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ABSTRACT 

A consecutive series of 75 patients referred to a tertiary sleep centre underwent 

prospective evaluation with the Upper Airway Physical Exam Protocol. Predictors of 

obstructive sleep apnea included (OSA): age, snoring history, witnessed apneas, and 

hypertension. body mass index. neck circumference. mandibular protrusion. thyro-rami 

distance, sterno-mental distance, sterno-mental displacement, thyro-mental displacement, 

cricomental space, pharyngeal grade, Sampsoon-Young classification, and overbite. A 

decision rule was developed: cricomental space 5 1.5 cm, pharyngeal grade >2, and 

the presence of overbite. Patients with dl 3 predictors had a positive predictive value of 

95% (C195%: 75-loo%), negative predictive value: 49% (CIs5%: 3563%). A cricomental 

space > 1.5 cm excluded obstructive sleep apnea (negative predictive value: 100% 

(CIsss: 75- 100%)). Comparable performance was obtained in an unfiltered validation 

sample of 50 patients referred for diagnostic testing. The inter-rater reliability was high. 

This decision rule provides a simple, reliable, and accuraie method of identifying patients 

with and without OSA. 
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CHAPTER 1: INTRODUCTION 

1.1 Health care burden associated with obstructive sleep apnea 

Obstructive sleep apnea (OSA) is characterized by episodic upper airway 

obstruction during sleep. It is defmed by the apnea hypopnea index (AHI), which is the 

number of apneas (complete cessation of airflow) and hypopneas (partial reduction in 

airflow) per hour of sleep. The obstructive sleep apnea syndrome (OSAS) consists of a 

physiologic event, namely OSA, plus OSA-related symptoms, of which, daytime 

hypenomnolence is the most frequently encountered presentation. 

The obstructive sleep apnea syndrome is common in North America. In a random, 

community-based, adult sample ,of 602 government employees, the Wisconsin Sleep 

Cohort Study reported an OSAS prevalence of 2% and 4% in middle-aged women and 

men, respectively1. OSAS was diagnosed using polysomnography, with an AH1 25 hr-' 

plus associated daytime sleepiness, required to establish a diagnosis. 

Using snoring as a proxy for OSA, several case-control and cross-sectional 

studies suggest a link between snoring and cardiovascular r n ~ r b i d i t ~ ~ ' ~ .  A limited 

number of retrospective case-control studies suggest that untreated OSA increases 

cardiovascular morbidity and all-cause r n ~ r t a l i t ~ ~ * ~ .  In a cross-sectional study of blood 

pressure measurements during wakefulness and sleep in the Wisconsin Sleep Cohort, Hla 

et a1 found an association between hypertension and sleep apnea independent of obesity, 

age, and sex2. Subjects with an AHI 2 5 hf' were more likely to have hypertension 
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compared with those with an AH1 < 5 hr". The probability of hypertension increased in a 

dose dependent fashion with AH12*16. 

The association between OS A, all-cause mortality and coronary artery disease is 

more controversial. He et al employed a cross-sectional design in a highly selected series 

of 706 male patients, evaluated at a tertiary sleep centre. An increased mortality rate was 

observed in patients with severe OSA (apnea index > 20 Similarly, Partinen et a1 

observed an increased rate of cardiovascular mortality in a small (n=198) group of 

patients treated at the Stanford Sleep Disorders Clinic, a highly specialized university- 

based sleep centre7. Hung et a1 employed a case control design using 101 consecutive 

male patients, who had been admitted for acute myocardial infarction. An increased risk 

of myocardial infarction was seen in patients with an apnea index > 5.3 hr" '. 

Furthermore, an increased rate of automobile collisions is observed in at least a 

subset of patients with OSA~-". In a cohort study involving 91 3 subjects forming part of 

the ongoing Wisconsin Sleep Cohort, Young et a1 identified an increased risk of 

automobile accidents (OR4.2) amongst subjects with OSA (AH1 2 5 hr-I), as compared 

with normal controls ( A H  < 5 hr-')I1. More recently, in a prospectively followed cohort 

of 120 patients, Barbe et al also found an increased risk of automobile accidents in 

patients with OSA". 

Although cardiovascular morbidity is an important health issue, patients seek 

treatment for OSA primarily because of daytime sleepiness. Indeed, the definition of 

OSAS is predicated on the presence of OSA-related symptoms such as daytime 

hypenomnolence. In this regard, several large, well designed randomized control trials 
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have shown that treatment of OSA with continuous positive airway pressure (CPAP) 

improves sleep architecture, reduces daytime sleepiness, and improves performance'2-'5. 

In a randomized controlled trial of CPAP compared with conservative therapy, 

Redline et a1 evaluated 11 1 subjects14. Patients with mild obstructive sieep apnea 

(AHI=5-30 hr-') were randomized to receive either CPAP or conservative therapy. The 

latter consisted of behavioral and lifestyle counseling, treatment of nasal congestion, and 

nasal dilators. Patients in the CPAP group reported a greater improvement in 

hypersomnolence, mood, feeling of well being, and hctional status. Similar results were 

observed by Engleman et a1 in a randomized placebo controlled trial comparing CPAP 

therapy with oral placebo'2. Although differing somewhat in the instruments chosen to 

assess health outcomes, both studies used validated questionnaires and neurocognitive 

testing. Sleepiness was both self-reported and objectively identified by a shortened sleep 

latency on the multiple sleep latency test (MSLT). The MSLT objectively measures sleep 

predisposition by determining the mean time to polysomnographically confi ied sleep 

onset in a series of daytime naps. 

Given the prevalence of OSA, its associated morbidity, and the effectiveness of 

treatment. identification of patients with OSA is an important public health issue. 



1.2 Diagnosis of obstructive sleep apnea 

1.2.1 Overnight poivsomno~ra~hy 

Traditionally, OSA is diagnosed using overnight polysomnography (PSG), 

through the determination of an apnea hypopnea index (AHI). The AH1 is the number of 

apneas (complete cessation of airflow) and hypopneas (reduction in airflow) per hour of 

sleep. While an AH1 2 5 hi1 is considered the upper limit of normal, there is considerable 

controversy u to what constitutes 3 clinically significant OSA diagnostic criterion value. 

In the Wisconsin Sleep Cohort Study, 24% of middle-aged men and 9% of 

middle-aged women had an AH1 2 5 hr-', but only 4% and 2% of these subjects reported 

symptoms of daytime hypersomnolence, respectively1. While epidemiological data 

suggest that adverse health outcomes such as hypertension, sleepiness, and motor vehicle 

collisions occur in persons with an AH1 2 5 hi1, this is not necessarily a threshold effect. 

Indeed, for health outcomes such as hypertension, the risk profiie appears to follow a 

dose response r e l a t ion~h i~~* '~ .  Moreover, the threshold value at which risks become 

significant depends on the health outcome of interest. For example, severe complications, 

such as cardiovascular morbidity and death are probably only associated with severe 

0 s ~ ~ ~ ~ .  

Given these data, it is unlikely that any single AH1 diagnostic criterion value will 

be used in clinical decision making. As stated previously, the clinically relevant end-point 

is the obstructive sleep apnea syndrome, which consists of a physiologic process (OSA, 

as defined by the AHI), and associated OSA-related symptoms, many of which are 
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subjective. Consequently, the decision to pursue therapy depends on the absolute AH? 

value, OSA-related symptoms, and the perceived risks of adverse health outcomes. 

Therefore, the evaluation of a new diagnostic instrument requires validation at a variety 

of AH1 cut-off values. AH1 diagnostic criterion values of 2 5, 10, 15, and 20 hi' are the 

most commonly employed in the research literature. 

Polysomnographic determination of AH1 requires overnight admission to a sleep 

laboratory, and involves fitting the patient with cumbersome monitoring equipment: 

electroencephalogram, electrooculogram, chin electromyograrn (EMG), airflow 

monitoring, inductance plethysmography to assess respiratory effort via 

thoracoabdominal movement, electrocardiogram, oxygen saturation, and leg EMG. As 

such, PSG is costly in terms of personnel, time, and money. Recently, a number of 

instruments have been developed as alternatives to PSG. In general, they either diagnose 

OSA. or identify "high risk" patients (i.e., those who should go on to full 

pol y somnograph y ) . 

1.2.2 Portable monitors 

Portable monitors are particularly useful in this regard. Monitors range from 

simple oximeters to multiple channel devices that approach PSG in terms of data 

acquisition and complexity of use1'. One of the best validated ambulatory monitors is the 

SNORE SAT'^. This instrument determines a respiratory disturbance index (RDI) via off- 

line analysis of digitally recorded nocturnal oxygen saturation. Because portable monitors 

do not score apnea and hypopnea by conventional polysomnographic criteria, the 
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monitor-derived RDI is a surrogate measure for MI. The RDI is defined as the number 

of respiratory events per hour of sleep. As such, it is a more general measure than the 

AHI, and its value is dependent on how a respiratory event is defmed. It follows that the 

AH1 is a specific form of RDI, where a respiratory event is defined as either an apnea or 

hypopnea. Historicaily, OSA has been diagnosed by polysomnographically determined 

AH1 diagnostic criterion values, however, with the advent of portable monitors, RDI 

measures are being increasingly used. 

The SNORESAT-derived RDI has been validated against the gold standard PSG- 

AKI at a variety of AH1 values. Over a range of RDI values from 7-20 hr-', SNORESAT 

had a positive predictive value of between 95%-96%, and a negative predictive value of 

between 4% to 12% for diagnosing O S A ' ~ .  The prevalence of OSA in these studies 

ranged from 54% (AH1 2 7 hi') to 3 1 % (AH1 2 20 h f i )  of the total sleep centre referral 

population. In a more recent study, on a prospectively selected group of patients referred 

to a tertiary sleep centre, using an improved analysis algorithm for defining respiratory 

events, SNORESAT had a sensitivity and specificity of 98% and 88% respectively for 

diagnosing OSA (AH1 2 15 hf1)19. The mean difference between monitor-derived RDI 

and PSG-AH1 was 2.18 hi1. The limits of agreement (2 standard deviations (SD) of the 

mean of the differences) was 12.34 hr". For comparison, PSG inter-rater scoring 

variability is associated with a mean AH1 difference of 1.80 hr" 20. 

Because of increasing financial limitations, there is a growing tendency to 

diagnose OSA using validated portable monitors, which generate RDI values, rather than 

PSG-determined AHI. This trend is observed in both clinical and research settings"-u. 
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The standard practice at the Alberta Lung Association Sleep Centre is to use SNORESAT 

as the primary OSA diagnostic instrument, with PSG being reserved for patients with 

negative SNORESAT studies, or for patients with clinical evidence of a primary sleep 

disorder other than OSA. For the purpose of this study, SNORESAT determined RDI cut- 

off values were used as the gold standard for OSA diagnosis. 

1.3 Clinical prediction instruments 

1.3.1 Clinical prediction 

Decision rules are prospectively validated algorithms consisting of sets of 

conditions that predict a particular clinical outcome or appropriate course of action. They 

differ from clinical practice guidelines in that guidelines represent an evidence-based 

consensus to guide clinical decision making. A commonly used decision rule is the 

Ottawa Ankle ~ u l e s ~ ~ .  The developers of this rule identified 3 variables, which if absent, 

effectively rule out the possibility of an ankle fracture. Consequently, an ankle x-ray 

series is only necessary if there is pain near the malleoli and either: (1) an inability to 

bear weight both immediately and in the emergency department (four steps), or (2) bone 

tenderness at the posterior edge or tip of either malleolus. The model was developed on 

1032 patients, and was validated on 453 subsequent patients. 

