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Abstract 

Many different approaches have been tried to build accurate, efficient symbol recognizers. Under 

the umbrella of prototype-based symbol recognizers, there is a spectrum ranging from rigid 

template matching to matching via deformable templates. However, the former is fast but not so 

accurate and the latter are very accurate but also very slow. We consider merging the best of both 

worlds into a new prototype-based classifier, one that is fast and robust. 

We present an efficient, adaptable representation of prototypes as vector templates, and an 

image metric, the Inkwell Hausdorff distance, that is fast yet tolerant to small misalignments. 

This technique is shown to be faster that existing techniques, with only a slightly lower accuracy. 
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Chapter 1 

Introduction 

1.1 Introduction to Symbol Recognition 

A post office can receive an enormous amount of mail in a day, which poses problems for its 

ultimate delivery. The letter mail must be sorted into piles based on which area it is intended for. 

This is usually done through the use of some kind of special code on each envelope that 

designates where the mail is going to, called a ZIP Code in the United States or a Postal Code in 

Canada. People often sort this mail by hand. Wouldn't it be nice if computers could automate 

this mundane task? What makes the problem difficult is that this information is not always in the 

same place on the envelope, and once it is found it can be hard to read. This is because it can be 

hand-written and thus in many different styles. 

Consider another problem involving the use of "Multi-Nova" cameras for automatic detection 

of speeding cars. They photograph the license plates of cars traveling faster than the speed limit, 

and then save this image to possibly give the traffic violator a ticket. We say possibly because 

there could be some level of uncertainty in the image. When the image is taken, it may happen 

that the license plate has been obscured for some reason (perhaps it was very dirty), or was 

difficult to read due to glare, reflection, etc. Because of this, a small panel of people review each 

image taken by the camera, and decide whether the license plate is legible enough to avoid any 

mistaken identity. They want to ensure that one person doesn't get a ticket for someone else's 

fast driving. Even though the detection of speeders has been automatic, their identification has 

not. Why should a group of people have to perform this repetitive task? Because symbol 

recognition is a hard problem for computers to solve. 

This thesis is about symbol recognition. The problem of symbol recognition is that of being 

able to understand what object an image represents; the task of assigning labels to objects. In 

general for people, this is an easy task. For example, it is that of recognizing a single letter, 

machine printed or handwritten. It is that of recognizing a "smiley face" and knowing what 

emotion it indicates. 



(a) 
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Figure 1 Smiley-faces are symbols 

This is a seemingly easy problem for people to solve - we can easily look at a page of text and 

recognize letters on it. If we consider the words on a page as the symbols, even in the presence of 

spelling errors, we can easily classify the words into their proper symbol class. We can look at a 

stained napkin from a restaurant with a phone number scribbled on it with a splotchy fountain pen 

and still decipher the digits. For machines this problem is much more difficult. The nature of the 

difficulty comes from the underlying digital representation of an image. Here is an example of an 

image (Figure 2) that would be easily recognizable to humans, if it were not in computer form. 

255 255 255 255 255 255 243 239 255 255 

255 255 255 255 246 187 149 158 252 255 

255 255 243 186 179 129 128 164 255 255 
255 255 248 160 107 128 130 207 255 255 
255 248 165 124 136 136 113 175 247 255 

255 182 96 97 97 97 109 98 173 251 

252 140 97 97 97 97 97 96 123 240 

254 153 97 96 97 97 97 97 117 236 
255 214 97 97 96 97 96 98 144 247 

255 254 168 104 96 96 99 124 225 255 

255 255 251 220 177 157 181 231 255 255 

Figure 2 Digital Image - what is it? 

But in this format, how do we know what it represents? A computer sees an image in the 

format that comes from computer graphics. It divides up a page into many small squares, much 

as if it was drawn on graph paper. A single number is used to represent each such square, or pixel 

(picture element). This format is well suited for creating photographic images but is an extremely 

poor representation for computer vision. All objects contained in a scene in this type of format 

must be recognized from only this view of the data. The matrix of numbers from Figure 2, when 

plotted as a greyscale image is shown in Figure 3 (a): 

(b) 
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Figure 3 A greyscale apple at various resolutions. 

In Figure 3 (a), we have a scaled down version of an apple at lOxil resolution. This apple was 

obtained from the image in (b), which is at 53x56 resolution, by scaling it down. The numbers in 

Figure 2 represent the grey values for the pixels. They can range from 0 to 255 and 0 indicates a 

black pixel and 255 indicates a purely white pixel. 

Another example of symbol recognition can be found below. The next two images, Figure 4 

and Figure 5, contain both a library of symbols (the alphabet), and then some noisy text that 

contains letters from this alphabet. In this case the symbol set is that of 25 electric symbols that 

may be found on schematic diagrams from electrical engineering. 

Figure 4 Library of electric symbols 

Given this library, suppose we have an image of a large schematic diagram that connects these 

symbols in some way. It would be desirable to be able to identify the symbols in the image and 

therefore understand the nature of how the symbols are connected to each other. This allows 

potential for a richer user-interaction with the schematic, as well as allowing analysis of the 

schematic itself. Images of these schematics can be of a rather poor quality. Every time a 

schematic is photocopied, a certain level of error is introduced. Even in the face of noise, we 

would like to able to reliably identify the symbols on the page. Noise in an image can be defined 

loosely as any extraneous or missing pixels that obscure the real contents of the image. Consider 

such a noisy image in Figure 5. The symbols on the page were machine-generated, but the entire 

image has had artificial noise added. There are two kinds of noise present. The first kind is 

called salt and pepper noise and was generated by randomly toggling bits in the image with a 

fixed probability. The second kind of noise was boundary noise. This was generated by 

randomly toggling pixels with a probability that was dependent on how close the pixel was to 

boundary pixels. The closer a given pixel is to a boundary, the more likely it would be flipped. 
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This type of noise was intended to simulate the effects of photocopiers, where the edges 

sometimes become blurry in poorer quality machines. 

Figure 5 Noisy image with electric symbols. 

A person can still easily tell which symbols are contained in the image, but with the extra noise 

it can become a tough problem for computers to solve. 

The next example shows some of the problems inherent with symbols that are hand-drawn. In 

Figure 6, we see an image of a hand-drawn phone number. Notice the variation in all of the 

digits, even in the first two instances of the digit '2'. These digits were randomly selected from a 

hand written digit database, comprised of digits from many different authors. 

Figure 6 A handwritten phone number 

All of the examples so far have shown symbol recognition examples where segmentation was 

not an issue. That is, it was easy to find the set of symbols that had to be recognized, and no 

sophisticated techniques for separating adjacent symbols was necessary. Often times this can be 

one of the most difficult problems that a symbol recognition system has to solve. Not only do we 

have to separate a connected region into symbols, sometimes we have to do the reverse, combine 

two unconnected regions so they are treated as a single symbol. Symbols made of multiple parts 

can be seen in the electric symbol library of Figure 4. The problem appears in two different ways 

as well. In one case, one region completely surrounds another, as in the case of the "ammeter" or 
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the "voltmeter". In the case of the "ground" symbol (three horizontal bars), the symbol is made 

of three regions that appear to all be independent of each other. For cases like the "ground" 

symbol, a decision has to be made as to whether the segmentor or the recognizer is responsible 

for this work. In this thesis, we will assume it is the segmentation algorithm. 

Figure 7 Example of segmentation difficulties - the two '0's are connected to each other 

Advances in symbol recognition could also improve user interfaces, allowing people to use 

natural writing to communicate information to computers. However, this problem brings up an 

interesting difference between off-line and on-line algorithms. On-line algorithms are able to 

watch a user as he is drawing something. This means that time data is available in addition to the 

final image, you know when and how quickly a certain portion was drawn. In off-line symbol 

recognition, it means that the timing information is not available, only the final image. It turns 

out the extra information present from the on-line situation can improve recognition rates. The 

Palm Pilot, for example, boasts relatively high recognition rates using on-line algorithms. It also 

"cheats" a little by changing the way users do their handwriting. Since humans are so good at 

learning and adapting as opposed to our ability to instill these attributes to software, it is an 

efficient solution to the problem. It introduces a new way to draw letters, numbers, and some 

punctuation by a method called "Graffiti". Without going into to much detail, this new system of 

handwriting has made it easier for them to distinguish classes of letters that could otherwise 

appear quite similar. This better separation of classes is what gives better recognition rates. 

Having surveyed some of the difficulties in symbol recognition, we are now ready to form our 

problem statement. 

1.2 Problem Statement 

For the purposes of this thesis, we will not discuss segmentation techniques, and assume that the 

images we process have undergone the segmentation process already. Thus we will consider only 

the problem of classifying isolated symbols. We will not consider on-line recognition algorithms, 

as we would like to solve the more general off-line recognition problem. 
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How can we recognize symbols efficiently using a prototype-based classifier, improving the 

recognition rate over traditional template matching algorithms while at the same time making use 

of advances in 'deformable prototypes?' 

1.3 Goals 

Our goals will be two-fold. Primarily, we would like to develop a prototype-based symbol 

recognition algorithm that performs well: achieving not only high recognition rates but doing so 

efficiently. We will attempt to do this by extending the work done on Vector templates 

[Parker1995]. We would like to improve over traditional prototype-based techniques (defined in 

Chapter 2) while still retaining the adaptability of current techniques of deformable prototypes. 

Secondly, we would also like to investigate the problem of comparing two binary images, and 

propose some new techniques for measuring distance between images. 

1.4 Overview of the Thesis 

This thesis makes contributions to the field of symbol recognition on two levels. First, we review 

and extend the work on vector templates, an elastic prototype representation that is well suited to 

handle variation in handwritten symbols. Second, some new techniques for comparing images 

are introduced, borrowing ideas from graph theory and string matching. Since the algorithms for 

comparing images are in fact a component of the vector template work, we will present those first 

in Chapter 3, deferring the talk of vector templates to Chapter 4. 

The literature survey will be presented in Chapter 2. As there are many different techniques 

published for symbol recognition, we will have to focus on a few of the most representative ones. 

We will discuss the difference in a prototype-based and a prototype-free approaches to the 

problem, and then survey five key papers on prototype-based algorithms in detail. 

In Chapter 3, new approaches to measuring distance between images will be discussed. 

Among these, the Inkwell Hausdorff distance is the most significant, and yields some of the best 

results compared to other metrics when used in handwritten symbol recognition. The technique 

itself was discovered before; but its position in the literature was somewhat hidden. It is now 

clear that the distance measure we use, which we have named the Inkwell Hausdorff distance, is 

really a special form of the Hausdorff distance. Another technique presented is called the 

Longest-Common-Subsequence (LCS) distance. It applies a well known algorithm for 

approximate string matching to solve the problem of measuring image similarity (which can be 
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viewed as 2D string matching). Finally, an algorithm that relies on matching theory will be 

presented to compare images. Any of these algorithms, or a combination of them, can be used in 

conjunction with vector templates in a larger symbol recognition system. 

In Chapter 4, a flexible prototype model will be presented for use in prototype-based symbol 

recognition. A vector template is a dynamic prototype representation, and can match a variety of 

pattern variations, thereby making it suitable for handwritten symbol recognition. A system 

employing vector templates renders each prototype to match the style parameters of the 

unclassified image. In this way, an optimized template is used in each symbol comparison. The 

original work is extended in a number of ways. The utility of computing local stroke-width 

estimates is discussed and solutions to some common special case problems with vector templates 

are presented. Finally we will show how the distance algorithm we use with vector templates 

makes them into efficient deformable prototypes. 

Chapter 5 will contain a description of the system design, and how object orientation was used 

to build reusable components for future symbol recognition systems. Primarily the modeling of 

vector templates and image metric functions will be covered. 

In Chapter 6 we will discuss the experiments that were conducted and the datasets that we 

used. These datasets include both handwritten and machine printed symbols. The handwritten 

databases consist of four databases of isolated handwritten digits. The CENPRMI dataset consist 

of about 14,000 images, the ETL dataset consists of about 2,000 images, and the and also the 

USPS database of 9,300 images. Also, we use the large MNIST database, which is a benchmark 

dataset in symbol recognition, and contains about 70,000 images. Although most of the datasets 

are normalized to some degree, the MNIST database was normalized for size and orientation to a 

higher degree than the others. In the case of machine printed text, we examine an application of 

reading a few pages of a chess openings book, NCO, as well as a dataset of noisy symbols at 

various sizes and orientations from the electrical engineering domain. Vector templates were 

used to recognize this latter dataset with 100% accuracy, winning the symbol recognition contest 

of ICPR 2001. 

