THE UNIVERSITY OF CALGARY

The Application of Design Patterns in Knowledge Inference Engine

Dong Pan

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA
JULY, 1998

©Dong Pan 1998

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence

Our file Notre référance

L’auteur a accordé¢ une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-34985-3

Canada

Abstract

Software design patterns are a literature form to describe successful solutions to common
software problems. Design patterns are a valuable technique in the software engineering
problem-solving discipline. The design patterns capture experts' successful experence,
make implicit design knowledge explicit, and explain the deep structure and rationale of a
design. The design pattern community has written and documented many design patterns
- however, no paper or book has been written in the knowledge representation domain.
Description Logic based systems are knowledge representation and reasoning systems
that support a richer representation formalism than standard rule based systems.
CLASSIC is a small description logic with a well-defined syntax.

In order to verify that design patterns are applicable to the knowledg representation
domain, CLASSIC was chosen as a model for the design of a knowledge inference
engine. A number of design patterns were applied to the design and implementation of
the system. The results show that design patterns are applicable to the domain. In

addition, the use of design patterns makes the system more flexible and extensible.

iii

Acknowledgements

The work presented in this thesis could not have been possible without the support of
many people. Thanks to my supervisor, Dr. Rob Kremer, for his timely advice,
consultations, encouragement, and criticism throughout the development of this work.
Rob motivated this work by first introducing design patterns to me and convincing me the

value of patterns. He has been an invaluable source of support and guidance throughout
my graduate program.

I would also like to thank people at the Software Engineering Group, Knowledge Science
Institute lab, and the Computer Science Department at the University of Calgary. These
people have been an endless source of inspiration and good advice throughout this work.
They include Mildred Shaw, Brian Gaines, Roberto Flores-Mendez, Saul Greenberg, Pim
van Leeuwen, Wuji Yang, and John Frankovich. Thanks also go to the department of
Computer Science for providing me with such a friendly environment and for its

continuous support.

Thanks to Carlos Marques for the thought-provoking discussions we had during the
work. Many thanks to Guoqiang Li, and Dr. Yea-Mow Chen, who offered me much help
which made it possible for me to enter the graduate program. Thanks to Andy Kremer,
who spent tremendous effort in proof-reading this thesis. I really appreciate it.

I would like to thank my Mom and Dad for their encouragement, understanding, and
caring. They are always a source of motivation for me. Without them, I could never

accomplish what [had done today.

v

Table of Contents

ADPDPIOVAL PAGE......oeeeececneceuecimsiniirirerenesesasamssecacessanasimsesssmssessns st sas st st s an sttt s e il
A DSITACE c.neeeeeeeeeeeeeeeeeeeesecessssessreessssassmnsasssoressostessbissesessnnesrsaesasmaastess s ses s b n s s e s n e s sene 11
ACKTIOWIEAZEMENLS......oeoceeeecemcriirmrrerrnesnessseaasesaraessetsiacuiarssssrens s remssass st aosensasnessnsnss iv
TADIE OF COMLEMLS...oconeeenereeeerreenrerarsaascomeessserssansesssassssssssssesssssessonsssesssnnssssnsanassssasnssasnns v
LISt OF TADIES o nvoeeeeeceeeeeeeseereserseernassesceasesnsessesssnesssessenmastassssarsssssonsessassssnrasssnmessernnasss viii
LSt Of FIGUIES......cvovevvemeeeseremeeemrmesssessmsesesassasssnsatssacssensmstasasnsasasassssastatsssasatesesenssasacaces ix
Chapter 1 INTOAUCHON «...ecveremrmrmmnrernneessesseseasesmsssmsasmasssssas s sas st sttt s s st 1
1.1 Aim eeeveesessssssuessmesosessessestssstessnssasasesaaaattetseesSaas s b e e s s e R e e e s s m S e st bes 1
1.2 IMIOUIVAHOTL ... cceeeeeeeerremerrnessenssnasarsssssemessssssssssessessesnessnsssasnssosessstossmssssnssssnsssissnssnnes 1
1.3 DESIZN PAETISoeucecenemcrcrecresereamassmssscstessasssmssistatuesssssensansnssassasasasstacessssastscacacass 3
1.4 Description Logics and CLASSIC ...ttt 5
1.5 OBJECLIVES.ceveeenceceaesesrsenireirmesessssemsaserssssssssastssasrsasasassasasssasessemsssasentasssnsosasssces 6
1.6 SUIIIMATYccuceneenemcenemsosccsesmrssnnsssssssseasssarasssusantarasssssnsamamsasssasasstesessasncarmnsonsases 7
1.7 THESIS SITUCKUTE. c..eceneeremeennrerenrnesasesecemessersssesssessssnesnessssansssessoosest sosssnsssssmssnsnnssnnes 8
Chapter 2 Background: Design Patternscccececememrmimiieieeesess e 9
2.1 OTIZIN Of PAMETDS ...eceecemcmcucurnrinnenesnsnssstaescsecnmsnssstasassassanssssssssasassssacsssassbenenss 9
2.2 DefiNition OF PAtteIMS .c..ecemeerreeecsccsccceecserersrressessenssssessanssssnsssecssssessssnsnsssnessnnanes 11
2.3 The Value of Patterns........cccccvuee.e reeessessseeressessesntassseesrntsssnearreesrnntanereseaas 13
2.4 COmPONENtS Of PALLEIM.....uouemimrmenrerneneeenecenractrenicsitassa s sessast sttt 15
2.5 The Patten Community and ACHVILIES.....ceeveeeerresresrenscescnsnsnmrsnrsneesneessssennsanes 18
2.6 Design Patterns and Their APPHCAtIONS.....ccouiucccnsismnmimsnsenassnesttcensesacinenes 21
2.6.1 The Model-View-Controller Pattermn.ccoceerereenieresscenoensucinisneninenienes 21

2.6.2 Applying Design Patterns to Develop TAO Project - A Case Study....... 23

2.7 SUININATYcocevereverencecencmcscscsmesmrresessasssssssssnsassssstnsseasasssessresssnassssssasensasensesssonasesecs 26
Chapter 3 Background: CLASSIC.....oooieeeciiiimiis sttt 28
3.1 Components Of CLASSIC.......c.oeemieicccniieceesisstesmsnssssess s 28
3.2 DeSCTIPtion CONSIUCIOTS.....cucrrurreresecscseererststsisssssnsmsnssnssssananssscasecsssacncescass 30
3.3 Reasoning of CLASSIC ... imrrmneererencccceeotcst s nsmsr st ssa s eaasacncs 34
3.4 SyStems DEVEIOPEAcvueeeeueuimrmrarereereeesee ettt s st 37

BB T KRS eoeeeeeeeeeeesvesesesesseensasaseeseesasense st s seras s s e e e s aa st et e RS e s s s Rt n e 37

3.4.2 NEOCIASSIC «evvveevreeerrrereneeresasssscsessssssssnsessrrressssnnssiossossassossnnassnsensarasassnsnsaee 38

3.4.3 DISCUSSION . eneeeirenereerrnreesaersessecosmrsssssmississssiessnssesassnssnsosesssssnsnssnessssssassans 39

3.5 SUIMIMATY ...ovoveeeeeeevescnessmssesssensnsssarsssassessessssssssmssasssasseserasessssssstasssseseasnssssacssacs 40
Chapter 4 Requirements ANalYSis......cceeeeeeecscecevsiemsirimniasisusnsamassssssssusosassssssnsisiusasases 41
4.1 ODJECHVES...ceereremracrcruresmenesinmmsesessassssseasesssatssttcessssssessenassessssasstssacsasosussensacss 41
4.2 Knowledge Inference Engine REQUITEMENLS.ccucueiuiiemirmesesnansnetsnensenanencnes 42

4.2.1 Knowledge Base. reeeesessmasessesssessasesaseeessaaneasenanneeearnnnsens 42

4.2.2 CONCEPL «..coevcemeceececrssrrsmsesssassersensassasssemsasssomsasmesssensacesessossssnessassssassansascas 44
4.2.3 Individualccooeeeeecceeinecircretenereenee e eeeereesseseescoeeeeesnnsneens 46
B.2.4 ROIE..enoeeeeeeereieeeeeecraeeseemeesesnsessesnsssssssnessansesssssssnsnnsssaenassssatassossersssesssnes 48
B.2.5 RULEenoeeeeeeeeeeiceeeneeseeseeseesesssesesesscsssessesssssssrnsserssssssssaressmmessesosersassorses 49

4.3 Other REQUITEIMENLSeeumimremeireneseseaneeccamenentesisista it ssse s s ss s nssssassaasesceses 50
4.4 SUIMITNATYveeeeemeemeeeeasencesuesisessismessersnasssassssoasacssrscsssasssesessarssmernssnssssssessssssssssass 52
Chapter 5 Design and IMpIeMEntationecceceueerrrecnceinciemeniieenenre s eenences 55
5.1 Overview Of the SYSLEIML....c..ccoueeeeeeremerrneresnestecsteseenasesssaescecsssnssnensssessasesses 55
5.2 The Kemel of the Engine..........coooeceereeannnnnnen. seeerueesssesemeeeeaaeseenssnneseeaenns 57
5.2.1 Participating CIASSESccoeeevrrmeemrmsmeseateonnnsctccanencasesisrene s nene 58
5.2.1.1 KnowledgeBase Class.........cccemmeeeeenernsencseinecentisiinnnesnnescsencccace 58
5.2.1.2 DescTiption Classcccuicrversrererrenesasecscscncsncecssisnssnssnnssessssscssescacs 59
5.2.1.3 CONCEPL ClASS .eeuvemrneeiicisirnrernnesesnentsessecsnccsesessssn s nnssmsannsassesssas 61
5.2.1.4 Individual Classcceereereemreceeccccsreerrmssienesesassuesesnsassessscsesesssessssansasses 62
5.2.1.5 GraphiNOQE CIaSSceuvermrmesrenmsaememeatorssnnentsssemsnsnsassenaessesssessesseseassncss 64
5.2.2 Design Patterns Applied in the Kemel .. 65
5.2.2.1 Interpreting CLASSICovoieeeeecenceennicnti e sosensesensenenes 65
5.2.2.2 Extending to Support More Description Constructorscceceeeeeees. 69
5.2.2.3 Support More Primitive Data TyPeS.....ccoceeemenrrmeruccniiieninanencrennenes 70
5.2.2.4 Managing Individual Changeseceeeeceresrenncemnmininsiennseneececceenae 73
5.2.2.5 Simplifying the Knowledge Base Interfaceocococecemruimeenannscscecces. 75
5.2.2.6 Accepting Different Input FOIMALS.....ccveeemememrcvemneninienieeneecnceccnene 79

5.3 Supporting FUNCHONAKLYcovveuemeriemereeneneeeiecccentietntcnnn s snecceeses e 80
5.3.1 Description Constructor FaCtOrYccocecevereriescecsiesiniininnernesnsessacenncncens 81
5.3.2 Name Space Managementcccceeeveereceemecscemernencnsirnmssensasssssescesnseenses 84

5.4 TESHIIG.....ecveueeerevenarncocearesssesssmsisenssssensessesmssssamssssesesemsastatstasassssstessesnssssassnsscessass 85
5.4.1 The TeSting PrOZIAM ...c.cccccervermermerrimmrerinenstsisnsmensasacsecseesssanansnsnnesseas 85
5.4.2 TeSNZ DAt L ...ocmierccuiiiririneneenensnssessstecstssasaencc st ssssss s sasnsessaseescncs 87
5.4.3 TeStNZ DAtA 2...c.uccemimrmicnenrucnernersasnsesaessssasesseteecscnss s s s nans s s ssesoses 89
5.4.4 Performance TSt ...uuceerueerreecueerecccninsnerenrerticseesressssesasanssessasssessssnnnsanass 93

5.5 SUIMINATYceeveecerecceesectsssissmssirassissessressassssssssssassossosssesstsstassersessnnsasesssescrassersess 95
Chapter 6 CONCIUSION. ..c.ecurmemimrermrrenerseetete e srssssessnecssemsne s s ns s sa s ses s sasens 98
6.1 Addressing the ODJECHVEScucuvuemernmermecreremseeecsiscseecessesesini e sesnsnseescseses 98
6.2 FULUTE WOTK «...ooeeeieeiereeeersemreeseeassessasasesessesssssesssnssssessmesarssssnsssansosssssssasessssansnss 102
6.2.1 Design Patterns in Other SyStemSoccececememmcncieiiineneresceeenesnenes 103
6.2.2 Extending the SYStEIouemerriernrssesesecenentcnieeccenestesnennee s sensaceecs 103
6.2.2.1 Improving the Representation Power of the Systemcccccveeececene. 104
6.2.2.2 Interacting with Other Programis..........cceeuiceeerenieoennnnnsensennnnencecca 105

6.3 SUIMIMATYceveemrencermetecrssensrssersrrenessensesmsssssesstacsssstassssesssncassnssssansasssssascesssosses 106
Appendix: The CLASSIC Grammar........ reeveesevneasaaaseesesessrinanres 108
A.1 Original Grammar of CLASSICcoorenieneneeeennisceieaeacsensesnneaessenenceecs 108
A.2 Modified Grammar Used in PTOJECtcccorveererrmerrerenrieenncneseceeeessntianessanenees 109

vi

References

.....

.............

List of Tables

Table 3.1 Conjoining of Two Descriptions................... reecestennrestes et e ne e rent s sasrnnes 36
Table 4.1 The requirements for the Knowledge Inference Engine.........cccccovvnvnvnnnnnne. 52
Table 5.1 Methods required for Description Constructor.........c.ceevemeeceeeeiececieesceieeenens 69
Table 5.2 Simplified Interface of Knowledge Base........ccccoveeiecrneiruenmvenmeeeeecnrenes 76
Table 5.3 System Performance . eeeeeeeesestsesessessseesesesasesensetsesnneressnaneesatesnatases 94

List of Figures

Figure 2.1 Class Structure of Model-View-Controller Pattern Modelcc.uuun.e.eee. 22
Figure 5.1 Simplified Class Hierarchy of Knowledge Inference Engine 57
Figure 5.2 Class KNOWIEdgEBAaSseccocovruererrmmereneereeece e secmene e ssssentenscnacenas 58
Figure 5.3 Class COnCEPL ... ueemirecvesrienririeeerseereesssenmsrsseasene st snaesennese reeeesocncseseareen 61
Figure 5.4 Class INAivVIAUAL.......ceeeveeeeeeeeenireenccirssesrrremneemeceenemeae e sassts seasesesnssnn s nnacansanas 62
Figure 5.5 Class GraphNOGE.........cccecceecerreirimremessisnesenssensssesensaassessssnssssesssssasasnccrssessasss 64
Figure 5.6 Class Structure of the Interpreter Patternoceeeemieeneeeceeieneciiincstecnicaene 66
Figure 5.7 Class Structure of the Implementation of the Interpreter Pattern.................... 68
Figure 5.8 Class Structure of the Prototype Patterm........ceevermreriesieerenreeencnciceeceeecene 71
Figure 5.9 Class Structure of Actual Implementationoeveeieeeecccereccmenncacecenecencees 72
Figure 5.10 Class Structure of the Observer Patterm...... .o eniiiciecceanee 73
Figure 5.11 Class Structure of Actual Implementationcoeeeceesnieecsnnennceencnannns 74
Figure 5.12 Class Structure of the Facade Patternccoveeeoeeiiicecciniccenee 76
Figure 5.13 Class Structure of the Strategy Patternc.eee e 79
Figure 5.14 Class Structure of the Strategy Implementation..........c.ceeerecerncnncnccncnnnenec. 80
Figure 5.15 Class Structure of the Singleton Pattermn......ccemermeeeceieiiieicnens 81
Figure 5.16 Class Structure of the Flyweight Patterncocomveemreeceiceeeiicicecae 82
Figure 5.17 Class Structure of ConstructFacou e et 83
Figure 5.18 Snippet 0f Test Data 1ccciueermerrereereeienneinnsenesessne st asens e rcsosaesseasececes 87
Figure 5.19 Querying Result of Concepts Employee and Foremanccccoevirveccnnecene. 88
Figure 5.20 Querying Data of Individual "fred Smith"coememeemeoeeeeeienee 89
Figure 5.21 Querying Data of Individual "body WOTKS" ...c.cccoemmemeeeciiciriennicenceae 88
Figure 5.22 Concept Hierarchy of Wine and FOOd.....couoeiainnnciiinienininecceeee 90
Figure 5.23 Querying Data of Concept CHARDONNAYomiociccininneinneccecnnes 91
Figure 5.24 Querying Result of Individual Forman-Chardonnay........ccceoeeseceencnrmcecncnenss 92
Figure 5.25 Nobel's Constructive Example with 10 Conceptscooveermeecienmneennnecenen. 94

Chapter 1 Introduction

1.1 Aim

The aim of this research is to study software design patterns by designing and
implementing a knowledge inference engine based on CLASSIC, and evaluating the
applicability of design patterns in knowledge representation systems.

1.2 Motivation

Software reuse has long been considered a way to solve the software crisis problems.
Software reuse provides a basis for drastic improvement in software quality and
developer productivity. However, reuse is not widely practiced in software organizations
for a variety of reasons. One reason may lie in people's misunderstanding of the meaning
of reuse - some may think of reuse only in terms of code reuse. While code reuse is one
kind of reuse, one should recognize that the effort spent in coding is only a small portion
of the effort applied to the whole project. Software developers tend to like to create their
own code if the code in a reusable library does not fully satisfy their needs, or they do not
fully understand the time and space requirements of the piece of code.

Design pattemns are abstract descriptions of a solution to a problem under certain
constraints. They abstract the solution from many successfiil designs and describe the
solution in an easily understood format. A design pattern is an abstract solution in that it
tells one how a problem can be solved without prescribing how the concrete
implementation should be done. Hence, the reuse of design patterns may be easier to
achieve. On the one hand, programmers are given the solution in a pattern form. On the

other hand, the concrete implementation is not given, so the programmer still has much

2

freedom to apply his or her creativity in the implementation. Thus, programmers will be
more likely to reuse design patterns. This is especially true in a volatile environment
where software and hardware platforms are under constant change: only design patterns

which capture the expertise of the designers will be reused.

Traditionally, novices learn Object-Oriented programming by first learning basic
concepts, then reading others' programs, and then trying to program in the language.
Through trial and error, the novice gains experience and learns various design patterns
through abstracting from these programs even though design patterms are not used
explicitly. If the programs are not well documented, the learning is harder, with more
time and effort required. A programmer has to study implementation details: because
design patterns are obscured in implementation details, the learner has to look at the
programs in-depth in order to understand them. Sometimes, it is even impossible to
understand certain design decisions by looking only at the implementation (Pree, 1995).
If the programs are well documented and design patterns applied are described explicitly,

the learning effort will be much reduced.

For system maintainers or those who join a project in the middle of development, the
same problems exist as for novices learning by studying others’ programs. These people
must study the system to understand the design of the system. With the help of design
patterns, people can look at the system at a higher abstraction level. Many design
rationales are described by design patterns, so the design can be more easily understood.
Controlled experiments show that maintenance work can be done in less time and with
fewer error if the system is documented in design patterns format (Prechelt, Unger,

Philippsen, and Tichy, 1997).

