
THE UNIVERSITY OF CALGARY

Problems On a Set of Convex Objects

BY

Haihuai Chen

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

April, 1991

© Haihuai Chen 1991

1*1 National Library
of Canada

Canadian Theses Service

61b11otheque nationale
du Canada

Service des thèsès canadiennes

Ottawa. Canada
KIA 0N4

The author has granted an irrevocable non-'
exclusive licence allowing the National Ubrary
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

11'l Cmacta

L'auteur a accordé une licence irrevocable et
non exclusive përmettant a (a Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa these
de quelque manière et sous quelque forme
que ce soit pour mettre des exernplaires de
cette these a la disposition des personnes
intéressées.

L'auteur conserve (a propriété du droit d'auteur
qui protege sa these. Ni la these ni des extraits
substantiels de celle-ci ne doiverit être
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-66846-6

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled "Problems On a Set of Convex

Objects" submitted by Haihuai Chen in partial fulfillment of the requirements for

the degree of Master of Science.

Supervi9r, Dr. Jon Rokne
Department of Computer Science

Dr. Bruce MacDonald
Department of Computer Science

Dr. Wayne Eberly V

Department of Computer Science

/'-T V•,^•
Dr. Jun Cu
Department of Electrical Engineering

Date 1991-04-05

11

Abstract

This thesis studies several problems relating to sets of convex objects in the plane:

1. Union Hull Construction: Given a set S of k convex polygons, construct their

union hull U(S), i.e., the minimum convex hull that contains all the elements

of S.

2. Intersecting Convex Polygons: Given a set S of k convex polygons, we study

two problems: (1) Compute the intersection of these polygons, and (2) Detect

whether the given polygons intersect or not.

3. Separating Convex Objects: Given a set S of k convex objects, decide whether

a separating line exists, i.e., a straight line that separates S into two non-empty

subsets and yet does not intersect any of the elements in S.

4. Voronoi Diagram for Convex Objects: This is an extended form of the ordinary

Voronoi diagram construction problem. Instead of working on a set of given

points, we construct the Voronoi diagram for a set of convex polygons.

The thesis studies these problems and some interesting results are achieved. Al-

gorithmic lower bound analysis is given wherever possible, and some of algorithms

presented here are optimal.

111

Acknowledgements

I wish, to express my deep gratitude to my supervisor Dr. Jon Rokne for his continual

encouragement and invaluable help ranging from topic selecting to the final thesis

writing, without which the work presented here could never have been completed.

I also wish to thank Dr. Ian Witten who read and commented on my thesis

proposal, and Dr. Wayne Eberly who rendered help when I was in need of it.

Lastly, but by no means the least, I thank my office mates Nick Malcolm, Zhao

Zhang, my roommate Tom Fukushirna, and other students of the department for

creating a friendly, relaxed and stimulating environment in which I could concentrate

on my research. My appreciation also goes to hardware and software support staff

of the department who made it enjoyable to use the computing facilities.

iv

Contents

Approval Page

Abstract

Acknowledgements iv

List of Figures vii

1 Introduction 1
1.1 Preparation and Background 1

1.1.1 Computational geometry 1
1.1.2 Our computational model 3
1.1.3 Lower and upper bounds 3
1.1.4 Algorithm analysis 4
1.1.5 Algebraic decision tree 6

1.2 General definitions and notations 8
1.3 The thesis 9

2 Constructing the union hull 11
2.1 Algorithms for union hull construction 12

2.1.1 The straight merge method 13
2.1.2 A divide-and-conquer solution 13

2.2 The Generalized Case 15
2.2.1 Divide-and-conquer vs. Huffman tree 16

2.2.2 A different solution 18
2.3 The lower bound 20
2.4 Another algorithm 22
2.5 Some comments 24

3 Intersecting Convex Polygons 26
3.1 Preliminaries 27

3.1.1 Definitions and notations 27
3.1.2 Important results 28

3.2 Compute the Intersection of Convex Polygons 31
3.2.1 The lower bound 31
3.2.2 The algorithms 33

3.3 Detecting the Intersection of Convex Polygons 34

V

3.3.1 A linear algorithm 35
3.3.2 Reichling's algorithm 35

3.4 Using Newton Iteration 39
3.4.1 Intersecting a cup and a cap 39
3.4.2 The algorithm 43

4 Separating Convex-Polygons 45
4.1 A Comparison 46

4.1.1 Stabbing line 46
4.1.2 Separability vs. stabbing line 47
4.1.3 Some definitions 48

4.2 Separating line segments 49
4.2.1 Algorithm 1 49
4.2.2 A restricted problem 51
4.2.3 Algorithm 2 54
4.2.4 The potato peeling method 54

4.3 Lower Bound Analysis 57
4.4 Separating Convex Polygons 58

4.4.1 A straightforward solution 58
4.4.2 A solution based on convexity 58
4.4.3 An alternative solution 60

5 Voronoi Diagram for Convex Polygons 63
5.1 Preliminaries 64

5.1.1 The Voronoi Diagram 64
5,1.2 Definitions and notations 66

5.2 Bisecting Two Line Segments 67
5.3 The Bisector of two convex polygons 69
5.4 Constructing the Voronoi Diagram 73

5.4.1 Inherent difficulties 74
5.4.2 Features of Voronoi regions 75
5.4.3 A direct solution 78
5.4.4 A divide-and-conquer solution 81
5.4.5 An interesting heuristic 84

6 Conclusion 87

Bibliography 89

vi

List of Figures

2.1 The union hull of a convex m-gon and a convex n-gon can have up to
m'+n vertices. . 12

2.2 Different merging strategies makes difference. 17
2.3 Forming a large "interim hull". 19
2.4 Merging vertices on a parabola. 21
2.5 A preprocessing strategy 24

3.1 The intersection of an infinite line with a convex polygon. 29
3.2 The intersection of a cup and a cap 31
3.3 Setting the left bound b1 and the right bound b,. 37
3.4 Tighten up the bounds - Reichling's algorithm. 38
3.5 Finding the intersection(s) of a cup and a cap 41
3.6 The bounds b1 and b,. intersect CUP and CAP 44

4.1 rays and wedges. 49
4.2 separate via endpoints 51
4.3 Detect separability via plane coverage. 53
4.4 Separate via polygon vertices 59
4.5 Detect separability via plane coverage. 62

5.1 Voronoi polygon. 65
5.2 Voronoi diagram. 65
5.3 Bisecting a line segment and a point. 68
5.4 Bisecting two line segments that are (a): parallel, and (b): otherwise. 70
5.5 (a) The stripe of e for the convex polygon P. (b) Bisecting convex

polygons P and Q. 72
5.6 (a) A Voronoi region is a connected area. (b) Adding another polygon

into the picture 77
5.7 (a) Any Voronoi region has at most ic - 1 edges 79
5.8 S1 and S2 are separated by a single monotone chain. 83
5.9 An interesting correspondence. 86

vii

Chapter 1

Introduction

This thesis investigates several problems relating to sets of convex objects in the

plane.

The problems themselves are of theoretical and practical interest. By studying

these problems more insight is obtained into the very important property of con-

vexity. We believe, and prove by the work in the thesis, that algorithms handling

convex objects can be made more efficient if more of the convexity of the input can be

explored and utilized in the solution. We also show that algorithm design paradigms

that are well known to be efficient in solving computational geometry problems, such

as divide-and-conquer, geometrical transform, plane sweeping etc, can be applied to

the problems.

1.1 Preparation and Background

We shall start with some background material and preliminaries.

1.1.1 Computational geometry

Computational Geometry is a new discipline that took shape over the past two

decades. It is now established, as seen by the excellent advanced text by Preparata

and Shamos [30], as well as the new journals that are appearing and the conferences

(e.g. ACM Symposium on Computational Geometry) that are held annually.

1

CHAPTER 1. INTRODUCTION 2

The discipline is concerned with geometry and geometrical objects from a com-

putational point of view, and the aim is to find efficient algorithms for these objects.

The problems treated arise in many areas such as computer graphics, VLSI design,

travel planning, and operation optimization etc, to name a few.

This discipline has seen a tremendous activity over the last two decades as wit-

nessed by the bibliography [4] of materials relative to computational geometry. Ini-

tially the problems solved were fairly standard problems, such as the computation of

the convex hull of a set of points in the plane. Many of these standard problems have

now been solved in a satisfactory manner in that the complexities of the solutions

are the complexities arrived at as best possible by complexity analysis. Thus, most

of the standard problems now only admit refinement of detail in the computational

process.

The research in the discipline also opened up new and exiting problem areas. The

developments of new tools made it possible to consider problems that in the past

were thought to be too difficult.

Problem solving in computational geometry consists of operation on some given

set of geometrical objects, among which convex objects form the most prominent

class. The reason that convex objects become a m.jor focus in computational ge-

ometry research is that first, they characterize many real-world applications; second,

associated with convex objects there is a very important property called convexity,

which possesses some very valuable computational merits and enables efficient al-

gorithms to be developed. In this thesis we shall study problems on planar convex

objects.

CHAPTER 1. INTRODUCTION 3

1.1.2 Our computational model

The computational model we shall use in the thesis is an abstraction of an actual

Von Neumann computer. In particular, we adopt a random access machine (RAM)

similar to that described in [1], except that in our model each memory cell is able

to hold a single real number. The following operations are primitive and cost unit

time:

1. The arithmetic operations (+,—,x,/).

2. Comparisons between two real numbers.

3. Indirect addressing of memory (integer addresses only).

This model will be referred to as the real RAM. It closely reflects programs written

in high-level languages such as PASCAL and ALGOL, in which real type variables are

treated as having unlimited precision. This may cause implementational problems for

applications where precise measurements are required, e.g., point positions, lengths,

sizes, etc. In our discussion, however, we shall ignore questions such as how real

numbers can be read or written in finite time.

1.1.3 Lower and upper bounds

When considering a problem under the real RAM model it is important to find out

its inherent computational complexity (the number of operations performed). Given

a problem F, its computational complexity may be assessed by establishing the lower

bound or upper bound of the problem. The lower bound of a given problem is defined

to be the minimum time required for running any algorithm that solves the problem

CHAPTER 1. INTRODUCTION 4

(usually measured by the worst-case running time). The upper bound of a problem,

however, provides a ceiling for the convexity of the problem. It enables us to decide

that the problem under study is "inherently not more difficult in term of computing

time" than a given degree of complexity.

Lower bounds and upper bounds may be tight, in which case the measures of

complexity they provide are accurate. They can also be loose , in which case they

define a "range" as to how difficult the problem is, and the measures they provide

are less .precise.

An often used and proven effective method in establishing a lower bound (or

upper bound) for a given problem is to find a relationship between the problem

under study and another problem whose computation complexity is well known,

such as sorting, element uniqueness, etc. This method is called transformation of

problems. A detailed discussion of transformation of problems can be found in [30].

In many cases, however, tight lower and upper bounds may be extremely difficult to

find.

1.1.4 Algorithm analysis

Solutions to problems are customarily preàented in the form of a procedural descrip-

tion of their execution behavior. Such a description is called an algorithm. When an

algorithm is given it should, wherever possible, be accompanied by an evaluation that

predicts its performance in execution. Algorithm performance evaluation normally

have two aspects: (a) the expected space consumption, and (b) more importantly, the

expected time requirement.

The time used for the execution of an algorithm is the sum of the times of

CHAPTER 1. INTRODUCTION 5

the individual operations being executed. As the accurate running behavior of a

certain algorithm may impossible to model, it is customary in the field of algorithm

design and analysis to count only certain "key operations" that are executed. In our

computational model, we consider only the following (algorithmic) operations:
C.

1. Procedure calling.

2. Assignment.

3. Branching (comparing).

4. Looping.

Note that some operations are "omited", and the running time we come about

will therefore account for only a part of the actual time requirement. This will cause

no problem in lower bound analysis, for any unaccounted-for operations will only

increase it. When dealing with upper bounds, however, we need to ensure that the

selected operations accounts for a constant portion of all the operations that are

executed. In our thesis, we shall use a notation device described in Knuth ([20]):

• 0(f (n)) denotes the set of all functions g(n) such that there exist positive

constants C and No with Ig(n)I ≤ Cf(n) for all n ≥ No.

• 11(1(n)) denotes the set of all functions g(n) such that there exist positive

constants C and No with g(n) ≥ Cf(n) for all n ≥ No.

• 0(f (n)) denotes the set of all functions g(n) such that there exist positive

constants C1, C2 and No with Cif (n) ≤ g(n) ≤ C2f(n) for all n ≥ No.

The performance of an algorithm can either be measured by its worst-case com-

plexity or by its average-case complexity. Worst-case complexity is the maximum of

CHAPTER 1. INTRODUCTION 6

a measure of performance of a given algorithm over all problem instances of a given

size. Average-case complexity, however, gives an estimate of the observed behav-

ior of the algorithm. Normally worst-case complexity is easier to measure than its

average-case counterpart. In this thesis we shall use both for performance evaluation

purposes.

1.1.5 Algebraic decision tree

We now introduce a very important computational model, called the "algebraic de-

cision tree", which will often be used in our complexity analysis.

An algebraic decision tree ([32], [10], [30]) on a set of variables X1, x2, ..., x, is a

program with statements L1, L2,..., L of the form:

1. L3: Compute f(51,52, ...,x). 1ff:: 0 then go to L, else go to Lj (:: denotes

any comparison relation).

2. L: Halt and return "Yes".

3. Li,: Halt and return "No".

In step 1, f is an algebraic function (a polynomial of a certain degree). The program

is further assumed to be loop-free, i.e., it has the structure of a tree T, such that

each nonleaf node v is described by

:: 0.

where f is a polynomial in X1, X2, ..., x, and:: denotes a comparison relation. When

f,, is a linear function we call the corresponding tree T a linear decision tree. The

root of T represents the initial step of the computation and its leaves represent the

CHAPTER 1. INTRODUCTION 7

possible terminations and contain the possible answers. Without losing generality,

we shall assume that the tree T is binary.