Finally, Chapter 7 presents some concluding remarks about the use of vector templates in 

symbol recognition, and suggests some new unexplored areas. 
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Chapter 2 

Symbol Recognition Algorithms 

Many different techniques have been tried to solve symbol recognition problems. It would be 

impossible to survey them all, and we do not need to, as there is of course some overlap in the 

different approaches. In this section, we present a survey of a small, but representative, sample of 

prototype-based symbol recognition algorithms. We will also start with a more concrete 

statement of what the isolated symbol recognition problem is. 

In essence we are given two sets of pre-classified data, called training data and testing, data. 

Using only the test data, we have to devise a function, the symbol recognition algorithm, that, for 

any image, will determine which symbol it represents. This is done by learning from the training 

data and then evaluating its performance on the test data. 

Formally, let I,, represent the space of all binary images, and suppose that we are given a 

subset of these images, X= {x1, ..., Xr}. Each image is associated with a certain symbol aEE = 

{ where E is sometimes called the alphabet. This association of images to symbols is 

represented by a classification function, f, : E. Whenf(x1) = o, that means that image x, 

represents symbol ap The ordered pair (X,f), i.e. both the set of images and the ground truth 

data, is called the training data, and r, the number of images in X, is the size of the training data. 

It will be used to develop a symbol recognition algorithm. A symbol recognition algorithm is a 

function from all images, to a symbol 

f: J,, - Y . (Eq 1) 

To evaluate our symbol recognition function, we are given an ordered pair (Y,f), where 

Y={yi,...,y} of m>< n images, andf is the classification function for Y. This ordered pair (Y, f) is 

called the test data. The images from the two sets X and Y are usually disjoint and the amount of 

training data is normally much larger than the amount testing data. We evaluate the symbol 

recognition algorithmf, by comparing how well it does with the ground truth functionf. The 

recognition rate off is computed as follows 
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S(f(y),f(y)) 

R(f)= ='  

S 

where 

(Eq 2) 

8(a,b)=1,ifa=band ö(a,b)—O ifa#b. 

Notice the expression in (Eq 2) simply counts how many symbols from the test data we classify 

correctly, as a percentage of the size of the test data. 

Before getting into the bulk of the literature survey, it is important to define a few other key 

terms used in this section, including exemplar, prototype, and template. An exemplar is a specific 

image representing one particular symbol. A prototype is some representation of an exemplar 

(i.e. as an image, as a shape signature, as a set of lines). A prototype encodes the essential 

qualities of the symbol to facilitate robust recognition. A template is one particular kind of 

prototype; one that represents symbols by images. Templates were one of the first methods of 

prototype representation. A model is some representation of the total knowledge that describes a 

particular symbol. In a prototype-based system, a model of a symbol is made up of the set of 

prototypes for that symbol. 

We will now discuss the dichotomy that symbol recognition algorithms fall into. In a 

prototype-based classifier, we compare an image against a set of prototypes. Whichever 

prototype most resembles the image decides its symbol class. For example, in the context of digit 

recognition, when classifying an image of an isolated digit, we would compare it with every 

prototype digit we have in our database. A quite different approach is to somehow learn what it 

is that distinguishes members of the various symbol classes. This knowledge can usually be 

compactly represented and allows the program to easily decide which symbol an image 

represents. A good example of this type of classifier would be a decision tree or a neural net. 

This type of approach yields a prototype-free algorithm - it is impossible to factor out which 

parts of the system are based on any one particular training prototype; all of the knowledge is 

combined into a single black-box unit. 

Thus, symbol recognition algorithms are primarily either prototype-based or prototype-free. 

Of course, one can imagine a hybrid system as well, but if we omit discussion of multiple 

classifiers that combine many different strategies, a given algorithm can generally be classified as 

one or the other. 
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2.1.1 Prototype-Free Algorithms 

Prototype-free algorithms can be thought of as rule-based classifiers. They store, rather than a set 

of prototypes, a set of rules about certain features of images of the various symbols. Neural nets 

and decision trees are good examples of prototype-free algorithms. The algorithms under this 

broad grouping attempt to summarize the properties of a given class of patterns. A set of features 

are computed for each training image and this information updates the current state of the 

classifier. Classifying an image involves computing the features for that image only, and then 

performing a small computation to determine the image class; (e.g., by feeding the values through 

a neural net or decision tree). 

Since we are primarily concerned with prototype-based symbol recognition, we will point the 

reader to a good survey of some prototype-free algorithms. Yann LeCun, who manages the 

benchmark MNJST database for hand-written digit recognition, composed a survey of many 

learning algorithms, comparing not only performance, but training time, recognition time, and 

memory requirements [LeCun1995]. 

2.1.2 Prototype-Based Algorithms 

The prototype-based approach uses a library of prototypes and compares an image with each one. 

The results of these comparisons are given to a classifier, which can simply be the nearest-

neighbour strategy, where only the best prototype is reported, or a more sophisticated classifier. 

We show an example of a prototype-based classifier in Figure 8, where we have 5 symbols {K, 

Q, R, B, N}. We store 6 prototypes for this set, one for each symbol, except a Q, which has two 

prototypes. These symbols represent the pieces used in the game of chess, {K = King, Q 

Queen, R = Rook, B = Bishop, and N = Knight}. If we are trying to classify the image of a hand-

drawn Rook, we compare it to all prototypes in the library (in this case shown visually as images) 

and select the one that most closely matches our image. We report the symbol it represents as the 

classification of the image. 
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Figure 8 A Prototype-based classifier. 

In any case, the running time for classifying an image is proportional to the number of 

prototypes in the library. If the alphabet is large, or each symbol requires numerous prototypes, 

performance could degrade rapidly. This makes the prototype-based approach well suited for 

distinguishing between a relatively smaller number of symbols, such as digits, or Latin-alphabet 

characters, but unwieldly for larger alphabets, such as Chinese ideographs. 

In a prototype-based system, the questions of how to represent prototypes and how to measure 

distance (dissimilarity) between a prototype and an image need to be addressed. The literature 

survey in the remainder of this chapter discusses different attempts at answering these questions. 

In addition to those representations that we will look at in detail, there are many other choices 

for prototype representation in the literature. To list a few, prototypes are represented as images, 

as feature vectors, as shape signatures, using a set of moments, slope-histograms, etc. Depending 

on this representation, one decides how to measure the similarity between a prototype and an 

image. 

Furthermore, prototype representations can be grouped loosely into two categories: graphical 

and statistical. Other authors note this division as well, "we propose a dichotomy of matching in 

pattern space versus matching in feature space" [Wakahara1994]. A graphical (or pattern-space) 

representation could be an image or a shape signature. It can be defined as such a representation 

as that from which one can construct an exemplar of the symbol it represents. 

Thus, one can often visually see the similarity in graphical representations. An example of a 

statistical (or feature-space) representation is storing an abstract feature vector for each prototype. 
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Various values can be used for features such as area, perimeter, circularity, moments, girth, etc. 

It is usually not possible to produce a sample image of what symbol this prototype represents. 

After deciding on the prototype representation, we need to answer the question "How similar is 

a given image compared with certain prototype?" Measuring similarity of course depends 

heavily on the prototype representation. For pictorial prototypes, we have many spatial functions 

that can be used. Some of them insist on a direct overlap of pixels while others have a more 

lenient measure, one that is tolerant to small perturbations in the image. Many such techniques 

will be discussed in Chapter 3. For statistical prototypes, often a measure, like Euclidean-

distance, is computed in the feature space of the prototypes. The same set of features is computed 

for the given image, and it is compared with each prototype. Of course some normalization for 

different coordinates of the features may take place as some features may have a higher weight 

than others. 

2.1.3 A Comparison of Prototype-Based vs. Prototype-Free Algorithms 

In general, prototype-free algorithms use far less memory and have smaller running times 

compared to their prototype-based counterparts. However, they can be difficult to train and this 

may require a lot of processing ahead of time. Also, not only is this training difficult and time 

consuming, but has to all be redone in order to extend the system. With a prototype-based 

approach, the set of prototypes can be changed very easily. A few new prototypes can be added 

and the system immediately "knows" more patterns. 

Discussing both approaches thoroughly would be outside the scope of this thesis. In what 

follows, we will only provide a survey of prototype-based systems. It might be a natural question 

to ask which of these two broad categories is more effective at handwritten symbol recognition. 

Unfortunately, this is an extremely difficult question to answer. Yan LeCun described the 

"Boosted LeNet-4" (prototype-free) algorithm and, on the benchmark MNIST database, reported 

an error rate of only: 0.7%, yielding a recognition rate of'99.30%. This number has been recently 

surpassed by a prototype-based algorithm [Belongie1999], who report a recognition rate of 

99.33%. This type of "leap-frogging" indicates that it is not yet apparent which types of 

algorithms, prototype-based or prototype-free, are best suited for handwritten symbol recognition. 
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2.2 A Survey of Prototype-Based Symbol Recognition 

2.2.1 Template Matching [VanderBrug1977] 

One of the oldest symbol recognition applications is OCR - Optical Character Recognition, 

where the problem is to reconstruct the text (in ASCII) from an image representing a page of 

machine printed text. One of the first approaches to solve this problem was that of storing a small 

bitmap for each possible character [VanderBrug1977]. That meant one for each lowercase letter, 

uppercase letter, digit and punctuation character. Since the font was uniform throughout, it was 

possible to enumerate in this way all the possibilities that would be encountered. Not only was 

the font-face uniform but all symbols were the same size and at the same orientation. One could 

segment the image into distinct symbols and classify these individually. An image was classified 

by comparing it to every template and reporting the identity of the best matching template as the 

symbol associated with that image. When an image and template were compared, the simple 

approach of counting which proportion of the total foreground pixels overlapped could be used to 

measure similarity. 
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Figure 9 Example of a Knight symbol from a chess openings book. 

(c) 

In Figure 9, we see (a) a template of a Knight symbol, (b) an image of a Knight symbol (that 

we are trying to classify), and (c) both images super-imposed to see the extent of their overlap. 

The pixels are drawn as dark discs where the two overlap. This represents a pretty good match, 

which is not surprising, as both were obtained from the same machine printed page. 

This technique works well when recognizing symbols from such a controlled environment as 

machine-printed text, yet problems arise when any parameter of the input changed. If the font-

face, font-size, or orientation of the page happened to change, a new set of templates had to be 

produced. From Figure 10, consider how difficult it is to get a good match with a template and an 
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image under some transformations: (a) scaling, (b) rotation, and (c) line-thickening. In each 

case, many pixels are mismatched. 

Thus, extending this technique to work for hand-printed symbol recognition was not so easy. 

In hand printed symbols, the variation applied to the symbols is not uniform: each symbol, each 

time it appears, is slightly different. Even a given author often does not draw the same symbol in 

the same way. To illustrate the amount of variation one can encounter, consider Figure 11; which 

contains (a) machine drawn 0's and (b) hand-printed 0's. 

(a) 

(b) 

(c) 
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Figure 11 Variation in the capital letter '0'. 

The templates just presented are seen as too rigid when applied to handwritten symbol 

recognition. In an effort to make prototypes more elastic, many techniques were tried. The 

following sections gradually introduce the notion of deformable prototypes, until we arrive at the 

current state of the art. 

2.2.2 Angle-of-Sight Shape Signatures [Tchoukanov1992] 

Another guise that symbol recognition appears under is that of shape matching. A popular 

technique in shape matching is to use shape signatures. A shape signature is a 1D function that 

captures the shape of an object, usually as some parameterization of the boundary of the object. 

The concept of shape can be defined in many ways, but regardless of the exact definition, it 

should be invariant to rotation, to scaling, and translation. The authors in [Tchoukanov92] define 

shape as "a simply connected compact region in a 2D Euclidean space." This definition is not 

invariant to the aforementioned properties but the shape signature they define is. 

They provide a short survey of shape signatures, and include polar representation, the 

centroidal profile representation, the rectangular representation, the tangential representation, the 

curvature representation, the normal-contour-distance (NCD) signature, the slope density 

description, "signature", the angle-and-length chord distribution, and the gradient encoding 

scheme. 

It is insightful to see how a typical shape signature is computed. Often an origin is selected 

and then a measurement is made for each point along the boundary relative to this origin. In the 

polar representation, one can perform a radial sweep of the object from its centroid and record 

(r, 0 values of the boundary points. 
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•Z3 
(a) 

Figure 12 Performing a radial sweep along the boundary. 

(b) 

This can lead to a couple of problems. First, some objects have a center of mass that is not 

contained in the object itself. Sometimes the center of mass is a boundary point. This can cause 

problems when doing a radial sweep since the 0-value is not well-defined at these points. 

(a) 

(b) 

(c) 

0 r 

0 

r 

0 

r 

Figure 13 Shape signatures parameterized with (r, 0). 

The curves in Figure 13 show shape signatures computed using the (r,9) parameterization. The 

x-axis shows 0 values, while the y-axis shows r values. It is evident from Figure 13 that the (r, 9) 

representation has some undesirable properties. The relationship between rand 0 i not even a 

function, and at some points is not defined. 

