
Proactive Data Management System

Abhishek Gaurav, Nayden Markatchev, Philip Rizk and Rob Simmonds
Grid Research Centre,

University of Calgary, Canada.

1

Contents

1 PDMS Overview 3

2 PDMS Design 4
2.1 System Architecture . 4

2.1.1 Metadata Catalog Service (MCS) . 4
2.1.2 Replica Location Service (RLS) . 4
2.1.3 Reliable File Transfer (RFT) . 5
2.1.4 The Globus Toolkit . 5

2.2 PDMS Internals . 5
2.2.1 Resource Management Component 5
2.2.2 Persistence Component . 6
2.2.3 Replication Component . 7

2.3 Replica Selection Strategy . 8
2.4 Network Overhead . 8
2.5 Scalability . 8
2.6 Support for Different Replication and Data Movement Strategies 9

3 Functional Interface 11
3.1 Register Collection . 11
3.2 Register LFNs . 12

3.2.1 Register Logical File List Schema . 13
3.3 Replicate . 14
3.4 Replication Status . 14
3.5 PFN Lease . 16
3.6 Checkin Data . 17
3.7 Checkout Data . 17
3.8 Grant Permissions . 17
3.9 Deletion . 18

4 PDMS Monitoring 19
4.1 Catalog Based Information . 19
4.2 Replication Information . 20

A Register Logical File List Schema 23

2

1 PDMS Overview

Proactive Data Management System (PDMS) is designed to manage large datasets within
grid environments. PDMS is particularly useful in scientific environments where large
amounts of data are often moved between computing and data archiving sites. PDMS
facilitates management and movement of data using metadata, i.e., the data items are iden-
tified using their inherent properties and characteristics rather than the file names in which
they are stored. The use of metadata abstracts away the physical location of a file allowing
PDMS to transparently manage replicas of a file. It is intended to be used by groups need-
ing to manage large data sets across several locations. PDMS utilizes well known Data Grid
services. This allows it to interoperate with various workflow managers in use today.

Management of data using metadata allows the replication requests to PDMS to be
specified in terms of metadata. For example, a replication request to PDMS can be “move
the data generated by user A for project B within last three months to the site X”. The
metadata in the above example are - (i) generated by user A, (ii) belonging to project B and
(iii) generated in last 3 months. The metadata in the above example correspond to some
logical files in which the data is stored. The logical files can be physically present at multiple
locations, in which case, PDMS locates all pieces of the dataset and initiates a transfer of
all the pieces. Thus, with a given replication request, PDMS needs to perform two key tasks
before initiating transfers - (i) use metadata to establish the logical names of the files that
match the metadata query and (ii) select sources of replicas for those logical files not already
at the destination. This management of replicas on the basis of metadata fills gap in the
previously available Data Management services available.

PDMS is designed to restrict access to authorized and authenticated users who have
permission to use the system. Files are stored in logical groupings referred to as collections.
It also restricts users access to specific collections. These access restrictions resemble file
ownership with ownership of collections as well as read and write privileges. A more complete
description of the access control can be found in [3].

PDMS maintains the consistency of the data for a collection. This currently includes not
allowing the same physical file to be registered twice (as two separate logical files). PDMS
also ensures that users conform to the schema they include in their registration request.
PDMS could be configured to enforce each collection to conform to a specific schema. This
is particularly useful in large groups that need to be sure all metadata contains certain
information and want to prevent buggy registration processes from introduction inconsistency
or incomplete metadata. Consistency requirements for the PDMS system are intended to be
configurable as consistency checking can be expensive.

3

2 PDMS Design

2.1 System Architecture

The system level architecture, depicted in Figure 1, shows the grid services used by PDMS.
They are: the Globus Container, Replica Location Service (RLS), Reliable File Transfer
(RFT) and Metadata Catalog Service (MCS). The role of each of the above services within
PDMS are described next.

RFT

RLS

PDMS
G
S
I

Client
Application

MCS DB

Globus Container

Figure 1: Third-party software dependencies for PDMS.

2.1.1 Metadata Catalog Service (MCS)

MCS is a system that allows management of metadata about logical files. It provides a
means to define, store and access metadata of data. The users of MCS can query for data
items based on their attributes. PDMS uses the MCS schema to manage the metadata of
the datasets that it handles. PDMS acts directly on the database rather than going through
the MCS service for performance reasons. The use of the schema allows the MCS service to
be presented if any applications rely on it.

