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ABSTRACT

A consecutive series of 75 patients referred to a tertiary sleep centre underwent
prospective evaluation with the Upper Airway Physical Exam Protocol. Predictors of
obstructive sleep apnea included (OSA): age, snoring history, witnessed apneas, and
hypertension. body mass index. neck circumference. mandibular protrusion. thyro-rami
distance, sterno-mental distance, sterno-mental displacement, thyro-mental displacement,
cricomental space, pharyngeal grade, Sampsoon-Young classification, and overbite. A
decision rule was developed: cricomental space < 1.5 cm, pharyngeal grade >2, and
the presence of overbite. Patients with all 3 predictors had a positive predictive value of
95% (Clgse,: 75-100%), negative predictive value: 49% (Close,: 35-63%). A cricomental
space > 1.5 cm excluded obstrdctive sleep apnea (negative predictive value: 100%
(Clgsw: 75-100%)). Comparable Vperforrnance was obtained in an unfiltered validation
sample of 50 patients referred for diagnostic testing. The inter-rater reliability was high.
This decision rule provides a simple, reliable, and accurate method of identifying patients

with and without OSA.
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CHAPTER 1: INTRODUCTION

1.1 Health care burden associated with obstructive sieep apnea

Obstructive sleep apnea (OSA) is characterized by episodic upper airway
obstruction during sleep. It is defined by the apnea hypopnea index (AHI), which is the
number of apneas (complete cessation of airflow) and hypopneas (partial reduction in
airflow) per hour of sleep. The obstructive sleep apnea syndrome (OSAS) consists of a
physiologic event, namely OSA, plus OSA-related symptoms, of which, daytime
hypersomnolence is the most frequently encountered presentation.

The obstructive sleep apnea syndrome is common in North America. In a random,
community-based, adult sample of 602 government employees, the Wisconsin Sleep
Cohort Study reported an OSAS prevalence of 2% and 4% in middle-aged women and
men, respectively'. OSAS was diagnosed using polysomnography, with an AHI >5 hr!
plus associated daytime sleepiness, required to establish a diagnosis.

Using snoring as a proxy for OSA, several case-control and cross-sectional
studies suggest a link between snoring and cardiovascular morbidity’®. A limited
number of retrospective case-control studies suggest that untreated OSA increases
cardiovascular morbidity and all-cause mortality®®. In a cross-sectional study of blood
pressure measurements during wakefulness and sleep in the Wisconsin Sleep Cohort, Hla
et al found an association between hypertension and sleep apnea independent of obesity,

age, and sex’. Subjects with an AHI > § hr' were more likely to have hypertension
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compared with those with an AHI < 5 hr''. The probability of hypertension increased in a
dose dependent fashion with AHI*'S.

The association between OSA, all-cause mortality and coronary artery disease is
more controversial. He et al employed a cross-sectional design in a highly selected series
of 706 male patients, evaluated at a tertiary sleep centre. An increased mortality rate was
observed in patients with severe OSA (apnea index > 20 hr'")®. Similarly, Partinen et al
cbserved an increased rate of cardiovascular mortality in a small (n=198) group of
patients treated at the Stanford Sleep Disorders Clinic, a highly specialized university-
based sleep centre’. Hung et al employed a case control design using 101 consecutive
male patients, who had been admitted for acute myocardial infarction. An increased risk
of myocardial infarction was seen in patients with an apnea index > 5.3 he' 8.

Furthermore, an increased rate of automobile collisions is observed in at least 2
subset of patients with OSA™!!. In a cohort study involving 913 subjects forming part of
the ongoing Wisconsin Sleep Cohort, Young et al identified an increased risk of
automobile accidents (OR=4.2) amongst subjects with OSA (AHI > 5 hr'), as compared
with normal controls (AHI < 5 hr'')'!. More recently, in a prospectively followed cohort
of 120 patients, Barbe et al also found an increased risk of automobile accidents in
patients with OSAY.

Although cardiovascular morbidity is an important health issue, patients seek
treatment for OSA primarily because of daytime sleepiness. Indeed, the definition of
OSAS is predicated on the presence of OSA-related symptoms such as daytime

hypersomnolence. In this regard, several large, well designed randomized control trials
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have shown that treatment of OSA with continuous positive airway pressure (CPAP)
improves sleep architecture, reduces daytime sleepiness, and improves performance'?"*.

In a randomized controlled trial of CPAP compared with conservative therapy,
Redline et al evaluated 111 subjects'’. Patients with mild obstructive sieep apnea
(AHI=5-30 hr") were randomized to receive either CPAP or conservative therapy. The
latter consisted of behavioral and lifestyle counseling, treatment of nasal congestion, and
nasal dilators. Patients in the CPAP group reported a greater improvement in
hypersomnolence, mood, feeling of well being, and functional status. Similar results were
observed by Engleman et al in a randomized placebo controlled trial comparing CPAP
therapy with oral placebo'?. Although differing somewhat in the instruments chosen to
assess health outcomes, both studies used validated questionnaires and neurocognitive
testing. Sleepiness was both self-reported and objectively identified by a shortened sleep
latency on the multiple sleep latency test (MSLT). The MSLT objectively measures sleep
predisposition by determining the mean time to polysomnographically confirmed sleep
onset in a series of daytime naps.

Given the prevalence of OSA, its associated morbidity, and the effectiveness of

treatment, identification of patients with OSA is an important public health issue.



1.2 Diagnosis of obstructive sleep apnea

1.2.1 Overnight polvsomnography
Traditionally, OSA is diagnosed using overnight polysomnography (PSG),

through the determination of an apnea hypopnea index (AHI). The AHI is the number of
apneas (complete cessation of airflow) and hypopneas (reduction in airflow) per hour of
sleep. While an AHI > 5 hr'! is considered the upper limit of normal, there is considerable
controversy as to what constitutes a clinically significant OSA diagnostic criterion value.

In the Wisconsin Sleep Cohort Study, 24% of middle-aged men and 9% of
middle-aged women had an AHI > 5 hr', but only 4% and 2% of these subjects reported
symptoms of daytime hypersomnolence, respectively'. While epidemiological data
suggest that adverse health outcorﬁes such as hypertension, sleepiness, and motor vehicle
collisions occur in persons with an AHI > 5 hr', this is not necessarily a threshold effect.
Indeed, for health outcomes such as hypertension, the risk profile appears to follow a
dose response relationship™'®. Moreover, the threshold value at which risks become
significant depends on the health outcome of interest. For example, severe complications,
such as cardiovascular morbidity and death are probably only associated with severe
OSA®*.

Given these data, it is unlikely that any single AHI diagnostic criterion value will
be used in clinical decision making. As stated previously, the clinically relevant end-point
is the obstructive sleep apnea syndrome, which consists of a physiologic process (OSA,

as defined by the AHI), and associated OSA-related symptoms, many of which are
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subjective. Consequently, the decision to pursue therapy depends on the absolute AHI
value, OSA-related symptoms, and the perceived risks of adverse health outcomes.
Therefore, the evaluation of a new diagnostic instrument requires validation at a variety
of AHI cut-off values. AHI diagnostic criterion values of > 5, 10, 15, and 20 hr'! are the
most commonly employed in the research literature.

Polysomnographic determination of AHI requires overnight admission to a sleep
laboratory, and involves fitting the patient with cumbersome monitoring equipment:
electroencephalogram, electrooculogram, chin electromyogram (EMG), airflow
monitoring, inductance plethysmography to assess respiratory effort via
thoracoabdominal movement, electrocardiogram, oxygen saturation, and leg EMG. As
such, PSG is costly in terms of personnel, time, and money. Recently, a number of
instruments have been developed as alternatives to PSG. In general, they either diagnose

OSA, or identify “high risk” patients (i.e., those who should go on to full

polysomnography).

1.2.2 Portable monitors

Portable monitors are particularly useful in this regard. Monitors range from
simple oximeters to multiple channel devices that approach PSG in terms of data
acquisition and complexity of use'”. One of the best validated ambulatory monitors is the
SNORESAT"®. This instrument determines a respiratory disturbance index (RDI) via off-
line analysis of digitally recorded nocturnal oxygen saturation. Because portable monitors

do not score apnea and hypopnea by conventional polysomnographic criteria, the
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monitor-derived RDI is a surrogate measure for AHI. The RDI is defined as the number
of respiratory events per hour of sleep. As such, it is a more general measure than the
AHI, and its value is dependent on how a respiratory event is defined. It follows that the
AHI is a specific form of RDI, where a respiratory event is defined as either an apnea or
hypopnea. Historically, OSA has been diagnosed by polysomnographically determined
AHI diagnostic criterion values, however, with the advent of portable monitors, RDI
measures are being increasingly used.

The SNORESAT-derived RDI has been validated against the gold standard PSG-
AHI at a variety of AHI values. Over a range of RDI values from 7-20 hr', SNORESAT
had a positive predictive value of between 95%-96%, and a negative predictive value of
between 4% to 12% for diagnosing OSA'2. The prevalence of OSA in these studies
ranged from 54% (AHI > 7 hr")_to 31% (AHI > 20 hr™') of the total sleep centre referral
population. In a more recent study, on a prospectively selected group of patients referred
to a tertiary sleep centre, using an improved analysis algorithm for defining respiratory
events, SNORESAT had a sensitivity and specificity of 98% and 88% respectively for
diagnosing OSA (AHI > 15 hr'')!?. The mean difference between monitor-derived RDI
and PSG-AHI was 2.18 hr'. The limits of agreement (2 standard deviations (SD) of the
mean of the differences) was 12.34 hr'. For comparison, PSG inter-rater scoring
variability is associated with a mean AHI difference of 1.80 hr! 2,

Because of increasing financial limitations, there is a growing tendency to
diagnose OSA using validated portable monitors, which generate RDI values, rather than

PSG-determined AHI. This trend is observed in both clinical and research settings®'"Z.
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The standard practice at the Alberta Lung Association Sleep Centre is to use SNORESAT
as the primary OSA diagnostic instrument, with PSG being reserved for patients with
negative SNORESAT studies, or for patients with clinical evidence of a primary sleep
disorder other than OSA. For the purpose of this study, SNORESAT determined RDI cut-

off values were used as the gold standard for OSA diagnosis.

1.3 Clinical prediction instruments

1.3.1 Clinical prediction

Decision rules are prospectively validated algorithms consisting of sets of
conditions that predict a particular clinical outcome or appropriate course of action. They
differ from clinical practice guiaelines in that guidelines represent an evidence-based
consensus to guide clinical deéision making. A commonly used decision rule is the
Ottawa Ankle Rules®®. The developers of this rule identified 3 variables, which if absent,
effectively rule out the possibility of an ankle fracture. Consequently, an ankle x-ray
series is only necessary if there is pain near the malleoli and either: (1) an inability to
bear weight both immediately and in the emergency department (four steps), or (2) bone
tenderness at the posterior edge or tip of either malleolus. The model was developed on
1032 patients, and was validated on 453 subsequent patients.

