
THE W R S I T Y  OF CALGARY 

The Application of Design Pattems in Knowledge Merence Engine 

Dong Pan 

A THESIS 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILJ;MENT OF THE REQiJlREMENTS FOR THE 

DEGREE OF MASTER OF SCIENCE 

DEPARTMENT OF COMPUTER SCIENCE 

CALGARY, ALBERTA 

NLY, 1998 

QDong Pan 1998 



National Library 191 ,,da 
Bibliothèque nationale 
du Canada 

Acquisitions and Acquisitions et 
Bibliogaphic SeMces services bibliographiques 

395 Wellington Street 395, nie Wellington 
OttawaON K1AON4 Ottawa ON K1A ON4 
Canada Canada 

The author has granted a non- 
exclusive licence allowing the 
National Licbrary of Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats. 

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts fiom it 
may be printed or othenvise 
reproduced without the author's 
permission. 

L'auteur a accordé une licence non 
exclusive permettant à la 
Bibliothèque nationale du Canada de 
reproduire, prêter, distribuer ou 
vendre des copies de cette thèse sous 
la fome de microfiche/fïlm, de 
reproduction sur papier ou sur format 
électronique. 

L'auteur conserve la propriété du 
droit d'auteur qui protège cette thèse. 
Ni la thèse ni des extraits substantiels 
de celle-ci ne doivent être imprimés 
ou autrement reproduits sans son 
autorisation. 



Abstract 

Software design patterns are a literature form to describe successfid solutions to cornmon 

software probierns. Design pattems are a valuable technique in the software engineering 

problem-solving discipline. The design pattexm capture experts' successful expenence, 

make implicit design knowledge explicit, and explain the deep structure and rationale of a 

design. The design pattem comm-mity has written and documented many design patterns 

- howèver, no paper or book has been written in the knowledge representation domain. 

Description Logic based systems are knowledge representation and reasonhg çystems 

that support a richer representation formalism than standard rule based systerns. 

CLASSIC is a mal1 description logic with a well-defined syntax. 

In order to ver@ that design pattems are applicable to the knowledg representation 

domain, CLASSIC was chosen as a mode1 for the design of a lmowledge inference 

engine. A number of design patternç were applied to the design and implementation of 

the systern. The results show that design patterns are applicable to the domain. In 

addition, the use of design patterns makes the system more flexible and extensible. 



Acknowledgements 

The work presented in this thesis could not have been possible without the support of 

many people. Thanks to m y  supervisor, Dr. Rob Kremer, for his timely advice, 

consultations, encouragement, and criticism throughout the development of this work. 

Rob motivated this work by fkst introducing design patterns to me and convincing me the 

value of patterns. He has been an invaluable source of support and guidance throughout 

rny graduate program. 

I would also like to thank people at the Software Engineering Group, Knowiedge Science 

Insiitute lab, and the Cornputer Science Depailement at the University of Calgary. These 

people have been an endless source of inspiration and good advice throughout this work. 

They include Mildred Shaw, Bnan Gaines, Roberto Flores-Mendez, Saul Greenberg, PM 

van Leeuwen, Wuji Yang, and John Frankovich. Thanks also go to the department of 

Cornputer Science for providing me with such a fÏiendly environment and for its 

C O ~ ~ ~ ~ U O U S  support. 

Thanks to Carlos Marques for the thought-provoking discussions we had during the 

work. Many th& to Guoqiang Li, and Dr. Yea-Mow Chen, who offered me much help 

which made it possible for me to enter the graduate program. Thanks to Andy Kremer, 

who spent tremendous effort in proof-reading this thesis. 1 really appreciate it. 

1 would like to thank my Mom and Dad for their encouragement, understanding, and 

caring. They are aiways a source of motivation for me. Without them, I could never 

accomplish what 1 had done today. 









List of Tables 

Table 3.1 Conjoining of Two Descriptions ................................................................. 3 6  

................................... Table 4.1 The requirements for the Knowledge Merence Engine 52 

Table 5.1 Methods required for Description Comtmctor ................................................. 69 

................ Table 5.2 Simplifiexi Interface of Knowledge Base .... .............................. 76 
Table 5.3 System Performance ................... ... .......................................................... 94 



List of Figures 

............................. Figure 2.1 Class Structure of Model-View-Controller Pa- Mode1 22 

......................... Figure 5.1 SimplSed Class Hierarchy of Knowledge Inference Engine 57 

Figure 5.2 Class KnowledgeBase .................................................................................... 58 

............................................................................................... Figure 5.3 Class Concept 61 

......................................................................... Figure 5.4 Class Individual ....... ...... 6 2  

.......................................................................................... Figure 5.5 Class GraphNode 6 4  

................................................... Figure 5.6 Class Structure of the Interpreter Pattern 6 6  

.................... Figure 5.7 Class Structure of the hplementation of the uiterpreter Pattern 68 

Figure 5.8 Class Structure of the Prototype Paiîern .............. .. ............................... 71 

Figure 5.9 Class Structure of A c W  Implementation ...................................................... 72 

Figure 5.10 Class Structure of the Obsmer Pattem ...................... .. ....................... 73 
Figure 5.1 1 Class Structure of Actual Implementation .................. .... ........................ 74 

Figure 5.12 Class Structure of the l?aca.de Pattern ....................................................... 76 

........................................................ Figure 5.13 Class Structure of the Strategy Pattern 79 

Figure 5.14 Class Structure of the Strategy Implementation ............................................ 80 

............................. Figure 5.1 5 Class Structure of the Singleton Pattern ..................... ... 81 

Figure 5.16 Class Structure of the Flyweight Pattem ........................ ....... ............ 82 

Figure 5.17 Class Structure of ComtxuctFac .................................................. ......... 83 

......................................... Figure 5.18 Snippet of Test Data 1 ............................... 8 7  

....................... Figure 5.19 Querying Result of Concepts Employee and Foreman ... ... 88 
..................................................... Figure 5 2 0  Querying Data of Individual "fi& smith" 89 

................................................... Figure 5 2 1 Querying Data of Individual "body works" 88 

............................. Figure 5.22 Concept Hierarchy of Wine and Food ................... ...... 90 

............................................. Figure 5.23 Quaying Data of Concept CHARDONNAY 91 

..................................... Figure 5.24 Querying Result of Individual Forman-Chardonnay 92 

Figure 5.25 Nobel's Constructive Example with 10 Concepts ......................................... 94 



Chapter 1 Introduction 

The aim of this research is to study software design patterns by designing and 

implementing a knowledge inference enpine based on CLASSIC, and evaluating the 

applicability of design patterns in howledge representation systems. 

1.2 Motivation 

Software reuse has long been considered a way to solve the software crisis problems. 

Software reuse provides a basis for drastic improvement in software quality and 

developer productivity. However, reuse is not widely practiced in software organkations 

for a varieîy of reasons. One reason rnay lie in peoplets misunderstanding of the meanhg 

of reuse - some may think of reuse only in terms of code reuse. While code reuse is one 

kind of reuse, one should recognize that the effort spent in coding is only a s m d  portion 

of the effort applied to the whole project. Software developers tend to U e  to create theu 

own code if the code in a reusable library does not fûlly satis@ their needs, or they do not 

fully understand the t h e  and space requirements of the piece of code. 

Design patterns are abçtract descriptions of a solution to a problem under certain 

constraints. They absîract the solution fiom many successful designs and describe the 

solution in an easily understood foxmat. A design pattern is an abstract solution in that it 

tells one how a problem can be solved without prescriiing how the concrete 

implementation should be done. Hence, the reuse of design patterns may be easier to 

achieve. On the one hand, progrmers  are given the solution in a pattern fonn. On the 

other hand, the concrete implementation is not given, so the programmer still has much 



freedom to apply his or her creativity in the implementation. Thus, programmers wili be 

more likely to reuse design patterns. This is especially tme in a volatile environment 

where software and hardware pla~onns are under constant change: only design pattems 

which capture the expertise of the designers will be reused. 

Traditionally, novices leam Object-OrÏented programming by first leaming basic 

concepts, then reading O&' programs, and then trying to program in the language. 

Through trial and error, the novice gains experience and l ems  various design patterns 

through abstracting fiom these programs even though design pattems are not used 

explicitly. If the programs are not weU documented, the learning is harder, with more 

time and effort required A programmer has to study implementation details: because 

design patterns are obscured in implementation details, the leamer has to look at the 

programs in-depth in order to understand them. Sometimes, it is even impossible to 

understand c d  design decisions by looking only at the implementation (Pree, 1995). 

If the programs are weii documented and design pattern applied are described explicitly, 

the leaming effort will be much reduced. 

For system maintahers or those who join a project in the middle of development, the 

same problems exist as for novices leaming by studying others' programs. These people 

must study the system to understand the design of the system. With the help of design 

patterns, people can look at the system at a higher abstraction level. Many design 

rationales are described by design patterns, so the design can be more easily understood. 

Controlled experiments show thaî maintenance work can be done in less time and with 

fewer error if the systern is documented in design patterns format (Prechelt, Unger, 

Philippsen, and Tichy, 1997). 

Knowledge representation and inference is a relatively mature domain. It has undergone 

many years of evolution and many successful systems have been developed, such as KRS 



3 

(Gaines, 1993; Gaines, 1995) and NeoClassic (Patel-Schneider, Abrahams, Resnick, 

McGuuiness, and Borgida, 1996). These systems have been applied to many real 

applications, such as  configuration management (Wright et al, 1993), data mining 

(Brachman et al, 1993), etc. Though this is a relatively mature domain, and design 

pattems have been around for sevaal years, the author noted that there is no publication 

on design patterns in the knowledge inference domain. The author wonders why no one is 

doing this work. 1s it because the domain is so special that design pattems are not 

applicable to it? 

The author himself believes that design pattems should be applicable to lmowledge 

inférence software. The research will include a research of a related domain, the 

implementation of a knowledge inference system, and an examination of whether design 

pattems are applicable to the system. 

1.3 Design Patterns 

Software design patterns are a literature form to descnbe successful solutions to common 

software problerns. They are insightfûl nuggets of information that capture the essence of 

a successful family of solutions to recurring problerns. Each design pattem is describeci in 

a certain format. Most of design pattem are described in a format calleci Alexandnan 

form. 

In Alexandrian forxn, the description of each pattem consists of the pattem name, the 

intent of the pattern, the context where the problem occurs, forces (tradeoffs), solutions 

(may include the stmcture of the solution), rationale, examples of using the pattem, and 

h o w n  uses which descnbe systems in which the pattern has been used. To provide the 

readers with a concrete feeling of design patterns, the following uses the Proxy pattern 

(Gamma et al, 1994, pp.207-217) as an example. The description of the pattern is not 



intendeci to be complete. Readers interestecl in the pattem shouid refer to the original 

text for a more detailed description. 

Pattern Name: 

htent: 

Solutions: 

Known Uses: 

Provide a surrogate or placeholder for another object to control access to 

it (Gamma et al, 1994, p.207). 

In cases when a remote object needs a local representative, or there is 

the need to control the creation of expensive objects, access to objects, 

or other additional operations on original object, a proxy object is 

needed. 

One level of indirection is introduced by the pattern when accessing the 

original object. Many operations can be added through the level of 

indirection dependhg on the kind of proxy. 

The pattem consists of three classes: the proxy class, the subject class, 

and the real object class. The subject class defines a common interface 

for proxy and real object classes so that a proxy can be used anywhere a 

real object is expected 

ET*, NEXTSTEP, etc. 

For software developers, design patterns are another valuable method that complements 

those existing methods (Gamma, et al, 1994, p.353). Pattern capture obscure but 

important practices and make implicit knowledge explicit. They provide a structural and 

easily understood form for documenting and sharing successful experience among 

developers. Patterns help improve communication among developers by providhg a 

common vocabulaty which has a higher abstraction level. The use of pattern in system 



development enables the reuse of software architecture. Patterns can also help one l e m  

existing systems or teach novices good design. The topic of design patterns will be 

described further in chapter 2. 

The application of design patterns in system design c m  generate software that is more 

robust (Gamma, et al, 1994, p. 24). The systems will be more extensible and flexible. in 

addition, if design patterns in the system are explicitly documented, the maintenance and 

learning effort will be much reduced because design patterns encompass many design 

rationaie. 

1.4 Description Logics and CLASSIC 

Description logics are languages tailored for expressing lmowledge about concepts and 

concept hierarchies. They can be seen as variable fiee first order term languages. In such 

systems, one starts with primitive concepts and roles, and c m  use the language constructs 

(also cded desrrption constructorr, such as intersection, role quantification, etc.) to 

define new concepts. Concepts c m  be considerd as sets of individuals, whereas roles are 

binary relations between individuals. The main reasoning tasks are classification and 

subsumption checking. Subsumption represents the is-a relation where the more general 

concept is the parent of a more specinc one. 

CLASSIC is a small description bgic language. The language is composed of primitive 

concepf concepts, roles, d e s ,  and individuitls. Complex descriptions are built fkom 

simple ones by using description consmictors. CLASSIC defines eight language 

constnicts, such as intersection (and constnictor), role quantification (atLeast, atMost 

constnictors), value restriction (all constructor), etc. These constructors will be descnbed 

in more detail in section 3.2. 



The knowledge inference domain is a relatively mature one where many systems have 

been developed and used in a variety of applications. The requirements for the knowledge 

inference system developed in this research were obtained rnainly by studying existing 

systems, çuch as KRS (Gaines 1993) aEG NeoClassic (Patel-Schneider et al, 1996)- The 

major function is to check the coherence of a description, to cornpute the subsumption 

relationship, and to classify concepts and individuals. 

1.5 Objectives 

The primary objective of this thesis is to evaluate the applicability of design patterns in 

the laiowledge inference domain. The method used to achieve the objective is to develop 

an actual lmowledge inference system, and check whether design patterns c m  be applied 

in the design and implementation of the system. 

Because a lmowledge iaference system itself is very broad and cornplex, the work of this 

research will not focus on developing a full-fledged lmowledge inference system. 

However, the system should support basic howledge inference functionality. CLASSIC 

was chosen as the mode1 for the system because it is relatively simple and there exists 

much literature about i t  Though the system is intended to be a test case for evaluating 

ideas, this intent does not mean that the system cannot be further extended to a fuliy 

fiuictioning lmowledge uiference system. The system should, however, be implemented 

in a p ~ c i p l e d  way so that it implements basic fiinctions, but it should be able to be 

extended easily in the fûture. ExtensibiIity is one requirement for the system design. 

The following auxiliaiy objectives can be derived fiom the primary objective: 

1. Studying software design patterns and developing an in-depth understanding of 

them; 



2. Designing and implementing a howledge infaence engine; 

3. Applying design pattems to the design and imptementation of the systern as 

appropnate; 

4. Documenting the design patterns in the context of the system. 

The research work is centered around the objectives discussed above. These objectives 

are discussed again in chapter 4 when discussing the requirements of the knowledge 

inference system. The evaluation of whether design patterns are applicable to the 

howledge inference domain depends on the design and implementation resuit If design 

pattems are applied in the system design, the conclusion that design patterns are 

applicable can be drawn. Clthemise, negative conclusions can be drawn. 

This chapter has bnefly introduced design pattems. A design pattern is an abstract 

description of a solution to a problem under certain constraints. Design patterns capture 

expert experience and are abstracted Imom many successN designs. Design patterns c m  

help develop more flexible and maintainable software. In addition, design pattems cm 

help novices leam good programming faster and understand existing systems better. 

People in the pattem community have done much work on design patterns. The work that 

has been done covers nearly every aspects of software development. Many books and 

papers have been published which document pattems and the experience of using patterns 

in various domains. 

Description logics are languages tailored for howledge representation. Knowledge 

inference is one specific application that description logics can be used for. Though the 



domain has undergone many years of evolution and design patterns have been arouud 

for several years, the author noted that no one has done design patterns related work on 

the knowledge inference domain. 

The primary objective of this research is to evaluate the applicability of design patterns in 

the knowledge inference domain by implementing such a systern based on CLASSIC, a 

smali description logic language. The system should support basic knowledge inference 

fûnctionality, and be flexible enough to extend to support more complex fimctionalities- 

1.7 Thesis Structure 

Chapter 2 describes design patterns in detail, and describes the benefits that design 

patterns can bring to soRware development. 

Chapter 3 provides background laiowledge about description logics, especially 

CLASSIC, so that the reader of the thesis can understand the work described in the thesis 

more easiiy. 

Chapter 4 describes the requirements analysis for the laiowledge inference engine to be 

implemented in this research. The requirements fa into two categories: the function of 

knowledge inference, and robustness (flexîbility and extensibility) of the system. 

Chapter 5 describes the actual design and implementation of the knowledge inference 

system. The description is dso divided into two parts: the core fhctionality of the 

system, and extensibility of the system. Much of the description refers to the design 

patterns use& and discuçses how those design patterns fit into the context of the design. 

Chapter 6 concludes the thesis and gives fiiture directions of work. 



Chapter 2 Background: Design Patterns 

This chapter mainly discusses patterns, especially software design pattern. Every mature 

engineering discipline has handbooks to describe successfui solutions for known 

problems. Software design patterns are a fiterature form to describe successful solutions 

to common software problems. Industrial experience has proven that pattems are a 

valuable technîque in the software engineering problem-solving discipline. Not only do 

patterns capture successful experience, they also help improve communication among 

designers. They c m  help new developers avoid the traps and pitfalls that traditionally 

have only been leamed by costly experience. Pattems do more than just describe 

solutions, they provide rationde behind the solutions. 

Section 2.1 gives a brief description of the origin of patterns. Section 2.2 gives a 

definition of patterns. Though there is no standard definition to patterns, the section gives 

a generally accepted description of pattems and the p ropdes  a pattern should possess. 

Section 2.3 discusses the values of patterns. It is these values that motivate many 

software practitioners working on pattern. Section 2.4 describes what a pattern is 

composed of. Section 2.5 provides a general description of the current state of pattern 

commmity, and the activities of people in the commmiv- Section 2.6 gives two 

examples of design patterns and their applications in real world projects. 

2.1 Origin of Patterns 

The concept of pattern has been around for a long time. The cment use of the term 

"pattern" in the software communïty is derived fkom the writings of the architect 

Chnstopher Alexander. Alexander noted that the ultimate purpose of dl design and 

engineering is to fit human needs and cornfort, to improve human conditions. He found 



recurring themes in architecture and captured them in descriptions that he c d e d  

pattern. He uses the term "pattern" to represent the replicated similarity in a design, and 

in particular the similarity that makes room for variability and customization in each of 

the elements. 

In his books, Alexander desmies patterns as: 

"Each pattern is a three-part de, which expresses a relation between a certain 

conte- a problem, a d  a solution. The pattern is, in short, at the same time a thing, 

which happens in the world, and the d e  which tells us how to create that thuig, and 

when we must create it. It is both a process and a thùig; both a description of a h g  

which is alive, and a description of the process which will generate that thing" 

(Alexander9 1979, p.247). 

"Each pattern describes a problem which occurs over and over again in our 

environment, and then describes the core of the solution to that problem, in such a 

way that you can use this solution a million times over, without ever doing it the same 

way twice" (Alexander, 1977, p.x). 

Software designers found analogies between Alexandrian patterns and software 

architecture patterns. The vocabulary of software patterns, such as ôforceso, the term 

ôpattemo itself, and Ôpatîem-languagw, cornes fkom Alexander. Software design patterns 

becarne popular with the unveiling and wide acceptance of the book Design P a t t m :  

Elmen& of Reusable Obiect-Oriente Sofrwme (Gamma, Hehn, Johnson and Vlissides, 

1994). 

