shtrikman (Hashin and Shtrikman 1962), but also applies to thermal conductivity due to the 

similarity of the underlying equations. The model is presented in Figure 2-10. The Effective 

Medium Theory model fulfills the limiting relations 1, 2, 3, 4a, 5a, 6b, 7b. 

(1 − 𝜙)
𝐾𝑠 − 𝐾𝑒
𝐾𝑠 + 2𝐾𝑒

+𝜙
1 − 𝐾𝑒
1 + 2𝐾𝑒

= 0   
2.28 

𝐾𝑒 =
1

4
((3𝜙 − 1) + (3(1 − 𝜙) − 1)𝐾𝑠 +√((3𝜙 − 1) + (3(1 − 𝜙) − 1)𝐾𝑠)

2
+ 8𝐾𝑠) 

2.29 

 

 

Figure 2-10 – Effective Medium Theory model  
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An extended literature review on the effective thermal conductivity models can be found in 

Tsostas and Martin (Tsotsas and Martin 1987). A very strong review of correlations related to 

different aspects of spherical packings (oscillatory porosity models, coordination number 

correlations, contact angles between adjacent particles and effective thermal conductivity) can be 

found in Van Antwerpen et al. (Van Antwerpen, Du Toit and Rousseau 2010). 

There are two graphical ways to compare mixing rules: One way is to present them as a function 

of porosity for a fixed solid to fluid thermal conductivity ratio. The second way is to present 

them as a function of solid to fluid thermal conductivity ratio given a fixed porosity. 

Figure 2-11 compares all of the above mixing rules using the first comparison approach, while 

Figure 2-12 depicts the second approach comparison. From Figure 2-11 one can conclude that 

the Krupiczka, Woodside-Messmer and Kunii-Smith models do not apply in the whole porosity 

range. The typical range of solid to fluid thermal conductivity ratio for the oil sands ranges from 

1 to 100. From Figure 2-12 one can conclude that the values of the effective thermal conductivity 

of porous media predicted by different mixing rules in this region vary from one mixing rule to 

another. This in turn arises the question: which mixing rule to use? The detailed comparison of 

the described mixing rules is presented in Chapter 4 of the thesis. 

The above presented models will be used for the purposes of this thesis, as they are the most 

cited and seem to provide fair results. 
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Figure 2-11 – Comparison of mixing rules for fixed 𝑲𝒔=10 

 

Figure 2-12 – Comparison of mixing rules for fixed 𝝓=0.3 
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2.5 Measurement of thermal conductivity of porous media 

There are many different experimental methods to determine the effective thermal conductivity 

of porous media. The methods can be classified in the following ways (Tsotsas and Martin 

1987). 

According to the equation to be solved: 

 Steady-state. The experiment continues until the steady-state conditions are achieved 

along with specified boundary conditions (constant temperature or constant heat flux). 

Temperature is then measured at certain points of the test section and the thermal 

conductivity of unknown material is calculated from the solution of the steady-state heat 

conduction equation. 

 Transient. The experiment starts with introducing a disturbance in temperature or heat 

flux and the response of the system is recorded. The response of the system is then fitted 

with a solution of the transient heat conduction equation in order to calculate the thermal 

conductivity of the unknown material. 

According to the direction of the heat flux: 

 Radial. In the radial systems heat propagates from the center of a cylindrical system 

towards the sides. In order to get the radial direction of heat flux, the heating rod is 

placed in the center of the cylindrical unknown material. 

 Axial. In the axial systems heat propagates from one side of the sample to the other. In 

order to obtain the axial direction of heat flux the material is placed between a heater and 

a cooler. 

According to the method: 

 Absolute. In absolute methods the effective thermal conductivity of unknown material is 

calculated directly from the measured data. 

 Comparative. In comparative methods a material with known thermal conductivity is 

used. The effective thermal conductivity of the unknown material is calculated from the 

ratio of thermal conductivities (unknown to know material). 

With the development of numerical computational fluid dynamics (CFD) software another class 

of experimental methods was introduced (Arthur, et al. 2015). The exact geometry of the 

measurement system is provided into CFD software as input along with the properties of all 
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materials used in the system. All the significant physical processes should be introduced into the 

model (heat conduction through materials, heat convection of fluids, heat radiation if applicable, 

cooling of the system by natural convection of air, thermal resistance layers in-between the 

contacts of materials, etc.). The introduced physics require some parameters that are not known 

and should be estimated. For this purpose known materials are used in order to calibrate the 

system and determine any unknown parameters. After the system is calibrated the unknown 

material sample is placed in the test section and the temperature distribution profiles are 

recorded. The final step is to match the obtained temperature profiles by solving the optimization 

problem with the tested material thermal conductivity as the unknown parameter. 

Several experimental data sources will be used for the purposes of this thesis. These data sources 

are the most commonly applied in the verification of the validity of the effective thermal 

conductivity mixing rules. 

The first data is from Prasad et al. (Prasad, et al. 1989) and is presented in Table 2-1. The 

experimental approach used is of the steady-state type with axial heat flux and direct method of 

calculating the effective thermal conductivity of the porous material. The porous medium is 

represented by solid beads of spherical shape filled with fluid. Different combinations of fluid 

(water and glycol) and solid (glass, steel, and acrylic) were used. Table 2-1 contains the 

following columns: Liquid – type of fluid used, Solid – type of solid particles used, 𝐷𝑝 – mean 

diameter of solid beads (mm), 𝜙 – porosity of the fluid-solid system, 𝑘𝑠 – thermal conductivity 

of solid beads, 
𝑘𝑠

𝑘𝑓
 – solid to fluid thermal conductivity ratio, 𝑘𝑒 – effective thermal conductivity 

of the fluid-solid system. 
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Liquid Solid 𝐷𝑝 𝜙 𝑘𝑠 
𝑘𝑓
𝑘𝑠

 𝑘𝑒 

- - 𝑚𝑚 
𝑚3

𝑚3
 

𝑊

𝑚 ⋅ 𝐾
 
𝑊

𝑚 ⋅ 𝐾
/
𝑊

𝑚 ⋅ 𝐾
 
𝑊

𝑚 ⋅ 𝐾
 

Water Glass 3.00 0.396 1.10 0.560 0.837 

Water Glass 25.4 0.425 1.10 0.562 0.842 

Glycol Glass 6.00 0.349 1.10 0.235 0.559 

Glycol Glass 25.4 0.427 1.10 0.235 0.597 

Glycol Steel 15.88 0.416 37.39 0.007 2.584 

Glycol Acrylic 12.77 0.402 0.16 1.630 0.221 

Water Acrylic 25.4 0.427 0.16 3.937 0.479 

Table 2-1 – Experimental data from Prasad et al. (Prasad, et al. 1989) 

The second data is from Nozad et al. (Nozad, Carbonell and Whitaker 1985) and is presented in 

Table 2-2. The experimental approach used is of transient type with axial heat flux and direct 

method of calculating the effective thermal conductivity of the porous material. Solid particles of 

spherical shape filled with fluid were used in the experiment. The higher fluid to solid thermal 

conductivity ratio was achieved by using urea, steel, bronze and aluminum as solid and water, 

glycerol and air as fluid. Table 2-2 contains the following columns: Liquid – type of fluid used, 

Solid – type of solid particles used, 𝐷𝑝 – mean diameter of solid particles (mm), 𝑘𝑓 – thermal 

conductivity of fluid (
𝑊

𝑚⋅𝐾
), 𝑘𝑠 – thermal conductivity of solid (

𝑊

𝑚⋅𝐾
), 
𝑘𝑓

𝑘𝑠
 – fluid to solid thermal 

conductivity ratio, 𝜙 – porosity of the fluid-solid system, 
𝑘𝑒

𝑘𝑓
 – effective thermal conductivity of 

the fluid-solid system normalized by thermal conductivity of fluid. 
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Liquid Solid 𝐷𝑝 𝑘𝑓 𝑘𝑠 
𝑘𝑠
𝑘𝑓

 𝜙 
𝑘𝑒
𝑘𝑓

 

- - 𝑚𝑚 
𝑊

𝑚 ⋅ 𝐾
 

𝑊

𝑚 ⋅ 𝐾
 
𝑊

𝑚 ⋅ 𝐾
/
𝑊

𝑚 ⋅ 𝐾
 
𝑚3

𝑚3
 

𝑊

𝑚 ⋅ 𝐾
/
𝑊

𝑚 ⋅ 𝐾
 

Water Urea 2.5 0.623 0.744 1.23 0.41 1.2 

Water Steel 3.95 0.623 21.6 35.7 0.39 5.5 

Water Bronze 3.95 0.623 117 193 0.4 7.4 

Glycerol Bronze 3.95 0.294 117 397 0.39 10.4 

Glycerol Aluminum 3.95 0.294 218 740 0.4 12.4 

Air Bronze 3.95 0.0268 117 4336 0.39 45.7 

Air Aluminum 3.95 0.0268 218 8077 0.41 145 

Air Aluminum 3.95 0.0268 218 8077 0.4 136 

Air Aluminum 3.95 0.0268 218 8077 0.4 129 

Table 2-2 – Experimental data from Nozad et al. (Nozad, Carbonell and Whitaker 1985)  
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Chapter 3: Pore scale modeling 

A typical modeling project consists of several stages: 

 Generation of geometry 

 Application of physics and boundary conditions 

 Solving the problem 

 Calculating the properties of interest 

For the purposes of heat transfer modeling at the pore scale level in this thesis, two phases are 

considered: a single fluid phase and a single solid phase. The solid phase is represented by 

touching spheres of different radii. The fluid phase fills the void space in-between the solid 

particles. The fluid is assumed to be stagnant (not moving). Thermal expansion of both phases is 

neglected. The contact between the solid grains is assumed to be ideal (no thermal resistive layer 

exists between the grains). Continuity of temperature and heat flux are assumed at the interface. 

Each phase is assumed to be isotropic in terms of heat transfer. Constant (but different) 

temperatures are specified as boundary conditions at the opposite sides of the porous media 

sample. The rest of the boundaries of the sample are assumed to be insulated (zero heat flux). 

The software used for the pore scale modeling is as follows: 

 Simpleware ScanIP Software 

 COMSOL Multiphysics 

 Matlab 

Simpleware ScanIP is a software package which allows to reconstruct a three-dimensional 

geometry from a given stack of computer tomography (CT) images (slices). The main feature of 

the Simpleware ScanIP is that it is able to create a mesh for a reconstructed geometry and export 

it in a COMSOL compatible format. COMSOL was used to apply physics, material properties 

and boundary conditions, to solve the numerical problem and calculate the final results. 

COMSOL solves equations by means of finite elements method. This method requires 

appropriate meshing of geometry. Matlab was used to automate the entire process: from creating 

the geometry and meshing it with Simpleware ScanIP to creating COMSOL file, solving the 

problem and extracting the final results. 

The following sections describe the process of virtual porous media generation, equations and 

boundary conditions used, along with the numerical experiments and results.  
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3.1 Virtual porous media generation 

There are many different way to generate virtual porous media. For the purposes of this thesis 

two of them are used: pattern generation and CT image reconstruction. 

Pattern generation 

In the pattern generation approach, a box of a given size is filled with spheres of radii from a 

specific particle size distribution. The spheres are assumed to be rigid. There are two different 

modifications of this approach: recursively add spheres one by one or generate them 

simultaneously. The second modification is used in this thesis. The term particle swelling is used 

for this approach. 

Particle size distribution data acts as input into the particle swelling algorithm. Examples of real 

particle size distributions of oil sands samples are presented in Figure 3-1. Particle size usually 

means the diameter of a particle and is measured in millimetres or phi units. Conversion from phi 

units to millimeters happens according to the following formula: 

𝑝ℎ𝑖 = − log2 𝑑 3.1 

 

 

Figure 3-1 – Example of particle size distribution of oil sands samples (courtesy of PERM 

Inc.) 
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The particle swelling algorithm consists of the following steps: 

1. Specify number of grains and target porosity of the media. 

2. Estimate the size of the box. 

3. Generate radii of the spheres from a given particle size distribution. 

4. Randomly distribute starting points inside the box and assign growth (swelling) rate to 

each point according to its final radius. 

5. Iteratively increase the radius of the spheres from point to final radius according to 

specified growth rate. With each iteration any overlapping conflicts are resolved by a 

slight change in position of the center of the overlapping spheres. 

6. The algorithm continues until the target porosity is reached or no conflicts can be 

resolved. 

A porous medium pattern is the output of the algorithm. The pattern is a set of spheres packed in 

a box. A two-dimensional pattern example is presented in Figure 3-2 and a three-dimensional 

pattern example is presented in Figure 3-3. 

 

Figure 3-2 – Two dimensional pattern 
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Figure 3-3 – Three dimensional pattern 

The generated pattern is a list of geometrical objects with known coordinates of centres and 

sizes. It is not a final geometry that can be used for modeling. In order to get the final geometry it 

needs to be meshed. There are two available methods to mesh the generated pattern within the 

team: COMSOL and Simpleware. 

The COMSOL approach requires creation of CAD geometry native to COMSOL. A typical 

pattern has around 2500 spheres. Taking this into consideration, the process of creating the 

native COMSOL geometry was automated by means of Matlab. The created COMSOL geometry 

is then meshed by COMSOL algorithms. The created mesh is of a good quality and is optimized 

for heat transfer physics. The workflow for this approach is presented in Figure 3-4. 

 

Figure 3-4 – Geometry based meshing workflow 



 

37 

The Simpleware approach requires that geometry is pixelized and converted into a stack of 

computer tomography images. The stack of images is then fed as input into Simpleware ScanIP 

software and a three-dimensional voxel-based geometry is reconstructed. A voxel is a three 

dimensional pixel. The reconstructed geometry is then meshed by Simpleware algorithms and 

exported in COMSOL-compatible format. The workflow for this approach is presented in Figure 

3-5. 

 

Figure 3-5 – Voxel based meshing workflow 

The main difference between two approaches is that in the first case the exact geometry is used 

for mesh creation, while in the second case the pixelized geometry is used. The terms geometry-

based mesh and voxel-based mesh will also be used to distinguish the two approaches throughout 

the text. Both meshing approaches were used and compared in this thesis. 

Computer Tomography Image Reconstruction 

In computer tomography (CT) image reconstruction method the sequence (stack) of CT images 

is used as input. A stack of CT images represents subsequent slices of the real object. A 

computer tomography scanner is used to obtain the stack of CT images, but it can be created 

artificially by pixelizing a known geometry. Each image consists of pixels with different 

greyscale values. The greyscale value of a pixel depends on the density of the underlying 

material. An example of a single CT image along with the stack is presented in Figure 3-6. 
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Figure 3-6 – Example of a CT image 

A special image reconstruction software is used to create a three dimensional representation of 

geometry from a stack of CT images. Simpleware ScanIP software was used for the purposes of 

this thesis. The sequence of steps required to reconstruct the three dimensional geometry is as 

follows: 

1. Create or obtain a stack of CT images. 

2. Feed the stack into Simpleware. 

3. Apply smoothing filters to reduce noise. 

4. Create masks by thresholding different greyscale levels. Each mask represents a different 

material (i.e. solid or fluid). 

5. Reconstruct geometry by applying meshing algorithms. 

The CT image reconstruction algorithm can create two scales of geometries: the pore scale level 

and the core scale level. The pore scale level geometry means that one phase can be clearly 

separated from the other (i.e. solid from fluid). In the core level scale there is no way to 

distinguish different phases, only macro scale materials with effective properties. But it is 
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possible to separate different domains (effective materials with different properties) based on 

density. 

In order to generate a pore scale level geometry one can use a cylindrical cell of glass beads 

saturated with water. This cell can be scanned using CT scanner and a stack of CT images can be 

obtained. Example of such a CT image is shown on Figure 3-7. The three dimensional geometry 

is then reconstructed with the workflow described above. Simpleware allows to rescale the 

geometry, so even if the size of glass beads is in order of centimeters, the scaled geometry can 

have the size in order of millimeters, micrometers or even nanometers. An example of pore scale 

level geometry generated by CT image reconstruction approach is presented in Figure 3-8. 

 

Figure 3-7 – Pore scale level CT image 

 

Figure 3-8 – Pore scale level reconstructed geometry 



 

40 

In order to generate a core scale level geometry one can scan a real core sample of cylindrical 

shape. The obtained stack of CT images contains information about different domains (as 

opposed to phases). An example of such an image is shown in Figure 3-6. The above described 

approach is applied in this case as well. The only difference is that domains are masked instead 

of phases. An example of core scale level geometry is presented in Figure 3-9. 

 

Figure 3-9 – Core scale level reconstructed geometry  
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3.2 Pore scale level physical model 

To calculate effective thermal conductivity of virtual porous media the following governing 

equations are to be solved. The assumptions for the model are presented at the beginning of this 

chapter. The schematic of the model is presented on Figure 3-10. 

 

Figure 3-10 – Pore scale level model 

Taking the model assumptions into consideration, the following set of equations along with 

boundary conditions defines the pore scale level heat transfer model: 

∇ ⋅ (𝑘∇𝑇) = 0 3.2 

∇𝑇 = 0, 𝑎𝑡 𝑥 = 𝑥1, 𝑥 = 𝑥2, 𝑦 = 𝑦1, 𝑦 = 𝑦2
𝑇 = 𝑇1, 𝑎𝑡 𝑧 = 𝑧1
𝑇 = 𝑇2, 𝑎𝑡 𝑧 = 𝑧2

 
3.3 

Boundary conditions means that two sides of the cube are held at constant but different 

temperatures while all other sides are insulated. One should note that thermal conductivity 𝑘 is 

not constant and depends on the position in the geometry (fluid or solid phase). Thermal 

conductivity map for the above geometry is presented in Figure 3-11. In this particular example 

grains have the thermal conductivity of sandstone (6𝑊/(𝑚 ⋅ 𝐾)) and fluid has the thermal 

conductivity of water (0.6𝑊/(𝑚 ⋅ 𝐾)). 
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Figure 3-11 – Thermal conductivity map 

A finite element method was used to solve Equation 3.2 using boundary conditions of Equation 

3.3. The original geometry has to be meshed and the governing equation has to be linearized over 

the meshed geometry. The meshed geometry is presented in Figure 3-12. 

