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Abstract

Mutual exclusion is a well known in distributed computing. Mutual exclusion comes into

exsistence when n processes try to access the Critical Section at the same time. It prevents

any two processes from accessing the Critical Section simultaneously. Mutual exclusion is a

standard building block for shared memory algorithms.

This thesis presents the performance comparison of various Randomized and Deterministic

mutual exclusion algorithms. The performance of these algorithms is compared in the same

environment and using the same platform. To perform these comparison tests, time taken

by processes to execute mutual exclusion algorithms is measured in isolation, and in data

structures (implemented based on mutual exclusion algorithms). Different test cases have

been considered to gain some insight about how different algorithms behave under different

levels of contention. These test cases involve various combinations of insertion, deletion and

look-up operations.

From this comparison tests, we gain some insight about which mutual exclusion algorithms

are most resilient to contention. We can use this knowledge while doing concurrent program-

ming. We can choose our mutual exclusion locks based on insertions, deletions and look-ups

in the concurrent programming.
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Chapter 1

Introduction

The Mutual exclusion problem was first defined by Dijkstra in 1962. Then, in 1965, Dijkstra

provided the first solution to it [14]. Mutual exclusion algorithms can be used to protect

a shared resource such as some parts of shared memory from concurrent access. A mutual

exclusion algorithm provides methods lock() and release(). After a process completes

the lock() method and before it starts executing the release() method call, a process is in

the Critical Section. The methods lock() and release() ensure that only one process is in

the Critical Section at any time. This property is called mutual exclusion property. Progress

properties ensure that some processes make progress towards capturing the lock. The most

important progress properties are deadlock freedom and starvation freedom. Deadlock free-

dom assures that out of all the processes calling lock(), at least one completes the lock()

method call, provided all processes (executing the lock or release methods) take sufficiently

many steps and the Critical Section is finite. Starvation freedom assures that all processes

calling lock() will eventually succeed provided all processes (executing the lock or release

methods) take sufficiently many steps and the Critical Section is finite.

Since Dijkstra proposed the problem, researchers proposed several mutual exclusion algo-

rithms with various properties. Initially, mutual exclusion algorithms were designed for two

processes only, e.g. the algorithms by Dekker [14] and Peterson [21]. Later, researchers de-

signed mutual exclusion algorithms for any number of processes. In the beginning, research

did not take in account how hardware can affect the performance of algorithms, i.e. how the

speed of the processor memory interconnect and locality of data can affect the performance.

When an operation needs to traverse the processor memory interconnect for accessing the

shared memory, it is refered to remote memory reference (RMR). Starting with Yang and
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Anderson [1], reseachers started taking remote memory references into account when design-

ing mutual exclusion algorithms.

In recent years, a major focus of mutual exclusion research was on minimizing the num-

ber of remote memory references. Reseachers came up with local spin algorithms, in which

processes busy-wait on shared memory variables that are locally accessible. This bounds

the number of remote memory references a process incurs. The time complexity in these

algorithms is measured in terms of the remote memory references a process incurs in the lock

and release methods. There are several mutual exclusion algorithms which have O(1) RMR

complexity, e.g. the MCS lock [26] and the CLH lock [22], but they use strong primitives

such as swap() and getAndIncrement().

In a randomized mutual exclusion algorithm, an adversary controls the scheduling of the

steps by different processes. Different types of adversary models that have been considered

are the oblivious, the weak, and the strong adaptive adversary. The oblivious adversary is

one which has to make all scheduling decisions in advance, independent of processes random

choices. This means that coin flips by a process will have no impact on the scheduling. The

strong adaptive adversary is one which sees the result of every coin flip and can use that

knowledge for later scheduling decisions. The weak adversary sees the coin flip result only

after the process has taken a step after the coin flip. Hendler and Woelfel [13] presented a

randomized mutual exclusion algorithm with O(log n / log log n) RMR complexity against

the strong adaptive adversary which uses compareAndSwap objects (CAS) (see Section 2.2.2)

and read-write registers. Giakkoupis and Woelfel [16] also presented a tight lower bound

of Ω(log n / log log n) for the RMR complexity of deadlock-free randomized mutual exclu-

sion algorithms against the strong adaptive adversary in both Cache-Coherent (CC) and

Distributed Shared Memory (DSM). In an unpublished paper, Giakkoupis and Woelfel [16]

present a randomized mutual exclusion algorithm against the oblivious adversary (having

lower bound of O(log n/ log log n)).

2



The main motivation behind this thesis is comparing the performance of the randomized

mutual exclusion algorithm proposed by Giakkoupis and Woelfel against other well known

mutual exclusion algorithms such as the MCS lock [26], the CLH lock [22], the TAS [4], the

TTAS [4], mutual exclusion algorithm using registers [1], the randomized mutual exclusion

algorithm by Hendler and Woelfel [13] and the Java re-entrant locks. The performance of

these algorithms is compared in the same environment and using the same platform. The

main focus of the thesis is to test these algorithms under different test conditions. From

these performance tests, we gain some insight about the mutual exclusion algorithms in var-

ious scenarios. We also gain some information about how different algorithms behave under

different levels of contention (number of processes executing an algorithm concurrently).

To perform these comparison tests, time taken by processes to execute mutual exclusion

algorithms is measured in isolation, and in data structures (implemented based on mutual

exclusion algorithms). The time taken by each process to execute the lock() and release()

method is recorded in both the cases. Then the average of total time is represented graphi-

cally. When comparing the performance of mutual exclusion algorithms in data structures,

coarse-grained and fine-grained locking techniques are considered.

The rest of the thesis is organized as follows. Chapter 2 describes the asynchronous shared

memory model. It also defines the mutual exclusion problem and its different progress prop-

erties. In Chapter 3, we describe several mutual exclusion algorithms in detail and the

methodology of our experiments is explained in Chapter 4. Chapter 5 presents the detailed

test results of the experiments conducted on mutual exclusion algorithms, and in Chapter 6,

we summarize our contributions, limitations of this work, and some oppurtunities for future

work.

3



Chapter 2

Preliminaries

2.1 System Assumptions

The model used is asynchronous, in which processor activites can be delayed by the events

such as interrupts, preemptions, failures etc. These delays are unpredictable and can vary in

durations. The asynchronous shared memory system consists of fixed number of processes

n which have unique and consecutive IDs, starting from either 0 or 1. In this thesis, we

assign consecutive IDs to the processes in order to implement mutual exclusion algorithms.

The processes communicate by operations on shared objects. An operation is either atomic

or non-atomic. An operation is said to be atomic if it completes in a single step. A non-

atomic operation is an operation which completes in multiple steps. Each process executes

its program at varying speed. Processes do not fail in the system. A process take steps in

the system until it terminates i.e. there are no more steps to take.

2.2 Standard Shared Object Primitives

The common shared objects provided by many multiprocessor architectures are TestAnd-Set

(TAS) and Compare-And-Swap (CAS). Atomic TAS and CAS operations can be used to

protect a shared resource (shared data structure or shared device) from being concurrently

accessed by multiple processes. TAS and CAS objects are often used in the implementation

of the mutual exclusion algorithms. TAS and CAS objects are explained in detail in Section

2.2.1 and 2.2.2.
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2.2.1 Test And Set (TAS)

A TAS object X stores a boolean value. Initially, the value of the object is false. The

object supports two operations, X.TAS() and X.reset(). X.TAS() operation writes true

and returns the previous value of the object [38]. X.reset() operation sets the value of X

to false.

2.2.2 Compare and Swap (CAS)

A CAS object X supports two atomic operations X.CAS() and X.Read(). Operation X.Read()

returns the value stored in X. The operation X.CAS(exp,new) takes two arguments exp and

new and returns a boolean value. The X.CAS(exp,new) operation tries to change the value

of X from exp to new. If the value of X equals exp then X.CAS(exp,new) succeeds and

returns true and the value of X is changed to new; otherwise it fails and false is returned

and the value of X remains unchanged.

2.3 Atomic Integer (AI)

An Atomic Integer is most commonly available in Java and extends a Number class [28]

in Java. Atomic Integer class is useful in the implementing mutual exclusion and other

concurrent algorithms. An Atomic Integer X stores integers only and supports the operations

getAndIncrement(), getAndDecrement() and getAndSet(). The intial value of X is 0. The

X.getAndIncrement() operation increments the current value of X by one and returns its

previous value. The X.getAndDecrement() operation decrements the current value of X by

one and returns its previous value. Operation X.getAndSet(newvalue) takes one argument

newvalue and atomically sets the value of X to newvalue and returns the previous value

[27].

5



2.4 Asynchronous Shared Memory Architecture

In this thesis, the asynchronous shared memory architectures based on cache coherence (CC)

and distributed shared memory (DSM) are considered (see Figure 2.1). They are defined as

follows:

2.4.1 CC model

In a CC machine, each processor has a local cache. A cache coherence protocol is used to

obtain cache coherence i.e. to maintain consistency of data in the memory. In the CC model,

the shared memory is external memory which can be accessed by all processors. Each shared

variable is stored in shared memory. When the value of a shared variable changes, the copies

of that shared variable in the local caches are invalidated. Two types of cache coherence

protocols are write-through and write-back caching.

In write-through caching, to read the value of register R, a process p checks whether it has

a valid cached copy of R or not. If it does, p obtains the value of R from the cache (“cache

hit”). Otherwise it accesses the shared memory to obtain the value of R (“cache miss”); this

is called a remote memory reference. To write the value, a process p updates the value of R

in the shared memory causing an RMR and all copies of R in all local caches are invalidated.

In write-back caching, each cached copy is held in one of two modes, shared or exclusive.

To read R, a process p first checks whether it has a cached copy of R in either mode, and

if it does, p reads R without accessing the remote memory. Otherwise, it incurs a remote

memory reference that creates a cached copy of R in shared mode and invalidates any copy

of R held by other processes in exclusive mode. To write R, process p makes sure that it

has R in exclusive mode. If it has a cached copy of R in exclusive mode, then it updates

R in its cache without causing any remote memory reference. Otherwise it incurs a remote

memory reference to create a cached copy of R in exclusive mode and writes back R to the

shared memory invalidating all other cached copies of R [17].

6



Figure 2.1: (a) CC model (b) DSM model

2.4.2 DSM model

In DSM systems, each process has its own local memory segment. Each memory segment

is local to the process owning it and is remote to all other processes. The local memory

segments of all processes form the shared memory of the system. The local memory of

each process can be accessed using the interconnection network. Each process can access the

local memory segment it owns without traversing the interconnection network. A process can

access the variables in other process’s local memory segments by using the interconnection

network; each such access is called a remote memory reference.
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2.5 Mutual Exclusion

The mutual exclusion problem was first identified by Dijkstra in 1962 and later in 1965,

Dijkstra [14] presented a solution to the mutual exclusion problem. Mutual exclusion is

useful when n processes, concurrently try to access the same shared resource. Dijkstra’s

algorithm provided a solution which prevents any two processes from using the same shared

resource simultaneously. Since then the mutual exclusion problem gained the interest of many

researchers. Mutual exclusion is a standard building block for shared memory algorithms.

The mutual exclusion problem can be defined in terms of Lock objects. The type Lock

provides the methods, lock() and release(), which do not return any value. A process

must alternate lock() and release() method calls and it can call the release() method

only after it called the lock() method.

A process owns the lock if it has completed its lock() method but has not started its

release() method. A process which owns the lock can release it by calling release(). A

process which has started but not finished the lock() method is in the Entry Section. A

process which has started but not finished the release() method is in the Exit Section. A

process which has completed the lock() method call but has not called release() is in the

Critical Section. A process outside the Entry, Exit and Critical Sections is in the Remainder

Section.

A mutual exclusion algorithm should satisfy the following properties:

Mutual Exclusion: At any time, at most one process can be in the Critical Section.

Deadlock Freedom: If some of the processes are in the Entry Section, then some process

will eventually be in the Critical Section provided all the processes which are not in the

Remainder Section take enough steps [21].

Mutual exclusion is a safety property, i.e. it ensures that the program is correct. Deadlock

freedom is a progress property, i.e. out of all the processes trying to access the lock at least

some of them make progress and complete the lock() method call, provided all processes

8



take sufficiently many steps in the system. This ensures that the system never freezes.

There are some stronger progress properties which some mutual exclusion algorithms satisfy:

Starvation Freedom: Every process that attempts to capture the lock by calling the

lock() method will eventually succeed provided all processes which are not in the Remainder

Section take sufficiently many steps, i.e. every lock() method call will eventually return.

Starvation freedom is stronger than deadlock freedom, i.e. it ensures deadlock freedom but

not vice versa.

First Come First Served (FCFS): A doorway is a piece of code which is wait-free. To

define the FCFS property, processes are required to execute a doorway at the beginning of

the lock() method. A mutual exclusion algorithm satisfies the FCFS property, if in any

execution, where some process P finishes the doorway before some process Q starts it, P

enters the Critical Section before Q does.

Wait Freedom: A piece of code is said to be wait-free if a process completes it in finite

number of steps. Bounded Exit: Bounded Exit means that the processes execute the

release() method in a bounded number of steps i.e. the release() method is wait-free.

Re-entrant Mutual Exclusion: Re-entrant mutual exclusion provides a recursive locking

mechanism, i.e. the same process can acquire the same lock multiple times while it is holding

the lock. A mutual exclusion algorithm is re-entrant, if a process calls a lock() method while

it is in the Critical Section. A lock in the mutual exclusion algorithm is made re-entrant

if it guarantees thats the progress properties will hold even if a process execute the lock()

method call in the Critical Section. Note that in a non re-entrant mutual exclusion algorithm,

a process which executes the lock() method in the Critical Section then may deadlock itself

as it is trying to acquire a lock which it already holds.
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2.6 Local Spin Algorithms

We say that a process is busy-waiting or spins on a variable if it repeatedly reads that

variable until the variable has a value satisfying some condition. Local spinning means that

the process is busy-waiting on a locally accessible spin variable (the variable which is stored

in the local caches or the local memory segment of the spinning process and which can be

accessed without causing remote memory reference. In CC machines, a process spins on a

cached copy of the shared variable and does not incur an RMR until a “cache miss” occurs.

In DSM machines, every process needs to use its own spin variable, i.e. a spin variable stored

in its local memory segment. Busy-waiting on these spin variables does not cause any remote

memory reference.