Although cheap and relatively easy to administer, decision rules aimed at 

diagnosing OSA have been limited by insufficient sensitivity and specificity for use as 

diagnostic instrumend'. In general, most OSA decision rules have specificities around 
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90%, but sensitivities considerably less than 80% 24-27.53-55 . However, decision rules could 

still have significant clinical value, specifically, for identifying patients at risk for OSA, 

who would then go on to more definitive diagnostic testing (e.g., PSG or portable 

monitoring). More importantly, a decision rule with a high negative predictive value 

could identify patients who would not benefit from further, more costly, evaluation. To 

date, most dzcision rules have focused on maximizing both sensitivity and specificity. 

By contrast, none have been designed with the intent of identifying patients who do not 

need further diagnostic testing. 

1.3.2 Decision rules in OSA 

One of the better-validated decision rules for OSA was developed by Flemons et 

id2'. In a randomly selected series of 180 patients referred to a tertiary sleep centre, 

increased neck circumference, hypertension, habitual snoring, and reports of nocturnal 

gasping/ choking were identified as being predictive of OSA (PSG-AHI 1 10 hr-') using 

logistic regression modeling. A clinical prediction rule was then developed. Individuals 

with the highest clinical score (i.e., all 4 characteristics) had a likelihood ratio and post- 

test probability of OSA (AH1 2 10 hi1) of 5.17 and 8 I%, respectively. By contrast, 

patients with the lowest clinical score had a likelihood ratio of 0.25 and a post-test 

probability of 17%. 

Similarly, Viner et a1 evaluated 4 10 patients referred for suspected sleep apnea. 

Body mass index (BMI), age, male sex, and snoring were predictive of OSA (PSG-AH' 2 
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1 0 hr*'). The derived prediction model had a sensitivity and specificity of 28% and 95%, 

r e ~ ~ e c t i v e l ~ ~ .  

For the purposes of diagnosing OSA, the diagnostic performance of most decision 

rules fall within a similar range2"7153*55. Most decision rules for OSA have high 

specificities, with sensitivities considerably less than 80%. A summary of decision rules 

for OSA is presented in Table 1 .  Although potentially usehl measurement instruments, 

particularly in the context of a directed clinical assessment, most published decision rules 

are inadequate as stand-alone diagnostic instruments. 



Table I :  A summary of decision rules for OSA 

AUTHOR 
(reference) 

FI ern on^^^ 

OSA diagnosis 
criterion 

AH1 2 10 hi' 

AH1 2 10 h i '  

RDI correlation 

AH1 2 5 hr" 

Sample size PREDICTIVE VARIABLES 

- - - - - - - 

Neck circumference, hypertension, 
snoring, gasping/choking 

Body mass index, snoring, age, male sex 

Neck circumference, body mass index 

Body mass index, neck circumference, 
intermolar distance 

Age, witnessed apneas, obesity, 
hypertension 

Snoring, apneas, gasping noises, bed 
covers in disarray 

'positive predictive value; +Negative predictive value; NS not significant 



1.3.3 RadioloPic predictors of OSA 

Considerable work has been done in assessing the role of upper ainvay imaging in 

the setting of OSA, specifically through the use of cephalornetry, computed tomography 

(CT), and magnetic resonance imaging (MRI). These radiologic techniques have been 

useful in advancing the understanding of upper airway pathophysio10gy31. On average, 

when compared with normal controls, patients with OSA have a small posteriorly placed 

mandible, a narrow posterior ainvay space, enlarged tongue and soft palate, and an 

inferiorly placed hyoid bone3z34. However, although several cephalometric variables may 

be predictive of OSA based on univariate analysis, using multivariate modeling, Davies 

et a1 found that only neck size and retroglossal space were independent predictors of 

O S A ~ ~ .  Therefore, the inclusion of cephalometric variables into a prediction model may 

not necessarily improve diagnostic performance. Furthermore, given the cost and logistic 

difficulty of performing radiologic imaging, these tests have limited value outside the 

research setting. 

A major criticism of most radiographic techniques is that they study awake and 

upright patients, whereas, OSA typically occurs while the patient is asleep in the supine 

position32. Radiological imaging is also limited by an inability to dynamically assess soft 

tissue structures. By contrast, videoendoscopy permits dynamic visualization of the upper 

airway. Endoscopically observed pharyngeal narrowing has been repeatedly reported in 

OSA, and the site of narrowing is also a good predictor of surgical treatment success35. 

However, because of its logistical complexity, videoendoscopy remains more a research 

tool than a practical diagnostic instrument. 



1.3.4 Phvsical examination based predictors of OSA 

Neck circumference and BMI are the only physical examination characteristics 

that are consistently predictive of O S A ~ ' ~ ~ ' ~ .  However, with the notable exception of a 

study by Kushida et al, most studies have evaluated only basic characteristics. Therefore, 

the development of more sophisticated physical examination-based measurements may 

improve the diagnostic performance of existing decision rules. 

Kushida et a1 developed one of the only well characterized morphometric models 

for diagnosing O S A ~ ~ .  They evaluated a consecutive sample of 300 patients referred to 

the Stanford University Sleep Centre, a university-based tertiary care centre that receives 

referrals From across the United States. The data set was split into a model development 

group, and a validation set. Body mass index, neck circumference, and intermolar 

distance were identified as predictive variabies. A prediction index was developed, which 

had a sensitivity and specificity of 98% and 100% respectively. 

However, there are serious questions as to whether the model was tested in a 

representative sample of patients, given that the prevalence of OSA was 85%, which is 

considerably higher than the approximately 50% prevalence rate observed at most sleep 

centres. More significantly, BMI alone had a diagnostic sensitivity and specificity of 93% 

and 74% respectively. Virtually all published articles report a much lower predictive 

value for BMI, if indeed predictive at a 1 1 ~ ~ * ~ ~ 9 ~ ~ .  Selection bias is an important concern. 

Furthermore, clinical application of their model requires an arithmetic combination of a 

number of predictive variables with a variety of coefficients; a process which is 
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cumbersome, and unlikely to be used in routine practice. Nevertheless, the study 

represents one of the few systematic evaluations of physical examination-based 

measurements in OSA. 

1.3.5 Uaaer airwav scoring svstems in anaesthesia 

Anaesthetists have developed and validated a variety of simple physical 

examination-based scoring systems that predict intubation difficulty through the 

assessment of upper airway structures. Several of these diagnostic approaches may have 

applicability to the OSA setting. 

A "crowded" oropharynx may predispose individuals to intubation difficulties. 

Mallampati et a1 describe a scale for estimating relative tongue size37. The Sampsoon- 

Young classification is a refinement of the original Mallampati scale, and based on 

retrospective evaluation of over 1300 patients, is predictive of intubation difficulty38. It 

biologically is plausible that the soft tissue overshadowing of the larynx, which leads to 

intubation difficulty, may also predispose patients to OSA. 

Wilson et ai examined a number of measurements and rating systems during the 

process of developing a prospectively validated prediction index for intubation 

diffic~l$~. Significant predictors included body weight, head and neck movement, jaw 

movement, receding mandible and buckteeth. Other researchers have found a number of 

other clinical predictors: sternomental distance, thyromentai distance, interincisor gap, 

mandibulohyoid distance, and mandibular angle40~41. In general, measurement of these 

characteristics is associated with a high level of inter-rater reliability4*. 



14 

Davies and Eagle introduced the MOUTHS assessment protocol as a means of 

standardizing the approach to physical examination of the upper ;lirwayf3. This protocol 

incorporates many of the predictive variables described above, and integrates them into a 

streamlined approach to physical examination. 

1.4 Rationale and  stud^ objectives 

1.4.1 Rationale 

The obstructive sleep apnea syndrome is a relatively common condition in North 

America. Excessive daytime sleepiness, its most common symptom, may result in 

decreased quality of life, impaired performance, and an increased risk of automobile 

collisions. Moreover, there is ' limited evidence linking OSA with cardiovascular 

morbidity. Treatment of OSA with CPAP improves sleep architecture, reduces daytime 

sleepiness, and improves daytime performance and quality of life. Given the prevalence 

of OSA, its associated morbidity, and the effectiveness of treatment, identification of 

patients with OSA is an important health issue. 

OSA has been traditionally diagnosed using overnight PSG, which is costly in 

terms of personnel, time and money. A number of portable monitors have been developed 

as alternatives to PSG. Decision rules also have particular appeal as diagnostic 

instruments because of their low cost. Current decision rules employ historical features 

and basic anthropomorphic measurements. In general, specificities are relatively high, but 

sensitivities are considerably less than 80%, thus limiting their use as stand-alone 

diagnostic instruments. A recent morphometric model had an OS A diagnostic sensitivity 
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and specificity of 98% and 100%, respectively, however, selection bias was a serious 

concern. Nevertheless, the study illustrated that physical examination-based decision 

rules may have suficientiy high performance characteristics to influence clinical decision 

making. 

However, research on the diagnostic performance of physical examination in 

OSA is limited. By contrast, anaesthetists have developed a number of validated upper 

airways scoring systems. In particular, the MOUTHS assessment protocol provides a 

streamlined approach to physical examination of the upper airway. 

There is a need for a standardized approach to the diagnosis of OSA, based on 

physical examination measurements. Such an approach would be cost-effective in 

screening patients at risk for OSA. Furthermore, physicai examination-based measures 

are less invasive than traditional approaches to diagnosis such as PSG. 

1.4.2 Obiective 

To develop a physical examination-based decision rule that will accurately 

identify patients at risk for OSA, and as importantly, identify patients who do not require 

further diagnostic testing. 



CHAPTER 2: METHODS 

2.1 Sampling frame 

Recruitment source: Alberta Lung Association (ALA) Sleep Centre 

inclusion criteria: All referrals 

Exclusion criteria: 1. Refusal to undergo SNORESAT evaluation 

2. Previous assessment for a primary sleep disorder, or a specific 

referral for a sleep disorder other than OSA 

3. Insomnia (and no suspicion of an underlying sleep disorder) 

The Alberta Lung Association Sleep Centre is the major sleep centre in Southern 

Alberta, and draws from a wide variety of referral sources: family doctors, internists, 

otolaryngologists, and anaesthetists. The accrual population consisted of all referrals to 

the study investigators. Referrals to the sleep centre are received by fax, and 

subsequently assigned to one of five physicians by the sleep centre coordinator. The two 

physicians participating in the study managed approximately 40% of all patients seen at 

the sleep centre during the study period. There was no obvious reason to suspect 

systematic bias in patient allocation to individual sleep physicians, however, the potential 

for referral bias exists. 

All patients referred to the two participating investigators, who did not meet the 

exclusion criteria, underwent a directed clinical assessment followed by SNORESAT 

monitoring. Aside &om the addition of the upper airway physical examination protocol 

(UAPP) during initial assessment, no deviation from the usual standard of care existed. 