Tchoukanov et al. propose a new scheme that is based on the parameterization of the boundary 

as a periodic function of one variable (a signature). They record the angle-of-sight, or AOS, of 

each boundary point to an origin that hovers above the image plane. A similar effect could be 

achieved by following the boundary and recording distance to the centroid as well. 

(a) 

x Ebdy(.4) 
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(b) 

(c) 

x Ebdy(A) 

c EbdyA) 

Figure 14 AOS Shape Signatures for some sample objects 

In Figure 14, AOS signatures are computed for a set of objects. In part (a) of Figure 14, we see 

a circle and its shape signature (a flat line), in (b) we see a maple leaf and its signature, and in (c) 

we see a '7' and its signature. The AOS signature has some important properties. It is a single-

valued function, defined at all points, and does not have abrupt changes in the signature 

amplitude. The signature is made rotation invariant by standardization of the starting point, a 

rotation of the image corresponds to a shift in the shape signature. It is made scale invariant by 

normalization of the function values, a change in scale in the image corresponds to a scaling of 

the function values. 

2.2.3 Local Affine Transformation [Wakahara1994] 

This work presents a more flexible prototype representation; one that is 'deformable'. Thinning 

is performed on both the input image and the templates, so the following discussion applies to 

skeletons. Wakahara et al. describe the application of Local Affine Transformations (LATs) to 

shape matching and handwritten numeral recognition. An LAT is a 2D transformation that can 

include rotation, scale change, shearing and/or translation. Each prototype is iteratively deformed 

in a way that maximizes similarity to the input image. An optimal, (local) affine transformation 

is computed for each point in the prototype. The goodness of fit is evaluated for a small circular 

neighbourhood. The points are weighted using a gaussian window function and a Hausdorff-

distance is used to measure dissimilarity between the point sets. Multiscale, or coarse-fine 

matching is achieved in this way, as the effective interacting neighbourhood decreases with each 

iteration. The end goal of this method is to provide a point-wise correspondence between the two 

images. (In actuality, two separate correspondences are found, so this is not a matching in the 

strict sense.) 
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At the end of an iteration, a transformation for each point in the prototype has been found. 

After applying the deformations to the prototype, they define the dissimilarity measure as 

V m in II a _bJI2+ m in IJ a _bII2 
b€B bEB'76 A  

D(A,B)= aEA 
IAI+IBI 

(Eq 3) 

where A is the input image and B is the deformed version of the prototype after a number of 

iterations. This equation is really the Inkwell Hausdorff distance with some normalizing 

constants. 

The authors also make use of topological and geometric features as structural information. 

They rely heavily on the crossing index of each pixel. Recall the intuitive definition of crossing 

index: a value of 0 indicates an isolated point, a value of 1 indicates an endpoint, a value of 2 

indicates a link, and finally values of 3 and 4 indicate more complex intersections. Rules are put 

in place that strongly encourage the crossing index to agree between corresponding pixels. That 

is, that endpoints should map to endpoints, intersections to other intersections, etc. 

However, the combination of thinning algorithms and a strict reliance on crossing indicies can 

be dangerous. Thinning produces many artifacts, often creating additional branching points (i.e. 

"necking"). This can create some undesirable correspondences in the output. Thus the algorithm 

is especially sensitive to noise, in particular boundary noise. 

2.2.4 Deformable Templates [Jain1997] 

Another approach to deformable prototypes was presented by Jain et al. in [Jain1997]. Although 

the original paper called them "Deformable Templates", we will use the term prototype to remain 

consistent with the rest of the work. The motivation for deformable prototypes came from the 

fact that often an image is similar to a template, but it may have certain parts that are slightly 

different. It would nice to have a more elastic prototype, one that could account for small 

differences between observation and a template. If two parts of an image seemed close, then it 

may be wrong to describe their resemblance as either "they match" or "they don't match". It 

would be good to have some shades of grey in this area. Thus, with these elastic templates it 

would be important to understand how much effort was spent bending a template into a specific 

contortion. If the amount of work is ignored, then any prototype could conceivably be molded to 

match any pattern. Also, by having this measure described by a parameter, the prototypes could 

be made more elastic or more rigid as needed. 
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(b) (a) 

Figure 15 Deformations applied to a '6' 

(c) 

In part (a) of Figure 15, we see a digit '6', represented as a set of line segments. In (b) we have 

created a deformation of the plane and moved only the endpoints of the line segments. In (c), we 

have done this again, for another (random) deformation. The original paper applied the 

deformation to all points in the prototype, not just endpoints of lines. 

Here is a technical (while brief) explanation of their way of modeling deformations. First, a 

deformation is defined as any function that maps the unit square to itself in a continuous fashion. 

The points on the boundary must remain fixed while the inner points are free to go to any other 

point. The entire set of deformations can be thought of as an infinite-dimensional vector space 

with a countable set of basis vectors. In the enumeration they give, only a small set of the lower 

frequency basis functions are needed to capture most of the characterizing information of a 

typical deformation. This model is sometimes referred to as a rubber sheet model since it makes 

the plane appear as a rubber sheet; it appears distorted as if by pulling and twisting. 

A search is performed to find the coordinates, in this truncated deformation space, of an 

optimal deformation of a template to make it match an input image. An objective function is then 

formulated as a linear combination of the image dissimilarity and the deformation cost. Thus 

they measure both how well the pictures match each other as well as how much work is required 

to achieve this deformation. Again, it is important to keep a balance as most prototypes can be 

deformed to an arbitrary image if enough energy is spent bending the prototype. 

Here is a mathematical description of the aforementioned basis, and how it was used to 

implement deformable templates. 

The image is scaled to a unit square. Then a displacement function D(x, y) is defined, and the 

mapping (x, y) - 4  (x, y) + D(x, y) is a continuous function which maps the unit square to itself. 
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Displacement functions have the property that they are zero on the boundary of the square and 

only displace inside the square. The space of displacment functions has an infinite orthogonal 

basis: 

e,1(x, y) = (2sin(hx)cos(rmy),0) (Eq 4) 

e(x, y) = (0,2cos(irinx)sin(ny)) (Eq 5) 

Form, n = 1,2.....Low values of m and/or n correspond to lower frequency components of 

the deformation in the x and y directions respectively. 

Thus an arbitrary deformation is a linear combination of these basis vectors: 

NM 

+ 

DC (x, y) -  11=1 ,n=1 

2 lnfl 

(Eq 6) 

Where the parameters A = a 2 (n2 + m2). 

The authors take the components with values of m, n E { 1,2,3 1. This means that only 9 low 

order functions are used and that a linear combination of these represents a deformation (of 18 

parameters, as each basis function has an x and y component). Thus, when searching for a 

deformation, they must solve for the following 18 variables: 
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(Eq 7) 

We implemented this system and used values of m, n E { 1,2,3) such that m+n ≤ 4. This 

reduced the search space to only 6 functions and thus finding 12 coefficients. The choice to not 

take a square matrix was made because the sum of m and n indicate the frequency of the 

deformation. Each diagonal line through the matrix where m + n = c, a constant, indicates a 

family of functions with similar frequency domain. It makes more sense to select functions from 

an entire frequency domain, than to take all the low order ones and only a few from the higher 

domains. 
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Each template can thus be deformed with these 12 degrees of freedom. In addition to the 

deformation model explained up to this point, the authors take into account prior information on 

the deformation coefficients for each template. They assume all the coefficients are independent 

and identically distributed, with a mean of 0 and variance of o2. The value of o2 reflects the 

confidence about the template, with large values of o allowing more deformation. This 

essentially controls how "rubbery" the templates are. To measure distance between a template 

and an image, the template is transformed via the deformations and some linear transformations 

such as rotation and scaling. The template is then drawn to produce an image and this is 

compared to the original image. The comparison is done by measuring the distance to the nearest 

edge pixel taking into account not only position, but also alignment of tangential edge directions. 

When searching for an "optimal" deformation of a template with respect to a particular image, 

a two term objective function is minimized. The two terms are a model-based term, which 

measures the deviation of the deformed template and the prototype template (i.e., how much 

bending was necessary), and a data-driven term which describes the fitness of the deformed 

template contour to the boundary in the image (i.e., how good was the final match / how close 

were we able to get to the given image). 

Although this technique produces high recognition rates, a lot of computational effort must be 

spent. The algorithm for finding the optimal basis coefficients is an EM (Energy Minimization) 

algorithm and this has notoriously bad running times. The authors admit that the computational 

burden is high, but since the matching is so good, one can conceivably reduce the set of 

templates. They implemented an advanced template selection strategy using complete-link 

hierarchical clustering to refine the size of the template set. [Jain1998] 

2.2.5 Shape Matching with Shape-Contexts [Be1ongie1999] 

Belongie et al. introduce a new approach to shape matching based on weighted bipartite 

matching. Two sets of points are sampled from the image boundaries and then a matching is 

found between them. The matching process is guided, not solely by distance, but by a heuristic 

called a shape-context. The shape-context at a point captures the shape of the global object from 

that point's perspective, thereby providing a rich local shape description. The distances between 

the shape -contexts, rather than distances between the points themselves, are used to build the 

weight matrix for the bipartite matching algorithm. The algorithm uses a nearest-neighbour 

classifier to produce the final classification. The shape-context algorithm has been shown to be 
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effective at recognition of hand-written digits as well as 3D objects. Exactly the same distance 

function is used for both 2D and 3D recognition. 

To avoid excessive computing time, the entire point set of each image cannot be considered. 

Thus, as a preprocessing stage, a random and uniformly distributed sample of points along the 

shapes' boundaries is determined, each with approximately the same cardinality. 

Furthermore, when determining which points should be matched, it is important to pick points 

that somehow represent the same "shape portion" of their respective images. The endpoint of a 

stroke should probably be matched to another endpoint. However, using only interesting points 

like endpoints and intersections would leaves shapes like a circle without representation. To 

describe each point of the point set, regardless of its topology, the authors define a shape-context. 

A shape-context defines the local perspective of the overall shape of the image. Different points 

on the same image will have different a shape-context, but corresponding points in similar images 

should have similar shape-contexts. The shape-context of a point is computed as a histogram of 

the relative distribution of other points on the shape from its local perspective. 

In Figure 16, we show an example of a shape-context. In (a), (b) we see two images of an 'A', 

subsampled along the edge points. In part (c) we see a diagram of the log-polar histogram bins 

used in computing the shape-contexts. There were 5 bins used for log r and 12 bins used for 9. In 

parts (d), (e), and (f) we see example shape-contexts for reference samples marked by the circle 

and of image (a), the diamond of part (b), the and triangle of part (a), respectively. Each shape-

context is a log-polar histogram of the coordinates of the rest of the point set measured using the 

reference point as the origin. Dark shading implies a large value. Note the visual similarity of 

the shape-contexts for the circle and diamond, which were computed for relatively similar points 

on the two shapes. By contrast, the shape-context for the triangle is quite different. Finally in (g) 

we see the correspondences found using bipartite matching, with costs defined as follows: the 

shape-contexts are viewed as grey-scale images, and the distance between two shape-contexts is 

the sum of the squares of the differences in grey-value. 
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(a) 

Figure 16 Shape-Contexts 

(b) 

(f) 

(c) 

(g) 

'p 

A distance function is also defined to compare how similar two shape-contexts are. Using this 

function, and n points on each image, an n x n matrix of distances can be created. To determine 

the optimal weighted matching between these point sets, we can use the well-known Hungarian 

method. This algorithm runs in 0(n3), where n is the number of points in each set, but it is 

possible to do better by taking advantage of the fact that the graph is dense [Jonkerl987]. 

Jonker's algorithm is a bit complex to analyze for its asymptotic behavior; while it performs 

better than 0(n3) algorithms in practice, it does not seem asymptotically better. 

Since it is desirable that two points on similar parts of two images have similar shape-contexts, 

it would be convenient to define it such a way as to have these properties: translation invariance, 

scale invariance, rotation invariance, and higher sensitivity to local shape information. 

Translation invariance is automatic since coordinate calculations are relative to the defining point 

of the shape-context. Scale invariance is accomplished by making the unit of measurement 

relative to the image size. The median of the set of pairwise distances between points was used as 

this reference point. 
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Rotation invariance can be added by computing shape-contexts and changing the frame of 

reference for each point. A tangent vector to the boundary of the shape at that point can be used 

as the x-axis. Thus each point has it's own coordinate system, and this yields a rotation-invariant 

representation for a shape description. Although rotation-invariance is possible, it is not always 

desired or even necessary. For example, in digit recognition, a 6 and a 9 are equivalent under 

rotational invariance and we still would like to distinguish between them. Finally, the log r axis 

is used so that the shape that is local to that point has more influence than parts of the shape that 

are much farther away. 