2.7 RMR complexity of Mutual Exclusion Algorithms

Let e be an execution in which process pi calls the lock() and release() method ki times,

where ki ∈ {0,∞} ∪N . Then the RMR complexity of e is:

RMR(e) = MAX{P i,1≤i≤n},{1≤j≤ki} RMR(e){P i,j}

where, RMR(e){P i,j} is the number of RMRs incurred by process Pi in its passage j i.e. its jth

lock() and release() calls combined. The RMR complexity of mutual exclusion algorithm

A is the maximum number of RMR(e) for all executions e. Often, the performance of shared

memory algorithms is measured in terms of step complexity i.e., the maximum number of

steps taken by any process to finish its algorithm. In mutual exclusion algorithms, busy-

waiting of a process can be unbounded (a process can incur an unbounded number of steps)

as some other process owning the lock might be in the Critical Section for an unbounded

amount of time. There are some local spin algorithms, where processes incur only a bounded

number of RMRs. RMRs take much more time than “cache hits” and local memory accesses.

Therefore, it is better to use RMR complexity as a metric to measure the time complexity

of mutual exclusion algorithms [24].
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Chapter 3

Related Work

3.1 2-Process Mutual Exclusion

There are various well-known mutual exclusion algorithms for n-process. The most com-

mon 2-processes mutual exclusion algorithms [14] are Dekkers’s algorithm and Peterson’s

algorithm. Peterson’s algorithm is explained in detail below. Dekker’s mutual exclusion

algorithm is a bit more complex and cannot be easily extended to n processes. In Peterson’s

algorithm, a shared variables victim and a boolean array flag [] is used (see Figure 3.1). In

the lock() method, process p sets flag[p] to true in line 1 to indicate that it wants to enter

the Critical Section. Then the process writes its ID to victim in line 2. In line 3, a process

busy waits as long as it reads its own ID in, victim or until the flag of the other process is

true. If either of the above conditions fails then a process enters the Critical Section.

Assume that processes have IDs 0 and 1.

Class Lock

shared: boolean flag[0,1]
int victim

Method lock()

1 flag[p].write(True) /* I’m interested*/
2 victim.write(p) /* you go first*/
3 while flag[1− p].read()=True ∧ victim.read()=p do

4 end

Method release()

5 flag[p].write(False) /* I’m not interested*/

Figure 3.1: Peterson’s Lock Implementation
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Lemma 1. Peterson’s lock provides mutual exclusion for two processes

Proof. Suppose at time t, both processes, q and 1−q, are in the Critical Section. Each process

must have set its flag to True in line 1 and later written its ID to victim in line 2. Assume

that process q ∈ {0, 1} executes the write operation in line 2 at time t′ after process 1−q does.

Then at time t′, both processes must have already executed line 1. Then throughout [t′,t],

flag[1− q] = flag[q] = True and victim = q. So, process q does not finish the while-loop

during [t′,t] and does not enter the Critical Section at time t. A contradiction.

Lemma 2. Peterson’s lock provides starvation freedom.

Proof. Assume that the Critical Section is finite and also assume for the purpose of contra-

diction, that processes q and 1− q execute infinitely many steps but q does not finish. This

means that every time process q, reads victim, the value of victim is q or it reads the value

of flag[1 − q] true. While process q busy-waits, process 1 − q may be repeatedly entering

and leaving the Critical Section or 1− q may be either in the Remainder Section or it may

be spining in the while loop for an unbounded number of steps. These cases are discussed

seperately:

Case 1: Process 1− q is repeatedly entering and leaving the Critical Section

If process 1− q ever enters the Critical Section again, it will set victim = 1− q in line 2 of

lock() and never changes victim back to q. Once process q reads victim = 1 − q, it will

finish the while loop and enter the Critical Section.

Case 2: Process 1− q is in the Remainder Section forever

If 1 − q is in the Remainder Section, then flag[1 − q] = false and q will finish the while

loop and enter the Critical Section.

Case 3: Process 1− q busy-waits in the while loop forever

In this case victim = 1− q and thus q will enter the Crtitical Section eventually.

This proves that process q does not starve.
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RMR Complexity of Peterson’s lock. In the DSM model, the RMR complexity is

unbounded. Suppose victim is in q’s memory segment. If process 1− q busy-waits in line 3

in Figure 3.1, it repeatedly reads the value of victim from q’s memory segment. Because q

can be in the Critical Section for an arbitrary amount of time, process 1 − q may incur an

unbounded number of RMRs.

In the CC model, the RMR complexity of Peterson’s lock is constant. A process incurs at

most a constant number of RMRs (i.e. 3 RMRs) in lines 1, 2 and 5 in Figure 3.1. A process

q incurs a constant number of RMRs in line 3 of Figure 3.1 because neither flag nor victim

can change a constant number of times until q enters the Critical Section. Suppose either

flag or victim change more than a constant number of times during the time interval during

which q does not finish the while loop. As the algorithm is starvation free so while process

q is waiting in the while loop, 1− q can get the lock a constant number of times. The above

statement implies that process 1−q can change flag and victim a constant number of times.
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3.2 Mutual Exclusion Algorithms for More than Two Processes

There are various n-process mutual exclusion algorithms. Examples are Lamport’s Bakery

Algorithm [21] and the Filter lock [21]. Both are not local spin algorithms. A very early

local spin mutual exclusion algorithm with constant RMR complexity is the CLH queue

lock [22]. One drawback of this algorithm is that it performs poorly on cache-less memory

models. Later, Mellor-Crummey and Scott [26] presented another n-process mutual exclusion

algorithm that uses local spinning. Since then, the local spin mutual exclusion algorithms

have gained considerable interest of researchers, and various local spin mutual exclusion

algorithms have been devised. The overview of some of better known local spin mutual

exclusion algorithms are explained in Section 3.2.1.

Adaptive local spin mutual exclusion algorithms are those in which the RMR complexity

depends on the number of processes calling the lock() method concurrently, i.e., the RMR

complexity is a function of the contention. Adaptive mutual exclusion algorithms will be

explained in detail in Section 3.3.3.

3.2.1 Overview of Local Spin Algorithms

This section gives the high level description of some of the better known local spin mutual

exclusion algorithms.

Some of the first local spin algorithms [4, 26] used read-modify-write operations. Read-

modify-write operations read the memory location and write a new value to the memory lo-

cation atomically. Some of the examples of read-modify-write operations are testAndSet(),

fetchAndAdd() and getAndSet().

In the CLH mutual exclusion algorithm, the getAndSet() operation is used. The CLH al-

gorithm has O(1) RMR complexity. Each process has a node, myNode of type Node which

has a boolean locked field and a reference to some other node object. Processes which call

the lock() method form a list. The list has a tail pointer which points to the most re-
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cent added node in the list. Each process appends its node at the tail by performing a

getAndSet(myNode) operation. The getAndSet() operation returns reference to its prede-

cessor node in the list. Each process then sets its locked field to true to indicate that it

wants to enter the Critical Section. It then spins on the locked field of the predecessor node

until the value of the locked field of the predecessor node changes to false. When the locked

field becomes false then the process enters the Critical Section. The CLH lock is explained

in detail in the Section 3.3.1.1.

Mellor-Crummey and Scott presented a locking algorithm which also forms a queue and has

O(1) RMR complexity. The MCS mutual exclusion uses the same primitives as the CLH

lock. The only difference between the two is that each process, after appending its node

in the list and setting its locked field to true, spins on its own node until the value the of

locked field changes to false. When the locked field reads false then the process enters the

Critical Section. This algorithm is better suited for cache-less architectures in comparison

to the CLH lock. The major drawback of this algorithm is that in the release() method,

processes have to wait if there is any slow process i.e., there is no “bounded exit” (for details

see Section 3.3.1.2 on Page 23).

Anderson [4] presented two simple mutual exclusion algorithms, the Test and Set (TS) and

the Test and Test and Set (TTS) lock, which have unbounded RMR complexity. In the

TS and TTS lock, the compareAndSwap() operation is used. In the TS mutual exclusion

algorihtm, each process performs compareAndSwap(True, False) on a shared object. If

the compareAndSwap() operation is successful, then that process enters the Critical Sec-

tion. Otherwise it repeatedly performs compareAndSwap() on the shared variable until

it enters the Critical Section. In the release() method, each process resets the TS by

performing compareAndSwap(False, True). In theory, to implement the TS mutual exclu-

sion algorithm, a testset object is used (see Section 3.3.1.3 on Page 26) but in Java, the

compareAndSwap() operation is used to implement it. In the TTS mutual exclusion algo-
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rithm, each process first reads the shared object and spins on it if it reads true. When the

shared object becomes false then the process performs a compareAndSwap() operation on it.

Like TS, in the release() method, each process resets TS by performing compareAndSwap().

Both algorithms are explained in detail in Section 3.3.1.3.

Peterson and Fischer [30] proposed an implementation of an n-process mutual exclusion

by applying 2-process mutual exclusion to an arbitration tree. The algorithm uses the

compareAndSwap() operation. In this algorithm, each process is associated with a unique

leaf of the tree. Each internal node in the arbitration tree has a lock associated with it.

Each process acquires the locks of all nodes on the path from its leaf node to the root node.

In order to win a lock on a node, a process performs a compareAndSwap() operation. All

busy-waiting on the nodes is done by local spinning. The process that wins the lock at the

root node enters the Critical Section. In the release() method, the process follows the same

path from the root node to the leaf node, releasing all locks that it acquired while going up.

The RMR complexity of this algorithm is θ(log n). The major drawback of this algorithm

is that the RMR complexity is θ(log n) on CC and DSM models even when there is no

contention.

Yang and Anderson [1] proposed a mutual exclusion algorithm for n processes that uses

atomic read and write operations and in addition, achieves constant RMR complexity if a

process runs alone. In Anderson and Yang’s algorithm, 2-process mutual exclusion is applied

to an arbitration tree. Peterson’s mutual exclusion algorithm is used to implement 2-process

mutual exclusion on each node. The other difference to Peterson and Fischer’s algorithm is

the “fast-path mechanism”. This mechanism enables a process to bypass the arbitration tree

when there is no contention. In this algorithm, a process p first determines whether there

are any competing processes. If there is no competing process then process p follows the

fast path otherwise it is deflected from the fast path and it has to capture all the locks on

the nodes from the leaf node to the root node. Under no contention, the RMR complexity
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is O(1) and under contention, it is O(n) in the worst-case rather than O(log n). An RMR

complexity of O(n) in the worst case is a major drawback of this algorithm. This is because

the fast path has to be “re-opened” after the contention ends. To do this, each process polls

every other process to see whether it is still contending.

Anderson and Kim [3] introduced a new fast path mechanism which, when used with Yang

and Anderson’s [1] mutual exclusion algorithm, provides O(1) RMR complexity without con-

tention and O(log n) otherwise. The fast path mechanism has the novel feature that it can

be re-opened without having to poll each process to see whether it is still contending.

Attiya, Hendler and Woelfel [8] presented tight lower bounds for deterministic mutual ex-

clusion algorithms. Their main result is an Ω(log n) lower bound of the RMR complexity of

deterministic mutual exclusion algorithms.

Hendler and Woelfel [13] presented a strong-adversary randomized mutual exclusion algo-

rithm which has an expected RMR complexity of O(log n/ loglog n). A strong adversary

can observe the entire history of the system, including the results of the coin flips, the states

of the processes and the state of objects but it cannot predict the future coin flip outcomes

[6]. In Hendler and Woelfel’s algorithm, a tree of height θ(log n/ loglog n) with n leaves

is used. A process p can enter the Critical Section either by capturing all the locks on the

path from a leaf node to the root node or p can be promoted by a process q when q exits

the Critical Section. A process, while capturing the locks on the path from a leaf node to

the root node, performs a compareAndSwap() operation at each node. When process p is

promoted, then it need not climb up the tree but it busy-waits until it is notified to enter

the Critical Section. Two types of promoting mechanisms, randomized and deterministic

promotions are used. They are explained in detail in Section 3.3.1.6.

Giakkoupis and Woelfel [16] presented a tight lower bound of Ω(log n / log log n) for the

RMR complexity of deadlock-free randomized mutual exclusion algorithms against strong

adaptive adversary in both CC and DSM model.

17



Bender and Gilbert [9] presented an oblivious-adversary mutual exclusion algorithm that

achieves amortized O(log2 log n) RMR complexity with high probability. In this algorithm,

a shared approximate counter C and a waiting array is used. Counter C supports increment

and decrement operations and in the waiting array, the processes spin, waiting for their turn

to enter the Critical Section. When a process calls lock(), it increments C and then reads

the value of C. It then uses that value to find a free spot in the waiting array. For instance, if

a process reads C = k, then it randomly searches for a spot in the first θ(k) slots in the array

and when it finds a spot, it spins on it. A process spins on a slot in a waiting array until it

is notified to enter the Critical Section. When a process exits the Critical Section, it reads

the value of C. Suppose the value of C is k. The exiting process then randomly searches

for a process in the first θ(k) slots of array. It then removes itself from the array and noti-

fies the process in the selected slot to enter the Critical Section and decrements the counter C.
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3.3 Detailed Decription of Local Spin Algorithms

This section gives the detailed descritpion of the various well known local spin mutual ex-

clusion algorithms.

3.3.1 Queue Locks

In queue locks, processes calling the lock() method form a queue. In the queue, each process

waits for its turn to enter the Critical Section by repeatedly checking that its predecessor

has finished. Cache coherence traffic is reduced because all processes spin on different node

locations rather than spinning on the same location. Queue locks also provide First-Come-

First-Served fairness. Each process that calls the lock() method, appends its node at the tail

of the queue. Typically, this append operation is wait-free and the process which appends

its node first will enter the Critical Section first. This ensures the FCFS property in queue

locks. There are different queue locks, for instance the Array-Based Lock [19], the CLH

Queue Lock [22] and the MCS Queue Lock [26]. In this thesis, only the CLH lock (see

Section 3.3.1.1) and the MCS lock (see Section 3.3.1.2) are considered as the Array-Based

Lock is not space efficient. It allocates an array of size n for every lock, where n is number

of threads calling the lock() method.

3.3.1.1 The CLH Queue Lock

Figure 3.2 explains the CLH lock. Each process has a node of type Node which has a boolean

locked field and a reference, ptr, to some other node object. Processes that call the lock()

method form a list. The list has a tail pointer which points to the last node of the list.