The Conjoint Ethics Committee of the University of Calgary approved the protocol. 
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Exclusion criteria were set up to prospectively identify patients who would not 

undergo SNORESAT evaluation. Patients in whom a primary sleep disorder other than 

OSA was suspected were sent directly for full polysornnography to establish a diagnosis. 

Similarly, patients with insomnia, and where another sleep disorder was not suspected, 

did not undergo further diagnostic testing. The diagnostic criteria for insomnia and other 

primary sieep disorders are summarized in the International Classification of Sleep 

Disorders ( ICSD)~ .  

2.2 The Umer Airway Phvsical Examination Protocol (UAPPj 

The UAPP is a structured physical exam protocol, modeled initially after 

MOUTHS". The UAPP prototype was organized around the MOUTHS physical exam 

trait groupings: Mandibular measurements, Opening (i.e., pharyngeal space), Uvula, 

Teeth, Head movement, and (body) Silhouette. Three UAPP versions were used during 

the study. The UAPP-P (prototype version) was employed during the feasibility phase, 

UAPP-F (final version) for model development, and UAPP-SF (short form) for decision 

rule validation. Each UAPP version underwent progressive item reduction and thus the 

number of measurements and the groupings differed between versions. However, the 

individual measurement techniques remained the same. A description of all UAPP 

versions is provided in Appendix A. 

"Mandibular" measurements consisted of: maximum mandibular advancement, 

mandibular length, thyro-mental, stemo-mental, temporal mandibular j oint (TMJ)-ramus, 

rarnus-ramus, thyro-rarni, and mastoid-medial clavicle distance. Distances were 
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determined by using a measuring tape to take the linear distance between two bony 

points. Thyro- measurements were taken fiom the thyroid notch. Mental- measurements 

were taken fiom the posterior aspect of the inner mentum. Sternal- measurements were 

taken from the sternal notch. Mandibular length refers to the distance between the 

posterior ramus and the inner mentum. 

The facial profile was categorized as retrognathic, neutral, or prognathic (Figure 

I). To classify a profile, an imaginary line was created, joining the brow and maxilla. If 

the anterior chin was behind the line, retrognathia was said to exist. If the chin lay in 

front of the line, prognathia was present. 

The cricomental space was determined by using a thin ruler to connect the cricoid 

cartilege to the inner mentum. The cricomental line was bisected, and the perpendicular 

distance to the skin of the neck was measured (Figure 2) . The use of a thin ruler (I Imm) 

was considered essential, because thicker straight edges (e.g., tongue depressors) may 

influence the measurement. 



Retrognathia test line 
1 

Figure I :  Assessment of facial projile 

An imaginary line is created, joining the brow and maxilla. If the anterior chin is 
behind the line, retrognathia is said to exist. If the chin lies in front of the line, 
prognathia is present. 



Figure 2: Assessment of the cricornentul space 

Use a thin ruler to connect the cricoid cartilege to the inner mentum. The 
cricomental line is bisected, and the perpendicular distance to the skin of 
the neck is measured 



21 

The extent of tonsillar enlargement (tonsillar grade) was assessed using a 4 point 

ordinal scale: Class I: tonsils absent, Class 11: tonsils do not extend beyond the 

palatopharyngeal arch, Class 111: tonsils are at the palatopharyngeal arch, Class IV: 

tonsils extend beyond the palatopharyngeal arch. Palatopharyngeal anatomy is illustrated 

in Figure 3. 

Tongue size was assessed using the Sampsoon-Young classification system3! 

This scoring system depends on the relative position of the uvula and soft palate to the 

base of the tongue. Grading is summarized in Figure 4. 

The pharyngeal space (pharyngeal grade) was also assessed using a 4 point 

ordinal scale: Class I: palatopharyngeal arch intersects at the edge of the tongue, Class 11: 

palatopharyngeal arch intersects at 2 25% of the tongue diameter, Class 111: 

palatopharyngeal arch intersects at 2 50% of the tongue diameter, Class IV: 

palatopharyngeal arch intersects at 2 75% of the tongue diameter (Figure 5). 



Palatog lossal 
arch 

Palatop haryngeal 
arch 

Tonsils 

Figure 3: Palatopharyngeal anatomy 

The extent of tonsillar enlargement (tonsillar grade) was assessed using a 4 point 
ordinal scale: Class I: tonsils absent, Class 11: tonsils do not extend beyond the 
palatopharyngeal arch, Class III: tonsils are at the palatopharyngeal arch, Class 
N: tonsils extend beyond the palatopharyngeal arch. 



I I1 I11 IV 

Figure 4: Sumpsoon- Young grading system for tongue size 



Figure 5: Pharyngeal grading system 

Class I: palatopharyngeal arch intersects at the edge of the tongue 
Class 11: palatopharyngeal arch intersects at 2 25% of the tongue diameter 
Class III: palatopharyngeal 'arch intersects at 2 50% of the tongue diameter 
Class N: palatopharyngeal arch intersects at 2 75% of the tongue diameter 



2.3 Feasibilitv ~ h a s e  

Goals: 

To determine: 

( I )  Whether clinicians were capable of performing the upper ainvays physical 

examination protocol w.A.PP). 

(2) Whether the results obtained by the examiners were comparable 

(3) UAPP completion time 

The emphasis was on developing an instrument acceptable to "real world" 

clinicians. Measurements that were considered cumbersome or excessively time 

consuming were eliminated, given that clinicians would be unlikely to use them in every 

day practice. The predictive value of each measurement was not assessed during this 

phase of decision rule development. 

Methods: Twenty patients underwent routine clinical assessment, plus the upper airway 

physical examination protocol (UAPP-P, Appendix A), performed by one of two 

investigators. Both investigators independently assessed a randomly selected (n= 15) 

subgroup of patients. Unreliable or time-consuming measurements were eliminated fiom 

the UAPP-P based on a consensus view. 



2.4 Index development 

The development of any measurement instrument involves the following steps: 

item selection, item reduction, and determination of reliability, validity, and 

re~~ons iveness~~.  

2.4.1 Item selection 

At the time of UAPP development, the morphometric measurements of Kushida 

et a1 were ~navailable'~. Aside from neck circumference and body mass index, a review 

of the OSA literature revealed little information on the predictive value of physical 

examination measurements for diagnosing OSA. Consequently, the selection of 

measurement variables was based on expert opinion and published upper airway physical 

exam scoring systems. For the purposes of model development, we also included clinical 

(historical) predictors of OSA: hypertension, habitual snoring, nocturnal choking 

gasping, witnessed apneas, age, alcohol use, and smoking history. Measurement of these 

variables was based on self-report or via a history obtained from the subject's "bed 

partner". 

2.4.2 Index reliability 

Reliability (or precision) is the degree of stability exhibited when a measurement 

is repeated under identical conditionssg. Inter-rater reliability for categorical outcomes is 

often assessed using the kappa statistic6'. This statistic takes into account agreement 

occurring by chance. Test-retest reliability refers to the reproducibility of a measure when 
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repeated on the same subject at two different points in time. This type of reliability may 

be influenced by changes in the subject's condition or external environment. In this study, 

where fixed anatomic measurements were evaluated, it was considered unlikely that 

anatomic characteristics would change either with treatment, disease status, or time. 

Inter-rater reliability is usually assessed during the feasibility phase and also 

following development of the final model. The former facilitates item reduction, since 

unreliable measurement variables can be eliminated at the outset. The latter assessment 

ensures that the predictive outcome of the modei is consistent across observers and time. 

We did not formally test reliability during the feasibility phase. The measure of 

agreement (kappa statistic) is dependent on both the number of categories being tested, 

and the prevalence of disease. Given the large number of variables tested during the 

feasibility phase, formal statistical testing of reliability would have been of questionable 

significance. 

Consequently, only the £ind decision rule was subjected to formal statistical 

testing of reliability. Although this approach may have resulted in incomplete item 

reduction, it does not detract &om the usefulness of the final model. From a clinical 

perspective, only the performance of the final decision rule is relevant. 



2.4.3 Measures of validity 

A valid scale is one that measures what it says it is measuring4s. Classically, 

validity has been assessed using the trinitarian standard of: (i) content validity (ii) 

criterion validity and (iii) construct validity. 

(i) Content validity is a subjective judgment that the instrument appears to be 

measuring desired qualities. Content validity is usually determined by a panel of experts 

who are well versed in the subject literature. 

(ii) Criterion validity measures the extent to which a scale produces similar results 

when compared with the current gold standard. In this study, OSA is defined using 

Snoresat-determined RDI as the gold standard. This will be discussed in more detail in 

the statistics section (see section 2.5). 

(iii) Construct validity describes the extent to which a particular measure relates 

to other measures, under the assumption that the measures are associated according to 

theoretically derived hypotheses or concepts (constructs). Construct validity is employed 

in settings where a gold standard does not exist, e.g. quality of life. For example, we 

would expect the quality of life in patients with asthma to improve as objective measures 

of pulmonary hction also improve, hence these objective measures form constructs 

against which quality of life is assessed. In this study, a gold standard instrument for 

diagnosing OSA already existed (i.e. SNORESAT-derived RDI), therefore the 

assessment of construct validity was considered unnecessary. 



2.4.4 Responsiveness 

Responsiveness is the ability of an instrument to change concurrently with 

changes in patient status6'. The decision nrle developed in this study was based 

predominantly on fixed anatomic measurements, so there was little expectation of change 

with treatment or time. Moreover, since the purpose of the decision rule was to diagnose 

OSA at a fixed point in time, temporal changes were less relevant. Consequently, an 

assessment of index responsiveness was not done. 

2.5 Develo~ment of the Decision Rule 

Following the feasibility .phase, all subsequent patients underwent assessment 

with the UAPP-F (fmal version), followed by home monitoring with SNORESAT for 

determination of their RDI. Data were collected prospectively, and a decision rule was 

developed using two techniques: 

1. Multiple logistic regression 

2. Recursive partitioning (Classification and Regression Trees, CART) 

The initial decision rule was developed using multiple logistic regression, which 

was then compared to the decision tree generated by recursive partitioning. 



2.5.1 Logistic Remession 

Predictors of OSA were identified by simple logistic regression, using a diagnosis 

of OSA (RDI 2 10 hr-') as the dependent variable. The predictive model was then 

developed using two approaches: 

(1) "significant p" approach: Automated stepwise reduction on a full model 

consisting of variables identified as predictive by simple logistic regression 

@<O. 10). 

(2) "biologically plausible" approach: Investigator-driven construction of a 

model using all known and suspected predictors of OSA. 

A parsimonious model is one with the fewest number of independent variables 

that does not differ significantly in its predictive ability from models with more variables. 

Differences in predictive ability between models are assessed using the likelihood ratio 

test, with p values >0.05 considered to be non-significant. 

During manual reduction, the parsimonious model was obtained by investigator- 

driven reduction of variables. Items were eliminated based on an expectation of low 

predictive value, either from a statistical (i-e. low odds ratio) or biologically plausible 

standpoint. This approach to model building was then compared with the automated 

stepwise reduction procedure. The manual approach to model building was conducted 

prior to the automated stepwise reduction procedure. 

Continuous variables that were identified as predictive in the parsimonious model 

were cross-tabulated against a diagnosis of OSh, and cut-points were visually selected. 
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All independent predictors were thus modeled as dichotomous variables. For comparison, 

CART was used to automatically determine cut-points (see section 2.5.3) 

The data were also analyzed using an RDI diagnostic criterion value of 2 15 hr'l 

to define OSA to determine if any new predictoa or parsimonious models were 

identified. 