Initially, rnost of the pattems were software design patterns. But patterns are not 

restricted to software design (Coplien, 1997b; Appleton, 1997). Patterns appear in ail 

aspects of software engineering, including development organization, software process, 



project planning, requirement engineering, etc. There is a body of literature for each 

kind of pattern. Still, software design patterns seem to be the most popular form. 

2.2 Definition of Patterns 

Patterns are a new topic emerging fiom the Object-Onented community. They are a 

literary form in the software engineering problem-solving discipline. Patterns have roots 

in many disciplines, including contwporary architecture, literate prog-g, and 

documentation of best practices and lessons le& in all vocations. 

Patterns are insightfui nuggets of infornation that capture the essence of a successN 

f d y  of solutions to recurrhg problems that &se within a particular domain. They 

usually involve some kind of architecture or organization of constituent parts to produce 

a greater whole. 

Within the conte* of software development, patterns can be conçidered as representing 

recurring stnictural or behavioral solutions in software. The software engineering 

cornmunity has been borrowing fkom the discipline of architecture to help categorize, 

communicate, and document these problem-solving pattern. 

A pattern should clearly descnie the forces involved in a problem. Generally, any 

problem in design requires balancing opposing or contradictory forces, and the same is 

true in software. Many software pattems deal with common design problems: nich as 

how to design a group of objects to cooperate to achieve some goals in the presence of 

other considerations such as performance or maintenance. 

The goal of the software pattern commUDity is to build a body of literature that will help 

software developen resolve common nifficult problems in design and development. 

Patterns help meate a cornmon vocabulary for communicating insights and experïence 



about these problems and solutions. The focus of pa- is more on creathg a culture 

to document and support sound design than on technology (Appleton, 1997). 

Patterns do not represent someone's new idea of how to solve problems, but are 

descriptions of solutions that have been proven successful in a number of systems 

(Coplien, 1997b). The longer a pattern has been applied successfblly, the more valuable it 

tends to be. Patterns do not represent principles or rules one must follow, but are practical 

advice about how to balance forces so as to work one's way out of difficult design and 

implementation situations. 

The Pattems Definition section of Pattern Home Page gives a clear and concise definition 

for the term pattern within the context of software development: 

"Each pattern is a three-part d e ,  which expresses a relation between a certain 

context, a certain system of forces which occurs repeatedly in that contexf and a 

certain software configuration which allows these forces to resolve themseives" 

(Coplien, 1997b, p.3). 

A pattern involves a general description of a r e c h g  solution to a r e c e g  probIem 

replete with various goals and constraints. A pattern does more than just idenfiS. a 

solution, it also explains why the solution is needed. 

A good pattem will possess the foliowing attributes (Coplien, I 9973, p.2): 

"It solves a problem: Pattems capture solutions, not just abstract principles or 

strategies. 

"It is a proven concept: Patterns capture solutions with a track record, not theones 

or speculation. 



"The solution is 

software design 

not obvious: 

paradigms or 

Many problem-solving techniques, 

methods, try to derive solutions 

principles. The best pattern generate a solution to a problem indirectly Û a 

necessary approach for the moa dinicult problems of design. 

"It describes a relationship: Patterns do not just describe modules, but descnibe 

deeper system structures and mechanisms. 

"The pattem has a significant human component (minimize human intervention). 

All software semes human cornfort or quality of life; the best patterns explicitly 

appeal to aesthetics and utility-" 

2.3 The Value of Patterns 

Industrial exp-ce has shown that patterns have a number of valuable amibutes. It is 

dso these values that motivate many of the software practitioners who are writing, 

mining, and teaching patterns. Pattexm capture obscure but important pmctices and make 

implicit lmowledge explicit. They provide a structural and easily understood f o m  for 

documenting and sharing successful experience among developers. Pattern help improve 

communication among developers by providing a cornmon vocabulary which has a 

higher level of abstraction. The use of patterns in system development enables the reuse 

of software architecture. Patterns can also help one leam existing systems or teach 

novices good design. 

The fouowing discusses various valuable attributes of patterns one by one in more detail. 

Capture Expert Knowledge: By definition, patterns capture successful 

experience. E v q  pattern is exbracted kom existing, working designs and is not 



created without experience. Design pattems capture the essence of working 

designs in a fom that makes them reusable in future work. They capture 

important structures, practices, and techniques that are key cornpetencies in a 

given field, but which are not yet widely known. As Coplien once wrote in 

(Coplien 1997% p.39): "Pattern's biggest payoff may lie in captming the great 

miths that are about to 6e lost to hrrtoly". 

Knowledge Sharing: Software developers tend to reuse deàgns that have worked 

weii for them in the past. As they continue theV careers, their repertoire of design 

experience grows and they become more proficient Unfortunately, this reuse is 

usually restricted to individual experience, and there is usually little sharing of 

design knowledge among developers (Beck, Coplien, Crocker, Dominick, 

Meszaros, Paulisch and Vlissides, 1996). Design pattems capture design 

knowledge and provide a mechanism for eady  sharing design lmowledge among 

deveIopers. They can be quickly understood by both senior and junior developers. 

ûther approaches have been less successful in bridging this gap. 

A Common Design Vocabulary: Pattern names provide a common vocabulary 

for software developers to use in effectively communicating, documenting and 

exploring design alternatives. Vlissides considers communication as the biggest 

payoff of design patterns (Beck et al, 1996). Beck also notes that design patterns 

solve a limited (but critically important) set of communication problans with 

team development, and make individuals more productive (Beck et al, 1996). 

Discussing designs in ternis of patterns raises the Ievel of communication. The 

system will seem less complex because patterns enable one to talc about the 

system at a higher level of abstraction than that of a design notation, separate 

classes, or components of program languages. Design pattems also make 



communication more precise, more concise, more complete, and less likely 

rnisunderstood 

Enabling Reuse of Software Architecture: The underlying operaihg systern and 

hardware platform of the system will often significantly e t  design and 

implementation ciecisions. In a volatile environment, reusing design pattem is 

often the only viable means of leveraging previous development expertise 

(Schmidt 1995). Even though the operating system and hardware platform 

- change, the patterns themselves can be reused. Only portions of the pattem 

implementation have to be re-implemented to fit platform characteristics. Thus, 

project nsks and development efforts can be greatly reduced 

Leaming Aid and Training: Many large systems use design patterns. If one does 

not understand the design patterns used in the system, it is difEcult to follow the 

flow of control of the system and understand the sytem. Leaming design patterns 

can help one understand existing systems faster (Gamma, Helm, Johnson, and 

VLissides, 1994). Design patterns provide solutions to common probIems and 

describe the deeper system structures and mechanisms. They ofien encourage 

good design not by admonishing against mistalces, but by presenting a positive set 

of habits. Giving novices the opportunity to learn fkom positive examples can 

speed their leaming. 

2.4 Components of Pattern 

Alexander says that every pattern must be fornulata d in the fonn of a d e  which 

establishes a relationship between a context, a system of forces which &ses in that 

context, and a configuration, which aliows these forces to resolve themselves in that 

context (Alexander, 1979). In the software commity, most patterns are expressed in a 



16 

format called Alexandrian form. Though several formats for describing and 

documenthg software design patterns exist, it is generally agreed that a pattern should 

consXst of the following components: 

The Pattern Name 

Each pattem should have a meaningful name. The name d o w s  one to use a single 

word or short phrase to refer to the pattem, and the howledge and structure it 

encompasses. Good pattern names form a vocabulary for dîscussing conceptual 

abstraction- 

A statement describes the problem the pattern is trying to solve, the goal and 

objectives it wants to achieve within the given context and consû-aints of the problem. 

If designers know the problem the pattern solves, they will h o w  when to apply it. 

Context 

A pattern solves a problem in a certain context The context is the set of conditions 

under which the problem and its solution seem to recur, and for which the solution is 

desirable. It tells of the pattern's applicability. 

This description represents relevant forces and constraints of the problem and how 

they interact/conflict with one another. Forces make clear the intrîcacies of a problem 

and define the kinds of tradeoffs that must be considered. A good pattern resolves one 

or more forces. 



Solutions 

A description represents the static structure, dynamic behavior, etc., of the solution. 

This is often quivalent to explaining how to build the solution. It may consist of 

diagrams, pictures and prose that identa  the pattern's sûucture, participants, and 

their collaborations, and shows how the problem is solved. 

This section gives one or more sample applications that use the pattern. Examples 

help readers understand the application of the pattem. 

This section describes the state or configuration of the system after the pattern has 

been applied. It also descnbes what forces have been resolved, which ones are lefi 

unresolved, what other patterns may now be applicable, and how the context is 

changed by the pattern. 

Rationale 

This section describes how the pattem actually works, why it works, and why it is 

good. The solutions section describes the visible structure and behavior of the systern, 

while the rationale provides insight into the deep structure and key mechanisms that - 

lie under the surface of the system. 

Known Uses 



This section describes hown  occurrences of the pattern and its application within 

existing systems. It helps to validate the pattem by v e r i w g  that it is indeed a proven 

soIution to a recurring problem. 

These are the components that a pattern description should have. Whiie h t i n g  patterns 

some authon rnay wish to combine several components into one, or separate one 

component into several components. Thus the format of a pattem rnay Vary fkom author 

to author. 

2.5 The Pattern Community and Activities 

Design patterns is relatively young compared with other disciplines in cornputer science. 

It began to be widely accepteci only after the first PLoP (Pattern Languages of Programs) 

conference in 1994. Since then, pattern has gained wide popularity and has become a hot 

topic in the software communïty, especially among Object-Onented developers. 

Now there are many ways for people in the pattern community to meet and discuss 

patterns and other related topics. Many conferences are dedicated to patterns: PLoP, 

EuroPLoP, ChiliPLoP, OOPSLA, and many more. These conferences provide developm 

and researchers with the opporhnity to present and review patterns related to software 

design, process or organization. The Internet, with its quick and easy access to 

information, is widely used by the pattem community to exchange and discuçs ideas. 

There are WEB sites dedicated to pattems, such as the pattem home page at University of 

Illinois (http:/lhillside.netlpattenis/) where people can get general infornation about 

patterns, and the Wiki Wiki Web page which is an editable page where people c m  gather 

information on patterns and share ideas on pattern topics. Sevaal maihg lis& are set up 

for pattem discussion. The mailing list is very active: each day there are tens of messages 

flowing on the mailing list, discussing patterns and issues related to patterns. 



The work that people in the pattem community are doing is mainly concentrated on the 

following three areas: 

1. Writing papers and books documenting patterns. 

2. Applying design patterns to actual projects and documenting the experience of 

appiying pattems 

3. Evaluating the usefulness of patterns 

A wide variety of pattern papers and books have been published since 1994. Of these 

publications the one that has had the most idluence is the book Design Patterns: 

EZements of Reusoble Object Onented Software by Gamma et al (Gamma et al, 1994). 

The book is actually a pattern cataiog that contains 23 patterns. These patterns are 

descnibed in the fonnat given in section 2.4. All the patterns documented in the book are 

general-purpose patterns that can be applied in any domain of software design. Designers 

have found the book veq helpfbl in designing flexible and extensible systems. It is a 

major patterns reference in this research. There are many other publications suxlilar to the 

above book, such as A S'stem of Patterns by Buschmann et al (Buschmann, Meunier, 

Rohnerî, Sommerlad and StaI 1996), Pattern Langzmges of Program Design edited by 

Copiien and Schmidt (Coplien and Schmidt, eds, 1995). These books and papers are the 

major source of the patterns that are examined and evaluated for their applicability in the 

proposed system. 

The second area of activity for people working in the pattem community is applying 

design patterns in actud projects, and documenting the implications of using patterns in a 

system. Many people have published their expenence in applying design patterns, and 

these publications cover a wide variety of real projects. The application domains that 

have reported the use of design pattems include graphical user interface design (Gamma 



1991), commuliication sofiware (Schmidt and Stephenson, 1995; Schmidt, 1995a), 

management infoxmation systems @rom 1996), concurrent sy,Ftems (Schmidt, 1995b), 

telephony control prototypes (Dueu, 1996), etc. AU of these reports suggest that the 

application of design patterns has had a positive effect on the system. These experiences 

show that the application of design pattern in the systern may result in the system 

gaining one or more of the benefits discussed in section 2.3 - more flexible system, 

enabling reuse, easily understood and maintainable code, etc. 

Although many people have reported th& experience in applying design patterns in 

different domains of software systems, there is no report conceming about the application 

of design patterns in the amficial intelligence domain, at least not that the author knows 

about. 1s it because this domain is so difTerent fkom other software domains that design 

pattems are not applicable to this area? This question is the main motivation for this 

research, 

The third khd of activity that the people in the pattern community are invloved in is 

evaluating the usefulness of patterns. The r e d t s  of experience reports are usually based 

on observations of practitioners. They are not quantitative analysis of the effects. The 

papers in this category intend to analyze the effects of using design patterns 

quaatitatively through controlled expehents. There are very few people doing this 

work. The reason for this is probably that the effort and resources needed to perfom such 

activity is too great - it needs several developers working on at least a medium-sized 

project for several days. Too s m d  or simpIe a project cannot actualIy reflect the benefits 

of applying design patterns. The experiment done by Prechelt et al (Prechelt, 1997; 

Prechelt et al, 1997) is an example of such activiîy. The experiment also suggests that 

pattenis will make the maintenance and modifications to the software systems easier and 

less error prone. 



2.6 Design Patterns and Their Applications 

Pattems exist in every aspects of software engineering. There are organization pattems, 

process patterns, test pattems, etc. Each kind of pattern solves s p d c  problems in that 

domain. However, the focus of this thesis is on software design patterns. These design 

patterns capture the essence of software design, and make implicit design howledge 

explicit. Some software design patterns are general-purpose patterns, which can used in 

every domain. Most of the patterns caialogued in the book Design Panms: EZements of 

Reusable Object-Onrmted Software (Gamma et al, 1994) are general-purpose patterns. 

Some patterns are domain specinc, which are captured in a specific software domain and 

are applicable to only that domain. The Model-View-Controller pattern (Buscbmann et 

al, 1996), for example, is one of this latter kind of pattern, which is used to build flexible 

user interfaces for interactive applications. 

To illustrate design patterns and their appIications in the industry, this section describes 

two examples. The first example describes the Model-View-Control pattem. The second 

example illustrates how patteras are applied to develop a .  extensible and maintainable 

Object Request Broker (ORB) middleware. 

2.6.1 The ModeI-View-Controuer Pattern 

The Model-View-Controller W C )  pattem (Buschmann et al, 1996, pp. l2S-I44) 

provides a means to build interactive applications with a flexible user interface. In 

interactive systerns, the functionality is often relatively stable, but user interfaces are 

more prone to change. The MVC pattem divides the system into three components - 
model, view, and controlZer - so that changes to the user interface wiU not have major 

effects on the application-specific functionality. 



User interfaces in the MVC pattern are composed of views and controIZers. The model 

component encapsulates application core data and functionality. The viav component 

displays Sonnation to users. The controller component accepts input, such as 

keystrokes or mouse clicks, nom users and tnmslates this input into service requests to 

the model or view components. Each model can have multiple views so that the same 

Somation can be displayed in different ways. Each view has a controLler component to 

handle user inp~t. Whenever data in a model changes, the model notifies all views 

associated with i t  The views in tum obtain data fkom the mode1 and update the displayed 

information. 

The class structure (Buschmann et al, 1996, p.129) of the Model-View-Controller pattern 

is shown below: 

attacb 
getD ah 

mate malize(hn~ &i.vie)  1 

Figure 2.1 Class Structure of Model-View-Controller Pattern Mode1 



Model 

Model provides the functional core of the application. It manages views and 

controllers dependent upon i t  When data in it changes, the model notines dependent 

components about the data changes. 

View 

View is responsible for creating and initializing its associated controller. View 

retrieves data fkom model and displays information to the user. It must implement an 

update method to h d e  data change notifications fiom model. 

Controller accepts user inputs and translates user inputs into seMce requests for the 

model or display requests for the view. If necessary, it will also implement an update 

method to handle data change notifications fiom model. 

The MVC pattern is probably the best-known pattern for handling the user interface of 

interactive systems. It was fkst implemented within the Srnalltalk-80 environment 

(Krasner and Pope, 1988). I t  has been widely us& in a number of software srstems or 

application h e w o r k s ,  such as MacApp (Apple 1989), ET* (Gamma, 199 l), etc. 

2.6.2 Applying Design Patterns to Develop TAO Project - A Case Study 

TAO (Schmidt and Cleeland, 1997) project is a real-tirne endsystem developed by the 

Distributed Object Computing group at Washington University. TAO stands for The 

ACE (ADAPTIVE Communication Environment) ORB. The ACE is an object-oriented 

h e w o r k  that provides a rich set of components to p d o m  common communication 

software tasks across a range of OS platforms. ORBs (Object Request Brokers) are the 



heart of distrïbuted object cornputkg, which enables the collaboration of local and 

rernote applications in heterogeneous environmentS. 

Design patterns have been used to develop TAO so that the system can be extended and 

maintained more easily. TAO is designed as a dynamicaily configurable middleware that 

overcomes the drawbacks of inflexibility and ineficiency of staticdy configured ORBs. 

TAO enables the ORB developers to selectively integrate customized key ORB 

strategies, such as communication, concurrence, demultiplexing, scheduling, and 

dispatching. The extensibility of TAO mainly addresses mensiHe tu retargeting on new 

platfom, mensiHe via -tom Unplementation strategies, and extensible Ma dynamic 

configuration of w t o m  strategks (Schmidt and Cleeland, 1997). This is m a d y  because 

of the nature of distributed computing - such systems &y nui in a heterogeneous 

environment. 

Eight design patterns have been applied in the development of the ORB architecture for 

TAO, as described below: 

The Wrapper Facade pattern: This pattern is a variant of the Facade pattern 

(Gamma et al, 1994). It is used to encapsulate low-level stand-alone system 

mechamisms withùi type-safe, modula. and portable class interfaces. 

The Reactor pattern: In order to make ORB implementation independent of any 

specific event demultiplexing mechanism, and decouple its demultiplexing code 

fiom its handling code, the Reactor pattern (Schmidt, 1994) is used in the 

implementation of TAO. The intent of this pattem is to support synchronous 

demultiplexing and dispatching of multiple event hmdlers, which are triggered 

concurrentiy f?om multiple clients. 



The Acceptor and Connector patterns: A key responsibility of the ORB core 

is to manage connections. To support multiple transport mechanisms and allow 

connection-related behavior to be recodïgured flexibly late in the design phase, 

the Acceptor and Connector patterns (Schmidt, 1996c) are applied. The intent of 

these two patterns is to decouple the service initiakation fkom the tasks 

perforrned once the service is initialized. The Acceptor pattern is responsible for 

passive initiakation (smer side); the Connector pattem is responsible for active 

initialization (client side). 

The Active Object pattern: Concurrency is an important issue in the 

implementation of ORB. Long-running tasks should not block the processes of 

other tasks. The Active Object pattern (Lavender and Schmidt, 1995) provides an 

effective way to support a simple, extensible, and portable concurrency 

mechanism- 

The Strategy pattem: To support tramparent interchangeability of multiple ORB 

strategies, the Strategy pattem (Gamma et al, 1994) is applied. A number of 

communication, concurrency, demultiplexing, and scheduling algorithms are 

encapsulated as strategies in the TAO system. 