If the value of tail is null, then the list is empty. Each node in the list uses ptr to point

to a predecessor field in the list. If the ptr is null, then the node has no predecessor, and

thus is the first node of the list. Each process appends its node at the tail by performing a

getAndSet() operation with its own node as an argument.

In line 1 of the lock() method of the CLH mutual exclusion algorithm (see Figure 3.2), each
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process sets the locked field of its node to true to indicate that it wants to enter the Critical

Section in line 1, and then in line 2 it performs a getAndSet(myNode) to append its node at

the tail and it simultaneously acquires the reference to its predecessor node (if any). It then

sets the value of myPred to its predecessor in line 3. Later, each process checks the locked

field of its predecessor in line 4. If the locked field of the predecessor is true then it spins in

line 4 until the locked field becomes false indicating that the lock has been released by the

predecessor.

In the release() method, a process sets the locked field of its node to false in line 6. For

future lock accesses, a process can re-use the predecessor node, as at that point in time

the predecessor node is no longer in use. Therefore, it stores the reference to that node in

myNode in line 7.

It is obvious from the structure of the list that the CLH lock satisfies deadlock freedom and

FCFS; processes enter the Critical Section in the order in which they perform getAndSet()

at the tail.

The CLH lock satisfies mutual exclusion and FCFS

Suppose at time t, two distinct processes p and q, are in the Critical Section. Each process

must have set the locked field of its node to true in line 1 and must have obtained a reference

to its predecessor node in line 2. Assume that process q executes its getAndSet() in line

1 at time t′ after p does. As per the structure of the list, the process which performs the

getAndSet() operation first enters the Critical Section first. So, process q cannot be in the

Critical Section at the same time as p. This proves that at most one process can be in the

Critical Section at any time.

Expected RMR Complexity of the CLH lock

In the CC model, the RMR complexity of the CLH lock is O(1): Each process p gets a

cached copy of the locked field of the predecessor node and repeatedly reads the locked field

until the value of the locked field changes to false. Process p incurs a “cache miss” after p’s
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predecessor has released the lock and invalidated the value of the locked field in p’s cache.

When process p reads locked = false, it enters the Critical Section, hence p incurs only a

constant number of RMRs in the lock() method. In the release() method, each process

incurs a constant number of RMRs as it only sets its locked field to false. Therefore, in

overall in the CLH mutual exclusion algorithm, each process incurs a constant number of

RMRs (at most 3 RMRs).

In the DSM model, the RMR complexity is unbounded: Suppose the locked field of p’s node

is in the local memory segment of process q (possibly p = q). Let r be a process, where

r ∈ {p, q}. Consider a configuration in which all processes are in the Remainder Section.

Suppose p runs solo and enters the Critical Section and then stops taking steps. Then process

r runs and its getAndSet() operation at tail returns p’s node. Process r repeatedly read

the value of the locked field of p’s node from q’s memory segment until process p releases

the lock. Therefore, r can incur an unbounded number of RMRs.

For that reason, the CLH lock shows poor performance on cache-less architectures [22].

21



define Node: struct
Boolean locked
Pointer ptr

Class Lock

shared: Node tail, pred
local: Node myPred, myNode

Method lock()

1 myNode.locked:= true /* sets the locked field of it’s node*/
2 pred.write(tail.getAndSet(myNode)) /* appends at tail*/
3 myPred:= pred /* stores the predecessor in myPred*/
4 while myPred.locked do

5 end

Method release()

6 myNode.locked:= false /* sets its locked field to false*/
7 myNode:= myPred /* reuse the predecessor node*/

Figure 3.2: The CLH Lock Implementation
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Figure 3.3: The CLH Lock: (a) Initially tail is false. (b) Process p calls the lock() method
so p appends its node at the tail. Process p sets its locked field to true and gets the lock.
(c) Now, process q comes in and performs getAndSet() at the tail and gets the reference
of the predecessor node(i.e. process p). Then process q spins on the locked field of node p.
Once process p releases the lock and sets its locked field to false, process q can get the lock.

3.3.1.2 MCS Queue Lock

Like the CLH lock, in the MCS lock (presented in Figure 3.4), a list of node objects is used.

Each process has a node, myNode, of the same type Node as before, i.e. it has a boolean

locked field and a ptr field. Processes which call the lock() method form a list. Unlike in

the CLH lock, the ptr pointer now stores the reference to the successor of the node. The

list has a tail pointer which points to the last node of the list. If tail is null, then the list is

empty. If the locked field of a node is true, then the process who owns that node is waiting

for the lock or currently holds the lock. Otherwise, it has released the lock.

In the lock() method, in line 1 of Figure 3.4, each process appends its node at the tail of the

list by performing a getAndSet() operation with its own node as the argument and writes

its return value of to the pred field. Then in line 2, each process checks whether it has a

23



predecessor by reading the pred. If pred is null, then process p is the first process which has

called the lock() method and it gets the lock instantly. Otherwise it sets the locked field of

its node to true in line 3 and then sets the ptr field of the predecessor node to its own node

in line 4. Process p spins on the locked field of myNode in line 6 until the field is set to false

by the predecessor process in line 15.

In the release() method, a process p reads the ptr field of myNode in line 9. Then it per-

forms compareAndSwap(p,null) at the tail. If compareAndSwap(p,null) succeeds, then

there is no other process contending for the lock and tail is set to null and p returns. Other-

wise, there is a slow process, i.e. a process which has finished its getAndSet() operation of

its node at the tail but has not written the return value of getAndSet() operation to pred.

In that case, p waits until the slow process has finished the above operation in line 13. Once

ptr is not null, p sets the locked field of its successor to false indicating that the lock is free,

and then it returns.

Unlike in the CLH lock, the release() method of the MCS lock is not wait-free.

Figure 3.5 shows an example of the MCS lock.

The MCS Lock satisfies mutual exclusion and has O(1) RMR complexity

Suppose at time t, two distinct processes p and q, are in the Critical Section. Each pro-

cess must have performed a getAndSet() operation in line 1 and checked its pred in line 2.

Assume that process q executes its getAndSet() in line 1 at time t′ after p does. As per

the structure of the list (see Section 3.3.1.1), the process which performs the getAndSet()

operation first enters the Critical Section first. So, process q cannot be in the Critical Section

at the same time as p. This proves that at most one process can be in the Critical Section

at any time.

Expected RMR Complexity of the MCS lock

In the CC model, the RMR complexity of the MCS lock is O(1): Each process first gets a

cached copy of the locked field of its own node and then repeatedly reads the cached copy
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and incurs only “cache hits” until the locked field changes to false. Process p incurs a “cache

miss” when the process that own the predecessor node releases the lock and invalidates the

value of the locked field of p’s node in p’s cache. When p reads the locked field of its node as

false, it enters the Critical Section. Hence, process p incurs only a constant number of RMRs

in the lock() method. In the release() method, a process p incurs a constant number of

RMRs if the compareAndSwap() in line 12 succeeds. Otherwise, there is a slow process and

p waits it to complete its operation in line 1. While waiting, process p repeatedly reads the

cached copy of the ptr field of its own node and incurs “cache hits” only. As soon as the

slow process completes its operation in line 1, p incurs a “cache miss”. So, p incurs a con-

stant number of RMRs in the release() method. Therefore, in the MCS mutual exclusion

algorithm, a process incurs only a constant number of RMRs.

In the DSM model, the RMR complexity is O(1): Each process has its own locked field in

its local memory segment. The process p busy-waits on the locked field in its local memory

segment. Process p waits until the process which owns its predecessor node sets the locked

field in p’s local memory to false. This indicates that p can enter the Critical Section. There-

fore, a process incurs a constant number of RMRs in the lock() method. In the release()

method, if the compareAndSwap() in line 12 succeeds then a process p incurs a constant

number of RMRs. Otherwise process p waits for a slow process to complete its append

operation. While waiting, p repeatedly reads the ptr field of its own node. So, p incurs a

constant number of RMRs in the release() method. Therefore, overall in the MCS mutual

exclusion algorithm, a process incurs only a constant number of RMRs.
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define Node: struct
Boolean locked
Pointer ptr

Class Lock

shared: Node tail
local: Node myNode, pred

Method lock()

1 pred.write(tail.getAndSet(myNode)) /* appends its node to tail*/
2 if pred 6= null then
3 myNode.locked.write(true)
4 pred.ptr.set(myNode)

5 end
6 while myNode.locked do
7 /* waits until the lock is released*/
8 end

Method release()

9 if myNode.ptr = null then
10 if tail.compareAndSwap(myNode,null) then
11 return
12 end
13 await(myNode.ptr.read()= null)/* waits until the successor fills the ptr

field*/
14 end
15 myNode.ptr.locked.write(false)
16 myNode.ptr.write(null)

Figure 3.4: The MCS Lock Implementation

3.3.1.3 Test and Set Lock (TS)

The TS lock is presented in Figure 3.6. In this algorithm, a test and set object (see Section

2.2.1), tas, stores a Boolean value, which is initially false. Each process executes a test&Set

instruction on tas to change the value from false to true. If tas.test&Set succeeds, the

process enters the Critical Section, otherwise it repeatedly executes the test&Set operation

until it succeeds. In the release() method, the process resets the test&Set object tas.

The TS lock satisfies mutual exclusion

Suppose at time t, two processes, p and q, are in the Critical Section. Assume that process

26



Figure 3.5: The MCS Lock: (a) Initially tail is false. (b) Process p in order to acquire the
node, it places the node at the tail. As process p has no predecessor so it enters the Critical
Section. (c) Process q and r enqueue their nodes at the tail of the list and gets the reference
of predecessor node. Process q sets the ptr pointer of p to point to its own node and process
r has q as predecessor. While p still holds the lock, process q spins on its locked field. (d)
Process p while releasing the lock sets the locked field of its successor to false and process q
gets the lock.

q executes its test&Set instruction in line 1 of the lock() method at time t’ after p does.

Then during [t’,t], tas reads true. Process q cannot finish the while loop in line 1 as tas

reads true. It spins in the while loop until process p sets to false in line 2. This proves that

at most one process can be in the Critical Section at a time.

Class Lock

shared: test&Set tas

Method lock()

1 await(tas.test&Set ()) /* waits until the test&Set is reset*/

Method release()

2 tas.reset()

Figure 3.6: test&Set Lock Implementation
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3.3.1.4 Test and Test and Set Lock (TTS)

Class Lock

shared: test&Set tas

Method lock()

1 await(tas.read(true))
2 tas.test&Set ()

Method release()

3 tas.reset()

Figure 3.7: Test and Test and Set Lock Implementation

The tas object used in the TTS lock is same as the one used in the TS lock. Unlike the

TS lock, in the TTS locks, each process spins by reading the value of tas. In the lock()

method, each process repeatedly reads the value of tas until it reads false. If a process reads

tas as true, then some other process holds the lock; if tas reads false, then the lock is free.

After a process reads tas as false, it performs test&Set in line 2 and tries to set the value

of tas to true. If the test&Set operation succeeds, it enters the Critical Section, otherwise

it repeatedly reads the value of tas again.

In the release() method, a process resets the tas object.

Expected RMR complexity of the TS and the TTS lock

In the CC model, the RMR complexity of the TS lock is unbounded: Each process p, spin-

ning on the tas object performs a test&Set operations repeatedly which forces p to discard

its cached copies. This causes the process p to incur an RMR each time. Process p might

have to wait for an unbounded amount of time to acquire the lock. So, the RMR complexity

of the lock() method is unbounded.

In the DSM model, the RMR complexity is also unbounded: Suppose the tas object is in

q’s memory segment. If process p 6= q, busy-waits in line 1 in Figure 3.6, it repeatedly

performs a test&Set operation on tas in q’s memory segment. As the process which owns

the lock can be in the Critical Section for an arbitrary amount of time, process p may incur
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an unbounded number of RMRs.

In the CC model, the RMR complexity of the TTS lock is unbounded: It is possible that

every time process p performs a test&Set operation, it fails and some other process wins.

So, in this case, p has to repeatedly perform test&Set operations until it enters the Critical

Section. Thus, it may incur an unbounded number of RMRs.

In the DSM model, the RMR complexity is also unbounded: Suppose the tas object is in

q’s memory segment. If process p 6= q busy-waits in line 1 in Figure 3.6, it repeatedly reads

the value of tas from q’s memory segment. Hence, each time p reads the value of tas from

q’s memory segment, it incurs a remote memory reference. As the process which owns the

lock can be in the Critical Section for an arbitrary amount of time, process p may incur an

unbounded number of RMRs.

Both, the Test and Set lock and the Test and Test And Set lock, provide deadlock freedom.

This follows from the properties of test&Set object. If some processes try to perform a

test&Set operation, on test&Set object when it reads false, then the first process which

performs test&Set operation on it will win.

Performance of TS and TTS locks

The TAS lock performs well if contention is small. On architectures, where test&Set in-

structions and the normal memory references use the same bus, the traffic on the bus caused

by the spinning processes can slow the access to other locations by the lock owner. In the

release() method, a process releasing the lock might be delayed because of the same reason

[4].
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3.3.1.5 The Tree Lock

This mutual exclusion algorithm was presented by Yang and Anderson [3]. The algorithm

uses Peterson’s lock objects (see Page 11) and has O(log n) expected RMR complexity for

CC and DSM models. The algorithm is presented in Figure 3.8.

Data Structure

YALock uses an arbitration tree which the processes climb in order to enter the Critical Sec-

tion. The tree used in the YALock has n leaves and is of height dlog ne. Each process p is

associated with a unique leaf and from there it climbs towards the root node. Each internal

node of the tree has a Peterson’s lock object Lock. A process p captures the node by winning

the Peterson’s lock associated to that node. The process that wins the Peterson’s lock at a

node wins that node and moves one level up, otherwise it waits on the Lock object of that

node until the lock on that node is released. This continues until the root node. Once a

process captures the root node, it can enter the Critical Section. In the release() method, p

follows the same path from the root to the leaf node and releases all locks on each node it

captured by calling the release() method of Peterson’s lock.

Expected RMR Complexity of lock()

In the DSM model, the RMR complexity is unbounded. This follows from the RMR com-

lexity of the Peterson’s Lock (see Page 11).