 

Figure 3-12 – Meshed geometry 

The unknown variable of Equation 3.2 is temperature, which means that temperature distribution 

profile is the solution to this equation. The pore scale level temperature distribution profile for 

the above geometry is presented in Figure 3-13. 
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Figure 3-13 – Temperature distribution profile 

Given the steady-state temperature distribution profile one can calculate the heat flux using the 

Fourier’s Law: 

𝑞 = −𝑘∇𝑇 3.4 

The average heat flux over the constant temperature boundary can be calculated as the average 

value of the function in Equation 3.4 over the surface: 

𝑞𝑎𝑣𝑒 =
∫ 𝑞𝑑𝑠
𝑆

∫ 𝑑𝑠
𝑆

 
3.5 

Porosity of the system can be calculated as: 

𝜙 =
∫ 𝑑𝑣
𝑉𝐿

∫ 𝑑𝑣
𝑉

 
3.6 

The effective thermal conductivity of the porous medium can be calculated using the following 

equation: 

𝑘𝑒 =
𝑞𝑎𝑣𝑒

|𝑧2 − 𝑧1||𝑇2 − 𝑇1|
 3.7 
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3.3 Numerical experiments 

A set of numerical experiments was conducted in order to validate the appropriateness of the 

model described above. Four numerical experiments were conducted in order to analyze the 

model described above. The numerical experiments are described separately in corresponding 

subsections where results are also presented. A composite discussion of all numerical experiment 

results is presented in the next section for consistency. 

Numerical experiment #01 – Validation by real experimental data 

Experimental data from two sources were used for validation of the pore level heat transfer 

model. Experiments from Nozad, et al. (Nozad, Carbonell and Whitaker 1985) were numbered 

as N01 to N09 and from Prasad, et al. (Prasad, et al. 1989) as P01 to P07 as they appear in Table 

2-2 and Table 2-1. Both experimental sources contain all the required information to set up the 

numerical models. Namely, they contain the mean size of beads used in the experiments, the 

solid bead material of the saturating fluid used, along with the thermal conductivity for 

constituents. Porosity was also measured in the experiments and it was used in the numerical 

experiments as a target porosity for the generated virtual porous patterns. The results of the 

numerical experiment are presented in Table 3-1. 
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Test ID 
Liquid 

TC 

Solid 

TC 

Measured 

porosity 

Numerical 

porosity 

Measured 

ETC 

Numerical 

ETC 

 
𝑊

𝑚 ⋅ 𝐾
 

𝑊

𝑚 ⋅ 𝐾
   

𝑊

𝑚 ⋅ 𝐾
 

𝑊

𝑚 ⋅ 𝐾
 

P01 0.616 1.1 0.40 0.39 0.84 0.88 

P02 0.618 1.1 0.43 0.40 0.84 0.88 

P03 0.259 1.1 0.35 0.40 0.56 0.63 

P04 0.259 1.1 0.43 0.40 0.60 0.63 

P05 0.262 37.4 0.42 0.40 2.58 2.09 

P06 0.261 0.2 0.40 0.40 0.22 0.22 

P07 0.630 0.2 0.43 0.39 0.48 0.34 

N01 0.623 0.7 0.41 0.39 0.75 0.67 

N02 0.623 21.6 0.39 0.40 3.43 3.91 

N03 0.623 117.0 0.40 0.40 4.61 5.07 

N04 0.294 117.0 0.39 0.40 3.06 2.52 

N05 0.294 218.0 0.40 0.40 3.65 2.55 

N06 0.027 117.0 0.39 0.40 1.22 0.24 

N07 0.027 218.0 0.41 0.40 3.89 0.24 

N08 0.027 218.0 0.40 0.40 3.64 0.24 

N09 0.027 218.0 0.40 0.39 3.46 0.24 

Table 3-1 – Results of numerical experiment #01  
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Numerical experiment #02 – Effect of size of contact area 

It is known that the size of contact area between the grains is very important for modeling of heat 

transfer through porous media (Kaviany 1999). In order to estimate the influence of contact area 

on the effective thermal conductivity a simple model was set up. The model consists of two 

spheres with 1 mm radius (𝑟𝑠) located at a distance of 𝑑 mm and placed inside a cylinder (see 

Figure 3-14). The model is axial symmetric. Constant temperature boundary conditions are kept 

at the top and the bottom of the model. The outer surface of the cylinder is insulated. Thermal 

conductivity of fluid is kept constant at 1
𝑊

𝑚⋅𝐾
, while the thermal conductivity of solid was 10, 

100, 1000, 10000
𝑊

𝑚⋅𝐾
. The parametric numerical problem was solved with distance between the 

spheres as a parameter with range from -1 mm to 0.5 mm. Minus sign means that spheres are 

located apart while plus sign means that spheres are overlapped. 

 

Figure 3-14 – Numerical experiment #02 geometry 

The results of the numerical experiment are presented in Table A-1 in Appendices A. The 

smaller range for the distance between the spheres was further investigated (-0.1 mm to 0.1 mm) 

in order to better see the near contact region. Results are presented in Table A-2 in Appendices 

A. 
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Numerical experiment #03 – Effect of mesh size 

Numerical simulations with finite element method are sensitive to mesh element size on which 

equations are to be solved. In order to investigate the effect of mesh size on pore scale level heat 

transfer model the following numerical experiment was set up. The model consists of two 

spheres placed inside the cube (see Figure 3-15). Spheres are solid and the rest is fluid. Thermal 

conductivity of fluid was 1
𝑊

𝑚⋅𝐾
, while thermal conductivity of solid was varying in range from 

10−4
𝑊

𝑚⋅𝐾
  to 104

𝑊

𝑚⋅𝐾
 . Two boundaries were kept at a constant temperature while the others were 

insulated. Two cases were investigated: touching spheres and non-touching spheres. For each 

case the parametric numerical model was solved with mesh size being a varying parameter. Five 

different meshes were used and its parameters are summarized in Table 3-2. The meshes are 

presented in Figure 3-16. 

 

Figure 3-15 – Numerical experiment #03 geometry  
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Parameter Mesh1 Mesh2 Mesh3 Mesh4 Mesh5 

Maximum element size, mm 0.201 0.161 0.111 0.0704 0.0402 

Minimum element size, mm 0.0362 0.0201 0.00804 0.00302 0.000402 

Maximum element growth rate 1.5 1.45 1.4 1.35 1.3 

Curvature factor 0.6 0.5 0.4 0.3 0.2 

Resolution of narrow regions 0.5 0.6 0.7 0.85 1 

Table 3-2 – Summary of mesh parameters 

 

Figure 3-16 – Different mesh size 

The cases of touching spheres and non-touching spheres numerical experiment results are 

presented in Table 3-3 and Table 3-4 respectively. 
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𝑘𝑠, 

𝑊

𝑚 ⋅ 𝐾
 

Effective thermal conductivity, 
𝑊

𝑚⋅𝐾
 

Mesh1 Mesh2 Mesh3 Mesh4 Mesh5 

0.0001 0.33 0.33 0.33 0.33 0.33 

0.0003 0.33 0.33 0.33 0.33 0.33 

0.0007 0.33 0.33 0.33 0.33 0.33 

0.0018 0.34 0.34 0.34 0.34 0.34 

0.0048 0.34 0.34 0.34 0.34 0.34 

0.0127 0.35 0.35 0.35 0.35 0.35 

0.0336 0.36 0.36 0.36 0.36 0.36 

0.089 0.41 0.41 0.41 0.41 0.41 

0.23 0.53 0.53 0.53 0.53 0.53 

0.62 0.78 0.78 0.78 0.78 0.78 

1.6 1.30 1.30 1.30 1.30 1.30 

4.3 2.26 2.26 2.26 2.26 2.26 

11.3 3.85 3.85 3.85 3.85 3.85 

30 6.53 6.53 6.52 6.52 6.51 

79 11.88 11.87 11.83 11.79 11.78 

207 24.70 24.65 24.51 24.37 24.29 

546 57.81 57.67 57.22 56.78 56.55 

1438 144.81 144.41 143.17 141.93 141.25 

3793 374.08 373.01 369.65 366.28 364.45 

10000 978.52 975.68 966.76 957.78 952.90 

Table 3-3 – Effect of mesh size (touching spheres)  
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𝑘𝑠, 

𝑊

𝑚 ⋅ 𝐾
 

Effective thermal conductivity, 
𝑊

𝑚⋅𝐾
 

Mesh1 Mesh2 Mesh3 Mesh4 Mesh5 

0.000 0.36 0.35 0.35 0.35 0.35 

0.000 0.36 0.35 0.35 0.35 0.35 

0.001 0.36 0.35 0.35 0.35 0.35 

0.002 0.36 0.36 0.36 0.36 0.36 

0.005 0.36 0.36 0.36 0.36 0.36 

0.013 0.37 0.37 0.37 0.37 0.37 

0.034 0.38 0.38 0.38 0.38 0.38 

0.089 0.43 0.43 0.43 0.43 0.43 

0.23 0.54 0.54 0.54 0.54 0.54 

0.62 0.79 0.79 0.79 0.79 0.79 

1.6 1.29 1.29 1.29 1.29 1.29 

4.3 2.19 2.19 2.19 2.19 2.19 

11.3 3.51 3.52 3.54 3.54 3.54 

30 4.99 5.03 5.08 5.08 5.08 

79 6.15 6.22 6.34 6.34 6.34 

207 6.79 6.90 7.08 7.08 7.08 

546 7.09 7.21 7.42 7.41 7.42 

1438 7.21 7.34 7.56 7.55 7.54 

3793 7.25 7.39 7.62 7.60 7.48 

10000 7.2725 7.4049 7.6403 7.5844 7.7031 

Table 3-4 – Effect of mesh size (non-touching spheres)  
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Numerical experiment #04 – Effect of meshing approach 

In order to compare the two different meshing approaches described in the previous section, the 

same virtual porous media pattern was meshed using the geometry-based meshing and voxel-

based meshing. Data from Prasad et al. (Prasad, et al. 1989) were used as a basis for the porous 

pattern generation. Patterns created for numerical experiment #1 (P01-P07) were also pixelized 

and converted into voxel-based geometry. For each porous pattern a voxel-based mesh was 

created and an effective thermal conductivity was calculated. Results are presented in Table 3-5. 

Test ID Liquid TC Solid TC 
Experiment Geometry-based mesh Voxel-based mesh 

Porosity ETC Porosity ETC Porosity ETC 

P01 0.616 1.1 0.40 0.837 0.39 0.880 0.41 0.667 

P02 0.6182 1.1 0.43 0.842 0.40 0.884 0.47 0.841 

P03 0.2585 1.1 0.35 0.559 0.40 0.635 0.41 0.629 

P04 0.2585 1.1 0.43 0.597 0.40 0.634 0.41 0.630 

P05 0.26173 37.4 0.42 2.584 0.40 2.095 0.41 6.06 

P06 0.2608 0.2 0.40 0.221 0.40 0.223 0.224 0.413 

P07 0.62992 0.2 0.43 0.479 0.39 0.341 0.347 0.413 

Table 3-5 – Numerical experiment #04 results  
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Numerical experiment #05 – Thermal conductivity of sandstone 

Three different approaches to create porous space were used in this numerical study. The first 

approach was based on CT images of glass beads packed in a cylindrical tube. Seven different 

porous patterns were generated (USN1 to USN7). The second approach was based on the pattern 

generation algorithm. Seven different porous patterns were generated (USD1 to USD7). The 

third approach was based on CT images of real core samples. Seven different porous patterns 

were generated (CLE1 to CLE7). A summary of the patterns is presented in Table 3-6. 

Patterns USD1, USN1 and CLE1 were “saturated” with either air, water or oil at different 

temperatures. Thermal conductivities of sandstone (Birch and Clark 1940), air (McQuillan, 

Culham and Yovanovich 1984), water (Farouq Ali 1974) and oil (Bland and Davidson 1967) at 

different temperatures were taken from literature and are presented in Table 3-7.The results of 

this numerical experiment are presented in Table 3-8. 

Patterns USD1-USD7, USN1-USN7, CLE1-CLE7 were saturated with either air, water or oil at 

constant temperature. The results of this numerical experiment are presented in Table 3-9. 

Pattern # 
USD USN CLE 

Length, mm Porosity Length, mm Porosity Length, mm Porosity 

1 5 0.46 0.5 0.55 34 0.3 

2 5 0.43 0.5 0.69 19 0.43 

3 5 0.45 0.5 0.69 26 0.38 

4 5 0.44 0.5 0.18 19 0.36 

5 5 0.43 0.5 0.29 17 0.34 

6 5 0.44 0.5 0.2 21 0.4 

7 5 0.47 0.5 0.4 21 0.35 

Table 3-6 – Summary of patterns for numerical experiment #05 
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Temperature Air TC Water TC Oil TC Sand TC 

°𝐶 
𝑊

𝑚 ⋅ 𝐾
 

𝑊

𝑚 ⋅ 𝐾
 

𝑊

𝑚 ⋅ 𝐾
 

𝑊

𝑚 ⋅ 𝐾
 

20 0.0256 0.601 0.114 6.32 

40 0.0271 0.628 0.113 5.91 

60 0.0285 0.650 0.112 5.55 

80 0.0299 0.667 0.110 5.23 

100 0.0313 0.679 0.109 4.95 

120 0.0326 0.686 0.108 4.70 

140 0.0339 0.689 0.107 4.49 

160 0.0352 0.687 0.105 4.31 

180 0.0364 0.679 0.104 4.15 

200 0.0377 0.668 0.103 4.01 

Table 3-7 – Thermal conductivity of air, water, oil and sand 

 USD1 ETC, 
𝑊

𝑚⋅𝐾
 USN1 ETC, 

𝑊

𝑚⋅𝐾
 CLE1 ETC, 

𝑊

𝑚⋅𝐾
 

Temperature Air Water Oil Air Water Oil Air Water Oil 

20 1.34 2.49 1.59 0.95 2.04 1.17 2.28 3.24 2.48 

60 1.19 2.36 1.42 0.85 1.95 1.05 2.01 2.99 2.20 

100 1.08 2.23 1.29 0.77 1.87 0.96 1.81 2.77 1.98 

140 1.00 2.10 1.19 0.71 1.78 0.89 1.66 2.59 1.81 

180 0.94 1.99 1.11 0.67 1.70 0.83 1.54 2.43 1.69 

220 0.89 1.89 1.05 0.64 1.61 0.79 1.46 2.29 1.59 

Table 3-8 – Numerical experiment #05 effective thermal conductivity vs. temperature  
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# 
USD ETC, 

𝑊

𝑚⋅𝐾
 USN ETC, 

𝑊

𝑚⋅𝐾
 CLE ETC, 

𝑊

𝑚⋅𝐾
 

Air Water Oil Air Water Oil Air Water Oil 

1 1.34 2.49 1.59 0.95 2.04 1.17 2.28 3.24 2.48 

2 1.52 2.66 1.77 0.30 1.44 0.55 1.10 2.27 1.36 

3 1.41 2.55 1.65 0.30 1.44 0.55 0.78 2.18 1.10 

4 1.45 2.58 1.69 4.09 4.60 4.19 1.34 2.65 1.62 

5 1.53 2.67 1.78 2.91 3.69 3.07 1.76 2.87 2.01 

6 1.43 2.58 1.68 3.82 4.39 3.93 1.40 2.53 1.65 

7 1.22 2.40 1.48 1.88 2.86 2.08 1.60 2.75 1.85 

Table 3-9 – Numerical experiment #05 effective thermal conductivity vs. porosity  
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3.4 Discussion of results 

Five different numerical experiments were conducted in order to analyze the pore scale level heat 

transfer model. Numerical experiment #01 was conducted in order to validate the model with 

real experimental data. Information about experimental setup, diameter of particles and materials 

used in the experiments of Prasad et al. (Prasad, et al. 1989) and Nozad et al. (Nozad, Carbonell 

and Whitaker 1985) allowed to reproduce the porous media used in these experiments. First of 

all one should mention that porosity of the system was on average within 1.5% (absolute value) 

with the maximum of 5% (absolute value) for experiment P03. The value of porosity for this 

experiment looks suspicious because for all of the other experiments it was more than 39%, 

while for this particular experiment it was 35%. Comparison of measured porosity vs. numerical 

porosity is presented in Figure 3-17. 

 

Figure 3-17 – Experimental vs. numerical porosity (numerical experiment #01) 

As it comes to the effective thermal conductivity comparisons the picture becomes more 

interesting. Comparison of measured vs. numerical effective thermal conductivity is presented in 

Figure 3-18. For the set of experiments from P01-P07 the agreement is on average within 10%, 

while for the set of experiments N01-N09 the difference between measured and modelled 

effective thermal conductivities deteriorates, especially for experiments N06 to N09 where it 

becomes unacceptable. In order to investigate the cause for such a deviation the results should be 
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presented in normalized form. In Figure 3-19 the effective thermal conductivity is normalized by 

fluid thermal conductivity in ordinate axis and solid thermal conductivity is normalized by fluid 

thermal conductivity in abscissa axis. From this figure one can see that the higher the solid to 

fluid thermal conductivity ratio the higher the difference between modeled and measured 

effective thermal conductivity. In this context the experimental data P01-P07 covers mostly the 

lower part of the solid to fluid thermal conductivity ratio range (below 150), while the data N01-

N09 covers the higher part of the solid to fluid thermal conductivity range (above 34). According 

to Figure 3-19 the deviation of more than 20% (of measured ETC) starts to appear mostly after 

the solid to fluid thermal conductivity ratio of 741, which corresponds to the experiments N05 to 

N09. 