Classification and Regression Tree (CART) software from S-Plus 4.0 (MathSofi. 

Cambridge, MA) was used for modeling the decision tree. All other statistical analyses 

were performed using Stata 5.0 (Stata Corporation, College Station, TX). 

2.5.2 Assessment of criterion validity 

A decision rule was created using the binary predictoa derived from the logistic 

regression model. Sensitivity, specificity, positive and negative predictive values were 

then determined. The diagnostic performance of the decision rule was compared with the 

diagnostic performance of the tree model. 

Sensitivity is defined as the number of patients with a true positive test divided by 

the number of patients with the disease (ie. OSA). Specificity is defined as the number of 

patients with a true negative test divided by the number of patients without the disease. 

Positive predictive value is defined as the number of patients with a positive test and the 

disease divided by the number of positive tests. Negative predictive value is the number 

of patients with a negative test and no disease divided by the number of negative tests. 



2.5.3 Recursive Partitioning for Decision Rule develo~rnent 

Recursive partitioning is a type of regression analysis used to develop binary 

prediction trees. Tree-based modeling is useful for developing prediction rules, 

identifying screening variables, determining the adequacy of linear models, and 

summarizing large mu1 tivariate data setsJ8. 

The strategy involves splitting complex data sets into progressively smaller 

subgroups, while a computationally intensive algorithm produces a sequence of 

increasingly "pure" binary splits, termed "nodes". The data are recursively split until 

either each node is homogenous or contains too few observations (usually 5 5). A 

pruning algorithm then cuts off branches of the tree that impair overall accuracy. In other 

words, partitions resulting in the greatest reduction in deviance (i.e. the ability of a model 

to predict an outcome when compared to a model with perfect prediction) are removed. It 

follows that increasing the size of a tree will increase the accuracy because of increased 

degrees of freedom, but in so doing, the data becomes increasingly imprecise because of 

increased variance. Therefore, optimal deviance occurs when the tree size is such that an 

increase in accuracy is offset by decreased precision. 

"Terminal nodes" form the base of the tree and contain the two possible predicted 

outcomes of interest (e.g. OSA/ no OSA). The predictive ability of the decision tree is 

determined by algebraically combining the "terminal nodes" and reducing them to a 

"simple" Boolean expression using a computationally intensive process 46. 
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Classification and Regression Tree (CART) software by Breiman et al is 

revolutionary, in that it automates the laborious process of recursive partitioningJ7. 

Moreover, it introduces a penalty h c t i o n  for tree complexity to offset the increasing 

purity of subgroups as the sample size decreases. 

Recursive partitioning has a number of theoretical advantages over other 

multivariate analytic approaches such as Logistic regression. These are summarized in 

Table 2. From a practical standpoint, the use of boolean. rather than arithmetic 

expressions, mimics the clinical decision-making process employed by physicians; thus 

tree models are often easy to understand. Clinicians look for the presence or absence of a 

variety of conditions or states, integrate these fmdings, and then decide on an appropriate 

course of action. By contrast, logistic regression models frequently require the 

cumbersome and cornputationally difficult process of combining weighted coefficients. 



Table 2: A comparison of recursive partitioning with logistic regression 

I RECURSIVE PARTITIONING AS AN ALTERNATIVE TO LOGISTIC I 
MULTIVARLATE ANALYSIS 

1 .  The interpretation is intuitive, and mimics the clinical decision making process. 

2. It can easily identify synergistic interactions. 

3. May identify nonlinear relationships (i.e. non-additive behavior). 

4. Provides a simple format for constructing "homogeneous" risk strata, or for the 
detailed matching of patients. 

5. Provides more satisfactory treatment of missing values. 

6. Allows easy interpretation when predictors are a mix of numeric variables and 
factors. 

1 .  May miss additional predictive factors during the later stage of selection process. 

2. May increase the problem of "multiple testing". 

3. May increase the problem of "over-training". 

4. May not account for the I 1 1  predictive ability of a continuous factor. 

- adapted from Cook and ~oldrnan~~ 
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2.6 Relia bilitv assessment 

The reliability of the decision rule was tested in twenty patients distinct born 

those used during other phases of the study. The sample consisted of patients referred to 

one of three sleep centre physicians. Each patient underwent two independent evaluations 

using the UAPP-SF. An unweighted kappa statistic was used to assess inter-observer 

agreement for each measurement. 

2.7 Decision Rule validation 

The final predictive model was validated on an "all SNORESAT referral" 

population, distinct from the sample used for model development. This population 

consisted of a consecutive series of patients referred for SNORESAT diagnostic testing at 

the ALA sleep centre. 

SNORESAT referrals are completely at the discretion of physicians with referral 

privileges (sleep physicians (n=5), otolaryngologists ( ~ 3 ) ) .  Although over 90% of the 

referrals are from sleep centre physicians, validation of the decision rule in the "all 

SNORESAT referral" sample alleviates some of the concerns with respect to patient 

allocation bias amongst study investigators. 

Sensitivity, specificity, positive and negative predictive values were determined 

and compared with the values obtained from the model development sample. 



2.8 Samde size determination 

Sample size calculations were based on a minimum event per variable (EPV). 

Using a simulation study of forward stepwise multiple linear regression, Freedman and 

Pee demonstrated a significant increase in Type I error when the EPV was less than 4". 

More recently, Peduzzi and Feinstein performed a Monte Carlo simulation to determine 

the optimum EPV in multiple logistic regres~ion*~. For EPV 1 1  0, no major problems 

occurred. Moreover, this appeared to be a b'threshold" effect. In other words, increasing 

the EPV above 10 did not have a dramatic effect on the validity of the logistic regression 

results. 

However, this is a conservative estimate. Simulation studies indicate that an 

EPV>lO represents an upper limit. For example, other authors have used an EPV 2 4, and 

the Peduzzi and Feinstein simulation suggests that an EPV 2 5 is acceptable for some 

measures. Therefore, based on the use of 15 variables, and an EPV 2 4, approximately 60 

events were required (i.e. 60 patients diagnosed with OSA). 



CHAPTER 3: RESULTS 

3.1 Feasibility assessment and item reduction 

Twenty consecutive patients were assessed using the upper airway physical 

examination protocol (UAPP-P, Appendix A). It was considered feasible to perfon all 

measurements, but the complete protocol (UAPP-P) was cumbersome and time- 

consuming. Because the UAPP had to be acceptable to bedside clinicians, items were 

removed based on the subjective impression of unreliability or excessive complexity. 

Consensus agreement between clinicians was used to select items for removal. No formal 

statistical testing was performed during the feasibility assessment. 

Head movement measurements were eliminated because of time constraints. Chin 

protrusion was eliminated because of difficulty in mastering the technique and the 

subjective impression of unreliability. Assessment of the cricomental space replaced chin 

protrusion. Pharyngeal space measurements were convened to a 4 point ordinal scale for 

greater ease of assessment. Aside from the thyro-mend and sterno-mental distances, 

"mandibular" measurements were assessed in the neutral head position after it became 

apparent that there was no difference bemeen measurements with the head in the neutral 

position or with full neck extension. 

The reduced UAPP-F (final version) was then used for decision rule development. 

Physical examination measurements included: mandibular length, thyro-rami distance, 

mastoid-medial clavicle distance, TMJ-rami distance, rami-rarni distance, thyro-mental 

distance (neutral position and with neck extended), thyro-mental displacement, sternal- 

mental distance (neutral position and with neck extended), stemomental displacement, 
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inter-incisor distance, cricomental space, mandibular advancement, facial profile, 

pharyngeal class, Sampsoon-Young classification, presence of overbite or ove jet. 

3.2 Sam~ling frame 

A total of 99 patients were evaluated, with 75 patients eligible for study. Of the 24 

excluded patients, 14 met the International Classification of Sleep Disorders (ICSD) 

criteria for insomnia and did not undergo diagnostic testing. Ten patients proceeded 

directly to polysomnography because they presented with symptoms suggestive of a 

primary sleep disorder other than OSA: restless leg syndrome/ periodic leg movement 

syndrome (n=6), idiopathic hypersomnolence (n=2), severe COPD (n= 1 ), and narcoieps y 

(n=l). None of the excluded patients, who underwent PSG, had a diagnosis of OSA. 

The patient population was predominantly middle-aged, male, and obese. Patient 

characteristics are summarized in Table 3. As expected, the patients reported excessive 

daytime sleepiness, as assessed by a mean Epworth Sleepiness Score (ESS) of 11 -7. The 

ESS is a self-administered questionnaire that assesses the patients predisposition towards 

falling asleep. An ESS score of greater than 6 is considered abnormal6'. 

Clinical characteristics and physical examination findings are presented in Tables 

4 and 5, respectively. 



Table 3: Summary of patient characteristics (n = 75) 

Patient Characteristic 

Age 

Sex (MIF) 

Body mass index (BMI) 

Neck circumference (cm) 

Epworth Sleepiness Scale 

Respiratory disturbance 
index (hfl) 

Mean 

47.5 

33.1 

42.1 

11.7 

16.0 

Standard Error 

1.33 

Range 

26-74 

75% / 25% 

19-5 1 

30-58 

0-22 

0-138 



Table 4: Summary of clinical characteristics (n=75) 

r 

Characteristic 

Snoring (yes) 

Choking sensation (yes) 

Witnessed apneas (yes) 

Hypertension (yes) 

Alcohol use (yes) 

Smoker 

Yes 
Ex 
No 

N (%) 

68 (91%) 

29 (39%) 

48 (64%) 

14 (19%) 

19 (25%) 

9 (12%) 
17 (23%) 
49 (65%) 
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The respiratory disturbance index was skewed in distribution, with a mean value of 

30 hr-' and a median vaiue of 17 hr-'. The RDI distribution for the group is graphically 

demonstrated in a box plot (Figure 6) .  

Figure 6: Distribution ofthe respiratory disturbance index (RDI) in the model 
development population (n= 75) 

Respiratory disturbance index 

lso 1 



Table 5: Summary of physical examination characteristics (n = 75) 

Mandibular length (cm) 

Characteristic 

Thyro-rami distance (cm) 

Mastoid-medial clavicle (cm) 

TMJ-rarni distance (cm) 

Mean 

Rami-rami distance (cm) 

Thyro-mental distance (cm) 
Neutral position 
Neck extended 

Thyromental displacement (cm) 

S temd-mental distance (cm) 
Neutral position 
Neck extended 

Sternomental displacement (cm) 

Inter-incisor distance (cm) 

Cricomental space (cm), 



Table 5 continued: Summary of physical examination characteristics (n=75) 

I Characteristic I 
Mandibular advancement 

0-5 cm 
5.1-10 cm 
10.1-15 cm 
>I5 cm 

Profile 
Neutral 
Retrognathia 
Prognathia 

Pharyngeal class 
Neutral 
Class I 
Class I1 
Class 111 
Class rv 

With phonation 
Class I 
Class n 
Class I11 
Class IV 

Sarnpsoon-Young (I  / 11 / 111 /TV) 1 Neutral 
Class I 
Class n 
Class I11 
Class N 

With phonation 
Class I 
Class rl 
Class 111 
Class N 

Overbite (yes/no) 

Overj et ( yeslno) 

'Yo I I 



3.3 Logistic reeression: univariate predictors of OSA 

In the model development cohort of 75 patients, the prevaience of OSA was 8 1 %, 

63%, 57%, or 44%, depending on whether an RDI diagnostic criterion value of greater 

than 5, 10, 15, or 20 hf' was employed. 