Knowledge representation and inference is a relatively mature domain. It has undergone

many years of evolution and many successful systems have been developed, such as KRS

3

(Gaines, 1993; Gaines, 1995) and NeoClassic (Patel-Schneider, Abrahams, Resnick,

McGuinness, and Borgida, 1996). These systems have been applied to many real
applications, such as configuration management (Wright et al, 1993), data mining
(Brachman et al, 1993), etc. Though this is a relatively mature domain, and design
patterns have been around for several years, the author noted that there is no publication
on design patterns in the knowledge inference domain. The author wonders why no one is
doing this work. Is it because the domain is so special that design patterns are not

applicable to it?

The author himself believes that design patterns should be applicable to knowledge
inference software. The research will include a research of a related domain, the
implementation of a knowledge inference system, and an examination of whether design

patterns are applicable to the system.
1.3 Design Patterns

Software design patterns are a literature form to describe successful solutions to common
software problems. They are insightful nuggets of information that capture the essence of
a successful family of solutions to recurring problems. Each design pattemn is described in
a certain format. Most of design patterns are described in a format called Alexandrian

form.

In Alexandrian form, the description of each pattern consists of the pattern name, the
intent of the pattern, the context where the problem occurs, forces (tradeofis), solutions
(may include the structure of the solution), rationale, examples of using the pattern, and
known uses which describe systems in which the pattern has béen used. To provide the
readers with a concrete feeling of design patterns, the following uses the Proxy pattern

(Gamma et al, 1994, pp.207-217) as an example. The description of the pattern is not

4

intended to be complete. Readers interested in the pattern should refer to the original

text for a more detailed description.

Pattern Name:

Intent:

Context:

Forces/Tradeoffs:

Solutions:

Known Uses:

Proxy

Provide a surrogate or placeholder for another object to control access to

it (Gamma et al, 1994, p.207).

In cases when a remote object needs a local representative, or there is
the need to control the creation of expensive objects, access to objects,
or other additional operations on original object, a proxy object is
needed.

One level of indirection is introduced by the pattern when accessing the
original object. Many operations can be added through the level of
indirection depending on the kind of proxy.

The pattern consists of three classes: the proxy class, the subject class,
and the real object class. The subject class defines a common interface
for proxy and real object classes so that a proxy can be used anywhere a

real object is expected.

ET++, NEXTSTEDP, etc.

For software developers, design patterns are another valuable method that complements

those existing methods (Gamma, et al, 1994, p.353). Patterns capture obscure but

important practices and make implicit knowledge explicit. They provide a structural and

easily understood form for documenting and sharing successful experience among

developers. Patterns help improve communication among developers by providing a

common vocabulary which has a higher abstraction level. The use of patterns in system

5

development enables the reuse of software architecture. Pattemns can also help one learn
existing systems or teach novices good design. The topic of design patterns will be
described further in chapter 2.

The application of design patterns in system design can generate software that is more
robust (Gamma, et al, 1994, p. 24). The systems will be more extensible and flexible. In
addition, if design patterns in the system are explicitly documented, the maintenance and
learning effort will be much reduced because design patterns encompass many design

rationale.

1.4 Description Logics and CLASSIC

Description logics are languages tailored for expressing knowledge about concepts and
concept hierarchies. They can be seen as variable free first order term languages. In such
systems, one starts with primitive concepts and roles, and can use the language constructs
(also called description constructors, such as intersection, role quantification, etc.) to
define new concepts. Concepts can be considered as sets of individuals, whereas roles are
binary relations between individuals. The main reasoning tasks are classification and
subsumption checking. Subsumption represents the is-a relation where the more general

concept is the parent of a more specific one.

CLASSIC is a small description logic language. The language is composed of primitive
concept, concepts, roles, rules, and individuals. Complex descriptions are built from
simple ones by using description constructors. CLASSIC defines eight language
constructs, such as intersection (and constructor), role quantification (atLeast, atMost
constructors), value restriction (all constructor), etc. These constructors will be described

in more detail in section 3.2.

6

The knowledge inference domain is a relatively mature one where many systems have

been developed and used in a variety of applications. The requirements for the lqiowledge
inference system developed in this research were obtained mainly by studying existing
systems, such as KRS (Gaines 1995) and NeoClassic (Patel-Schneider et al, 1996). The
major function is to check the coherence of a description, to compute the subsumption

relationship, and to classify concepts and individuals.
1.5 Objectives

The primary objective of this thesis is to evaluate the applicability of design patterns in
the knowledge inference domain. The method used to achieve the objective is to develop
an actual knowledge inference system, and check whether design patterns can be applied

in the design and implementation of the system.

Because a knowledge inference system itself is very broad and complex, the work of this
research will not focus on developing a full-fledged knowledge inference system.
However, the system should support basic knowledge inference functionality. CLASSIC
was chosen as the model for the system because it is relatively simple and there exists
much literature about it. Though the system is intended to be a test case for evaluating
ideas, this intent does not mean that the system cannot be further extended to a fully
functioning knowledge inference system. The system should, however, be implemented
in a principled way so that it implements basic functions, but it should be able to be
extended easily in the future. Extensibility is one requirement for the system design.

The following auxiliary objectives can be derived from the primary objective:

1. Studying software design patterns and developing an in-depth understanding of

them;

2. Designing and impiementing a knowledge inference engine;

3. Applying design patterns to the design and implementation of the system as

appropriate;
4. Documenting the design patterns in the context of the system.

The research work is centered around the objectives discussed above. These objectives
are discussed again in chapter 4 when discussing the requirements of the knowledge
inference system. The evaluation of whether design patterns are applicable to the
knowledge inference domain depends on the design and implementation result. If design
patterns are applied in the system design, the conclusion that design patterns are

applicable can be drawn. Otherwise, negative conclusions can be drawn.
1.6 Summary

This chapter has briefly introduced design patterns. A design pattern is an abstract
description of a solution to a problem under certain constraints. Design patterns capture
expert experience and are abstracted from many successful designs. Design patterns can
help develop more flexible and maintainable software. In addition, design patterns can

help novices learn good programming faster and understand existing systems better.

People in the pattern community have done much work on design patterns. The work that
has been done covers nearly every aspects of software development. Many books and
papers have been published which document patterns and the experience of using patterns

In various domains.

Description logics are languages tailored for knowledge representation. Knowledge

inference is one specific application that description logics can be used for. Though the

8

domain has undergone many years of evolution and design patterns have been around
for several years, the author noted that no one has done design patterns related work on

the knowledge inference domain.

The primary objective of this research is to evaluate the applicability of design patterns in
the knowledge inference domain by implementing such a system based on CLASSIC, a
small description logic language. The system should support basic knowledge inference
functionality, and be flexible enough to extend to support more complex functionalities.

1.7 Thesis Structure

Chapter 2 describes design patterns in detail, and describes the benefits that design

patterns can bring to software development.

Chapter 3 provides background knowledge about description logics, especially
CLASSIC, so that the reader of the thesis can understand the work described in the thesis

more easily.

Chapter 4 describes the requirements analysis for the knowledge inference engine to be
implemented in this research. The requirements fall into two categories: the function of

knowledge inference, and robustness (flexibility and extensibility) of the system.

Chapter 5 describes the actual design and implementation of the knowledge inference
system. The description is also divided into two parts: the core functionality of the
system, and extensibility of the system. Much of the description refers to the design

patterns used, and discusses how those design patterns fit into the context of the design.

Chapter 6 concludes the thesis and gives future directions of work.

Chapter 2 Background: Design Patterns

This chapter mainly discusses pattemns, especially software design patterns. Every mature
engineering discipline has handbooks to describe successful solutions for known
problems. Software design patterns are a literature form to describe successful solutions
to common software problems. Industrial experience has proven that patterns are a
valuable technique in the software engineering problem-solving discipline. Not only do
patterns capture successful experience, they also help improve communication among
designers. They can help new developers avoid the traps and pitfalls that traditionally
have only been learned by costly experience. Patterns do more than just describe

solutions, they provide rationale behind the solutions.

Section 2.1 gives a brief description of the origin of patterns. Section 2.2 gives a
definition of patterns. Though there is no standard definition to patterns, the section gives
a generally accepted description of patterns and the properties a pattern should possess.
Section 2.3 discusses the values of patterns. It is these values that motivate many
software practitioners working on patterns. Section 2.4 describes what a pattemn is
composed of. Section 2.5 provides a general description of the current state of pattern
community, and the activities of people in the community. Section 2.6 gives two

examples of design patterns and their applications in real world projects.
2.1 Origin of Patterns

The concept of pattern has been around for a long time. The current use of the term
"pattern" in the sofiware community is derived from the writings of the architect
Christopher Alexander. Alexander noted that the ultimate purpose of all design and

engineering is to fit human needs and comfort, to improve human conditions. He found

10

recurring themes in architecture and captured them in descriptions that he called
pattern. He uses the term "pattern” to represent the replicated similarity in a design, and
in particular the similarity that makes room for variability and customization in each of

the elements.
In his books, Alexander describes patterns as:

"Each pattern is a three-part rule, which expresses a relation between a certain
context, a problem, and a solution. The pattern is, in short, at the same time a thing,
which happens in the world, and the rule which tells us how to create that thing, and
when we must create it. It is both a process and a thing; both a description of a thing
which is alive, and a description of the process which will generate that thing"
(Alexander, 1979, p.247).

"Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such a
way that you can use this solution a million times over, without ever doing it the same

way twice" (Alexander, 1977, p.x).

Software designers found analogies between Alexandrian patterns and software
architecture patterns. The vocabulary of software patterns, such as 6forcesd, the term
dpatternd itself, and épattern-languages, comes from Alexander. Software design patterns
became popular with the unveiling and wide acceptance of the book Design Patterns:
Elements of Reusable Object-Oriented Software (Gamma, Helm, Johnson and Vlissides,
1994).

Initially, most of the patterns were software design patterns. But patterns are not
restricted to software design (Coplien, 1997b; Appleton, 1997). Patterns appear in all

aspects of software engineering, including development organization, software process,

11

project planning, requirement engineering, etc. There is a body of literature for each

kind of pattern. Still, software design patterns seem to be the most popular form.

2.2 Definition of Patterns

Patterns are a new topic emerging from the Object-Oriented community. They are a
literary form in the software engineering problem-solving discipline. Patterns have roots
in many disciplines, including contemporary architecture, literate programming, and

documentation of best practices and lessons learned in all vocations.

Patterns are insightful nuggets of information that capture the essence of a successful
family of solutions to recurring problems that arise within a particular domain. They
usually involve some kind of architecture or organization of constituent parts to produce

a greater whole.

Within the context of software development, patterns can be considered as representing
recurring structural or behavioral solutions in software. The software engineering
community has been borrowing from the discipline of architecture to help categorize,

communicate, and document these problem-solving patterns.

A pattern should clearly describe the forces involved in a problem. Generally, any
problem in design requires balancing opposing or contradictory forces, and the same is
true in software. Many software patterns deal with common design problems: such as
how to design a group of objects to cooperate to achieve some goals in the presence of

other considerations such as performance or maintenance.

The goal of the software pattern community is to build a body of literature that will help
software developers resolve common difficult problems in design and development.

Patterns help create a common vocabulary for communicating insights and experience

12

about these problems and solutions. The focus of patterns is more on creating a culture

to document and support sound design than on technology (Appleton, 1997).

Patterns do not represent someone's new idea of how to solve problems, but are
descriptions of solutions that have been proven successful in a number of systems
(Coplien, 1997b). The longer a pattern has been applied successfully, the more valuable it
tends to be. f’attems do not represent principles or rules one must follow, but are practical
advice about how to balance forces so as to work one's way out of difficult design and

implementation situations.

The Patterns Definition section of Pattern Home Page gives a clear and concise definition

for the term pattern within the context of software development:

"Each pattern is a three-part rule, which expresses a relation between a certain
context, a certain system of forces which occurs repeatedly in that context, and a
certain software configuration which allows these forces to resolve themselves”
(Coplien, 1997b, p.3).

A pattern involves a general description of a recurring solution to a recurring problem
replete with various goals and constraints. A pattern does more than just identify a

solution, it also explains why the solution is needed.
A good pattern will possess the foliowing attributes (Coplien, 1997b, p.2):

e "It solves a problem: Patterns capture solutions, not just abstract principles or

strategies.

e "Itis a proven concept: Patterns capture solutions with a track record, not theories

or speculation.

13

e "The solution is not obvious: Many problem-solving techniques, such as
software design paradigms or methods, try to derive solutions from first
principles. The best patterns generate a solution to a problem indirectly it a

necessary approach for the most difficult problems of design.

e "It describes a relationship: Patterns do not just describe modules, but describe

deeper system structures and mechanisms.

e "The pattern has a significant human component (minimize human intervention).
All software serves human comfort or quality of life; the best patterns explicitly
appeal to aesthetics and utility."

2.3 The Value of Patterns

Industrial experience has shown that patterns have a number of valuable attributes. It is
also these values that motivate many of the software practitioners who are writing,
mining, and teaching patterns. Patterns capture obscure but important practices and make
implicit knowledge explicit. They provide a structural and easily understood form for
documenting and sharing successful experience among developers. Patterns help improve
communication among developers by providing a common vocabulary which has a
higher level of abstraction. The use of patterns in system development enables the reuse
of software architecture. Patterns can also help one leam existing systems or teach

novices good design.
The following discusses various valuable attributes of patterns one by one in more detail.

e Capture Expert Knowledge: By definition, patterns capture successful
experience. Every pattern is extracted from existing, working designs and is not

14

created without experience. Design patterns capture the essence of working

designs in a form that makes them reusable in future work. They capture
important structures, practices, and techniques that are key competencies in a
given field, but which are not yet widely known. As Coplien once wrote in
(Coplien 1997a, p.39): "Pattern’s biggest payoff may lie in capturing the great

truths that are about to be lost to history”.

Knowledge Sharing: Software developers tend to reuse designs that have worked
well for them in the past. As they continue their careers, their repertoire of design
experience grows and they become more proficient. Unfortunately, this reuse is
usually restricted to individual experience, and there is usually little sharing of
design knowledge among developers (Beck, Coplien, Crocker, Dominick,
Meszaros, Paulisch and Vlissides, 1996). Design patterns capture design
knowledge and provide a mechanism for easily sharing design knowledge among
developers. They can be quickly understood by both senior and junior developers.

Other approaches have been less successful in bridging this gap.

A Common Design Vocabulary: Pattern names provide a common vocabulary
for software developers to use in effectively communicating, documenting and
exploring design alternatives. Vlissides considers communication as the biggest
payoff of design patterns (Beck et al, 1996). Beck also notes that design patterns
solve a limited (but critically important) set of communication problems with
team development, and make individuals more productive (Beck et al, 1996).
Discussing designs in terms of patterns raises the level of communication. The
system will seem less complex because patterns enable one to talk about the
system at a higher level of abstraction than that of a design notation, separate

classes, or components of program languages. Design patterns also make

15

communication more precise, more concise, more complete, and less likely

misunderstood.

e Enabling Reuse of Software Architecture: The underlying operating system and
hardware platform of the system will often significantly affect design and
implementation decisions. In a volatile environment, reusing design patterns is
often the only viable means of leveraging previous development expertise
(Schmidt 1995). Even though the operating system and hardware platform
- change, the patterns themselves can be reused. Only portions of the pattern
implementation have to be re-implemented to fit platform characteristics. Thus,

project risks and development efforts can be greatly reduced.

e Learning Aid and Training: Many large systems use design patterns. If one does
not understand the design patterns used in the system, it is difficult to follow the
flow of control of the system and understand the system. Learning design patterns
can help one understand existing systems faster (Gamma, Helm, Johnson, and
Vlissides, 1994). Design patterns provide solutions to common problems and
describe the deeper system structures and mechanisms. They often encourage
good design not by admonishing against mistakes, but by presenting a positive set
of habits. Giving novices the opportunity to learn from positive examples can

speed their learning. -
2.4 Components of Pattern

Alexander says that every pattern must be formulated in the form of a rule which
establishes a relationship between a context, a system of forces which arises in that
context, and a configuration, which allows these forces to resolve themselves in that

context (Alexander, 1979). In the software community, most patterns are expressed in a

16

format called Alexandrian form. Though several formats for describing and
documenting software design patterns exist, it is generally agreed that a pattern should

consist of the following components:
The Pattern Name

Each pattern should have a meaningful name. The name allows one to use a single
word or short phrase to refer to the pattern, and the knowledge and structure it
encompasses. Good pattern names form a vocabulary for discussing conceptual

abstraction.
Problem/Intent

A statement describes the problem the pattem is trying to solve, the goal and
objectives it wants to achieve within the given context and constraints of the problem.

If designers know the problem the pattemn solves, they will know when to apply it.
Context

A pattern solves a problem in a certain context. The context is the set of conditions
under which the problem and its solution seem to recur, and for which the solution is

desirable. It tells of the pattern's applicability.

Forces/Tradeoffs

This description represents relevant forces and constraints of the problem and how
they interact/conflict with one another. Forces make clear the intricacies of a problem
and define the kinds of tradeoffs that must be considered. A good pattern resolves one

or more forces.

17

Solutions

A description represents the static structure, dynamic behavior, etc., of the solution.
This is often equivalent to explaining how to build the solution. It may consist of
diagrams, pictures and prose that identify the pattern's structure, participants, and

their collaborations, and shows how the problem is solved.
Examples

This section gives one or more sample applications that use the pattern. Examples

help readers understand the application of the pattern.
Resulting Context/Force Resolution

This section describes the state or configuration of the system after the pattern has
been applied. It also describes what forces have been resolved, which ones are left
unresolved, what other patterns may now be applicable, and how the context is

changed by the pattern.
Rationale

This section describes how the pattern actually works, why it works, and why it is
good. The solutions section describes the visible structure and behavior of the system,
while the rationale provides insight into the deep structure and key mechanisms that
lie under the surface of the system.

Known Uses

18

This section describes known occurrences of the pattern and its application within
existing systems. It helps to validate the pattern by verifying that it is indeed a proven

solution to a recurring problem.

These are the components that a pattern description should have. While writing patterns
some authors may wish to combine several components into one, or separate one
component into several components. Thus the format of a pattern may vary from author

to author.
2.5 The Pattern Community and Activities

Design patterns is relatively young compared with other disciplines in computer science.
It began to be widely accepted only after the first PLoP (Pattern Languages of Programs)
conference in 1994. Since then, pattern has gained wide popularity and has become a hot

topic in the software community, especially among Object-Oriented developers.

Now there are many ways for people in the pattern community to meet and discuss
patterns and other related topics. Many conferences are dedicated to patterns: PLoP,
EuroPLoP, ChiliPLoP, OOPSLA, and many more. These conferences provide developers
and researchers with the opportunity to present and review patterns related to software
design, process or organization. The Internet, with its quick and easy access to
information, is widely used by the pattern community to exchange and discuss ideas.
There are WEB sites dedicated to patterns, such as the pattern home page at University of
Illinois (http://hillside.net/patterns/) where people can get general information about
patterns, and the Wiki Wiki Web page which is an editable page where people can gather
information on patterns and share ideas on pattern topics. Several mailing lists are set up
for pattern discussion. The mailing list is very active: each day there are tens of messages

flowing on the mailing list, discussing patterns and issues related to patterns.

19

The work that people in the pattern community are doing is mainly concentrated on the

following three areas:
1. Writing papers and books documenting patterns.