The major power of the algebraic decision tree model lies in its ability to solve

the membership for decision problems. The decision problem D(A) associated with

a given problem A, which can either be a "computation" or a "subset selection"

problem ([30]), is one that 1 (A being a computation problem): requests a Yes/No

answer to a question of the type "Is A ≥ A0?" where A0 is a constant and A is

a parameter whose value is unknown; or 2 (A being a subset selection problem):

requests a Yes/No answer to a question of the type "Does set S' satisfy property

F?" where 8' is a subset of a given set S and P is a certain property to be satisfied.

Let D(A) be a decision problem and let x1, X2,..., x, be the parameters associated

with it. We can view each instance of the parameters as a point in the n-dimensional

Euclidean space En. The decision problem then identifies a set of points W

or in other words it provides a Yes-answer if and only if (x1, X2, ..., x) E W. If T is

the decision tree of problem D(A) we then say that T solves the membership problem

for W.

Several results, of significant theoretical value have been established regarding the

above-mentioned membership problem ([10], [36], [5]). Following is a result due to

Dobkin and Lipton ([10]):

Result 1 Any linear decision tree algorithm that solves the membership problem in

W E' must have depth at least 1092 #(W), where #(W) is the number of disjoint

connected components of W.

This result is very useful in establishing lower bounds for decision problems.

CHAPTER 1. INTRODUCTION 8

1.2 General definitions and notations

The objects contained in computational geometry are normally sets of points in

Euclidean space. We shall assume a coordinate system of reference within which

each point is represented as a vector of Cartesian coordinates of the appropriate

dimension. Following are some general definitions and notations.

By Ed we denote the d-dimensional Euclidean space, i.e. the space of the d-tuples

(Si) X21 ..., Sd) of real numbers x, i = 1, 2, ..., d.

A point p in E' is a d-tuple (Si, X2, ..., Sd). A straight line 1 can be defined by any

two different points on it, and a straight line segment s is defined by its two extreme

points.

A domain D in Ed is convex if, for any two points qi and q2 in D, the segment

is entirely contained in D. Note that the intersection of two convex domains is

still a convex domain.

The convex hull of a set of points S in E' is the boundary of the smallest convex

domain in Edthat contains S.

In E2 a polygon is defined by a finite set of segments such that every segment

extreme is shared by exactly two edges and no subset of edges has the same property.

The segments are the edges and their extremes are the vertices of the polygon (Note

that the number of edges and vertices are identical). An polygon with n vertices is

called an n-gon.

A polygon P is simple if there is no pair of nonconsecutive edges sharing a

point. A simple polygon partitions the plane into two disjoint regions, the interior

(bounded) and the exterior (unbounded) separated by the polygon.

CHAPTER 1. INTRODUCTION 9

A polygon P is convex if its interior is a convex set.

1.3 The thesis

This thesis studies several basic problems on sets of convex objects, primarily convex

polygons. It is organized as follows.

Chapter 2 discusses the construction of union hulls: given a set S of convex

polygons, construct the convex hull of all vertices in S. A lower bound and several

algorithms are presented.

Chapter 3 deals with the intersection problem. For a given set S of convex

polygons we form two different types of intersection questions: (a) calculate the

intersection of all convex polygons in S; and (b) detect whether the given convex

polygons intersect or not. The chapter treats both problems in detail.

Chapter 4 studies the problem of separating a set of planar convex objects. Given

a set S of convex objects, we are to find out whether there is a straight line 1 that

separates S into two disjoint non-empty subsets and yet does not intersect any of

the given polygons. Objects studied in this chapter are straight line segments and

convex polygons.

Chapter 5 deals with an extended form of planar Voronoi Diagram. Ordinary

Voronoi Diagrams are based on sets of planar points. In this chapter, however, we

shall consider the problem of constructing the Voronoi diagram for a given set S of

convex polygons. A solutions using' the divide-and-conquer technique is given for a

restricted version of the problem.

Finally chapter 6 gives a conclusion.

CHAPTER 1. INTRODUCTION 10

Throughout the thesis, we assume that polygons are represented in arrays with

their vertices stored in counterclockwise order unless otherwie specified. This rep-

resentation ensures that binary search can be performed when a vertex needs to be

found (such cases arise when computing the intersection of two convex polygons).

Chapter 2

Constructing the union hull

In this chapter we study an extended form of convex hull construction which we

shall call the union hull. By definition, the convex hull H for a set S of k planar

points PI) P2, Pk is the minimum convex polygon that contains S ([15], [17], [30]).

In a similar manner, the union hull for a set S of k convex polygons P1, P2,..., Pk is

defihed to be the minimum convex polygon that covers all the elements of S. We

formalize the problem in the following:

Problem 1 Given a set S of k planar convex n-gons F1, F2, ...Ph, construct the

union hull U of S.

The chapter is organized as follows: Section 2.1 studies the standard union hull

construction problem where the input polygons all have the same number of vertices.

A basic algorithm using the divide-and-conquer technique is given. Section 2.2 con-

•siders a generalized version of the problem where input polygons may differ in their

numbers of vertices. An Huffman tree model is used to keep up with the changing

input pattern thereby achieving a better worst-case as well as average-case per-

formance: Section 2.3 establishes the lower bound for the union hull construction

problem, and lastly in section 2.4 we introduce a general preprocessing method that

is useful in solving computational geometry problems of a similar nature.

In the discussion below, by a "polygon" we mean a "convex polygon" unless

otherwise specified.

11

CHAPTER 2. CONSTRUCTING THE UNION HULL 12

Figure 2.1: The union hull of a convex m-gon and a convex n-gon can have up to
m + n vertices.

2.1 Algorithms for union hull construction

In this chapter, we shall use convex merge (or merge), denoted by ED , to indicate

the basic operation that computes the union hull of two convex polygons ([29], [30]).

The following result on convex merge is of fundamental importance.

Result 2 Finding the merge of a convex rn-gon P and a convex n-gon Q requires

O(m + n) time, which is optimal in the worst case.

Proof: There are several algorithms available that finds the merge of two convex

polygons in linear time ([29], [30]), and we shall not give the details here. For

optimality, it is obvious that the union hull of a convex m-gon and a convex n-gon

may have up to m + n vertices (figure 2.1), and reading them off takes O(m + n)

time. 0

CHAPTER 2. CONSTRUCTING THE UNION HULL 13

2.1.1 The straight merge method

Problem 1 can be solved by repetitively applying the convex merge operation. In

fact, given k convex polygons P1, F2, ..., Pie, we can construct their union hull U by

performing a sequence of k - 1 merges. Let U1 = F1, the computation will proceed

as follows:

(JJ'2 =U2; (2.1)

U1_j P1 = U1; (2.2)

Uk_i Pk = U; (2.3)

we know that the union hull of a convex m-gon and a convex n-gon may have up to

m + n vertices, thus the ith (1 ≤ i ≤ k - 1) step of the above process (equation 2.2)

will merge a (ni)-gon and a n-gon in the worst case. According to result 2 this

step alone will take O(ni) time. Apply this to all equations in the sequence for

i = 1, 2, ..., Ic, we get the following total running time:

k—i

O((i . n)) = O(nk2)

Therefore the algorithm has an O(nk2) time complexity in the worst case.

2.1.2 A divide-and-conquer solution

The execution of the above algorithm can be characterized by a binary tree T which

is constructed as follows: Initially the set S has k convex polygons e1, e2, ..., ek, where

each of which is assigned to be a "leaf node" of T. We then start to perform the

CHAPTER 2. CONSTRUCTING THE UNION HULL 14

operation , on the elements of S. As the merging process proceeds, the contents

and structure of S are accordingly changed.

When two elements of 5, say ej and ej, are merged, we remove both from the

set of S, form a new element e = e ej with arcs connected to both ei and e3.

This new "parent node" e is then added to the now revised set of S. Every time a

merge operation is performed, S loses two of its 'old nodes (ei and ej) and acquires

a new node (e). After (k - 1) merges, the set of S should contain only one element

e0, which is the root node of the binary tree of T, an& the construction process is

completed.

We shall call a binary tree T obtained from the above process an execution tree.

The following facts are easily observed about execution trees:

. A given set S of convex polygons may have many execution trees.

• Different merging strategies (for a given set S of convex polygons) individually

define different execution trees, and vice versa. Thus an execution tree can fully

determine the actual running time under its corresponding merging strategy.

• The running time T(k) represented by an execution tree T can be calculated

by summing up the depths of all its k leaf nodes, i.e.,

k

T(k)=d1

where the depth d1 of node e2 is defined to be the number of nodes on the path

from the root node e0 to e.

It is now clear that if the operation ED is used as an atomic operation (we do

not seem to have other choice), an optimal solution for problem 1 can be obtained

CHAPTER 2. CONSTRUCTING THE UNION HULL 15

by finding the execution tree of the set of S whose leaf nodes have the minimum

total depths. This can be done by invoking the principle of balancing ([1]), which

immediately leads to the following divide-and-conquer algorithm:

1. Divide the original set S of Ic convex polygons into two subsets S and S2 of

approximately equal sizes.

2. Compute the union hulls U1 of S and U2 of S2 recursively.

3. Merge (J and U2 to obtain U.

Let T(k) denote the time required to solve problem 1 using the divide-and-

conquer algorithm, we have the following familiar divide-and-conquer formula:

T(k) = 2T(k/2) + t (2.4)

where t is the time needed to merge the subsets S1 and 82. In the worst case both

S and 82 can have (nk/2) vertices, hence t = O(nk) (result 2). Combine this and

equation 2.4 we get the following:

T(k) = O(nk log k). (2.5)

which is the worst-case time complexity of the algorithm. We shall show later that

this is also optimal for problem 1 (section 2.3).

2.2 The Generalized Case

We now consider a generalized version of problem 1:

Problem 2 Given a set S of Ic planar convex polygons P1, P2,..., Pk, with sizes

n1, n2, respectively, construct the union hull U of S.

CHAPTER 2. CONSTRUCTING THE UNION HULL 16

Problem 2 has been studied, either explicitly or implicitly, by a number of authors

([30], [28]). The major difference as compared with problem 1 is that here we allow

for a more diversified input pattern for the given convex polygons. This difference,

as we shall see later, creats a new situation which calls for a more careful study of

the merging strategy, in order to keep up with the different input patterns.

2.2.1 Divide-and-conquer vs. Huffman tree

First consider the divide-and-conquer algorithm mentioned above: (1) Divide the

initial set S of k convex polygons into two subsets S and S2 of approximately equal

sizes. (2) Compute the unions U1 of S1 and U2 of 52 recursively. (3) Merge U1 and U2

to obtain U. Let T(k) be the time required to solve problem 2 using this algorithm,

then using a similar analysis as shown in section 2.1.2 we have the following worst-

case time complexity of the algorithm:

k.

T(k) = °((E n) log k).

This algorithm is simple, but it fails to utilize important information contained

in the input data. Indeed, the fact that the input polygons are different in sizes is

not considered at all. This rigidness sometimes brings about redundancy into the

computation process, and consequently the algorithm suffers from a loss of efficiency.

Consider, for example, figure 2.2 where we are to compute the union hull of three

given convex polygons A, B, and C. Two merges operations have to be performed.

Compare the following strategies of merging:

. First merge A and B, then take their union hull, say D, to merge with C.

. First merge A and C, then take their union hull, say E, to merge with B.

CHAPTER 2. CONSTRUCTING THE UNION HULL 17

Figure 2.2: Different merging strategies makes difference.

The first strategy works better in the obvious way. It introduces the polygon that

has the maximum number of vertices (which is C in this case) into the computation

process at a later stage. We wish to design an algorithm such that when an input

like this is given, our algorithm will be able to select a correct merging strategy. This

observation leads to another solution that is based on the Huffman tree model.

By definition the Huffman tree HT(S) for a set S of weighted elements e1, e2, ..., ek

is a binary tree constructed as follows ([16]):

1. The given elements are assigned to be terminal nodes of HT(S). Initially all

nodes are "unmarked".

2. Find the two nodes with the smallest weights and mark them. Add a new

node, with arcs to each of the nodes just marked. Set the weight of the new

node to the sum of the weights of the it is connected to.

CHAPTER 2. CONSTRUCTING THE UNION HULL 18

3. Repeat step 2 until all nodes are marked. The last node that is marked is the

root node.

Under the Huffman tree model, the time required to compute the the union hull

of a given set S of convex polygons is accurately reflected by the weight of the root

node of HT(S), plus the time used to construct the Huffman tree. When all the

weights of the elements in S (in our case the number of vertices of the polygons in

S) are known, it takes O(k log k) time to construct HT(S) ([16]), which is negligible.

The divide-and-conquer algorithm always has a balanced execution tree. It pro-

vides an optimal solution to problem 1 where all the elements of S carry the same

weight, but it fails to do the same for problem 2. The Huffman tree method, how-

ever, constructs the union hull in a more flexible way. It balances the "weights",

rather than the "depths" of its subtrees ([18]). Although it has the same worst-case

time complexity as its divide-and-conquer counterpart, heuristically its average-case

performance should be remarkably better. In fact, just as Huffman code provides

optimal binary coding (in terms of code length) when the occurrence frequencies

of the characters are known, the Huffman tree method described here provides an

optimal solution for each and every instance of problem 2.

2.2.2 A different solution

The next algorithm we shall introduce is one that uses some form of preprocessing.

The algorithm is based on the idea of identifying crucial iertices. Given a set S

of convex polygons and a polygonal vertex p of 5, p is said to be crucial if it is a

vertex on the final union hull of 5, and it is said to be potentially crucial if it is not

known to be non-crucial. Initially all the vertices of the input convex polygons are

CHAPTER 2. CONSTRUCTING THE UNION HULL .19

Figure 2.3: Forming a large "interim hull".

potentially crucial.

Our purpose is to eliminate non-crucial points as soon as possible, preferably

when they first occur, thus to reduce unnecessary computation as much as possible.

The algorithm starts with a single pass through the given polygons, and select those

polygons that are holding "boundary" positions (see figure 2.3). By merging these

"boundary" polygons, a somewhat "large" interim union hull is constructed. Then

this one is used to merge with other convex polygons or interim hulls. We hope that

when the "large interim hull" is carefully and reasonably constructed, there will be

a good chance that non-crucial vertices be eliminated at their first occurrence.