The Abstract Factory pattern: Due to the extensive use of the Straîegy pattem, 

the system contains a large number of strategy classes. In order to simplify the 

management of a large number of classes and enforce semantic consistency when 

composing different strategies, the Abstract Factory pattern (Gamma et al, 1994) 

is applied. 

The SeMce Configurator pattern: In order to enhance the dynamism of TAO, 

the Service Configurator pattem (Jain and Schmidt, 1997) is applied. This pattem 



enables an application to be configured dynamicaily at nm thne. Moreover, the 

pattern can reduce memory consumption of the ORB by dymmically linking only 

those needed strategies. 

The use of design pattems in the development of TAO produces some expected and 

unexpected improvanents in software reusability and maintainability. Compared with ad 

hoc code, the overd number of h e s  of code and the McCabe Complexity masure of 

certain operations are reduced signincantly. However, some operations required increase 

of h e s  of code because of the use of the Wrapper Facade pattern to encapsulate low- 

level system c m ,  and more error checking. Design decisions are expressed with 

pattems, making the system more easily undersfood if one knows these patterns. A less 

complex and more easily tmderstood system requires Iess effort to maintain. The use of 

the Strategy pattern, the Abstract Factory pattern, and the Service Configurator pattern 

make the system more extensible. New strategies can be htroduced into the system more 

easily - even at run tirne. 

This chapter has described design patterns as a new problem-solving discipline in 

software engineering. Design patterns capture successful design experience and 

document it in an easily zu1derstood fom. Not only do pattems provide a solution, they 

provide rationale bebind the system. Patterns offer many promising benefits, which have 

motivate many practitioners to document pattems and "mine1' patterns fiom previous 

successfid systems. 

The description of patterns usually follows a format called the Alexandrian foxm. It is 

generally agreed that a pattern should have a name, problern and intent, context, forces 



and tradeoffs, solutions7 examples, resulting contes and force resolution, rationale, 

and known uses. 

The pattern community has adopted many means to improve discussion of patterns and 

pattern related topics. There are pattern forums and conferences where people mite7 

review pattern papers, and share their experience wing patterns. The World Wide Web is 

widely used to exchange ideas. People in the pattem community concentrate mainly on 

documenting patterns, applying design pattems to actual projects and documenting their 

experïence in using patterns and, to a lesser extent, evaluating the usefulness of patterns. 

In order to give readers a concrete idea of patterns, the MVC pattern was discussed 

briefly, and then a case study in applying patterns was presented. In the study, eight 

design patterns were applied in order to resolve various forces faced by the project. 

Compared with ad hoc systems, the complexity of the resulting system is reduced greatly. 

The maintainability and extensibility is increased significantly by applying design 

pattems in the system. 



Chapter 3 Background: CLASSIC 

CLASSIC (Borgida, Brachman, McGiiinne~s, and Resnick, 1989) is a smaU description 

logic (DL) based language. Description Zogic, also cailed t em subsumption, is a 

variable-fiee first order lauguage (Borgida and Kudenko, 1994). Components of such 

systems are described as ternis, and complex texms can be composed of other terxns. DL- 

based systems are lcnowledge representation and reasoning systems which support a 

richer representation formalism than standard d e  based systems (McGuinness and 

Borgida 1995). CLASSIC is chosen as the design mode1 for this thesis because it is well 

defined both in syntax and semantics. This chapter will give a brief description of 

CLASSIC in order to give readers some background knowledge about the system that 

this thesis discusses. 

Section 3.1 describes the components of CLASSIC. The computation in CLASSIC is 

based on these components. Section 3.2 describes the description constmctors defined in 

CLASSIC. Descriptions in CLASSIC are built up with these descnption constnïctors. 

Section 3.3 discusses two actual implementations of CLASSIC. 

3.1 Components of CLASSIC 

CLASSIC defines description in a compositional rnanner. Complex knowledge structures 

are formed using a small set of semantic structures. The basic components of CLASSIC 

are individuals, roles, conceptr, and rules. Lndividuals in a knowledge base are grouped 

into sets d e d  concepts. Concepts are divided into primitive concepts and normal 

concepts. Roles are ordmary relations that relate individu& to each other. These 

components are described below: 



Primitive concept is the simplest kind of description that one c m  f o m  in 

CLASSIC. The overt definition of primitive concepts is incomplete, and their 

definition includes something that is beyond the description associated with them 

(Resnick, Patel-Schneider, McGuinness, WeixeIbaum, Abrahams, Borgida, and 

Brachman, 1996). Some primitive concepts can have further disjointness 

information associated with them. A disjoint primitive concept is just like a 

primitive concept, except that ail primitive concepts belonging to the same 

di joint grouping are disjoint to each other, and their composition is incoherent. 

Concept is a named description. Concepts are fully defined in the knowledge 

base by the description associated with them. Iiituitivelyy concept denotes a 

collection of individuals. 

Roles are ordinary binary relations that relate individuals to each other. 

Rules consist of an antecedent and a consequent, which are both descriptions. 

When the antecedent concept applies to the state of an individual, the d e  is 

"fired" and the consequent concept may also be asserted to apply to the 

individual* 

Individnals are specific instances of concepts. Each individual has a name and 

variable States. One c m  make three kinds of assertions about individuals (Borgida 

and Kudenko, 1994): assert-member(i# A) which asserts individual i is in the 

extension of description A; msert-fiZZ(ip r, v) which establishes that individual i is 

related to individual v by role r; asserted-close(i, r) which asserts that all fillers of 

role r on individual i are now known. 



30 

Systems based on CLASSIC are composed of these components. Concepts and 

individuals are defined using concepts and description constructors, which will be 

discussed in the next section. 

3.2 Description Constructors 

CLASSIC represents information in terms of descriptions, which are built up fiom 

identifias using description constmctors. The following description constructors are 

dehed  in CLASSIC (Renick et al, 1996): 

The and constmctor 

This constnictor f o m  the conjunction of some number of descriptions. For example, 

a VegetarianPerson may be defined as: 

(and Vegetarian, Person) 

This means that VegetarianPerson is someone who is both a Vegetarian and a Person. 

The oneOf constmctor 

This constmctor enunerates a set of individuals, which are the only possible 

instances of the description. For example, 

(oneOf Joiin, Mary, Susan) 

defines three individuals J O ~ ,  Mary, and susan. If a concept is defined by the 

description, the instance of the concept can only be one of the three individuals. 

The al1 constnictor 



31 

An aïi constructor, also called value restriction, specines that all the fiIIers of a 

particular role must be individuats descnbed by a particular description. For example, 

the instances of 

(al1 food, meat) 

must have all their fiIlers for food be instances of rneat, for example, beef: 

The atLeast constructor 

An atLeast constructor specifies the minimum number of fillers allowed for a 

particda role. For example, a parent might be defined to have at least one child: 

(atiaast 1 ch i ld )  

The atMost constnictor 

An atMost constmctor specifies the maximum number of fillers allowed for a 

particular role. For example, an orphau might be defked to have no parent: 

(atMost O parent; 

The minimum constructor 

A minimum constmctor specifies the minimum value of fillers allowed for a 

particular role. For example, an adult mi@ be defmed to be those whose minimum 

age is 18: 

(minimum age 18) 

The marpimnm constmctor 



A maximum constructor specifies the maximum value of mers dowed for a 

particular role. For example, an adolescent might be defïned to be those whose 

maximum age is 18: 

The constnictor 

A fills constnictor specines that a particular role is filied by the specifxed individuals. 

For example, 

(fills sister, Mary, Sandra) 

specines that the sister role is fïlled with individuals M a v  and Sandra. 

The four constructors, dl ,  atLeast, atMost, and fm, form special types of descriptions 

known as role restrictions, which restrict the mers of a role. They restrict either the type 

of fillers (ail constmctor), or the number of fillers (atLeast, atMost constructors), or they 

specify some or all of the actual fillers (!Us constmctor). 

To help readers better undentand the syntax of CLASSIC, the following presents a 

relatively cornplex example. The example is taken nom (Gaines, 1995) where it is 

represented in graphical format. 

primitive (US$) 
primitive (USS000) 
primitive (senior ernployee) 
primitive (senior employee's assistant) 
primitive (division, 

(and (al1 classification, 
oneof (sales, marketing, accounting, manufacturing) ) , 

(al1 revenues, and(USS000, integer) 1 ) )  
primitive (employee, 

(and (al1 salary, and (US$, integer) r 

(minimum salary 15000), 



(maximum salary 160000), 
(al1 division, division) ) ) 

primitive ( foreman, 
( and emplo yee , 

(minimum salary 35000), 
(maximum salary 70000), 
(al1 division, 

(and (atLeast division I) , 
(atMost division 1) , 
(a l1  classification, manufacturing) ) ) 

concept (senior foreman, 
(and foreman, 

(minimum salary 4 5000 ) , 
(al1 division, (minimum revenues 1000) ) 

rule (senior employee, 
senior foreman, 
(and senior employee, 

(al1 assistant, senior employee's assistant), 
(atLeast 1 assistant))) 

individual (Fred Smith, 
(and foreman, 

(fills salary, 50000) , 
( fills division, body works) , 
(fills assistant, Sam Jones) l 

individual (body works, 
(fills revenues, 3000)) 

The f h t  several lines define primitive concepts "US%", "US$000", "senior employee", 

and "senior employee's assistant". Then, primitive concept "division" is defhed whose 

classification is one of "sales", "marketing", "accounting" , or "rndacturing" , and 

whose revenue is integer and "US%000". 

Beginning with the next line, an "employee" is defhed as primitive concept whose sdary 

is integer and "US$00OW, and rninimcm salary is 15000 and maximum salary is 160000, 

and role division satisfies concept "division". Next, a "foreman" is dehed  as  primitive 

concept, which is an "employee" with a salary between 35000 to 70000, and who is in a 

manufactuing division. 

Then, a "senior foreman'' is dehed as a concept which is a "foreman" with a minimum 

salary of 45000, and whose division must have a minimum revenue of 1000. 



Then, a nile "senior employee" is dehed  whose premise is concept "senior foranan", 

and consequence is defined to be concept "senior employee" and has at Ieast 1 assistant 

and all whose assistants are senior employee's assistants. 

Finally, an individual "Fred Smith1 is defined to be a "foreman" and whose salary is 

50000 and who works in "body works" division and who has an assistant "Sam Jones". 

At las& anotha individual "body works" is deked to be something with revenue of 

3000. 

From the dehition of individual "Fred Smith", the system can infér that "Fred Smith" is 

also a "senior foreman" because its definition also satisfies the definition of concept 

"senior foreman". T'en, rule "senior foreman" will be fired on the individual and "Fred 

Smith'' cm be M e r  asserted to be a "senior employee", and its "assistant" role fïller 

"Sam Jones" can be asserted to be "senior employee's assistant1'. 

3.3 Reasoning of CLASSIC 

Reasoning with descriptions is based on a Iogic built around the subsumption 

relationship. Two major relations between descriptions may be computed: 

Incoherence: the composition of two descriptions is incoherent if they are 

iogically contdictory. 

Subsumptiun: one description, DI, subsumes anotha description, 02,  if DI is 

more general than D2. In other words, description D2 logically implies 

description DI. Description logic based systems deduce and maintain subtype 

lierarchies based on the semantics of description definition, producing a partial 

order where more general concepts are parents of more specific ones. 

Subsumption is used to determine a concept's position in the hierarchy. 



Based on their definition, individuds can be computed to decide whether they are 

subsumed by a concept An individual, I, is subsumed by a concept, C, if I is described by 

C, Le., I satisfies every description on C. 

One algoritbm used to compute the subsumption relationship between descriptions is the 

structural subsumption method (Borgida and McGuinness, 1996). The algorithm involves 

two steps: desciptions are first normalized, then are checked to see whether one concept 

is more generiir than another. 

The normalization of description performs two hctions. First, it makes expficit 

al l  the implied facts, or description by constructing a noxmal fom containing the 

most speczc forrns of the different kinds of descriptions included. The normal 

form contains information fkom several sources, including nile firing (see 

requUement 19 discussed in chapter 4), role propagation (see requirernent 17 

discussed in chapter 41, and inheritance. It wiU classa  and combine the 

information in a number of ways. Secondly, it will check whether or not there are 

inconsistencies in the description. 

Snbsnmption 

Once descriptions are nomalized, determining whether one concepf CI, 

subsumes another conceph C2 is relatively straightforward. Description CI is said 

to subsume description C2 if CI is more general than C2. In order for CI to 

subsume C2, for each description on Cl, there must be an equivalent or more 

specific description on C2. 



Descriptions can be conjoined. When two descriptions of the same kind conjoin, the 

result is a description of the same kind. If two descriptions are of different h d s ,  the 

result will be an and description. The following table shows how descriptions are 

conjoined. 

Table 3.1 Conjoining of Two Descriptions 

- - 

(oneOf setl) 

Description1 

(and. dl) 

(oneOf i n t e r s e c t i o n  ( se t l ,  

se t2)  > 
- - 

(al1 r dl) 

Description2 

d2 of any kind 

(al1 r (and dl, d2)) 

Conjoined Description 

(and dl, d2) 

(atLeast ni r) (atLeast n2 r) (atLeast  max (n7, n2) r) 

(atMost min (nl, n2) r) 

(maximum nl r) 

(minimum nl r) 

(maximum n2 r) (maximum min (nl, n2) r) 

(minimum n2 r) (minimum max (nl, n2) r) 

For example, if there are three descriptions as follow: 

(fills r setl) r set2) 

dl = (minimum salary 15000) 
ci2 = (minimum salary 30000) 
d3 = (maximum age 40) 

(fills r union (setl, set2) ) 

then, the result of dl wnjoining with d2 wiU be 

(minimum salary 30000) 



the result of dl conjoining with d3 will be 

(and ( m i n i m u m  salary 150001, (maximum age 4 0 )  ) 

3.4 Systems Developed 

During the past years, many DL-based systems have been developed. This section 

describes two systems that are based on CLASSIC. The nrst system is KRS (Gaines, 

1993; Gaines, 1995) developed at the Knowledge Science Institute at the University of 

Calgary. Another system is Ntdlasmc (Patel-Schneider, Abrahams, Resnick, 

McGiiinness, and Borgida, 1996) developed in AT&T laboratones. The AT&T labs also 

implemented LEP and C versions of CLASSIC kuowledge representation systems. They 

do not seem to relate directly to this thesis; thus, they wiIl not be discussed here. 

KRS (Knowledge Representation Server) was modeled on CLASSIC. It was 

implemented as a class library in Think C. The KRS was intended to be designed as an 

open-architecture server which could provide basic capabilities and to which 

bctionality might be added in a principled mamer. The library should have well- 

dehed interfaces for new classes to support additional data types. 

The design of the KRS made several extensions to CLASSIC. These extensions, which 

include inverse relation between roles, negation, etc., are concemed with the funcûonality 

of the server. These extensions to CLASSIC are necessary to knowledge acquisition 

applications. Though the thesis will not implement these hctionalities, these extensions 

should be able to be supported by creating new subclasses and incorporating them into 

the system. 



The major part of the KRS deveIopment was to design appropnate data structures (as 

the author caIled them). The main data structures of KRS include the following: 

concept records hold concept definitions, 

ind~dual recorh hold individual definitions and specincations of role nIlers, 

fiZZer records hold sets of individuals thai fill roles, 

dictionannies map concept, role, d e ,  individual names to the index number of other 

structures, 

exiension records hold subsets of individuals, 

data recordr hold subsets of extemal individuals of primitive data types, e-g., 

integers, reals, etc., 

inclusion records hold relations between role chahs, 

mie records keep track of exception relationships between niles, 

inverse records keep track of inverse relations between roles, 

subsumption records hold computed subsumption and incoherence relations. 

NeoClassic was a new C++ version of CLASSIC irnplementation done at AT&T after its 

LISP and C versions. NeoClassic provides three low-level interfaces: a character-based 

interface, a graphical user interface, and an application program interface. 

Domain knowledge in NeoClassic is represented as description of concepts, description 

of individuals in terms of concepts and descriptions. The description of individuals 

includes relations between individuals (roles and d e  fillk). In addition, rules are 

supported in Neoclassic to assert more information about individuals. 



Neoclassic makw heavy use of C* features. The implementation is a collection of 

classes. The implementation consists mainly of the foLlowing classes: Knowledgebme, 

Description, Comtnrc?, Role, Concept, I n d ~ d u a ~ ,  and Rule. The roles of these classes 

are obvious fkom thei. names. Description is f i d e r  divided into thing description, host 

description, and Classic desci?iption. Host descriptions refer to primitive data types such 

as strings, integers, and floats. Classic descriptions refer to other objects defined in the 

model. Thing descriptions represent the union of host description and Classic description. 

Concept and individual are also divided into host and Classic categories. Users of the 

system cm write ad hoc test hctions in C* to extend the capabilities of the system. 

3.43 Discussion 

The systems describeci in the preceding two sections were both full-fledged systerns 

which have been used in many systems (Gaines, 1995; Wright et al, 1993; McGuinness 

and Wright, 1998). Both implementations put much emphasis on the functionality of the 

system to achieve more powerful, more efficient howledge inference systems. The idea 

behind many of the core fiinctions implemented in the thesis was drawn fiom these 

systems - though the implementation of this thesis Iacks many of their features. 

Because these systems were either implemented early, when design patterns were not 

well recognized, or people irnplementing these systems worked mainly on knowledge 

representation and reasoning research, there has been no papa published about design 

patterns conceming these systems. However, the author believes that if the design 

documents and source code of the systems could be studied, many design patterns could 

be identified. 



3.5 

This chapter has given a brief description of description logics and CLASSIC. The 

purpose of this chapter is to give a general background about CLASSIC so that readers 

can more easily understand the work presented in this thesis. 

CLASSIC is a small description logic that is used for kmwledge representation systems. 

The domain knowledge in such systems is represented as descriptions. CLASSIC is 

maidy composed of concepts, roles, rules, and individuals. Individuals in a knowledge 

base are grouped into sets cailed concepts; roles are ordinary relations that relate 

individuals to each other, and d e s  are used to assert that an individual satisfies 

additional descriptions if the individual satisfies the premise. 

Descriptions in CLASSIC are built up fkom identiners using descnption constmctors. 

Eight descnption constnrctors were described in section 3.2. These description 

comtnrctors are all implemented in the work of the thesis. Descriptions are 

compositional. Complex descriptions are composed fkom simple descriptions. 

The main reasoning of descriptions is built around subsumption relations. The structural 

subsumption method first normalizes desaiptions, then checks if one description is more 

general than the other to determine the subsumption relationsiyp. 

Two implernentations of CLASSIC were presented. These irnplementations were full- 

fledged knowledge representation systems. The functionality to be described in chapter 4 

is derived fiom these systems. 



Chapter 4 Requirements Analysis 

This chapter describes the objectives and requirements for the knowledge inference 

engine. The primary objective of this research work is to evaluate whether design patterns 

are applicable to artincial intelligence, particularly to the lmowledge inference area. 

Serving as a test syçtem, the final product needs not be a fùll-fledged lmowledge 

inference engine. However, the system should implement all the main features necessary 

to support knowledge inference. The main focus of the work should be to design the 

system in a disciplineci way, and to evaluate whether published design patterns are 

applicable to the problem domain. The implemented system should be able to serve as a 

kemel for lmowledge inference, which could be easily extended to support more features 

and be made more powerful. 