2.1.2 Replica Location Service (RLS)

RLS is a service distributed with the Globus Toolkit that is used to establish the actual
storage locations of copies of a logical file. A logical file may be stored at multiple physical
locations for faster access. RLS keeps track of all the physical locations at which a logical
file is stored and returns them when queried for a particular file. PDMS uses RLS to retrieve
the physical locations of the set of logical files that were obtained from MCS.

4

2.1.3 Reliable File Transfer (RFT)

RFT is a file transfer service within the Globus Toolkit that is used for reliably transferring
files in a Grid environment. RFT maintains transfer states in persistent storage and can
therefore, successfully recover from failures. PDMS uses RFT to transfer data from physical
locations returned by RLS to the destination site. The current version of PDMS uses RFT,
although different data transfer services could be developed as plugins. Various data transfer
services could be developed with different features and semantics. One example of such a
service could schedule User Controlled Light Path (UCLP) circuits. PDMS could also use
multiple sources to copy files to a single destination. The transfer service would then have the
option of using any of the sources or even all sources at the same time. This is the strategy
used by BitTorrent [2]. It is not clear that BitTorrent can meet the security requirements,
or that its strategies are suitable for the network and file characteristics in Data Grids.

2.1.4 The Globus Toolkit

Apart from the RLS and RFT services, which are part of the Globus Toolkit 4.0 (GT4),
PDMS also uses the Globus Security Infrastructure (GSI) and WS-Core services. The GSI
libraries included with the GT4 toolkit provide the security mechanisms used by PDMS.
The security mechanisms enable client applications to authenticate with PDMS, check if a
client application is authorized to perform an operations serviced by PDMS, and delegate a
client’s credentials to services like RFT. The Java WS-Core component of GT4 implements
the Web Services Resource Framework (WSRF) standards. Following WSRF conventions
makes it easier for other developers to ingrate PDMS into their distributed applications.

Figure 2 further shows the roles of MCS, RLS and RFT within PDMS. The figures depicts
various stages in handling a replication request. Upon arrival of a replication request, PDMS
queries MCS (1) to retrieve the logical names of the files (2). The retrieved list logical names
are then submitted to RLS (3), which finds the physical locations of the logical files (4). As
a logical file can be present at multiple physical locations, RLS returns a list of all locations
for this file. For a logical file that is present at multiple locations, PDMS chooses a single
source location to transfer from. PDMS then submits the source locations of the files and
the destination locations to RFT (5) which performs the actual transfers.

2.2 PDMS Internals

2.2.1 Resource Management Component

Instances of RLS and MCS clients in PDMS are managed using a pool of clients that are
created during the system initialization. The minimum and the maximum number of client
instances is hard coded, but could be made configurable.

5

WAN

Data from
May − Oct

Data from
Project A

Bob’s Data

L2

L1

L4

L3

Physical
Files

P2

P1

P3

P4

Destination
Site

RFT

4

RLS

2

MCS

Proactive Data Management System

Replication Request

1 3 5

Logical
FilesMetadata

Figure 2: Roles of MCS, RLS and RFT in data replication.

2.2.2 Persistence Component

One of the fault tolerance mechanisms in the PDMS system is the ability to save the states
of a replication job as well as the state of a replicating LFN. This is necessary in the case
when an error occurs inside PDMS or inside any of the systems PDMS interacts with. If
a replication job is in progress when transient errors occur, and if PDMS does not keep
track of the replication process, the system may end up in inconsistent state. For example,
if a hardware failure occurs during the replication of N number of files from site A to site
B, and if PDMS does not keep track of the replication process, two problems arise. The
first problem is that upon resumption of proper operation, the system has no knowledge
that a failed replication request ever existed, therefore it would not be able to restart it
automatically. The second problem is that a number of files have been transferred to site B
before the failure occurs, but the system has no knowledge of that fact. This means that if
the same replication request is manually restarted once the system is operational, the files
which have been transferred to site B will be transferred again although they are already
present there. In the case when the replication request is not manually restarted the system
will not account for these files, which would result in a waste of disk space. Consequently,