2. Applying design patterns to actual projects and documenting the experience of

applying patterns
3. Evaluating the usefulness of patterns

A wide variety of pattem papers and books have been published since 1994. Of these
publications the one that has had the most influence is the book Design Patterns:
Elements of Reusable Object Oriented Software by Gamma et al (Gamma et al, 1994).
The book is actually a pattern catalog that contains 23 patterns. These patterns are
described in the format given in section 2.4. All the patterns documented in the book are
general-purpose patterns that can be applied in any domain of software design. Designers
have found the book very helpful in designing flexible and extensible systems. It is a
major patterns reference in this research. There are many other publications similar to the
above book, such as A4 System of Patterns by Buschmann et al (Buschmann, Meunier,
Rohnert, Sommerlad and Stal 1996), Pattern Languages of Program Design edited by
Coplien and Schmidt (Coplien and Schmidt, eds, 1995). These books and papers are the
major source of the patterns that are examined and evaluated for their applicability in the

proposed system.

The second area of activity for people working in the pattern community is applying
design patterns in actual projects, and documenting the implications of using patterns in a
system. Many people have published their experience in applying design patterns, énd
these publications cover a wide variety of real projects. The application domains that

have reported the use of design patterns include graphical user interface design (Gamma

20

1991), communication sofiware (Schmidt and Stephenson, 1995; Schmidt, 1995a),

management information systems (Brown 1996), concurrent systems (Schmidt, 1995b),
telephony control prototypes (Duell, 1996), etc. All of these reports suggest that the
application of design patterns has had a positive effect on the system. These experiences
show that the application of design patterns in the system may result in the system
gaining one or more of the benefits discussed in section 2.3 - more flexible system,

enabling reuse, easily understood and maintainable code, etc.

Although many people have reported their experience in applying design patterns in
different domains of software systems, there is no report concerning about the application
of design patterns in the artificial intelligence domain, at least not that the author knows
about. Is it because this domain is so different from other software domains that design
patterns are not applicable to this area? This question is the main motivation for this

research.

The third kind of activity that the people in the pattern community are invloved in is
evaluating the usefulness of patterns. The results of experience reports are usually based
on observations of practitioners. They are not quantitative analysis of the effects. The
papers in this category intend to analyze the effects of using design patterns
quantitatively through controlled experiments. There are very few people doing this
work. The reason for this is probably that the effort and resources needed to perform such
activity is too great - it needs several developers working on at least a medium-sized
project for several days. Too small or simple a project cannot actually reflect the benefits
of applying design patterns. The experiment done by Prechelt et al (Prechelt, 1997
Prechelt et al, 1997) is an example of such activity. The experiment also suggests that
patterns will make the maintenance and modifications to the software systems easier and

less error prone.

21

2.6 Design Patterns and Their Applications

Patterns exist in every aspects of software engineering. There are organization patterns,
process patterns, test patterns, etc. Each kind of pattern solves specific problems in that
domain. However, the focus of this thesis is on software design patterns. These design
patterns capture the essence of sofiware design, and make implicit design knowledge
explicit. Some software design patterns are general-purpose patterns, which can used in
every domain. Most of the patterns catalogued in the book Design Patterns: Elements of
Reusable Object-Oriented Software (Gamma et al, 1994) are general-purpose patterns.
Some patterns are domain specific, which are captured in a specific software domain and
are applicable to only that domain. The Model-View-Controller pattern (Buschmann et
al, 1996), for example, is one of this latter kind of pattern, which is used to build flexible

user interfaces for interactive applications.

To illustrate design patterns and their applications in the industry, this section describes
two examples. The first example describes the Model-View-Control pattern. The second
example illustrates how patterns are applied to develop an extensible and maintainable
Object Request Broker (ORB) middleware.

2.6.1 The Model-View-Controller Pattern

The Model-View-Controller (MVC) pattern (Buschmann et al, 1996, pp.125-144)
provides a means to build interactive applications with a flexible user interface. In
interactive systems, the functionality is often relatively stable, but user interfaces are
more prone to change. The MVC pattern divides the system into three components -
model, view, and controller - so that changes to the user interface will not have major

effects on the application-specific functionality.

22

User interfaces in the MV C pattern are composed of views and controllers. The model

component encapsulates application core data and functionality. The view component
displays information to users. The controller component accepts input, such as
keystrokes or mouse clicks, from users and translates this input into service requests to
the model or view components. Each model can have multiple views so that the same
information can be displayed in different ways. Each view has a controller component to
handle user input. Whenever data in a model changes, the model notifies all views
associated with it. The views in turn obtain data from the model and update the displayed

information.

The class structure (Buschmann et al, 1996, p.129) of the Model-View-Controller pattern

is shown below:

l Observer
call update { upddte
Model *
coreData
setOfObservers Vi Com
attach(Observer) attach
detach(Observer) geData myModel myModel
notify() myController myView
initialize(Model) | CTeate initialize(Model, View)
getData O makeContraller() menipulate| handleEvent
serviceQ activate () displayl update
display ()
update 0
attach
call service

Figure 2.1 Class Structure of Model-View-Controller Pattern Model

23
Model

Model provides the functional core of the application. It manages views and
controllers dependent upon it. When data in it changes, the model notifies dependent

components about the data changes.
View

View is responsible for creating and initializing its associated controller. View
retrieves data from model and displays information to the user. It must implement an

update method to handle data change notifications from model.
Controller

Controller accepts user inputs and translates user inputs into service requests for the
model or display requests for the view. If necessary, it will also implement an update

method to handle data change notifications from model.

The MVC pattern is probably the best-known pattern for handling the user interface of
interactive systems. It was first implemented within the Smalltalk-80 environment
(Krasner and Pope, 1988). It has been widely used in a number of software systems or
application frameworks, such as MacApp (Apple 1989), ET++ (Gamma, 1991), etc.

2.6.2 Applying Design Patterns to Develop TAO Project - A Case Study

TAO (Schmidt and Cleeland, 1997) project is a real-time endsystem developed by the
Distributed Object Computing group at Washington University. TAO stands for The
ACE (ADAPTIVE Communication Environment) ORB. The ACE is an object-oriented
framework that provides a rich set of components to perform common communication

software tasks across a range of OS platforms. ORBs (Object Request Brokers) are the

24

heart of distributed object computing, which enables the collaboration of local and

remote applications in heterogeneous environments.

Design patterns have been used to develop TAO so that the system can be extended and
maintained more easily. TAO is designed as a dynamically configurable middleware that
overcomes the drawbacks of inflexibility and inefficiency of statically configured ORBs.
TAO enables the ORB developers to selectively integrate customized key ORB
strategies, such as communication, concurrence, demultiplexing, scheduling, and
dispatching. The extensibility of TAO mainly addresses: extensible to retargeting on new
platforms, extensible via custom implementation strategies, and extensible via dynamic
configuration of custom strategies (Schmidt and Cleeland, 1997). This is mainly because
of the nature of distributed computing - such systems usually run in a heterogeneous

environment.

Eight design patterns have been applied in the development of the ORB architecture for
TAO, as described below:

o The Wrapper Facade pattern: This pattern is a vanant of the Facade pattern
(Gamma et al, 1994). It is used to encapsulate low-level stand-alone system

mechanisms within type-safe, modular and portable class interfaces.

o The Reactor pattern: In order to make ORB implementation independent of any
specific event demultiplexing mechanism, and decouple its demultiplexing code
from its handling code, the Reactor pattern (Schmidt, 1994) is used in the
implementation of TAO. The intent of this pattern is to support synchronous
demultiplexing and dispatching of multiple event handlers, which are triggered

concurrently from multiple clients.

25

The Acceptor and Connector patterns: A key responsibility of the ORB core

is to manage connections. To support multiple transport mechanisms and allow
connection-related behavior to be reconfigured flexibly late in the design phase,
the Acceptor and Connector patterns (Schmidt, 1996c) are applied. The intent of
these two patterns is to decouple the service initialization from the tasks
performed once the service is initialized. The Acceptor pattern is responsible for
passive initialization (server side); the Connector pattern is responsible for active

initialization (client side).

The Active Object pattern: Concurrency is an important issue in the
implementation of ORB. Long-running tasks should not block the processes of
other tasks. The Active Object pattern (Lavender and Schmidt, 1995) provides an
effective way to support a simple, extensible, and portable concurrency

mechanism.

The Strategy pattern: To support transparent interchangeability of multiple ORB
strategies, the Strategy pattern (Gamma et al, 1994) is applied. A number of
communication, concurrency, demultiplexing, and scheduling algorithms are

encapsulated as strategies in the TAO system.

The Abstract Factory pattern: Due to the extensive use of the Strategy pattern,
the system contains a large number of strategy classes. In order to simplify the
management of a large number of classes and enforce semantic consistency when
composing different strategies, the Abstract Factory pattern (Gamma et al, 1994)
is applied.

The Service Configurator pattern: In order to enhance the dynamism of TAO,
the Service Configurator pattern (Jain and Schmidt, 1997) is applied. This pattern

26

enables an application to be configured dynamically at run time. Moreover, the
' pattern can reduce memory consumption of the ORB by dynamically linking only
those needed strategies.

The use of design patterns in the development of TAO produces some expected and
unexpected improvements in software reusability and maintainability. Compared with ad
hoc code, tﬁe overall number of lines of code and the McCabe Complexity measure of
certain operations are reduced significantly. However, some operations required increase
of lines of code because of the use of the Wrapper Facade pattern to encapsulate low-
level system calls, and more error checking. Design decisions are expressed with
patterns, making the system more easily understood if one knows these patterns. A less
complex and more easily understood system requires less effort to maintain. The use of
the Strategy pattern, the Abstract Factory pattern, and the Service Configurator pattern
make the system more extensible. New strategies can be introduced into the system more

easily - even at run time.
2.7 Summary

This chapter has described design patterns as a new problem-solving discipline in
software engineering. Design patterns capture successful design experience and
document it in an easily understood form. Not only do patterns provide a solution, they
provide rationale behind the system. Patterns offer many promising benefits, which have
motivate many practitioners to document pattems and "mine” patterns from previous

successful systems.

The description of patterns usually follows a format called the Alexandrian form. It is
generally agreed that a pattern should have a name, problem and intent, context, forces

27

and tradeoffs, solutions, examples, resulting context and force resolution, rationale,

and known uses.

The pattern community has adopted many means to improve discussion of patterns and
pattern related topics. There are pattern forums and conferences where people write,
review pattern papers, and share their experience using patterns. The World Wide Web is
widely used to exchange ideas. People in the pattern community concentrate mainly on
documenting patterns, applying design patterns to actual projects and documenting their

experience in using patterns and, to a lesser extent, evaluating the usefulness of patterns.

In order to give readers a concrete idea of patterns, the MVC pattern was discussed
briefly, and then a case study in applying patterns was presented. In the study, eight
design patterns were applied in order to resolve various forces faced by the project.
Compared with ad hoc systems, the complexity of the resulting system is reduced greatly.
The maintainability and extensibility is increased significantly by applying design

patterns in the system.

28

Chapter 3 Background: CLASSIC

CLASSIC (Borgida, Brachman, McGuinness, and Resnick, 1989) is a small description
logic (DL) based language. Description logic, also called term subsumption, is a
variable-free first order language (Borgida and Kudenko, 1994). Components of such
systems are described as terms, and complex terms can be composed of other terms. DL-
based systems are knowledge representation and reasoning systems which support a
richer representation formalism than standard rule based systems (McGuinness and
Borgida 1995). CLASSIC is chosen as the design model for this thesis because it is well
defined both in syntax and semantics. This chapter will give a brief description of
CLASSIC in order to give readers some background knowledge about the system that

this thesis discusses.

Section 3.1 describes the components of CLASSIC. The computation in CLASSIC is
based on these components. Section 3.2 describes the description constructors defined in
CLASSIC. Descriptions in CLASSIC are built up with these description constructors.
Section 3.3 discusses two actual implementations of CLASSIC.

3.1 Components of CLASSIC

CLASSIC defines description in a compositional manner. Complex knowledge structures
are formed using a small set of semantic structures. The basic components of CLASSIC
are individuals, roles, concepts, and rules. Individuals in a knowledge base are grouped
into sets called concepts. Concepts are divided into primitive concepts and normal
concepts. Roles are ordinary relations that relate individuals to each other. These

components are described below:

29

Primitive concept is the simplest kind of description that one can form in

CLASSIC. The overt definition of primitive concepts is incomplete, and their
definition includes something that is beyond the description associated with them
(Resnick, Patel-Schneider, McGuinness, Weixelbaum, Abrahams, Borgida, and
Brachman, 1996). Some primitive concepts can have further disjointness
information associated with them. A disjoint primitive concept is just like a
primitive concept, except that all primitive concepts belonging to the same

disjoint grouping are disjoint to each other, and their composition is incoherent.

Concept is a named description. Concepts are fully defined in the knowledge
base by the description associated with them. Intuitively, concept denotes a

collection of individuals.
Roles are ordinary binary relations that relate individuals to each other.

Rules consist of an antecedent and a consequent, which are both descriptions.
When the antecedent concept applies to the state of an individual, the rule is
"fired" and the consequent concept may also be asserted to apply to the
individual.

Individuals are specific instances of concepts. Each individual has a name and
variable states. One can make three kinds of assertions about individuals (Borgida
and Kudenko, 1994): assert-member(i, A) which asserts individual / is in the
extension of description 4; assert-fill(i, r, v) which establishes that individual 7 is
related to individual v by role r; asserted-close(i, r) which asserts that all fillers of

role » on individual / are now known.

30

Systems based on CLASSIC are composed of these components. Concepts and
individuals are defined using concepts and description constructors, which will be

discussed in the next section.
3.2 Description Constructors

CLASSIC represents information in terms of descriptions, which are built up from
identifiers using description constructors. The following description constructors are

defined in CLASSIC (Resnick et al, 1996):
The and constructor

This constructor forms the conjunction of some number of descriptions. For example,

a VegetarianPerson may be defined as:
(and Vegetarian, Person)
This means that VegetarianPerson is someone who is both a Vegetarian and a Person.
The oneOf constructor

This constructor enumerates a set of individuals, which are the only possible

instances of the description. For example,

{oneOf Jouiin, Mary, Susan)

defines three individuals John, Mary, and Susan. If a concept is defined by the
description, the instance of the concept can only be one of the three individuals.

The all constructor

31

An all constructor, also called value restriction, specifies that all the fillers of a
particular role must be individuals described by a particular description. For example,

the instances of
(all food, meat)
must have all their fillers for food be instances of meat, for example, beef-
The atLeast constructor

An atLeast constructor specifies the minimum number of fillers allowed for a

particular role. For example, a parent might be defined to have at least one child:
{(atLeast 1 child)
The atMost constructor

An atMost constructor specifies the maximum number of fillers allowed for a

particular role. For example, an orphan might be defined to have no parent:
(atMost 0 parent)
The minimum constructor

A minimum constructor specifies the minimum value of fillers allowed for a
particular role. For example, an adult might be defined to be those whose minimum

ageis 18:
(minimum age 18)

The maximum constructor

32

A maximum constructor specifies the maximum value of fillers allowed for a

particular role. For example, an adolescent might be defined to be those whose

maximum age is 18:

(maximum age 18)

The fills constructor

A fills constructor specifies that a particular role is filled by the specified individuals.

For example,

(fills sister, Mary, Sandra)

specifies that the sister role is filled with individuals Mary and Sandra.

The four constructors, all, atLeast, atMost, and fills, form special types of descriptions

known as role restrictions, which restrict the fillers of a role. They restrict either the type

of fillers (all constructor), or the number of fillers (atLeast, atMost constructors), or they

specify some or all of the actual fillers (fills constructor).

To help readers better understand the syntax of CLASSIC, the following presents a

relatively complex example. The example is taken from (Gaines, 1995) where it is

represented in graphical format.
primitive (US$)
primitive (US$000)
primitive (senior employee)
primitive (senior employee's assistant)
primitive (division,

(and (all classification,

oneof(sales, marketing, accounting, manufacturing)),

(all revenues, and{(USS000, integer))))

primitive

(employee,

(and (all salary, and(US$, integer)),
(minimum salary 15000),

33

(maximum salary 160000),
(all division, diwvision)))
primitive (foreman,
(and employee,
(minimum salary 35000),
(maximum salary 70000),
(all division,
{and (atlLeast division 1),
(atMost division 1),
{(2all classification, manufacturing)))
concept (senior foreman,
(and foreman,
(minimum salary 45000),
(all division, (minimum rewvenues 1000))
rule (senior employee,
senior foreman,
(and senior employee,
(2ll assistant, senior employee's assistant),
(atLeast 1 assistant)})
individual (Fred Smith,
(and foreman,
{£ills salary, 50000),
(£1ills division, body works),
(fills assistant, Sam Jones})
individual (body works,
(fills revenues, 3000))

The first several lines define primitive concepts "US$", "US$000", "senior employee",
and "senior employee's assistant”. Then, primitive concept "division" is defined whose
classification is one of "sales", "marketing", "accounting”, or "manufacturing”, and

whose revenue is integer and "US3000".

Beginning with the next line, an "employee” is defined as primitive concept whose salary
is integer and "US$000", and minimuvm salary is 15000 and maximum salary is 160000,
and role division satisfies concept "division". Next, a "foreman" is defined as primitive
concept, which is an "employee" with a salary between 35000 to 70000, and who is in a

manufacturing division.

Then, a "senior foreman" is defined as a concept which is a "foreman" with a minimum

salary of 45000, and whose division must have a minimum revenue of 1000.

34

Then, a rule "senior employee” is defined whose premise is concept "senior foreman",
and consequence is defined to be concept "senior employee" and has at least 1 assistant

and all whose assistants are senior employee's assistants.

Finally, an individual "Fred Smith" is defined to be a "foreman" and whose salary is
50000 and who works in "body works" division and who has an assistant "Sam Jones".
At last, another individual "body works" is defined to be something with revenue of
3000.

From the definition of individual "Fred Smith", the system can infer that "Fred Smith" is
also a "senior foreman" because its definition also satisfies the definition of concept
"senior foreman". Then, rule "senior foreman" will be fired on the individual and "Fred
Smith" can be further asserted to be a "senior employee", and its "assistant" role filler

"Sam Jones" can be asserted to be "senior employee's assistant".
3.3 Reasoning of CLASSIC

Reasoning with descriptions is based on a logic built around the subsumption

relationship. Two major relations between descriptions may be computed:

e Incoherence: the composition of two descriptions is incoherent if they are

logically contradictory.

e Subsumption: one description, DI, subsumes another description, D2, if DI is
more general than D2. In other words, description D2 logically implies
description DI. Description logic based systems deduce and maintain subtype
hierarchies based on the semantics of description definition, producing a partial
order where more general concepts are parents of more specific ones.

Subsumption is used to determine a concept's position in the hierarchy.

35

Based on their definition, individuals can be computed to decide whether they are
subsumed by a concept. An individual, 7, is subsumed by a concept, C, if [is described by

C, i.e., I satisfies every description on C.

One algorithm used to compute the subsumption relationship between descriptions is the
structural subsumption method (Borgida and McGuinness, 1996). The algorithm involves
two steps: descriptions are first normalized, then are checked to see whether one concept

1s more general than another.
Normalization

The normalization of description performs two functions. First, it makes explicit
all the implied facts, or description by constructing a normal form containing the
most specific forms of the different kinds of descriptions included. The normal
form contains information from several sources, including rule firing (see
requirement 19 discussed in chapter 4), role propagation (see requirement 17
discussed in chapter 4), and inheritance. It will classify and combine the
information in a number of ways. Secondly, it will check whether or not there are

inconsistencies in the descniption.
Subsumption

Once descriptions are normalized, determining whether one concept, CI,
subsumes another concept, C2 is relatively straightforward. Description C/ is said
to subsume description C2 if CI is more general than C2. In order for C/ to
subsume C2, for each description on CI, there must be an equivalent or more

specific description on C2.

