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Abstract 

Stress fractures are common injuries among runners and military personnel associated with 

the mechanical fatigue of load-bearing bone. The tibia is the most frequently fractured site and 

females are at much greater risk than males. Bone geometry and density are hypothesized risk 

factors for stress fracture and are thought to contribute to the disparity in risk between sexes via 

their influence on bone strain magnitude which is strongly related to the rate of mechanical fatigue. 

However, covariation between these two complex factors and their influence on the strain 

environment of the tibia are not well characterised. The overarching goal of this thesis was to 

develop a more nuanced understanding of the mechanical implications of tibial-fibular geometry 

and density variations present in young active adults. A series of studies were performed utilizing 

a combination of advanced medical imaging, statistical approaches, gait data, and the finite element 

method to characterise and quantify covariations in whole-bone tibial-fibular geometry and density 

distributions and their influence on bone strain. Transverse diaphyseal geometry and sagittal 

curvature were identified as key features that likely influence stress fracture risk, demonstrating 

substantial effects on finite element-predicted bone strain. Additionally, the average female 

illustrated a narrower tibia which resulted in elevated bone strain when compared to the average 

male, suggesting that bone geometry likely contributes to the disparity in stress fracture risk 

between sexes. As we work towards improving predictive models and developing effective 

screening tools for stress fracture risk, these findings provide insights into key features of bone 

geometry and density that will need to be accurately characterised. Landmark- and anthropometric-

based predictions of tibial-fibular geometry and density were not sufficiently accurate, indicating 

that some level of advanced medical imaging data will be necessary to generate personalized 

models or characterise geometry and density features associated with stress fracture risk.  
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Chapter 1  

 

Introduction 

 

1.1 Rationale 

Stress fractures are common overuse injuries experienced by runners and military personnel, 

with an incidence of 3-20% (Bennell et al. 1996; Hame et al. 2004; Shaffer et al. 2006). These 

fractures develop as a result of repetitive loading and typically occur following a sudden increase 

in training volume (Kardouni et al. 2021; Hoenig et al. 2022). The tibia is the most common bone 

affected, accounting for 20-63% of all stress fractures (Matheson et al. 1987; Brukner & Bennell 

1995; Bennell et al. 1996). Notably, female runners are at two to three times greater risk and female 

military recruits are at up to four times greater risk of stress fracture when compared to males 

(Bennell et al. 1996; Changstrom et al. 2015; Kardouni et al. 2021).  Stress fractures require months 

for recovery to return to sport and a history of stress fracture is a major risk factor for future fracture 

(Pegrum et al. 2012; Wood et al. 2014). Consequently, prevention is of great interest. 

  Stress fracture development has been associated with mechanical fatigue, a phenomenon 

wherein repetitive submaximal loading results in the accumulation of microdamage (Burr et al. 

1990). Microdamage is associated with reduced stiffness of bone tissue, resulting in increased 

strain for a given stress magnitude in subsequent loading cycles, thereby accelerating the 

accumulation of damage (Bennell 1996; Pattin et al. 1996). Over time, when the rate of damage 
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accumulation is chronically greater than the rate of repair, a fracture may eventually occur. Strain 

is the key mechanical parameter associated with the accumulation of microdamage in bone (Pattin 

et al. 1996). The relationship between strain magnitude and fatigue life is well described by an 

inverse power law, the slope of which indicates that small changes in strain result in much larger 

changes in fatigue life (Carter et al. 1981a). 

Bone strain is a complex function of bone geometry, density distribution, material 

properties, and applied loads. Bone geometry and density are hypothesized to be risk factors for 

stress fracture and to contribute to the disparity in risk between females and males (Hoenig et al. 

2022). Differences in transverse cross-sectional geometry and density parameters have previously 

been observed between stress fracture cases and controls and between females and males (Beck et 

al. 2000; Koltun et al. 2022), but these investigations were limited to two-dimensional measures. 

Furthermore, evaluation of the mechanical implication of these differences has been limited to 

simple estimates of bone strength. Tibial-fibular geometry and density distribution variation in 

young active adults has not yet been characterised. Understanding how geometry and density 

features vary within this population and quantifying the influence of these variations on bone strain 

is an important step in understanding how bone geometry and density influence stress fracture risk 

and identifying which features are most important to guide future screening and prevention efforts. 

Direct measurement of local strain is achieved through surgical implantation of strain 

gauges or staples onto/into the bone (Yang et al. 2011). This method is invasive and not feasible 

for regular use in research laboratories or clinical settings. Alternatively, bone strain may be 

estimated using a combination of biomechanical experimentation, advanced medical imaging data, 

and participant-specific finite element modeling. This approach has been used to estimate bone 

deformations in line with experimental measurements (Haider et al. 2020), but can be time-
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consuming, costly, and requires computed tomography (CT) imaging to obtain participant-specific 

bone geometry and material properties (Poelert et al. 2013). Furthermore, it can be difficult to 

isolate or identify the specific features in bone geometry or density that are driving differences in 

finite element-predicted bone strain between individuals or groups. 

 Statistical models may provide a method to address these limitations. Statistical shape and 

appearance models calculate the average and principal modes of variation in bone geometry and 

density distribution (Cootes & Taylor 2004). The model can then be used to identify which features 

differ between groups (e.g., sexes) and be used in combination with the finite element method to 

parametrically explore the influence of geometry and density distribution variations on bone strain 

in silico. There has also been interest in using statistical shape models to predict participant-

specific bone geometry in the absence of medical imaging data (Zhang et al. 2016; Suwarganda et 

al. 2019); however, it is currently unknown if this approach would characterise bone geometry and 

density distribution with sufficient accuracy to obtain bone strain estimates similar to the current 

state-of-the-art CT-based method. 

The research presented in this thesis utilized a combination of statistical shape and 

appearance modeling, biomechanical data, and the finite element method to characterise tibial-

fibular geometry and density variations, errors due to anthropometric data-based prediction 

approaches, and their mechanical implications in young active adults. The findings from these 

studies offer new insights into bone geometry and density distributions as risk factors for stress 

fracture and the methods necessary to accurately characterise these factors for use in predictive 

modeling approaches. 
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1.2 Objective and Specific Aims 

The overarching objective of this thesis was to develop a more nuanced understanding of the 

mechanical implications of tibial-fibular geometry and density variations present in young active 

adults. More specifically, the thesis aimed to answer: 

1. How do geometry and density distributions vary in young healthy adults? (Chapters 3, 4, 

and 5) 

2. How do geometry and density distributions vary between sexes in young healthy adults? 

(Chapters 3, 4, and 5) 

3. To what degree do geometry and density distribution variations and sexual dimorphism 

influence finite element-calculated bone strain? (Chapters 3 and 4) 

4. Can participant-informed models be accurately generated using statistical shape and 

appearance models in the absence of medical imaging data and what are the errors 

associated with this approach? (Chapters 5 and 6) 

Four studies were preformed to address these questions. 

 The first study aimed to characterise tibial-fibular geometry and density variations using a 

statistical appearance model and to quantify the influence of these variations on finite element-

predicted bone strain in young, active adults. I hypothesized that transverse cross-sectional 

geometry would demonstrate the largest influence on bone strain and that the average female 

would illustrate greater bone strain when compared to the average male. I developed the statistical 

appearance model from a training set of twenty females and twenty-eight males. I generated finite 

element models representing ±1 and 2 standard deviations along each of the first five principal 

components and representing the average female and average male controlled for allometric 
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scaling. The study identified key variations that exerted a large influence on bone strain and added 

support to the hypothesis that sexual dimorphism influences stress fracture risk. 

 The second study aimed to cross-validate the first study’s findings of sex-related 

differences in tibial-fibular bone geometry, density, and finite element-predicted bone strain. An 

entirely new cohort of fifteen females and fifteen males were recruited. Finite element models of 

the average female and average male, controlled for allometric scaling, were generated. The study 

confirmed that the average female illustrates greater strain due to a narrower tibia. 

The third study aimed to evaluate the accuracy of tibial-fibular complex reconstructions 

from anatomical bony landmarks using a statistical shape model developed for a healthy, young 

adult population and quantify the subsequent effects on muscle moment arms. The secondary 

objectives of this study were (1) to quantify sex differences in bone geometry, and (2) to evaluate 

the generalizability of the developed young adult statistical shape model to older adults. I 

hypothesized that reconstruction errors would be smaller for the statistical shape model-generated 

geometries compared to isotropic scaling and that errors would be larger for the older adults. I 

developed the statistical shape model from a training set of twenty females and nineteen males. 

Tibia and fibula geometry were predicted from anatomical landmarks identified on the bone 

surface and compared to CT-quantified geometry. The results confirmed my hypotheses. However, 

only three muscle moment arms were affected, to a small degree, by the improved accuracy when 

compared to allometric scaling of the average geometry. 

The fourth study aimed to (1) quantify errors associated with predicting tibial-fibular 

geometry and density distributions from anatomic landmarks and to (2) quantify how those errors 

propagate to finite element-estimated bone strain. I predicted tibial-fibular geometry and density 

distributions from skin-mounted landmarks using the statistical appearance model developed in 
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Chapter 3 and from height and sex. Errors in finite element-estimated bone strain associated with 

geometry and density prediction errors were quantified. Landmark-based predictions did not 

improve accuracy when compared to predictions from height and sex. Both prediction methods 

produced large errors in bone strain, indicating that medical imaging is necessary to avoid 

significant errors due to inter-individual bone geometry variations. 

1.3 Presentation of the Thesis 

The content of this thesis is organized as follows: Chapter Two summarizes the relevant 

literature and background information including stress fracture pathophysiology, in vivo 

measurement and in silico calculation of bone strain, and statistical shape and appearance 

modeling. Chapters Three through Six address the specific aims outlined in section 1.2 of this 

thesis. Each of these chapters are written as independent manuscripts. As such, some sections will 

contain redundant information. The study presented in Chapter Three characterised tibial-fibular 

geometry and density distribution variations and sexual dimorphism, and evaluated the influence 

of these variations on finite element-predicted bone strain. The study presented in Chapter Four 

cross-validated sex-related variations and their influence on bone strain. The studies presented in 

Chapters Five and Six evaluated errors associated with predicting whole bone geometry and 

density distribution in the absence of medical imaging and their mechanical implications. Chapter 

Seven synthesizes the findings of the studies and discusses implications and future directions. 
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Chapter 2  

 

Background  

 

2.1 Bone hierarchical structure, cells, and functions 

Bone is organized in a hierarchical structure (Figure 2.1). At the nanoscale cross-linked 

Type I collagen fibrils are mineralized with carbonated apatite to form collagen fibers where the 

collagen serves to provide toughness, while the mineral component contributes to the stiffness of 

the material (Burr 2019). At the microscale these fibers are arranged in lamellar sheets with 

alternating orientations, laid down at the periosteal, endosteal, and trabecular surfaces to form 

primary lamellar bone (Reznikov et al. 2014). Lamellae are also laid down concentrically within 

large vascular channels to form primary osteons (Rho et al. 1998). Secondary bone results from 

remodeling, where existing bone is resorbed and new bone is deposited in concentric sheets to 

form secondary osteons (a.k.a., Haversian systems) surrounded by cement lines (Burr 2019). 

Osteons are approximately oriented along the long axis of the bone, contributing to the highly 

anisotropic properties of the material (Doblaré et al. 2004). At the macroscale, bone tissue is 

organized into dense cortical bone or very porous trabecular bone (also called cancellous bone) 

(Rho et al. 1998). 
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Figure 2.1 Hierarchical structure of bone across scales. Reproduced with permission (Rho et al. 

1998) 

 

There are four types of bone cells: osteoclasts, osteoblasts, osteocytes, and lining cells. 

Osteoclasts originate from hematopoietic stem cell populations and resorb bone (Bellido et al. 

2019). When resorption is complete osteoclasts undergo programmed cell death (apoptosis) 

(Majeska 2001). Osteoblasts originate from skeletal stem cell populations in the bone marrow and 

periosteum and form bone. Specifically, osteoblasts produce the organic components of the bone 

matrix called osteoid and facilitate mineral deposition (Majeska 2001). When bone formation is 

complete osteoblasts either undergo apoptosis or become osteocytes or lining cells (Bellido et al. 

2019). Osteoblasts that become surrounded by bone tissue during deposition differentiate into 

osteocytes (Bellido et al. 2019). Osteocyte lacunae are connected via tunnels called canaliculi to 

enable communication between cells through their dendritic processes and gap junctions 
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(Schneider et al. 2010). Osteocytes account for approximately 90% of the cells in bone and 

together coordinate osteoclast and osteoblast action in response to mechanical and hormonal cues 

(Bellido et al. 2019). Finally, some osteoblasts on bone surfaces flatten to become lining cells. 

These cells communicate with osteocytes in the bone matrix and play a role in the regulation of 

calcium exchange between mineralized bone and bone marrow (Bellido et al. 2019). 

Bone serves a variety of functions. The first one that likely comes to mind is bone’s role in 

the musculoskeletal system, providing structure, support, and levers on which muscles pull to 

produce movement. Bone also provides protection for our internal organs by absorbing and 

dissipating energy from impacts while minimizing damage to itself and the underlying soft tissues 

(Burr 2019). Other functions of bone include mineral homeostasis, hematopoiesis, and endocrine 

regulation. 

2.2 Bone growth and development 

Bones develop through the processes of intramembranous and endochondral ossification. 

Intramembranous ossification is the process by which mesenchymal stem cells differentiate 

directly into osteoblasts and lay down bone in sheets (Allen & Burr 2019). In endochondral 

ossification, which is responsible for the development and growth of long bones, mesenchymal 

stem cells differentiate first into chondrocytes to form a hyaline cartilage template that is gradually 

replaced by bone (Hall 2015). The shape of the template is genetically controlled (Chalmers & 

Ray 1962; Hall 2015). A membrane with a network of blood vessels surrounds the cartilage 

template, supplying nutrients, removing waste, and bringing osteoblasts to the edges of the 

template. The osteoblasts deposit bone in a ring around the edges of the cartilage template, which 

prevents diffusion of nutrients to the center and results in chondrocyte death. Blood vessels then 

invade the spaces left by the dead chondrocytes, expanding the spaces, and delivering osteoblasts 
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to the primary ossification center in the middle of the forming bone. Cartilage continues to grow 

at both ends of the template with ossification following, increasing the bone’s length. After birth, 

secondary ossification centers are established at the epiphyses, separated from the metaphysis and 

diaphysis regions by the physis (i.e., the growth plate) (Hall 2015; Allen & Burr 2019). During 

childhood and adolescence, new cartilage forms in the growth plate, which is then mineralized on 

the metaphysis side and eventually replaced with bone, extending the length axially. This process 

continues until the growth plate closes, becoming ossified (Ballock & O’Keefe 2003). The timing 

of the closure depends on the location of the growth plate and follows a genetically determined 

order (Ballock & O’Keefe 2003; Martin et al. 2015).  

During growth, bone shape is adjusted through the process of modeling, where osteoblasts  

and osteoclasts act independently to form bone in some areas and remove bone in others (Martin 

et al. 2015; Allen & Burr 2019). In bones with ends that flare outward such as the tibia, modeling 

occurs at the metaphysis as the bone lengthens to preserve the correct bone shape (Martin et al. 

2015). Bone formation on the periosteal surface and resorption on the endosteal surface acts to 

expand the diameter of the bone (Allen & Burr 2019). Adaptation of bone geometry and transverse 

size in response to mechanical loading is also accomplished through modeling, although it is 

reduced after skeletal maturity is reached (Bass et al. 2002; Martin et al. 2015). 

Remodeling involves the removal and re-formation of bone at a site via the coupled actions 

of osteoclasts and osteoblast following the sequence: activation-resorption-reversal-formation 

(Martin et al. 2015). In the activation phase, lasting three to five days, osteoclast precursors are 

recruited to the remodeling site and differentiate into mature osteoclasts (Allen & Burr 2019). The 

resorption phase is characterised by osteoclast resorption of bone and lasts approximately three 
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weeks. This is followed by a short reversal period lasting a few days followed by bone formation 

in concentric layers by osteoblasts over a period of three to four months (Allen & Burr 2019). 

Approximately ten days after new unmineralized bone matrix is deposited, mineralization of the 

new tissue begins. Full mineralization of the new material can take up to one year (Fuchs et al. 

2008). Remodeling occurs throughout life and plays a role in microdamage repair and mineral 

homeostasis (Martin et al. 2015).  

2.3 Strain and Bone Health 

Bone is a dynamic tissue that adapts to its mechanical loading environment. Bone strain, 

or some consequence thereof (microdamage, fluid flow, strain energy density), is thought to be the 

key mechanical parameter influencing the adaptive process (Klein-Nulend et al. 2013; Bhatia et 

al. 2015). Experiments using animal models have demonstrated that short durations of high strain, 

dynamic loading produced large osteogenic effects (Rubin & Lanyon 1985; Turner 1998; Robling 

et al. 2002). This has been supported indirectly in humans. Athletes training in sports characterised 

by periodic, large loads (e.g., gymnastics) have greater bone mineral density (BMD) compared to 

sports characterised by repetitive, lower loads (e.g., cycling, running) and sedentary individuals 

(Fehling et al. 1995; Pettersson et al. 2000). Exercise intervention studies have also observed 

changes in trabecular bone quality measures and bone mineral density (BMD) in as little as eight 

weeks (Bhatia et al. 2015; Hughes et al. 2018). 

Osteocytes are thought to be the primary mechanosensory cells associated with adaptation 

(Qin et al. 2020). Loading is associated with down regulation of sclerostin and upregulation of 

Dmp1 and MEPE, all of which are produced by osteocytes (Harris et al. 2007; Robling et al. 2008). 

Sclerostin is an antagonist for the pathway leading to osteoblast differentiation and dentin matrix 
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acidic phosphoprotein 1 (Dmp1) and matrix extracellular phosphoglycoprotein (MEPE) promote 

mineralization (Li et al. 2005; Harris et al. 2007). Interestingly, the mechanosensory signal for 

adaptation appears to saturate quickly with repeated loading cycles. For example, one study 

observed no difference in bone formation between limbs loaded 36 or 1800 cycles per day (Rubin 

& Lanyon 1984). Animal models suggest that the adaptive response saturates after 100-400 cycles 

depending on the strain magnitude and takes four to eight hours to fully recover sensitivity 

(Umemura et al. 1997; Robling et al. 2001; Robling et al. 2002). Practically, this means that just a 

few minutes of impulsive high magnitude loading such as jumping can lead to an adaptive 

response, but the response plateaus quickly during highly repetitive activities such as running 

(Vlachopoulos et al. 2018; Warden et al. 2021a). 

At the material level, strain is also the primary factor driving mechanical fatigue. 

Mechanical fatigue is a phenomenon wherein repetitive submaximal loading results in the 

accumulation of microdamage in the form of diffuse damage and microcracks (Burr et al. 1997). 

Characterised by a loss of stiffness and strength due to the accumulation of damage, mechanical 

fatigue is influenced by strain magnitude and the number of loading cycles (Carter et al. 1981a; 

Pattin et al. 1996; Edwards 2018). In bone, the relationship between strain magnitude (ε) and the 

number of cycles to failure (Nf) is well described by an inverse power law (Figure 2.2): 

𝑁𝑓 = 𝐴𝜀−𝑏              (2.1) 

where A is a constant and b is the slope of the strain-life curve (Carter et al. 1981a; Edwards 2018). 

Thus, strain magnitude has a much greater effect on the accumulation of damage than the number 

of cycles. 
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 A great degree of scatter is observed in experimental measures of fatigue life (Figure 2.2, 

Carter et al. 1981; Taylor 1998). A significant proportion of this scatter can be explained by 

stressed/strained volume (Taylor 1998; Taylor et al. 1999; Loundagin et al. 2021). Bone exhibits 

a statistical size effect, wherein a larger volume of bone tends to illustrate a shorter fatigue life 

when compared to smaller samples loaded to the same strain magnitude (Bigley et al. 2007). A 

larger volume is more likely to contain an area of microstructural weakness or a critical flaw, 

increasing the probability of failure (Taylor 1998). Strained volume is influenced by variations in 

intracortical microarchitecture. Vascular and resorption canals act as strain concentrators, 

substantially amplifying local strains far above the overall strain of the bone sample (Nicolella et 

al. 2005; Nicolella et al. 2006). In particular, canal diameter has a strong influence on 

stressed/strained volume where increased diameter results in greater stress concentrations and 

stressed/strained volume (Loundagin & Edwards 2020; Loundagin et al. 2021). 

 

Figure 2.2 Influence of cyclic strain range on the number of cycles to fatigue failure. Reproduced 

with permission (Carter et al. 1981b) 
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2.4 Stress Fracture 

Stress fracture is a common overuse injury in runners and military personnel, with 

incidence of 3-20% (Bennell et al. 1996; Hame et al. 2004; Shaffer et al. 2006). These fractures 

develop as a result of repetitive loading applied to a generally normal bone and typically occur 

following a sudden increase in training volume (Kardouni et al. 2021; Hoenig et al. 2022). In 

military recruits, incidence peaks between three and eight weeks following the beginning of basic 

training (Kardouni et al. 2021). Athletes tend to be at higher risk during the pre-season or transition 

to competition season (Rizzone et al. 2017; Khan et al. 2018). Stress fractures present clinically as 

pain and localized tenderness when loaded (Fredericson et al. 1995; Gmachowska et al. 2018). 

Magnetic resonance imaging (MRI) may be used to confirm the presence of oedema and a fracture 

line (Kijowski et al. 2012; Nattiv et al. 2013). When oedema is present but a fracture line is not, 

the injury is classified as a stress reaction, a lower grade of bone stress injury (Nattiv et al. 2013). 

  Common stress fracture locations vary by sport. Stress fractures occur in the ribs of rowers 

and kayakers, at the lumbar spine in gymnasts and football linemen, and at the upper limb in 

pitchers and para-athletes who use wheelchairs (Tenforde et al. 2019; Hoenig et al. 2022). In 

runners and military personnel the tibia is the most common bone affected , accounting for 20-

63% of all fractures, followed by the metatarsals, other tarsals, pelvis, fibula, and femur (Matheson 

et al. 1987; Brukner & Bennell 1995; Bennell et al. 1996). Tibial stress fractures occur most 

frequently on the posterior aspect of the tibial diaphysis, followed by the medial aspect (Kijowski 

et al. 2012). Fracture locations are approximately evenly spread across the axial length of the 

diaphysis (Fredericson et al. 1995). Anterior tibial stress fractures can occur but are more common 

in athletes performing repetitive jumping than in runners (McInnis & Ramey 2016). Anterior 
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fractures are considered high risk as they are located at a site with high tensile stresses and are thus 

more prone to delayed union and complete fracture (Murray et al. 2006; McInnis & Ramey 2016). 

  Treatment of stress fractures depends on the location and severity, but typically requires a 

period of rest and some degree of physical activity restriction to allow for healing, followed by 

gradual return to activity (Pegrum et al. 2012; Warden et al. 2021b). The long recovery period (10-

47 weeks) may result in an athlete missing a season and significant declines in fitness. The 

economic burden resulting from the cost of treatment and missed games or competitions is 

substantial (Pegrum et al. 2012). Similarly, the economic burden of stress fractures in British 

military recruits has been estimated at ₤1500 per recruit per week, or ₤1.2 million (2 million CAD) 

per year (Wood et al. 2014).  

2.4.1 Pathophysiology 

 The pathophysiology of stress fracture is not fully understood but is generally thought to 

result from a chronic imbalance between mechanical fatigue and bone cellular repair. As discussed 

in Chapter 2.3, mechanical fatigue is a phenomenon wherein submaximal repetitive loading results 

in the accumulation of microdamage in the form of small cracks in the bone matrix (Burr et al. 

1990). Microdamage is associated with reduced stiffness of the bone tissue, resulting in increased 

strain for a given stress magnitude in subsequent loading cycles, thereby accelerating the 

accumulation of damage (Bennell 1996; Pattin et al. 1996). Microdamage is also associated with 

osteocyte apoptosis, which stimulates the remodeling process to repair damage, but this process 

takes time (Herman et al. 2010). When the rate of microdamage is chronically greater than the rate 

of repair, microcracks may grow to a critical length or coalesce and result in a fracture (Bennell 

1996). An imbalance between microdamage accumulation and cellular repair could result from 
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increased damage due to greater training loads associated with increased strain, elevated resorption 

associated with low energy availability and hormonal disturbances, or the combination of the two 

(Burr et al. 1990; Papageorgiou et al. 2017).  