Simple logistic regression was performed using clinical and physical examination 

features as independent variables. The presence of OSA (yes/no) was the dependent 

variable. OSA was defined by an RDI 1 10 hr-'. A variable was considered predictive if 

the p-value was <0.10. 

The following clinical features were identified as predictive of OSA: age, snoring 

history, witnessed apneas, and hypertension. The physical examination measurements 

predictive of OSA were: body mass index, neck circumference, mandibular length, thyro- 

ramus distance, thyro-mental displacement, stemo-mental displacement, cricornental 

space, pharyngeal grade, Sampsoon-Young class, and overbite. These univariate results 

are summarized in Table 6, with predictive variables highlighted in bold. Odds ratios and 

95% confidence intervals are also displayed. 

The data were also analyzed using an RDI diagnostic criterion value of greater 

than 15 hr-' to defme OSA. No new predictive variables were identified. 
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Table 6: Univariute logistic regression analysis ofpredictive variablesfor OSA 

Variable 

Age (years) 
Epworth Sleepiness Scaie 
Snoring history 
Choking episodes 
Witnessed apneas 
Hypertension 
Alcohol use 
Smoker 
Body mass index (kg/m2) 
Neck circumference (cm) 

Mandibular advancement (cm) 
Mandibular length (cm) 
Thyro-rami distance (em) 
Mastoid-medial clavicle (cm) 
TM J-ramus distance (cm) 
Ramus-ramus distance (cm) 
Thyro-mental (neutral, cm) 
Thyromental displacement (cm) 
Sterno-mental (neutral, cm) 
SternomentaI displacement (cm) 
Retrognathia 
Cricomental space (em) 
Tonsillar grade (I-IV) 
Pharyngeal grade (I-IV) 
Sampsoon-Young class (I-W) 
Palatal elevation 
Inter-incisor distance (cm) 
Overbite 

Odds 
ratio 

1.10 
1.03 
12.5 
2.02 
3.37 
10.3 
1.20 
1.28 
1.13 
136 

0.69 
1.83 
1.59 
1.25 
1.39 
0.97 
1.23 
0.59 
0.86 
0.75 
0.89 
0.15 
0.85 
1.52 
1.77 
1.41 
0.86 
2.19 

P-value 

0.001 
0.558 
0.023 
0.169 
0.0 16 
0.029 
0.658 
0.482 
0.009 
0.000 

0.107 
0.005 
0.020 
0.129 
0.164 
0.89 t 
0.359 
0.059 
0.180 
0.04 1 
0.706 
0.000 
0.41 5 
0.046 
0.018 
0.303 
0.673 
0.044 

Confidence IntervalssK 

[1.03, 1.161 
[0.93, 1.131 
11.42, L10.6j 
[0.74, 5.491 
[1.25,9.06] 
[1.27,83.91 
[0.53, '2.741 
[0.64,2.56] 
[1.03,1.24] 
[1.15,1.61] 

[0.43, 1.081 
[1.20,2.79] 
[1.07,2.35] 
[0.94, 1.651 
[0.88,2.19] 
[0.67, 1-42] 
r0.79. 1.901 
10.35, 1.021 
[0.68, 1.071 
[0.57,0.99] 
r0.48, 1.651 
[0.06,0.381 
[0.57, 1.261 
[1.01,230] 
[1.10,2.86] 
[0.73,2.71] 
[0.44, 1.711 
[1.02,4.701 



3.4 Model building using logistic regression 

3.4.1 "Simificant a" a ~ ~ r o a c h  

A "significant p" model was constructed using variables identified as potentially 

predictive by simple logistic regression. The dependent variable was OSA (yes/no), as 

defmed by an RDI 21 0 he'. Independent variables consisted of both clinical and physical 

exam characteristics: age, snoring history, witnessed apneas, hypertension, body mass 

index, neck circumference, thyro-ramus distance, sternomental displacement, cricomental 

space, pharyngeal grade, Sampsoon-Young class, and overbite. The full model was 

progressively reduced using automated stepwise reduction. A significance level of p=O. 1 

was selected for item elimination. Using this approach, the model was reduced to 3 

predictive variables: cricomental .space, pharyngeal grade, and overbite. The likelihood 

ratio (LR) test compared the reduced model to the r l l  "significant p" model. The 

parsimonious model was not significantly different from the fdl model (p=O. 14, LR test). 

Identical results were obtained when an RDI >15 hr-' was used to define OSA. 

3.4.2 Bioloeicallv piausible aa~roach 

A model was also constructed using known and suspected predictors of OSA: 

snoring, choking episodes, witnessed apneas, hypertension, neck circumference, body 

mass index, thyromental displacement, sternomental displacement, retrogaathia, 

cricomental space, tonsillar grade, pharyngeal grade, overbite, Sampsoon-Young class, 

and palatal elevation (change in Sampsoon-Young class on phonation). Investigator- 

driven elimination was used to reduce the model. Items were removed based on an 
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expected minimal contribution to the overall model, either from a statisticai (i.e. low odds 

ratio) or biologically plausible standpoint. Once again, the parsimonious model 

incorporated the same 3 variables, namely, cricomental space, pharyngeal grade, and the 

presence of overbite. The parsimonious model was also not significantly different from 

the full "biologically plausible" model (p=O. 13, likelihood ratio test). 

3.4.3 The ~arsimonious model 

In summary, the investigator-driven, biologically plausible approach and the 

automated "significant p" approach produced identical results. Regardless of the 

modeling approach, the final parsimonious models consisted of the same 3 predictive 

variables, namely cricomental space, pharyngeal grade, and the presence of overbite. 



3.5 Model building using recursive ~artitioniag 

3.5.1 Classification and Remession Trees (CART) 

A recursive tree model was developed using the same variables employed to 

develop the "significant p" model, namely age, snoring history, witnessed apneas. 

hypertension, body mass index, neck circumference, mandibular length, thyro-rarnus 

distance, thyromental displacement, sternomental displacement, cricomental space, 

pharyngeal grade, Sampsoon-Young class, and the presence of overbite. The CART 

algorithm was set using the following parameters: minimum number of observations 

before split: 5, minimum node size: 10, minimum deviance: 0.010, p h n g  method: 

deviance. The CART algorithm identified the following predictive variables: cricomental 

space, mandibular length, pharyngeal grade, sternomental displacement, thyrornentai 

displacement, and body mass index (Figure 7). 



Figure 7: Full decision nee for the diagnosis of obstructive sleep apnea 

Each node contains binary predictors of OSA. Branches to the left of a node 
means that the node determined condition (predictor) exists, while branches to the 
right of a node indicate the absence of the condition. Nodes at the base of the tree 
form terminal nodes. The probability of OSA given a series of conditions is 
determined by combining a series of contiguous nodes to the terminal node. For 
example, if a patient has a cricomental space > 1.25 crn and a mandibular length > 
10.5 cm, there is 0% chance of having OSA. 
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3.5.2 Estimatin~ o~timal tree size 

The optimal tree size is frequently a compromise between clinical acceptance and 

precision of the estimate. Increasing the tree size increases potential accuracy, but may 

lead to over-fining, thus limiting generalitability to only the data set from which the 

model was derived. Moreover, the increased complexity will limit its acceptability to 

clinicians. The full tree illustrated in Figure 7 was deemed too large for use in clinical 

practice. A deviance plot was generated to estimate optimal tree size (Figure 8). Deviance 

(inaccuracy) decreases with increasing tree size, thus optimal tree size is also a 

compromise between deviance and tree complexity. The slope of the deviance plot 

changes drastically for tree sizes <2 or >4. Therefore, a tree size of between 2 and 4 

terminal nodes was thought to be ideal. 

3.5.3 Pruning the Tree 

Using a tree size of 4, cricomental space, pharyngeal grade, neck circumference, 

and thyromental displacement were predictive of OSA. A tree size of 3 yielded only two 

predictive variables: cricomental space and pharyngeal grade. 

The reduced tree model shared two predictive variables with the regression 

model, namely cricomental space and pharyngeal grade. The regression and recursive 

partitioning models differed in their use of overbite (regression model only) versus 

thyromental displacement and neck circumference (tree model only). However, in the 

pruned tree model, none of the terminal nodes contained a positive predictive value 

approaching loo%, nor did the tree identify a cricornental space cut-point that excluded 
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the possibility of OSA. Consequently, the logistic regression-derived model was used for 

derivation of the final decision rule. 

Figure 8: Deviance plot to estimate optimal tree size 

The curve has the greatest change in slope between tree sizes of 2 and 4. 
Therefore, the optimal tree size is assumed to be between 2-4 terminal nodes. 



3.6 Develo~ine the Decision Rule 

3.6.1 Ontima1 cut-~oint selection bv visual ins~ection 

CricomentaI space and pharyngeal grade were measured as continuous variables. 

These variables were cross-tabulated against a diagnosis of OSA, and optimal cut-points 

were visually selected (see Table 7). A cricomental space > 1.5 cm and a pharyngeal 

grade > I1 were chosen as optimal cut-points. Consequently, the decision rule was based 

on three binary variables: a cricomental space 5 1.5 cm, a pharyngeal grade > 11, and 

the presence of overbite. Table 7 reveals that a cricomental space > 1.5 cm effectively 

excludes the possibility of OSA. 

3.6.2 O~timal cut-aoint selection. bv CART 

CART automates the process of optimal cut-point determination for continuous 

variables. We used CART to select cut-points for predictive variables identified in the 

parsimonious logistic model (cricomental space, pharyngeal grade, and the presence of' 

overbite). CART selected cut-points were similar to those prospectively selected by 

visual inspection of cross-tabulations. The CART approach determined optimal cut- 

points of 1.25 cm for cricomental space and 2.5 for pharyngeal grade. A pharyngeal 

grade 2.5 is equivalent to a grade of 2, given that the grading system is ordinal. Similarly, 

a cricomental space of > 1.25 cm and > 1 .SO crn are identical, since no intervening values 

were measured. 