The requirements were first derived by studying several other kinds of laiowledge 

inference engines - NEOCLASSIC (Patel-Schneider et al, 1996), KRS (Gaines 1993; 

Gaines 1995), and other co~~munication systems and h e w o r k s  such as those described 

in (Schmidt 1995a; 1996a). 

4.1 Objectives 

The prirnary objective of this thesis 1s to evaluate the applicability of design patterns in 

the lmowledge inference domain. The primary objective of the research c m  be reached 

through the following aiuriliary objectives: 

1. Studying software design patterns and developing an in-depth understanding of 

th-; 



2. Designing and implementing a knowledge Setence engine; 

3. Applying design pattern to the design and implementation of the system as 

appropnate; 

4. Documenthg the design patterns in the context of the system. 

The design and implementation of the inference engine is modeled on CLASSIC 

(Borgida, Brachman, McGuinness, and Resnick 1989). The requirements that wili be 

discussed in the following sections fd in two categones: those related to the lmowledge 

inference engine functionality, and those related to çupporting hctionality or syçtem 

extensibilïty. 

4.2 Knowledge Inference Engine Requirements 

The requirements discussed in this subsection are organized accordkg to the different 

aspects of the system. They mainly address the bctionality of the knowledge inference 

engine. These requirements are indispensable to the function of the knowledge infaence 

engine. 

The knowledge base is composed of primitive concepts, concepts, individuals, roles and 

d e s .  The following will give a more detailed description of the requirements for these 

elements. 

4.2.1 Knowledge Base 

The knowledge base is where the collection of defined concepts, individuals, roles and 

rules is stored. Whenever changes occur to an element, the knowledge base will compute 



the consequemes of the change and update the state of the knowledge base to reflect 

such changes. 

The knowledge base maintab the truths about the concepts and individuals in i t  Any 

operation that wilI cause an incoherent concept or individual should be rejected so that 

the lmowledge base is always in a consistent state. 

Reqairement 1 The system m u t  maintain the knowledge base in a consistent state. 

The knowledge base wilI be changed dynamicaily by the users' update requests. These 

requests may be add more components or remove previously defined components. The 

components include concepts, individuals, and d e s .  The updating operations wili cause 

the knowledge base to compute the impact of the changes and ensure that they will not 

cause the knowledge base to be inconsistent. 

Requirement 2 

pp - p p  

At any moment, the client should be able to retneve component information f?om 

- 

The system shall support addition of new components to the 

howledge base. 

Requirement 3 

lmowledge base. There are two kinds of information about a component: defined 

The system shall support rernoving components fiom the howledge 

base. 

information and inferred information. DefÏned information refm to those descriptions 

that are used to define the component (concept, individual or de ) .  Infmed information 

is the descriptions that can be inferred based on defineci information of a cornponent 



The client should be able to retrieve de£bed information of a component as it is. This 

infornation shows the client how the component is defined. 

I I t 

The client should also be able to retrieve inferred information about a concept or an 

Requirement 4 

individual. Merred information can be obtained through different mechanisms. For a 

The system s h d  support reheving defhed infornation about 

components in the knowledge base. 

concept, inferred information is obtained through inheritance (see requirement 8 and 

requirement 12). For an individual, three rnechâILisms - inheritance, yole propagation 

(see requirement 17) and rule firing (see requirement 19) - exist to infer information on 

4.2.2 Concept 

Requirement 5 

Concepts are named descriptions in a knowledge base. When a concept is created, it is 

The system shaU support retrieving inferred infoxmation about 

cornponents in the lmowledge base. 

h t  checked to ensure that the descriptions used to define the concept are coherent. 

Incoherent concepts cannot be added to knowledge base because they would make 

knowledge base inconsistent. 

I I I 

The method used to check whether or not a concept is coherent foIlows the algorithm 

1 Requirement 6 

describecl in Porgida and Patel-Schneider 1994; Patel-Schneider et al, 1996). 

The rystem shall support checkhg the coherence of concepts. 

Many data types are very primitive and are fiequently used in a variety of situations. 

Such data mes include integer, floating point number, string, etc. These data types are 



too primitive to require the client to define them as concepts. The system should create 

them as built-in data types in order to improve the usability of the system. NeoCLASSIC 

(Patel-S chneider et ai, 1996) treats primitive data types differently h m  other concepts, 

whereas primitive data types are defineci as host concepts. The system to be designed will 

not make such distinctions. Primitive data types are created as concepts when the 

know1edge base is first created These concepts are called built-in concepts. 

A concept will inherit information nom a l l  of its parents and parents' parents. If one 

concept C is asserted to be child of another concept P, then concept C will also satisQ the 

definition of concept P. In other words, concept C wiU inEierit aU the information (de- 

and inférred information) of concept P. 

Requirement 7 

The system shall support several of the most often-used data types 

(including integer, float pointing number, and string) as built-in 

concepts, 

One of the fiindamental functions of description logic based knowledge Iliference 

systems is to classi@ descriptions. The system must support this fiuictionality. The 

classification of concepts is based on concept subsumption relationships. If the dehition 

of one concept, CI, is more generalized than another concept, C2, thm it is said that 

concept CI subsumes concept C2. 

Requirement 8 

Requirement 9 The system shall support classification of concepts. 
- -1--- - -  

The system shall support concepts inberiting in£ormation fiom 

parents. 

In order to reduce the amount of computation and to speed up the system, it is necessary 

to store parent-child relationships. The stored classification information will form a 



directed acyclic graph. With the classincation information, clients can perfonn many 

taxonomy retrieving operations without pdorming intensive computation- Thus, the 

retrieving operations can be performed very fast 

The concept taxonorny information that clients c m  retrieve includes getting direct parent 

concepts, ali ancestor concepts, direct children concepts, or al l  descendants, of one 

concept- 

The system shall support retrieving concept classification 
Requirement 10 

information- 

The requirements discussed in this subsection are very similar to the requirements 

described in the previous section. This is because of the inherent similarity between 

concept and individual. Concepts can be seen as abstract objects, while individuals are 

concrete objects that exernplm the properties of concepts. 

Individuals are concrete instances of concepts. When individuals are created or updated, 

they must be checked for coherence. The method used to check whether an individual is 

coherent or not is similar to that used in NeoCLASSIC Vatel-Schneider et al, 1996). 

Similar to requirement 8, individuals shall inherit Somation from alI of their parents, 

and parents' parent concepts. In other words, if individual 1 is known to be an instance of 

concept C, then individual Iwill also satism the descriptions used to d e h e  concept C. 

Reqnirement 11 The system shail support checking of coherence of individuals. 



their parents. 

The individuals wiU be classified when they are created, or updated. The classification of 

individuals is similar to that of concepts. But individuals do not have children- The 

classincation done to individuals is to recognize them as instances of concepts based on 

the subsumption relationship. If the definîtion of individual I satisfies the definition of 

concept C, then individual 1 is recognized as instance of concept C. Technically, an 

individual is classined as an instance of the most specific concept that subsumes it. 

However, if an individual is an instance of concept C, the individual is also an instance of 

concept Cs parent concepts. 

- --- 

Instances of primitive data types are not abject to classification, as douig so has no 

meaning. These instances are treated as instances of built-in concepts. Their state is 

encapdated in the role fillas of a certain type. 

Requïrement 13 

Clients shall be able to retrieve the individual classification infornation- The client can 

retrieve such taxonomy uiformation as the direct parents, or al l  parents, of an individual. 

The system shall support classification of individuals. 

- - - - - - - - - -. . - pp- 

After individuals are created, information can be added to or removed fkom them. Adding 

information to an individual means that the individual must satisS the newly added 

description. Both operations will cause the individual to be checked for coherence and 

then reclassified. If the update operation should cause the individual to become 

incoherent, the operation will be rejected and the individual will remain unchanged. 

Reqairement 14 
The system shall suppoa retrieving individual classification 

information. 



1 Reqoirement 15 The s y n m  s h d  support addition of new information to individuafs. I l 
- - - - 1 ~ ~ n i r r m e n i  16 / The systw s h d  support retracting information h m  individuals. 1 

- - - 

When an individual changes, the states of those individuals with it as a role fiiller should 

also change. Those individuals should then be recomputed for coherence and be 

reclassified. If an individual should become incoherent, the operation should be rejected. 

4.2.4 RoIe 

Roles represent  bina^^ relations between individuals. A role can also be an attnbute. 

When an individual 1, that has role filler for role R, is nonnalized, the value restriction for 

role R of individual 1 is given to those role fillers. This process is cded  role propagation. 

I f  the role fillm are individuals, the value restriction of role R will be asserted to apply to 

those individuals. 

For example, in the following CLASSIC expressions, 

CreateConcept(Vegetarian, (and Person, (al1 food Vegetable))) 
CreateIndividual ( ca r ro t  ) 
CreateIndividual (Sue, (and Vegetarian, (fills food carrot )  ) ) 

when individual Sue is nomalized, the system recognizes that Sue has a food filler, 

carrot, and that all food fiilers must be Vegetable. Therefore, Vegetable is propagated to 

canot, Le., canot is asserted to be Vegetable- If the definition of corrot contradicts 

Vegetable, then an error is generaîed and the operation is canceled. 

Requîrement 17 The system shall support role propagation on individuals. 
- 1 -  



Role propagation occurs on individuals that have a value restriction and role fïiiers on 

the same d e .  It does not occur on concepts that have value restriction and role fillen on 

the same role. 

Rule is used to assert that more information can be applied to an individual if the 

individual satisfies the antecedent description of the rule. Before a ni le  is added to the 

kmwledge base, it must be checked to ençure that it is coherent itself, and that it will not 

cause the howledge base to become inconsistent 

A d e  is said to be coherent if both its antecedent and consequent descriptions are 

coherent. When a nile is added to Lmowledge base, it wiU be fired on all individuals that 

satisq the d e ' s  antecedent description. If d e  firing would cause any individual to 

become incoherent, the nile will not be added into the knowledge base. 

Reqnirement 18 The syçtem shall support checking of coherence of d e s .  
- 1 - - - -  

Rule firing can cause the state of an individual to change. If the definition of an 

individual 1 satisfies the antecedent description of a d e  R, then individual I is asserted to 

satisq the consequence description of d e  R. Rule R's consequence description is then 

added to individual I. This process is calleci d e  firing. 

Rule firing must ensure the coherence of the howledge base. The process can happen in 

Requirement 19 

two kinds of situations: at the tirne a rule is created, or when an individual is created or 

changeci. In both cases, the nile is fied on individuals satis-g the d e ' s  antecedent 

The system shall support nile k g  on individuals. 

description. 



4.3 Other Requirements 

NonnaIly, the system will nui on a different process fkom that of the client program. The 

engine wiIl listen passively for clients' connecting, updating, or retrieving requests. When 

receiving clients' requests, the engine will process the requeçtç one by one and return the 

r e d t s  to clients. Many clients rnay work on the same task at the same time, this requires 

that the engine be able to handle requests fkom different clients concurxently. 

- 

To decrease the latency of a network connection, and to respond to clients' requests 

quickly, the engine should have some mechanism to initiate connections and demultiplex 

input events efficiently. 

Requhement 20 

Primitive data types wiII be used ofien in various applications. Though the initial design 

has dehed several such data types, as  discussed in requirement 7, they may not be 

enough to satisfy al1 applications' requirements. Different applications may require 

different or more primitive data types. The system should be designed so that it can be 

easily extended to support a large set of primitive data types. 

The system s h d  support multiple clients comecting to the engine 

concurrently. 

The intent of the initial design of the system is not to implement a powemil and fuIl- 

fledged knowledge inference engine. However, this does not mean that the system should 

be designed so that it cannot be extended, or is hard to extend in order to provide more 

inference power. Rather, the design of the system should take extensibility into account, 

and make fbture extension less painful. One major possible extension to the iderence 

Reqairement 21 
The system shall to extendable to support other primitive data types 

easily . 



engine is the addition of more description constnictors. The system EOW consists of 

eight descziption constructors, as discussed in section 3.1. ûther constructors, such as the 

no t conslmctor discussed b y Gaines (Gaines, 1 99 1 ), should be easily supported. 

Description Iogic based knowledge inference systems are built around temis. Child 

concepts will inherit descriptions of parent concepts. When knowledge bases become 

larger, each concept (or individual) will inherit many descriptions. These descriptions are 

either concepts or compositions of description constructors. If each concept (or 

individual) were to create a copy of its own descriptions when it inherits information 

nom its parents, the same description would be duplicated many t h e s  in the systern. 

This would consume a large amount of memory, which is not an acceptable solution. In 

order to avoid such behavior, the system should manage memory effectively so that one 

description is created only once and is shared by ali other concepts and individuals. 

Reqairernent 22 
The systern s h d  be easily extendable to add more description 

~oI1shluctors. 

In knowledge representation systems, name conflict is a common issue that needs to be 

addressed. Different systems have different ways of addressing this issue. In KRS 

(Gaines 1995), Gaines alIows components in different categories to have same name. In 

KRS, primitive concepts and concepts fd in one categosr, individuals, roles, and des 

each fall in one category respectively. For example, an individual may have the sarne 

name as a concept. However, components in the same category cannot have same name, 

Le., it is impossible to create two individuals that both have name Sam. NeoCLASSIC 

(Patel-Schneider et al, 1996) adopted a similar approach to that of KEG. 

Requirement 23 The system s h d  have an effective mechanism to manage memory. 



However, in IsnowIedge representation systems, both situations - components with 

same name but are in different categories, or components with same name residing in 

same category - may happen. Therefore, both situations should be supported by the 

system. The system should have some mechanism to handle name conflicts among 

components in Mirent  categories as well as in the same category. The mechanism 

should be flexiile enough so that client can choose to enable or disabk this feahire. 

This chapter has discussed the objectives and requirements of the knowledge inference 

Requiremet 24 

engine. The primary objective is to evaluate the applicability of design patterns in 

The system shall support the existence of multiple components with 

the same name- 

lmowledge inference engines by designing and implementing a lmowledge uiference 

engine. 

The complete list of requirements is summarized in table 4.1. The next chapter will 

explain how these requirements are satisfied in the implementation. 

Table 4.1 The requirements for the Knowledge Maence Engine 

- - 

1 The system &al1 support addition of new components to the 1 

- - 

Requisement 1 

The system shall support removing components fiom the knowledge 

base. 

The system must miintain the howledge base in a consistent state. 



Requirement 4 

Requirement 5 

Requirement 10 

Requirement 1 1 

Requirement 

Requirement 13 

Requirement 15 

The system shall support retrieving defined information about 

components in the knowledge base. 

The system shall support retrieving inferred information about 

components in the lmowledge base. 

The system shall support checbg  of the coherence of concepts. 

The system shall support several of the most ofien-used data types 

(mteger, floating point number, and string) as built-in concepts. 

The systern shall support concept inheriting information fiom 

parents, 

The system shall support classification of concepts. 

The system shall support retrieving concept classification 

information. 

- -- 

The system shall support checking of coherence of individuals. 

The system s h d  support individuals inheriting information fiom 

their parents. 

-- - 

The system shaU support classification of Îndividuals. 

p. 

The system shall support retrieving individual classification 

information. 

The system shall support addition of new information to individualS. 



Requirement 19 

Requirement 22 

Requirement 24 

The system shall support retracting information nom individuals. 

The system s h d  support role propagation on individuals. 

The syçtem shall support checking of coherence of rules. 

The system shall support d e  firing on individu&. 

The system shall support multiple clients connecting to the engine 

concurrently. 

- - - 

The system s h d  be extendable to support other primitive data types 

easiiy. 

-- 

The system ~hall be easily extendable to add more description 

constnrctors. 

- - 

The system shall have an effective mechanism to manage memory. 

The system shall support the existence of multiple components with 

the same name. 



Chapter 5 Design and Implementation 

The previous chapter presented the objectives and requirements for the howledge 

inference engine. This chapter describes the design and implementation of the system. 

The description also includes references back to the requirements. The system was 

implemented on an IBM PC mder Microsoft Windows NT 4.0. It was implemented using 

Borland Ci+ 5.02. The implementation is a collection of related C* classes, each 

providing certain services and joined together to provide the desired functionality and 

properties. Section 5.1 provides an ovenriew of the whole class hierarchy of the systexn. 

Section 5.2 discusses the kemel of the inference engine. It is divided into two parts: the 

first part describes major classes used in the kemel; the second part discwes how design 

patterns are applied to resolve different concems in the design. The requirements 

discussed in section 4.2 and some of the requirements discussed in section 4.3 are 

addressed in this section. Section 5.3 discusses other supporthg utilities in the system. 

These utilities mâinly address how to efficiently manage memory, and how to manage the 

name space flexibly. Section 5.4 illu~trafes the actually running of the system using two 

sets of data, 

5.1 Overview of the System 

This section describes the class hierarchy of the knowledge inference engine. Figure 5.1 

is a simpliified diagram of the class hierarchy that shows only the inheritance 

relationships. The directed arcs in the diagram represent parent-child relations, with 

parent at the arrow side. The class hierarchy is partitioned into several parts, which will 

be discussed briefly. 



Classes under KSI - KRE forrn the kernel of the howledge inference engine. They 

provide core functionality for description Iogic based laiowledge representation systerns. 

Classes under R o l e F i l l e r  are used to represent role mers for individuals. Class 

m p a r s e r  is wed to analyze the input stream and convert it into a format that the 

lmowledge base can understand. Class ConstructFac is used to mange shared 

descriptions created in the system. Class NameManager manages component names and 

assigns a unique id to the component Class GraphNode is used to store and manage 

classification information. 

The following sections wiU describe these classes in more detail. The description will 

cover how these classes satisQ the requirements given in chapter 4, as well as the 

rationale behind such a design. Many of the design decisions are described based on 

design patterns and how design patterns fit into the design space. 



Figure 5.1 SimplXed Class Hierarchy of Knowledge Inference Engine 

5.2 The Kernel of the Enghe 

This section describes the moçt important part of the system: the kemel of the inference 

engine. The discussion is divided into two parts. The first part describes the major classes 

and the role they play in the kernel. The second part desmies design patterns applied, 

why they are applied, and how they resolve different design issues. The description of 

this section is related to the requirements given in section 4.2 and some of the 

requirements given in section 4.3. 



5.2.1 Participating Classes 

Chss KSI - KRE serves as  the root for the kernel classes. These classes interact with each 

other to provide the desired fûnctionality. The major classes in the kemel inchde 

KnowledgeBase, Description, Role, Rule, and Individual .  C ~ S S  KnowledqeBase is 

the center repository where other lmowledge base objects are stored. Descriptions are the 

moçt fundamental building blocks in the system. They are modeled by class 

Description. Classes Role and Rule represent roies and d e s  h the system. %y are 

relatively simple and will not be discussed in detail in this section. Class Individual 

represents Ïndividuals of the iaference engine. The last class that will be discussed in this 

section is class GraphNode. Though it is not part of description Iogic, class GraphNoae 

plays an important role in classincation. Th5 remainder of this section will discuss these 

classes in more detail. 

5.2.1.1 KnowledgeBase CIass 

ClaSs KnowledgeBase a~ tS  as the cêntër 

repository that maintains a map (dictionary) 

for each type of named component. Named 

components in the lmowledge base include 

concept, individual, role, and rule. Inside 

the knowledge base, these objects are not 

indexed by their name but by their id When 

a named component is created, it is 

assigned a unique id by class 

Base 

@ 
Figure 5.2 Class KnowledgeBase 

KRENameHanager (see section 5.3.2). The dictionary maps the component identifier to the 

actual objects. Class KnowledgeBase is reqonsible for managing these rnaps: whenever a 

component is created, the lmowledge base will add an entry to the correspondulg map 



representing the component; whenever a component is deleted, the knowledge base 

wiu remove the corresponding entry fiom the map. Class KnowledgeBase &O perfomis 

the classification task - when a concept or individual is created, it will be classified The 

KnowledgeBase class has an instance variable of type GrapWode (see section 5.2.1.4 for 

more detail) which wiu be used to store clasdkation information. The class GraphNode 

provides certain methods for retrieving concept or individual taxonomy information, as 

per requirement 10 and requirement 14. 