  A prevalent alternate hypothesis posits that targeted remodeling is a central factor 

contributing to the imbalance between mechanical fatigue and repair, and thus the development of 

stress fractures in vivo. Following the initiation of remodeling, bone is resorbed by osteoclasts over 

a period of approximately three weeks before bone formation begins (Allen & Burr 2019). Thus, 

a sudden increase in remodeling leads to a transient increase in porosity, which may weaken the 

bone, increase strain, and lead to a destructive feed-forward loop  (Burr et al. 1997; Warden et al. 

2021a; Hoenig et al. 2022). In fact, resorption canals are large (200-300 με) and would therefore 

have a disproportionately negative effect on fatigue life (Cooper et al. 2016; Lassen et al. 2017; 

Loundagin & Edwards 2020). This hypothesis may align with the time frame for the development 

of stress fractures observed in vivo (Kardouni et al. 2021; Warden et al. 2021a). However, 

temporarily suppressing bone remodeling using bisphosphonates at the beginning of infantry basic 

training did not reduce stress fracture incidence when compared to placebo (Milgrom et al. 2004). 

It is possible that there are multiple conditions in which an imbalance between microdamage 

accumulation and repair exist: elevated remodeling may accelerate the accumulation of damage, 

supressed remodeling may fail to repair microdamage, or microdamage formation may simply 

outpace normal bone repair (Milgrom et al. 2004).  

2.4.2 Risk factors 

 Prospective and retrospective cross-sectional studies have identified a myriad of risk 

factors associated with stress fracture. These risk factors generally share a common thread: they 
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ultimately affect the strain environment of bone by influencing the applied loads, bone mass and 

quality, and/or remodeling. Indeed, bone geometry and density themselves have been identified as 

risk factors for stress fracture (Beck et al. 2000; Popp et al. 2020). Type of sport, stage of training, 

and biomechanical variables such as cadence/step length, rearfoot eversion, and leg-length 

discrepancy influence the loads applied to the bone (Bennell et al. 1999; Milner et al. 2006; 

Rizzone et al. 2017; Kliethermes et al. 2021). Physical activity history, early sport specialization, 

genetic variation, and nutritional deficiencies affect bone mass and/or quality (Milgrom, Simkin, 

et al. 2000; Lappe et al. 2008; Nieves et al. 2010; Bulathsinhala et al. 2017; Warden et al. 2021a). 

Relative energy deficiency in sport (RED-S) is a major risk factor for stress fracture, influencing 

bone mass, microarchitecture, and remodeling (Mountjoy et al. 2014). Sex is another notable risk 

factor for stress fracture; female runners are two to three times more likely to sustain a stress 

fracture than men and female military recruits are up to four times more likely to sustain a fracture 

than their male colleagues (Bennell et al. 1996; Changstrom et al. 2015; Kardouni et al. 2021). 

Bone mass and quality may vary between sexes (discussed in the next section) (Beck et al. 2000). 

In addition, low energy availability and hormonal disturbances are more prevalent in females when 

compared to males (Mountjoy et al. 2014). Finally, history of stress fracture is a strong predictor 

of future fracture (Wright et al. 2015). Recurring stress fractures typically occur at new sites either 

within the previously fractured bone or a different bone altogether (Bennell & Brukner 1997; 

Hoenig et al. 2022). 

2.4.3 Tibial-fibular sexual dimorphism 

 It has been hypothesized that sex-related differences in the transverse geometry of the tibia 

may contribute to the disparity in stress fracture risk between sexes. Investigations of two-

dimensional cross-sections obtained using peripheral quantitative computed tomography (pQCT) 
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or dual-energy x-ray absorptiometry (DXA) at discrete sites along the tibial diaphysis demonstrate 

that females illustrate smaller transverse size relative to body size when compared to males (Nieves 

et al. 2005; Tommasini et al. 2007). Specifically, cortical area, section modulus normalised to bone 

length or height, and simple estimates of bone strength were smaller in females than in males (Beck 

et al. 2000; Smock et al. 2009; Sherk et al. 2012; Koltun et al. 2022). In addition, cortical density 

may be higher in females (Beck et al. 2000; Sherk et al. 2012), but some cohorts illustrated no 

difference between sexes (Nieves et al. 2005). Three-dimensional analyses of tibial periosteal 

shape report additional geometric variations between sexes not captured by two-dimensional 

transverse diaphyseal cross-sections: greater protrusion of the tibial tuberosity, diaphyseal 

curvature, condyle size, and metaphyseal slope illustrated by females when compared to males 

(Mahfouz et al. 2012; Brzobohatá et al. 2015; Brzobohatá et al. 2016; Audenaert et al. 2019; Tümer 

et al. 2019). Neither sex differences in density distribution or the influence of geometry and density 

differences on the strain environment of the tibia have been investigated. 

2.5 In vivo measurement of Bone Strain in Humans 

In humans, direct measurement of bone strain and deformation in vivo requires invasive 

methods: strain gauges (Lanyon et al. 1975; Burr et al. 1996; Milgrom et al. 1996), instrumented 

staples (Rolfe et al. 1997; Fyhrie et al. 1998; Ekenman et al. 1998; Milgrom 2000; Ekenman et al. 

2002; Milgrom et al. 2003), or bone screws (Yang et al. 2014) surgically inserted onto or into the 

bone. Early studies used strain gauges, the standard measurement tool for strain in tests of 

engineering materials (Lanyon et al. 1975; Burr et al. 1996; Milgrom et al. 1996). Strain gauges 

are glued to the surface of the bone after removing the periosteum. It is important to achieve 

adequate bonding of the strain gauge to the bone to avoid data loss, but this can be difficult in a 

biological environment (Burr et al. 1996; Yang et al. 2011). Instrumented staples, secured in pre-
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drilled holes in the cortex of the bone, address this limitation and have since been used in a number 

of studies (Rolfe et al. 1997; Ekenman, Halvorsen, Westblad, Fellander-Tsai, et al. 1998; Fyhrie 

et al. 1998; Milgrom et al. 2000; Ekenman et al. 2002; Yang et al. 2011). These in vivo strain 

measurement methods provide a direct measure of local strain. However, strain varies throughout 

the bone and local measurements may not reflect the strain experienced by the bone (Yang et al. 

2011). Furthermore, strain gauges and staples can only be attached to the bone in areas close to 

the skin surface (ex. the anteromedial tibia) (Yang et al. 2011). Stress fractures in the tibia often 

occur on the posterior aspect of the bone (Komatsu et al. 2019), but attachment of a strain gauge 

or staple is not possible in this location without disturbing or damaging the surrounding muscles. 

More recently, bone screws were used to obtain global measures of tibia deformation (Yang et al. 

2014). The screws were implanted into pre-drilled holes at multiple locations in the bone and 

optical motion capture data were used to measure global anterior-posterior and medial-lateral 

bending, and torsion in the tibia during walking and running. This approach provided measures of 

overall deformation, but not localized measures of bone strain. 

While these methods provide direct measures of bone strain or deformation, they are 

invasive and involve risk of infection. As a result, studies typically involve few participants and 

test conditions. Measurements are limited to local strain or global deformation. The distribution of 

strains across the tibia are likely different across individuals and activities, but cannot be measured 

using strain gauges, staples, or screws. Given these limitations, modeling approaches are becoming 

more common (Schipilow et al. 2013; Bhatia et al. 2015; Firminger et al. 2017).  

2.6 Computational Modeling Approaches  

The current state-of-the-art modeling approach for estimating bone strain in vivo involves 

generating a participant-specific finite element model from advanced medical imaging with 
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boundary conditions obtained from biomechanical measurements and simulations of the 

movement of interest. The finite element method is a useful approach for estimating stress and 

strain in problems with complex geometries, loads, and/or material properties (Martin et al. 2015). 

CT data are used to define the geometry and material properties of the object(s) of interest, in this 

case the tibia and fibula. Meshes of the bones made up of connected discretized elements are 

created from segmented CT images (Martin et al. 2015). A convergence analysis is typically 

performed to determine the size of the elements such that refining the mesh further, i.e., using 

smaller element sizes, does not significantly change (usually a threshold of < 5%) bone strain 

predictions. After meshing, an apparent density value is assigned to each element based on the 

underlying CT data using a linear relationship between Hounsfield units (i.e., image intensity) and 

CT equivalent density established using a phantom with known densities included in each scan. 

Material properties are then assigned to each element, usually based on published relationships 

between apparent bone density and elastic modulus. These properties inform the partial differential 

equations that govern the behavior of the elements (Dalstra et al. 1993; Austman et al. 2008). In 

the model used in this thesis, the elastic modulus in the axial direction was calculated using the 

apparent density of the element and the elastic constants in the medial-lateral and anterior-posterior 

directions were calculated assuming constant orthotropy throughout the bone (Rho 1996). This 

definition showed strong agreement between experimentally measured and FE-predicted strains 

for a cadaveric tibia when loaded in compression, bending, and torsion (Gray et al. 2008).  

The analysis approximates a solution to the set of partial differential equations governing 

the behavior of the elements such that specified boundary conditions (e.g., applied forces and fixed 

points) are satisfied to estimate stress and strain distributions throughout the bone (Martin et al. 

2015). A variety of constraints have been used in recent literature, from simple set-ups where the 
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distal portion of the tibia is fixed and an axial load is applied at the tibial plateau to very complex 

set-ups allowing some movement at joints and including muscle forces (Edwards et al. 2010; Xu 

et al. 2016; Hadid et al. 2018; Haider et al. 2020). Haider et al. (2020a) compared finite element-

predicted tibial bending between models with different boundary conditions and to in vivo 

measures reported in the literature (Yang et al. 2014). They found that inclusion of the fibula was 

necessary to predict realistic tibial bending. Furthermore, the most complex model incorporating 

a pinned constraint allowing some rotation at the ankle joint, simulated ligaments allowing some 

movement at the proximal tibia-fibula joint, muscle forces, and a residual moment accounting for 

forces otherwise excluded from the model (e.g., the moment produced by the gastrocnemius 

muscles that do not insert into the tibia) produced realistic tibial bending predictions closest to in 

vivo measurements.   

The muscle and joint contact forces applied as boundary conditions are typically calculated 

using a musculoskeletal (MSK) model and experimentally measured motion and ground reaction 

force data. The complexity and participant-specificity of the MSK model can vary from generic 

two-dimensional models to complex three-dimensional models incorporating participant-specific 

bone geometries and/or muscle properties (Scott & Winter 1990; Seth et al. 2018). Most 

commonly, MSK models are constructed from generic skeletal geometries and muscle parameters 

that are scaled using a participant's segment lengths and mass (Vaughan et al. 1999; Arnold et al. 

2010; Edwards et al. 2010; Wang et al. 2016; Seth et al. 2018). Less commonly, participant-

specific bone geometries quantified from CT, magnetic resonance imaging (MRI), or statistical 

models have been used (Martelli et al. 2015; Hughes et al. 2019). Using participant-specific 

geometries may reduce errors in joint center and muscle attachment locations, muscle moment 

arms, and joint contact forces (Scheys et al. 2008; Martelli et al. 2015; Xu et al. 2020). The 
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participant-specific approach is far less common because it requires advanced medical imaging 

and a significant amount of time and expertise to personalize bone geometries, alignments, and/or 

muscle properties. However, tools to automate and streamline the generation of personalized 

models are being developed and may improve the feasibility of personalizing bone geometries in 

MSK models in the future (Zhang et al. 2014; Modenese & Renault 2021). 

One of the major barriers for the use of the finite element method to estimate bone strain 

is the necessity for advanced medical imaging to characterise participant-specific bone geometry 

and material properties. Many researchers do not have access to CT scanning facilities, and if they 

do scans add significant costs and analysis time to studies. These barriers also limit the utility of 

finite element analysis in clinical settings (Keyak et al. 1990). In the absence of participant-specific 

advanced medical imaging data, generic models of the tibia, scaled to each participant using 

anthropometric data, have been used (Edwards et al. 2009; Edwards et al. 2010; Chen et al. 2016). 

Alternatively, atlas-based approaches where a tibia model closest to some selection criteria such 

as bone mineral content (BMC) and/or anthropometrics is selected from a database of models (Xu 

et al. 2017; Khassetarash et al. 2023).  These approaches may be useful for within-participant 

comparisons but could lead to erroneous conclusions due to the failure to characterise geometry 

and/or material property differences when comparing between individuals or groups (Khassetarash 

et al. 2023). Statistical approaches to estimate participants’ bone geometry and density 

distributions, discussed in the next section (Chapter 2.7), may enable generation of more accurate 

participant-informed models from less intensive imaging modalities or from anatomical landmarks 

(Väänänen et al. 2015; Nolte et al. 2016). It is unknown whether this approach will produce tibial 

strain estimates that strongly agree with those from participant-specific models. 
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2.7 Statistical Shape and Appearance Models 
 

Statistical shape models (SSM) describe the average geometry of a bone and the ways in 

which the geometry varies within a population (Sarkalkan et al. 2014). Statistical appearance 

models (SAM), sometimes referred to as statistical shape and intensity models, also describe the 

average and modes of variation of the bone density distribution (Sarkalkan et al. 2014). There are 

a plethora of applications for this technique including: automating the image segmentation process 

(Ambellan et al. 2019; Taghizadeh et al. 2019), creating simulated populations for orthopedic 

implant design (Galloway et al. 2013), identifying phenotypes associated with disease progression 

or treatment outcomes (Varzi et al. 2015; Wise et al. 2016; Grassi et al. 2021), and predicting bone 

shape and/or density distributions from sparse data (Zhang et al. 2016; Zhang & Besier 2017; 

Suwarganda et al. 2019). SSMs of or including the tibia (and fibula) have been reported (Zhang et 

al. 2016; Audenaert et al. 2019; Nolte et al. 2020; Keast et al. 2023). SAMs have been created for 

the femur and scapula (Bonaretti et al. 2014; Väänänen et al. 2015; Bah et al. 2015; Grassi et al. 

2017; Burton et al. 2019). Prior to this thesis, a SAM of the tibia and fibula had yet to be 

developed.  

As discussed previously (Chapter 2.6), using scaled generic geometries can lead to errors 

in parameters such as joint center locations, muscle forces, and bone strain. However, manual or 

semi-automated segmentation of medical imaging data can be time consuming and limit the 

feasibility of using participant-specific models as clinical tools (Poelert et al. 2013). The ability to 

reconstruct an individual’s bone from partial scans, 2D imaging data (DXA, X-ray), or even 

motion capture data would enable opportunistic studies and may reduce the time, cost, and ionizing 

radiation exposure associated with using 3D imaging modalities to generate participant-specific 

models. SSMs and SAMs have been used in combination with MSK models and the finite element 



24 
 

method to reduce errors associated with scaling generic geometries (Väänänen et al. 2015; Nolte 

et al. 2016; Zhang et al. 2016; Grassi et al. 2017; Chandran et al. 2019; Suwarganda et al. 2019). 

While these approaches are not yet widespread, tools to automate and streamline the generation of 

participant-informed musculoskeletal and finite element models are being developed (Zhang, 

Sorby, et al. 2014; Modenese & Renault 2021). 

2.7.1 Generating SSMs and SAMs 

 SSMs are created using a set of imaging data that, ideally, represents the variation present 

in the population of interest. First, points on the surface of the bone of interest are created. This is 

achieved by identifying landmarks through a combination of manual identification and/or 

automated algorithms, such that each landmark corresponds to the same anatomical point on each 

bone of the training set (Sarkalkan et al. 2014). Recently, it has become more common to create 

surface meshes from the segmented bone(s) of interest and then establish nodal correspondence 

using non-rigid registration algorithms that allow for local deformations (Väänänen et al. 2015; 

Burton et al. 2019). In this process, a median geometry is selected from the dataset and used to 

register the remaining bones in the training data. Selection methods for the median geometry range 

from subjective to more objective approaches such as choosing the bone with median surface area 

or volume. Next, the individual and reference mesh are rigidly aligned using the iterative closest 

point algorithm (Du et al. 2010). Coherent point drift algorithm (Myronenko & Song 2010) 

performs rigid alignment, scaling, and local deformation to match the reference mesh to the 

individual’s mesh and returns the node in the individual’s mesh most likely to correspond to each 

node in the reference mesh.  A generalized Procrustes analysis (Pomidor et al. 2016) may then be 

used to rigidly align the corresponding meshes across the training set. The data are then compiled 

into a matrix x:  
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𝑥 = [
𝑋1,1 𝑌1,1 𝑍1,1 … 𝑋1,𝑛 𝑌1,𝑛 𝑍1,𝑛

⋮ ⋮ ⋮
𝑋𝑁,1 𝑌𝑁,1 𝑍𝑁,1 … 𝑋𝑁,𝑛 𝑌𝑁,𝑛 𝑍𝑁,𝑛

]            (2.2) 

where X, Y and Z are the x-, y- and z-coordinates of each node (n) across training instances (N) 

(Sintini 2017). The average shape can then be computed by taking the average of each column of 

the matrix (Sarkalkan et al. 2014): 

𝑥̅ =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1           (2.3)  

Principal components analysis (PCA, discussed below) is then used to calculate the modes of 

variation of bone shape.  

 There are two approaches to generate a SAM: image-based and mesh-based. In the image-

based approach, anatomical correspondences are established using image registration algorithms 

and images are warped to match a reference bone to obtain correspondence for image intensity 

(Schuler et al. 2010; Nicolella & Bredbenner 2012; Bonaretti et al. 2014). This results in a set of 

volumetric images of the bone(s) of interest where the voxels contain geometry and image intensity 

information. The image-based approach produces more accurate volume correspondence and 

better mesh quality, but the perturbed images must be segmented and meshed each time the model 

is perturbed to use this type of SAM with the finite element method (Bonaretti et al. 2014). An 

overview of the process used in this thesis to generate a mesh-based SAM is illustrated in Figure 

2.3. The bones are first segmented from the image data used to generate and triangular surface 

meshes. A tetrahedral mesh is generated for the reference bone. Correspondence between surface 

nodes is established using point cloud registration methods such as the Coherent Point Drift 

algorithm (Cootes & Taylor 2004; Myronenko & Song 2010). Element correspondence is then 

…
 

…
 

…
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established by elastically morphing the reference mesh to match the individuals’ corresponding 

surface point clouds (Sintini et al. 2018; Burton et al. 2019).   

 

Figure 2.3 Overview of the mesh-based approach used in this thesis to generate a statistical 

appearance model  (SAM) and the integration of the model with finite element analysis (FEA) to 

evaluate the influence of geometry and density variations on finite element-predicted bone strain. 

 

Density values may be assigned to either nodes or elements based on each individual’s underlying 

CT data. Following rigid alignment of the meshes using the Procrustes algorithm, PCA is applied 

to the data to obtain the SAM. There are two approaches to applying the PCA. In a tiered approach 

(Figure 2.3, outlined by Cootes & Taylor (2004)), PCA is applied to the node and density data 

separately to obtain a statistical shape model (SSM) and a statistical intensity model (SIM). The 

principal component (PC) scores (i.e., variance from the mean along each mode of variation for 

each individual) calculated from these models are then concatenated into a matrix, normalizing by 

the total variance in the shape and intensity models. Another PCA is then applied to the normalised 
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matrix to obtain the combined model. The second approach reported in the literature (Väänänen et 

al. 2015) combines the node and density information into one matrix, normalizing to account for 

the difference in scale between node and density variance, and applies a single PCA to the 

combined data. If the data are normalised in the same way (i.e., by total variance in the shape and 

density data), these two approaches yield the same results. The mesh-based approach results in 

more accurate surface correspondences and a more compact SAM (Bonaretti et al. 2014). 

Perturbing a mesh-based SAM results in meshes that can directly be used as finite element models, 

but tend to display worse mesh quality when compared to image-based models (Bonaretti et al. 

2014). 

 

2.7.2 Principal components analysis (PCA) 

PCA is a statistical technique used to reduce the dimensionality of a dataset through feature 

extraction (Bro & Smilde 2014). The input variables are transformed to create new variables that 

are linear combinations of the input variables. These new variables, called principal components 

(PCs), are independent of each other and ordered by the amount of variation they explain in the 

data. PCs with the lowest amount of variation are removed, reducing the dimensionality of the 

dataset while retaining the original input variables. A given instance in the dataset can then be 

predicted using a weighted linear combination of the PCs.  

The x-, y-, and z-coordinates and/or density value for each node are the input variables. A 

covariance matrix is calculated for this data, describing how each variable relates to each of the 

other variables. The eigenvalues and eigenvectors are then calculated using the equations:  

𝑑𝑒𝑡(𝜆𝐼 − 𝐶) = 0           (2.4) 

𝐶𝑣⃑ = 𝜆𝑣⃑                (2.5) 



28 
 

where C is the covariance matrix, I is the identity matrix, v is the eigenvector, and λ is the 

eigenvalue  (Bro & Smilde 2014; Sintini 2017). The eigenvectors are the new variables, or PCs, 

and the eigenvalues are the variance of each PC. The proportion of variance explained by each PC 

is calculated by dividing the eigenvalue of a given PC by the sum of the eigenvalues for all PCs 

(Bro & Smilde 2014). The PCs explaining the most variation are retained. The method used to 

decide the number of PCs to retain varies in the literature from arbitrary (Bah et al. 2015; Varzi et 

al. 2015; Wise et al. 2016; Nolte et al. 2016; Zhang et al. 2016; Zhang & Besier 2017) to more 

analytical (Mei et al. 2008; Suwarganda et al. 2019; Burton et al. 2019) approaches. 

2.7.3 Interpreting principal components 

Once the average shape and density distribution and the modes of variation have been 

calculated new instances (x) can be created using the equation: 

𝑥 = 𝑥̅ + ∑ 𝜙𝑖𝑏𝑖
𝑝
𝑖=1           (2.6) 

where 𝑥̅ is the mean geometry, p is the number of retained PCs, ϕi is the ith PC, and bi is the 

weighting factor of the ith PC (Sarkalkan et al. 2014). For a combined geometry (x) and density (d) 

model, similar equations are used. The following equations are used for the tiered approach: 

𝑥 = 𝑥̅ + ∑ (𝜙𝑠𝑊𝑠
−1𝜙𝑐𝑠𝑖)𝑐𝑖

𝑝
𝑖=1                     (2.7) 

𝑑 = 𝑑̅ + ∑ (𝜙𝑑𝜙𝑐𝑑𝑖)
𝑝
𝑖=1 𝑐𝑖               (2.8) 

where ci is the weighting factor of the ith PC of the combined model, ϕs is the PCs in the shape 

model, ϕcsi is the shape portion of the ith PC in the combined model, ϕd is the PCs in the density 

model, ϕcdi is the density portion of the ith PC in the combined model, and Ws
-1 is the inverse of 
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the weighting factor used to normalise the shape data to match the total variance in the density 

data (Cootes & Taylor 2004). 

To obtain an understanding of how each PC influences the model, each weighting factor 

can be systematically perturbed and added to the average shape and/or density. For example: 

𝑥 = 𝑥̅ + ∑ 3√𝜆1𝜙1
𝑝
𝑖=1               (2.9) 

alters the model by only the first PC, increasing the weight by three standard deviations. Perturbed 

and average meshes are visualized and compared to interpret the geometry and density variations 

the PC describes. Heatmaps depicting differences in node position or density value are useful to 

further aid interpretation. 

2.7.4 Predicting unseen geometry and density distribution 

 Methods to determine the values of the weighting factors (bi or ci) for an unseen individual 

vary depending on the data available. Fitting methods for 3D and 2D medical imaging are 

described elsewhere (Sarkalkan et al. 2014; Grassi et al. 2017). Anatomical landmark data has 

previously been used to predict pelvis, femur, tibia, and lower limb surface geometry (Zhang et al. 

2016; Zhang & Besier 2017; Suwarganda et al. 2019; Nolte et al. 2020; Keast et al. 2023). 

Landmarks are identified either on the bone surface or using skin-mounted markers for the unseen 

individual and on the surface of the average mesh. Geometry is then predicted by morphing the 

SSM along the retained PCs and performing rigid-body transformations to match the morphed 

model’s predicted landmarks to the target landmarks. Pelvis and lower limb bone geometries 

predicted from anatomical landmarks using this approach have demonstrated reduced distance and 

volume errors when compared to linearly scaled generic musculoskeletal models (Zhang et al. 