6

saving the state of a replication is a useful fault tolerance mechanism.
The fault tolerance of PDMS is limited to maintaining information about replication jobs

in the face of a server shutdown. PDMS will continue to monitor the status of a replication job
that has entered the REPLICATING state. This is the only state a replication job spends any
considerable time in; failure during other operations can be recovered by simply restarting
that replication job. If the PDMS server shuts down, upon restart PDMS will continue to
monitor the replicating job. In addition to this awareness, PDMS will continue to attempt to
make progress on a replication task after server shutdown. For this guarantee to be in place
the replication itself is handled by RFT, which offers identical fault tolerance guarantees and
also assures use of GridFTP’s restart mechanisms to ensure previously transferred data need
not be retransferred. There is an option to not use RFT as the transfer mechanism, but this
option does not have the same guarantees that a job will continue to make progress.

At the time of writing, PDMS implements the fault tolerance guarantees by saving the
status of a replication job and the status of a replicating LFN in MySQL database. In order
to abstract this implementation detail the persistence module implements a factory Data
Access Object (DAO) class, which contains the implementation specifics for connecting to a
MySQL database server. The component also contains two other classes that are responsible
for implementing the implementation dependent details that deal with saving the state of
the replication job and the state of a replicating LFN.

2.2.3 Replication Component

The replication component is responsible for the replication of collections. A collection is a
set of files that are grouped together because of a logical dependency amongst them. The
logical dependency could be that the files are part of the same experiment, or that the files
are part of the same observation. One of the logical subcomponents of the replication module
is the Replication Manager. It is responsible for overseeing a replication and for reacting
to unusual events such as errors. The replication task is divided into a number of subtasks
in order to make the design more modular and the code more manageable. The subtasks
are as follows: Replication Job, MCS query job, PFN query job, PFN to PFN job, create
vault directory job, and RFT job. The execution of the subtasks is further subdivided in two
queues. The first queue is called Work queue and it holds all the jobs that are not involved
in the physical movement of data. The second queue is called the Transfer queue, which
holds the rest of the jobs.

The replication process is orchestrated by the Replication Manager where the first task
of the Replication Manager is to initialize a Replication Job. Once the Replication job
is recorded into the persistent database, a directory is created on the destination host by
the create vault directory job. Next, the Replication Manager handles the MCS query to
select LFNs to be replicated. The MCS query job takes a query array, which is an array
of conditions, selects an MCS client from the pool of MCS clients and places itself in the
Work queue. The result of the MCS query job is an array of LFNs. That array is passed
to the PFN query job, which queries the RLS database for the physical locations of the
LFNs. The result is a hash table that has an LFN as a key and a list of PFN locations as a

7

value. The reason why the value is a list of locations is that physical files that correspond
to a LFN could reside in multiple physical locations. This is the case when a collection
has been replicated. Depending on whether RFT is selected as a transport mechanism or
not, the next step could be one of the following. In the case when RFT is selected, the
RFT subcomponent is executed. The RFT job creates and initializes an RFT client and the
actual job of physically transferring the files between sites is delegated to the RFT server.
In the other case, the physical transfer of files is initiated by the PFN to PFN job. The PFN
to PFN job selects the source locations from the hash table, sets up a third party transfer,
and places itself into the Transfer queue. Once a job is in the transfer queue, the actual
movement of data can start to take place.

2.3 Replica Selection Strategy

RLS is used to retrieve the physical locations of replicas. As copies of data items can be
physically present at multiple sites, RLS returns a list of all locations. PDMS uses only
one of the locations to transfer the data from. PDMS selects the first location from the list
of retrieved locations. However, in order to optimize the transfer costs, more sophisticated
strategies could be employed to select the location from which to start the transfer. This
requires a definition of a cost model and an algorithm for selecting the source location.

2.4 Network Overhead

PDMS uses several grid services that may be available on remote servers. Calling those
services will involve network costs. Moreover, those grid services use databases, which again
can be on remote hosts and incur network costs when database operations are performed.
The network cost could be a function of the usage pattern and/or network conditions. This
subsection identifies the various network costs in PDMS design.