Table 7: Cross-tabulation of predictive variables against a diagnosis of OSA 

I Pharyngeal I OSA + I OSA - I 

Cricome~tal 
Space (mm) 

0 
0.25 
0.50 
1 .o 

1 .SO 
1.75 
2.0 
2.5 
3 .o 

Grade 

0 P 

Cricomental space 

OSA + 

37 
1 
3 
5 
1 
0 
0 
0 
0 

I 11 Ill IV 

Pharyngeal Grade 

OSA - 

9 
0 
3 
I 
2 
2 
8 
1 
1 



Figure 9: A decision rule for diagnostic testing in obstructive sleep apnea 

Cricomental Space 5 1.5 cm 

Pharyngeal grade > I1 
AND 

Overbite present 

OSA ABSENT 
Consider PSG if a non-OSA sleep disorder is suspected 

OSA PRESENT 
Consider treatment 

DIAGNOSTIC GREY ZONE 
Further diagnostic testing required 

(PSG or portable monitor) 



3.7 Diagnostic ~erformance of the Decision Rule 

The diagnostic performance of various combinations of clinical predictors is 

summarized in Table 8. Depending on the combination of variables, sensitivities ranged 

from 40- 100%, with specificities between 46-96%. No single combination of variables 

simultaneously provided near perfect sensitivity and specificity. However, the presence 

of all three predictors: a narrowed cricomental space, a high pharyngeal grade, and 

overbite is highly predictive of OSA (positive predictive value 95% (CIssv.: 75- 100%) at 

an RDI cut-off value of 10 hi1). However, the negative predictive value is relatively low 

4 9 % ( CIssr.: 3 5 - 6 3 ) . By contrast, a cricomental space of > 1.5 cm effectively excludes 

the possibility of OSA (negative predictive value of 100% (C19sl..: 75- 100%) at an RDI 

diagnostic cut-off value of 10 hr'!), but is not very specific (specificity: 46% (CIsS%: 26- 

66%)). 

Because of the high specificity of the 3 variable model and the high sensitivity of 

the cricornental space measurement, these two conditions formed the basis of the decision 

rule (see Figure 9). The decision rule will be discussed in more detail later, however, it 

can be summarized as follows: 

(1) A cricomental space 5 1.5 cm, a pharyngeal grade > II, and the presence of 

overbite is highly suggestive of OSA. 

(2) A cricomental space of > 1.5 cm effectively rules out the possibility of OSA. 

As summarized in Table 9, the diagnostic performance of the decision rule remained 

stable across a range of RDI diagnostic criterion values. 



Table 8: Diagnostic performance of the predictive variables 

PPV: positive predictive value 
NPV: negative predictive value 
Cricomental narrowing is defined by a cricomental space 5 1.5 cm 
Pharyngeal narrowing is defined by a pharyngeal grade > I1 

Variable combination 

Cricomental & pharyngeal 
narrowing, & o v e r b i t e  

Cricomental & pharyngeal 
narrowing 

Cricomental narrowing & 
overbite 

Pharyngeal narrowing & 

overbite 

Cricomental narrowing 

Sensitivity 
(95% CI) 

40 (27-56) 

64 (49-77) 

60 ( 4 4 - 7 4 )  

40 (26-56) 

100 (92-100) 

Specificity 
(95% CI) 

96 (82-100) 

82 (63-94) 

75 ( 5 5 - 8 9 )  

93 (76-99) 

4 6  (28-66) 

PPV 
(95% CI) 

95 (75-100) 

86 (70 -95)  

80 (63-42) 

90 (70-99) 

76 (63-86) 

NPV 
( 9 5 %  CI) 

49 (35-63) 

58 (41-73) 

52 (36-69) 

48 (34 -62)  

100 (75-1001 

4 
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3.8 Decision Rule reliability 

Twenty patients underwent two independent assessments using the UAPP-SF. 

Agreement between measurement variables identified as predictive by either the decision 

tree (CART) or decision rule (logistic regression model) was assessed. These variables 

were cricomental space > 1.5 cm, presence of overbite, presence of retrognathia, tonsil 

enlargement, pharyngeal narrowing (pharyngeal grade > II), and thyromental 

displacement. As shown in Table 10, agreement was high for ail variables (kappa 

coefficient range: 0.58- 1.00) other than retrognathia (kappa=0.22). Inter-observer 

agreement for decision rule measurement variables, namely cricomental space, overbite, 

and pharyngeal narrowing was high. 

Table 10: Inter-rater agreement on the predictive variables 

Measurement variable 

Cricornexltal space > 1.5 cm 

Overbite present 

Retrognathia 

Tonsil enlargement 

Pharyngeal nanoying 
(pharyngeal grade > 11) 

Thyromental displacement < 1.25 cm 

Kappa 

1 .O 

0.6 1 

0.22 

0.73 

0.78 

0.58 



3.9 Validation of the Decision Rule 

The diagnostic performance of the decision rule was validated in the "ail 

SNORESAT referral" sample. Fifty consecutive patients, referred to the ALA Sleep 

Centre for ambulatory monitoring, were assessed using the UAPP-SF prior to diagnostic 

testing. Decision rule performance is summarized in Table 11. The presence of ail three 

predictors: a narrowed cricomental space, a high pharyngeal grade, and overbite was 

highly predictive of OSA. The diagnostic performance was similar to that observed in the 

model development cohort (positive predictive value 100% (C195%: 63- 100%) and 

specificity of 100% (CIs5%: 84-100%) at an RDI cut-off value of 10 hf'). Similarly, a 

cricomental space of > 1.5 cm effectively eliminated the possibility of obstructive sleep 

apnea (sensitivity: 100% (CIss%: 88- loo%), negative predictive value: 100% (CIgs%: 63- 

100%)). In summary, the diagnostic performance of the decision rule was virtually 

identical in both the model development sample and the validation sample. 



Table I I :  Diagnostic perfomance of the decision rule at a variety of RDI 
criterion values (in the all patient referral sample) 

OSA diagnostic 
criterion value 

I 

RDI 2 5 hr - '  

RDI - > 10 hr-'  

RDI 2 15 hr-I  

RDI 2 20 hr- '  

A 

PPV: positive predictive value 
NP V: negative predictive vafue 

L 

OSA diagnostic 
criterion value 

RDI 2 5 hr-I 

RDI 2 10 hr- '  

RDI - > 15 nr" 

RDI 2 20 hr-' 

Three variable model 
Sensitivity 
(95% CI) 

22 (10-38) 

28 (13-47) 

28 (12-49) 

32 (13-57) 

Cricomental o c c ~ u s i o n  
Sensitivity 
(95% CI) 

97 (86-100) 

100 (88-100) 

100 (86-100) 

100 (83-100) 

S p e c i f i c i t y  
(95% CI) 

100 (75-100) 

100 (84-100) 

96 (80-100) 

94 (79-99) 

S p e c i f i c i t y  
(9S% CI) 

54 (25-81) 

38 (18-62) 

32 (15-533 

26 (12-45) 

PPV 
(95% CI) 

100 (63-100) 

100 (63-100) 

88 (47-100) 

75 (35-100) 

4 

NPV 
(95% C 3 )  

31 (18-47) 

50 (34-66) 

46 (30-61) 

69 (53-83) 

' PPV 
(95% CI) 

86 (71-95) 

69 (53-82)  

60 (43-74) 

45 (30-61) 

NPV 
(95% CI) 

88 (47-1001 

100 (63-100) 

100 (63-100) 

I00 (63-100) 



CHAPTER 4: DISCUSSION 

4.1 Summaw of results 

In a consecutive series of 75 patients referred to a tertiary sleep centre, a number 

of predictors of obstructive sleep apnea were identified. Clinical predictors included age, 

snoring history, witnessed apneas, and hypertension. Physical exarnination-based 

predictors included: body mass index, neck circumference, mandibular protrusion, thyro- 

rami distance, sterno-mental distance, stemo-mental displacement, thyro-mental 

displacement, cricomental space, pharyngeal grade, Sarnpsoon-Young classification, and 

overbite. A decision rule was subsequently developed: cricomental space 5 1.5 em, 

pharyngeal grade >2, and the presence of overbite. In patients with all 3 predictors, 

the decision rule had the following performance characteristics: positive predictive value: 

95% (CIss%: 75- loo%), negative predictive value: 49% (CIss%: 3 5-63%), sensitivity: 40% 

(CIss%: 27-56%), specificity: 96% (CIss%: 82-100%). A cricomental space > 1.5 cm 

excluded the possibility of OSA (negative predictive value: 100% (CIssr.: 75- 100%)). 

Comparable performance was obtained in an unfiltered validation sample of 50 patients 

referred f i r  diagnostic testing. The inter-rater reliability of decision rule measurement 

variables was high. This decision rule provides a simple, reliable, and accurate method of 

identifying patients with, and perhaps more importantly, patients without OSA. 
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4.2 Clinical aredictors of obstructive sleep aanea 

Although cheap and relatively easy to administer, decision rules aimed at 

diagnosing OSA have been limited by insufficient sensitivity and specificity for use as 

diagnostic  instrument^'^. In general, most OSA decision rules have specificities around 

90%, but sensitivities considerably less than 80% (see Table 1) 24-27.53-55 

Neck circumference and BMI are the only physical examination characteristics 

that are consistently predictive of O S A ~ ~ ~ ~ ~ ~ .  In this study, both body mass index and 

neck circumference, were confirmed as being predictive of OSA. However, BMI may be 

susceptible to selection bias, given that its relative contribution to predictive models is 

study site dependene42"29J6955. In thi s sample, although predictive of OSA, BMI was not 

of sufficient predictive value to beincluded in the final decision rule. 

A major limitation to physical examination-based prediction is that, with the 

notable exception of a study by Kushida et al, previous studies only evaluated basic 

morphornetric characteristics. Kushida et a1 evaluated a consecutive sample of 300 

patients referred to the Stanford University Sleep Centre, a university-based tertiary care 

centre that receives referrals fkom across the United states3! Body mass index, neck 

circumference, and intermolar distance were identified as predictive variables. A 

prediction index was developed, which had a sensitivity and specificity of 98% and 100% 

respectively. Unfortunately, there are serious questions as to whether the model was 

tested on a representative sample of patients. At their centre, the prevalence of OSA was 

8596, which is considerably higher than the approximately 50% prevalence rate observed 

at most sleep centres. More significantly, BMI had a diagnostic sensitivity and specificity 
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of 93% and 74% respectively. In effect, in their sample of patients, the use of BMI alone 

exceeded the diagnostic performance of all previous decision rules, and some portable 

monitors. Virtually ail published articles report a much lower predictive value for BMI, if 

indeed predictive at 29i55. Selection bias is clearly a concern. 

Furthermore, there are serious considerations concerning ease of use. A major 

limitation to the adoption of decision rules into routine clinical practice has been time 

constraints. In the primary care setting, there is little time to perform complex 

measurements or calculations requiring the arithmetic combination of predictive variables 

with a variety of coefficients. To achieve widespread acceptability, a clinical decision 

rule must be easy to interpret, and executable without extraneous equipment. This 

decision rule makes use of only 3 clinical predictors (cricornental space, pharyngeal 

grade, overbite), all of which can be assessed with no more than a ruler. 

In contrast to physical examination-based predictors, clinical predictors are 

remarkably consistent. In a randomly selected series of 180 patients referred to a tertiary 

sleep centre, Flemons et a1 reported increased neck circumference, hypertension, habitual 

snoring, and nocturnal gasping/ choking as being predictive of OSA (PSG-AHI 2 10 hr") 

using logistic regression modeling. Similarly, Viner et al evaluated 4 10 patients referred 

for suspected sleep apnea Body mass index (BMI), age, male sex, and snoring were 

predictive of OSA (PSG-AH1 2 10 hf'). The derived prediction model had a sensitivity 

and specificity of 28% and 95%, respectively? This study confumed the results of 

previous investigators. Snoring history, witnessed apneas, and hypertension have been 

repeatedly identified as being predictive of OSA. Although not observed in this study, 
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choking/ gasping episodes have also been reported to have predictive value by some 

in~es t i~a to r s~~- '~ .  