Following is the algorithm:

1. Check through the input set S and select the convex polygons that contains

the leftmost vertex a, the rightmost vertex b, the uppermost vertex c, and the

CHAPTER 2. CONSTRUCTING THE UNION HULL 20

lowermost vertex d respectively. We call them Pa, Pb, F0, and Pd.

2. Merge P0 and Pb into A, merge P and Pd into B.

3. Merge A and B into C.

4. If no more convex polygons are left unprocessed then stop, otherwise apply the

Huffman tree algorithm to the now modified set of convex polygons.

Like the Huffman tree algorithm, this one has a worst-case time complexity of

O(N log k).

where N = n. This happens when all the polygonal vertices in S are crucial.

For ordinary inputs, however, we claim that this algorithm should work considerably

faster than the previous ones.

2.3 The lower bound

Result 2 shows. that a convex m-gon A and a convex n-gon B can be merged within

O(m + n) time. We now wonder whether there exists a linear time algorithm for

problem 2 as well. A closer study, however, shows that this cannot be true.

We demonstrate this by a simple contradiction: given a set of k points, its convex

hull can be constructed by first divide the points into a number of triples, then

compute the union hull of these triangles. As all triangles are convex polygons,

if there is indeed a linear solution for problem 2, then there will also be a linear

algorithm for the planar convex hull construction problem, which we know is not

true.

CHAPTER 2. CONSTRUCTING THE UNION HULL 21

yl x2 x3 y2 x4 y3 x5

Figure 2.4: Merging vertices on a parabola.

In fact, any algorithm that solves problem 2, has a lower bound of O((>= n) log k).

We show this by a transform to the sorting problem (see figure 2.4).

Given n groups of real numbers., ...x k), all sorted. For each

number x we construct the point (x, x2), thereby to project all of them onto to the

parabola y = x2. For each of the original groups of numbers, which are sorted, we

have on the parabola a corresponding convex hull. So on the parabola we have k

convex hulls. To find their union, all the points have to be sorted and then the

whole list be read in order. Obviously this can be done by merging the n sorted

lists of numbers on the abscissa into one big sorted list. Therefore problem 2 can be

transformed to

Problem 3 Given k sorted lists L1, L2,..., Lk of real numbers, each of size n1, %, ..., nk

respectively. Merge them together into one sorted list L.

Problem 3 clearly has a lower bound of O(N log k), where N = E•l n. In fact,

CHAPTER 2. CONSTRUCTING THE UNION HULL 22

if problem 3 can be solved in a time complexity lower than this, then the ordinary

n-sorting problem can be solved in less than O(n log n) time, which we know is not

true.

2.4 Another algorithm

Inthis section we shall give an algorithm that uses a general preprocessing technique

due to Golin and Sedgewick ([14]). The method was initially proposed to solve the

convex hull construction problem for a set of points.

Given a set of k points in the plane, and assuming that the points in S are selected

uniformly and independently from a unit square, the proposed technique works as

follows: First construct several "guiding lines" that roughly mark the boundary of

the set S, then use a parser to scan through the given set of points. By carefully

selecting the guiding lines, virtually all of the "non-crucial" points (section 2.2.2)

in the given set can be removed (provided the assumption on distribution holds).

Finally, to the remaining point set, say S', apply a known convex hull algorithm.

This method achieves linear time performance when the points in S are favorably

distributed.

We now wish to apply this technique to our situation here. Consider problem 2.

Assume that all the polygonal vertices of the given set S are chosen uniformly and

independently from a convex r-gon. Also assume that each of the given convex

polygons is represented by a linked list with the vertices stored in counter-clockwise

order. Our union hull construction will proceed as follows:

1. Compute a rough "boundary" B for the given set S of convex polygons.

CHAPTER 2. CONSTRUCTING THE UNION HULL 23

2. Match the polygonal vertices of S against the boundary obtained in step 1. If a

vertex p is in the exterior of B then it is reserved, otherwise remove it from the

set of S. When this step is completed almost all of the "non-crucial vertices"

have been removed.

3. Apply one of the union hull construction algorithms described above to the

remaining set S' of convex polygons.

In particular, the first step selects vertices that maximize the following functions:

(x + y), (x - y), (—x + y), and (—x - y). This requires linear time. If there is more

than one vertex maximizing the same function, say (x + y), then select the two with

the minimum and maximum x-coordinates. Then from the above we obtain at most

eight points and they form a convex polygon B (anywhere from a quadrilateral to an

octagon. See figure 2.5). Obviously any point that is in the interior of this polygon

cannot be a vertex on the final union hull, and can therefore be eliminated.

The second step checks the original convex polygons one by one. For each vertex

on a given polygon we check its inclusion in B. If the answer is "Yes" then the vertex

is removed from its polygon, otherwise it remains in the list. To see if a point is in

the interior of a given convex polygon or not takes constant time, so the second step

can be done within linear cost. When all lv convex polygons in S are examined the

preprocessing stage is finished.

The next thing to do is applying one of the previous union hull construction algo-

rithms to the remaining set 5' of convex polygons to get the final result. According

to our assumption, the polygonal points in the set of S are uniformly and indepen-

dently distributed in a convex r-gon. Thus the union hull UH(S) of S is expected

CHAPTER 2. CONSTRUCTING THE UNION HULL 24

Figure 2.5: A preprccessing strategy.

to have O(cr) hull vertices,-where c is a constant ([33]). Following a similar analysis

as in [14], we know that the set S' should contain, on the average basis, O(c'r) of

the original vertices in S, where c' is another constant. This means that the final

step can be finished in an expected time of O(r log k) where r should be confined by

k1 log k (i.e., r ≤ k1 log ic)

This algorithm, when the assumed distribution is satisfied, has a linear time

average-case time complexity ([14], [30]).

2.5 Some comments

There is an interesting comparison between the union hull problem (problem 2) and

the ordinary convex hull problem. Considering their inputs, the ordinary convex

hull problem takes a set of independent points, whereas the input for the union

CHAPTER 2. CONSTRUCTING THE UNION HULL 25

hull construction problem is a set of convex polygons. When all the input convex

polygons are reduced to having only one single vertex, the k hull union problem

is degenerated into an ordinary convex hull construction problem. If, however, we

group the input vertices of a convex hull construction problem into triples (triangles)

then we are in fact facing an union hull problem. Therefore there is a linear time

reduction between the two problems in both directions.

As is shown in our discussion, problem 2 can be solved in a two-way-merge man-

ner, but other ways might exist as well. Indeed, a set S of k convex polygons can be

viewed as something between a convex k-gon and a set of k independent points Hence

we have reason to expect an in-between algorithm. Recall that when constructing

the convex hull of a planar set of points, we either select those who are hull points,

or eliminate those who are not hull points. This notion of convex hull construction,

however, also applies to union hull construction, except that now a set of convex

polygons is received as input. This leads to an interesting situation: we can still

use either of the selecting or eliminating approach to construct the union hull, but

normally we neither select nor eliminate a particular input polygon entirely. Rather,

the process is conducted on two levels: the component polygon level and the vertex

level. A careful coordination over the two levels is therefore required.

Chapter 3

Intersecting Convex Polygons

Intersection is an important set-theoretic operation on convex polygons. For exam-

ple, CAD/CAM systems and graphics applications require efficient algorithms to find

the intersection of two or more convex polygons. For a given set of convex polygons,

we consider two (related) intersection problems:

• Calculate their intersection (computation).

• Find out if the polygons intersect or not (detection).

This chapter studies the two problems. The organization is as follows: Section 3.1

gives definitions and results that are important to our discussion and section 3.2

studies the intersection computation problem. A lower bound for this problem is

given and an algorithms that achieves this lower bound is presented. Section 3.3

focuses on the intersection detection problem, in which we give an algorithm that

improves the current solutions. Finally in section 3.4 we put these two problems on

a common ground for some general comparisons.

In the following, we use "polygon" to denote both the boundary and its inte-

rior, and "polygon boundary" to indicate the boundary itself. In all circumstances

"polygon" should stand for "convex polygon" if not otherwise specified. The term

"intersection" may carry different meanings in our discussion: The intersection of

two polygons means the polygonal area that is common to both, but the intersection

of two polygonal chains (see section 3.1) will indicate their points of intersection.

26

CHAPTER 3. INTERSECTING CONVEX POLYGONS 27

Lastly all the angles of lines or lines segments are measured within the range of

[--7r/2,-7r/2].

3.1 Preliminaries

In our discussion below, polygons are represented in arrays with their vertices

given in clockwise order. Also, we assume that no three vertices of any of the

polygons are collinear.

3.1.1 Definitions and notations

A polygonal chain is the part of a convex polygon that is in between two of its

boundary points (not necessarily vertices). A polygon P can be decomposed into

two polygonal chains by cutting at any two boundary points. By convexity, these

two chains (excluding the case where one of them becomes a line segment) should

have particular orientations.

When the two cutting points are chosen to be the polygon's leftmost vertex

and rightmost vertex, we come up with two polygonal chains that are either fac-

ing upwards or downwards. For convenience, we shall hereafter call an up-oriented

polygonal chain a cup and a down-oriented one a cap. Note that all cups and caps

are strictly monotone (increasing or decreasing) in terms of the slopes of their edges.

A real function f defined on the integers 1, 2, ..., n is said to be unimodal if there is

an integer m(1 ≤ m ≤ n) such that f is strictly increasing (respectively, decreasing)

on [1,m] and decreasing (respectively, increasing) on [m + 1, n]. A real function g

defined on integers 1, 2, ..., n is said to be bimodal,, if there is a r in [1,n] such that

CHAPTER 3. INTERSECTING CONVEX POLYGONS 28

f(r), f(r + 1), ...f (n), f(1), ...f (r - 1) is unimodal [8].

In [18], Kiefer showed that Fibonacci Search is the optimal method to find the

turning point of a unimodal function, requiring O(log n) probes. Chazelle and Dobkin

[8] extended this result and showed that the extrema of a bimodal function can also

be computed in O(log n) time. As this is a very important result on which much of

our discussion in this chapter is based, we rephrase it as follows:

Result 3 (Finding the extrema of a bimodal function). Given a bimodal function

f defined on the integers 1, 2, ..., n, its extrema (or turning points) can be found in

time O(log n) by using Fibonacci Search.

3.1.2 Important results

In the following we give several results that are of importance to our discussion.

Result 4 The leftmost vertex and rightmost vertex (respectively, the uppermost ver-

tex and the lowermost vertex) of a convex n-gon P can be found in time O(log n),

which is optimal in the worst case.

Proof: Draw a vertical (or, hrizontal) line 1 across the plane (which may or may not

intersect the polygon F). By convexity, the oriented distances d1, d2,..., d from P's

vertices P1, P2, - - -Pn to 1 form a bimodal function. According to result 3 its extrema

(the turning points) can be found in O(log n) time. 0

Result 5 The intersection of a infinite line 1 with a convex n-gon P can be computed

in time O(log n), which is optimal in the worst case.

CHAPTER 3. INTERSECTING CONVEX POLYGONS 29

Figure 3.1: The intersection of an infinite line with a convex polygon.

Proof: By convexity, the oriented distances d1, d2,..., d, from the polygon's vertices

P1, P2, ...p to 1 form a bimodal function. Using Fibonacci Search we can find its

extrema in O(log n) time (result 3). If the two extrema are of the same sign (which

means the two points are on the same side of 1) then there is no intersection. Other-

wise the polygon P intersects the line 1. We can start from the two extreme vertices

p, pj and use binary search to find the intersections, which will require O(log n) time

(see figure 3.1). 0.

Result 6 The inclusion of a point p in a convex n-gon P can be tested in time

O(log n), which is optimal in the worst case.

Proof: Draw a vertical line 1 across p and check the intersection(s) of polygon P and

line 1, which takes O(log n) time (result 5). If they do not intersect this means that

p is not in the interior of P. Otherwise let q and q' be the two points where 1 meets

the boundary of P (it is trivial if there is only one intersection), and we only need to

CHAPTER 3. INTERSECTING CONVEX POLYGONS 30

check whether p is in between the two points or not, which takes constant time. 0

Result 7 The intersection of a convex m-yon P and a convex n-you Q can be com-

puted in time O(m + ii), which is optimal in the worst case.

Proof: There are two major approaches to compute the intersection of two convex

polygons in linear time: one is based on "plane-sweeping" [35] and the other on the

idea of "edge advancing" [27]. We shall not repeat the details of these algorithms.

Note that the intersection of two convex polygons is still a convex polygon. 0

Result 8 The intersection of a convex rn-you P and a convex m-gon Q can be de-

tected in time O(log(m + n)), which is optimal in the worst case.

Proof: Note that we detect, rather than compute, the intersection of two convex

polygons. A detailed lower bound proof as well as an algorithm that achieves this

lower bound can be found in [8]. An algorithm that solves the problem is expected to

return "No" when the polygons do not intersect, and an intersecting point otherwise.

0

Result 9 The intersection of a cup C1, which has m vertices, and a cap C2, which

has n vertices, can be detected in time O(log(m + n)), which is optimal in the worst

case.

Proof: This is a direct consequence of result 8 (figure 3.2). Note that the problem

is different from the general problem of detecting the intersection of any two given

polygonal chains, which requires O(m + n) time (where m and n are respectively the

number of vertices on the chains, see [8]). 0

CHAPTER 3. INTERSECTING CONVEX POLYGONS 31

Figure 3.2: The intersection of a cup and a cap.

3.2 Compute the Intersection of Convex Polygons

We already know that to compute the intersection of a convex m-gon P and a convex

n-gon Q takes O(m + n) time (result 7). Now we wish to consider a more general

version of this problem.

Problem 4 Given a set S of k convex n-gons P1, P2, ...,Pk, calculate their intersec-

tion I.

Before discussing a solution to problem 4, we shall first establish a lower bound.

3.2.1 The lower bound

Result 7 shows that linear time suffices to compute the intersection of two convex

polygons. It is therefore natural to conjecture that problem 4 also has a linear

solution. This conjecture, however, is not true.