2016; Suwarganda et al. 2019). Tibial geometry estimations from bone surface landmarks have 
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resulted in mean surface geometry errors of approximately 2.6-6.6 mm (Nolte et al. 2020; Keast 

et al. 2023). It is unclear whether errors of this magnitude have a meaningful influence on 

parameters such as muscle moment arm and estimates of bone strain.  

2.7.5 SSM vs SAM 

Table 2.1 Time per individual to complete pre-processing steps toward generating a SSM and SAM 

for the tibia and fibula with the methods used in this thesis. Active steps required the investigator 

to interact with the program to complete the step, while passive steps could be run in the 

background or overnight. 

Processing step Time SAM Time SSM Active/passive 

Segmenting 30 minutes 30 minutes Active 

Surface node correspondence (CPD) 3 hours 3 hours (or less if 

using fewer 

nodes) 

Passive 

Morphing reference to individual surface 5 minutes  Active 

Density assignment 10 minutes  Active 

Reading mesh into MATLAB and fixing 

element assignment 

3 hours 5 minutes  Passive 

Checking data throughout process 10 minutes 5 minutes Active 

Active time (per individual) 55 minutes 35 minutes  

Passive time (per individual) 6 hours 5 minutes 3 hours  

Total time (per individual) 7 hours 3 hours 35 minutes  

 

SSMs are much more common in the medical and bioanthropology literature than SAMs. 

While SAMs provide more information, they require imaging modalities that enable quantification 

of both geometry and density (e.g., CT) and involve a more complex and time-consuming 

processing workflow (Table 2.1). Additionally, open source software is available for the 

generation of SSMs (Zhang et al. 2014; Cates et al. 2017; Keast et al. 2023), but extensions to 

SAMs are not yet publicly available. In general, the decision to use a SSM over a SAM depends 

on the available data and the intended use. If, for example, only MRI is available the analysis will 
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be limited to a SSM of periosteal (and endosteal) surface geometry. Some SSMs have been 

developed specifically for applications in MSK modeling (Zhang et al. 2016); in this application 

only periosteal surface geometry information is necessary. On the other hand, if the intended 

application included FE analysis as well as MSK modeling a SAM would be needed to provide 

both bone geometry and density information. 

2.8 Summary 

Stress fractures result from a chronic imbalance between microdamage due to repetitive 

loading and bone cellular repair processes. Bone strain, specifically strain magnitude and strained 

volume, is strongly related to the rate of microdamage accumulation and is thought to be the key 

factor driving the imbalance. To understand how risk factors for stress fracture contribute to injury 

risk, it is important to characterise their influence on the strain environment of the bone. 

Epidemiologic evidence indicates that bone geometry and density are risk factors for stress fracture 

and may contribute to the disparity in risk between sexes. However, the complex three-dimensional 

variation in geometry and density distribution among young active adults and their influence on 

the strain environment of the tibia are not well characterised. Additionally, obtaining accurate 

representations of an individual’s bone geometry and density are important for personalized 

modeling approaches used to estimate bone strain and the probability of fracture but currently 

requires CT data. Access to CT scanners, financial cost, and the time required to characterise bone 

geometry and density from the images limit the use of these approaches. Emerging statistical 

approaches may address some of these barriers. 

The research presented in this thesis utilizes a combination of statistical shape and 

appearance modeling, biomechanical data, and the finite element method to characterise tibial-

fibular geometry and density variations, errors due to anthropometric data-based prediction 
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approaches, and their mechanical implications in young active adults. The findings from these 

studies offer insights into bone geometry and density distributions as risk factors for stress fracture. 

In addition to identifying key features influencing bone strain, potential methods to characterise 

bone geometry and density distributions in the absence of medical imaging are evaluated. 
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Chapter 3  

 

Tibial-fibular geometry and density variations associated 

with elevated bone strain and sex disparities in young active 

adults 

 

3.1 Introduction 

Stress fracture is a common injury in runners and military recruits (Cosman et al. 2013; 

Rizzone et al. 2017; Kardouni et al. 2021). Stress fractures frequently occur at the tibia and females 

are at greater risk of fracture than males (Cosman et al. 2013; Rizzone et al. 2017; Kardouni et al. 

2021). Mechanical fatigue, a phenomenon whereby submaximal repetitive loading leads to the 

accumulation of microdamage, has been associated with the development of stress fractures (Burr 

et al. 1990). It is important to note that the rate of damage accumulation is strongly related to bone 

strain magnitude (Carter et al. 1981a; Pattin et al. 1996). 

Bone geometry and density are two factors that influence bone strain magnitude. It has 

been hypothesized that differences in transverse cross-sectional size, cortical thickness, and 

condyle size between males and females contribute to the greater risk of stress fracture in females 

when compared to males (Nieves et al. 2005; Brzobohatá et al. 2016; Audenaert et al. 2019). In 

current literature, characterization of geometry, density, and estimates of bone strength within and 

between sex and injury status groups has largely relied on simple measures such as cortical area, 
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cortical thickness, section modulus, polar strength-strain index, and bone mineral content 

measured at transverse cross-sections (Nieves et al. 2005; Cosman et al. 2013; Popp et al. 2020). 

Bone strain is a complex function of bone geometry and density distribution, and can be directly 

estimated using subject-specific finite element models (Xu et al. 2020). However, as a numerical 

technique, it can be difficult to isolate the contributions of different model parameters and 

understand their relative impact on bone strain using finite element models alone. 

This limitation could be overcome using statistical shape models (SSMs), which 

characterise geometry variation, and statistical appearance models (SAMs), which characterise 

bone geometry and density variations within a population. SSMs have been used to describe 

geometry variations in a variety of bones (Zhang, Malcolm, et al. 2014; Sintini et al. 2018; Burton 

et al. 2019; Grant et al. 2020; Bruce, Baggaley, Welte, et al. 2022), characterise sexual dimorphism 

(Brzobohatá et al. 2016; Audenaert et al. 2019; Bruce, Baggaley, Welte, et al. 2022), and to explore 

the influence of geometry variations on spine and knee kinematics and joint contact mechanics 

(Campbell & Petrella 2016; Clouthier et al. 2019; Clouthier et al. 2022). SAMs have been 

developed for bones including the scapula, lumbar vertebrae, femur, and tibia (Bryan et al. 2012; 

Nicolella & Bredbenner 2012; Galloway et al. 2013; Bah et al. 2015; Day et al. 2022). Importantly, 

SAMs in combination with finite element analysis have enabled population-level investigations of 

knee and hip implant performance (Bryan et al. 2012; Galloway et al. 2013), proximal femur 

strength in a sideways fall (Nicolella & Bredbenner 2012), and vertebral stiffness (Day et al. 2022). 

The influence of tibia and fibula geometry and density variations on bone strain has yet to be 

investigated. 

The purpose of this study was to characterise tibial-fibular geometry and density variations 

using a SAM and to quantify the influence of these variations on finite element-predicted bone 
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strain in young active adults. We expected that transverse cross-sectional dimensions and cortical 

thickness would demonstrate the largest influence on bone strain after controlling for scale and 

that sex-related geometry and density variations would result in higher bone strain in the average 

female when compared to the average male. 

3.2 Material and Methods 

3.2.1 Statistical Appearance Model 

A SAM was constructed using computed tomography (CT) scans of the left tibia and fibula 

(GE Revolution GSI, General Electric Medical System, Milwaukee, WI; acquisition settings: 120 

kVp, 200 mA, in-plane resolution of 0.48 x 0.48 mm, slice thickness of 0.625 mm) obtained from 

forty-eight healthy adults (20 females and 28 males, age = 18-32 years, height = 1.49-1.87 m, mass 

= 48.3-86.0 kg). Age, height, and mass for males and females are presented in Table 3.1. 

Participants were recreationally active at least three times per week and had no musculoskeletal 

injuries that limited physical activity within the three months prior to scanning. All participants 

provided written, informed consent. Study protocol was approved by the university’s Conjoint 

Health Research Ethics Board. 

Table 3.1 Mean (standard deviation) participant age, height, and body mass of females and males 

included in the SAM. 

Sex n Age (years) Height (m) Mass (kg) 

F 20 19.9 (1.3) 1.65 (0.08) 60.1 (5.8) 

M 28 22.4 (4.4) 1.76 (0.07) 71.5 (7.2) 

p-value  0.006 <0.001 <0.001 
 

The tibia and fibula were semi-automatically segmented in the Mimics Innovation Suite 

(v21, Materialise, Leuven, Belgium) and triangular periosteal surface meshes were generated. 

Reference four-node tetrahedral volume meshes were created from average tibia and fibula 
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geometries, obtained from a previously described SSM based on a subset of the data used in the 

present study (Bruce, Baggaley, Welte, et al. 2022). The reference tibia and fibula meshes 

contained 270 002 and 41 077 elements, respectively. Surface node correspondence between the 

reference meshes and participant geometries were established using the Coherent Point Drift 

algorithm (Myronenko & Song 2010). Displacements between corresponding surface nodes were 

calculated and used as boundary conditions to morph the reference mesh to match each 

participant’s surface geometry in Abaqus (v.2019, Dassault Systèmes Simulia Corp.; Providence, 

USA). The resulting meshes were then overlaid onto the participant’s CT data. A hydroxyapatite 

calibration phantom (QRM GmbH; Moehrendorf, Germany) was used to identify a linear 

relationship between Hounsfield units in the CT image and equivalent bone mineral density (ρHU) 

for each participant. Each element was assigned a density value based on a volume-weighted 

average of the underlying voxels. 

The resulting meshes were aligned to the reference mesh using the Procrustes algorithm, 

preserving scale. Principal components analysis (PCA) was applied to construct the SAM as 

outlined by Cootes and Taylor (Cootes & Taylor 2004): PCA was applied to the nodes to obtain a 

SSM and to the density values to obtain a SIM. To account for correlations between shape and 

density, a further PCA was applied to a combined matrix containing shape and intensity 

parameters, weighted to normalise the total variance in each set, to obtain a SAM. 

3.2.2 SAM Perturbations 

The first five principal components (PCs), cumulatively accounting for 70.5% of the total 

variance in the model, were evaluated. The SAM was perturbed along each PC by ± 1 and 2 

standard deviations from the mean. Average PC scores for males and females were calculated. The 

first PC described isotropic scaling and related geometry and density variations and was strongly 
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correlated with height (r2=0.83). Meshes representing the average male and average female 

geometry and density distribution, controlled for scaling and related variations, were created by 

perturbing all PCs except the first by their respective average scores. Meshes isolating geometry 

and density variation for the average male and female were generated for a secondary analysis. 

3.2.3 Finite Element Models 

Following perturbations, mesh elements were converted to ten-node tetrahedral elements. 

Element densities were discretized into bins, where the width of each bin was 0.01 g/cm3 ρHU. Bin 

centers were used as the density value for each element. Orthotropic linear-elastic material 

properties were assigned to each element. The elastic modulus of bone in the axial direction was 

calculated as a function of element apparent bone mineral density (ρapp = ρHU/0.626) (Dalstra et al. 

1993): 

𝐸3 = 6570 ∙ 𝜌𝑎𝑝𝑝
1.37      (3.1) 

The other constants were obtained assuming constant anisotropy: E1 = 0.574 ⋅ E3, E2 = 0.577 ⋅ E3, 

G12 = 0.195 ⋅ E3, G23 = 0.265 ⋅ E3, G31 = 0.216 ⋅ E3, ν12 = 0.427, ν23 = 0.234, ν31 = 0.405, where 

subscripts 1-3 denote the medial-lateral, anterior-posterior, and axial directions, respectively (Rho 

1996). This definition of material properties has demonstrated excellent agreement between 

cadaveric experimental measurements and finite element predictions of bone strain and fracture 

strength at the tibia (Gray et al. 2008; Edwards et al. 2013). 

A preliminary mesh convergence analysis (Appendix A, Figure A.6) was performed using 

the participant model with the largest volume. Increasing the number of elements by ~100% (tibia 

and fibula combined) from 132 740 and 20 241 elements to 270 002 and 41 077 elements changed 

95th percentile pressure-modified von Mises strain by less than 4% and strained volume by less 
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than 2%, suggesting the mesh was adequately converged. We conservatively selected the finer 

mesh, as the added computational time was negligible. 

3.2.4 Finite Element Boundary Constraints 

Boundary constraints were similar to previous work from our group, with pinned 

constraints at the knee and ankle and complex proximal tibia-fibula joint constraints (Haider et al. 

2020). One point at the middle of the tibial plateau was fully constrained. Surface nodes on the 

tibial plateau within one centimeter of the fixed point in the axial direction were kinematically 

coupled to rotate about the fixed point. One point on the medial condyle was fixed in the anterior-

posterior direction. The ankle center of rotation was estimated as the midpoint between the malleoli 

and used for the application of the joint contact force. This point was constrained in the anterior-

posterior and medial-lateral directions. The ankle center of rotation was coupled to surface nodes 

near the tibia-talus and fibula-talus interfaces, such that the coupled nodes remained free to rotate 

about the ankle center of rotation. The distal tibia-fibula joint was modeled with surface-based tied 

constraints. At the proximal tibia-fibula joint, spring elements with stiffness of 133 N/mm and 109 

N/mm were used to model the anterior and posterior ligaments, respectively (Marchetti et al. 

2017). Nodes at the articulating surface of the proximal tibia-fibula joint were tied to prevent 

motion in the direction normal to the joint surface. 

3.2.5 Finite Element Loads 

Lower limb joint contact force and muscle forces were calculated based on motion capture 

and force data from one female participant (age = 24 years, mass = 59 kg, height = 170 cm). The 

participant ran at 3.3 m/s on an instrumented treadmill (Bertec, Columbus, OH) while motion and 

force data were collected at 200 Hz and 1000 Hz, respectively, using an eight-camera Vicon Nexus 

system (v. 1.8.4, Vicon Motion Systems Ltd, Oxford, UK). An inverse dynamics-based static 
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optimization routine, detailed in our previous work, was used to calculate lower extremity muscle 

and joint contact forces (Haider et al. 2020). Briefly, a musculoskeletal model of the pelvis and 

lower limb containing forty-five muscles (Arnold et al. 2010) was scaled to the participant’s 

segment lengths and body mass. Muscle forces were computed such that the sum of muscle 

moments at each joint was equal to the net joint moment computed from inverse dynamics. The 

following moments were used as constraints in the optimization: flexion-extension and abduction-

adduction moments at the hip, flexion-extension moment at the knee, flexion-extension moment 

at the ankle, and the pronation-supination sub-talar moment. The optimization minimized the sum 

of muscle stresses squared. Ankle joint contact force and muscle forces at the time of peak resultant 

ankle joint contact force were scaled to the SAM average finite element model by mass (i.e., FFE 

= Fparticipant*(maverage/mparticipant)). The same joint contact and muscle forces were applied to all 

models. Ankle joint contact force was applied at the ankle center of rotation. Insertion points of 

seventeen muscles attaching to the tibia or fibula (Appendix A, Table A.1) and the patellar 

ligament were identified by aligning the MSK model geometry and the SAM average finite 

element mesh using an iterative closest points algorithm and mapping each muscle point to the 

nearest surface node. A concentrated force was applied at each attachment point (Appendix A, 

Table A.1). A residual moment term about the sagittal and axial axes that accounts for other 

sources of torque (e.g., bi-articulating muscles such as the medial and lateral gastrocnemius) about 

the ankle was calculated for each perturbed geometry and applied at the ankle center of rotation 

(Haider et al. 2020). 

3.2.6 Outcome Measures and Comparisons 

Finite element models were solved in Abaqus (v.2019, Dassault Systèmes Simulia Corp.; 

Providence, USA). Custom Matlab (r2019a, Mathworks, Natick, MA) scripts were used to 
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calculate pressure-modified von Mises equivalent strain, which is a modification of the von Mises 

strain criterion that has previously been shown to predict failure in quasi-brittle materials that 

demonstrate compression-tension strength asymmetry (de Vree et al. 1995; Haider et al. 2021). 

Analysis was limited to elements containing bone (element density values ≥ 0.5 g/cm3) in the tibial 

diaphysis, defined as 20-80% of the length of the tibia (Edwards et al. 2015). The bone density 

threshold sensitivity was tested in the average model, and the average male and female models. 

Peak strain changed by less than 2.4% when thresholds of 0.5 and 1.0 g/cm3 were used. Strained 

volume changed by less than 0.7% and did not affect male vs. female comparisons. We 

conservatively selected the lower threshold. Elements within a 1.0 cm radius of the soleus force 

application and a 0.5 cm radius of other muscle force application points, including transcortical 

elements, were removed from the analysis due to artefactually high strains (over 10 000 με). The 

large force applied at the attachment point for the soleus necessitated a larger radius to remove all 

elements with artefactually high strains. Over 98% of the elements containing bone in the tibial 

diaphysis remained for analysis after artefacts were removed. The 95th percentile (peak) strain and 

strained volume, defined as the sum of the volume of elements experiencing strain greater than or 

equal to 4000 με, were quantified for each model. We previously demonstrated that strained 

volume, with a threshold of 4000 με, was a strong predictor of fatigue life for whole rabbit tibiae 

in uniaxial and biaxial (compression and torsion) modes of loading (Haider et al. 2021). At the 

material level, O’Brien et al. (O’Brien et al. 2005) observed rapid microdamage accumulation and 

subsequent fracture in cyclically-loaded cortical bone at a stress range of 80 MPa, which would 

correspond to 4000 με for an assumed elastic modulus of 20 GPa; samples loaded at lower stress 

ranges accumulated damage but did not fracture (O’Brien et al. 2005). Absolute and percentage 
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differences in peak strain and strained volume between perturbed models and the average model 

were calculated. These measures were also compared between average male and female models. 

3.2.7 Statistical Analysis 

In addition to qualitative assessments of differences between average male and female 

geometry and density generated from the SAM, t-tests were performed to compare PC scores 

between females and males. According to Shapiro-Wilk and Levene’s tests, PC scores for male 

and female groups were normally distributed and had equal variances. A Sidak correction for 

multiple comparisons was applied such that the family-wise error rate was 0.05. Pearson product-

moment correlations between scores of the first five PCs and age were also evaluated. Statistical 

tests were performed in SPSS (v27.0, IBM Corp., Armonk, NY). 

3.3 Results 

 

Figure 3.1 Percent variation captured by principal components of the SAM  

The first PC, dominated by isotropic scaling, explained half (49.7%) of the total variance 

in the SAM. The first five PCs accounted for 70.5% of the total cumulative variance. The variance 
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explained by the PCs are displayed in Figure 3.1. Geometry and density variations described by 

the first five PCs were independent of age (p ≥ 0.310). 

3.3.1 PC Perturbations 

The first five PCs described tibial geometry and density variations including: isotropic 

scaling, axial length, cross-sectional size and geometry, curvature, and regional variations in 

cortical thickness and density (Table 3.2). The fibula varied to a lesser degree, typically displaying 

corresponding variations in dimensions and cortical density. Visualizations of geometry and 

density variations for each PC are provided in supplementary Figures A.1-A.5 (Appendix A). 

Perturbations of ± 1 standard deviation along these PCs resulted in 2.0-5.7% differences in peak 

strain and 11.5-44.6% differences in strained volume when compared to the average model (Table 

3.2). Perturbations of ± 2 standard deviations along these PCs resulted in 3.9-12.0% differences in 

peak strain and 20.8-95.4% differences in strained volume when compared to the average model 

(Table 3.2). 

Perturbing PC 1, 2, and 5 resulted in the largest changes in peak strain and strained volume. 

The first PC was dominated by isotropic scaling. Lower density at the endocortical surface 

corresponded with increased size. Increasing size by one standard deviation reduced peak strain 

and strained volume by 5.3% and 38.7%, respectively. The second PC explained 10.6% of the total 

variance and described variations in tibia and fibula length, tibial curvature, and cortical thickness 

(Figure 3.2). A longer, straighter tibia with increased cortical thickness reduced peak strain and 

strained volume (perturbing by plus one standard deviation = 5.3% and 36.5% reduction in peak 

strain and strained volume, respectively) when compared to the average model (Figure 3.3). The 

fifth PC explained 2.8% of total variance, describing changes in diaphysis cross-sectional size and 

geometry, and variation in density distribution. Increased cross-sectional size, corresponding with 
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decreased cortical density in the anterior diaphysis and regional variations in cortical thickness, 

resulted in 4.0% lower peak strain and 29.1% smaller strained volume when compared to the 

average model. 

Table 3.2 Geometry and density variations described by the first five principal components and 

their influence on 95th percentile pressure modified von Mises strain (peak ε) and strained volume 

(εvol) compared to the average model. Data are presented as absolute difference (percent 

difference). 

 
PC  Perturbation (σ) Geometry and density variation in positive 

direction 
-2 -1 1 2 

1 Peak ε 
(με) 

446 
(12.0) 

205 
(5.5) 

-197     
(-5.3) 

-380     
(-10.2) 

Increased size 

Decreased density at the endocortical surface 

εvol 

(mm3) 
1395 
(59.1) 

793 
(33.6) 

-914     
(-38.7) 

-1726    
(-73.2) 

2 Peak ε 
(με) 

428 
(11.5) 

212 
(5.7) 

-195     
(-5.3) 

-375     
(-10.1) 

Longer tibia and fibula 

Less curvature in sagittal plane 

Increased density at the endocortical surface 
εvol 

(mm3) 
2250 
(95.4) 

1052 
(44.6) 

-861     
(-36.5) 

-1491    
(-63.2) 

3 Peak ε 
(με) 

-160      
(-4.3) 

-81       
(-2.2) 

75 (2.0) 146 
(3.9) 

Decreased cross-sectional size in proximal 2/3 of 
tibia 

Smaller proximal tibial condyles 

More triangular cross-section at mid-diaphysis 

Increased density in middle 1/3 and decreased 
density in proximal and distal 1/3 near the 
endocortical surface 

εvol 
(mm3) 

-616     
(-26.1) 

-294      
(-12.5) 

272 
(11.5) 

491 
(20.8) 

4 Peak ε 
(με) 

207 
(5.6) 

103 
(2.8) 

-100     
(-2.7) 

-198     
(-5.3) 

Larger tibia and fibula cross-sectional size 

Increased density in distal half, decreased density 
in proximal half at the endocortical surface 

εvol 
(mm3) 

916 
(38.9) 

456 
(19.3) 

-471     
(-20.0) 

-928     
(-39.3) 

5 Peak ε 
(με) 

330 
(8.9) 

159 
(4.3) 

-150     
(-4.0) 

-291     
(-7.8) 

Larger tibia and fibula cross-sectional size, 
especially along the A/P axis 

Regional variations in cortical thickness 
Decreased cortical density in anterior diaphysis 

 

εvol 
(mm3) 

1568 
(66.5) 

751 
(31.9) 

-686     
(-29.1) 

-1308    
(-55.5) 
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3.3.2 Sexual Dimorphism 

The female tibia was narrower along both anterior-posterior and medial-lateral axes and 

had smaller condyles. Cortical density was greater and cortical thickness in the distal ¼ of the 

diaphysis was smaller in the average female when compared to the average male (Figure 3.4). 

Scores for the third PC were different between males and females (p < 0.001), where females had 

more positive scores. PC three illustrated similar geometry and density variations (Table 3.2, 

Supplemental Figure A.3) to the observed variations between sexes. These differences resulted in 

5.5% (198 με) higher peak strain and 41.3% (830 mm3) higher strained volume in the average 

female when compared to the average male. When isolated, geometry differences resulted in 9.7% 

(345 με) higher peak strain and 99.5% (1678 mm3) larger strained volume in the average female. 

In contrast, density differences alone resulted in 3.9% (146 με) lower peak strain and 30.6% (832 

mm3) smaller strained volume in the average female when compared to the average male. 
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Figure 3.2 Geometry and density variations characterised by the second principal component.  

(A) Surface geometry of the tibia and fibula perturbed by +2 standard deviations (SD) (purple) 

and the average geometries (grey). (B) Frontal (left) and sagittal (right) cross-sections of the tibia 

illustrating differences in internal density distribution between +2 SD and average, where red 

indicates greater density in the model perturbed by +2 SD. (C) Axial cross-sections of the tibial 

diaphysis at 50% of total axial length.  
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Figure 3.3 Pressure-modified von Mises strain distribution across the posterior surface of the 

tibial diaphysis for perturbations of ± 2 standard deviations (SD) along the second principal 

component compared to the average. Elements coloured black (≥ 4000 με) contributed to the 

strained volume measure. 
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Figure 3.4 Comparisons between the average female and male tibia and fibula, controlled for 

scaling.  (A) Average female (red) and male (blue) periosteal geometry. (B) Sagittal cross-section 

of the tibia displaying differences in density between the average female and average male, 

controlled for bone size. Red indicates higher density in the female model. (C) pressure-modified 

von Mises strain distribution across the posterior surface of the tibial diaphysis. Elements 

coloured black (≥ 4000 με) contributed to the strained volume measure. 