Although cheap and relatively easy to administer, decision rules aimed at
diagnosing OSA have been limited by insufficient sensitivity and specificity for use as

diagnostic instruments?®. In general, most OSA decision rules have specificities around
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90%, but sensitivities considerably less than 80924275355, However, decision rules could
still have significant clinical value, specifically, for identifying patients at risk for OSA,
who would then go on to more definitive diagnostic testing (e.g., PSG or portable
monitoring). More importantly, a decision rule with a high negative predictive value
could identify patients who would not benefit from further, more costly, evaluation. To
date, most decision rules have focused on maximizing both sensitivity and specificity.
By contrast, none have been designed with the intent of identifying patients who do not

need further diagnostic testing.

1.3.2 Decision rules in OSA

One of the better-validated decision rules for OSA was developed by Flemons et
al**. In a randomly selected series of 180 patients referred to a tertiary sleep centre,
increased neck circumference, hypertension, habitual snoring, and reports of nocturnal
gasping/ choking were identified as being predictive of OSA (PSG-AHI > 10 hr'') using
logistic regression modeling. A clinical prediction rule was then developed. Individuals
with the highest clinical score (i.e., all 4 characteristics) had a likelihood ratio and post-
test probability of OSA (AHI > 10 hr') of 5.17 and 81%, respectively. By contrast,
patients with the lowest clinical score had a likelihood ratio of 0.25 and a post-test
probability of 17%.

Similarly, Viner et al evaluated 410 patients referred for suspected sleep apnea.

Body mass index (BMI), age, male sex, and snoring were predictive of OSA (PSG-AHI >
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10 hr''). The derived prediction mode! had a sensitivity and specificity of 28% and 95%,
respectively?®.

For the purposes of diagnosing OSA, the diagnostic performance of most decision
rules fall within a similar range?*?’%3-%, Most decision rules for OSA have high
specificities, with sensitivities considerably less than 80%. A summary of decision rules
for OSA is presented in Table 1. Although potentially useful measurement instruments,
particularly in the context of a directed clinical assessment, most published decision rules

are inadequate as stand-alone diagnostic instruments.



Table 1: A summary of decision rules for OSA

10

AUTHOR OSA diagnosis | Sample size PREDICTIVE VARIABLES Sensitivity Specificity

(reference) criterion

Flemons™ AHI> 10 hr” 180 Neck circumference, hypertension, 81%* 17%"
snoring, gasping/choking

Viner®® AHI > 10 hr* 410 Body mass index, snoring, age, male sex 28% 95%

Davies® RDI correlation 150 Neck circumference, body mass index NS

Kushida®® AHI> 5 hr! 300 Body mass index, neck circumference, 100%* 98%"
intermolar distance

Crocker™ AHI > 15 hr! 100 Age, witnessed apneas, obesity, 79% 50%
hypertension

Olson™ RDI > 15 hr' 441 Snoring, apneas, gasping noises, bed 16% 99%

covers in disarray

"Positive predictive value; "Negative predictive value; NS not significant
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1.3.3 Radiologic predictors of OSA

Considerable work has been done in assessing the role of upper airway imaging in
the setting of OSA, specifically through the use of cephalometry, computed tomography
(CT), and magnetic resonance imaging (MRI). These radiologic techniques have been
useful in advancing the understanding of upper airway pathophysiology®!. On average,
when compared with normal controls, patients with OSA have a small posteriorly placed
mandible, a narrow posterior airway space, enlarged tongue and soft palate, and an
inferiorly placed hyoid bone®>**. However, although several cephalometric variables may
be predictive of OSA based on univariate analysis, using multivariate modeling, Davies
et al found that only neck size and retroglossal space were independent predictors of
OSA?*. Therefore, the inclusion of cephalometric variables into a prediction model may
not necessarily improve diagnostic performance. Furthermore, given the cost and logistic
difficulty of performing radiologic imaging, these tests have limited value outside the
research setting.

A major criticism of most radiographic techniques is that they study awake and
upright patients, whereas, OSA typically occurs while the patient is asleep in the supine
position®’. Radiological imaging is also limited by an inability to dynamically assess soft
tissue structures. By contrast, videoendoscopy permits dynamic visualization of the upper
airway. Endoscopically observed pharyngeal narrowing has been repeatedly reported in
OSA, and the site of narrowing is also a good predictor of surgical treatment success™.

However, because of its logistical complexity, videoendoscopy remains more a research

tool than a practical diagnostic instrument.
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1.3.4 Physical examination based predictors of OSA

Neck circumference and BMI are the only physical examination characteristics

that are consistently predictive of OSA?"**

. However, with the notable exception of a
study by Kushida et al, most studies have evaluated only basic characteristics. Therefore,
the development of more sophisticated physical examination-based measurements may
improve the diagnostic performance of existing decision rules.

Kushida et al developed one of the only well characterized morphometric models
for diagnosing OSA*®. They evaluated a consecutive sample of 300 patients referred to
the Stanford University Sleep Centre, a university-based tertiary care centre that receives
referrals from across the United States. The data set was split into a model development
group, and a validation set. Body mass index, neck circumference, and intermolar
distance were identified as predictive variables. A prediction index was developed, which
had a sensitivity and specificity of 98% and 100% respectively.

However, there are serious questions as to whether the model was tested in a
representative sample of patients, given that the prevalence of OSA was 85%, which is
considerably higher than the approximately 50% prevalence rate observed at most sleep
centres. More significantly, BMI alone had a diagnostic sensitivity and specificity of 93%
and 74% respectively. Virtually all published articles report a much lower predictive
value for BMI, if indeed predictive at all**®%5_ Selection bias is an important concern.

Furthermore, clinical application of their model requires an arithmetic combination of a

number of predictive variables with a variety of coefficients; a process which is
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cumbersome, and unlikely to be used in routine practice. Nevertheless, the study
represents one of the few systematic evaluations of physical examination-based

measurements in OSA.

1.3.5 Upper airway scoring systems in_anaesthesia

Anaesthetists have developed and validated a variety of simple physical
examination-based scoring systems that predict intubation difficulty through the
assessment of upper airway structures. Several of these diagnostic approaches may have
applicability to the OSA setting.

A “crowded” oropharynx may predispose individuals to intubation difficulties.
Mallampati et al describe a scale for estimating relative tongue size’’. The Sampsoon-
Young classification is a reﬁnement of the original Mallampati scale, and based on
retrospective evaluation of over 1300 patients, is predictive of intubation difficulty®®. It
biologically is plausible that the soft tissue overshadowing of the larynx, which leads to
intubation difficulty, may also predispose patients to OSA.

Wilson et al examined a2 number of measurements and rating systems during the
process of developing a prospectively validated prediction index for intubation
difficulty’®. Significant predictors included body weight, head and neck movement, jaw
movement, receding mandible and buckteeth. Other researchers have found a number of
other clinical predictors: sternomental distance, thyromental distance, interincisor gap,
mandibulohyoid distance, and mandibular angle*®*'. In general, measurement of these

characteristics is associated with a high level of inter-rater reliability*?.
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Davies and Eagle introduced the MOUTHS assessment protocol as a means of
standardizing the approach to physical examination of the upper airway*. This protocol
incorporates many of the predictive variables described above, and integrates them into a

streamlined approach to physical examination.

1.4 Rationale and study objectives
1.4.1 Rationale

The obstructive sleep apnea syndrome is a relatively common condition in North
America. Excessive daytime sleepiness, its most common symptom, may result in
decreased quality of life, impaired performance, and an increased risk of automobile
collisions. Moreover, there is limited evidence linking OSA with cardiovascular
morbidity. Treatment of OSA with CPAP improves sleep architecture, reduces daytime
sleepiness, and improves daytime performance and quality of life. Given the prevalence
of OSA, its associated morbidity, and the effectiveness of treatment, identification of
patients with OSA is an important health issue.

OSA has been traditionally diagnosed using overnight PSG, which is costly in
terms of personnel, time and money. A number of portable monitors have been developed
as alternatives to PSG. Decision rules also have particular appeal as diagnostic
instruments because of their low cost. Current decision rules employ historical features
and basic anthropomorphic measurements. In general, specificities are relatively high, but
sensitivities are considerably less than 80%, thus limiting their use as stand-alone

diagnostic instruments. A recent morphometric model had an OSA diagnostic sensitivity
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and specificity of 98% and 100%, respectively, however, selection bias was a serious
concern. Nevertheless, the study illustrated that physical examination-based decision
rules may have sufficiently high performance characteristics to influence clinical decision
making.

However, research on the diagnostic performance of physical examination in
OSA is limited. By contrast, anaesthetists have developed a number of validated upper
airways scoring systems. In particular, the MOUTHS assessment protocol provides a
streamlined approach to physical examination of the upper airway.

There is a need for a standardized approach to the diagnosis of OSA, based on
physical examination measurements. Such an approach would be cost-effective in
screening patients at risk for OSA. Furthermore, physical examination-based measures

are less invasive than traditional approaches to diagnosis such as PSG.

1.4.2 Objective
To develop a physical examination-based decision rule that will accurately
identify patients at risk for OSA, and as importantly, identify patients who do not require

further diagnostic testing.
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CHAPTER 2: METHODS

2.1 Sampling frame
Recruitment source: Alberta Lung Association (ALA) Sleep Centre
Inclusion criteria:  All referrals
Exclusion criteria: 1. Refusal to undergo SNORESAT evaluation
2. Previous assessment for a primary sleep disorder, or a specific
referral for a sleep disorder other than OSA
3. Insomnia (and no suspicion of an underlying sleep disorder)

The Alberta Lung Association Sleep Centre is the major sleep centre in Southern
Alberta, and draws from a wide variety of referral sources: family doctors, internists,
otolaryngologists, and anaestheti.;,ts. The accrual population consisted of all referrals to
the study investigators. Refeﬁals to the sleep centre are received by fax, and
subsequently assigned to one of five physicians by the sleep centre coordinator. The two
physicians participating in the study managed approximately 40% of all patients seen at
the sleep centre during the study period. There was no obvious reason to suspect
systematic bias in patient allocation to individual sleep physicians, however, the potential
for referral bias exists.

All patients referred to the two participating investigators, who did not meet the
exclusion criteria, underwent a directed clinical assessment foliowed by SNORESAT
monitoring. Aside from the addition of the upper airway physical examination protocol
(UAPP) during initial assessment, no deviation from the usual standard of care existed.

The Conjoint Ethics Committee of the University of Calgary approved the protocol.
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Exclusion criteria were set up to prospectively identify patients who would not
undergo SNORESAT evaluation. Patients in whom a primary sleep disorder other than
OSA was suspected were sent directly for full polysomnography to establish a diagnosis.
Similarly, patients with insomnia, and where another sleep disorder was not suspected,
did not undergo further diagnostic testing. The diagnostic criteria for insomnia and other
primary sleep disorders are summarized in the International Classification of Sleep

Disorders (ICSD)*.