CHAPTER 3. INTERSECTING CONVEX POLYGONS 32

Indeed, problem 4 and problem 1 have the same abstraction. Let fl denote

the basic operation that computes the intersection of two convex polygons, then

both problems fall into the following general problem: Given a set S of k objects

01, 02, ..., Ok, compute the parameter

PAR(S) = O1(op)0 2(oP) ... (op)Ok.

with the following restrictions:

1. (op) is a 2-operand operation that can be either e or fl.

2. All the Of's (i = 1,2, ..., k) are objects of size n.

3. It takes O(rn + r) time to perform (op) on two objects of sizes m and n.

4. Eachtime only one operation (op) can be performed.

5. If 01 has size m and 02 has size n then O1(op)02 has size s < m + n.

6. For any 01 of size n and any integer in, there exists 02 of size in such that

O1(op)02 has size exactly n + in.

Properties 1 through 4 attach to both problems in an obvious manner. Properties

5 and 6 holds for the union hull problem in that (1), the candidate vertices for the

merge of a convex m-gon P and a convex n-gon Q are those vertices of P and Q

alone, and (2), given P we can always find a convex n-gon R such that the merge of

P and R has precisely m + n vertices by first constructing a convex (m + n)-gon S

which has P's m vertices as its own vertices, then read off the n vertice's of S that

do not belong to P. The same thing is also true for the intersection computation

problem.

CHAPTER 3. INTERSECTING CONVEX POLYGONS 33

Under the above generalization, the two problems are identical in the worst case,

i.e., the requested parameter PAR(S) is of size km. From section 2.3, we know that

it takes O(kn log k) to solve problem 1 in the worst case, so the following result holds:

Result 10 (Lower bound for intersection computation). The lower bound on the

complexity of any algorithm that solves problem 5 is O(kn log k).

3.2.2 The algorithms

Finding the intersection of a set of convex polygons is very similar to constructing

the union hull (chapter 2). Indeed, with a little modification all the algorithms in

section 2.1 and section 2.2 can be borrowed to serve our purpose here.

For example, a divide-and-conquer algorithm can be devised as follows:

1. Divide the original set S of Ic convex polygons into two subsets S1 and 52 of

approximately equal sizes.

2. Compite the intersection 11 of polygons in S and the intersection 12 of poly-

gons in S2, recursively.

3. Intersect 11 and 12 to get I, which is the intersection we want.

Let T(k) be the time required to solve problem 4, we have the following formula:

T(k) = 2T(k/2) + t. (3.1)

where t denotes the time needed to calculate the intersection I of 11 and 12. As

I and 12 are intersections of k/2 convex n-gons, they each may have up to nk/2

vertices. Hence t = O(kn) (result 7). Immediately we have:

T(k) = 2T(k/2) + O(kn) = O(kn log k). (3.2)

CHAPTER 3. INTERSECTING CONVEX POLYGONS 34

According to result 10, this divide-and-conquer algorithm is optimal in the worst

case. However, we can still improve the average-case performance substantially by

using methods introduced in the construction of union hulls (section 2.2, section 2.4).

The only difference is that, when constructing the union hull for a set of convex poly-

gons, we try to identify and retain those "boundary vertices" in our preprocessing.

When computing the intersection, however, we should identify and remove those

"boundary vertices" that are unlikely to be vertices of I. We shall not repeat this

technique here.

3.3 Detecting the Intersection of Convex Polygons

Given a set S of k polygons F1, P2,..., Pk, where each has at most n vertices, we are

interested in the following problem:

Problem 5 (Detecting the intersection of convex polygons) Given a set S of k(k >

1) convex n-gons F1, P2,..., Pk, find out whether they intersect or not.

We observe that any algorithm that solves problem 4 should also work here: for

a given set S of convex polygons we calculate their intersection I. If I is empty this

means that the polygons share no common point. Otherwise any point in I is an

intersection point, and we can pick, say the geometric center of I, and return it as

an appropriate answer. According to result 10, this solution needs O(nk log Ic) time

in the worst case.

This simple method, however, is by no means the best. Indeed, a detection task

is in general inherently easier than its computation counterpart [7]. To be particular,

a computation task normally has to give a detailed description of the object being

CHAPTER 3. INTERSECTING CONVEX POLYGONS 35

computed, which in the case of intersection computation, requires a full boundary

description of the overlapped area. A detection task, however, does not usually have

to deal with such detail. Taking the intersection detection problem for example, all

we need to do is to find out whether an intersection exists or not. Because of this

difference in nature between computation and detection tasks, we would like to find

a solution to problem 5 that is more particular and more efficient. -

3.3.1 A linear algorithm

The first solution we give is based on the observation that a convex polygon P is

the common intersection of a set of halfplanes associated with its edges. Under this

observation, the set S of k convex n-gons given in problem 5 can be considered as a

set of nk halfplanes, where each corresponds to a linear inequality of the form:

a1x+by+c≤O,(i=1,2,...,nk). (3.3)

Our problem now is equivalent to finding a feasible point for a given set of linear

inequalities. If no feasible point is found, this means that the given polygons do not

intersect. Otherwise a calculated feasible point can be returned as an appropriate

intersection. For this transformed problem, Dyer [11] and Megiddo [23] have given

algorithms that operates in O(nk) time.

3.3.2 Reichling's algorithm

An improvement over the above algorithm is made by Reichling [31]. Instead of tak-

ing into account all the edges of the polygons in order to find a common intersecting

point (denoted by CIP hereafter), he establishes necessary conditions for CIPs to

CHAPTER 3. INTERSECTING CONVEX POLYGONS 36

exist. Attention is only given to a certain area (called crucial area) that will possibly

contain a CIP. By carefully tightening the boundary of the crucial area the problem

is solved in a more efficient manner. Following is a outline of this algorithm with

some revision.

1. Establish a left bound b1 and a right bound br for possible CIP's. Both b1 and

br are vertical lines that go through one or more of the km vertices. If b1> b,

then the polygons should have no common intersction; otherwise any possible

CIP for F1, P2,..., Pk must fall into the strip in between them (see figure 3.3).

2. Tighten up the bounds (i.e. define a new set of bounds). Make sure that every

time this step is performed, a constant portion of the vertices is removed from

consideration. After O(log n) applications of the process, one of the following

must happen: (a) A contradiction did occur (no intersection); (b) A CIP has

been found; (c) There are less than ck (c is a small constant, say 5) vertices

left in the strip between b1 and b. For the first two cases the job is already

done. For case (c) go to step 3.

3. There are .now at most 2ck edges left to be considered, and we can do the

remaining job by using the linear time algorithm mentioned above. This re-

maining computation will take 0(k) time.

The left bound b1 and the right bound b, in the algorithm can be computed as

follows: First find the leftmost vertex li and the rightmost vertex ri for polygon P

(i = 1,2, ..., k), which takes O(k log n) time according to result 4. Then compute the

maximal x-coordinate x1 of the li's and the minimal x-coordinate Xr of the ri's, and

CHAPTER 3. INTERSECTING CONVEX POLYGONS 37

Figure 3.3: Setting the left bound b1 and the right bound br.

draw one vertical line across xj which is b1, another across Xr which is b. This part

of the computation takes 0(k) time. Therefore b1 and br can be found in 0(k log ri)

time. What remains is how to tighten up the bounds.

Imagine using a vertical line 1 between b1 and b to cut through the polygons.

For each P we can calculate in 0(log n) time the intersections m and m of 1 with

Pt's upper and lower chain. So in O(k log n) time all of the k pairs of intersections

can be determined. Let mU be the m' with the minimal y-coordinate and m1 be the

m with the maximal y coordinate (mu, m1 can be found in 0(k) time). If m' > m1

then any point on 1 between m' and m1 is a CIP. Otherwise we calculate the slopes

slL and s11 of the edges defining mu and m (if 1 passes through a vertex then both

edges are considered). If slu < s11, then a CIP can only exist to the left-hand side of

1, in which case we replace br with 1. If slL > sl, then a CIP can only exist to the

right-hand side of 1, in which case we replace b1 with 1. If slL = si', then there can

be no CIP in existence. (figure 3.4)

CHAPTER 3. INTERSECTING CONVEX POLYGONS 38

Figure 3.4: Tighten up the bounds - Reichuing's algorithm.

Now we can use a vertical line 1 to tighten up the bounds, in O(k log n) time.

It remains to decide how to select the line 1 in such a way that every time either

it terminates the computation, i.e.,a "Yes" or "No" answer is found, or a constant

portion of the vertices between bi and b, are discarded. In Reichling's algorithm,

such a vertical line 1 can be found in 0(k) time. To avoid lengthy description we

shall not give the details here.

Summarizing the above, the algorithm has a time complexity of 0(k log n) in

the worst case.

A variation of this algorithm is to set the line 1 in the middle of b1 and br, 50

that each time the stripe between b, and b, is reduced by half of its width. Serious

problem may arise when the input vertices take up a weird distribution, but this can

be avoided if a simple measure is taken to make sure that every time at least one point

is removed. We believe that this variation should have a similar time complexity as

its peer for ordinary input patterns, and can even be better for certain cases. The

CHAPTER 3. INTERSECTING CONVEX POLYGONS 39

major drawback is that its performance depends heavily on the distribution of the

given vertices, and is thus unpredictable. Moreover, it has a time complexity of

O(nk) in the worst case (i.e., each time only one or two points are eliminated).

• Reichling's algorithm has a very good worst-case performance, yet its average-

case performance can still be considerably improved. In fact, due to its bound

tightening-up strategy, a time of O(k log n) is normally required when the given

polygons do not intersect. In applications where k is big, it is likely that the given

convex polygons share no common points. When this happens, we would like to

return a negative answer much faster.

3.4 Using Newton Iteration

To further improve Reichling's result, the convexity of the input data has to be

explored.

Remember that to cut the polygons P1, P2,..., P, with a pair of bounds b1 and

we end up with 2k polygonal chains of which k are cups and k are caps. By

convexity, the upper boundary CUP formed by the k cups (respectively, the lower

boundary CAP formed by the k caps) is also a cup (respectively, a cap). Obviously

if the given convex polygons intersect so will CUP and CAP, and vice versa. Since

both CUP and CAP are convex, the idea of Newton's Iteration can be used.

3.4.1 Intersecting a cup and a cap

Before giving the algorithm, we first introduce an important result:

CHAPTER 3. INTERSECTING CONVEX POLYGONS 40

Result 11 Let A and B be respectively a cup and cap confined by a left bound b1

and a right bound br, each has no more than n vertices, then they have at most two

intersection points, and their intersection(s) can be found in O(log n) time.

Proof: We can determine whether A and B intersect or not in time O(log n) (see

section 3.1), and it is easy to see that they have at most two intersections. In the

following we shall assume that A and B intersect, and we will give an algorithm that

finds the intersection(s) in time O(log n).

Let a and b be respectively the points where A and B meet b1, and assume that

their y-coordinates satisfy a > b, (otherwise we consider the intersections of A, B

with br, the result will be the same). Without losing generality, we shall compute

the intersection point p of A and B that is closer to b1.

1. Let Pa be the convex polygon defined by A (join the two endpoints of A), and

let Pb be the convex polygon defined by B. Then Pa and Pb should intersect,

and a point q of their intersection can be found in time O(log n).

2. Draw a vertical line 1 through q, and assume that it intersects A and B re-

spectively at a' and b'. It should hold that a' < b'. This again takes O(log n)

time.

3. For either A or B we already know the number of vertices and their indices

between the vertical lines b1 and 1. Let i1, i2 be respectively the indices of a, a'

on A and .11, 22 be respectively the indices of b, b' on B. The L(ii + i2)/2]-th

vertex Va of A (respectively, the L(ii + j2)/2] -th vertex vb of B) is called the

current vertex of A(respectively, B). The current edge ca of A(respectively, eb

CHAPTER 3. INTERSECTING CONVEX POLYGONS 41

A
ea

I.

(a)

ea /

(b)

1 br

ea,

(c)

V/

Z

(d)

bi

ea

(e)

1 br

ea ea A

1
br

(f)

b1 /

Figure 3.5: Finding the intersection(s) of a cup and a cap.

CHAPTER 3. INTERSECTING CONVEX POLYGONS 42

B) is defined to be the edge directly to the right of v,, (respectively, vi,). Now

extend ea and eb at both directions and find their intersection v. There are the

following cases:

(a) v does not exist(they are parallel). By complexity, this can only be the

case shown in figure 3.5(a). We just let i2 - index(va) and j2 - index(vi,),

and then continue the process.

(b) v falls into both e,, and ei, (figure 3.5(b)). When this happens v is the

desired solution.

(c) v falls into ea(figure 3.5(c)). For this case, if v is to the left-hand side of

eb then j2 = index(v&), otherwise j1 = irtdex(vi,).

(d) v falls into ei,(figure 3.5(d)). For this case, if v is to the left-hand side of

ea then i2 = index(va), otherwise i1 = index(va).

(e) v is to the left-hand side of ea(figure 3.5(e)). For this case let i2 =

index(va). if v is also to the left-hand side of eb then j2 = index(vi,),

otherwise ji = index(vi,).

(f) v is to the right-hand side of ea(figure 3.5(f)). For this case let ii =

index(va). If v is also to the right-hand side of eb then ji = index(vi,),

otherwise .12 = index(vb).

• Keep on doing this until the intersection is found. As this is a typical binary

search, the time needed for step 3 is also 0(log n). 0

CHAPTER 3. INTERSECTING CONVEX POLYGONS 43

3.4.2 The algorithm

We now give our algorithm that detects the intersection of a set S of k convex

polygons Pl,P2,...,Pk.

1. Establish a left bound b1 and a right bound br, in the same way as described

in Reichling's algorithm. This takes O(k log n) time. Now between b1 and b

there are at most Ic cups and k caps.

2. Let CUP denote the upper boundary of the Ic cups and CAP the lower

boundary of the k caps. Find the intersections u1, vi (respectively, u, V2) of

bj(respectively, br) with CUP and CAP (figure 3.6). This takes time 0(k).

3. Let U1, U2, V1, and V2 be respectively the cups and caps that are associated

with the points of u1, u2, v1, and 2. Compute the intersection(s) of U1 and V1

and name the one to the left as w. Compute the intersection(s) of U2 and V2

and name the one to the right as w. Now consider the following cases:

(a) if we's x-coordinate is greater than that of Wr 'S, then no CIP could exist,

so "No" is returned. Otherwise use the method in Reichling's algorithm

to select a vertical dividing line 1.