36

Descriptions can be conjoined. When two descriptions of the same kind conjoin, the

result is a description of the same kind. If two descriptions are of different kinds, the

result will be an and description. The following table shows how descriptions are

conjoined.
Table 3.1 Conjoining of Two Descriptions
Descriptionl Description2 Conjoined Description
(and dl1) d2 of any kind (and di, d2)
(oneOf setl) (oneOf set2) (oneOf intersection(setl,

set?))

(all r dl)

(all r d2)

(211 r (and d1, d2))

(atLeast nl r}

(atLeast n2 r)

(atLeast max(nl, n2) r)

{atMost nl r)

(atMost n2 r)

(atMost min(nl, n2) r)

{minimum nl r)

(minimum n2 r)

(minimum max(nl, n2) xr)

(maximum nl r)

(maximum n2 r)

(maximum min(nl, n2) r)

(fills r setl)

(fills r set2)

(£ills r union(setl, set2))

For example, if there are three descriptions as follow:

dl
d2
d3

then, the result of d1 conjoining with d2 will be

(minimum salary 15000)
(minimum salary 30000)
{maximum age 40)

(minimum salary 30000)

37

the result of d1 conjoining with d3 will be

(and (minimum salary 15000), (maximum age 40))

3.4 Systems Developed

During the past years, many DL-based systems have been developed. This section
describes two systems that are based on CLASSIC. The first system is KRS (Gaines,
1993; Gaines, 1995) developed at the Knowledge Science Institute at the University of
Calgary. Another system is NeoClassic (Patel-Schneider, Abrahams, Resnick,
McGuinness, and Borgida, 1996) developed in AT&T laboratories. The AT&T labs also
implemented LISP and C versions of CLASSIC knowledge representation systems. They
do not seem to relate directly to this thesis; thus, they will not be discussed here.

3.4.1 KRS

KRS (Knowledge Representation Server) was modeled on CLASSIC. It was
implemented as a class library in Think C. The KRS was intended to be designed as an
open-architecture server which could provide basic capabilities and to which
functionality might be added in a principled manner. The library should have well-
defined interfaces for new classes to support additional data types.

The design of the KRS made several extensions to CLASSIC. These extensions, which
include inverse relation between roles, negation, etc., are concerned with the functionality
of the server. These extensions to CLASSIC are necessary to knowledge acquisition
applications. Though the thesis will not implement these functionalities, these extensions
should be able to be supported by creating new subclasses and incorporating them into

the system.

38
The major part of the KRS development was to design appropriate data structures (as
the author called them). The main data structures of KRS include the following:
concept records hold concept definitions,
individual records hold individual definitions and specifications of role fillers,
filler records hold sets of individuals that fill roles,

dictionaries map concept, role, rule, individual names to the index number of other

structures,
extension records hold subsets of individuals,

data records hold subsets of external individuals of primitive data types, e.g.,

integers, reals, etc.,

inclusion records hold relations between role chains,

rule records keep track of exception relationships between rules,
inverse records keep track of inverse relations between roles,

subsumption records hold computed subsumption and incoherence relations.

3.4.2 NeoClassic

NeoClassic was a new C++ version of CLASSIC implementation done at AT&T after its
LISP and C versions. NeoClassic provides three low-level interfaces: a character-based

interface, a graphical user interface, and an application program interface.

Domain knowledge in NeoClassic is represented as description of concepts, description
of individuals in terms of concepts and descriptions. The description of individuals
includes relations between individuals (roles and role ﬁHeré). In addition, rules are

supported in NeoClassic to assert more information about individuals.

39

NeoClassic makes heavy use of C++ features. The implementation is a collection of

classes. The implementation consists mainly of the following classes: Knowledgebase,
Description, Construct, Role, Concept, Individual, and Rule. The roles of these classes
are obvious from their names. Description is further divided into thing description, host
description, and Classic description. Host descriptions refer to primitive data types such
as strings, integers, and floats. Classic descriptions refer to other objects defined in the
model. Thing descriptions represent the union of host description and Classic description.
Concept and individual are also divided into host and Classic categories. Users of the

system can write ad hoc test functions in C++ to extend the capabilities of the system.
3.4.3 Discussion

The systems described in the preceding two sections were both full-fledged systems
which 1_1ave been used in many systems (Gaines, 1995; Wright et al, 1993; McGuinness
and Wright, 1998). Both implementations put much emphasis on the functionality of the
system to achieve more powerful, more efficient knowledge inference systems. The idea
behind many of the core functions implemented in the thesis was drawn from these

systems - though the implementation of this thesis lacks many of their features.

Because these systems were either implemented early, when design patterns were not
well recognized, or people implementing these systems worked mainly on knowledge
representation and reasoning research, there has been no paper published about design
patterns concerning these systems. However, the author believes that if the design
documents and source code of the systems could be studied, many design patterns could

be identified.

40

3.5 Summary

This chapter has given a brief description of description logics and CLASSIC. The
purpose of this chapter is to give a general background about CLASSIC so that readers

can more easily understand the work presented in this thesis.

CLASSIC ié a small description logic that is used for knowledge representation systems.
The domain knowledge in such systems is represented as descriptions. CLASSIC is
mainly composed of concepts, roles, rules, and individuals. Individuals in a knowledge
base are grouped into sets called concepts; roles are ordinary relations that relate
individuals to each other, and rules are used to assert that an individual satisfies

additional descriptions if the individual satisfies the premise.

Descriptions in CLASSIC are built up from identifiers using description constructors.
Eight description constructors were described in section 3.2. These description
constructors are all implemented in the work of the thesis. Descriptions are

compositional. Complex descriptions are composed from simple descriptions.

The main reasoning of descriptions is built around subsumption relations. The structural
subsumption method first normalizes descriptions, then checks if one description is more

general than the other to determine the subsumption relationship.

Two implementations of CLASSIC were presented. These implementations were full-
fledged knowledge representation systems. The functionality to be described in chapter 4
is derived from these systems.

41

Chapter 4 Requirements Analysis

This chapter describes the objectives and requirements for the knowledge inference
engine. The primary objective of this research work is to evaluate whether design patterns
are applicable to artificial intelligence, particularly to the knowledge inference area.
Serving as a test system, the final product needs not be a full-fledged knowledge
inference engine. However, the system should implement all the main features necessary
to support knowledge inference. The main focus of the work should be to design the
system in a disciplined way, and to evaluate whether published design patterns are
applicable to the problem domain. The implemented system should be able to serve as a
kernel for knowledge inference, which could be easily extended to support more features

and be made more powerful.

The requirements were first derived by studying several other kinds of knowledge
inference engines - NEOCLASSIC (Patel-Schneider et al, 1996), KRS (Gaines 1993;
Gaines 1995), and other communication systems and frameworks such as those described
in (Schmidt 1995a; 1996a).

4.1 Objectives

The primary objective of this thesis is to evaluate the applicability of design pattems in
the knowledge inference domain. The primary objective of the research can be reached

through the following auxiliary objectives:

1. Studying software design patterns and developing an in-depth understanding of

them;

42

2. Designing and implementing a knowledge inference engine;

3. Applying design patterns to the design and implementation of the system as

appropriate;
4. Documenting the design patterns in the context of the system.

The design and implementation of the inference engine is modeled on CLASSIC
(Borgida, Brachman, McGuinness, and Resnick 1989). The requirements that will be
discussed in the following sections fall in two categories: those related to the knowledge
inference engine functionality, and those related to supporting functionality or system
extensibility.

4.2 Knowledge Inference Engine Requirements

The requirements discussed in this subsection are organized according to the different
aspects of the system. They mainly address the functionality of the knowledge inference

engine. These requirements are indispensable to the function of the knowledge inference

engine.

The knowledge base is composed of primitive concepts, concepts, individuals, roles and
rules. The following will give a more detailed description of the requirements for these

elements.

4.2.1 Knowledge Base

The knowledge base is where the collection of defined concepts, individuals, roles and

rules is stored. Whenever changes occur to an element, the knowledge base will compute

43

the consequences of the change and update the state of the knowledge base to reflect

such changes.

The knowledge base maintains the truths about the concepts and individuals in it. Any
operation that will cause an incoherent concept or individual should be rejected so that

the knowledge base is always in a consistent state.

Requirement 1 |The system must maintain the knowledge base in a consistent state.

The knowledge base will be changed dynamically by the users' update requests. These
requests may be add more components or remove previously defined components. The
components include concepts, individuals, and rules. The updating operations will cause
the knowledge base to compute the impact of the changes and ensure that they will not

cause the knowledge base to be inconsistent.

The system shall support addition of new components to the
Requirement 2
knowledge base.

The system shall support removing components from the knowledge
Requirement 3 b
ase.

At any moment, the client should be able to retrieve component information from
knowledge base. There are two kinds of information about a component: defined
information and inferred information. Defined information refers to those descriptions
that are used to define the component (concept, individual or rule). Inferred information
is the descriptions that can be inferred based on defined information of a component.

44

The client should be able to retrieve defined information of a component as it is. This

information shows the client how the component is defined.

The system shall support retrieving defined information about
Requirement 4
components in the knowledge base.

The client should also be able to retrieve inferred information about a concept or an
individual. Inferred information can be obtained through different mechanisms. For a
concept, inferred information is obtained through inheritance (see requirement 8 and
requirement 12). For an individual, three mechanisms - inheritance, role propagation
(see requirement 17) and rule firing (see requirement 19) - exist to infer information on

individuals.

The system shall support retrieving inferred information about
Requirement 5
components in the knowledge base.

4.2.2 Concept

Concepts are named descriptions in a knowledge base. When a concept is created, it is
first checked to ensure that the descriptions used to define the concept are coherent.
Incoherent concepts cannot be added to knowledge base because they would make

knowledge base inconsistent.

Requirement 6 | The system shall support checking the coherence of concepts.

The method used to check whether or not a concept is coherent follows the algorithm
described in (Borgida and Patel-Schneider 1994; Patel-Schneider et al, 1996).

Many data types are very primitive and are frequently used in a variety of situations.
Such data types include integer, floating point number, string, etc. These data types are

45

too primitive to require the client to define them as concepts. The system should create
them as built-in data types in order to improve the usability of the system. NeoCLASSIC
(Patel-Schneider et al, 1996) treats primitive data types differently from other concepts,
whereas primitive data types are defined as host concepts. The system to be designed will
not make such distinctions. Primitive data types are created as concepts when the
knowledge base is first created. These concepts are called built-in concepts.

The system shall support several of the most often-used data types
Requirement 7 | (including integer, float pointing number, and string) as built-in

concepts.

A concept will inherit information from all of its parents and parents' parents. If one
concept C is asserted to be child of another concept P, then concept C will also satisfy the
definition of concept P. In other words, concept C will inherit all the information (defined
and inferred information) of concept P.

The system shall support concepts inheriting information from

Requirement 8
parents.

One of the fundamental functions of description logic based knowledge inference
systems is to classify descriptions. The system must support this functionality. The
classification of concepts is based on concept subsumption relationships. If the definition
of one concept, CI, is more generalized than another concept, C2, then it is said that

concept C! subsumes concept C2.

Requirement 9 | The system shall support classification of concepts.

In order to reduce the amount of computation and to speed up the system, it is necessary

to store parent-child relationships. The stored classification information will form a

46

directed acyclic graph. With the classification information, clients can perform many
taxonomy retrieving operations without performing intensive computation. Thus, the

retrieving operations can be performed very fast.

The concept taxonomy information that clients can retrieve includes getting direct parent
concepts, all ancestor concepts, direct children concepts, or all descendants, of one

concept.

The system shall support retrieving concept classification
Requirement 10

information.
4.2.3 Individual

The requirements discussed in this subsection are very similar to the requirements
described in the previous section. This is because of the inherent similarity between
concept and individual. Concepts can be seen as abstract objects, while individuals are

concrete objects that exemplify the properties of concepts.

Individuals are concrete instances of concepts. When individuals are created or updated,
they must be checked for coherence. The method used to check whether an individual is

coherent or not is similar to that used in NeoCLASSIC (Patel-Schneider et al, 1996).

Requirement 11 | The system shall support checking of coherence of individuals.

Similar to requirement 8, individuals shall inherit information from all of their parents,
and parents’ parent concepts. In other words, if individual 7 is known to be an instance of
concept C, then individual 7 will also satisfy the descriptions used to define concept C.

Requirement 12 | The system shall support individuals inheriting information from

47

their parents.

The individuals will be classified when they are created, or updated. The classification of
individuals is similar to that of concepts. But individuals do not have children. The
classification done to individuals is to recognize them as instances of concepts based on
the subsumption relationship. If the definition of individual I satisfies the definition of
concept C, ﬁen individual 7 is recognized as instance of concept C. Technically, an
individual is classified as an instance of the most specific concept that subsumes it.
However, if an individual is an instance of concept C, the individual is also an instance of

concept C's parent concepts.

Requirement 13 | The system shall support classification of individuals.

Instances of primitive data types are not subject to classification, as doing so has no
meaning. These instances are treated as instances of built-in concepts. Their state is

encapsulated in the role fillers of a certain type.

Clients shall be able to retrieve the individual classification information. The client can

retrieve such taxonomy information as the direct parents, or all parents, of an individual.

The system shall support retrieving individual -classification
Requirement 14 |
information.

After individuals are created, information can be added to or removed from them. Adding
information to an individual means that the individual must satisfy the newly added
description. Both operations will cause the individual to be checked for coherence and
then reclassified. If the update operation should cause the individual to become

incoherent, the operation will be rejected and the individual will remain unchanged.

48

Requirement 15 | The system shall support addition of new information to individuals.

Requirement 16 | The system shall support retracting information from individuals.

When an individual changes, the states of those individuals with it as a role filler should
also change. Those individuals should then be recomputed for coherence and be

reclassified. If an individual should become incoherent, the operation should be rejected.
4.2.4 Role

Roles represent binary relations between individuals. A role can also be an attribute.
When an individual 7, that has role filler for role R, is normalized, the value restriction for
role R of individual [is given to those role fillers. This process is called role propagation.
If the role fillers are individuals, the value restriction of role R will be asserted to apply to
those individuals.

For example, in the following CLASSIC expressions,

CreateConcept (Vegetarian, (and Person, (all food Vegetable)))
CreateIndividual (carrot)
CreatelIndividual (Sue, (and Vegetarian, (£ills food carrot)})

when individual Sue is normalized, the system recognizes that Sue has a food filler,
carrot, and that all food fillers must be Vegetable. Therefore, Vegetable is propagated to
carrot, i.e., carrot is asserted to be Vegetable. If the definition of carror contradicts

Vegetable, then an error is generated and the operation is canceled.

Requirement 17 | The system shall support role propagation on individuals.

49

Role propagation occurs on individuals that have a value restriction and role fillers on
the same role. It does not occur on concepts that have value restriction and role fillers on

the same role.
4.2.5 Rule

Rule is used to assert that more information can be applied to an individual if the
individual satisfies the antecedent description of the rule. Before a rule is added to the
knowledge base, it must be checked to ensure that it is coherent itself, and that it will not

cause the knowledge base to become inconsistent.

A rule is said to be coherent if both its antecedent and consequent descriptions are
coherent. When a rule is added to knowledge base, it will be fired on all individuals that
satisfy the rule's antecedent description. If rule firing would cause any individual to
become incoherent, the rule will not be added into the knowledge base.

Requirement 18 | The system shall support checking of coherence of rules.

Rule firing can cause the state of an individual to change. If the definition of an
individual 7 satisfies the antecedent description of a rule R, then individual [/ is asserted to
satisfy the consequence description of rule R. Rule R's consequence description is then

added to individual 1. This process is called rule firing.

Requirement 19 | The system shall support rule firing on individuals.

Rule firing must ensure the coherence of the knowledge base. The process can happen in
two kinds of situations: at the time a rule is created, or when an individual is created or
changed. In both cases, the rule is fired on individuals satisfying the rule's antecedent

description.

50

4.3 Other Requirements

Normally, the system will run on a different process from that of the client program. The
engine will listen passively for clients' connecting, updating, or retrieving requests. When
receiving clients' requests, the engine will process the requests one by one and return the
results to clients. Many clients may work on the same task at the same time, this requires

that the engine be able to handle requests from different clients concurrently.

. The system shall support muitiple clients connecting to the engine
Requirement 20
concurrently.

To decrease the latency of a network connection, and to respond to clients’ requests
quickly, the engine should have some mechanism to initiate connections and demultiplex

input events efficiently.

Primitive data types will be used often in various applications. Though the initial design
has defined several such data types, as discussed in requirement 7, they may not be
enough to satisfy all applications’ requirements. Different applications may require
different or more primitive data types. The system should be designed so that it can be

easily extended to support a large set of primitive data types.

The system shall to extendable to support other primitive data types
Requirement 21
easily.

The intent of the initial design of the system is not to implement a powerful and full-
fledged knowledge inference engine. However, this does not mean that the system should
be designed so that it cannot be extended, or is hard to extend in order to provide more
inference power. Rather, the design of the system should take extensibility into account,
and make future extension less painful. One major possible extension to the inference

51

engine is the addition of more description constructors. The system now consists of
eight description constructors, as discussed in section 3.1. Other constructors, such as the

not constructor discussed by Gaines (Gaines, 1991), should be easily supported.

The system shall be easily extendable to add more description
Requirement 22
constructors.

Description logic based knowledge inference systems are built around terms. Child
concepts will inherit descriptions of parent concepts. When knowledge bases become
larger, each concept (or individual) will inherit many descriptions. These descriptions are
either concepts or compositions of description constructors. If each concept (or
individual) were to create a copy of its own descriptions when it inherits information
from its parents, the same description would be duplicated many times in the system.
This would consume a large amount of memory, which is not an acceptable solution. In
order to avoid such behavior, the system should manage memory effectively so that one

description is created only once and is shared by all other concepts and individuals.

Requirement 23 | The system shall have an effective mechanism to manage memory.

In knowledge representation systems, name conflict is a common issue that needs to be
addressed. Different systems have different ways of addressing this issue. In KRS
(Gaines 1995), Gaines allows components in different categories to have same name. In
KRS, primitive concepts and concepts fall in one category; individuals, roles, and rules
each fall in one category respectively. For example, an individual may have the same
name as a concept. However, components in the same category cannot have same name,
i.e., it is impossible to create two individuals that both have name Sam. NeoCLASSIC
(Patel-Schneider et al, 1996) adopted a similar approach to that of KRS.

52

However, in knowledge representation systems, both situations - components with

same name but are in different categories, or components with same name residing in
same category - may happen. Therefore, both situations should be supported by the
system. The system should have some mechanism to handle name conflicts among
components in different categories as well as in the same category. The mechanism

should be flexible enough so that client can choose to enable or disable this feature.

The system shall support the existence of multiple components with
Requirement 24
the same name.

4.4 Summary

This chapter has discussed the objectives and requirements of the knowledge inference
engine. The primary objective is to evaluate the applicability of design patterns in
knowledge inference engines by designing and implementing a knowledge inference

engine.

The complete list of requirements is summarized in table 4.1. The next chapter will

explain how these requirements are satisfied in the implementation.

Table 4.1 The requirements for the Knowledge Inference Engine

Requirement 1 | The system must maintain the knowledge base in a consistent state.

The system shall support addition of new components to the

Requirement 2
knowledge base.

