TRANSITION PLANNING ASSOCIATES

A SURVEY OF PATHOLOGICAL GAMBLERS

IN THE STATE OF OBIO

October, 1985

$$
\begin{aligned}
& \text { SOC } \\
& \text { RC569.5 } \\
& 635 C 84 \\
& 1985
\end{aligned}
$$

OHЮ STATE UNIVERSTTY LIBRARIES

C COPYRIGHT 1985. R.P. CULLETON ALL RIGHTS RESERVED.

Taple oi contents

Sxecutive Summary Page i
Introduction Page 1
Cnapter One: Tue hechodology
Chapter fwo: A Profile of the Sample
Page 9
Cnapter Inree: Gamiling BenaviorPage 15
Chapter Four: The Discriminance Tests Page 22Page 18
Cinapter Five: Predictions BasedUpon the ISR inodel
Cnapter Six: Evaluating the ISR ilodel Page 35Page 28
Part I: The Distribution of the Clinical Page 35 Signs
Part II: Chronicity and Progressivity Page 40
Part III: The Cross-tabulation of the Page 44
Clinical Scores with the ISR RiskClassirications
Part IV: The Question of Regressivity Page 46
Part V: The Distribution of the Diagnostic Page 50
Part VI: Integrating tne Findings Page 51
Part VII: Comparing the ISR and the Clinical Page 53 Signs iodels
Caapter Seven: Sumary and Conclusions Page 55
Footnotes Page 53
Tables
BioliographyAppendix 1: Diagram of Pathological GamblingSyndrome
Appendix 2: Diagram of the Ohio Survey Question- naire
Appendix 3: The Onio Survey Questionnaire

Acknowledgements

The author wishes to thank the following for their generous contributions of time and expertise to this study without which it would not have been possible.

Dr. Robert Custer, Chief of the Medical Services Division, Veterans Administration, Washington, DC, and Chairman, National Foundation for the Study and Treatment of Pathological Gamblers, Washington, DC.

Dr. Ted Dielman, Director of Research, Department of Post Graduate Medicine, University of Michigan Medical School, Ann Arbor, Michigan.

Dr. Michael H. Lang, Director of the Forum for Policy Research and Public Service, Rutgers, The State University, Camden, NJ.

Mr. Robert Dykes, President, Decision Research Corporation and his research associates, Ms. Cathy Severinski and Mr. Dennis Kinsey, executors of this project.

Ms. Nancy Brooks, Production Associate, who managed the production of this report.

The author also wishes to thank the Ohio Lottery Commission, Mr. Ronald Nabakowski, Executive Director, and Ms. Helen McBride, Executive Assistant, for their support of this research.

Any errors which may ultimately be identified in this report are truly my own.

Executive Summary

1. "Fully 194 of those surveyed described themselves as frequent or occasional gamblers, for a rate of participation in games of chance of 24.2%. $^{\prime \prime}$ Chapter 2 , page 16.
2. Participation increased for six out of twelve games of chance. "Yet only two of these games, state-sponsored lotteries and office pools, ranked among the top 5 games in terms of frequency of play in either year. Conversely, three of the top 5 games declined." Chapter 3, page 18.
3. "In total, 151 gamblers, or 78% of all gamblers, placed a wager in both 1981 and 1984. These can be called chronic gamblers." Chapter 3, page 19.
4. "Proceeding further, if all those who intend to spend more on gambling in 1985 (16 cases) are subtracted from those 88 who actually increased their wagers between 1981 and 1984, the remainder, 72 cases, or 81.81% of the progressive gamblers, represents a conservative estimate of those whose observed betting behavior between 1981 and 1984 conflicts with their expressed intention to cutback or hold steady in 1985. These are gamblers who want to reduce their
gambling behavior despite a history of progressive involvement." Chapter 3, page 19.
5. "In conclusion, then, with regard to the evidence of gamblers' conscious control over their involvement with games of chance, it appears that, in general, what gamblers intend to do is out of step with what they actually do. Their determination to consciously decide on a steady level of expenditure on gambling is not corroborated by the evidence that gamblers are more than 5 times as likely to either increase or decrease their total annual wagers as they are to hold steady in their gambling behavior over time. 7 The odds in favor of increasing rather than decreasing one's gambling expenditures are 2.25 to 1 . Among those who increase their gambling expenditures, 81.81\% express a desire to cutback or hold steady in 1985." Chapter 3, page 20.
6. n An incongruity between intention and behavior burdens the lives of a considerable number of ordinary gamblers." Chapter 3, page 21.
7. "In order to construct a discriminance test, variables must be identified which reliably sort a sample into those at risk of gambling pathology and those who are not at risk.

Historically, the ISR test established a precedent in this field of research." Chapter 4 ,page 22.
8. "In the absence of the discriminant weights, it was thought necessary to check the performance of the test variables in some manner which would account for discriminance and association..."..at five probability of inclusion levels. Chapter 4, page 24. "It is evident that the . 2 cutoff point maximizes both discriminance and association." page 25.
9. "The remaining ISR variables (nine ineffective variables were dropped) were re-grouped into a more efficient discriminance test with a probability-of-inclusion level of .2. The gamblers were re-tested. The discriminance yielded a group of 21 gamblers in the "at-risk" pool and 172 gamblers in the "not-at-risk" pool. A difference-of-means test showed that, after controlling for the internal group variances, the between group variance was significant below the .0001 level. This statistic indicates that there is near certainty that the two groups are composed of individuals drawn from distinctly different populations, presumably pathological gamblers and non-pathological gamblers." Chapter 4, page 27.
10. "The model of the 1975 ISR prevalence rate was applied to the 1985 survey of Ohio."The statistical portion of the model extends only to the identification of the "at-risk" pool. The further differentiation of five sub-categories of respondents in the "at-risk" pool was accomplished by means of subjective inspection by the $I S R$ research team." Chapter 5, page 28.
11. "The further differentiation of sub-classifications within the 1985 "at-risk" pool could not be executed by simply applying the ratios originally derived from the subjective inspection of the 1975 "at-risk" pool. Therefore the entire "at-risk" pool must be interpreted at face value: namely, as the group of gamblers who are "at-risk" of gambling pathology. There are 21 such cases in the Ohio sample, or 2.62%. By means of a separate, more specifically diagnostic test administered to all 194 gamblers, 8 cases of gambling pathology were diagnosed. This represents . 998% of the entire sample," Chapter 5, pages 33.
12. "In conclusion, although the subjective inspection of the "at-risk" pool had been replaced by the diagnostic test, the overall impression derived from a comparison of the 1975 and the 1985 results is that there may have been an increase in the observable prevalence rate of pathological gambling
in the state of Ohio of 29.61% among those evidencing the "hard" signs of pathology" (Chapter 5, page 33).
13. In order to evaluate the ISR test, variables which describe the clinical signs of gambling pathology were grouped into a series of tests. "Nearly three times as many gamblers (280\%) scored on at least one test as did not score at all. This, in itself, is a notable finding because the impression given by the ISR test is that only a small portion (2.62\%) of all gamblers run any risk of gambling pathology." Chapter 6, page 38.
14. " The second major finding from table 14 is that 24 of the 194 gamblers (12.37\%) admit to 3 or more of the clinical signs. According to table 13, the odds that these 24 are pathological gamblers are 45,000 to 1 or more." Chapter 6, page 39.
15. The median annual wager in both 1981 and 1984 was approximately $\$ 170$. The median change in annual wagers during this time was $+\$ 10.00$. Chapter 6 , page 41-42.
16. "Note that among those who increased their gambling during the period, 43 gamblers more than doubled their wagers and 40 held their increases to less than 100\%. Therefore, it would be fair to say that progressivity
usually leads, not to gradual increases in gambling expenditures, but very dramatic increases." Chapter 6, page 42.
17. "These tests show that progressivity may be a necessary condition of pathological gambling but it is certainly not a very good predictor of the disease among Ohio's citizens." Chapter 6, page 44.
18. "In general, the ISR risk classifications are not statistically associated with the distribution of clinical scores. It makes little difference how the ISR test classifies a case for purposes of predicting the number of clinical signs which it will register. Therefore, the ISR and clinical signs tests are not mutually corroborating." Chapter 6, page 45.
19. "The evidence suggests that as incomes rise cumulative scores on the clinical tests also rise, but the pressure to cut back in response to those scores decreases. Income tends to mask the clinical signs of distress and, thus, efforts to curtail gambling are likely to lag behind the level of gambling involvement." Chapter 6, p. 49.
20. "Thus, the predictive power of the diagnostic test is 100% if the respondent scores three or more and it is only
50% if the respondent scores less than three." Chapter 6, page 51.
21. There are " 47 cases, or 5.86% of the sample who are potentially pathological gamblers." Chapter 6, page 52. "The total (of those scoring on just 2 of the clinical signs tests), 27 cases, or 3.37% of the sample, can be subtracted from the refined "at-risk" pool, leaving 20 cases of probable pathological gamblers. Of these, 12 cases, or 1.498\% of the sample can be subtracted from the probable pathological gamblers group because they did not pass the diagnostic test. The remainder, 8 cases, or $.998 \%$ of the sample, represents the diagnosable cases detected in this survey." Chapter 6, page 52-53.
22. "Only by collapsing the potential/probable subclassifications does the $I S R$ model predict the number of diagnosable cases in the population. However, it also suggests that the ISR test understates the probable magnitude of the prevalence rate by 55% to $80 \% . "$ Chapter 6, page 54.
23. "In conclusion, then, TPA recommends that, for purposes of estimating the current prevalence rate of pathological gamblers in the state of Ohio, the predictions based upon the cumulative clinical signs test be adopted. Given a
total adult population in Ohio of $7,703,310$ persons, TPA predicts that there are probably 192,227 pathological gamblers. Additionally, there are another 259,601 gamblers who demonstrate the potential for either being pathological gamblers at present, or becoming pathological gamblers in the future. Chapter 7, p. 57.

Introduction

Pathological gambling is described by the National Council on Compulsive Gambling as a progressive preoccupation and urge to gamble. The cardinal features are enotional dependence on gambling, loss of control, and interference with normal functioning. Pathological gamoling is classified as a disorder of impulse control in Section 312.31 of the Diagnostic and Statistical Manual of Mental Disorders - Third Edition (1979) of the APA. As such, it is akin to alconolism and afflicts the individual with similar patterns of behavior which "compromise, disrupt, or damage personal, family, or occupational pursuits." (DSM III) Beyond the damages incurred by the victim of this disease, there are costs to otners. These include: defaulted loans, income tax evasion, lost work time, prison costs, and the costs of providing support to injured families. At this time, tnere are no data which fully describe the impacts of these costs on the local economy.

Typically, there is littie known awout tae prevalence of pathological gampling in the population. Arripicred indiviciuals are reluctant to recognize taeir own needs for treatmenc. They carefully niae the traces of compuision. As the disease progresses they may become desparate, anu engage in non-violent forms of criminal denavior, such as check forgery or illegal borrowing. Freguently, a personal crisis of dranatic proportions arings an inaividual to the conmunity mental healtn center for assistance. ${ }^{l}$ Clearly, the numper of those who eventually "pottom out" is an insufficient ineasurement of the potential need for such nelp. A more sophisticated calculation is required whicn employs modern statistical techniques to elicit the numoer of those who may de gambling pathologically.

When the typical client appears for treatiment he/sne nas detween $\$ 15,000$ and $\$ 80,000$ in gambling debts, earns Detween $\$ 15,000$ and $\$ 100,000$ a year, is in the throws of jow instability, family disruption, and possioly courc proceedings surrounding illegal attempts to acquire money for gambling. The creditors range from janks, finance companies, and business associates to family, íriends, organized crime, and the casinos themseives. Staole creait sucn as mortgage and car payments are interrupted. Hospitalization and disaoility insurance are lost.

The employer is a principal victim. He/she suffers loss of employee time, and efiiciency. Frequently, as the eimployee's judgement is increasingly impaired, the employer becomes the victim of gambling related company crimes, such as embezzlement, and other forms of fraud. Some leaders in the insurance industry recently estimated that the majority of such company crimes are related to gambling activity and result in losses of more than $\$ 40$ billion annually in the United States. The pathological gambling syndrome destroys the financial and emotional integrity of the compulsive individual. It impacts upon the lives and financial integrity of family, friends, employers, associates, and ultimately upon social institutions such as courts, law enforcement agencies, family welfare agencies.

In 1978, at the Fourth Annual Conference on Gamoling, in Reno, Nevada, Dr. Robert Custer, M.D. presented a report which for the first time offered a statistical profile of the pathological gambler. Dr. Custer is the Chief of the Treatment Services Division, in the Mental Health and Behavioral Sciences Division of the Veterans Administration. He had administered a questionnaire the previous year to 150 pathological gamblers attending an international conference of Gamblers Anonymous held in Cnicago, Illinois. While the respondents were not representative of the membership of
gamblers anonymous as a whole, and while they were a particularly successful group of recovering compulsive gamblers, they also came from many parts of tine United States and Canada, and were highly motivated individuals, and therefore, highly likely to be honest in tneir responses.

Custer's survey focused on the history of the gambling pathology, and the personality traits which predominated in this group. His purpose was to derive some baseline data with which to compare new data sets as they might emerge from suibsequent investigations.

Custer was able to construct a profile of the typical pathological gambler. According to Custer, the afflicted person would most likely be a male (although females were under-represented at the conference), reaching middle age, Roman Catholic (followed by Protestants), who is married, a high school graduate, of Irish descent (followed by Jewish, Italian, and German descent), employed, with a background of military service. He would be of superior intelligence, vigorously competitive, industrious, energetic, athletic, with good school performance. He is likely to be a "work-anolic," who is attracted to stimulating challenges and who, correspondingly, avoids boredom. Thus, tasks which are dull are left incomplete. In summary, the pathological gambler

Abstract

commonly presents what are called premorbid personality traits.

Dr. Custer found that the pathological gambler is 14 when he places his first money bet. He is 17 when he first wins or loses $\$ 20$ or more. This factor of early exposure is clearly significant. Over 95% of those responding said that they had begun to gamble before the age of 21 . At some time during this early period, the individual experiences a big win. The average age when a respondent sought help and joined gamblers anonymous was 39. As many as 40% waited 6 months or more to join gamblers anonymous after they had first heard about it; and 40% sought the assistance of a mental health professional before going to gamblers anonymous. Almost all reported that they had experienced chronic, severe stress by the time they sought help.