In the CC model, the RMR complexity of this lock is O(log n). Since the height of the tree T

is dlog ne, a process has to capture at most dlog ne locks to enter the Critical Section. Each

process incurs constant number of RMRs to capture each node (this follows from the proof

of Peterson lock. See Page 11). Therefore, the expected RMR complexity of the lock()

method is O(log n).

The YALock satisfies mutual exclusion.

The mutual exclusion property of YALock follows from the properties of Peterson’s Lock.

Suppose at time t, both processes p and q are in the Critical Section. Each process must
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Class YALock

define Node:
Peterson lock object: PObj
shared:
root: Node /* root of the arbitration tree*/
leaf: array[0,. . . ,N-1] of type Node
local:
v : Node

Method lock()

1 v :=leaf[p]
2 repeat
3 v :=parent(v)
4 v.Pobj.Lock()

5 until v=root

Method release()

6 foreach Node v on the path from root node to leaf node do
7 v.PObj.release()
8 end

Figure 3.8: YALock: Yang and Anderson Mutual Exclusion Lock Implementation

have called the lock() method of Peterson’s Lock at root node in line 4. Peterson’s Lock

gaurentees that if two processes call Peterson’s lock() on the root, only one process will

succeed. So, there will be only one winner at the root node which will enter the Critical

Section.
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3.3.1.6 Randomized Mutual Exclusion with O(log n / log log n) RMRs

A randomized mutual exclusion algorithm presented by Hendler and Woelfel [13] uses CAS

objects and read-write registers. The algorithm achieves sub-logarithmic expected RMR

complexity for the CC and the DSM model, against the strong adaptive adversary. Assume

w.l.o.g that n=44−1 for some positive integer4. Then it follows that4= θ(log n / log log n).

The randomized mutual exclusion algorithm is presented in the Figure 3.9.

Data Structure

Similar to other mutual exclusion algorithms [1, 23, 30], this randomized mutual exclusion

algorithm uses an arbitration tree. In order to enter the Critical Section, a process climbs

up the tree. The arbitration tree used in this algorithm is a complete 4-ary tree of height

4 and with n leaves. The leaves have height 0 and the root has height 4. A node is said

to be at level i if its height is i. Each process p is associated with a unique leaf node,

leafp. Each internal node of the arbitration tree T consist of a CAS object Lock. Golab,

Hadzilacos, Hendler and Woelfel [34] presented a paper on Constant-RMR Implementations

of CAS and Other Synchronization Primitives Using Read and Write Operations in which

they implemented CAS using only a constant number of RMRs in both the CC and the DSM

models. By using this CAS, an algorithm with asymptotic RMR complexity [13] is achieved.

In order to win a node v, process p performs v.Lock.CAS(⊥,p). If the CAS operation on v

succeedes, then p captures that node. If p fails to capture the node, i.e., v.Lock.CAS(⊥,p)

returns false, then p spins on v.Lock until the CAS object is set to ⊥ by a process which

owns v. Once v.Lock is released, process p tries to capture it again and this continues until

it captures the root node. When p wins the lock on the root node, it enters the Critical

Section.

Suppose that p follows pathp from leafp to the root. If there is no contention then a con-

stant number of RMRs is incurred at each node, as process p will win the lock on each

node on pathp without any competitor. In this case, the total number of RMRs incurred is
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O(log n / log log n). In the release() method, p will release all the locks (acquired by it

while going up) on the same path in reverse order, i.e., from the root node to leafp .

Randomized Promotion

It may be possible that every time a process p tries to acquire the lock on a node, some

other process captures it first. The authors provide a randomized mechanism which gives

a 1/4 chance to each process to be promoted for every c failed attempts to capture the

lock, where c is some large enough constant. A randomized promotion is performed by each

exiting process before releasing the lock at each node. The randomized mechanism is as

follows:

Each node has an array, apply[0, . . . ,4 − 1]. Before trying to capture the lock at node v,

process p writes its ID to a unique position of the apply array. The unique position is the

index of the child of v from which p ascended to v. Suppose that process q currently owns

the Lock at node v. Before releasing the lock at node v, q performs a randomized promotion.

Process q randomly chooses an index i ∈ 0,. . . ,4-1 and checks the apply array position

correponding to i, i.e., it checks v.apply[i]. If it finds a process p′ at that location then q

tries to promote p′ by executing v.apply[i].CAS(p′,⊥). The process p′ repeatedly reads

its apply array position to know whether it has been promoted. If v.apply[i].CAS(p′,⊥)

operation succeeds then process p′ is added by q to the shared sequential promotion queue,

PromoQ. Each promoted process p′ enqueued into the PromoQ, spins on the notify[p′]

until notify[p′] is set to false by a process executing the release() method. This signals

p′ to enter the Critical Section. In the release() method, q checks the PromoQ. If the

PromoQ is empty then q releases the Lock on the root node, and otherwise the process at

the head of the PromoQ, p′, is signalled to enter the Critcal section. Process q signals p′ by

setting to notify[p′] to false. In addition to this, q performs Lock.CAS(q, p′) at the root node

in order to hands over the root lock to p′, so that p′ owns that lock when it enters the Critical

Section. A process waiting in the PromoQ incurs at most a constant number of additional
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RMRs until it enters the Critical Section (for details see paper [13]). When process p′ is in

the release() method, it further notifies the next process (if any) in PromoQ to enter the

Crtitical Section, otherwise it releases the root lock. We conclude that each process in the

PromoQ is guaranteed to enter the Critical Section.

Deterministic Promotion for Starvation Freedom

In the worst case, it is possible that every time a process p′ has a chance of being promoted,

the promoting process q makes a wrong decision and p′ never gets promoted. To deal with

this, a deterministic promotion approach is used. Each node v in the arbitration tree has a

sequential modulo-4 register, v.token. This register is increased only by an exiting process.

When an exiting process q releases the lock at node v, it performs a deterministic promotion.

Process q reads the index j=v.token and then promotes the process (if any) at v.apply[j].

Process q then increments the register, v.token. This approach guarantees that if 4 pro-

motion events occur at node v, while p′ has applied to apply array, then p′ is guaranteed to

be promoted. In the worst case, at every level of T a process may incur O(4) RMRs. So,

the worst case RMR complexity of this algorithm is O(42).

Expected RMR Complexity of the lock()

In randomized promotion, for every c failed attempts to capture the lock at node v, c = O(1),

each process which is registered in the apply array (having size 4), has at least one chance

of being promoted and with probability at least 1/4 it succeedes. The number of attempts

to capture one lock is geometrically distributed and thus it is O(4) in expectation. Once

promoted, a process incurs at most O(1) additional RMRs. As the height of the arbitration

tree is 4, each process p has to capture locks on its path to enter the Critical Section. This

leads to an expected RMR complexity of O(4). In the release() method, each process p

incurs O(4) RMRs.

Bounding the Worst case RMR complexity

To bound the worst case RMR complexity to O(log n/ log log n), a 4-process deterministic
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mutual exclusion object is used at every node v. The object v.MX, can be called with the

process unique IDs and provides methods Getlock() and Rellock(). Both these methods

have worst-case RMR complexity of O(log4). The MX object can be implemented using

Yang and Anderson’s algorithm [1]. Third method of the MX object, LockOwner() returns

the ID of the current owner of v.MX.

Each process p keeps track of the attempts to capture a node v by counting the num-

ber of RMRs it has made. If it has incurred more than O(log4) RMRs, then it calls

v.MX.getlocki() where i is the rank of the child from which p ascended to v. If p succeeds

in capturing v.MX, it makes only two more attempts to capture v.Lock. The process exiting

the Critical Section when releasing the lock at v performs randomized as well as determinis-

tic promotion and also promotes the owner of v.MX to the PromoQ. To identify the owner

of v.MX, method v.MX.LockOwner() is used.

If process p captures v.MX, it will either win v.lock() in its next two attempts or it will be

promoted. Therefore, the worst case RMR complexity to capture the lock of a node or to

be promoted is O(log4). Since the process needs to capture 4 nodes in order to enter the

Critical Section, the worst case RMR complexity is O(4 log4) = O(log n).

As the root of the arbiration tree is protected by the CAS object so only one process can be

there in the Critical Section at a time. Thus, the Randomized mutual exclusion algorithm

satisfies the mutual exclusion property. As full proof of correctness is long and difficult and

is beyond the scope of this thesis so, only a brief description is provided.
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3.3.2 Randomized Mutual Exclusion Against the Oblivious Adversary

An unpublished paper by Giakkoupis and Woelfel [16] proposed a randomized mutual ex-

clusion algorithm that seems to perform well against an oblivious adversary. Recall that an

oblivious adversary makes all the scheduling decisions before any process has flipped a coin.

This algorithm is simple to implement and uses read-write registers and compareAndSwap

objects. This algorithm is based on an implementation of Backpack and Weaklock objects

which are defined below. This algorithm works for the CC model as well as the DSM model

and is presented in the Figure 3.12.

The Backpack Object

In this algorithm, an array of Backpack objects is used and each process has a Backpack (i.e.,

each process owns a Backpack). Each Backpack supports the operations open(), enter()

and close(). Each Backpack has a unique owner and each process can open its Backpack

by calling open(). A process is said to have entered a Backpack, if the enter() method

returns true. Once a process p enters q’s Backpack, then when q calls the close() method

it returns the ID of p. Only one process can enter q’s Backpack between the open() and

the close() method calls. The operations supported by the Backpack object are explained

below:

Open(): Only the owner of the Backpack can call this method. This method returns no

value. Each process opens its Backpack by performing CAS(∅, 0).

Close(): Only the owner of the Backpack can call this method. This method returns ⊥,

if no process has entered the Backpack otherwise it returns the ID of the process which is

found in its Backpack. Each process closes its Backpack by performing CAS(0,∅).

Enter(): A process call this method when it has to enter some other processes backpack.

No process can enter its own backpack. This method returns a Boolean value. To enter p’s

backpack, q performs p.CAS(0,q). If this compareAndSwap succeedes i.e. returns true then

it implies that q has successfully entered p’s backpack otherwise it returns false i.e. it failed
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to enter p’s Backpack. A Backpack implementation is presented in the Figure 3.13.

The Weaklock Object

A weaklock provides two methods;

• The try lock() returns a Boolean value. In the try lock(), test&Set object

and a shared register Count (initialized to 0) is used.

• The release() does not return anything. Each process resets the test&Set

object in the release() method.

A process p can try to win the weaklock by executing try lock(). If try lock() returns

true then p successfully won the Weaklock, otherwise it failed. At most one process can own

the weaklock at a time. A process which owns the lock has to release it eventually by calling

release(). A Weaklock object presented in the Figure 3.11 is deadlock free and has O(1)

RMR complexity (see Section 3.3.2).

Description of the Weaklock

In the Weaklock implementation, each process p reads Count into c, followed by a test&Set

operation in line 2. A process p wins the Weaklock if the test&Set operation succeeds, i.e., p

successfully sets T to 1, otherwise it fails. Process p can only complete the while loop in line

3 of try lock() if T has been reset by some other process that currently owns the Weaklock

or the counter Count has been increased to a value two larger than what p read from Count.

In the release() method, each process resets the test&Set object and increments Count

by 1.

The Weaklock object is starvation-free and has O(1) RMR complexity

Each process busy waits in line 3 of try lock() until it reads a value of Count is two larger

than what it earlier read in line 1 or it reads test&Set object T = 0. A process whose

test&Set operation succeeded will eventually reset the test&Set object in the release()

method. Each process also increments Count by 1 in the release() method.

In the CC model, the Weaklock object has O(1) RMR complexity: Each process p first gets
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the cached copy of the Count field and the test&Set object T and then each process p

repeatedly reads the cached copy of Count and T until it reads a value of Count that is two

larger than what it earlier read or it reads T = 0. When the value of Count or T changes, p

incurs a “cache miss” and accesses remote memory for new value of Count. As stated above,

each process increments the Count variable by 1 and resets T in the release() method, so,

p incurs only a constant number of RMRs in the try lock() (at most 3 RMRs).

Description of the Randomized Mutual Exclusion Algorithm

The data structures used in this algorithm are: An array of B[0,...,n-1] Backpack objects

and each process has its own Backpack. A spin array which is used to notify processes

whether they can enter the Critical Section. A shared sequential queue, PromoQ, used for

promoting processes into the Critical Section, and a Weaklock object, W .

Each process p sets spin[p] to true in line 1. In line 3, p opens its Backpack by executing

B[p].open(). In this algorithm, p can either try to enter some other process’s Backpack

(note that no process can enter its own Backpack) or writes its own ID into the shared

register, S. Which of the above a process performs is decided by the random coin flip. If

the coin flip shows ’0’, then p writes its ID into S and then tries to win the Weaklock.

Otherwise, p reads the ID in S, say q, into the local register, s. It then checks if s6= myId

and s6= ∅. If the above conditions hold then p tries to enter q’s Backpack. Process p tries to

enter q’s Backpack by executing B[q].enter(). If p is successful in entering q’s Backpack

then it spins on Spin[p] in line 11 until Spin[p] is set to false by a process executing the

release() method. If p fails in entering q’s BackPack, then p tries to win the Weaklock in

line 16. If p succeeds in winning the Weaklock (i.e. try lock() returns true) then it enters

the Critical Section. Otherwise p closes its Backpack in line 17 by executing B[p].close().

If p does not find any other process in its Backpack, then it starts the loop in line 2 again.

Otherwise it enqueues the process found in its Backpack, say r, to the local queue and keeps

executing the loop in line 2 until it gets the lock or succeeds in entering some other process’s
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Backpack.

In the release() method, p closes its Backpack in line 21 and if it finds any process in its

Backpack, it adds that process in the local queue. Finally, p empties its local queue into the

shared promotion queue, PromoQ in line 23. Then p checks the PromoQ in line 26. If the

PromoQ is empty, then p releases the Weaklock otherwise it signals the first process in the

PromoQ, say q, to enter the Critical Section by setting the spin[q] to false.

The Backpack lock satisfies mutual exclusion

A process enters the Critical Section by either winning the Weaklock, W or by entering some

other process Backpack. A process p can return from the lock() by executing line 12 or line

16 or line 19 in the Figure 3.12. In line 16, a process p tries to win W . As discussed above

in the Weaklock, the try lock() guarantees that at most one process wins W . So, no two

processes can complete the try lock() method and enter the Critical Section.