The system shall support removing components from the knowledge
Requirement 3 5
ase.

53

The system shall support retrieving defined information about

Requirement 4

components in the knowledge base.

The system shall support retrieving inferred information about
Requirement 5

components in the knowledge base.
Requirement 6 | The system shall support checking of the coherence of concepts.

The system shall support several of the most often-used data types
Requirement 7 .

(integer, floating point number, and string) as built-in concepts.

The system shall support concept inheriting information from
Requirement 8

parents.
Requirement 9 | The system shall support classification of concepts.

Requirement 10

The system shall support retrieving concept classification

information.

Requirement 11

The system shall support checking of coherence of individuals.

Requirement 12

The system shall support individuals inheriting information from

their parents.
Requirement 13 | The system shall support classification of individuals.
) The system shall support retrieving individual classification
Requirement 14

information.

Requirement 15

The system shall support addition of new information to individuals.

54

Requirement 16 | The system shall support retracting information from individuals.
Requirement 17 | The system shall support role propagation on individuals.
Requirement 18 | The system shall support checking of coherence of rules.
Requirement 19 | The system shall support rule firing on individuals.
. The system shall support multiple clients connecting to the engine
Requirement 20
concurrently.
) The system shall be extendable to support other primitive data types
Requirement 21
easily.
. The system shall be easily extendable to add more description
Requirement 22
constructors.
Requirement 23 | The system shall have an effective mechanism to manage memory.
i The system shall support the existence of multiple components with
Requirement 24

the same name.

55

Chapter 5 Design and Implementation

The previous chapter presented the objectives and requirements for the knowledge
inference engine. This chapter describes the design and implementation of the system.
The description also includes references back to the requirements. The system was
implemented on an IBM PC under Microsoft Windows NT 4.0. It was implemented using
Borland C++ 5.02. The implementation is a collection of related C++ classes, each
providing certain services and joined together to provide the desired functionality and
properties. Section 5.1 provides an overview of the whole class hierarchy of the system.
Section 5.2 discusses the kemel of the inference engine. It is divided into two parts: the
first part describes major classes used in the kemel; the second part discusses how design
patterns are applied to resolve different concerns in the design. The requirements
discussed in section 4.2 and some of the requirements discussed in section 4.3 are
addressed in this section. Section 5.3 discusses other supporting utilities in the system.
These utilities mainly address how to efficiently manage memory, and how to manage the
name space flexibly. Section 5.4 illustrates the actually running of the system using two
sets of data.

5.1 Overview of the System

This section describes the class hierarchy of the knowledge inference engine. Figure 5.1
is a simplified diagram of the class hierarchy that shows only the inheritance
relationships. The directed arcs in the diagram represent parent-child relations, with
parent at the arrow side. The class hierarchy is partitioned into several parts, which will
be discussed briefly.

56

Classes under ksI_KRE form the kernel of the knowledge inference engine. They

provide core functionality for description logic based knowledge representation systems.
Classes under RoleFiller are used to represent role fillers for individuals. Class
KREParser is used to analyze the input stream and convert it into a format that the
knowledge base can understand. Class ConstructFac is used to mange shared
descriptions created in the system. Class NameManager manages component names and
assigns a unique id to the component. Class GraphNode is used to store and manage

classification information.

The following sections will describe these classes in more detail. The description will
cover how these classes satisfy the requirements given in chapter 4, as well as the
rationale behind such a design. Many of the design decisions are described based on
design patterns and how design patterns fit into the design space.

57

CKSI_KRE

KoowiedgeDase Goi) Rule) Clndividua>

@
@ @) Coneod T CviosDMBICALeasD

C_KREParser >
NameManager

RealRoleFiller
StringRoleFiller

Figure 5.1 Simplified Class Hierarchy of Knowledge Inference Engine

Ja

ClassicRoleFiller

GraphNode

5.2 The Kernel of the Engine

This section describes the most important part of the system: the kernel of the inference
engine. The discussion is divided into two parts. The first part describes the major classes
and the role they play in the kemnel. The second part describes design patterns applied,
why they are applied, and how they resolve different design issues. The description of
this section is related to the requirements given in section 4.2 and some of the

requirements given in section 4.3.

58

5.2.1 Participating Classes

Class KSI_KRE serves as the root for the kernel classes. These classes interact with each
other to provide the desited functionality. The major classes in the kernel include
KnowledgeBase, Description, Role, Rule, and Individual. Class KnowledgeBase iIs
the center repository where other knowledge base objects are stored. Descriptions are the
most fundamental building blocks in the system. They are modeled by class
Description. Classes Role and Rule represent roles and rules in the system. They are
relatively simple and will not be discussed in detail in this section. Class Individual
represents individuals of the inference engine. The last class that will be discussed in this
section is class GraphNode. Though it is not part of description logic, class GraphNode
plays an important role in classification. The remainder of this section will discuss these

classes in more detail.

5.2.1.1 KnowledgeBase Class

Class KnowledgeBase acts as the center

@

repository that maintains a map (dictionary) Has0+
<
Inherits

®

Has0

Has0+

R Has(.Individua]
the knowledge base, these objects are not maintains

indexed by their name but by their id. When
a named component is created, it is Node

Figure 5.2 Class KnowledgeBase

for each type of named component. Named
components in the knowledge base include

concept, individual, role, and rule. Inside

assigned a umique id by class
KRENameManager (see section 5.3.2). The dictionary maps the component identifier to the
actual objects. Class KnowledgeBase is responsible for managing these maps: whenever a

component is created, the knowledge base will add an entry to the corresponding map

59

representing the component; whenever a component is deleted, the knowledge base

will remove the corresponding entry from the map. Class KnowledgeBase also performs
the classification task - when a concept or individual is created, it will be classified. The
KnowledgeBase class has an instance variable of type GraphNode (see section 5.2.1.4 for
more detail) which will be used to store classification information. The class GraphNode
provides certain methods for retrieving concept or individual taxonomy information, as

per requirement 10 and requirement 14.

The class KnowledgeBase also has various methods used to create, delete, or update
concepts, individuals, roles, or rules. The function of retrieving the defined and inferred

information of a component is delegated to the actual component.
5.2.1.2 Description Ciass

Description is the most fundamental building block in description logic based knowledge
representation systems. There are two types of descriptions: named descriptions and
unnamed descriptions. Named descriptions include concept and primitive concept.
Unnamed descriptions refer to descriptions constructed using description constructors.
The description constructors supported by the system include all those described in
section 3.2. Clients can only manipulate named descriptions. Unnamed descriptions can
not be manipulated directly. Named descriptions may be defined in terms of named or
unnamed descriptions. As shown in figure 5.1, class Description is the base class for

both named and unnamed descriptions.

These classes provide the most important functionality needed to support knowledge
inference. One of the most important functions is to decide whether one description
subsumes another one. The algorithm used in the system to compute subsumption

relations between descriptions is the structural subsumption method (see section 3.3).

60

The class Description has declared the interfaces for the key functions. The methods

defined in the interface are described below.
The normalize method: performs the function of description normalization.

The coherent method: checks to see whether or not a description is coherent. It

returns true if the description is coherent; otherwise, it returns false.

The subsume method: determines the subsumption relations. There are two versions
of the subsume method - one to determine whether a description subsumes another
description, another to determine whether a description subsumes an individual. The
classification of concept is based on the first one, and the classification of individual

the second.

The conjoin method: is used to conjoin two descriptions. If the two descriptions can
be conjoined, it will return the conjoined description; otherwise it will return NULL

description.

Subclasses of the Description class all implement the key methods listed above
according to their specific semantics. In addition, each of the classes has defined for it

some other housekeeping methods.

Descriptions in the system are identified by their ids. For named descriptions, each object
is assigned a unique id by KRENameManager when it is created. However, for unnamed
descriptions, objects of one type share one id. A unique id is assigned to the class instead
of each object. This is because unnamed descriptions are shared in the system, and they
cannot be manipulated directly by clients. The id is only used to identify the type of

object. The use of id is based on two considerations: 1) efficiency, it is more efficient to

61

compare two id than to compare two strings. ii) memory, an id consumes less memory

than a string representation.

Besides the description id, each description also has a role id. As described in section 3.2,
some descriptions constructed using description constructors are associated with roles.
The role id of a description is used to identify the role associated with the description. For
descriptions .Which have no role associated with them, including concept, and, and fills, a
unique role identifier is assigned to each of the classes. The id and role id that are

assigned to classes are managed by class ConstNames. There are two methods for

each class that needs both ids:

The xxxID method returns the unique id for the class
The xxxRolelD method returns the unique role id for the class

where xxx is the class name. Not all description classes need both methods.

5.2.1.3 Concept Class

Class Concept is used to model both concept

and primitive concept. It has an instance

variable of type PrimitiveInfo that determines deg;‘fd Inheris
whether or not a concept is primitive. The member

of

desi does not make primitive concept a
g P P Figure 5.3 Class Concept

subclass of class Concept. Instead, the designer
uses composition to represent such relationships. Class concept delegates all primitive
information processing tasks to class PrimitiveInfo. The reasons for adopting such a
design are: i) Primitive concept and concept behave in very similar ways, which are both

named description. They can be used to define other named descriptions, or individuals

62

can be asserted to be instances of them. The processing of the two classes 1s almost the

same, so there is no need to separate them. ii) The designer thinks that composition and
delegation are more flexible than subclassing. With composition, the type of objects can
be changed dynamically from concept to primitive concept, or vice versa. However, with
subclassing, in order to change the type information one has to delete the original object
and create a new object. Deleting a concept in the knowledge base may involve intensive

computation: the use of composition reduces the need to delete a concept.

Concepts are defined in terms of descriptions. Class Concept maintains two definition
references - one for defined information and one for normalized information. The
instance variable definedInfo holds description information that is used to define the
concept. When a concept is normalized, the normalized description is stored in the
instance variable normalizedInfo. The attribute definedInfo should never be changed;
any inferred information is added to normalizedInfo. These two references make

retrieving concept definition information straightforward.

5.2.1.4 Individual Class
Class Individual models individual in @
CLASSIC. Individual represents a concrete
instance of a concept. As discussed in Inhers
/VH&SU+
requirement 7, there is no host concept, defined
by
therefore there is no host individual either. X o
Figure 5.4 Class Individual

Like concept, individual also has a
definedInfo and a normalizedInfo instance variable, which refers to defined
definition and the normalized information of the individual respectively. Unless an

explicit operation requires a change to the definition of an individual, the definedInfo

63

of an individual is never changed. Information obtained from inheritance, role

propagation, and rule firing is only added to the normalizedInfo of the individual.

The key functions supported by the class include normalize and coherent. Method
normalize takes the defined information of the individual and normalizes it. After the
definition has been normalized, the system will perform the role propagation process (see
requirement 17), if applicable. Method coherent checks to see if the individual is
coherent or not. If the description used to define the individual is incoherent, or any role

fillers of ti:e individual are incoberent, the individual is incoherent.

The role fillers of class Individual are modzled using class RoleFiller. There are four
types of role fillers in the current design: integer, floating pointer number, string, or
normal individual. These types of role fillers are represented by subclasses of class
RoleFiller (see figure 5.1). Based on role value restriction, the filler type can be
determined. If a role filler is of a primitive data type, e.g., integer or string, a certain type
of RoleFiller object, e.g., IntRoleFiller Or StringRoleFiller, 1S created to
represent the filler. The filler identifier is converted to a value of that type and is stored in
the RoleFiller object. Otherwise, an object of class ClassicRoleFiller is created to

store the individual filler.

In the example in section 3.2, individual 6Fred Smithé is defined as:

(and foreman,
(fills salary, 50000),
(fills division, body works),
(fills assistant, Sam Jones))
The individual has three role fillers. The value restrictions for these role fillers can be
obtained from the definition of concept foreman. The value restriction of role salary is
(and integer, US$)
From this, the system can determine that the filler for role salary is of primitive type
integer. The system will then create an IntRoleFiller object, convert SO000 into an
integer value and save the value to the role filler object.

The value restriction for role division is
(all classification, manufacturing)

The system checks and finds out that this is not a primitive data type. So, the system
creates a ClassicRoleFiller object and 6body workso is saved to the filler object as an
individual. If 6body worksé has not yet been defined, the system will automatically create
the individual.

The state of an individual may be updated by adding or removing information from it.
When the state of an individual changes, the individual will inform the knowledge base
of the .change so that the system can re-classify the individual according to its new state.
In addition, if the individual is a filler of some other individuals, the individual must also
inform those individuals of the change so that those individuals can update their state

accordingly.

5.2.1.5 GraphNode Class

Class GraphNode is the actual place where
classification information 1is stored. The

refers
knowledge base will create one object of

.Hasﬂ+ Graph
GraphNode for each concept. The GraphNode

object records the classification information of Figure 5.5 Class GraphNode

the concept associated with it. The information
includes direct parent concepts, child concepts, individuals subsumed by the concept, and
rules whose antecedent is subsumed by the concept. The knowledge base delegates all

requests to retrieve taxonomy information to this class.

Classification information can also be stored in Concept and Individual classes. There
are several advantages to managing classification information in the GraphNode class.

First, because the function is centrally located in one class, it is easier to maintain the

65

system. Any changes to the classification function will affect only one class, and only

this one class needs to be modified. Secondly, the classification function should not be
the behavior of concepts or individuals. It should be one function of the knowledge base.
If the function is put into the two classes, the interfaces of the classes will be
contaminated and the classes become spaghetti classes containing many unrelated
methods. Separating the function from them simplifies the classes, and makes each class

play only one role in the system.

An alternative solution to this problem is to use the muitiple inheritance feature of C++.
A class can be defined to handle the classification information — the concept and
individual classes then both inherit from this class.

5.2.2 Design Patterns Applied in the Kernel

This section describes the design patterns that are applied in the design of the kernel of
the knowledge inference engine. These design patterns are applied in order to achieve
objective 2 in chapter 4. The design patterns also address many of the requirements

discussed in section 4.3.
5.2.2.1 Interpreting CLASSIC

CLASSIC is a small description logic language that has well defined syntax and grammar
(see Appendix A). Though the implemented system made some modifications to the
grammar of the language (see section 2 of Appendix A), the language still has a well-
defined grammar and syntax. Whenever there is a language to interpret, it is very natural
to think of using the Interpreter pattern (Gamma, Helm, Johnson, and Vlissides, 1994,
pp-243-255).

66

The intent of the Interpreter pattern is to represent the grammar of a language and

interpret sentences in the language. The Interpreter pattern represents each grammar rule
as a class. Symbols on the right-hand side of grammar rule are instance variables of these
classes. The class structure of the Interpreter pattern is shown in figure 5.6. The
TerminalExpression implements an interpret method associated with the terminal
symbol in the grammar. The NonterminalExpression implements the interpret method
for a nonterminal symbol in the grammar. Typically the interpretr method of

NonterminalExpression is implemented by calling the interpret methods of its

subexpressions.
AstractExpreassion
inferpret{Context)

A

[]
TexrminalExpression | | NomterminalExpression
interpret{ Context) mterpret(Context)

Figure 5.6 Class Structure of the Interpreter Pattern
The class structure of the Interpreter pattern begins with an AbstractExpression, an

abstract class that is the base class for both TerminalExpression and
NonterminalExpression. TerminalExpression and NonterminalExpression are
concrete classes that represent the grammar rules of the language. They are child classes
of AbstractExpression. All classes in the class structure have an interpret method to
interpret the grammar rule appropriately. The inferpret method takes Context as an
argument. What the Context should contain depends totally on what the interpret method
intends to do. For example, if the interpret method is supposed to evaluate expressions
defined in the language, the Context should support looking -up of the value of each
variable. But if the interpret method needs to search a string that matches a pattern, the

Context should contain the input stream and the current state of the interpret operation.

67

The client is the program that will use the pattern. The client builds (or is given) the

sentence as an abstract syntax tree built with instances of NonterminalExpression and
TerminalExpression. The client then initializes the context and invokes the interpret
method. The interpret method uses context to store and access shared information of the

Interpreter.

The Interpreter pattern is applied here to interpret the CLASSIC language. In the design,
class pescription forms the base class for the pattern. Class Concept, class And, and
class A1l are NonterminalExpressions, which may be composed of other descriptions.
Other classes in the structure are TerminalExpressions, which are the most basic
building blocks of the language. As discussed in chapter 3, to interpret the language is to
decide the subsumption relation between descriptions, i.e., method subsume in the design
corresponds to the interpret method in the pattern. There is no Context in the design
because the description classes have enough information to interpret themselves. The
client in the design is class KnowledgeBase. Class KnowledgeBase builds the
descriptions and performs the interpretation task. The interpretation done by the
knowledge base is the classification of concepts or individuals based on the subsume

method. The actual implementation class diagram is shown in figure 5.7.

68

Descrinti
subsume(Descriptin* d)

t

L l

AtLeast Caoncept
subsume(D escriptin* d) subsume(Descriptin® d) ¢

KnowledgeBase =

ret=normalizedInfo->subsume(d);
retum ret; :

Figure 5.7 Class Structure of the Implementation of the Interpreter Pattern

To interpret (parse) a language, there are several choices. One can generate code using an
automated parser generator such as /ex or yacc. The code generated by such tools is
usually more efficient than the one using the Interpreter pattern. However, such code is
foreign to the system, and is usually more difficult to understand and thus, more difficult
to maintain. The Interpreter pattern is suited for interpreting those languages that are not
very complex, and where efficiency is not an important issue. This is just the case of the

system discussed in this thesis - CLASSIC has a relatively simple grammar.

In addition, using the Interpreter pattern has other benefits: i) The system is simple and
easy to understand, thus easy to maintain. The grammar rules of the language are
represented as classes. All classes in the structure are similar, so the implementation is
very simple. ii) The system is made easier to extend by using the Interpreter pattern.
Section 5.2.2.2 will discuss how the system can be extended to support other description

constructors.

69

5.2.2.2 Extending to Support More Description Constructors

By using the Interpreter pattern to represent the CLASSIC language grammar, it is easy
to extend the grammar, as per requirement 22. In order to add a new description
constructor to the system, the following two steps need to be performed: i) create a new
subclass of class Description; ii) modify class ConstNames to assign a unique id, and

role id if necessary, to the new constructor.

Class Description has defined the required methods as pure virtual (abstract) functions
that must be implemented by all its subclasses. The methods that a new subclass must

implement are shown in table 5.1.

Table 5.1 Methods required for Description Constructor

Method |Description

getld This is a pure virtual method defined in class KSI_KRE. It returns the

unique id of the description.

setld This is a pure virtual method defined in class kSI_KRE. It sets the id of a
description. For description constructors, the method does nothing because

all objects of one description constructor share the same id.

getRole Returns the role id of the description. For those descriptions related to a
role, the role's id is returned. Otherwise, the unique role id of the class is

returned. See section 5.2.1.2 for a more detailed description.

normalize |Normalizes the description. If the new description constructor is a terminal
expression, the method simply returns the description itself; otherwise, it
normalizes the description (as described in section 3.3) and returns the

70

normalized description.

coherent | Checks if the description is coherent or not. Returns rrue if it is coherent;

otherwise, it returns false.

conjoin Conjoins two descriptions. Returns the conjoined description. Refer to

table 3.1 for what the function actually does.

subsume |Determines if the description subsumes another description. The method
returns frue if it subsumes the argument description. Otherwise, it returns

false.

