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Abstract 

This thesis studies several problems relating to sets of convex objects in the plane: 

1. Union Hull Construction: Given a set S of k convex polygons, construct their 

union hull U(S), i.e., the minimum convex hull that contains all the elements 

of S. 

2. Intersecting Convex Polygons: Given a set S of k convex polygons, we study 

two problems: (1) Compute the intersection of these polygons, and (2) Detect 

whether the given polygons intersect or not. 

3. Separating Convex Objects: Given a set S of k convex objects, decide whether 

a separating line exists, i.e., a straight line that separates S into two non-empty 

subsets and yet does not intersect any of the elements in S. 

4. Voronoi Diagram for Convex Objects: This is an extended form of the ordinary 

Voronoi diagram construction problem. Instead of working on a set of given 

points, we construct the Voronoi diagram for a set of convex polygons. 

The thesis studies these problems and some interesting results are achieved. Al-

gorithmic lower bound analysis is given wherever possible, and some of algorithms 

presented here are optimal. 
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Chapter 1 

Introduction 

This thesis investigates several problems relating to sets of convex objects in the 

plane. 

The problems themselves are of theoretical and practical interest. By studying 

these problems more insight is obtained into the very important property of con-

vexity. We believe, and prove by the work in the thesis, that algorithms handling 

convex objects can be made more efficient if more of the convexity of the input can be 

explored and utilized in the solution. We also show that algorithm design paradigms 

that are well known to be efficient in solving computational geometry problems, such 

as divide-and-conquer, geometrical transform, plane sweeping etc, can be applied to 

the problems. 

1.1 Preparation and Background 

We shall start with some background material and preliminaries. 

1.1.1 Computational geometry 

Computational Geometry is a new discipline that took shape over the past two 

decades. It is now established, as seen by the excellent advanced text by Preparata 

and Shamos [30], as well as the new journals that are appearing and the conferences 

(e.g. ACM Symposium on Computational Geometry) that are held annually. 

1 



CHAPTER 1. INTRODUCTION 2 

The discipline is concerned with geometry and geometrical objects from a com-

putational point of view, and the aim is to find efficient algorithms for these objects. 

The problems treated arise in many areas such as computer graphics, VLSI design, 

travel planning, and operation optimization etc, to name a few. 

This discipline has seen a tremendous activity over the last two decades as wit-

nessed by the bibliography [4] of materials relative to computational geometry. Ini-

tially the problems solved were fairly standard problems, such as the computation of 

the convex hull of a set of points in the plane. Many of these standard problems have 

now been solved in a satisfactory manner in that the complexities of the solutions 

are the complexities arrived at as best possible by complexity analysis. Thus, most 

of the standard problems now only admit refinement of detail in the computational 

process. 

The research in the discipline also opened up new and exiting problem areas. The 

developments of new tools made it possible to consider problems that in the past 

were thought to be too difficult. 

Problem solving in computational geometry consists of operation on some given 

set of geometrical objects, among which convex objects form the most prominent 

class. The reason that convex objects become a m.jor focus in computational ge-

ometry research is that first, they characterize many real-world applications; second, 

associated with convex objects there is a very important property called convexity, 

which possesses some very valuable computational merits and enables efficient al-

gorithms to be developed. In this thesis we shall study problems on planar convex 

objects. 
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1.1.2 Our computational model 

The computational model we shall use in the thesis is an abstraction of an actual 

Von Neumann computer. In particular, we adopt a random access machine (RAM) 

similar to that described in [1], except that in our model each memory cell is able 

to hold a single real number. The following operations are primitive and cost unit 

time: 

1. The arithmetic operations (+,—,x,/). 

2. Comparisons between two real numbers. 

3. Indirect addressing of memory (integer addresses only). 

This model will be referred to as the real RAM. It closely reflects programs written 

in high-level languages such as PASCAL and ALGOL, in which real type variables are 

treated as having unlimited precision. This may cause implementational problems for 

applications where precise measurements are required, e.g., point positions, lengths, 

sizes, etc. In our discussion, however, we shall ignore questions such as how real 

numbers can be read or written in finite time. 

1.1.3 Lower and upper bounds 

When considering a problem under the real RAM model it is important to find out 

its inherent computational complexity (the number of operations performed). Given 

a problem F, its computational complexity may be assessed by establishing the lower 

bound or upper bound of the problem. The lower bound of a given problem is defined 

to be the minimum time required for running any algorithm that solves the problem 
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(usually measured by the worst-case running time). The upper bound of a problem, 

however, provides a ceiling for the convexity of the problem. It enables us to decide 

that the problem under study is "inherently not more difficult in term of computing 

time" than a given degree of complexity. 

Lower bounds and upper bounds may be tight, in which case the measures of 

complexity they provide are accurate. They can also be loose , in which case they 

define a "range" as to how difficult the problem is, and the measures they provide 

are less .precise. 

An often used and proven effective method in establishing a lower bound (or 

upper bound) for a given problem is to find a relationship between the problem 

under study and another problem whose computation complexity is well known, 

such as sorting, element uniqueness, etc. This method is called transformation of 

problems. A detailed discussion of transformation of problems can be found in [30]. 

In many cases, however, tight lower and upper bounds may be extremely difficult to 

find. 

1.1.4 Algorithm analysis 

Solutions to problems are customarily preàented in the form of a procedural descrip-

tion of their execution behavior. Such a description is called an algorithm. When an 

algorithm is given it should, wherever possible, be accompanied by an evaluation that 

predicts its performance in execution. Algorithm performance evaluation normally 

have two aspects: (a) the expected space consumption, and (b) more importantly, the 

expected time requirement. 

The time used for the execution of an algorithm is the sum of the times of 
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the individual operations being executed. As the accurate running behavior of a 

certain algorithm may impossible to model, it is customary in the field of algorithm 

design and analysis to count only certain "key operations" that are executed. In our 

computational model, we consider only the following (algorithmic) operations: 
C. 

1. Procedure calling. 

2. Assignment. 

3. Branching (comparing). 

4. Looping. 

Note that some operations are "omited", and the running time we come about 

will therefore account for only a part of the actual time requirement. This will cause 

no problem in lower bound analysis, for any unaccounted-for operations will only 

increase it. When dealing with upper bounds, however, we need to ensure that the 

selected operations accounts for a constant portion of all the operations that are 

executed. In our thesis, we shall use a notation device described in Knuth ([20]): 

• 0(f (n)) denotes the set of all functions g(n) such that there exist positive 

constants C and No with Ig(n)I ≤ Cf(n) for all n ≥ No. 

• 11(1(n)) denotes the set of all functions g(n) such that there exist positive 

constants C and No with g(n) ≥ Cf(n) for all n ≥ No. 

• 0(f (n)) denotes the set of all functions g(n) such that there exist positive 

constants C1, C2 and No with Cif (n) ≤ g(n) ≤ C2f(n) for all n ≥ No. 

The performance of an algorithm can either be measured by its worst-case com-

plexity or by its average-case complexity. Worst-case complexity is the maximum of 
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a measure of performance of a given algorithm over all problem instances of a given 

size. Average-case complexity, however, gives an estimate of the observed behav-

ior of the algorithm. Normally worst-case complexity is easier to measure than its 

average-case counterpart. In this thesis we shall use both for performance evaluation 

purposes. 

1.1.5 Algebraic decision tree 

We now introduce a very important computational model, called the "algebraic de-

cision tree", which will often be used in our complexity analysis. 

An algebraic decision tree ([32], [10], [30]) on a set of variables X1, x2, ..., x, is a 

program with statements L1, L2,..., L of the form: 

1. L3: Compute f(51,52, ...,x). 1ff:: 0 then go to L, else go to Lj (:: denotes 

any comparison relation). 

2. L: Halt and return "Yes". 

3. Li,: Halt and return "No". 

In step 1, f is an algebraic function (a polynomial of a certain degree). The program 

is further assumed to be loop-free, i.e., it has the structure of a tree T, such that 

each nonleaf node v is described by 

:: 0. 

where f is a polynomial in X1, X2, ..., x, and:: denotes a comparison relation. When 

f,, is a linear function we call the corresponding tree T a linear decision tree. The 

root of T represents the initial step of the computation and its leaves represent the 
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possible terminations and contain the possible answers. Without losing generality, 

we shall assume that the tree T is binary. 

The major power of the algebraic decision tree model lies in its ability to solve 

the membership for decision problems. The decision problem D(A) associated with 

a given problem A, which can either be a "computation" or a "subset selection" 

problem ([30]), is one that 1 (A being a computation problem): requests a Yes/No 

answer to a question of the type "Is A ≥ A0?" where A0 is a constant and A is 

a parameter whose value is unknown; or 2 (A being a subset selection problem): 

requests a Yes/No answer to a question of the type "Does set S' satisfy property 

F?" where 8' is a subset of a given set S and P is a certain property to be satisfied. 

Let D(A) be a decision problem and let x1, X2,..., x, be the parameters associated 

with it. We can view each instance of the parameters as a point in the n-dimensional 

Euclidean space En. The decision problem then identifies a set of points W 

or in other words it provides a Yes-answer if and only if (x1, X2, ..., x) E W. If T is 

the decision tree of problem D(A) we then say that T solves the membership problem 

for W. 

Several results, of significant theoretical value have been established regarding the 

above-mentioned membership problem ([10], [36], [5]). Following is a result due to 

Dobkin and Lipton ([10]): 

Result 1 Any linear decision tree algorithm that solves the membership problem in 

W E' must have depth at least 1092 #(W), where #(W) is the number of disjoint 

connected components of W. 

This result is very useful in establishing lower bounds for decision problems. 
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1.2 General definitions and notations 

The objects contained in computational geometry are normally sets of points in 

Euclidean space. We shall assume a coordinate system of reference within which 

each point is represented as a vector of Cartesian coordinates of the appropriate 

dimension. Following are some general definitions and notations. 

By Ed we denote the d-dimensional Euclidean space, i.e. the space of the d-tuples 

(Si) X21 ..., Sd) of real numbers x, i = 1, 2, ..., d. 

A point p in E' is a d-tuple (Si, X2, ..., Sd). A straight line 1 can be defined by any 

two different points on it, and a straight line segment s is defined by its two extreme 

points. 

A domain D in Ed is convex if, for any two points qi and q2 in D, the segment 

is entirely contained in D. Note that the intersection of two convex domains is 

still a convex domain. 

The convex hull of a set of points S in E' is the boundary of the smallest convex 

domain in Edthat contains S. 

In E2 a polygon is defined by a finite set of segments such that every segment 

extreme is shared by exactly two edges and no subset of edges has the same property. 

The segments are the edges and their extremes are the vertices of the polygon (Note 

that the number of edges and vertices are identical). An polygon with n vertices is 

called an n-gon. 

A polygon P is simple if there is no pair of nonconsecutive edges sharing a 

point. A simple polygon partitions the plane into two disjoint regions, the interior 

(bounded) and the exterior (unbounded) separated by the polygon. 
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A polygon P is convex if its interior is a convex set. 

1.3 The thesis 

This thesis studies several basic problems on sets of convex objects, primarily convex 

polygons. It is organized as follows. 

Chapter 2 discusses the construction of union hulls: given a set S of convex 

polygons, construct the convex hull of all vertices in S. A lower bound and several 

algorithms are presented. 

Chapter 3 deals with the intersection problem. For a given set S of convex 

polygons we form two different types of intersection questions: (a) calculate the 

intersection of all convex polygons in S; and (b) detect whether the given convex 

polygons intersect or not. The chapter treats both problems in detail. 

Chapter 4 studies the problem of separating a set of planar convex objects. Given 

a set S of convex objects, we are to find out whether there is a straight line 1 that 

separates S into two disjoint non-empty subsets and yet does not intersect any of 

the given polygons. Objects studied in this chapter are straight line segments and 

convex polygons. 

Chapter 5 deals with an extended form of planar Voronoi Diagram. Ordinary 

Voronoi Diagrams are based on sets of planar points. In this chapter, however, we 

shall consider the problem of constructing the Voronoi diagram for a given set S of 

convex polygons. A solutions using' the divide-and-conquer technique is given for a 

restricted version of the problem. 

Finally chapter 6 gives a conclusion. 
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Throughout the thesis, we assume that polygons are represented in arrays with 

their vertices stored in counterclockwise order unless otherwie specified. This rep-

resentation ensures that binary search can be performed when a vertex needs to be 

found (such cases arise when computing the intersection of two convex polygons). 



Chapter 2 

Constructing the union hull 

In this chapter we study an extended form of convex hull construction which we 

shall call the union hull. By definition, the convex hull H for a set S of k planar 

points PI ) P2, .... Pk is the minimum convex polygon that contains S ([15], [17], [30]). 

In a similar manner, the union hull for a set S of k convex polygons P1, P2,..., Pk  is 

defihed to be the minimum convex polygon that covers all the elements of S. We 

formalize the problem in the following: 

Problem 1 Given a set S of k planar convex n-gons F1, F2, ...Ph, construct the 

union hull U of S. 

The chapter is organized as follows: Section 2.1 studies the standard union hull 

construction problem where the input polygons all have the same number of vertices. 

A basic algorithm using the divide-and-conquer technique is given. Section 2.2 con-

•siders a generalized version of the problem where input polygons may differ in their 

numbers of vertices. An Huffman tree model is used to keep up with the changing 

input pattern thereby achieving a better worst-case as well as average-case per-

formance: Section 2.3 establishes the lower bound for the union hull construction 

problem, and lastly in section 2.4 we introduce a general preprocessing method that 

is useful in solving computational geometry problems of a similar nature. 