Suppose at time T , two distinct processes p and q, are in the Critical Section. Each process

must have tried to win the Weaklock. As we have already stated above that in the Weaklock

there will be only one winner so, both p and q cannot win Weaklock. Assume that p wins

the Weaklock and q enters its Backpack. Process q cannot finish its while loop in line 11

until its spin is set to false in line 30 by a process executing the release() method. So, no

two processes can be in the Crtitical Section at the same time.

Note that if the PromoQ is not empty, then there will be at most one process whose spin is

false.
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3.3.3 Adaptive Mutual Exclusion Algorithms

To measure the performance of the adaptive mutual exclusion algorithms, two notions of

contention are considered. They are point and interval contention [2]. Consider a history H.

• Point contention over H is the number of processes that are active at same

time in H .

• Interval contention over H is the number of processes active during the entire

history H, i.e., execute outside of their non-critcal sections of H.

An algorithnm is adaptive when its time complexity of an algorithm depends on the number

of processes calling the lock() method i.e. the contention. There are various well known

adaptive mutual exclusion algorithms such as Adaptive mutual exclusion algorithm by Attiya

and Bortnikov [7], Adaptive Bakery algorithm by Taubfled [32] etc. The adaptive mutual

exclusion algorithms are not discussed in detail as they are out of the scope of this thesis.
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Class HWLock

define Node: struct
Lock: int init ⊥
MX: Starvation free 4-process mutual exclusion object
apply: array[0,. . . ,4-1]
token:int init 0
shared:
root: Node /* root of arbitration tree*/
PromoQ: sequential queue init ∅ /* Promotion queue*/
leaf: array[0. . . n-1] of type Node

notify: array[0. . . n-1] of type boolean init false
local:
v: Node
i, j, j′, tok, ctr: int

Method lock()

1 notify[p] = false
2 v=leaf[p]
3 repeat
4 Let i be an integer such that v is the (i+1)-th child of parent v
5 v = parent(v)
6 v.apply[i].CAS(⊥,p)
7 ctr=0
8 repeat
9 ctr= ctr+1

10 if (ctr > dlog(4)e) then
11 if v.apply[i].CAS(p,⊥) then
12 v.MX.Getlocki()
13 v.apply[i].CAS(⊥,p)
14 await(v.Lock = ⊥ ∨ v.apply[i] 6= p)

15 end

16 end
17 if ¬ v.Lock.CAS(⊥,p) then
18 tok=v.token
19 await(v.token 6= tok ∨ v.apply[i] 6= p ∨ v.Lock = ⊥)

20 end
21 if v.MX.LockOwner = i then
22 v.MX.Rellock()
23 end

24 until v.apply[i] 6= p ∨ v.Lock = p
25 if ¬ v.apply[i].CAS(⊥,p) then
26 await(notify[p] = true)
27 end

28 until notify[p] = true ∨ v =root

Figure 3.9: Randomized mutual exclusion algorithm for process p ∈ 1,. . . ,n [13]41



Method release()

1 foreach Node v on the path from root node to leaf node do
2 tok = v.token
3 i = v.MX.lockOwner
4 Choose j′ randomly from 1,. . . ,4-1
5 for j ε (j′, tok, i) - ⊥ do
6 q = v.apply[j]
7 if q 6= ⊥ ∧ v.apply[j].CAS(q, ⊥) then
8 PromoQ.enq(q)
9 end

10 end
11 v.token = (tok+1) mod 4
12 if v 6= root then
13 v.Lock.CAS(p, ⊥)
14 end

15 end
16 if PromoQ = ∅ then
17 root.Lock.CAS(p, ⊥)
18 else
19 q = PromoQ.deq()
20 root.Lock.CAS(p,q)
21 notify[q]=true

22 end

Figure 3.10: Randomized mutual exclusion algorithm for process p ∈ 1,. . . ,n [13]

Class WeakLock

shared: test&Set object T , register Count = 0

Method try lock()

1 c := Count.read()
2 if T .test&Set ()=0 then return True
3 await(Count.read()> c+ 2 or T .read()= 0)
4 return False

Method release

5 Count.write(c+ 1)
6 T .reset()

Figure 3.11: WLock: Weak Lock Implementation
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Class Lock

shared: register S, BackPack B[0 . . . n− 1], WeakLock W , sequential queue
PromoQ = ∅, register Spin[0 . . . n− 1]
local: queue Q[0 . . . n− 1] = (∅ . . . ∅), s = ∅

Method lock()

1 Spin[myID].write(True)
2 repeat
3 B[myID].open()
4 Choose coin ∈ 0, 1 uniformly at random
5 if coin = 0 then
6 S.write()
7 else
8 s := S.read()
9 if s 6= myID s 6= ∅ then

10 if B[s].enter() then
11 await(Spin[myID].read()=False)
12 return

13 end

14 end

15 end
16 if W.try lock() then return
17 q := B[myID].close()
18 if q 6= ∅ then Q[myID].enq(q)

19 until W .try lock()

20

Method release()

21 q := B[myID].close()
22 if q 6= ∅ then PromoQ.enq(q)
23 while Q 6= ∅ do
24 PromoQ.enq(Q.deq())
25 end
26 if PromoQ = ∅ then
27 W .release()
28 else
29 q := PromoQ.deq()
30 Spin[q].write(False)

31 end

Figure 3.12: General Randomized Lock Implementation
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Class BackPack

shared: CAS object C = ∅;

Method open()

1 C.CAS(∅, 0)

Method close()

2 if C.CAS(0, ∅) then
3 return ∅
4 else
5 c := C.read()
6 C.CAS(c, ∅)
7 return c

8 end

Method enter()

9 if C.CAS(0,myID) then
10 return True
11 else
12 return False
13 end

Figure 3.13: BackPack Implementation
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Chapter 4

Methodology

4.1 Introduction

This chapter details the methods used to compare the performance of different mutual ex-

clusion algorithms. Section 4.2 discusses real-world cache-coherent shared memory multipro-

cessors. This section also focuses on the importance of cache-coherency in multiprocessors

and provides an insight to different cache-coherence protocols. Section 4.3 discusses the data

structures used for comparing the performance of mutual exclusion algorithms. The Java

Memory Model and the atomic variables used in Java are discussed in Section 4.4. In Section

4.5, the method used for measuring the performance of the mutual exclusion algorithms both

in isolation and in the data structures is described.

4.2 Real World Cache-Coherent Shared Memory Multiprocessor

Real world shared memory mutliprocessors provide increased computing speed in comparison

to the single processor systems. This is due to increased parallelism. But in shared mem-

ory multiprocessor systems, memory contention (multiple requests from processes to access

memory), communication contention (contention in the inter-connection network) and the

latency time (time taken by a request to traverse the inter-connection network) tend to slow

down the program execution time and increase the memory access time. In cache coher-

ent shared memory multiprocessors, each processor has a private cache attached to it. For

instance, when a process needs to access the value of variable x, then the process checks

whether it has a cached copy of x. If it has a cached copy of x then it reads the value of x

from the cache, otherwise, it retrieves the value of x from shared memory.
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Some of the cache coherent multiprocessor systems are the Intel Xeon processors or Sun Mi-

crosystem’s multiprocessors. Systems like RP3 from IBM, Cedar from University of Illinois,

and Butterfly from BBN laboratories, contain about 100 processors connected to memory

modules by a multi-stage inter-connection network (having considerable latency).

In shared memory systems, sharing of data structures and code among processes enables

parallelism. But this parallelism can result in several copies of a shared data in one or more

caches at the same time. To maintain the coherent view of memory and to make the data in

the caches consistent, cache coherence protocols are used. There are several cache coherent

protocols for general inter-connection networks [5], [11], [31] and for systems using a shared

bus [15],[18]. Cache coherent protocols using the shared bus are discussed later in this sec-

tion.

Quickpath and Hyper-Transport Interconnects

Earlier in the shared memory systems by Intel, the front side bus (also known as FSB) used

to carry data between processor and memory controller. But since 2008, Intel replaced the

front side bus with quickpath interconnect (QPI) [36]. In the modern multiprocessor sys-

tems, FSB was replaced because it is old and slow technology and may result as bottleneck

in today’s systems. QPI is a point-to-point interconnect which connects the processor to

the I/O hub or one or more processors or I/O hubs. This allows all components to access

each other directly via a network [36]. Since 2001, the multiprocessor systems by IBM and

Apple, the front side bus is replaced by hyper-transport. The reason behind this is the same

as described above, i.e. FSB is slow and has long latency time. Hyper-transport is a low

latency point to point link which is used for interconnection of processors. Hyper-transport

supports message passing, signaling interrupts and I/O transactions. It is used by IBM and

Apple in the Power Mac65 and in modern MIPS systems [36]. The only difference between

the two is the difference in architecture.

46



Protocols for Multiprocessors with a Shared bus

The shared bus protocol depends on the cache controller. The Cache controller observes

bus transactions and appropriate actions are taken to maintain consistency of data. For in-

stance, multiprocessors such as Firefly (designed by Digital Equipment Corporation), Dragon

(designed by Xerox Palo research centre) use shared bus cache coherence protocols. Since

companies like Sun microsystem, Intel, Apple etc. introduced modern shared memory mul-

tiprocessors, the above mention multiprocessors have lost their value.

Modern Shared Memory Multiprocessors

Among the modern multiprocessors, Sun microsystem’s Ultra SPARC T1 microprocessor

(also known as Sun Niagara) is one of the oldest and is a multi-threaded, multi-core proces-

sor. Sun microsystem’s main goal while making Sun Niagara was to run as many concurrent

threads as possible and to maximize the utilization of each core. The cores of this multi-

processor are less complex in comparison to high end processors. In the Sun Niagara, eight

cores fit on the same chip and each core supports only one thread. Sun Niagara has a single

floating point unit which is used by all eight cores and this makes it unsuitable for applica-

tions which include many floating point mathemetical computations [37].

Later, Ultra SPARC T2 (also known as Niagara 2) was introduced. Niagara 2 provides

eight cores. Each core supports eight threads and one FPU (floating point unit). After

SPARC T2, Sun microsystems designed SPARC T3, which provides 16 cores and a total of

128 threads. The cores in this multiprocessor doubled the memory capacity and quadrupled

the I/O throughput in comparison to SPARC T2 [37].

Intel Xeon processors, in the E7 family, use hyper-threading technology. Hyper-threading

technology delivers two threads per core which enhances the parallelism. The latest Xeon

E7-8870 processor family by Intel supports 10 cores and 20 threads in total and 30 MB of

cache memory. Write-back caching protocols (explained on Page 6) are used in all the Sun

Microsystem’s multiprocessors.
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4.3 Concurrent Data Structures Used for Testing the Performance of Mutual

Exclusion Algorithms

Concurrent data structures are those in which multiple processes can concurrently perform

operations. There are different concurrent data structures such as concurrent queues, pools,

linked lists, hash tables, search trees etc. In this thesis, we consider lock based concurrent

linked lists and AVL trees for testing the performance of mutual exclusion algorithms. Two

types of locking techniques are considered to test how different locks affect the performance

of data structures. They are described as follows:

Coarse-grained locking: In coarse-gained locking, a process locks the entire data struc-

ture, performs the respective operation and then releases the lock on the data structure. The

Coarse-grained locking guarantees that only one process at a time can perform an operation

on a data structure. A Coarse-grained locking technique works well when the level of con-

currency is low, but when the level of concurrency is high then processes may have to wait

for a long time to perform their operations. In this thesis, coarse-grained locking is used to

implement AVL trees. AVL trees are chosen because today, trees are very important data

structure and also the search time in trees is less in comparison to other data structures like

arrays, hash tables, queues, stacks etc.

Fine-grained locking: In this locking technique, instead of locking the entire data struc-

ture, a small part of the data structure is locked. In this thesis, fine-grained locking is used

to implement a concurrent linked list. Each node of the linked list has a lock associated with

it.

In the linked list, there are two types of nodes: sentinel nodes and regular nodes. The sen-

tinel nodes are head and tail. Each regular nodes contains data in addition to a reference to

the next node in the list.

Figure 4.1, represents a method used to add an item to the linked list. In the fine-grained

strategy, each process locks the predecessor node and the current node where it has to per-
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form an operation. Consider a ordered list of nodes. Suppose process p wants to insert value

k in the list. Then p uses two local variables curr and pred. Process p first sets pred to head

and sets curr to head.next in line 3 and line 4 of Figure 4.1. In line 6, p then compares

curr’s key value to k. If the two key values match then it means that k is already in the

list. If k is already in the list, then p returns false in line 13. Otherwise if curr′skey < k

then p unlocks pred and set pred = curr in line 8 of Figure 4.1. Later, in line 9, p sets

curr = curr.next and so on it continues until p finds where k is to be inserted. Once p finds

a place where it has to insert in the list, it creates a new node in line 15. Later in line 16 and

17, it sets the newnode.next = curr followed by pred.next = newnode and then returns

true from the method.

Figure 4.2 represents the method used to remove from the linked list. To delete a node from

the linked list, process p first finds the node which it has to delete by following the same

procedure as above. Similar to the adItem(), p uses variables curr and pred. Process p

first sets pred to head and sets curr to head.next in line 3 and line 4 of Figure 4.2. In

line 6, p then compares curr’s key value to k. If the two key values match then it sets

pred.next = curr.next and returns true. Otherwise, it unlocks pred and set pred = curr in

line 8 of Figure 4.2. Later, in line 9, p sets curr = curr.next and so on it continues until it

finds the node which it has to delete.

In our thesis, look-ups are lock-free i.e. to find an item from the linked list, processes do not

lock the nodes. Figure 4.3 represents the method used to find an item from the linked list.

Each process p to find an item from the list, uses variables curr and pred. Firstly, process

p sets pred to head and sets curr to head.next in line 3 and line 4 of Figure 4.3. It then

reads key value of the curr, if the key value of curr matches with the item, then it returns

otherwise it sets pred = curr and curr = curr.next and so on it continues until it finds an

item.
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4.4 The Java Memory Model

The Java memory model (JMM) describes the semantics of concurrent memory accesses [25].

Two main aspects of the Java memory model are synchronization and transformations which

can be applied to program code. Synchronization means that once one process enters a syn-

chronized block protected by a lock, no other process can enter a block protected by that lock

until the first process exits the synchronized block. In the Java memory model, synchronized

block is a term for the Critical Section. Another aspect of synchronization is that it ensures

that memory writes by a process before or during a synchronized block are made visible to

other threads. This is done after process has exited the synchronized block, and it releases

the lock and updates the changes from cache to main memory.