The class KnowledgeBase ais0 has various methods used to mate, delete, or update 

concepts, i n d ~ d u a k ,  roles, or mies. The fûnction of retrieving the dehed and infened 

information of a component is delegated to the actual component. 

53.13 Description Ciass 

Description is the most hdamental building block in description logic based knowledge 

representation systems. There are two types of descriptions: named descriptions and 

umiamed descriptions. Named descriptions include concept and primitive concept. 

Unnamed descriptions refer to descriptions constnicted using description comtnictors. 

nie desrrption comtnrctors supported by the system include all those described in 

section 3.2. Clients cm only manipulate named descriptions. Unnamed descriptions can 

not be manipulated directly. Named descriptions may be defined in terms of named or 

m a m e d  descriptions. As s h o w  in figure 5.1, class Description is the base class for 

both named and umiamed descriptions. 

These classes provide the most important functionality needed to support knowledge 

inference. One of the most important functions is to decide.whether one description 

subsumes another one. The algorithm used in the system to compute subsumption 

relations between descriptions is the structural subsumption method (see section 3.3). 



The class Description has declared the interfaces for the key hctions. The methods 

dehed  in the intdace are descnied below. 

The n orna i i ze method: perfom the h c t i o n  of description nomalization. 

The coherent method: checks to see whether or not a description is coherent. It 

r e m  hue if the description is coherent; otherwise, it retums false. 

The subsume method: detenaines the subsumption relations. There are two versions 

of the subsume method - one to determine whether a description subsumes another 

description, another to detemine whether a deseption subsumes an individual. The 

classification of concept is based on the k t  one, and the ~Iassifkation of individual 

the second. 

The con j o in  method: is uçed to conjoin two descriptions. If the two descriptions can 

be conjoined, it will rehun the conjoined description; otherwise it wiU retum NULL 

description. 

Subclasses of the Description d a s s  all implement the key methods listed above 

accordhg to their specific semantics. Ln addition, each of the classes has dehed for it 

some other housekeeping methods. 

Descriptions in the system are identified by their ids. For named descriptions, each object 

is assigned a unique id by KRENameManager when it is created. However, for unnamed 

descriptions, objects of one type share one i d  A unique id is assigned to the class instead 

of each object. This is because unnamed descriptions are shared in the system, and they 

camiot be manipulated directly by clients. The id is only used to identiS the type of 

object The use of id is based on two considerations: i) efficiency, it is more efficient to 



compare two id than to compare two strings. ii) memory, an id consumes less memory 

than a string representation. 

Besides the description id, each descnpti011 also has a role id As descnied in section 3.2, 

some descriptions comtructed using description constructors are associated with roles. 

The role id of a description is used to identify the role associated with the description. For 

descriptions which have no role associated with them, includbg concept, und, andfills, a 

unique role identifier is assigned to each of the classes. The id and role id that are 

assigned to classes are managed by class cons t~ames  . There a r e  two nethods for 

each class that needs both ids:  

The mdD method retums the unique id for the class 

The d o l e l D  method retums the unique role id for the class 

where xxx is the class name. Not all description classes need both methods. 

5.2.1.3 Concept Class 

Class Concept 

and primitive 

variable of type 

whether or 

design does 

is used to mode1 both concept ( 

concept It has an instance 

: Prirnit iveinfo that determines 

not a concept is primitive. The 

not make primitive concept a 
Figure 5.3 Class Concept 1 

subclass of class Concept. Instead, the designer ' 1 

uses composition to represent such relationships. Class Concept delegates al1 primitive 

information processing taçks to class PrimitiveInfo. The reasons for adopting such a 

design are: i) himitive concept and concept behave in very similar ways, which are both 

named description. They can be used to d e h e  o h  named descriptions, or individuals 



cm be asserted to be instances of them. The processing of the two classes is almost the 

same, so there is no need to separate them. ii) The designer thinks th& composition and 

delegation are more flexible than subclassing. With composition, the type of objects can 

be changed dynamicdy from concept to primitive concept, or vice versa However, with 

subclassing, in order to change the type information one has to delete the original object 

and create a new object. Deleting a concept in the knowledge base may involve intensive 

computation: the use of composition reduces the need to delete a concept. 

Concepts are defhed in temis of descriptions. Class Concept rnaintiiins two definition 

references - one for deiined information and one for nonnalized idonnation. The 

instance variable definedInfo ho& description iafonnation that is used to d e h e  the 

concept. When a concept is norxnalized, the normalized description is stored in the 

instance variable normalizeàrnfo. The attribute def inedInfo should never be changed; 

any inferrecl infonnation is added to normalizedInfo. These two references make 

retrieving concept definition information straightfo~ward. 

5.2.1.4 Individuai Class 

Like concept, individual also has al 

Class Individual models individual in 

CLASSIC. Individual represents a concrete 

instance of a concept. As discussed in 

requirement 7, there is no host concept, 

therefore there is no host individual either. 

definedInfo and a normalizedInfo instance variable, which refers to defined 

definition and the normalized idonnation of the individual respectively. Unless an 

explicit operation requires a change to the dennition of an individual, the definedInfo 

Figure 5.4 Class Individual 



of an individuaï is never changed. Information obtained h m  iaheritance, role 

propagation, and nile firing is only added to the normaiizeàInfo of the individual. 

The key fiinctions supported by the class include normaiize and coherent. Method 

normaiize takes the defined information of the individual and normalizes it. After the 

definition has been nomalized, the system will perform the role propagation process (see 

requirement 17), if applicable. Method coherent checks to see if the individual is 

coherent or not If the description used to define the individual is incoherent, or any role 

fillers of t h  individual are incoherent, the individual is incoherent. 

The role mers of class Individual are modded using class R o i e F i l i e r .  There are four 

types of role fillers in the cment design: integer, floating pointer number, string, or 

nomal individual. These types of role nIlers are represented by subclasses of class 

R o l e F i l l e r  (se figure 5.1). Basecl on role vdue restriction, the f i k r  type can be 

determined. If a role mer is of a primitive data type, e.g., integer or stringy a certain trpe 

of R o l e F i l l e r  object, e-g., IntRoleFiller or StringRoleFiller, is created to 

represent the filier. The £iller identifier is converted to a value of that type and is stored in 

the RoleFiller object. Otherwise, an object of class Clas s icRoleFiller is created to 

store the indÎvidual a e r .  

In the example in section 3.2, individual ÔFred Smitho is defhed as: 

(and foreman, 
(fills salary, 5OOOO), 
( f  i l l s  divis ion,  body works) , 
( f i l l s  ass is tant ,  S a m  Jones) ) 

The individual has three role fillers. The value restrictions for these role fillers can be 
obtained h m  the definition of concept foreman. The value restriction of role saiar y is 

(and integer,  US$) 

From this, the system can detexmine that the filler for role saiary is of primitive type 
hteger. The system wilI then create an In tRo leF i l l e r  object, convert 50000 into an 
integer value and Save the value to the role mer object. 



The value restriction for role division is 
(al1 c l a s s i f i c a t i o n ,  manufacturing) 

The system checks and h d s  out that this is not a primitive data type. So, the system 

creates a ClassicRoleFiller object and ôbody worksô is saved to the filler object as an 

individual. Ifôbody workso has not yet been defined, the system will automatically create 

the individual. 

The state of an individual may be updated by adding or removing information from it. 

When the state of im individual changes, the individual will inform the lmowledge base 

of the change so that the system can re-classify the individual according to its new *te. 

In addition, if the individual is a m e r  of some 0 t h  individuals, the individuai mut aIso 

inform those individuals of the change so that those individuals can update theV state 

5.2.1.5 GraphNode Class 

Class GraphNode is the actual place where 

classification information is stored. The 

knowledge base will create one object of 

GraphNode for each Concept. The GraphNode 

includes direct parent concepts, child concepts, individuals subsumed by the concept, and 

refers \. 
HasO+ mti ast:+& Node 

object records the classification information of 

d e s  whose antecedent is subsumed by the concept. The howledge base delegates all 

Figure 5.5 Class GraphNode 

requests to retrieve taxonomy information to this class. 

the concept associated with it. The information 

Classification information can also be stored in Concept and Ind iv idua l  cIasses. There 

are several advantages to mmagitg classification information in the GraphNode class. 

First, because the bc t ion  is centrally located in one class, it is easier to maintain the 



system. Any changes to the classification function will affect only one class, and only 

this one class needs to be modifieci. Secondly, the classincation fiinction should not be 

the behavior of concepts or indwiduals. It should be one fiinction of the knowledge base. 

If the function is put into the two classes, the interfaces of the classes will be 

contaminateci and the classes becorne spaghetti classes containing many umelated 

methods. Separating the function fkom them simplifies the classes, and makes each class 

play only one role in the system. 

An alternative solution to this problem is to use the multiple inEieritance feahire of C*. 

A class can be defhed to handle the classification information - the concept and 

individuai classes then both inherit fiom this class. 

5.2.2 Design Patterns Applied in the Kernel 

This section describes the design patterns that are applied in the design of the kernel of 

the knowledge inference engine. These design patterns are applied in order to achieve 

objective 2 in chapter 4. The design patterns also address many of the requirements 

discussed in section 4.3. 

522.1 Interpreting CLASSIC 

CLASSIC is a small description logic language that has well dehed  syntax and graTnmar 

(see Appendix A). Though the implemented system made some modifications to the 

grammar of the language (see section 2 of Appendit A), the language still has a weli- 

defined grammar and syntax. Whenever there is a language to interpret, it is very nahual 

to think of using the Interpreter pattern (Gamma, Helm, Johnson, and Vlissides, 1994, 

pp.243-255). 



The intent of the Interpreter pattern is to represent the grammar of a language and 

interpret sentences in the laquage. The Interpreter patkm represents each grammm d e  

as a class. Symbols on the nght-hand side of grammar rule are instance variables of these 

classes. The class structure of the Interpreter pattern is shown in figure 5.6. The 

TerminalExpression implements an interpret method associated with the tenniflal 

symbol h the grammar. The NonterminaiExpression bnpkrnents the intqret method 

for a nonterminal symbol in the grammar. Typically the intqret  method of 

NonterminalExpression is implemented by ca&g the uiterpret methods of its 

subexpressions. 

Figure 5.6 Class Structure of the Interpreter Pattem 

The class structure of the hterpreter pattern begins with an AbstractExpression, an 

abstract class that is the base class for both TerminalExpression and 

NonterminalExpression. TerminalExpression and NonterminalExpression are 

concrete classes that represent the grammar d e s  of the language. They are child classes 

of AbstractExpression. AU classes in the class structure have an interpret method to 

interpret the grammar rule appropriately. The inte~pret method takes Context as an 

argument. What the Context should contain depends totally on what the intopret method 

intends to do. For example, if the interpret method is supposed to evaluate expressions 

definecl in the language, the Context should support looking up of the value of each 

variable. But if the intequret method needs to search a string that matches a pattern, the 

Context should contain the input Stream and the curent &te of the interpret operation. 



The client is the program that will use the pattern. The client builds (or is given) the 

sentence as an abstract syntax tree b d t  with instances of NonterrninalExpression and 

TerminalExpres sion. The client then initializes the context and invokes the interpret 

method. The interpret method uses context to store and access s h e d  information of the 

Interpreter. 

The Interpreter pattern is applied here to interpret the CLASSIC language. In the design, 

c las  Description forms the base class for the pattern. Class Concept, class And, and 

ciass AL1 are NonterminalExpressions, which may be composed of other descriptions. 

0th classes in the structure are TerminalExpressions, which are the most basic 

building blocks of the Ianguage. As discussed in chapter 3, to interpret the language is to 

decide the subsumption relation between descriptions, Le., method subsume in the design 

corresponds to the inteqwet method in the pattem. There is no Context in the design 

because the description classes have enough information to interpret themselves. The 

client in the design is class KnowledgeBase. Class ECnowledgeBase b d d s  the 

descriptions and performs the interprebtion task. The interpretation done by the 

knowledge base is the classification of concepts or individuals based on the subsume 

method. The actual implementation class diagram is shown in figure 5.7. 



Figure 5.7 Class Structure of the Implementation of the hterpreter Pattern 

To interpret (parse) a language, there are several choices. One can generate code using an 

automated parser generator such as lex or yacc. The code generated by such tools is 

usually more efficient than the one using the Interpreter pattem. However, such code is 

foreign to the system, and is usually more difficult to understand and thus, more difficult 

to maintain. The Interpreter pattern is suited for interpreting those languages that are not 

very cornplex, and where efficiency is not an important issue. This is just the case of the 

system discussed in this thesis - CLASSIC has a relatively simple grammar. 

In addition, using the Interpreter pattern hîs other benefits: i) The system is simple and 

easy to understand, thus easy to maintain. The grammat rules of the language are 

represented as classes. Al1 classes in the structure are similar, so the implementation is 

very simple. ii) The system is made easier to extend by using the Interpreter pattern- 

Section 5.2.2.2 will discuss how the system can be extended to support other description 

consmctors. 



5.2.2.2 Extending to Support More Description Constroctors 

By using the Interpreter pattem to represent the CLASSIC language grammar, it is easy 

to extend the grammar, as per requirement 22. In order to add a new description 

constnictor to the system, the following two aeps need to be performed: i) create a new 

subclass of class Description; ii) m o w  dass ConstNames to assign a unique id, and 

role id if necessary, to the new constnictor. 

Class Descr ip t ion has defined the required methods as pure vimial (abstract) hctionç 

that must be implemented by al1 its subclasses. The methods that a new subclass must 

implement are shown in table 5.1. 

Table 5.1 Methods required for Description Constructor 

Method Description 

-- - - 

This is a pure vimial method defined in class KSI-KRE. It retrrms the 

unique id of the description. 

This is a pure vimial method defïned in class KSI - KRE. It sets the id of a 

description. For description constructors, the method does nothing because 

all  objects of one desaiption constructor share the same id. 

Retums the role id of the description. For those descriptions related to a 

role, the role's id is rehirned ûtherwise, the unique role id of the class is 

retumed. See section 5.2.1.2 for a more detailed description. 

Normaiizes the description. If the new desmption constructor is a terminal 

expression, the method simply retums the description itself; otherwise, it 

normalizes the description (as described in section 3.3) and retums the 



normaked description. 

- 

coherent Checks if the description is coherent or not. Returns me if it is coherent; 

otherwise, it retunis faIse. 

- 

conjoin 

The second step to adding a description constnictor is to rnodify claçs ConstMames and 

add methods that give t h e  class a unique id and unique rcle id, as 

appropriate (see sec t ion  5.2.1.2). 

Conjoins two descriptions. Retunis the conjoined description. Refer to 

table 3.1 for what the function actually does. 

subsume 

5.2.2.3 Support More Primitive Data Types 

Detemiines if the description subsumes another description. The method 

retums tme if it subsumes the argument description. Othenvise, it retums 

Primitive data types are supported as built-in concepts (see the discussion of requinment 

7). The system maintains a table that records all currently supported primitive data types. 

When the knowledge base is being initialized, these concepts are created according to the 

table. Instances of these data types are represented as certain types of ro!e fillers. In order 

to satisQ requirernent 21, the Prototype pattern (Gamma et al, 1994, pp.117-126) is 

applied. 

The Prototype pattern provides a way to create objects using prototypical instances. New 

objects of classes are created by copying the prototypical objects. The class structure of 

the Prototype pattern is show in figure 5.8. 



Figure 5.8 Class Structure of the Prototype Pattem 

As can be seen in the above diagram, the pattem consists of class Prototype, which 

defines the interface of clone for cloning itself. Class ConcretePrototype implementS 

the method clone. The client creates new objects by asking objects of concrete protome 

classes to clone themselves. There are several advantages to using the Prototype pattem. 

First, concrete classes are hidden fkom client. The client is given a prototypical object 

without howing what type of object it is. The ways that the client gets the prototypical 

object can Vary greatly. By simply calling the clone method of the prototypical object, the 

client can get a new object of that type. Secondy, using the Prototype pattern enables 

addition or removal of products at nm time. New products can be added by registering 

new prototype instances with the client. Existing products can be removed by 

megistering them fkom the client. Thus, the system can be made more flexible. 

The pattern is applied in the system to make adding primitive data types easier. The 

structure of the actual implementation of the pattern is shown in figure 5.9. 



Figure 5.9 Class Structure of Actual Implementation 

AS shown in the above diagram, chss KnowledgeBase maintains a table of cu~rently 
b 

registered role fillers. When the knowledge base is created, the table is initialized to hold 

supported role fillers for al l  primitive data types in the system. The primitive role fiilers 

now supported inciude In tRoleF i l l e r ,  RealRoleFiller, and StringRoleFiller. The 

table also maintains the built-in concepts associated with each primitive data type. When 

an individual needs a role filler, it asks the knowledge base to create one that satisfies 

certain constraints for it. The constraints here refer to the value restriction of the 

individual. The howledge base looks up the table according to the constraints. The 

lookup process checks whether or not the constraints are subsumed by a built-in concept. 

If the constraints are subsumed by a built-in concept, the comsponding prototypical role 

6Uer is the one of correct type, and the knowledge base invokes the method clone to 

create a new object and r e m  it to the individual. Otherwise, the role filler is a 

CLAS SIC individual, and cl as s icRole Fil 1 er is created. 

To add a new primitive data type to the systerzl, two changes need to be made. 

1. Create a new concrete subclass of class RoleFiUer. The new subclass should 

implement al l  the pure vutual methods de- in the RoleFiiier class interface. 



2- Mo- the table that maintains cmentfy supporteci primitive data types, adding the 

data type to be supported- The content of the table is a list of names, as character 

strings, for the primitive data types. 

When these seps are finished, the program can be re-compileci and run; it wiil support 

the new data type. 

5.2.2.4 Managing Individual Changes 

The state of an individual may change as the lmowledge base evolves. A change to an 

individual chuiges will affect ai i  other individuals that have it as a role filler. These 

individuals in turn, will M e r  affect other indivïduals. When individuals change, they 

need to be recomputed and classined as instances of certain concepts. In order to manage 

the change propagation in a systematic way, the Observer pattern (Gamma et al, 1994, 

pp.293-303) was applied to the design of the system. 

The intent of the Observer pattem is to define dependency relations among objectç so that 

when the state of one object changes, all objects that depend on it are notified and 

updated automatically. The pattem includes two classes: subject and observer. The class 

structure of the pattexn is shown in figure 5.10. 

Figure 5.10 Class Structure of the Observer Pattern 



One Subject object can be observed by many Observer objects. The subject 

main& a list of its observers. It provides interfaces to add or remove observer objects 

f?om its observer Est. When the state of a subject changes, it iterates alI of its observers 

and invokes their update method. The class ConcreteSub j ect dso provides an interface 

for an Observer object to get its state so that the observer can determine what has been 

changed and how it should act on the change. The Observer class provides an update 

method through which a sub j ect object cm notify it of its changes. When an Observer 

object is created, it registers itself to the object of sub j ect that it wants to observe. Afkr 

the registration, all changes are handed automatically. 