Figure 3 shows the interactions that can happen over network between various compo-
nents of PDMS. As PDMS is deployed as a Web service, the clients call the server over the
network. PDMS does not require a full deployment of MCS; a MySQL server with a database
configured using the MCS schema is enough. The MCS database can exist on a remote host
and any interaction with MCS would incur network costs. RFT and RLS are deployed as
Web services and hence, these services are also being invoked over network. PDMS, MCS,
RLS and RFT in turn use databases which may be present on remote hosts and would incur
network costs. All the above interactions are shown as a dotted line in the Figure 3

2.5 Scalability

The MCS and RLS, used by PDMS, are single instance services, i.e., the MCS stores the
metadata information in a database on a single host and the local replica catalog (LRC)
component of RLS maintains information about replicas at a single site. Due to this fact,
MCS and RLS are the potential single points of failure. If the MCS database is unreachable
and/or if the network path to the single LRC component of RLS becomes unavailable, PDMS

8

Application
Client

MCS

RLS

RFT

DB

DBPDMS

DB

DB
Network
Costs

Figure 3: Network Costs involved in PDMS.

would fail in finding the information required to replicate data. It is unlikely either of these
services will become performance bottlenecks. In tests the time taken for queries or additions
to either service is small in comparison to time taken by the GSI handshake of the PDMS
service itself.

The RLS system need not represent a single point of failure. The RLS service is designed
for fault tolerance as an RLS server can have multiple redundant replica location indexes
(RLI) which point to local replica catalogs (LRC) that claim to have knowledge of the
location of a particular logical file. A higher degree of fault tolerance is available by using a
larger number of LRCs and RLIs.

MCS is a single point of failure in the system. One way to keep some functionality when
the MCS database is not available is by creating several slave read only replicas of the MCS
database. This will allow replication requests to continue in the event that the master MCS
is not reachable. Given the complexity involved in dealing with inconsistent modifications
to MCS, it does not seem useful to attempt to allow MCS modifications to a non-primary
MCS database.

2.6 Support for Different Replication and Data Movement Strate-

gies

PDMS has been primarily designed as a tool to replicate datasets in distributed environ-
ments. However, in the current design, the decisions of when and where to replicate the
data items are not made or supported by PDMS. Datasets can be replicated using a num-
ber of strategies. For example, replicate data based on the usage history or replicate data

9

based on the present/future system conditions. The PDMS design could be extended provide
mechanisms to support different replication strategies.

PDMS uses the RFT service to perform the actual data movement. However, RFT is
just one mechanism of doing the transfers; data transfers can be performed using several
other replications services. For example, PDMS can make use of a GridFTP overlay network
that splits TCP connection for improved performance [4]. The design of PDMS allows for
the integration of new data movement mechanisms.

10

3 Functional Interface

The PDMS system is a Web service and its interface is formally described in Web Service
Description Language (WSDL). This section describes the functionality provided by the
PDMS.

3.1 Register Collection

Figure 4: Activities for a register collection operation.

A collection within MCS is a user-defined aggregation of logical file names and/or other
collections. Collections in MCS are conceptually similar to directories on the filesystems.
Collections aid in supporting authorization on groups of files rather than on individual files.
PDMS requires that all the logical files for a certain dataset belong to an MCS collection.
The ‘register collection’ operation within PDMS registers the specified collection with the
system. The following input parameters are accepted by the ‘register collection’ operation:

• Collection Name - The name of the collection.

• Collection Attributes - An array of attributes for the collection.

• Owner DN - The distinguished name of the owner of the collection.

• Manager Members - An array of the distinguished names of the users who have man-
agement privileges on the collection.

• Read Members - An array of the distinguished names of the users who have read
privileges on the collection.

11

• Write Members - An array of the distinguished names of the users who have write
privileges on the collection.

The following output parameters are produced by ‘register collection’:

• Return Code - The return code of the operation.

• Error Message - The error message if the collection could not be successfully registered.

Figure 4 shows the activities that are performed within client, PDMS server and MCS when
a register collection operation is invoked. Client sends a request to the PDMS server, as seen
in the figure, which then creates a MCS client and sends the collection creation request to
MCS. The result of collection creation, obtained from the MCS, is send as the response to
the client.

3.2 Register LFNs

A set of metadata uniquely identifies a logical file name. ‘Register LFNs’ in PDMS allows
to register a set of LFNs to a collection. It accepts a set of metadata corresponding to
certain dataset and creates and registers the logical file names within MCS. Following input
parameters are accepted by ‘register LFNs’:

• MetaData - The metadata of the data in XML format. The XML representation of
the metadata should conform to the PDMS schema, explained in Section 3.2.1.