In the discussion below, by a "polygon" we mean a "convex polygon" unless 

otherwise specified. 

11 



CHAPTER 2. CONSTRUCTING THE UNION HULL 12 

Figure 2.1: The union hull of a convex m-gon and a convex n-gon can have up to 
m + n vertices. 

2.1 Algorithms for union hull construction 

In this chapter, we shall use convex merge (or merge), denoted by ED , to indicate 

the basic operation that computes the union hull of two convex polygons ([29], [30]). 

The following result on convex merge is of fundamental importance. 

Result 2 Finding the merge of a convex rn-gon P and a convex n-gon Q requires 

O(m + n) time, which is optimal in the worst case. 

Proof: There are several algorithms available that finds the merge of two convex 

polygons in linear time ([29], [30]), and we shall not give the details here. For 

optimality, it is obvious that the union hull of a convex m-gon and a convex n-gon 

may have up to m + n vertices (figure 2.1), and reading them off takes O(m + n) 

time. 0 
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2.1.1 The straight merge method 

Problem 1 can be solved by repetitively applying the convex merge operation. In 

fact, given k convex polygons P1, F2, ..., Pie, we can construct their union hull U by 

performing a sequence of k - 1 merges. Let U1 = F1, the computation will proceed 

as follows: 

(JJ'2 =U2; (2.1) 

U1_j P1 = U1; (2.2) 

Uk_i Pk = U; (2.3) 

we know that the union hull of a convex m-gon and a convex n-gon may have up to 

m + n vertices, thus the ith (1 ≤ i ≤ k - 1) step of the above process (equation 2.2) 

will merge a (ni)-gon and a n-gon in the worst case. According to result 2 this 

step alone will take O(ni) time. Apply this to all equations in the sequence for 

i = 1, 2, ..., Ic, we get the following total running time: 

k—i 

O((i . n)) = O(nk2) 

Therefore the algorithm has an O(nk2) time complexity in the worst case. 

2.1.2 A divide-and-conquer solution 

The execution of the above algorithm can be characterized by a binary tree T which 

is constructed as follows: Initially the set S has k convex polygons e1, e2, ..., ek, where 

each of which is assigned to be a "leaf node" of T. We then start to perform the 
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operation , on the elements of S. As the merging process proceeds, the contents 

and structure of S are accordingly changed. 

When two elements of 5, say ej and ej, are merged, we remove both from the 

set of S, form a new element e = e ej with arcs connected to both ei and e3. 

This new "parent node" e is then added to the now revised set of S. Every time a 

merge operation is performed, S loses two of its 'old nodes (ei and ej) and acquires 

a new node (e). After (k - 1) merges, the set of S should contain only one element 

e0, which is the root node of the binary tree of T, an& the construction process is 

completed. 

We shall call a binary tree T obtained from the above process an execution tree. 

The following facts are easily observed about execution trees: 

. A given set S of convex polygons may have many execution trees. 

• Different merging strategies (for a given set S of convex polygons) individually 

define different execution trees, and vice versa. Thus an execution tree can fully 

determine the actual running time under its corresponding merging strategy. 

• The running time T(k) represented by an execution tree T can be calculated 

by summing up the depths of all its k leaf nodes, i.e., 

k 

T(k)=d1 

where the depth d1 of node e2 is defined to be the number of nodes on the path 

from the root node e0 to e. 

It is now clear that if the operation ED is used as an atomic operation (we do 

not seem to have other choice), an optimal solution for problem 1 can be obtained 
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by finding the execution tree of the set of S whose leaf nodes have the minimum 

total depths. This can be done by invoking the principle of balancing ([1]), which 

immediately leads to the following divide-and-conquer algorithm: 

1. Divide the original set S of Ic convex polygons into two subsets S and S2 of 

approximately equal sizes. 

2. Compute the union hulls U1 of S and U2 of S2 recursively. 

3. Merge (J and U2 to obtain U. 

Let T(k) denote the time required to solve problem 1 using the divide-and-

conquer algorithm, we have the following familiar divide-and-conquer formula: 

T(k) = 2T(k/2) + t (2.4) 

where t is the time needed to merge the subsets S1 and 82. In the worst case both 

S and 82 can have (nk/2) vertices, hence t = O(nk) (result 2). Combine this and 

equation 2.4 we get the following: 

T(k) = O(nk log k). (2.5) 

which is the worst-case time complexity of the algorithm. We shall show later that 

this is also optimal for problem 1 (section 2.3). 

2.2 The Generalized Case 

We now consider a generalized version of problem 1: 

Problem 2 Given a set S of Ic planar convex polygons P1, P2,..., Pk, with sizes 

n1, n2, respectively, construct the union hull U of S. 
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Problem 2 has been studied, either explicitly or implicitly, by a number of authors 

([30], [28]). The major difference as compared with problem 1 is that here we allow 

for a more diversified input pattern for the given convex polygons. This difference, 

as we shall see later, creats a new situation which calls for a more careful study of 

the merging strategy, in order to keep up with the different input patterns. 

2.2.1 Divide-and-conquer vs. Huffman tree 

First consider the divide-and-conquer algorithm mentioned above: (1) Divide the 

initial set S of k convex polygons into two subsets S and S2 of approximately equal 

sizes. (2) Compute the unions U1 of S1 and U2 of 52 recursively. (3) Merge U1 and U2 

to obtain U. Let T(k) be the time required to solve problem 2 using this algorithm, 

then using a similar analysis as shown in section 2.1.2 we have the following worst-

case time complexity of the algorithm: 

k. 

T(k) = °((E n) log k). 

This algorithm is simple, but it fails to utilize important information contained 

in the input data. Indeed, the fact that the input polygons are different in sizes is 

not considered at all. This rigidness sometimes brings about redundancy into the 

computation process, and consequently the algorithm suffers from a loss of efficiency. 

Consider, for example, figure 2.2 where we are to compute the union hull of three 

given convex polygons A, B, and C. Two merges operations have to be performed. 

Compare the following strategies of merging: 

. First merge A and B, then take their union hull, say D, to merge with C. 

. First merge A and C, then take their union hull, say E, to merge with B. 
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Figure 2.2: Different merging strategies makes difference. 

The first strategy works better in the obvious way. It introduces the polygon that 

has the maximum number of vertices (which is C in this case) into the computation 

process at a later stage. We wish to design an algorithm such that when an input 

like this is given, our algorithm will be able to select a correct merging strategy. This 

observation leads to another solution that is based on the Huffman tree model. 

By definition the Huffman tree HT(S) for a set S of weighted elements e1, e2, ..., ek 

is a binary tree constructed as follows ([16]): 

1. The given elements are assigned to be terminal nodes of HT(S). Initially all 

nodes are "unmarked". 

2. Find the two nodes with the smallest weights and mark them. Add a new 

node, with arcs to each of the nodes just marked. Set the weight of the new 

node to the sum of the weights of the it is connected to. 
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3. Repeat step 2 until all nodes are marked. The last node that is marked is the 

root node. 

Under the Huffman tree model, the time required to compute the the union hull 

of a given set S of convex polygons is accurately reflected by the weight of the root 

node of HT(S), plus the time used to construct the Huffman tree. When all the 

weights of the elements in S (in our case the number of vertices of the polygons in 

S) are known, it takes O(k log k) time to construct HT(S) ([16]), which is negligible. 

The divide-and-conquer algorithm always has a balanced execution tree. It pro-

vides an optimal solution to problem 1 where all the elements of S carry the same 

weight, but it fails to do the same for problem 2. The Huffman tree method, how-

ever, constructs the union hull in a more flexible way. It balances the "weights", 

rather than the "depths" of its subtrees ([18]). Although it has the same worst-case 

time complexity as its divide-and-conquer counterpart, heuristically its average-case 

performance should be remarkably better. In fact, just as Huffman code provides 

optimal binary coding (in terms of code length) when the occurrence frequencies 

of the characters are known, the Huffman tree method described here provides an 

optimal solution for each and every instance of problem 2. 

2.2.2 A different solution 

The next algorithm we shall introduce is one that uses some form of preprocessing. 

The algorithm is based on the idea of identifying crucial iertices. Given a set S 

of convex polygons and a polygonal vertex p of 5, p is said to be crucial if it is a 

vertex on the final union hull of 5, and it is said to be potentially crucial if it is not 

known to be non-crucial. Initially all the vertices of the input convex polygons are 
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Figure 2.3: Forming a large "interim hull". 

potentially crucial. 

Our purpose is to eliminate non-crucial points as soon as possible, preferably 

when they first occur, thus to reduce unnecessary computation as much as possible. 

The algorithm starts with a single pass through the given polygons, and select those 

polygons that are holding "boundary" positions (see figure 2.3). By merging these 

"boundary" polygons, a somewhat "large" interim union hull is constructed. Then 

this one is used to merge with other convex polygons or interim hulls. We hope that 

when the "large interim hull" is carefully and reasonably constructed, there will be 

a good chance that non-crucial vertices be eliminated at their first occurrence. 

Following is the algorithm: 

1. Check through the input set S and select the convex polygons that contains 

the leftmost vertex a, the rightmost vertex b, the uppermost vertex c, and the 



CHAPTER 2. CONSTRUCTING THE UNION HULL 20 

lowermost vertex d respectively. We call them Pa, Pb, F0, and Pd. 

2. Merge P0 and Pb into A, merge P and Pd into B. 

3. Merge A and B into C. 

4. If no more convex polygons are left unprocessed then stop, otherwise apply the 

Huffman tree algorithm to the now modified set of convex polygons. 

Like the Huffman tree algorithm, this one has a worst-case time complexity of 

O(N log k). 

where N = n. This happens when all the polygonal vertices in S are crucial. 

For ordinary inputs, however, we claim that this algorithm should work considerably 

faster than the previous ones. 

2.3 The lower bound 

Result 2 shows. that a convex m-gon A and a convex n-gon B can be merged within 

O(m + n) time. We now wonder whether there exists a linear time algorithm for 

problem 2 as well. A closer study, however, shows that this cannot be true. 

We demonstrate this by a simple contradiction: given a set of k points, its convex 

hull can be constructed by first divide the points into a number of triples, then 

compute the union hull of these triangles. As all triangles are convex polygons, 

if there is indeed a linear solution for problem 2, then there will also be a linear 

algorithm for the planar convex hull construction problem, which we know is not 

true. 
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yl x2 x3 y2 x4 y3 x5 

Figure 2.4: Merging vertices on a parabola. 

In fact, any algorithm that solves problem 2, has a lower bound of O((>= n) log k). 

We show this by a transform to the sorting problem (see figure 2.4). 

Given n groups of real numbers., ...x k), all sorted. For each 

number x we construct the point (x, x2), thereby to project all of them onto to the 

parabola y = x2. For each of the original groups of numbers, which are sorted, we 

have on the parabola a corresponding convex hull. So on the parabola we have k 

convex hulls. To find their union, all the points have to be sorted and then the 

whole list be read in order. Obviously this can be done by merging the n sorted 

lists of numbers on the abscissa into one big sorted list. Therefore problem 2 can be 

transformed to 

Problem 3 Given k sorted lists L1, L2,..., Lk of real numbers, each of size n1, %, ..., nk 

respectively. Merge them together into one sorted list L. 

Problem 3 clearly has a lower bound of O(N log k), where N = E•l n. In fact, 
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if problem 3 can be solved in a time complexity lower than this, then the ordinary 

n-sorting problem can be solved in less than O(n log n) time, which we know is not 

true. 

2.4 Another algorithm 

Inthis section we shall give an algorithm that uses a general preprocessing technique 

due to Golin and Sedgewick ([14]). The method was initially proposed to solve the 

convex hull construction problem for a set of points. 

Given a set of k points in the plane, and assuming that the points in S are selected 

uniformly and independently from a unit square, the proposed technique works as 

follows: First construct several "guiding lines" that roughly mark the boundary of 

the set S, then use a parser to scan through the given set of points. By carefully 

selecting the guiding lines, virtually all of the "non-crucial" points (section 2.2.2) 

in the given set can be removed (provided the assumption on distribution holds). 

Finally, to the remaining point set, say S', apply a known convex hull algorithm. 

This method achieves linear time performance when the points in S are favorably 

distributed. 

We now wish to apply this technique to our situation here. Consider problem 2. 

Assume that all the polygonal vertices of the given set S are chosen uniformly and 

independently from a convex r-gon. Also assume that each of the given convex 

polygons is represented by a linked list with the vertices stored in counter-clockwise 

order. Our union hull construction will proceed as follows: 

1. Compute a rough "boundary" B for the given set S of convex polygons. 
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2. Match the polygonal vertices of S against the boundary obtained in step 1. If a 

vertex p is in the exterior of B then it is reserved, otherwise remove it from the 

set of S. When this step is completed almost all of the "non-crucial vertices" 

have been removed. 

3. Apply one of the union hull construction algorithms described above to the 

remaining set S' of convex polygons. 

In particular, the first step selects vertices that maximize the following functions: 

(x + y), (x - y), (—x + y), and (—x - y). This requires linear time. If there is more 

than one vertex maximizing the same function, say (x + y), then select the two with 

the minimum and maximum x-coordinates. Then from the above we obtain at most 

eight points and they form a convex polygon B (anywhere from a quadrilateral to an 

octagon. See figure 2.5). Obviously any point that is in the interior of this polygon 

cannot be a vertex on the final union hull, and can therefore be eliminated. 