How do we measure the similarity between images based on this matching? One way would 

be just to use the weight of the optimal matching determined above. However, this would not 

take into account any measure of how much effort is required to transform one image into the 

other. Thus the authors use a more sophisticated approach. The point correspondences 

determined by the matching algorithm are used to estimate the optimal thin-plate-spline (TPS) 

transformation of one image to the other. These transformations describe the effort required to 

perform the bending of one image into the other, while maintaining certain constraints, as 

avoiding self intersection. However, such a transformation may not be able to send all points to 

their corresponding match in the other image. Thus, the transformation is applied to the first 

point set, and then the matching algorithm is executed again. In this way, the matching and 

transformation calculation form one step that can be repeated in an iterative process. Three 

iterations of first a matching then a transformation calculation are performed. 

The measure of image similarity is then determined by a weighted sum of three terms: shape-

context distance, image appearance, and the bending energy. The shape-context distance is the 

value of the optimal weighted matching between one image and the other image under the best 

transformation. The image appearance similarity is defined by the sum of squared brightness 

differences in gaussian windows around corresponding image points. Lastly, the bending energy 

corresponds the magnitude of the transformation required to align the shapes. 

2.3 Conclusions 

We have now looked at various ways of representing prototypes, starting from basic bitmap 

templates. Although these are an acceptable representation in some very controlled 

environments, a more flexible template is needed for handwritten symbol recognition. We have 

shown how to represent prototypes as shape signatures, which provide rotation and scale 
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invariance in a novel way. We then examined local affine transformations to produce local 

template deformability. Along this same direction came 'deformable templates' and then another 

elastic representation using shape-contexts in unison with bipartite matching. The techniques 

presented achieve high recognition rates, but suffer from a common drawback of high 

computational burden. 

Before presenting vector templates in Chapter 4, we would like to discuss methods of bilevel 

image comparison. We mentioned the distinction between matching in pattern space and 

matching in feature space; we will be concerned with matching in pattern space and the distance 

algorithms of the next chapter will be the vehicle through which this is done. 
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Chapter 3 

Measuring Distance Between Images 

In many symbol recognition algorithms, especially template-based algorithms, it is very 

important to know how similar two images are. If the template is stored as an image, or converted 

to one at a later stage, we need to compare it against the unclassified image and report how good 

the match is. When we introduce vector templates later on, this will be a key part of the 

classification process. 

We can view the act of measuring distance between as two images that of accumulating 

penalties for their local differences. An obvious way to measure dissimilarity is to overlap the 

two images and count how many pixels are different. This can produce acceptable results in 

some very controlled cases, ones that require precise image alignment, identical orientation, as 

well as uniform stroke width. 

000 

(a) (b) (c) 

Figure 17 An image and a template with almost no overlap, and thus a large distance from 
each other, yet with similar shape. 

However, it can happen that two images with seemingly identical shape have a very poor 

amount of direct overlap. In Figure 17 above, we see (a) an image of an 'A', (b) a template of an 

'A', and (c) both images super-imposed to see the extent of their overlap. They have very little 

direct overlap (5 pixels only) but have similar shape. It is true that these images could be aligned 

better, but locally this phenomenon could still happen. 

In handwritten pattern matching, we cannot control all of these parameters. And so, for more 

difficult datasets such as these, we would like to have a more tolerant dissimilarity measure, one 

that can identify similar shape in two images that have little or no direct overlap in their graphical 
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representation. We shall formalize the concept of distance between images and then describe 

some techniques that compute such a distance, and evaluate them. We will define and explain 

what a distance transform is and show how it can be used to compute a more tolerant distance 

measure. 

3.1 Definitions 

We define some of the vocabulary used in subsequent sections. We define the important terms 

image, metric function, pixel metric, and distance transform, in addition to a few others. 

3.1.1 Image 

We are concerned primarily with bilevel images, and thus we can view an image as an m x n 

binary matrix over { 0, 11. Pixels with value 0 are called background pixels and pixels with value 

1 are called foreground pixels. The image height corresponds to the number of rows, m, and the 

image width corresponds to the number of columns, n. Sometimes it is convenient to treat an 

image as a point set. This point set of an image A = [at,] is the set of (ij) coordinates of 

foreground pixels in A. The rows are numbered from 0 to m - 1, where the columns are numbered 

0 to n - 1. The point set is defined mathematically as 

aii  (Eq9) 

We use the notation A to mean both A and P(A), as we trust the meaning will be clear from the 

context. 

Since the above definitions are important in the context of measuring distance between images, 

we will state a few additional conventions regarding distance. When measuring distance between 

two images, we mean to say we are measuring dissimilarity. The higher the value we compute, 

the more unlike two images are, and the closer to zero it is, then the more identical they are. We 

assume we are always comparing two images of the same size. If this was not the case, we could 

always scale the larger image down to the size of the smaller, or perform some scaling operations 

to equalize the image sizes. 

3.1.2 Metric Functions 

We would like to make precise the notion of a function that measures distance. In this regard, we 

can talk about metrics in the sense of metric spaces. A metric space is defined as a set together 
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with a function called a metric that assigns a real number to every pair of elements in the space. 

This function is everywhere positive, has the properties of identity, symmetry and triangle 

inequality. These properties correspond to our intuitive notions of similarity. Identity means an 

object is similar to itself (i.e., the distance from it to itself should be 0), symmetry means the 

order of comparison does not matter, and the triangle inequality means that if two different 

objects resemble a third, then they also resemble each other. Formally, we would like metric d to 

satisfy the following properties: (for objects x, y and z in the space) 

d(x,x)=0, Vx (Eq 10) 

d(x,y)≥O, Vx,y (Eq 11) 

d(x,y)=d(y,x), Vx,y (Eq 12) 

d(x, z) ≤ d(x, y)+d(y,z), Vx, y,z (Eq 13) 

For our purposes, the domain points x, y, and z are primarily images. However, we make use of 

metrics as well when measuring distance between actual pixels themselves. 

3.1.3 Pixel Metrics: L1, L-., L. 

There are many different ways to measure the distance between two points in a 2D vector space 

(we are primarily interested in the space of 2D points with integer coordinates). The following 

norms are three commonly used measures, and are actually metrics in the sense of metric spaces. 

For the following definitions, consider 

p1 = (x1, y1) and p2 = (x2, y2), 

and define 

d = JX1-  x21 

d =I'-2l• 
The L1 metric is defined as 

(Eq 14) 

(Eq 15) 

(Eq 16) 

(Eq 17) 

which could be interpreted as the distance on a 4-connected grid. It is sometimes referred to as 4-

distance. 
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The L2 metric is defined as 

(PI ,p2)=d2+d2, 

which is just the Euclidean distance. 

The L. metric is defined as 

L,, (PI ,p2) = max {d,d}, 

(Eq 18) 

(Eq 19) 

which could be interpreted as the distance on a 8-connected grid. It is sometimes referred to as 8-

distance. 

Two points Li 

(a) 

1.2 - Euclidean Distance 

(b) 

(c) (d) 

Figure 18 Comparison of Pixel Metrics 

In Figure 18, we see two points in (a) and we measure the distance between them using 

different pixel metrics. In (b), we use L1, yielding d = 9*7 = 16, in (c) we use 1.2, giving d = 

and finally in (d) we use L-, giving d = max {7,9} = 9. 

These three metrics can be related graphically by the following diagram. We plot circles of a 

fixed radius using each of the three metrics to measure distance. 
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Figure 19 Circles of constant radius under different point metrics 

Figure 19 compares the pixel metrics L1, L2, and L,,. For each metric, we trace out a "circle", 

the set of all points that are a fixed distance away from the center. We see that L2, Euclidean 

distance, produces a standard circle. L1 measures steps in the vertical direction separately from 

steps in the horizontal direction, and so underestimates the Euclidean distance (creating a smaller 

circle), and the L,,, metric overestimates the Euclidean distance by counting a diagonal step (of 

length /) as a unit step. 

The following inequality can be easily proven: 

L  (PI ,p2) ≤ L2(p,p2) ≤ L (PI ,p2) 

Proving this is equivalent to showing the following two inequalities hold: 

max(IdxI, Idyl) ≤ J 2 + dy2 ≤ IXI + Idyl 

(Eq 20) 

(Eq 21) 

3.1.4 Distance Transforms and Feature Transforms 

A distance transform of an m  n image A, is an m x n matrix T, of real numbers, and the value of 

tij indicates the distance from the point (ij) to the nearest foreground pixel in A. The distance 

from one point to another can be defined by an arbitrary point metric. An example of a distance 

map will be shown in Figure 21(a). 

TD (A)=[d,J where d, = minj(i, j) — al (Eq 22) 
aEA 

A feature transform of an m xn image A, is an m x n matrix F, of coordinates, and the value of 

fij = (u,v) indicates that a nearest point to (ij) in A is (u,v). Certainly the point (u,v) need not be 

distinct, as many pixels (u v ) may be the same minimal distance from (ij) as (u,v) is. An 
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example of a feature transform (although vectors are truncated to unit length for clarity) is 

shown in Figure 21(b). 

TF(A) where fij = argmin(i, j) — aj 
aA 

(Eq 23) 

The difference between a distance transform and a feature transform is that a distance 

transform tells how far away the nearest pixel is, and thus is (scalar-valued). A feature transform 

tells which pixel is the nearest pixel (actually a nearest pixel, as there may be more than one 

nearest neighbour), and thus is vector valued. Given a feature transform, it is possible to 

determine the distance transform but not vice versa. Also, we can view a distance transform as 

being the discrete case of a Voronoi diagram. A Voronoi diagram for a given (2D) point set 

partitions the plane into regions, such that (i) each region contains exactly one point x from the 

point set X, and (ii) each region R (a convex polygon) contains all points in the plane that are 

nearest to it's point x. From this perspective, a distance transform of an image A partitions the 

image into regions of pixels such that each region contains one point a of A and all pixels in that 

region have a as their nearest neighbour from A. 

Both types of transforms depend on the underlying norm to measure distance between pixels. 

Any one of L1, L2, and L. can be used; the exact choice depends on the application circumstances. 

Figure 20 An image of a six 

We compute both a feature transform and a distance transform for Figure 20. The foreground 

pixels (value 1) are the dark discs and the background pixels (value 0) are the light points. 
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(a) (b) 

Figure 21 Distance Map and Feature Map using L,. 

Figure 21 shows us a distance transform in (a) for the '6' of Figure 20. At each pixel location, 

we have recorded the distance to the nearest foreground pixel. Recording a distance value of 0 

means that location contains a foreground pixel. In part (b) we present a feature transform for the 

previous figure of a V. The feature map shows an arrow for each pixel location; each arrow 

points to the nearest foreground pixel. For purposes of clarity, all vectors are drawn with unit 

length, although their magnitude varies according to the distance map in (a). Tracing a path of 

arrows shows a shortest path to a nearest foreground pixel (since there may be more than one). 

3.2 Binary Correlation 

One of the simplest ways to measure distance between two images is to overlap them and count 

how many pixels disagree. 

11-1 n—I 

/3(A,B)= —b11 
i=O j=O 

(Eq 24) 

This works well when comparing machine drawn symbols as either they will usually overlap 

exactly or not. However, with some variation present in the symbols, this method penalizes all 

differences by the same amount. Two pixels that are a distance of 10 apart are treated in the same 

way as two adjacent (but not overlapping) pixels. A good example of how this could yield a 

misleading distance was in Figure 17. In this figure, although we could align the shapes better, 
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this type of misalignment can happen locally and would cause the same type of erroneous 

distance penalty. In summary, the method of binary correlation is not tolerant to small 

misalignments. From our experience, it does not generally give great results when used in hand-

written pattern recognition. 

3.3 The Hausdorff Distance Family 

The Hausdorff distance is an attempt to fix some of these problems by providing a distance metric 

between images that is more discriminating. It is able to account for small distortions and 

penalize them in the distance values according to their magnitude. If two pieces of the image are 

greatly misaligned, a large term will be contributed to the final distance sum. However, if only a 

small difference is encountered, only a slight penalty will be incurred. 

It may be easiest to explain the Hausdorff distance using an analogy to pizza delivery. Imagine 

a city of homes and pizza delivery restaurants. We have two maps, one contains all the homes, 

and the other the pizza places. We are interested in answering "What is the longest time anyone 

would ever have to wait for a pizza?" For each home we would like to associate with it its 

nearest pizza place, and over all homes we need to find the one that is farthest away from its pizza 

place. An answer to this question would tell us approximately how compatible these two maps 

are. Getting back to distance between images, we could think of one image representing the 

residences, and the other the pizza places. Computing the longest time that anyone would have to 

wait for a pizza is just computing the Hausdorff distance. 