In the inference engine, the subject and the observer are of the same class - class 

Individual. The actual ciass structure is show in figure 5.1 1. If individual 11 is a role 

filla of individual IZ, then 12 acts as an observer of II. Whenever II changes, it invokes 

the update method of 12 so that 12 can update itself automatically. 

Figure 5.1 1 Class Stnxcture of Achüil Implementation 

When processing an individual, the system analyzes the role filier- of the individual one 

by one. If a role filler is recognized as a CLASSIC role mer, Le., the filler is an 

individual, then the individual registers itseif as an observer of the m e r  individual. 



Through the registration process, the obswer/subject relation is established between 

individuals. 

Two Iands of operations can result in the removal of the observedsubject relation 

between two individuals, O and S where O is observer and S is subject. The f k t  kind of 

operation is to change the dehîtion of individual O and remove the role that relates O to 

S. The second kind is to delete individual O. However, the deletion operation is not 

guaranteed to succeed. If individual O is at the same time the subject of other individuals, 

it can not be deleted The same will happen if someone tries to delete S: because the 

systern checks and fin& that S still has O as its observer, the system will not delete 

individual S. 

Through the use of the Observer pattern, the implementation of individual is made 

simpler. The design and implementation can be focused more on static aspects. Most of 

the design deals with only one individual object, and the interaction among individuals is 

handled by the pattern. 

5.2.2.5 Simplirying the Knowledge Base Interface 

The lcnowledge base is composed of many building blocks - concepts, individu& roles, 

and rules. To use the system, one needs to be familiar with the interfaces of those 

bdding blocks. For some users, leaming all the interfaces is overly burdensome. In order 

to make the system easier to use, the Facade pattern (Gamma et al, 1994, pp.185-193) 

was applied to make the interface simpler. 

The Facade pattem is also laiown as the wrapper pattem. The main purpose of the pattern 

is to deflne a unined interface to a set of interfaces in a subsystem. The high-level 

interface deked by the pattern hides unnecessary complexity of the subsystem fiom 



76 

users, making the subsystem easier to use. The class structure of the Facade pattern is 

shown in figure 5.12. 

Figure 5.12 Class Structure of the Facade Pattern 

In this pattern, there are two participants: the Facade, and classes of the subsystem. The 

Facade object hows the fimctionality of classes in the subsystems, and delegates client 

requests to appropriate objects of the subsystem classes. The subsystem classes 

implement the actual firnctionality. They handle the requests passed fiom the Facade 

object. However, they have no knowledge of the facade. 

The knowledge uiference engine contains many classes. These classes interact and 

communicate with each orner. The interaction of these classes is cornplex. In order to 

simpli@ the use of the system, the Facade pattern was applied to hide the complexity and 

provide a high-level interface that is easier to use. 

The facade class of the knowledge inference enpine, class KBInterface, defines a set of 

interfaces that clients can use to interact with knowledge base without bowing much 

about the interna1 structure. The methods defïned in the interface are shown in table 5.2. 

Table 5.2 Simplined Intdace of Knowledge Base 

string& in i tData ,  1 based on the arguments. The m e  of component is 

Method 

create ( i n t  ab jType, 

Description 

Used to create a component in the knowkdge base 1 



i n t  enf orce=0) 

- - - - - - - - 

upda& ( IDType id, 

s t r i ng& data) 

decided by argument objType: 0 Û concept, 1 û 

primitive concept, 2 û role, 3 û nile, 4 û individual. 

The argument initData is the data used to defme the 

component. The argument enforce decides what the 

system should do in the case of a name contlict. If 

enforce is set to no-zero, the system wiU create the 

component even there is name conflict û t h d s e ,  the 

system wïil return an error informing the client there is 

name conflict. The method returm O if the operation 

nicceeds, otherwXse a non-zero value representing the 

mor that occurred is returned- 

Used to update a component. The argument id 

identifies the component to be updated. The second 

argument, data, ir the new dehition for the 

:omponent. Because the update of concepts is very 

:omplex and requires intensive computation to re- 

:lassifjr the knowledge base1, the system supports the 

~pdate of individuds only. The method retums O if the 

2peration succeeds; otherwise it retums a non-zero 

value representing the Srpe of error that occured. 

1 To update a concept m the knowledge base, the system needs to delete the concept, and then replace it 

with a new concept Both sep will involve large amount of computation to classify other concepts, 

individuals, and d e s .  



find (string& name, 

i n t  t y p e )  

f i ndF i r s t  (string& name, 

int type)  

e x i s t  ( I D T y p e  id) 

- - 

Used to search the knowledge base and r e m  ail 

components found. The argument name is a character 

string representing the component name. The 

argument type has the same meaning as the araoument 

objT'jpe in method create and represents the type of 

component to be searched The method retums the set 

of components found in the laiowledge base. If no 

component is found, it r e m  a null set. 

Used to search the knowledge base and retum the first 

component found. The arguments of this method are 

the same as that of method find. The method rehims 

the id of the component If no component is found, O 

is returned- 

p.- - 

Used to check whether or not a certain component 

exists in the knowledge base. DT'e is the type for 

ids. The method takes one argument, which is the id of 

the component, and checks to see if the component is 

dehed in the knowledge base. It retunis hue if the 

cornpanent is defked; otherwise it retums false. 

As one c a .  see, the interface gives the client the power to use the kaowledge base, but 

hides dl the unnecessary details iiom client. 



532.6 Accepting Different Input Formats 

The engine uses CLASSIC as its intemal data presentation. It can only understand the 

CLASSIC data format. In order to allow as many kinds of clients as possible to connect 

to 4 the engine should not restrict the data format that a client uses. This requires the 

engine to provide a f d y  of parsers which c m  translate the client data format into its 

interna1 data format The parsers are all related and m e r  only in the extemal data format 

they can translate. In order to avoid ushg many if-then-else checks in the program 

(which is hard to extend and maintain), the Strrtegy pattern (Gamma et al, 1994, pp.3 15- 

323), as shom in figure 13, is applied in the design. 

Figure 5.13 Class Structure of the Strategy Pattern 

The Strategy pattem, as discussed in (Gamma, et al, 1994), is used mainly to define a 

f d y  of algorithms. Each algorithm is encapsulated as a class, and al1 such classes are 

interchangeable. By applying the pattern, the algonthms may Vary independently nom 

the client that uses them because they provide a common interface to the client. Use of 

the pattern also eliminates the conditional statements fiom the implementation. 

Figure 5.14 shows how the p a m  was actuaily applied in the design. 



Figure 5.14 Class Structure of the Strategy Implementation 

The class KBInterface, which is a facade class discussed in section 5.2.2.5, has a 

reference to the base class of the strategy pattem. The object of minterface takes an 

object of a concrete W P a r s e r  subclass as  an argument when it is initialized- Later, the 

object uses the paner object to translate input data fiom the client to intemal data format. 

The actual parser that will be used can be configured at run time. Whm a client program 

connects to the knowledge base, it tells the knowledge base what data format it uses, and 

the knowledge base cm then set the parser to an appropriate one to communicate with the 

client. @Secause of time constraïnts in the writing of this thesis, only one concrete 

mpar se r  c las  has so far been created.) As shown in figure 5.14, the class 

ciass icoarser reads in data in CLASSIC format and translates the input into the format 

KBInterface requires. 

To extend the engine to support other input data formats, the only thing that needs to be 

done is create a new concrete subclass of class KREParser .  The KREParser defines al1 

the interfaces that a subclass should implement Thus, the design and implementation of 

the new class should be straightforwxd. 

5.3 Supporting Functionality 

This section describes two main supporting fimctions of the lmowledge inference engine. 

The first one is managing memory - making all descriptions sharable - thus reducing 

memory consumption. The second supporthg function that will be discussed is the name 



manager. The name manager manages the name space of the laiowledge base. Al1 

names used in the systexn are centrally rnanaged by this class. 

53.1 Description Constructor Factory 

As discussed in requirement 23, memory management is a critical issue in the design of 

the engine. The engine should have an effective mechanism for managing memory, 

otherwise the engine will consume large amounts of memoxy. In order to reduce the 

amount of memory required, components in the knowledge base are shared; each 

component is created just one time and is shared by all others. If one description needs to 

use another description, it will get a reference to the other one instead of creating a new 

copy of that description. 

To achieve the above goal, two pattems were used in the design of the name manager 

(class cons truct ~ac). The Singleton pattern (Gamma et al, 1994, pp. 127-1 34) was used 

to ensure that only one instance of class ConstructFac is created. A variant of the 

Flyweight pattem (Gamma et al, 1994, pp.195-206) was used to achieve the sharing of 

description objects. The rest of this section will bnefly discw the two pattems, and then 

discuss how they were applied in the engine. 

/ - i m i & ~ ~ ~ ~ ~ e = n e w  ~ingietoqj 
retmnuniquelnçtartce; 

Figure 5.15 Class Structure of the Singleton Pattern 

The Singleton pattem provides a way to aisure that there is no more than one instance of 

a certain class in the system at any time. The s ingie t on class is the only point where the 

instance of the class can be accessed. The pattern is shown in figure 5-15. 



The Singleton class has a static method instance that enables a client to access the 

instance. By making the class itself responsible of managing its sole instance, it is easier 

to keep the systern consistent 

The intent of the Flyweight pattem is to efficiently support a large number of fine-grained 

objects by sharing them. If a system has many objects, it will be very expensive because 

these objects will consume a lot of memory and may incur heavy run-time ovexhead. The 

Flyweight pattern introduces a way to share objects, so that one object c m  be used in 

multiple contexts. The pattern is shown in figure 5.16. 

additta pool cffiyw* 
r ettnn the mw fiyw w) 

Figure 5.16 Class Structure of the Flyweight Pattern 

The key concept of the Flyweight pattem is dividing the state of an object into two parts: 

intrinsic and extrimic state. The i n d i c  state is that information which does not depend 

on context. The extrinsic state, on the other han& d q a d s  on the context. What is shared 

is the intriasic information. E h i c  state can not be shared- Cbss ~l yweight Fact ory is 

a repository where sharable fiyveight objecis are stored. It provides an interface whae 

the client can get a flyweight object by some kind of key. 

The class constructrac in the engine is both a Singleton and a Flyweight Factory. The 

class structure is shown in figure 5.17. The ConstructFac class manages ail -the 

description constructors that are used in the inference engine. For each process of the 

engine there can be only one instance of the class. Thus, the ConstructFac is made a 



Singleton class, which manages its sole instance. The client accesses the soIe instance 

- instance through its mernber function Instance. The constnictor of class cons t rcct  Fac 

is made private so the client has no way to create instances of the class except by using 

the provided interface. 

ConsaPEtFac 

static C o n s t d a c *  _ W e  Di§- 
m@D, vector<Des#iption9> Iib 
static C onstructFac* Instgnca 9 
D escripticm* g e t w c o n s i  ; I I 
Descripcian*geMI(cms)~ ; 

I 
And Fîns 

.-. -.- 

1 

Z(descriptim satiswg cons not exist) { 
mate description usMg c m ;  
insertitint0 hl; 

1 
return î3x descriDtim 

Figure 5.17 Class Structure of Co~l~blllctFac 

The class has another instance variable lib, in which all objects of shared descriptions are 

stored. The lib is a dictionary whose key is the role identifier of descriptions. This means 

that descriptions related to the same role are stored under the same key. Descriptions 

under one key are stored in a list without ordering. There is an interface fkom which a 

client can get a reference of the deshed description. If a client needs to get a description, 

he needs to invoke an appropriate rnethod. For example, if the client needs to get 

description ô AtLeast I positiono, he invokes method getAtLeast with two arguments: 

id of role position and 1. If there exists a description that matches the arguments, a 

reference to the description is returned to the client, Otherwise, a new description is 



created based on the parameters. The newly created description is put into the lib and a 

reference to it is reîumed to the client. AU of the descriptions in the system are created in 

this way. Thus, at any t h e ,  there is only one copy of each kïnd of description, and al l  of 

them are shared by others. 

The design is simrlar to the Li"brary pattern discussed in (Kremer, 1997, p. 137). The 

major difference between these two is that the Library pattern creates and retumç a new 

copy when a client asks for an object, whereas the design in the ixiference engine retums 

only a reference to the object. 

5.3.2 Name Space Management 

As per requirement 24, the engine should have an effective way to manage the name 

space of the lmowledge base. Similar to the Const ruc tFac  discussed in the previous 

section, the name çpace manager should also be a Singleton. There can only be one 

instance of the manager in the system. 

The design of the name manager is very similar to that of class cons t ruc t  Fac. The class 

that manages name space in the system is cailed KRENameManager. The class is a 

singleton. It manages its soie instance and provides an intdace for clients to access the 

instance. The class acts as a library for all the names used in the lmowledge base. The 

client may query a component's name by its id, or q u q  a component's id by its name. In 

order to provide efficient services to these queries, the name manager maintains two 

maps - one fiom component id to name, another fiom component name to id. 

Before a component is created, the laiowledge base inserts the name of the component 

into the name manager and gets a unique id for the component. If the name has been used 

by another component of the same type, the client cm choose to change the component 



name or create a component with that name. If the client chooses to change the 

component name, the change is easily handled by the system. ûtherwise, the name 

manager will uisert the name with a unique tag into its maps, and assign a unique id to 

the component. Because the system uses component id to uniquely iden* a component, 

requirement 23 is relatively easy to satisw. 

5.4 Testing 

After the system was developed, two sets of data were used to testing the conectness of 

the system. The first set of data was listed in section 32. The second set of data was 

obtained nom AT&T NeoClassic tutorid Web site (Abrahams et al, 1996). Then, this 

section discusses the perfomance of the system in tems of time and space using 

recursive example. 

5.4.1 The Testing Program 

The testing program is a small program which uses interface provided by class 

KBInterf ace. The program is very simple and provides necessq bctionality to 

perfonn the testing task. This section briefly discusses the function and the output of the 

program- 

The client can use two commands to interact with the program. One command is used to 

read data into the lmowledge base £tom a file; another one is used to get information 

about a component fiom knowledge base. 

read commmd 



This command is used to read &ta into the knowledge base fkom a file- The 

client can type in read command at the command ihe. The program will prompt 

the client to enter the file name to be read in and then proceeds readuig the file. 

get command 

This command is used to query component information fiom the knowledge base. 

The client can type in get command at the command he. The program will 

prompt the client to enter the name and type of the component to be queried. 

The program will print the query result to the standard output device. The Somation 

output by the program includes name of the component, and one or more of the following 

items. 

toldDef - the description that is used to d e h e  the component 

normDef - the normalized desaiption of roldDef of the component. The 

information in this part include inherited and anfémed uifonnation. 

direct parents - the concepts that are duect parents of the component. It reflects 

to direct parents of a concept or individual. 

direct children - the concepts that are direct children of the concept. It reflects to 

direct children of a concept. 

direct instance - the individuals that are directly subsumed by the concept. It 

reflects to direct instance of a concept. 

direct mle - the d e s  associated with the concept. 

£illem - the mers of the indivldud. 



5.4.2 Testing Data 1 

The explmation of this set of data was given in section 3.2. This set of data creates an 

employee hierarcby for a Company. Figure 5.18 is part of the input file. 

1 createprimitive (US$, O ) 
createprimitive (USS000, ( )  ) 

createPrimitive (senior employee, ( ) 1 
createprimitive (senior employee's assistant, O 1 
createRole (classification) 
createRole (salary) 
createRof e (division) 
createPrimitive (division, (and, (all, classification, 

(oneOf, sales, marketing, accounting, manufacturing) 1, 
(all, revenues, (and, USS000, Integer) 1 1 1 

Figure 5.18 Snippet of Test Data 1 

Figure 5.19 shows how concepts are classined in the knowledge base. As one can see in 

the figure, concept employee has concept Thing as its parent and concept foreman as its 

child, whereas concept foreman has concept employee as its parent and concept sen io r  

foreman as its child. The text in bold are what a client typed in, and the text in normal 

font are systern output. 

Figure 5.20 shows the result of querying data about individual body wor ks. Figure 5.21 

shows the resuit of querying data about individual f red smith. 



command: read 
file name: test l - tact  

Reading file ..- 
Command: get 
Component name: eauployee 
Type (O-concept, 1-primitive, 2-role 3-rule 4-individual): I 
employee : employee 
NormDef : := (AND (ALI salary (AND Integer US$ ) 1 

(minimum salary 150CO) (maxixwm salary 160000) 
(Al1 division division) 

Direct parents: Thing 
Direct children: foreman 

I Direct instances : 
Direct niles: 

Command: get 
Component name: foraman 
Type (O-concept, 1-primitive, 2-role 3-rule 4-individual): 1 
foreman: foreman 
NonnDef : := (AND employee 

(Al1 salary (AND Integer US$ ) ) 

(minimum salary 35000) (maximum salary 70000) 
( A l 1  division (-D division ( A l 1  classification 
(oneOf sales, marketing, accounting, manufacturing) ) 
(fills classification manufacturing) 
(Al1 revenues (AND CiSS000 Integer ) 1 ) 1 

(atLeast 1 division) (atMost 1 division) 
Direct parents: employee 
Direct children: senior foreman 
Direct instances: 
Direct rules: 

Figure 5.19 Querying Result of Concepts Employee and Forman 

C o m n d :  get 
Component name : body works 
Tyoe (O-concept, 1-primitive, 2-role 3-rule 4-individual): 4 
body works: body works 
ToldDef ::= (fills revenues 3000) 
NormDef ::= (AND division (Al1 classification 
(one of sales, marketing, accounting, manuf acturing) 1 
(fills classification manufacturing) 
( fills revenues 3000) 
(Al1 revenues (AND USS000 Integer 1 1 
Direct parent: division 
Fillers: 
Classification: manufacturing(classic individuals) 
Revenues: 3000 (integers) 

Figure 5.20 Querying Data of Individual "body works" 



Command: get 
Component name: fred smith 
Type (O-concept, 1-primitive, 2-role 3-rule 4-individual): 4 
fred suith: fred smith 
ToldDef : : = - (AND foreman (fills salary 50000) 
(fills division body works) 
(fills assistant sam jones) ) 
NormDef ::= (AND foreman 
Senior employee 
(Al1 salary (AND Integer US$ ) 1 
(minimum salary 35000) (maximum salary 70000) 
( fills salary 50000) 
(Al1 division (AND division (Ail classification 
(oneOf sales, marketing, accounting, manufacturing) 1 
(fills classification manufacturing) 
(Al1 revenues (AND USS000 fnteger ) ) ) ) 

(atLeast 1 division) (atMost 1 division) 
( f i l l s  division body works) (fills assistant sam jones) 
(Al1 assistant senior ernployee ' s assistant) 
(atLeast I assistant) 1 
Direct parent: senior employee, senior foreman 
Fillers : 
Salary: 50000 (integers) 
Division: body works(c1assic individuals) 
Assistant: sam jones(c1assic individuals) 

Figure 5.2 1 Querying Data of Individual " fied smith" 

5.43 Testing Data 2 

The second set of data was obtained fiam AT&T NeoClassic Web site. The set of data 

defines a howledge base about wine and food. The data c m  be obtained fiom 

(Abrahams, et al, 1996). Figure 5.22 shows part of the concept hierarchy of the 

knowledge base. 



In the above figure, a concept is represented as a box, an individual is represented as a 

ellipse, and a d e  is represented as dash-lined ellipse. The component name is given by 

the text within a graph. The subsumption relationship is represented by connecting two 

concepts with a Eue, where the concept lying above subsumes the concept under it. 