Two reasons are suggested to cause this problem: the effect of contact area between the grains 

and the effect of mesh size (numerical problem). Each of the reasons resulted in a separate 

numerical experiment. Numerical experiment #02 was conducted to investigate the effect of 

contact area between the grains and its influence on the effective thermal conductivity. 

Numerical experiment #03 was conducted to see how the size of finite elements affects the 

results of the numerical problem or in other words how sensitive the outcome to the size of the 

mesh.  
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Figure 3-18 – Experimental vs numerical ETC (numerical experiment #01) 

 

Figure 3-19 – Normalized measured vs numerical ETC (numerical experiment #01) 

The main purpose of numerical experiment #02 was to see the rate of effective thermal 

conductivity change with changing distance between two spheres (from some distance apart to 

the moment of touching and to some distance overlapping). 

The results of numerical experiment #02 are presented in Figure 3-20 for a wide range of 

distances between the spheres and in Figure 3-21 for a narrow range of distances near the 
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contact. On each of the graphs y-axis represents the normalized effective thermal conductivity of 

the system and x-axis represents the distance between the spheres in fraction of sphere radius. 

Minus sign means that spheres are located apart, zero means that there is a point contact between 

the spheres and plus sign means that spheres overlap. When the overlapping of spheres increases 

the contact area also increases accordingly. Each of these two graphs can be logically divided 

into three parts: before spheres touched each other, moment of touching and after the spheres 

touched each other. Figure 3-21 is a refinement of Figure 3-20 near the moment of touching of 

spheres to better capture the changes in effective thermal conductivity of the system. 

 

Figure 3-20 – Effect of contact area (wide range) 
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Figure 3-21 – Effect of contact area (near the contact) 

The rate of ETC change is measured in 
𝑊

𝑚⋅𝐾
 per unit change in distance between the spheres. For 

convenience the units of rate of change are omitted. Before the moment of touching the rate of 

ETC change varies in the range from 1 to 1577 with average of 31 for 𝐾𝑠 of 10000, in the range 

from 1 to 854 with average of 20 for 𝐾𝑠 of 1000, in the range from 1 to 255 with average of 10 

for 𝐾𝑠 of 100 and in the range from 1 to 15 with the average of 2.4 for 𝐾𝑠 of 10. 

The rate of ETC change at the moment of touching is 107433 for 𝐾𝑠 of 10000, which is almost 

3500 times faster than the average rate of ETC change before the moment of touching. The rate 

of ETC change at the moment of touching is 9800 for 𝐾𝑠 of 1000, which is almost 500 times 

faster than the average rate of ETC change before the moment of touching. The rate of ETC 

change at the moment of touching is 625 for 𝐾𝑠 of 100, which is almost 60 times faster than the 

average rate of ETC change before the moment of touching. The rate of ETC change at the 

moment of touching is 16 for 𝐾𝑠 of 10, which is almost 7 times faster than the average rate of 

ETC change before the moment of touching. 

The average rate of ETC change after the moment of touching is 12300 for 𝐾𝑠 of 10000, 1200 for 

𝐾𝑠 of 1000, 110 for 𝐾𝑠 of 100 and 7 for 𝐾𝑠 of 10. The rate of ETC change at the moment of 
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touching is approximately 9, 8, 6 and 2 times higher than the rate of ETC change after the 

moment of touching for 𝐾𝑠 of 10000, 1000, 100 and 10 respectively. 

The summary of the rate of ETC change is presented in Table 3-10. There are several 

conclusions that can be drawn from the numerical experiment #02: 

 The effective thermal conductivity of porous media with touching grains is in the order of 

magnitudes higher than for the one without touching grains. 

 The effect of contact area is larger for larger solid to fluid thermal conductivity ratios. 

 The average rate of ETC change is dramatically smaller for the case of non-touching 

spheres in comparison to the case of touching spheres. 

 There is a huge jump in effective thermal conductivity when the spheres switch from 

non-touching position to touching. 

Porous patterns from tests with ID N07-N09 from numerical experiment #01 exhibit a small 

distance between the spheres. This was done in order to be able to mesh the geometry using 

COMSOL build-in tools. If the spheres have a single point contact this creates a problematic 

place for geometry meshing. The average distance between the spheres that should touch each 

other for N07-N09 is around 0.0033 of the mean radius of the spheres, solid to fluid thermal 

conductivity ratio is around 8077. Using Table A-1 in Appendices A and applying double 

interpolation in between the rows and columns of the table one can calculate that the ETC 

growth rate is around 12.8. If we apply this correction factor to the effective thermal conductivity 

of numerical results N07-N09 we get effective thermal conductivity of approximately 3 
𝑊

𝑚⋅𝐾
, 

which is close to experimental result of 3.46 
𝑊

𝑚⋅𝐾
. This rough correction shows that the physical 

model used can be applied to the wide range of solid to fluid thermal conductivity ratios.  
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Fluid to solid TC 

ratio 
Touching 

Rate of change 

Min Max Average 

10000 

Before 0.93 1577 31 

At the 

moment 
107433 

After 5234 41925 12301 

1000 

Before 0.95 9799 277 

At the 

moment 
2558 

After 522 2222 1012 

100 

Before 1.03 625 38 

At the 

moment 
164 

After 51 152 86 

10 

Before 1.09 625 45 

At the 

moment 
132 

After 51 124 79 

Table 3-10 – Summary of rate of ETC change for different fluid to solid TC ratio 

As it was shown above, the contact area between the grains significantly affects effective thermal 

conductivity predictions. But how the size of the mesh elements affects the results of numerical 

modeling? Numerical experiment #03 was designed to answer this question. The data from Table 

3-3 and Table 3-4 are plotted in Figure 3-22 and Figure 3-23 respectively. 
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Figure 3-22 – Effect of mesh size on ETC (touching spheres) 

 

Figure 3-23 – Effect of mesh size on ETC (non-touching spheres) 
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From the graphs one can see that the effective thermal conductivity is not sensitive to mesh size 

for the solid to fluid thermal conductivity ratio less than 30 in case of non-touching spheres and 

less than 200 in case of touching spheres. For solid to fluid thermal conductivity ratios higher 

than the above mentioned values in both cases the effect of mesh size is not very significant. In 

the worst case for touching spheres the difference in ETC between the finest and the coarsest 

mesh is around 6%, while for non-touching spheres it is around 3%. The overall conclusion that 

numerical dependence on the mesh size for the heat transfer at a pore scale level is not 

significant for low solid to fluid thermal conductivity ratios. But when we move to a higher 

values of solid to fluid thermal conductivity ratios the preference should be given to finest mesh 

possible. Of course the finer the mesh, the more elements it contains and the more time required 

to solve the numerical problem. Thus there should be a balance between the number of mesh 

elements and computational time so that the error in calculating effective thermal conductivity of 

porous pattern stays within acceptable range. 

Numerical experiment #04 was conducted to see the difference between two meshing 

approaches: voxel-based and geometry based. For that purpose exactly the same geometries P01-

P07 were meshed using these two approaches and results of numerical modelling are plotted in 

Figure 3-24 and Figure 3-25. From the first figure one can notice that in general there is a good 

match in porosity between the different meshing approaches. Only one pattern P02 has 

abnormally high porosity for voxel-based meshing approach. As for the effective thermal 

conductivity voxel-based meshing has good agreement for all the cases but P05. In case of P05 

solid to fluid thermal conductivity ratio is much higher than in other cases. A possible 

explanation to this is the effect of contact area between the grains. Voxel-based meshing assumes 

certain resolution for images. In our case 250x250x250 pixels resolution was used to pixelize the 

original geometry. There are 2000 grains in a pattern, which means that approximately √2000
3

≈

12 grains are located along each axis direction, which in turn means approximately 21 pixel per 

grain. This leads to very rough representation of original geometry. This resolution was chosen 

due to the limitation of Simpleware ScanIP software. At 250x250x250 resolution meshing time 

is about 2 hours per porous pattern, while at 500x500x500 the program stuck and does not 

produce any result. In comparison the meshing time of geometry-based approach is 10-30 

minutes per porous pattern depending on mesh size. Also the number of elements in voxel-based 
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mesh is much higher than in geometry-based and as a result the computational time increases 

from 30 minutes for geometry-based mesh to 3 hours for voxel-based mesh. 

As a result of these three disadvantages of voxel-based meshing the preference is given to the 

geometry-based meshing, which was used for all other numerical experiments. 

 

Figure 3-24 – Effect of meshing approach on porosity 

 

Figure 3-25 – Effect of meshing approach on effective thermal conductivity 



 

65 

Numerical experiment #05 was conducted to compute the effective thermal conductivity of 

sandstones with different porosities, saturated with different fluids and at different temperatures. 

USD samples were generated using pattern generation algorithm and have a small range of 

porosity variation (0.42 – 0.48), due to the fact that the patterns were produced as tight as 

possible. Certain contact area between the grains was considered because of its importance. USN 

samples were generated from CT scans of the glass beads placed inside the cylinder. Variation of 

porosity was then created by artificially fusing grains and thus reducing the pore space (0.18 – 

0.69). CLE samples were created using CT scans of real core samples. Using a certain threshold 

level of grayscale values the porous space was created. Different samples represent different 

parts of real core. Variation of porosity is in the range of 0.3 to 0.43. 

The first part of numerical experiment #05 was related to analyzing the effect of temperature 

variation on the effective thermal conductivity of porous samples. For this purpose temperature 

dependent properties of constituents were used. The results of this part of the experiment are 

presented in Figure 3-26, Figure 3-27 and Figure 3-28. From the graphs one can conclude that 

effective thermal conductivity is a linear function of temperature with R2 values close to one. 

When temperature increases the effective thermal conductivity of sample decreases. Most likely 

this behaviour is due to the fact that sand grains have the highest thermal conductivity among 

other constituents and its value significantly drops with temperature. In other words sand 

material dictates the overall thermal conductivity behaviour in the sandstone samples. 

The second part of numerical experiment #05 was related to analyzing the effect of porosity 

variation on the effective thermal conductivity of porous samples. The results of this part of the 

experiment are presented in Figure 3-29, Figure 3-30 and Figure 3-31. From the graphs one can 

notice that the effective thermal conductivity of porous samples decreases with increasing 

porosity. This fact is reasonable as it agrees with the limiting relations 1 and 2 described in 

Chapter 2. When porosity decreases the solid phase increases in volume and thus the effective 

thermal conductivity approaches that of solid phase (sand in this case), so it increases; and 

otherwise when porosity increases. Also one can notice that there is a jump in effective thermal 

conductivity of CLE samples vs. porosity. This might be due to the fact that CT images can only 

be meshed using voxel-based approach and as it was demonstrated from other numerical 

experiment that can sometimes give suspicious results.  
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Figure 3-26 – Temperature dependent ETC of USD1 sample 

 

Figure 3-27 – Temperature dependent ETC of USN1 sample 

 

Figure 3-28 – Temperature dependent ETC of CLE1 sample  
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Figure 3-29 – Porosity dependent ETC of USD samples 

 

Figure 3-30 – Porosity dependent ETC of USN samples 

 

Figure 3-31 – Porosity dependent ETC of CLE samples  
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Chapter 4: A novel mixing rule for effective thermal conductivity predictions 

In Chapter 2 different mixing rules for predicting effective thermal conductivity of porous media 

were presented. All of them include thermal conductivity of constituents and porosity as input 

parameters, as well as all of them are very simple to use. Also it was mentioned that particle 

(gran) size distribution is one of the parameters that affects the effective thermal conductivity of 

porous media (especially unconsolidated sands). But none of the presented mixing rules can use 

particle size distribution as input parameter. 

In Chapter 3 it was shown that a porous pattern generation algorithm along with geometry-based 

meshing and heat transfer physics is able to predict the effective thermal conductivity of porous 

media. Sensitivity analysis showed the importance of the contact area between the grains. 

In this chapter a novel mixing rule is developed to include the particle size distribution of porous 

media as input parameter. The mixing rule is expected to apply in unconsolidated media such as 

oil sands. 
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4.1 Generation of mixing rule based on particle size distribution 

In order to generate custom mixing rule for a specific porous media, the only parameter required 

as input is the particle (grain) size distribution of that media. An example of the particle size 

distribution of a real oil sand sample is presented in Figure 4-1. This sand can be classified as 

fine and very fine sand with coarse silt. Using this particle size distribution one can generate a 

porous pattern with the procedures described in Chapter 3. The resulting oil sand sample porous 

pattern is presented in Figure 4-2. The next step is to mesh the porous patter using geometry-

based meshing approach. The result of this step is presented in Figure 4-3. Subsequently the heat 

conduction parametric problem is solved with solid to fluid thermal conductivity ratio being a 

variable parameter. The result of this step is a dependency curve of the effective thermal 

conductivity against the solid fluid thermal conductivity ratio. For this particular oil sand the 

result is presented in Figure 4-4. The final step is to fit the curve with a simple to use equation. 

The perfect fit is achieved by using sigmoid function: 

𝐾𝑒 =
𝑎

𝑏 + 𝑒−𝑐 ln𝐾𝑠
+ 𝑑 4.1 

Where all the coefficients 𝑎, 𝑏, 𝑐 and 𝑑 are positive. The coefficient of determination 𝑅2 for this 

particular example is 0.9997. The above described workflow for the custom mixing rule 

generation is presented in Figure 4-5. 

An additional set of numerical experiments was conducted in order to analyze the ability of new 

mixing rule approach to predict the effective thermal conductivity of porous media with known 

particle size distribution. The main question to be answered is how many grains is enough for the 

generated virtual porous media to be representative of the bulk porous media. 
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Figure 4-1 – Particle size distribution of oil sand sample 

 

Figure 4-2 – Porous pattern of oil sand sample 
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Figure 4-3 – Meshed porous pattern of oil sand sample 

 

Figure 4-4 – Custom mixing rule for oil sand sample 

 

Figure 4-5 – Custom mixing rule generation workflow 
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4.2 Numerical experiments 

In order to be representative of the bulk each generated porous pattern should have two 

important properties: 

 Isotropy of thermal conductivity 

 Different implementations of the same particle size distribution should have the same 

effective thermal conductivity 

Both of the properties are dependent on a single parameter – the number of grains in the 

generated pattern. Numerical experiment #06 was conducted in order to estimate the optimal 

number of grains required for a generated porous pattern to fulfill the isotropy and homogeneity 

criteria. Numerical experiment #07 shows the experimental verification of applicability of the 

new mixing rule. Numerical experiment #08 was conducted to evaluate the effect of different 

particle size distributions on the mixing rule coefficients. 

Numerical experiment #06 – Optimal number of grains estimation 

In this numerical experiment a single particle size distribution was used and is presented in Table 

4-1and Figure 4-6. The diameter of particles ranges from 39 µm to 160 µm with the highest 

frequency of particles at 69 µm. It should be mentioned that frequency that corresponds to 

diameter is based on number of grains as opposed to the scenario when the frequency is based on 

the weight of particles. The latter is usually an output from particle size distribution analysis 

(experiment). To convert from mass based frequency to number based frequency the following 

approach should be applied. An arbitrary mass of sample is assumed and it should be large 

enough. The mass of particles with a certain diameter is calculated from total mass using mass 

based frequency. Then that mass is divided by density of grains and the volume of a single grain 

with that diameter is calculated. The result is the number of grains that corresponds to that 

diameter. Finally the number based frequency can be calculated as the ratio of number of grains 

corresponding to that diameter to the total number of grains. Number based particle size 

distribution is used as input into porous patter generation algorithm. 
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Diameter, µm Frequency, % 

39 3.547 

59 7.094 

64 13.481 

69 19.8683 

77 16.41 

85 12.951 

92 10.14 

99 7.33 

106 4.992 

113 2.653 

136 1.395 

160 0.138 

Table 4-1 – Particle size distribution for experiment #06 

 

Figure 4-6 – Particle size distribution for numerical experiment #06 
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For the particle sized distribution in Table 4-1 a set of porous patterns was generated. The set 

consists of six groups. In each group all patterns has the same number of grains. Patterns form 

group 1 contain 300 grains each, from group 2 – 700 grains, from group 3 – 1100 grains, from 

group 4 – 1500 grains, from group 5 – 2000 grains and from group 6 – 2500 grains. Each group 

has 5 subgroups. In each subgroup the target porosity used to generate patterns is the same. 

Patterns from subgroup 1 has target porosity of 0.4, from subgroup 2 – 0.35, from subgroup 3 – 

0.3, from subgroup 4 – 0.25 and from subgroup 5 – 0.2. The actual generated porosity value is 

higher than the target porosity, but it decreases from subgroup 1 to subgroup 5. Each subgroup 

contains 5 different random implementations of porous patterns with the number of grains 

corresponding to the group and target porosity corresponding to the subgroup. The total number 

of generated porous patterns is 150. For each pattern the thermal conductivity of solid was 

considered 6 𝑊/(𝑚 ⋅ 𝐾) , which corresponds to the thermal conductivity of sand; and the 

thermal conductivity of fluid was considered 0.6 𝑊/(𝑚 ⋅ 𝐾), which corresponds to the thermal 

conductivity of water. 

For each pattern two pore scale heat transfer models were set up. One model is in the X direction 

and the other one is in the Z direction. This was done in order to calculate the coefficient of 

anisotropy of the generated patterns and see the effect of the number of grains on the coefficient 

of anisotropy. For each model the effective thermal conductivity was calculated twice using the 

values of heat flux at opposite boundaries. These two values were expected to be very close and 

were used as an indication of numerical stability of results. 

The results of numerical experiment #06 are presented in Table A-3 in Appendices A. In some 

cases it was not possible to mesh the pattern, so the results for that patterns are omitted. 