An average respondent did not have a history of antisocial characteristics as a child or an adolescent. Ninetyeight percent (98\%) denied any addiction to drugs. Ninetyeight percent (98\%) denied alchoholism. Similarly, 96% denied that either parent had a serious psychiatric illness; 86% denied that either parent had been a compulsive gambler; 82% denied that either parent had ever been an alcoholic.

Abstract

Ninety-six percent Cenied that they nad haá a close relative who had committed suicide. However, 98% said that wnen taey were actively gambling, the opportunity to uo so was within one nour's difive; 100% said that gambling was curienily availaole within one nour's drive. Sixty percent said tatat raey preferreu casino gamoling over other forms of ganoliny.

The sociai conseguences of the patinology For चae inuiviulual were severe, according to the custer survey. Ninety-eight percent reported serious disiress in tae family. Sixty percent had lost one or more jobs or business opportunities. Seventy perceni said that they had failed to meet their basic needs; and 66% said that they had deiaulted on debts. Ninety percent had nad a financial oailour. Almost one-ifiti nad attemptea suiciue. Ironically, 75\% admitted to avving oragged about winning wile tney were losing.

Researca on the incidence of patnological ganoling has been limited. Gamblers Anonymous nas estimated tiat 6\% oi the population is afflicted and tne National Council on Compulsive Gambling estimates 10\%. Altiough tilere has been muci speculation of this type, there has oeen only one previous empirical investigation on the subject. In 1975 , the Institute for Survey Research of the University of ificnigan conducteu a national survey of Anerican gambling

Abstract

attitudes on benalf oE the United States Commission on a National Policy Towards Ganinlang. The IEf researeners íounu that 61% of all Americans ganibed in 1974. Hovever, an imporiant regional variation was identified. lnis ifigure increased to 78% in ivevada. ${ }^{2}$ From this İnuing, the autnors assumed that since tne number of people who ganiole was significantly greater in Nevada, participation rates varied with the numoer of legal facilities.

A significant regional aifference also was found when the ISR researchers examined the relationship between the incidence of compulsive gambling and the availaoility of legalized ganioling. In Nevada, the percentage of compulsive gamblers was 271\% higher than the national percentage. Based on their findings, the ISR researchers concluded that a marked increase in tne incidence of compulsive gamiling would probably follow legalization of new forms of gamiling in other parts of the united States. Furthermore, it is important to realize tinat any estimate of the incidence of compulsive gambling is an underestimation of tue nunver or people needing treatment because the family menoers of ine afflicted individual are also likely to need treatment.

The 1976 ISR report publisned two sets of conclusions avout the prevalence of pathological gambling: one set for the nation as a whole, and one set for the state of inevada.
dach set was based upon a unique propavility sample drawn in the summer of 1975. At the national level, ISR reported that $.77 \%$ of the United States adult population (18 years of age or older) were probably patiologcial gamblers. An adaitional 2.33% of the adult population were potential pathological gamilers. In the state of Nevada, the figures ror provade and potential pathological ganoiers were 2.62% and 2.35% respectiveiy. ${ }^{3}$

Chapter one: The Hethodology

What metinod did the $I S R$ researcn team elmiloy in order to isolate the results? Essencially, the ISR team based its conclusions upon estimates derived form 13 variables wnicn functioned as a test For the distribution of the personality characteristics of a patnological gambler. Eacn or these 18 variaples nad been pre-tested wita pilot samples of known pathological gamblers and of church-goers (wnicn served as a model group of non-pathological gamolers). In tne pretest stage, 亡hese 18 variables nad successiuliy discriminated between pathological gamblers and cnurch-goers with 90% to 95% reliaoility in repeated blind tests. ${ }^{4}$

Wat exactly did they mean by "probaole" and "potential" patnological gamblers? Tne 18 aiscriminant variajles identified a pool of gamblers most "at-risk" oi gambling pathology. The probability-of-inclusion level for the "at-risk" pool was set at .96 in order to guard against false positive classifications. According to the autnors, rallick et alia, "in spite of tnese precautions, however, the safest assumption was that the initial estimate of
possiole compulsive gamolers is an overestiaate."5 Tine "initial esrimate" refers to tine "at-risk" pooi. ilo expianation oi this assessment was offered. Yet it precipitated a subjective inspection or the at-risk cases wy the researcn tean itself. In the end 44% oi the at-risin group showea no signs of heavy ganiling nor of any orner problens. Once again, the researchers noted, "Even though the estinated incidence of compulsive gambling was adjusted for errors in prediction, it is possiole that the zigure is Low due to concealment." 6 In these ways, tine authors expressed their own misgivings aoout the accuracy and reliability oí their discriminance test.

In 1981, Hader and Hellonics cnallenged the validity of the 10 , ISR variables. In a paper presenceu to the Fifth National Conference on Gambling and Risk Taining, neld at Laie Tanoe, Nevada, in 1982, Nadler demonstrated that the discrepancy ietween the item scores of the control group of known pathological gamblers and the designateu groups of probable and potential patnologicai ganiviers ranged from 16% on most items to 74% on at least one item. ${ }^{7}$ Incuitively, one inight expect that general personality trait
cuestions or self-assessments like, "I sometimes vote for candidates about wnom I know very little, true or false,?" would offer little help in a count of patnological ganolers. In 1979, a clinical definition of gamoling pathology was adopted by the A.P.A. and included in its Diagnostic Statistical Manual:III. Discriminant variables have been developed since then by Gamilers Anonymous, dy Custer (1978) and by heeland (1982), whici reflect this rechnical knowledge. A question sucn as, "Sometimes, when I have been gambling and losing, afterwards I feel a sense of remorse, true or false,?" addresses gambling patnology directly. The validity of such a question is manifest.

Yet, the problem of the honesty of the respondent is thougnt to seriously undermine any attempt to query more directiy into gambling involvement. Hence, there is a dilemma between sensitivity and specificity in the choice of a discriminance test. The ISR variables, nowever lacking in clinical specificity, are innocuous, that is, tney do not invite evasive benavior. A direct comparison of the two approaches seemed warranted in order to determine the
accuracy of each test, in particular, when applied over the telepione.

Additionally, the symptoms of gambling patnology are evidenced in benavior. The ISR team accounted for gambling Denavior only in its suojective inspection of the at-risk pool. Transition Pianning Associates determined to incorporate a measurement of the frequency of play and dollar amount spent gamoling directly into the statistical framework. The discriminance tests would be cross-tabulated with gambling behavior. Furthermore, both cinconicity and progressivity of gambling behavior would have to be directly ooserved. Hence, the behavioral data (section four) was collected for two years, 1981 and 1984. The factors cnronicity and progressivity serve as the necessary conditions of "risk." They function as filters, therefore, which immediately refine the reliability of tne discriminance tests.

Transition Planning Associates developed a questionnaire which replicated the 1975 I.S.R. test, and which drew upon the basic research efforts of Dr. RoDert Custer and his associates, Drs. Tor Meeland and Samuel

Krug. ${ }^{3}$ A Giagram of the questionnaire is presenteu in Appendix B. Tne questions begin with the nost innocuous variables and gradually open the discussion of ganoliny experiences. Section One queries the responientis participation in several leisure cime pursuits, inciuting yanes of chance. All of the demographic information, excluding income, is collected nera. Section Two profiles the respondent with pre-tested discriminant variables (from Doth cine ISR and IGB secs) which do not mention gambling, and which are not thought to be "sensitive." Section Tnree further profiles gamblers with discriminant variables wilca do inention ganbling but which are not the hard diagnostic criteria. For non-gambiers living in housenolus of 2 or more persons, there is a version of section three waica solicits information avout the ganbling activities of other household menders. Section four takes a detailed look at participation in gamoling and collects the income data. Section Five applies the diagnostic criteria.

The methodology cailed for the identification of two "at-risk" pools by means of the ISR variaoles (18) and tne IGE variables (29) respectively. Jach pool would be furtner
evaluted by two methods: 1) tne subjective designations method originally employed by the $I S R$ researchers (24\% of the national risk pool and 35% of the Nevada risk pool were designated as potential and probable pathological gamblers Dy personal inspection of the investigator in 1975); 2) tne diagnostic test (Section V of the questionnaire). The results would be cross-classified in a 2-way table and a check would be made for misclassification. The most reliable rate would be identified.

The comparison of the $I S R$ and the IGB discriminance tests is the primary task of this report. The methodology for doing this has been established in a previous report by TPA to People Acting to Help, Inc. (PATH). The procedure developed in the PATH report will oe applied to the Onio survey data in subsequent chapters. First, nowever, the Onio sample will be described.

Cnapter Two: A Proíile of tne Sample

Tne Ohio sample consisted of 801 respondents, all oiz Whom were 18 years of age, or older.

Oi tiese, 47.0%, or 375 persons, were males and 52.7%, or 422 persons, were females.

Tnere were 511 married respondents (63.8\%) and 140 single persons (17.5\%), while 146 (18.3\%) were eitner separated, divorced, or widowed.

Fully 76.4\%, or a total of 613 persons, had graduated inigh scnool, attended college, or graduated college. Slighely more than 16%, or 129 persons, nad not graduated from high school, but only 6.7%, or 54 persons, went beyond college to attend or complete graduate scnool.

In terms of etnnicity, or race, 729 persons identified thenselves as white (91\%), wnile only 61 persons (7.7\%) identified themselves as black. Only 5 ..persons (.6\%) classified themselves as "other." (The same number refused to answer this question, that is, . 6%)

Among the respondents, the leading age category was 1834, with 36.7 , or 294 persons. Next came tnose 35-49 years of age, with 27.4%, or 219 persons. Next came tnose 50-64 years old, with 20.7% (166 persons), and finally came the senior citizens, 65 years of age or older, with 14.7% of the rspondents, or 118 persons.

The clear majority of the sample, 61.4% or 492 persons, were protestants. About 26% were Catnolics (210 persons), 1.2\% were Jewisn, 2.6% were "otner" and 6% expresseă no religious preference.

A majority of the respondents, 52.4\%, or 415 persons, were enployed full time. Anotner 10.9%, or 88 persons, were employed on a part time basis. Housewives (14.3\%, or 114 persons) and retired persons (15.1\%, or 121 respondents) were roughly even. The unemployment rate anong the respondents was 4.7%, or 38 persons.

Fully 194 of those surveyed described themselves as frequent or occasionai gamolers, for a rate of participation in games of chance of 24.2%.

The Michigan survey of 1975 set the rate of gamoling participation in the nation at 6l\%. Thus, tnere is an apparent discrepancy of nearly 36.8% between these two rates. Pernaps, the 1985 Onio rate represents the number or respondents who both perceived themselves as gamblers and were willing to disclose this to a siranger over the telephone. The more likely answer to this question can be found by examining the questions used to identifiy gamblers in each survey. For instance, the ISR researchers asked respondents if they placed a bet of any kind in 1974. The Onio survey in 1984 asked respondents if they frequently, sometimes, or never participate in games of cnance or det on tine outcomes or games, events, or drawings.

Which question more accurately characterizes varticipation? Pernaps, there were many of the ISR pettors who happened to have bougnt a raffle ticket in 1974, put otherwise never garnbled. Should sucn "one-time-only" cases have been included in the pool of gamblers? Given tne primary task of the $I S R$ researcners, whicn was to document the extent to winch Anericans participate in both legal and illegal forms of gambling, the answer is most certainly "yes." The question employed by the 1984 Onio survey asks people to identify themselves as frequent or occasional gamblers. While the opportunity for denial is ever present - using either question - tnis latter question implies recurrent or continuous gambling behavior, rather than an isolated instance. It is, therefore, more appropriate to the principal task of this survey, wnicn is to isolate patnological gamblers.

Chapter Three. Gambling Benavior

Of the 12 games of chance described in Section 4 of the questionnaire, 6 of them snowed an increase in the relative number of respondents who played them between 1981 and 1984 (see starred items, Table l). Yet only two of these ganes, state-sponsored lotteries and office pools, ranked anong tine top 5 games in terms of frequency of play in either year. Conversely, three of the top 5 games declined in frequency or play.

Table 1 provides three levels of information. Looking at the first two columns, the table displays the raw frequencies of play, the relative frequency of play, and tne ranking of the top 5 (most recently played) games. Benavior is then compared with stated preferences in column three. In 1981, lotteries and games at home with family or friends, like cards, were approximately tied for first place. But over the next four years, the lotteries moved clearly into first place with a 95% increase in participation. Homebased gambling, on the other hand, declined by 6\%. In terms of stated preferences, however, Onio residents rated nomebased gambling their favorite form. Horses and office pools were approximately tied for third place in 1981. By 1984, nowever, horse racing declined by 17.8% into 4 th place. Office pools showed a slight increase of 5.5% and ranked
thira. In terms of popularity, however, the horses rankea in third place, wile orifice pools ranked fiftn. Sports betting neld steady in terms of participation between 1981 and 1984, occupying fiftn place in both years. But in terms of popularity, sports becting dic not rank in the top five. Instead, bingo was the firth most popular gambling activity. iJotably aosent from any of the rankings are casino games, eitiner in Atlantic City/Las Vegas, or charities in Ohio.

Of the 185 Onio gamblers reporting, 36 , or slightiy less than 20% indicated that they nad won overall in 1984. Another 78 , or 42%, lost money overall in 1984. Finally, 71 gamblers, or 38%, indicated that they broke even overall in 1984.

In total, 151 gamblers, or 78% of all gamblers, placed a wager in botn 1981 and 1984. These can be called cnronic gamblers. Among cnronic gamblers, there were 88 , or 58.27%, who increased their total annual wagers over time. This compares witn 16 gamblers, or 11% of the chronic gamblers, who reported that they intended to spend more on gambling in 1985. Tnere were 39 gamblers, or 26.1%, who reduced their total annual wagers between 1981 and 1984. This compares witn 36 gamblers, or 23.84% of the chronic gamolers, who reported that they intended to spend less in 1985. There were oniy 24 gamblers, or 15.7\%, who actually held steady in their total annual wagers between 1981 and
1984. This compares witil 93 ganaierg, or 55% oz ~ue chronic gamolers, wo reported tnat taey intenued co noius steady in their gambling penavior in 1985.

Proceeding furiner, if all those who incena to sivenü more on gambling in 1985 (16 cases) are suptracted iron those 88 who actually increased tneir wagers Detween 1981 and 1984 , the remainder, 72 cases, or 81.81% o今 tila progressive gamblers, represents a conservative estimate of those whose observed betting behavior petween 1981 and 1984 conilicts with tneir expressed intention to cutvack or nold steady in 1985. These are gamolers who want to reduce their gambing behavior despite a nistory of progressive involvement.