(b) if 1 lies to the left of w, then draw a vertical line 1' through wi, compute

the intersections of 1' with all the k cups and k caps, and replace b1 with

ii.

(c) if 1 lies to the right of Wr, then draw a vertical line 1' through Wr, compute

the intersections of 1' with all the Ic cups and k caps, and replace b with

1'.

CHAPTER 3. INTERSECTING CONVEX POLYGONS 44

Figure 3.6: The bounds b, and br intersect CUP and CAP.

(d) if 1 lies between wj and Wr, then find the intersections u and v of 1 with

CUP and CAP. If the y-coordinate of u is less than that of v, any point

on 1 between u and v is a CIP. Otherwise use the strategy in Reichling's

algorithm to decide whether b1 or b is to be replaced by 1.

It is easy to see that for each and every case our algorithm has at least the

same performance as Reichling's algorithm. For cases where the k polygons do not

intersect, our algorithm is expected to return a negative answer significantly faster.

This is due to the introduction of Newton iteration, which is a second order process

by itself. The worst-case time complexity of this algorithm is also O(k log n).

A tight lower bound to detect the intersection of k convex n-gon's is still unknown.

If it could be shown that the most efficient way to decide whether a point p is an

intersection point of k given polygons is to proceed by checking the inclusion of p in

each of them, then it would follow (by result 7) that O(k log n) is a lower bound.

Chapter 4

Separating Convex Polygons

An interesting problem in computational geometry as well as computer graphics is

separability detection. Given a set of (often convex) planar objects, we are interested

in finding out whether the objects are "separable" or not. By definition, a separating

line for a given set S of k objects Oi, 0, ..., Ok in the plane is a straight line 1 that

divides S into two nonempty subsets, and yet does not intersect any of its elements.

The set S is said to be separable if a separating line exists, otherwise it is èaid to

be nonseparable. Consider for example the problem of erecting a straight wall to

separate a city into two parts.

This problem has, in the past decade, caught attention of both mathematicians

and computer scientists ([13], [12]). There is no complete solution so far. In [12], the

problem is included in a list of open problems that seem to bear a close relationship

to the "stabbing line (or transversal) problem" (section 4.1.1).

This chapter investigates the separability detection problem, with the objects

being line segments or convex polygons. Our discussion is arranged as follows: Sec-

tion 4. 1.1 compares our problem with the 'stabbing line problem", and show that the

two are unlikely to be closely related. Section 4.2 studies the problem of separability

detection for a given set of line segments. Several algorithms are given and a lower

bound analysis is also presented. Finally in section 4.3 we discuss the more general

problem of detecting separability for a set of convex polygons.

45

CHAPTER 4. SEPARATING CONVEX POLYGONS 46

4.1 A Comparison

In this section we shall compare separability detection with the stabbing line problem..

If, as is conjectured in [12], the two problems are indeed closely related, we would

hope that the methods devised for the stabbing line problem could be utilized in

solving the separability detection problem. If, however, such a relationship does

not exist, or is not likely to exist, we then must find other ways to do separability

detection.

4.1.1 Stabbing line

We begin with an introduction to the stabbing line problem. By definition, a stab-

bing line (or transversal) for a set S of k objects (often convex) O, O2 ..., Ok in

d-dimensional Euclidian space E" is a straight line 1 in E" that intersects all of the

k objects.

The planar stabbing line problem, i.e., detecting the existence of a transversal

for a given set of planar convex objects, has already been thoroughly studied. In

[12], Edelsbrunner et al. presents an algorithm that solves the stabbing line problem

for a set of k line segments in O(k log Ic) time. The authors combined three im-

portant algorithm design paradigms: geometric transform, divide-and-conquer, and

plane sweeping in the design of their algorithm, which provides not only transversal

detection but also a complete description of all the transversals. Later in [3], Avis

et al. proved that this O(lc log Ic) time complexity is also a lower bound.

Little is done about the stabbing line problem, however, when it comes to three

and higher dimensional spaces. Even the case for a set of convex polygons is less

CHAPTER 4. SEPARATING CONVEX POLYGONS 47

well known.

4.1.2 Separability vs. stabbing line

Although it is suggested that there is likely a close relationship between separability

detection and the stabbing line problem, we believe that such a relationship can not

exist.

Taking a set S of k planar line segments for example. If we consider each in-

dividual segment of S as a door between two semi-infinite straight walls, then the

stabbing line problem (hereinafter denoted by SL) and the separability detection

problem (hereinafter denoted by SD) can respectively be interpreted as follows:

• SL: Determine whether there is 'a light that shines through all of the k doors.

• SD: Determine whether a mouse can dig through k walls (there are traps at

the doors), following a straight line and has at least one door on either side of

the line.

Under this model we have some important observations. Consider the SL prob-

lem. Suppose the light has just passed i (i < k) doors, then for the next door only

two things may happen: either it passes through the door, or it stops. Therefore

there are two possibilities in front of each door, one "Yes" and another "No'. The

SD problem, however, is different. When the mouse comes to each door three things

may happen: it either digs through the wall on the left, or it digs through the wall on

the right, or can be trapped at the door. So the possibilities are two "Yes"s and one

"No". Not only this, suppose the mouse is lucky enough to successfully dig through

CHAPTER 4. SEPARATING CONVEX POLYGONS 48

k walls (the maximum it can do), the job still continues - it has to look back and

see whether there is at least one door on either side of its route.

The fact that the SD problem has two "Yes" options in front of each door implies

that it has a much larger search space as compared with its SL counterpart, and this

difficulty is added to by the constraint that there must be at least one door on either

side of the route. In fact, the algorithm given in [12] for the SL problem is based

on the prerequisite that there can be only one "Yes" option for each door. Hence

their method can not be utilized for the SD problem, and other solutions have to be

found.

4.1.3 Some definitions

The following definitions are to be used in our discussion:

A ray is a semi-infinite straight line with one endpoint. Given a ray r, its angle is

defined to be the angle measured clockwise from r to the positive x-axis. Rays have

inverses, and the inverse of a given ray r is the ray that has the same endpoint as

r, yet extends in the opposite direction.

Two rays r1 and r2 having a common endpoint define two fan-shaped areas, and

such fan-shaped areas we shall call wedges; Given a wedge W, its angle is defined by

the angle of the one of its two rays which we hit first when travelling clockwise from

an interior point. Wedges also have inverses. The inverse W of a given wedge W is

the wedge constructed from the inverses of W's two rays, so that W fl W consists of

,a single point (figure 4.1).

CHAPTER 4. SEPARATING CONVEX POLYGONS 49

Figure 4.1: rays and wedges

4.2 Separating line segments

Before working with convex polygons, we first consider separating a given set of line

segments:

Problem 6 Given a set S of lc line segments li, 12, ..., lk on the plane, find out

whether there is a separating line for S or not.

We assume that all segments are represented by their endpoints. If not otherwise

specified, pi and qi should denote the endpoints of the line segment l (1 ≤ i ≤ k).

For convenience of discussion, all line segments are considered to be open, i.e., li is

the equivalent of (pd, qi), for i = 1, 2, ..., lc.

4.2.1 Algorithm 1

Our first attempt for a solution is suggested by Jarvis's March [17]: compute the

convex hull of S (which have 2k points), start up at a hull point p and walk coun-

CHAPTER 4. SEPARATING CONVEX POLYGONS 50

terclockwise. If then somewhere during the trip one can "look through" the set

of segments this means S is separable. If p is visited again and no such "looking

through" point has been found then a negative answer is returned.

This method will not work, however, due to the fact that in Jarvis's March, we

only need to walk through the points in the given set. Our case is different: not only

do the convex hull vertices need to be checked, but also all the points on the hull

edges, because a "looking through" point may occur anywhere on the convex hull.

This is computationally impossible. We wonder, therefore, if it is possible to check

only a limited number of points.

Figure 4.2 reveals two simple facts: first, if S has a separating line 1 of slope si,

it must have another separating line 1' (may be the same as 1) that is parallel to 1

and goes through at least one of the endpoints of S. Second, if an above-mentioned

separating line 1' is found, then we can further find another separating line lj (may

be the same as 1') that passes through not only the endpoint p but also anoher

endpoint q at the same time. Hence we have:

Result 12 If a set S of k line segments 11, 12, ..., lk is separable, then there must be

a separating line of S that goes through at least two of the given endpoints.

With result 12, we immediately have the following algorithm:

1. Select an endpoint pi of li and an endpoint Pj of i.

2. Check to see whether the straight line 1 defined by pi and pj is a separating

line or not.

CHAPTER 4. SEPARATING CONVEX POLYGONS 51

Figure 4.2: separate via endpoints

3. Keep on doing this for different pairs of endpoints until either a separating line

is found or all of the pairwise endpoints have been checkd.

The k segments 11 through ik has altogether 2k endpoints which pairwise define

0(k2) different straight lines. To test whether a given line is a separating line or not

takes 0(k) time, hence the algorithm runs in 0(k3) time and 0(k) space.

This algorithm is not completely satisfactory. In fact an algorithm that runs in

time O(k2 log k)) can be obtained by applying a general method due to Edelsbrunner

et al. [13]. The method is based on the basic concept of view change. In the following,

however, we shall consider a solution to problem 6 from a different perspective.

4.2.2 A restricted problem

We shall first consider the following problem:

CHAPTER 4. SEPARATING CONVEX POLYGONS 52

Problem 7 Given a set S of k line segments 11, 12, ..., ik and a point p, find out

whether there is a separating line of S that goes through p.

Clearly this problem is closely related to problem 6. Indeed, result 12 shows that

to solve problem 6, we only need to check the straight lines that pass through the

given endpoints of 5, and to see whether there are separating lines or not. If we find

a solution to problem 7, then by substituting each of the endpoints of S into the

position of p, problem 6 can be solved. Following is an algorithm for problem 7:

1. Construct the convex hull H of the given 2k endpoints. If p is on or outside of

H then go to step 6, otherwise continue.

2. Shoot two rays r and r from p to each of 11's two end points pi and

(i = 1,2,...,k). The k pairs of rays define k wedges,

namely W1, W2,..., Wk, where each of which contains one of the given line

segments.

3. Construct the inverses W, TF2,...,TFk of these Ic wedges.

4. Sort the 2k wedges (WI, W2, ..., ...,W) according to their angles

into an ordered list W1, W2', ..., W2'k.

5. Walk counterclockwise around p and check the sequence of W, W2, ..., W 2k to

see whether or not they cover the entire plane (figure 4.3). If they do not then

this implies that any straight line 1 that passes through p and is not covered by

the wedges is a separating line of 5, otherwise RETURN a negative answer.

6. Sort the k wedges (W1, W2, ...Wk) according to their angles into an ordered list

W1', W2', ..., W. Draw two semi-infinite supporting lines ii and 12 of H from

CHAPTER 4. SEPARATING CONVEX POLYGONS 53

Figure 4.3: Detect separability via plane coverage' .

p (a supporting line of a polygon P is a straight line that touches, yet not

penetrate F), then these two lines 11 and 12 define a wedge W.

7. Walk counterclockwise around p and check the sequence of Wi', W2', ..., Wk1 to

see whether they cover the wedge W or not. If they do not then a sparating

line must exist, otherwise return a "No".

There are 2k endpoints. So steps 2, 3, 5 and 7 can be done in linear time. Step 1,

3 and 6 all perform sorting (on either k or 2k wedges), therefore require O(lc log k)

time. Thus the algorithm has a time complexity of O(k log k). We rephrase it in the

following result:

Result 13 Problem 7 can be solved in O(k log k) time, which is also optimal.

Proof: The algorithm ensures an O(k log k) solution. We shall show in section 4.3

that this result is also optimal. 0

CHAPTER 4. SEPARATING CONVEX POLYGONS 54

4.2.3 Algorithm 2

Now that problem 7 is solved, combining result 12 and result 13 we have the following

algorithm for problem 6:

1. Select an endpoint pi of S and run the above algorithm by substituting p' into

the position of point p in the algorithm. If a separating line is found then stop,

otherwise go to step 2.

2. Do the same thing for other endpoints of 8, one at a time, until either (a) a

separating line is found, or (b) all the 2k endpoints in the set of S have been

checked, in which case a negative answer is returned.

As there are up to 2k endpoints needs to be checked, this algorithm has a worst-

case time complexity of O(k2 log k). As far as we know at this point, there is no

algorithm that solves problem 6 faster. In fact, we conjecture that this is a lower

bound for algorithms solving problem 6 (section 4.3). However, as we shall see im-

mediately, a simple method can substantially improve the average-case performance.

4.2.4 The potato peeling method

We now introduce a solution to problem 6 that is based on potato peeling, an idea

that deals with the "convex layers" and the "depths" of a given set of points.

Let 5' be a set of k points in the plane (to distinguish from the set S of line

segments). The convex layers of 5' is the set of convex polygons obtained by iterating

on the following process: compute the convex hull of 5' and remove its vertices from

5'. The depth of a test point within the convex layers of 5' is defined to be the

number of layers that enclose the test point, and the depth of 5' is defined to be

CHAPTER 4. SEPARATING CONVEX POLYGONS 55

the number of convex layers of S'. In [6], Chazelle gives an optimal algorithm that

computes the layers of 5', as well as the depths of all the given points in SI, in

O(k log k) time.

Suppose the set 5' has d convex layers, with the outermost layer denoted by L1

and the innermost layer denoted by Ld, the following fact is easily observed:

Result 14 Let ...,p (given by clockwise order) be the vertices on the convex

layer Li of S' (1 ≤ i ≤ r), and let p be any point enclosed in L, the sequence

p, p, ..., Pf form a sorted list according to their polar angles with respect to p.