Figure 22 Pizza Delivery Example to Explain Hausdorff distance 
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Figure 22 shows the map of the homes and of the pizza places super-imposed on top of one 

another. The line segments show a line from each home to its nearest pizza place. The bold line 

shows the longest of these segments. The length of this line is the (directed) Hausdorff distance 

from the homes to the pizza places. 

3.3.1 Hausdorff Distance 

The Hausdorff distance measures the extent to which each point of a 'model' set lies near some 

point of an 'image' set and vice versa [Huttenlocherl99l]. Thus this distance can be used to 

measure the degree of resemblance between two images that are superimposed upon one another. 

To make a precise definition, let A and B be images, and d be a metric on the space of 2D 

points. (e.g. L1, L2, L,). Define N(a), for each point a of A, to be the nearest neighbour b in B: 

NB (a) = argmin{d(a,b)} (Eq 25) 
b€B 

Then, we could define a function (for each a) that measures the distance to this nearest neighbour 

b 

5(a) = d(a,NB(a)) = rnin{d(a,b)} 
beB 

Finally, the directed Hausdorff distance between the two images is 

h(A,B) = maxöB(a) = max min{d(a,b)}, 
aeA aEA b13 

measuring the largest distance any a is from a nearest neighbour b. This function however is not 

symmetric, i.e. there are cases where h(A, B) # h(B, A). 

(Eq 26) 

(Eq 27) 



35 

h(A,B) 

(b) (a) 

Figure 23 The Hausdorff distance is not symmetric. 

h(B,A) 

In Figure 23 (a), on the left, we can see a calculation of h(A, B). We draw one line segment 

for each home to its nearest pizza place, and draw the longest of these in bold. In diagram (b) on 

the right we see a calculation of h(B, A). We draw one line segment for each pizza place, and 

draw the longest of these in bold. We define A as the set of homes and B as the set of pizza 

places. The length of the bold line shows the (different) directed Hausdorff distance in each case. 

To avoid favoring one image in a comparison, and thus to make the function symmetric, it can 

be computed in both directions, to yield the undirected Hausdorff distance between A and B. 

h(A,B) = max {h(A,B),h(B,A)} (Eq 28) 

3.3.2 Inkwell Hausdorff distance 

The Inkwell Hausdorff distance measure is named this way since it can be explained with a 

metaphor involving an inkwell. Before explaining it this way, we will explain it first in terms of 

the pizza delivery example above, to relate it to Hausdorff distance. We are interested in 

measuring how much gas will be required to deliver pizzas to all the homes, assuming each driver 

can carry only one pizza at a time. This would measure the overall total effort required to service 

an area. If this total effort is low, then it means the two points sets are in rough agreement with 

each other, i.e. that the two images resemble each other. On the other hand if the total effort is 

quite high, it means that the images are quite different. 
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In terms of inkwells, the distance can be explained as follows: suppose an artist has a picture 

in front of him, image A, and wishes to draw a new picture, image B, but starting on a fresh 

canvas. Each of these are images in regards to the definition of binary pixels on a discrete grid. 

The artist has an ink-pen and treats each pixel in A as an inkwell, that is, it has an unlimited 

supply of ink. His pen can only hold enough ink however to color one pixel at a time. We wish 

to measure how much work the artist has to do to reproduce B given the inkwell locations on A. 

Also, we can assume the two images are superimposed on top of one another. To measure the 

amount of work, we will compute the total distance the pen has to move while carrying a dab of 

ink. 

Contrasting this definition with the Hausdorff distance above, we are replacing a maximum 

operator with a summation operator. In the inkwell metaphor used above, the ordinary Hausdorff 

distance would simply measure the largest single distance the pen would have to travel to color a 

pixel. 

Formally, the directed Inkwell Hausdorff distance between the two images is 

i(A,B) = 5B(a) = Vmin{d(a,b)} 
aEA aGA bB 

(Eq 29) 

Compare this to (Eq 27). A similar technique is used to make it symmetrical, we combine both 

terms as follows: 

H(A,B) = ñ(A,B)+1(B,A) 

An algorithm to compute it efficiently was published by Parker. [Parker1991]. 

(Eq 30) 

3.3.3 Computing the Hausdorff Distance Efficiently 

For the Hausdorff distance to be of practical use, we need to be able to compute it efficiently. In 

[Huttenlocher199l], a survey is performed of various algorithms to compute Hausdorff distance, 

as well as more general definitions of the distance itself. When the points are on an integer grid 

(as is the case with images) we can make use of distance transforms and feature transforms. See 

Section 3.1.4 for the corresponding definitions. 

We make use of known algorithms to efficiently compute these transforms. In [Parkerl99l] 

we find how to compute these transforms in linear time (with only two passes over the image) for 

the norms L1 and L. These algorithms rely on dynamic programming, and make decisions for 
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how far away a's nearest neighbours are, by looking at the nearest neighbour's of a's 

neighbours. In the first pass, we determine the nearest of a's neighbours that are above or to the 

left of a. In the second pass, we determine the nearest of a's neighbours that are to the right or 

below a. Finally, we just keep the best neighbour from either pass as a's nearest neighbour. 

We can also compute the IL2 norm (or Euclidean-distance norm) distance transform in linear 

time, again with two passes through the image, as is shown in [Gavrilova2000]. We 

implemented the algorithm in that paper, and, with a few minor corrections, it worked as 

promised. The idea is again a two-pass algorithm, but uses some more sophisticated 

datastructures and some simple geometry to determine the nearest neighbour. 

To give an example of computing the directed Hausdorff distance using distance transforms, 

consider the following (unclassified) image, of another six: 

 a....  
 ....  

..... 
a...  

a.... 
•....  
•...  

a.... 

....  

....  

.... a  

.... .....•.•••  

....  
a..... . 

.....•. .   NUMMUM 

............ a..... 
 ..... 
  ..... 
  ....... 

........ 
• •.•.......   

.........••....... 
 ...........  

..... 

(a) 

Figure 24 Comparing distance between two images 
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Figure 24 shows an example of how to measure distance between two images, (a) and (b), 

using a distance transform. Both figures represent a hand-drawn digit V. We will compute the 

distance transform of figure (b). 
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Figure 25 Overlaying both images. 

The distance transform of Figure 25 (b) is shown as a grid of integers, and image (a) from the 

previous figure is drawn as an outline. The Inkwell Hausdorff distance would return the sum of 

all numbers inside the curve. The Hausdorff distance would return the maximum value inside the 

curve. The underlying point metric was L,.. 

3.4 Earth-Mover's Distance 

The Earth-Mover's distance is another way to measure distances between images. For bilevel 

images, it turns out to be most similar to bipartite matching. We will compare and contrast it 

with bipartite matching, as well as the other techniques we have seen. 

The Earth-Mover's Distance was originally proposed by Rubner [Ruber1998], as a metric 

between discrete distributions with weights associated to each data point. In [Cohen1999] the 

analogy to moving earth is explained well. For the two distributions, one distribution is seen as a 

set of piles of dirt, of varying sizes; the other is a set of holes, again of varying sizes. The Earth 

Mover's Distance (EMD) computes how much work is required to move the dirt from the piles 

into the holes. It is assumed that the size of the distributions is the same, that is the amount of dirt 

equals the volume of the holes. If this is not the case, we can take the larger distribution and label 

it as the dirt, and the smaller one as the holes. The EMD in this case computes how much work is 

required to fill the holes, and ignores the unused dirt. The meaning of "how much work" is the 

sum over all displacements of the amount of dirt multiplied by the distance it travels. 
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When comparing greyscale images, this analogy fits well. We sum up the grey values in 

both images and determine which image is larger, i.e. which has more "dirt". The smaller image 

will be treated as having holes with depths proportional to grey values. Each grey-scale value 

increment is one unit of dirt or one unit of volume in a hole. We compute how much work is 

required to move the dirt into all the holes. 

When comparing binary images, a foreground pixel is a single unit of dirt. If the images have 

identical area, then the EMD really computes a weighted bipartite matching between two the 

point sets, with weights determined by distances between points. 

3.4.1 Comparing the Hausdorff Distance to the Earth Mover's Distance 

It is interesting to note the differences between the Hausdorff-distance and the Earth-Mover's 

Distance in the discrete case (i.e. comparing binary images). We will compare these algorithms 

using the earth-moving metaphor. 

The Hausdorff distance only measures the largest distance a single pile of dirt would have to be 

transferred to fit into a hole. The Inkwell Hausdorff distance would allow us to "reuse" dirt. 

After a pile of dirt is used up, it would magically reappear again to be a candidate for filling other 

nearby holes. This is why it was explained in terms of a bottomless inkwell. And of course the 

Earth Mover's Distance itself does not allow reuse of dirt, but finds a direct correspondence 

between dirt and holes, although a pile of dirt may be shared between many small holes. 

As for the required computational effort: for binary images, it requires computing a minimum 

weight bipartite matching, so 0(n3). 

3.5 Distance Viewed as Weighted Bipartite Matching 

In this section, we will describe some areas that were explored in applying results and algorithms 

for bipartite matching to image comparison. The motivation for this was that the concept of 

detecting and aligning similar parts of two images to measure similarity between them seems like 

a natural one. The Hausdorff distance finds a correspondence between pairs of points in images 

but this correspondence is not a matching, it is much less stringent since points can be "reused" - 

many points can match to the same target. It is an interesting question to ask how the situation 

would change if we enforced a strict 1-1 correspondence between points in the images. Although 

bipartite matching is more expensive to compute than a distance transform, it may produce better 

results if used properly. 
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We will first define and describe what the weighted bipartite matching (WBM) problem is 

and then show how it can applied to image comparison. 

3.5.1 Definition of Weighted Bipartite Matching 

The weighted-bipartite matching problem is sometimes called the assignment problem, in which 

we look at a set of workers and set of jobs, as well as a productivity associated with each person-

job pair. The productivity function describes which workers are better at what jobs and by how 

much. We are asked to find the best correspondence between workers and jobs, i.e., the one that 

maximizes the overall productivity. 

Formally, letA = {a1, ..., a,} and B = {b1, ..., b} be sets, and let C = [cjj} be them x n matrix 

that represents the distance function, defining the distance or cost of matching each pair (a1,b). 

Let M be a subset of A x B. The set Mis called a matching if each a1 appears in at most one (a,b) 

pair in M, and similarly for each b. If (a,b) is in M, it is said that a is matched with b. The 

number of elements in Mis called the cardinality of the matching. In the weighted bipartite 

matching problem, we ask the question of "What is the minimum cost matching (of maximum 

cardinality) we can find?". The cost of a matching is just the sum of the costs of all the matched 

pairs: 

C(M) = c(a,b) 
(a,b)EM 

(Eq 31) 

The problem of maximum weight matchings and minimum weight matchings are very closely 

related; one instance can easily be phrased as an instance of the other. For example, to solve a 

minimum weight matching problem, we can just negate each entry of the cost matrix of the 

maximum weight matching instance, and then add a fixed value to make all the weights positive. 

i.e. c'k — c,where k= max c ij 1i 

3.5.2 Image Comparison using Matchings 

Image comparison can be viewed as an instance of the minimum weight bipartite matching 

problem. The point sets of each image make up the respective bipartitions, and we seek to match 

each point in one image to it's "nearest" neighbour in the other. In this case though, we are 

looking only for a 1-1 correspondence, so each point can only be matched with exactly one other 

point in the other image. It is important to be clear on this, as in cases like the Hausdorff distance 

one pixel may be a nearest neighbour to many others. To determine distance we use the 
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Euclidean distance between the points, although more complicated distance functions are 

possible. For example we could take into account the local topology of a pixel making use of its 

crossing index, so endpoints are matched with endpoints, intersections with intersections, etc. 

The distance between the images is then reported as the cost of the minimum weight matching. 

Consider the following two images, and then an optimal matching between them. 

** * * * * 
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(a) Point Set A, 159 pixels (b) Point Set B, 154 pixels (c) Mm. Cost Matching of 
cardinality 154 

Figure 26 Example of a matching between the point sets of two images. 

In Figure 26 (a) above we see an example of a hand-drawn '8', we will call this image A. In 

(b), we see another instance of an 8', we call this image B. Finally, we show the results of a 

minimum cost weighted matching between the two point sets. Since the sets are not the same 

size, 5 pixels from A were left out of the matching. With these basic parameters, we are in fact 

performing the Earth Mover's Distance calculation. 

We can label the pixels in image (a) as al,...,am and the pixels in image (b) as b1,...,b then we 

have used the weight matrix 

c(a,,b) = L2(a,,b). (Eq 32) 

One problem that is evident from this diagram, is that during the optimization the algorithm 

allows two neighbours that are quite far apart to be matched. This is a problem because we 

would like to use this match to explain how to deform one image smoothly into the other. This is 

not very useful to us because we would like to view this matching as a distortion from one image 

into the other. Thus we would like one part to be smoothly transformed into its corresponding 
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part, and not twisted, if it can be helped. Thus the matching algorithm should prefer a set of 

average displacements to a set of small displacements combined with one large displacement. 