In conclusion, then, with regara to the evidence ot ganiolers' conscious control over their involvement wita games of chance, it appears tinat, in general, what gamblers intend to do is out of step witn what they actually uo. Their determination to consciously decide on a steady level of expenditure on gambling is not corroiorated dy tne evidence that gamblers are more than 5 times as likely to either increase or decrease their totai annual wagers as they are to nold steady in their gamoling benavior over time. 9 The odas in favor of increasing rather than decreasing one's gambling expenditures are 2.25 to 1 . Anong
those who increase tneir ganoling expenditures, 81.81% express a desire to cutback or nold steady in 1985.

The next three chapters oi this report will auuress ootn the problem of how to distinguish a gambler who is patnological from one who is not and tae relateu problem of now to accurately count the number of such gamblers in the population. Already, however, we can see tnat an incongruity between intention and behavior juruens the lives or a considerable number or ordinary gamolers.

Abstract

Chapter Four. ine Discriminance iests The first task in the process of counting the numider of patnological ganbiers in the population at any given time is to distinguish these individuals fron all other indiviuuals in a sample of tne population. Discrinination presents several probleas. Witn a synürome like ganoling pathoiody, Ginere is evidence that afflicted individuals deny tne condition. Tinis Denavior makes direct inquiry difijcult. Indirect inquiry would be an attractive alternative were it reasiole. Two indirect and one direct approach to discriminance were employed in this survey: tae 18 variajles I.S.R. test (indirect), the household informant test (indirect), and the 29 variable IGB test (direct).

In order to construct a discriminance test, variables must be identified which reliaily sort a sample into tnose at risk of gambling patnology and those wno are not at risis. Historically, the ISR test estailisned a precedent in chis fiela of research. It was developed by researcners who were themselves neither psychologists nor mental nealta clinicians of any sort. Nor were they cnarged primarily with the task of estimating the numper of patnological gamblers. Their metnod for selecting the test variawies is amply described in Chapter 12.1 of the "Survey or Anerican Ganoling Attitudes and Benaviors." 10

"On the basis or the literature revien and searcin for conceptual neasures wnicn met at least minialai standards of reliabiiity and validity, 119 itens were selected for inclusion in a prelininary 'Compulsive Gainling Scale,' waicn was lacer reduced to a sinalier supset oí items serving as che Dest predictors."

The 119 itens were selected from existing paycnological scales. These scales tested for the characteristics oi personality which were thought to predispose an indiviaual to conpuisive gampling. A pilot study was performed on 274 gamolers and 239 churcn members. Furtnermore,...
"A multiple discriminant analysis of the 119 itens was run, using as a data base a randomly selected portion of the sample, composed of 120 compulsive gamblers and 120 churcn members. It yielded 18 items which discriminated between the two snown groups, correctly classiiying 95 percent of the church memoers and 90 percent of the compulsive gamolers. When the multiple discriminant funcion was appiied to the remaining 154 compuisive gamblers and 119 church members in crossvalidation, the correct classirication rate was again 95\% for the churgh memoers and 90\% for the compulsive gamolers."

Applying the 18 variables to a random sample of the United States population Kallick (et.al.) set the grobaidity of inclusion level quite hign for patnological garnolers (.96). ${ }^{13}$ Presumaily, any indiviaual's discriminant function which fell beyond the .96 cutoff point would have four chances in 100 of not being a pathological ganier. iore simply put, the I.S.R. researchers were 95% confident that such a case would be a patnological gambler.

Replication of the I.S.R. test would require knowing wnat discriminant weignt was associated witn eacn variadle. Unfortunately, these weignts are not available iron Iosoro Furtinermore, these weignts could not be reproduced witnout access to the original inodel group data sets. Taese were also unowtainable after ten years. Consequentiy, tne discriminant coerficients were assigned the value of 1. Working fron tne published data, ${ }^{14}$ scores on each item were yenerated for the pathological gamblers group and tae cnurco goers grouj. The inean scores are presented in taole 12. Column 3 or table 12 presents the grand means for eacn variable. The totals of columns 1 and 2 , when sumand and divided by 2, equal tne grand total of column 3: 34.10325. The grand total was defined as the symatrical cutofit point in a discriminance test. ${ }^{15}$. Table 12 also dispiays the pasic functioning of tae $1 S R$ test. The scores on the 18 variables are sumad for each case and compared with the symatrical cutofi. Lower scores fall into the group "at-risk" ore ganibling patnology.

When properly designed, the process of discrimination not only sorts individuals inco two groups, put also associates each group witin its respective model group, 亡ne principal characteristics of which the test group is supposed to share. Such a procedure is criticaily important if tne discriminant variables are innocuous witn regaru to the characteristics one is trying to detect. The I.S.R.
variables may be innocuous and sufficiently discriminarory but are they associative? Ideally, a valid discrianance cest for pathologicai gamolers would yield one group or inaividuals wnose test scores are most similar to those or known pathological ganolers and who evidence the clinical signs of the syndrome, on the one nand, and a second group of inaividuals whose test scores are most dissinilar to those of pathological gamblers and who evidence few, ií any, clinical signs of the syndrome, on the other nanä.

In the absence of the discriminant weights, it was thougnt necessary to check the performance of the test variables in some manner which would account. for discriminance and association. First of all, an initial test was run using the symuetrical cutoff point. A t-test for the difference of the grouy means was run. Next eacn variable was examined individually. A chi-square test was run to see if the risk classifications were statistically associated with the distribution of tne variadle scores. The significance level was set at the .05 level in order to guard against a type 1 error, or a false positive misclassification. Neat, a chi-square test was run on the model group/test group pairs in order to see if inclusion in either group was statistically associated with the distrioution of the variable scores. The significance level was set at the .1 level in order to guard against a type 2 erfor, or a false negative inisclassification.

Tne entire process was then repeated four tines at four additional a-symmetricai cutor̈z points. A tabie of discriminance and a table of association was tnen prepareü, as well as a table sumarizing the behavior of each or the eignteen variables. Finally, a cutorf point was selected Whici maximized discriminance and association. Variavles not contributing to either function were dropped. Tine remaining variables were then regrouped, and the discriminance test was re-run producing the inal differentiation of "at-risk" and "not-at-risk" cases. A second t-test was run to examine the difierence of means.

Tables 3, 4 and 5 display the discriminance, association, and sumary of these functions for the 18 ISR variailes at 5 cutoff points: .5, .25, .2, .1, .04. Bacn cutofif point represents a provaility-of-inclusion ievel with a corresponding confidence level (l minus tne provability-off-inclusion). Different combinations oŕ discriminance and association are available at each of tnese levels. The uneven performance of the 18 variables can de attributed to disturbance from population variance at the scale of the individual variables (cf \#Note 15). On taole 3, the table of discriminance, a 1 signals that a discriminance has occurred. The "l's" are totaled at tne bottoin of the table and to the right of the rows. On taple 4, the table of association, 1 also signals tnat a discrimination nas occurred. But the zero's signal an
association, and these are totaled at the botiom of tue table and to the rignt of the rows. Fron tavie 5, the sumary table, it is evident that the .2 cutorif point maximizes botn discriminance and association. Only nine variables actually contribute to the test at tinis probaioility-of-inclusion level, and thus nine are designated to be dropped. Note that tne .25 cucoif point with its nigner number of discriminations was not selected because of its low number oŕ associations. Lower prodability-of= inclusion levels result in unacceptaily low levels of discrimination.

The remaining variables were re-grouped into a more efricient discriminance test with a probapility-ofoinclusion level of .2. The gamblers were re-tested. The aiscriminance yielded a group of 21 gamolers in the "atrisk" pool and 172 gamblers in the "not-at-risk" pool. A difference-of-means test showed tiat, after controlling for the internal group variances, the between group variance was significant below the .0001 level. This statistic indicates that there is near certainty that the ewo groups are composed of individuals drawn from distinctly diEferent populations, presumably pathological gamblers and nonpatnological gamblers.

Cnapter Five. Predictions Based Upon the I.S.R. Model
In this chapter, the aovel of the 1975 I.S.R. prevalence rate will de applied to the 1985 survey or Onio. On the basis of this model, the 1985 prevalence rate for pathological gamplers will pe estimated and then evaluated. The principal tasks are: 1) to display the original 1975 Isk model based upon the national sample; 2) to exclude nongamolers from the "at-risk" pool; 3) to adjust the rates obtained from inspection in order to rerlect the more exclusive "at-risk" pool; 4) to apply the adjusted rates to the 1985 Onio sample; 5) to evaluate the results in the lignt of reasonable expectations; 6) to substitute tne supjective inspection of the "at-risk" pool witn tne diagnostic test; 7) to re-evaluate the results.

The original 1975 ISR model of the national prevalence rate of pathological gambling is displayed in table 6. The statistical portion of the model extends only to the identification of the "at-risk" pool. The furtier differentiation of five sub-categories of respondents in the "at-risk" pool was accomplisned by means of suojective inspection by the ISR research team. That is, they read the questionnaires and sorted out those cases whicn appeared to them to meet the criteria for the designation of a patnological gamoler. It is important to note that the $I S R$
investigators were not themselves clinicians. Yet they performed a diagnostic role in the design of this discriminance procedure.

It is also important to remember that the ISR discriminance test was applied to gamblers and non-gamblers alike. In the 1985 Ohio replication of the test, nongamblers were separated from gamblers. Consequently, in 1975, the "at-risk" pool contained many cases which, upon inspection, showed either no signs of gambling-related pathology, or no signs of gambling involvement at all. The former group is referred to as "other pathology" or "poor comprehension, illiterate." The latter are referred to as simply "others." It is this latter group which "managed to conceal any evidence of their gambling from the interviewers." ${ }^{16}$ Consequently, it is this group of nongamblers which will be excluded from the calculation of the "at-risk" pool. The pool will reduced by 44%, from 278 to 156 cases. The number of cases in each of the remaining sub-groups will be held constant. That is, the relative proportions will be allowed to change as the size of the pool is reduced. Also, sub-groups C and D will be collapsed into one category "C." The adjustments to the model are displayed in table 7.

As previously discussed, the ISR questionnaire asked respondents if they had placed a bet at any time in the
previous calendar year (i.e., 1974). On the basis of this indicator, the researchers concluded that 61% of the American public were gamblers. In table 7, 39% of the sample is excluded from the model on the grounds that they were not gamblers. The number of cases "at-risk" in subcategory E of table 6 is subtracted from the original "atrisk" pool. That is, 278 cases "at-risk" minus 122 cases designated "other" equals 156 , or the number of cases remaining in the "at-risk" pool in table 7. These cases represent 14.73% of the total number of gamblers identified by ISR in 1975. The number of probable pathological gamblers has been held constant between table 6 and 7 , as have the numbers in the remaining categories. The number of cases in the category A is 16% of the total number of cases in the "at-risk" pool, (or 156 cases). The same follows for categories B and C.

Having adjusted the ISR model in order to remove unwanted cases of non-gamblers, it is now possible to utilize the model to project what one would expect to find in Ohio in 1985 if there had been no appreciable change in the prevalence rate. The expected frequencies are obtained by holding the proportion of "at-risk" gamblers to total gamblers constant. The key ratio is 14.73\%. As displayed in table 8 , out of a total sample of 801 cases, there were 194 which identified themselves as frequent or occasional gamblers. Of these, the ISR model projects 29 cases in the
"at-risk" pool. In table 8, the ratios of the subclassifications are held constant, yielding for instance, 4.64 cases out of 29 which could be classified as probable pathological gamblers. The same procedure is followed for the remaining categories.

In table 9, the ISR model is applied directly to the observed cases in the "at-risk" pool. Only 10.82%, or 21 cases, actually fell into the "at-risk" pool in the state of Ohio in 1985. Holding the ratios of sub-classification constant once again, the model projects that, of the 21 cases in the "at-risk" pool, 3.36 cases could be designated as probable pathological gamblers. The same procedure follows for the remaining categories.

Overall, how do the scores based upon the observed "atrisk" rate compare with those based upon the expected "atrisk" rate projected from the 1975 national model? Table 10 displays the expected and the observed scores together, as well as the difference between the observed and the expected "at-risk" pools ($O-E$). The percent change ($O-E / E$) is also presented. There would appear to have been a decrease in the "at-risk" rate of 28% in Ohio in the last ten years. The same calculations are presented for the observed and expected sub-classifications. Again, there would seem to have been a 28% decrease in each of the sub-classifications. One of the limitations of the ISR model is evident here: namely, that the changes apparent in the sub-classifications
tne sub-classifications are simply a function of the cnange in the "at-risk" rate. The application of the 1975 suivclassification rates does not afford any decection of possible changes in concentration of pathological gamblexs witnin the "at-risk" group.

In order to overcome this rigidity in tine ISR model, and in order to evaluate the validity of the suojective inspection portion of the ISR discriminance procedure, TPA developed an odjective test for gambling pathology based upon diagnostic criteria described by Dr. Robert Custer. Tne results of the diagnostic test are presented in Table 11. The percentage of the "at-risk" pools represented by each of the sub-classifications are also presented in Tavle 11, as is a comparison between the expected and the ooserved scores. The main difference to be noted is that the 1985 survey diagnosed. 8 bonafide cases of gambling pathology, wnereas the ISR model would have preuicted only 4.64 cases. The difference is 72.41% despite a -18% difference in tine respective sizes of the "at-risk" pool. This striking discrepancy between the observed and the expected scores when more clinical test variables are used to identiry the target group suggests that the subjective inspection portion of the ISR discriminance procedure seriously undercounted the prevalence rate of pathological gambling in the state of Ohio. In fact, when the suojective portion of the ISR procedure is replaced with the diagnostic test, the rate or
probable pathological gambling, .998\%, exceeds the rate, $.77 \%$, proposed by ISR in 1976 by $.228 \% .^{17}$

The further differentiation of sub-classifications within the 1985 "at-risk" pool could not be executed by simply applying the ratios originally derived from the subjective inspection of the 1975 "at-risk" pool. Therefore the entire "at-risk" pool must be interpreted at face value: namely, as the group of gamblers who are "at-risk" of gambling pathology. There are 21 such cases in the Ohio sample, or 2.62%. By means of a separate, more specifically diagnostic test administered to all 194 gamblers, 8 cases of gambling pathology were diagnosed. This represents .998\% of the entire sample.

In conclusion, although the subjective inspection of the at-risk pool had been replaced by the diagnostic test, the overall impression derived from a comparison of the 1975 and the 1985 results is that there may have been an increase in the observable prevalence rate of pathological gambling in the state of Ohio of 29.61%, among those evidencing the "hard" signs of pathology. 18

Finally, the use of clinical variables which directly probe for the signs of gambling pathology is both desirable because of their greater specificity and feasible because of the apparent willingness of many gamblers to answer such questions honestly over the telephone. It is the analysis
of an additional battery of clinical variables, called tne "soft signs" of gambling patnology, to whicn we now turn.