The Java memory model also determines the transformations the compiler may apply to

a program when producing bytecode (compact numeric code for efficient execution by a

software interpreter) and the transformations that may be applied to bytecode when pro-

ducing machine code (code which is directly executed by the processor). It also describes

the optimizations that can be performed on the machine code to minimize the execution

time [25].

4.4.1 Atomic Variables in Java

The word atomic refers to linearizable (to learn more about linearizability see this paper

[29]). The Java.util.concurrent.atomic package provides atomic variable in Java. This pack-

age supports several classes like Atomic Integer, Atomic Boolean etc. These classes provide

access to single variables of the corresponding type. An atomic instruction atomically ac-

cesses and possibly modifies one or more memory locations.

In this thesis, the classes Atomic Integer and Atomic Boolean are used. Some of the

methods which the class Atomic Integer class provides are get(), set(boolean/int new),

compareAndSwap(int expect, int update), getAndIncrement(), getAndDecrement() and

50



getAndSet(int new). Table 4.1 represents Atomic Integer methods and the Table 4.2

represents the methods that the Atomic Boolean class supports. In this thesis, the

Table 4.1: Atomic Integer Methods
Method Desription Return value

get() gets the current value current value
set(int new) sets to the given value N/A
compareAndSwap(int expect, int update) atomically sets to up-

date if current value is
equal to expect

true, if success-
ful and false oth-
erwise

getAndIncrement() atomically increment
by one the current
value

the previous
value

getAndDecrement() atomically decrement
by one the current
value

the previous
value

getAndSet(int new) atomically sets to new
and returns previous
value

the previous
value

Table 4.2: Atomic Boolean Methods
Method Desription Return value

get() gets the current value current value
set(boolean new) unconditionally sets

to new
N/A

compareAndSwap(int expect, int update) method of the Atomic Integer class atomically

sets the value to update value if the current value is equal to expect value. The instructions

of the Atomic Integer class, getAndIncrement() and getAndDecrement() increment and

decrement the current value by one. The getAndSet(int new) operation sets the current

value to new and returns the previous value. The set(int new) and get() methods of

Atomic Integer and Atomic Boolean gets the current value and sets to new and returns the

previous value.
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4.5 Overview of Approach used for Measuring the Performance of Mutual

Exclusion Algorithms

To compare the performance of different mutual exclusion algorithms, the algorithms are

first implemented using the Java programming language (discussed in the Section 4.4). Two

approaches that are considered for measuring the performance of algorithms are in isolation

and in the implementations of data structures. Isolation means that every process repeatedly

gets the lock and releases the lock. The Critical Section in this case is very small. The time

taken by each process to get the lock (Tg) and release the lock (Tr) is recorded seperately.

The total time (Tl) taken by each process is calculated by adding Tg and Tr. The processes

get the lock, execute the Critical Section and release the lock k times where k is a parameter

defined later in this thesis. In the another test case, we added a delay of m milliseconds in

the Critical Section where m is parameter having different values. Each process after, ac-

quiring the lock, sleeps for m milliseconds. The time taken by the processes to get the lock

and release the lock is recorded and is used to analyze how the delay affects the performance

of the mutual exclusion algorithms.

In another test case, we have considered two data structures that are implemented using

different mutual exclusion algorithms as it is interesting to see how different locks affect the

performance of these data structures. Two data structures considered which are Concurrent

linked lists and AVL trees. For this test case, the locks are made re-entrant (discussed in

Section 5.3) so that they can be used universally in all data structures. We wanted to create

realistic lock implementations that can be used in any data structure. In our data structure

implementations, the locks need not to be re-entrant. In this case, each process can perform

insert or delete or look-up operation on the data structure. The time taken by processes to

get the lock, perform the respective operation, and release the lock is recorded. Processes get

the lock and release the lock k times where k is a parameter which we choose from several

values.
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In the Critical Section, there is a counter countmx of type integer, which each process exe-

cuting the Critical Section, increments by 1 in the Critical Section and then decrements it

when it has finished executing the Critical Section. This is a sanity check to test whether

the mutual exclusion property holds for an algorithm.

4.5.1 Calculating the Number of RMRs in the Mutual Exclusion Algorithms

In this thesis, the mutual exclusion algorithms which are considered for performance compar-

ison are the the MCS lock [26], the CLH lock [22], the Test and Set lock (TS) [4], the Test and

Test and Set lock (TTS) [4], the deterministic mutual exclusion algorithm based on arbitra-

tion tree (tree lock) [1], the randomized mutual exclusion algorithm with O(log n/ log log n)

RMR complexity (RMX) [13], Java re-entrant lock (Java Lock), and the randomized mu-

tual exclusion algorithm against oblivious adversary (Backpack) [16]. For measuring the

performance of these mutual exclusion algorithms, experiments are conducted on a Cache

Coherent machine. For approximately counting the RMRs each process incurs in mutual

exclusion algorithms, a local variable count of integer type is taken in each mutual exclusion

algorithm which is intialised to zero.

In the MCS lock, each process accesses the remote memory to set tail to its own node in

line 1 of Figure 3.3.1.2. Then each process gets the cached copy of the locked field of its own

node (for details see Section 3.3.1.2) and spins on it until it incurs a cache miss. When it

incurs a cache miss, this invalidation can evict locked field of its own node from cache and it

increments the count variable. In the release() method, each process gets the cached copy

of tail on which it tries to perform CAS() operation in line 10. Here it increments count by

1. Then in line 13, if a process has to wait for its successor, it spins on cached copy of next

field of its own node until it incurs a cache miss. When it incurs a cache miss, it increments

count. So, by this method, when a process completes the execution of mutual exclusion

algorithm, the value of count gives the estimated number of RMRs it incurred.

In the CLH lock, each process first accesses remote memory to set tail to its own node in
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line 2 of Figure 3.3.1.2 and then gets the copy of pred to set pred to its own node. Here

each process increments count after each access to the remote memory. Each process then

gets a cached copy of the locked field of the predecessor node and spins on it until it incurs

a cache miss. When a process incurs a cache miss, it increments count variable. After a

process completes the execution of the CLH lock, the value of count gives the number of

RMRs each process incurred.

In the TS lock, each process gets the cached copy of the tas variable and the count variable

is incremented every time the process performs test&Set on tas while the process is busy

waiting in line 1 of Figure 3.6. So, when a process completes the execution of TS lock,

the value of count represents the value of RMRs incurred while in the TTS lock, first each

process accesses the shared memory to get the cached copy of tas and the spins on it (in line

2 of Figure 3.7) until it incurs a cache miss. Each process increments count after it finishes

the while loop in line 2.

In the Mutual Exclusion Algorithm using registers, each process increments count in the

repeat loop in line 2 of Figure 3.8. A process then accesses shared memory to get the cached

copies of variables like victim and flag[] and spins in the while loop in line 3 of the Figure

3.1 and increments count after finishing it. The value of count variables gives the number of

RMRs incurred by each process.

In the Randomized mutual exclusion algorithm by Giakkoupis and Woelfel, each process

increments the count variable every time it executes the repeat loop in line 2 of Figure 3.12.
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Class FineGrainedList

define Node: struct
Lock

shared:
Node head
local:
Node pred, curr
int key

Method addItem(int item)

1 key = item
2 head.lock()
3 pred = head
4 curr = pred.next
5 curr.lock()
6 while curr.key < key do
7 pred.unlock()
8 pred = curr
9 curr = curr.next

10 curr.lock()

11 end
12 if key = curr.key then
13 return False
14 else
15 Node node = new Node(item)
16 node.next = curr
17 pred.next = node
18 return True

19 end
20 curr.unlock()
21 pred.unlock()

Figure 4.1: Add method in Fine-Grained Locking on Linked Lists [20]
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Method removeItem(int item)

1 key = item
2 head.lock()
3 pred = head
4 curr = pred.next
5 curr.lock()
6 while curr.key < key do
7 pred.unlock()
8 pred = curr
9 curr = curr.next

10 curr.lock()

11 end
12 if key = curr.key then
13 pred.next = curr.next return True
14 else
15 return False
16 end
17 curr.unlock()
18 pred.unlock()

Figure 4.2: Remove method in Fine-Grained Locking on Linked Lists [20]

Method findItem(int item)

1 key = item
2 pred = head
3 curr = pred.next
4 while curr.key < key do
5 pred = curr
6 curr = curr.next
7 if key = curr.key then
8 return True
9 else

10 return False
11 end

12 end

Figure 4.3: Find item method in Fine-Grained Locking on Linked Lists [20]
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Chapter 5

Design, Implementation And Results of Mutual

Exclusion Algorithms

5.1 Introduction

This chapter details the methods used for measuring the performance of the mutual ex-

clusion algorithms both in isolation and in the data structures for the different test cases.

Section 5.2 describes the cache coherent shared memory multiprocessor on which the tests

were performed. Section 5.3 discusses different test cases which were considered for measur-

ing the performance of mutual exclusion algorithms. Section 5.3.3 describes results of the

experiments.

5.2 Hardware and Software Configuration

The mutual exclusion algorithms were tested on an Intel R910 Poweredge server. The R910

is a 4 socket server with 8 cores per socket. Each core uses hyper-threading to schedule more

than one process. This increases the parallelism in the system.

In R910, Xeon CPU X 7500 processors are used. The Intel Xeon 7500 series processors

have two integrated memory controllers which manage the data flow to and from the main

memory. Each Intel Xeon 7500 processor has 24 MB of cache memory and the cache line size

is 64 byte. The R910 has 4 bi-directional Intel QuickPath interconnects. For this particular

system, 4 GB of main memory is used. The clock speed of the Xeon processors is 2.3 GHz

with a maximum turbo frequency of 2.7 GHz (i.e. the CPU’s clock speed can be increased

up to 2.7 GHz) [33]. It offers up to 1TB of double data rate type three (DDR3) memory

(i.e. dynamic random access memory with high bandwidth interface) [35] and ten Peripheral
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Component Interconnect (PCI) slots which connect several hardware devices. The R910

supports write-back caching.

The operating system on this machine is the Scientific Linux release 6.1. Scientific Linux is a

Linux produced by Fermi National Accelerator Laboratory and the European Organization

for Nuclear Research (CERN). It is an open source operating system based on Red Hat

Enterprise Linux. Algorithms were implemented in Java using Open JDK Java enterprise

version 1.6.020.

5.3 Detailed Explanation of the Approach Used to Determine the Perfor-

mance of the Mutual Exclusion Algorithms

As discussed in Section 4.5, the performance of mutual exclusion algorithms is measured

in isolation and in data structures (implemented based on different mutual exclusion algo-

rithms). For measuring the performance in the above scenarios, locks are made re-entrant.

A re-entrant lock allows a process to acquire the same lock that it is holding without causing

deadlock. Consider a case in which process p gets the lock and executes the Critical Section

which contains another lock() method call. In this case, if the locks are not made re-entrant

then p would block itself as it would try to get the lock which it already holds. For making

the locks re-entrant, each process has a local Integer (L) which is intialized to zero. When a

process calls the lock() method, it increments L. It then checks the value of L. If L greater

than 1, then the process returns from the lock() method (i.e. the process already has the

lock) otherwise it executes the remaining lock() method (i.e. the process is trying to ac-

quire the lock for the first time). In the release() method, each process decrements L and

if the value of L is greater than zero, then it returns, otherwise it executes the release()

method.
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5.3.1 Experimental Setup

Recall that the mutual exclusion algorithms which are implemented in order to compare

their performance are the Test and Set lock (TS) [4], the Test and Test and Set lock (TTS)

[4], the MCS lock [26], the CLH lock [22], the randomized tree based mutual exclusion

algorithm with O(log n/ log log n) RMR complexity (RMX) [13], the deterministic mutual

exclusion algorithm based on the arbitration tree (Tree lock) [1], Java re-entrant lock, and

the randomized mutual exclusion algorithm against oblivious adversary (Backpack) [16].

As explained earlier, these algorithms were tested on the R910 server. The experiments

were performed with up to 64 processes because adding more processes would not increase

parallelism.

In isolation, time taken by each process to get the lock and release the lock is recorded

seperately. The Critical Section is very small and each process takes approximately 0.0001

ms to execute it. The total time taken by a process is computed by adding time taken by

it to get the lock and time taken to release the lock. The average and standard deviation of

the total time is calculated.

Note that the time taken by processes to execute the lock is the time taken by it to get the

lock and release the lock.

The mutual exclusion algorithms were executed between 105 and 13 x 105 times. Figure 5.1

shows the average time taken by 8 processes to excecute different locks k x 105 times, where

k is some parameter. The x-axis in the graph shows the number of times the lock() and

release() methods are called i.e., k x 105 and the y-axis shows the average time in milli-

seconds (ms). The results show that when 8 processes execute different locks, the average

time taken by processes to execute a particular lock when k is 105 is more than the average

time taken by processes to execute the same lock when k, is greater than 105. The average

time gradually decreases as k increases. The reason for this can be that, intially when the

processes start to execute the lock, they take more time because each process has to intialize
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the objects and variables used in the lock. This leads to a higher average time when k is

small.

As k is further increased from 9 x 105 to 13 x 105, not much difference is seen in the average

time. The tests were performed on up to 64 processes and the results were similar to the 8

process case (shown in Figure 5.1).

As discussed earlier, the average time taken by processes to execute different algorithms is

higher when k is small and the reason for it is the time taken by processes to intialize objects

and variables used in the algorithms. So, in an another test case, the top and bottom 10

percent of the recorded time was omitted. Figure 5.2 shows the average time taken by 8

processes to execute different locks when the top and bottom 10 percent of the values are

omitted. The results show that 8 processes take almost the same time as when executing

different locks k x 105 times.

Due to the reasons explained above, the number of iterations for which mutual exclusion

algorithms were executed in isolation and in data structures was fixed to 1 million and the

top and bottom 10 percent values of the distribution list are omitted. For all the graphs,

the x-axis represents the total number of processes executing the mutual exclusion algorithm

and the y-axis represents the elapsed time in milli-seconds.