2.2 The Upper Airway Physical Examination Protocol (UAPP)

The UAPP is a structured physical exam protocol, modeled initially after

MOUTHS™®. The UAPP prototype was organized around the MOUTHS physical exam
trait groupings: Mandibular measurements, Opening (i.e., pharyngeal space), Uvula,
Teeth, Head movement, and (body) Silhouette. Three UAPP versions were used during
the study. The UAPP-P (prototype version) was employed during the feasibility phase,
UAPP-F (final version) for model development, and UAPP-SF (short form) for decision
rule validation. Each UAPP version underwent progressive item reduction and thus the
number of measurements and the groupings differed between versions. However, the
individual measurement techniques remained the same. A description of all UAPP
versions is provided in Appendix A.

"Mandibular” measurements consisted of: maximum mandibular advancement,
mandibular length, thyro-mental, sterno-mental, temporal mandibular joint (TMJ)-ramus,

ramus-ramus, thyro-rami, and mastoid-medial clavicle distance. Distances were
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determined by using a measuring tape to take the linear distance between two bony
points. Thyro- measurements were taken from the thyroid notch. Mental- measurements
were taken from the posterior aspect of the inner mentum. Sternal- measurements were
taken from the sternal notch. Mandibular length refers to the distance between the
posterior ramus and the inner mentum.

The facial profile was categorized as retrognathic, neutral, or prognathic (Figure
1). To classify a profile, an imaginary line was created, joining the brow and maxilla. If
the anterior chin was behind the line, retrognathia was said to exist. If the chin lay in
front of the line, prognathia was present.

The cricomental space was determined by using a thin ruler to connect the cricoid
cartilege to the inner mentum. The cricomental line was bisected, and the perpendicular
distance to the skin of the neck was measured (Figure 2) . The use of a thin ruler (< Imm)
was considered essential, because thicker straight edges (e.g., tongue depressors) may

influence the measurement.
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Retrognathia test line

Figure 1: Assessment of facial profile

An imaginary line is created, joining the brow and maxilla. If the anterior chin is
behind the line, retrognathia is said to exist. If the chin lies in front of the line,
prognathia is present.
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Figure 2: Assessment of the cricomental space

Use a thin ruler to connect the cricoid cartilege to the inner mentum. The

cricomental line is bisected, and the perpendicular distance to the skin of
the neck is measured

20



21
The extent of tonsillar enlargement (tonsillar grade) was assessed using a 4 point
ordinal scale: Class I: tonsils absent, Class II: tonsils do not extend beyond the
palatopharyngeal arch, Class III: tonsils are at the palatopharyngeal arch, Class IV:
tonsils extend beyond the palatopharyngeal arch. Palatopharyngeal anatomy is illustrated
in Figure 3.
Tongue size was assessed using the Sampsoon-Young classification system’®.
This scoring system depends on the relative position of the uvula and soft palate to the
base of the tongue. Grading is summarized in Figure 4.
The pharyngeal space (pharyngeal grade) was also assessed using a 4 point
ordinal scale: Class [: palatopharyngeal arch intersects at the edge of the tongue, Class II:

palatopharyngeal arch intersects at > 25% of the tongue diameter, Class III:

palatopharyngeal arch intersects at > 50% of the tongue diameter, Class IV:

palatopharyngeal arch intersects at > 75% of the tongue diameter (Figure 5).
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Palatogiossal
arch

Palatopharyngeal
arch

Tonsils

Figure 3: Palatopharyngeal anatomy

The extent of tonsillar enlargement (tonsillar grade) was assessed using a 4 point
ordinal scale: Class I: tonsils absent, Class II: tonsils do not extend beyond the
palatopharyngeal arch, Class III: tonsils are at the palatopharyngeal arch, Class
IV: tonsils extend beyond the palatopharyngeal arch.
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Figure 4: Sampsoon-Young grading system for tongue size
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Figure 5: Pharyngeal grading system

Class I: palatopharyngeal arch intersects at the edge of the tongue

Class II: palatopharyngeal arch intersects at > 25% of the tongue diameter
Class III: palatopharyngeal arch intersects at > 50% of the tongue diameter
Class [V: palatopharyngeal arch intersects at > 75% of the tongue diameter
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2.3 Feasibility phase

Goals:
To determine:
(1) Whether clinicians were capable of performing the upper airways physical
examination protocol (UAPP).
(2) Whether the results obtained by the examiners were comparable

(3) UAPP completion time

The emphasis was on developing an instrument acceptable to "real world"
clinicians. Measurements that were considered cumbersome or excessively time
consuming were eliminated, given that clinicians would be unlikely to use them in every
day practice. The predictive value of each measurement was not assessed during this

phase of decision rule development.

Methods: Twenty patients underwent routine clinical assessment, plus the upper airway
physical examination protocol (UAPP-P, Appendix A), performed by one of two
investigators. Both investigators independently assessed a randomly selected (n=15)
subgroup of patients. Unreliable or time-consuming measurements were eliminated from

the UAPP-P based on a consensus view.
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2.4 Index development
The development of any measurement instrument involves the following steps:
item selection, item reduction, and determination of reliability, validity, and

responsiveness®’.

2.4.1 Item selection

At the time of UAPP development, the morphometric measurements of Kushida
et al were unavailable®®. Aside from neck circumference and body mass index, a review
of the OSA literature revealed little information on the predictive value of physical
examination measurements for diagnosing OSA. Consequently, the selection of
measurement variables was based on expert opinion and published upper airway physical
exam scoring systems. For the purposes of model development, we also included clinical
(historical) predictors of OSA: hypertension, habitual snoring, nocturnal choking/
gasping, witnessed apneas, age, alcohol use, and smoking history. Measurement of these
variables was based on self-report or via a history obtained from the subject’s “bed

partner”.

2.4.2 Index reliability

Reliability (or precision) is the degree of stability exhibited when a measurement
is repeated under identical conditions™. Inter-rater reliability for categorical outcomes is
often assessed using the kappa statistic®®. This statistic takes into account agreement

occurring by chance. Test-retest reliability refers to the reproducibility of a measure when
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repeated on the same subject at two different points in time. This type of reliability may
be influenced by changes in the subject's condition or external environment. In this study,
where fixed anatomic measurements were evaluated, it was considered unlikely that
anatomic characteristics would change either with treatment, disease status, or time.

Inter-rater reliability is usually assessed during the feasibility phase and also
following development of the final model. The former facilitates item reduction, since
unreliable measurement variables can be eliminated at the outset. The latter assessment
ensures that the predictive outcome of the model is consistent across observers and time.
We did not formally test reliability during the feasibility phase. The measure of
agreement (kappa statistic) is dependent on both the number of categories being tested,
and the prevalence of disease. Given the large number of variables tested during the
feasibility phase, formal statistical testing of reliability would have been of questionable
significance.

Consequently, only the final decision rule was subjected to formal statistical
testing of reliability. Although this approach may have resulted in incomplete item
reduction, it does not detract from the usefulness of the final model. From a clinical

perspective, only the performance of the final decision rule is relevant.
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2.4.3 Measures of validity

A valid scale is one that measures what it says it is measuring®. Classically,
validity has been assessed using the trinitarian standard of: (i) content validity (ii)
criterion validity and (iii) construct validity.

(i) Content validity is a subjective judgment that the instrument appears to be
measuring desired qualities. Content validity is usually determined by a panel of experts
who are well versed in the subject literature.

(ii) Criterion validity measures the extent to which a scale produces similar results
when compared with the current gold standard. In this study, OSA is defined using
Snoresat-determined RDI as the gold standard. This will be discussed in more detail in
the statistics section (see section 2.5).

(iii) Construct validity dgscribes the extent to which a particular measure relates
to other measures, under the assumption that the measures are associated according to
theoretically derived hypotheses or concepts (constructs). Construct validity is employed
in settings where a gold standard does not exist, e.g. quality of life. For example, we
would expect the quality of life in patients with asthma to improve as objective measures
of pulmonary function also improve, hence these objective measures form constructs
against which quality of life is assessed. In this study, a gold standard instrument for
diagnosing OSA already existed (i.e. SNORESAT-derived RDI), therefore the

assessment of construct validity was considered unnecessary.
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2.4.4 Responsiveness

Responsiveness is the ability of an instrument to change concurrently with
changes in patient status®’. The decision rule developed in this study was based
predominantly on fixed anatomic measurements, so there was little expectation of change
with treatment or time. Moreover, since the purpose of the decision rule was to diagnose
OSA at a fixed point in time, temporal changes were less relevant. Consequently, an

assessment of index responsiveness was not done.

2.5 Development of the Decision Rule

Following the feasibility .phase, all subsequent patients underwent assessment
with the UAPP-F (final version), followed by home monitoring with SNORESAT for
determination of their RDI. Data were collected prospectively, and a decision rule was

developed using two techniques:

1. Multiple logistic regression

2. Recursive partitioning (Classification and Regression Trees, CART)

The initial decision rule was developed using multiple logistic regression, which

was then compared to the decision tree generated by recursive partitioning.
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2.5.1 Logistic Regression
Predictors of OSA were identified by simple logistic regression, using a diagnosis
of OSA (RDI > 10 hr') as the dependent variable. The predictive model was then

developed using two approaches:

(1) "significant p" approach: Automated stepwise reduction on a full model
consisting of variables identified as predictive by simple logistic regression
(p<0.10).

(2) "biologically plausible" approach: Investigator-driven construction of a

model using all known and suspected predictors of OSA.

A parsimonious model is one with the fewest number of independent variables
that does not differ significantly in its predictive ability from models with more variables.
Differences in predictive ability between models are assessed using the likelihood ratio
test, with p values >0.05 considered to be non-significant.

During manual reduction, the parsimonious model was obtained by investigator-
driven reduction of variables. Items were eliminated based on an expectation of low
predictive value, either from a statistical (i.e. low odds ratio) or biologically plausible
standpoint. This approach to model building was then compared with the automated
stepwise reduction procedure. The manual approach to model building was conducted
prior to the automated stepwise reduction procedure.

Continuous variables that were identified as predictive in the parsimonious model

were cross-tabulated against a diagnosis of OSA, and cut-points were visually selected.
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All independent predictors were thus modeled as dichotomous variables. For comparison,
CART was used to automatically determine cut-points (see section 2.5.3)

The data were also analyzed using an RDI diagnostic criterion value of > 15 hr’!
to define OSA to determine if any new predictors or parsimonious models were
identified.

Classification and Regression Tree (CART) software from S-Plus 4.0 (MathSoft,
Cambridge, MA) was used for modeling the decision tree. All other statistical analyses

were performed using Stata 5.0 (Stata Corporation, College Station, TX).

2.5.2 Assessment of criterion validity

A decision rule was created using the binary predictors derived from the logistic
regression model. Sensitivity, specificity, positive and negative predictive values were
then determined. The diagnostic performance of the decision rule was compared with the
diagnostic performance of the tree model.