First of all there is a need to analyze how porosity changes with different levels of target porosity 

and different number of grains. In Figure 4-7 porosity vs. pattern number is presented for 

different number of grains. Patterns with number 1-5 have the highest target porosity of 0.4, 

while patterns with numbers 21-25 have the lowest target porosity of 0.2. From graph we can see 

that the lower target porosity, the lower the pattern porosity. This trend applies to any number of 

grains. Also it should be mentioned that for the smallest target porosity of 0.2 (patterns 21-25 on 

figure) the variation in porosity is the smallest: from 0.383 to 0.402; while for the largest target 

porosity of 0.4 (patterns 1-5 on figure) the variation in porosity is the largest: from 0.459 to 
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0.523. Porosity of larger than 0.45 seems to be unrealistic for real unconsolidated porous media, 

while values of 0.4 and lower are acceptable. It means that in order to make the pattern as tight 

as possible the number of grains should be more than 2000 and the target porosity should be at 

least 0.2 or smaller. Pattern generation time increases with decreasing the target porosity. For 

2500 grains and 0.2 target porosity the average pattern generation time was around 2 hours. 

There should be specifically mentioned that the value of the target porosity to calculate the 

suggested final size of the box (final dimensions of the porous media) based on the mean 

diameter of the grains and the number of grains. But the actual final dimensions of the box can 

be slightly larger from the proposed ones. The increase is required in order to accommodate all 

the required grains in the box. The graph in Figure 4-7 has plateaus, which means that for a 

particular target porosity and particular number of grains the generated porous patterns have very 

close values of porosity and very close values of thermal conductivity (from Table A-3). This in 

turn demonstrates the repeatability of the pattern generation algorithm. For the custom mixing 

rule generation it means that any generated porous pattern is homogeneous and thus 

representative of the bulk porous media, so we can generate and work with only one pattern for a 

particular particle size distribution. This conclusion is restricted to heat transfer only. 

 

Figure 4-7 – Porosity variation for different target porosity 
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For each of the pattern the effective thermal conductivity was calculated for two opposite 

borders: for heat inlet and heat outlet. This was done in order to avoid the instability of numerical 

solution. With default relative tolerance of 10-3 the effective thermal conductivity calculated at 

two opposite borders was significantly different. When the relative tolerance was decreased to 

10-5 the difference between the effective thermal conductivity on the two opposite borders 

became insignificant. From Table A-3 one can calculate that the average difference in effective 

thermal conductivity calculated at the opposite borders is 0.54%. It shows that the model is 

numerically stable and for the later models we can only calculate effective thermal conductivity 

at one of the two borders. 

The next step is to analyze the heat conduction anisotropy of generated porous patterns. For this 

purpose the coefficient of anisotropy is calculated for each pattern as the ratio of horizontal (in X 

direction) thermal conductivity to vertical one (in Z direction). The graph of coefficient of 

anisotropy vs. number of grains is presented in Figure 4-8. The variation in coefficient of 

anisotropy decreases with increasing the number of grains. The coefficient of anisotropy varies 

from 0.99 to 1.06 for 300 grains and from 1 to 1.01 for 2500 grains. It means that for the number 

of grains equal to 2500 the anisotropy is around 1% and the porous pattern can be considered as 

isotropic, while for the 300 grains the anisotropy is around 6%. 

 

Figure 4-8 – Variation of coefficient of anisotropy with number of grains 
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Finally we are interested in the dependency of effective thermal conductivity on porosity. The 

graph in Figure 4-9 shows the dependency of effective thermal conductivity on porosity. The 

dependency is linear with the coefficient of determination of 0.98. It means that for a given 

particle size distribution the effective thermal conductivity of sand saturated with water has the 

linear dependency of effective thermal conductivity on porosity and using extrapolation the 

effective thermal conductivity can be predicted for the lower values of porosity with good 

accuracy. 

 

Figure 4-9 – Dependency of effective thermal conductivity on porosity 

The following conclusions can be derived as a result of numerical experiment #06: 

 The porous patterns produce lower values of porosity for increasing number of grains or 

in other words the porosity of the porous pattern with a given particle size distribution 

approaches its limiting value. 

 The anisotropy of a porous pattern decreases with increasing number of grains 

 The optimal number of grains for the porous pattern to be isotropic and have realistic 

value of porosity should be at least 2000 for the particle size distributions tested. 
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 A single pattern with the number of grains more than 2000 and target porosity 0.2 is 

representative of bulk porous media for the purposes of thermal conductivity prediction. 

 The effective thermal conductivity of a porous pattern is a linear function of porosity for 

a given particle size distribution. 

Numerical experiment #07 – Analysis of effect of particle size distribution 

In this numerical experiment four different particle size distributions of oil sands were used for 

generation of the novel mixing rule. The particle size distributions are presented in Figure 4-10. 

PSD1 sand can be described as fine and very fine sand. PSD2 sand can be described as a 

combination of fine, very fine sand and coarse silt. PSD3 sand can be described as a combination 

of medium, fine, very fine sand and coarse silt. PSD4 sand can be described as a combination of 

medium, fine and very fine sand. 

 

Figure 4-10 – Particle size distributions for numerical experiment #07 

For each of the particle size distributions the porous pattern with 2000 grains was generated. The 

target porosity was 0.2. According to the results of numerical experiment #06 the porous patterns 

will be isotropic and have values of porosity close to realistic. The porous patterns will be 
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referred to as PSD1, PSD2, PSD3 and PSD4 respectively. For each of them the mixing rule 

equation is generated based on the procedure described at the beginning of this chapter. The 

numerical modelling results are presented in Table A-4 in Appendices A, the resulting 

coefficients of novel mixing rules are presented in Table 4-2 and the graphs are presented in 

Figure 4-11. 

 
Porosity a b c d 𝑅2 

PSD1 0.393 0.7766 0.09719 0.9311 0.2803 1 

PSD2 0.371 0.7899 0.0793 0.9082 0.2557 1 

PSD3 0.380 0.7822 0.07497 0.8969 0.2578 1 

PSD4 0.368 0.7951 0.07824 0.9066 0.252 1 

Table 4-2 – Mixing rule coefficients for different PSD in numerical experiment #07 

 

Figure 4-11 – Mixing rules for different particle size distributions 

From Table 4-2 one can notice that the coefficient of determination, which shows the goodness 

of fit, is equal to 1 for all four different porous patterns. It means that the proposed mixing rule 

equation 4.1 works for porous media with different particle size distributions. 

With the optimal number of grains (2000) in each porous pattern and the lowest target porosity 

one can conclude that the values of porosity presented in Table 4-2 are the limiting values of 

porosity for a media with corresponding particle size distribution. 
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Figure 4-11 shows that PSD1 predicts significantly different values of effective thermal 

conductivity, while PSD2-PSD4 predict values that are very close. In order to investigate that 

this result is appropriate one more model with PSD was created. This model (PSD1_1) is another 

random implementation of PSD1 but with 2500 grains and target porosity of 0.2. The mixing 

rule for the created model (PSD1_1) along with the mixing rule for PSD1 model are presented in 

Figure 4-12. From the graph one can see that the mixing rule is reproducible. By comparing the 

coefficient of mixing rules for PSD1 and PSD1_1 models (see Table 4-3) one can conclude that 

the mixing rules are the same. The maximum deviation between the two mixing rules is 0.8%. 

The fact that limiting porosity is the same for PSD1_1 pattern with 2500 grains gives more 

confidence in the resulting mixing rule for PSD1. 
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Figure 4-12 – Mixing rule for PSD1 and PSD1_1 models 

 Porosity a b c d 𝑅2 

PSD1 0.393 0.7766 0.09719 0.9311 0.2803 1 

PSD1_1 0.393 0.7788 0.09823 0.9299 0.2793 1 

Table 4-3 – Mixing rule coefficients for PSD1 and PSD1_1 models 

One of the main conclusions of the numerical experiment #07 is that any porous media with a 

particle size distribution requires its own custom generated mixing rule for effective thermal 

conductivity prediction. PSD2 and PSD1 from the experiment are similar in terms of shapes with 

a small shift (see Figure 4-10), but results in different mixing rules; while PSD2 and PSD4 has 

similar shapes with a large shift, but results in mixing rules that are very close in terms of 

prediction effective thermal conductivity. 

For sand saturated with water the solid to fluid thermal conductivity ratio is around 10, for sand 

saturated with oil it is around 40 and for sand saturated with air it is around 240. Taking natural 

logarithm we obtain 2.3, 3.7 and 5.5 respectively. So for real oil sands the working range of solid 

to fluid thermal conductivity ratio for mixing rule is from 2.3 to 5.5. From Figure 4-11 one can 
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see that if we incorrectly apply the mixing rule, the error in effective thermal conductivity 

prediction is in range from 8% to 20% (the difference between PSD1 mixing rule and PSD3 

mixing rule at logarithm of normalized solid thermal conductivity from 2.3 to 5.5). This shows 

that the “one size fits all” approach can lead to errors up to 20% in predicting the effective 

thermal conductivity of oil sands using mixing rules. 

One of the questions that immediately arise is: should one create a mixing rule for all particle 

size distributions? The answer for this question is hiding in the time for creating a custom mixing 

rule. The average time of creating one porous pattern is around 2 hours of computer time. The 

average time of creating the model is around 30 minutes of computer time. The average time for 

running the model is around 2 hours. To be on a safe side the total time for generating mixing 

rule for one particle size distribution is around 5 hours. This task can be run in parallel on 

computers with large number of cores and memory and it means that with enough computer 

power the time for mixing rule generation can be reduced by an order of magnitude. 

4.3 Physical meaning of the coefficients of mixing rule 

In order to understand the meaning of the coefficients of proposed mixing rule 4.1 one need to 

look at the limiting relations for mixing rules described in Chapter 2. 

When the solid to fluid thermal conductivity ratio (𝐾𝑠) approaches one the normalized effective 

thermal conductivity (𝐾𝑒) must approach one, which means that if solid and fluid thermal 

conductivity are the same, then the effective thermal conductivity of porous media is equal to 

that of fluid or solid. For the case of mixing rule 4.1 the limit of 𝐾𝑒 when 𝐾𝑠 approaches 1 is: 

lim
𝐾𝑠→1

(
𝑎

𝑏 + 𝑒−𝑐 ln𝐾𝑠
+ 𝑑) =

𝑎

𝑏 + 1
+ 𝑑 

4.2 

and finally we obtain: 

𝑎

𝑏 + 1
+ 𝑑 = 1 

4.3 

In Table 4-4 the limit 4.2 is calculated for the mixing rules PSD1-PSD4 and PSD1_1. One can 

see that for all of the mixing rules from numerical experiment #06 the limiting relation 4.3 is 

valid, although there is a minor deviation from 1. 
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Mixing rule a/(b+1)+d 

PSD1 0.988 

PSD2 0.987 

PSD3 0.985 

PSD4 0.989 

PSD1_1 0.988 

Table 4-4 – Limit of mixing rules PSD1-PSD4 and PSD1_1 when 𝑲𝒔 approaches 1 

In order to improve the mixing rule equation 4.1 one can use the limiting relation 4.3 and express 

coefficient 𝑑 in terms of 𝑎 and 𝑏 and substitute into equation 4.1. It results in the following 

equation for the mixing rule proposed in this thesis: 

𝐾𝑒 =
𝑎

𝑏 + 𝑒−𝑐 ln 𝐾𝑠
+ 1 −

𝑎

𝑏 + 1
 4.4 

In the case of model 4.4 the limiting relation 4.3 becomes exact for any mixing rule generated. 

Also the number of unknown parameters is reduced by one. 

Another limiting relation is when the solid to fluid ratio (𝐾𝑠) approaches infinity. It happens 

when either the fluid thermal conductivity approaches zero or the solid thermal conductivity 

approaches infinity. Since both thermal conductivities are positive values, the infinity has 

positive sign. In this case the normalized effective thermal conductivity approaches: 

lim
𝐾𝑠→∞

𝑎

𝑏 + 𝑒−𝑐 ln𝐾𝑠
+ 𝑑 =

𝑎

𝑏
+ 𝑑 

4.5 

and by applying 4.3 we finally obtain: 

lim
𝐾𝑠→∞

𝑎

𝑏 + 𝑒−𝑐 ln 𝐾𝑠
+ 𝑑 = 1 +

𝑎

𝑏(𝑏 + 1)
 4.6 

In the Table 4-5 the limit 4.6 is calculated for the mixing rules from numerical experiment #07. 

The calculated limit agrees well with the normalized effective thermal conductivity of porous 

patterns at the solid to fluid thermal conductivity ratio of 1000. 
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Mixing rule 𝑎/𝑏 + 𝑑  𝐾𝑒(𝐾𝑠 = 1000) 

PSD1 8.27 8.12 

PSD2 10.22 9.95 

PSD3 10.69 10.38 

PSD4 10.41 10.16 

PSD1_1 8.21 8.06 

Table 4-5 – Limit of mixing rules PSD1-PSD4 and PSD1_1 when 𝑲𝒔 approaches infinity 

Finally one need to look at the case of solid to fluid ratio approaching 0. It happens when either 

solid thermal conductivity approaches 0 or fluid thermal conductivity approached infinity. In this 

case the normalized effective thermal conductivity approaches: 

lim
𝐾𝑠→0

(
𝑎

𝑏 + 𝑒−𝑐 ln𝐾𝑠
+ 𝑑) = 𝑑 

4.7 

In Table 4-6 the limit 4.7 is calculated for the mixing rules from numerical experiment #07. The 

calculated limit is in good agreement with the normalized effective thermal conductivity of 

porous patterns at the solid to fluid thermal conductivity ratio of 0.001. 
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Mixing rule 𝑑 𝐾𝑒(𝐾𝑠 = 0.001) 

PSD1 0.2803 0.2802 

PSD2 0.2557 0.2565 

PSD3 0.2578 0.2580 

PSD4 0.252 0.2538 

PSD1_1 0.2793 0.2794 

Table 4-6 - Limit of mixing rules PSD1-PSD4 and PSD1_1 when 𝑲𝒔 approaches 0 

From equation 4.7 one can see that coefficient 𝑑 in the equation 4.1 is defined as the effective 

thermal conductivity of porous media with a given particle size distribution when the solid to 

fluid thermal conductivity ratio approaches 0, or in other words when the fluid phase is much 

more conductive than solid phase. Thus coefficient 𝑑 can be obtained with good accuracy 

through the running heat transfer model for a porous pattern at low solid to fluid thermal 

conductivity ratio. The ratio 
𝑎

𝑏
 can be obtained as the difference of equations 4.5 and 4.7, thus 

𝑎

𝑏
 is 

defined as the step between the lowest possible (𝑑) and the highest possible (
𝑎

𝑏
+ 𝑑) normalized 

effective thermal conductivity of a porous media with a given particle size distribution. The ratio 

𝑎

𝑏
 can be obtained with good accuracy by running the heat transfer model at two solid to fluid 

thermal conductivity ratios (highest and lowest) and taking the difference between the resulting 

normalized effective thermal conductivities. Since 𝑎, 𝑏 and 𝑑 are connected through relation 4.3 

and with 𝑏 and 
𝑎

𝑏
 defined as mentioned above, one can calculate 𝑎 and 𝑏 by solving system of 

equations. The coefficients 𝑎 and 𝑏 can be found from 𝑑 and 
𝑎

𝑏
 as follows: 

𝑎 =
1

1
1 − 𝑑 +

1
𝑎
𝑏

 
4.8 

𝑏 =
1

1 +
𝑎
𝑏 ⋅

1
1 − 𝑑

 
4.9 

The coefficient 𝑐 is the last one that should be determined. After substitution of ln(𝐾𝑠) with 𝑥 in 

equation 4.1 we get: 

𝐾𝑒 =
𝑎

𝑏 + 𝑒−𝑐𝑥
+ 𝑑 

4.10 
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The first two derivatives of 4.10 with respect to 𝑥 are as follows: 

𝑑𝐾𝑒
𝑑𝑥

=
𝑎𝑐𝑒−𝑐𝑥

(𝑏 + 𝑒−𝑐𝑥)2
 

4.11 

𝑑2𝐾𝑒
𝑑𝑥2

=
𝑎𝑐2𝑒−𝑐𝑥(𝑒−𝑐𝑥 − 𝑏)

(𝑏 + 𝑒−𝑐𝑥)3
 

4.12 

Solving the equation 
𝑑2𝐾𝑒

𝑑𝑥2
= 0 we obtain 

𝑥 = −
ln 𝑏

𝑐
 

4.13 

For 𝑥 < −
ln 𝑏

𝑐
 the value of second derivative 4.12 is more than 0 and for 𝑥 > −

ln 𝑏

𝑐
 it is less than 

0, which means that point 4.13 is the point of inflection of the graph of the function 𝐾𝑒(𝑥), 

where 𝑥 is ln𝐾𝑠 (see Figure 4-13). This in turn means that coefficient 𝑐 of proposed mixing 

defines the point of inflection of the graph in Figure 4-4. It also should be mentioned that in 

point 4.13 the derivative 4.11 reaches its maximum value (see Figure 4-13). The derivative 4.11 

defines the rate of change of the effective thermal conductivity of porous media with respect to 

change in natural logarithm of solid to fluid thermal conductivity ratio. Up to the point −
ln 𝑏

𝑐
 this 

rate of change increases and after the point −
ln 𝑏

𝑐
 it decreases, which means that the effective 

thermal conductivity changes rapidly up to the point −
ln 𝑏

𝑐
 and after that point the effective 

thermal conductivity changes slowly until it reaches its maximum possible value of 
𝑎

𝑏
+ 𝑑. So the 

coefficient 𝑐 determines the value of solid to fluid thermal conductivity ratio at which this 

change in growth of effective thermal conductivity happens. 
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Figure 4-13 – First and second derivative of proposed mixing rule with respect to 𝒍𝒏(𝑲𝒔) 

Since the point of inflection of the effective thermal conductivity with respect to logarithm of 

solid to fluid thermal conductivity ratio is defined by the structure of porous media (or the 

underlying particle size distribution in our case), it is not possible to predict this point without 

knowing the coefficient 𝑐 of the mixing rule equation 4.1. But if we notice that at 𝑥 = ln𝐾𝑠 = 0 

the first derivative 4.11 takes the value of 
𝑎𝑐

(𝑏+1)2
, then we can find the 𝑐 through known 

coefficient 𝑎 and 𝑏 and the value of derivative 4.11 in the point 𝑥 = 0. At 𝑥 = 0 the solid to fluid 

thermal conductivity ratio  𝐾𝑠 is equal to 1. Coefficients 𝑎 and 𝑏 are calculated as described 

above. The only problem is to determine the value of derivative 4.11 near the point of equality of 

solid and fluid thermal conductivities. It can be done numerically by running two heat transfer 

models: one with ln𝐾𝑠 = 1− Δ𝑥 and another with ln𝐾𝑠 = 1+ Δ𝑥, where Δ𝑥 is a small number. 