Cnapter Six. Evaluating the I.S.R. Modei.

Part 1. The Distribution of Clinical Signs
In order to evaluate the findings in chapter five, an alternative means must be found for performing the same task of discrimination. The options include cnanging the sample from gamblers tnemselves to tneir families, or changing the approach from innocuous to more conspicuous discriminant variables. The latter option is the subject of tnis chapter.

The I.S.R. test employs questions which are not directly descriptive of gambling pathology. The test may isolate a group of respondents who answer the question in a distinctly similar manner to a group of known pathological gamblers, but do these respondents evidence any clinical signs of gambling pathology tnemselves? Additionally, if one were to examine those gamblers who were excluded from the "at-risk" pool under the I.S.R. model, how many of them would also show the clinical signs of gambling pathology? Theoretically, the answer ought to be zero. If it were not, now effective would the I.S.R. test be? If the more direct approach predicted a different prevalence rate, on what grounds would the accuracy of the two estimates be decided? Is there a necessary trade-off between sensitivity and specificity, or can a more direct approach complement the indirect approach of I.S.R.? To answer these questions a
new discriminance test was incorporated into tne Onio survey instrument.

Since 1975, the knowledge base about patnological gambling has expanded rapidly under the leadersnip of Dr. RoDeri Custer and through the efforts of the researon team at the National Foundation for the Study and Treatment of Pathological Gamoling in Washington, D.C. TPA designed a discriminance test wion draws upon this base of clinical knowledge about the pathological gambler. Twenty-seven variables, taken from the Inventory of Gambling Behavior, and representing the soft signs of gambling pathology were employed in part II and III of the questionnaire to identify a new "at-risk" pool. Eight variables representing the diagnostic, or nard signs of the gambling pathology were employed in part V of the questionnaire to identify clinical cases of pathology among those in the "at-risk" pool. 19

In addition to the hard signs test, four sort signs tests were constructed by grouping tnree or four of the soft signs variables around common themes ${ }^{20}$ referring to the negative impacts of gambling. The themes were: personal, interpersonal, vocational, and financial. Each grouping became one test in a five-part cumulative clinical signs test. Table 12 presents the list of the I.G.B. variables, grouped by theme, with the cni-square discriminance scores taken from tine pretest between patnological and non-pathological gamblers, and also the
relative frequency with whicn a respondent would answer in the afrimative to each individual question.

The relative irequencies witnin eacn group were combined, sumned, and averaged for each test (for instance, (58.45\% plus 7.75\% = 66.21), etc.). The mean of the convined relative frequencies in each test was identified as the average probability of any indiviaual answering in the affirmative on that test. The mean of the relative frequencies per group per test (i.e., uncombined) yields the average probaoility that any individual from one group would answer in the affirmative on any of these tests. Taile 13 presents all of this information in columns 1,3 , and 5 . Colunns 2, 4, and 6 show the cumulative probabilities, that is, the maximum probability associated with an affirmative answer on each successive test given an affirmative on all of the previous tests. The seventh column presents the odds in favor of the respondent who gives an affirmative answer on each successive test being a pathological gambler rather than a casual or social gambler. One could say, for instance, tnat there is, at least, a 13 to 1 chance that a respondent who scores on any one of the 5 tests is a pathological gambler. ${ }^{21}$

Looking at table 13, a probability of inclusion level can be identified which functions in a parallel manner to the cutoff point in a typical discriminant function analysis. Tne table shows that the total cumulative
probability (col. 2) of answering in the affirmative on at least 3 of the 5 tests is slightly less than .2. The corresponding confidence level is 80%. Note that the cumulative probability of a pathological gambler (col. 4) scoring on three of the five tests is .15. The corresponding confidence level is 85\% (slightly higher than the total) and the odds in favor of such a respondent being a pathological gambler are better than 45,000 to 1 . Since pathological gambling is such a rare event in the population, it seems unnecessary to reduce the probability-of-inclusion level below . 2 . For example, if one were to postulate 90,000 pathological gamblers at the . 2 probability-of-inclusion level using the clinical signs tests, then the odds are that the investigator would misclassify a gambler only twice. At the . 35 level, there would be 569 errors.

Table 14 displays the cumulative clinical signs test scores for the 194 gamblers in the 1985 Ohio sample. Nearly three times as many gamblers scored on at least one test as did not score at all. This, in itself, is a notable finding because the impression given by the ISR test is that only a small portion (2.62\%) of all gamblers run any risk of gambling pathology. On the basis of the clnical signs test, and despite the expectation of denial from gamblers when asked to discuss their gambling problems directly, the opposite impression is derived: namely, that 73.7% of those
who identified themselves as gamblers in 1985 in Ohio also admit to one or more of the clinical signs of gambling patnology and, therefore, are "at risk."

The second major finding from table 14 is that 24 of the 194 gamolers (12.37\%) admit to 3 or more of the clinical signs. According to table 13 , the odds that these 24 are pathological gamblers are 45,000 to 1 or more. Thus, there may be three times as many probable pathological gamblers as were detected by means of the diagnostic (hard signs) test alone. In particular, the 13 cases scoring on four and five of the clinical tests are most strongly identified as cases of gamiling pathology because the odds in favor of this being so are better than 302,000 to 1 . This is still 62.5% more pathological gamblers tnan were detected by means of the diagnostic signs test ${ }^{22}$. Including all those who scored on three or more tests, the probable prevalence rate or pathological gamoling in Ohio would be $24 / 801$, or 2.99% In comparison with the probable and potential pathological gamblers (9.03 combined) identified by means of the ISR test (see observed scores, table 10), there would be nearly three times as many more pathological gamblers in Ohio than the ISR test detected.

One of the strengtas of the clinical signs model displayed in table 14 is that it specifies the distribution of clinical signs of gambling pathology throughout the population. The number of persons experiencing some
negative side effects from tneir involvement with gambling appears to be significantly greater than the likely number oi diagnosable cases of pathology. From taole 14, the number of cases showing one or two clinically treatable ili effects of gambling is clearly visibie: 119 cases, or 61% of all gamblers in the sample. For purposes of estimating the need for outpatient treatment services, however, it may De preferable to include only those with scores on at least two tests in a "potential patnological gambler" category. Presumably, everyone risks some harm when they gamble. One mignt even experience damage along one or another of the five clinical dimensions. But when a gambler experiences multiple wounds and keeps gambling, then that gambler may be unable to restrain his/her involvement, (the odds in favor are better than 100 to 1) or at least might seek assistance in trying to do so. Thus, TPA would expect that there is an additional 4.86% of the sample which might seek outpatient treatment services for gambling related injuries.

Part II: Cnronicity and Progressivity of Gampling Benayior

By definition, pathological gambling is a cnronic and progressive pre-occupation and urge to gamble. It is important, therefore, in any estimate of the prevalence of pathological gambling, to control for these two factors. They are the necessary, but not sufficient, criteria for the diagnosis of gambling pathology. Chronicity is defined for purposes of this analysis as participation in gambling in
both 1981 and 1984. Of the 194 gamblers in the sample, 43, or 22.16%, failed to meet tne chronicity criterion. Tnis means that 77.84% of Ohio gamblers in tnis sample are repeat gamblers whose involvement extends beyond one year. These are the gamolers whose progressivity and clinical signs are of greatest interest.

Absolute progressivity is measured as the difference Detween the annual wagers in 1984 and 1981. The benavioral data from Section IV of the questionnaire refer to amounts bet per game in 1981 and 1984. The calculation of the annual wager is quite straigntforward: frequency times typical expenditure equals annual wager per game. The sum of these annual wagers across all of the games equals the total annual wager for that year. At the simplest level, progressivity is measured by taking the difference of the two annual wagers.

Overall, in 1981, annual wagers for gamblers ranged from $\$.50$ to $\$ 1,561,180$. The average annual wager in 1981 was $\$ 17,349$. But this is an overstatement due to the presence of a couple of unusually high rollers. For this reason, the median, $\$ 170$, is a better indicator of the normal betting behavior. In 1984, annual wagers ranged from $\$.50$ to $\$ 246,960$. The mean bet declined to $\$ 4,597$ but the median held relatively steady at $\$ 171$. The mean change in wagers, $-\$ 13,380^{\circ}$, is distorted by a single case of a gamoler who wagerd $\$ 1,561,180$ in 1981 , but reduced the
wagers -\$1,536,180 in 1984. Interestingly enough, this gambler still wagered $\$ 25,000$ in 1984 , an amount which is 5.4 times the average wager in 1984 , and 146 times the medium bet in 1984. The median change in wager, on the other hand, is $+\$ 10.00$.

At a somewhat more complex level, progressivity is measured by taking the ratio of the absolute change in wagers to the annual wager in 1981. This ratio represents relative progressivity. The distribution of relative progressivity is tri-model. There were 14 gamblers whose relative change in wagers was -.85 to -1 ; there were 29 who did not change at all; and there were 34 gamblers whose relative change in wagers was 600%. The distribution of progressivity is displayed in table 15 which also groups cases into categories of change. Note that among those who increased their gambling during the period, 43 gamblers more than doubled their wagers and 40 held their increases to less than 100%. Therefore, it would be fair to say that progressivity usually leads, not to gradual increases in gambling expenditures, but very dramatic increases.

Relative progressivity is more simply categorized as positive, negative, or zero. Table 16 displays the distribution of relative progressivity in the sample. The bar chart shows a J-shaped curve (on its side). Less than 16% of the chronic gamblers are stabilized. The progressive gamblers outnumber the stable gamblers by more than 3 to 1
winile the regressive gamolers outnumber the staple gamplers by one and one-halí times. Among cnronic gamblers, a person is 5.37 times as likely to cnange as to remain steady, and among changing gamblers, a person is 2.25 times as likely to increase the annual wager as to decrease it.

The importance of progressivity to the definition of pathological gambling is sucn that 18 cross-tabulations were run in order to examine the predictive value of progressivity. The dependent variables in these tests were: tne ISR risk categories, the distribution of the clinical tests scores, the probability of scoring at ali on the clinical tests, the probability of scoring on three or more of the clinical signs tests, the probability of scoring three or more points on the diagnostic criteria test, and the probability of scoring at all on the diagnostic signs test. Progressivity itself was further classified into two new variables called serious-progressive, whicn measured the extent of progressive gambling in five categories, and regressive-progressive, which measured the extent of regressive gambling in five categories.

Chi-square scores on all of these tests proved negative. Only one association, between the dichotomous clinical signs variable and the serious-progressive variable, was significant below the.l level: that is, .056. Upon inspection, the Pearson's correlation coefficient, which is useful in describing the strength of
an ooserved association, was not significant pelow the . 1123 level. These tests snow that progressivity may be a necessary condition of pathological gambling but it is certainly not a very good predictor of the disease among Ohio's citizens.

Part III: Tue Cross-Tabulations of the Clinical Scores witn the ISR Risk Classification

The purpose of constructing the clinical signs tests was to evaluate the 1984 ISR test results. Do the clinical signs test results corroborate the results of the ISR test? As discussed above, the clinical signs tests identify nearly three times the number of probable and potential pathological gamblers identified by ISR. Are the clinical cases also "at-risk" according to ISR? In order to answer these questions, the scores on the clinical tests were cross-tabulated with the ISR "at-risk" classifications. The results are displayed in table 17.

The range of clinical scores has been collapsed inco two categories: yes or no, critical or not critical, thereby forming a two-by-two table. The table shows that in 71.42% of the cases, those who are "at-risk" on the ISR test are also scoring on at least one of the clinical signs tests. Yet, the chi-square statistic is very low, .044, with a significance level of .833, affording a confidence level no higher than 16.7\%. Thus, the apparent correspondence between the two tests is a random event.

In taile 18, the rull distripution of the clinical signs is displayed. Two opservations stand out. Firsely, there are 8.5 times as many cases showing clinical signs in the ISR non-risk category as there are in the ISR at-risi category. Secondly, there are more "non-risk" than "atrisk" cases at eacn successive level of the clinicai signs distribution. Only those "at-risk" should be snowing any clinical signs at all.

The chi-square score, 4.4, is not signiricant beyond the 65% confidence level. Thus, in general, the ISR risk classifications are not statistically associated with the distribution of clinical scores. It aakes little difference how the ISR test classifies a case for purposes of predicting the number of clinical signs whicin it will register. Therefore, the $I S R$ and clinical signs tests are not mucuaily corrojorating.

The saine conclusion is reached when the probability or scoring on three or more clinical tests and the probability of scoring three or more points on the diagnostic test are cross-tabulated with the ISR risk classifications. That is, no statistically significant association is ooserved. The oniy time when a signiricant association does occur petween the ISR risk classifications and the clinical signs test is when either progressivity is 0 or the seriousness of progressivity is no greater than 25% of the 1981 annual wager. When progressivity is 0 , chi-square is significant
to the +.0007 level. When a progressive gamoler increases the annual wager by no more than 25% of the 1981 wager, tnen the chi-square score is significant to tie +.0001 level and the Pearson's correlation co-efficient is significant to the . 008 level. Therefore, the ISR test functions as an innocuous indicator of the distribution of the cunuiative clinical test scores only among the 17 staple gamplers and the 24 siigntly progressive gamolers. These two groujs account for oniy 21% of the gamblers pool. This is the exact value of the ISR test in preaicting the cumulative clinical scores of gamblers. It is a predictive value winch is not visible in the majority of cases.

Part IV: The Question of Regressivity

If an individual is scoring on tnree or more of the clinical tests, how much of a cutback in ganoling activity must that individual maxe before we are to believe that ne/she is not a patnological gambler? The odds are petter than 45000 to 1 that he/she is afilicted, that the report on gambing involvement is distorted to fit a denial patiern, that gamoling will never stop altogether for any extended period of time, or will soon become progressive again. In the end, now can those who are exercising successful control over their gambling benavior be differentiateä from tnose who are not? Standards of regressivity appropriate to cumulative scoring levels on the clinical signs tests are reguired.

A simple standard to apply, yet one winch is reasonable, would adnere to the following rule: namely, exclude from the calcuiation all tnose wnose level of regressivity is greater than their level of cuanulative clinicai test scores. For instance, any regressive gandiers whose cumulative scores are four or five would have to cut back their annual wagers by more than 90% in order to be declassified from the ranks oí the provable pathological gamplers. All gamblers scoring on three clinical tests would have to reduce their annual wagers by more chan 75% in order to escape inclusion, and so on. From table 19, the total number of regressive gamblers who scored on at least 1 of tine clinical signs tests is 27 and the total to de retained in the count of potential or probable pathological gambiers is 10.