• PartialRegistration - A flag that indicates whether the failure of registration of a single
logical file fails the entire registration request.

The following output parameters are generated by ‘register LFNs’:

• Return Code - The return code of the operation.

• Error Message - The error message, if any.

• New LFNs - An array of the new logical file names created by PDMS upon registration
of data with MCS.

• Old LFNs - An array of the logical file names that were already registered and were
tried to register again.

Figure 5 shows the activities that are performed within client, PDMS server and MCS when
a ’register LFNs’ operation is invoked.

12

Figure 5: Activities for a register LFNs operation.

3.2.1 Register Logical File List Schema

PDMS allows registration of datasets. A dataset can be registered by specifying the metadata
of the data. The metadata is specified in XML format. In order that PDMS understands
the XML representation of metadata, the XML document should conform to a pre-defined
schema. The description of XML schema is as follows:

• The root entity of the XML document should be a logical file list. A list contains at
least one logical file entity.

• A logical file entity is a sequence of at least one physical location entity and at least
one file attribute entity.

• A physical location entity is a standard XML URI.

• A file attribute entity contains exactly one attribute name and a choice of the at-
tribute type from - STRING, INTEGER, FLOAT, DATE, TIME or DATETIME.

In the above schema, a file attribute represents a single attribute or characteristic of the data.
Combination of file attribute(s) and physical location(s) represent the location(s) where the
data corresponding to the attribute(s) is present, the logical file entity. A collection of logical
file entities, the logical file list represents a dataset. A specific group of users may have more
restrictive requirements on a logical file in their data set. For example they may insist that

13

all logical files have a start date associated with it. PDMS will enforce the consistency of
other schemas, but all schemas must be a subset of this one for PDMS to function.

The XML schema is included in Appendix A.

3.3 Replicate

Replicate operation is used to replicate a collection. This operation uses the Reliable File
Transfer (RFT) service to perform the transfers. The following input parameters are accepted
by the ‘replicate’:

• Query Array - Query Array is an array of conditions on the metadata that uniquely
identifies a dataset. A condition is of the form <attribute type> <attribute name>
<condition> <attribute value>.

• Destination hostname - The hostname of the destination site.

• Vault - The location in the filesystem on the destination site.

The following output parameters are produced by ‘replicate’:

• Return Code - The return code of the operation.

• Error Message - The error message, if any.

• Replication Id - The unique id for the replication job. This id can be used to retrieve
the status of replication.

Figure 6 shows the activities that are performed within client, PDMS server, MCS, RLS and
RFT when a ’replicate’ operation is invoked.

3.4 Replication Status

Replication Status returns the current status of a previously submitted replication task. It
accepts the following input parameters:

• Replication Id - The unique id of the replication job, got from the ‘replicate’ task.

The following output parameters are produced by the operation:

• Replication Id

• Status - The status of the replication job can be either of:

– Received - The replication request has been received by PDMS.

– LFNs Retrieved - The logical file names for the data to be replicated have been
retrieved from MCS. This corresponds to the step 2 in Figure 2.

14

Figure 6: Activities for a replicate operation.

– PFNs Retrieved - The physical file names for the data to be replicated have been
retrieved from RLS. This corresponds to the step 4 in Figure 2.

– Transferring - The data is being transferred from the source locations to the
destination site. This status corresponds to the step 5 in Figure 2.

– Done - All the transfers have been completed.

• Number of Transfers Finished - The number of files that have been already transferred.

• Number of Transfers in Progress - The number of files that are currently being trans-
ferred.

• Number of Transfers Pending - The number of transfers that have still not been started.

• Number of Errors - The number of transfers that have failed.

• Estimated Completion Time - The estimated time in which all transfers will be com-
pleted.

15

Figure 7: Activities for retrieving replication status.

• Errors Encountered - An array of error messages indicating the problems occurred
during the transfers.

Figure 7 shows the activities that are performed within client and PDMS server when status
of a replication job is retrieved.