Sensitivity is defined as the number of patients with a true positive test divided by
the number of patients with the disease (ie. OSA). Specificity is defined as the number of
patients with a true negative test divided by the number of patients without the disease.
Positive predictive value is defined as the number of patients with a positive test and the
disease divided by the number of positive tests. Negative predictive value is the number

of patients with a negative test and no disease divided by the number of negative tests.



32

2.5.3 Recursive Partitioning for Decision Rule development

Recursive partitioning is a type of regression analysis used to develop binary
prediction trees. Tree-based modeling is useful for developing prediction rules,
identifying screening variables, determining the adequacy of linear models, and
summarizing large multivariate data sets*.

The strategy involves splitting complex data sets into progressively smaller
subgroups, while a computationally intensive algorithm produces a sequence of
increasingly “pure” binary splits, termed "nodes". The data are recursively split until
either each node is homogenous or contains too few observations (usually < 5). A
pruning algorithm then cuts off branches of the tree that impair overall accuracy. In other
words, partitions resulting in the greatest reduction in deviance (i.e. the ability of a model
to predict an outcome when compared to a model with perfect prediction) are removed. It
follows that increasing the size of a tree will increase the accuracy because of increased
degrees of freedom, but in so doing, the data becomes increasingly imprecise because of
increased variance. Therefore, optimal deviance occurs when the tree size is such that an
increase in accuracy is offset by decreased precision.

“Terminal nodes” form the base of the tree and contain the two possible predicted
outcomes of interest (e.g. OSA/ no OSA). The predictive ability of the decision tree is
determined by algebraically combining the “terminal nodes” and reducing them to a

“simple” Boolean expression using a computationally intensive process “.
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Classification and Regression Tree (CART) software by Breiman et al is
revolutionary, in that it automates the laborious process of recursive partitioning*’.
Moreover, it introduces a penalty function for tree complexity to offset the increasing
purity of subgroups as the sample size decreases.

Recursive partitioning has a number of theoretical advantages over other
muitivariate analytic approaches such as logistic regression. These are summarized in
Table 2. From a practical standpoint, the use of boolean, rather than arithmetic
expressions, mimics the clinical decision-making process employed by physicians; thus
tree models are often easy to understand. Clinicians look for the presence or absence of a
variety of conditions or states, integrate these findings, and then decide on an appropriate
course of action. By contrast, logistic regression models frequently require the

cumbersome and computationally difficult process of combining weighted coefficients.
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Table 2: A comparison of recursive partitioning with logistic regression

RECURSIVE PARTITIONING AS AN ALTERNATIVE TO LOGISTIC
MULTIVARIATE ANALYSIS

FNTT R TR T A R T AT e
FAVOURABPECHASAEREINSSET RS -

1. The interpretation is intuitive, and mimics the clinical decision making process.
2. Itcan easily identify synergistic interactions.
3. May identify nonlinear relationships (i.e. non-additive behavior).

4. Provides a simple format for constructing “homogeneous” risk strata, or for the
detailed matching of patients.

S. Provides more satisfactory treatment of missing values.

6. Allows easy interpretation when predictors are a mix of numeric variables and
factors.

N A N G YRR I EEEh DO D FI G, -

1. May miss additional predictive factors during the later stage of selection process.
2. May increase the problem of “multiple testing”.

3. May increase the problem of “over-training”.

4. May not account for the full predictive ability of a continuous factor.

- adapted from Cook and Goldman*®
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2.6 Reliability assessment

The reliability of the decision rule was tested in twenty patients distinct from
those used during other phases of the study. The sample consisted of patients referred to
one of three sleep centre physicians. Each patient underwent two independent evaluations
using the UAPP-SF. An unweighted kappa statistic was used to assess inter-observer

agreement for each measurement.

2.7 Decision Rule validation

The final predictive model was validated on an “all SNORESAT referral”
population, distinct from the sample used for model development. This population
consisted of a consecutive series of patients referred for SNORESAT diagnostic testing at
the ALA sleep centre.

SNORESAT referrals are completely at the discretion of physicians with referral
privileges (sleep physicians (n=5), otolaryngologists (n=3)). Although over 90% of the
referrals are from sleep centre physicians, validation of the decision rule in the “all
SNORESAT referral” sample alleviates some of the concerns with respect to patient
allocation bias amongst study investigators.

Sensitivity, specificity, positive and negative predictive values were determined

and compared with the values obtained from the model development sample.
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2.8 Sample size determination

Sample size calculations were based on a minimum event per variable (EPV).
Using a simulation study of forward stepwise muitiple linear regression, Freedman and
Pee demonstrated a significant increase in Type [ error when the EPV was less than 4%
More recently, Peduzzi and Feinstein performed a Monte Carlo simulation to determine
the optimum EPV in muitiple logistic regression®. For EPV >10, no major problems
occurred. Moreover, this appeared to be a “threshold” effect. In other words, increasing
the EPV above 10 did not have a dramatic effect on the validity of the logistic regression
results.

However, this is a conservative estimate. Simulation studies indicate that an
EPV>10 represents an upper limii. For example, other authors have used an EPV > 4, and
the Peduzzi and Feinstein simulation suggests that an EPV > 5 is acceptable for some
measures. Therefore, based on the use of 15 variables, and an EPV > 4, approximately 60

events were required (i.e. 60 patients diagnosed with OSA).
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CHAPTER 3: RESULTS

3.1 Feasibility assessment and item reduction

Twenty consecutive patients were assessed using the upper airway physical
examination protocol (UAPP-P, Appendix A). It was considered feasible to perform all
measurements, but the complete protocol (UAPP-P) was cumbersome and time-
consuming. Because the UAPP had to be acceptable to bedside clinicians, items were
removed based on the subjective impression of unreliability or excessive complexity.
Consensus agreement between clinicians was used to select items for removal. No formal
statistical testing was performed during the feasibility assessment.

Head movement measurements were eliminated because of time constraints. Chin
protrusion was eliminated because of difficulty in mastering the technique and the
subjective impression of unreliability. Assessment of the cricomental space replaced chin
protrusion. Pharyngeal space measurements were converted to a 4 point ordinal scale for
greater ease of assessment. Aside from the thyro-mental and sterno-mental distances,
“mandibular” measurements were assessed in the neutral head position after it became
apparent that there was no difference between measurements with the head in the neutral
position or with full neck extension.

The reduced UAPP-F (final version) was then used for decision rule development.
Physical examination measurements included: mandibular length, thyro-rami distance,
mastoid-medial clavicle distance, TMJ-rami distance, rami-rami distance, thyro-mental
distance (neutral position and with neck extended), thyro-mental displacement, sternal-

mental distance (neutral position and with neck extended), sternomental displacement,
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inter-incisor distance, cricomental space, mandibular advancement, facial profile,

pharyngeal class, Sampsoon-Young classification, presence of overbite or overjet.

3.2 Sampling frame

A total of 99 patients were evaluated, with 75 patients eligible for study. Of the 24
excluded patients, 14 met the International Classification of Sleep Disorders (ICSD)
criteria for insomnia and did not undergo diagnostic testing. Ten patients proceeded
directly to polysomnography because they presented with symptoms suggestive of a
primary sleep disorder other than OSA: restless leg syndrome/ periodic leg movement
syndrome (n=6), idiopathic hypersomnolence (n=2), severe COPD (n=1), and narcolepsy
(n=1). None of the excluded patients, who underwent PSG, had a diagnosis of OSA.

The patient population was predominantly middle-aged, male, and obese. Patient
characteristics are summarized in Table 3. As expected, the patients reported excessive
daytime sleepiness, as assessed by a mean Epworth Sleepiness Score (ESS) of 11.7. The
ESS is a self-administered questionnaire that assesses the patients predisposition towards
falling asleep. An ESS score of greater than 6 is considered abnormal®’.

Clinical characteristics and physical examination findings are presented in Tables

4 and 5, respectively.



Table 3: Summary of patient characteristics (n=75)
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Patient Characteristic Mean Standard Error Range
Age 47.5 1.33 26-74
Sex (M/F) 75% /25%
Body mass index (BMI) 33.1 0.83 19-51
Neck circumference (cm) 42.1 0.56 30-58
Epworth Sleepiness Scale 11.7 0.71 0-22
Respiratory  disturbance 16.0 1.17 0-138
index (hr')




Table 4: Summary of clinical characteristics (n=75)

Characteristic N (%)
Snoring (yes) 68 (91%)
Choking sensation (yes) 29 (39%)
Witnessed apneas (yes) 48 (64%)
Hypertension (yes) 14 (19%)
Alcohol use (yes) 19 (25%)
Smoker

Yes 9 (12%)

Ex 17 (23%)

No 49 (65%)

40
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The respiratory disturbance index was skewed in distribution, with a mean value of
30 hr'! and a median value of 17 hr''. The RDI distribution for the group is graphically

demonstrated in a box plot (Figure 6).

Figure 6. Distribution of the respiratory disturbance index (RDI) in the model
development population (n=75)
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Table 5: Summary of physical examination characteristics (n=75)
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Characteristic Mean | Standard Error (SE) Range
Mandibular length (cm) 11.9 0.15 9-15
Thyro-rami distance (cm) 11.2 0.15 8-14
Mastoid-medial clavicle (cm) 18.4 0.20 14-22
TMJ-rami distance (cm) 5.47 0.13 3-9
Rami-rami distance (cm) 9.65 0.14 7.5-15
Thyro-mental distance (cm)

Neutral position 6.18 0.14 4-12

Neck extended 7.60 0.20 4.5-7
Thyromental displacement (cm) 1.42 0.11 0-5
Sternal-mental distance (cm)

Neutral position 12.5 0.25 8-17

Neck extended 16.8 0.29 11-23
Sternomental displacement (cm) |  4.31 0.21 1-9
Inter-incisor distance (cm) 5.76 0.08 4-7.5
Cricomental space (cm) 0.56 0.10 0-4




Table 5 continued: Summary of physical examination characteristics (n=75)

Characteristic N %
Mandibular advancement
0-5cm 11 15
5.1-10cm 14 19
10.1-15cm 18 24
>15cm 32 42
Profile
Neutral 33 45
Retrognathia 27 36
Prognathia 14 19
Pharyngeal class
Neutral
Class [ 17 23
Class I 17 23
Class III 14 18
Class IV 27 16
With phonation
Class I 16 21
Class I1 18 24
Class III 14 19
Class IV 27 36
Sampsoon-Young (I/ 11/ Il /TV)
Neutral
Class [ 6 8
Class II 14 19
Class III 12 16
Class [V 43 57
With phonation
Class [ 28 37
Class II 10 13
Class III 27 37
Class IV 10 13
Overbite (yes/no) 39 52
Overjet (yes/no) 36 48
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3.3 Logistic regression: univariate predictors of OSA

In the model development cohort of 75 patients, the prevalence of OSA was 81%,
63%, 57%, or 44%, depending on whether an RDI diagnostic criterion value of greater
than 3, 10, 15, or 20 hr'' was employed.