Several physical examination features that have been presumed predictive of 

OSA, but never subjected to formal evaluation were assessed. For example, clinicians 

have long suspected that pharyngeal narrowing, a low-lying palate, and overbite are 

associated with OSA. The predictive value of pharyngeal grade, Sampsoon-Young class, 

and overbite supports these impressions. Moreover, these measurements have a high level 

of inter-rater reliability. Interestingly, despite the commonly held belief, retrognathia, 

tonsil size, and extent of palatal elevation (change in Sampsoon-Young classification 

with phonaticn) were not predictive of OSA. Similarly, none of the mandibular 

measurements were of predictive value. Other measurements such as retrognathia could 

not be reliably determined between investigators. 

While the identification of predictors of OSA allows for a more directed patient 

assessment, it does not necessarily influence clinical decision-making. To be useful, a 

predictive variable must not only be associated with the outcome of interest, but also be 

of high predictive value. Many of the clinical measurements correlated with each other. 

As such, they were not independent predictors; and many were eliminated from the final 

decision rule (Figure 9). For example, although BMI was a significant predictor of OSA 

(p<0.01), it correlated with both cricomental space and OSA, and as such, did not 

contribute to the final decision rule. 

Although both clinical and physical exainhation-based predictors were 

incorporated into the initial regression model, only physical examination-based predictors 
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formed the final decision rule. This suggests that for those patients referred to a tertiary 

sleep centre, the inclusion of clinical features adds minimal predictive value for 

diagnosing OSA beyond that of physical examination alone. 

This result may appear surprising given that the clinical predictors had high odds 

ratios on univariate regression (Table 6), yet were not included in the parsimonious 

model. However, odds ratios derived from univariate regression are of little interpretive 

value when there are multiple predictors. In other words, with univariate analysis, the 

odds ratio is unadjusted for other predictive variables. In contrast, multiple logistic 

regression assesses the independent contribution of each predictive variable following 

adjustment for the other variables. In essence, multiple logistic regression adjusts for 

mathematical confounding, thus providing an "honest" assessment of the independent 

predictive value of each predictive variable. Similarly, an examination of the confidence 

intervals around each univariate odds ratio reveals a very wide range amongst clinical 

predictors (Table 6). For example, hypertension has an OR of 10.3, but a confidence 

interval of between 1.27 to 83.9. Therefore, the true OR may in fact be relatively close to 

1. Finally, when independent variables are continuous, an odds ratio generated using 

logistic regression is not as easily interpreted as with dichotomous independent variables, 

since the odds ratio will change by varying the unit of measurement. 

An ideal predictive test combines several independently predictive variables into a 

single measurement. The cricomental space may be one such predictor. It is a rnulti- 

dimensional measurement that incorporates diverse characteristics such as neck 

circumference, BMI, hyoid bone position, neck posture, mandibular positioning, and 
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possibly pharyngeal length. The integration of several independent predictive variables 

into a single measurement is the likely explanation for its high sensitivity. 

Statistical considerations during Decision Rule development 

Validation involves the assessment of stochastic (statistical) validity, internal 

validity and external validity. Stochastic validity refers to whether the appropriate 

statistical tests were used, and if pertinent assumptions were taken into consideration. 

Internal and external validity assess the extent of study bias. 

This study was considered statistically robust. The decision rule was developed 

using two different modeling approaches, both of which provided the same results. Also, 

for comparison, a CART decision .tree was created, with the fmal results being similar to 

those generated by logistic regression. 

4.3.1 Lo* tic regression 

Although considered a valid statistical technique, model building using logistic 

regression has sometimes been likened to an art as well as a science. Depending on the 

approach used to build a model, different results may be obtained from the same data set. 

Differences in modeling technique probably explain some of the variation amongst the 

decision rules for OSA described in the literature. 

Consequently, two different, and independent, approaches to logistic modeling 

were employed for decision rule development: the automated "significant p" approach 

using a stepwise reduction procedure, and an investigator-driven, biologically plausible 
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approach. Regardless of the approach used to develop the model, the final parsimonious 

models included the same 3 variables: cricomental space, pharyngeal grade, and presence 

of overbite. Identical results were also obtained when OSA was defined by an RDt 2 15 

hf'. The convergence of results argues for the robustness of the final decision rule. 

4.3.2 CART versus Regression: Moving forward or a s t e ~  back 

The logistic regression-derived decision rule was compared to a decision tree 

developed using recursive partitioning. Both the tree model and the logistic regression 

model incorporated cricomental space and pharyngeal grade as part of the final decision 

rule, but differed on their inclusion of overbite (logistic regression model only) and the 

inclusion of neck circumference and thyromental displacement (reduced tree model 

only). Although similar, the final decision rule was derived using the logistic regression 

model because it contained predictive values ("terminal nodes") for OSA approaching 

100%, while the tree model did not. 

The inconsistencies between CART and logistic modeling may be related to 

differences in how each statistical approach deals with data. CART takes a large data set 

and automatically partitions it into a series of increasingly homogenous nodes. However, 

recursive partitioning may miss predictive factors during the late stages of the selection 

process. By contrast, with directed modeling in logistic regression, clinically important 

variables can be identified at the outset, and weighted accordingly. 

CART has a provision for assigning weights or penalties, usually for tree 

complexity, thus offsetting the increasing purity of subgroups as sample size decreases. 
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Weightings can also be arbitrarily assigned to specific variables or gods. Currently, this 

is a laborious process, and CART does not offer any clear advantage over the logistic 

regression approach. 

Theoretically, CART has a major practical advantage over logistic regression, 

namely, the lack of need to arithmetically combine weighted coefficients. Most 

physicians want a simple decision rule: "given a set of conditions, what is the probability 

that my patient has the condition of interest?". However, by assigning cut-points to 

continuous variables identified as predictive by logistic regression, a binary decision rule 

can also be created fiom a regression model. 

CART may be of value in determining optimal binary cut-points. When the 

decision rule variables (cricomental space, pharyngeal grade, and overbite) were used as 

dependent variables, CART identified similar cut-points to those chosen by visual 

inspection of cross-tabulations. In small data sets, CART does not have any obvious 

advantage over simple visual inspection; however, automated cut-point selection has 

greater value when dealing with larger data sets. 

In summary, for the purposes of identifying parsimonious models, CART does 

not oEer any clear advantage over conventional logistic modeling. Like all automated 

selection procedures, CART offers a high degree of inter-rater reproducibility, but does 

not permit directed modeling. Nevertheless, CART may be helpful in choosing optimal 

cut-points during decision rule development. 
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4.4 Decision Rule interoretation 

Previously reported decision rules for OSA attempted to simultaneously 

maximize sensitivity and specificity. Because of inter-patient variability in clinical 

features, it is unlikely that near perfect sensitivity and specificity can be achieved. In 

general, decision rules using clinical criteria have relatively high specificities, but 

sensitivities below 80%. Consequently, most investigators have abandoned clinical 

prediction in OSA as interesting in theory, but of limited practical value. Indeed. in this 

study, the use of a variety of bivariate models (see Table 8) yielded sensitivities and 

specificities similar to those in the existing literature. When analyzing the model 

development cohort using a combination of snoring, choking episodes, neck 

circumference and hypertension, the results were similar to the existing literature: 

specificity: 96%, sensitivity: 13%. A combination of snoring, witnessed apneas, 

hypertension, and body mass index yielded a specificity of 96%, but a sensitivity of 27%. 

Rather than focusing on a universally perfect diagnostic instrument, this decision 

rule applies to a subset of patients. The Ottawa Ankle Rule is a classic example of this 

approach. Although the specificity of the ankle rule is only SO%, it has a sensitivity of 

100%. Therefore, not all patients meet the decision rule criteria, but in those who do, the 

need for an ankle radiograph can be eliminated. It is estimated that the rule has reduced 

the need for ankle radiography by 30%'~. 

Similarly, it was not possible to identify a combination of variables that had a 

high sensitivity and specificity. However, the use of a 3 variable model to rule in a 
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diagnosis of OSA (PPV=95%), and the use of cricomental space > 1.5 cm to rule out 

OSA (NPV= 100%) holds considerable promise. 

Patients with a cricomental space > 1.5 cm are unlikely to have OSA, therefore, 

depending on the initial reason for referral, such patients either require no further testing, 

or else direct referral for polysomnography if a non-respiratory sleep disorder is 

suspected. By contrast, patients with cricomental space 51.5 cm, pharyngeal grade >2, 

and the presence of overbite are likely to have OSA, and can proceed directly to a trial of 

therapy. Remaining patients fall into a diagnostic gray zone, and require further 

investigation. 

Patients who fit the decision rule criteria, namely, a cricomental spaceN.5 cm, or 

those meeting all criteria of the 3 variable model, accounted for 17% and 27% of the 

study population, respectively. Clearly, most (-60%) patients fell into a diagnostic grey 

zone. However, because of the high cost of diagnostic testing in OSA, if even a subset of 

patients can be appropriately triaged, important economic gains may be realized. 



4.5 Studv critique 

Rarely is a diagnostic instrument cheap, easy to use, and highly accurate, albeit in 

a subset of patients. The diagnostic performance of this decision rule may degrade as 

more patients are evaluated particularly in populations where the prevalence of OSA is 

low* 

Criticism could be raised with respect to the selection of subjects, since the study 

population consisted only of patients referred to the study investigators. Although no 

systematic triaging of referrals existed, recruitment may have occurred from a non- 

representative sample of the clinic population. However, the study prevalence of OSA 

(63% at an RDI 2 10 hi') was similar to that reported in a previous study that had 

recruited patients from the entire clinic population at the same instit~tion'~. Moreover, 

the performance of the decision, rule was virtually identical to that observed in the "all 

SNOREAT referral" sample, which consisted of all patients referred for SNORESAT 

diagnostic testing. 

Furthermore, a large proportion of patients (n=24) were excluded from the study 

because of insomnia or suspected non-respiratory sleep disorders. The exclusion rules, 

however, are well established and operationdised in the International Classification of 

Sleep Disorders (ICSD). 

A more problematic issue relates to referral centre bias. This issue has already 

been illustrated in the study by Kushida et al. The Alberta Lung Association Sleep Centre 

in Calgary is also a tertiary, university-based refenal centre, however, it is the oniy major 

sleep centre in Southern Alberta; a geographic region encompassing Calgary and a 
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number of smaller municipalities. Patients seen at the sleep centre range from highly 

specialized cases to uncomplicated snorers. As a result, the case mix is often similar to 

that seen at non-academic sleep centres. 

Nevertheless, the decision rule developed in this research requires prospective 

evaluation in different settings, most specifically, at the primary care level. This decision 

rule is most likely to have the biggest clinical impact in settings where other sleep 

disorders are not under consideration (i.e. no M e r  testing is necessary once OSA is 

excluded). With growing public awareness of OSA, an increasing number of patients 

seek medical attention because of witnessed apneic episodes. As observed in the 

Wisconsin Sleep Cohort, a large proportion of the population will have at least some 

apneic episodes, but these are of questionable clinical significance. A simple decision 

rule for excluding these patients would obviate the need for further, expensive, diagnostic 

testing. 