 

3.4 Discussion 

The aims of this study were to characterise tibial-fibular geometry and density variations 

and to quantify the influence of these variations on finite element-predicted bone strain in young 
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active adults. Finite element-predicted bone strain was sensitive to geometry and density variations 

present in a young active adult population. Isotropic scaling, tibial curvature, cortical thickness, 

and diaphyseal dimensions in the transverse plane had the largest effects on bone strain. Sex 

differences in geometry were subtle yet resulted in greater bone strain in the average female than 

the average male when controlled for scale. 

The average female model illustrated 5.5% greater 95th percentile pressure-modified von 

Mises strain and 41.3% greater strained volume than the average male model when controlled for 

scaling and related variations. At the material level, strain magnitude is associated with fatigue life 

and the accumulation of microdamage, where higher strain results in greater damage accumulation 

and a shorter fatigue life (Carter et al. 1981a; Pattin et al. 1996). Strained volume examines the 

entire strain distribution and captures the amount of bone experiencing strain above a specific 

threshold; in theory, a larger volume experiencing high strain has a greater probability of loading 

a site of localized microstructural weakness, which accelerates fatigue failure (Taylor 1998). 

Indeed, uniaxial and biaxial mechanical tests of whole rabbit tibiae revealed strong relationships 

(r2 = 0.73 and 0.59, respectively) between pressure-modified von Mises-based strained volume 

and fatigue life, where greater strained volume was associated with fewer loading cycles to fracture 

(Haider et al. 2021). Furthermore, our finite element results are in line with clinical data. The 

largest area of strained volume and the highest strains, in all models, occurred on the posterior 

surface of the tibial diaphysis, consistent with Kijowski et al.’s (Kijowski et al. 2012) observations 

of the most frequent tibial stress fracture location. Thus, the fact that the average female illustrated 

greater peak strain and strained volume suggests that sexual dimorphism in the tibia and fibula, 

independent of applied load and scale, may indeed contribute to the greater risk of stress fracture 
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observed in females when compared to males in a young physically active population (Cosman et 

al. 2013; Rizzone et al. 2017; Kardouni et al. 2021). 

The larger strains and strained volume observed in the average female when compared to 

the average male were explained by geometric rather than density variations. The average female 

tibia was smaller in the transverse plane when compared to the average male tibia; cortical area 

and second moment of area (i.e., resistance to bending) were also smaller through the diaphysis, 

leading to higher strain. In contrast, cortical density in the diaphysis was slightly greater (up to 

approximately 0.05 g/cm3 greater) in the average female when compared to the average male, 

leading to lower strain. Specifically, when isolated, density variations resulted in 3.9% smaller 

peak strain and 30.6% smaller strained volume. However, the small increase in cortical density 

was not sufficient to offset the effects of reduced transverse cross-sectional size. 

As expected, finite element-predicted strain was sensitive to scaling, geometry, and density 

variations among young active adults. Isotropic scaling, tibia and fibula axial length, tibial 

curvature, cortical thickness, and transverse cross-sectional size were the most prominent 

variations characterised by the SAM and resulted in substantial differences in bone strain when 

perturbed by ± 2 standard deviations. Increases in isotropic scaling, cortical thickness, and 

transverse cross-sectional dimensions are associated with increased cortical area, second moment 

of area, and polar moment of area, which result in reduced stresses and strains in response to axial, 

bending, and torsional loads. An increase in axial length would increase the moment arm of forces 

applied at the joints relative to the middle of the diaphysis and would result in a greater bending 

moment and higher strain. However, the expected effect of length on strain was not observed when 

evaluating the influence of the second PC due to the greater and opposing influence of concomitant 
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increases in cortical thickness and reduced sagittal plane curvature. In long bones, less curvature 

decreases bending resulting from axial loads, leading to smaller peak stresses and strains (Bertram 

& Biewener 1988). 

Our findings highlight the importance of obtaining subject-specific geometry and density 

for finite element simulations when comparing bone strain between individuals or groups, 

supporting previous work comparing generic and subject-specific modelling approaches (Xu et al. 

2020). When clinical computed tomography scans of the tibia and fibula are not available, SAMs 

may serve as a tool to estimate subject-specific geometry and density from more accessible 

imaging methods and/or anatomical measures. For example, Väänänen et al. (Väänänen et al. 

2015) reconstructed 3-dimensional proximal femur geometry and density from 2-dimensional 

clinical dual-energy x-ray absorptiometry (DXA) images using a SAM. The mean point to surface 

and volumetric bone mineral density errors were 1.41 mm and 0.19 g/cm3, respectively, and this 

resulted in a strong correlation (r2 = 0.85) between finite element predictions from DXA- and 

computed tomography-based models. Perhaps a similar approach could be developed to generate 

subject-specific finite element models of the tibia and fibula based on DXA, peripheral computed 

tomography, and/or skin-based markers. We found that tibia sagittal-plane curvature, diaphysis 

cortical thickness, and diaphysis transverse cross-sectional dimensions had the greatest influence 

on tibial bone strain. As such, obtaining measures of these factors from less intensive imaging 

methods may be most important for SAM-based reconstruction to minimize bone strain 

inaccuracies due to geometry or density prediction errors. 

A limitation of our analysis was that we only modeled a single loading configuration. We 

chose to apply the same joint contact and muscle forces to all models to isolate the effects of 
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geometry and density perturbations. However, contact force magnitude and direction, and the 

distribution of muscle forces may vary between individuals, sexes, running conditions, and other 

movements. For example, Meardon et al. (2021) observed smaller axial force, larger medial-lateral 

force, and smaller anterior-posterior bending moment at the tibia in females when compared to 

males during running. These factors would interact with bone geometry to determine the strain 

environment of the tibia and fibula. To examine the sensitivity of our results for sexual dimorphism 

to the applied loads, we performed a post-hoc sensitivity analysis where loads calculated based on 

data from a male (age = 36, height = 1.73 m, mass = 76.8 kg, running speed = 3.3 m/s; see 

Appendix A, Table A.2 for muscle and ankle contact forces) were applied to the average male and 

female models. Our interpretations did not change; peak strain and strained volume were greater 

(by 161 με and 419 mm3) in the average female when compared to the average male, controlled 

for scale and applied load. Still, future work evaluating the interaction between sex differences in 

loads and bone morphology is warranted. A second limitation of our analysis was that the training 

set used to build the SAM in our study was composed of only young physically active adults. The 

inclusion criteria for our training set limits the applicability of our SAM to other populations (e.g., 

clinical, pediatric, or geriatric); however, young active adults are perhaps the most studied 

population in biomechanics and running research. 

3.5 Conclusions 

PCs characterising tibial curvature, cortical thickness, and cross-sectional dimensions had 

the greatest influence on bone strain. On average, females illustrated narrower tibiae when 

controlled for scale, resulting in larger strains when compared to the average male. Our findings 

identify key morphological parameters associated with elevated bone strain that may have 

implications for stress fracture risk.  
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Chapter 4  

Sex disparities in tibia-fibula geometry and density are 

associated with elevated bone strain in females: A cross-

validation study 

 

4.1 Introduction 

Tibial stress fracture is a common overuse injury among runners and military personnel 

(Cosman et al. 2013; Rizzone et al. 2017; Kardouni et al. 2021). Stress fractures have been 

associated with a mechanical fatigue phenomenon, in which submaximal repetitive loading leads 

to the accumulation of microdamage (Burr et al. 1990). Over time, with insufficient repair, this 

accumulation of microdamage may lead to a stress fracture (Burr et al. 1990). The rate of 

microdamage accumulation is strongly related to bone strain magnitude (Carter et al. 1981a; Pattin 

et al. 1996). Bone also exhibits a statistical size effect, wherein a larger volume of bone 

experiencing high strain tends to illustrate a shorter fatigue life because of the increased probability 

of loading weak regions or microstructural flaws (Taylor 1998; Bigley et al. 2007). Indeed, the 

volume of bone experiencing high strain, or strained volume, was more strongly related to the 

fatigue life of whole bone than peak strain magnitude (Haider et al. 2021). 

Females are up to four times more likely to sustain a stress fracture than males (Kardouni 

et al. 2021).  It has been hypothesized that sex-related differences in tibial diaphysis cross-sectional 

geometry (e.g., periosteal circumference and cortical thickness) may contribute to the elevated risk 
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of stress fractures observed in females (Nieves et al. 2005; Tommasini et al. 2007). We recently 

used a statistical appearance model (SAM), describing variations in tibia-fibula geometry and 

density in a young physically active population, in combination with the finite element method to 

evaluate sexual dimorphism and its influence on bone strain (Bruce, Baggaley, Khassetarash, et 

al. 2022). When controlled for isotropic scaling, the average female illustrated a narrower tibial 

diaphysis, resulting in 6% greater peak strain and 41% greater strained volume when compared to 

the average male. While these results were encouraging, the analysis was performed using a 

moderate sample size of twenty females and twenty-eight males, and the geometric differences 

between the average female and male were subtle.  

The purpose of this study was to cross-validate our previous findings of sex-related 

differences in tibia-fibula bone geometry, density, and finite element-predicted bone strain in an 

entirely new cohort of young physically active adults. Previous studies examining tibial sexual 

dimorphism using transverse cross-sections observed smaller bone size relative to body size in 

females when compared to males (Nieves et al. 2005; Tommasini et al. 2007; Evans et al. 2008). 

Based on these observations and our previous results for the whole tibia-fibula complex, we 

hypothesized that the average female would illustrate a narrower tibial diaphysis and elevated 

strained volume when compared to the average male. 

4.2 Materials and Methods 

Fifteen females (22.9 ± 3.0 years, 1.67 ± 0.07 m, 60.9 ± 6.7 kg) and fifteen males (23.3 ± 

4.3 years, 1.77 ± 0.09 m, 75.6 ± 10.0 kg) were recruited from the student population at the 

University of Calgary. Participants were active at least three times per week, had sustained no 

injuries in the 3 months prior to scanning, had no contraindications for CT, and had no metal 

hardware in their legs. The study was approved by the University’s Conjoint Health Research 
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Ethics board (REB21-1971). Participants provided written, informed consent prior to participating 

in the study. 

4.2.1 Sex-related differences in bone shape and density 

A CT scan of each participant’s left lower leg and foot were obtained using a Revolution 

GSI scanner (General Electric Medical System, Milwaukee, WI; acquisition settings: 120 kVp, 

200 mA, in-plane resolution of 0.48 x 0.48 mm, slice thickness of 0.625 mm). One participant had 

previous surgery on their left knee; in this case a scan of the right leg was obtained and the data 

were mirrored. 

A SAM of the left tibia and fibula, described in a previous publication (Bruce, Baggaley, 

Khassetarash, et al. 2022), was generated from CT scans of twenty female and twenty-eight 

physically active adults (18-32 years, 1.49–1.87 m, 48.3–86.0 kg). Briefly, the tibia and fibula 

were semi-automatically segmented in Mimics (v25, Materialise, Leuven, Belgium) and triangular 

surface meshes were exported. Surface node correspondence between individuals and a reference 

mesh were established using the Coherent Point Drift algorithm (Myronenko & Song 2010) in 

MATLAB (v2022a, Mathworks, MA, USA). The reference tetrahedral mesh was then elastically 

morphed to match each individual’s bone surface geometry in Abaqus (v.2019, Dassault Systèmes 

Simulia Corp.; Providence, USA), establishing element correspondence. A linear relationship 

between Hounsfield units in the CT image and equivalent bone mineral density (ρHU) was 

calculated using a hydroxyapatite phantom (QRM GmbH; Moehrendorf, Germany) included in 

each scan. Density values were assigned to elements of the morphed mesh based on an average of 

the underlying voxels. The meshes were rigidly aligned to the reference mesh using the Procrustes 

algorithm. PCA was applied to the nodes to obtain a SSM and to the density values to obtain a 

SIM. To account for correlations between shape and density, a further PCA was applied to a 
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combined matrix containing shape and intensity parameters, weighted to normalise the total 

variance in each set, to obtain a SAM. Plots illustrating model accuracy, compactness, and 

generalization are shown in Appendix B (Figures B2-B4). 

The new cohort’s data were processed using the same methods described above from CT 

segmentation up to and including assigning density values to each element. The SAM was fit to 

the new meshes using all principal components (PCs) with a two-stage approach. An iterative 

approach minimizing the sum of squared distances between model and target nodes was used to 

obtain an initial estimate of PC weightings (Cootes & Taylor 2004). These weightings were then 

used as the initial guess for an optimization performed using the BFGS algorithm (Dong C. Liu & 

Jorge Nocedal 1989). The SAM was morphed along the PCs and rigidly aligned to the new meshes. 

The optimization minimized a weighted sum of squared node coordinate and density errors: 

𝐷 =  ∑ 4.93 (
𝑛𝑖

10
)

2
+ 𝑑𝑖

2        (4.1) 

where ni is the distance between the ith model and target node, and di is the difference between the 

ith model and target density values. Distances between nodes were divided by ten to account for 

magnitude differences between node and density information. The node data were multiplied by a 

weighting factor (4.93, the ratio of the number of elements to the number of nodes) to account for 

the difference in the number of data points between node and density information. Geometry and 

density fitting errors were calculated as the RMSE between the CT-based mesh and fitted 

approximation.    

Fitted PC scores were compared between females and males using t-tests. The average 

female and male geometries and density distributions were calculated, normalizing for isotropic 

scaling and associated geometry and density distribution variations (Figure S1 in supplemental 

material of (Bruce, Baggaley, Khassetarash, et al. 2022)) by removing the first PC from each 
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individual’s fitted data. The first PC was strongly related to height (r2 = 0.82) and body mass (r2 = 

0.48). Sex-related variations in geometry and density distribution were visually compared to the 

variations observed in the previous study’s cohort (the “model cohort”). 

4.2.2 Finite element modeling 

Finite element models of the average female and male were generated as previously 

described for the model cohort (Bruce, Baggaley, Khassetarash, et al. 2022). Briefly, mesh 

elements were converted to second-order tetrahedral elements. Orthotropic linear-elastic material 

properties were assigned to each element based on binned element density. The elastic modulus of 

bone in the axial direction was calculated as a function of element apparent bone mineral density 

(ρapp = ρHU/0.626) (Dalstra et al. 1993): 

𝐸3 = 6570 ∙ 𝜌𝑎𝑝𝑝
1.37          (4.2) 

The other constants were obtained assuming constant anisotropy: E1 = 0.574 ⋅ E3, E2 = 0.577 ⋅ E3, 

G12 = 0.195 ⋅ E3, G23 = 0.265 ⋅ E3, G31 = 0.216 ⋅ E3, ν12 = 0.427, ν23 = 0.234, ν31 = 0.405, where 

subscripts 1-3 denote the medial-lateral, anterior-posterior, and axial directions, respectively (Rho 

1996). Pinned boundary constraints were applied at the knee and ankle. The distal tibia-fibula joint 

was modeled as rigid with surface-based tie constraints (Haider et al. 2020). The proximal fibula 

was connected to the tibia using two spring elements representing the anterior and posterior 

ligaments (stiffness of 133 N/mm and 109 N/mm, respectively) (Marchetti et al. 2017).  

Ankle joint contact force and muscle forces representing loads during running at 3.3 m/s 

at the time of peak resultant ankle joint contact force were calculated from motion capture and 

force platform data from one female participant (age = 24 years, mass = 59 kg, height = 170 cm) 

using an inverse dynamics-based static optimisation approach. A musculoskeletal model of the 

pelvis and lower limb containing forty-five muscles (Arnold et al. 2010) was scaled to the 
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participant’s segment lengths and body mass. Muscle forces were computed such that the sum of 

muscle moments at each joint was equal to the net joint moment computed from inverse dynamics. 

The following moments were used as constraints in the optimization: flexion-extension and 

abduction-adduction moments at the hip, flexion-extension moment at the knee, flexion-extension 

moment at the ankle, and the pronation-supination sub-talar moment. The optimization minimized 

the sum of muscle stresses squared. Muscle and joint contact forces were then scaled by body mass 

to the mean of the SAM training set (65 kg). Ankle joint contact force and a residual moment term 

about the sagittal and axial axes accounting for moments generated by muscles not attached to the 

tibia or fibula (e.g., the gastrocnemius muscles) as well as contact from neighboring segments were 

applied to the FE models at the ankle center of rotation (Haider et al. 2020). Muscle forces were 

applied to the FE models as concentrated forces. Muscle attachment points were determined by 

aligning the SAM mean mesh with the musculoskeletal model geometry and mapping each muscle 

insertion to the nearest surface point. The same joint contact and muscle forces were applied to the 

average female and male models. 

Finite element models were solved in Abaqus. As previously described (Bruce, Baggaley, 

Khassetarash, et al. 2022), pressure-modified von Mises strain was calculated for elements 

containing bone (element density values ≥ 0.5 g/cm3) in the tibial diaphysis, defined as 20-80% 

of the length of the tibia (Edwards et al. 2015), using custom MATLAB scripts. Elements within 

a 1.0 cm radius of the soleus force application and a 0.5 cm radius of other muscle force application 

points, including transcortical elements, were removed from the analysis due to artefactually high 

strains (over 10 000 με). The removed elements represented less than 2% of the tibial diaphysis 

volume. The 95th percentile (peak) strain and strained volume, defined as the volume of elements 

experiencing strain greater than or equal to 4000 με, were quantified for each model. Absolute 
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differences were calculated by subtracting the peak strain and strained volume values of the 

average male model from the average female model. Percentage differences in peak strain and 

strained volume between the average female and male were also quantified. These differences 

observed in the new cohort (‘validation cohort’) were qualitatively compared to the results 

observed in the model cohort.  

4.3 Results 

4.3.1 Fitting accuracy 

Mean geometry and density fitting errors of the SAM were 1.60 ± 0.31 mm and 0.114 ± 

0.018 g/cm3, respectively. The largest errors in shape tended to occur at the proximal and distal 

epiphyses and the largest density errors tended to occur at the endocortical surface (Appendix B, 

Figure B.1). 

4.3.2 Sex-related differences in bone geometry and density 

PC 3, illustrating variation in transverse cross-sectional size, differentiated between males 

and females (p<0.001), where females tended to have more positive scores (0.85 vs -0.16 SD) 

corresponding with narrower tibiae. Visually, the differences between the average female and male 

tibia and fibula are similar between the model (original study’s) cohort and the validation cohort. 

The average female illustrated a narrower tibia and slightly greater cortical density in the diaphysis 

when compared to the average male (Figure 4.1). In the validation cohort, there was a greater 

reduction of density near the endocortical surface of the diaphysis in the average female. 

3.3 Sex-related differences in bone strain 

Differences in peak strain and strained volume between the average female and average 

male in the validation cohort illustrated similar trends to the model cohort (Table 4.1, Figure 4.2). 

The narrower tibia observed in the average female when compared with the average male was 
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associated with 10% greater peak strain and 80% greater strained volume. Geometry variations, 

rather than density variations, were responsible for the observed differences in peak strain and 

strained volume, (Table 4.1).  

 

 

Figure 4.1 Sex-related geometry and density differences. (Left) Periosteal geometry differences 

between the average female (red) and average male (blue) for the model and validation cohorts. 

(Right) Density differences between the average female and male for the model and validation 

cohorts, where positive (red) values indicate greater density in the average female when compared 

to the average male. The differences in geometry and density observed between the average male 

and average female illustrate the same patterns between the two cohorts. Density differences at 

the endocortical surface, influencing cortical thickness, are greater in the validation cohort when 

compared to the model cohort. 

g/cm3 
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Figure 4.2 Pressure-modified von Mises strain across the posterior surface of the tibia for the 

average female and male models generated from the model and validation cohorts. Bounding 

boxes indicate the portion of the bones included for the calculation of peak strain and strained 

volume. In both cohorts, strained volume (the volume of elements experiencing greater than 4000 

με) was greater in the average female when compared to the average male. 

 

 

 

με 
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Table 4.1  Absolute (percent) difference in peak strain (με) and strained volume (mm3) in the 

average female when compared to the average male for the model and validation cohorts. 

 Model cohort Validation cohort 

Peak strain (με)   

         Geometry 645 (10) 394 (11) 

         Density -146 (-4) -52 (-1) 

         Geometry + density 198 (6) 359 (10) 

Strained volume (mm3)   

         Geometry 1678 (99) 1973(154) 

         Density -832 (-31) -471 (-14) 

         Geometry + density 831 (41) 1675 (80) 

 

 

4.4 Discussion 

The purpose of this study was to evaluate sex-related differences in tibia-fibula bone geometry, 

density, and finite element-predicted strain in young physically active adults to cross-validate a 

SAM of young physically active adults. Like our previously reported observations in the model 

cohort (Bruce, Baggaley, Khassetarash, et al. 2022), when controlled for isotropic scaling and 

associated geometry and density variations, the average female illustrated a narrower tibial 

diaphysis, reduced cortical thickness, and greater cortical density when compared to the average 

male. These differences resulted in 10% greater peak strain and 80% greater strained volume in 

the average female model. Importantly, the observed differences between the average female and 

male for the third PC score, geometry and density, and bone strain illustrated the same patterns as 

previously reported in the model cohort. 

Sex-related differences in tibial geometry and density leading to elevated bone strain in the 

average female when compared to the average male were closely replicated by the new cohort 

analysed in this study, providing confidence in our previously reported results. The narrower 

diaphysis and thinner cortex observed in the average female resulted in higher peak strain and 
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strained volume when compared to the average male. Both strain magnitude and strained volume 

have been associated with the fatigue life of bone (Carter et al. 1981a; Pattin et al. 1996; Taylor 

1998). The relationships between strain magnitude/strained volume and fatigue life are well 

described by an inverse power law or logarithmic function, wherein a small increase in strain 

magnitude or strained volume is associated with a much greater reduction in the number of cycles 

to failure (Edwards 2018; Haider et al. 2021). Furthermore, the largest area exhibiting high strains 

occurred on the posterior surface of the tibial diaphysis in both female and male models, in line 

with clinical data (Kijowski et al. 2012). Imaging studies suggest that tibial stress fractures most 

commonly occur on the posterior surface and can occur throughout the axial length of the diaphysis 

(Kijowski et al. 2012; Gmachowska et al. 2018).  The greater strained volume observed in the 

average female when compared to the average male (i.e., 80% and 40% greater in the validation 

and model cohorts, respectively) adds strong support to the hypothesis that sexual dimorphism in 

tibial geometry may contribute to the elevated risk of stress fracture in females when compared to 

males (Nieves et al. 2005; Tommasini et al. 2007) 

Differences in sex-related density distributions near the endocortical surface were more 

exaggerated in the validation cohort analyzed in this study when compared to the model cohort. 

The reduced density at the endocortical surface corresponds with a small reduction in cortical 

thickness relative to diaphysis diameter in the average female when compared the average male. 

The greater difference in cortical thickness explains, in part, the greater differences in peak strain 

(10% vs. 6%) and strained volume (80% vs 40%) between sexes in the validation cohort when 

compared to the model cohort. In addition to a narrower diaphysis, smaller cortical thickness 

further reduces cortical area, and second moment of area leading to increased strain.  
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There are several limitations of this study that should be highlighted. To isolate the influence 

of bone geometry and density on bone strain, we applied the same loads to all models. However, 

loads during running may differ between sexes and conditions. For example, Meardon et al. (2021) 

observed smaller axial force, larger medial-lateral force, and smaller anterior-posterior bending 

moment at the tibia in females when compared to males. In addition, we modeled muscle forces 

as concentrated forces applied to a single node in the finite element models. In vivo, muscles attach 

to bone via tendon across an area, sometimes to multiple structures. For example, the tibialis 

posterior originates on the fibula, tibia, and interosseus membrane (Marieb & Hoehn 2013), but 

was modeled at a single point on the tibia only. Muscle attachment areas may also vary between 

individuals and sexes (Edama et al. 2017; Kimata et al. 2022). The simplified attachment points 

and variations in attachment area would be expected to influence the internal moments generated 

by muscles. That being said, it remains unknown whether these details would be sufficient to 

produce changes in our peak strain and strained volume observations. Our future work will further 

characterise sex-related differences in running loads and muscle attachment locations, and explore 

the interaction between applied loads, bone morphology, and bone strain. 