The second step checks the original convex polygons one by one. For each vertex 

on a given polygon we check its inclusion in B. If the answer is "Yes" then the vertex 

is removed from its polygon, otherwise it remains in the list. To see if a point is in 

the interior of a given convex polygon or not takes constant time, so the second step 

can be done within linear cost. When all lv convex polygons in S are examined the 

preprocessing stage is finished. 

The next thing to do is applying one of the previous union hull construction algo-

rithms to the remaining set 5' of convex polygons to get the final result. According 

to our assumption, the polygonal points in the set of S are uniformly and indepen-

dently distributed in a convex r-gon. Thus the union hull UH(S) of S is expected 
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Figure 2.5: A preprccessing strategy. 

to have O(cr) hull vertices,-where c is a constant ([33]). Following a similar analysis 

as in [14], we know that the set S' should contain, on the average basis, O(c'r) of 

the original vertices in S, where c' is another constant. This means that the final 

step can be finished in an expected time of O(r log k) where r should be confined by 

k1 log k (i.e., r ≤ k1 log ic) 

This algorithm, when the assumed distribution is satisfied, has a linear time 

average-case time complexity ([14], [30]). 

2.5 Some comments 

There is an interesting comparison between the union hull problem (problem 2) and 

the ordinary convex hull problem. Considering their inputs, the ordinary convex 

hull problem takes a set of independent points, whereas the input for the union 
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hull construction problem is a set of convex polygons. When all the input convex 

polygons are reduced to having only one single vertex, the k hull union problem 

is degenerated into an ordinary convex hull construction problem. If, however, we 

group the input vertices of a convex hull construction problem into triples (triangles) 

then we are in fact facing an union hull problem. Therefore there is a linear time 

reduction between the two problems in both directions. 

As is shown in our discussion, problem 2 can be solved in a two-way-merge man-

ner, but other ways might exist as well. Indeed, a set S of k convex polygons can be 

viewed as something between a convex k-gon and a set of k independent points Hence 

we have reason to expect an in-between algorithm. Recall that when constructing 

the convex hull of a planar set of points, we either select those who are hull points, 

or eliminate those who are not hull points. This notion of convex hull construction, 

however, also applies to union hull construction, except that now a set of convex 

polygons is received as input. This leads to an interesting situation: we can still 

use either of the selecting or eliminating approach to construct the union hull, but 

normally we neither select nor eliminate a particular input polygon entirely. Rather, 

the process is conducted on two levels: the component polygon level and the vertex 

level. A careful coordination over the two levels is therefore required. 



Chapter 3 

Intersecting Convex Polygons 

Intersection is an important set-theoretic operation on convex polygons. For exam-

ple, CAD/CAM systems and graphics applications require efficient algorithms to find 

the intersection of two or more convex polygons. For a given set of convex polygons, 

we consider two (related) intersection problems: 

• Calculate their intersection (computation). 

• Find out if the polygons intersect or not (detection). 

This chapter studies the two problems. The organization is as follows: Section 3.1 

gives definitions and results that are important to our discussion and section 3.2 

studies the intersection computation problem. A lower bound for this problem is 

given and an algorithms that achieves this lower bound is presented. Section 3.3 

focuses on the intersection detection problem, in which we give an algorithm that 

improves the current solutions. Finally in section 3.4 we put these two problems on 

a common ground for some general comparisons. 

In the following, we use "polygon" to denote both the boundary and its inte-

rior, and "polygon boundary" to indicate the boundary itself. In all circumstances 

"polygon" should stand for "convex polygon" if not otherwise specified. The term 

"intersection" may carry different meanings in our discussion: The intersection of 

two polygons means the polygonal area that is common to both, but the intersection 

of two polygonal chains (see section 3.1) will indicate their points of intersection. 

26 
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Lastly all the angles of lines or lines segments are measured within the range of 

[--7r/2,-7r/2]. 

3.1 Preliminaries 

In our discussion below, polygons are represented in arrays with their vertices 

given in clockwise order. Also, we assume that no three vertices of any of the 

polygons are collinear. 

3.1.1 Definitions and notations 

A polygonal chain is the part of a convex polygon that is in between two of its 

boundary points (not necessarily vertices). A polygon P can be decomposed into 

two polygonal chains by cutting at any two boundary points. By convexity, these 

two chains (excluding the case where one of them becomes a line segment) should 

have particular orientations. 

When the two cutting points are chosen to be the polygon's leftmost vertex 

and rightmost vertex, we come up with two polygonal chains that are either fac-

ing upwards or downwards. For convenience, we shall hereafter call an up-oriented 

polygonal chain a cup and a down-oriented one a cap. Note that all cups and caps 

are strictly monotone (increasing or decreasing) in terms of the slopes of their edges. 

A real function f defined on the integers 1, 2, ..., n is said to be unimodal if there is 

an integer m(1 ≤ m ≤ n) such that f is strictly increasing (respectively, decreasing) 

on [1,m] and decreasing (respectively, increasing) on [m + 1, n]. A real function g 

defined on integers 1, 2, ..., n is said to be bimodal,, if there is a r in [1,n] such that 
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f(r), f(r + 1), ...f (n), f(1), ...f (r - 1) is unimodal [8]. 

In [18], Kiefer showed that Fibonacci Search is the optimal method to find the 

turning point of a unimodal function, requiring O(log n) probes. Chazelle and Dobkin 

[8] extended this result and showed that the extrema of a bimodal function can also 

be computed in O(log n) time. As this is a very important result on which much of 

our discussion in this chapter is based, we rephrase it as follows: 

Result 3 (Finding the extrema of a bimodal function). Given a bimodal function 

f defined on the integers 1, 2, ..., n, its extrema (or turning points) can be found in 

time O(log n) by using Fibonacci Search. 

3.1.2 Important results 

In the following we give several results that are of importance to our discussion. 

Result 4 The leftmost vertex and rightmost vertex (respectively, the uppermost ver-

tex and the lowermost vertex) of a convex n-gon P can be found in time O(log n), 

which is optimal in the worst case. 

Proof: Draw a vertical (or, hrizontal) line 1 across the plane (which may or may not 

intersect the polygon F). By convexity, the oriented distances d1, d2,..., d from P's 

vertices P1, P2, - - -Pn to 1 form a bimodal function. According to result 3 its extrema 

(the turning points) can be found in O(log n) time. 0 

Result 5 The intersection of a infinite line 1 with a convex n-gon P can be computed 

in time O(log n), which is optimal in the worst case. 
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Figure 3.1: The intersection of an infinite line with a convex polygon. 

Proof: By convexity, the oriented distances d1, d2,..., d, from the polygon's vertices 

P1, P2, ...p to 1 form a bimodal function. Using Fibonacci Search we can find its 

extrema in O(log n) time (result 3). If the two extrema are of the same sign (which 

means the two points are on the same side of 1) then there is no intersection. Other-

wise the polygon P intersects the line 1. We can start from the two extreme vertices 

p, pj and use binary search to find the intersections, which will require O(log n) time 

(see figure 3.1). 0. 

Result 6 The inclusion of a point p in a convex n-gon P can be tested in time 

O(log n), which is optimal in the worst case. 

Proof: Draw a vertical line 1 across p and check the intersection(s) of polygon P and 

line 1, which takes O(log n) time (result 5). If they do not intersect this means that 

p is not in the interior of P. Otherwise let q and q' be the two points where 1 meets 

the boundary of P (it is trivial if there is only one intersection), and we only need to 
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check whether p is in between the two points or not, which takes constant time. 0 

Result 7 The intersection of a convex m-yon P and a convex n-you Q can be com-

puted in time O(m + ii), which is optimal in the worst case. 

Proof: There are two major approaches to compute the intersection of two convex 

polygons in linear time: one is based on "plane-sweeping" [35] and the other on the 

idea of "edge advancing" [27]. We shall not repeat the details of these algorithms. 

Note that the intersection of two convex polygons is still a convex polygon. 0 

Result 8 The intersection of a convex rn-you P and a convex m-gon Q can be de-

tected in time O(log(m + n)), which is optimal in the worst case. 

Proof: Note that we detect, rather than compute, the intersection of two convex 

polygons. A detailed lower bound proof as well as an algorithm that achieves this 

lower bound can be found in [8]. An algorithm that solves the problem is expected to 

return "No" when the polygons do not intersect, and an intersecting point otherwise. 

0 

Result 9 The intersection of a cup C1, which has m vertices, and a cap C2, which 

has n vertices, can be detected in time O(log(m + n)), which is optimal in the worst 

case. 

Proof: This is a direct consequence of result 8 (figure 3.2). Note that the problem 

is different from the general problem of detecting the intersection of any two given 

polygonal chains, which requires O(m + n) time (where m and n are respectively the 

number of vertices on the chains, see [8]). 0 
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Figure 3.2: The intersection of a cup and a cap. 

3.2 Compute the Intersection of Convex Polygons 

We already know that to compute the intersection of a convex m-gon P and a convex 

n-gon Q takes O(m + n) time (result 7). Now we wish to consider a more general 

version of this problem. 

Problem 4 Given a set S of k convex n-gons P1, P2, ...,Pk, calculate their intersec-

tion I. 

Before discussing a solution to problem 4, we shall first establish a lower bound. 

3.2.1 The lower bound 

Result 7 shows that linear time suffices to compute the intersection of two convex 

polygons. It is therefore natural to conjecture that problem 4 also has a linear 

solution. This conjecture, however, is not true. 
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Indeed, problem 4 and problem 1 have the same abstraction. Let fl denote 

the basic operation that computes the intersection of two convex polygons, then 

both problems fall into the following general problem: Given a set S of k objects 

01, 02, ..., Ok, compute the parameter 

PAR(S) = O1(op)0 2(oP) ... (op)Ok. 

with the following restrictions: 

1. (op) is a 2-operand operation that can be either e or fl. 

2. All the Of's (i = 1,2, ..., k) are objects of size n. 

3. It takes O(rn + r) time to perform (op) on two objects of sizes m and n. 

4. Eachtime only one operation (op) can be performed. 

5. If 01 has size m and 02 has size n then O1(op)02 has size s < m + n. 

6. For any 01 of size n and any integer in, there exists 02 of size in such that 

O1(op)02 has size exactly n + in. 

Properties 1 through 4 attach to both problems in an obvious manner. Properties 

5 and 6 holds for the union hull problem in that (1), the candidate vertices for the 

merge of a convex m-gon P and a convex n-gon Q are those vertices of P and Q 

alone, and (2), given P we can always find a convex n-gon R such that the merge of 

P and R has precisely m + n vertices by first constructing a convex (m + n)-gon S 

which has P's m vertices as its own vertices, then read off the n vertice's of S that 

do not belong to P. The same thing is also true for the intersection computation 

problem. 
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Under the above generalization, the two problems are identical in the worst case, 

i.e., the requested parameter PAR(S) is of size km. From section 2.3, we know that 

it takes O(kn log k) to solve problem 1 in the worst case, so the following result holds: 

Result 10 (Lower bound for intersection computation). The lower bound on the 

complexity of any algorithm that solves problem 5 is O(kn log k). 

3.2.2 The algorithms 

Finding the intersection of a set of convex polygons is very similar to constructing 

the union hull (chapter 2). Indeed, with a little modification all the algorithms in 

section 2.1 and section 2.2 can be borrowed to serve our purpose here. 

For example, a divide-and-conquer algorithm can be devised as follows: 

1. Divide the original set S of Ic convex polygons into two subsets S1 and 52 of 

approximately equal sizes. 

2. Compite the intersection 11 of polygons in S and the intersection 12 of poly-

gons in S2, recursively. 

3. Intersect 11 and 12 to get I, which is the intersection we want. 

Let T(k) be the time required to solve problem 4, we have the following formula: 

T(k) = 2T(k/2) + t. (3.1) 

where t denotes the time needed to calculate the intersection I of 11 and 12. As 

I and 12 are intersections of k/2 convex n-gons, they each may have up to nk/2 

vertices. Hence t = O(kn) (result 7). Immediately we have: 

T(k) = 2T(k/2) + O(kn) = O(kn log k). (3.2) 
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According to result 10, this divide-and-conquer algorithm is optimal in the worst 

case. However, we can still improve the average-case performance substantially by 

using methods introduced in the construction of union hulls (section 2.2, section 2.4). 

The only difference is that, when constructing the union hull for a set of convex poly-

gons, we try to identify and retain those "boundary vertices" in our preprocessing. 

When computing the intersection, however, we should identify and remove those 

"boundary vertices" that are unlikely to be vertices of I. We shall not repeat this 

technique here. 

3.3 Detecting the Intersection of Convex Polygons 

Given a set S of k polygons F1, P2,..., Pk, where each has at most n vertices, we are 

interested in the following problem: 

Problem 5 (Detecting the intersection of convex polygons) Given a set S of k(k > 

1) convex n-gons F1, P2,..., Pk, find out whether they intersect or not. 

We observe that any algorithm that solves problem 4 should also work here: for 

a given set S of convex polygons we calculate their intersection I. If I is empty this 

means that the polygons share no common point. Otherwise any point in I is an 

intersection point, and we can pick, say the geometric center of I, and return it as 

an appropriate answer. According to result 10, this solution needs O(nk log Ic) time 

in the worst case. 