5.3.2 General Hypothesis for Different Locking Strategies

In this Section, we describe the results we expect to see based on the previous work done in

this area. As stated by Anderson [4], as the number of processes executing the TS and the

TTS locks increases, a sudden increase is seen in the time taken by the processes to execute

these locks. Trigonakis, David and Guerraoui presented a paper [12] in which they explained

that the MCS and the CLH locks are most resilient to contention in comparison to other

mutual exclusion algorithms such as the Array-based locks, the TS lock, the TTs lock and

the HCLH lock. So, we expect to see similar behavior by the MCS and the CLH locks in

our experiments.
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Figure 5.1: 8 Processes executing different Mutual Exclusion Algorithms k x 105 times

In the RMX lock, deterministic and randomized promotion strategies are used due to which

processes may not always have to climb up to the root node to get the lock, while in the

Tree lock, each process has to climb up to the root node to get the lock. So, we expect to

see difference in the performance of the RMX lock and the Tree lock.

Figure 5.3 shows the number of times processes get promoted at different levels of the

arbiration tree used in the RMX lock when executing the lock 10 x 105 times. For the

Backpack lock, we expect to see constant RMR complexity but it is hard to predict without

conducting experiments. It also shows the total number of levels of the tree used in the

RMX lock and the Tree lock. In the result, we see that almost 65 percent of the processes

gets promoted at different levels of the arbiration tree in the RMX lock.

5.3.3 Performance Analysis of the Mutual Exclusion Algorithms in Isolation

Figure 5.4 shows the performance of different mutual exclusion algorithms in isolation. The

results in the Figure shows that the Java re-entrant lock shows best performance among all

other locks. The TS and the TTS locks show good performance (after the Java re-entrant
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Figure 5.2: 8 Processes executing different Mutual Exclusion Algorithms k x 105 times when
the top and bottom 10 percent of values are omitted
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48 3 6 352891 313954 

40 3 6 348963 319960 

 

Figure 5.3: The number of times processes get promoted before reaching the root node in
RMX lock when executing it 10 x 105 times

lock) upto 52 processes execute these locks. The MCS lock, the CLH lock and the Backpack

lock follows the TS lock and the processes take almost the same time to execute these locks.

Time taken by processes to execute the RMX lock and the Tree lock is more than other locks

because in these locks, processes may have to climb to the root node to get the lock.

The reason of poor performance of the TS and the TTS lock when more than 52 processes

execute them is the contention in the quickpath interconnect. In the TS lock, a process,

busy waiting in the lock() method (see Figure 3.6), performs a test&Set operation on a

shared variable. This test&Set operation forces all processes to discard their cached copies
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Figure 5.4: Processes executing different Mutual Exclusion Algorithms in Isolation

of the shared variable. Due to this, each process uses the quickpath interconnect to fetch the

new value of the shared variable when it incurs a cache miss. This leads to contention of the

quickpath interconnect. If the number of processes executing the lock is further increased,

then the performance of the TS lock further deteriorates. The performance of the TTS lock

is slightly better than the TS lock because in the TTS lock, each process, while busy waiting

for the lock, re-reads the value of the cached copy of the shared variable (see Figure 3.7).

Each process accesses the interconnect only when it incurs a “cache miss”. So, the processes

do not incur a “cache miss” every time (as in the case of the TS lock). In the TTS lock,

all processes trying to acquire the lock must have incurred a cache miss almost at the same

time, which may have caused a storm of traffic on the quickpath interconnect, hence leading

to poor performance of the TTS lock.

In the Java re-entrant locks, when the contention is low, processes take more time to execute

the lock method but as the contention increases, a steady increase is seen in the average

time taken by processes to execute the lock.

The graph in the Figure 5.4 shows that there is only a small difference in performance of the
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CLH lock and the MCS lock and that may be due to the system on which the experiments

are conducted. As the R910 is a CC-NUMA machine, processes executing the CLH lock

may have their predecessor node in the cache of some other processor. Each process will get

the cached copy of the locked field of its predecessor node (for details see the algorithm in

Figure 3.3) but it will cost an RMR. For instance, consider two processes p and q, where p is

q’s predecessor. Suppose that p and q are executing the mutual exclusion algorithm on two

different cores. Now if q has to get the cached copy of the locked field of p’s node, it has to

access shared memory, hence causing an RMR. While in the MCS lock, each process spins

on the locked field of its own node. So, the processes incur fewer RMRs in comparison to

the CLH lock. Per passage, in the CLH lock, each process incurs 4 RMRs while in the MCS

lock each process incurs only 3 RMRs. This may be the reason for the small difference in

the performance of the CLH lock and the MCS lock.

The RMX lock and the Tree lock show better performance than the TS and the TTS lock

because in the TS and the TTS lock, processes incur unbounded RMRs which results in

more average time while in the RMX and the Tree lock, the number of RMRs incurred by

processes are bounded. Performance of these locks is not as good as the MCS lock, the CLH

lock and the Backpack lock and the reason behind this may be the number of RMRs incurred

by processes. Each process incurs O(1) RMRs in the MCS and the CLH lock which are less

than the RMRs incurred by each process in the RMX lock and the Tree lock. The graph

shows that the RMX lock shows better performance in comparison to the Tree lock. This

may be due to the deterministic and randomized promotion techniques (see the algorithm

in the Figure 3.9) used in the RMX lock. In the RMX lock, processes may get promoted

and may not have to climb all the way up to the root node to get the lock, while in the

Tree lock, each process has to win all the locks on the path from its leaf node to the root

node. This may be the reason why, the time taken by the processes to execute this lock is

larger than the RMX lock. As explained earlier, Figure 5.3 shows the size of the tree in the
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RMX lock and the tree lock and the number of promotions happening at different levels of

the arbitration tree in the RMX lock (for details see Section 5.3.2).

In the Backpack lock, most of the processes either get the weak lock in line 3 of Figure 3.11

or enter some other process’s backpack in line 10 of Figure 3.12. Therefore, processes execute

only a single iteration of the repeat loop in line 2 of Figure 3.12 either get the weak lock or

enter someone’s back pack as seen in Figure 5.5. A more detailed explanation is provided in

the next section.

5.3.4 How Adding Delay affects the Performance of Mutual Exclusion Algorithms

In this section, the length of the Critical Section is varied by adding a delay of d milli-seconds.

This is done to see how varying the length of the Critical Section affects the performance of

different mutual exclusion algorithms.

5.3.4.1 How Adding Delay affects the Performance of the Backpack Lock

In the Backpack lock, roughly half of the processes should either get the weak lock or enter

some other process back pack in a single iteration. If no process is in the Critical Section of

the Backpack lock, then a process completes the weak lock method call immediately. But if

the Critical Section is large, then processes may have to execute the repeat loop in line 2 of

Figure 3.12 more often to either get the weak lock or to enter some other process’s back pack.

To determine that almost half of the processes should get the weak lock or enter some other

process back pack in each iteration, experiments were conducted with the Critical Section

of different lengths. Each process, after acquiring the lock, sleeps for d milli-seconds before

releasing the lock, where d is a parameter.

Figure 5.5 shows the number of iterations taken (the number of times the repeat loop in line

2 is executed) by processes to get the weak lock or to enter someone’s back pack as a fuction

of the delay. In the figure, x-axis represents delay added and the y-axis represents number

of times the lock() and release() is executed. The vertical bars in the Figure represents
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Figure 5.5: Performance of Randomized Mutual Exclusion against Oblivious Adversary when
Delay is added

the number of iterations in which the processes either get the weak lock or enter someone’s

back pack. Figure 5.6 shows the number of iterations taken by 8 processes to either get

the weaklock or enter someone’s back pack in the tabular form. The number of processes

that execute the algorithm is up to 64 and not much diffrence was seen in the results when

compared to 8 process test case.

In the Backpack lock, when processes do not sleep in the Critical Section (i.e. the value of

d is 0), almost all the processes either get the weak lock or enter someone’s back pack in a

single iteration of the repeat loop (in line 2 in Figure 3.12). As the value of d increases the

number of processes that get the weak lock or enter someone’s back pack in a each iteration

decreases. Due to the delay inserted in the Critical Section, the processes have to wait either
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Sleep 
Time in 
ms 

1  2 
 

3 4 5 6 7 8 9 10 11 

0 999994   6 0 0 0 0 0 0 0 0 0 

200 899138 101438 12697 10790 9785 3000 3100 52 0 0 0 

400 798509 111189 20212 16198 15672 14299 10062 6754 4746 1300 1059 

600 729824 121189 48963 30000 29599 19141 13050 3124 2025 2026        1059 

800 600756 187628 65473 44766 43187 34066 16287 2405 2329 1791 1308 

1000 546788 200154 66099 56823 57233 36891 21189 6239 3947 3069 1568 

1200 488061 212000 68878 61789 60055 55751 35258 9508 4000 3100 1600 

1400 482067 212300 69878 63789 72060 51551 31147 7908 4200 3250 1850 

1600 481022 212345 69978 63839 72160 51751 31197 7958 4450 3350 1950 

1800 480992 212345 69978 63839 72160 51751 31197 7958 4450 3350 1960 

 

Figure 5.6: Number of Iterations in which the Processes either get the weak lock or enter
someone’s backpack when executing the Backpack lock 106 times

to get the weak lock or enter someone’s back pack. This leads to an increase in the number of

iterations. As the delay is further increased, almost half of the total number of processes get

the weak lock or enter someone’s back pack in a single iteration, and the remaining processes

iterate more to get the weak lock or to enter some other processes back pack. When the

delay is further increased from 1500ms to 2000ms, there is a slight decrease in the number

of processes getting the weak lock or entering someone’s back pack in single iteration while

when the delay is increased further then the processes getting the lock in single iteration

remains unchanged.

In the Backpack lock, when the processes have to perform the random coin flip in line 4 of

Figure 3.12, almost half of the processes should write their IDs to the shared register in line

6. The remaining processes will read the ID of a process from that shared register and will

try to enter that process’s back pack in single iteration of the repeat loop in line 2. In the

second iteration, half of the processes who wrote to the shared register earlier would perform

the coin flip and again half of the processes i.e. 1/4 of the processes would try to enter some

other process’s backpack whose ID it reads from shared register.
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5.3.4.2 How Adding Delay affects the Performance Analysis of other Mutual Exclusion

Algorithms

In this test case, now we will consider how the performance of the other mutual exclusion

algorithms varies when we add delay in the Critical Section. Each process, after getting the

lock, sleeps in the Critical Section for d milli-seconds and then releases the lock, where d is

a parameter. For this test case, a delay of 500 to 1500ms is added so that the performance

of these algorithms can be compared to the Backpack lock. As seen in Figure 5.6, when the

delay of 500ms is added in the Backpack lock, almost 70 percent of the processes get the

weak lock or enter someone’s back pack in single iterations and as we keep on increasing

the delay, processes iterate more to do the same. So, it would be interesting to know the

performance of the Backpack lock among all other locks.

Figure 5.7 to 5.9 shows the performance of the mutual exclusion algorithms when the delay

of 500ms, 1000ms and 1500ms is added in the Critical Section. The results in Figure 5.7

show that the TS lock and the TTS lock show the best performance among all locks when up

to 3 processes execute these locks. But as the contention increases the performance of the TS

and the TTS lock deteriorates. The reason behind this may be that as the processes waiting

for the TS lock repeatedly performing test&Set on the shared variable increase, this causes

an RMR every time, thus increasing the contention in the quickpath interconnect. Due

to contention in the interconnect, the average time taken by processes to complete lock()

and release() method call increase which leads to bad performance of the TS lock. The

performance of the TTS lock is a little bit better than that of the TS lock. This is because

in the TTS lock, processes repeatedly read the value of a cached copy of the shared variable

and only incur RMRs when they incur cache misses. Adding delay in the Critical Section

does not have much impact on the performance of the CLH and the MCS locks.

The Java re-entrant lock has highest average time when up to 16 processes execute this lock

but as the contention increases then a steady increase in the average time has been seen.
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As the delay increases from 1000ms to 1500ms (see Figures 5.8 and 5.9), the performance of

the TS and the TTS locks further deteriorates because processes while waiting for the lock

incur more RMRs, hence further increasing the contention in the interconnect.

The difference in the average time taken by processes to execute the RMX lock and the

Tree lock decreases when the delay of 1000ms and 1500ms is added. This may be because

the randomized and deterministic promotion techniques used in the RMX lock are done by

the process while releasing the lock. So, may be no process is promoted while the process

holding the lock is asleep in the Critical Section and all the processes try to win the lock

on the nodes while moving up towards the root node. The Difference between the two locks

further decreases as the delay is increased to 1500ms.

In the Java re-entrant lock, when the delay is further increased to 1000ms and 1500ms,

the threshold up to which this lock has highest average time is small. For instance, when

delay of 1000 ms is added, the Java re-entrant locks has highest average time when up to

12 processes execute it and this threshold value drops down to 10 when delay is further

increased to 1500ms. When contention is high, this lock has low average time.

When the delay of 1500ms is added in the Critical Section, processes executing the Backpack

lock takes slightly more time than the CLH lock and the MCS lock. The reason behind this

may be that almost half of the processes get the weak lock or enter someone’s back pack

in a single iteration while remaining processes iterate more which results in slightly higher

average time.

5.3.5 Performance of Locks used in Data Structures

As discussed earlier, for the performance analysis of different mutual exclusion algorithms

used in data structures, coarse-grained and fine-grained locking techniques are considered.

For coarse-grained locking, AVL trees are used. For fine-grained locking, the concurrent

linked list is considered as it is simpler to implement in comparison to the concurrent AVL

trees with fine-grained locking.
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Figure 5.7: Processes executing different Mutual Exclusion Algorithms when Delay of 500ms
is added in the Critical Section
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Figure 5.8: Processes executing different Mutual Exclusion Algorithms when Delay of 1000ms
is added in the Critical Section
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Figure 5.9: Processes executing different Mutual Exclusion Algorithms when Delay of 1500ms
is added in the Critical Section

The mutual exclusion algorithms in the AVL tree were executed between 105 and 13 x 105

times. The average time taken by processes to excecute different locks k x 105 times, where

k, is some parameter was recorded and the top and bottom 10 percent of the values of

the distribution list were omitted to get more precise results. The Figure 5.10 shows the

average time taken by processes to execute different locks when the top and bottom 10

percent values are omitted. In the Figure, the x-axis shows the number of times the lock()

and release() methods are called i.e., k x 105 and the y-axis shows the average time in ms.