The second step to adding a description constructor is to modify class ConstNames and
add methods that give the class a unique id and unique rcle id, as

appropriate (see section 5.2.1.2).
5.2.2.3 Support More Primitive Data Types

Primitive data types are supported as built-in concepts (see the discussion of requirement
7). The system maintains a table that records all currently supported primitive data types.
When the knowledge base is being initialized, these concepts are created according to the
table. Instances of these data types are represented as certain types of role fillers. In order
to satisfy requirement 21, the Prototype pattern (Gamma et al, 1994, pp.117-126) is
applied.

The Prototype pattern provides a way to create objects using prototypical instances. New
objects of classes are created by copying the prototypical objects. The class structure of
the Prototype pattern is shown in figure 5.8.

71

Chiemt | [EioigEe — Prototype |
operation) ¢ done()
: [A]
[= prototype->cloneg @ ConcreteProtmtypel | [ConcreteProtstype2
Clone(y ¢ CloneQ) ¢

rreumcop'yofsdf g Irehnncoplyofself g

Figure 5.8 Class Structure of the Prototype Pattern
As can be seen in the above diagram, the pattern consists of class Prototype, wWhich

defines the interface of clone for cloning itself. Class ConcretePrototype implements
the method clone. The client creates new objects by asking objects of concrete prototype
classes to clone themselves. There are several advantages to using the Prototype pattern.
First, concrete classes are hidden from client. The client is given a prototypical object
without knowing what type of object it is. The ways that the client gets the prototypical
object can vary greatly. By simply calling the clone method of the prototypical object, the
client can get a new object of that type. Secondly, using the Prototype pattern enables
addition or removal of products at run time. New products can be added by registering
new prototype instances with the client. Existing products can be removed by

unregistering them from the client. Thus, the system can be made more flexible.

The pattern is applied in the system to make adding primitive data types easier. The
structure of the actual implementation of the pattern is shown in figure 5.9.

72

KnowiedgeBase
roleFillersTable

A

l 1

PrimitiveFiller ClassicFiller
cloneQ) clone(}

Individual

Figure 5.9 Class Structure of Actual Implementation
As shown in the above diagram, class KnowledgeBase maintains a table of currently

registered role fillers. When the knowledge base is created, the table is initialized to hold
supported role fillers for all primitive data types in the system. The primitive role fillers
now supported inciude IntRoleFiller, RealRoleFiller, and StringRoleFiller. The
table also maintains the built-in concepts associated with each primitive data type. When
an individual needs a role filler, it asks the knowledge base to create one that satisfies
certain constraints for it. The constraints here refer to the value restriction of the
individual. The knowledge base looks up the table according to the constraints. The
lookup process checks whether or not the constraints are subsumed by a built-in concept.
If the constraints are subsumed by a built-in concept, the corresponding prototypical role
filler is the one of correct type, and the knowledge base invokes the method clone to
create a new object and returns it to the individual. Otherwise, the role filler is a

CLASSIC individual, and ClassicRoleFiller is created.
To add a new primitive data type to the system, two changes need to be made.

1. Create a new concrete subclass of class RoleFiller. The new subclass should

implement all the pure virtual methods defined in the RoleFiller class interface.

73

2. Modify the table that maintains currently supported primitive data types, adding the
data type to be supported. The content of the table is a list of names, as character

strings, for the primitive data types.

When these steps are finished, the program can be re-compiled and run; it will support
the new data type.

5.2.2.4 Mapaging Individual Changes

The state of an individual may change as the knowledge base evolves. A change to an
individual changes will affect all other individuals that have it as a role filler. These
individuals in turn, will further affect other individuals. When individuals change, they
need to be recomputed and classified as instances of certain concepts. In order to manage
the change propagation in a systematic way, the Observer pattem (Gamma et al, 1994,
pp.293-303) was applied to the design of the system.

The intent of the Observer pattern is tc define dependency relations among objects so that
when the state of one object changes, all objects that depend on it are notified and
updated automatically. The pattern includes two classes: subject and observer. The class

structure of the pattern is shown in figure 5.10.

Subjoct observers v Obsorvar |
attach(Ubserver) updcge()
detach(Observes) | |for afl 0 in observers {
mtfy) © 7777 o>updated; } +
ConcreteSubject subject ConcreteObsexrver pra—v
getS 5----1 ; oo ----- & iy
R e N e | e
subjectState '

Figure 5.10 Class Structure of the Observer Pattern

74

One subject object can be observed by many oObserver objects. The subject

maintains a list of its observers. It provides interfaces to add or remove observer objects
from its observer list. When the state of a subject changes, it iterates all of its observers
and mvokes their update method. The class ConcreteSubject also provides an interface
for an observer object to get its state so that the observer can determine what has been
changed and how it should act on the change. The observer class provides an update
method through which a subject object can notify it of its changes. When an Observer
object is created, it registers itself to the object of subject that it wants to observe. After

the registration, all changes are handled automatically.

In the inference engine, the subject and the observer are of the same class - class
Individual. The actual class structure is shown in figure 5.11. If individual I/ is a role
filler of individual /2, then 2 acts as an observer of I/. Whenever /] changes, it invokes

the update method of 12 so that /2 can update itself automatically.

Subject
attach(Observer) Obszrver
detach(Observer) updated) KSI_ERE
notifyChange()
vector<Observer*> observsers

?

Individual

Figure 5.11 Class Structure of Actual Implementation
When processing an individual, the system analyzes the role fillers of the individual one
by one. If a role filler is recognized as a CLASSIC role filler, i.e., the filler is an
individual, then the individual registers itself as an observer of the filler individual.

75

Through the registration process, the observer/subject relation is established between
individuals.

Two kinds of operations can result in the removal of the observer/subject relation
between two individuals, O and S where O is observer and S is subject. The first kind of
operation is to change the definition of individual O and remove the role that relates O to
S. The secoﬁd kind is to delete individual O. However, the deletion operation is not
guaranteed to succeed. If individual O is at the same time the subject of other individuals,
it can not be deleted. The same will happen if someone tries to delete S: because the
system checks and finds that S still has O as its observer, the system will not delete
individual S.

Through the use of the Observer pattern, the implementation of individual is made
simpler. The design and implementation can be focused more on static aspects. Most of
the design deals with only one individual object, and the interaction among individuals is
handled by the pattern.

5.2.2.5 Simplifying the Knowledge Base Interface

The knowledge base is composed of many building blocks - concepts, individuals, roles,
and rules. To use the system, one needs to be familiar with the interfaces of those
building blocks. For some users, learning all the interfaces is overly burdensome. In order
to make the system easier to use, the Facade pattern (Gamma et al, 1994, pp.185-193)

was applied to make the interface simpler.

The Facade pattemn is also known as the wrapper pattern. The main purpose of the pattern
is to define a unified interface to a set of interfaces in a subsystem. The high-level
interface defined by the pattern hides unnecessary complexity of the subsystem from

76

users, making the subsystem easier to use. The class structure of the Facade pattern is

shown in figure 5.12.

[Facade '

bsystem classes

1 [E:l!
1]

Figure 5.12 Class Structure of the Facade Pattern
In this pattern, there are two participants: the Facade, and classes of the subsystem. The

Facade object knows the functionality of classes in the subsystems, and delegates client
requests to appropriate objects of the subsystem classes. The subsystem classes
implement the actual functionality. They handle the requests passed from the Facade
object. However, they have no knowledge of the facade.

The knowledge inference engine contains many classes. These classes interact and
communicate with each owher. The interaction of these classes is complex. In order to
simplify the use of the system, the Facade pattern was applied to hide the complexity and

provide a high-level interface that is easier to use.

The facade class of the knowledge inference engine, class KBInterface, defines a set of
interfaces that clients can use to interact with knowledge base without knowing much

about the internal structure. The methods defined in the interface are shown in table 5.2.

Table 5.2 Simplified Interface of Knowledge Base

Method Description

create(int objType. Used to create a component in the knowledge base

string& initData .
g " |based on the arguments. The type of component is

77

int enforce=0) decided by argument objType: O G concept, 1 i
primitive concept, 2 G role, 3 @ rule, 4 i individual.
The argument initData is the data used to define the
component. The argument enforce decides what the
system should do in the case of a name conflict. If
enforce is set to no-zero, the system will create the
component even there is name conflict. Otherwise, the
system will return an error informing the client there is
name conflict. The method returns O if the operation
succeeds, otherwise a non-zero value representing the

error that occurred is returned.

update (IDType id, Used to update a component. The argument id
stringé data) identifies the component to be updated. The second
argument, data, ic the new definition for the
component. Because the update of concepts is very
complex and requires intensive computation to re-
classify the knowledge base', the system supports the
update of individuals only. The method returns 0 if the
operation succeeds; otherwise it returns a non-zero

value representing the type of error that occurred.

! To update a concept in the knowledge base, the system needs to delete the concept, and then replace it
with a new concept. Both step will involve large amount of computation to classify other concepts,
individuals, and rules.

78

£ind(stringé& name, Used to search the kmowledge base and return all

int type) components found. The argument 7zame is a character
string representing the component name. The
argument zype has the same meaning as the argument
objType in method create and represents the type of
component to be searched. The method returns the set
of components found in the knowledge base. If no

component is found, it returns a null set.

findFirst (stringé name, | yjeed to search the knowledge base and return the first

int typel component found. The arguments of this method are
the same as that of method find. The method returns
the id of the component. If no component is found, 0

1s returned.

exist (IDType id) Used to check whether or not a certain component
exists in the knowledge base. IDType is the type for
ids. The method takes one argument, which is the id of
the component, and checks to see if the component is
defined in the knowledge base. It returns true if the

component is defined; otherwise it returns false.

As one can see, the interface gives the client the power to use the knowledge base, but

hides all the unnecessary details from client.

79

5.2.2.6 Accepting Different Input Formats

The engine uses CLASSIC as its internal data presentation. It can only understand the
CLASSIC data format. In order to allow as many kinds of clients as possible to connect
to it, the engine should not restrict the data format that a client uses. This requires the
engine to provide a family of parsers which can translate the client data format into its
internal data format. The parsers are all related and differ only in the external data format
they can translate. In order to avoid using many if-then-else checks in the program
(which is hard to extend and maintain), the Strategy pattern (Gamma et al, 1994, pp.315-
323), as shown in figure 13, is applied in the design.

strategy
Context o Strategy
Contextlnterface() aigorithminterface()
A
| L 1

ConcreieSirategyA ConcreteSirategyB ConcreteStrategyC
algorithmInterface() algorithmInterface() algorithm Interface()

Figure 5.13 Class Structure of the Strategy Pattern
The Strategy pattern, as discussed in (Gamma, et al, 1994), is used mainly to define a

family of algorithms. Each algorithm is encapsulated as a class, and all such classes are
interchangeable. By applying the pattern, the algorithms may vary independently from
the client that uses them because they provide a common interface to the client. Use of

the pattern also eliminates the conditional statements from the implementation.

Figure 5.14 shows how the pattern was actually applied in the design.

80

EBInterface * KRERarser
Parser* parser 4
ClassicParser

Figure 5.14 Class Structure of the Strategy Implementation

The class KBinterface, which is a facade class discussed in section 5.2.2.5, has a
reference to the base class of the strategy pattern. The object of KBInterface takes an
object of a concrete KREParser subclass as an argument when it is initialized. Later, the
object uses the parser object to translate input data from the client to internal data format.
The actual parser that will be used can be configured at run time. When a client program
connects to the knowledge base, it tells the knowledge base what data format it uses, and
the knowledge base can then set the parser to an appropriate one to communicate with the
client. (Because of time constraints in the writing of this thesis, only one concrete
KREParser class has so far been created.) As shown in figure 5.14, the class
ClassicParser reads in data in CLASSIC format and translates the input into the format

KBInterface requires.

To extend the engine to support other input data formats, the only thing that needs to be
done is create a new concrete subclass of class kREParser. The KREParser defines all
the interfaces that a subclass should implement. Thus, the design and implementation of

the new class should be straightforward.
5.3 Supporting Functionality

This section describes two main supporting fimctions of the knowledge inference engine.
The first one is managing memory - making all descriptions sharable - thus reducing

memory consumption. The second supporting function that will be discussed is the name

81

manager. The name manager manages the name space of the knowledge base. All

names used In the system are centrally managed by this class.
5.3.1 Description Constructor Factory

As discussed in requirement 23, memory management is a critical issue in the design of
the engine. The engine should have an effective mechanism for managing memory,
otherwise the engine will consume large amounts of memory. In order to reduce the
amount of memory required, components in the knowledge base are shared; each
component is created just one time and is shared by all others. If one description needs to
use another description, it will get a reference to the other one instead of creating a new

copy of that description.

To achieve the above goal, two patterns were used in the design of the name manager
(class constructFac). The Singleton pattern (Gamma et al, 1994, pp.127-134) was used
to ensure that only one instance of class ConstructFac is created. A variant of the
Flyweight pattern (Gamma et al, 1994, pp.195-206) was used to achieve the sharing of
description objects. The rest of this section will briefly discuss the two patterns, and then

discuss how they were applied in the engine.

Singleton
static instanceQ o- | - |if(luniquelnstance)
singletonOperation() uniquelnstance=new Smgleton;
getSingletonD eta) return umquelnstance;
static uniquelnstance
singletonData
Figure 5.15 Class Structure of the Singleton Pattern

The Singleton pattern provides a way to ensure that there is no more than one instance of

a certain class in the system at any time. The singleton class is the only point where the

instance of the class can be accessed. The pattern is shown in figure 5.15.

82

The singleton class has a static method instance that enables a client to access the
instance. By making the class itself responsible of managing its sole instance, it is easier
to keep the system consistent.

The intent of the Flyweight pattern is to efficiently support a large number of fine-grained
objects by sharing them. If a system has many objects, it will be very expensive because
these objecté will consume a lot of memory and may incur heavy run-time overhead. The
Flyweight pattern introduces a way to share objects, so that one object can be used in

multiple contexts. The pattern is shown in figure 5.16.

FlyweightFactery [<>- = Flyweight
getF lyweight(key) @ | operationtextrinsictate)
¥ :

i @yweighificey] exist) D —
retum existing flyweight; } ConcreteFlyweight Unshared ConcreteFlyweight

eise { operation(extrinsicState) gperati onfextrinsicState)
create new flyweight; instrinsicState allState
additto pool of fiyweights;
retum the new flyweight;} '

[Ctient |

Figure 5.16 Class Structure of the Flyweight Pattern
The key concept of the Flyweight pattern is dividing the state of an object into two parts:

intrinsic and extrinsic state. The intrinsic state is that information which does not depend
on context. The extrinsic state, on the other hand, depends on the context. What is shared
is the intrinsic information. Extrinsic state can not be shared. Class FlyweightFactory is
a repository where sharable flyweight objects are stored. It provides an interface where
the client can get a flyweight object by some kind of key.

The class ConstructFac in the engine is both a Singleton and a Flyweight Factory. The
class structure is shown in figure 5.17. The ConstructFac class manages all the
description constructors that are used in the inference engine. For each process of the

engine there can be only one instance of the class. Thus, the ConstructFac is made a

83

Singleton class, which manages its sole instance. The client accesses the sole instance
_instance through its member function /nstance. The constructor of class ConstructFac
is made private so the client has no way to create instances of the class except by using

the provided interface.

ConstructFac
static ConstructFac* _instance Descrigtion
mep<ID, vector<Description*>> lib
static ConstructFac* Instance() ¢
Description® getAnd(cons) ! | | |
Description* getAll(cons) o

if (_instance not exists)
create _instance,
retum _instance;

if(description satisfying cons not exist) {
create description using cons;
msert it into lib;

return the description:

Figure 5.17 Class Structure of ConstructFac
The class has another instance variable /ib, in which all objects of shared descriptions are

stored. The /ib is a dictionary whose key is the role identifier of descriptions. This means
that descriptions related to the same role are stored under the same key. Descriptions
under one key are stored in a list without ordering. There is an interface from which a
client can get a reference of the desired description. If a client needs to get a description,
he needs to invoke an appropriate method. For example, if the client needs to get
description 6 AtLeast 1 positiond, he invokes method getdtLeast with two arguments:
id of role position and 1. If there exists a description that matches the arguments, a

reference to the description is returned to the client. Otherwise, a new description is

84

created based on the parameters. The newly created description is put into the /ib and a
reference to it is returned to the client. All of the descriptions in the system are created in
this way. Thus, at any time, there is only one copy of each kind of description, and all of
them are shared by others.

The design is similar to the Library pattern discussed in (Kremer, 1997, p.137). The
major difference between these two is that the Library pattern creates and returns a new
copy when a client asks for an object, whereas the design in the inference engine returns

only a reference to the object.
5.3.2 Name Space Management

As per requirement 24, the engine should have an effective way to manage the name
space of the knowledge base. Similar to the ConstructFac discussed in the previous
section, the name space manager should also be a Singleton. There can only be one

instance of the manager in the system.

The design of the name manager is very similar to that of class ConstructFac. The class
that manages name space in the system is called KRENameManager. The class is a
singleton. It manages its sole instance and provides an interface for clients to access the
instance. The class acts as a library for all the names used in the knowledge base. The
client may query a component's name by its id, or query a component's id by its name. In
order to provide efficient services to these queries, the name manager maintains two

maps - one from component id to name, another from component name to id.

Before a component is created, the knowledge base inserts the name of the component
into the name manager and gets a unique id for the component. If the name has been used

by another component of the same type, the client can choose to change the component

85

name or create a component with that name. If the client chooses to change the

component name, the change is easily handled by the system. Otherwise, the name
manager will insert the name with a unique tag into its maps, and assign a unique id to
the component. Because the system uses component id to uniquely identify a component,

requirement 23 is relatively easy to satisfy.
5.4 Testing

After the system was developed, two sets of data were used to testing the correctness of
the system. The first set of data was listed in section 3.2. The second set of data was
obtained from AT&T NeoClassic tutorial Web site (Abrahams et al, 1996). Then, this
section discusses the performance of the system in terms of time and space using

recursive example.
5.4.1 The Testing Program

The testing program is a small program which uses interface provided by class
KBInterface. The program is very simple and provides necessary functionality to

perform the testing task. This section briefly discusses the function and the output of the

program.

The client can use two commands to interact with the program. One command is used to
read data into the knowledge base from a file; another one is used to get information

about a component from knowledge base.

read command

86

This command is used to read data into the knowledge base from a file. The
client can type in read command at the command line. The program will prompt

the client to enter the file name to be read in and then proceeds reading the file.
get command

This command is used to query component information from the knowledge base.
The client can type in get command at the command line. The program will

prompt the client to enter the name and type of the component to be queried.

The program will print the query result to the standard output device. The information
output by the program includes name of the component, and one or more of the following

items.
toldDef - the description that is used to define the component.

normDef - the normalized description of twldDef of the component. The

information in this part include inherited and inferred information.

direct parents - the concepts that are direct parents of the component. It reflects

to direct parents of a concept or individual.

direct children - the concepts that are direct children of the concept. It reflects to
direct children of a concept.

direct instance - the individuals that are directly subsumed by the concept. It
reflects to direct instance of a concept.

direct rule - the rules associated with the concept.

fillers - the fillers of the individual.