Then the first derivative can be calculated as follows: 

𝑑𝐾𝑒
𝑑𝑥
|
𝑥=1

≈
𝐾𝑒(1 + Δ𝑥) − 𝐾𝑒(1 − Δ𝑥)

2Δ𝑥
 

4.14 

And finally the coefficient 𝑐 can be calculated as: 

𝑐 =
𝑑𝐾𝑒
𝑑𝑥
|
𝑥=1

⋅
(𝑏 + 1)2

𝑎
 

4.15 
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The above equation provides another meaning for the coefficient 𝑐. It affects the rate of change 

of the effective thermal conductivity near the point of equal thermal conductivities of solid and 

fluid phases. The larger the 𝑐 the larger the rate of change and vice versa. In Table 4-7 the 

coefficient 𝑐 is calculated in two ways: using the approach described above and by fitting 

numerical data as described at the beginning of this chapter. The agreement is good. The reason 

for the difference in the values of 𝑐 calculated with two different methods is due to the value of 

Δ𝑥 which in this case was 0.238. 

Mixing 

rule 

Inflection 

point 

Numerically 

calculated 

derivative at x=0 

𝑐 estimated from 

derivative at x=0 

𝑐 calculated by 

fitting numerical 

data 

PSD1 2.50 0.609 0.9444 0.9311 

PSD2 2.79 0.631 0.9309 0.9082 

PSD3 2.89 0.623 0.9201 0.8969 

PSD4 2.81 0.635 0.9283 0.9066 

PSD1_1 2.50 0.609 0.9433 0.9299 

Table 4-7 – Coefficient 𝒄 for mixing rules PSD1 to PSD4 and PSD1_1 

Finally it should be mentioned that since there is a single point of contact between the touching 

grains in the generated porous patterns and the grains are of spherical shape, fluid phase is 

continuous and solid phase is considered dispersed for heat transfer purposes. According to the 

limiting relations of Chapter 2 the proposed mixing rule fulfills the limiting relations 3, 4a, 5b, 

6a and 7b. The values of corresponding limits are presented in Table 4-8. 

Limit 𝑘𝑠 → 𝑘𝑓 𝑘𝑓 → ∞ 𝑘𝑠 → ∞ 𝑘𝑓 → 0 𝑘𝑠 → 0 

𝑘𝑒 = 𝑘𝑓 (
𝑎

𝑏 + 𝑒
−𝑐 ln

𝑘𝑠
𝑘𝑓

+ 𝑑) 

𝑘𝑓 ∞ 𝑘𝑓 (𝑑 +
𝑎

𝑏
) 0 𝑘𝑓𝑑 

Table 4-8 – Limiting relations for the proposed mixing rules 

As a conclusion for this subsection the following statements should be highlighted once again: 

 The coefficient 𝑑 of the proposed mixing rule has the meaning of the effective thermal 

conductivity of the porous pattern with non-conductive solid phase. 
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 The ratio 
𝑎

𝑏
 of the proposed mixing rule has the meaning of the step in change of the 

effective thermal conductivity when solid phase changes from non-conductive to highly 

conductive. 

 The coefficient 𝑐 of the proposed mixing rule determines the rate of change in the 

effective thermal conductivity with respect to change in solid to fluid thermal 

conductivity ratio. 

 The coefficients 𝑎, 𝑏 and 𝑑 are interdependent, thus only two of them need to be 

determined. 

 “Quick look” numerical methods for estimation of all the coefficient of the proposed 

mixing rule were developed.  
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4.4 Application of the proposed mixing rule 

The application of the mixing rule for a real porous medium is fairly simple. For a given particle 

size distribution the custom mixing rule in the form of equation 4.1 is generated by defining all 

the coefficient of the mixing rule from numerical modelling described at the beginning of this 

chapter. The following information is used as an input: water saturation (𝑆𝑤), oil saturation (𝑆𝑜), 

gas saturation (𝑆𝑔), thermal conductivity of solid (𝑘𝑠), thermal conductivity of water (𝑘𝑤), 

thermal conductivity of oil (𝑘𝑜) and thermal conductivity of gas (𝑘𝑔). Effective thermal 

conductivity of porous media fully saturated with either water, oil or gas is calculated as 

𝑘𝑒
𝑖 =

𝑎

𝑏 + 𝑒−c ln 𝑘𝑠/𝑘𝑖
 4.16 

where 𝑖 is 𝑤 for water, 𝑜 for oil and 𝑔 for gas. The overall effective thermal conductivity of the 

porous media then can be calculated using linear interpolation: 

𝑘𝑒 = 𝑆𝑤𝑘𝑒
𝑤 + 𝑆𝑜𝑘𝑒

𝑜 + 𝑆𝑔𝑘𝑒
𝑔

 4.17 

Linear interpolation was used as an example. Generally speaking another mixing rule has to be 

applied to calculate the effective thermal conductivity of porous media saturated with oil, water 

and gas simultaneously. 
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4.5 Comparison of the novel mixing rule to other mixing rules 

In this section the proposed mixing rule is compared to the mixing rules available in literature. 

For this purposes mixing rule developed above for PSD1 is compared to the mixing rules 

described in the Chapter 2: Parallel model, Series model, Geometric Mean model, Maxwell 

models, Kunii-Smith model, Krupiczka model, Zehner-Schlunder model, Woodside-Messmer 

model and the EMT model. The porosity of the porous pattern PSD1 is 0.393. This value is used 

for the literature value models. The solid to fluid thermal conductivity ratio changes from 10-3 to 

103. For convenience the term sigmoid mixing rule or Sigmoid model will be used later in the 

text to indicate the novel mixing rules developed in this thesis. The term Sigmoid is due to the 

name of the class of functions defined by the equation 4.1. 

It also should be highlighted that comparison of the prediction by other mixing rules to the 

Sigmoid mixing rule prediction are based on results of numerical experimental data. Since the 

Sigmoid mixing rule approximates numerical experimental data with 𝑅2 = 1 the values 

predicted by the Sigmoid model will be used as the basis for comparison. The main region of 

interest for comparison of mixing rules is 𝐾𝑠 ∈ [10,100]. This region of interest contains solid to 

fluid thermal conductivity ratios corresponding for sand and water, oil and gas. 

In Figure 4-14 the effective thermal conductivity predictions by the Sigmoid rule are compared 

to that of Parallel model, Series model and Geometric Mean model. The limits when 𝐾𝑠 

approaches 1, infinity and zero corresponds to the cases of equal solid and fluid phases thermal 

conductivities, solid is highly conductive in comparison with fluid phase and solid is highly non-

conductive in comparison with fluid phase respectively. The value of limits for Sigmoid, 

Parallel, Series and Geometric Mean models are presented in Table 4-9. From Figure 4-14 and 

Table 4-9 one can find that all of the mixing rules go through the point (1,1) which means that if 

the thermal conductivities of phases are equal, the resulting effective thermal conductivity is the 

same as thermal conductivity of phases. When solid phase becomes highly conductive 

predictions by Parallel and Geometric Mean models approach infinity and show overestimation 

of the effective thermal conductivity in the region of interest; Series model prediction approaches 

a finite value and show underestimation. When solid phase becomes highly non-conductive 

predictions by Series and Geometric Mean models approach zero and show underestimation of 
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the effective thermal conductivity; Parallel model prediction approaches finite value, but shows 

overestimation. 

Model 𝐾𝑠 → 1 𝐾𝑠 → ∞ 𝐾𝑠 → 0 

Sigmoid 1 𝑑 (𝑑 +
𝑎

𝑏
) 

Parallel 1 ∞ 𝜙 

Series 1 1

𝜙
 

0 

Geometric Mean 1 ∞ 0 

Table 4-9 – Limits for Sigmoid, Parallel, Series and Geometric Mean models 

In Figure 4-15 the effective thermal conductivity predictions by the Sigmoid rule are compared 

to that of the Maxwell models. The limit values for the Sigmoid, Maxwell-1 and Maxwell-2 

models are presented in Table 4-10. From Figure 4-15 and Table 4-10 one can find that all of the 

mixing rules go through the point (1, 1), which again means that if the thermal conductivities of 

phases are equal, the resulting effective thermal conductivity is the same as thermal conductivity 

of phases. When solid phase becomes highly conductive predictions by the Maxwell-2 model 

approaches infinity and shows overestimation of the effective thermal conductivity in the region 

of interest; the Maxwell-1 model prediction approaches a finite value and shows underestimation 

in the region of interest. When solid phase becomes highly non-conductive prediction by the 

Maxwell-2 model approaches zero and shows underestimation of the effective thermal 

conductivity; the Maxwell-1 model prediction approaches finite value and shows very close 

values to that of Sigmoid model. 

Model 𝐾𝑠 → 1 𝐾𝑠 → ∞ 𝐾𝑠 → 0 

Sigmoid 1 𝑑 (𝑑 +
𝑎

𝑏
) 

Maxwell-1 1 3 − 2𝜙

𝜙
 

2𝜙

3 − 𝜙
 

Maxwell-2 1 ∞ 0 

Table 4-10 – Limits for Sigmoid and Maxwell models 
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In Figure 4-16 the effective thermal conductivity predictions by the Sigmoid rule are compared 

to that of Kunii-Smith and Krupiczka models. The value of limits for Sigmoid, Kunii-Smith and 

Krupiczka models are presented in Table 4-11. From Figure 4-16 and Table 4-11 one can find 

that all of the mixing rules go through the point (1, 1). When solid phase becomes highly 

conductive predictions by the Kunii-Smith and Krupiczka models track each other in the region 

of interest. Both of them intersect Sigmoid model at around 𝐾𝑠 = 35; before this value both 

models slightly underestimate, while after both models slightly overestimate the effective 

thermal conductivity of porous pattern in the region of interest. The Krupiczka model was 

developed as a correlation to analytical solution in order to become easy applicable. Because of 

this artificial nature this model approaches 0 when 𝐾𝑠 → ∞, but in the region of interest its value 

increases (see Figure 4-16). When the solid phase becomes highly non-conductive prediction by 

the Krupiczka model approaches zero and shows underestimation of the effective thermal 

conductivity; the Kunii-Smith model prediction approaches finite value and shows 

overestimation. 

Model 𝐾𝑠 → 1 𝐾𝑠 → ∞ 𝐾𝑠 → 0 

Sigmoid 1 𝑑 (𝑑 +
𝑎

𝑏
) 

Kunii-Smith 1 𝑠𝑖𝑔𝑛(𝜙 − 0.2) ⋅ ∞ 𝜙 

Krupiczka 1 0 0 

Table 4-11 – Limits for Sigmoid, Kunii-Smith and Krupiczka models 

In Figure 4-17 the effective thermal conductivity predictions by the Sigmoid rule are compared 

to that of Zehner-Schlunder, Woodside-Messmer and Effective Medium Theory (EMT) models. 

The value of limits for Sigmoid, Zehner-Schlunder, Woodside-Messmer and EMT models are 

presented in Table 4-12. From Figure 4-17 and Table 4-12 one can find that all of the mixing 

rules go through the point (1, 1). When solid phase becomes highly conductive prediction by 

EMT model approaches infinity and overestimates the effective thermal conductivity in the 

region of interest; the Zehner-Schlunder model approaches infinity as well but in the region of 

interest the prediction is in good agreement with Sigmoid model with only deviation after 𝐾𝑠 =

50; the Woodside-Messmer model approaches finite value and overestimates the prediction of 

effective thermal conductivity in the region of interest. When the solid phase becomes highly 
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non-conductive predictions by Zehner-Schunder, Woodside-Messmer and EMT models 

approach finite but different values. Zehner-Schlunder and EMT models show underestimation, 

while Woodside-Messmer model shows overestimation. 

Model 𝐾𝑠 → 1 𝐾𝑠 → ∞ 𝐾𝑠 → 0 

Sigmoid 1 𝑑 (𝑑 +
𝑎

𝑏
) 

Zehner-Schlunder 1 ∞ 1 − √1 − 𝜙  

Woodside-Messmer 1 100

3
𝜙2 −

203

3
𝜙 +

106

3
 

𝜙 − 0.03 

EMT 1 ∞ 1

4
|3𝜙 − 1| +

3

4
𝜙 −

1

4
 

Table 4-12 – Limits for Sigmoid, Zehner-Schlunder, Woodside-Messmer and EMT models 
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Figure 4-14 – Comparison of sigmoid model to Parallel, Series, and Geometric Mean 

models 
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Figure 4-15 – Comparison of Sigmoid model to Maxwell-Eucken models 
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Figure 4-16 – Comparison of Sigmoid model to Kunii-Smith and Krupiczka models 
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Figure 4-17 – Comparison of Sigmoid model to Zehner-Schlunder, Woodside-Messmer and 

EMT model 
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The comparison of the available in literature mixing rules to the results of numerical experiment 

shows that none of the available mixing rules can accurately predict the effective thermal 

conductivity of a porous pattern which consists of spheres from a given particle size distribution 

with a single point contact between the grains. The limits for mixing rules available in literature 

are calculated for cases of equal thermal conductivities of solid and fluid phase, for highly 

conductive solid and highly non-conductive solid phase. The Zehner-Schunder, Kunii-Smith and 

Krupiczka models are the closest in terms of prediction the effective thermal conductivity in the 

region of solid to fluid thermal conductivity ratios specific for unconsolidated sands saturated 

with water, oil and gas. 

None of the mixing rules involves particle size distribution as an input parameter. However the 

Sigmoid mixing rule developed in this thesis does not involve porosity as an input parameter, 

while all of the mixing rules contains porosity as an input parameter. It considered that for a 

given particle size distribution the limiting porosity exists when the number of grains approaches 

infinity. It means that porosity is indirectly included in the Sigmoid mixing rule. Further 

investigation is required to include the porosity in the Sigmoid mixing rule, as the effective 

thermal conductivity is a strong function of porosity. 

The Sigmoid mixing rule is presented by the simple formula 4.1 and is easy to use. But the 

determination of the coefficients of the Sigmoid mixing rule require some additional numerical 

modelling. The average time to calculate the coefficients of the Sigmoid mixing rule is around 4 

hours if use straightforward parametric sweep modelling with respect to solid to fluid thermal 

conductivity ratio, but definitely the procedure can be optimized to reduce the computation time. 

The Sigmoid mixing rule can be used to predict effective thermal conductivity of unconsolidated 

porous media saturated with either oil, water or gas. Another mixing rule should be developed to 

apply the Sigmoid rule to a porous media saturated with all three fluids simultaneously. The idea 

is to apply the heat transfer modelling at the pore scale level to a porous patterns after at a 

different saturations caused by modeling of three phase fluid flow in porous media. But the 

application of the sigmoid mixing rule is not limited to the unconsolidated sands. It potentially 

can be used to predict the effective thermal conductivity of packed beds and metallic foams. 

Sigmoid mixing rule does not include the effect of contact area between the grains (as well as all 

the mentioned mixing rules from literature). This is a possible area of future research. The idea is 
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basically the same, but grains should have finite area of contact in-between. It will allow to 

generate more realistic porous patterns and as a result to generate custom mixing rules with more 

realistic predictions for the effective thermal conductivity of porous media.  
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Chapter 5: From pore to core scale level 

In the previous chapter the question of pore scale level modelling of heat transfer was addressed. 

An algorithm for developing the Sigmoid mixing rule was designed. Typical size of the 

geometry used for the modelling (porous pattern) is of millimetre scale, while the size of grid 

blocks used in reservoir simulators is of metres and tens of meters scale. There are several levels 

of upscaling that can be distinguished in porous media (see Figure 5-1). Micro Computed-

Tomography (𝜇CT or micro CT) level range from size of micrometers to millimetres. At this 

scale level separate pores and grains are visible and the pore structure can be described. Core 

level ranges from millimetres to centimetres. At this scale level large pores and grains are 

visible, but mostly the porous medium is presented as homogeneous. Heterogeneity in terms of 

different layers can be distinguished. Well level ranges from tenth of centimetres to meters. At 

his level several geological layers can be distinguished within the length of the well. Grid block 

level ranges from metres to tenth of meters. At this level the porous media can consist of 

different geological formations. The main question that arises is: how one can upscale the results 

of pore scale modelling to core scale and up? An attempt to answer this question is described in 

this chapter. 

 

Figure 5-1 – Levels of upscaling 
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The first part of this chapter describes the approach of upscaling reservoir properties using a so-

called network modelling, where the porous medium is substituted with an equivalent network 

model, which can be easily solved by applying Kirchhoff’s laws. The second part of this chapter 

presents the model-by-model validation of the network modelling upscaling approach. In the 

third part of this chapter the upscaling technique which uses computed tomography images 

network upscaling as the basis for upscaling of reservoir properties of real cores. 
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5.1 Upscaling of reservoir properties: a network approach 

Upscaling of reservoir properties is a problem that people are working on for decades. The 

equivalent electrical circuit approach described below is not new (Kantzas 1985). The upscaling 

approach using an equivalent network will be described for a two-dimensional case to make the 

explanation clearer and easier to understand, but it was implemented for three-dimensional 

systems. Rectangular shaped porous medium is assumed. 

Firstly the porous medium is divided into blocks of rectangular shape. It is assumed that the 

properties of the blocks are known. In other words the larger scale porous media is constructed 

of smaller blocks with known properties. Looking forward it is worth mentioning that the 

properties of smaller blocks can be obtained through the modelling of real physics at the pore 

scale level. 