This simple method, however, is by no means the best. Indeed, a detection task 

is in general inherently easier than its computation counterpart [7]. To be particular, 

a computation task normally has to give a detailed description of the object being 
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computed, which in the case of intersection computation, requires a full boundary 

description of the overlapped area. A detection task, however, does not usually have 

to deal with such detail. Taking the intersection detection problem for example, all 

we need to do is to find out whether an intersection exists or not. Because of this 

difference in nature between computation and detection tasks, we would like to find 

a solution to problem 5 that is more particular and more efficient. - 

3.3.1 A linear algorithm 

The first solution we give is based on the observation that a convex polygon P is 

the common intersection of a set of halfplanes associated with its edges. Under this 

observation, the set S of k convex n-gons given in problem 5 can be considered as a 

set of nk halfplanes, where each corresponds to a linear inequality of the form: 

a1x+by+c≤O,(i=1,2,...,nk). (3.3) 

Our problem now is equivalent to finding a feasible point for a given set of linear 

inequalities. If no feasible point is found, this means that the given polygons do not 

intersect. Otherwise a calculated feasible point can be returned as an appropriate 

intersection. For this transformed problem, Dyer [11] and Megiddo [23] have given 

algorithms that operates in O(nk) time. 

3.3.2 Reichling's algorithm 

An improvement over the above algorithm is made by Reichling [31]. Instead of tak-

ing into account all the edges of the polygons in order to find a common intersecting 

point (denoted by CIP hereafter), he establishes necessary conditions for CIPs to 
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exist. Attention is only given to a certain area (called crucial area) that will possibly 

contain a CIP. By carefully tightening the boundary of the crucial area the problem 

is solved in a more efficient manner. Following is a outline of this algorithm with 

some revision. 

1. Establish a left bound b1 and a right bound br for possible CIP's. Both b1 and 

br are vertical lines that go through one or more of the km vertices. If b1> b, 

then the polygons should have no common intersction; otherwise any possible 

CIP for F1, P2,..., Pk must fall into the strip in between them (see figure 3.3). 

2. Tighten up the bounds (i.e. define a new set of bounds). Make sure that every 

time this step is performed, a constant portion of the vertices is removed from 

consideration. After O(log n) applications of the process, one of the following 

must happen: (a) A contradiction did occur (no intersection); (b) A CIP has 

been found; (c) There are less than ck (c is a small constant, say 5) vertices 

left in the strip between b1 and b. For the first two cases the job is already 

done. For case (c) go to step 3. 

3. There are .now at most 2ck edges left to be considered, and we can do the 

remaining job by using the linear time algorithm mentioned above. This re-

maining computation will take 0(k) time. 

The left bound b1 and the right bound b, in the algorithm can be computed as 

follows: First find the leftmost vertex li and the rightmost vertex ri for polygon P 

(i = 1,2, ..., k), which takes O(k log n) time according to result 4. Then compute the 

maximal x-coordinate x1 of the li's and the minimal x-coordinate Xr of the ri's, and 
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Figure 3.3: Setting the left bound b1 and the right bound br. 

draw one vertical line across xj which is b1, another across Xr which is b. This part 

of the computation takes 0(k) time. Therefore b1 and br can be found in 0(k log ri) 

time. What remains is how to tighten up the bounds. 

Imagine using a vertical line 1 between b1 and b to cut through the polygons. 

For each P we can calculate in 0(log n) time the intersections m and m of 1 with 

Pt's upper and lower chain. So in O(k log n) time all of the k pairs of intersections 

can be determined. Let mU be the m' with the minimal y-coordinate and m1 be the 

m with the maximal y coordinate (mu, m1 can be found in 0(k) time). If m' > m1 

then any point on 1 between m' and m1 is a CIP. Otherwise we calculate the slopes 

slL and s11 of the edges defining mu and m (if 1 passes through a vertex then both 

edges are considered). If slu < s11, then a CIP can only exist to the left-hand side of 

1, in which case we replace br with 1. If slL > sl, then a CIP can only exist to the 

right-hand side of 1, in which case we replace b1 with 1. If slL = si', then there can 

be no CIP in existence. (figure 3.4) 
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Figure 3.4: Tighten up the bounds - Reichuing's algorithm. 

Now we can use a vertical line 1 to tighten up the bounds, in O(k log n) time. 

It remains to decide how to select the line 1 in such a way that every time either 

it terminates the computation, i.e.,a "Yes" or "No" answer is found, or a constant 

portion of the vertices between bi and b, are discarded. In Reichling's algorithm, 

such a vertical line 1 can be found in 0(k) time. To avoid lengthy description we 

shall not give the details here. 

Summarizing the above, the algorithm has a time complexity of 0(k log  n) in 

the worst case. 

A variation of this algorithm is to set the line 1 in the middle of b1 and br, 50 

that each time the stripe between b, and b, is reduced by half of its width. Serious 

problem may arise when the input vertices take up a weird distribution, but this can 

be avoided if a simple measure is taken to make sure that every time at least one point 

is removed. We believe that this variation should have a similar time complexity as 

its peer for ordinary input patterns, and can even be better for certain cases. The 
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major drawback is that its performance depends heavily on the distribution of the 

given vertices, and is thus unpredictable. Moreover, it has a time complexity of 

O(nk) in the worst case (i.e., each time only one or two points are eliminated). 

• Reichling's algorithm has a very good worst-case performance, yet its average-

case performance can still be considerably improved. In fact, due to its bound 

tightening-up strategy, a time of O(k log  n) is normally required when the given 

polygons do not intersect. In applications where k is big, it is likely that the given 

convex polygons share no common points. When this happens, we would like to 

return a negative answer much faster. 

3.4 Using Newton Iteration 

To further improve Reichling's result, the convexity of the input data has to be 

explored. 

Remember that to cut the polygons P1, P2,..., P, with a pair of bounds b1 and 

we end up with 2k polygonal chains of which k are cups and k are caps. By 

convexity, the upper boundary CUP formed by the k cups (respectively, the lower 

boundary CAP formed by the k caps) is also a cup (respectively, a cap). Obviously 

if the given convex polygons intersect so will CUP and CAP, and vice versa. Since 

both CUP and CAP are convex, the idea of Newton's Iteration can be used. 

3.4.1 Intersecting a cup and a cap 

Before giving the algorithm, we first introduce an important result: 
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Result 11 Let A and B be respectively a cup and cap confined by a left bound b1 

and a right bound br, each has no more than n vertices, then they have at most two 

intersection points, and their intersection(s) can be found in O(log n) time. 

Proof: We can determine whether A and B intersect or not in time O(log n) (see 

section 3.1), and it is easy to see that they have at most two intersections. In the 

following we shall assume that A and B intersect, and we will give an algorithm that 

finds the intersection(s) in time O(log n). 

Let a and b be respectively the points where A and B meet b1, and assume that 

their y-coordinates satisfy a > b, (otherwise we consider the intersections of A, B 

with br, the result will be the same). Without losing generality, we shall compute 

the intersection point p of A and B that is closer to b1. 

1. Let Pa be the convex polygon defined by A (join the two endpoints of A), and 

let Pb be the convex polygon defined by B. Then Pa and Pb should intersect, 

and a point q of their intersection can be found in time O(log n). 

2. Draw a vertical line 1 through q, and assume that it intersects A and B re-

spectively at a' and b'. It should hold that a' < b'. This again takes O(log n) 

time. 

3. For either A or B we already know the number of vertices and their indices 

between the vertical lines b1 and 1. Let i1, i2 be respectively the indices of a, a' 

on A and .11, 22 be respectively the indices of b, b' on B. The L(ii + i2)/2]-th 

vertex Va of A (respectively, the L(ii + j2)/2] -th vertex vb of B) is called the 

current vertex of A(respectively, B). The current edge ca of A(respectively, eb 
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Figure 3.5: Finding the intersection(s) of a cup and a cap. 
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B) is defined to be the edge directly to the right of v,, (respectively, vi,). Now 

extend ea and eb at both directions and find their intersection v. There are the 

following cases: 

(a) v does not exist(they are parallel). By complexity, this can only be the 

case shown in figure 3.5(a). We just let i2 - index(va) and j2 - index(vi,), 

and then continue the process. 

(b) v falls into both e,, and ei, (figure 3.5(b)). When this happens v is the 

desired solution. 

(c) v falls into ea(figure 3.5(c)). For this case, if v is to the left-hand side of 

eb then j2 = index(v&), otherwise j1 = irtdex(vi,). 

(d) v falls into ei,(figure 3.5(d)). For this case, if v is to the left-hand side of 

ea then i2 = index(va), otherwise i1 = index(va). 

(e) v is to the left-hand side of ea(figure 3.5(e)). For this case let i2 = 

index(va). if v is also to the left-hand side of eb then j2 = index(vi,), 

otherwise ji = index(vi,). 

(f) v is to the right-hand side of ea(figure 3.5(f)). For this case let ii = 

index(va). If v is also to the right-hand side of eb then ji = index(vi,), 

otherwise .12 = index(vb). 

• Keep on doing this until the intersection is found. As this is a typical binary 

search, the time needed for step 3 is also 0(log n). 0 
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3.4.2 The algorithm 

We now give our algorithm that detects the intersection of a set S of k convex 

polygons Pl,P2,...,Pk. 

1. Establish a left bound b1 and a right bound br, in the same way as described 

in Reichling's algorithm. This takes O(k log n) time. Now between b1 and b 

there are at most Ic cups and k caps. 

2. Let CUP denote the upper boundary of the Ic cups and CAP the lower 

boundary of the k caps. Find the intersections u1, vi (respectively, u, V2) of 

bj(respectively, br) with CUP and CAP (figure 3.6). This takes time 0(k). 

3. Let U1, U2, V1, and V2 be respectively the cups and caps that are associated 

with the points of u1, u2, v1, and 2. Compute the intersection(s) of U1 and V1 

and name the one to the left as w. Compute the intersection(s) of U2 and V2 

and name the one to the right as w. Now consider the following cases: 

(a) if we's x-coordinate is greater than that of Wr 'S, then no CIP could exist, 

so "No" is returned. Otherwise use the method in Reichling's algorithm 

to select a vertical dividing line 1. 

(b) if 1 lies to the left of w, then draw a vertical line 1' through wi, compute 

the intersections of 1' with all the k cups and k caps, and replace b1 with 

ii. 

(c) if 1 lies to the right of Wr, then draw a vertical line 1' through Wr, compute 

the intersections of 1' with all the Ic cups and k caps, and replace b with 

1'. 
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Figure 3.6: The bounds b, and br intersect CUP and CAP. 

(d) if 1 lies between wj and Wr, then find the intersections u and v of 1 with 

CUP and CAP. If the y-coordinate of u is less than that of v, any point 

on 1 between u and v is a CIP. Otherwise use the strategy in Reichling's 

algorithm to decide whether b1 or b is to be replaced by 1. 

It is easy to see that for each and every case our algorithm has at least the 

same performance as Reichling's algorithm. For cases where the k polygons do not 

intersect, our algorithm is expected to return a negative answer significantly faster. 

This is due to the introduction of Newton iteration, which is a second order process 

by itself. The worst-case time complexity of this algorithm is also O(k log  n). 

A tight lower bound to detect the intersection of k convex n-gon's is still unknown. 

If it could be shown that the most efficient way to decide whether a point p is an 

intersection point of k given polygons is to proceed by checking the inclusion of p in 

each of them, then it would follow (by result 7) that O(k log n) is a lower bound. 



Chapter 4 

Separating Convex Polygons 

An interesting problem in computational geometry as well as computer graphics is 

separability detection. Given a set of (often convex) planar objects, we are interested 

in finding out whether the objects are "separable" or not. By definition, a separating 

line for a given set S of k objects Oi, 0, ..., Ok in the plane is a straight line 1 that 

divides S into two nonempty subsets, and yet does not intersect any of its elements. 

The set S is said to be separable if a separating line exists, otherwise it is èaid to 

be nonseparable. Consider for example the problem of erecting a straight wall to 

separate a city into two parts. 

This problem has, in the past decade, caught attention of both mathematicians 

and computer scientists ([13], [12]). There is no complete solution so far. In [12], the 

problem is included in a list of open problems that seem to bear a close relationship 

to the "stabbing line (or transversal) problem" (section 4.1.1). 

This chapter investigates the separability detection problem, with the objects 

being line segments or convex polygons. Our discussion is arranged as follows: Sec-

tion 4. 1.1 compares our problem with the 'stabbing line problem", and show that the 

two are unlikely to be closely related. Section 4.2 studies the problem of separability 

detection for a given set of line segments. Several algorithms are given and a lower 

bound analysis is also presented. Finally in section 4.3 we discuss the more general 

problem of detecting separability for a set of convex polygons. 

45 
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4.1 A Comparison 

In this section we shall compare separability detection with the stabbing line problem.. 

If, as is conjectured in [12], the two problems are indeed closely related, we would 

hope that the methods devised for the stabbing line problem could be utilized in 

solving the separability detection problem. If, however, such a relationship does 

not exist, or is not likely to exist, we then must find other ways to do separability 

detection. 

4.1.1 Stabbing line 

We begin with an introduction to the stabbing line problem. By definition, a stab-

bing line (or transversal) for a set S of k objects (often convex) O, O2 ..., Ok in 

d-dimensional Euclidian space E" is a straight line 1 in E" that intersects all of the 

k objects. 