Simple logistic regression was performed using clinical and physical examination
features as independent variables. The presence of OSA (yes/no) was the dependent
variable. OSA was defined by an RDI > 10 hr'. A variable was considered predictive if
the p-value was <0.10.

The following clinical features were identified as predictive of OSA: age, snoring
history, witnessed apneas, and hypertension. The physical examination measurements
predictive of OSA were: body mass index, neck circumference, mandibular length, thyro-
ramus distance, thyro-mental displacement, sterno-mental displacement, cricomental
space, pharyngeal grade, Sampsoon-Young class, and overbite. These univariate resuits
are summarized in Table 6, with predictive variables highlighted in bold. Odds ratios and
95% confidence intervals are also displayed.

The data were also analyzed using an RD! diagnostic criterion value of greater

than 15 hr' to define OSA. No new predictive variables were identified.



Table 6: Univariate logistic regression analysis of predictive variables for OSA

Variable Odds P-value | Confidence Intervalgsy,
ratio
Age (years) 1.10 0.001 [1.03, 1.16]
Epworth Sleepiness Scale 1.03 0.558 [0.93, 1.13]
Snoring history 12.5 0.023 [1.42, 110.6]
Choking episodes 2.02 0.169 [0.74, 5.49]
Witnessed apneas 3.37 0.016 [1.25, 9.06]
Hypertension 103 0.029 [1.27, 83.9]
Alcohol use 1.20 0.658 [0.53,2.74]
Smoker 1.28 0.482 [0.64, 2.56]
Body mass index (kg/m°) 1.13 0.009 [1.03, 1.24]
Neck circumference (cm) 1.36 0.000 [1.15, 1.61)
Mandibular advancement (cm) 0.69 0.107 [0.43, 1.08]
Mandibular length (cm) 1.83 0.005 [1.20, 2.79]
Thyro-rami distance (cm) 1.59 0.020 [1.07, 2.35]
Mastoid-medial clavicle (cm) 1.25 0.129 [0.94, 1.65]
TMJ-ramus distance (cm) 1.39 0.164 [0.88, 2.19]
Ramus-ramus distance (cm) 0.97 0.891 [0.67, 1.42]
Thyro-mental (neutral, cm) 1.23 0.359 [0.79, 1.90]
Thyromental displacement (cm) 0.59 0.059 [0.35, 1.02]
Sterno-mental (neutral, cm) 0.86 0.180 [0.68, 1.07]
Sternomental displacement (cm) 0.75 0.041 [0.57, 0.99]
Retrognathia 0.89 0.706 [0.48, 1.65]
Cricomental space (cm) 0.15 0.000 [0.06, 0.38]
Tonsillar grade (I-IV) 0.85 0.415 [0.57, 1.26]
Pharyngeal grade (I-IV) 1.52 0.046 [1.01, 2.30]
Sampsoon-Young class (I-IV) 1.77 0.018 [1.10, 2.86]
Palatal elevation 1.41 0.303 [0.73,2.71]
Inter-incisor distance (cm) 0.86 0.673 [0.44, 1.71]
Overbite 2.19 0.044 [1.02, 4.70]
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3.4 Model building using logistic regression
3.4.1 "Significant p'" approach

A "significant p" model was constructed using variables identified as potentially
predictive by simple logistic regression. The dependent variable was OSA (yes/no), as
defined by an RDI >10 hr'. Independent variables consisted of both clinical and physical
exam characteristics: age, snoring history, witnessed apneas, hypertension, body mass
index, neck circumference, thyro-ramus distance, stemomental displacement, cricomental
space, pharyngeal grade, Sampsoon-Young class, and overbite. The full model was
progressively reduced using automated stepwise reduction. A significance level of p=0.1
was selected for item elimination. Using this approach, the model was reduced to 3
predictive variables: cricomental .space, pharyngeal grade, and overbite. The likelihood
ratio (LR) test compared the reduced model to the full "significant p" model. The
parsimonious model was not significantly different from the full model (p=0.14, LR test).

Identical results were obtained when an RDI >15 hr'! was used to define OSA.

3.4.2 Biologically plausible approach

A model was also constructed using known and suspected predictors of OSA:
snoring, choking episodes, witnessed apneas, hypertension, neck circumference, body
mass index, thyromental displacement, sternomental displacement, retrognathia,
cricomental space, tonsillar grade, pharyngeal grade, overbite, Sampsoon-Young class,
and palatal elevation (change in Sampsoon-Young class on phonation). Investigator-

driven elimination was used to reduce the model. Items were removed based on an
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expected minimal contribution to the overall model, either from a statistical (i.e. low odds
ratio) or biologically plausible standpoint. Once again, the parsimonious model
incorporated the same 3 variables, namely, cricomental space, pharyngeal grade, and the
presence of overbite. The parsimonious model was also not significantly different from

the full "biologically plausible" model (p=0.13, likelihood ratio test).

3.4.3 The parsimonious model

In summary, the investigator-driven, biologically plausible approach and the
automated “significant p” approach produced identical resuits. Regardless of the
modeling approach, the final parsimonious models consisted of the same 3 predictive

variables, namely cricomental space, pharyngeal grade, and the presence of overbite.
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3.5 Model building using recursive partitioning

3.5.1 Classification and Regression Trees (CART)

A recursive tree model was developed using the same variables employed to
develop the "significant p" model, namely age, snoring history, witnessed apneas,
hypertension, body mass index, neck circumference, mandibular length, thyro-ramus
distance, thyromental displacement, sternomental displacement, cricomental space,
pharyngeal grade, Sampsoon-Young class, and the presence of overbite. The CART
algorithm was set using the following parameters: minimum number of observations
before split: 5, minimum node size: 10, minimum deviance: 0.010, pruning method:
deviance. The CART algorithm identified the following predictive variables: cricomental
space, mandibular length, pharyngeal grade, sternomental displacement, thyromental

displacement, and body mass index (Figure 7).
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Figure 7: Full decision tree for the diagnosis of obstructive sleep apnea

Each node contains binary predictors of OSA. Branches to the left of a node
means that the node determined condition (predictor) exists, while branches to the
right of a node indicate the absence of the condition. Nodes at the base of the tree
form terminal nodes. The probability of OSA given a series of conditions is
determined by combining a series of contiguous nodes to the terminal node. For
example, if a patient has a cricomental space >1.25 cm and a mandibular length >
10.5 cm, there is 0% chance of having OSA.
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3.5.2 Estimating optimal tree size

The optimal tree size is frequently a compromise between clinical acceptance and
precision of the estimate. Increasing the tree size increases potential accuracy, but may
lead to over-fitting, thus limiting generalizability to only the data set from which the
model was derived. Moreover, the increased complexity will limit its acceptability to
clinicians. The full tree illustrated in Figure 7 was deemed too large for use in clinical
practice. A deviance plot was generated to estimate optimal tree size (Figure 8). Deviance
(inaccuracy) decreases with increasing tree size, thus optimal tree size is also a
compromise between deviance and tree complexity. The slope of the deviance plot
changes drastically for tree sizes <2 or >4. Therefore, a tree size of between 2 and 4

terminal nodes was thought to be ideal.

3.5.3 Pruning the Tree

Using a tree size of 4, cricomental space, pharyngeal grade, neck circumference,
and thyromental displacement were predictive of OSA. A tree size of 3 yielded only two
predictive variables: cricomental space and pharyngeal grade.

The reduced tree model shared two predictive variables with the regression
model, namely cricomental space and pharyngeal grade. The regression and recursive
partitioning models differed in their use of overbite (regression model only) versus
thyromental displacement and neck circumference (tree model only). However, in the
pruned tree model, none of the terminal nodes contained a positive predictive value

approaching 100%, nor did the tree identify a cricomental space cut-point that excluded
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the possibility of OSA. Consequently, the logistic regression-derived model was used for

derivation of the final decision rule.
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Figure 8: Deviance plot to estimate optimal tree size

The curve has the greatest change in slope between tree sizes of 2 and 4.
Therefore, the optimal tree size is assumed to be between 2-4 terminal nodes.
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3.6 Developing the Decision Rule
3.6.1 Optimal cut-point selection by visual inspection

Cricomental space and pharyngeal grade were measured as continuous variables.
These variables were cross-tabulated against a diagnosis of OSA, and optimal cut-points
were visually selected (see Table 7). A cricomental space > 1.5 cm and a pharyngeal
grade > [I were chosen as optimal cut-points. Consequently, the decision rule was based
on three binary variables: a cricomental space < 1.5 cm, a pharyngeal grade > II, and
the presence of overbite. Table 7 reveals that a cricomental space > 1.5 cm effectively

excludes the possibility of OSA.

3.6.2 Optimal cut-point selection. by CART

CART automates the process of optimal cut-point determination for continuous
variables. We used CART to select cut-points for predictive variables identified in the
parsimonious logistic model (cricomental space, pharyngeal grade, and the presence of
overbite). CART selected cut-points were similar to those prospectively selected by
visual inspection of cross-tabulations. The CART approach determined optimal cut-
points of 1.25 cm for cricomental space and 2.5 for pharyngeal grade. A pharyngeal
grade 2.5 is equivalent to a grade of 2, given that the grading system is ordinal. Similarly,
a cricomental space of >1.25 cm and >1.50 cm are identical, since no intervening values

were measured.



Table 7: Cross-tabulation of predictive variables against a diagnosis of OSA

Cricomental | OSA + | OSA -
Space (mm)
0 37 9
0.25 1 0
0.50 3 3
1.0 5 |
1.50 1 2
1.75 0 2
2.0 0 8
2.5 0 1
3.0 0 |
4.0 0 I
Pharyngeal | OSA + | OSA -
Grade
[ 8 9
I 9 8
III 10 4
Iv 20 7

40-
35+
30+
25-

N 201
15
10-

5-
0+

w
Q -

OO0SA
BNo OSA

~N Lt ]

Cricomental space

OOSA

ENO OSA

in v

Pharyngeal Grade

53



54

Figure 9: A decision rule for diagnostic testing in obstructive sleep apnea

Cricomental Space < 1.5 cm

Yes No
Pharyngeal grade >[I OSA ABSENT
AND Consider PSG if a non-OSA sieep disorder is suspected

Overbite present

Yes
v
OSA PRESENT DIAGNOSTIC GREY ZONE
Consider treatment Further diagnostic testing required

(PSG or portable monitor)
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3.7 Diagnostic performance of the Decision Rule

The diagnostic performance of various combinations of clinical predictors is
summarized in Table 8. Depending on the combination of variables, sensitivities ranged
from 40-100%, with specificities between 46-96%. No single combination of variables
simultaneously provided near perfect sensitivity and specificity. However, the presence
of all three predictors: a narrowed cricomental space, a high pharyngeal grade, and
overbite is highly predictive of OSA (positive predictive value 95% (Clgsw: 75-100%) at
an RDI cut-off value of 10 hr''). However, the negative predictive value is relatively low
49% (Clgse: 35-63) . By contrast, a cricomental space of > 1.5 cm effectively excludes
the possibility of OSA (negative predictive value of 100% (Clgse,: 75-100%) at an RDI
diagnostic cut-off value of 10 hr''), but is not very specific (specificity: 46% (Clgso: 26-
66%)).