This standard, while reasonable, is aroitrary. It is arguadle that, since the rankings are ordinal, ratner than interval, they do not measure differences between the rankings in common terms. For instance, how many additional units of regressivity are equal to one adaitional P.I.V.F.H. cest score? However, the purpose of the survey is to identify the potential market for outpatient treatment services. Therefore, it is important not to overlook those who try to get control of their gambling by cutting back only to find that their cutbacks are insufficient. In some sense, tnese are the very people most likely to seek
treatment when their own willpower fails. Can the reasoning whica led to tins standard be reiniorced by any otiner objective neasure?

Personal income is statistically associated with tne discribution oi cumulative clinical test scores with a caisquare score signisicant to the . 0348 level and a pearson's correlation coefficient significant to the +.0005 level. Housenold income is statistically associated with regressivity, but the association is significant only to tne .0855 level (i.e., 91% rather than 95% confidence). Tne Pearson's correlation coefíicient, however, is significant to the +.0316 level. Both of these income relationsaips are positive. Tables 20 and 21 display the cross-tabulations in detail.

Looking first at the most straignt forward relationsinip, between personal income and clinical scores, it is evident that high incomes sustain the nighest Erequencies of cumulative clinical test scores at every level from the lowest to the highest, whereas, the nigaer cumulative scores fall off sharply in tne lower income categories. Therefore, it would be Fair to say that the niginer the category of personal income, the more likeiy a garnoler is to score on three or more of tne clinical signs tests.

Looking next at the relationsinip between housenold incone and regressivity, it appears that 56.4% of the 22
regressive gamolers are clustered in the aignest incone category or regressive gamiers (tae $\$ 30,000$ to $\$ 50,000$ range). The remaining 43.6% are aistribured across tne lower income categories. However, when the 10 cases oi regressive gamblers in the 52% to 75% or greater categories are isolated, then the relationsnip is conjlately reversea: only 40% of the total group are iound in the nignest incone category. Rnerefore, it would be fair to say that the most regressive gamblers are to be iound in tne lower income categories.

The evidence suggests that as incoines rise cumulative scores on the clinical tests also rise, but the pressure to cut back in response to those scores decreases. Income tends to mask the clinical signs of distress and, thus, eiforts to curtail gamiling ace likely to lag benind tne level oi ganoling involvement. When there is evidence tnat the opposite is true, that is, wnen regressivity exceeds the level of clinical distress, then tine gambler is denonstrating appropriate and rational control over nis or her gambling activities. When such evidence is lacking, then, even though the gamoler is regressive, he or she is probably a pathological gambler.

Interestingly enougn, when nousenold income is correlated with progressivity, tne chi-square score is not significant below the .34 level. Therefore, it can be
saiely assumed trat the amount of increase in wagers over time is unrelated to the level of household income. Part V: The Distripution of the Diagnostic criteria, or Hard Signs

As previously described in Chapter V of tnis report, the diagnostic test identified 8 bona fide cases of gambling pathology. These individuals answered in the affirmative on three out of the five criteria. An adaitional 23 individuals admitted to one or two of the five criteria. In all, 29 gamblers showed the hard signs of gamioling pathology. How are these cases distributed across tne cumulative clinical signs tests? It is to be expected that the statistical association between the diagnostic and the cumulative clinical signs tests will be highly significant since the diagnostic test is one of tiose clinical tests. Yet, it will be interesting to observe the pattern of the scores just as we did with the ISR test. The vaildity of the diagnostic test is manifest. The questions are whether or not the results of the cumulative clinicals signs tests correspond to the results of the diagnostic test, and whetner or not scoring at all on the diagnostic test predicts the cumulative clinical score.

Table 22 shows that all of the diagnosed cases of gambling pathology scored on three or more of the clinical tests. Table 23 shows that this correspondence does not pertain to those who scored one or two on the diagnostic
test. Furthermore, is the diagnosed cases (8) are renoved Aron table 23 , then thare are about the same numper of cases Which scored one or two on che diagnoseic tesi in the noncritical range (10) as tnere are in the critical range (11) oí tne cunulative clinical signs test. Tnus, tne preaictive power of the diagnostic test is 100% ii the respondent scores three or nore and it is oniy 50% iti the responuent scores less than tinree.

Finen the diagnostic test (8 cases) iá cross-taoulated with the distrioution of the cumulative clinical tests scores and progressivity is controlled, then there are as many diagnosaile cases among the regressives (3) as there are anong the progressives (3). Tinis demonstrates, once again, that progressivity is not a good preaictor of gamoling patnology, and also that it would be an error to exclude a case from the count of pathological gamiers just vecause it is a regressive case.

Part VI: Integrating the Findings

It is now possible to count the number of patnological gamblers in the sample, and to set up a model waicn can de compared with the ISR model. First oi all, there are 194 gamblers in the sample. Of these, 43 dia not pass tne chronicity test and 51 dia not score on tne cumulative ciinical signs tests, and there were 13 overlaps petween these two groups. Consequently, there were 113 chronic
gamolers wno also scoreu on the cumulative signs test, oi 14.1\% of the sample.

Secondly, oi tnose "at-risk" according to tne cumulative clinical signs tests, 60 are to de ciroppeu because toey only scored on one of the tests. Additionaily, there are 6 cases waicn are to de dropped because, altnougn tney scored on two or more of tine clinical signs tests, taey also showed sufficient regressivity in their total anmal wagers between 1981 and 1984 that they are prooably not pathological gamilers. Therefore, the total number of cases to de dropped at this stage is 66. Tne "at-risk" pool has now been refined to a group of 47 cases, or 5.86% of the sampie wno are potentially patnological gandlers.

Thirdly, this "refined" group or poteniial patnolocical gamblers can be Iurther distilled to produce a group oi gamolers for whom the odids in favor of jeing a patiological gambler are particularly acute: petter tian 45,000 to 1. There are 5 remaining regressive ganblers who scored on just 2 of the clinical signs tests. Among the stable gamolers, there were 4 , and among the progressive gamolers inere were 18, who scored on just 2 of the clinical signs tests. Tne total, 27 cases, or 3.37% of the sample, can be suotractau inon the rerined "at-risk" pool, leaving 20 cases or prooable patnological gamiolers. Of these, 12 cases, or 1.498% of the sample can be subtracted from the probable pathological gamolers group because they did not pass tne
diagnostic test. The remainder, 8 cases, or $.998 \%$ of the sample, represents the diagnosable cases detected in tnis survey.
Part VII: Comparing the ISR and the CIinical Signs Models
Table 24 compares the results of the cumulative clinical signs test model with the results of the ISR inodel. Firstiy, the clinical tests exhibit much greater sensitivity than the ISR test. The clinical tests identify 5.86% of the sample who are "at-risk" of gambling pathology in comparison to just 2.62% oi the sample identified oy the ISR tests. This represents a 150% difference in the relative sizes of the "at-risk" pools.

Secondly, the clinical tests exhibit must greater specificity than the ISR test. The clinical tests differentiate three sub-classifications of gamblers all of whom are characterized as pathological gamblers. Each suoclassirication is associated witn explicit cumulative confidence levels and known odds which allow for the estimation of particular errors in prediction. By comparison, the ISR test identifies three subclassifications, only two of which are related to the target population. The third, and largest sub-group, called "other" contributes notining to our understanding of the dimensions of the pathological gambling problem and must be discarded from any further analysis.

Thirdly, the diagnostic test identifies 8 pona fide cases of gambling pathology. That is, probaoility theory is not required to make this designation. The bona fide cases alone are nearly the equal to the 9.03 combined cases which ISR identifies as probable and potential pathological gamolers. This observation suggests that only oy collapsing the potential/probable sub-classifications does亡ne ISR model predict the number of diagnosable cases in the population. However, it also suggests that the ISR test understates the propable magnitude of the prevalence rate by 55\% to 80\%. Since the 1975 ISR stuay lacked an authentic diagnostic test, it may be possible that the 1975 stuay understated the national prevalence rate as well.

Cinater 7: Sunary and Conclusions

The estinates derived from the cumulative cinnical signs test are significancly different froh those derived from tne ISR model, but then the operant principles of discrimination are also different. Tine probability-of-inclusion levej for the ISR "at-risk" pool was set at . 2 . In the clinical signa test, it was set at . 6. Conversely, tne confidence levels are 80% and 40% respectively. The rationale denind this arrangenent is tnat the test is grounded in tne clinical signs of gambling patnology, whereas, tae latter IGR test is wade up or scales describing the personal cnaracteristics possessed, although not exclusively, by pathological gamblers. Furthernore, the clinical signs test precludes non-gamolers from the "at-risk" pool, whereas, the ISR test was originally applied to gamblers and non-gamblers alike. Therefore, the ISR cest required a much lower probaioility-or-inclusion level in its original design. Additionaily, the clinical signs test precludes gamblers who are not chronic gamblers from ever taking the test, and therefore, it excludes them from the "at-risk" pool. Chronicity is a necessary but not sufficient condition for tne diagnosis of gamoling patiology. All of the diagnosable cases are also chronic gamolers, for instance. But cnronicity was not a pre-condition of inclusion in the ISR "at-risk" pool.

Finally, the odds in favor of a diagnosis of gambine patnology at the $\cdot 6$ propapility-ṓzinclusion level waen using the clinical signs cest are alreauy 13 to 1. Considei that 6 out of the 30 cases, or nore than 7% or tine ganolers Who do not continue in the "at-risk" pool beyond tais level, nave scored on the diagnostic test. It mignt be argued, therefore, that even proceeding to the 4 probability-oíinclusion level, potential cases of ganiling patnology nave Deen erroneously excluded.

With all of these safeguards or ailowances puilt into the model--the more select sample of respondents, the more direct, specifically clinical and behavioral approaches to discrimination--the risks of misclassification associateu With the .6 probability-of-inclusion level are much less taan tne corresponding risiss would be waen relying upon tae ISR test.

The aforementioned principles are operating in rne cumulative ciinical signs test at eacn subsequent stage oi the discrimination. As the probability-of-inclusion level is reduced from . 4 to that of the ISR test, an additionai principle, that of relating the distribution of ciinical signs to changes in the amount of gambling involvement, is simultaneously introduced. By relating furtaer inclusion in the "at-risk" pool objectively to progressivity and regressivity of gambling benavior, the quality of the discrimination is further refined.

Once the . 2 probability-of-inclusion level has been reached, no lower standard for discrimination is warranted. The odds in favor of a diagnosis of gambling pathology for those remaining in the pool are 45,000 to 1 or better. On the other hand, the ISR researchers decided that it was still necessary for them to personally inspect the cases remaining in their pool in order to eliminate, at this point in the analysis, all remaining cases of non-gamblers and non-gambling related pathologies. In short, the further classification by subjective inspection of the ISR "at-risk" pool was necessary in order to fortify the specificity of the discriminance test itself.

In conclusion, then, TPA recommends that, for purposes of estimating the current prevalence rate of pathological gamblers in the state of Ohio, the predictions based upon the cumulative clinical signs test be adopted. Given a total adult population in Ohio of $7,703,310$ persons, TPA predicts that there are probably 192,227 pathological gamblers. Additionally, there are another 259,601 gamblers who demonstrate the potential for either being pathological gamblers at present, or becoming pathological gamblers in the future.

Footnotes

1. For a detailed grapn of the syndrone, see Appendix A.
2. "In reviewing tnese data, it is important to noce that persons mo reported thar they lived in ilevada Decauce of legalized gamoling were exciuded iroin tne $[S R$ sample." ISR ieport. 1976.
3. II. Kallick, D. Suits, T. Dielman, J. HyNels, A Survey of Anerican Gamiling Actitudes and Benavior (Ann Arbor, ili: University of ilicaigan, The Institute for Survey Researcin, 1976) ;. 429 and 440 .
4. ibid e. 223 .
5. ioia 2. 427.
6. ioid p. 474
7. L. Nadler, L. Mellonics, The Conduct oí Patnological Ganoling Research: Covering All Bets (Unpuplisned Paper presented to the Fifth Mational Conference on Gamoling and Risk Taking at Lake Tanoe, Nevada, October 22-25, 1981) pgs. 9-11.
8. Tor heeland, Director, Natıonal Foundation for the study and preatment of Pathological Gamoling and Dr. Samued Rrug, of the University of Illimois, collaborated to develog anu test tie Inventory or Ganialing Benavior, 1982. (See aiso, Custer; 1978).
9. 1- 15.7% (nolding steady) $=84.3 \%$ (not noluing steady).
$84.3 \% / 15.7 \%>5$ to 1.
10. Op. cit. Kallick et al. p. 418, et seq.
11. Op cit. Kallick et al. p. 42l.
12. Op. cit. Kallick et al. p. 422 et seq.
13. Op. cit Kallick et al 2. 427. The authors insert ine following caveat in their description of the methodoloyy: "It is entirely possible that people in the general population who resemble the compulsive gamoler profile to a greater extent than the church memier profile do so aitner because tney actually are compulsive gamblers, nave a propensity for beconing such, or possibly they exhibit sotte
other abnormal personality characteristic which places them closer to the profile of the compulsive gambler. For this reason, the probability level of classification as a compulsive gambler was deliberately set quite high."
14. Op. cit. Kallick et al. Table 12.2-1 p. 424 et seq.
15. The point of such a test is to be able to classify cases into two groups whose scores are most different when the groups themselves are controlled (between-group differences), and relatively less different from the scores of other group members (within-group differences). The discriminant function (L) is a linear equation which maximizes the ratio of between-group to within-group variation in the test scores. Presumably, each group member shares in certain characteristics. That is, the test is not only discriminatory, but it is assumed to be associative. That is because the discriminant function (L) is derived from the pretest scores of two known groups which are distinct from on another along a single dimension.