The planar stabbing line problem, i.e., detecting the existence of a transversal 

for a given set of planar convex objects, has already been thoroughly studied. In 

[12], Edelsbrunner et al. presents an algorithm that solves the stabbing line problem 

for a set of k line segments in O(k log Ic) time. The authors combined three im-

portant algorithm design paradigms: geometric transform, divide-and-conquer, and 

plane sweeping in the design of their algorithm, which provides not only transversal 

detection but also a complete description of all the transversals. Later in [3], Avis 

et al. proved that this O(lc log Ic) time complexity is also a lower bound. 

Little is done about the stabbing line problem, however, when it comes to three 

and higher dimensional spaces. Even the case for a set of convex polygons is less 
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well known. 

4.1.2 Separability vs. stabbing line 

Although it is suggested that there is likely a close relationship between separability 

detection and the stabbing line problem, we believe that such a relationship can not 

exist. 

Taking a set S of k planar line segments for example. If we consider each in-

dividual segment of S as a door between two semi-infinite straight walls, then the 

stabbing line problem (hereinafter denoted by SL) and the separability detection 

problem (hereinafter denoted by SD) can respectively be interpreted as follows: 

• SL: Determine whether there is 'a light that shines through all of the k doors. 

• SD: Determine whether a mouse can dig through k walls (there are traps at 

the doors), following a straight line and has at least one door on either side of 

the line. 

Under this model we have some important observations. Consider the SL prob-

lem. Suppose the light has just passed i (i < k) doors, then for the next door only 

two things may happen: either it passes through the door, or it stops. Therefore 

there are two possibilities in front of each door, one "Yes" and another "No'. The 

SD problem, however, is different. When the mouse comes to each door three things 

may happen: it either digs through the wall on the left, or it digs through the wall on 

the right, or can be trapped at the door. So the possibilities are two "Yes"s and one 

"No". Not only this, suppose the mouse is lucky enough to successfully dig through 
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k walls (the maximum it can do), the job still continues - it has to look back and 

see whether there is at least one door on either side of its route. 

The fact that the SD problem has two "Yes" options in front of each door implies 

that it has a much larger search space as compared with its SL counterpart, and this 

difficulty is added to by the constraint that there must be at least one door on either 

side of the route. In fact, the algorithm given in [12] for the SL problem is based 

on the prerequisite that there can be only one "Yes" option for each door. Hence 

their method can not be utilized for the SD problem, and other solutions have to be 

found. 

4.1.3 Some definitions 

The following definitions are to be used in our discussion: 

A ray is a semi-infinite straight line with one endpoint. Given a ray r, its angle is 

defined to be the angle measured clockwise from r to the positive x-axis. Rays have 

inverses, and the inverse of a given ray r is the ray that has the same endpoint as 

r, yet extends in the opposite direction. 

Two rays r1 and r2 having a common endpoint define two fan-shaped areas, and 

such fan-shaped areas we shall call wedges; Given a wedge W, its angle is defined by 

the angle of the one of its two rays which we hit first when travelling clockwise from 

an interior point. Wedges also have inverses. The inverse W of a given wedge W is 

the wedge constructed from the inverses of W's two rays, so that W fl W consists of 

,a single point (figure 4.1). 
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Figure 4.1: rays and wedges 

4.2 Separating line segments 

Before working with convex polygons, we first consider separating a given set of line 

segments: 

Problem 6 Given a set S of lc line segments li, 12, ..., lk on the plane, find out 

whether there is a separating line for S or not. 

We assume that all segments are represented by their endpoints. If not otherwise 

specified, pi and qi should denote the endpoints of the line segment l (1 ≤ i ≤ k). 

For convenience of discussion, all line segments are considered to be open, i.e., li is 

the equivalent of (pd, qi), for i = 1, 2, ..., lc. 

4.2.1 Algorithm 1 

Our first attempt for a solution is suggested by Jarvis's March [17]: compute the 

convex hull of S (which have 2k points), start up at a hull point p and walk coun-
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terclockwise. If then somewhere during the trip one can "look through" the set 

of segments this means S is separable. If p is visited again and no such "looking 

through" point has been found then a negative answer is returned. 

This method will not work, however, due to the fact that in Jarvis's March, we 

only need to walk through the points in the given set. Our case is different: not only 

do the convex hull vertices need to be checked, but also all the points on the hull 

edges, because a "looking through" point may occur anywhere on the convex hull. 

This is computationally impossible. We wonder, therefore, if it is possible to check 

only a limited number of points. 

Figure 4.2 reveals two simple facts: first, if S has a separating line 1 of slope si, 

it must have another separating line 1' (may be the same as 1) that is parallel to 1 

and goes through at least one of the endpoints of S. Second, if an above-mentioned 

separating line 1' is found, then we can further find another separating line lj (may 

be the same as 1') that passes through not only the endpoint p but also anoher 

endpoint q at the same time. Hence we have: 

Result 12 If a set S of k line segments 11, 12, ..., lk is separable, then there must be 

a separating line of S that goes through at least two of the given endpoints. 

With result 12, we immediately have the following algorithm: 

1. Select an endpoint pi of li and an endpoint Pj of i. 

2. Check to see whether the straight line 1 defined by pi and pj is a separating 

line or not. 



CHAPTER 4. SEPARATING CONVEX POLYGONS 51 

Figure 4.2: separate via endpoints 

3. Keep on doing this for different pairs of endpoints until either a separating line 

is found or all of the pairwise endpoints have been checkd. 

The k segments 11 through ik has altogether 2k endpoints which pairwise define 

0(k2) different straight lines. To test whether a given line is a separating line or not 

takes 0(k) time, hence the algorithm runs in 0(k3) time and 0(k) space. 

This algorithm is not completely satisfactory. In fact an algorithm that runs in 

time O(k2 log k)) can be obtained by applying a general method due to Edelsbrunner 

et al. [13]. The method is based on the basic concept of view change. In the following, 

however, we shall consider a solution to problem 6 from a different perspective. 

4.2.2 A restricted problem 

We shall first consider the following problem: 
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Problem 7 Given a set S of k line segments 11, 12, ..., ik and a point p, find out 

whether there is a separating line of S that goes through p. 

Clearly this problem is closely related to problem 6. Indeed, result 12 shows that 

to solve problem 6, we only need to check the straight lines that pass through the 

given endpoints of 5, and to see whether there are separating lines or not. If we find 

a solution to problem 7, then by substituting each of the endpoints of S into the 

position of p, problem 6 can be solved. Following is an algorithm for problem 7: 

1. Construct the convex hull H of the given 2k endpoints. If p is on or outside of 

H then go to step 6, otherwise continue. 

2. Shoot two rays r and r from p to each of 11's two end points pi and 

(i = 1,2,...,k). The k pairs of rays define k wedges, 

namely W1, W2,..., Wk, where each of which contains one of the given line 

segments. 

3. Construct the inverses W, TF2,...,TFk of these Ic wedges. 

4. Sort the 2k wedges (WI, W2, ..., ...,W) according to their angles 

into an ordered list W1, W2', ..., W2'k. 

5. Walk counterclockwise around p and check the sequence of W, W2, ..., W 2k to 

see whether or not they cover the entire plane (figure 4.3). If they do not then 

this implies that any straight line 1 that passes through p and is not covered by 

the wedges is a separating line of 5, otherwise RETURN a negative answer. 

6. Sort the k wedges (W1, W2, ...Wk) according to their angles into an ordered list 

W1', W2', ..., W. Draw two semi-infinite supporting lines ii and 12 of H from 
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Figure 4.3: Detect separability via plane coverage' . 

p (a supporting line of a polygon P is a straight line that touches, yet not 

penetrate F), then these two lines 11 and 12 define a wedge W. 

7. Walk counterclockwise around p and check the sequence of Wi', W2', ..., Wk1 to 

see whether they cover the wedge W or not. If they do not then a sparating 

line must exist, otherwise return a "No". 

There are 2k endpoints. So steps 2, 3, 5 and 7 can be done in linear time. Step 1, 

3 and 6 all perform sorting (on either k or 2k wedges), therefore require O(lc log k) 

time. Thus the algorithm has a time complexity of O(k log k). We rephrase it in the 

following result: 

Result 13 Problem 7 can be solved in O(k log k) time, which is also optimal. 

Proof: The algorithm ensures an O(k log k) solution. We shall show in section 4.3 

that this result is also optimal. 0 
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4.2.3 Algorithm 2 

Now that problem 7 is solved, combining result 12 and result 13 we have the following 

algorithm for problem 6: 

1. Select an endpoint pi of S and run the above algorithm by substituting p' into 

the position of point p in the algorithm. If a separating line is found then stop, 

otherwise go to step 2. 

2. Do the same thing for other endpoints of 8, one at a time, until either (a) a 

separating line is found, or (b) all the 2k endpoints in the set of S have been 

checked, in which case a negative answer is returned. 

As there are up to 2k endpoints needs to be checked, this algorithm has a worst-

case time complexity of O(k2 log k). As far as we know at this point, there is no 

algorithm that solves problem 6 faster. In fact, we conjecture that this is a lower 

bound for algorithms solving problem 6 (section 4.3). However, as we shall see im-

mediately, a simple method can substantially improve the average-case performance. 

4.2.4 The potato peeling method 

We now introduce a solution to problem 6 that is based on potato peeling, an idea 

that deals with the "convex layers" and the "depths" of a given set of points. 

Let 5' be a set of k points in the plane (to distinguish from the set S of line 

segments). The convex layers of 5' is the set of convex polygons obtained by iterating 

on the following process: compute the convex hull of 5' and remove its vertices from 

5'. The depth of a test point within the convex layers of 5' is defined to be the 

number of layers that enclose the test point, and the depth of 5' is defined to be 
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the number of convex layers of S'. In [6], Chazelle gives an optimal algorithm that 

computes the layers of 5', as well as the depths of all the given points in SI, in 

O(k log k) time. 

Suppose the set 5' has d convex layers, with the outermost layer denoted by L1 

and the innermost layer denoted by Ld, the following fact is easily observed: 

Result 14 Let ...,p (given by clockwise order) be the vertices on the convex 

layer Li of S' (1 ≤ i ≤ r), and let p be any point enclosed in L, the sequence 

p, p, ..., Pf form a sorted list according to their polar angles with respect to p. 

Result 14 reveals that when using the previous algorithm to solve problem 6 

(section 4.2.3), we may not need to repeat the sorting process in section 4.2.2 every 

time we check an endpoint for possible separating lines. In fact, let 5' denote the set 

of the endpoints that are contained in the set S of line segments, the information of 

convex layers and depths obtained from "potato peeling" S' can be utilized in the 

process of separability detection. Following is the algorithm: 

1. Use the algorithm given by Chazelle ([6]) to compute the convex layers of 5' 

and the depths of all the points in 5'. If 5' has a depth d, (d ≥ k/c) (where 

c is a small constant, say 8), then proceed with the algorithm described in 

section 4.2.3. Otherwise go to step 2. 

2. Start with an endpoint Po on the innermost convex layer Ld of 5' and check for 

possible separating lines. By result 14, all the vertices on an enclosing convex 

layer Li are already sorted by their polar angles with respect to po. Therefore 

a complete list of all the points in 5', sorted by their polar angles with respect 
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to p, can be constructed by "merging" the d sublists that are already sorted. 

This takes O(k log d) time. 

3. Do the above for all the endpoints that are of the same depth as p, then proceed 

to the next enclosing layer that is outside of it. Here the situation is slightly 

different. Consider a point p on layer L2 (1 ≤ i ≤ d). We know that vertices 

on an enclosing layer L3 (j < i) are already sorted by their polar angle with 

respect to p, but this is not the case for a layer L3 that is inside of L. The polar 

angles of vertices on L3 with respect to p form a bimodal function F (section 

3.1), rather than being a sorted list itself. We need to find the two extrema 

of F thereby to break the vertices on L3 into two ordered lists. This requires 

O(log n3) time in each occurance where a Fibonacci search is performed. 

4. Keep on doing step 3 until either (a) a separating line is found, or (b) all the 

points on L1, the outermost layer, have been processed. 

There are up to 2k endpoints to be processed, which will require a running time 

of O(k2 log d + kdlog k). Thus the worst-case time complexity of this algorithm is 

also O(k2 log k) (there are 0(k) convex layers). On an average-case basis, however, 

this time complexity is less then that of the previous algorithm. Particularly, when 

S' has a constant number of convex layers (e.g., k = 3), we come up with an 0(k2) 

performance. 
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4.3 Lower Bound Analysis 

We now establish a lower bound on the time complexity of algorithms solving prob-

lem 7 by using the algebraic decision-tree model (see section 1.1.5). Consider prob-

lem 7 with the following restrictions: 

• all l (1 ≤ i < k) are on x-axis and are of unit length. 

• the leftmost and rightmost endpoint of S are at (0,0) and (k, 0) respectively. 

• the observing point p is selected at the positive infinite of y-axis. 

With the above restrictions we are able to represent each segment li by its left 

endpoint pi, thus any set S of k line segments satisfying the above restrictions can 

be viewed as a point (x1, x2, ...) xk) in E', where (XI, X2, ..., xk) is a permutation of 

(P1, P2, ..., pk). Let M be the "non-separable" membership set (i.e., M contains all• 

the points in Ek whose corresponding line segment set in E2 are non-separable). 

We claim that M contains k! disjoint connected components, with each component 

being a single point. Indeed, every point m C M in E' matches an arrangement 

of (li, 12, ..., lk) where no overlapping is allowed except at their endpoints. Thus any 

permutation ir of 1,2, ..., k corresponds to a point m, C M in Etc. 