3.5 PFN Lease

PFN lease is used to acquire unique namespace for a set of files on a particular storage
location. This operation is used when checking in a dataset into PDMS. This operation
guarantees unique physical file names for the files within dataset. The interface of this
operation contains following input parameters:

• Number of Files

• Length of lease required

• List of possible sites

The output parameters are:

• Return Code

• Error Message

16

• Expiry Time

• Array of PFNs that can be used

3.6 Checkin Data

Checkin is a client side operation that moves a dataset to PDMS aware storage location(s)
and subsequently registers the dataset with the PDMS. This operation is particularly useful
when the dataset lies within a firewall and an outside PDMS server cannot access it. The
client, inside the firewall, uses the PFN Lease operation to acquire a set of unique physical
file names at the storage location(s). The dataset is then transferred to the storage locations
by the client which uses GridFTP for the data movement. The checkin operation differs from
the replicate operation in a sense that checkin is handled by the client whereas replicate is
handled by the server. It is to be noted that subsequent to the checkin operation, the PDMS
server is not aware of the source location(s) of the checked-in dataset.

3.7 Checkout Data

Checkout is a client side operation that copies a dataset from PDMS aware storage location(s)
to a local system. The checkout operation first queries the PDMS server to retrieve the
physical file locations of the interesting dataset and then initiates a GridFTP transfer of files
from those locations to the local system. Subsequent to this operation, the PDMS server
is not aware of and does not track the checked-out dataset. This operation is particularly
useful when a user wants to retrieve a personal copy of the dataset from the PDMS system.

3.8 Grant Permissions

PDMS provides varying amount of authorization on the data and the meta-data that the
system handles. This section describes the authorization mechanisms for the meta-data. The
authorization on meta-data is handled at the collection level. When a collection or a file gets
created, by default the user creating the object gets the read, write and manage permissions
on it. This user a.k.a the owner can further distribute appropriate permissions to the other
users using the grant permission operation. The input interface of this operation contains
following parameters:

• Requesting user

• Set of target users

• Permission values

• Collection id

The output parameters are:

17

• Return Code

• Error Message

3.9 Deletion

Deletion provides mechanisms to delete objects from PDMS. The candidate objects are
collections, logical files and the actual physical files. Deleting a collection can mean deleting
just the collection or the collection and the logical files beneath it or the collection and the
logical and physical files beneath it. Similar semantics exist for deleting the logical files. The
deletion interface is as follows: The input parameters are:

• Deletion object - collection or lfn or file

• Collection identifier

• Lfn identifier

• File identifier

• Recurse Collections - boolean flag

• Recurse Lfns - boolean flag

• Recurse Files - boolean flag

The output parameters are:

• Collection deletion succeeded/failed/skipped

• Logical files deletion succeeded/failed/skipped

• Physical files deletion succeeded/failed/skipped

18

4 PDMS Monitoring

As PDMS is designed to handle large amounts of data, located at multiple storage sites and
multiple logical collections, it becomes important to provide a monitoring service that aids
in keeping track of the details of data that it manages. PDMS includes a GUI based tool
that provides such a service for presenting live information of PDMS state. The monitoring
tool is based on client-server model in a sense that it interacts with the PDMS server over
the Web services to gather the information.

Within PDMS, logical collections are the primary objects for categorizing related data.
The PDMS monitoring tool provides a per collection based monitoring. The tool monitors
two key aspects of a collection - (i) catalog based summary information that details the
specifics of collection contents and distribution of collections across various sites, and (ii)
information about replication jobs, details of the migration of data associated with a col-
lection. Changes to the information presented by the PDMS monitor is event driven and a
change on the server side is reflected immediately on the client side. The WSRF notification
facility from the Globus toolkit has been used to provide even driven updates.

The PDMS monitor can be used in two ways. First, as a standalone Java swing appli-
cation that can be started using a command line interface and second, as an applet that
is deployed over Internet into a browser. In order to access the monitored information in
a portable manner, Gridsphere portal framework [1] is used to deploy the applet version of
the monitoring tool. Gridsphere is a framework that allows easy deployment of third-party
portlet web applications. Use of Gridsphere to deploy the monitoring tool enables the PDMS
information to be presented along with information other systems that produce or consume
the data managed by PDMS. For example, information about the PDMS managed data,
required or produced by a workflow, can be presented along with the information about
the job executions of that workflow for better understanding of the workflow processes. Fig-
ure 8 shows the PDMS monitor deployed within Gridshpere portal framework. The following
subsections provide the details of the monitored information.