By setting the discriminant function weights equal to 1 , the test is hampered only in so far as the amount of total variance associated with random population variance cannot be controlled. Since the I.S.R. variables are known to be highly discriminatory, this population variance ought not to mask entirely the overall difference between the test scores of the classificatory groups. There may be some numbing of discrimination on a variable by variable basis. Furthermore, there may be some lessening of the association between the test scores and the model scores on the individual items. As will be demonstrated, the cutoff point can be utilized as a lens to focus the discriminance test so that both discrimination and association are maximized.
16. op. cit. p. 474
17. . 998% (1984 "Hard-risk") - . 77% (1975 Probable) $=.228 \%$
18. $.998 \%-.77 \%=.228 \% \quad .228 \% / .77 \%=29.61 \%$
19. The diagnostic variables for the "hard" signs test in part V of the questionnaire were described for me by $D r$. Robert Custer.
20. The themes around which the "soft" signs were grouped into additonal clinical tests were first suggested to me by Dr. Robert Politzer.
21. The data were compiled from two samples which answered the same questionnaire. The first sample was a group of 83
gamblers annonymous members. The second sample was a group of 61 kiwanis club members who sometimes gamble. The total cases involved 144 individuals, randomly selected for participation. Although these samples are, technically speaking, large enough to warrant reference to a standard normal probability distribution, the variance associated with the sample design or sampling technique is unknown.
22. $13-8=5 / 8=62.5 \%$

Taible 1. Participation in Twelve Ganes oi Chance**
12811284 Favorite
Freg. \% Frece 요 Freg. 을

Horses	56	(3)	7.0	46	(4)	5.7	19	(3)	2.4
Sports	44	(5)	5.4	40	(5)	5.0	14		1.7
Lottery*	81	(2)	10.1	158	(1)	19.7	45	(2)	5.7
Casino*	24		2.99	31		3.87	11		1.3
Cinarity*	25		3.1	32		3.99	3		. 4
Family Games	82	(1)	10.2	77	(2)	9.6	48	(1)	6.0
Bingo*	23		2.9	33		4.1	16	(4)	2.0
Poker* Hachine	10		1.3	14		1.7	2		. 3
Office* Pools	54	(4)	6.7	57	(3)	7.2	16	(5)	2.0
Horses Bookie	8		1.0	5		. 6	1		. 2
Sports Bookie	9		1.2	7		. 8	1		. 2
Numbers	6		. 7	3		. 4	---		-

*Participation rate increased from 1981 and 1984.
**The top five games are ranked in parentheses by frequency of respondents playing each game.

Taple 2. Table of Control Scores - 15 Vars-ifich

	PG'S	Cnurch-goers	Grand Hean
Anxious	1.751	2.314	2.0325
Careless	2.518	3.405	2.9615
Conventional	2.396	1.809	2.1025
Good Natured	1.445	1.548	1.4965
Irresponsible	2.754	3.83	3.292
Show Off	2.330	3.297	2.81 .35
Better Ofí in Ola Days	2.798	2.981	2.8895
Prefer to Play for Dollars	1.176	1.89	1.533
Higher Stakes	1.266	1.962	1.614
Go $\overline{\text { İOr }}$ Broke	1.198	1.924	1.561
Uranium hining Venture	1.629	1.809	1.719
Conserve Dollars	1.763	1.169	1.466
Never Put All of my Dollars into a Venture	1.462	1.059	1.2605
Procrastinate	1.048	1.017	1.0325
Elections	1.189	1.109	1.149
Truth Teller	1.096	1.325	1.2105
Ethics	2.004	1.440	1.722
Fear Hurt/Enjoy Danger	1.713	2.7825	2.24775
Total	31.536	36.6705	34.10325

Taple 3. The Discrininant power of tne 18 ISR Variaples

Variaple Labels

Anxious
Careless
Good Natured
Conventional
Irresponsible
Put on Show
Better Off In Old Days

Etnics
Safety
Go For Broke
Tie Higner the Stakes

Rather Play
FOE DOLlars
Uranium Mining
Never Invest
All Dollars
Conservative
With Doliars
Procrastinate
Elections
Truth Tellec

Total
Total Gamblers
In "AT-Risk" Pool
$\frac{\text { Give Propapility of Inclusion Levels }}{.04 \quad .1 \quad .2 \quad .25 \quad .5}$
$\begin{array}{lllllll}0 & 0 & 0 & 1 & 1 & 2\end{array}$
$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 5\end{array}$
$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 2\end{array}$
$\begin{array}{llllll}1 & 1 & 1 & 0 & 0 & 3\end{array}$
$\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 2\end{array}$
$\begin{array}{llllll}0 & 0 & 0 & 1 & 0 & 1\end{array}$
$\begin{array}{llllll}0 & 0 & 1 & 1 & 1 & 3\end{array}$
$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 5\end{array}$
$0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllll}0 & 0 & 1 & 0 & 0 & 1\end{array}$
$\begin{array}{llllll}0 & 0 & 1 & 0 & 0 & 1\end{array}$
$\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 2\end{array}$
$\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 2\end{array}$
$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$
$1 \begin{array}{llllll}1 & 1 & 1 & 1 & 5\end{array}$

0	0	0	0	0	0

$\begin{array}{llllll}4 & 4 & 7 & 10 & 9 & 34\end{array}$
$\begin{array}{lllll}6 & 11 & 17 & 38 & 56\end{array}$

Table 4. The Associative power of the 18 ISR Variables

Variables Labels	Eive Probapility Levels of Inclusion						
		. 04	. 1	. 2	. 25	. 5	Total
Anxious	PG/R	0	0	1	1	1	2
	R/CG	1	0	1	1	1	1
	CG/NR	1	1	1	1	1	0
Carejess	PG/R	0	0	0	0	0	5
	R/CG	1	1	1	1	1	
	CG/NR	0	0	0	0	0	5
Goocin Watured	$\underline{P G / R}$	0	0	0	0	1	4
	$\underline{\mathrm{B} / \mathrm{CG}}$	1	1	1	1	1	0
	CG/MR	1	1	,	1	1	0
Conventionai	PG / R	0	0	1	1	1	2
	$\underline{\mathrm{B} / \mathrm{CG}}$	0	0	1	1	1	3
	CG/MR	1	1	1	1	1	
Irresponsible	PG/R	0	0	0	0	0	5
	R/CG	1	1	1	1	1	0
	CG/NR	1	1	1	1	1	0
Put on Show	PG / R	0	0	1	1	1	2
	B/CG	,	0	1	1	1	2
	CG/NB	0	0	,	0	0	5

Better off
In Oid Days

Ethics

Safery

Go For Broke

Tre Higher
The Stakes

PG / R	1	1	1	1	1	0
R / CG	1	1	1	1	1	0
C / WR	1	1	1	1	1	0

(Taple 4. Continuea)
Rather Play For Dollars

Uraniun
ining

PG / R	0	1	1	1	1	1
R / CG	1	1	1	1	1	0
$\mathrm{CG} / \mathrm{NR}$	1	1	1	1	1	0
PG / R	1	1	0	1	1	1
R / CG	0	0	0	1	1	3
$\underline{C G / M R}$	1	1	1	1	1	0

Never Invest
All Dollars

PG / R	0	1	1	1	1	1
R / CG	0	0	0	0	0	5
$\mathrm{CG} / \mathrm{N} R$	1	1	1	1	1	0

Conservative With Doliars

Procrastinate

Elections

Truth Teller

Totals

PG / R	1	1	1	1	1	0
$R / C G$	0	0	0	1	0	4
$\underline{C G / N R}$	0	0	0	1	1	3

$P G / R$	0	0	0	0	0	5
$R / C G$	0	0	0	1	1	3
$C G / N R$	1	1	1	1	1	0

PG/R	0	0	0	0	0	5
R/CG	0	0	0	0	1	4
CG/NR	1	1	1	1	1	0
PG/R	0	0	1	1	1	2
P, $\angle C G$	0	0	0	1	0	4
CG/MR	1	1	1	1	1	0
PG/R	9	11	8	5	5	
B/CG	10	10	8	4	4	
CG/NR	3	4	5	3	4	

PG/R and $C G / N R$ But Not R/CG: 010
$\begin{array}{lllll}1 & 1 & 3 & 1 & 2\end{array}$
PG/R But Not
R/CG: 011
$\begin{array}{lllll}6 & 3 & 2 & 3 & 3\end{array}$
Total Successful Associations
$4 \quad 5$
Key to Table 4.
PG/R: Pathological Gambler/At-Risk Groups
CG/NR: Church-Goer/Not-At-Risk Groups
R/CG: At-Risk/Church-Goer Groups

TaDie 5. Sumary of Discriminations and Associationa

putcomes
 Discriminations

| Five Probapility Levels of Inclusion | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .04 | .1 | .2 | .25 | .5 |
| 4 | 4 | 7 | 10 | 9 |

Associations (PG/R But Hot $R / C G$).

Discriminations and
Associations (PG/R But Not R/CG).

3
2
313
Association (PG/R
But Not R/CG) But Not Discrimination

42
2
3
2
Dischimination But Not Association (PG/R But Not R/CG)

Total Discriminating
and Associating (PG/R
But Not $R / C G$) Variables
$8 \quad 6 \quad 9 \quad 13 \quad 11$
Neither Association
$\begin{array}{llllllll}\text { Nor Discrimination } & 10 & 12 & 9 & 5 & 7\end{array}$
Conclusions: The optimal cutoff in absolute terms is the .25 prooability of inclusion level. This cutoff nas the fewest number of non-functioning variables (5), and tine highest level of discrimination (10). Unfortunately, tne .25 cutoff also has the lowest level oi associations (4) and joint discriminations and associations (1). In fact, 90\% of the discriminating variables render no $P G / R$ associations. Therefore, the optimal cutoff in relative terms is the . 2 probability of inclusion level. This cutoff has 7 discriminations, and it has a nigher level of associations (5), as well as ratio of joint discrimination and association of 43%. At this cutoff point, 9 of the 18 variables, or 50%, do not function and. may be dropped. Trie variables to be dropped at the .2 cutoff point are: l) Anxious, 2) Conventional, 3) put on a Show, 4) Go for Broke, 5) The Higher the Stakes, 6) Never Invest all Dollars, 7) Conservative with Dollars, 8) Procrastinate, 9) Trutn Teller.

TABLE 6. THE ISR HODEL OF THE PREVALENCE RATE OF PATHOLOGICAL GAMBLIHG: NATIONAL SAMPLE, 1975

SAHPLE SIZE (N) $=1736$
"AT-RISK" POOL
(PROBABILITY-OF-INCLUSION LEVEL $=.04$)
CASES \%SAMPLE
278 16*

CATEGORIES OF FURTHER CLASSIFICATION: PERCENT OF "AT-RISK" POOL

A. PROBABLE COMPULSIVE GAHBLERS 9%
B. POTENTIAL COMPULSIVE GAMBLERS 15\%
C. OTHER PATHOLOGY 18\%
D. POOR COMPREHENSION, ILLITERATE 14\%
E. OTHERS 44\%

A.	B.	C.	D.	E.
25.0	42.0	50.0	39.0	122.0
CASES	CASES	CASES	CASES	CASES
1.44	2.42	2.88	2.55	7.03

*BASED UPON THE ISR WEIGHTED SAMPLE SIZE.

TAELE 7. THE ADJUSTED ISR HODEL OF THE PREVALENCE RATE OF PATHOLOGICAL GAMBLING: NATIONAL SAHPLE, 1975.

SAMPLE SIZE (N) $=1736$
GAlibLERS
CASES \%SAHPLE
1059
61
"AT-RISK"
(PROBABILITY-OF-INCLUSION LEVEL=.04)
CASES
156

CATEGORIES OF FURTHER CLASSIFICATION: PERCENT OF "AT-RISK" POOL

A. PROBABLE COMPULSIVE GAMBLERS 16%
B. POTENIIAL COMPULSIVE GARBLERS
C. OTHER PATHOLOGY OR POOR COMPREHENSIOR 57\%
A.
25.0

CASES
1.44
\% SAMPLE
B.
42.0

CASES
2.42
\% SAMPLE
C.
89.0 CASES
5.13 \% SAMPLE

TADLE 8. THE ISR MODEL OF THE PREVALENCE RATE OF PATHOLOGICAL GAHBLIIJG: EXPECTED FREQUEINCIES, OHIO SAMPLE, 1985

TABLE 9. THE ISR HODEL OF THE PREVALENCE RATE OF PATHOLOGICAL GAMBLERS: OBSERVED FREQUENCIES, OHIO SAMPLE, 1985

SAMPLE SIZE $(N)=801$
GAMBLERS

CASES	\%GAMBLERS
194	24.21

"AT-RISK"
(PROBABILITY-OF-INCLUSION LEVEL $=.2$)
CASES
21

CAYEGORIES OF FURTHER CLASSIFICATION PERCENT OF "AT-RISK" POOL

A. PROBABLE COMPULSIVE GAMBLERS 16%
B. POTENTIAL COMPULSIVE GAMBLERS 27%
C. OTHER PATHOLOGY OR POOR COAPREHENSION 57\%

PROBABLE	POTENTIAL	OTHER
CASES	CASES	
3.36	5.67	CASES
		12.0
$\%$ SAMPLE	$\%$ SAMPLE	
.42	.71	$\%$ SAMPLE
		1.49

TABLE 10. THE COMPARISON OF THE EXPECTED AND OBSERVED "ATRISK" POOLS, OHIO SAAPLE, 1984

EXPECTED (E)
"AT-RISK"
CASES \%GAMBLERS
29
14.73

PROBABLE
CASES \%SAMPLE
4.64 . 579
POTENTさAL
CASES
7.83

OTHER
CASES \%SAMPLE $16.53 \quad 2.06$

OBSERVED (O)

"AT-RISK"
CASES \%GAMBLERS
2110.8

PROBABLE	POTENTIAL		OTHER		
CASES	\%SAMPLE	CASES	\%SAMPLE	CASES	\%SAAPLE
3.36	.42	5.67	.71	12.0	1.49

DIFFERENCE (O-E)	"AT-RISK"
	CASES -8
	\%GAIBLERS -4.12
	\%CHANGE -28
	$(0-\mathrm{E} / \mathrm{E})$

PROBABLE
POTENTIAL
OTHER

$$
\begin{array}{ll}
\text { CASES } & -1.28 \\
\text { \%SAKPLE } & - \\
\text { \%CHANGE } & -28.159 \\
(0-E / E) &
\end{array}
$$

-2.16
-4.53

- .26
$-.57$
-28.0
-27.4

TABLE 11. THE COMPARISON OF THE EXPECTED AND OBSERVED "ATiRISK" POOLS, OHIO SAMPLE, 1984: APPLYIVG 'IHE DIAGINOS'IC TEST.