Before discussing how to change the cost function to more accurately reflect these goals, let us 

get a better feel for the amount of twisting and bending implicit from a matching. Consider that 

each matching induces a vector field on the plane. A vector is created for each point that is 

displaced in the optimal matching. Technically, the matching need not be unique, but we will 

assume we have any optimal matching. 

Figure 27 Vector field for matching using c = L2. 

In Figure 27, one vector is plotted for each point that was displaced by the optimal matching. 

The vector shows where each point was carried to. The set of vectors plotted together gives an 

impression of the global effect on the plane. 

This vector field in turn could be used to estimate a transformation of the plane that would 

carry one image into the other. When comparing images, we would like to measure the amount 

of twisting and bending that was needed to contort one image into the other. If the amount of 

bending is small, then the two images are likely a good match. If the amount of bending is 

excessive, then the distance should be penalized accordingly. In the vector field above, we see 

the transformation of the plane would be quite "messy". 
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To fix this situation, we can assign steeper penalties between points that are very far apart. We 

can achieve this by squaring the distance values between the points: 

c(a,,b)=L22(a,b) (Eq 33) 

It turns out this new penalty function does solve the aforementioned problems, as is evidenced 

by Figure 28. All the longer line segments have disappeared, and only shorter vectors remain. 

I = .YV7• Zk N  ) ) > 
•\I ) > ) > 

(b) 

Figure 28 Weighted Matching using improved penalty function 

It may be interesting to compare this vector field with the one obtained from the Inkwell 

Hausdorff distance, where we measure the distance to any nearest neighbour, and more than one 

pixel can be "matched". Thus we really have a union of two mappings, from one image to the 

other image and vice versa. 
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Figure 29 Matching up pixels under the Inkwell Hausdorff distance 

(b) 

In Figure 29 (a), we see how pixels are mapped to their nearest neighbours under the Inkwell 

Hausdorff distance. We see that some pixels from image B are used more than once in the 

mapping. In (b) we see this mapping drawn as a vector field. We will call the vector field 

generated from two distance transforms in this way the 'mutual proximity vector field', since this 

concept will be used later on, particularly in the future directions section of Chapter 7. The 

magnitude and number of the vectors is greatly reduced from the vector field generated from the 

bipartite matching, where the matching is a one-to-one function. 

3.5.3 Reducing the Number of Points 

We have used the standard algorithm for weighted bipartite matching, called the "Hungarian 

Method" [Kuhn1955], and it borrows ideas from results in flow maximization, maximum 

cardinality matchings, and linear programming. However, the algorithm runs in time 0(n3). This 

would be too slow for larger images, so we would like some way to reduce the number of points 

we must match. We tried two techniques. 

First, we decided to subsample the patterns randomly and extract only about 30 points or so 

from each image. Besides leaving a manageable number of points, this had the added advantage 

of making both sets the same size so that a perfect matching could be found (A perfect matching 

is a matching that includes all vertices). Taking a random subsample is not an ideal subsample, 

since one area could be favored by the random-number generator. In fact, results looked quite 
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poor for the two given images. However, if we could ensure the points would spread out 

evenly, we think we would see that the shape could still be captured fairly well. This could be 

achieved by modeling the points as repelling particles, and allowing them to spread out by 

themselves. This would no longer lead to a random and independent distribution, but what is 

important is that we have captured a representative portion of the shape of the object with fewer 

points. 
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(a) Random subsample of 30 (b) Random subsample of 30 (c) Matching using improved 
points points penalty function 

Figure 30 Random Subsampling (30 points each) without any redistribution. 

In Figure 30 (a) and (b), we have sampled the patterns of '8's we have been using, but only 

with 30 random pixels. As is evident, the general shape of the original '8's is hardly 

recognizable. 

Given the poor results from this technique, an improvement was necessary. Another way to 

reduce the number of points is to perform thinning on the images, and then perform the matching 

only on the skeletal pixels. 
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Figure 31 Bipartite matching on skeletal pixels only 

Shown in parts (a) and (b) of Figure 31 are the skeletons of the two '8' seen so far. In (c) we 

compute the optimal bipartite matching between the pixels. 

This produces a much better results, as the transformation from one skeleton to the other is in 

fact quite smooth. This process could still, however, produce an excessive number of points. 

Since skeletons are made up of curves, defined as pixel sequences for our purposes, it is fairly 

straightforward to come up with a way of distributing k pixels uniformly onto each skeleton. 

Visually, and in the case of hand-printed digits, with 30 points it seemed that a sample 

representative of a digit's shape was captured. Also, by using a deterministic approach, the 

distributions are guaranteed to be uniform, and of course better-looking results are achieved. 

Here are some examples of subsampling the skeletons to a smaller value of 30 pixels each. 
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Figure 32 Low Resolution Skeletons 

(b) (c) 

The images in Figure 32 represent subsampled skeletons of the images of 'S's we have been 

working with. The overall shape of the S's appears preserved. 

One further step with this technique that we initially experimented with but didn't have time to 

take to completion is to analyze the connections between points in the skeleton of A and the 

induced connections in B. For example, if a1 and a2 were adjacent in A, then how about M(al) 

and M(a2) - were they connected as well? Use of this information could be helpful in the final 

distance calculation. Images that are similar should, after determining a matching, preserve 

connectivity. 

3.5.4 Conclusions on Matching 

Although this technique gave promising initial results, we did not have the time to make it 

competitive with the Inkwell Hausdorff distance for digit recognition. However, Belongie et al. 

have shown that with some extra innovations the method can be made to work well. At the same 

time as we were exploring bipartite matching, independent authors [Belongie1999] were using 

Shape Contexts to perform a similar type of comparison. See the literature survey in the previous 

chapter on their approach for more details. They used a more sophisticated cost function between 

points, not relying just on Euclidean-distance. They computed a shape-context, i.e. a local 

perspective of the entire image's shape. These shape contexts drove the matching process, to 

make sure that similar features on the images were matched. Also, this was used to estimate an 

optimal transformation that would map one point as close as possible to the other. The overall 
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algorithm then interlaced matching iterations with iterations to determine transformations, until 

the system converged on the best match. 

In any event, once the weights between points have been determined, and an optimal weighted 

matching has been found, there are still a few choices for the measure of distance. An obvious 

one is the cost of the optimal weighted matching, but it is also possible to estimate the associated 

transformation and factor in "how much bending energy" was required to align the shapes. 

3.5.5 Generalizations of Matching 

When comparing two symbols, the idea of matching up corresponding portions between the 

images in an optimal way is an intuitive one. But what we don't understand is exactly what to 

match up and how to evaluate the goodness-of-fit. We saw that we could use pixels and the 

distances between them, but perhaps more sophisticated features and distance measures are 

needed. 

It is possible to generalize the previous attempts at applying matching algorithms to symbol 

recognition. Essentially, we need to specify what objects will be matched and how to determine 

the goodness-of-fit between them. From this generalized perspective, we could evaluate and 

compare different strategies quite easily. Once the objects and the function that measure 

dissimilarity are determined, a distance matrix can be built between the two sets. It is common 

for authors to choose a subset of the point-set of an image for their objects. Another approach is 

to identify features on the image. These can be topological features like endpoints, points of 

intersection, holes, etc. or they can be any other kind of spatial features. Once it is known which 

objects will be paired up, we need to know how well two of them match. This could be based on 

Euclidean-distance, local shape information, or any number of attributes. 

3.6 LCS Distance 

3.6.1 LCS Distance Motivation 

The theory of string matching is very closely related to pattern matching in images, as images 

could be considered to be 2D strings. This is especially true if we look at the theory of 

approximate string matching, where we do not ask if two strings are identical, or if they have 

identical matches, but only if the have good approximate matches. In handwritten pattern 
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recognition, we are always trying to answer the question of whether or not something is a good 

approximate match. 

Due to this realization, we wanted to try some of the most well-known approximate string 

matching algorithms in the context of 2D pattern recognition. 

One algorithm that came to mind was the edit-distance problem. It answers the question "What 

is the cost of transforming string A into string B if the costs of insertion, deletion, and copying are 

specified?" Fortunately, edit distance has already been tried in image matching, but alas the 

running time was too long. For two strings of length n, the running time is 0(n), and for two n x 

n images, the running time is 0(n4), which is too slow to be of practical use. 

The other problem we considered was the longest common subsequence (LCS) problem. To 

explain what this is, consider the following two strings: 

APPLES FOR BREAKFAST 

POTATOES FOR DINNER 

How similar are these strings? Well, the longest sequence of letters they have in common is 

PESFORE 

This sequence need not be consecutive, it just must appear as a subsequence (i.e. in that exact 

order) in both strings. Formally, given words S = s1,... ,Sk, and T = t1,...,t,, we seek to maximize n 

for subsequences of the indicies i1,...,i,, where 1 ≤ i1 < i2 <•••< i ≤ k and]1, in, where 1 ≤iI <12 

<"<]n ≤ 1, so that the strings agree with each other on all the points along the subsequences: sj = 

tj, S 2 = 2' and si,, = tjn• 

Now, how do we convert an image into an integer sequence? One obvious way is to consider 

the images as a sequence of bits, with the successive rows of the image concatenated together. 

This essentially moves the problem back down to 1D string matching. However, the algorithm 

runs in 0(1k) where I and k are the string lengths, so this would lead to a running time of 0(m2 n) 

for two m by n images. This is the same as the running time for edit-distance, which is too slow. 

To make the algorithm feasible, we would need to reduce the image size, or find a way to 

summarize the image information into a more compact form. We found a way to compress an 

image from 0(mn) to 0(m) by storing only one integer for each row; the number of background 

to foreground transitions encountered in a row scan. Of course this is not the only choice we 

have. It would be possible to count the number of foreground pixels, or any measure of each line 

for that matter. Another idea that we think has potential is to compare the Freeman chain code 
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for the boundary of the image. (The Freeman chain code stores the direction to the next pixel 

in an ordered traversal of a shape's boundary) Two similar shapes will likely have a long 

common subsequence of these boundary vectors. 

Finally, any such simplified sequence can then be passed to the LCS algorithm. 
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Figure 33 LCS Distance Calculation 
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The row sequence of image Figure 33 (a), above, is <1,2,1,1,1,1,2,2,2,2,1> and the row 

sequence of image (b) is <1,2,2,2,2,1,1,2,2,2,1>. The LCS of these two strings is 

<1,2,1,1,2,2,2,1>. In (c), the row sequence is <1,2,2,2,1,1,1,1,1,1,1>. Even though the row 

sequences of (a) and (c) have many members in common, they do not appear in the same order, 

and thus the LCS of the row sequence in (a) and (c) is shorter, consisting only of <1,2,1,1,1,1,1> 

To normalize this distance value, we compute how long the common subsequence is in terms 

of the length of the original sequences. A value of 1.0 indicates the sequences are entirely 

identical, and a value of 0.0 indicates they are completely different. Being so easy to normalize, 

this metric is very scaleable and can give meaningful distances for arbitrary image sizes. In the 

example above, this ratio is 8/11, as 8 of the original 11 characters are matched, and this means 

that 73% of one image could be "explained" by the other image. 

Slicing only in the row direction captures a limited amount of information about the image. A 

'9' and a '1' are different since the 9 will have many 2's at the top of the sequence, and then 

many l's. A '9' and a '6' are also very different, since the six has the right proportion of l's and 

2's, but in the wrong order. Only one group (the l's or the 2's) would be matched in an LCS 

calculation. 

But a 'p' and a '9' are very similar since they will both have almost identical row sequences. 

To get around this problem, the image compression can be applied in more slicing directions. We 
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can slice the image horizontally, vertically, and both directions diagonally. Thus we can 

compute 4 sequences for each image, and then compare them, via an LCS calculation. By slicing 

in many directions, a much larger pattern space can be recognized. We present some results on 

how well this metric performs in Chapter 6. Although not better than the Inkwell Hausdorff 

distance, it will be shown this metric still possesses substantial discriminative power. 
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Chapter 4 

Vector Templates 

Vector templates introduce a new method of prototype representation in a template-based symbol 

recognizer. This new representation describes an adaptable, deformable, yet efficient template; 

one that takes the approach of "recognizing symbols by drawing them" [Parker2001a]. There are 

two extremes on the continuum of template matching algorithms for handwritten symbol 

recognition. On one end, we have very quick bitmap template matching algorithms, which 

produce low recognition rates [Vanderbrugl977]. On the other we have the modern, hi-tech 

world of deformable templates, with very high recognition rates, but very slow running times 

[Belongie1999], [Jain1997]. This thesis is an attempt to, bridge the gap with the best from both 

worlds. We discuss how vector templates are much more flexible than standard templates in 

Sections 4.2 to 4.4, and then we discuss how vector templates are fast deformable templates in 

Section 4.5. 