Because of the high specificity of the 3 variable model and the high sensitivity of
the cricomental space measurement, these two conditions formed the basis of the decision
rule (see Figure 9). The decision rule will be discussed in more detail later, however, it
can be summarized as follows:

(1) A cricomental space < 1.5 ¢m, a pharyngeal grade > II, and the presence of
overbite is highly suggestive of OSA.

(2) A cricomental space of > 1.5 cm effectively rules out the possibility of OSA.

As summarized in Table 9, the diagnostic performance of the decision rule remained

stable across a range of RDI diagnostic criterion values.



Table 8: Diagnostic performance of the predictive variables

56

Variable combination Sensitivity | Specificity PPV NPV
(95% CI) (95% CI) (95% CI) (95% CI)

Cricomental & pharyngeal | 40 (27-56) 96 (82-1Q0) | 95 (75-100) 49 (35-63)

narrowing, & overbite

Cricomental & pharyngeal | 64 (49-77) 82 (63-94) 86 (70-95) 58 (41-73)

narrowing

Cricomental narrowing & 60 [(44-74) 75 {55-89) 80 (63-32) 52 (36-69)

overbite

Pharyngeal narrowing & 40 (26-56) 93 (76~-99) 30 (70-99) 48 (34-62)

overbite

Cricomental narrowing 100 (92-100) | 46 (28-66) 76 (63-86) |[100 (75-100)

PPV: positive predictive value

NPV: negative predictive value
Cricomental narrowing is defined by a cricomental space < 1.5 cm
Pharyngeal narrowing is defined by a pharyngeal grade > II




Table 9: Diagnostic performance of the decision rule at a variety of
RDI diagnostic criterion values

OSA diagnostic
criterion value

Cricomental occlusion

Sensitivity Specificity PPV NPV

(95% CI) {95% CI) (95% CI) {95% CI)
RDI > 5 hr™ 90 (80-96) 50 (23-77) 89 (78-95) 34 (25-80)
RDI > 10 hr! 100 (92-100) 46 (26-66) 76 (63-86) 100 (75-100)
RDI > 15 hr™ 100 (92-100) 41 (24-59) 69 (56-80) 100 (75-100)
RDI > 20 hr™ 130 (89-10G0) 31 (18-47) 53 (40-60) 100 (75-100)
OSA diagnostic Three variable model
criterion value Sensitivity | Specificity PPV NPV

(95% CI) (95% CI) {95% CI) {35% CI)
RDI > 5 hr! 33 (21-46) 100 (77-100) | 100 (83-100) 25 (15-39)
RDI > 10 hr't 40 (27-56) | 96 (82-100) 95 (75-100) 49 (35-63)
RDI > 15 hr't 37 (23-53) 88 (71-96) 80 (56~94) 51 (37-65)
RDI > 20 hr'! 42 (26-61) 86 (71-95) 80 (56-94) 65 (51-78)

PPYV: positive predictive value
NPV: negative predictive value




3.8 Decision Rule reliability

Twenty patients underwent two independent assessments using the UAPP-SF.
Agreement between measurement variables identified as predictive by either the decision
tree (CART) or decision rule (logistic regression model) was assessed. These variables
were cricomental space > 1.5 cm, presence of overbite, presence of retrognathia, tonsil
enlargement, pharyngeal narrowing (pharyngeal grade > II), and thyromental
displacement. As shown in Table 10, agreement was high for all variables (kappa
coefficient range: 0.58-1.00) other than retrognathia (kappa=0.22). Inter-observer

agreement for decision rule measurement variables, namely cricomental space, overbite,

and pharyngeal narrowing was high.

Table 10: Inter-rater agreement on the predictive variables

Measurement variable Kappa
Cricomental space > 1.5 cm 1.0
Overbite present 0.61
Retrognathia 0.22
Tonsil enlargement 0.73
Pharyngeal narrowing 0.78
(pharyngeal grade > II)

Thyromental displacement < 1.25 cm 0.58




3.9 Validation of the Decision Rule

The diagnostic performance of the decision rule was validated in the “ail
SNORESAT referral” sample. Fifty consecutive patients, referred to the ALA Sleep
Centre for ambulatory monitoring, were assessed using the UAPP-SF prior to diagnostic
testing. Decision rule performance is summarized in Table 11. The presence of all three
predictors: a narrowed cricomental space, a high pharyngeal grade, and overbite was
highly predictive of OSA. The diagnostic performance was similar to that observed in the
model development cohort (positive predictive value 100% (Clgsy: 63-100%) and
specificity of 100% (Clgse,: 84-100%) at an RDI cut-off value of 10 hr''). Similarly, a
cricomental space of > 1.5 cm effectively eliminated the possibility of obstructive sleep
apnea (sensitivity: 100% (Clgse: 88-100%), negative predictive value: 100% (Clgse: 63-
100%)). In summary, the diagﬁostic performance of the decision rule was virtually

identical in both the model development sample and the validation sample.



Table 11: Diagnostic performance of the decision rule at a variety of RDI
criterion values (in the all patient referral sample)

OSA diagnostic

Three variable model

criterion value Sensitivity | Specificity PPV NPV
(95% CI) {95% CI) (95% CI) (95% CI)
RDI > 5 hrt 22 (10-38) 100 (75-100) | 100 {63-100) 31 (18-47)
RDI > 10 hr™ 28 {13-47) 100 (84-100) | 100 (63-100) 50 (34-66)
RDI > 15 hr™t 28 (12-49) 96 (80-100) 88 (47-100) 46 (30-61)
RDI > 20 hr™t 32 (13-57) 94 (79-99) 75 (35-100) 69 (53-83)
OSA diagnostic Cricomental occlusion
criterion value Sensitivity | Specificity PPV NPV
{95% CI) (95% CI) (95% CI) {95% CI)
RDI > 5 hr™ 87 (86-100) 54 (25-81) 86 (71-95) 88 (47-100)
RDI > 10 hr™t 100 (88-1005 38 (18-62) 69 (53-82) 100 (63-100)
RDI > 15 hr™ 10C (86-100) 32 (15-53) 60 (43-74) 100 (63-100)
RDI > 20 hr! 100 (83-100) 26 (12-45) 45 (30-61) 100 (63-100)

PPV positive predictive value
NPV: negative predictive value

60
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CHAPTER 4: DISCUSSION

4.1 Summary of resuits

In a consecutive series of 75 patients referred to a tertiary sleep centre, a number
of predictors of obstructive sleep apnea were identified. Clinical predictors included age,
snoring history, witnessed apneas, and hypertension. Physical examination-based
predictors included: body mass index, neck circumference, mandibular protrusion, thyro-
rami distance, sterno-mental distance, sterno-mental displacement, thyro-mental
displacement, cricomental space, pharyngeal grade, Sampsoon-Young classification, and
overbite. A decision rule was subsequently developed: cricomental space < 1.5 c¢m,
pharyngeal grade >2, and the presence of overbite. In patients with all 3 predictors,
the decision rule had the following performance characteristics: positive predictive value:
95% (Clgse: 75-100%), negative predictive value: 49% (Close,: 35-63%), sensitivity: 40%
(Clysw: 27-56%), specificity: 96% (Close,: 82-100%). A cricomental space > 1.5 cm
excluded the possibility of OSA (negative predictive value: 100% (Closy: 75-100%)).
Comparable performance was obtained in an unfiltered validation sample of 50 patients
referred for diagnostic testing. The inter-rater reliability of decision rule measurement
variables was high. This decision rule provides a simple, reliable, and accurate method of

identifying patients with, and perhaps more importantly, patients without OSA.
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4.2 Clinical predictors of obstructive sleep apnea

Although cheap and relatively easy to administer, decision rules aimed at
diagnosing OSA have been limited by insufficient sensitivity and specificity for use as
diagnostic instruments®. In general, most OSA decision rules have specificities around
90%, but sensitivities considerably less than 80% (see Table 1)2*3"- 335,

Neck circumference and BMI are the only physical examination characteristics
that are consistently predictive of OSA2"*7% In this study, both body mass index and
neck circumference, were confirmed as being predictive of OSA. However, BMI may be
susceptible to selection bias, given that its relative contribution to predictive models is
study site dependent?*?47%¢55_[n this sample, although predictive of OSA, BMI was not
of sufficient predictive value to be.included in the final decision rule.

A major limitation to physical examination-based prediction is that, with the
notable exception of a study by Kushida et al, previous studies only evaluated basic
morphometric characteristics. Kushida et al evaluated a consecutive sample of 300
patients referred to the Stanford University Sleep Centre, a university-based tertiary care
centre that receives referrals from across the United States’®. Body mass index, neck
circumference, and intermolar distance were identified as predictive variables. A
prediction index was developed, which had a sensitivity and specificity of 98% and 100%
respectively. Unfortunately, there are serious questions as to whether the model was
tested on a representative sample of patients. At their centre, the prevalence of OSA was
85%, which is considerably higher than the approximately 50% prevalence rate observed

at most sleep centres. More significantly, BMI had a diagnostic sensitivity and specificity
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of 93% and 74% respectively. In effect, in their sample of patients, the use of BMI alone
exceeded the diagnostic performance of all previous decision rules, and some portable
monitors. Virtually all published articles report a much lower predictive value for BMI, if
indeed predictive at all** %%, Selection bias is clearly a concern.

Furthermore, there are serious considerations concerning ease of use. A major
limitation to the adoption of decision rules into routine clinical practice has been time
constraints. In the primary care setting, there is little time to perform compiex
measurements or calculations requiring the arithmetic combination of predictive variables
with a variety of coefficients. To achieve widespread acceptability, a clinical decision
rule must be easy to interpret, and executable without extraneous equipment. This
decision rule makes use of only 3 clinical predictors (cricomental space, pharyngeal
grade, overbite), all of which can be assessed with no more than a ruler.

In contrast to physical examination-based predictors, clinical predictors are
remarkably consistent. In a randomly selected series of 180 patients referred to a tertiary
sleep centre, Flemons et al reported increased neck circumference, hypertension, habitual
snoring, and nocturnal gasping/ choking as being predictive of OSA (PSG-AHI > 10 hr'')
using logistic regression modeling. Similarly, Viner et al evaluated 410 patients referred
for suspected sleep apnea. Body mass index (BMI), age, male sex, and snoring were
predictive of OSA (PSG-AHI > 10 hr'). The derived prediction model had a sensitivity
and specificity of 28% and 95%, respectively”. This study confirmed the results of
previous investigators. Snoring history, witnessed apneas, and hypertension have been

repeatedly identified as being predictive of OSA. Although not observed in this study,
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choking/ gasping episodes have also been reported to have predictive value by some
investigators®***,

Several physical examination features that have been presumed predictive of
OSA, but never subjected to formal evaluation were assessed. For example, clinicians
have long suspected that pharyngeal narrowing, a low-lying palate, and overbite are
associated with OSA. The predictive value of pharyngeal grade, Sampsoon-Young class,
and overbite supports these impressions. Moreover, these measurements have a high level
of inter-rater reliability. Interestingly, despite the commonly held belief, retrognathia,
tonsil size, and extent of palatal elevation (change in Sampsoon-Young classification
with phonaticn) were not predictive of OSA. Similarly, none of the mandibular
measurements were of predictive value. Other measurements such as retrognathia could
not be reliably determined between investigators.