Result 14 reveals that when using the previous algorithm to solve problem 6

(section 4.2.3), we may not need to repeat the sorting process in section 4.2.2 every

time we check an endpoint for possible separating lines. In fact, let 5' denote the set

of the endpoints that are contained in the set S of line segments, the information of

convex layers and depths obtained from "potato peeling" S' can be utilized in the

process of separability detection. Following is the algorithm:

1. Use the algorithm given by Chazelle ([6]) to compute the convex layers of 5'

and the depths of all the points in 5'. If 5' has a depth d, (d ≥ k/c) (where

c is a small constant, say 8), then proceed with the algorithm described in

section 4.2.3. Otherwise go to step 2.

2. Start with an endpoint Po on the innermost convex layer Ld of 5' and check for

possible separating lines. By result 14, all the vertices on an enclosing convex

layer Li are already sorted by their polar angles with respect to po. Therefore

a complete list of all the points in 5', sorted by their polar angles with respect

CHAPTER 4. SEPARATING CONVEX POLYGONS 56

to p, can be constructed by "merging" the d sublists that are already sorted.

This takes O(k log d) time.

3. Do the above for all the endpoints that are of the same depth as p, then proceed

to the next enclosing layer that is outside of it. Here the situation is slightly

different. Consider a point p on layer L2 (1 ≤ i ≤ d). We know that vertices

on an enclosing layer L3 (j < i) are already sorted by their polar angle with

respect to p, but this is not the case for a layer L3 that is inside of L. The polar

angles of vertices on L3 with respect to p form a bimodal function F (section

3.1), rather than being a sorted list itself. We need to find the two extrema

of F thereby to break the vertices on L3 into two ordered lists. This requires

O(log n3) time in each occurance where a Fibonacci search is performed.

4. Keep on doing step 3 until either (a) a separating line is found, or (b) all the

points on L1, the outermost layer, have been processed.

There are up to 2k endpoints to be processed, which will require a running time

of O(k2 log d + kdlog k). Thus the worst-case time complexity of this algorithm is

also O(k2 log k) (there are 0(k) convex layers). On an average-case basis, however,

this time complexity is less then that of the previous algorithm. Particularly, when

S' has a constant number of convex layers (e.g., k = 3), we come up with an 0(k2)

performance.

CHAPTER 4. SEPARATING CONVEX POLYGONS 57

4.3 Lower Bound Analysis

We now establish a lower bound on the time complexity of algorithms solving prob-

lem 7 by using the algebraic decision-tree model (see section 1.1.5). Consider prob-

lem 7 with the following restrictions:

• all l (1 ≤ i < k) are on x-axis and are of unit length.

• the leftmost and rightmost endpoint of S are at (0,0) and (k, 0) respectively.

• the observing point p is selected at the positive infinite of y-axis.

With the above restrictions we are able to represent each segment li by its left

endpoint pi, thus any set S of k line segments satisfying the above restrictions can

be viewed as a point (x1, x2, ...) xk) in E', where (XI, X2, ..., xk) is a permutation of

(P1, P2, ..., pk). Let M be the "non-separable" membership set (i.e., M contains all•

the points in Ek whose corresponding line segment set in E2 are non-separable).

We claim that M contains k! disjoint connected components, with each component

being a single point. Indeed, every point m C M in E' matches an arrangement

of (li, 12, ..., lk) where no overlapping is allowed except at their endpoints. Thus any

permutation ir of 1,2, ..., k corresponds to a point m, C M in Etc.

It is clear that

M = Uaiirn

where the m1,.'s are disjoint and connected, and there are altogether k! m11.'s. Ac-

cording to result 1 we have

Result 15 In the algebraic decision tree model any algorithm that solves problem 7

requires O(k log k) tests.

CHAPTER 4. SEPARATING CONVEX POLYGONS 58

The lower bound for problem 6, however, is more difficult to work out.

4.4 Separating Convex Polygons

Now consider the separability detection problem for a set of convex polygons.

Problem 8 Given a set S of k convex ri-gons F1, P2,..., Pk in the plane, find out

whether there is a separating line for S.

As polygons can be viewed as collections of line segments, any algorithm designed

for problem 6 can be directly used for problem 8.

4.4.1 A straightforward solution

If we consider the set S of k convex n-gons as a set 5' of nk line segments, then by

using the algorithms described above, we immediately have a solution that runs in

O(n2k2(logn + log k)) time.

However, this solution can be applied to any arbitrary collection of planar line

segments, and the convexity associated with our input polygons is not utilized. We

need to explore algorithms that are more specific and more efficient.

4.4.2 A solution based on convexity

The following result, similar to result 12, is easily observed:

Result 16 If a set S of k convex n-gons P1, P2,..., Pk is separable, then there must

be a separating line 1', which is a common tangent of two of the given polygons, say

F and F3 (l≤i<j≤k).

CHAPTER 4. SEPARATING CONVEX POLYGONS 59

Figure 4.4: Separate via polygon vertices

Proof: Let 1 be a separating line of S (figure 4.4). If 1 does not go through any

of the polygon vertices we just translate it sideways until it hits a vertex that is

closest in i's direction of moving. By doing this we obtain a separating line 1' that

passes through a certain polygon vertex, say p. Let P be the polygon that defines

p. We then "roll" the line 1 along the boundary of P in a clockwise direction, until

it hits another vertex, say q, of another polygon Q. At this time, we come up with

a separating line that is a common tangent of polygons P and Q. 0

Based on result 16, we have the following algorithm that solves problem 8:

1. Construct a common tangent 1 defined by two polygons of S.

2. Test whether 1 is a separating line or not. If "Yes" then stop, otherwise go to

step 3.

CHAPTER 4. SEPARATING CONVEX POLYGONS 60

3. Keep on constructing new common tangents and do the above test until either

(a) a separating line is found, or (b) all the pairwise common tangents defined

by polygons in S are tested, in which case S is non-separable.

The given k convex polygons will define four common tangents pairwise. So S

defines a total number of 0(k2) common tangents. To construct one of them takes

O(log n) time ([30], recall that S's elements are n-gons), hence computing the 0(k2)

common tangents needs time O(k2 log n). Also for each of these tangents it takes

0(k log ri) to check whether it is a separating line or not (see result 5), thus this

algorithm will run in 0(k' log n) time and 0(k2) space.

This is a better result than the one mentioned above. However, in applications

where k is big (there is a great number of polygons) and n is relatively small (each

polygon has a limited number of vertices), this algorithm will lose its advantage. We

therefore need to find some alternative.

4.4.3 An alternative solution

We need to find a solution to problem 8 that works better in cases where the above

algorithm's performance degrades. The "plane coverage" method used in solving the

line segments separation problem provides some inspiration.

Recall that when trying to detect a separating line for a set S of k line segments

(problem 6), we started with solving its restricted version, problem 7. Then by

applying the "plane coverage" algorithm to all the points in 5, we were able to find

whether S has a separating line or not. In a similar manner we now construct a

restricted version for problem 8

CHAPTER 4. SEPARATING CONVEX POLYGONS 61

Problem 9 Given a set S of k convex n-gons F,, P2,..., P,, and a point p, decide

whether there is a separating line of S that goes through p.

Following is a plane coverage algorithm that solves problem 9

1. Draw 2k supporting lines from p to the k polygons P,,P2,..., Pk. Let 11 and l be

the two supporting lines from p to polygon P, we then have k pairs of support-
ing lines support-

(11, l,), (112, l), ..., (li, l) which define k wedges, namely W,, W2,..., W.

We also create the inverses of these wedges.

2. Sort the 2k wedges (W1, W2,..., Wk and their inverses) by their angles and form

an ordered list of 2k wedges W,', W21, ..., W.

3. Walk counterclockwise around p and check the sequence of W, W21, ..., W21k to

see whether or not they .cover the entire plane (figure 4.5). If they do then

return "yes", otherwise return "no".

Computing the supporting line from a given point to a convex n-gon requires O(log n)

time, so step 1 can be done in time O(kn log n). Step 2 sorts 2k elements and takes

O(k log k) time. Step 3 is a simple walk-through that can be done in linear time.

Thus the algorithm runs in a total time of O(k(log k + log n)). This is summarized

in the followingresult:

Result 17 O(k(log k + log n)) time is sufficient to solve problem 9.

Combining results 16 and 17 we have the following algorithm for problem 8:

1. Select a vertex po form the set S of k convex n-gons, and run the above al-

gorithm by substituting po into the position of point p. If a separating line is

found then stop, otherwise go to step 2.

CHAPTER 4. SEPARATING CONVEX POLYGONS 62

Figure 4.5: Detect separability via plane coverage.

2. Do the same thing for other vertices of S, one by one, until either (a) a sepa-

rating line is found, or (b) all of the nk vertices of S are processed.

As there are altogether kn vertices in 5, this algorithm requires, in the worst

case, O(k2n(log n + log k)) time and O(rtk) space.

The algorithm by itself is not necessarily better then the previous one. However,

it is able to solve the problem faster in cases where the previous algorithm loses

performance. Thus by combining the two algorithms together we are able to handle

extreme cases of either k being too big (compared to n) or the other way around.

The potato peeling method we used to detect separability for a set of line segments

does not apply here.

Chapter 5

Voronoi Diagram for Convex Polygons

The computation of Voronoi Diagrams has been an active research topic in compu-

tational geometry in the past decade [2]. Much of the earlier work, and some of the

current work, concerns the Voronoi Diagram of a discrete set of points. This has been

extended by Kirkpatrik [19], Lee and Drysdale [22], and others to cover a collection

of two-dimensional objects such as line segments, circular arcs and polygons.

Some applications in two-dimensional geometric modeling require the computa-

tion of Voronoi Diagrams on a set of convex polygons. We shall study this problem

in this chapter.

Our discussion is organized as follows: Section 5.1 gives preliminaries including

Voronoi diagrams of planar, point sets, definitions and notations. Section 5.2 discusses

how to bisect two given straight line segments. Section 5.3 concerns bisecting two

convex polygons, which is fundamental to construct the Voronoi diagram for a set of

convex polygons. At last in section 5.4, we first consider the nature of the Voronoi

diagram construction problem for convex polygons, followed by an analysis of several

inherent obstacles that make it a particularly difficult task to find a solution. Having

demonstrated this, we turn to solve a restricted version of the problem: the input

set being non-intersecting translates of a given convex polygon.

63

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 64

5.1 Preliminaries

5.1.1 The Voronoi Diagram

The Voronoi Diagram solves the following proximity problem.

Problem 10 (Loci of Proximity). Given a set S of n points in the plane, for each

point pi in S find the locus of points (x,y) in the plane that are closer to pi than to

any other points of S.

Intuitively, the solution of the above problem is a partition of the plane into re-

gions associated with the given points. For two points pi and p, the set of points

closer to pi than to pj is the halfplane containing pi that is defined by the perpendic-

ular bisector of.p. Let us denote this halfplane by H(p1, ps). The locus of points

closer to 'pi than to any other point, which we denote by V(i), is the intersection of

n - 1 halfplanes, and it is a convex polygonal region [34] having no more than n - 1

sides, that is,

v(i) = fl H(p,p).
i0j

(5.1)

V(i) is called the Voronoi polygon associated with pi. Figure 5.1 is a Voronoi polygon

[34].

There is a region for each of the n points, and the n regions form a planar diagram

which we shall call the Voronoi diagram, denoted by Vor(s) [30]. An example is

shown in figure 5.2. The vertices of the diagram are Voronoi vertices, and the edges

of the diagram are Voronoi edges.

Regarding Voronoi diagram construction, there is the following very important

result:

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 65

Figure 5.1: Voronoi polygon.

Figure 5.2: Voronoi diagram.

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 66

Result 18 (Lower bound) The Voronoi diagram V(S) for a set S of n points can

be constructed in O(n log n) time, which is optimal.

Many algorithms have been developed to achieve this optimal result. It is inter-

esting to note that although problem 10 seems to be "more difficult" than the closest

pair problem ([30]) in terms of degree of difficulty, they nonetheless have the same

level of complexity.

5.1.2 Definitions and notations

The Voronoi diagram of a set of elements is defined in terms of halfplanes where

a measure of distance is used. Following are notations and definitions used in our

discussion. Note that when we mention a line segment 1, we are talking about a

closed line segment.

A closed line segment Tb is the union of two endpoints a and b and the open line

segment (a, b). Points and open line segments are called elements.

The distance between a point p and a point q is denoted d(p, q). The distance

between a point p and a nonempty set X, denoted d(p, X), is d(p, X) = min{ d(p, q):

q E X}. In particular, the distance d(p, b) between a point p and a closed segment

is the distance between the point p and its projection (defined in a normal sense)

onto ab if the projection belongs to ab. Otherwise it is defined to be the minimum

of d(p, a) and. d(p, b).

The bisector B(e, e) of two elements ei and ej is the locus of points equidistant

form ei and e. The bisector B(X, Y) of two sets of elements X and Y is the locus

of points equidistant from X and Y.

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 67

The halfplane H(e, e) is the set of points closer to element ei than to element

e3. Note that the boundary of a halfplane H(e1, e3) is the bisector B(e, es).

5.2 Bisecting Two Line Segments

A polygon can be considered as a collection of edges. Therefore before constructing

the Voronoi Diagram for a set S of convex polygons, we give an essential algorithm

that solves the following problem.

Problem 11 (Bisecting two straight line segments) Given two non-intersecting line

segments si and s2, construct their bisector B(si, 3 2).

We shall start with bisecting a line segment and a point (see also [24], [25]). The

following result is important:

Result 19 The bisector B(p, ab) of a point p and a line segments ab can be found

in constant time.

Proof: We show this by a simple algorithm (figure 5.3)

Let 1 be the straight line that contains segment Tb. Let la (ib) be the straight

line that is perpendicular to 1 and passes through a (b). Construct the parabola

B(p, 1) (requires constant time), and assume that B(p, 1) intersects la and lb at p',

and pb respectively. We obtain the bisector B(p,) which consists of three parts:

(a) the semi-infinite ray B1 which is a part of B(p, a). (b) the parabola sector B2 of

parabola B(p, 1) that is in between la and lb. (c) the semi-infinite ray B3 which is a

part of B(p, b). Clearly all B1, B2, B3 can be computed in constant time, so result 19

is proved. 0

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 68

.p

a

b

Figure 5.3: Bisecting a line segment and a point.

The following is a simple extension of result 19:

Result 20 The bisector B(,2) of two line segments and Td can be found in

constant time.