87

5.4.2 Testing Data 1

The explanation of this set of data was given in section 3.2. This set of data creates an

employee hierarchy for a company. Figure 5.18 is part of the input file.

createPrimitive (USS$, ()) .
createPrimitive (US$000, ())
createPrimitive (senior employee, (})
createPrimitive (senior employee's assistant, ())
createRole (classification)
createRole (salary)
createRole (division)
createPrimitive (division, (and, (all, classification,
(oneOf, sales, marketing, accounting, manufacturing)),
(all, revenues, (and, US$000, Integer))))}

Figure 5.18 Snippet of Test Data 1
Figure 5.19 shows how concepts are classified in the knowledge base. As one can see in

the figure, concept employee has concept Thing as its parent and concept foreman as its
child, whereas concept foreman has concept employee as its parent and concept senior
foreman as its child. The text in bold are what a client typed in, and the text in normal

font are system output.

Figure 5.20 shows the result of querying data about individual body works. Figure 5.21
shows the result of querying data about individual fred smith.

command: read

file name: testl.txt

Reading file ...

Command: get

Component name: employee

Type (0O-concept, l-primitive, 2-role 3-rule 4-individual): 1

employee: employee

NormDef ::= (AND (All salary (AND Integer USS))
(minimum salary 15000) (maximum salary 160000)
(All division division)

Direct parents: Thing

Direct children: foreman

Direct instances:

Direct rules:

Command: get
Component name: foreman
Type (0-concept, l-primitive, 2-role 3-rule 4-individual): 1
foreman: foreman
NormDef ::= (AND employee
{All salary (AND Integer US$))
(minimum salary 35000) (maximum salary 70000)
(All division (AND division (211 classification
(oneOf sales, marketing, accounting, manufacturing))
(fills classification manufacturing)
(All revenues (AND US$000 Integer }))})
(atLeast 1 division) (atMost 1 division))
Direct parents: employee
Direct children: senior foreman
Direct instances:
Direct rules:

Figure 5.19 Querying Result of Concepts Employee and Foreman

Command: get

Component name: body works

Type (0-concept, l-primitive, 2-role 3-rule d4-individual): 4
body works: body works

ToldDef ::= (£ills revenues 3000}

NormDef ::= (AND division (All classification

(one of sales, marketing, accounting, manufacturing))
(fills classification manufacturing)

(£ills revenues 3000)

{(All revenues (AND USS000 Integer)))

Direct parent: division

Fillers:

Classification: manufacturing{classic individuals)
Revenues: 3000 (integers)

Figure 5.20 Querying Data of Individual "body works"

88

Command: get

Component name: fred smith

Type (O-concept, l-primitive, 2-role 3-rule 4-individual): 4
fred smith: fred smith

ToldDef ::=- (AND foreman (fills salary 50000)

(£fills division body works)

(fills assistant sam jones))

NormDef ::= (AND foreman

Senior employee

(All salary (AND Integer US$))

(minimum salary 35000) (maximum salary 70000)

{fills salary 50000)

(All division (AND division (All classification
{oneQf sales, marketing, accounting, manufacturing))
(fills classification manufacturing)

(All revenues (AND USS000 Integer) }))}

(atLeast 1 division) (atMost 1 divisicn)

(£ills division body works) (fills assistant sam jones)
(All assistant senior employee's assistant)

(atLeast 1 assistant))

Direct parent: senior employee, senior foreman
Fillers:

Salary: 50000 (integers)

Division: body works (classic individuals)

Assistant: sam jones(classic individuals)

Figure 5.21 Querying Data of Individual "fred smith"

5.4.3 Testing Data 2

89

The second set of data was obtained from AT&T NeoClassic Web site. The set of data
defines a knowledge base about wine and food. The data can be obtained from
(Abrahams, et al, 1996). Figure 5.22 shows part of the comcept hierarchy of the

knowledge base.

90

N T~

Forman-

Figure 5.22 Concept Hierarchy of Wine and Food

In the above figure, a concept is represented as a box, an individual is represented as a
ellipse, and a rule is represented as dash-lined ellipse. The component name is given by
the text within a graph. The subsumption relationship is represented by connecting two

concepts with a line, where the concept lying above subsumes the concept under it.

After the data was loaded to the system, several tests were performed on it. Figure 5.23

shows a query about concept cHARDONNAY. The definition for the concept is:

(and WINE (fills grape Chardonnay))

Command: read

File name: test2.txt

Reading file ...

Command: get

Component name: CHARDONNAY

Type (0-concept, l-primitive, 2-role 3-rule 4-individual): 0

CHARDONNAY: CHARDONNAY

NormDef: (AND POTABLE-LIQUID

{All color (AND WINE-PROPERTY (oneQOf White, Rose, Red)))
(2tLeast 1 color)
(All body (AND WINE-PROPERTY

(one of Light, Medium, Full}))
(atLeast 1 body)
(All flavor (AND WINE-PROPERTY

(oneOf Delicate, Moderate, Strong)})
(atLeast 1 flavor)
(All sugar (AND WINE-PROPERTY

(oneOf Sweet, Off-Dry, Dry)})
{atLeast 1 sugar) (All grape EDIBLE-THING)
{atLeast 1 grape) (fills grape Chardonnay))

Direct parents: WINE

Direct children:

Direct instances: Forman-Chardonnay, Fritz-Chardonnay,
Corton-Montrachet-White—-Burgundy,
Puligny-Montrachet-White—-Burgundy

Direct rules: chardonnay-color, chardonnay-body, chardonnay-flavor

Figure 5.23 Querying Data of Concept CHARDONNAY

91

As shown in figure 5.22, concept CHARDONNAY is classified to be child of concept WINE,
and inherits all information from WINE. The system also recognizes individuals

Forman-Chardonnay, Fritz-Chardonnay, etc. to be its direct instances.

Then, a query of individual Forman-Chardonnay was performed. The result of the query

is shown in figure 5.24.

The definition for individual Forman-Chardoennay is as follows:

{(and CHARDONNAY (fills body Full) (fills flavor Moderate)
(£ills sugar Dry) (fills maker Forman))

Command: get
Component name: Forman-Chardonnay
Type (O-concept, l-primitive, 2-role 3-rule 4-individual): 4
Forman-Chardonnay: Forman-Chardonnay
toldDef ::= (AND CHARDONNAY (fills body Full) (fills flavor Moderate)
(fills sugar Dry) (£ills maker Forman))
noxrmDef ::= (AND POTABLE-LIQUID
(All color (AND WINE-PROPERTY
(one of White, Rose, Red)))
{(atLeast 1 color) (£ills color White)
(A1l body (AND WINE-PROPERTY (oneOf Medium, Full)))}
{(atLeast 1 body) (fills body Full)
(All flavor (AND WINE-PROPERTY
. (oneQOf Moderate, Strong)))
(atLeast 1 flavor) (fills flavor Moderate)
(All sugar (AND WINE-PROPERTY
(oneOf Sweet, Off-Dry, Dry)))
(atLeast 1 sugar) (£ills sugar Dry)
(All grape (AND GRAPE EDIBLE-THING })
(atLeast 1 grape) (fills grape Chardonnay)
(All appropriate-drink
(AND (fills color White, Red)
(fills body Light, Medium, Full)
(fills flavor Delicate, Moderate, Strong)
(All flavor (oneOf Moderate, Strong))
(£ills sugar Sweet, Off-Dry, Dry)))
(atLeast 1 region) (All region WINE-REGION)
(£fills maker Forman)
(atLeast 1 maker) (All maker WINERY))
Direct parents: FULL-BODIED-WINE, DRY-WHITE-WINE, CHARDONNAY
Fillers:
color: White(classic individuals)
body: Full(classic individuals)
flavor: Moderate(classic individuals)
sugar: Dry(classic individuals)
grape: Chardonnay(classic individuals)
maker: Forman{classic individuals)

Figure 5.24 Querying Result of Individual Forman-Chardonnay

92

93

The individual is first classified as an instance of concept CHARDONNAY. Concept
CHARDONNAY has three associated rules: chardonnay-color, chardonnay-body, and

chardonnay-flavor. The definitions of these rules are as follows:

createRule (chardonnay-color, CHARDONNAY, (fills, colecr, White))
createRule (chardonnay-body,
CHARDONNAY, (all, body, {oneOf, Full, Medium)))

createRule (chardonnay~£flavor,
CHARDONNAY, (all, flavor, (oneOf, Strong, Moderate})}

Because individual Forman-Chardonnay is recognized as an instance of the concept, the
system fires these rules on the individual. The additional information is then added to the
individual, and the individual informs the system to reclassify it. Because the filler for
role body is Full, which satisfies the definition of concept FULL-BODIED-WINE, now the
individual is classified to be also an instance of concept FULL-BODIED-WINE. The filler
for role color is white and filler for role sugar is Dry, so the individual is also classified

to be an instance of concept DRY-WHITE-WINE, as shown in figure 5.24.

The definition of concepts FULL-BODIED-WINE and DRY-WHITE-WINE are as follows:

createConcept (FULL-BODIED-WINE, (and, WINE, (fills, body, Full)))
createConcept (WHITE-WINE, (and, WINE, (fills, color, White}))
createConcept (DRY-WINE, (and, WINE, (fills, sugar, Dry)))
createConcept (DRY-WHITE-WINE, (and, DRY-WINE, WHITE-WINE))

5.4.4 Performance Test

This section tests the performance of the system in terms of time and space. Nebel (1990)
has given a constructive example of a simple set of concept definitions where
computation of subsumption is intractable because of the growth of unnamed
descriptions. The recursive example offers a worst-case example on term subsumption
logics. Figure 5.25 shows an example set of concept definitions for the testing. The set
begins with the definition of a primitive c10 and goes through a sequence of concepts

down to co defined in terms of preceding concepts.

createPrimitive (Cl0, ())

createConcept
createConcept

createConcept
createConcept
createConcept
createConcept
createConcept
createConcept
createConcept
createConcept

(cs,
(cs,

(c7,
(ce,
(CS,
(C4,
(C3,
(c2,
(c1,
(C2,

(and,
(and,
(and,
(and,
{(and,
(and,
(and,
{and,
(and,
(and,

clo,
clo,

cio,
C1o0,
clo,
cLo,
cio,
clo,
c10,
clo,

(al1, ri,
(all, ri,
(all, r1,
(all, ri1,
{all, ri,
{all, ri,
{all, ri,
(all, ri,
(211, ri,
(all, r1,

Ci0), (all, r2,

c9), (all,
c8), (all,
c7), (all,
ce6), (all,
CS), (all,
c4), (all,
C3), (all,
c2), (all,
Cl), (all,

r2, C9))
r2, C8))}
r2, C7))}
r2, C6)))
r2, (and,
r2, (and,
r2, (and,
r2, (and,
r2, (and,

C10)))

Cs,
c4,
c3,
ce,
Ci,

Figure 5.25 Nebel's Constructive Example with 10 Concepts

C10))))
c8)))
ce))))
c41))
€2))))

Number

OO0 PphWN—~=O

Table 5.3 System Performance

Time (seconds)

0.00
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.04
0.06
0.08
0.16
0.32
0.65
1.19
2.99
5.12
10.42
18.88
44.69
79.87
210.60
352.63

Space (bytes)

24

90

303
573
966
1686
2349
4149
5262
9582
11505
21585
25038
48078
54501
106341
118614
233814
257697
511137
558150
1111110
1204293

94

95

Table 5.26 shows the time in seconds and the memory consumption in bytes for
Nobel's examples 0 through 22 with the system running on a Pentium 266 PC under
Microsoft Windows NT 4.0. The time and space metrics are useful vaules in estimating

how the system can cope with realistic problems.
5.5 Summary

This chapter has provided an overview of the design and implementation of the
knowledge inference engine. The most important part of the knowledge inference engine
is the kernel of the engine, which provides all of the core functionality. Section 5.2
describes the major classes that the kemnel is composed of. In the design and the
implementation of the kernel, several design patterns are applied to achieve different

goals:

e the Interpreter pattern interprets the CLASSIC language, and makes the design
and implementation simpler. In addition, use of the pattern makes it easier to
extend or modify the grammar of the CLASSIC language, such as extending
CLASSIC by adding more description constructors.

o the Prototype pattern creates new objects by using prototypical objects. By
applying this pattern, the engine can be extended to support other primitive data
types easily.

e the Observer pattern allows observers be informed and updated automatically
when a subject changes. This pattern is applied to manage the change process of

individuals.

96

e the Facade pattern makes it easier to use the knowledge inference engine by

providing a simple interface that hides much of the complexity from the client.
The client interacts solely with the interface without knowing any parts of its
subsystems.

the Strategy pattern encapsulates the parsing algorithms into classes. Each of
these classes is exchangeable. Thus, the knowledge base can be configured to
support different formats of client input data dynamically.

Section 5.3 describes other supporting functionality in the knowledge inference engine. It

covers mainly memory, and the name space management facility. Two patterns are

applied in the design of these functionalities:

the Singleton pattern ensures that no more than one instance of a class is created
in the system. There can be only one instance of the description constructor

factory and name manager in the system. These two classes are made singleton.

the Flyweight pattern enables objects within the system to be shared. There may
be many descriptions in the system. If these descriptions can be shared, memory
is used more efficiently. The Flyweight pattern was applied to manage
descriptions in the system so that each description is created one time and is then

shared by others.

Section 5.4 illustrated the actually running of the system using two set of data and gave

some performance data of the system using Nebel's constructive example.

This chapter serves as the design documentation for the knowledge inference engine.

Though it has not covered all aspects of the design, it does cover the most important parts

97

of the system. The requirements given in chapter 4 are also addressed in the
description of the design.

98

Chapter 6 Conclusion

This chapter evaluates this research work and describes two possible directions for future
work related to the research. The evaluation addresses the objectives described in chapter
1 and chapter 4, and how these objectives are satisfied by the research work. Based on the
discussion of objectives, the chapter also draws the conclusion that design patterns are

applicable to the knowledge inference domain.

In addition, this chapter gives two possible directions for future work related to the
research work. First, existing knowledge inference systems should be studied and
checked for the existence of design patterns in those systems. Secondly, since the
research was undertaken with the intention of developing a completed knowledge
inference system, much work can be done to extend the system. The extension work can

in turn, evaluate the quality of the current design.

6.1 Addressing the Objectives

The primary objective of this research work was described in chapter 1:
"to evaluate the applicability of design patterns in the knowledge inference domain."

In order to achieve the primary objective, four auxiliary objectives must be achieved.

These four auxiliary objectives are:
1. Studying software design patterns and getting an in depth understanding of them;

2. Designing and implementing a knowledge inference engine;

99

3. Applying design patterns to the design and implementation of the system as

appropriate;
4. Documenting the design patterns in the context of the system.

The auxiliary objectives are concerned with i) studying and the application of design
patterns; ii) designing and implementation of a knowledge inference engine. If the four
auxiliary objectives are accomplished, the conclusion that design patterns are applicable
to the domain can be drawn. Otherwise, the conclusion will be that design patterns are

not applicable to the knowledge inference domain.

Chapter 4 discussed the requirements for the system. Chapter 5 discussed the design and
implementation of the system based on the requirements analysis. The descriptions in
these two chapters covered the major functionality of the implemented knowledge

inference system. The major functionality of the system includes:

e creating components to represent the domain knowledge. Components that can be
created in the knowledge base include primitive concepts, concepts, individuals,

roles, and rules.

e updating the definition of components. Usually the updating operation works on
individuals, i.e., changing the state of individuals.

e removing information from the knowledge base.

e checking the consistence of the knowledge base. If all components in the
knowledge base are coherent, then the knowledge base is consistent. The
knowledge base is always kept in a consistent state, which means that incoherent

components are not added to the knowledge base.

100

e classifying components in the knowledge base. The classification process is
based on the subsumption relationships between components. This is the essential

function that a description logic based knowledge representation system should
support.

The above description clearly shows that the second auxiliary objective - to design and
implement a knowledge inference engine - is accomplished. The implemented system
possesses the basic functionality to support knowledge inference, though it is not as
powerful as some systems that are already implemented, such as the ones discussed in

section 3.3.

Section 5.2 and section 5.3 discussed the design and implementation. These sections
discussed the major classes that provide the functionality of knowledge inference; they
also discussed extensibility and flexibility issues. In addition, if design patterns were
applied to the design, they were discussed under the context of the system. As one can
see, several design patterns were applied in the system. These design patterns either
simplify the design and implementation of the system, or make the system more easily
extensible. For example, the Interpreter pattern simplifies interpreting the CLASSIC
language, and the Observer pattern simplifies the change management of individuals. The

design patterns identified in the system include:

e the Interpreter pattern, which is used to represent the CLASSIC language and
interpret components of the language. The pattern makes the extension of
language easier. New description constructors can be added without affecting
other parts of the system.

e the Prototype pattern, which is used to represent role fillers. The application of the

pattern makes it easier to plug in and support new data types.

101

the Observer pattern, which is used to manage changes to individuals.
Changes to the state of one individual may affect other individuais in the system.
The pattern establishes dependency relationships between individuals, so that
when the state of an observed individual changes, other individuals will be
informed of the change and will be updated automatically.

the Facade pattern, which 1s used to simplify the interface of the knowledge base.
The knowledge base is composed of many components and they interact with
each other. The interaction may be complex and hard to understand for those who
do not understand those components. The pattem encapsulates the complexity of

the interactions and provides a very simple interface for others to use.

the Strategy pattern, which is used to encapsulate the algorithms of how input
streams are interpreted. In order to allow as many kinds of clients as possible to
connect to it, the system should not restrict the data format that a client uses to
communicate with the engine. A parser is needed to translate client data formats
to the format that the engine can understand. The pattern encapsulates each kind
of parser as a class and makes them interchangeable. New client data formats can

be supported by plugging-in a new parser.

the Singleton pattern, which is used to ensure that no more that one instance of a
class is created. The singleton class in responsible for managing its instance, thus
avoiding the drawback of using global variables. In the implemented system,
descriptions are shared across the system, i.e., there is only one copy of each
description and it is shared by other components in the system. The descriptions
are stored in a class that manages all of the instances created. There can be only

one such manager, and it is made a singleton. In addition, the name space

102

manager, which manages the string names of components in the system, is

also a singleton.

e the Flyweight pattern, which is used to share descriptions within the system.
When a system uses a large number of fine-grained objects, it will be very costly
if each use of the object requires a new copy of the object. Making these objects
sharable in different contexts greatly reduces resource consumption. The pattern
is used to make descriptions sharable. The use of this pattern also makes memory

management more efficient and less error prone.

The preceding discussion shows that the first auxiliary objective (studying design
patterns) is fulfilled. The third (applying design patterns to the system) and fourth
(documenting the patterns) auxiliary objectives are fulfilled by the discussions in section
5.2 and section 5.3. Because the four auxiliary objectives are achieved, the primary
objective is also achieved. Seven patterns have been applied to the design and
implementation of the system, so the conclusion that design patterns are applicable to

knowledge inference systems can also be drawn.
6.2 Future Work

This section will discuss several directions in which the future work could proceed. The
future directions concern two different aspects of this research work. The first direction is
the study of other knowledge inference systems and trying to 6mineé patterns in those

systems. The other direction concerns with the implemented system 1 the extension of the

system and studying the actual consequences of the application of design pattemns.

103

6.2.1 Design Patterns in Other Systems

The approach taken in this research work was to first study design patterns, and then try
to apply design patterns to the design and implementation of a knowledge inference
engine. Whether design patterns are applicable to the domain depends on whether or not
any design patterns could be applied to the system. Another approach to the evaluation is
to do reverse engineering, or "pattern mining". The idea of "pattern mining" is to study

existing systems in-depth, then identify and document design patterns in the systems.

"Pattern mining" is an important activity conducted in the pattern community. Many of
the design patterns currently available were found this way. By studying existing
systems, it is possible to find many domain specific patterns. These patterns are valuable
assets to the domain, which may be buried in experts' mind or otherwise lost in source

code.