While the identification of predictors of OSA allows for a more directed patient
assessment, it does not necessarily influence clinical decision-making. To be useful, a
predictive variable must not only be associated with the outcome of interest, but also be
of high predictive value. Many of the clinical measurements correlated with each other.
As such, they were not independent predictors; and many were eliminated from the final
decision rule (Figure 9). For example, although BMI was a significant predictor of OSA
(p<0.01), it correlated with both cricomental space and OSA, and as such, did not
contribute to the final decision rule.

Although both clinical and physical examination-based predictors were

incorporated into the initial regression model, only physical examination-based predictors
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formed the final decision rule. This suggests that for those patients referred to a tertiary
sleep centre, the inclusion of clinical features adds minimal predictive value for
diagnosing OSA beyond that of physical examination alone.

This result may appear surprising given that the clinical predictors had high odds
ratios on univariate regression (Table 6), yet were not included in the parsimonious
model. However, odds ratios derived from univariate regression are of little interpretive
value when there are muitiple predictors. In other words, with univariate analysis, the
odds ratio is unadjusted for other predictive variables. In contrast, multiple logistic
regression assesses the independent contribution of each predictive variable following
adjustment for the other variables. In essence, multiple logistic regression adjusts for
mathematical confounding, thus providing an “honest” assessment of the independent
predictive value of each predictive variable. Similarly, an examination of the confidence
intervals around each univariate odds ratio reveals a very wide range amongst clinical
predictors (Table 6). For example, hypertension has an OR of 10.3, but a confidence
interval of between 1.27 to 83.9. Therefore, the true OR may in fact be relatively close to
1. Finally, when independent variables are continuous, an odds ratio generated using
logistic regression is not as easily interpreted as with dichotomous independent variables,
since the odds ratio will change by varying the unit of measurement.

An ideal predictive test combines several independently predictive variables into a
single measurement. The cricomental space may be one such predictor. It is a multi-
dimensional measurement that incorporates diverse characteristics such as neck

circumference, BMI, hyoid bone position, neck posture, mandibular positioning, and
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possibly pharyngeal length. The integration of several independent predictive variables

into a single measurement is the likely explanation for its high sensitivity.

4.3 Statistical considerations during Decision Rule development

Validation involves the assessment of stochastic (statistical) validity, internal
validity and external validity. Stochastic validity refers to whether the appropriate
statistical tests were used, and if pertinent assumptions were taken into consideration.
Internal and external validity assess the extent of study bias.

This study was considered statistically robust. The decision rule was developed
using two different modeling approaches, both of which provided the same results. Also,
for comparison, a CART decision tree was created, with the final results being similar to

those generated by logistic regression.

4.3.1 Logistic regression

Although considered a valid statistical technique, model building using logistic
regression has sometimes been likened to an art as well as a science. Depending on the
approach used to build a model, different results may be obtained from the same data set.
Differences in modeling technique probably explain some of the variation amongst the
decision rules for OSA described in the literature.

Consequently, two different, and independent, approaches to logistic modeling
were employed for decision rule development: the automated "significant p" approach

using a stepwise reduction procedure, and an investigator-driven, biologically plausible
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approach. Regardless of the approach used to develop the model, the final parsimonious
models included the same 3 variables: cricomental space, pharyngeal grade, and presence
of overbite. Identical results were also obtained when OSA was defined by an RDI > 15

hr'. The convergence of results argues for the robustness of the final decision rule.

4.3.2 CART versus Regression: Moving forward or a step back

The logistic regression-derived decision rule was compared to a decision tree
developed using recursive partitioning. Both the tree model and the logistic regression
model incorporated cricomental space and pharyngeal grade as part of the final decision
rule, but differed on their inclusion of overbite (logistic regression model only) and the
inclusion of neck circumference and thyromental displacement (reduced tree model
only). Although similar, the final decision rule was derived using the logistic regression
model because it contained predictive values (“terminal nodes™) for OSA approaching
100%, while the tree model did not.

The inconsistencies between CART and logistic modeling may be related to
differences in how each statistical approach deals with data. CART takes a large data set
and automatically partitions it into a series of increasingly homogenous nodes. However,
recursive partitioning may miss predictive factors during the late stages of the selection
process. By contrast, with directed modeling in logistic regression, clinically important
variables can be identified at the outset, and weighted accordingly.

CART has a provision for assigning weights or penalties, usually for tree

complexity, thus offsetting the increasing purity of subgroups as sample size decreases.



68
Weightings can also be arbitrarily assigned to specific variables or goals. Currently, this
is a laborious process, and CART does not offer any clear advantage over the logistic
regression approach.

Theoretically, CART has a major practical advantage over logistic regression,
namely, the lack of need to arithmetically combine weighted coefficients. Most
physicians want a simple decision rule: “given a set of conditions, what is the probability
that my patient has the condition of interest?”. However, by assigning cut-points to
continuous variables identified as predictive by logistic regression, a binary decision rule
can also be created from a regression model.

CART may be of value in determining optimal binary cut-points. When the
decision rule variables (cricomental space, pharyngeal grade, and overbite) were used as
dependent variables, CART idemiﬁed similar cut-points to those chosen by visual
inspection of cross-tabulations. In small data sets, CART does not have any obvious
advantage over simple visual inspection; however, automated cut-point selection has
greater value when dealing with larger data sets.

In summary, for the purposes of identifying parsimonious models, CART does
not offer any clear advantage over conventional logistic modeling. Like all automated
selection procedures, CART offers a high degree of inter-rater reproducibility, but does
not permit directed modeling. Nevertheless, CART may be helpful in choosing optimal

~ cut-points during decision rule development.
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4.4 Decision Rule interpretation

Previously reported decision rules for OSA attempted to simultaneously
maximize sensitivity and specificity. Because of inter-patient variability in clinical
features, it is unlikely that near perfect sensitivity and specificity can be achieved. In
general, decision rules using clinical criteria have relatively high specificities, but
sensitivities below 80%. Consequently, most investigators have abandoned clinical
prediction in OSA as interesting in theory, but of limited practical value. Indeed. in this
study, the use of a variety of bivariate models (see Table 8) yielded sensitivities and
specificities similar to those in the existing literature. When analyzing the model
development cohort using a combination of snoring, choking episodes, neck
circumference and hypertension, the results were similar to the existing literature:
specificity: 96%, sensitivity: 13%. A combination of snoring, witnessed apneas,
hypertension, and body mass index yielded a specificity of 96%, but a sensitivity of 27%.

Rather than focusing on a universally perfect diagnostic instrument, this decision
rule applies to a subset of patients. The Ottawa Ankle Rule is a classic example of this
approach. Although the specificity of the ankle rule is only 50%, it has a sensitivity of
100%. Therefore, not all patients meet the decision rule criteria, but in those who do, the
need for an ankle radiograph can be eliminated. It is estimated that the rule has reduced
the need for ankle radiography by 30%.

Similarly, it was not possible to identify a combination of variables that had a

high sensitivity and specificity. However, the use of a 3 variable model to rule in a
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diagnosis of OSA (PPV=95%), and the use of cricomental space > 1.5 ¢m to rule out
OSA (NPV=100%) holds considerable promise.

Patients with a cricomental space >1.5 cm are unlikely to have QSA, therefore,
depending on the initial reason for referral, such patients either require no further testing,
or else direct referral for polysomnography if a non-respiratory sleep disorder is
suspected. By contrast, patients with cricomental space <1.5 cm, pharyngeal grade >2,
and the presence of overbite are likely to have OSA, and can proceed directly to a trial of
therapy. Remaining patients fall into a diagnostic gray zone, and require further
investigation.

Patients who fit the decision rule criteria, namely, a cricomental space>1.5 c¢m, or
those meeting all criteria of the 3 variable model, accounted for 17% and 27% of the
study population, respectively. Clearly, most (~60%) patients fell into a diagnostic grey
zone. However, because of the high cost of diagnostic testing in OSA, if even a subset of

patients can be appropriately triaged, important economic gains may be realized.



4.5 Study critique

Rarely is a diagnostic instrument cheap, easy to use, and highly accurate, albeit in
a subset of patients. The diagnostic performance of this decision rule may degrade as
more patients are evaluated, particularly in populations where the prevalence of OSA is
low.

Criticism could be raised with respect to the selection of subjects, since the study
population consisted only of patients referred to the study investigators. Although no
systematic triaging of referrals existed, recruitment may have occurred from a non-
representative sample of the clinic population. However, the study prevalence of OSA
(63% at an RDI > 10 hr') was similar to that reported in a previous study that had
recruited patients from the entire clinic population at the same institution'®. Moreover,
the performance of the decision rule was virtually identical to that observed in the “all
SNOREAT referral” sample, which consisted of all patients referred for SNORESAT
diagnostic testing.

Furthermore, a large proportion of patients (n=24) were excluded from the study
because of insomnia or suspected non-respiratory sleep disorders. The exclusion rules,
however, are well established and operationalised in the International Classification of
Sleep Disorders (ICSD).

A more problematic issue relates to referral centre bias. This issue has already
been illustrated in the study by Kushida et al. The Alberta Lung Association Sleep Centre
in Calgary is also a tertiary, university-based referral centre, however, it is the only major

sleep centre in Southern Alberta; a geographic region encompassing Calgary and a



72
number of smaller municipalities. Patients seen at the sleep centre range from highly
specialized cases to uncomplicated snorers. As a result, the case mix is often similar to
that seen at non-academic sleep centres.

Nevertheless, the decision rule developed in this research requires prospective
evaluation in different settings, most specifically, at the primary care level. This decision
rule is most likely to have the biggest clinical impact in settings where other sleep
disorders are not under consideration (i.e. no further testing is necessary once OSA is
excluded). With growing public awareness of OSA, an increasing number of patients
seek medical attention because of witnessed apneic episodes. As observed in the
Wisconsin Sleep Cohort, a large proportion of the population will have at least some
apneic episodes, but these are of questionable clinical significance. A simple decision
rule for excluding these patients would obviate the need for further, expensive, diagnostic
testing.

Similarly, otolaryngologists perform uvulopalatopharyngoplasty (UPPP) for
treatment of uncomplicated snoring. However, it is difficuit to determine if such a patient
has OSA, for which UPPP is not optimal treatment. For this reason, the current practice is
to refer patients to sleep centres for the purpose of ruling out OSA. A simple decision
rule for excluding OSA would reduce the need for diagnostic testing. Additionally, as
more is learned about OSA-related cardiovascular complications, there is a growing
number of cardiac patients referred specifically for the purposes of ruling out OSA.