Proof: We present an algorithm that achieves the above result.

Let 1 and 1' be the straight lines that contain and Td respectively. Let la (l&)

be the straight line that is perpendicular to 1 and passes through a (b), let l (l) be

the straight line that is perpendicular to 1' and passes through c (d).

If 1 and 1' are parallel then result 20 is straightforward (see figure 5.4(a)). If

they are not parallel then find their intersection p. Draw the bisector ii of Lapc,

and let ii intersect la, 1b, l, 1'd at Pa, Pb, Pc, Pd respectively (figure 5.4(b)), then we have

the following cases (without loss of generality, assume that all theses points are

different): (a) p—apb and pc—pd do not intersect. (b) Fa—pb and "bite" into each

other (i.e., they overlap but no one is contained in the other). (c) One of the two

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 69

segments is contained in the other.

Figure 5.4(b) shows that case (b) can be computed in constant time, and this is

true for the other two cases as well. Therefore the computation of bisector B(,)

needs constant time. 0

5.3 The Bisector of two convex polygons

In this section we shall consider the problem of constructing the bisector of two

disjoint convex polygons, which is a basic operation in constructing the Voronoi

diagram for a set of convex polygons.

Problem 12 (Computing the bisector of two disjoint convex polygons). Given a

convex rn-gon P and a convex n-gon Q, compute their bisector B(P, Q).

Intuitively the bisector of two convex polygons will partition the plane into two

halfplanes. However, unlike bisecting two points, the boundary that divides the two

halfplanes is not a straight line. Indeed it is a sequence of interweaved line segments

and parabolic sections. This can easily be seen by looking at figure 5.4(b).

How quickly we can solve problem 12 is of fundamental importance to the con-

struction of the Vonoroi diagram for a set of convex polygons. In fact, we have the

following result:

Result 21 It requires O(m + n) to solve problem 12, which is optimal in the worst

case.

Proof: The following algorithm solves problem 12 in O(m + n) time.

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 70

a

C

(a)

b

(b)

d

Figure 5.4: Bisecting two line segments that are (a): parallel, and (b): otherwise.

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 71

We begin with a definition. Given a convex n-gon P and an edge e of F, let p

and q be c's two endpoints. Draw two straight lines that are perpendicular to e and

grows outwardly (with respect to F): l, from p and 1. from q (figure 5.5 (a)). The

open area that is defined by e, l and 1q is called the stripe of edge e for the convex

polygon P, or sometimes the stripe of e when there is no confusion. By definition, a

convex n-gon P should have n stripes.

The first step of the algorithm is to find the supporting segments t1, t2 of P and

Q (by a supporting segment t of a polygon P we mean that t touches to, but not

penetrates through F), which needs O(m + n) time. Obviously B(P, Q) will contain

the semi-infinite perpendicular bisector r1 of t1 and r2 of t2. We shall construct

B(P, Q) by walking from r1 to r2.

We observe that t1 and t2 cut each of P and Q into two polygonal chains. Let

C1 (consisting of the vertex list (p1, P2, ..., Pr)) be the polygonal chain of P that is

convex to Q, and similarly let C2 (consisting of the vertex list (qi, q, ..., q3)) be the

polygonal chain of Q that is convex to P. Our algorithm is based on the chains C1

and C2 (figure 5.5 (b)).

The construction process starts with the semi-infinite bisector r1. It is useful to

refer to the example of figure 5.5 (b), where, for simplicity, the edge ej is shown by

its index i. Imagine a point z on r1, moving down from infinity. Initially z lies on

the bisector of points a and b. When it travels downward, it will enter the stripes 51

of 1 and 84 of 4 eventually. When it enters either of them a new situation will come

up and a new track has to be taken. There are the following cases: (a) It hits S,

first at point p. This means that z is now closer to edge 1 than it is to point a (see

section 5.1 for the definitions of different types of distances), so it must take a new

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 72

(a)

(b)

Figure 5.5: (a) The stripe of e for the convex polygon P. (b) Bisecting convex

polygons P and Q.

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 73

route along the b - 1 bisector. (b) It hits .94 first at point q. This means that z is

now closer to edge 4 than it is to point b, so it must be moved to the a - 4 bisector.

(c) It hits Sj and 54 together at the same point. This means that z is now closer to

edges 1 and 4 than to points a and b, so the 1 - 4 bisector needs to be assumed.

We repeat this process until all the edges in both polygonal chains C1 and C2 are

covered. Since the edges on C1, C2 are already given in order, this process can be

finished in linear time. 0

5.4 Constructing the Voronoi Diagram

We now consider problem 10 with the input being a set of convex polygons.

Problem 13 (Loci of proximity - 2). Given a set S of k non-intersecting convex

n-gons F1, F2, ..., Pk, for each polygon F what is the locus of points (x, y) in the plane

that are closer to P than to any other polygon of S?

To solve this problem we need to construct the extended Voronoi diagram (Prob-

lem 14). The Voronoi diagram for a set of convex polygons is defined in a similar

way as with a set of points. The plane is partitioned into k regions, called Voronoi

regions, each of which is associated with a particular polygon. The regions together

'define a planar diagram which we shall refer to as the Voronoi diagram of the set S of

convex polygons. Two neighboring Voronoi regions define a chain of interwaved line

segments and parabolic sections between them. This chain we shall call a Voronoi

edge. The intersection points of Voronoi edges are called Voronoi vertices.

Problem 14 (Voronoi diagram construction) Given a set S of le non-intersecting

convex n-gons F1, P2,..., Pk, construct their Voronoi diagram Vor(S).

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 74

Just as the perpendicular bisectors are fundamental in constructing the Voronoi

diagram for a set of points, so are the bisectors of two convex polygons in constructing

the Voronoi diagram for a set of convex polygons. The difference is that the former

are always straight lines whereas the latter are not. This, as we shall see, presents

some special difficulty to the task of Voronoi diagram construction. The bisectors of

two convex polygons will hereafter for simplicity be referred to as the dividing chains

between their defining polygons.

5.4.1 Inherent difficulties

The Voronoi diagram of a set of k non-intersecting convex polygons is similar to that

of a planar point set. Given two convex polygons P2 and Pj, the set of points closer

to P2 than to P3 is the halfplane containing P that is defined by the dividing chain

of P2 and P,. Let us denote this halfplane by H'(i, j). By definition, the Voronoi

region V(i) associated with P2 is the intersection of k - 1 halfplanes:

V(i)= flH'(P,P3). (5.2)
i0j

However, since the dividing chains are not straight lines, the following problems arise:

• The Voronoi regions may be non-convex.

• The dividing chains consist of straight line segments and parabolic sections.

This brings problems in representation and storage.

• The dividing chains may not be monotonic, which precludes the use of binary

search in finding their intersections, thus making it hard to determine the

Voronoi vertices.

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 75

• Two dividing chains my intersect at several points. This makes the construc-

tion of the Voronoi diagram much harder.

• Although there are k convex polygons, a Voronoi region associated with a par-

ticular convex polygon may have more than k—i Voronoi edges (see discussions

below).

With the difficulties listed above, we further look at what may happen when

constructing the Voronoi diagram.

5.4.2 Features of Voronoi regions

We give some important results concerning the Voronoi diagram for a set of convex

polygons.

Result 22 (Length of dividing chain). Given two non-intersecting convex n-gons,

the length of their dividing chain (i.e. the total number of line segments and parabolic

sections contained in the chain) is 0(n).

Proof: This is illustrated in the dividing chain construction process in section 5.3. 0

Result 23 (Continuity of Voronoi region) The Voronoi region associated with a

given convex polygon is a connected area in the plane.

Proof: For a contradiction, suppose that the Voronoi region V(i) associated with

convex polygon P has two disjoint areas A and A' (see figure 5.6 (a)).

By definition, V(i) must contain P2. Suppose P1 is contained in A. As A and A'

share no common point, we can draw a line c (not necessarily straight) that separates

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 76

the two areas. Let p and a be the point on P and A' respectively that are closest to

each other, and let b be the point where p—a intersects c. Clearly if a is closer to P

than it is to any other polygons, so is c. Hence we have a contradiction which shows

that V(i) has to be a connected area. 0

Result 24 (Number of edges for a Voronoi region). Any given Voronoi region can

have at most 2k - 3 edges (where k> 1 is the number of convex polygons), and two

adjacent Voronoi regions may have up to k - 1 common edges.

Proof: As k convex polygons define k Voronoi regions, each one of them can have

at most k - 1 neighboring regions. Considering a particular region R, we prove the

result by induction: when k = 2, there are two regions and each of them has one

edge, the conclusion holds. Assume that for the case of k - 1 regions the conclusion

holds, then when there are k Voronoi regions we have the following possibilities: (1)

R shares at most one common edge with each of its neighboring regions, in which

case we are done. (2) if R shares two edges e and e' with another Voronoi region R',

then R's neighboring regions (aside from k) are divided into two groups: those that

are in between e and e, and those that are not (this group may be empty). From

our assumption we know that R can have at most 2(k - 2) - 1 + 2 = 2k - 3 edges

(figure 5.6 (b)). The case where R and R' share more than two edges can be proved

in a similar manner. Therefore the first half of the result is proven.

The second half of the result is obvious in that if the regions R and R' have k

common edges, then there must be at least another k - 1 regions (aside from R and

k) to separate these k edges, which means that there are at least k + 1 Voronoi

regions in all, a contradiction. 0

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 77

(a)

(b)

Figure 5.6: (a) A Voronoi region is a connected area. (b) Adding another polygon
into the picture.

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 78

The difficulties listed in section 5.4.1 already make it hard to find a solution for

problem 14, and this difficulty is increased by result 24. As dividing chains are not

necessary monotonic, binary search cannot be used in calculating their intersections.

Also as two dividing chains may have more than one common point, this leads to

a quadratic worst-case time requirement to find all the intersections of two dividing

chains. Still considering the fact that we need to compute the intersection of k - 1

dividing chains in order to construct a Voronoi region (result 22), and that two

adjacent Voronoi regions may have up to k - 1 common edges, we believe, at this

stage, that the construction of a Voronoi diagram can become formidably expensive.

Realizing this difficulty, we shall in the following consider a restricted version of

the Voronoi diagram construction problem.

Problem 15 Restricted Voronoi diagram construction Given a set S of k non-

intersecting translates F1, F2, ..., P. of a convex n-fan F, construct their Voronoi

diagram Vor(S).

5.4.3 A direct solution

A naive (almost brutal) approach to solve problem 15 is to construct its individual

regions one at a time. The difficulties outlined in section 5.4.1 still exist, yet result 24

in section 5.4.2 will no longer apply. In fact, any Voronoi region constructed for

problem 15 has at most k - 1 edges.

This can be shown by a contradiction. Consider two of P's translates P and

P3. Without loss of generality, suppose that their Voronoi regions V(i) and V(j)

have two common edges e1 and 62 (figure 5.7). Since el and 62 are non-consecutive,

there must be an edge 6r in between that separates V(i) and another translate Pr's

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 79

Figure 5.7: (a) Any Vor9noi region has at most k - 1 edges.

Voronoi region V(r). Let p be a point oil e1 and P2 be a point on e2, then by

definition the distance from p1 to P (and F3) is shorter than that from p' to Pr and

the dame thing holds for p2. However, we find that this cannot be true in the obvious

way: considering the case of P, P3 and Pr being single points, then we are creating

a situation that the perimeter of a rhombus is less than twice the total distance

from a inner point to two of the rhombus's vertices. This contradiction means that

two adjacent Voronoi regions cannot have more than one common edge, hence each

region will have at most k - 1 edges. 0

We also observe the following fact regarding the computation of Voronoi regions:

A Voronoi region V(i) is the intersection of k - 1 halfplanes defined by the dividing

chains B(P, F3) (i j). For simplicity we introduce two definitions here (1) Given

a dividing chain C, the two convex polygons that define C are called the defining

polygons of C. (2) Two dividing chains are said to be coaxial if they share a common

defining polygon. In the case where the input set consists of translates of a given

convex polygon, it is obvious that any two coaxial dividing chains can have at most

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 80

one intersection point.

A direct consequence of the above result is that binary search can be used to

compute the intersection of two coaxial dividing chains. O(log n) comparisons are

sufficient for the computation, and for each comparison we need to find whether a

certain point is to the "left" or "right" side of a given dividing chain, which requires

O(log n) time as well. So we have:

Result 25 Finding the intersection of two coaxial dividing chains takes O(log2 n)

time (provided the inputs is a set of translates of a given convex polygon).

Now we shall solve problem 15 by constructing the Voronoi regions one at a time.

The concern here is to find the intersection of k - 1 halfplanes defined by k - 1

coaxial dividing chains. For convenience of discussion, we shall hereinafter call a

planar region defined by i coaxial dividing chains a i-chain region, and call an edge

of such a region a chain side.

We use the divide-and-conquer approach. The input are k - 1 halfplanes defined

by coaxial dividing chains. The output will be their intersection, a planar region

that has at most k - 1 chain sides. The algorithm is as follows.

1. Partition the half-plane into two sets of approximately equal sizes.

2. Recursively form the intersection of the half-planes in each subset.

3. Merge the subproblem solutions by intersecting the two resulting regions.

Let T(k) denote the time used to form the intersection of k halfplanes by this

algorithm, we have:

T(k) = 2T(k/2) + t. (5.3)

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 81

where t denotes the time needed for the merging step.

The time t can be found using an approach due to O'Rourke et. al [27]. The

original idea was based on the technique of "edge advancing", and was proposed

for computing the intersection of two convex polygons. However, it also applies

here. Given two k-chain regions, it will take 0(k) edge advancing steps to compute

their overlapped area, where each step needs to check the intersection of two chain

sides. By result 25 we know that 0(1og2 k) time is required to find the intersection

of two dividing chains, so to intersect k - 1 k-chain regions takes 0(k log2 n) time

where n is the number of vertices on an input polygon. Also constructing' the k - 1

dividing chains will take 0(kn) time, hence t = 0(kn + k log2 n). substitute this into

equation 5.3 we have:

T(k) = 2T(k/2) + 0(kn + k log' n) = 0(k log k(n + log' n)). (5.4)

Equation 5.4 gives the time needed to compute one Voronoi region. To solve

problem 15 we need to construct k Voronoi regions. So the algorithm will run in

0(kT(k)) time which is summarized in the following:

Result 26 Problem 15 can be solved in 0(k2 log k(n + log n)) time, which is equiv-

alent to 0(k2n log k).