After the data was Ioaded to the system, seved tests were performed on i t  Figure 5.23 

shows a query about concept CHARDONNAY. The delkition for the concept is: 

(and WINE (fills grape Chardonnay) ) 



Command: read 
File name: te~stS.txt  

Reading file . . . 
Command: get 
Component name: CHARDOHNAY 
Type (O-concept, 1-primitive, 2-role 3-rule 4-individual): O 
CHARDONNAY: CHARDONNAY 
NormDef: (=D POTmLE-LIQUID 

(Al1 color (AND WINE-PROPERTY (oneOf White, Rose, Red 
(atLeast 1 color) 
( M l  body (AND WINE-XOPERTY 

(one of Light, Medium, Full) ) ) 
(atLeast 1 body) 
(Al1 flavor (AND WINE-PROPERTY 

(oneOf Delicate, Moderate, Strong) ) ) 
(atLeast 1 flavor) 
(Al1 sugar (AND WINE-PROPERTY 

(oneOf Sweet, Off-Dry, Dry) 1 1 
(atLeast 1 sugar) (Al1 grape EDIBLE-THING) 
(atLeast 1 grape) (fills grape Chardonnay) 

Direct parents: WINE 
Direct children: 
Direct instances: Forman-Chardonnay, Fritz-Chardonnay, 

Corton-Montrachet-White-Burgundy, 
Puligny-Montrachet-White-Burgundy 

Direct rules: chardonnay-color, chardonnay-body, chardonnay-flavor 

Figure 5.23 Querying Data of Concept CHARDONNAY 

As shown in figure 522, concept CHARDONNAY is classified to be child of concept WINE, 

and inherits all information fiom WINE. The system also recognizes individuals 

Forman-Chardonnay, Fritz-Chardonnay, etc. to be its direct instances. 

Then, a query of individual forman-chardcnnay ws perfonned. The resdt of the query 

is shown in figure 5.24. 

The defmition for individual Forman-Chardonnay is as foUows: 

(and CHARDONNAY ( f i l l s  body Fu l l )  ( f i l l s  flavor Moderate) 
(fills sugar Dxy) (f i l ls  maker Forman) 1 



Command: get 

Component name : Fonuan-Chardonnay 
Type (O-concept, 1-primitive, 2-role 3-rule 4-individual) : 4 

Fonnan-Chardonnay : Forman-Chardonna y 
toldDef : := (AND CHARDONNAY (fills body Full)  ( f i l l s  f lavor  Moderate] 

( f i l l s  sugar Dry] ( f i l l s  maker Forman) 1 
normDef ::= (AND POTABLE-LIQUID 

(Al1 color (AND WINE-PROPERTY 
(one of White, Rose, Red) ) 

(atLeast  1 color) ( f i l l s  color  White) 
(Al l  body (AND WINE-PROPmTY (or-eOf Medium, Full)  ) 1 
(atLeast  1 body) ( f i l l s  body Full) 
( A l 1  f lavor  (AND WINE-PROPEELTY 

(oneOf Moderate, Strong) 1 1 
(atLeast  1 flavor) ( f i l l s  f lavor  Moderate) 
( A l 1  sugar (AND WSNE-PROPERTY 

(oneOf Sweet, Off-Dry, Dry) ) 1 
(atLeast  1 sugar) ( f i l l s  sugar D r y )  
(Al1 grape (AND GRAPE EDIBLE-TRING 1 ) 

(atLeast  1 grape) ( f i l ls  grape Chardonnay) 

(Al1 appropriate-drink 
(AND ( f i l l s  color White, Red) 

( f i l l s  body Light, Medium, Fu l l )  
( f i l ls  f lavor  Delicate, Moderate, Strong) 
(Al1 flavor (oneOf Moderate, Strong) 
( f i l l s  sugar Sweet, Off-Dry, Dry) 1 

(atLeast  1 region) ( A l 1  region WINE-REGION 1 
( f i l l s  maker Forman) 
(atLeast  1 maker) (Al1 maker WINERY 1 

Direct parents : FaLL-BODIED-WINE, DRY-WHITE-WINE, CHARDONNAY 
F i l l e r s  : 

color: White(c1assic individuals) 

body: E'ull ( c l a s s i c  individuals) 
f lavor : Moderate ( c l a s s i c  individuals)  

sugar: Dry(c1assic individuals) 
grape: Chardonnay(c1assic individuals)  
maker: Forman (c l a s s i c  individuals 1 

Figure 5.24 Querybg Result of Individual Fornian-Chardonnay 



The individual is fïrst classified 

CHP~ONNAY has three associated 

as an instance of concept 

d e s :  chardonnay-color, 

CHARDONNAY. Concept 

chardonnay-body, and 

chardomay-flavor. The definitions of these niles are as follows: 

createRule (chardomay-color, CHARDONNAY, (fills, color, White)) 
createRule (chardonnay-body, 

CWONNAY, ( a l l ,  body, (oneOf, Full, Medium) ) ) 

createRule (chardonnay-flavor, 
CHARDONNAY, (all, flavor, (oneOf, Strong, Moderate) ) ) 

Because individual Forman-chardonnay is recognized as an instance of the concept, the 

systern &es these d e s  on the individual. The additional information is then added to the 

individual, and the individual informs the system to reclassify it. Because the iiller for 

role body is ~ ~ 1 1 ,  which satisfies the dennition of concept FULL-BODIED-WIN=, now the 

individual is classified to be also an instance of concept FULL-BODIED-wINE. The mer 

for role coior is White and mer  for role sugar is ~ r y ,  so the individual is also classined 

to be an instance of concept DRY-WHITE-WINE, as shown in figure 5.24. 

The definition of concepts FULL-BODIED-WINE and DRY-WHITE-WINE are as folIows: 

createconcept (FULL-BODIED-WINE, (and, WINE, ( f ills, body, Full) ) 1 
createconcept (WHITE-WINE, (and, WINE, (fills, color, White))) 
createconcept (DRY-WINE, (a.id, WINE, ( f ills, sugar, Dry) 1 1 
createconcept (DRY-WHITE-KINE, (and, DRY-WINE, WHITE-WINE)) 

5.4.4 Performance Test 

This section tests the performance of the system in temis of time and space. Nebel (1990) 

has given a constructive example of a simple set of concept delinitions where 

computation of subsumption is intractable because of the growth of ~flflamed 

descriptions. The recursive example offm a worst-case example on term subsumption 

logics. Figure 5.25 shows an example set of concept definitions for the testing. The set 

begins with the definition of a primitive ci0 and goes through a sequence of concepts 

down to CO deked in terms of preceding concepts. 



create~rimitive (CIO, ( ) ) 
createconcept (Cg, ( a n d ,  
createconcept (C8, ( a n d ,  
createconcept ( C 7 ,  ( a n d ,  
createconcept (C6, ( a n d ,  
creaceconcept (CS,  (and, 
createconcept (C4,  ( a n d ,  
createconcept (C3 ,  (and, 
createconcept (C2 ,  (and, 
createconcept ( C l ,  ( a n d ,  
createconcept (C3, {and, 

CIO, 
CIO,  
CIO, 
CIO, 
CIO, 

CIO, 
CIO, 
C l 0  f 
CIO, 
C l 0  f 

(a l l ,  
i a l l ,  
( a l l ,  
(a l l ,  
( a l l ,  
( a l l ,  
( a l l ,  
( a l l ,  
(a l l ,  
i a l l ,  

rl, CIO), ( a l l ,  r2,  C I O )  ) )  

rl ,  Cg), ( a l l ,  r2, C g )  ) )  

rl ,  C81, ( a l l ,  r2, C a ) ) )  
r l ,  C 7 1 ,  ( a l l ,  r2, C f )  ) )  

rl, C 6 1 ,  (dl, r2, C6))) 
r l ,  C S ) ,  ( a l l ,  r2, (ana, CS, CIO)  ) ) )  

rl, C41, ( a l l ,  r2, ( a n d ,  C4, C 8 ) ) ) )  

rl, C 3 1 ,  (all, r2, ( a n d ,  C3,  C 6 ) ) ) )  
rl, C 2 1 ,  (dl, r2, ( a n d ,  C2 ,  C 4 ) ) ) )  
rl, C I ) ,  ( a l l ,  r2, ( a n d ,  C I ,  C2)) ) )  

l Figure 5.25 Nebel's Constructive Example with 10 Concepts 

Table 5.3 System Performance 

T h e  (seconds) space @ ~ t 4  



Table 5.26 shows the time in seconds and the memory consumption in bytes for 

Nobel's examples O through 22 with the system Nrming on a Pentium 266 PC under 

Microsoft Windows NT 4.0. The time and space metrics are useful vaules in estimahg 

how the system c a .  cope with realistic problems. 

5.5 Summary 

This chapter has pmvided an overview of the design and hplementation of the 

lmowledge inference engine. The most important part of the howledge inference engine 

is the kemel of the engine, which provides all of the core fiinctionality. Section 5.2 

describes the major classes that the kernel is composed of. In the design and the 

implementation of the kemel, several design patterns are applied to achieve Merent 

goals: 

a 

a 

the Interpreter pattern interprets the CLASSIC language, and makes the design 

and implementation simpler. In addition, use of the pattern makes it easier to 

extend or modm the grammar of the CLASSIC lanyage, such as extending 

CLASSIC by adding more description constructors. 

the Prototype pattern creates new objects by using prototypical objects. By 

applying thiç pattern, the engine can be extended to support other primitive data 

types easily. 

the Observer pattern allows observers be informeci and updated automaticdy 

when a subject changes. This pattern is applied to manage the change process of 

individuals. 



the Facade pattem mskes it easier to use the knowledge inference engine by 

providing a simple interface that hides much of the complexity nom the client. 

The client interacts solely with the intaface without Iaiowing ;my parts of its 

subsystems- 

the Strategy pattern encapsulates the parsing algorithms into classes. Each of 

these classes is exchangeable. Thus, the knowledge base c m  be codgured to 

support different foimats of client input data dynamically. 

Section 5.3 describes other supporting fimctionality in the knowIedge inference engine- It 

covm mainly memory, and the name space management facility- Two patterns are 

applied in the design of these fùnctionalities: 

the Singleton pattern ensures that no more than one instance of a class is created 

in the system. There can be only one instance of the description constnictor 

factory and name manager in the system. These two classes are made singleton. 

the Flyweight pattern enables objects within the systern to be shared. There may 

be many descriptions in the systm. If these descriptions can be shared, memory 

is used more efficiently. The Flyweight pattern was applied to manage 

descriptions in the system so that each description is created one time and is then 

s h e d  by others. 

Section 5.4 illustrated the actually ninning of the system using two set of &ta and gave 

some perfomiance data of the system using Nebel's constructive example. 

This chapter serves as the design documentation for the knowledge inference engine. 

Though it has not covered all aspects of the design, it does cover the most important parts 



of the system. The requirements given in chapter 4 are also addressed in the 

description of the design. 



Chapter 6 Conclusion 

This chapter evaluates this research work and describes two posslble directions for hture 

work related to the research. The evaluation addresses the objectives described in chapter 

1 and chapter 4, and how these objectives are satisfied by the research work Based on the 

discussion of objectives, the chapter also draws the conclusion that design patterns are 

applicable to the knowledge inference domain. 

In addition, this chapter gives two possible directions for fûture work related to the 

research work. First, exiçting knowledge inference systems should be studied and 

checked for the existence of design pattern in those systems. Secondly, since the 

research was undertaken with the intention of developing a completed knowIedge 

inference system, much work can be done to extend the system. The extension work can 

in tum, evaluate the quality of the curent design. 

6.1 Addressing the Objectives 

The p d a r y  objective of this research work was described in chapter 1 : 

"to evaluate the applicability of design patterns in the knowledge inference domain." 

In order to achieve the pximary objective, four auxiliary objectives must be achieved. 

These four auxiliary objectives are: 

1. Studying software design patterns and getting an in depth understanding of them; 

2. Designing and implementing a howledge inference engine; 



3. Applykg design patterns to the design and implementation of the system as 

appropriate; 

4. Documenting the design patterns in the context of the system. 

The auxiliary objectives are concemed with i) studying and the application of design 

patterns; ii) designing and implementation of a knowledge inference engine. If the four 

auxiliary objectives are accomplished, the conclusion that design patterns are applicable 

to the domain can be drawn. Otherwise, the conclusion will be that design pattans are 

not applicable to the knowledge inference domain. 

Chapter 4 discussed the requirements for the systern. Chapta 5 discussed the desigxi a d  

implementation of the system based on the requirements analysis. The descriptions in 

these two chapters covered the major functionality of the implemented howledge 

inference system. The major Eunctionality of the system includes: 

creating components to represent the domain knowledge. Components that cm be 

created in the howledge base include primitive concepts, concepts, individuais, 

roles, and d e s .  

updating the definition of components. UsualIy the updating operation works on 

ia.dividuals, Le., changing the state of individuals. 

a removing Somation fkom the knowledge base. 

checking the consistence of the knowledge base. If all components in the 

knowledge base are coherent, then the knowledge base is consistent. The 

knowledge base is always kept in a consistent state, which means that incoherent 

components are not added to the knowledge base. 



classifying components in the knowledge base. The classification process is 

based on the subsimiption relationships between components. This is the essentid 

a c t i o n  that a description logic based laiowledge representation system should 

support- 

The above description clearly shows that the second auxiliary objective - to design and 

implement a knowledge Inference enpine - is accomplished. The implemented system 

possesses the basic fiinctionality to support knowledge inference, though it is not as 

powerful as some systems that are already implemented, such as the ones discussed in 

section 3.3. 

Section 5.2 and section 5.3 discussed the design and implementation. These sections 

discussed the major classes that provide the bctionality of knowledge inference; they 

also discussed extensibility and flexibility issues. In addition, if design pattenis were 

applied to the design, they were discussed under the context of the sytem. As one can 

see, several design pattems were applied in the system. These design patterns either 

simplSy the design and implementation of the system, or make the system more easily 

extensible. For example, the Interpreter pattern simplifies interpreting the CLASSIC 

language, and the Observer pattern simplifies the change management of individuals. The 

design pattems identifiai in the system inchde: 

the Interpreter pattern, which is used to represent the CLASSIC language and 

interpret components of the language. The pattern makes the extension of 

language easier- New d&ption constructors can be added without affecthg 

other parts of the system. 

the Prototype pattern, which is used to represent role fiIlers. The application of the 

pattern makes it easier to plug in and support new data types. 



the Observer pattern, which is used to manage changes to individuals. 

Changes to the state of one individual may affect other individuais in the system. 

The pattem establishes dependency relationships between individuals, so that 

when the state of an observed individual changes, other individuals will be 

informed of the change and wil l  be updated automatically. 

the Facade pattern, which is wed to simplify the interface of the knowledge base. 

The knowledge base is composed of many componaits and they interact with 

each other. The interaction may be complex and hard to understand for those who 

do not understand those components. The pattern encapsulates the complexity of 

the interactions and provides a very simple interface for others to use. 

the Strategy pattem, which is used to encapsulate the algorithms of how hput 

streams are interpreted. In order to ailow as many kinds of clients as possible to 

connect to it, the systern should not restrict the data foxmat that a client uses to 

communicate with the engine. A parser is needed to translate client data formats 

to the format that the engiue cm understand. The pattern encapsulates each kuid 

of parser as a class and makes them interchangeable. New client data formats can 

be supported by plugging-in a new parser. 

the Singleton pattern, which is used to ensure that no more that one instance of a 

class is created. The singleton class in responsible for managing its instance, thus 

avoiding the drawback of using global variables. In the implemented system, 

descriptions are shared across the systan, Le., there is o d y  one copy of each 

description and it is shared by other components in the system. The descriptions 

are stored in a class that manages all of the instances created. There can be only 

one such manager, and it is made a singleton. In addition, the name space 



manager, which manages the seing names of components in the systemt is 

also a singleton. 

the Flyweight pattern, which is used to share descriptions within the system. 

When a system uses a large number of fine-grainecl objects, it will be very costly 

if each use of the object requires a new copy of the object- Making these objects 

sharable in different contexts greatly reduces resource consumption. The pattern 

is used to make descriptions sharable. The use of this pattern also makes mernory 

management more efficient and less error prone- 

The preceding discussion shows that the first auxiliary objective (studying design 

patterns) is fhlfilled- The third (applying design patterns to the system) and fourth 

(documenting the patterns) auxiliary objectives are fulnlled by the discussions in section 

5.2 and section 5.3. Because the four awciliary objectives are achieved, the primary 

objective is dso achieved. Seven patterns have been applied to the design and 

implementation of the system, so the conclusion that design patterns are applicable to 

howledge inference systems can also be drawn. 

6.2 Future Work 

This section will discuss s e v d  directions in which the fbture work could proceed. The 

future directions concem two different aspects of this research work. The first direction is 

the study of other howledge inference systems and m g  to ômine6 patterns in those 

systems. The other direction concerns with the implemented system û the extension of the 

system and studying the actual consequences of the application of design patterns. 



62.1 Design Patterns in Other Systems 

The approach taken in this research work was to fïrst study design patterns, and then try 

to apply design patterns to the design and implementation of a howledge inference 

engine. Whether design pattemç are applicable to the domain depends on whether or not 

any design pattem could be applied to the system. Another approach to the evaluation is 

to do reverse engineeringt or "pattern mining". The idea of "pattern mining" is to study 

existing systems in-depth, then identify and document design pattem in the systems. 

"Pattern rniniligf' is an important activity conducted in the pattem conununity. Many of 

the design panems cmently available were found this way. By studying existing 

systems, it is possible to find many domain specific patterns. These patterns are valuable 

assets to the domain, which may be buried in experts' mind or otherwise lost in source 

code. 

There are many existing systems that rnay be considered for "pattem rnining". Such 

systems may include KRS, Neoclassic (discussed in chapter 3), Loom (MacGregor and 

Brill, 1992), etc. These systems were ail implernented in Objected Onented languages, 

which makes them valuable subjects for study as the purpose of this research is to study 

design patterns, especially Objected Oriented software design patterns in knowledge 

inference systems. However, this is not to Say that other systems rnay not be studied. 

6.2.2 Extending the System 

As discussed before, the main focus of this research was not to devetop a powerful 

knowledge inference system. Thus, the system developed to date supports only basic 

knowledge inference fun.ctionality- This leaves much space for future extension, which is 

another fWre direction of work - to extend the system to include other functiom. 



There are two types of extension: one extension is to improve the power of the 

system, and another is to extend it to interact with other programs. 

6.2.2.1 Improving the Representation Power of the System 

Complex desaïptions in the system are built fÏom simple descriptions using descnption 

co~lsttzlctors. One way to improve the power of the system is to add more description 

constnictors to the system. With more description constructors, the systern will have 

richer representation power. The possible description constructors may include the nor 

constructor that negates a description, and the some consmctor that specifies partial 

collstraints. Another way to enhance the system is to add more data types to the system. 

Since the system treats primitive data types as built-in concepts, more data types will give 

users more representation power. 

The system had implemented several data types to represent integer, fioating point 

number, and character string. A user may need to use other data types to represent 

domain kuow1edge. The system may be enhanced by adding other data types, such as 

date, or 0 t h  types that may be required by specinc applications. The more =es of data 

in the system, the more representation power the system should have. 

However, the more description constructors and data types the system supports, the more 

complex the system wilI become. This is especially true for description constnictors. 

Adding more description constructors wi l l  increase the complexity of the system, and 

more intensive computation will be required. Thus, when extendhg the system, one 

should balance representation power and system complexity so that the representation of 

the system is rich enough, while at the same t h e  not requiling too much computation. 