Similarly, otolaryngologists perform uMllopalatopharyngop1asty (UPPP) for 

treatment of uncomplicated snoring. However, it is difficult to determine if such a patient 

has OSA, for which UPPP is not optimal treatment. For this reason, the current practice is 

to refer patients to sleep centres for the purpose of ruling out OSA. A simple decision 

rule for excluding OSA would reduce the need for diagnostic testing. Additionally, as 

more is learned about OSA-related cardiovascular complications, there is a growing 

number of cardiac patients referred specifically for the purposes of ruling out OSA. 

It is likely that the diagnostic performance of the decision rule will change when 

deployed in non-sleep centre settings. The decision rule was validated in a setting where 
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the OSA prevalence was relatively high. As such, the positive predictive value would be 

expected to fall in lower prevalence populations, specifically in the primary care setting. 

However, in contrast, the negative predictive value (or ability to exclude OSA) should 

increase. As outlined previously, most practical applications for the decision rule would 

be in ruling out, rather than ruling in, OSA. 

The choice of gold standard may also pose a threat to internal validity. The use of 

SNORESAT as the gold standard diagnostic instrument may be challenged, given that 

some investigators feel that only full overnight polysomnography is acceptable for OSA 

diagnosis. Although SNORESAT is now the standard OSA diagnostic instrument at the 

ALA Sleep Centre, acceptance of portable monitors is far from universal. However, 

SNORESAT has been well characterized and there is very close correlation and 

agreement between the SNORESAT-derived RDI and PSG-derived AHI". The use of 

SNORESAT was thus considered an acceptable option. Moreover, with the decline in 

financial incentives to perform PSG, particularly with the introduction of Health 

Maintenance Organizations in the United States, there is a growing, evidence-based move 

away fiom PSG for the routine diagnosis of O S A ~ ~ .  

Finally, fiom a practical standpoint, the cost effectiveness of OSA-specific 

decision rules has never been adequately assessed. In theory, the ability to identify a 

subset of patients with OSA using the decision mle should allow clinicians to refer 

patients directly for therapy. However, the value of this approach may be limited by the 

willingness of third party payers to fund OSA treatment in the absence of "objective" 

baseline testing. Similarly, the ability to exclude patients with OSA based on the decision 
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rule may also have limited value in many settings. Any cost savings associated with the 

decision rule is based on two premises: (1) portable monitors are used for routine OSA 

diagnosis; (2) a non-respiratory sleep disorder is not suspected. Patients eequently 

present to the sleep centre with excessive daytime sleepiness, and even if OSA is 

excluded, full polysomnography must still need to be performed to rule out other primary 

sleep disorders. However, in sleep centres that make extensive use of portable monitors, 

the ability to identify patients without OSA would allow direct referral for 

polysornnography; thus bypassing portable monitoring, which has not been well validated 

for diagnosing non-respiratory sleep disorders. 

Ultimately, the true value of a decision rule lies in its ability to have an impact on 

clinical practice. The effects of a decision rule on referral patterns for diagnostic testing, 

and subsequent economic impact, remains to be assessed. 

CONCLUSION 

In a subset of patients, this decision rule provides a simple, reliable, and highly 

accurate method of identifying patients with and without OSA. Its validity in the primary 

care setting, and its effect on changing clinical practice remains to be determined. 
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APPEM)M A: UPPER AIRWAY PHYSICAL EXAM PROTOCOL (UAPP) 

- UAPP-F (FINAL VERSION) - 
Name: ID#: 

Date of assessment: Phone number: 

Patient Characteristics 

Sex: Male Female Age: ESS: 

Symptoms: snorer nocturnal choking witnessed apneas hypertension 

Drugs and medications: 

Alcohol: NO YES: 

Medications: 

Smoker: NO EX CURRENT 

Past Medical History: 

Polysomnography : [ ] PSG [ ] Snoresat 

Date: total sleep time: min 

RDI: supine: lateral: 

Snoring index: supine: lateral : 

Mean oxygen saturation: % 

Time spent (%): <90%: 4 5 % :  <80%: GO%: 

[ ] other: 



Anthromor~hics 

Height: cm Weight: kg Neck circumference: cm 

Profile: [ ] Retrognathia [ ] neutral [ ] prognathia 

Cricomentai space: [ ] occluded distance @ mid-point: cm 

Chin: [ ] Dimpled [ ] widened 

neutral with ~honatiort 

Tonsils (Class I-N) I I I I I I N  

Pharyngeal space: I II n1 r~ 

inter-incisor gap: cm 

neutral ~honation 

Samsoon-Young Class: I I I U I I V  I l I I I I N  

Overbite: mm Ove jet: mm 



RATER: 

- UAPP-P (PROTOTYPE VERSIONS) - 
[ I m T  [ V E R  [ ] other: 

Profile: [ ] Retrognathia [ ] neutral [ ] prognathia Chin protrusion: mrn 

Ooenin~: upright supine 

Tonsils (Class I-IV) I I1 I11 N I I1 I11 IV 

Pharyngeal space: rnrn 

inter-incisor gap: mm 

111 
extension 

Mandible: 

max mandibular 
advancement (mrn) 
thyro-mental (mm) 

TMJ-ramus (mm) 
I 

thryo-rami (mm) 

mandibular length (mm) 

S terno-mental (cm) 

ramus-ramus (mm) 

Mastoid-medial clavicle 
(cm) 

Uvula: neutral ohonation best view 

Samsoon-Young Class: I II 111 IV I I1 111 IV I I1 III IV 

neutral 

Overbite: mm Overjet: mm 

neutral full 
extension 

Nose: [ ] deviated septum [ ] nasal polyps [ ] nasal stuffiness 

Left I Right g e a d  Movement 
Neck lateral flexion (cm) 

Flexion (cm) 

Extension (cm) 
; 

' 



- UAPP-SF (SHORT-FORM) - 
NAME: 

Height: cm Weight: kg Neck circumference: cm 

Thyromental displacement: cm 

Cricomental space: [ ] occluded distance at midpoint: cm 

Profile: [ ] retrognathic [ ] neutral [ ] prognathic 

Tonsils: [ ] enlarged [ ] nonnal or small 

Overbite: [ ] present [ ] absent 

Pharynx: tongue diameter 
100% 75% 50% 25% 

CIRCLE I 
ONE 



APPENDIX B: The Epworth Sleepiness Score 

YOUR NAME: 

How likely are you to doze off or fal! asleep in the following situation, in contrast 
to feeling just tired. This refers to your usual way of life in recent times. Even if you have 
not done some of these things recently, try to work out how they would have affected 
you* 

CHANCE OF DOZMG OFF 
NEVER SLIGHT MODERATE HIGH 

Sitting and reading 0 1 2 3 

Watching TV 0 1 2 3 

Sitting inactive in a public space 0 1 2 3 
(eg. Theatre or a meeting) 

As a passenger in a car for an hour without 0 
a break 

Lying down to rest in the afternoon when 0 
circumstances permit 

Sitting and talking to someone 0 

Sitting quietly after a lunch without alcohol 0 

In a car, stopped for a few minutes in traffic 0 



APPENDIX C: Definitions 

Apnea: absence of airflow for more than 10 seconds 

central aonea- respiratory effort is absent 
obstructive- cessation of airflow with persistent continued respiratory effort (as 

evidenced by thoracoabdominal movement) 

Apnea hypopnea index (AIFI): # of apneas 8r hypopnead hour of sleep 

Body mass index: weight (kg)/ height (m12 

Hypopnea: a >I0 second reduction in airflow, usually assessed by a reduction in 
respiratory effort +/- an associated oxygen desaturation or EEG-based arousal. There is 
significant controversy over the hypopnea 

Respiratory disturbance index (RDI): a surrogate measure of the MI. The detinition 
of RDI differs according to the monitor used to derive it. However, it should have close 
correlation and agreement with the AHI. When scored off a polysornnogram, the RDI is 
considered synonomous with the AHI. 

Obstructive sleep apnea (OSA): episodic intemption in airflow during sleep. The 
diagnosis is established by an AH1 exceeding a threshold value. Considerable controversy 
exists over which AHI criterion value is diagnostic of OSA, if indeed one is even 
appropriate. 

Sleep apnea hypopnea syndrome (SAHS): the presence of obstructive sleep apnea and 
OSA related symptoms. 
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APPENDIX E: CONSENT FORM FOR UAPP 

Research Project: UAPP Project 
Investigatom: Drs. J.E. Remmers, W. Tsai, C. McArthur, J.  Davies. R. Brant 
Funding Agency: Alberta Heritage Foundation for Medical Research 

This consent form, a copy of which has been given to you, is only part of the 
process of informed consent. It should give you the basic idea of what the research is 
about and what your participation will involve. If you would like more detail about 
something mentioned here, or information not included here, you should feel free to ask. 
Please take the time to read this carefully and to understand any accompanying 
information. 

What is obstructive sleep apaea (OSA)? 

Obstructive sleep apnea is a condition where people episodically stop breathing 
during their sleep (when people stop breathing for a long time, we call this an apnea). 
The brain is pretty smart, and realizes that you've stopped breathing, and eventually 
wakes you up. People are fkequently unaware that this is happening, however, the 
repetitive arousals fiom sleep result in daytime sleepiness. In more severe cases, OSA is 
associated with increased rate of car accidents, high blood pressure, heart disease, and 
strokes. It may occur in up to 4% of people, however, most of these people are unaware 
that they have it. Your physician mspects that you may have OSA, and that is why you 
were referred to the sleep centre. 

So what's invoked in this study? 

Traditionally, OSA is diagnosed by an overnight sleep study at a sleep centre. 
This is expensive in terms of time and money. We are looking at ways of determining if 
we can predict whether people have OSA based on physical appearance. We will be 
doing simple measurements of your mouth and jaw area. This takes no more than 5 
minutes, and it is often part of the standard physical exam for sleep apnea. You will then 
undergo a home sleep study, which is part of the standard test for people suspected of 
having OSA. Aside from taking a few simple head and neck measurements, your 
evaluation will be no different than that of any other patient referred to the sleep centre. 



The information collected will be added to your patient file. Some of the data 
may be reported in a scientific report of research results, but your name will not be 
connected with this. In the unlikely event that you suffer injury as a result of participating 
in this research, no compensation or treatment (beyond that routinely provided by Alberta 
Health) will be provided to you by the funding agencies, investigators, the University of 
Calgary, or the Calgary Regional Health Authority. You still have all your legal rights. 
Nothing said here about treatment or compensation in any way alters your right to pursue 
legal recourse to recover damages. 

Your signature on this form indicates that you have understood to your 
satisfaction the information regarding participation in the research project and agree to 
participate as a subject. In no way does this waive your legal rights nor release the 
investigators, sponsors, or involved institutions fiom their legal and professional 
responsibilities. You are fiee to withdraw fiom the study at any time without jeopardising 
your health care. Your continued participation should be informed as your initial consent, 
so you should feel free to ask for clarification or new information throughout your 
participation. 

If you have W e r  questions concerning matter related to this research, please 
contact: Dr. Willis Tsai (670-2540) 

If you have any questions concerning your rights as a possible participant in this 
research, please contact the Ofice of Medical Bioethics, Faculty of Medicine, The 
University of Calgary, at 220-7990. Please sign below. 

Participant's Signature Date 

Investigator and/or Delegate's Signature Date 

Witness' Signature Date 

A copy of this consent form has been given to you to keep for your records and reference. 