5.4.4 A divide-and-conquer solution

A better solution for problem 13 can be obtained by using the divide-and-conquer

approach.

The method we shall use is similar to the Voronoi diagram construction algorithm

devised by Preparata and Shamos [30]. Some modifications are made so that their

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 82

technique can be applied to the convex polygon situation. The method is based on

the following crucial result:

Result 27 Given a set S of k points P1, P2, ..•,PA; on the plane. Let S1,52 be a

partition that is linearly separated (which means if more than one point belongs to

the separating line, all of these are assigned to the same set of the partition) of S,

and let o-(Si, 82) denote the set of Voronoi edges that are shared by pairs of Voronoi

regions V(i) and V(j) of Vor(S), for pi E S1 and pj E 52. It holds that o-(S, S2),

consists of a single monotone chain.

The above result is a prerequisite for the correct operation of their algorithm.

Therefore, before applying their method we need to ensure that the theorem holds

for our situation, i.e. a set S of k translates P1, P2, ..., Pk of a given convex polygon

P. The following points we should note:

• For a set of convex polygons, linearly separated partition means that if more

than one polygon intersects the separating line, all of these are assigned to the

same set of the partition.

• For a given set S of convex polygons, we can rotate both the x-axis and the

y-axis simultaneously by a same angle (a rotation of the coordinate system),

and this will not affect the Voronoi diagram of S.

According to the above points, we can first rotate both coordinate axes by a certain

degree, thereby to "scatter" the set S of convex polygons horizontally (with respect

to the x-axis). Then we scan through the polygons to find a vertical line that linearly

separates S into two subsets of approximately equal sizes. The scan will take linear

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 83

Figure 5.8: S1 and S2 are separated by a single monotone chain.

time. The correctness of result 27 for this situation can be proved using a similar

argument as in [30]. An illustration is shown in figure 5.4.4. The algorithm goes as

follows:

1. Use a vertical line 1 to linearly separate the set S into two subsets S1 and S2

of approximately equal sizes.

2. Construct the Voronoi diagrams Vor(Si) and Vor(S2) 8f S1 and S2 recursively.

3. Merge Vor(Si) and Vor(S2) to get Vor(S).

Step 1 can be done by first sorting F1, F2, ...Pk according the x-coordinates of their

rightmost vertices, then scanning through the sorted list to determine the separating

line. This requires O(k log k) time. What remains is to find an efficient way to merge

the Voronoi diagrams obtained from the two subsets. An elegant merge algorithm

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 84

is provided in [30] which, as indicated above, can be applied to serve our purpose.

For the sake of space we shall not repeat its lengthy detail here. The basic idea is

to construct the chain o(Si, 52) (which is monotone) that separates S and 52. By

definition, o(Si, 82) is the collection of Voronoi edges that are shared by Voronoi

regions of polygons in S1 and 52. Let IVI be the halfplane that is to the left of

o(Si, S2) and lr , be the one to the right, then the Voronoi diagram Vor(S) is the

union of Vor(Si) fllvi and Vor(S2) flirr. This observation ensures that when o(Si, S2)

is available, Vor(S) can be obtained by discarding all edges of Vor(Si) that lie to

its right and all edges of Vor(82) that lie to its left.

o(Sj, S2) has two semi-infinite rays at its two ends, called the upper ray and the

lower ray respectively. The algorithm starts from a point on one of them, say the

upper ray, and takes 0(k) "moves" or "steps" to reach the lower ray, thereby to

construct the separating chain. As each move involves computing a dividing chain

and making a constant number of checks for intersections between dividing chains,

the total time required to construct o(Si, S2) will be O(kn + k log2 n). Let T(k) be

the time used to solve problem 15 by this algorithm, we have:

T(k) = 2T(k/2) + 0(kn + k log2 ii) = O(k log k(n + log2 n)). (5.5)

This is an 0(k) improvement over the previous solution. However, we are not sure

whether it is optimal for problem 15.

5.4.5 An interesting heuristic

Before ending our discussion for problem 15, we present an interesting idea that

may be of help to future research in this area. The idea is based on the following

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 85

observations about Voronoi diagram construction:

1. There are k different convex polygons in S, which define k(k - 1) different

polygon pairs.

2. Each of these polygon pairs determines an individual dividing chain, hence

there are k(lc - 1) dividing chains.

3. Every Voronoi polygon is decided by k - 1 dividing chains, but this does not

mean that each of these dividing chains will appear on the edges of the Voronoi

polygon. In other words, not all of the dividing chains will contribute to the

Anal Vonoroi diagram.

4. If we can identify those dividing chains that actually contribute to the Voronoi

edges, then we should be able to design a very efficient algorithm.

As the elements of S are translates of a given convex polygon, we can possibly

construct the Voronoi diagram in a particular way. For example, the geometrical

centers c1, c2, ..., cj of the given translates F1, P2,..., F, may provide very important

proximity information about the Voronoi diagram construction. Let S be the set of

geometrical centers of c1, C2, ...' ck. We wonder whether the Voronoi diagrams Vor(S)

of S and Vor(Si) of S have a one-to-one edge and vertex correspondence. If this

is the case, then the construction of Vor(S) can be done by first constructing the

Voronoi diagram Vor(Si) of S. If two points (say ci and cj) define a Voronoi edge

e1 in Vor(Si), then their corresponding polygons P and P3 will also define a Voronoi

edge e in Vor(S) (see figure 5.9). This means that the Voronoi diagram construction

CHAPTER 5. VORONOI DIAGRAM FOR CONVEX POLYGONS 86

Figure 5.9: An interesting correspondence.

process can be directed by the information stored in Vor(Si), therefore only useful

computation is performed.

Unfortunately, there is not a one-to-one correspondence between Vor(S) and

Vor(Si). Although in most of the cases our assumption is true, counter examples

can be found when the translates in S are long and narrow slates. There are two

possible ways to fix this problem: (1) use another model that better captures the

proximity information of a given set S of convex polygon translates, and (2) still use

the geometrical centers of the translates, but something has to be done to check out

whether an edge in Vor(S) indeed has a corresponding edge in Vor(Si). We shall

not further discuss this in this thesis.

Chapter 6

Conclusion

This thesis investigated several problems relating to sets of planar convex objects.

First the problem of Union Hull Construction is studied. For an input set S of

k convex n-gons, we presented an optimal algorithm that constructs the union hull

U(S) in O(nk log k) time. We also discussed the generalized union hull construction

problem, and an new algorithmic lower bound was established.

Next the Convex Polygon Intersection problems are investigated. We discussed

in detail both the Intersection Computation problem for which an algorithmic lower

bound as well as an optimal algorithm was given, and the Intersection Detection

problem for which we presented an algorithm that substantially outperformed the

current algorithm on an average-case basis. The lower bound for the latter, however,

is still unknown.

Then we proceeded to consider the problem of Separability Detection for sets of

convex objects such as line segments and convex polygons. Finding the optimal

solution for separability detection was an open problem and it still is. However, an

algorithm is presented here which we claim will work faster than the best solution

so far.

Finally the problem of Voronoi Diagram Construction for a set of convex polygons

was .discussed. We studied a restricted version of the problem where the inputs are

translates of a given convex polygon and we gave a new algorithm for this restricted

problem. More work remains to be done on constructing Voronoi diagrams for any

87

CHAPTER 6. CONCLUSION 88

given set of convex polygons, and we believe that the work presented here can be

valuable to future efforts in solving this problem.

Much of the work done in this thesis is based on previous research. The union hull

problem is a generalization of the ordinary convex hull problem, although as far as we

know it has never been formally brought up and studied. Both of the convex polygon

intersection and the convex polygon separation were studied before and interesting

results were achieved. Nontheless, this thesis provides algorithms that considerably

improve the current results. The Voronoi diagram construction problem for a set of

planar objects (other than a set ofpoints, which has received adequate treatment

already) is now catching more and more, attention from researchers. However, as far

as we know, there is still not much work done on constructing the Voronoi diagram

for a set of convex polygons. We believe that the work presented here is a aluable

attempt, and could be useful to future efforts in solving this problem.

[1] A. V. Aho, J. E. Hoperoft, J. D. Ullman, The design and analysis of computer
algorithms, Addison-Wesley, Reading, Mass., 1974.

[2] F. Aurenhammer, Voronoi diagrams - A survey of a fundamental geometric
data structure, Research report B90 - —09, Institute for computing science,
Department of Mathematics, Freie University, Berlin. Nov. 1990.

D. Avis, J. M. Robert, Lower bound for line stabbing, Info. Proc. Lett. 33 (1989),
p59-62.

[4] 1990 distribution, Computational Geometry Bibliography, Sept, 1990.

[5] M. Ben-Or, Lower bounds for algebraic computation trees, Proc. 15th ACM
Annaul Symp. on Theory of Computing., 1983, p80-86.

B. Chazelle, Optimal algorithm for computing depths and layers, Proc. 21st
Annual Allerton Conf. on Comm., Control and Compt. (1983), p427-436.

B. Chazelle, D. P. Dobkin, Detection is easier than computation, Proc. 12th
Ann. ACM symp. on Theory of computing (1980), p146-153.

B. Chazelle, D. P. Dobkin, Intersection of convex objects in two and three di-
mensions, Journal of the A.C.M, V-34(i), Jan.,1987, p1-27.

D. P. Dobkin, D. G. Kirkpatrik, Fast detection of polyhedral intersection, The-
oretical Computer Science 27 (1983), p241-253.

[10] D. Dobkin, R. Lipton, On the complexity of computations under varying set of
primitives, Journal of Computer and Systems Sciences 18 (1979), p86-91.

[11] M. E. Dyer, On a multidimensional search technique and its application to the
Euclidean one-center problem, SIAM J. Comput. 15 (1986), p725-738.

[12] H. Edelsbrunner, H. A. Maurer, F. P. Preparata, A. L. Rosenberg, E. Welzi, D.
Wood, Stabbing line segments, BIT 22 (1982), p274-281.

[13] H. Edelsbrunner, M. H. Overmars, D. Wood, Graphics in flatland: A case study,
Advances in Computing Research, V-i (1983), F. P. Preparata Ed., JAI Press,

p35-59.

Bibliography

[3]

[9]

[14] M. Golin, R. Sedgewick, Analysis of a simple yet efficient convex hull algorithm,
Proc. 4th Symposium on Computational Geometry (1988), p153-163.

89

CHAPTER 6. BIBLIOGRAPHY 90

[15] R. L. Graham, An efficient algorithm for determining the convex hull of a finit
planar set, Info. Proc. Lett. 1 (1972), p132-133.

[16] E. Horowitz, S. Sahni, Fundamentals of data structures, Computer Science
Press: Woodland Hills, Calif., 1977.

[17] R. A. Jarvis, On the identification of the convex hull of a finite set of points in
the plane, Info. Proc. Lett. 2 (1973), p18-21.

[18] J. Kiefer, Sequential minimax search for a maximum, Proc. American Math.
Soc. 4 (1953), p502-506.

[19] D. G. Kirkpatrik, Efficient computation of continuous skeletons, IEEE 20th
Annual Symposium on Foundations of Computer Science (1979), p18-27.

[20] D. E. Knuth, The art of computer programming, Volume 1: Fundamental algo-
rithms, Addison-Wesley, Reading, MA, 1968.

[21] D. E. Knuth, The art of computer programming, Volume 3: Sorting and search-
ing, Addison-Wesley, Reading, MA, 1973.

[22] D. T. Lee, R. L. Drysdale, Generalization of Voronoi Diagrams in the plane,
SIAM J. Computing V-10(1), Feb., 1981, p73-87.

[23] N. Megiddo, Linear-time algorithms for linear programming in R3 and related
problems, SIAM J. Comput. 12 (1983), p759-776.

[24] S. N. Meshkat, C. M. Sakkas, Voronoi diagram for multiply-connected polygonal
domains 1: Algoirthms, IBM J. Res. Developments 31(3), May, 1987, p361-372.

[25] S. N. Meshkat, C. M. Sakkas, Voronoi diagram for multiply-connected polygonal
domains 2: Implementation and application, IBM J. Res. Developments 31(3),
May, 1987, p373-381.

[26] D. E. Muller, F. P. Preparata, Finding the intersection of two convex polyhedra,
Theoretical Computer Science 7 (1978), p217-236.

[27] J. O'Rourke, C. B. Chien, T. Olson, D. Naddor, A new linear algorithm for
intersecting convex polygons, Computer Graphics and Image Processing 19
(1982),p384-391.

[28] F. P. Preparata, An optimal real time algorithm for planar convex hulls, Comm.
ACM 22 (1979), p402-405.

CHAPTER 6. BIBLIOGRAPHY 91

[29] F. P. Preparata, S. J. Hong, Convex hull of finite sets of points in two and three
dimensions, Comm. ACM. V-20(2), Feb.,1977, p87-93.

[30] F. P. Preparata, M. I. Shamos, Computational geometry, an introduction,
Spring-Verlag, New York (1985).

[31] M. Reichling, On the detection of a common intersection of k convex objects in
the plane, Info. Proc. Lett. 29 (1988), p25-29.

[32] E. M. Reingold, On the optimality of some set algorithms, Journal of the ACM.
19 (1972), p649-659.

[33] A. Renyi, R. Shulanke, Ueber die konvexe Hulle von n zufallig gewahiten Punk-
ten, I,Z. Wahrschein, 2 (1963), 1i75-84.

[34] C. A. Rogers, Packing and covering, Cambridge University Press, Cambridge,
England, 1964.

[35] M. I. Shamos, D. Hoey, Geometric intersection problems, Seventeenth Annual
IEEE Symposium on Foundations of Computer Science (1976), p208-215.

[36] J. M. Steele, A. C. Ya.o, Lower bounds for algebraic decision trees, Journal of
Algorithms 3 (1982), p1-8.