4.1 Introduction 

Before getting started, we present an overview of how vector templates are used in the 

classification process. We hope this will help put each of the subsequent sections into a better 

context. When classifying an arbitrary symbol, we first compute the style features of the image. 

These primarily include size, orientation, and uniform line thickness. Next, for each template, 

(actually for a small set of linear transformations of each template) we render the template to 

match the aforementioned style parameters, thereby producing an image the same size as the 

input image. Finally, we measure the similarity between the two images using an Inkwell 

Hausdorff distance, effectively computing the cost of optimally deforming the template into the 

image and vice versa. Finally, the distances are passed to a 1-NN (nearest neighbour) classifier to 

determine the final classification. 

4.1.1 Definition of a Vector Template 

Stated simply, a vector template encodes the shape of a line-based symbol as a set of line 

segments. These segments can be thought of as the medial axes of the strokes (much like that of 

a skeleton) that make up an image of the symbol. 
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4.2 Vector Templates are Dynamic 

Traditional bitmap template matching stores prototypes as raster images. This set of prototypes is 

then compared against a target image, and the prototype image that is most similar determines the 

image's class. This method has been demonstrated to work quite well on machine printed 

symbols, as all of these are a consistent, size, font face, and orientation. However, when moving 

to handwritten symbols, the variation in these parameters is significant, and the system has 

difficulties achieving good recognition rates. The difficulties stem from the fact that the 

templates are extremely inflexible. The templates are heavily scale dependent; if one wants to 

recognize a symbol that is much different in size from the templates, then they are out of luck. A 

new set of templates must be added to the library. Bitmaps, especially binary bitmaps at low 

resolution, generally look terrible when rotated. Thus, rotating the bitmaps in this traditional 

classifier is not really an option. Also, while scaling bitmaps down can produce reasonable 

looking results, scaling a bitmap up (to a larger resolution) generally creates a poor image. For 

all of these reasons, bitmap template matching is not very successful at handwritten symbol 

recognition. 

We address these issues with a simple, scaleable prototype representation. We represent a 

template as a "vector template". Each template is stored as a set of line segments. We will 

explain how to create vector templates in Section 4.3 using a combination of thinning and 

vectorization. In Section 4.4, we will explain how to draw vector templates, which involves 

having the template adapt to match style parameters measured on the input image. 

4.3 Creating Vector Templates 

Vector templates can be created in many ways, depending on what one starts with. First off, a 

vector template can be created by hand by drawing a set of lines and recording their coordinates. 

This technique, although very primitive, can still produce good results [Parkerl999], where an 

example was shown where one (hand-drawn) template was used to recognize 96% of all the 

instances of a '2' in a particular dataset. More generally though, a vector template can also be 

created from a binary image, by first thinning the image and then applying a vectorization 

process. Although there is extensive literature on thinning and vectorization, the technique is not 

sensitive to the exact choices made for these algorithms. This is due in part to the fact that many 

templates are chosen for each class, so glaring artifacts in one or two images will be 

overshadowed by the other (correct) templates in a class. The creation process could be made 
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even less dependent on exact choices for these algorithms by using a small set of thinning 

algorithms and vectorization algorithms, and for each combination producing and storing a 

template. 

4.3.1 Thinning 

For thinning, we have used Holt's extension to the Zhang-Suen method described in 

[Zhang1984], [Holt1987]. Unfortunately, when using Holt's extension to Zhang-Suen, erroneous 

skeletons are sometimes produced'. However, this algorithm is not the only one to produce 

artifacts from thinning. In fact, many thinning algorithms do this. 

"There are thinning methods [that operate in different ways] but all will produce distorted 

skeletons in some instances. In thinning, as in many things, settling for good enough is 

the best that can be done, and for most applications, the Zhang-Suen method is good 

enough." [Parker1994]. 

However, to illustrate the types of problems one can encounter, consider the following results of 

thinning an image of the digit '3' using two thinning algorithms (Figure 34). 

 00000000  00000  0000 
000000000000-00 000000000 . 

 oo 0.  889?  000   0-

 8880O%  OOa:  0000%:: 

00 00 
go   oJi 

 000000 00000 00000   

(a) Original Image (b) Zhang-Suen Skeleton (c) Zhang-Suen-Holt Skeleton 

Figure 34 Demonstration of thinning algorithms at work 

The original image is quite thin already, and this sometimes causes problems in thinning 

algorithms. In (b) we can see a reasonable skeleton, but in (c), a large portion of the '3' has been 

erroneously deleted. 

We have recently discovered corrections by Lu and Wang [Lu1986] to the Zhang-Suen algorithm. 

Implementing the corrections fixes the problems portrayed in Figure 34. 
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4.3.2 Vectorization 

The primary difference between a skeleton and a vector template is that the vector template is 

further refined into only a set of line segments, as opposed to a skeleton which is only pixels. 

Vectorization is the process of transforming a skeleton into a set of vectors (or line segments). 

For the vectorization process, we have used the technique described in [Lam1988]. Briefly, this 

method identifies curves and then uses a divide-and-conquer strategy to split these curves into 

line segments. 

We present a definition of a term that occurs often in the next section. The crossing index of a 

foreground pixel a, relative to image A, is the number of four-connected regions that remain in a 

3x3 window of A centered on pixel a, after a has been removed. 

Starting from the thinned image, we identify curves; a connected sequence of skeletal pixels. 

A curve can be one of two types: it can be open or closed. First, we repeatedly extract open 

curves from the skeleton by finding endpoint pixels (crossing index of 1) and then following the 

pixel trail until we find another endpoint or another pixel already encountered. After all such 

curves are extracted, there may be "loops" remaining in the resulting image. All pixels on a loop 

have a crossing index of 2, so we can no longer naively search for endpoints, as there are none. 

In this case, we start at an arbitrary point and then follow the pixel trail until we find a previously-

encountered pixel or get back to where we started. Finally, for each such curve of either type, we 

apply a divide and conquer strategy to approximate it by line segments. Points along a curve 

segment are approximated by a line segment connecting the endpoints of the curve. If any of the 

points are too far away from this line segment, then the curve is split at a point that has a maximal 

distance from the line. 
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Figure 35 The Vectorization Process 

(c) 

The threshold for the vectorization process in Figure 35 was 1.5 pixels, meaning that an 

approximation to curve C by line segment L is deemed satisfactory provided that no point of C 

exceeds a distance of 1.5 pixels from L. In (e) of Figure 35, we see the final vector template what 

would be produced from the initial skeleton of an open circle in (a). There is a slight problem 

with this technique however. Consider Figure 36. If we follow curves only from endpoint to 

endpoint, then we sometimes pass over pixels, like point a, that have a crossing index of at least 

3. These intersection points are important since if we split this 'twig' into two curves, the shaded 

pixels and the clear pixels, then there will be a discontinuity between pixels a and b (see Figure 

36 (a)). Although this won't matter much for vector templates since the distance function is not 

too sensitive to boundaries / connectivity, it may be a desirably property of the vectorizer to 

produce a connected set of line segments for a connected image. To achieve this effect, we 

improved the original algorithm in [Lam1988], by redefining what a curve is. Originally, it was 

defined as a sequence of pixels from one end point to another, or a sequence of pixels forming a 

loop, i.e. starting and ending at the same pixel. We redefine a curve as a sequence of pixels from 
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one important point to another, important points being endpoints as well as intersections. For 

the special case of loops, a curve can also be a sequence of points starting and ending at the same 

pixel of crossing index 2. This improvement now ensures the preservation of connectedness 

between images and vector output. A demonstration of this improvement is shown in Figure 36. 
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Figure 36 Preserving the Connectedness Property During Vectorization 

4.4 Drawing Vector Templates 

The process of drawing vector templates involves trying to render the template so it matches the 

style of the input image as best as possible. This is important because the vector template only 

captures the high level shape information of a pattern, and must be custom tailored to achieve a 

more precise fit. By being able to customize the way each template is drawn, this technique can 

be used to match a wider variety of patterns. 

4.4.1 Applying Linear Transformations to Templates 

Vector templates are easily scaled and rotated to fit arbitrarily sized and oriented patterns. To 

rotate or scale a vector template, the same linear transformation is applied to each point in the 

template. We have tried two types of linear transformations, rotations and shearing. 

A rotation by an angle, 6, is defined by the transformation in (Eq 34). 

R [xl[cose —sin Ojx 
°Ly][ sin e cosejy 

(Eq 34) 
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Shearing is accomplished only along the x-axis, as handwriting slant is usually in this 

direction. The shearing operation is defined in (Eq 35). 

[xl =[ 1 ri slr 
x]Lli 
x 

S
SSY[y] s ' I 1  

For our purposes, we have set s=O, and thus when we refer to the shearing value, we speak of s. 

In Figure 37, we see some examples of the linear transformations we applied to vector templates. 

S 
(a) 

5 
(b) 

Figure 37 Linear Transformations applied to a Vector Template 

(c) 

(Eq 35) 

In (a) we see the original vector template. In (b) and (c) we see a vector template under rotation 

and shearing. The rotation value was 0= —20 degrees, and the shearing value was s = +0.6. In 

each case, after the transformation is applied, all templates are resized to fit the same size 

bounding box, so an additional side effect due to scaling is present. 

4.4.2 Line Thickness in Images 

When examining hand-drawn symbols, it usually appears that they are drawn with a uniform line 

thickness. However, this need not always be the case. The writing style, the instrument being 

used (a fountain pen can leave darker, wider areas), and other factors can all contribute to varying 

line width in an image. To try and match the style of these images, different strategies for 

drawing the lines of the vector template are needed. To illustrate this point, consider Figure 38, 

in which we see (a) a template and (b) an image. We would like to have our template match the 

style parameters of the image, and in this case that means mimic the line thickness more closely. 

To simplify the situation somewhat, we model each line in the vector template as having its own 

independent line width. The question we are asking in Figure 38 is "how thick do we make each 

line?" in the name of having the template match the style of the image as best as possible. 
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(a) (b) 

Figure 38 Disparate line-thickness between (a) a template and (b) an image. 

We discuss three ways in which to model line thickness in images, and possible ways to 

implement them. The first shows what happens when we ignore line thickness altogether. 

4.4.2.1 Model 1 - Ignore Line Thickness 

For some data sets, ignoring the line width outright, and plotting each line of the vector template 

as a pixel-wide line can sometimes give acceptable results. It would be statistically meaningless 

to cite an exact measure of improvement, as it would be sensitive to the exact nature of the 

dataset, and how many templates are being used. However, just as an example, we selected only 

3 templates2 at random for each digit class in the ETL dataset (see Chapter 6), and then compute a 

recognition rate on 2000 symbols. We compared many strategies of plotting thick lines due to 

stroke-width estimates on the images as well as the strategy of plotting thin lines (1 pixel wide). 

Thin lines produced a recognition rate of 88.15% and the best thick lines we had produced only 

about 92.45%. Again, these numbers do not show conclusive evidence that thick lines are better, 

but do show two things: (i) even thin lines can achieve some level of success, and (ii) plotting 

thick lines that match the image style are worthwhile. 

It may be surprising that such a high recognition rate can be obtained even with thin lines. The 

reason for this is that the underlying image metric, the Inkwell Hausdorff distance, has a lot of 

discriminative power. Had we been using simply binary correlation to compare images, the thin 

lines would not perform nearly so well. Evidence of this will be presented in Chapter 6. 

2 This  dataset is considered "easy" due to the very large, clear writing and flawless segmentation, so that is, 

why so few templates per class are used. 
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4.4.2.2 Model 2— Assume all lines exhibit uniform and identical stroke width 

Under this model, we can compute an estimate of the global line thickness in an image. This is a 

reasonable model for most hand-drawn images. Given this assumption, we can compute this 

estimate in a number of ways. We will mention two broad classes of algorithms (i) sampling the 

stroke width directly by slicing and (ii) analytically from the measured perimeter and area. 

There are two ways to perform slicing to sample the stroke width of the image. One way is to 

perform slices in the horizontal and vertical directions only. Another is to form oriented slices: 

we will perform slicing perpendicular to the tangents at the image boundary. We illustrate the 

difference in Figure 39. 
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(a) 

Figure 39 Examples of Slicing 

(b) (c) 

In (a) and (b) of Figure 39, we see examples of how to slice an image with horizontal and vertical 

slices. In (c) of this same image, we perform oriented slicing. At each boundary point in a 

direction perpendicular to the boundary tangent (based on a 3x3 neighbourhood). The lengths of 

these slices constitute a sample of the overall stroke width in the image, so we can look at 

properties of this distribution to determine our estimate. Hence, the average uniform stroke width 

can be estimated using the distributions of slice lengths from (a) and (b), or slice lengths from (c). 