4.5 Conclusions 

 When controlled for isotropic scaling and associated geometry and density variations, the 

average female illustrated a narrower tibia, thinner diaphyseal cortex, and greater bone mineral 

density in the diaphysis resulting in elevated peak strain and strained volume when compared to 

the average male. Apart from more exaggerated differences in cortical thickness, these findings 

verify our previously reported observations in a completely different cohort of young physically 

active adults. Our findings suggest that sexual dimorphism in tibial diaphysis geometry may indeed 

contribute to the elevated risk of stress fracture in females when compared to males.  
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Chapter 5  

 

A statistical shape model of the tibia-fibula complex: sexual 

dimorphism and effects of age on reconstruction accuracy 

from anatomical landmarks 

 

5.1 Introduction 

Musculoskeletal models are commonly used to estimate muscle forces and joint kinematic 

and kinetic parameters associated with human movement. Outputs from musculoskeletal models 

(e.g., muscle moment arms and joint contact forces) are highly sensitive to bone geometry (Scheys 

et al. 2008; Gerus et al. 2013; Clouthier et al. 2019; Ding et al. 2019; Xu et al. 2020), which is 

frequently defined using either participant-specific imaging or model scaling approaches. 

Advanced imaging, including computed tomography (CT) and magnetic resonance imaging, is the 

gold standard for quantifying participant-specific bone geometry. Of course, CT imaging requires 

ionizing radiation and both imaging modalities are costly and can be challenging to acquire. 

Consequently, it is more common to scale a ‘generic’ musculoskeletal model according to gross 

anthropometric measurements (Delp et al. 1990; Arnold et al. 2010), which does not necessarily 

capture potentially important differences in bone geometry among individuals.  

Statistical shape models (SSM) provide an alternative method to incorporate participant-

specific bone geometry into musculoskeletal models. A SSM numerically calculates the average 
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and principal modes of variation of a shape (e.g., bone geometry) from a training set of models 

(Audenaert et al. 2019). These models can be used to reconstruct participant-specific geometry 

from incomplete information by morphing the average shape along the modes of variation to best 

fit the target data. In this way, the pelvis, femur, tibia-fibula complex, and multiple bones of the 

foot have been reconstructed from select anatomical landmarks identified either on the bone 

surface or using skin-mounted motion capture markers (Zhang et al. 2016; Grant et al. 2020; Nolte 

et al. 2020).  

Bone geometry is known to vary as a function of age and sex, among other factors (Ruff 

& Hayes 1988; Stevens & Vidarsdóttir 2008; Mahfouz et al. 2012; Li et al. 2014; Brzobohatá et 

al. 2015; Brzobohatá et al. 2016; Audenaert et al. 2019). Indeed, periosteal expansion increases 

with age, although to a lesser degree in females than males (Ruff & Hayes 1988; Jee 2001). At the 

tibia, observed geometric differences between males and females include: greater protrusion of the 

tibial tuberosity, diaphyseal curvature, diaphyseal cross-sectional properties  (Smock et al. 2009; 

Feldman et al. 2012; Sherk et al. 2012), condyle size (Mahfouz et al. 2012; Audenaert et al. 2019; 

Tümer et al. 2019), and metaphyseal slope (Brzobohatá et al. 2015; Brzobohatá et al. 2016). These 

differences have been used to classify bones into age and sex- specific groups with 61-98% 

accuracy, depending on the study (Stevens & Vidarsdóttir 2008; Brzobohatá et al. 2015; 

Brzobohatá et al. 2016; Audenaert et al. 2019).  

Previous studies reconstructing the tibia-fibula complex from anatomical markers used 

participant groups with wide age ranges (20-70 years in Nolte et al. (2020) and 15-92 years in 

Zhang et al. (2016)) to train and test the SSMs. While these SSMs may be more widely 

generalizable, a model more specific to a population of interest such as young healthy adults - a 
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commonly used group in biomechanics modelling studies - may provide more accurate results. 

Furthermore, these studies have not investigated how errors in shape influence musculoskeletal 

modelling parameters. Thus, the primary purpose of this study was to evaluate the accuracy of 

tibia-fibula complex reconstructions from anatomical bony landmarks using a SSM developed for 

a healthy, young adult population and quantify the subsequent effects on muscle moment arms. 

Errors associated with isotropically scaling the average model were also quantified for comparison. 

In line with previous literature (Zhang et al. 2016; Nolte et al. 2020), we hypothesized that 

reconstruction errors would be smaller for the SSM-generated geometries compared to isotropic 

scaling. The secondary objectives of this study were (1) to quantify sex differences in bone 

geometry, and (2) to evaluate the generalizability of the developed young adult SSM to older 

adults. We expected to observe differences in size and shape between young adult males and 

females. Due to age-related differences in bone geometry, we hypothesized that reconstruction 

errors and changes in muscle moment arms would be larger for the older adults. 

5.2 Materials and methods 

5.2.1 Model development 

Forty-one physically active participants (22 F and 19 M, 18-23 years, physically active at 

least three times per week) were recruited to obtain a range of statures (mean (range), female: 1.66 

m (1.49 – 1.80 m), 59.7 kg (47.7-71.8 kg), male: 1.77 m (1.62 – 1.87 m), 71.8 kg (60.0 – 83.7 kg)). 

CT scans of the left lower leg were obtained using a GE Revolution GSI (GE Healthcare, 

Waukesha, WI) with image acquisition settings of 120 kVp and 180 mA. Images were 

reconstructed with an in-plane resolution of 0.488 mm x 0.488 mm and a slice thickness of 0.625 

mm. Ethics approval was obtained from the university’s Conjoint Health Research Ethics Board 

and written, informed consent was obtained from each participant prior to scanning. 
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The tibia and fibula geometries were segmented using a semi-automatic procedure and 

surface meshes were created in the Mimics Innovation Suite (v21, Materialise, Leuven, Belgium). 

Nodal correspondence and registration were performed in MATLAB (R2020a, Mathworks, MA, 

USA). A template mesh was selected, corresponding to an individual with tibia/fibula surface area 

close to the sample mean, and contained 3874 and 2111 nodes for the tibia and fibula, respectively. 

A sensitivity analysis, evaluating shape errors resulting from the template deformation step, was 

used to determine the number of nodes for the tibia and fibula. Nodal correspondence between 

meshes was established using the Coherent Point Drift algorithm (Myronenko & Song 2010). This 

algorithm performs translation, rotation, scaling, and local deformation to match a moving point-

set (template) to a fixed point-set (participant surface). A nearest neighbours algorithm was used 

to identify corresponding points. A preliminary analysis of nodal correspondence registration 

errors and the number of principal components (PCs) needed to explain 95% of the variance 

demonstrated these measures were insensitive to the choice of template. Tibia and fibula point 

clouds were then combined and rigidly aligned using a generalized Procrustes analysis that 

retained bone size. The tibia and fibula were modelled together to include relative positioning 

between the two bones within the model. 

A principal component analysis (PCA) was applied to the registered data to obtain the 

average shape and modes of variation (i.e., PCs) for the sample. An analysis described by Mei et 

al. (2008) evaluating bootstrap stability on mode direction and comparison with noise was used to 

determine the number of PCs to retain.  Eight PCs accounting for 96.2% of the total variance in 

the model were ultimately retained. Scores for each retained PC were compared using unpaired t-

tests to determine if and how size and shape differed between sexes (SPSS v.26, IBM, NY, USA, 

α = 0.05). Centroid size, the square root of the sum of squared Euclidean distances of all points in 
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a shape from the centroid of the shape, was calculated. Pearson correlations were used to evaluate 

whether PC scores were correlated with size. 

5.2.2 Landmark-based reconstruction 

The tibia-fibula SSM meshes were reconstructed based on two sets of anatomical 

landmarks (Figure 5.1). The first set contained nine landmarks that could be identified through 

palpation, and thus used to estimate tibia and fibula geometries from skin-mounted motion capture 

markers: tibial tuberosity, medial condyle, lateral and medial malleoli, lateral aspect of the head 

of the fibula, anterior border of the tibia at 25%, 50% and 75% of the distance between the medial 

condyle and malleolus markers, lateral fibula diaphysis at 25%  of the distance from the lateral 

malleolus to the lateral point on the head of the fibula. The second set contained the nine “palpable” 

landmarks described above as well as another five landmarks that could not be palpated, but could 

be captured through imaging, to determine if additional information regarding dimension and 

curvature improved reconstruction accuracy: posterior aspect of the medial condyle, posterior 

aspect of the mid-diaphysis (50%) of the tibia, apex of the fibular head, fibular diaphysis at 50% 

(posterior) and 85% (anterior) of the distance between the lateral malleolus and the lateral point 

on the fibular head. Both sets of landmarks (Figure 5.1) were manually digitised on the average 

shape as well as each participants’ CT-based bone surface meshes in MATLAB (R2020a, 

Mathworks, MA, USA).  

A leave-one-out analysis was performed, where each participant was removed from the 

SSM and reconstructed from the digitised landmarks. The average point cloud was fit to the 

participant’s landmarks using rigid-body rotation, translation, and deformation along the PCs using 

a Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm (Liu & Nocedal 
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1989). The objective of the optimization was to minimize the squared Euclidean distance between 

reconstructed and target landmarks, which was performed using each set of landmarks (Figure 

5.1). Tibia/fibula geometries were also generated by isotropically scaling the average point cloud. 

The scaling factor was the ratio of the distance between the lateral malleolus and lateral fibular 

head markers for the average shape and target data.  

 

Figure 5.1 Landmarks used for reconstructions. The subset of nine palpable landmarks are circled 

in red. The five non-palpable landmarks are circled in blue (dashed line). 

 

5.2.3 Generalizability to older individuals 

A dataset of bilateral lower-limb CT scans from 10 human cadavers (81.8 ± 10.7 years, 6 

male, 4 female) was used to examine the robustness of the SSM when applied to an entirely new 

Front Back 
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sample. Scans were performed using a GE Revolution GSI (GE Healthcare), with image 

acquisition settings of 120 kVp, 103 mA, in-plane resolution of 0.67 mm x 0.67 mm, and slice 

thickness of 0.625 mm. The same procedures described above were used to segment and generate 

surface meshes of the left tibia and fibula. In one of the scans, part of the left tibia/fibula was 

outside of the field-of-view. In this case, the right tibia/fibula geometries were segmented and 

mirrored. Landmarks, previously defined (Figure 5.1), were digitised on the bone surfaces. Tibia 

and fibula geometries were reconstructed using nine and fourteen landmarks with the optimization 

procedure described above. The average shape from the shape model was also isotropically scaled.  

5.2.4 Musculoskeletal modelling 

A musculoskeletal model was implemented in MATLAB (Mathworks, Natick, MA) and 

used to obtain moment arms of eighteen muscles attaching to the tibia and fibula (Appendix C, 

Table C.3). Initial geometry and muscle parameters were obtained from Arnold et al. (2010). The 

average shape from the SSM was rigidly aligned and scaled to the generic tibia and fibula of the 

musculoskeletal model. The surface nodes corresponding to muscle origin or insertion points were 

determined using a nearest neighbours algorithm.  

The musculoskeletal model was scaled using markers that were digitized on the model at 

the lateral malleolus and head of the fibula. Reconstructed and CT-based surfaces were rigidly 

aligned to the scaled musculoskeletal model. The musculoskeletal model was then moved through 

a physiologic range of motion about the flexion-extension axis at the knee (0° to 142° flexion) and 

the ankle (15° dorsiflexion to -62° plantarflexion) (Soucie et al. 2011). Translations at the knee 

along the anterior-posterior and longitudinal axes changed as a function of knee flexion; no 

translations were allowed at the ankle. Muscle moment arms were computed using the tendon 
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excursion method. The model was positioned at each joint angle, and then perturbed by ± 10°. The 

moment arm of each muscle was calculated from the change in muscle length divided by the 

change in joint angle. Patellar ligament moment arm was calculated as the perpendicular distance 

from the knee joint centre to the line of action of the ligament. Maximum difference in moment 

arm compared to the model using the CT-based geometry was calculated.  

5.2.5 Statistics 

Reconstructed geometries were aligned with the participants’ CT-based surface meshes 

using a rigid iterative closest points algorithm. A nearest-neighbour algorithm was used for each 

node to calculate root mean square error (RMSE) and maximum distance error. Jaccard index, a 

measure of volumetric similarity - where values range from 0 (no similarity) to 1 (identical) - was 

also computed (Real & Vargas 1996). RMSE and maximum error were also calculated for the tibia 

and fibula separately, and for proximal, diaphysis, and distal regions (0-20%, 20-80%, and 80-

100% of the axial length, respectively (Edwards et al. 2013)). Statistical tests were performed 

using SPSS (v26, IBM, NY, USA). In the leave-one-out analysis, error measures for at least one 

of the reconstruction methods did not meet the assumption of normality as defined by the Shapiro-

Wilk test. Therefore, related-samples Friedman’s analysis of variance tests (ANOVA) were used 

to evaluate differences in error measurements between reconstruction methods (9 landmarks, 14 

landmarks, isotropic scaling); pairwise comparisons were used when appropriate. For the older 

adult dataset, all error measures met the assumption of normality. In this case, repeated measures 

ANOVAs were used to evaluate differences in error measurements between reconstruction 

methods; again, pairwise comparisons were used when appropriate. Critical values for statistical 

tests were adjusted for multiple comparisons using Bonferroni corrections to maintain a 

familywise error rate of α = 0.05. 
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5.3 Results 

The first PC in the SSM primarily captured differences in overall size and explained 

79.8% of the total variance in the model (Table 5.1). The first eight components explained 96.2% 

of the variance (Table 5.1). 

 

Table 5.1 Percent of total variance explained by principal components 1-8. 

Principal component 1 2 3 4 5 6 7 8 

Variance explained   (% 

of total) 

79.8 4.7 3.6 3.1 1.7 1.4 1.2 0.7 

Cumulative variance 

explained (% of total) 

79.8 84.5 88.1 91.2 92.9 94.3 95.5 96.2 

 

 

5.3.1 Sexual dimorphism  

PC 1 discriminated between males and females (t = 4.727, p < 0.001, whereby the tibia and 

fibula were larger in males. PC 1 was the only mode correlated with centroid size, with r2 = 0.99. 

Sex differences in PCs 4 and 7 trended toward significance (t = -2.231, and -2.279, p = 0.031, and 

0.029, respectively; Bonferroni-adjusted critical p-value = 0.05/8 comparisons = 0.006; Figure 

5.2). These PCs described shape differences including larger proximal epiphyseal regions, a more 

prominent tibial tuberosity, and more acute anterior-posterior curvature in the tibia in males 

compared to females (Figure 5.2).  
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Figure 5.2 Sex-related geometry differences detected by the SSM. (Left) Scatterplot of principal 

components 4 and 7 normalised scores. Red circles (female) and blue circles (male) represent 

individual participants. The x’s represent the average shape + (blue) or – (red) 1 standard 

deviation (SD) for both principal components (PC) 4 and 7. (Left) Representations of the tibia-

fibula complex geometry of the blue and red x’s. Sex differences in shape were very subtle. ± 1 SD 

was larger than mean normalised scores for females (PC4 = -0.31, PC7 = -0.31) and males (PC4 

= 0.36, PC7 = 0.35) and was used to more easily visualise differences.  

 

5.3.2 Reconstruction accuracy 

Differences in error between reconstruction methods were observed for RMSE (χ2 = 

55.073, p < 0.001), Jaccard index (χ2 = 58.098, p < 0.001), and maximum error (χ2 = 24.927, p < 

0.001) (Figure 5.3 and 5.4). Median (IQR) errors were smaller in SSM reconstructions using nine 

landmarks (RMSE = 1.62 (0.35) mm, maximum error = 5.12 (1.63) mm) compared to isotropic 

scaling (RMSE = 1.78 (0.62) mm, maximum error = 5.84 (2.62) mm, p < 0.001). Jaccard index 

Front Side 
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was greater in SSM reconstructions from nine landmarks (0.824 (0.038)) compared to isotropic 

scaling (0.792 (0.077), p < 0.001). The same pattern was observed between SSM reconstructions 

from fourteen landmarks (RMSE = 1.15 (0.29) mm, maximum error = (4.82 (1.26) mm, Jaccard 

index = 0.833 (0.034)) compared to isotropic scaling (p < 0.001). Differences between SSM 

reconstructions using nine and fourteen landmarks were also significant, where RMSE was 6.8% 

smaller and Jaccard index was 1.1% larger in reconstructions using fourteen landmarks (p < 0.001). 

A similar pattern of results was observed when comparing errors between reconstruction methods 

for specific regions of the tibia and fibula (see Appendix C, Table C.1). Shape errors tended to be 

larger in the fibula than the tibia, and in the proximal region. 

 

 

 

 

 



75 
 

 

Figure 5.3 Errors and volume similarity of tibia and fibula geometries predicted using isotropic 

scaling or SSM-landmark reconstruction methods compared to CT data. Dots represent individual 

participants. The highlighted dots are an outlier. The dashed line represents the median. 

Differences between SSM-landmark methods and isotropic scaling were significant for all three 

measures. Differences between 9 and 14 landmark reconstructions were significant for RMSE and 

Jaccard index. 

Isotropic Scaling SSM – 9 Landmarks SSM – 14 Landmarks 
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Figure 5.4 Good (top, participant 14) and poor (bottom, participant 19) reconstructions for 

isotropic scaling and SSM-landmark methods. 
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5.3.3 Generalizability to older adults 

Differences between reconstruction methods for older adults were also observed for 

maximum error (F = 14.047, p = 0.004, η2 = 0.609, Figure 5.5 and 5.6), and Jaccard index (F = 

14.379, p = 0.004, η2 = 0.615). Mean (SD) maximum errors were smaller in SSM reconstructions 

using nine landmarks (6.90 (1.00) mm) compared to isotropic scaling (9.21 (2.36) mm, p = 0.005). 

Jaccard index was greater in SSM reconstructions from nine landmarks (0.769 (0.032)) compared 

to isotropic scaling (0.672 (0.077), p = 0.004). The same pattern was observed between SSM 

reconstructions from fourteen landmarks (maximum error = 7.04 (1.03) mm, Jaccard index = 0.763 

(0.037)) compared to isotropic scaling (p ≤ 0.005). Regional analysis indicated that differences in 

maximum error were driven by improvements in the proximal region of the tibia (Appendix C, 

Table C.1). No differences in error measures were observed in the fibula. Pairwise comparisons 

between SSM reconstructions and isotropic scaling for RMSE for the tibia and fibula combined 

were not significant. RMSE at the proximal and distal regions of the tibia were smaller in SSM 

reconstructions when compared to isotropic scaling (p ≤ 0.001, Appendix C, Table C.1). None of 

the error measures were different between reconstructions from nine and fourteen landmarks. 
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Figure 5.5 Errors and volume similarity of tibia and fibula geometries for older individuals 

predicted using isotropic scaling or SSM-landmark reconstruction methods compared to CT data. 

Dots represent individual participants. The black dashed line represents the mean. Differences 

between SSM-landmark methods and isotropic scaling were significant for Jaccard index and 

maximum error. Errors were not different between 9 and 14 landmark reconstructions. The dotted 

grey line represents the median of the young adult group.  

Isotropic Scaling SSM – 9 Landmarks SSM – 14 Landmarks 



79 
 

 

Figure 5.6 Good (top, participant 4) and poor (bottom, participant 6) reconstructions of older 

participants for isotropic scaling and SSM-landmark methods. 
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5.3.4 Muscle moment arms 

In the young adult group, the reconstruction method changed the maximum difference in 

moment arms, relative to the CT-based bones, of the semimembranosus, and the long and short 

head of biceps femoris (χ2 ≥ 14.244, p ≤ 0.001, Appendix C, Figure C.1); no differences in moment 

arms for other muscles originating from or inserting on the tibia-fibular complex were observed. 

SSM reconstructions had smaller differences in moment arms than isotropic scaling for the biceps 

femoris long head (median (IQR): nine landmarks = 2.36 (1.90) mm, fourteen landmarks = 2.45 

(2.08) mm, isotropic scaling = 3.65 (2.90) mm, p < 0.001) and short head (median (IQR): nine 

landmarks = 3.01 (2.06) mm, fourteen landmarks = 2.74 (2.34) mm, isotropic scaling = 3.99 (3.14) 

mm, p ≤ 0.001). Differences for semimembranosus were smaller in reconstructions from fourteen 

landmarks (2.61 (1.46) mm) when compared to nine landmarks (3.09 (2.24) mm) and isotropic 

scaling (3.47 (2.65) mm, p < 0.001). Moment arm differences in the older adults were larger than 

for the younger adults (4.76 – 8.33 mm vs 2.36 – 3.99 mm, respectively). No differences in muscle 

moment arms between reconstruction methods were observed for the older adults. 

5.4 Discussion 

The purpose of this study was to evaluate the accuracy of tibia-fibula reconstructions from 

anatomical bony landmarks using a SSM developed for a healthy young adult population, and 

quantify the subsequent effects on muscle moment arms. The secondary objectives were (1) to 

quantify sex differences in bone geometry within the young adult sample, and (2) to evaluate the 

generalizability of the developed SSM to older adults. SSM reconstructions reduced geometry 

errors and changed hamstring moment arms, when compared to isotropic scaling. On average, 

females had slightly narrower proximal epiphyseal regions and less diaphyseal curvature. SSM 

reconstructions, isotropic scaling, and muscle moment arms in older adults were less accurate 
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compared to the young adults.  

Reconstruction accuracy was better in the SSM-generated models compared to isotropic 

scaling. The magnitude of the differences between SSM-generated reconstructions from nine and 

fourteen landmarks and isotropically scaled geometries in this study were somewhat small; RMSE 

was reduced by 0.16-0.27 mm (9-15%) and maximum error was reduced by 0.72-1.02 mm (12-

17%) in SSM reconstructions compared to isotropic scaling, depending on the number of 

anatomical landmarks. Nolte et al. (2020) observed a larger reduction in RMSE (0.99 mm, 26%) 

using SSM-based reconstruction with only one PC compared to isotropic scaling, and even greater 

reductions in error were observed when more PCs were used. Zhang et al (2016) observed a 

reduction in RMSE of 0.41 mm (11%) using SSM-based reconstruction from only three bony 

landmarks compared to linear scaling. The low reconstruction errors observed for isotropic scaling 

in this study likely explains the smaller reductions in RMSE compared to previous work. Isotropic 

scaling was more accurate in this study (RMSE = 1.78 mm) compared to Nolte et al. (2020) (RMSE 

= 3.87 mm) and Zhang et al. (2016) (RMSE = 3.63 mm). In fact, the RMSE for isotropic scaling 

in this study was also lower than SSM-based tibia-fibula reconstruction errors observed by Nolte 

et al (2020) (2.88 mm) and Zhang et al. (2016) (3.22 mm). This could be explained, in part, by the 

small range of young participants used to create the SSM and evaluate reconstruction accuracy in 

this study, i.e., 18-24 years, compared to 15-92 years in Zhang et al. (2016) and 23-70 years in 

Nolte et al. (2020) - which likely included less geometric variability. The use of landmarks 

identified directly on the bone surface, as compared to skin markers may have also contributed to 

more accurate results when compared to isotropic scaling in previous studies. 



82 
 

When the SSM based on the younger group was used to reconstruct tibia-fibula geometries 

for the older adult group (71-98 years), errors for both isotropic scaling and SSM-based 

reconstructions were larger than errors for the young group. Isotropic scaling of the average young 

adult tibia and fibula geometries consistently underestimated cross-sectional size throughout the 

length of the bones in older adults, which could be explained by periosteal expansion (Ruff & 

Hayes 1988; Jee 2001). SSM reconstructions were able to account for some of the variation, 

reducing the overestimation of cross-sectional size. Although SSM-based reconstruction errors 

were larger in the older group than the younger group, the SSM still provided 14% and 25% 

reductions in Jaccard index and maximum error, respectively, within the older group, indicating 

greater robustness for application to new populations when compared to isotropic scaling of a 

generic geometry.  

Geometry errors, particularly at locations affecting joint alignment and muscle attachment 

points, can substantially influence musculoskeletal model outcomes (Scheys et al. 2008; Gerus et 

al. 2013; Xu et al. 2020). RMSE and maximum errors were larger in the proximal epiphysis and 

metaphysis regions, where many muscles crossing the knee insert, than in the diaphysis of the tibia 

and fibula (Appendix C, Tables C.1 and C.2). Moment arms of some muscles attaching in the 

proximal regions were different when using the isotropically scaled average geometry compared 

to the CT-based geometry, adding support to previous findings at the knee and hip (Scheys et al. 