EXPECTED (2)

> | "ATmRISK" | | |
| :---: | :---: | :---: |
| CASES | \%GAMBLERS | |
| 29 | 14.73 | |

PROBABLE	POTENTIAL	OTHER
CASES		
4.64	7.83	CASES
\%SAMPLE	\%SAMPLE	16.53
.57	.97	
\%RISK POOL	$\% R I S K$ POOL	2.06
16.0	27.0	\%RISK POOL
		57.0

OBSERVED (O)

$\left.\begin{array}{ccc} & \text { CASES } & \text { \%GAMBLERS } \\ & 210.82\end{array}\right)$

OTHER
CASES
\%SAIPLE
\%RISK POOL 0.0

TABLE 11. (CONTIIUUED)

PROBABLE		POTENTIAL	OTHER
CASES	+ 3.36	+ 5.66	- 16.53
\%SAMPLE	+ . 419	+ . 71	- 2.06
\%CHANGE	+72.36	+72.36	-100.0

*THE NUHBER OF "OBSERVED" POTENTIAL CASES IS ACTUALLY AN ESIIIATE WHICH ASSUMES THE SAME RATE OF INCREASE FOR POTETYIAL CASES AS WAS OBSERVED FOR THE PROBABLE CASES. AS A RESULT THERE ARE NO "OTHER" CASES IN THIS HODEL.

Table 12 continued
Interpersonal

```
"Sonetines I brag awout winning money
from gambling even though I actually
lost"
```

Vocational
"Gambling had a poor effect on my 94.
performance in school."

| Vocational |
| :--- | :--- | :--- |
| "I have lost time fron work on |
| occasion, due to gambling." |

Vocational "Gambling has affected my reputation."	120.28	54.54%	0

reputation."

Vocational

"Hy employer has been distressed by
18.1
15.97\%
ray absence from work."

Financial

"I have gambled in order to get money with which to pay debts or otherwise solve financial difficulties."

Financial

$\begin{array}{lll}\begin{array}{l}\text { Flnanclal } \\ \text { "When paying off a debt with gambling } \\ \text { winnings, I will keep a reserve for }\end{array} & 115.27 & 54.93 \%\end{array}$ gambling."

Table 12 continued

Financial	105.32	50.69%
"I have financed gambling either by		
pawning family jewelry, or selling		
off personal or real property."		

$\frac{\text { Financial }}{\text { I I have occassionally borrowed or taken }}$money even I had my own money to bet"	81.44	45.07%
Hard Sign Big win equal to one month's salary or more?	0	38.73%
Hard Sign Borrow money, from legal or other sources, in order to finance gambling?		

Hard Sign Defaulred on a loan due to gambling?	0	36.36%	1.398%
Hard Sign Bailed out of a gambling debt by your anyone, your parents, friends, or	0	40.59%	$.7 \%$

Hard Sign

Has your gambling made you or your
0
57.04%
0
family quarrelsome at home, or made your homelife unhappy in any other way?

Table 12 continued
Hard Sign
Caused problems for your spouse or

$$
0
$$

$$
0
$$

or your children?
Hard Sign
Did you ever commit, or consider
3.84%
0
commiting an illegal act, such as
forgery, fraud, embezzlement, or tax
evasion in order to finance gambling?

Table 13. Probabilities of Scoring on the Cumulative Clinical Signs Tests

	$\begin{aligned} & \text { Probability } \\ & \text { of an } \\ & \text { Affirmative } \end{aligned}$	Cumulative Probability Affirmative	Probability Affirmative Pathological Gambler	Cumulative Probability Affirmative	Probability Affirmative Non-Patholgical Gambler	Cumulative Probability Affirmative	Odds In Favor of Affirmative by Pathological Gambler
Personal	. 6098	. 6098	. 5677	. 5677	. 0421	. 0421	13.48
InterPersonal	. 5761	. 3513	. 5289	. 3002	. 0472	. 0019	158.00
Financial	. 513	. 1802	. 5112	. 1534	. 0017	. 0000034	45,117.64
Hard Signs	. 4431	. 0798	. 3948	. 0605	. 0484	. 0000002	302,500
Vocational	. 4226	. 0378	. 4226	. 0255	0	.00000001*	* 2,550,000

*Arbitrary estimate.

Taple 15. Progressivity as a Proportion of 1981 Anual Wagers

$\begin{aligned} & .01 \text { to } .25 \\ & \text { times } \end{aligned}$	$\begin{gathered} .26 \text { to } .5 \\ \text { times } \end{gathered}$	$.51 \text { to } .75$	$\begin{aligned} & .76 \text { to } 1.0 \\ & \text { times } \end{aligned}$	$\begin{array}{r} 1 \text { to } 5 \\ \text { tines } \end{array}$	$\begin{aligned} & 5 \text { to } 10 \\ & \text { times } \end{aligned}$	$\frac{16}{\text { tines }}$
20	9	4	4	0	34	5

26 times	36 times	36 times
2	1	1

gajle 10. The Barcnart of Progressive, Staje, and Reqressive Gainters

Vaiua Lainei	Value	Frequency	Percent	Valid Percent
Regressive	-1.00	39	20.4	26.1
Sta.ole	.00	24	12.2	15.7
Progressive	1.00	88	45.3	58.2
		43	22.1	Missing
	Total	$\overline{194}$	$\overline{100.0}$	$\overline{100.0}$

Regressive -1.00
39

Staile $\quad .00 \longrightarrow 24$

Progressive 1.00 \square

Mean $\quad .32$

Vaía Cases 134

STD ERR
ininimum
.07
-1.000
Missing Cases
29

Variance maxinum

Taide 17. The Cross-tapluiation of the ISR Risk Classifications Dy tne "At-Risk" Categories or the Cunulative Chinical Signs Test

$$
\begin{array}{cc}
\text { ISR } \\
\text { "Hot-at-Risk" } & \frac{\text { ISR }}{\text { MAt-RiSK." }} \\
0
\end{array}
$$

Cum Clinial Signs

"Wot-at-Risk"	45	6
0		51
(26.4%)		

$\frac{\text { "At-Risk" }}{1}$
128
15
143
(73.6\%)

Total
173
89.2%
21
194 (100\%) .

Cni-Square	Degree of Freedom	Significance
.0444	1	.833

Taile 18. Tine cross-tavulation ó the ISR "at-risi" Classifications by tire Ereguency Distribution of Cumulative Clinical rest Scores

$$
\begin{array}{cc}
\text { ISR } & \text { ISR } \\
\text { "Not-ac-Risk" } & \text { "At-Risk" }
\end{array}
$$

Cuin
Ciinical Scores

1	72	8	80 (55.8%)
2	35	4	39 (27.5%)
3	11	0	11 (7.7%)
4	7	3	10 (7.1%)
Totai	128 (89.8%)	15 (10.2%)	143 (100%)

Cini-square	Degrees of Freedon	Significance
4.416	4	.3526

Taple_19. Tne Cross-tapulation of Relative Regressivity oy Cunulative Cija

Tainle_20. The Cross-tabulation of Cuinulative Clinical Signs iest ay Pecsonal Incone

Personal
Under \$5001/
\$10001/
\$15001/
\$20001/
$\$ 30000 /$
incone
$\$ 5000 \quad \$ 10000$
$\$ 15000$
$\$ 20000$
$\$ 30000$
$\$ 50000$

Cuin
Clinical
Scores
1

	9	14	13	3

60 54.3\%

$2-3$				

5

coluan
Tocal

24	14	16	17	33	18
19.4%	11.4%	13.3%	14.0%	27.3%	14.7%

$\frac{\text { Cni-Square }}{32.874} \frac{D_{0} F}{20} \quad \frac{\text { Sige }}{.0348} \frac{\text { Pearson's "R" }}{+.2919} \quad \frac{\text { Sige }}{.0005} \quad \frac{\text { uisaing Cases }}{71}$
\qquad

Taple 21. The Cross-tabulation of Relative Regressivity by Housenola Incs

Household	Under	$\$ 5000$	$\$ 10,000$	$\$ 20,000$	$\$ 30,000$	
Income	$\$ 5000$	$\$ 10,000$	$\$ 15,000$	$\$ 30,000$	$\$ 50,000$	Total

Regressivity
$-.25$

| | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | | 7 |
| :---: |

$-.5$

$-.75$

| 0 | 1 | 2 | 0 | 3 |
| :--- | :--- | :--- | :--- | :--- | | 6 |
| :---: |
| 28.98 |

$-.9$

9.2

-1.0

> Coluran Total

		3	2	3	13
	1	22			
6.0%	14.7%	9.6%	13.3%	56.4%	100.0%

Chi-Square D.F. Significance Pearson's R Significance 24.188 16 .0855
 -. 39995 . 0316

Taple 22. Tne Cross-tapulation of Diagnostic "Harci" Bizns by tide Cilinical Bigns Test

Diagnostic Signs	iJo Score	Score	Total
CUn PIVFH Scores			
1	80	0	$\begin{array}{r} 80 \\ 55.8 \% \end{array}$
2	39	0	$\begin{array}{r} 39 \\ 27.5 \% \end{array}$
3	10	1	$\begin{array}{r} 11 \\ 7.7 \% \end{array}$
4	5	5	$\begin{array}{r} 10 \\ 7.18 \end{array}$
5	1	1	$\begin{array}{r} 3 \\ 1.9 \% \end{array}$
Columan Total	$\begin{array}{r} 135 \\ 94.4 \% \end{array}$	$\begin{array}{r} 8 \\ 5.0 \end{array}$	$\begin{array}{r} 143 \\ 100 \% \end{array}$

Tapie 23. Tne Cross-tanulation of tne Cumulative Cinical

 Signs Test Dy Low Scorers on the Diagnostic Test
Diagnostic rest

Cual		0	1	Row rotai
Clinical Scores	0	160	10	170
				87.8%
	1	5	19	24
		165	29	12.2%
		85.0%	15.0%	100.0%

TABLE 24. COMPARISON OF TEB ISR AMD CLINICAL SIGNE HODELS.

ISR
OBSERVED "AT-RISR"
(PROBABILITY-OF-INCLUSION LEVEL=.2)
CASES \%SAMPLE
$21 \quad 2.62$

PROBABLE	POTENTIAL	OTHER
CASES		
3.36	CASRS	CASES
\%SAIIPLE	5.67	12.0
.42	$\% S A M P L E$	$\% S A M P L E$
	.71	1.49

CLINICAL OBSERVED

$$
\begin{gathered}
\text { "AT-RISK" } \\
(\text { PROBABILITY-OF-INCLUSION LEVEL) }=.2) \\
\text { CASES } \% \text { SAMPLE } \\
47
\end{gathered}
$$

PROBABLE	POTENTIAL	DIAGINOSABLE
CASES		
12	CASES	CASES
8 SAMPLE	27	8
1.498	$\%$ SAMPLE	8 SAMPLE
	3.37	.998

BIBLIOGRAPGY

1. Kallick, H., Suits, D., Dielman,T., Hywels, J., A Survey oi Aiorican Gamoling Attitudes and Benavior, Nae Insititute for Survey Research, Ann Arbor, ilichigan, 1978.
2. Heeland, Tor; Krug, Samuel, Inventory of Ganoling Denavior. Unpublisned. Tine National Foundation For the Beady and Ireatment of Pathological GAmoling. Tasnington, D. D. 1982.
3. Nader, L, Hellonics,L., "Tae Conduct of Pathological Gambling Research: Covering All Bets." Unpuolisned. 1981.

APPENDIX A

APPENDIX B

Gamblers	- Gamblers and			
	-	3. Discriminant Variables:		
- Identifies	Non-Gamblers	(A) ISR (B) Custer Soft Signs	4. Gambling Behavior:	Gamblers Only
	- Only Those	-Gamblers Only	- Focuses on Amount	5. Diagnostic Criteria
Non-Gamblers	Items which	-Uses P.I.V.F.L.	and Characteristics	- Gamblers Only
		- Items which do mention	of Gambling in 1983.	-P.I.V.F.L.
- Gambling	do Not	gambling and which	- Distinguishes Three	- Sensitive
		are not sensitive.	Types of Social	Variables.
Mentioned	Mention	- Establishes Comparable	Gamblers.	
	Gambling, and	"At Risk" Pool.	- Income Variables: T	Total Net Personal
Amidst	which are not	- Distinguishes Three Grades of Social Gamblers.		
List of		sensitive.		
	- Uses P.I.V.F.L.			
	- Establishes Comparable "At Risk" Pool, but only Partially.			

```
EİSURE TIME PURSUITS
```

- Identifies
Gamblers
DISCRIMINANT VARIABLES TESTING: (A) ISR VARIABLES, (B) THE CUSTER SOFT SIGNS
 - Gamblers and
Non-Gamblers
 - Only Those
Non-Gamblers
Items which
do Not
Mention
Mentioned
Gambling, and
Amidst
which are not
List of
sensitive.
-Uses P.I.V.F.L.
Other Pursuits
-Establishes Comparable "At Risk" Pool, but only Partially.
Identifies: Sex, Age, Education, Occupation, Residency, Ethnicity/Race.
\qquad
\qquad - \qquad Record FIP Code 39 \qquad RESPONDENT SCREENER \& SELECTION GUIDE
..JTRODUCTION Hello, my name is \qquad and I am calling for Decision Research Corporation. Tonight we are calling people in the State of Ohio about leisure activities and we'd really preciate your cooperation. May I have a few minutes of your time? *
1.- order to determine which person in your household I should interview, I need to ask you two questions Ise Version Circled).

2 非 1 . How many people 18 years old or der live in your household, counting jurself?
ircle response at checkpoint on sink page).

स非2. How many of them are men?
zording to our random selection ocedures I need to talk to the 'proper respondent) in your housenold? Is that person home?
(If Not) What time can I call back speak to that member of your : uusehold?
who should ! ask for?

Yes, can that member of your usehold come to the phone? (Repeat introduction to proper respondent)

VERSION 1				
Number of	Total number of adults in mousehold			
adult men	1	2 3	4 or more
0	Woman	OIdest woman	Youngest woman	Youngest woman
1	Man	Man	Man	01dest woman
2		O1dest man	Youngest man	Youngest man
3			Youngest man	01dest man
$4+$				oldest man

VERSION 11

Number of adult men
0

VERSION III

Number of adult ment
0
0

If Respondent asks how long it will take say about 10 minutes.

Section I. Leisure

First of all, l'd like to read you a list of ways that some people spend their spare time. Please tell me if you frequently, sometimes, or never spend your spare time in these ways.

Frequently Sometimes Never Don't Know

1. Playing games at home with family.
2. Socializing with friends at a club or party.
3. Going out for entertainment.
4. Playing games for money, or betting on the outcome of games, events, or drawings.