The next step is to create an equivalent electrical circuit network that will represent the original 

porous media. At the centres of blocks we place nodes. Nodes that are placed in neighbouring 

blocks are connected with edges (bonds). So, the equivalent electrical circuit network consists of 

nodes and edges. Nodes are just for connection between edges, while edges has a non-zero 

electrical resistivity. In order for the electrical circuit network to be equivalent to the original 

porous media one need to calculate the equivalent electrical resistivity of the edges. 

It is known that Ohm’s Law of flow of electrical current through media, Darcy’s Law of fluid 

flow through porous media and Fourier’s Law of heat conduction are similar in their 

formulation. The flux is directly proportional to the gradient of driving forces. 

Indeed, the flow of electrical current (Ohm’s Law) is described by the following equation: 

𝐽 = −𝜎∇Φ 5.1 

where 𝐽 – is the density flux of electrical current, which is directly proportional to the gradient of 

charge density ∇Φ (electric field) with the coefficient of proportionality 𝜎 called electrical 

conductivity. 

The flow of fluid (Darcy’s Law) in porous media is described by the following equation: 

𝑢 = −𝜆∇𝑃 5.2 

where 𝑢 is the velocity of the fluid (volumetric fluid flux), which directly proportional to the 

gradient of fluid pressure ∇𝑃 (fluid potential in general case) field with the coefficient of 
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proportionality 𝜆 called fluid mobility. Fluid mobility is the ratio of the porous medium 

permeability (to that fluid) to the fluid viscosity. 

The flow of heat through media is described by the following equation: 

𝑞 = −𝑘∇𝑇 5.3 

where 𝑞 is the heat flux, which is directly proportional to the temperature gradient ∇𝑇 with the 

coefficient of proportionality 𝑘 called thermal conductivity. 

Thus, due to similar formulation of the underlying equations the absolute and effective 

permeability of the porous medium, the thermal conductivity and the electrical conductivity 

(electrical resistivity and formation factor) can be scaled up in a similar manner. The equivalent 

electrical network is chosen due to a well-developed approach of applying Kirchhoff’s Law to 

solve the electrical circuit, i.e. to determine the equivalent resistivity of the network as if it  were 

a single resistor. 

In Figure 5-2 the approach for creating equivalent edge from blocks is presented. The idea that 

each block is divided into two parts and the two adjacent parts creates a new block with left side 

from left block and right side from right block. The equivalent property can be calculated using 

the series mixing rule (for the case of blocks of equal size): 

𝑘𝑒𝑞 =
1

1
𝑘1
+
1
𝑘2

 
5.4 

where 𝑘𝑒𝑞 is the equivalent property (electrical conductivity, thermal conductivity or fluid 

mobility), 𝑘1 is the property value of the left block and 𝑘2 is the property value of the right 

block. By applying this approach to all the neighbouring blocks one can generate an equivalent 

circuit network. An example for 3x3 two-dimensional case is presented in Figure 5-3.  
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Figure 5-2 – Transformation of blocks to equivalent edges 

 

Figure 5-3 – Equivalent circuit network model 

The next step is to apply Kirchhoff’s Laws (Clayton 2001) to calculate the equivalent resistivity 

of the electrical circuit network. Kirchhoff’s first law is based on the principle of conservation of 

electrical charge: at any node in an electrical circuit the sum of currents flowing into that node is 

equal to the sum of currents flowing out of that node. Kirchhoff’s point rule or Kirchhoff’s 

junction rule are the other names of the Kirchhoff’s first law. Mathematically it can be described 

as that for any node in the electrical circuit the following equation is valid: 
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∑𝐼𝑘

𝑛

𝑘=1

= 0 
5.5 

In equation 5.5 it is considered that electrical currents going into the node have positive sign and 

electrical currents going out of the node have negative sign. 

Kirchhoff’s second law is based on the principle of conservation of energy: the directed sum of 

the electrical potentials differences around any closed network is zero. Kirchhoff’s second law is 

also called Kirchhoff’s loop (or mesh) rule. Mathematically it can be formulated as that for any 

closed loop in the electrical circuit the following equation is valid: 

∑𝑉𝑘

𝑛

𝑘=1

= 0 
5.6 

In equation 5.6 it is considered that potential difference at the edge is positive if the direction of 

the electrical current in that edge is the same as some arbitrary (but fixed) direction chosen for 

the closed loop and potential difference at the edge is negative if the direction of the electrical 

current in that edge is the opposite to the direction chosen for the closed loop. 

These two principles allow us to solve any electrical circuit, which in our case means to find the 

electrical resistivity of the whole electrical network as if it were a single resistor. The electric 

potential difference is applied to the whole circuit network as the boundary condition. 

Application of the Kirchhoff’s laws to the equivalent circuit network in our case leads to the 

following system of linear equations (in matrix form): 

𝐴𝑌𝐴𝑇𝒖0 = −𝐴(𝒋 + 𝑌𝒆) 5.7 

where 𝐴 is the (𝑞 − 1) ×  𝑝 matrix of connections, 𝑞 is the number of nodes, 𝑝 is the number of 

edges, 𝑌 is the 𝑝 × 𝑝 diagonal matrix of electrical conductivities of edges, 𝒖0 is the (𝑞 − 1) × 1 

column vector of node potentials, 𝒋 is the column vector of sources of electrical current in edges 

(if exists) and 𝒆 is the 𝑝 × 1 column vector of sources of electromotive forces (if exists) of edges. 

In our case there are no sources of electrical current in edges, which means that 𝒋 is zero column 

vector and there is only single source of electromotive forces (to create a flow of electrical 

current in the circuit network). An arbitrary value of one volt is assigned to this electromotive 

force. Which means that column vector 𝒆 has only last element equal to one, while others are 

zero. 
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The matrix of connections 𝐴 has the following elements 𝑎𝑖𝑗: 

𝑎𝑖𝑗 = {

0, 𝑖𝑓 𝑒𝑑𝑔𝑒 𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑖
−1, 𝑖𝑓 𝑒𝑑𝑔𝑒 𝑗 𝑠𝑡𝑎𝑟𝑡𝑠 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑖
1, 𝑖𝑓 𝑒𝑑𝑔𝑒 𝑗 𝑒𝑛𝑑𝑠 𝑖𝑛 𝑛𝑜𝑑𝑒 𝑖

 

5.8 

Finally the system of linear equations looks as follows: 

𝐴𝑌𝐴𝑇𝒖0 = −𝐴𝑌𝒆 5.9 

Figure 5-4 shows the structure of the matrix on the left hand side of 5.9 for the case of three 

dimensional network which consists of 3x3x3 nodes. The star means a non-zero matrix element, 

the rest of the elements are zero. This matrix is a sparse matrix. The structure of the matrix 

depends on the numbering system for nodes and edges of the network. The detailed description 

of the numbering system used in this thesis is presented in Appendices B. The solution of the 

system of linear equations can be calculated as follows: 

𝒖0 = (𝐴𝑌𝐴
𝑇)−1(−𝐴𝑌𝒆) 5.10 

where (𝐴𝑌𝐴𝑇)−1 is the inverse matrix to 𝐴𝑌𝐴𝑇. 

 

Figure 5-4 – Matrix of equivalent circuit network  
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The order of the matrix 𝐴𝑌𝐴𝑇 significantly increases with the number of blocks in the porous 

media. The conjugate gradients method (Hestenes and Stiefel 1952) was developed to find the 

inverse matrix for the sparse matrixes of a high order. This method is one of the iterative class of 

methods, which does not find exact solution but rather the approximation with a specified 

relative tolerance. This method is considered as one of the fastest for sparse matrix inversion. 

From the solution of equation 5.10 one can find the overall electrical conductivity of the whole 

network as the ratio of the electrical current to applied voltage (which in our case is 1V). 

Electrical current in the electrical circuit network can be found as a sum of the electrical currents 

over the edges located at the input of the network. Electrical currents for these edges can be 

determined from obtained solution 𝒖0 of voltage potentials and known electrical conductivities 

of edges. It results in the following equation: 

𝑌𝑒𝑞 =
𝐼

𝑉
=∑𝒖𝑜𝑖𝑌𝑖𝑖

𝑖𝑛

 
5.11 

The resulting equivalent electrical conductivity 𝑌𝑒𝑞 is the scaled up electrical conductivity of the 

porous media. Due to the similarity of the formulation of Ohm’s Law, Darcy’s Law and 

Fourier’s Law the permeability and the effective thermal conductivity of porous media can be 

calculated using the same approach. 

  



 

109 

5.2 Numerical validation of network upscaling approach 

There are two methods that can be used to validate the network upscaling approach: 

experimental and numerical. One of the possible experimental validations of the network 

upscaling approach is to conduct a set of experiments: heat transfer, fluid flow or electrical 

current flow. First of all the experiments should be conducted on a core sample of a cubic shape. 

Then the core sample need to be cut into pieces (i.e. 3x3x3) and conduct experiments on each 

piece separately. This will provide the input data for network upscaling approach. But 3x3x3 

seems not enough for a good experimental validation. The number of experiments increase as a 

power of three with the number of cuts. Thus it was decided to conduct a model-by-model 

validation using computational software. The workflow for model-by-model validation of 

network upscaling approach is presented in Figure 5-5. Porous media is represented as a cube 

which consists of smaller cubical blocks (5x5x5). Each block is populated with the properties 

(permeability, formation factor and thermal conductivity) from a normal distribution with some 

mean and standard deviation values. The scaled up properties is then calculated using COMSOL 

Software with Darcy’s Law, Ohm’s Law and Fourier’s Law with appropriate boundary 

conditions are used to describe physics to calculate the corresponding properties. This approach 

is considered more accurate than the network modeling approach, as it is direct modeling of the 

physics in the porous media. 

The same information about properties arrangement is then feed into the network upscaling 

algorithm (Matlab-based program was developed for this purposes). The results of scaling up 

using two models are then compared. 
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Figure 5-5 – Model-by-model validation approach 

The following model-by-model validation numerical experiments were conducted for 

permeability upscaling with network approach: 

 Mean permeability 50 mD, standard deviation of 10% of mean (5 mD) 

 Mean permeability 100 mD, standard deviation of 20% of mean (20 mD) 

 Mean permeability 100 mD, standard deviation of 30% of mean (30 mD) 

The results of the validation are presented in Figure 5-6 (blue dots corresponds to the network 

upscaling approach, red dots corresponds to the direct physics modeling). Only when the model 

was populated with the permeability data from normal distribution with large standard deviation 

(30% of mean) the upscaling through direct modelling and network upscaling approach showed a 

difference in scaled up version of permeability. The maximum difference in the two predictions 

is 2.5%, which is still acceptable. For small (10% of mean) and medium (20% of mean) the 

scaled up permeability values are almost identical. It also should be mentioned that two graphs in 

Figure 5-6 track each other, which shows that two models respond in the same direction to the 

deviations in input data. 
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The sensitivity analysis to the number of blocks was also conducted. The network upscaling 

model was run with the same distribution of permeability data as input, but different number of 

block. For each number of blocks model was populated several time to see the variability. The 

graph in Figure 5-7 shows that variation in scaled up permeability decreases with the number of 

blocks increasing. With the model of 10x10x10 blocks the permeability variation can be 

considered negligible. 

 

Figure 5-6 – Upscaling of permeability (model-by-model validation) 
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Figure 5-7 – Sensitivity of permeability to model size 

The same procedure described above was conducted for the formation resistivity factor. The 

following parameters of normal distribution were used to populate the model: 

 Mean formation factor of 75, standard deviation of 10% (7.5) 

 Mean formation factor of 200, standard deviation of 20% (40) 

 Mean formation factor of 175, standard deviation of 30% (52.5) 

And finally the following parameters of normal distribution were used to populate the model for 

scaling up the thermal conductivity: 

 Mean thermal conductivity of 0.15 𝑊/(𝑚 ⋅ 𝐾), standard deviation of 10% (0.015) 

 Mean thermal conductivity of 0.35 𝑊/(𝑚 ⋅ 𝐾), standard deviation of 20% (0.07) 

 Mean thermal conductivity of 0.3 𝑊/(𝑚 ⋅ 𝐾), standard deviation of 30% (0.09) 

The results for the scaling up of formation resistivity factor and thermal conductivity are 

presented in Figure 5-8 and Figure 5-9 respectively. As before blue dots correspond to the 

network upscaling approach and red dots corresponds to the direct physics modeling. The results 

are basically the same as for permeability: for standard deviation of 10-20% the scaled up 

version predictions by two models match each other, for standard deviation of 30% the scaled up 
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version predictions are off by 6.5% for thermal conductivity and are off by 5.5% for the 

formation resistivity factor. 

 

Figure 5-8 – Upscaling of formation resistivity factor (model-by-model validation) 

 

Figure 5-9 – Upscaling of thermal conductivity (model-by-model validation)  
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5.3 Upscaling approach using computer tomography images 

The process of generating three dimensional geometry from a stack of computer tomography 

(CT) images was described in Chapter 3. For a quick review the main steps are presented here as 

well to make a complete picture of upscaling approach using a stack of CT images. Before the 

actual core is scanned in CT scanner, a set of samples with known density is used to obtain a so-

called calibration line. This set of samples is called calibration set. For the purposes of this thesis 

the calibration set consisted of acetone, water, dolomite, sandstone, Berea sand and aluminum. 

Two CT images obtained for each calibration set and average greyscale (GS) value for each 

component is calculated. Greyscale value is then converted to a so-called CT number, using the 

following relation: 

𝐶𝑇 = 𝐺𝑆 − 32768 5.12 

So, the calibration line is the dependency of density of material on the CT number. This 

dependency can be described as linear with the coefficient of determination close to one 

(0.9967). The equation of calibration line is as follow: 

𝜌𝑏 = 𝑚 ∗ 𝐶𝑇 + 𝑏 5.13 

where 𝜌𝑏  is the bulk density of material, 𝑚 is the slope of the calibration line and 𝑏 is the 

intercept. This calibration line allows to determine the density of material by knowing its CT 

number. The measured densities of the calibration set components are presented in Table 5-1and 

the calibration line used for the purposes of this thesis is presented in Figure 5-10. 

Component CT number Density, 𝑘𝑔/𝑚3 

Acetone -236 787 

Water -2 998 

Dolomite 1477 2191 

Sandstone 1350 2207 

Berea Sand 1164 2025 

Aluminium 1953 2696 

Table 5-1 – CT calibration set properties 
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Figure 5-10 – CT calibration line 

From the density of the porous material one can calculate the porosity using the following 

relation: 

𝜙 =
𝜌𝑏 − 𝜌𝑔𝑟

𝜌𝑤𝑆𝑤 + 𝜌𝑜𝑆𝑜 + 𝜌𝑔𝑆𝑔 − 𝜌𝑔𝑟
 

5.14 

where 𝜙 is the porosity of material, 𝜌𝑔𝑟  is the grain density of material, 𝜌𝑤 , 𝜌𝑜 , 𝜌𝑔  are the 

densities of water, oil and gas respectively and 𝑆𝑤 , 𝑆𝑜 , 𝑆𝑔  are the saturations of water, oil and gas 

respectively. 

So if one knows the fluid saturations it is possible to determine the porosity of the core sample 

by knowing its CT number. Saturation is obtained using nuclear magnetic resonance (NMR) 

technology. It allows estimation of the mass of water and oil based on their amplitude index 

calculated from NMR spectra (Canet 1996). Since NMR cannot detect the gas phase, the gas 

saturation should be determined in another way. For this purposes the porosity of one piece of 

the core sample is measured. Knowing mass of water, mass of oil, porosity, and density of water, 

density of oil, density of gas, grain density, bulk density and porosity one can estimate the gas 



 

116 

saturation of the core sample. This gas saturation is then assumed for all other parts of the core, 

so the porosity of the other parts of the core can be estimated. It is also possible to use well log 

porosity data. 

It was mentioned in Chapter 3 that a stack of CT images (consecutive slices of full length core) 

can be used to reconstruct the three dimensional geometry of the core by converting pixels (2D) 

into voxels (3D) and meshing them. At his stage of converting from stack of 2D images to 3D 

geometry it is possible to assign individual properties to each voxel based on the procedure 

described above. So for each voxel we have bulk density, porosity and fluid saturations. 

One of the questions that may arise is which grain density to use. To answer this question one 

need to identify different materials that core sample contains. This identification can be done 

based on the density of material as this is the property that can be easily calculated from known 

CT numbers (or GS values). The histogram of density distribution in the core sample helps to 

make this decision. The density histogram is build based on voxels: for each voxel the density is 

calculated using the calibration line and then voxels with the same density are counted together. 

So the X-axis is density and Y-axis is the number of voxels. The density histogram is then split 

into intervals along the X-axis in such a way that the porosity variation within each interval is 

not very significant (up to 3 %). This procedure allows to join the materials together based on 

similar grain density and porosity and consider them as one material (mask). Finally the core 

sample is separated into regions of different materials (masks) with known properties. The 

effective thermal conductivity of each mask can be calculated using the geometric mean mixing 

rule as follows: 

𝑘𝑚𝑎𝑠𝑘 = 𝑘𝑜
𝜑𝑆𝑜𝑘𝑤

𝜑𝑆𝑤𝑘𝑔
𝜑𝑆𝑔
𝑘𝑔𝑟𝑎𝑖𝑛
(1−𝜑)

 5.15 

Here it should be mentioned, that the geometric mean mixing rule was used because particle size 

distribution data was not available for the core samples analyzed. But if the particle size 

distribution data is available one can use the custom generated Sigmoid mixing rule instead for 

each material separately. 

This information about masks and their properties is then provided into Simpleware ScanIP 

software which reconstructs the three dimensional geometry of core sample and assigns 

properties to the different masks created based on density distribution histogram. The 

reconstructed geometry is then converted into COMSOL-compatible format and this geometry is 
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ready to run the macro scale heat transfer problem (based on Fourier’s Law physics). For the 

purposes of this the scaling up of the thermal conductivity of porous media is discussed in 

details. But this procedure is not limited to the thermal conductivity only and can be applied to 

scale up other properties like electrical resistivity and permeability. The resulting value of 

thermal conductivity is considered a scaled up property. The overall workflow for the procedure 

is presented in Figure 5-11. 