2008; Bahl et al. 2019). In young adults, the 9-17% reductions in geometric errors from SSM-

based reconstruction resulted in 25-35% reductions in maximum moment arm differences for 

semimembranosus and biceps femoris long and short heads. Previous work has demonstrated 

substantial sensitivity of muscle forces and joint contact forces to geometry (image-based vs. 

generic models) and perturbations of muscle insertion points and moment arms on the order of ±1 
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cm (Carbone et al. 2012; Gerus et al. 2013; Xu et al. 2020). The absolute changes in muscle point 

and maximum moment arm differences between SSM and isotropic scaling methods in this study 

were an order of magnitude smaller (≤1.3 mm). These differences may not translate to significant 

changes in muscle forces or joint contact forces, but this must be confirmed in future work. In the 

older adults, moment arm and muscle origin/insertion point differences relative to the CT-based 

model were larger: up to 8 mm and 22 mm, respectively (Appendix C, Tables C.3 and C.4). 

However, moment arm differences were not changed between reconstruction methods. Although 

SSM-reconstruction improved geometric accuracy, it was not better than isotropic scaling of a 

generic model for musculoskeletal modelling application in an outside population. A SSM 

including older adults in the training set would provide better results. 

In addition to age, sex is a factor known to influence bone geometry. In this study, the 

scores for three PCs differentiated between sexes. While not statistically significant, likely due to 

the extremely conservative Bonferroni adjustment for eight comparisons, trends were observed in 

PCs 4 and 7. Shape differences were subtle, as these PCs accounted for very small percentages 

(3.15% and 1.19%) of variance in the SSM and there was overlap in the PC scores (Figure 5.2). 

These results are consistent with the observations of Brzobohatá et al. (2016). 

A limitation of this study is that landmarks were identified directly on the bone surface. In 

the young adult group, using only the ‘palpable’ landmarks slightly reduced accuracy when 

compared to reconstructions from all 14 landmarks, but this was still 4-12% better than isotropic 

scaling. This illustrates the potential for a subset of landmarks that might be used to predict tibia-

fibula geometry without the use medical imaging, perhaps using skin-mounted markers collected 

during a static motion capture trial. Of course, estimating the soft tissue offset between skin 
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mounted markers and bony landmarks and landmark placement errors may introduce additional 

uncertainty.  Mean soft tissue offsets of 4.8-7.7 mm and skin marker placement inter-examiner 

precision of 11-20 mm have been reported for anatomical landmarks on the shank (Della Croce et 

al. 1999; Nolte et al. 2020). Methods have been proposed to reduce errors and improve reliability 

for skin marker placement (Osis et al. 2016; Hutchinson et al. 2018). Larger errors may be 

observed for markers on the tibia shaft, which would be placed using a measuring tape to identify 

25, 50, and 75% positions along the tibial crest between the lateral malleolus and fibular head 

markers. An approach allowing axial movement of the tibial crest markers (Nolte et al. 2020) may 

reduce the effects of this source of error. Encouragingly, Nolte et al. (2020) observed small 

standard deviations (0.90-2.99 mm) in soft-tissue offsets for seven markers on the shank, six of 

which were the same or similar to landmarks used in this study. The authors reported that no 

differences in RMSE were observed between reconstructions from bone landmarks and skin 

markers digitised using an optical motion capture system, with or without soft tissue offset 

corrections, when one or two PCs were used. This provides some confidence that the SSM 

developed in this study could be used to reconstruct tibia-fibula geometries using skin-mounted 

markers, although additional work is needed to determine the number of PCs that could be used 

and to quantify the model-specific reconstruction accuracy.  

The training set used in this study to create the SSM, which was composed of young active 

adults with no musculoskeletal abnormalities, may limit the applicability of the model to clinical 

or paediatric populations. Ethnicity is also a factor influencing bone geometry (Mahfouz et al. 

2012). Unfortunately, ethnicity information was not collected, although most participants appeared 

to be of western European descent.  
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5.5 Conclusions 

 In conclusion, within a young physically active population, and using an average model 

specific to that population, isotropic scaling provided predictions of tibia and fibula bone geometry 

with low error. The developed SSM produced estimated tibia and fibula geometries from bony 

landmarks with even greater accuracy. However, this only affected the moment arms of three 

muscles. Geometry errors were larger in the older adult group. Although SSM-based 

reconstruction using a model trained on young adults was able to account for some geometric 

variation in an outside population, it was not sufficiently robust to alter musculoskeletal model 

parameters compared to a scaled generic model.  
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Chapter 6  

Predicting tibia-fibula geometry and density from anatomical 

landmarks: influence of errors on finite element-calculated 

bone strain 

 

6.1 Introduction 

 Bone strain plays an important role in the pathophysiology of stress fracture (Burr et al. 

1990), a common overuse injury associated with the mechanical fatigue of load-bearing bone 

(Edwards 2018). Mechanical fatigue is a phenomenon wherein repetitive submaximal loading 

results in microdamage accumulation in the form of small cracks in the bone matrix (Burr et al. 

1990). Ex vivo cadaveric research has illustrated that the evolution of microdamage and eventual 

failure of bone is a strong function of the resulting strain magnitude from the applied load (Carter 

et al. 1981a; Pattin et al. 1996). It is believed that stress fractures in vivo occur when the rate of 

microdamage is chronically greater than the rate of bone cellular repair (Edwards 2018; Hoenig et 

al. 2022).  

 Direct measurements of bone strain require invasive surgical procedures (Ekenman et al. 

1998; Milgrom et al. 2002), therefore, bone strain is often estimated using the finite element 

method. The current state-of-the-art involves generating a participant-specific model from 

advanced medical imaging, with boundary conditions obtained from biomechanical measurements 



87 
 

or simulations of human movement (Haider et al. 2020). While participant-specific finite element 

models have illustrated bone deformations and strains consistent with direct measurements (Haider 

et al. 2020), the generation of these models from advanced medical imaging, typically computed 

tomography (CT), is often time consuming and requires technical expertise. CT imaging is 

required to characterise participant-specific bone geometry and material properties, and finite 

element-predictions of bone strain are highly sensitive to variations in these parameters (Xu et al. 

2020; Bruce, Baggaley, Khassetarash, et al. 2022). Access to and cost of CT imaging are major 

barriers for the use of participant-specific finite element models.  

 Statistical appearance models (SAMs) may provide a method to generate participant-

informed models in the absence of medical imaging data. SAMs of bones describe the average and 

principal modes of variation of geometry and density within a population represented by the 

model’s training set (Cootes & Taylor 2004). Statistical shape models (SSMs), which characterise 

geometry variations only, have been used to predict tibial-fibular surface geometries from 

landmarks identified on the bone surface (Zhang et al. 2016; Nolte et al. 2020; Bruce, Baggaley, 

Welte, et al. 2022; Keast et al. 2023). These predictions were more accurate than linearly scaled 

generic models (Nolte et al. 2020; Bruce, Baggaley, Welte, et al. 2022). Using skin-mounted 

landmarks is likely to introduce additional error into model predictions. Although, Nolte et al. 

(2020) observed no difference in geometry accuracy between predictions from bone and skin 

markers when only one or two principal components (PCs) were used to non-linearly scale the 

tibia, greater errors were observed in skin marker-based predictions using higher-level PCs.  

Studies evaluating whole-bone prediction accuracy from anatomical landmarks have been 

limited to SSMs that describe surface geometry only. SAMs characterise how density distribution 

covaries with surface geometry and density distribution errors resulting from predictions using 
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only anatomical landmarks remain unknown. Furthermore, the mechanical implications (i.e., bone 

strain) of geometry and density distribution errors resulting from landmark-based prediction 

methods have not yet been evaluated. Thus, the purpose of this study was to: (1) quantify errors 

associated with predicting tibia-fibula geometry and density distribution from skin-mounted 

anatomical landmarks and (2) quantify how those errors propagate to finite element-calculated 

bone strain. In this study we investigated modeling errors at the tibia, because it is the most 

common location for stress fracture (Hoenig et al. 2022).   

6.2 Methods 

Thirty young active adults (15 F and 15 M, 23.3 ± 4.3 years, 1.77 ± 0.09 m, 75.6 ± 10.0 

kg) were recruited from the student population at the University of Calgary. Participants were 

physically active at least three times per week, had no injuries three months prior to testing, and 

had no contraindications for CT scanning. Participants were recruited to obtain a large range of 

heights to examine the model. The study was approved by the University of Calgary Conjoint 

Health Research Ethics board (REB21-1971). All participants provided written informed consent 

prior to participation. 

Thirty-four retro-reflective markers were placed on landmarks of each participant’s pelvis, 

left lower limb, and shoes by one investigator (OLB). The marker set included twelve markers on 

the shank: lateral and medial tibial plateau, tibial tuberosity, Gerdy’s tubercle, fibula head, lateral 

and medial malleoli, tibial notch, three markers along the anterior tibial crest, and the lateral side 

of the fibula diaphysis approximately 20% along the length from the lateral malleolus (Figure 6.1). 

Following a static motion-capture trial, each participant performed ten trials running overground 

at their preferred speed (± 5%) while motion and force data were collected at 200 Hz and 1600 Hz, 

respectively, using an eight-camera Vicon system (Nexus v2.13, Vicon Motion Systems Ltd, 
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Oxford, UK) and a Kistler force platform (Kistler Instruments, Hampshire, UK). Preferred speed 

was calculated as the average of five runs “at a comfortable pace” along a 20 m lane passing 

through the capture volume, measured using timing lights. The timing lights were used tom 

monitor speed during each subsequent trial.  

6.2.1 CT acquisition and processing 

On a separate day, the twelve shank markers were again placed on the participant’s left lower leg 

using double-sided tape by the same investigator (OLB). A CT scan of the knee, lower leg, and 

foot was then obtained (GE Revolution GSI, General Electric Medical System, Milwaukee, WI; 

acquisition settings: 120 kVp, 200 mA, in-plane resolution of 0.48 x 0.48 mm, slice thickness of 

0.625 mm). The tibia and fibula were semi-automatically segmented in Mimics software (v25, 

Materialise, Leuven, Belgium). Skin-mounted markers were manually segmented.  

Anatomic correspondence for surface nodes between participant surfaces and the reference 

meshes used in the generation of the SAM was established using the Coherent Point Drift 

algorithm (Myronenko & Song 2010). The reference meshes were then elastically morphed to 

match each participant’s tibia and fibula surfaces in Abaqus (v2019, Dassault Systèmes Simulia 

Corp.; Providence, USA). A hydroxyapatite phantom (QRM GmbH; Moehrendorf, Germany) 

included in all scans was used to calculate a linear relationship between Hounsfield units and CT 

equivalent density (ρHU). Each element was assigned a density value based on the underlying 

voxels in Mimics. 

The twelve anatomic landmarks were identified on the average tibia and fibula surfaces 

from the SAM (Figure 6.1). For each participant, the vector between the bone-surface landmark 

and the centroid of the corresponding skin-mounted marker was calculated using a custom 
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MATLAB script (v2022a, Mathworks, MA, USA). Offsets for diaphysis markers (tibial crest, 

tibial notch, fibula diaphysis) were calculated as the vector between the centroid of the marker and 

the nearest node on the tibia or fibula surface to account for imprecise placement in the axial 

direction. The mean unit vector, mean, and standard deviation of the distance between bone 

landmarks and skin markers, removing marker radius, were calculated. 

          

Figure 6.1 Overview of workflow to generate participant-informed finite element models from 

anatomical landmarks. 

 

6.2.2 Prediction of tibia and fibula geometry and density  

First, tibia-fibula geometry and density predictions were generated from only height and 

sex. The first PC score was estimated from height using a linear relationship calculated from the 

training set of the SAM (r2 = 0.82, Appendix D, Figure D.1). The mean scores for females and 

males were used for the rest of the PCs. Second, predictions were generated from height and 

anatomical landmarks (Figure 6.1). The static motion capture trial was used to obtain the target 
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landmark coordinates. Tibia-fibula geometry and density were predicted by morphing the SAM 

along the first one through five PCs and performing rigid-body transformations to match the 

morphed model’s predicted landmarks to the target landmarks. An initial guess for the first PC 

was calculated from height. All other PC scores were initialised as zeroes. The optimization was 

performed using the BFGS algorithm in MATLAB, minimizing a negative log likelihood function 

of a Gaussian distribution (Nolte et al. 2020): 

𝐷 =  −0.5𝑙𝑜𝑔𝜎2 ∑
𝑑𝑖

2

2𝜎𝑖
2𝑖=1            (6.1) 

where σ is the standard deviation of skin-mounted marker offsets, and di is the distance between 

the target landmark and the model landmark. The position of the model landmark was calculated 

as the position of the bone surface landmark on the model, projected along the mean offset vector 

by the mean offset magnitude and marker radius. For landmarks not associated with a distinct bony 

feature (i.e., tibial crest, tibial notch, and fibula diaphysis markers), the nearest point on the 

model’s surface to the target marker was used. That point was then projected to obtain the predicted 

model landmark. 

The predicted meshes were aligned to the CT-based participant-specific mesh using the 

Procrustes algorithm. Prediction errors were calculated as the root mean square error (RMSE) for 

the Euclidean distance between corresponding surface nodes and for the difference in element 

density values in the predicted tibia and fibula compared to the participant-specific mesh. Based 

on the prediction error results, a post-hoc analysis was performed to determine if a reduced set of 

six landmarks (lateral and medial plateau, fibula head, tibial tuberosity, lateral and medial malleoli) 

to estimate the first PC would be sufficient to predict tibia and fibula geometry and density with 

similar accuracy.  
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6.2.3 Finite element models  

No differences in geometry or density distribution error were observed between landmark-based 

predictions from one through five PC. Therefore, meshes predicted from twelve landmarks and 

one PC, which illustrated the lowest RMSE, and from height and sex were used to evaluate the 

mechanical implications of geometry and density distribution prediction errors. Mesh elements 

were converted from first to second order tetrahedral elements. Element densities were binned (bin 

width = 0.010 g/cm3) and used to calculate orthotropic linear-elastic material properties for each 

element. The elastic modulus of bone in the axial direction was calculated as a function of element 

apparent bone mineral density (ρapp = ρHU/0.626) (Dalstra et al. 1993): 

𝐸3 = 6570 ∙ 𝜌𝑎𝑝𝑝
1.37          (6.2) 

The other constants were obtained assuming constant anisotropy: E1 = 0.574 ⋅ E3, E2 = 0.577 ⋅ E3, 

G12 = 0.195 ⋅ E3, G23 = 0.265 ⋅ E3, G31 = 0.216 ⋅ E3, ν12 = 0.427, ν23 = 0.234, ν31 = 0.405, where 

subscripts 1-3 denote the medial-lateral, anterior-posterior, and axial directions, respectively (Rho 

1996). 

Boundary constraints were the same as our previous work (Bruce, Baggaley, Khassetarash, 

et al. 2022; Khassetarash et al. 2023). Surface nodes on the tibial plateau were kinematically 

coupled to rotate about a fully constrained point in the centre of the tibial plateau. A point on the 

medial condyle was constrained in the anterior-posterior direction. The ankle center, estimated as 

the mid-point between the lateral and medial malleoli, was constrained in the anterior-posterior 

and medial-lateral directions. Surface nodes on the tibia and fibula near the interface with the talus 

were coupled to the ankle center and allowed to rotate about the point. The distal tibia-fibula joint 

was modeled with surface-based tie constraints (Haider et al. 2020). Two spring elements were 
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used to model the anterior (133N/mm) and posterior (109 N/mm) ligaments at the proximal tibia-

fibula joint (Marchetti et al. 2017). Nodes at the articulating surface were also tied preventing 

motion normal to the joint surface.  

An inverse dynamics-based static optimization routine was used to calculate lower 

extremity muscle and joint contact forces during running based on motion and force data. Markers 

were used to calculate local segment coordinate systems. Cardan segment and joint angles were 

calculated using a flexion-extension, abduction-adduction, internal-external rotation sequence. 

Segment parameters were calculated using anthropometric measures and equations (Vaughan et 

al. 1999). Net joint moments were calculated using an inverse dynamics approach. A 

musculoskeletal model of the pelvis and lower limb with forty-five muscles (Arnold et al. 2010) 

was then scaled to match the participant’s segment lengths and body mass. A constrained 

optimization was performed to compute muscle forces such that the sum of muscle moments was 

equal to the net inverse dynamics-calculated moment at each joint, minimizing the sum of muscle 

stresses squared. The following moments were used as constraints in the optimization: flexion-

extension and abduction-adduction moments at the hip, flexion-extension moment at the knee, 

flexion-extension moment at the ankle, and the pronation-supination sub-talar moment. Muscle 

and ankle joint contact forces were calculated for each of the ten trials. The trial with the peak 

resultant ankle joint contact force closest to the mean of the participant’s ten steps was selected. 

Joint contact and muscle forces at the time of peak resultant ankle contact force were applied to 

the finite element models. Muscle forces were applied as concentrated forces at the attachment 

point for each muscle originating or inserting onto the tibia or fibula. Attachment points were 

determined by finding the nearest surface node on the SAM average mesh aligned with the MSK 

model geometry. The ankle joint contact force was applied at the ankle center of rotation. Finally, 
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a residual moment about the sagittal and axial axes of the ankle was calculated and applied at the 

ankle center of rotation to account for other sources of torque such as the gastrocnemius muscles. 

Finite element models were solved in Abaqus (v2019, Dassault Systèmes Simulia Corp.; 

Providence, USA). Pressure-modified von Mises strain, a modified formulation of the von Mises 

criterion shown to predict failure in quasi-brittle materials that demonstrate compression-tension 

strength asymmetry, was calculated for each element. The analysis was then limited to elements 

containing bone (element density values ≥ 0.5 g/cm3) in the tibial diaphysis, defined as 20% to 

80% of the length of the tibia. Elements within a 1.0 cm radius of the soleus force application and 

a 0.5 cm radius of other muscle force application points, including transcortical elements, were 

removed from the analysis due to artefactually high strains (over 10 000 με). 95th percentile strain 

(peak strain) and strained volume, defined as the volume of elements experiencing ≥4000 με, were 

compared between predicted and participant-specific models. 

6.2.4 Statistics  

Geometry and density RMSEs were not normally distributed. Friedman tests were used to 

evaluate differences in RMSE between reconstruction methods. When differences were found 

Wilcoxon signed-rank tests with Bonferroni corrections were used to test differences between pairs 

of reconstructions. The RMSE for strain measurements was compared between prediction methods 

using a Wilcoxon signed-rank test. Bland-Altman plots were constructed to evaluate agreement 

between predicted and participant-specific meshes, where the participant-specific mesh was the 

‘ground truth.’ The acceptable limits of agreement were set at ± 5%.  
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6.3 Results 

6.3.1 Skin-mounted marker offsets  

Mean distances between bone surface and skin-mounted landmarks were 5.5 - 22.9 mm. 

Landmarks along the tibial crest and at the lateral and medial malleoli illustrated the smallest 

offsets, whereas the lateral and medial tibial plateau landmarks illustrated the largest offsets (Table 

6.1).   

6.3.2 Prediction errors  

Median surface prediction RMSEs were 4.39 - 5.17 mm (Figure 6.2A). No differences 

were observed between prediction methods (p = 0.933). Median CT equivalent density prediction 

RMSEs were 0.116-0.142 g/cm3 (Figure 6.2B). Density RMSEs were different between prediction 

methods (p < 0.001); predictions from two, four, and five cumulative PCs illustrated greater error 

than predictions from height and sex (p ≤ 0.003). Surface and density RMSEs were not different 

between reconstructions from one PC using twelve landmarks (Median (IQR) = 4.39 (1.68) mm 

and 0.118 (0.046) g/cm3) or six landmarks (4.59 (1.49) mm and 0.118 (0.047) g/cm3, p ≥ 0.428). 

Table 6.1 Mean and standard deviation offsets between skin-mounted markers and corresponding 

anatomical landmarks on the bone surface. 

Marker Mean (mm) SD (mm) 

Lateral plateau 22.9 3.9 

Medial plateau 21.6 4.9 

Tibial tuberosity 9.0 2.7 

Gerdy’s tubercle 12.8 2.5 

Medial malleolus 6.9 2.5 

Tibial Notch 15.1 2.6 

Tibial crest 1 5.9 1.3 

Tibial crest 2 5.5 1.2 

Tibial crest 3 6.5 1.6 

Fibula head 12.2 4.8 

Fibula diaphysis 14.5 2.7 

Lateral malleolus 6.5 1.9 
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6.3.3 Finite element-calculated strain errors 

Median (IQR) tibial diaphysis strain RMSEs were 492 (286) με and 476 (155) με for 

meshes predicted from landmarks and height and sex, respectively, when compared to results from 

participant-specific meshes. Strain RMSE was greater in meshes predicted from landmarks than 

from height and sex (p = 0.012). Participant-informed models illustrated poor agreement with 

participant-specific models for both peak strain and strained volume (Figure 6.3). The limits of 

agreement for peak strain were -34% to 32% and -31% to 27% for models predicted from 

landmarks and height and sex, respectively. The limits of agreement for strained volume were -

202% to 143% and -159% to 104% for models predicted from landmarks and height and sex, 

respectively. No significant biases were observed (p ≥ 0.20). 
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Figure 6.2 Surface (A) and density (B) prediction errors resulting from different prediction 

methods.  * indicates significant differences (p < 0.003). 

12 landmarks 

12 landmarks 

A 

B 

* 
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Figure 6.3 Bland-Altman plots illustrating percent differences in peak strain between (A) 

landmark-based or (B) height and sex-based and participant-specific models. Percent differences 

in strained volume between (C) landmark-based or (D) height and sex-based and participant-

specific models. Three statistical outliers are not shown in plots C (3946%, 4102%, and 23159%) 

and D (2376%, 3340%, and 23272%). The outliers were due to very small strained volume 

observed in the reference CT-based models. 

 

6.4 Discussion 

 The purpose of this study was to: (1) quantify errors associated with predicting tibia-fibula 

geometry and density distribution from anatomic landmarks and (2) quantify how those errors 

propagate to finite element-calculated bone strain. Participant-informed meshes generated from 

landmarks illustrated median geometry and density distribution errors of 4.39-4.75 mm and 0.118-

0.142 g/cm3, respectively. These meshes did not improve upon those generated from height and 

sex only. The observed geometry and density distribution errors resulted in large errors in strain 
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distribution, peak strain, and strained volume, indicating that neither method could adequately 

approximate CT-derived participant-specific data. 

Geometry error did not improve when the number of cumulative PCs used to generate the 

participant-informed models from landmarks was increased. Landmark error was smaller in 

predictions using four and five cumulative PCs (medians = 5.68 mm and 5.64 mm, respectively) 

when compared to predictions using one and two cumulative PCs (medians = 6.18 mm and 6.19 

mm, respectively, p < 0.001). These findings suggest the SAM was overfit to the landmarks due 

to uncertainties in soft-tissue offsets and marker placement. Nolte et al. (2020) observed similar 

results, where tibial geometry prediction errors from skin-mounted landmarks were not different 

or greater when the number of PCs used increased while improvements in prediction errors were 

observed when bone surface landmarks were used.  

We performed post-hoc analyses to investigate the influence of sources of uncertainty on 

our results. The first analysis reconstructed tibia-fibula geometry and density distribution from the 

CT marker data with participant-specific offset vectors and magnitudes (Appendix D, section D2). 

A negligible reduction in geometry error was observed in predictions using five cumulative PCs 

(median RMSE = 3.71 mm) when compared to predictions from one and two PCs (median RMSEs 

= 3.75 and 3.73, respectively, p ≤ 0.005). Reducing marker offset and placement uncertainty 

improved scaling accuracy (PC 1) but did not result in meaningful improvements in geometry 

characterization. The second post-hoc analysis compared predictions based on marker sets from 

motion capture and CT sessions to further investigate errors due to marker placement intra-rater 

variability (Appendix D, section D3). Median (IQR) marker placement error between days was 

9.5 (4.4) mm. Median surface geometry RMSEs between days were 3.9-4.1 mm. Surface geometry 

RMSE relative to participant-specific meshes illustrated only moderate reliability between days 
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(Intra-class correlation coefficients = 0.45-0.64). Geometry errors associated with landmark-based 

prediction appear to be due to a combination of limited information provided by palpable 

landmarks, marker placement uncertainties, and soft tissue offset uncertainties. 