The top and bottom 10 percent of the values of the distribution list were omitted to get

more precise results. Earlier the performance of different mutual exclusion algorithms was

analyzed without omitting the top and bottom 10 percent of values and the results showed

that when k is lower, the average time taken by processes to execute different locks is higher.

This may be because when the processes start to execute the lock, they have to intialize the

objects and variables used in the lock.

So, in the another test the top and bottom 10 percent of values in the distribution list were

omitted. The results in the Figure 5.10 shows that 8 processes takes almost the same time

71



      CLH Lock           TS Lock            MCS Lock            Backpack Lock             TTS Lock           RMX Lock            Tree Lock 

 

 

0.039

0.041

0.043

0.045

0.047

0.049

0.051

0.053

0.055

1 3 5 7 9 10 11 12 13

A
ve

ra
ge

 t
im

e
 (

m
s)

Number of time processes execute lock() and release() methods

Figure 5.10: 8 Processes executing different Mutual Exclusion Algorithms in the AVL Tree
k x 105 times when the top and bottom 10 percent of values are omitted

when executing different locks k x 105 times in the AVL tree.

The tests were performed on up to 64 processes and the results were similar to the 8 process

case (shown in Figure 5.10). Due to this reason, the number of iterations for which mutual

exclusion algorithms in the AVL tree was fixed to 1 million and the top and bottom 10

percent values of the distribution list are omitted.

For all the graphs, the x-axis represents the total number of processes executing the mutual

exclusion algorithm and the y-axis represents the elapsed time in milli-seconds.

As discussed in the previous chapter, in coarse-grained locking, a process locks the entire

data structure, performs operations, and then releases the lock. For this test case, the AVL

tree is implemented by using the Lock class which implements a mutual exclusion algorithm.

The AVL tree used in the experiments is implemented by Brian Cheng (student at Virginia

Tech) [10].
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Test Case 𝑃𝑖  𝑃𝑑 𝑃𝑙  Figure on Page 

1 100% 0 0 78 

2 80% 0 20% 79 

3 50% 0 50% 80 

4 0 80% 20% 81 

5 40% 40% 20% 82 
 6 25% 25% 50% 83 

7 10% 10% 80% 84 

Figure 5.11: Different probabilities with which processes perform insertions, deletions and
look-ups in the AVL tree

The AVL tree is first created with 1,000,000 nodes (the size of the data structure is

approximately 28 MB). Recall that in coarse-grained locking, each process, before performing

any operation on the AVL tree, first locks the whole tree and then performs the respective

operation, followed by releasing the lock on the tree. Each process can perform insertions,

deletions and look-ups on the AVL tree. The value which is to be inserted or deleted or which

is to be looked-up is chosen uniformly at random in {1, . . . , 10, 000, 000}. For generating

the random integer values uniformly, the Random class in Java is used. The total time is

recorded for each process to perform the respective operation on the AVL tree which includes

the time taken to lock the entire tree, performing the insertion or deletion or look-up and

then releasing the lock. Then the average time per operation is calculated. Different insert,

delete, and look-up combinations are considered.

Each process performs insert, delete and look-ups depending on the different parameters,

pi, pd, pl, where pi is the parameter representing the probability with which processes in-

sert, pd is the is the parameter representing probability with which processes delete and pl

parameter for look-ups. Figure 5.11 shows different test cases considered for coarse-grained

locking. Each test case is instantiated by above mentioned parameters. Processes at random

decide which operation they have to perform and the probability distribution of operations

depends on pi, pd and pl.

From these test cases, we hope to gain some insight about how the performance of
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different mutual exclusion algorithms varies with the contention.

5.3.5.1 Performance Results using Coarse-Grained Locking

In the coarse-grained tests, the time taken by processes to perform deletions, insertions

and look-ups is measured. In the Figures 5.12 - 5.18 on pages from 78 to 84, the results

show that the time taken by processes to perform insertions or deletions on the AVL tree

is much longer than the time taken to perform look-ups. The MCS lock, the Backpack

lock and the CLH lock show the best performances among all the locks. The performance

of the RMX lock and the Tree lock is not as good as the locks mentioned above but still

their performance is better than the TS lock and the TTS lock. When the contention is

small, the TS lock and the TTS lock show the best performances among all the locks but as

the contention increases, the performances of these locks degrade. For example, as seen in

Figure 5.14, the TS lock and the TTS lock have shortest average time per operation among

all other locks when up to 16 processes execute them, while in test case where all processes

insert (i.e. pi = 100 %), the TS and the TTS lock show best performances when up to 8

processes execute them. In the other test cases, the threshold may be different but still the

performance of the TS lock and the TTS lock is better than all other locks when contention

is small (see Figures 5.13 - 5.15). The reason behind the poor performance of the TS and

the TTS locks when many processes execute these locks is contention in the interconnect

(for details see Section 5.3.3). The Java re-entrant lock has highest average time among all

other processes when the contention is small but as the contention increases, it shows same

behavior as explained in the Section 5.3.3.

The time taken by processes to perform look-ups (with different locks) is smaller compared

to the time taken by them to perform insertions and deletions as in the case of look-ups,

processes hold the lock for short time in comparison to insertions and deletions. The test

cases in which pl is longer than pi and pd, the threshold for which the TS and the TTS

lock performs better is higher. In this case, the threshold for which the Java re-entrant lock
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peforms worst is also higher. For example, in Figures 5.17 and 5.18, the TS and the TTS

lock show the best performances for up to 48 processes. In the above mentioned figures, the

Java re-entrant lock show worst performance for up to 30 processes (approx). So, higher the

probability of look-ups better the TS and the TTS lock perform. The reason for this may be

that when pl is higher, the time for which processes hold the lock is small in comparison to

when processes hold the lock for performing insertions and deletions. As the time for which

processes hold the lock is small, so, this leads to less contention in the interconnect, hence,

leading to good performances of the TS and the TTS locks.

5.3.5.2 Experiments using Fine-Grained Locking

A linked list is first created with 1,000,000 nodes (the size of the linked list is approximately

28 MB). Each process performs insertions, deletions or look-ups on the list. Look-ups in this

case are lock-free, i.e. processes do not get the lock for performing look-ups. The value to

be inserted, deleted or to be looked-up is decided uniformly at random from the domain of

1 to 10,000,000.

Each process decides at random which operation it has to perform and the probability

distribution of operation to be performed depends on the parameters, pi, pd, pl, where pi is

the probability of insertion, pd is the probability of deletion and pl is the probability of a

look-up. Figure 5.19 shows different test cases considered for fine-grained locking. Each test

case is instantiated by above mentioned parameters and the operation which each process

performs is decided by these parameters.

The total time is recorded for each operation on the linked list, including the time to lock

the node, performing the insertion or deletion and then releasing the lock. Then the average

time per operation, insertion, look-up and deletion is calculated. The mutual exclusion

algorithms in the linked list were also executed between 105 and 13 x 105 times. The average

time taken by 8 processes to execute different locks k x 105 times, where k is some parameter

was recorded and the top and bottom 10 percent of the values of the distribution list were
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Test Case 𝑃𝑖  𝑃𝑑 𝑃𝑙  Figure on Page 

1 100% 0 0 88 

2 80% 0 20% 89 

3 50% 0 50% 90 

4 0 80% 20% 91 

5 40% 40% 20% 92 

6 25% 25% 50% 93 

7 10% 10% 80% 94 

Figure 5.19: Different probabilities with which processes perform insertions, deletions and
look-ups in the linked list

      CLH Lock           TS Lock            MCS Lock            Backpack Lock             TTS Lock           RMX Lock            Tree Lock 
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Figure 5.20: 8 Processes executing different Mutual Exclusion Algorithms in the linked list
k x 105 times when the top and bottom 10 percent of values are omitted
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omitted to get more precise results. The Figure 5.20 shows the average time taken by

processes to execute different locks when the top and bottom 10 percent values are omitted.

In the Figure, the x-axis shows the number of times the lock() and release() methods are

called i.e., k x 105 and the y-axis shows the average time in ms. The results in the Figure

5.20 shows that 8 processes takes almost the same time when executing different locks k x

105 times in the list.

The tests were performed on up to 64 processes and the results were similar to the 8 process

case (shown in Figure 5.20). Due to this reason, the number of iterations for which mutual

exclusion algorithms in the list was fixed to 1 million and the top and bottom 10 percent

values of the distribution list are omitted.

5.3.6 Measurement Results using Fine-Grained Locking

Figures 5.21–5.27 on pages 88–94 show that the MCS lock, the Backpack lock and the CLH

lock have the best performances among all the locks in most of the test cases. When the

probability with which processes perfrom look-up is high, the TS and the TTS locks bene-

fit from low contention and the Java re-entrant lock suffers in low contention. In the test

case where processes insert and delete with 10% probability and perform look-ups with 80%

probability, the TS and the TTS lock have the shortest average time per operation. This

is because look-ups are lock-free and few processes access the lock to perform insertions

and deletions. In the other cases, when the contention is small, the TS lock and the TTS

lock show the best performances among all the locks but as the contention increases, the

performances of these locks degrades. For example, as seen in Figure 5.23, the TS lock and

the TTS lock have the shortest average time per operation among all other locks when up

to 16 processes execute them, while in the test case where all processes insert (i.e. pi = 100

%), the TS and the TTS lock show the best performances when up to 8 processes execute

them. In the other test cases, the threshold may be different but still the performance of

the TS lock and the TTS lock is better than all other locks when contention is small (see

84



Figures 5.22 - 5.24). The reason behind the poor performance of the TS and the TTS locks

when many processes execute these locks is contention in the interconnect (for details see

Section 5.3.3).

The performance of the RMX lock and the Tree lock is not as good as the locks mentioned

above but still their performance is better than the TS lock and the TTS lock (when the

contention is large). The test cases in which pl is longer than pi and pd, the threshold for

which the TS and the TTS lock performs better is higher. For example, in Figure 5.26, the

TS and the TTS lock show the best performances among all other locks. So, the higher the

probability of look-ups, the better the TS and the TTS lock perform. The reason for this

may be that when pl is higher, the number of processes which try to get the lock are fewer

which leads to low contention in the interconnect, and hence good performances of the TS

and the TTS locks.

The Java re-entrant lock has longest average time among all other processes when the con-

tention is small but as the contention increases a steady increase in the average time is seen.

The test cases in which pl is longer than pi and pd, the Java re-entrant locks show poor

performance as few processes access lock (i.e contention is small). This lock small average

time only if contention is high.

All the Figures show that the processes take less time in the fine-grained locking to perform

insertions or deletions in comparison to the coarse-grained locking. The difference in the

time take in the fine-grained and coarse-grained locking is not only due to the locking strate-

gies used but also may be due to the different data strutures used in both of the locking

strategies.
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Chapter 6

Conclusion

6.1 Introduction

This thesis presents a performance comparison of various mutual exclusion algorithms. The

main focus of the thesis is on measuring the time taken by processes for executing different

mutual exclusion algorithms in isolation and also in different data structures. While mea-

suring the performance of mutual exclusion algorithms in isolation and in data structures,

processes perform insertions, deletions or look-ups with varying probability. The perfor-

mance of algorithms is also evaluated by adding a delay of k ms in the Critical Section,

where k is some parameter. In all the above experiments, the average time per operation,

insertion, deletion and look-up is recorded to gain some insight about how the performance

of different mutual exclusion algorithms varies with the contention and the delay.

6.2 Thesis Contribution

Mutual exclusion is a very important problem in distributed computing. It prevents two

processes from accessing some shared resource at the same time. It is a standard building

block for shared memory algorithms. Mutual exclusion algorithms used by shared memory

algorithms should be efficient as operating systems and shared memory algorithms frequently

make use of them. If the mutual exclusion algorithm is not efficient, then the efficieny of

shared memory algorithms may suffer.

In this thesis, the performance of mutual exclusion algorithms in isolation shows that the

MCS, the CLH and the Backpack locks are most resilient to contention, followed by the

RMX and the Tree locks in all test cases. The Backpack lock scales in almost the same
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way as the MCS and the CLH lock. The TS and the TTS locks are most affected by the

contention but they benefit from low contention. For instance, in the experiments using

locks in data structures (where the look-ups are lock-free), the performances of these locks

is the best among all other locks (see section 5.3.6).

For concurrent programming, when the contention is low, the TS or the TTS locks are to

be preferred. These locks only need a test-and-set object, which makes them simple to

implement. In these locks, processes have to execute only few operations if there is no or

little contention (as seen in Section 5.3.6 on Page 86). The TTS lock should be preferred

over the TS lock because in the TTS lock, processes incur less RMRs in comparison to the

TS lock as seen in results in Chapter 5.

When the contention is high, the MCS, the CLH, or the Backpack lock should be preferred.

The advantage of the Backpack lock over the MCS and the CLH locks is that in the MCS and

the CLH locks, strong primitives such as getAndSet() are used which may not be supported

by certain systems. Even if they are supported by hardware, their efficiency is not known

and may vary on different architectures. Therefore, it is better not to rely on their efficiency.

David, Guerraoui and Trigonakis [12] presented a paper in which they conducted similar

performance tests of several mutual exclusion algorithms on processor architectures such as

Niagara, Tilera, Xeon and Opteron. They considered the MCS lock, the CLH lock, the TS

lock, the TTS lock and the Array based locks. The experiments were conducted for up to

80 processes.

In our thesis, the Array based lock was not implemented as this algorithm is not space

efficient. We have considered several randomized mutual exclusion algorithms to compare

their performances with deterministic mutual exclusion algorithms. All the randomized and

deterministic locks in our thesis were tested under different scenarios such as delay being

added in the Critical Section, in data structures and in isolation.

The results of the paper by David, Guerraoui and Trigonakis show that the MCS and the
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CLH lock are most resilient to contention while the TS and the TTS locks show the worst

performance among all locks (when contention is high). This matches our results. Our re-

sults provide evidence that the Backpack lock (a randomized mutual exclusion algorithm)

can compete with other established locks using stronger primitives (i.e. the MCS and the

CLH locks).

6.3 Possible Extensions of this Thesis

In future, the performance of these locks can also be tested on the different shared memory

multiprocessors such as Niagara, Opteron, and Tilera to see how does the shared memory

multiprocessors impact the performance of these locks under low and high contentions. We

can implement the locks using different programming language and see whether this impacts

the performance of locks. As each programming language has its own compiler and code

optmiziming techniques so, implmenting these locks in different programming language may

impact their performance.
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