It is clear that 

M = Uaiirn 

where the m1,.'s are disjoint and connected, and there are altogether k! m11.'s. Ac-

cording to result 1 we have 

Result 15 In the algebraic decision tree model any algorithm that solves problem 7 

requires O(k log k) tests. 
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The lower bound for problem 6, however, is more difficult to work out. 

4.4 Separating Convex Polygons 

Now consider the separability detection problem for a set of convex polygons. 

Problem 8 Given a set S of k convex ri-gons F1, P2,..., Pk in the plane, find out 

whether there is a separating line for S. 

As polygons can be viewed as collections of line segments, any algorithm designed 

for problem 6 can be directly used for problem 8. 

4.4.1 A straightforward solution 

If we consider the set S of k convex n-gons as a set 5' of nk line segments, then by 

using the algorithms described above, we immediately have a solution that runs in 

O(n2k2(logn + log k)) time. 

However, this solution can be applied to any arbitrary collection of planar line 

segments, and the convexity associated with our input polygons is not utilized. We 

need to explore algorithms that are more specific and more efficient. 

4.4.2 A solution based on convexity 

The following result, similar to result 12, is easily observed: 

Result 16 If a set S of k convex n-gons P1, P2,..., Pk is separable, then there must 

be a separating line 1', which is a common tangent of two of the given polygons, say 

F and F3 (l≤i<j≤k). 
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Figure 4.4: Separate via polygon vertices 

Proof: Let 1 be a separating line of S (figure 4.4). If 1 does not go through any 

of the polygon vertices we just translate it sideways until it hits a vertex that is 

closest in i's direction of moving. By doing this we obtain a separating line 1' that 

passes through a certain polygon vertex, say p. Let P be the polygon that defines 

p. We then "roll" the line 1 along the boundary of P in a clockwise direction, until 

it hits another vertex, say q, of another polygon Q. At this time, we come up with 

a separating line that is a common tangent of polygons P and Q. 0 

Based on result 16, we have the following algorithm that solves problem 8: 

1. Construct a common tangent 1 defined by two polygons of S. 

2. Test whether 1 is a separating line or not. If "Yes" then stop, otherwise go to 

step 3. 
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3. Keep on constructing new common tangents and do the above test until either 

(a) a separating line is found, or (b) all the pairwise common tangents defined 

by polygons in S are tested, in which case S is non-separable. 

The given k convex polygons will define four common tangents pairwise. So S 

defines a total number of 0(k2) common tangents. To construct one of them takes 

O(log n) time ([30], recall that S's elements are n-gons), hence computing the 0(k2) 

common tangents needs time O(k2 log n). Also for each of these tangents it takes 

0(k log ri) to check whether it is a separating line or not (see result 5), thus this 

algorithm will run in 0(k' log n) time and 0(k2) space. 

This is a better result than the one mentioned above. However, in applications 

where k is big (there is a great number of polygons) and n is relatively small (each 

polygon has a limited number of vertices), this algorithm will lose its advantage. We 

therefore need to find some alternative. 

4.4.3 An alternative solution 

We need to find a solution to problem 8 that works better in cases where the above 

algorithm's performance degrades. The "plane coverage" method used in solving the 

line segments separation problem provides some inspiration. 

Recall that when trying to detect a separating line for a set S of k line segments 

(problem 6), we started with solving its restricted version, problem 7. Then by 

applying the "plane coverage" algorithm to all the points in 5, we were able to find 

whether S has a separating line or not. In a similar manner we now construct a 

restricted version for problem 8 
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Problem 9 Given a set S of k convex n-gons F,, P2,..., P,, and a point p, decide 

whether there is a separating line of S that goes through p. 

Following is a plane coverage algorithm that solves problem 9 

1. Draw 2k supporting lines from p to the k polygons P,,P2,..., Pk. Let 11 and l be 

the two supporting lines from p to polygon P, we then have k pairs of support-
ing lines support-

(11, l,), (112, l), ..., (li, l) which define k wedges, namely W,, W2,..., W. 

We also create the inverses of these wedges. 

2. Sort the 2k wedges (W1, W2,..., Wk and their inverses) by their angles and form 

an ordered list of 2k wedges W,', W21, ..., W. 

3. Walk counterclockwise around p and check the sequence of W, W21, ..., W21k to 

see whether or not they .cover the entire plane (figure 4.5). If they do then 

return "yes", otherwise return "no". 

Computing the supporting line from a given point to a convex n-gon requires O(log n) 

time, so step 1 can be done in time O(kn log n). Step 2 sorts 2k elements and takes 

O(k log k) time. Step 3 is a simple walk-through that can be done in linear time. 

Thus the algorithm runs in a total time of O(k(log k + log n)). This is summarized 

in the followingresult: 

Result 17 O(k(log k + log n)) time is sufficient to solve problem 9. 

Combining results 16 and 17 we have the following algorithm for problem 8: 

1. Select a vertex po form the set S of k convex n-gons, and run the above al-

gorithm by substituting po into the position of point p. If a separating line is 

found then stop, otherwise go to step 2. 
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Figure 4.5: Detect separability via plane coverage. 

2. Do the same thing for other vertices of S, one by one, until either (a) a sepa-

rating line is found, or (b) all of the nk vertices of S are processed. 

As there are altogether kn vertices in 5, this algorithm requires, in the worst 

case, O(k2n(log n + log k)) time and O(rtk) space. 

The algorithm by itself is not necessarily better then the previous one. However, 

it is able to solve the problem faster in cases where the previous algorithm loses 

performance. Thus by combining the two algorithms together we are able to handle 

extreme cases of either k being too big (compared to n) or the other way around. 

The potato peeling method we used to detect separability for a set of line segments 

does not apply here. 



Chapter 5 

Voronoi Diagram for Convex Polygons 

The computation of Voronoi Diagrams has been an active research topic in compu-

tational geometry in the past decade [2]. Much of the earlier work, and some of the 

current work, concerns the Voronoi Diagram of a discrete set of points. This has been 

extended by Kirkpatrik [19], Lee and Drysdale [22], and others to cover a collection 

of two-dimensional objects such as line segments, circular arcs and polygons. 

Some applications in two-dimensional geometric modeling require the computa-

tion of Voronoi Diagrams on a set of convex polygons. We shall study this problem 

in this chapter. 

Our discussion is organized as follows: Section 5.1 gives preliminaries including 

Voronoi diagrams of planar, point sets, definitions and notations. Section 5.2 discusses 

how to bisect two given straight line segments. Section 5.3 concerns bisecting two 

convex polygons, which is fundamental to construct the Voronoi diagram for a set of 

convex polygons. At last in section 5.4, we first consider the nature of the Voronoi 

diagram construction problem for convex polygons, followed by an analysis of several 

inherent obstacles that make it a particularly difficult task to find a solution. Having 

demonstrated this, we turn to solve a restricted version of the problem: the input 

set being non-intersecting translates of a given convex polygon. 

63 
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5.1 Preliminaries 

5.1.1 The Voronoi Diagram 

The Voronoi Diagram solves the following proximity problem. 

Problem 10 (Loci of Proximity). Given a set S of n points in the plane, for each 

point pi in S find the locus of points (x,y) in the plane that are closer to pi than to 

any other points of S. 

Intuitively, the solution of the above problem is a partition of the plane into re-

gions associated with the given points. For two points pi and p, the set of points 

closer to pi than to pj is the halfplane containing pi that is defined by the perpendic-

ular bisector of.p. Let us denote this halfplane by H(p1, ps). The locus of points 

closer to 'pi than to any other point, which we denote by V(i), is the intersection of 

n - 1 halfplanes, and it is a convex polygonal region [34] having no more than n - 1 

sides, that is, 

v(i) = fl H(p,p). 
i0j 

(5.1) 

V(i) is called the Voronoi polygon associated with pi. Figure 5.1 is a Voronoi polygon 

[34]. 

There is a region for each of the n points, and the n regions form a planar diagram 

which we shall call the Voronoi diagram, denoted by Vor(s) [30]. An example is 

shown in figure 5.2. The vertices of the diagram are Voronoi vertices, and the edges 

of the diagram are Voronoi edges. 

Regarding Voronoi diagram construction, there is the following very important 

result: 
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Figure 5.1: Voronoi polygon. 

Figure 5.2: Voronoi diagram. 
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Result 18 (Lower bound) The Voronoi diagram V(S) for a set S of n points can 

be constructed in O(n log n) time, which is optimal. 

Many algorithms have been developed to achieve this optimal result. It is inter-

esting to note that although problem 10 seems to be "more difficult" than the closest 

pair problem ([30]) in terms of degree of difficulty, they nonetheless have the same 

level of complexity. 

5.1.2 Definitions and notations 

The Voronoi diagram of a set of elements is defined in terms of halfplanes where 

a measure of distance is used. Following are notations and definitions used in our 

discussion. Note that when we mention a line segment 1, we are talking about a 

closed line segment. 

A closed line segment Tb is the union of two endpoints a and b and the open line 

segment (a, b). Points and open line segments are called elements. 

The distance between a point p and a point q is denoted d(p, q). The distance 

between a point p and a nonempty set X, denoted d(p, X), is d(p, X) = min{ d(p, q): 

q E X}. In particular, the distance d(p, b) between a point p and a closed segment 

is the distance between the point p and its projection (defined in a normal sense) 

onto ab if the projection belongs to ab. Otherwise it is defined to be the minimum 

of d(p, a) and. d(p, b). 

The bisector B(e, e) of two elements ei and ej is the locus of points equidistant 

form ei and e. The bisector B(X, Y) of two sets of elements X and Y is the locus 

of points equidistant from X and Y. 
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The halfplane H(e, e) is the set of points closer to element ei than to element 

e3. Note that the boundary of a halfplane H(e1, e3) is the bisector B(e, es). 

5.2 Bisecting Two Line Segments 

A polygon can be considered as a collection of edges. Therefore before constructing 

the Voronoi Diagram for a set S of convex polygons, we give an essential algorithm 

that solves the following problem. 

Problem 11 (Bisecting two straight line segments) Given two non-intersecting line 

segments si and s2, construct their bisector B(si, 3 2). 

We shall start with bisecting a line segment and a point (see also [24], [25]). The 

following result is important: 

Result 19 The bisector B(p, ab) of a point p and a line segments ab can be found 

in constant time. 

Proof: We show this by a simple algorithm (figure 5.3) 

Let 1 be the straight line that contains segment Tb. Let la (ib) be the straight 

line that is perpendicular to 1 and passes through a (b). Construct the parabola 

B(p, 1) (requires constant time), and assume that B(p, 1) intersects la and lb at p', 

and pb respectively. We obtain the bisector B(p,) which consists of three parts: 

(a) the semi-infinite ray B1 which is a part of B(p, a). (b) the parabola sector B2 of 

parabola B(p, 1) that is in between la and lb. (c) the semi-infinite ray B3 which is a 

part of B(p, b). Clearly all B1, B2, B3 can be computed in constant time, so result 19 

is proved. 0 
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.p 

a 

b 

Figure 5.3: Bisecting a line segment and a point. 

The following is a simple extension of result 19: 

Result 20 The bisector B(,2) of two line segments and Td can be found in 

constant time. 

Proof: We present an algorithm that achieves the above result. 

Let 1 and 1' be the straight lines that contain and Td respectively. Let la (l&) 

be the straight line that is perpendicular to 1 and passes through a (b), let l (l) be 

the straight line that is perpendicular to 1' and passes through c (d). 

If 1 and 1' are parallel then result 20 is straightforward (see figure 5.4(a)). If 

they are not parallel then find their intersection p. Draw the bisector ii of Lapc, 

and let ii intersect la, 1b, l, 1'd at Pa, Pb, Pc, Pd respectively (figure 5.4(b)), then we have 

the following cases (without loss of generality, assume that all theses points are 

different): (a) p—apb and pc—pd do not intersect. (b) Fa—pb and "bite" into each 

other (i.e., they overlap but no one is contained in the other). (c) One of the two 
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segments is contained in the other. 

Figure 5.4(b) shows that case (b) can be computed in constant time, and this is 

true for the other two cases as well. Therefore the computation of bisector B(, ) 

needs constant time. 0 

5.3 The Bisector of two convex polygons 

In this section we shall consider the problem of constructing the bisector of two 

disjoint convex polygons, which is a basic operation in constructing the Voronoi 

diagram for a set of convex polygons. 

Problem 12 (Computing the bisector of two disjoint convex polygons). Given a 

convex rn-gon P and a convex n-gon Q, compute their bisector B(P, Q). 

Intuitively the bisector of two convex polygons will partition the plane into two 

halfplanes. However, unlike bisecting two points, the boundary that divides the two 

halfplanes is not a straight line. Indeed it is a sequence of interweaved line segments 

and parabolic sections. This can easily be seen by looking at figure 5.4(b). 

How quickly we can solve problem 12 is of fundamental importance to the con-

struction of the Vonoroi diagram for a set of convex polygons. In fact, we have the 

following result: 

Result 21 It requires O(m + n) to solve problem 12, which is optimal in the worst 

case. 