 Geometry and density distribution errors resulted in large finite element-calculated strain 

errors in the participant-informed models when compared to the participant-specific models. 

Median RMSEs were nearly 500 με for reconstructions from landmarks and from height and sex. 

Furthermore, the agreement range for strained volume far exceeded the acceptable limits, with 

differences up to ± 100-200% when compared to participant-specific models. Based on these 

results, participant-specific models generated from 3D medical imaging data are necessary when 

comparing finite element-calculated strain between individuals or groups. Using inaccurate 

participant-informed models generated from landmarks or height and sex as described in this 

analysis may lead to erroneous conclusions due to geometry errors influencing strain results. When 

geometry differs between groups but is not captured in the finite element mesh, differences in 

strain between groups could be over- or underestimated depending on the magnitude and direction 

of differences in applied loads between groups.  

While participant-informed models should not be used to make comparisons between 

groups, they may still be useful to evaluate relative changes within individuals in response to 

interventions or conditions. Previous work observed strong agreement (r2 = 0.96) in relative 

changes in strain resulting from neuromuscular fatigue during running between participant-

informed and participant-specific models despite large absolute errors (Khassetarash et al. 2023). 

However, the analysis was limited to four participants. Further work with larger sample sizes and 

investigating possible geometry-applied load interactions is warranted to confirm whether 
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participant-informed models based on anthropometric or landmark data alone are adequate for 

within-participant comparisons. 

Another limitation of this study was that we did not test the efficacy of incorporating a 

measure of density into the prediction algorithms. This study was focused on evaluating the 

accuracy of participant-informed meshes generated in the complete absence of medical imaging. 

Our previous work suggests that geometry varies to a greater degree and has a larger influence on 

bone strain than variations in density distribution in young active adults (Bruce, Baggaley, 

Khassetarash, et al. 2022). However, including a measure of bone density or cortical thickness 

from peripheral quantitative CT or high resolution peripheral quantitative CT scans, for example, 

would likely improve density distribution and strain predictions. Another approach worth 

investigating in future work is 2D to 3D reconstruction of the tibia and fibula from radiographs, 

which has shown excellent results for generating finite element models of the proximal femur 

(Väänänen et al. 2015; Grassi et al. 2017; Grassi et al. 2021). 

6.5 Conclusions 

 In conclusion, skin-mounted landmarks were insufficient to accurately characterise tibial 

geometry and associated variations in density due to uncertainties in soft-tissue offsets and marker 

placement variability. Geometry and density distribution errors associated with generating models 

from landmarks or height and sex led to large errors in finite-element predicted bone strain. This 

approach for generating participant-informed finite element models should not be used when 

making comparisons between groups to avoid possible errors due to geometry variation. Some 

form of medical imaging is likely necessary to generate an accurate participant-informed model of 

the tibia and fibula. 

  



102 
 

 

 

 

Chapter 7  

Discussion and Conclusions 

 

7.1 Summary 

The goal of this work was to develop a more nuanced understanding of the mechanical 

implications of tibial-fibular geometry and density variations present in young, active adults. To 

that end, I developed statistical shape and appearance models of the tibia and fibula to characterise 

how geometry and density distributions varied in this population. The statistical models were used 

in combination with biomechanical data and the finite element method to quantify the influence of 

these variations, sexual dimorphism, and landmark-based prediction errors on finite element-

predicted bone strain. The four studies presented in this thesis identified key tibial features and 

sex-related differences influencing bone strain and highlight the necessity for medical imaging to 

accurately characterise participant-specific geometry and material properties. 

The first and second studies in this thesis demonstrated that sex-related differences in bone 

geometry drive elevated bone strain and strained volume in the average female when compared to 

the average male. The first study illustrated a narrower tibia and greater cortical density in the 

average female. The greater cortical density reduced strain but was only able to partially offset the 

negative effects of the narrower tibial diaphysis. Encouragingly, the second study confirmed these 

findings in a separate cohort. While the sex-related differences in tibial geometry were subtle in 
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visual appearance, their large influence on strained volume (41-80% differences between the 

average male and female), considered together with data from mechanical testing and 

epidemiologic studies, indicate these differences are mechanically meaningful. The observed 

differences in strain confirm that bone geometry very likely contributes to the greater risk of stress 

fracture observed in females when compared to males. 

The first study also identified key geometry and density distribution variations that had the 

greatest influence on bone strain. Again, geometry variations illustrated strong effects on bone 

strain. Sagittal plane curvature, with concomitant changes in diaphysis length and cortical 

thickness, and transverse diaphyseal geometry variations changed strained volume estimates by up 

to ± 95% and ± 66%, respectively. Transverse geometry included variations in both periosteal 

geometry and cortical thickness. These results highlight the importance of accurately 

characterizing participant-specific geometry and density when estimating and comparing strain 

between individuals or groups. Sagittal curvature and transverse geometry seem to be the most 

important features to accurately characterise, which informed the landmarks used in the final study. 

Statistical shape and appearance models have been proposed as tools to generate estimates 

of individuals’ bone geometries and density distributions in the absence of computed tomography 

(CT) imaging. This would improve access to and reduce the time and cost required for participant-

specific musculoskeletal and finite element modeling approaches. The third study predicted tibial-

fibular geometry from landmarks on the bone surface using a SSM with high accuracy. 

Unfortunately, the uncertainties introduced using skin-mounted landmarks in the final study 

increased errors in bone geometry. Furthermore, geometry and density errors from predictions 

using skin-mounted landmarks and the SAM developed in Chapter 3 resulted in very large errors 

in finite element-predicted bone strain (RMSE of 500 με and limits of agreement up to ±100-
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200%). This indicates that some form of medical imaging, alone or in combination with landmarks, 

is necessary to adequately capture participant-specific bone geometry and material properties to 

avoid erroneous conclusions when evaluating comparisons between individuals or groups. 

7.2 Tibial morphology and stress fracture risk 

 While the pathophysiology of stress fracture is not fully understood, it is believed to result 

from an imbalance between microdamage accumulation and microdamage repair (Hoenig et al. 

2022). It is currently unknown if the accelerated accumulation of damage leading to fracture is due 

solely to increased loading or the combination of increased loading and a weakening of the tissue 

due to elevated remodeling in response to sudden increases in activity. Despite this uncertainty, 

bone strain plays a key role in the damage evolution of both pathways. Strained volume, i.e., the 

volume of bone experiencing high strain magnitudes, is also a strong predictor of fatigue life 

(Loundagin & Edwards 2020; Haider et al. 2021; Haider et al. 2022). Small changes in strain 

magnitude and/or strained volume are associated with much larger changes in the number of cycles 

a bone may withstand before failure. For example, in tests of whole rabbit tibiae under combined 

compression and torsional loads, decreasing strained volume by 41% was associated with a 2.7-

fold increase in fatigue life (Haider et al. 2021). The differences in strained volume resulting from 

sexual dimorphism and geometry and density variations observed in this thesis (≥40%) indicate 

that variations in these parameters present in young active adults are likely meaningful risk factors 

for stress fracture. 

 The findings from Chapters 3 and 4 of this thesis strongly support the hypothesis that bone 

geometry, independent of allometric scaling, contributes to the disparity in stress fracture risk 

between females and males. Specifically, the average female illustrated a narrower tibia and 

thinner diaphyseal cortex when compared to the average male. The narrower tibial geometry 
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resulted in elevated strain and strained volume, explaining, in part, the greater risk of stress fracture 

observed in females. Although the difference in geometry through the tibial diaphysis was visually 

subtle, the consequent difference in strained volume indicates that the difference was mechanically 

meaningful. This conclusion is indirectly supported by evidence from in vitro and ex vivo testing 

(discussed above) and epidemiologic studies. Athletes and military recruits who experience stress 

fractures illustrate less robust tibial transverse cross-sectional geometry, adjusted for stature, when 

compared to controls (Beck et al. 2000; Popp et al. 2020; Koltun et al. 2022).  

 Typically, studies evaluating bone geometry and density as risk factors for stress fracture 

have measured only transverse cross-sectional parameters at discrete sites along the length of the 

tibia and/or simple measures of bone mineral density and bone mineral content (Beck et al. 2000; 

Koltun et al. 2022). These measures, obtained from dual-energy x-ray absorptiometry (DXA) and 

peripheral quantitative computed tomography (pQCT) scans, are more feasible for large cohort 

studies, but they lack important geometry variations that may influence stress fracture risk. In fact, 

the PC in the SAM that had the greatest influence on bone strain described variations in bone 

sagittal curvature (Chapter 3), which cannot be characterised using traditional DXA or pQCT. 

Greater sagittal curvature combined with a shorter diaphysis relative to tibial length and thinner 

cortex resulted in increased strained volume by up to 95%. The large increase in strained volume 

suggests that sagittal curvature may also be associated with stress fracture risk, but this has yet to 

be evaluated in epidemiologic studies. 

7.3 Bone and body size 

On average females have a smaller stature than males, although there is notable overlap 

between sexes (Figure 7.1) (Statistics Canada 2015a; Statistics Canada 2015b). The evidence for 

body size as a risk factor for stress fracture is mixed (Giladi et al. 1987; Winfield et al. 1997; 
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Välimäki et al. 2005; Shaffer et al. 2006; Knapik et al. 2012). On one hand, larger stature is 

associated with greater bone cross-sectional area and greater bone width (Sumnik et al. 2006). The 

first PC of the SAM developed in this thesis described allometric scaling and was strongly 

associated with height (r2=0.82). While scaling was associated with a slight decrease in cortical 

thickness relative to diaphysis diameter, cortical area and bone diameter visibly increased with 

bone size (Appendix A, Figure A.1). As expected, when the applied loads were held constant 

increased bone size resulted in decreased strain. On the other hand, larger statures are also 

associated with greater muscle cross sectional area and joint moments (Sumnik et al. 2006; 

Unnikrishnan et al. 2021). These changes could increase strains and possibly completely offset 

changes due to allometric scaling. In fact, studies of young active females and males demonstrated 

that tibial strain was not affected by stature during unloaded running (Unnikrishnan et al. 2021; 

Tong et al. 2023).  

Sex differences in joint contact and muscle forces during running are not well 

characterised, but forces applied to the tibia may not necessarily be larger in males when compared 

to females. Meardon et al. (2021) observed lower axial force and anterior-posterior bending 

moments but higher medial-lateral forces at the ankle joint in females when compared to males. 

Further work is needed to better characterise sex differences in loads applied to the tibia and their 

relationship with stature. The difference in stature between males and females may come into play 

in military populations where overstriding and differential adaptations to load carriage as a 

function of stature may increase strains by increasing the applied loads relative to body size in 

shorter individuals (Unnikrishnan et al. 2021; Hoenig et al. 2022). This may contribute to the 

greater disparity in stress fracture risk between sexes in military populations when compared to 

athletes (Kardouni et al. 2021; Hoenig et al. 2022).  
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Figure 7.1 Height (A) and mass (B) of Canadians aged 20-39 years. Whiskers represent the 5th 

and 95th percentiles. Data from: (Statistics Canada 2015a; Statistics Canada 2015b) 

 

Another factor that needs to be considered with respect to allometric scaling is the change 

in bone volume. When loads were kept constant, including allometric scaling in the average male 

and female models exacerbated the observed differences in both peak strain and strained volume. 

Theoretically, if loads were scaled one-to-one with bone size, peak strain and strain distribution 

across the bone may not change, but strained volume would. In this case, including the small-scale 

difference between the average female and male models (8%) diminishes, but does not eliminate, 

the difference in strained volume. Clearly, the question of how allometric scaling may affect bone 

strain, strained volume, and stress fracture risk depends on how applied loads scale with bone, 

body, and/or muscle size and any sex differences in those factors. As discussed in the previous 

paragraph, sex differences in joint kinetics are not well characterised and may not necessarily be 

larger in males. Further work is needed to address the many open questions in this area. 
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7.4 Towards predicting stress fractures 

 The etiology of stress fracture is multifactorial and not fully understood. As a result, it has 

been difficult to develop effective screening tools. There are many risk factors associated with 

stress fracture including: RED-S, exercise history, stage of training, kinematic parameters, 

nutritional deficiencies, and sex (Hoenig et al. 2022). These factors all influence the mechanical 

strain environment of the tibia. Thus, individualized finite element modeling approaches, which 

estimate bone strain, could play a role in screening and monitoring tools or the development 

thereof. For example, finite element-predicted strain may be used in combination with probabilistic 

modeling approaches to estimate fracture risk (Taylor et al. 2004; Firminger et al. 2017). In fact, 

a Weibull analysis accounting for both strain magnitude and strained volume was recently shown 

to provide accurate predictions of whole-bone fatigue life in vitro (Haider et al. 2022). 

 Individualized finite element modeling is currently costly, time consuming, and requires 

access to a clinical CT scanner. If modeling were to be used for risk assessment, generation of 

these models needs to be more accessible and automated.  However, as demonstrated in this thesis 

it is crucial that streamlined methods to generate finite element models preserve accurate 

characterization of individuals’ bone geometry and density. Unfortunately, skin-mounted 

landmarks were shown to be insufficient for this purpose (Chapter 6), indicating that medical 

imaging is necessary. Moving forward, approaches to characterise geometry and density 

distribution from less intensive imaging modalities than clinical CT could be explored. For 

example, 2D to 3D reconstruction algorithms using SAMs and DXA scans have been used to 

accurately characterise geometry and density distributions and predict fracture strength of the 

proximal femur (Väänänen et al. 2015; Grassi et al. 2017; Grassi et al. 2021). Alternatively, data 

from EOS (Illés & Somoskeöy 2012) or free-hand ultrasound techniques (Krysztoforski et al. 
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2011), or transverse cross-sections obtained at a handful of locations along the length of the tibia-

fibula complex using pQCT or high resolution pQCT (HR-pQCT) might provide enough 

information to estimate whole-bone geometry and density distributions with reasonable accuracy, 

although this has yet to be tested. 

 In addition to bone geometry and density, HR-pQCT enables quantification of 

microarchitecture and micro-FE estimated bone strength, some of which may be associated with 

stress fracture risk (Schnackenburg et al. 2011; Schanda et al. 2019). If the pathophysiology of 

stress fracture involves a combination of mechanical fatigue and biological processes, where 

elevated remodeling following sudden increases in training volume accelerates microdamage 

accumulation, an increase in porosity could perhaps be captured with HR-pQCT. With a minimum 

isotropic voxel size of 61 μm (Manske et al. 2015), second-generation HR-pQCT scanners would 

be able to capture resorption canals (200 – 300 μm) (Cooper et al. 2016; Lassen et al. 2017). While 

this resolution would miss small pores, large pores have demonstrated a disproportionally large 

effect on fatigue life in material-level tests ( Loundagin & Edwards 2020; Loundagin et al. 2021). 

Measures of porosity could be combined with FE-estimated strained volume in a modified Weibull 

analysis to potentially improve predictions of fracture probability. 

7.5 Towards preventing stress fractures 

 As previously discussed, stress fractures typically occur in the weeks following sudden, 

rapid increases in training loads and volume (Rizzone et al. 2017; Kardouni et al. 2021; Hoenig et 

al. 2022). Increased loading and associated remodeling may result in elevated bone strain and rates 

of microdamage accumulation (Hoenig et al. 2022). On the other hand, bone strain, or some 

consequence thereof, is also the key factor driving adaptation (Klein-Nulend et al. 2013). Stress 

fractures are thought to occur when microdamage accumulation outpaces the bone’s ability to 
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repair and adapt (Hoenig et al. 2022). Management of training loads and volume to reduce 

imbalances between damage and repair should reduce stress fracture incidence, but training 

programs need to be personalized. As demonstrated in this thesis, individuals subjected to the same 

applied loads can have substantially different peak strains and strained volume due to bone 

geometry and density distribution variations. Characterizing geometry and density distribution in 

addition to loading patterns, and understanding how these factors influence bone strain, could 

improve stress fracture risk estimates (discussed in the previous section, 7.4) and guide the 

optimization of training programs. However, geometry and density characterization requires 

medical imaging, limiting the feasibility of personalized modeling across large populations or 

groups. Optimizing training loads is likely most important for those who are at high risk of fracture 

and may have less room for training errors. Therefore, efforts to optimize training should be 

focused on individuals at high risk of fracture identified through risk factor-based screening. In 

some populations such as elite runners and military recruits, obtaining simple measures of bone 

geometry and density with DXA, EOS, or pQCT as part of initial risk factor screening procedures 

may be beneficial to identify athletes/recruits for follow-up personalized modeling. 

When gradual increases in training loads are not possible or in groups at heightened risk 

(e.g., individuals with narrower and/or curved tibiae and individuals with a history of stress 

fracture) strategies to reduce bone strain may be effective to mitigate stress fracture risk. 

Probabilistic modeling using loads representative of running suggest for every 10% increase in 

strain magnitude, the number of cycles the bone can withstand before fracture is halved (Edwards 

2018). Of the interventions investigated in the literature, increasing running cadence is a promising 

strategy. Increased cadence, and concomitant decreased stride length, is associated with decreased 

joint loads, bone strain, and modeled risk of stress fracture (Edwards et al. 2009; Luedeke et al. 
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2016; Kliethermes et al. 2021). Cadence manipulation is easily implemented, and continuous 

monitoring is commercially available with wearable sensors.  

 Strategies to increase the tibia’s loading capacity by improving bone geometry, density, 

and/or quality may also be effective. History of participation in activities involving impulsive 

multi-directional loading such as jumping and change of direction movements is associated with 

reduced stress fracture risk (Milgrom et al. 2000). Ideally, participation in these activities would 

begin before puberty, when loading encourages the development of greater bone size relative to 

body size through bone modeling (Allen & Burr 2019). Still, some gains in bone mass, geometry, 

and microstructure quality can be achieved after skeletal maturity is reached (Bhatia et al. 2015; 

Hughes et al. 2018). Significant improvements in a variety of parameters such as trabecular and 

cortical volumetric bone mineral density, trabecular thickness and cortical thickness have been 

observed in as little as eight weeks of intense training (O’Leary et al. 2022; Hughes et al. 2023). 

Thus, athletes and military recruits with bone geometry and/or density risk factors may benefit 

from an off-season or lead-in program aimed at improving bone mass and reducing the increase in 

training volume when the season or basic training begins. 

7.6 Limitations and future work 

 An assumption underpinning my interpretations of whether the geometry and density 

distribution differences observed in this thesis are meaningful is that finite element-predicted bone 

strain is predictive of stress fracture risk. This assumption is based on the central role of bone strain 

in the hypothesized pathophysiology of stress fracture, supported by fatigue tests and associations 

observed in prospective epidemiologic studies. However, large prospective studies would be 

needed to confirm that finite element-predicted bone strain and strained volume are indeed 

predictive of stress fracture in a sport or military setting. Ideally, baseline CT scans including both 
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tibiae and fibulae with a phantom, and gait data, perhaps at multiple speeds, would be obtained 

prior to the start of a training season or the beginning of basic military training. This data would 

be used to generate personalized finite element models to predict peak strain, strained volume, and 

probability of fracture. Participants would be followed over time for stress fracture incidence and 

tracking activity. Probability of fracture could then be compared to clinical incidence to evaluate 

whether finite element-predicted bone strain is a useful predictive measure for stress fracture risk. 

Given the time, cost, advanced medical imaging, and expertise required to generate hundreds of 

personalized finite element models, a large prospective study like this is currently infeasible. That 

said, recent advances in automated image segmentation and generation of personalized models 

have addressed some of these limitations (Deng et al. 2022). Eventually, we will be able to test the 

validity of finite element-predicted bone strain as a surrogate for stress fracture risk. 

 Assuming finite element-predicted bone strain is indeed predictive of stress fracture risk, 

future work developing methods to accurately predict whole-bone geometry and density from 

more accessible imaging methods is warranted to improve the clinical applicability of finite 

element modelling. The use of SAMs in combination with DXA at the proximal femur was 

discussed in section 7.4. The next steps would be to validate this approach in the tibia and fibula 

and test the sensitivity of predictions to positioning variability and scanner. Other imaging 

modalities including free-hand ultrasound, pQCT, and HR-pQCT may also be explored. In the 

cohort of thirty participants analyzed in Chapters 4 and 6, I collected HR-pQCT scans at the distal 

tibia in addition to clinical CT and gait data. I plan to evaluate whether relationships between bone 

quality measures and PC scores exist and whether the geometry and density data provided by the 

scan improves predictions of whole-tibia geometry and density when combined with height and 

sex data.    
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 The strain environment of bone is determined by the bone’s geometry, density distribution, 

material properties, and the applied loads. This thesis deliberately focused on bone geometry and 

density distribution, isolating and parametrically evaluating variations in these two factors and 

their contributions to bone strain. However, applied loads and muscle attachment areas, which can 

affect muscle moment arms, may differ between sexes (Meardon et al. 2021; Kimata et al. 2022). 

It is unknown whether these differences would be sufficient to produce meaningful changes in 

strain or how applied loads interact with geometry and density distribution variations. Future work 

will systematically test the sensitivity of bone strain to applied loads and explore potential applied 

load-bone morphology interactions. Another study will quantify sex- and stature/mass-related 

differences in the applied loads and whether differences in bone strain between females and males 

still exist when sex-specific loads are applied.  

 Finally, there are some limitations to the generalizability of the SSM and SAM developed 

in this thesis. The models were trained using data from physically active adults aged 18-32 years. 

This is the most common population studied in sports biomechanics, and is a relevant age range 

for runners, athletes, and military recruits who experience stress fractures. However, the models 

may not be generalizable to older populations. This was demonstrated in Chapter 5, where the 

SSM underestimated transverse tibial size in elderly individuals. On the other end of the spectrum, 

these models trained on adults may also not generalize to children and adolescents less than 1.45 

m tall (Davico et al. 2020). In addition, the SSM and SAM may not generalize well to some clinical 

populations. For example, the SAM may overestimate intracortical bone mineral density if applied 

to athletes with RED-S. Future work could expand the model to include these athletes and evaluate 

the contribution of low bone mineral density to differences in predicted bone strain when compared 

to healthy athletes.  
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7.7 Conclusions 

 Bone geometry and density are hypothesized risk factors for stress fracture and may 

contribute to the disparity in stress fracture risk between sexes. Previous studies were limited to 

two-dimensional transverse measures of geometry and density or three-dimensional analyses of 

periosteal geometry only. By leveraging statistical approaches in combination with the finite 

element method, this work is the first to characterize and quantify the mechanical implications of 

covariations in whole-bone tibial-fibular geometry and density distribution. Transverse diaphyseal 

geometry and sagittal curvature were identified as key features that likely influence stress fracture 

risk, demonstrating large effects on finite element-predicted bone strain. Most importantly, this 

work demonstrated and confirmed that sex-related differences in bone geometry meaningfully 

impact bone strain and likely explain, in part, the elevated risk of stress fracture observed in 

females when compared to males. 

 As we work towards improving predictive models and developing effective screening tools 

for stress fracture risk, this work provides insights into the role of bone geometry and density 

distribution and the key features that will need to be accurately characterised. Unfortunately, 

landmark- and anthropometric-based predictions were not sufficiently accurate to characterise 

geometry and density, leading to substantial errors in bone strain estimates when compared to 

participant-specific models generated from CT data. There are promising approaches that may 

enable accurate estimation of bone geometry and density from less intensive imaging modalities, 

but it is clear that some level of advanced medical imaging data will be necessary to generate 

personalized models or characterise geometry and density features associated with stress fracture 

risk.  
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Appendix A Supplemental Information for Ch. 3 
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Figure A.1 Geometry and density variations characterised by the first principal component. (A) 

Surface geometry of the tibia and fibula perturbed by +2 standard deviations (SD) (purple) and 

the average geometries (grey). (B) Frontal (left) and sagittal (right) cross-sections of the tibia 

illustrating differences in internal density distribution between +2 SD and average, where red 

indicates greater density in the model perturbed by +2 SD. (C) Axial cross-sections of the tibial 

diaphysis at 50% of total axial length. 
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Figure A.2 Geometry and density variations characterised by the second principal component 

(Presented in main article, Figure 1). Surface geometry of the tibia and fibula perturbed by +2 

standard deviations (SD) (purple) and the average geometries (grey). (B) Frontal (left) and 

sagittal (right) cross-sections of the tibia illustrating differences in internal density distribution 

between +2 SD and average, where red indicates greater density in the model perturbed by +2 

SD. (C) Axial cross-sections of the tibial diaphysis at 50% of total axial length. 
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Figure A.3 Geometry and density variations characterised by the third principal component. 