 

Figure 5-11 – Thermal conductivity computational workflow 

Let’s take a look at an example. The histogram for core sample classified as the muddy inclined 

heterolithic stratification (MIHS) is presented in Figure 5-12. The core sample itself is presented 

in Figure 5-13. From the Figure 5-13 it is possible to distinguish three different materials: two 

are of a grey colour and one is white. The same three materials can be distinguished on density 

histogram. The peak on the right side corresponds to the densest material (white) and another 

two peaks corresponds to two other materials. These two peaks are combined because the 

materials have similar density. According to the X-ray powder diffraction (XRD) analysis for 

this core sample: the two grey material are the two different sands and the white material is 

siderite. 
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Figure 5-12 – Density distribution of MIHS core sample 

 

Figure 5-13 – MIHS core sample 

According to the procedure described above the MIHS core sample is separated into different 

materials (masks) with different grain densities (see Table 5-2). Thermal properties of base 

materials and fluids are presented in Table 5-3 and Table 5-4 respectively. 
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Mask 

name 

Density Base 

Material 

Saturation 

Start End Water Oil Air 

MAT1_1 1844 1952 Sand1 0.55 0.1 0.35 

MAT1_2 1952 2060 Sand1 0.55 0.1 0.35 

MAT2_1 2060 2146 Sand2 0.55 0.1 0.35 

MAT2_2 2146 2189 Sand2 0.55 0.1 0.35 

MAT2_3 2189 2232 Sand2 0.55 0.1 0.35 

MAT2_4 2232 2318 Sand2 0.55 0.1 0.35 

MAT3_1 3638 3646 Siderite 0.55 0.1 0.35 

Table 5-2 – Material for MIHS sample 

Base 

material 

Grain density 

𝑘𝑔/𝑚3 

Grain thermal conductivity 

𝑊/(𝑚 ⋅ 𝐾) 

Sand1 2650 7.08 

Sand2 2550 2.44 

Siderite 3811 3 

Table 5-3 – Properties of base materials 

Fluid 
Density 

𝑘𝑔/𝑚3 

Thermal conductivity 

𝑊/(𝑚 ⋅ 𝐾) 

Oil 1014 0.14 

Water 1007 0.61 

Air 1.2 0.024 

Table 5-4 – Properties of fluids 

The thermal conductivity map of different masks is presented in Figure 5-14. The geometry 

presented on this figure was reconstructed using Simpleware Scan IP software and the procedure 

described above. After running the heat transfer model with fixed but different temperatures as 

the boundary conditions at the opposite sides of the parallelepiped, the scaled up thermal 

conductivity of the MIHS core sample was calculated. 
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Figure 5-14 – MIHS core sample thermal conductivity map 

The same procedure as described in MIHS example was repeated for several different cores: 

mudstone, sandstone, sandy inclined heterolithic stratification (SIHS), muddy inclined 

heterolithic stratification (MIHS). Experimental measurements of the effective thermal 

conductivity of the same core samples were taken from Arthur, et al. (Arthur, et al. 2015). The 

results are presented in Table 5-5 and the cross plot of comparison experimental results vs. 

prediction is presented in Figure 5-15. From the graph one can conclude that the upscaling using 

CT images gives fairly good prediction of effective thermal conductivity for Sandstone-1, 

Sandstone-2, MIHS and SIHS samples, while it overestimates the effective thermal conductivity 

for Mudstone-1 and Mudstone-2 samples; and underestimates the effective thermal conductivity 

of Breccia-1 sample. One of the possible reasons for the underestimation and overestimation of 

effective thermal conductivity is the mixing rule used to calculate the effective thermal 

conductivity of a mask from known fluid saturations and thermal conductivities of constituents 
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of porous media. In all the samples described in this section the geometric mean mixing rule was 

used. But as it was showed in the previous chapter the geometric mean mixing rules does not all 

the time accurately predicts the effective thermal conductivity of porous media. It was not 

possible to apply Sigmoid mixing rule as there was no data about particle size distribution 

available. 

Sample name Sample# 
Modeling ETC 

𝑊/(𝑚 ⋅ 𝐾) 

Experimental ETC 

𝑊/(𝑚 ⋅ 𝐾) 

Mudstone-1 

1 1.08 0.77 

2 1.13 0.58 

3 1.14 0.69 

Sandstone-1 

1 0.85 0.8 

2 0.89 0.8 

3 0.83 0.8 

Sandstone-2 

1 1.63 1.73 

2 1.56 1.73 

3 1.7 1.73 

Mudstone-2 

1 1.45 0.72 

2 1.4 1.09 

3 1.47 1.15 

SIHS-1 

1 1.3 1.39 

2 1.35 1.32 

3 1.35 1.32 

MIHS-1 

1 1.73 1.83 

2 1.59 1.52 

3 1.53 1.65 

Breccia-1 

1 2.4 3.98 

2 2.6 3.86 

3 3.54 3.84 

Table 5-5 – Comparison of experimental and scaled up results 
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Figure 5-15 – Cross plot of experimental data and modeling data 

The following resulting statements can be drawn as the outcome of this chapter: 

 Two upscaling approaches were described and analyzed: network upscaling and 

upscaling using CT images 

 The network upscaling approach was validated using model-by-model validation 

approach and it predicts the scaled up version of reservoir properties with a good 

accuracy for distributions of parameters with standard deviation of up to 30% of mean 

value 

 The upscaling approach using CT images gives good prediction for the effective thermal 

conductivity of certain types of unconsolidated core samples with application of 

geometric mean mixing rule. But the application of custom created mixing rule based on 

particle size distribution is recommended. 
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Chapter 6: Summary and conclusions and recommendations for future work 

6.1 Summary and conclusions 

The following statements summarize the main steps performed in this thesis: 

1) A literature review on the mixing rules for the effective thermal conductivity of porous 

media was performed. The advantages and disadvantages of mixing rules available in 

literature were discussed. Methods of experimental determination of effective thermal 

conductivity of porous media were discussed. 

2) Different approaches of creating virtual porous media were discussed both at a pore scale 

level and at a core scale level. Two meshing approaches have been presented: voxel-

based and geometry based. 

3) A numerical model for heat transfer at the pore scale level has been developed and 

validated by experimental data available from literature. The effects of size of contact 

area between the grains, numerical mesh size and differences between voxel-based 

meshing and geometry-based meshing approaches were analyzed. The effective thermal 

conductivities of virtually generated sandstone samples were calculated. 

4) A novel mixing rule to calculate the effective thermal conductivity of unconsolidated 

porous medium based on its particle size distribution was developed. The optimal number 

of grains was determined for the novel mixing rule generation. The effect of different 

particle size distributions was discussed. The physical meaning of the coefficients of the 

novel mixing rule was discussed. The novel mixing rule was compared to other literature 

available mixing rules and the differences were discussed. 

5) Two different upscaling approaches were presented and discussed: equivalent network 

and upscaling based on computer tomography images. Network modelling approach was 

validated using model-by-model validation technique. The upscaling based on computer 

tomography was applied to predict the effective thermal conductivity of real oil sands 

core samples. 
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The following are the main conclusions drawn as the result of the work performed in this thesis: 

1) The numerical model of steady-state heat conduction in porous media shows good 

prediction of the effective thermal conductivity of porous media within the range of solid 

to fluid thermal conductivity ratio of 10 to 100. 

2) It has been numerically shown that the effect of contact area between the gains is very 

important in modelling the effective thermal conductivity of porous media, especially for 

the high values of solid to fluid thermal conductivity ratios. 

3) Geometry-based meshing approach showed better results than the voxel-based meshing 

approach. 

4) After a certain size of the mesh elements its effect on the effective thermal conductivity 

computations is negligible. 

5) Particle size distribution data is an important piece of information regarding an oil sand 

sample. This information is not used in any available literature mixing rules to predict the 

effective thermal conductivity of porous media. 

6) A novel mixing rule which uses the particle size distribution data as an input has been 

developed. The mixing rule involves only point contact between the grains of spherical 

shape. 

7) None of the available literature mixing rules can accurately predict the effective thermal 

conductivity of porous media in the region of interest (solid to fluid thermal conductivity 

ratios of 10 to 100 which are typical for oil sand components). The novel mixing rule 

predicts the effective thermal conductivity with the coefficient of determination of one. 

8) The Equivalent Network upscaling approach shows good results for the prediction of 

scaled up reservoir properties. 

9) Upscaling using computer tomography images showed accurate prediction of effective 

thermal conductivity of sandstone, muddy and sandy inclined heterolithic stratification 

core samples. It under predicted the results for Breccia core samples and over predicts for 

the mudstone core samples. 
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6.2 Recommendations for future work 

There are no ideal results in the research work, as any models and experiments have certain 

underlying assumptions. Thus any model can be improved or extended. The following are 

suggestions and recommendations for future work: 

1) Introduce contact area between the spherical grains by adding the hyperbolical or 

cylindrical inclusion (rings) around the point of contact between the grains. 

2) Analyze the correlations between the coefficients of novel mixing rule and statistical 

parameters of particle size distributions (mean, standard deviation, etc.) 

3) Use three dimensional printing technologies to “print” the core sample and conduct 

experiments to validate the numerical models and novel mixing rule. 
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Appendices A – Results of numerical experiments 

𝑑,𝑚𝑚 
𝑑

𝑟𝑠
 

Effective thermal conductivity,
𝑊

𝑚⋅𝐾
 

Ratio=10000 Ratio=1000 Ratio=100 Ratio=10 

-0.00100 -1.00 2.35 2.35 2.32 2.03 

-0.00098 -0.98 2.37 2.37 2.33 2.04 

-0.00097 -0.97 2.38 2.38 2.35 2.05 

-0.00095 -0.95 2.40 2.39 2.36 2.06 

-0.00094 -0.94 2.41 2.41 2.37 2.07 

-0.00092 -0.92 2.43 2.42 2.39 2.08 

-0.00091 -0.91 2.44 2.44 2.40 2.09 

-0.00089 -0.89 2.46 2.46 2.42 2.10 

-0.00088 -0.88 2.48 2.47 2.43 2.11 

-0.00086 -0.86 2.49 2.49 2.45 2.12 

-0.00085 -0.85 2.51 2.51 2.47 2.14 

-0.00083 -0.83 2.53 2.52 2.48 2.15 

-0.00082 -0.82 2.55 2.54 2.50 2.16 

-0.00080 -0.80 2.57 2.56 2.52 2.17 

-0.00079 -0.79 2.59 2.58 2.54 2.18 

-0.00077 -0.77 2.61 2.60 2.56 2.20 

-0.00076 -0.76 2.63 2.62 2.58 2.21 

-0.00074 -0.74 2.65 2.64 2.60 2.22 

-0.00073 -0.73 2.67 2.66 2.62 2.23 

-0.00071 -0.71 2.69 2.69 2.64 2.25 

-0.00070 -0.70 2.72 2.71 2.66 2.26 

-0.00068 -0.68 2.74 2.73 2.68 2.28 

-0.00067 -0.67 2.76 2.76 2.71 2.29 

-0.00065 -0.65 2.79 2.78 2.73 2.31 

-0.00064 -0.64 2.82 2.81 2.76 2.32 

-0.00062 -0.62 2.84 2.84 2.78 2.34 

-0.00061 -0.61 2.87 2.87 2.81 2.36 

-0.00059 -0.59 2.90 2.89 2.84 2.37 

-0.00058 -0.58 2.93 2.92 2.86 2.39 

-0.00056 -0.56 2.96 2.96 2.89 2.41 

-0.00055 -0.55 2.99 2.99 2.92 2.43 

-0.00053 -0.53 3.03 3.02 2.96 2.45 

-0.00052 -0.52 3.06 3.06 2.99 2.47 

-0.00050 -0.50 3.10 3.09 3.02 2.49 
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𝑑,𝑚𝑚 
𝑑

𝑟𝑠
 

Effective thermal conductivity,
𝑊

𝑚⋅𝐾
 

Ratio=10000 Ratio=1000 Ratio=100 Ratio=10 

-0.00048 -0.48 3.14 3.13 3.06 2.51 

-0.00047 -0.47 3.18 3.17 3.10 2.53 

-0.00045 -0.45 3.22 3.21 3.14 2.55 

-0.00044 -0.44 3.26 3.26 3.18 2.58 

-0.00042 -0.42 3.31 3.30 3.22 2.60 

-0.00041 -0.41 3.36 3.35 3.26 2.63 

-0.00039 -0.39 3.41 3.40 3.31 2.65 

-0.00038 -0.38 3.46 3.45 3.36 2.68 

-0.00036 -0.36 3.52 3.51 3.41 2.71 

-0.00035 -0.35 3.58 3.57 3.47 2.74 

-0.00033 -0.33 3.64 3.63 3.53 2.77 

-0.00032 -0.32 3.70 3.69 3.59 2.80 

-0.00030 -0.30 3.77 3.76 3.65 2.83 

-0.00029 -0.29 3.85 3.84 3.72 2.87 

-0.00027 -0.27 3.93 3.92 3.79 2.91 

-0.00026 -0.26 4.02 4.00 3.87 2.95 

-0.00024 -0.24 4.11 4.10 3.96 2.99 

-0.00023 -0.23 4.21 4.20 4.05 3.03 

-0.00021 -0.21 4.32 4.30 4.15 3.08 

-0.00020 -0.20 4.44 4.42 4.26 3.13 

-0.00018 -0.18 4.57 4.55 4.37 3.18 

-0.00017 -0.17 4.72 4.70 4.50 3.23 

-0.00015 -0.15 4.88 4.86 4.65 3.29 

-0.00014 -0.14 5.06 5.04 4.81 3.36 

-0.00012 -0.12 5.27 5.24 4.99 3.43 

-0.00011 -0.11 5.51 5.48 5.20 3.51 

-0.00009 -0.09 5.80 5.76 5.45 3.59 

-0.00008 -0.08 6.14 6.10 5.74 3.68 

-0.00006 -0.06 6.58 6.53 6.10 3.79 

-0.00005 -0.05 7.15 7.09 6.56 3.90 

-0.00003 -0.03 7.98 7.91 7.21 4.04 

-0.00002 -0.02 9.46 9.34 8.27 4.21 

0.00000 0.00 33.37 22.28 12.13 4.43 

0.00002 0.02 1661.20 170.75 21.61 4.67 

0.00003 0.03 2296.40 233.06 26.89 4.87 
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𝑑,𝑚𝑚 
𝑑

𝑟𝑠
 

Effective thermal conductivity,
𝑊

𝑚⋅𝐾
 

Ratio=10000 Ratio=1000 Ratio=100 Ratio=10 

0.00005 0.05 2769.90 279.76 31.01 5.06 

0.00006 0.06 3160.10 318.51 34.50 5.23 

0.00008 0.08 3497.10 352.18 37.57 5.40 

0.00009 0.09 3796.60 381.88 40.32 5.55 

0.00011 0.11 4065.90 408.61 42.81 5.70 

0.00012 0.12 4313.20 433.17 45.10 5.83 

0.00014 0.14 4541.30 455.84 47.24 5.97 

0.00015 0.15 4754.00 476.98 49.23 6.09 

0.00017 0.17 4952.70 496.75 51.10 6.21 

0.00018 0.18 5140.30 515.41 52.88 6.33 

0.00020 0.20 5317.30 533.02 54.56 6.44 

0.00021 0.21 5485.00 549.71 56.15 6.55 

0.00023 0.23 5644.50 565.59 57.67 6.65 

0.00024 0.24 5795.90 580.66 59.11 6.75 

0.00026 0.26 5941.30 595.14 60.50 6.85 

0.00027 0.27 6080.00 608.96 61.83 6.95 

0.00029 0.29 6212.30 622.13 63.10 7.04 

0.00030 0.30 6340.00 634.85 64.32 7.13 

0.00032 0.32 6461.70 646.98 65.49 7.21 

0.00033 0.33 6579.50 658.72 66.63 7.29 

0.00035 0.35 6692.10 669.94 67.71 7.37 

0.00036 0.36 6801.40 680.83 68.77 7.45 

0.00038 0.38 6905.80 691.25 69.77 7.53 

0.00039 0.39 7007.40 701.37 70.76 7.60 

0.00041 0.41 7105.00 711.09 71.70 7.67 

0.00042 0.42 7198.90 720.46 72.61 7.74 

0.00044 0.44 7290.40 729.58 73.49 7.81 

0.00045 0.45 7378.20 738.34 74.34 7.88 

0.00047 0.47 7463.70 746.86 75.17 7.94 

0.00048 0.48 7546.00 755.07 75.97 8.00 

0.00050 0.50 7625.30 762.98 76.74 8.06 

Table A-1 – Results of numerical experiment #02: effect of contact area (wide range)  
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𝑑,𝑚𝑚 
𝑑