Proof: The following algorithm solves problem 12 in O(m + n) time. 
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a 

C 

(a) 

b 

(b) 

d 

Figure 5.4: Bisecting two line segments that are (a): parallel, and (b): otherwise. 
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We begin with a definition. Given a convex n-gon P and an edge e of F, let p 

and q be c's two endpoints. Draw two straight lines that are perpendicular to e and 

grows outwardly (with respect to F): l, from p and 1. from q (figure 5.5 (a)). The 

open area that is defined by e, l and 1q is called the stripe of edge e for the convex 

polygon P, or sometimes the stripe of e when there is no confusion. By definition, a 

convex n-gon P should have n stripes. 

The first step of the algorithm is to find the supporting segments t1, t2 of P and 

Q (by a supporting segment t of a polygon P we mean that t touches to, but not 

penetrates through F), which needs O(m + n) time. Obviously B(P, Q) will contain 

the semi-infinite perpendicular bisector r1 of t1 and r2 of t2. We shall construct 

B(P, Q) by walking from r1 to r2. 

We observe that t1 and t2 cut each of P and Q into two polygonal chains. Let 

C1 (consisting of the vertex list (p1, P2, ..., Pr)) be the polygonal chain of P that is 

convex to Q, and similarly let C2 (consisting of the vertex list (qi, q, ..., q3)) be the 

polygonal chain of Q that is convex to P. Our algorithm is based on the chains C1 

and C2 (figure 5.5 (b)). 

The construction process starts with the semi-infinite bisector r1. It is useful to 

refer to the example of figure 5.5 (b), where, for simplicity, the edge ej is shown by 

its index i. Imagine a point z on r1, moving down from infinity. Initially z lies on 

the bisector of points a and b. When it travels downward, it will enter the stripes 51 

of 1 and 84 of 4 eventually. When it enters either of them a new situation will come 

up and a new track has to be taken. There are the following cases: (a) It hits S, 

first at point p. This means that z is now closer to edge 1 than it is to point a (see 

section 5.1 for the definitions of different types of distances), so it must take a new 
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(a) 

(b) 

Figure 5.5: (a) The stripe of e for the convex polygon P. (b) Bisecting convex 

polygons P and Q. 
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route along the b - 1 bisector. (b) It hits .94 first at point q. This means that z is 

now closer to edge 4 than it is to point b, so it must be moved to the a - 4 bisector. 

(c) It hits Sj and 54 together at the same point. This means that z is now closer to 

edges 1 and 4 than to points a and b, so the 1 - 4 bisector needs to be assumed. 

We repeat this process until all the edges in both polygonal chains C1 and C2 are 

covered. Since the edges on C1, C2 are already given in order, this process can be 

finished in linear time. 0 

5.4 Constructing the Voronoi Diagram 

We now consider problem 10 with the input being a set of convex polygons. 

Problem 13 (Loci of proximity - 2). Given a set S of k non-intersecting convex 

n-gons F1, F2, ..., Pk, for each polygon F what is the locus of points (x, y) in the plane 

that are closer to P than to any other polygon of S? 

To solve this problem we need to construct the extended Voronoi diagram (Prob-

lem 14). The Voronoi diagram for a set of convex polygons is defined in a similar 

way as with a set of points. The plane is partitioned into k regions, called Voronoi 

regions, each of which is associated with a particular polygon. The regions together 

'define a planar diagram which we shall refer to as the Voronoi diagram of the set S of 

convex polygons. Two neighboring Voronoi regions define a chain of interwaved line 

segments and parabolic sections between them. This chain we shall call a Voronoi 

edge. The intersection points of Voronoi edges are called Voronoi vertices. 

Problem 14 (Voronoi diagram construction) Given a set S of le non-intersecting 

convex n-gons F1, P2,..., Pk, construct their Voronoi diagram Vor(S). 
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Just as the perpendicular bisectors are fundamental in constructing the Voronoi 

diagram for a set of points, so are the bisectors of two convex polygons in constructing 

the Voronoi diagram for a set of convex polygons. The difference is that the former 

are always straight lines whereas the latter are not. This, as we shall see, presents 

some special difficulty to the task of Voronoi diagram construction. The bisectors of 

two convex polygons will hereafter for simplicity be referred to as the dividing chains 

between their defining polygons. 

5.4.1 Inherent difficulties 

The Voronoi diagram of a set of k non-intersecting convex polygons is similar to that 

of a planar point set. Given two convex polygons P2 and Pj, the set of points closer 

to P2 than to P3 is the halfplane containing P that is defined by the dividing chain 

of P2 and P,. Let us denote this halfplane by H'(i, j). By definition, the Voronoi 

region V(i) associated with P2 is the intersection of k - 1 halfplanes: 

V(i)= flH'(P,P3). (5.2) 
i0j 

However, since the dividing chains are not straight lines, the following problems arise: 

• The Voronoi regions may be non-convex. 

• The dividing chains consist of straight line segments and parabolic sections. 

This brings problems in representation and storage. 

• The dividing chains may not be monotonic, which precludes the use of binary 

search in finding their intersections, thus making it hard to determine the 

Voronoi vertices. 
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• Two dividing chains my intersect at several points. This makes the construc-

tion of the Voronoi diagram much harder. 

• Although there are k convex polygons, a Voronoi region associated with a par-

ticular convex polygon may have more than k—i Voronoi edges (see discussions 

below). 

With the difficulties listed above, we further look at what may happen when 

constructing the Voronoi diagram. 

5.4.2 Features of Voronoi regions 

We give some important results concerning the Voronoi diagram for a set of convex 

polygons. 

Result 22 (Length of dividing chain). Given two non-intersecting convex n-gons, 

the length of their dividing chain (i.e. the total number of line segments and parabolic 

sections contained in the chain) is 0(n). 

Proof: This is illustrated in the dividing chain construction process in section 5.3. 0 

Result 23 (Continuity of Voronoi region) The Voronoi region associated with a 

given convex polygon is a connected area in the plane. 

Proof: For a contradiction, suppose that the Voronoi region V(i) associated with 

convex polygon P has two disjoint areas A and A' (see figure 5.6 (a)). 

By definition, V(i) must contain P2. Suppose P1 is contained in A. As A and A' 

share no common point, we can draw a line c (not necessarily straight) that separates 
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the two areas. Let p and a be the point on P and A' respectively that are closest to 

each other, and let b be the point where p—a intersects c. Clearly if a is closer to P 

than it is to any other polygons, so is c. Hence we have a contradiction which shows 

that V(i) has to be a connected area. 0 

Result 24 (Number of edges for a Voronoi region). Any given Voronoi region can 

have at most 2k - 3 edges (where k> 1 is the number of convex polygons), and two 

adjacent Voronoi regions may have up to k - 1 common edges. 

Proof: As k convex polygons define k Voronoi regions, each one of them can have 

at most k - 1 neighboring regions. Considering a particular region R, we prove the 

result by induction: when k = 2, there are two regions and each of them has one 

edge, the conclusion holds. Assume that for the case of k - 1 regions the conclusion 

holds, then when there are k Voronoi regions we have the following possibilities: (1) 

R shares at most one common edge with each of its neighboring regions, in which 

case we are done. (2) if R shares two edges e and e' with another Voronoi region R', 

then R's neighboring regions (aside from k) are divided into two groups: those that 

are in between e and e, and those that are not (this group may be empty). From 

our assumption we know that R can have at most 2(k - 2) - 1 + 2 = 2k - 3 edges 

(figure 5.6 (b)). The case where R and R' share more than two edges can be proved 

in a similar manner. Therefore the first half of the result is proven. 

The second half of the result is obvious in that if the regions R and R' have k 

common edges, then there must be at least another k - 1 regions (aside from R and 

k) to separate these k edges, which means that there are at least k + 1 Voronoi 

regions in all, a contradiction. 0 
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(a) 

(b) 

Figure 5.6: (a) A Voronoi region is a connected area. (b) Adding another polygon 
into the picture. 
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The difficulties listed in section 5.4.1 already make it hard to find a solution for 

problem 14, and this difficulty is increased by result 24. As dividing chains are not 

necessary monotonic, binary search cannot be used in calculating their intersections. 

Also as two dividing chains may have more than one common point, this leads to 

a quadratic worst-case time requirement to find all the intersections of two dividing 

chains. Still considering the fact that we need to compute the intersection of k - 1 

dividing chains in order to construct a Voronoi region (result 22), and that two 

adjacent Voronoi regions may have up to k - 1 common edges, we believe, at this 

stage, that the construction of a Voronoi diagram can become formidably expensive. 

Realizing this difficulty, we shall in the following consider a restricted version of 

the Voronoi diagram construction problem. 

Problem 15 Restricted Voronoi diagram construction Given a set S of k non-

intersecting translates F1, F2, ..., P. of a convex n-fan F, construct their Voronoi 

diagram Vor(S). 

5.4.3 A direct solution 

A naive (almost brutal) approach to solve problem 15 is to construct its individual 

regions one at a time. The difficulties outlined in section 5.4.1 still exist, yet result 24 

in section 5.4.2 will no longer apply. In fact, any Voronoi region constructed for 

problem 15 has at most k - 1 edges. 

This can be shown by a contradiction. Consider two of P's translates P and 

P3. Without loss of generality, suppose that their Voronoi regions V(i) and V(j) 

have two common edges e1 and 62 (figure 5.7). Since el and 62 are non-consecutive, 

there must be an edge 6r in between that separates V(i) and another translate Pr's 
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Figure 5.7: (a) Any Vor9noi region has at most k - 1 edges. 

Voronoi region V(r). Let p be a point oil e1 and P2 be a point on e2, then by 

definition the distance from p1 to P (and F3) is shorter than that from p' to Pr and 

the dame thing holds for p2. However, we find that this cannot be true in the obvious 

way: considering the case of P, P3 and Pr being single points, then we are creating 

a situation that the perimeter of a rhombus is less than twice the total distance 

from a inner point to two of the rhombus's vertices. This contradiction means that 

two adjacent Voronoi regions cannot have more than one common edge, hence each 

region will have at most k - 1 edges. 0 

We also observe the following fact regarding the computation of Voronoi regions: 

A Voronoi region V(i) is the intersection of k - 1 halfplanes defined by the dividing 

chains B(P, F3) (i j). For simplicity we introduce two definitions here (1) Given 

a dividing chain C, the two convex polygons that define C are called the defining 

polygons of C. (2) Two dividing chains are said to be coaxial if they share a common 

defining polygon. In the case where the input set consists of translates of a given 

convex polygon, it is obvious that any two coaxial dividing chains can have at most 
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one intersection point. 

A direct consequence of the above result is that binary search can be used to 

compute the intersection of two coaxial dividing chains. O(log n) comparisons are 

sufficient for the computation, and for each comparison we need to find whether a 

certain point is to the "left" or "right" side of a given dividing chain, which requires 

O(log n) time as well. So we have: 

Result 25 Finding the intersection of two coaxial dividing chains takes O(log2 n) 

time (provided the inputs is a set of translates of a given convex polygon). 

Now we shall solve problem 15 by constructing the Voronoi regions one at a time. 

The concern here is to find the intersection of k - 1 halfplanes defined by k - 1 

coaxial dividing chains. For convenience of discussion, we shall hereinafter call a 

planar region defined by i coaxial dividing chains a i-chain region, and call an edge 

of such a region a chain side. 

We use the divide-and-conquer approach. The input are k - 1 halfplanes defined 

by coaxial dividing chains. The output will be their intersection, a planar region 

that has at most k - 1 chain sides. The algorithm is as follows. 

1. Partition the half-plane into two sets of approximately equal sizes. 

2. Recursively form the intersection of the half-planes in each subset. 

3. Merge the subproblem solutions by intersecting the two resulting regions. 

Let T(k) denote the time used to form the intersection of k halfplanes by this 

algorithm, we have: 

T(k) = 2T(k/2) + t. (5.3) 
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where t denotes the time needed for the merging step. 

The time t can be found using an approach due to O'Rourke et. al [27]. The 

original idea was based on the technique of "edge advancing", and was proposed 

for computing the intersection of two convex polygons. However, it also applies 

here. Given two k-chain regions, it will take 0(k) edge advancing steps to compute 

their overlapped area, where each step needs to check the intersection of two chain 

sides. By result 25 we know that 0(1og2 k) time is required to find the intersection 

of two dividing chains, so to intersect k - 1 k-chain regions takes 0(k log2 n) time 

where n is the number of vertices on an input polygon. Also constructing' the k - 1 

dividing chains will take 0(kn) time, hence t = 0(kn + k log2 n). substitute this into 

equation 5.3 we have: 

T(k) = 2T(k/2) + 0(kn + k log' n) = 0(k log k(n + log' n)). (5.4) 

Equation 5.4 gives the time needed to compute one Voronoi region. To solve 

problem 15 we need to construct k Voronoi regions. So the algorithm will run in 

0(kT(k)) time which is summarized in the following: 

Result 26 Problem 15 can be solved in 0(k2 log k(n + log  n)) time, which is equiv-

alent to 0(k2n log k). 

5.4.4 A divide-and-conquer solution 

A better solution for problem 13 can be obtained by using the divide-and-conquer 

approach. 

The method we shall use is similar to the Voronoi diagram construction algorithm 

devised by Preparata and Shamos [30]. Some modifications are made so that their 
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technique can be applied to the convex polygon situation. The method is based on 

the following crucial result: 

Result 27 Given a set S of k points P1, P2, ..•,PA; on the plane. Let S1,52 be a 

partition that is linearly separated (which means if more than one point belongs to 

the separating line, all of these are assigned to the same set of the partition) of S, 

and let o-(Si, 82) denote the set of Voronoi edges that are shared by pairs of Voronoi 

regions V(i) and V(j) of Vor(S), for pi E S1 and pj E 52. It holds that o-(S, S2), 

consists of a single monotone chain. 