It is likely that the diagnostic performance of the decision rule will change when

deployed in non-sleep centre settings. The decision rule was validated in a setting where
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the OSA prevalence was relatively high. As such, the positive predictive value would be
expected to fall in lower prevalence populations, specifically in the primary care setting.
However, in contrast, the negative predictive value (or ability to exclude OSA) should
increase. As outlined previously, most practical applications for the decision rule would
be in ruling out, rather than ruling in, OSA.

The choice of gold standard may also pose a threat to internal validity. The use of
SNORESAT as the gold standard diagnostic instrument may be challenged, given that
some investigators feel that only full overnight polysomnography is acceptable for OSA
diagnosis. Although SNORESAT is now the standard OSA diagnostic instrument at the
ALA Sleep Centre, acceptance of portable monitors is far from universal. However,
SNORESAT has been well characterized and there is very close correlation and
agreement between the SNORESAT-derived RDI and PSG-derived AHI'®. The use of
SNORESAT was thus considered an acceptable option. Moreover, with the decline in
financial incentives to perform PSG, particularly with the introduction of Health
Maintenance Organizations in the United States, there is a growing, evidence-based move
away from PSG for the routine diagnosis of OSA*2.

Finally, from a practical standpoint, the cost effectiveness of OSA-specific
decision rules has never been adequately assessed. In theory, the ability to identify a
subset of patients with OSA using the decision rule should allow clinicians to refer
patients directly for therapy. However, the value of this approach may be limited by the
willingness of third party payers to fund OSA treatment in the absence of “objective”

baseline testing. Similarly, the ability to exclude patients with OSA based on the decision
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rule may also have limited value in many settings. Any cost savings associated with the
decision rule is based on two premises: (1) portable monitors are used for routine OSA
diagnosis; (2) a non-respiratory sleep disorder is not suspected. Patients frequently
present to the sleep centre with excessive daytime sleepiness, and even if OSA is
excluded, full polysomnography must still need to be performed to rule out other primary
sleep disorders. However, in sleep centres that make extensive use of portable monitors,
the ability to identify patients without OSA would allow direct referral for
polysomnography; thus bypassing portable monitoring, which has not been well validated
for diagnosing non-respiratory sleep disorders.

Ultimately, the true value of a decision rule lies in its ability to have an impact on
clinical practice. The effects of a decision rule on referral patterns for diagnostic testing,

and subsequent economic impact, remains to be assessed.

CONCLUSION
In a subset of patients, this decision rule provides a simple, reliable, and highly
accurate method of identifying patients with and without OSA. Its validity in the primary

care setting, and its effect on changing clinical practice remains to be determined.
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APPENDIX A: UPPER AIRWAY PHYSICAL EXAM PROTOCOL (UAPP)

Name:

- UAPP-F (FINAL VERSION) -

ID#:

Date of assessment:

Phone number:

Patient Characteristics

Sex: Male Female

Age:

ESS:

Symptoms: snorer nocturnal choking witnessed apneas hypertension

Drugs and medications:

Alcohol: NO YES:

Medications:

Past Medical History:

Polysomnography:

Date:

RDI:

Snoring index:
Mean oxygen saturation:

Time spent (%): <90%:

RATER: [ JWHT

Smoker: NO EX CURRENT

[ ] Snoresat

[ 1PSG
total sleep time:
supine: lateral:
supine: lateral:
%
<85%: <80%:
[ 1JER [ ]other:

<70%:
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Anthromorphics

Height: cm Weight: kg Neck circumference: cm

Mandible: neutral | Full neutral | Full
extension

max mandibular
advancement (mm)

Mandibular length (cm)

thryo-rami (cm)

Mastoid-medial clavicle
{cm)

TMJ-ramus (cm)

% ramus-ramus (cm)

thyro-mental (cm)
(natural position)

Sterno-mental (cm)
(natural position)

thyro-mental (cm)
(neutral position)

Sterno-mental (cm)
(neutral position)

Profile: [ ] Retrognathia [ ]neutral [ ] prognathia

Cricomental space: [ ]occluded  distance @ mid-point: cm
Chin: [ ]Dimpled [ ] widened

Opening: neutral with phonation

Tonsils (Class I-[V) I 0w

Pharyngeal space: [ II T IV [0 Iv

inter-incisor gap: cm

Uvuala: _neutral phonation

Samsoon-Young Class: [T v I IImIv

Teeth:

Overbite:

mm Overjet: mm
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- UAPP-P (PROTOTYPE VERSIONS) -

RATER: [ ]WHT [ 1JER [ ]other:
Mandible: neutral | full neutral | full
extension extension

max mandibular mandibular length (mm)

advancement (mm)

thyro-mental (mm) Sterno-mental (cm)

TMIJ-ramus (mm) ramus-ramus (mm)

thryo-rami (mm) Mastoid-medial clavicle

{cm)

Profile: [ ] Retrognathia [ ]neutral [ ] prognathia Chin protrusion: mm
Opening: upright supine
Tonsils (Class [-IV) I oI I I oI
Pharyngeal space: mm mm
inter-incisor gap: mm

Uvula; _neutral phonation best view
Samsoon- Young Class: [ II o1 v [T I I
Teeth:
Overbite: mm Overjet: mm
| Head Movement Right Left

Neck lateral flexion (cm)

Flexion (cm)

Extension (cm)
Nose: [ ]deviated septum [ ] nasal polyps [ ] nasal stuffiness
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- UAPP-SF (SHORT-FORM) -

NAME:

Rater: [ | WHT [ 1JER

[ ]WWF

Height: cm Weight:

Thyromental displacement:
Cricomental space:

Profile:

Tonsils:

Overbite:

Pharynx:

100%

kg Neck circumference: cm

cm

[ ]occluded

[ ] retrognathic

[ ]enlarged

[ ] present

tongue diameter

distance at midpoint:
[ ]neutral [ ] prognathic
[ ] normal or small

[ ]absent

cm
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APPENDIX B: The Epworth Sleepiness Score

YOUR NAME:

How likely are you to doze off or fal! asleep in the following situation, in contrast
to feeling just tired. This refers to your usual way of life in recent times. Even if you have
not done some of these things recently, try to work out how they would have affected
you.

CHANCE OF DOZING OFF
NEVER SLIGHT MODERATE HIGH

Sitting and reading 0 1 2 3
Watching TV 0 1 2 3
Sitting inactive in a public space 0 1 2 3

(eg. Theatre or a meeting)

As a passenger in a car for an hoﬁr without 0 1 2 3
a break
Lying down to rest in the afternoon when 0 1 2 3

circumstances permit
Sitting and talking to someone 0 1 2 3
Sitting quietly after a lunch without alcohol 0 1 2 3

In a car, stopped for a few minutes in traffic 0 1 2 3
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APPENDIX C: Definitions
Apnea: absence of airflow for more than 10 seconds

central apnea- respiratory effort is absent
obstructive- cessation of airflow with persistent continued respiratory effort (as
evidenced by thoracoabdominal movement)

Apnea hypopnea index (AHI): # of apneas & hypopneas/ hour of sleep
Body mass index: weight (kg)/ height (m)*

Hypopnea: a >10 second reduction in airflow, usually assessed by a reduction in
respiratory effort +/- an associated oxygen desaturation or EEG-based arousal. There is
significant controversy over the hypopnea definition?®’'.

Respiratory disturbance index (RDI): a surrogate measure of the AHI. The definition
of RDI differs according to the monitor used to derive it. However, it should have close
correlation and agreement with the AHI. When scored off a polysomnogram, the RDI is
considered synonomous with the AHI.

Obstructive sleep apnea (OSA): episodic interruption in airflow during sleep. The
diagnosis is established by an AHI exceeding a threshold value. Considerable controversy
exists over which AHI criterion value is diagnostic of OSA, if indeed one is even
appropriate.

Sleep apnea hypopnea syndrome (SAHS): the presence of obstructive sleep apnea and
OSA related symptoms.
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APPENDIX E: CONSENT FORM FOR UAPP

Research Project: UAPP Project
Investigators: Drs. J.E. Remmers, W. Tsai, C. McArthur, J. Davies, R. Brant
Funding Agency: Alberta Heritage Foundation for Medical Research

This consent form, a copy of which has been given to you, is only part of the
process of informed consent. It should give you the basic idea of what the research is
about and what your participation will involve. If you would like more detail about
something mentioned here, or information not included here, you should feel free to ask.
Please take the time to read this carefully and to understand any accompanying
information.

What is obstructive sleep apnea (OSA)?

Obstructive sleep apnea is a condition where people episodically stop breathing
during their sleep (when people stop breathing for a long time, we call this an apnea).
The brain is pretty smart, and realizes that you've stopped breathing, and eventually
wakes you up. People are frequently unaware that this is happening, however, the
repetitive arousals from sleep result in daytime sleepiness. In more severe cases, OSA is
associated with increased rate of car accidents, high blood pressure, heart disease, and
strokes. It may occur in up to 4% of peopie, however, most of these people are unaware
that they have it. Your physician suspects that you may have OSA, and that is why you
were referred to the sleep centre.

So what's involved in this study?

Traditionally, OSA is diagnosed by an overnight sleep study at a sleep centre.
This is expensive in terms of time and money. We are looking at ways of determining if
we can predict whether people have OSA based on physical appearance. We will be
doing simple measurements of your mouth and jaw area. This takes no more than 5
minutes, and it is often part of the standard physical exam for sleep apnea. You will then
undergo a home sleep study, which is part of the standard test for people suspected of
having OSA. Aside from taking a few simple head and neck measurements, your
evaluation will be no different than that of any other patient referred to the sleep centre.
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The information collected will be added to your patient file. Some of the data
may be reported in a scientific report of research results, but your name will not be
connected with this. In the unlikely event that you suffer injury as a result of participating
in this research, no compensation or treatment (beyond that routinely provided by Alberta
Health) will be provided to you by the funding agencies, investigators, the University of
Calgary, or the Calgary Regional Health Authority. You still have all your legal rights.
Nothing said here about treatment or compensation in any way alters your right to pursue
legal recourse to recover damages.

Your signature on this form indicates that you have understood to your
satisfaction the information regarding participation in the research project and agree to
participate as a subject. In no way does this waive your legal rights nor release the
investigators, sponsors, or involved institutions from their legal and professional
responsibilities. You are free to withdraw from the study at any time without jeopardising
your health care. Your continued participation should be informed as your initial consent,
so you should feel free to ask for clarification or new information throughout your
participation.

If you have further questions concerning matter related to this research, please
contact: Dr. Willis Tsai (670-2540)

If you have any questions concerning your rights as a possible participant in this
research, please contact the Office of Medical Bioethics, Faculty of Medicine, The
University of Calgary, at 220-7990. Please sign below.

Participant's Signature Date
Investigator and/or Delegate's Signature Date
Witness' Signature Date

A copy of this consent form has been given to you to keep for your records and reference.