2
2
2
2

2
(Circle response at checkpoint on pink page)
5. Participating actively in sports.
6. About how much money do you usually allow each month for recreation?
(Record exact amount below, then circle appropriate category. Read categories only if respondent hesitates in giving exact amount.)
$\$$ \qquad
7. Are you......
(Read List)

1	Single
2	Married
3	Separated
4	Divorced
5	Widowed
9	Refused (Do Not Read)
1	Graduate Grammar School (grades 1-8)
2	Attend High School 3
4	Graduate High School
5	Attend College
6	Graduate College
7	Attend Graduate School
9	Refusate, Graduate School
1	Black
2	White
3	Other (Specify)
9	Refused

9. Are you a black or white American?

2

,

9
Under $\$ 20$

8. What is the last year of school you completed?
(C) Copyright 1984
R.P. Culleton

All Rights Reserved

Page 3.
10. And, what is your religion? Are you Catholic, Protestant or Jewish?
11. Which of the following best describes your work status.......
(Read List)
(If respondent says self-employed, ask if full-time or part-time)
12. Into which of the following age groups do you fall..... (Read List)

1 Catholic
2 Protestant
3 Jewish
4 Other(specify)
5 None
9 Refused

Full-time ($30 \mathrm{hrs}+$ per week) Part-time ($4-30 \mathrm{hrs}$. per week) Houseperson Student Retired Not Working Other Refused (Do Not Read)

1. $\quad 18$ to 34

235 to 49
350 to 64
465 and over
9 Refused (Do Not Read)

Page 4.

Section II. Discriminant Variables Testing, Gamblers and Non-Gamblers

Now l'd like to read you a series of statements. For each one please tell me if the statement is rue or false for you. The first one is.....

Sometimes at elections I vote for candidates about whom I know very little.

True	False
1	$\frac{\text { Don't Know }}{9}$

Once in a while I put off until tomorrow what I ought to do today. I do not always tell the truth.

I generally feel it is best to be cautious and conservative with my money.

I would be willing to invest my money in a new uranium mining venture.

I would never put all my money into a venture, even though the potential profits were great.

I feel that money is to be used, not saved.
Sometimes I try to avoid conflicts by lying.
I like, and sometimes even admire, people who take risks.
From the time I was 16, I have had a permanent home.
My employer has been distressed by my absence from work.
I have frequently been unemployed.
I have never held a job for longer than 2 years.
2

9

```9
```9

9

9
9
9

9

Page 5.
Next, l'd like to read you a list of words which are often used to describe people. Please tell me if these words describe you very well, somewhat, not very well or not at all. How would you say... describes you, very well, somewhat, not very well, or not at all.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Very Well & Somewhat & Not Very Well & Not At All & Don't Know \\
\hline 15. Conventional & , & 2 & 3 & 4 & 9 \\
\hline 16. Careless & 1 & 2 & 3 & 4 & 9 \\
\hline 17. Good Natured & I & 2 & 3 & 4 & 9 \\
\hline 18. Irresponsible & & 2 & 3 & 4 & 9 \\
\hline 19. Anxious & , & 2 & 3 & 4 & 9 \\
\hline 20. High Energy & 1 & 2 & 3 & 4 & 9 \\
\hline 21. Workaholic & I & 2 & 3 & 4 & 9 \\
\hline 22. A Poor Participant in things you Organize & & 2 & 3 & 4 & 9 \\
\hline 23. An Initiator & , & 2 & 3 & 4 & 9 \\
\hline
\end{tabular}

The next two statements describe how people feel. Please tell me if you strongly agree, agree, disagree or strongly disagree with each statement. The first one is. \(\qquad\)
Strongly
Agree Agree Disagree \begin{tabular}{c}
Strongly \\
Disagree
\end{tabular}
24. People were better off in the old days when everybody knew how they were supposed to act.
25. I guess I put on a show to impress people, I know I'm not the person I pretend to be.

Strongly
Agree
Disagree Disagree Know

Page 6.
\[
\begin{aligned}
& \text { Interviewer Checkpoint } \\
& \text { Circle number of adults in household from screener sheet. } \\
& 2 \text { or more }
\end{aligned}
\]

Circle response to Question 4 on Page 1, frequency of playing games for money.
\begin{tabular}{cccc}
Frequently & \(\frac{\text { Sometimes }}{2} \quad \frac{\text { Never }}{3} \quad \frac{\text { Don't Know }}{9}\)
\end{tabular}

Gambler/Non Gambler Question 4, Page 1
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Number of Adults in Household} & & \\
\hline & Frequently & Never \\
\hline \multirow[t]{2}{*}{Screener Sheet} & or & or \\
\hline & Sometimes & Don't Know \\
\hline 1 person only & Skip to Blue Section, Page 9 & Skip to Yellow Page Ask Q20 only and then conclude \\
\hline 2 or more persons & Skip to Blue Section, Page 9 & Continue on to Green Section \\
\hline
\end{tabular}

Page 7.

\author{
Section III. A: For Non-Gamblers Only
}
1. Now I'd like for you to name three leisure time activites of other members of your household. (Record answer verbatim, then code each item either I, for gambling related activities or 0, for all other activities.)

2. Would you say that other members of your household frequently, sometimes or never participate in games of chance for money, or bet on the outcomes of games, events or drawings.?
\begin{tabular}{|c|c|}
\hline 1 & Frequently (Continue) \\
\hline 2 & Sometimes (Continue) \\
\hline 3 & Never (Skip to yellow \\
\hline 9 & Don't Know page ask Q20 \\
\hline
\end{tabular}
3. How many people in your household frequently or sometimes participate in these games of chance for money?
4. And what are their relationships to you?
(Complete up to four relatives.) (If respondent mentions only I person, skip Q5 and go to Q6)
\begin{tabular}{lllll}
1 & 1 & 1 & 1 & Husband \\
2 & 2 & 2 & 2 & Wife \\
3 & 3 & 3 & 3 & Father \\
4 & 4 & 4 & 4 & Mother \\
5 & 5 & 5 & 5 & Brother \\
6 & 6 & 6 & 6 & Sister \\
7 & 7 & 7 & 7 & Son \\
8 & 8 & 8 & 8 & Daughter \\
9 & 9 & 9 & 9 & Other \\
0 & 0 & 0 & 0 & None
\end{tabular}

Page 8.
5. Which person in your household seems to engage in such pastimes the most?
6. Is (he/she) very involved, somewhat involved or not very involved with games of chance?
\begin{tabular}{ll}
1 & Husband \\
2 & Wife \\
3 & Father \\
4 & Mother \\
5 & Brother \\
6 & Sister \\
7 & Son \\
8 & Daughter \\
9 & Other (specify)
\end{tabular}

1 Very Involved 2 Somewhat Involved 3 Not Very Involved 9 Don't Know

Page 9.

\section*{Section III. B: Discriminant Variables Testing - Gamblers Only}

Next l'm going to read you a series of statements. For each one please tell me if the statement is true or false for you. The first one is..........

\author{
True False Don't Know
}
1. When playing a game, I would rather play for money.
2. When I gamble, I would rather "go for broke" than "play it safe".
3. When I bet, the higher the stakes, the more I enjoy the bet.
4. After losing, I feel that I have to return to gambling as soon as possible and win back my losses.
5. Sometimes, when I gamble, and I have been losing, afterwards, I feel a sense of remorse.
6. After a win, I have a strong urge to return and win more.
7. Sometimes, I gamble in order to escape worry or trouble.
8. Since I started gambling, I seem to be less efficient at other things I do, and less ambitious.
9. Sometimes an argument, dissappointment or frustration creates inside of me an urge to gamble.
10. For me, gambling is more important than social activities.
11. I have lost time from work on occasion, due to gambling
12. Gambling has affected my reputation.
13. Gambling sometimes makes me feel like a "bigshot," or somebody others look up to.
14. I have a special loyalty to bookies, not out of fear, but out of personal or business regard.
15. Gambling had a bad effect on my performance in school. 1
16. I am sometimes reluctant to use gambling money for normal expenses.

2
17. I have financed gambling either by pawning family jewelry, or selling off personal or real property.

12
18. I have occasionally borrowed or taken money even though I had my own money to bet.

\section*{True False Don't Know}
19. I have gambled in order to get money with which to pay debts or otherwise solve financial difficulties.
20. When paying off a debt with gambling winnings, I will keep a reserve for gambling.
21. Sometimes 1 brag about winning money from gambling even though I actually lost.
22. Occasionally, I have failed to meet basic family needs, such as food, clothing or other household expenses due to gambling.

129
23. At what age did you first win or lose \(\$ 20\) ?

1 over 21
\(2 \quad 16\) to 21
\(3 \quad 10\) to 15
4 Less than 10
5 Never
9 Don't Know
ªge 11.

\section*{Section IV: Gambling Behavior - Gamblers Only}

Vow l'd like to read you a list of games on which people frequently bet money. For each one please tell me if you bet money on these games in 1981. The first one is.......

Did you bet money on......in 1981?
(If the respondent says yes to any of the games, ask the following 2 questions for each game respondent says yes to.)
A. About how many times did you bet money on.........in 1981 (1984) less than once a month, at least once a month, or at least once a week? (PROBE)

If less than once a month ask: How many times during the year did you bet money?

If at least once a month ask: How many times a month did you bet money?

If at least once a week ask:
How many times a week did you bet money?
B. What was the amount of money you usually spent betting on \(\qquad\) .on a typical occasion in 1981 (1984)? (Probe for exact amount)
(Regardless of how respondent answered the first question for each of the games, ask the same question for 1984.) Say. \(\qquad\)
And did you bet money on \(\qquad\) in 1984?
(If respondent says yes repeat Questions A and B above for 1984.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|r|}{Bet Money} & \multicolumn{5}{|c|}{Number of Times} \\
\hline & & Yes & No & Don't Know & Less than Once A Month times per year & At Least Once A Month times per month & At Least Once A Week times per week & Don't Know/ Refused & Amount Spent \\
\hline Horse racing at & 1981 & 1 & 2 & 9 & & & & 00 & \\
\hline the track & 1984 & 1 & 2 & 9 & & & & 00 & \\
\hline Other sporting & 1981 & 1 & 2 & 9 & & & & 00 & \\
\hline events while you & 1984 & 1 & 2 & 9 & & & & 00 & \\
\hline
\end{tabular}
were at those
events,such as
football or baseball
games.
ªge 12.
Bet Money
Number of Times
Less than At Least At Least
Once A Once A Once A Month Month Week Don't
Don't times per times per times per Know/ Amount Yes No know year month week Refused Spent
3. The Ohio Lottery \(1981 \quad 1 \quad 29\) \(\begin{array}{lllll}\text { or } \text { other State } & 1984 & 1 & 2 & 9\end{array}\) lotteries.
4. Games at the casino
in Las Vegas or Atlantic City like

5. Casino games here in

Ohio like those for 1981
schools or charity. 1984

6. Games you play at
home or with
1981129
friends; like
1984129
cards.
7. Bingo

1981129
1984129
8. Poker Machines 1981 129

1984129
9. Office pools like 1981 1929
those for football \(1984 \quad 1 \quad 29\)
or baseball games.
10. Horse racing

1981 I 29
with a bookie. 1984 1 29

1ge 13.
Bet Money \(\quad\) Number of Times

- Sports cards, or

Are there any other games or events that you bet money on which I did not mention? If yes, what are they? (Repeat series of questions for 1981 and 1984 for each of the additional games mentioned)
3.

15. Of all the games mentioned which is your fovorite?
(Record game number from list I-14. If none, enter 0.)
16. At the end of 1984, had you won money, lost money or broke even?
17. How much money was that?
(Record exact amount below then circle appropriate category. Read categories only if respondent hesitates in giving exact amount)
\$ \(\qquad\)
\begin{tabular}{ll}
1 & Won (17) \\
2 & Lost (17) \\
3 & Broke Even (18) \\
9 & Don't Know (18)
\end{tabular}

Under \$25
\(\begin{array}{lr}\$ & 26 \text { to } \$ \\ \$ 100 \\ \$ & 101 \text { to } \$ 500 \\ \$ 501 \text { to } \$ 1,000 \\ \$ 1,001 \text { to } \$ 5,000 \\ \$ 5,001 \text { to } \$ 10,000 \\ \$ 10,001 \text { to } \$ 20,000 \\ \$ 20,001 \text { to } \$ 50,000 \\ \$ 50,001 \text { or more } \\ \text { Refused/Don't Konw }\end{array}\)
18. In 1985, do you think that you will spend more money, spend less money or spend about the same amount of money on these games as you did in 1984?
19. About how much money do you think you will spend in 1985? (Record exact amount below, then circle appropriate category. Read categories only if respondent hesitates in giving exact amount.
\(\$\) \(\qquad\)
20. Into which of the following income groups does your personal yearly income fall...... (Read list)

1 Spend More
2 Spend Less
3 Same Amount
9 Don't Know
\(1 \quad\) Under \(\$ 25\).
2 \$ 26 to \(\$\) 3
3
4
5
6
7
8
9
0 Refused/Don't Know

\section*{(Do Not Ask Question 21 if a One person household.)}
(Conclude interview if you skipped here from checkpoint. Say: This is the end of our study. Thank you for your time.)
21. And what is the total yearly income
Less than \(\$ 5,000\)
\(\$ 5,001\) to \(\$ 10,000\)
\(\$ 10,001\) to \(\$ 15,000\)
\(\$ 15,001\) to \(\$ 20,000\)
\(\$ 20,001\) to \(\$ 30,000\)
\(\$ 30,001\) to \(\$ 50,000\)
\(\$ 50,001\) or more
Don't Know/Refused
(Do Not Read)
(If respondent has completed Blue pages, go on to next page).
(Conclude interview if you skipped here from Green section. Say: this is the end of our study. Thank you for your time.)

\title{
Section V. Diagnostic Criteria and Other "Hard Signs."
}

\section*{(Gamblers Only)}

Now I'd like to ask you one last series of questions. Just answer these questions yes or no.

\section*{Yes No Don't Know}
1. Did you ever have a big win equal to one month's salary or more?
2. Did you ever borrow money, from legal or other sources, in order to finance gambling?

12
9

129
3. Have you ever defaulted on a loan, or fallen behind on a regular monthly payment such as housing or consumer credit due to gambling?
4. Have you ever been bailed-out of a gambling debt by your spouse, your parents, friends or anyone else?

129
5. Has your gambling made you or your family quarrelsome at home, or made your homelife unhappy in any other way?
6. Has gambling caused you to become careless of your family? \(\quad 2\)
7. Has your gambling caused problems for your spouse or your children?
8. Did you ever commit or consider committing an illegal act, such as forgery, fraud, embezzlement, or tax evasion in order to finance gambling?

12
9
(Conclude interview. Say: This is the end of our study. Thank you for your time).

数```