The above result is a prerequisite for the correct operation of their algorithm. 

Therefore, before applying their method we need to ensure that the theorem holds 

for our situation, i.e. a set S of k translates P1, P2, ..., Pk of a given convex polygon 

P. The following points we should note: 

• For a set of convex polygons, linearly separated partition means that if more 

than one polygon intersects the separating line, all of these are assigned to the 

same set of the partition. 

• For a given set S of convex polygons, we can rotate both the x-axis and the 

y-axis simultaneously by a same angle (a rotation of the coordinate system), 

and this will not affect the Voronoi diagram of S. 

According to the above points, we can first rotate both coordinate axes by a certain 

degree, thereby to "scatter" the set S of convex polygons horizontally (with respect 

to the x-axis). Then we scan through the polygons to find a vertical line that linearly 

separates S into two subsets of approximately equal sizes. The scan will take linear 
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Figure 5.8: S1 and S2 are separated by a single monotone chain. 

time. The correctness of result 27 for this situation can be proved using a similar 

argument as in [30]. An illustration is shown in figure 5.4.4. The algorithm goes as 

follows: 

1. Use a vertical line 1 to linearly separate the set S into two subsets S1 and S2 

of approximately equal sizes. 

2. Construct the Voronoi diagrams Vor(Si) and Vor(S2) 8f S1 and S2 recursively. 

3. Merge Vor(Si) and Vor(S2) to get Vor(S). 

Step 1 can be done by first sorting F1, F2, ...Pk according the x-coordinates of their 

rightmost vertices, then scanning through the sorted list to determine the separating 

line. This requires O(k log k) time. What remains is to find an efficient way to merge 

the Voronoi diagrams obtained from the two subsets. An elegant merge algorithm 
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is provided in [30] which, as indicated above, can be applied to serve our purpose. 

For the sake of space we shall not repeat its lengthy detail here. The basic idea is 

to construct the chain o(Si, 52) (which is monotone) that separates S and 52. By 

definition, o(Si, 82) is the collection of Voronoi edges that are shared by Voronoi 

regions of polygons in S1 and 52. Let IVI be the halfplane that is to the left of 

o(Si, S2) and lr , be the one to the right, then the Voronoi diagram Vor(S) is the 

union of Vor(Si) fllvi and Vor(S2) flirr. This observation ensures that when o(Si, S2) 

is available, Vor(S) can be obtained by discarding all edges of Vor(Si) that lie to 

its right and all edges of Vor(82) that lie to its left. 

o(Sj, S2) has two semi-infinite rays at its two ends, called the upper ray and the 

lower ray respectively. The algorithm starts from a point on one of them, say the 

upper ray, and takes 0(k) "moves" or "steps" to reach the lower ray, thereby to 

construct the separating chain. As each move involves computing a dividing chain 

and making a constant number of checks for intersections between dividing chains, 

the total time required to construct o(Si, S2) will be O(kn + k log2 n). Let T(k) be 

the time used to solve problem 15 by this algorithm, we have: 

T(k) = 2T(k/2) + 0(kn + k log2 ii) = O(k log k(n + log2 n)). (5.5) 

This is an 0(k) improvement over the previous solution. However, we are not sure 

whether it is optimal for problem 15. 

5.4.5 An interesting heuristic 

Before ending our discussion for problem 15, we present an interesting idea that 

may be of help to future research in this area. The idea is based on the following 
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observations about Voronoi diagram construction: 

1. There are k different convex polygons in S, which define k(k - 1) different 

polygon pairs. 

2. Each of these polygon pairs determines an individual dividing chain, hence 

there are k(lc - 1) dividing chains. 

3. Every Voronoi polygon is decided by k - 1 dividing chains, but this does not 

mean that each of these dividing chains will appear on the edges of the Voronoi 

polygon. In other words, not all of the dividing chains will contribute to the 

Anal Vonoroi diagram. 

4. If we can identify those dividing chains that actually contribute to the Voronoi 

edges, then we should be able to design a very efficient algorithm. 

As the elements of S are translates of a given convex polygon, we can possibly 

construct the Voronoi diagram in a particular way. For example, the geometrical 

centers c1, c2, ..., cj of the given translates F1, P2,..., F, may provide very important 

proximity information about the Voronoi diagram construction. Let S be the set of 

geometrical centers of c1, C2, ...' ck. We wonder whether the Voronoi diagrams Vor(S) 

of S and Vor(Si) of S have a one-to-one edge and vertex correspondence. If this 

is the case, then the construction of Vor(S) can be done by first constructing the 

Voronoi diagram Vor(Si) of S. If two points (say ci and cj) define a Voronoi edge 

e1 in Vor(Si), then their corresponding polygons P and P3 will also define a Voronoi 

edge e in Vor(S) (see figure 5.9). This means that the Voronoi diagram construction 
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Figure 5.9: An interesting correspondence. 

process can be directed by the information stored in Vor(Si), therefore only useful 

computation is performed. 

Unfortunately, there is not a one-to-one correspondence between Vor(S) and 

Vor(Si). Although in most of the cases our assumption is true, counter examples 

can be found when the translates in S are long and narrow slates. There are two 

possible ways to fix this problem: (1) use another model that better captures the 

proximity information of a given set S of convex polygon translates, and (2) still use 

the geometrical centers of the translates, but something has to be done to check out 

whether an edge in Vor(S) indeed has a corresponding edge in Vor(Si). We shall 

not further discuss this in this thesis. 



Chapter 6 

Conclusion 

This thesis investigated several problems relating to sets of planar convex objects. 

First the problem of Union Hull Construction is studied. For an input set S of 

k convex n-gons, we presented an optimal algorithm that constructs the union hull 

U(S) in O(nk log k) time. We also discussed the generalized union hull construction 

problem, and an new algorithmic lower bound was established. 

Next the Convex Polygon Intersection problems are investigated. We discussed 

in detail both the Intersection Computation problem for which an algorithmic lower 

bound as well as an optimal algorithm was given, and the Intersection Detection 

problem for which we presented an algorithm that substantially outperformed the 

current algorithm on an average-case basis. The lower bound for the latter, however, 

is still unknown. 

Then we proceeded to consider the problem of Separability Detection for sets of 

convex objects such as line segments and convex polygons. Finding the optimal 

solution for separability detection was an open problem and it still is. However, an 

algorithm is presented here which we claim will work faster than the best solution 

so far. 

Finally the problem of Voronoi Diagram Construction for a set of convex polygons 

was .discussed. We studied a restricted version of the problem where the inputs are 

translates of a given convex polygon and we gave a new algorithm for this restricted 

problem. More work remains to be done on constructing Voronoi diagrams for any 
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given set of convex polygons, and we believe that the work presented here can be 

valuable to future efforts in solving this problem. 

Much of the work done in this thesis is based on previous research. The union hull 

problem is a generalization of the ordinary convex hull problem, although as far as we 

know it has never been formally brought up and studied. Both of the convex polygon 

intersection and the convex polygon separation were studied before and interesting 

results were achieved. Nontheless, this thesis provides algorithms that considerably 

improve the current results. The Voronoi diagram construction problem for a set of 

planar objects (other than a set ofpoints, which has received adequate treatment 

already) is now catching more and more, attention from researchers. However, as far 

as we know, there is still not much work done on constructing the Voronoi diagram 

for a set of convex polygons. We believe that the work presented here is a aluable 

attempt, and could be useful to future efforts in solving this problem. 



[1] A. V. Aho, J. E. Hoperoft, J. D. Ullman, The design and analysis of computer 
algorithms, Addison-Wesley, Reading, Mass., 1974. 

[2] F. Aurenhammer, Voronoi diagrams - A survey of a fundamental geometric 
data structure, Research report B90 - —09, Institute for computing science, 
Department of Mathematics, Freie University, Berlin. Nov. 1990. 

D. Avis, J. M. Robert, Lower bound for line stabbing, Info. Proc. Lett. 33 (1989), 
p59-62. 

[4] 1990 distribution, Computational Geometry Bibliography, Sept, 1990. 

[5] M. Ben-Or, Lower bounds for algebraic computation trees, Proc. 15th ACM 
Annaul Symp. on Theory of Computing., 1983, p80-86. 

B. Chazelle, Optimal algorithm for computing depths and layers, Proc. 21st 
Annual Allerton Conf. on Comm., Control and Compt. (1983), p427-436. 

B. Chazelle, D. P. Dobkin, Detection is easier than computation, Proc. 12th 
Ann. ACM symp. on Theory of computing (1980), p146-153. 

B. Chazelle, D. P. Dobkin, Intersection of convex objects in two and three di-
mensions, Journal of the A.C.M, V-34(i), Jan.,1987, p1-27. 

D. P. Dobkin, D. G. Kirkpatrik, Fast detection of polyhedral intersection, The-
oretical Computer Science 27 (1983), p241-253. 

[10] D. Dobkin, R. Lipton, On the complexity of computations under varying set of 
primitives, Journal of Computer and Systems Sciences 18 (1979), p86-91. 

[11] M. E. Dyer, On a multidimensional search technique and its application to the 
Euclidean one-center problem, SIAM J. Comput. 15 (1986), p725-738. 

[12] H. Edelsbrunner, H. A. Maurer, F. P. Preparata, A. L. Rosenberg, E. Welzi, D. 
Wood, Stabbing line segments, BIT 22 (1982), p274-281. 

[13] H. Edelsbrunner, M. H. Overmars, D. Wood, Graphics in flatland: A case study, 
Advances in Computing Research, V-i (1983), F. P. Preparata Ed., JAI Press, 

p35-59. 

Bibliography 

[3] 

[9] 

[14] M. Golin, R. Sedgewick, Analysis of a simple yet efficient convex hull algorithm, 
Proc. 4th Symposium on Computational Geometry (1988), p153-163. 

89 



CHAPTER 6. BIBLIOGRAPHY 90 

[15] R. L. Graham, An efficient algorithm for determining the convex hull of a finit 
planar set, Info. Proc. Lett. 1 (1972), p132-133. 

[16] E. Horowitz, S. Sahni, Fundamentals of data structures, Computer Science 
Press: Woodland Hills, Calif., 1977. 

[17] R. A. Jarvis, On the identification of the convex hull of a finite set of points in 
the plane, Info. Proc. Lett. 2 (1973), p18-21. 

[18] J. Kiefer, Sequential minimax search for a maximum, Proc. American Math. 
Soc. 4 (1953), p502-506. 

[19] D. G. Kirkpatrik, Efficient computation of continuous skeletons, IEEE 20th 
Annual Symposium on Foundations of Computer Science (1979), p18-27. 

[20] D. E. Knuth, The art of computer programming, Volume 1: Fundamental algo-
rithms, Addison-Wesley, Reading, MA, 1968. 

[21] D. E. Knuth, The art of computer programming, Volume 3: Sorting and search-
ing, Addison-Wesley, Reading, MA, 1973. 

[22] D. T. Lee, R. L. Drysdale, Generalization of Voronoi Diagrams in the plane, 
SIAM J. Computing V-10(1), Feb., 1981, p73-87. 

[23] N. Megiddo, Linear-time algorithms for linear programming in R3 and related 
problems, SIAM J. Comput. 12 (1983), p759-776. 

[24] S. N. Meshkat, C. M. Sakkas, Voronoi diagram for multiply-connected polygonal 
domains 1: Algoirthms, IBM J. Res. Developments 31(3), May, 1987, p361-372. 

[25] S. N. Meshkat, C. M. Sakkas, Voronoi diagram for multiply-connected polygonal 
domains 2: Implementation and application, IBM J. Res. Developments 31(3), 
May, 1987, p373-381. 

[26] D. E. Muller, F. P. Preparata, Finding the intersection of two convex polyhedra, 
Theoretical Computer Science 7 (1978), p217-236. 

[27] J. O'Rourke, C. B. Chien, T. Olson, D. Naddor, A new linear algorithm for 
intersecting convex polygons, Computer Graphics and Image Processing 19 
(1982),p384-391. 

[28] F. P. Preparata, An optimal real time algorithm for planar convex hulls, Comm. 
ACM 22 (1979), p402-405. 



CHAPTER 6. BIBLIOGRAPHY 91 

[29] F. P. Preparata, S. J. Hong, Convex hull of finite sets of points in two and three 
dimensions, Comm. ACM. V-20(2), Feb.,1977, p87-93. 

[30] F. P. Preparata, M. I. Shamos, Computational geometry, an introduction, 
Spring-Verlag, New York (1985). 

[31] M. Reichling, On the detection of a common intersection of k convex objects in 
the plane, Info. Proc. Lett. 29 (1988), p25-29. 

[32] E. M. Reingold, On the optimality of some set algorithms, Journal of the ACM. 
19 (1972), p649-659. 

[33] A. Renyi, R. Shulanke, Ueber die konvexe Hulle von n zufallig gewahiten Punk-
ten, I,Z. Wahrschein, 2 (1963), 1i75-84. 

[34] C. A. Rogers, Packing and covering, Cambridge University Press, Cambridge, 
England, 1964. 

[35] M. I. Shamos, D. Hoey, Geometric intersection problems, Seventeenth Annual 
IEEE Symposium on Foundations of Computer Science (1976), p208-215. 

[36] J. M. Steele, A. C. Ya.o, Lower bounds for algebraic decision trees, Journal of 
Algorithms 3 (1982), p1-8. 