Surface geometry of the tibia and fibula perturbed by +2 standard deviations (SD) (purple) and 

the average geometries (grey). (B) Frontal (left) and sagittal (right) cross-sections of the tibia 

illustrating differences in internal density distribution between +2 SD and average, where red 

indicates greater density in the model perturbed by +2 SD. (C) Axial cross-sections of the tibial 

diaphysis at 50% of total axial length. 
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Figure A.4  Geometry and density variations characterised by the fourth principal component. 

Surface geometry of the tibia and fibula perturbed by +2 standard deviations (SD) (purple) and 

the average geometries (grey). (B) Frontal (left) and sagittal (right) cross-sections of the tibia 

illustrating differences in internal density distribution between +2 SD and average, where red 

indicates greater density in the model perturbed by +2 SD. (C) Axial cross-sections of the tibial 

diaphysis at 50% of total axial length. 
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Figure A.5 Geometry and density variations characterised by the fifth principal component. 

Surface geometry of the tibia and fibula perturbed by +2 standard deviations (SD) (purple) and 

the average geometries (grey). (B) Frontal (left) and sagittal (right) cross-sections of the tibia 

illustrating differences in internal density distribution between +2 SD and average, where red 

indicates greater density in the model perturbed by +2 SD. (C) Axial cross-sections of the tibial 

diaphysis at 50% of total axial length. 
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Figure A.6 Mesh convergence analysis results. Blue dots show the peak strain (A) or strained 

volume (B) resulting from each mesh. Orange dots show the percentage change in peak strain or 

strained volume when compared to the previous (coarser) mesh. Strained volume resulting from 

the mesh with 42 413 elements was zero. As a result, the % change in strained volume between the 

78 749 element mesh and the 42 413 element mesh was infinite and therefore not plotted 

(μ
ε)
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Table A.1 Muscles included in the musculoskeletal model attaching to the tibia or fibula* and the 

forces applied to the finite element model, calculated from one female participant at the time of 

peak resultant ankle joint contact force. The ankle joint contact force applied at the ankle center 

of rotation is also shown. +: medial, anterior, proximal 

 

Muscle Muscle force applied to the tibia (N) 

 Medial/Lateral Anterior/Posterior Axial 

Semimembranosus -0.24 -2.16 2.14 

Semitendinosus 0.22 -0.82 0.71 

Biceps femoris long 
head 

 

0.05 
 

-0.69 
 

0.69 

Biceps femoris short 
head 

 

-0.54 
 

-6.17 
 

11.48 

Sartorius 24.03 -31.38 25.60 

TFL -32.83 -5.76 275.95 

Gracilis 0.00 -0.36 0.49 

Soleus 238.08 -272.39 -1930.42 

Tibialis posterior 17.84 -5.28 -83.25 

Flexor digitorum 4.28 -2.68 -27.56 

Flexor hallucis 68.25 9.22 -242.60 

Tibialis anterior 0.19 0.19 -1.19 

Peroneus brevis 25.34 -20.92 -261.79 

Peroneus longus 51.63 -25.42 -453.93 

Peroneus tertius 0.99 2.00 -10.98 

Extensor digitorum 2.29 2.01 -17.45 

Extensor hallucis 0.79 0.96 -6.71 

Patellar ligament 220.47 1679.08 3392.13 

Ankle contact force 714.20 -1087.17 6241.07 

 

* Muscles included in the musculoskeletal model that do not attach to the tibia or fibula 

were: gluteus maximus, gluteus medius, gluteus minimus, adductor longus, adductor brevis, 

adductor magnus, pectineus, iliacus, psoas, quadratus femoris, gemellus, piriformis, rectus 

femoris, vastus lateralis, vastus medialis, vastus intermedius, medial gastrocnemius, lateral 

gastrocnemius. 

Musculoskeletal model: 

E.M. Arnold, S.R. Ward, R.L. Lieber, S.L. Delp, A model of the lower limb for 

analysis of human movement, Ann. Biomed. Eng. (2010). 

https://doi.org/10.1007/s10439-009-9852-5. 

https://doi.org/10.1007/s10439-009-9852-5
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Table A.2 Muscle and joint contact forces applied to the tibia and fibula calculated from one male 

participant at the time of peak resultant ankle joint contact force. +: medial, anterior, proximal 

 

Muscle Muscle force applied to the tibia (N) 

 Medial/Lateral Anterior/Posterior Axial 

Semimembranosus 1.03 -6.67 10.78 

Semitendinosus 2.88 -5.35 3.96 

Biceps femoris long 
head 

2.65 -6.64 10.53 

Biceps femoris short 
head 

1.48 -4.63 13.25 

Sartorius 6.46 -6.12 3.86 

TFL 14.33 -47.43 169.35 

Gracilis 0.66 -1.84 4.03 

Soleus -97.87 -207.19 -1664.85 

Tibialis posterior 0.04 -0.27 -13.79 

Flexor digitorum -0.00 0.01 -0.04 

Flexor hallucis 173.05 775.55 1881.25 

Tibialis anterior -0.13 -0.14 -2.46 

Peroneus brevis 8.27 11.97 -144.89 

Peroneus longus -60.14 -27.05 -542.45 

Peroneus tertius -74.92 -18.52 -773.04 

Extensor digitorum -4.51 6.83 -31.85 

Extensor hallucis -9.19 14.22 -95.53 

Patellar ligament -0.88 1.33 -7.50 

Ankle contact force 820.00 -952.08 6482.52 
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Appendix B Supplemental Information for Ch. 4 
 

 

 

Figure B.1 Mean surface geometry (A) and density (B) errors resulting from fitting the statistical 

appearance model to the validation cohort. 
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Compactness, accuracy, and generalization of the tibia-fibula SAM 

Compactness: the cumulative variance explained by n PCs. 

Accuracy: a measure of how accurately the model reconstructs geometry and density of 

instances in the training set for a given number of PCs retained.  

Generalization: a measure of how accurately the model predicts geometry and density of 

new individuals for a given number of PCs used to fit the model to the new data. A leave-

one-out analysis and the fitting method described in Chapter 4.2.1 was performed to 

compute this measure. 

 

 

 

Figure B.2 Cumulative variance by number of principal components. 
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Figure B.3 Accuracy (RMSE) of surface geometry (A) and density (B) reconstructions of 

individuals in the training set of the SAM by the number of PCs used to reconstruct. 

 

 

 

Figure B.4 Generalization: surface geometry (A) and density (B) average prediction errors 

(RSME) by the number of PCs used to fit the model to new instances 
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Appendix C Supplemental Information for Ch 5 
 

Table C.1 Median (IQR) reconstruction error measures, calculated for the whole bone (all), or 

specific regions. Proximal is 0-20%, diaphysis is 20-80%, and distal is 80-100% of the length of 

the tibia or fibula. All Freidman ANOVAs except the proximal fibula maximum error were 

significant at family-wise error of p < 0.05 (critical p = 0.017). * significant difference to isotropic 

scaling at family-wise p < 0.05 (critical p = 0.006). ‡ significant difference between 9 and 14 

landmark reconstructions at family-wise p < 0.05 (critical p = 0.006). 

 

RMSE (mm) Max (mm) Jaccard 

Bone(s) Region Scale 9 

landmarks 

14 

landmarks 

Scale 9 

landmarks 

14 

landmarks 

Scale 9 

landmarks 

14 

landmarks 

Tibia-

fibula 

All 1.78 

(0.62) 

1.62 (0.35) 

* 

1.51 (0.29) 

*‡ 

5.84 

(2.62) 

5.12 (1.64) 

* 

4.82 (1.25) 

* 

0.792 

(0.077)  

0.824 

(0.038) * 

0.833 

(0.034) *‡ 

Tibia All 1.75 

(0.72) 

1.56 

(0.43)* 

1.39 

(0.28)*‡ 

5.42 

(2.77) 

4.86 (1.74) 

* 

4.57 (1.21) 

* 

0.835 

(0.068) 

0.852 

(0.043) * 

0.866 

(0.035) *‡ 

Proximal 1.79 

(0.67) 

1.51 

(0.42)* 

1.39 

(0.33)* ‡ 

5.11 

(1.72) 

4.41 (1.65) 

* 

4.1 (1.27) 

* 

   

Diaphysis 1.56 

(0.75) 

1.41 

(0.49)* 

1.32 

(0.35)* ‡ 

3.73 

(1.43) 

3.58 (1.28) 

* 

3.09 (1.10) 

* 

 
  

Distal 1.73 

(1.08) 

1.35 

(0.63)* 

1.34 

(0.52)* 

4.53 

(2.84) 

4.13 (1.64) 

* 

3.94 (1.50) 

* 

 
  

Fibula All 1.77 

(0.62) 

1.54 (0.51) 

* 

1.51 (0.38) 

*‡ 

5.05 

(1.77) 

4.57 (1.29) 

* 

5.59 (1.25) 

* 

0.627 

(0.114)  

0.688 

(0.122) * 

0.695 

(0.091) *‡ 

Proximal 1.97 

(0.69) 

1.66 (0.54) 

* 

1.67 (0.57) 

* 

4.73 

(1.62) 

4.32 (1.38) 4.26 (1.26) 

* 

 
  

Diaphysis 1.67 

(0.58) 

1.45 (0.64) 

* 

1.41 (0.45) 

*‡ 

3.83 

(1.65) 

3.82 (1.25) 3.5 (0.98) 

* 

   

Distal 1.57 

(0.72) 

1.4 (0.50) 

* 

1.38 (0.42) 

* 

3.76 

(1.80) 

3.66 (1.56) 3.39 (1.43) 

* 
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Table C.2 Mean (SD) reconstruction error measures, calculated for the whole bone (all), or 

specific regions. Proximal is 0-20%, diaphysis is 20-80%, and distal is 80-100% of the length of 

the tibia or fibula.  a (RMSE), b (Max Error), c (Jaccard Index): significant ANOVA at a family-

wise error of p < 0.05 (critical p = 0.017). * significant difference to isotropic scaling at family-

wise p < 0.05 (critical p = 0.006). No significant difference between 9 and 14 landmark 

reconstructions at family-wise p < 0.05 (critical p = 0.006). 

 
 

RMSE (mm) Max (mm) Jaccard 

Bone(s) Region Scale 9 

landmark

s 

14 

landmarks 

Scale 9 

landmark

s 

14 

landmark

s 

Scale 9 

landmark

s 

14 

landmarks 

Tibia-

fibula 

All a,b,c 2.78 

(0.63) 

2.11 

(0.31) 

2.17 

(0.34) 

9.22 

(2.36) 

6.91 

(1.00) * 

7.04 

(1.03) * 

0.672 

(0.024) 

0.769 

(0.010) * 

0.763 

(0.012) * 

Tibia All a,b,c 3.03 

(0.69) 

2.15 

(0.30) * 

2.17 

(0.33) * 

9.16 

(2.35) 

6.69 

(0.98) * 

6.98 

(1.08) * 

0.699 

(0.023) 

0.799 

(0.010) * 

0.796 

(0.012) * 

Proximal 
a,b 

3.46 

(0.86) 

2.34 

(0.28) * 

2.38 

(0.34) * 

9.16 

(2.35) 

6.68 

(0.99) * 

6.85 

(1.10) * 

 
  

Diaphysi

s a 

2.25 

(0.66) 

1.94 

(0.42) 

1.93 

(0.38) 

6.09 

(1.72) 

4.75 

(0.98) 

4.58 

(0.62) 

 
  

Distal a 3.07 

(0.68) 

2.15 

(0.37) * 

2.22 

(0.38) * 

6.77 

(1.59) 

5.69 

(0.78) 

5.84 

(0.93) 

 
  

Fibula All 2.24 

(0.59) 

2.01 

(0.40) 

2.13 

(0.50) 

7.34 

(2.16) 

6.02 

(1.05) 

6.25 

(0.97) 

0.526 

(0.037)  

0.608 

(0.020)  

0.596 

(0.022)  

Proximal 
b 

2.55 

(0.87) 

1.97 

(0.42) 

2.00 

(0.48) 

6.84 

(2.55) 

4.76 

(1.07) 

4.76 

(1.05) 

 
  

Diaphysi

s 

2.09 

(0.66) 

1.91 

(0.48) 

2.03 

(0.68) 

4.75 

(1.34) 

4.33 

(1.15) 

4.62 

(1.47) 

 
  

Distal 2.24 

(0.55) 

2.21 

(0.48) 

2.37 

(0.46) 

6.17 

(1.61) 

5.89 

(1.13) 

5.94 

(1.09) 
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Table C.3 Median (IQR) Euclidian distance (mm) between muscle points on reconstructed and CT 

surfaces. ‡ significant difference between 9 and 14 landmark reconstructions for RMSE. No 

difference between SSM and isotropic scaling for RMSE of muscle points. No difference between 

any reconstruction method for older adults.  Highlighted muscles result in non-zero moment arm 

differences. 

 

 Young Adults Old Adults 

muscle scale 9 landmarks 14 landmarks scale 9 landmarks 14 landmarks 

All muscle points 

RMSE 

5.79 (2.10) 5.98 (3.62) 5.36 (2.73) ‡ 11.67 (4.55) 11.97 (3.84) 12.40 (3.44) 

Semimembranosus 4.56 (2.84) 4.26 (3.08) 3.41 (2.36) 7.23 (5.86) 7.53 (6.33) 4.99 (6.39) 

Semitendinosus 3.89 (2.12) 4.27 (2.83) 4.02 (3.16) 7.08 (4.16) 8.83 (5.63) 7.47 (5.52) 

Biceps femoris long 

head 

4.20 (2.89) 3.57 (2.04) 3.69 (2.21) 4.03 (3.19) 4.12 (2.49) 3.51 (1.60) 

Biceps femoris 

short head 

4.82 (2.89) 3.73 (2.42) 3.98 (2.58) 4.07 (3.27) 3.88 (1.94) 4.10 (1.16) 

Sartorius 5.37 (3.28) 5.33 (4.35) 4.36 (3.90) 9.13 (6.59) 10.22 (6.43) 9.20 (7.01) 

Tensor fasciae latae 3.21 (2.51) 2.99 (2.66) 2.83 (2.41) 7.31 (2.61) 6.23 (2.48) 6.08 (1.57) 

Gracilis 3.65 (2.06) 4.03 (2.56) 3.41 (2.20) 6.68 (3.80) 7.02 (6.81) 6.53 (5.56) 

Soleus 3.47 (1.92) 3.76 (3.41) 3.38 (2.36) 9.95 (6.11) 11.46 (6.77) 11.58 (6.11) 

Tibialis posterior 4.58 (3.00) 5.10 (5.09) 4.69 (4.74) 17.20 (8.13) 17.39 (6.26) 18.49 (8.06) 

Flexor digitorum 5.04 (3.92) 5.32 (6.65) 4.75 (4.65) 14.10 (9.34) 11.22 (12.97) 13.09 (8.63) 

Flexor hallucis 7.85 (6.14) 7.52 (6.67) 6.10 (5.32) 10.02 (6.80) 10.48 (7.32) 10.89 (10.88) 

Tibialis anterior 5.74 (4.61) 5.61 (4.15) 5.41 (4.11) 21.68 (10.84) 20.00 (14.20) 19.34 (14.37) 

Peroneus brevis 8.04 (3.92) 6.54 (6.12) 6.29 (4.50) 5.14 (8.89) 5.55 (10.75) 5.59 (8.39) 

Peroneus longus 5.12 (5.06) 6.64 (7.04) 3.91 (3.88) 9.59 (11.47) 7.90 (12.18) 14.62 (15.52) 

Peroneus tertius 7.52 (5.16) 6.04 (7.43) 6.57 (4.20) 5.67 (13.80) 6.37 (16.11) 5.61 (12.72) 

Extensor digitorum 4.62 (4.16) 6.06 (5.63) 4.27 (4.19) 8.48 (10.01) 6.52 (11.06) 13.67 (11.68) 

Extensor hallucis 5.09 (5.43) 6.46 (6.55) 4.54 (4.84) 7.34 (13.63) 5.59 (12.52) 12.72 (15.56) 

Patellar ligament 3.95 (2.23) 4.35 (3.22) 3.79 (2.55) 7.71 (3.50) 8.36 (7.20) 7.48 (4.91) 
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Table C.4 Median (IQR) of maximum difference (mm) in moment arm compared to CT-based 

subject-specific model through physiologic range of motion. a Freidman’s ANOVA significant for 

the young adult group. b Repeated measures ANOVA significant for the old adult group. * 

significant difference to isotropic scaling at family-wise p < 0.05 (critical p = 0.008). ‡ significant 

difference between 9 and 14 landmark reconstructions.  

 

 Young Adults Old Adults 

Muscle Scale 9 Landmarks 14 Landmarks Scale 9 Landmarks 14 Landmarks 

Semimembranosus a 3.47 (2.65)   3.09 (2.24)  2.61 (1.46) *‡ 8.33 (4.92) 7.98 (6.02) 7.49 (3.58) 

Biceps Femoris Long 

Head a 

3.65 (2.90) 2.36 (1.90) * 2.45 (2.08) * 5.99 (6.43) 4.76 (5.74) 5.99 (5.12) 

Biceps Femoris Short 

Head a 

3.99 (3.14) 3.01 (2.06) * 2.74 (2.34) * 7.25 (8.20) 6.04 (7.12) 6.79 (6.52) 

Tensor Fasciae Latae  0.66 (0.73) 0.63 (0.76) 0.60 (0.80) 1.02 (0.98) 1.02 (1.54) 1.32 (1.01) 

Soleus 0.13 (0.15) 0.09 (0.17) 0.10 (0.16) 0.27 (0.30) 0.25 (0.43) 0.31 (0.37) 

Patellar Ligament 0.41 (0.41) 0.44 (0.60) 0.40 (0.55) 1.10 (1.38) 0.71 (0.93) 0.70 (1.27) 
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Figure C.1 Comparison of muscle moment arms in the sagittal plane as a function of knee angle 

between models defined by CT, isotropically scaled average, and SSM reconstructed geometries 

(representative example). 
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Appendix D Supplemental Information for Ch 6 
 

D1. Characterizing the relationship between height and the first principal component score 

 A linear regression was calculated to characterise the relationship between participant 

height and the first principal component score for the statistical appearance model training set. 

The relationship was strong (r2 = 0.82). 

 

 

Figure D.1 Relationship between height and the first principal component score. Negative 

principal component scores correspond with greater tibia and fibula size. 

 

y = -664.46x – 1138.45 

r2 = 0.82 
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D2. Geometry and density prediction accuracy when participant-specific marker offsets 

are known 

Tibial-fibular geometry and density distribution were predicted from skin-mounted 

landmarks and one to five cumulative principal components. To enable use of exact offset vectors 

between skin mounted landmarks and corresponding landmarks on the bone surface, markers 

placed and imaged during the CT session were used. The statistical appearance model was 

morphed along the principal components and rigidly transformed to match the morphed model to 

the target landmarks. An initial guess for the first principal component was calculated from height. 

All other principal component scores were initialised as zeroes. The optimization minimized a 

negative log likelihood function of a Gaussian distribution: 

𝐷 =  −0.5𝑙𝑜𝑔𝜎2 ∑
𝑑𝑖

2

2𝜎𝑖
2

𝑖=1
 

where σ is the standard deviation of skin-mounted marker offsets, and di is the distance between 

the target landmark and the model landmark. The position of the model landmark was calculated 

as the position of the bone surface landmark on the model, projected along the participant-specific 

offset vector. Geometry and density distribution RMSEs relative to the participant-specific meshes 

were calculated.  

Friedman tests were used to evaluate differences in RMSE between reconstructions from 

one through five principal components. When differences were found Wilcoxon signed-rank tests 

with Bonferroni corrections were used to test differences between pairs of reconstructions. 

 Geometry RMSE was statistically smaller in predictions from five principal components 

when compared to predictions using one and two principal components. Density RMSE was not 

different between predictions from one through five principal components (p = 0.653). Reducing 

soft tissue offset and marker placement uncertainties by using known personalized offset vectors 
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reduced prediction errors. However, the improvement from using principal components describing 

geometry changes (principal components 2-5) was so small as to be negligible. Some uncertainty 

in soft tissue offsets remained in this analysis due to the cost function used. The geometry 

information provided by the landmarks appears to be limited and insufficient to overcome even 

reduced uncertainties in soft tissue offsets. 

Table D.1 Median (IQR) RMSE for predictions from landmarks with personalized offset vectors. 

 

 

 

 

 

* Significantly different than error from reconstructions using 5 cumulative principal components 

(PC) (p ≤ 0.001, critical p = 0.005) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RMSE 1 PC 2 PCs 3 PCs 4 PCs 5 PCs 

Geometry 

(mm) 

3.75 

(1.25)* 

3.73 

(1.15)* 

3.76 

(1.59)    

3.74 

(1.49)    

3.71 

(1.50) 

Density 

(g/cm3) 

0.152 

(0.036)    

0.157 

(0.055)     

0.159 

(0.040)     

0.156 

(0.037)     

0.159 

(0.043) 
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D3. Between-day intra-rater reliability 

Participants attended two sessions: motion capture and CT. At both sessions markers were 

attached to the skin with tape at twelve landmarks on the tibia and fibula. In addition to the 

predictions from landmarks from the motion capture collection described in the paper, predictions 

were also generated using the landmark set from the CT session. Markers were segmented in the 

CT images and the centroid of each was calculated. CT and motion capture marker sets were 

aligned using a Procrustes analysis, excluding markers that were allowed to move (tibial crest 

markers, fibula diaphysis, and tibial notch). RMSE error between the aligned CT and motion 

capture marker sets was then calculated. 

Tibial-fibular geometry was predicted using the same method described in the main study. 

Tibia-fibula geometry and density were predicted by morphing the statistical appearance model 

along the first one to five principal components and performing rigid-body transformations to 

match the morphed model to the target landmarks. An initial guess for the first principal component 

was calculated from height. All other principal component scores were initialised as zeroes. The 

optimization was performed using the BFGS algorithm in MATLAB, minimizing a negative log 

likelihood function of a Gaussian distribution (Nolte et al. 2020): 

𝐷 =  −0.5𝑙𝑜𝑔𝜎2 ∑
𝑑𝑖

2

2𝜎𝑖
2

𝑖=1
 

where σ is the standard deviation of skin-mounted marker offsets, and di is the distance between 

the target landmark and the model landmark. The position of the model landmark was calculated 

as the position of the bone surface landmark on the model, projected along the mean offset vector 

by the mean offset magnitude and marker radius.  

 Geometry and density distribution RMSEs relative to the participant-specific mesh and 

relative to the motion capture marker set-based prediction were calculated. Intra-class correlation 



150 
 

coefficients were calculated to evaluate the reliability of prediction errors relative to participant 

specific meshes between predictions based on the CT and motion capture marker sets. 

 Median (IQR) RMSE for landmark placement between days was 9.5 (4.4) mm. Variations 

in marker placement between days resulted in differences in predicted geometry and densities. 

Median RMSE between predicted geometries were 3.9 – 4.1 mm. Median RMSE between 

predicted apparent density distributions were 0.008 – 0.050 g/cm3. Geometry and density RMSEs 

illustrated only moderate agreement between days (ICC R2= 0.45 – 0.64). 

 

Table D.2 Median (IQR) RMSE for predictions from one through five principal components (PCs) 

using marker sets from the motion capture and CT sessions. 

RMSE 1 PC 2 PCs 3 PCs 4 PCs 5 PCs 

Geometry (mm)      

Motion capture markers 4.39 (1.68) 4.55 (1.45) 4.63 (1.48) 4.75 (1.78) 4.67 (1.97) 

CT markers 4.15 (1.64) 3.99 (1.41) 4.67 (1.75) 4.54 (1.20) 4.48 (2.09) 

ICC 0.64 0.59 0.56 0.45 0.56 

Density (g/cm3)      

Motion capture markers 0.118 (0.046) 0.127 (0.056) 0.127 (0.049) 0.135 (0.045) 0.142 (0.054) 

CT markers 0.153 (0.036) 0.155 (0.060) 0.161 (0.045) 0.164 (0.045) 0.167 (0.049) 

ICC 0.60 0.49 0.45 0.59 0.47 
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Appendix E Manuscript Publisher Rights and Permissions 
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152 
 

The manuscript presented in Chapter 5 was published in a Taylor & Francis journal and does not 
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