𝑟𝑠
 

Effective thermal conductivity,
𝑊

𝑚⋅𝐾
 

Ratio=10000 Ratio=1000 Ratio=100 Ratio=10 

-0.000100 -0.100 5.620 5.589 5.294 3.538 

-0.000098 -0.098 5.658 5.626 5.327 3.549 

-0.000096 -0.096 5.697 5.664 5.360 3.560 

-0.000094 -0.094 5.736 5.703 5.394 3.572 

-0.000092 -0.092 5.777 5.743 5.428 3.583 

-0.000090 -0.090 5.818 5.784 5.464 3.595 

-0.000088 -0.088 5.861 5.826 5.500 3.607 

-0.000086 -0.086 5.905 5.869 5.537 3.619 

-0.000084 -0.084 5.949 5.913 5.575 3.631 

-0.000082 -0.082 5.995 5.958 5.614 3.643 

-0.000080 -0.080 6.043 6.005 5.654 3.656 

-0.000078 -0.078 6.092 6.053 5.695 3.669 

-0.000076 -0.076 6.142 6.103 5.738 3.682 

-0.000074 -0.074 6.194 6.154 5.781 3.695 

-0.000072 -0.072 6.248 6.206 5.826 3.708 

-0.000070 -0.070 6.303 6.261 5.872 3.722 

-0.000068 -0.068 6.360 6.317 5.919 3.735 

-0.000066 -0.066 6.419 6.375 5.968 3.750 

-0.000064 -0.064 6.480 6.435 6.019 3.764 

-0.000062 -0.062 6.544 6.497 6.071 3.778 

-0.000060 -0.060 6.609 6.562 6.125 3.793 

-0.000058 -0.058 6.677 6.628 6.181 3.808 

-0.000056 -0.056 6.748 6.698 6.238 3.823 

-0.000054 -0.054 6.822 6.770 6.298 3.839 

-0.000052 -0.052 6.899 6.846 6.360 3.855 

-0.000049 -0.049 6.979 6.924 6.425 3.871 

-0.000047 -0.047 7.063 7.006 6.492 3.888 

-0.000045 -0.045 7.151 7.092 6.562 3.904 

-0.000043 -0.043 7.243 7.183 6.636 3.922 

-0.000041 -0.041 7.340 7.278 6.712 3.939 

-0.000039 -0.039 7.443 7.378 6.793 3.957 

-0.000037 -0.037 7.551 7.483 6.877 3.975 

-0.000035 -0.035 7.665 7.595 6.966 3.994 

-0.000033 -0.033 7.786 7.713 7.058 4.013 

-0.000031 -0.031 7.916 7.840 7.158 4.032 
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𝑑,𝑚𝑚 
𝑑

𝑟𝑠
 

Effective thermal conductivity,
𝑊

𝑚⋅𝐾
 

Ratio=10000 Ratio=1000 Ratio=100 Ratio=10 

-0.000029 -0.029 8.056 7.975 7.263 4.052 

-0.000027 -0.027 8.206 8.121 7.375 4.073 

-0.000025 -0.025 8.368 8.279 7.495 4.094 

-0.000023 -0.023 8.544 8.450 7.625 4.116 

-0.000021 -0.021 8.738 8.638 7.765 4.138 

-0.000019 -0.019 8.952 8.845 7.917 4.161 

-0.000017 -0.017 9.191 9.076 8.084 4.185 

-0.000015 -0.015 9.462 9.336 8.269 4.210 

-0.000013 -0.013 9.772 9.635 8.476 4.235 

-0.000011 -0.011 10.137 9.984 8.712 4.262 

-0.000009 -0.009 10.578 10.405 8.986 4.289 

-0.000007 -0.007 11.133 10.931 9.315 4.318 

-0.000005 -0.005 11.880 11.634 9.725 4.348 

-0.000003 -0.003 13.020 12.692 10.278 4.379 

-0.000001 -0.001 15.484 14.895 11.175 4.413 

0.000001 0.001 459.760 55.901 13.399 4.448 

0.000003 0.003 773.380 85.227 15.161 4.482 

0.000005 0.005 985.650 105.510 16.557 4.514 

0.000007 0.007 1156.300 121.970 17.764 4.546 

0.000009 0.009 1302.700 136.160 18.845 4.577 

0.000011 0.011 1432.300 148.760 19.833 4.608 

0.000013 0.013 1549.500 160.190 20.748 4.638 

0.000015 0.015 1657.500 170.750 21.607 4.667 

0.000017 0.017 1757.900 180.570 22.417 4.696 

0.000019 0.019 1852.100 189.800 23.186 4.725 

0.000021 0.021 1940.700 198.500 23.919 4.753 

0.000023 0.023 2025.200 206.800 24.623 4.780 

0.000025 0.025 2105.600 214.710 25.299 4.807 

0.000027 0.027 2182.300 222.250 25.949 4.834 

0.000029 0.029 2256.200 229.530 26.578 4.860 

0.000031 0.031 2327.300 236.530 27.187 4.887 

0.000033 0.033 2395.600 243.260 27.777 4.912 

0.000035 0.035 2461.800 249.790 28.349 4.938 

0.000037 0.037 2526.300 256.150 28.910 4.963 

0.000039 0.039 2588.800 262.320 29.455 4.988 



 

134 

𝑑,𝑚𝑚 
𝑑

𝑟𝑠
 

Effective thermal conductivity,
𝑊

𝑚⋅𝐾
 

Ratio=10000 Ratio=1000 Ratio=100 Ratio=10 

0.000041 0.041 2649.000 268.270 29.983 5.013 

0.000043 0.043 2708.000 274.090 30.502 5.037 

0.000045 0.045 2765.400 279.760 31.008 5.061 

0.000047 0.047 2821.500 285.300 31.504 5.085 

0.000049 0.049 2875.900 290.690 31.987 5.109 

0.000052 0.052 2929.300 295.970 32.462 5.132 

0.000054 0.054 2981.600 301.140 32.928 5.155 

0.000056 0.056 3032.200 306.150 33.380 5.178 

0.000058 0.058 3083.900 311.260 33.840 5.201 

0.000060 0.060 3132.900 316.100 34.280 5.223 

0.000062 0.062 3181.100 320.880 34.714 5.246 

0.000064 0.064 3228.300 325.550 35.139 5.268 

0.000066 0.066 3274.500 330.120 35.556 5.290 

0.000068 0.068 3321.200 334.750 35.977 5.312 

0.000070 0.070 3366.000 339.190 36.383 5.333 

0.000072 0.072 3411.700 343.720 36.796 5.355 

0.000074 0.074 3455.000 348.000 37.189 5.376 

0.000076 0.076 3497.100 352.180 37.573 5.398 

0.000078 0.078 3539.100 356.340 37.957 5.418 

0.000080 0.080 3580.300 360.430 38.333 5.439 

0.000082 0.082 3621.100 364.470 38.706 5.460 

0.000084 0.084 3661.100 368.440 39.073 5.480 

0.000086 0.086 3700.200 372.320 39.432 5.501 

0.000088 0.088 3739.100 376.180 39.789 5.521 

0.000090 0.090 3777.600 380.000 40.142 5.541 

0.000092 0.092 3814.900 383.700 40.486 5.561 

0.000094 0.094 3852.200 387.400 40.830 5.581 

0.000096 0.096 3888.300 390.980 41.163 5.600 

0.000098 0.098 3924.700 394.600 41.499 5.619 

0.000100 0.100 3961.000 398.190 41.833 5.638 

Table A-2 - Results of numerical experiment #02: effect of contact area (near contact 

region)  
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Number of grains Target porosity # Porosity 
ETC in direction, 𝑊/(𝑚 ⋅ 𝐾)  

Z (in) Z (out) X (in) X (out) 

300 

Phi1 

1 0.523 1.793 1.769 1.824 1.824 

2 0.527 1.767 1.793 1.780 1.781 

3 0.520 1.795 1.813 1.802 1.802 

4 0.519 1.813 1.798 1.807 1.807 

5 0.526 1.756 1.776 1.814 1.814 

Phi2 

1 0.489 1.913 1.884 1.944 1.944 

2 0.495 1.901 1.886 1.888 1.888 

3 0.498 1.895 1.895 1.894 1.894 

4 - - - - - 

5 0.492 1.916 1.916 1.923 1.923 

Phi3 

1 0.469 2.000 1.999 2.012 2.012 

2 0.462 2.052 2.052 2.046 2.046 

3 0.472 1.989 1.937 2.004 2.000 

4 0.473 1.928 1.905 2.018 2.018 

5 0.459 1.992 2.009 2.042 2.042 

Phi4 

1 0.448 2.063 2.103 2.099 2.099 

2 0.444 2.112 2.112 2.118 2.118 

3 0.440 2.133 2.089 2.132 2.132 

4 0.450 2.004 2.060 2.091 2.091 

5 0.430 2.187 2.156 2.201 2.199 

Phi5 

1 0.400 2.218 2.242 2.342 2.342 

2 0.401 2.278 2.252 2.302 2.302 

3 0.400 2.227 2.273 2.307 2.307 

4 0.406 2.222 2.211 2.271 2.271 

5 0.401 2.269 2.267 2.303 2.303 
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Number of grains Target porosity # Porosity 
ETC in direction, 𝑊/(𝑚 ⋅ 𝐾)  

Z (in) Z (out) X (in) X (out) 

700 

Phi1 

1 0.495 1.907 1.907 1.905 1.905 

2 - - - - - 

3 0.479 1.991 1.960 2.003 2.003 

4 0.479 2.013 2.013 1.999 1.999 

5 0.494 1.899 1.911 1.906 1.906 

Phi2 

1 0.455 2.062 2.088 2.100 2.100 

2 0.465 2.026 2.026 2.004 2.004 

3 0.463 2.032 2.031 2.025 2.025 

4 0.467 2.003 2.023 2.013 2.013 

5 0.466 2.018 2.001 2.013 2.013 

Phi3 

1 0.438 2.133 2.115 2.141 2.141 

2 0.439 2.130 2.110 2.129 2.129 

3 0.438 2.143 2.143 2.143 2.143 

4 0.439 2.096 2.107 2.128 2.128 

5 0.439 2.139 2.139 2.138 2.138 

Phi4 

1 0.415 2.216 2.221 2.240 2.240 

2 0.415 2.210 2.202 2.229 2.229 

3 0.414 2.225 2.239 2.224 2.224 

4 0.410 2.241 2.247 2.262 2.262 

5 0.411 2.223 2.212 2.252 2.252 

Phi5 

1 0.382 2.389 2.374 2.407 2.421 

2 0.383 2.400 2.372 2.421 2.421 

3 0.381 2.400 2.372 2.425 2.425 

4 0.380 2.403 2.383 2.430 2.430 

5 0.379 2.372 2.399 2.435 2.435 
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Number of grains Target porosity # Porosity 
ETC in direction, 𝑊/(𝑚 ⋅ 𝐾)  

Z (in) Z (out) X (in) X (out) 

1100 

Phi1 

1 0.484 1.940 1.928 1.958 1.958 

2 0.478 1.975 1.965 1.976 1.976 

3 0.470 2.022 2.023 2.039 2.039 

4 0.485 1.941 1.941 1.937 1.937 

5 - - - - - 

Phi2 

1 0.440 2.140 2.153 2.146 2.146 

2 0.436 2.176 2.143 2.166 2.166 

3 0.453 2.057 2.066 2.065 2.064 

4 0.450 2.086 2.073 2.078 2.079 

5 0.447 2.096 2.096 2.102 2.102 

Phi3 

1 0.490 1.862 1.862 1.852 1.852 

2 0.422 2.200 2.188 2.208 2.209 

3 0.488 1.864 1.841 1.862 1.862 

4 0.424 2.165 2.192 2.188 2.188 

5 - - - - - 

Phi4 

1 0.399 2.291 2.290 2.305 2.305 

2 0.401 2.274 2.262 2.293 2.293 

3 0.401 2.290 2.274 2.294 2.294 

4 0.399 2.296 2.281 2.308 2.308 

5 0.382 2.381 2.402 2.419 2.418 

Phi5 

1 0.378 2.408 2.415 2.441 2.441 

2 0.379 2.413 2.437 2.432 2.432 

3 0.380 2.377 2.410 2.426 2.426 

4 - - - - - 

5 0.385 2.400 2.384 2.409 2.409 
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Number of grains Target porosity # Porosity 
ETC in direction, 𝑊/(𝑚 ⋅ 𝐾)  

Z (in) Z (out) X (in) X (out) 

1500 

Phi1 

1 0.476 1.966 1.966 1.972 1.972 

2 0.475 1.980 1.980 1.975 1.975 

3 0.461 2.072 2.072 2.058 2.058 

4 0.476 1.979 1.970 1.973 1.973 

5 0.474 1.983 1.983 1.980 1.980 

Phi2 

1 0.441 2.120 2.120 2.127 2.127 

2 0.429 2.195 2.177 2.202 2.202 

3 0.429 2.198 2.198 2.193 2.193 

4 - - - 2.117 2.117 

5 0.443 2.104 2.110 2.112 2.112 

Phi3 

1 0.400 2.304 2.324 2.334 2.334 

2 0.414 2.234 2.234 2.237 2.237 

3 - - - 2.243 2.243 

4 0.415 2.221 2.223 2.233 2.233 

5 0.413 2.225 2.243 2.242 2.242 

Phi4 

1 0.379 2.404 2.400 2.431 2.431 

2 0.382 2.400 2.380 2.420 2.420 

3 0.380 2.417 2.417 2.429 2.429 

4 0.381 2.389 2.417 2.433 2.433 

5 0.380 2.418 2.404 2.432 2.432 
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Number of grains Target porosity # Porosity 
ETC in direction, 𝑊/(𝑚 ⋅ 𝐾)  

Z (in) Z (out) X (in) X (out) 

2000 

Phi1 

1 0.468 2.007 1.995 2.006 2.006 

2 0.462 2.030 2.030 2.031 2.031 

3 0.466 2.015 2.015 2.012 2.012 

4 - - - - - 

5 0.467 2.012 2.012 2.011 2.011 

Phi2 

1 0.433 2.157 2.151 2.145 2.145 

2 0.431 2.158 2.158 2.167 2.167 

3 0.434 2.139 2.134 2.149 2.149 

4 0.433 2.156 2.156 2.151 2.151 

5 0.435 2.137 2.121 2.145 2.145 

Phi3 

1 0.404 2.270 2.269 2.273 2.273 

2 0.409 2.247 2.256 2.260 2.260 

3 0.405 2.257 2.272 2.276 2.276 

4 0.405 2.261 2.257 2.270 2.270 

5 0.407 2.261 2.262 2.272 2.272 

Phi4 

1 0.382 2.404 2.397 2.415 2.415 

2 0.379 2.411 2.415 2.430 2.430 

3 0.381 2.416 2.422 2.429 2.429 

4 - - - - - 

5 - - - - - 
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Number of grains Target porosity # Porosity 
ETC in direction, 𝑊/(𝑚 ⋅ 𝐾)  

Z (in) Z (out) X (in) X (out) 

2500 

Phi1 

1 0.461 2.035 2.038 2.037 2.037 

2 0.449 2.117 2.117 2.120 2.120 

3 0.463 2.014 2.022 2.028 2.028 

4 0.461 2.033 2.028 2.033 2.033 

5 0.460 2.037 2.037 2.031 2.031 

Phi2 

1 0.431 2.161 2.155 2.159 2.159 

2 0.419 2.244 2.253 2.243 2.243 

3 0.430 2.149 2.153 2.170 2.170 

4 0.427 2.172 2.178 2.172 2.172 

5 0.428 2.173 2.180 2.170 2.170 

Phi3 

1 0.388 2.372 2.368 2.385 2.385 

2 0.402 2.285 2.277 2.287 2.287 

3 0.400 2.297 2.297 2.295 2.295 

4 0.388 2.379 2.371 2.392 2.392 

5 0.401 2.283 2.273 2.297 2.297 

Phi4 

1 0.383 2.401 2.394 2.416 2.416 

2 0.380 2.431 2.406 2.427 2.427 

3 0.384 2.405 2.397 2.405 2.405 

4 0.385 2.392 2.389 2.401 2.401 

5 0.383 2.384 2.385 2.415 2.415 

Phi5 

1 0.382 2.394 2.391 2.416 2.416 

2 0.383 2.392 2.395 2.418 2.418 

3 0.383 2.404 2.399 2.413 2.413 

4 0.386 2.395 2.380 2.403 2.403 

5 0.379 2.403 2.406 2.428 2.428 

Table A-3 – Results of numerical experiment #06  
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𝐾𝑠 
𝐾𝑒 

PSD1 PSD2 PSD3 PSD4 

0.001 0.280 0.257 0.258 0.254 

0.0016 0.281 0.257 0.259 0.254 

0.0026 0.282 0.258 0.260 0.255 

0.0042 0.283 0.260 0.261 0.257 

0.0067 0.285 0.262 0.264 0.259 

0.0108 0.289 0.266 0.268 0.263 

0.0174 0.295 0.272 0.274 0.269 

0.0281 0.305 0.282 0.284 0.279 

0.0452 0.320 0.298 0.301 0.295 

0.0728 0.344 0.323 0.326 0.320 

0.1172 0.382 0.362 0.366 0.359 

0.1887 0.440 0.423 0.427 0.420 

0.3039 0.531 0.515 0.520 0.513 

0.4894 0.666 0.655 0.659 0.654 

0.78805 0.868 0.863 0.865 0.862 

1.269 1.158 1.164 1.162 1.165 

2.043 1.563 1.587 1.579 1.591 

3.290 2.105 2.160 2.144 2.169 

5.298 2.790 2.900 2.879 2.917 

8.53 3.598 3.802 3.783 3.832 

13.74 4.476 4.828 4.825 4.875 

22.12 5.343 5.901 5.935 5.970 

35.62 6.119 6.927 7.017 7.019 

57.36 6.753 7.820 7.980 7.934 

92.4 7.233 8.534 8.765 8.666 

148.7 7.574 9.063 9.359 9.212 

239.5 7.807 9.437 9.780 9.597 
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𝐾𝑠 
𝐾𝑒 9.687 10.067 9.852 

PSD1 PSD2 PSD3 PSD4 

385.7 7.959 9.687 10.067 9.852 

621 8.058 9.853 10.258 10.026 

1000 8.124 9.949 10.381 10.164 

Table A-4 – Results of numerical experiment #07 
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Appendices B – Numbering system for network modeling 

The 3x3x3 equivalent network is presented in Figure B-1. The nodes of the upper layer are 

connected to the nodes of the bottom layer respectively. The nodes of the front layer are 

connected to the nodes of the rear layer respectively. The nodes of the left side layer are 

connected to the artificial node 0 and the nodes of the right side layer are connected to the 

artificial node 28. The nodes are numbered by layers as shown in Figure B-1 starting from the 

top layer. The edges are numbered in layers as well as shown in Figure B-2 starting from the top 

layer. 

 

Figure B-1 – Numbering of nodes 
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Figure B-2 – Numbering of edges 