6.2.2.2 Interacting with Other Programs 

The system is designed as a server application which accepts a client request, does certain 

work on behalf of the client and returas results to the client. Obviously, another direction 

for extending the semer is to extend the interface of the system, enabhg more kinds of 

clients to interact with it. 

To the t h e  this thesis was written, the system had only a text-based interface; client 

programs communicate with the server through text streams, and results are retumed as 

text streams. The text-based interface is simple. The syntax of the text Stream is the same 

as the granmiar of CLASSIC demibed in Appendix. For example, to create a concept 

adult which is defined as  a person and whose age is greater than 18, one can send the 

following text stream to the system: 

create-concept (adult, (and, person, (minimum age, 18) ) ) 

where person is a previously defined concept in the system. 

Though the text-based interface is very easy, some argue that visual presentation of 

knowledge is more readily understood (Nosek and Roth, 1990). Extending the system to 

add a visual fkont-end should greatly improve the usability of the system. Right now, the 

author is working on a task to extend the system so that it can interact with Constraint 

Graphs (Kremer, 1997), which is a M e w o r k  for concept mapping languages. The work 

will be reported elsewhere when the work is finished. 

The firme work outhed in this section has two implications for the research work First, 

the implemented system can be seen as a test that evaluates whether design patterns 

actually bring benefits to system design. Cunent work has shown that the application of 

design patterns in the system does simplify extension work The extension of the system 



106 

to interact with Constraint Graph needs only another Parser class which understands 

the data format of the Constraint Graph. Secondly, through the extension, the system may 

be used in other applications. 

6.3 Surnmary 

This thesis has desmied research work that evaluates whether or not design patterns are 

applicable to knowledge inference systems. Although design patterns have been 

recognized by the software indwtry for several years, there are no reports regarding 

design patterns or their application in knowledge inference systems. What is the reason 

for this phenornenon? 1s it because design patterns are not applicable to the domain? 

The author thinks that design pattems are applicable to the domain. There are several 

approaches to veri@ the proposition Û one c m  study existing systems and interview 

domain experts, or one can tq to apply design pattems to the design and implementation 

of such a system. The author chose the latter approach û design and irnplement one such 

system and check whether or not design pattems are applicable. 

The thesis has described design patterns, their components, their value, and their 

applications. A pattern involves a general description of a recuning solution to a 

rec-g problem replete with various goals and constraints. Design patterns provide a 

structural and easily understood furm for documenting and sharing successN experience 

among developen. niey help irnprove communication among developers by providing a 

common vocabulary that has a higher level abstraction. Design patterns have been 

applied in a wide variety of systems, such as telecommunication, concurrent programs, 

telephony, MIS, GUI, etc. 



The requirements analysis for the implemented knowledge inference system was 

given in chapter 4. In addition to the system design and implementation, chapter 5 

described the design patterns applied in the system. These design pattems make the 

system more flmile and extensible. 

The h a l  chapter has described how the research has met its onginal objectives of 

evaluating the applicability of design patiems in knowledge inference systems. The 

research shows that design patterns are applicable to this particular domain. The chapter 

also gives two possible directions for future work: 

"pattern mining" - studying existing knowledge inference systems, identifying 

and documenting design patterns in those systems, 

extendhg the system so as to give it more representation power, or the ability to 

interact with other programs. 



Appendix: The CLASSIC Grammar 

A.l Original Grammar of CLASSIC 

This section is the original grammar dehed in CLASSIC. The grammar is excerpted 

nom (Resnick, Patel-Schneider, McGuinness, Weixelbaum, Abrahams, Borgida, and 

Brachman 1996). 

Description 

ThingDescription 

. .- ..- ThingDescription l 
CiassicDescription 1 
HostDescription I 

. .= Thing I . . 
( and 

ClassicDescription ::= ClassicThing I 
ClassicConcept I 
( and ClassicDescription+) 1 
( oneOf ClassicIndividual+) ! 
( atLeast PositiveInteger Role) I 
( atMost NonNegativeInteger Role) I 
( fills Role ClassicIndividual+) 
( fills Role HostIndividuali) I 

HostDescription 

( a l 1  Role Descriptioc) 1 
( testC ClassicTestGenerate Parameter*) 

. . .- .- HostThing I 

Number I 
Integer I 
Float I 
String I 
HostConcept 1 
( and HostDescription+) I 
( oneOf HostIndividuâl+) I 
( minimum Number) I 
( maximum Number) I 
( testH HostTestGenerate Parameter*) 



IncoherentDescription ::= 
(one-of) 

Role . . - =  . S m 0 1  

ClassicConcept . . --  .- Symbol 
HostConcept : := Sy~nbol 

Rule ::= Symbol 

ClassicIndividual : := Symhol 

HostIndividuaf . .= . . " string" I 
int I 
float 

ClassicTestDetail : := Symbol 

Number . .- - n t  I . . 
real 

Parameter . . .= - NeoObject 

A.2 Modified Grammar Used in Project 

Description - - -  . - -  Concept l 
DescriptionConstructor 

Concept : := Symbol 

DescriptionConstructor ::= ( and Description+) 1 
( oneOf Individual+) I 
( atLeast PositiveInteger Role) I 
( atMost NonNegativeInteger Role) I 
( minimum Role N d e r )  1 
( maximum Role N u m b e r )  [ 

f fills Role Individual+) I 
( al1 Role Description) 

- .- . .- S ~ o l  

: := Symbol 
Role 

Rule 

Individual 

Symbol 

string 

: Syrnbol I 
- . n stringw 1 

= Integer ! 
Float 

: := String 
. .= . . { char 



Number ::= Int I 
f loat 

PositiveInteger . .. .= [ 1. -9 ] { O - - 9  ) '  

NonNegativeIntegex ::= { O -  - 9  )' 



References 

Abadi, M. and Cardefi, L. (1996). A Theov of Objects. New York, Springer, 1996. 

Abrahams, M K ,  McGuinness, D.L., Patel-Schneider, PF., Resnick, L.A., Thornason, 
ILH., and Conati, C. (1996). Neoclassic Knowledge Representation System Tutorid, 
AT&T, http ://www.research.att .com/sw/tools/cIassic/papers/NeoTut/NeoTut hbnl 1 996. 

Alexander, C. (1977). A pattem Languoge: T o m ,  Buildings. Comtmction, m o r d  
University Press, 1977. 

Alexander, C. (1979). The Timeless Wqv of Building, M o r d  University Press, 1979. 

Apple Cornputer Inc. (1 989). Macintosh Progrummers Wotkshop Pascal 3.0 Reference, 
Cupertino, California, 1989. 

Appleton, B. (1997). Pattern and SofM>are: Essential Concepts and Tenninology, 
http : / / w w w . e n t e r a c t . c o d - b r a d a p p l d o c s l p  April 1 997. 

Beck, K. Coplien, J. O., Crocker, R, Dominick, L., Meszaros, G., Paulisch, F., and 
Vlissides, J. (1 996). IndUSfrial Experience with Design Patterns, Proceedings of ICSE '96, 
Berlin, pages 103-1 14, March 1996. 

Borgida, A. (1992). Towards the Systematic Development of Description Logic 
Reasoners: CLASP Reconstructed, KR-92, 1 992- 

Borgida, A. and Brachman, R (1992). Customizable Classincation Inference in the 
ProtoDL Description Management System, Confeence on Infornation and Knowledge 
Management, Baltimore, November 1992. 

Borgida, A. (1995). Description Logics in Data Management, LEEE TKDE, October 
1995. 

Borgida, A., Brachman, R J., McGuinness, D. L., and Resnick, L. A. (1989). CLASSIC: 
A Structural Data Mode1 for Objects, Proceedings of ACM SIGMOD International 
Conference on Management of Data, June 1989. 



Borgida, kand Brachman, R J. (1993). Loading Data into Description Reasoners, 
Proceedings 1993 ACM STGMOD International Conference on Management of Data, 
Washington, DC., May 1993 

Borgida, A. and Patel-Schneider, P. F. (1994). A Semantics and Complete Algorithm for 
Subsumption in the CLASSIC Description Logic, Journal of Artificial Intelligence 
Research, Vol. 1,1994. 

Borgida, A. and Kudenko, D. (1994). Modular hplementation of Individual Reasoning 
in PROTODL - the Extensible Desmiption Logic Management System, Technical 
Report, icsr-tr-237, Department of Cornputer Science, Rutgers University, New 
Bnmwick, December 1994. 

Borgida, A. and Mcguinness, D. L. (1996). Asking Queries about Frames, KR-96, 
Boston, Mass., 1996. 

Brachman, RJ., SeEdge, P.G., Terveen, L.G., Altman, B., Borgida, A., Halper, F., Kirk, 
T., Lazar, A., McGuinness, DL., and Resnick, L.A. (1993). htegrated Support for Data 
Archaeology, International Journal of Intelligent and Cooperatnte In formation Systems , 
2~159-285,1993. 

Brown, K. (1996). Using Pattems in Order Management Systems: A Design Pattems 
Experience Report, Object Magnzine, January 1996. 

Buschmann, Fay Meunier, R, Rohnert, H., Sommerlad, P., and Shi, M. (1996). Panor- 
Oriented S o w e  Architecture: A System of P n t t m ,  John WiZey & Sons, New York, 
New York, 1996. 

Coplien, J. 0. (1994). Software Design Patterns: Common Questions and Answers, 
Proceedings of Object Expo New York, New York, SIGS Publications, June 1994. 

Coplien, J. 0. (1996a). The Human Side of Patterns, C++ Report, 8(1), January 1996. 

Coplkn, J. 0. (1996b). Software Pattems, SIGSBook, New York, New York, 1996. 

Coplien, J. 0. (1997a). Idioms and Patterns as Architecturai Literature, LEEE Sofhvae 
Special Issue on Objects, P a t t m ,  and Architechrres, 14(l), January 1997. 

Coplien, J. 0. (1997b). A Pa- Dejhition, 
http://st-wmv.cs.uiuc.edu/users/patterns/def&iti~n.html, March 1997. 



Coplien, I. O., and Schmidt, D.C., Eds (1995). Pattern Languages of Program Design, 
Reading, Massachusetts, Addison- Wesley, 1 995. 

Duell, M. (1996). Experience in Applying Design Patterns to Decouple Object 
Interactions on the Intelligent Pe r iphd  Prototype, OOPSLA, Addendum, 1 996. 

Gabriel R P. (1997). Developing Patterns Studies in Architecture Point the Way to 
Understanding and Improving Software Development, Info Woorld, Vol. 19, Issue 5, 
February 1997. 

Gaines, B. R (1991). An Interactive Visual Language for Tarn Subsumption Language, 
WCAI'91: Proceedings of 12th IntmationaI Joint Conference on Artrpcial Intelligence, 
San Mateo, California, August 1991. 

Gaines, B. R (1993). A Class Library Irnpiementation of a Principled Open Architecture 
Knowledge Representation Semer With Plug-in Data Types, IJCAI'93: Proceedings of 
13th International J o i ~ t  Conferece on Artr3cial Intelligence, San Mateo, California, 
1993, 

Gaines, B. R (1995). Class Library Implementation of an Open Architecture Knowledge 
Support S ystem, International Joumal of Human-Compter Studies, 4 1 (1 -2), 1 995. 

Gamma, E. (1991). Object-Oriented Soflware Development based on ET++: Design 
Panms, CZass Library, Took, PhD Dissertation, Institute of Information, U~versity of 
Zurich, 1991. 

Gamma, E., Helm, R, Johnçcn, R, and Wssides, J. (1994). Design Paitenzs: Elements 
of Reusable Object-%en ted SofoYare, Addison-Wesley, Reading, Mass., 1 9 94. 

Grady, B. (1994). Object-Orientecl Design with Applications, 2nd Edition, CA: 
BenjaminiCmming, 1994. 

Jain, P., and Schmidt, D. C. (1997). Senice Configurator: A Pattem for Dynamic 
Configuration of Service, Proceedings of the 3rd Conference on Objecr-Onented 
Technologies and Systems, USENIX, June 1997. 

Krasner, G. E. and Pope, S. T. (1988). A Cookbook for Using the Model-View-Controller 
User Interface Paradigm in Smalltalk-80, J'ournal of Object-Oriented Progrumrning, 
SIGS Publications, New York, New York, 1(3), AugustlSeptember 1988. 



Krema; R (1997). CoIlSfraint Graphs: A Concept Map Meta-Language, PhD 
Dissenation, Department of Computer Science, University of Calgary, June, 1 997. 

Lavender, R G., and Schmidt, D. C. (1995). Active Object - An Object Behavioral 
Pattem for Concurrent Programming, Proceedings of the Second Pattem Languages of 
Program conference, MonticelIo, Illinois, S eptembq 1 995. 

Lea, D. (1997a). Christopher Alexander: An Introduction for Object-0n:ented Designers, 
hnp://gee. csoswego. edu/dVca/ca/ca. hmZ, Computer Science Department, State 
University of New York at Oswego, March 1997. 

Lea, D. (1 997b). Patterns-Discussion FAQ, http://g. oswego. edddvpd-FAQbd-FAQ. hhnl, 
Cornputer Science Department, State University of New York at Oswego, April1997. 

MacGregor, RM. and Brill, D. (1992). Recognition Algorithms for the Loom Classifier, 
Proceedings of the Tenth National Conference on Artr@cil InteUigence, (M 92), pp. 
774-779, 1992. http://www..isi.edu/isdn00M/LOOM/LOOM-HOME.hd 

McGuinness, D. L. and Borgida, A. (1995). Explaining Subsumption in Description 
Logics, IJCAI'9.i: Proceedings of 14th International Joint Confmece on Artrpcial 
Intelligence, Montreal, August 1 995. 

McGuinness, D. L. and Isbell, C. (1995). Description Logic Ui Practice: A CLASSIC 
Application, IJCM95: Preceedings of the 14th International Joint Conference on 
Artz@ial Intelligence, Montreal, August 1 995. 

McGirinness, D.L. and Wright, J.R. (1998). An Industrial Strength Description Logic- 
based Configurator Platform, to appear in B. Falàngs and G. Freuder, editors, LEEE 
W e r t  Special Issue on Configuration, 1998. 

McClure, C. (1997). Reuse Engineering: Adding Reuse to the Software Development 
Process, Prentice-Hall, 1997. 

Nebel, B. (1990). Reasoning and Revision in Hybrid Representation Systems. Berlin: 
Spnnger- Vè~lag, 1 990. 

Nosek, J.T., and Roth, 1. (1990). A Cornparison of Formal Knowledge Representation 
Schemes as Communication Toofs, Predicate Logic vs. Semantic Network, Intemational 
Journal of Man-Machine Studies, 33: 227-239,1990. 



Patel-Schneider, P. F., Abrahams, M., Resnick, L. A, M c G d e s s ,  D. L., and Borgida, 
A. (1996). NeoClassic R.ference Manual: Version 1.0, Artificial Intelligence Principles 
Research Department, AT&T Labs Research, 1996. 

PrecheIt, L. (1997). An experiment on the usefulness of design patterns: Detailed 
description and evaluation, Technical Report 9/1997, Fakultat fur Mormatik, Universitat 
Karlsruhe, Gemiany, Jme 1997. ftp.kuka.de. 

Prechelt, L., Unger, B., Philippsen, M., and Tichy, W. (1997). Two ControlIed 
Expertoients Assessing the Usefi.dness of Design Patîeni Idonnation During Program 
Maintenance, submission to Empirical Soffntare Engineering, December 1997. 

Pree, W. (1995). Design Patterns for Object-Oriented Software Development, Reading, 
Addision-Wesley, Reading1 Mass., 1 995. 

Resnick, L. A., Patel-Schneider, P. F., McGiiinness, D. L., Weixelbaum, E., Abrahams, 
M. IL, Borgida, A., and Brachman, R J. (1996). NeoChsic User's Guider Version 0.7, 
Artificial Intelligence Principles Research Department, AT&T Labs Research, 1996 

R-baugh, J., Blaha, M., Remdani, W., Eddy, F., and Lorenson, W. (1991). Object- 
ûriented Modeling and Design, Prentice Hall, Englewood CWs, NJ, 1991. 

Salingaros, N. A. (1997). Some Notes On Christophm Alexander, 
http://m.matiLutsa edu/sphere/salingar/Chns. texthûnl, April 1997. 

Schmidt, D. C. (1994). Reactor - An Object Behavioral Pattern for Event Demultiplexing 
and Event Haudler Dispatching, Proceedings of the First Pattern Languages of Progrnms 
Conference, Monticello, Illinois, August, 1 994. 

Schmidt, D. C. and Stephenson, P. (1995). Experience Using Design Pattern to Evolve 
Communication Software Across Diverse OS Platfoms, Proceedings of the 9th 
Ewopean Conference on Object-On'ented Programming, Aarhus, Denmark, August 
1995. 

Schmidt, D.C. (1 995a). Experience Using Design Patterns to Develop Reuseable Object- 
Orientecl Communication Software, Communications of the ACM, Special Issue on 
Object-ûriented Experiences, Vol.3 8, October 1995. 



Schmidt, D.C. (199%). An 00 Encapsdation of Lightweight OS Concurrency 
Mechanisms in the ACE TooIkif Technical Report, WUCS-95-31, Department of 
Compter Science, Washington University, St. Louis, MO, 1995. 

Schmidt, D.C. (1995~). Object-Onented Components for High-speed Network 
Programming, the Proceedings of the 1st Conference on Object-h-ented TechnoIogrgres 
and System, USEMX, Monterey, June 1995. 

Schmidt, D. C., Johnson, EL E., and Fayad, M. (1996). Software Patterns, 
Communications of the ACM, Specid Issue on Patterns and Pattem Languages, Vol. 39, 
No. 10, October 1996. 

Schmidt, D. C. (1996a). A F d y  of Reusable Design Pattems for Application-level 
Gateways, neory anu 13i.uctice 4Object Systetlls, spspial issue on Patterns and Pattern 
Languages, Wiley and Sons, Vol 2, December 1996 

Schmidt, D. C. (1 996b). A Family of Design Pattems For Flexibly Confïguring Network 
Services in Distnbuted Systems, Roceedings of the International Conference on 
Configurczble Dism-buted Systems, Annapolis, Maryland, May 1996. 

Schmid~ D. C. (1996~). Acceptor and Connecter. Design Pattems for Initializing 
communication Services, European Pan- Laquage of Program conference, Kloster 
Irsee, Gemany, Juiy 1996. 

Schmidt, D. C., and Cleeland, C. (1997). Applying Patterns to Develop Extensible and 
Maintainable ORB Middleware, Communications of the ACM, Special Issue on Software 
Maintenance, Vol. 40, No. 12, December 1997. 

Vlissides, J. (1997). Pattems: The Top Ten Misconceptions, Object Magazine, March 
1997. 

Wright, J X ,  Weixelbaum, ES., Brown, K, Vesonder, G.T., Palma, S.R., Berman, J.I., 
and Moore, H.H. (1 993). A knowledge-based configurator that supports sales, 
engineering, and manufacniring at AT&T network systems, Proceedings of the 
Innovative Applications of Artiiciual Intelligence Conference, pp. 183-1 93, 19%. 



IMAGE EVALUATION 
TEST TARGET (QA-3) 

APPLIED IMAGE. lnc 
3 1653 East Main Street - - , Rochester, NY 14609 USA -- -- - - Phone: 71 6/482-0300 -- -- - - Fax: 71 6/288-5989 