4.1 Catalog Based Information

The catalog based information includes details of the collection’s contents and the spread of
the collection across storage sites. Specifically, it presents the following information:

• Distinguished names of the owner and users of the collection. The user that creates
the collection is the owner of the collection and the users that store data within that
collection are termed the users of that collection.

• The logical and physical file counts and the corresponding data sizes. A logical file
F of size S can be physically present at multiple locations M. In this case, logical file
count is 1, physical file count is M, logical data size is S and physical data size is M*S.

• The redundancy level or the extent to which the collection is replicated, i.e., how many
files in the collections have how many replicas.

19

Figure 8: PDMS Monitor deployed within Gridsphere portal framework.

• The storage sites used by the collection and the percentage of the collection files present
at each of those sites.

• Usage of a particular storage site, i.e., what percent of the storage site is occupied by
the collection. In order to get this information, the PDMS monitor queries MDS to
retrieve the total storage capacity of the storage site.

Figure 9 shows the catalog based information as presented by PDMS monitor.

4.2 Replication Information

The replication information includes details of the replication jobs associated with a col-
lection. PDMS records the details of the replication jobs for fault tolerance purposes, as
mentioned in Section 2.2.2. The PDMS monitor queries PDMS for presenting the replica-
tion information. Specifically, the following information about replication jobs is presented:

• user who started the replication job,

• current status,

• times at which the replication job was requested, started, and completed or last re-
ported,

• the replication destination,

20

Figure 9: Catalog information page of the PDMS monitor.

• the metadata query used to invoke the replication job,

• the data transfer route, i.e.. the hosts involved during the data transfer; this may
include any host(s) that may have been used to split the network connection,

• the total number of logical files and the associated data size,

• the current progress in terms of number of files and associated data sizes completed,
failed, active, pending and being retried.

Figure 10 shows the replication information for a collection as presented by PDMS monitor.

21

Figure 10: Replication information page of the PDMS monitor.

22

A Register Logical File List Schema

<?xml version="1.0"?>

<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:pdms="http://telesim.cpsc.ucalgary.ca/wsrf/services/PDMS"

elementFormDefault="unqualified"

attributeFormDefault="unqualified"

targetNamespace="http://telesim.cpsc.ucalgary.ca/wsrf/services/PDMS">

<xsd:element name="logicalFileList" type="pdms:logicalFileList"/>

<!-- a pdms:fileAttribute consists of a name, and an element

of one of the MCS types(excluding spatial) this ensure the

parser can deal with the values.

ie. if the MCS_INTEGER type is used, what is actually included

is an integer-->

<xsd:complexType name="fileAttribute">

<xsd:choice>

<xsd:element name="MCS_STRING" type="xsd:string"/>

<xsd:element name="MCS_INTEGER" type="xsd:integer"/>

<xsd:element name="MCS_FLOAT" type="xsd:float"/>

<xsd:element name="MCS_DATE" type="xsd:date"/>

<xsd:element name="MCS_TIME" type="xsd:time"/>

<xsd:element name="MCS_DATETIME" type="xsd:dateTime"/>

</xsd:choice>

<xsd:attribute name="att_name" type="xsd:string" use="required"/>

</xsd:complexType>

<!--a logical file consists of one or more locations and one or

more fileAttributes-->

<xsd:complexType name="logicalFile">

<xsd:sequence>

<xsd:sequence minOccurs = "1">

<xsd:element name="physicalLocation" type="xsd:anyURI"

minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:sequence minOccurs = "1">

<xsd:element name="fileAttribute" type="pdms:fileAttribute"

minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

23

</xsd:sequence>

</xsd:complexType>

<!--a logical file list contains of one or more logicalfiles-->

<xsd:complexType name="logicalFileList" >

<xsd:sequence>

<xsd:element name="logicalFile" type="pdms:logicalFile"

minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="collection" type="xsd:string" use="required"/>

</xsd:complexType>

</xsd:schema>

24

References

[1] Gridsphere portal framework. http://www.gridsphere.org.

[2] B. Cohen. Incentives build robustness in BitTorrent. In Proceedings of the 1st Workshop
on Economics of Peer-to-Peer Systems, 2003.

[3] U. of Calgary Grid Research Centre. PDMS user management document. GRC Internal
report.

[4] P. Rizk, C. Kiddle, and R. Simmonds. A GridFTP overlay network service. In 7th
IEEE/ACM International Conference on Grid Computing, 2006.

25