There are many existing systems that may be considered for "pattern mining". Such
systems may include KRS, NeoClassic (discussed in chapter 3), Loom (MacGregor and
Brill, 1992), etc. These systems were all implemented in Objected Oriented languages,
which makes them valuable subjects for study as the purpose of this research is to study
design patterns, especially Objected Oriented software design patterns in knowledge

inference systems. However, this is not to say that other systems may not be studied.
6.2.2 Extending the System

As discussed before, the main focus of this research was not to develop a powerful
knowledge inference system. Thus, the system developed to date supports only basic
knowledge inference functionality. This leaves much space for future extension, which is
another future direction of work - to extend the system to include other functions.

104

There are two types of extension: one extension is to improve the power of the

system, and another is to extend it to interact with other programs.
6.2.2.1 Improving the Representation Power of the System

Complex descriptions in the system are built from simple descriptions using description
constructors. One way to improve the power of the system is to add more description
constructors to the system. With more description constructors, the system will have
richer representation power. The possible description constructors may include the not
constructor that negates a description, and the some constructor that specifies partial
constraints. Another way to enhance the system is to add more data types to the system.
Since the system treats primitive data types as built-in concepts, more data types will give

Users more representaﬁon power.

The system had implemented several data types to represent integer, floating point
number, and character string. A user may need to use other data types to represent
domain knowledge. The system may be enhanced by adding other data types, such as
date, or other types that may be required by specific applications. The more types of data

in the system, the more representation power the system should have.

However, the more description constructors and data types the system supports, the more
complex the system will become. This is especially true for description constructors.
Adding more description constructors will increase the complexity of the system, and
more intensive computation will be required. Thus, when extending the system, one
should balance representation power and system complexity so that the representation of

the system is rich enough, while at the same time not requiring too much computation.

105

6.2.2.2 Interacting with Other Programs

The system is designed as a server application which accepts a client request, does certain
work on behalf of the client and returns results to the client. Obviously, another direction
for extending the server is to extend the interface of the system, enabling more kinds of

clients to interact with it.

To the time this thesis was written, the system had only a text-based interface; client
programs communicate with the server through text streams, and results are returned as
text streams. The text-based interface is simple. The syntax of the text stream is the same
as the grammar of CLASSIC described in Appendix. For example, to create a concept
adult which is defined as a person and whose age is greater than 18, one can send the

following text stream to the system:
create_concept (adult, (and, person, (minimum age, 18))})

where person is a previously defined concept in the system.

Though the text-based interface is very easy, some argue that visual presentation of
knowledge is more readily understood (Nosek and Roth, 1990). Extending the system to
add a visual front-end should greatly improve the usability of the system. Right now, the
author is working on a task to extend the system so that it can interact with Constraint
Graphs (Kremer, 1997), which is a framework for concept mapping languages. The work
will be reported elsewhere when the work is finished.

The future work outlined in this section has two implications for the research work. First,
the implemented system can be seen as a test that evaluates whether design patterns
actually bring benefits to system design. Current work has shown that the application of

design patterns in the system does simplify extension work. The extension of the system

106

to interact with Constraint Graph needs only another Parser class which understands
the data format of the Constraint Graph. Secondly, through the extension, the system may

be used in other applications.
6.3 Summary

This thesis has described research work that evaluates whether or not design patterns are
applicable to knowledge inference systems. Although design patterns have been
recognized by the software industry for several years, there are no reports regarding
design patterns or their application in knowledge inference systems. What is the reason

for this phenomenon? Is it because design patterns are not applicable to the domain?

The author thinks that design patterns are applicable to the domain. There are several
approaches to verify the proposition {t one can study existing systems and interview
domain experts, or one can try to apply design patterns to the design and implementation
of such a system. The author chose the latter approach @ design and implement one such

system and check whether or not design patterns are applicable.

The thesis has described design patterns, their components, their value, and their
applications. A pattern involves a general description of a recurring solution to a
recurring problem replete with various goals and constraints. Design patterns provide a
structural and easily understood form for documenting and sharing successful experience
among developers. They help improve communication among developers by providing a
common vocabulary that has a higher level abstraction. Design patterns have been
applied in a wide variety of systems, such as telecommunication, concurrent programs,

telephony, MIS, GUI, etc.

107

The requirements analysis for the implemented knowledge inference system was
given in chapter 4. In addition to the system design and implementation, chapter 5
described the design patterns applied in the system. These design patterns make the

system more flexible and extensible.

The final chapter has described how the research has met its original objectives of
evaluating the applicability of design patterns in knowledge inference systems. The
research shows that design patterns are applicable to this particular domain. The chapter

also gives two possible directions for future work:

e "pattern mining" — studying existing knowledge inference systems, identifying

and documenting design patterns in those systems,

e extending the system so as to give it more representation power, or the ability to

interact with other programs.

Appendix: The CLASSIC Grammar

A.1 Original Grammar of CLASSIC

108

This section is the original grammar defined in CLASSIC. The grammar is excerpted
from (Resnick, Patel-Schneider, McGuinness, Weixelbaum, Abrahams, Borgida, and

Brachman 1996).

Description

ThingDescription

ClassicDescription

HostDescription

I

ThingDescription |
ClassicDescription |

HostDescription |
IncoherentDescription

Thing |

(and)

ClassicThing |

ClassicConcept |

{ and ClassicDescription+) |

(oneOf ClassicIndividual+) !

(atLeast Positivelnteger Role) |

{ atMost NonNegativeInteger Role) |
{ £fills Role ClassiclIndividual+)

{ £fills Role HostIndividual+) |

(211 Role Description) |

(testC ClassicTestGenerate Parameter*)
HostThing |

Number |

Integer |

Float |

String |

HostConcept |

and HostDescription+) |

oneOf HostIndividual+) |

minimum Number) |

maximum Number) |

testH HostTestGenerate Parameter*)

—~ e~ o~ o~ e~

109

IncoherentDescription :

‘e
]

(one-of)
Role := Symbol
ClassicConcept := Symbol
HostConcept := Symbol
Rule := Symbol
ClassicIndividual := Symbol
HostIndividual := " string” |

int |

float
ClassicTestDetail ::= Symbol
HostTestDetail ::= Symbol
Number := izzll
Parameter ::= NeoObject

A.2 Modified Grammar Used in Project

Description ::= Concept |
DescriptionConstructor

Concept ::= Symbol

DescriptionConstructor ::= (and Description+) |

oneOf Individual+) |

atlLeast PositivelInteger Role) |
atMost NonNegativeInteger Role) |
minimum Role Number) |

maximum Role Number) |

fills Role Individual+) |

all Role Description)

e e T e e e e

Role ::= Symbol
Rule ::= Symbol
Individual : Symbol |
: " string" |
= Integex |
Fleat
Symbol ::= String

string ::= { char }’

110

Number ::= Int |
float
Positivelnteger 2= [1..9 1{ 0..9 }

NonNegativeInteger = { 0..9 }~

111

References

Abadi, M. and Cardelli, L. (1996). 4 Theory of Objects. New York, Springer, 1996.

Abrahams, M.K., McGuinness, D.L., Patel-Schneider, P.F., Resnick, L.A., Thomason,
R.H., and Conati, C. (1996). NeoClassic Knowledge Representation System Tutorial,
AT&T, http://www.research.att.com/sw/tools/classic/papers/NeoTut/NeoTut.html, 1996.

Alexander, C. (1977). A pattern Language: Townms, Buildings, Construction, Oxford
University Press, 1977.

Alexander, C. (1979). The Timeless Way of Building, Oxford University Press, 1979.

Apple Computer Inc. (1989). Macintosh Programmers Workshop Pascal 3.0 Reference,
Cupertino, California, 1989.

Appleton, B. (1997). Patterns and Software: Essential Concepts and Terminology,
http://www enteract.com/~bradapp/docs/patterns-intro.html, April 1997.

Beck, K. Coplien, J. O., Crocker, R., Dominick, L., Meszaros, G., Paulisch, F., and
Vlissides, J. (1996). Industrial Experience with Design Patterns, Proceedings of ICSE '96,
Berlin, pages 103-114, March 1996.

Borgida, A. (1992). Towards the Systematic Development of Description Logic
Reasoners: CLASP Reconstructed, KR-92, 1992.

Borgida, A. and Brachman, R. (1992). Customizable Classification Inference in the
ProtoDL Description Management System, Conference on Information and Knowledge
Management, Baltimore, November 1992.

Borgida, A. (1995). Description Logics in Data Management, JEEE TKDE, October
199s.

Borgida, A., Brachman, R. J., McGuinness, D. L., and Resnick, L. A. (1989). CLASSIC:
A Structural Data Model for Objects, Proceedings of ACM SIGMOD International
Conference on Management of Data, June 1989.

112

Borgida, A.and Brachman, R. J. (1993). Loading Data into Description Reasoners,
Proceedings 1993 ACM SIGMOD International Conference on Management of Data,
Washington, DC., May 1993

Borgida, A. and Patel-Schneider, P. F. (1994). A Semantics and Complete Algorithm for
Subsumption in the CLASSIC Description Logic, Journal of Artificial Intelligence
Research, Vol. 1, 1994.

Borgida, A. and Kudenko, D. (1994). Modular Implementation of Individual Reasoning
in PROTODL - the Extensible Describption Logic Management System, Technical
Report, lcsr-tr-237, Department of Computer Science, Rutgers University, New
Brunswick, December 1994.

Borgida, A. and Mcguinness, D. L. (1996). Asking Queries about Frames, KR-96,
Boston, Mass., 1996.

Brachman, R.J.,, Selfridge, P.G., Terveen, L.G., Altman, B., Borgida, A., Halper, F., Kirk,
T., Lazar, A., McGuinness, D.L., and Resnick, L.A. (1993). Integrated Support for Data
Archaeology, International Journal of Intelligent and Cooperative Information Systems ,
2:159-185, 1993.

Brown, K. (1996). Using Patterns in Order Management Systems: A Design Patterns
Experience Report, Object Magazine, January 1996.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. (1996). Pattern-
Oriented Software Architecture: A System of Patterns, John Wiley & Sons, New York,
New York, 1996.

Coplien, J. O. (1994). Software Design Patterns: Common Questions and Answers,
Proceedings of Object Expo New York, New York, SIGS Publications, June 1994.

Coplien, J. O. (1996a). The Human Side of Patterns, C++ Report, 8(1), January 1996.
Coplicn, J. O. (1996b). Software Pattems, SIGS Books, New York, New York, 1996.

Coplien, J. O. (1997a). Idioms and Patterns as Architectural Literature, JEEE Software
Special Issue on Objects, Patterns, and Architectures, 14(1), January 1997.

Coplien, J. O. (1997b). 4 Pattern Definition,
http://st-www.cs.uiuc.edu/users/patterns/definition.html, March 1997.

113

Coplien, J. O., and Schmidt, D.C., Eds (1995). Pattern Languages of Program Design,
Reading, Massachusetts, Addison-Wesley, 1995.

Duell, M. (1996). Experience in Applying Design Patterns to Decouple Object
Interactions on the Inteiligent Peripheral Prototype, COPSLA, Addendum, 1996.

Gabriel, R. P. (1997). Developing Patterns Studies in Architecture Point the Way to
Understanding and Improving Software Development, /nfo World, Vol. 19, Issue 5,
February 1997.

Gaines, B. R. (1991). An Interactive Visual Language for Term Subsumption Language,
IJCAI'91: Proceedings of 12th International Joint Conference on Artificial Intelligence,
San Mateo, California, August 1991.

Gaines, B. R. (1993). A Class Library Implementation of a Principled Open Architecture
Knowledge Representation Server With Plug-in Data Types, LJCAI'93: Proceedings of
13th International Joint Conference on Artificial Intelligence, San Mateo, California,
1993.

Gaines, B. R. (1995). Class Library Implementation of an Open Architecture Knowledge
Support System, International Journal of Human-Computer Studies, 41(1-2), 1995.

Gamma, E. (1991). Object-Oriented Software Development based on ET++: Design
Patterns, Class Library, Tools, PhD Dissertation, Institute of Information, University of
Zurich, 1991.

Gamma, E., Helm, R., Johnscn, R., and Vlissides, J. (1994). Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, Reading, Mass., 1994.

Grady, B. (1994). Object-Oriented Design with Applications, 2nd Edition, CA:
Benjamin/Cumming, 1994.

Jain, P., and Schmidt, D. C. (1997). Service Configurator: A Pattern for Dynamic
Configuration of Service, Proceedings of the 3rd Conference on Object-Oriented
Technologies and Systems, USENIX, June 1997.

Krasner, G. E. and Pope, S. T. (1988). A Cookbook for Using the Model-View-Controller
User Interface Paradigm in Smalltalk-80, Journal of Object-Oriented Programming,
SIGS Publications, New York, New York, 1(3), August/September 1988.

114

Kremer, R (1997). Constraint Graphs: A Concept Map Meta-Language, PhD
Dissertation, Department of Computer Science, University of Calgary, June, 1997.

Lavender, R. G., and Schmidt, D. C. (1995). Active Object — An Object Behavioral
Pattern for Concurrent Programming, Proceedings of the Second Pattern Languages of
Programs conference, Monticello, Illinois, September, 1995.

Lea, D. (1997a). Christopher Alexander: An Introduction for Object-Oriented Designers,
http://gee.cs.oswego.edu/dl/ca/ca/ca.html, Computer Science Department, State
University of New York at Oswego, March 1997.

Lea, D. (1997b). Patterns-Discussion FAQ, http.//g.oswego.edu/dl/pd-FAQ/pd-FAQ.html,
Computer Science Department, State University of New York at Oswego, April 1997.

MacGregor, R.M. and Brill, D. (1992). Recognition Algorithms for the Loom Classifier,
Proceedings of the Tenth National Conference on Artificial Intelligence, (AAAI 92), pp.
774-779, 1992. http://www.isi.edw/isd/LOOM/LOOM-HOME.html

McGuinness, D. L. and Borgida, A. (1995). Explaining Subsumption in Description
Logics, IJCAI'95: Proceedings of 14th International Joint Conference on Artificial
Intelligence, Montreal, August 1995.

McGuinness, D. L. and Isbell, C. (1995). Description Logic in Practice: A CLASSIC
Application, IJCAI'95: Preceedings of the 14th International Joint Conference on
Artificial Intelligence, Montreal, August 1995.

McGuinness, D.L. and Wright, J.R. (1998). An Industrial Strength Description Logic-
based Configurator Platform, to appear in B. Faltings and G. Freuder, editors, JEEE
Expert Special Issue on Configuration, 1998.

McClure, C. (1997). Reuse Engineering: Adding Reuse to the Software Development
Process, Prentice-Hall, 1997.

Nebel, B. (1990). Reasoning and Revision in Hybrid Representation Systems. Berlin:
Springer-Verlag, 1990.

Nosek, J.T., and Roth, I. (1990). A Comparison of Formal Knowledge Representation
Schemes as Communication Tools, Predicate Logic vs. Semantic Network, International
Journal of Man-Machine Studies, 33: 227-239, 1990.

115

Patel-Schneider, P. F., Abrahams, M., Resnick, L. A., McGuinness, D. L., and Borgida,
A. (1996). NeoClassic Reference Manual: Version 1.0, Artificial Intelligence Principles
Research Department, AT&T Labs Research, 1996.

Prechelt, L. (1997). An experiment on the usefulness of design patterns: Detailed
description and evaluation, Technical Report 9/1997, Fakultat fur Informatik, Universitat
Karlsruhe, Germany, June 1997. fip.ira.uka.de.

Prechelt, L., Unger, B., Philippsen, M., and Tichy, W. (1997). Two Controlled
Experiments Assessing the Usefulness of Design Pattern Information During Program
Maintenance, submission to Empirical Software Engineering, December 1997.

Pree, W. (1995). Design Patterns for Object-Oriented Software Development, Reading,
Addision-Wesley, Reading, Mass., 1995.

Resnick, L. A., Patel-Schneider, P. F., McGuinness, D. L., Weixelbaum, E., Abrahams,
M. K., Borgida, A., and Brachman, R. J. (1996). NeoClassic User's Guide: Version 0.7,
Artificial Intelligence Principles Research Department, AT&T Labs Research, 1996

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorenson, W. (1991). Object-
Oriented Modeling and Design, Prentice Hall, Englewood Cliffs, NJ, 1991.

Salingaros, N. A. (1997). Some Notes On Christopher Alexander,
http://www.math.utsa.edu/sphere/salingar/Chris.text.html, April 1997.

Schmidt, D. C. (1994). Reactor - An Object Behavioral Pattern for Event Demultiplexing
and Event Handler Dispatching, Proceedings of the First Pattern Languages of Programs
Conference, Monticello, Illinois, August, 1994.

Schmidt, D. C. and Stephenson, P. (1995). Experience Using Design Patterns to Evolve
Communication Software Across Diverse OS Platforms, Proceedings of the 9th
European Conference on Object-Oriented Programming, Aarhus, Denmark, August
1995.

Schmidt, D.C. (1995a). Experience Using Design Patterns to Develop Reuseable Object-
Oriented Communication Software, Communications of the ACM, Special Issue on
Object-Oriented Experiences, Vol.38, October 1995.

116

Schmidt, D.C. (1995b). An OO Encapsulation of Lightweight OS Concurrency
Mechanisms in the ACE Toolkit, Technical Report, WUCS-95-31, Department of
Computer Science, Washington University, St. Louis, MO, 1995.

Schmidt, D.C. (1995c). Object-Oriented Components for High-speed Network
Programming, the Proceedings of the Ist Conference on Object-Oriented Technologies
and Systems, USENIX, Monterey, June 1995.

Schmidt, D. C., Johnson, R. E., and Fayad, M. (1996). Software Patterns,
Communications of the ACM, Special Issue on Patterns and Pattern Languages, Vol. 39,
No. 10, October 1996.

Schmidt, D. C. (1996a). A Family of Reusable Design Patterns for Application-level
Gateways, Theory and fractice of Object Systems, special issue on Patterns and Pattern
Languages, Wiley and Sons, Vol 2, December 1996

Schmidt, D. C. (1996b). A Family of Design Patterns For Flexibly Configuring Network
Services in Distributed Systems, Proceedings of the International Conference on
Configurable Distributed Systems, Annapolis, Maryland, May 1996.

Schmidt, D. C. (1996c). Acceptor and Connector: Design Patterns for Initializing
Communication Services, European Pattern Language of Programs conference, Kloster
Irsee, Germany, July /996.

Schmidt, D. C., and Cleeland, C. (1997). Applying Patterns to Develop Extensible and
Maintainable ORB Middleware, Communications of the ACM, Special Issue on Software
Maintenance, Vol. 40, No. 12, December 1997.

Vlissides, J. (1997). Patterns: The Top Ten Misconceptions, Object Magazine, March
1997.

Wright, JR., Weixelbaum, E.S., Brown, K., Vesonder, G.T., Palmer, S.R., Berman, J.I,
and Moore, H.H. (1993). A knowledge-based configurator that supports sales,
engineering, and manufacturing at AT&T network systems, Proceedings of the
Innovative Applications of Artificial Intelligence Conference, pp.183—193, 1993.

IMAGE EVALUATION
TEST TARGET (QA—3)

al 3 &l
L EEE

Q aQ - -h
E EEEFEITTT

o =l

.6

i
Il

L4

150mm

l

.25

© 1993, Applied Image, Inc., All Rights R

s ———
——

|