A central statistical measure, such as the mean, will be sensitive to some of the longer slices, so 

taking the median often yields more accurate results. 

The horizontal and vertical slicing technique works well if all of the strokes in the image are 

horizontal or vertical, (since then it is really equivalent to tangential slicing at the boundaries) but 

diagonal lines can cause an error as high as times the correct width. Consider Figure 40, 

where we zoom in to a diagonal stroke in an image. Suppose would we like to estimate the 

uniform stroke width at a point x. For this point we take three slices, one horizontally, vertically, 
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and tangentially. The horizontal and vertical slices xa and xb are much longer than the true 

stroke width sample xc. This figure illustrates that to get an accurate stroke width estimate, 

oriented slicing is to be preferred over crude horizontal and vertical slicing. 
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Figure 40 Width Estimation Errors From Slicing 

In addition to slicing, there are some analytical techniques that base the answer upon the 

measured perimeter and area of the image. Since we assume the image is made up of stroke data, 

we can assume that if the image is "stretched out" while maintaining the same values of perimeter 

and area, it would appear as one large rectangle. Under this model, we proceed to solve the two 

equations in two unknowns. 

A=lw (Eq 36) 

P=21+2w 

The following method appears in [Hewl998], and we have made it slightly more accurate. 

Assuming again that the image perimeter and area are essentially that of a big rectangle, and that 

this rectangle is a long stroke of length 1, we can assume that the perimeter is closely 

approximated by P = 21. Using these values, the width is determined via A = 1w, yielding an 

estimate of 

2A 
w — 

P 

(Eq 37) 

We call the estimate of (Eq 37) the linear predictor. This approach works well if the width w is 

much smaller than the length I. Although the above estimate gives reasonable results, it is 

counter-intuitive to neglect the width contribution in one equation and then estimate it from 

another. Instead, we can estimate the width analytically by solving a quadratic formula: 
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l=A/w 

P=2(A/w)+2w 

=2w2—Pw+2A=O 

p_VP2 —16A 
= w = 

4 

(Eq 38) 

We call the estimate in (Eq 38) the quadratic predictor. We present some images that show the 

vector template from Figure 38 (a), plotted with various uniform stroke width estimation 

techniques, estimating the width from Figure 38 (b). In Figure 41, we see estimates of the width 

using the following algorithms (a) horizontal and vertical slicing, (b) tangential slicing, (c) the 

linear predictor, in (d), the quadratic predictor. 

Slicing Tangential Slicing Linear Quadratic 

(a) (b) (c) (d) 

Figure 41 Visually Comparing Algorithms for Uniform Stroke Width Estimation 

Slicing Tangential Slicing Linear Quadratic 

W = 11.00 w = 7.62 w = 7.50 w = 7.58 

Table 1 Quantitatively Comparing Algorithms for Uniform Stroke Width Estimation 

This concludes our survey of uniform stroke width estimation. First, we have shown how to 

estimate the uniform stroke width using information from the set of slice length samples. Second, 

we have shown, under the assumption that the image represents one large rectangle, how to 

derive a width estimate from formulas for area and perimeter. 

4.4.2.3 Model 3—Model the Uniform Line Width of Each Line Independently 

Now we turn our attention to a more localized width estimation technique. Since we are looking 

at this from the perspective of vector templates, we would like a line estimate for each line 

segment in the template. It is true that even a line could exhibit non-uniform line thickness, but 

for now we restrict ourselves to this assumption. Thus, we model each line in a vector template 

as having an independent line width, and come up with an estimate for this value. 
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To solve this problem, we provide one technique that borrows from the slicing ideas of the 

previous section. For each line in the vector template, we perform perpendicular slices to the 

line, and measure local width estimates along this line. Again, this set of slices gives a reasonable 

estimate of the stroke width of the image in this section, provided the line overlaps with a part of 

the image. If it does not, we use the uniform line width estimate for the image when plotting this 

line. Figure 42 shows an example of this technique. 

Figure 42 Localized Width Estimation 

Although most of the time it appears the localized estimates performed quite well, in some 

cases a gross overestimate for the line width has been found. One way to solve this problem 

would be to produce a "width map" for the entire image, stating for each location what the 

estimate of the line width is. This function, really a 2D surface, could then be made smooth, with 

perhaps a bound enforced that no portion of the image be considered to have width greater than 

twice the uniform stroke width. 

Before concluding this section, it may be interesting to see which style of drawing produced 

the template that is most similar to the original image. The comparisons in Table 2 show these 

results for the example image and template of Section 4.4.2. 

Width Estimation 
Algorithm 

Inkwell Hausdorff 
Distance H(A,B) 

Image A Image B 

Slicing d = 11.05 Figure 41(a) Figure 38 (b) 

Tangential Slicing d = 14.24 Figure 41(b) Figure 38 (b) 

Linear d = 14.52 Figure 41(c) Figure 38 (b) 

Quadratic d = 14.43 Figure 41(d) Figure 38 (b) 

Localized Estimates d = 7.11 Figure 42 Figure 38 (b) 

Table 2 Inkwell Hausdorff Between Different Renditions of a Template, based on line 
thickness. 
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Thus the localized width estimates offer some improvement in reducing the distance between 

the image and template. More work would be necessary to better understand this relationship, 

especially when the template and the image do not represent the same symbol. 

This completes the section on localized width estimation, and thus the entire section on line 

thickness in images. We now move to discussing a few other problems encountered with vector 

templates. The first of these describes how vector templates may be too elastic. 

4.4.3 The "Ones" Problem 

When a vector template is plotted over top of an image, it is scaled to fit the dimensions 

(bounding box) of that image. If the image has a reasonable width and height, this strategy is 

fine. However, for very skinny objects like the digit '1', all templates would be scaled to fit into 

a tall narrow rectangle. If the line is only one pixel wide in extreme cases, all templates also scale 

to a one pixel wide line, and thus all templates look the same. In this sense, vector templates may 

be viewed as too elastic. To solve this problem, the notion of a virtual extent for each image is 

introduced. The bounding box of it is measured, and the aspect ratio, max[ wll,l/w}, is calculated. 

If this value is too large or too small, then some whitespace is added to the image. This virtual 

extent, rather than the bounding box, is used to describe the size of the image, so that vector 

templates can be sized appropriately. For handprinted digits, the max {w/l, l/w} should be no 

larger than about 2.5. Thus a '1' pattern is centered in a slightly wider box, and scaling is always 

done relative to this. The same problem comes up when we have very skinny (degenerate) 

templates, and so vector templates are treated the same way. A bounding box for a vector 

template is computed, and if it is too thin, the virtual extent for that pattern is made larger. This 

prevents patterns from being stretched to degenerate proportions in either direction. 
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Figure 43 The "One's" Problem. 
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Figure 43 illustrates the "one's" problem. In (a), we have an image of a '1', which is very 

narrow. In (b), we see a vector template of an '8' plotted into the bounding box of the '1'. The 

bounding box is too narrow to see the '8' properly. In fact, this image would look even less 

recognizable if we had plotted the 8 with thick lines to match the measured stroke-width of the 

original '1'. For purposes of clarity, we have in fact rendered it with thin lines only. In (c), we 

see the same '1' with a virtual bounding box, enforcing a maximum aspect ratio of 2.5. The 

image is widened so that the height is not more than 2.5 the image width. When the template of 

the '8' is drawn in this more spacious bounding box, more of it's natural shape comes through. 

As a result, the distance values are quite large when comparing these images, i.e. (c) and (d), 

which is what we would like. The images in (a) and (b) generate an extremely small distance 

value from their comparison. 

4.5 Vector Templates are Deformable 

Now that we have seen how vector templates are an improvement over rigid bitmaps via their 

elastic nature, let us discuss how they are really deformable templates. This is achieved by the 

use of the,Inkwell Hausdorff distance of Chapter 3. This fast (linear-time) metric effectively 

computes the cost of deforming one image directly into the other. Before discussing how vector 

templates are deformable, let us review two modern approaches to deformable templates. 

In an attempt to improve the performance of template matching algorithms on handwritten 

symbol recognition, many authors have come up with ways to make templates less rigid. 

Templates can be rigid,, globally deformable, or locally deformable. In [Jam 1997], we see the 
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presentation of a locally deformable template that can bend itself to fit the contours of the 

unclassified image. The idea is to model templates in a flexible way, so that slight defects in a 

symbol could be accounted for. When measuring distance between a template and an image, two 

terms contribute to the overall distance penalty. One term explains how well the image of the 

deformed template (under the said deformation) and the target image match up. The other term 

assigns a cost to the magnitude of the deformation. As these two terms are combined via a 

weighted average, it is possible to adjust the "rubberiness" of the templates. The recognition 

rates obtained with this technique were in excess of 99% on the MNIST database, showing that 

deformable templates have a lot of promise. However, the running time for them is quite high. 

This is because the search for the optimal deformation, seems a bit unguided, and almost 'blind'. 

A lot of time is wasted looking at unlikely deformations. Their excessive running time makes 

them unsuitable 'for use in commercial systems' [Jain1997]. 

Recently, a new technique for template-based symbol recognition was introduced, showing 

how to achieve a deformable template via weighted bipartite matching [Belongie1999]. One key 

innovation is the idea of a 'shape context', a rich local descriptor of the image's shape, defined at 

each point in the image. The matching process is guided not by distance between points per se, 

but by how well the respective shape contexts of two points agrees. A recognition rate of 99.93% 

was published on the benchmark MNIST database. One of the obstacles encountered with this 

approach is that bipartite matching can be slow in the worst case. The running time to solve the 

weighted bipartite matching problem is 0(n3). The fast algorithm in [lonkerl987] still has an 

asymptotic worst case running time of 0(n3), but the performance it boasts is due to its expected 

running time. Although this was not clear from the text, it seems on the order of 0(n2), or 

0(n2logn). 3 However, the running time for computing this matching is still quite cumbersome. 

Vector templates are an innovation over deformable templates as they do not search for which 

deformation would take the template image into the target image. Since we know the desired end 

result - why not go there directly? Thus, we directly compute the optimal deformation from the 

template image to the target image, thereby saving an enormous amount of computation time 

looking for the "best" deformation. The magnitude of this deformation describes the distance to 

It is not uncommon for an algorithm to behave like this. 'Quicksort' has a worst case running time of 

0(n2), but runs so fast on average that it is competitive with or better than most 0(nlogn) algorithms in 

practice. 
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the template. Again, since the deformation calculation is carried out via the Inkwell Hausdorff 

distance, the magnitude means the sum of pixel displacements in a smooth morphing of one 

image into the other (see Figure 44). 

3 3•22 
(a) (b) (c) (d) (e) (f) (g) 

Figure 44 Vector Templates as Deformable Templates: '3' to an '8' 

In Figure 44 Vector Templates as Deformable Templates: '3' to an '8' we see the deformation 

calculation in progress. We measure how much work is required to transform, in this case, a '3' 

into an '8', by observing the migration of the individual pixels. 

As another example, notice how we could recognize a 'pathological' instance of a '2' using a 

fairly regular template (Figure 45). Many traditional symbol recognizers would have a tough 

time with this case, especially those sensitive to boundary and connectivity information. 

(a) (b) (c) (d) (e) (0 (g) 

Figure 45 Similarity between a pathological '2' and a template of a 2 identified due to 
inexpensive deformation cost. 

Really, how are these templates different from the two techniques mentioned briefly at the start 

of this section? Well, primarily in two ways: we model deformations more simply and we 

disregard the term describing the effect that the deformation induces on the plane. 

We model a deformation in a way that allows us to efficiently determine the optimal 

deformation from one image to another. This is not so easy in Jam's deformation model. Our 

notion of a deformation is really a discrete vector field of an image. For each pixel location in the 

image, we consider a vector that translates this point to a new arbitrary location. Over the space 

of all such deformations, we efficiently find the vector field that minimizes the total length of all 

the displacement vectors. This is computed through the use of two distance transforms, and 
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allows us to efficiently determine how much effort is required to transform one image into 

another. 

Secondly, and this is a potential weakness of our approach, we do not consider the effect that 

the deformation has on the plane. By disregarding this important term, we throw away 

potentially useful information. The vector field that is created is a byproduct of the Inkwell 

Hausdorff distance calculation, meaning that vector field records, for all points in A and B, the 

displacement they must undergo to find their corresponding nearest neighbour in the other image. 

This vector field between two images is defined in (Eq 39). 

V"' (P) = 

if E A,pe B 

if pe A,pc B 

otherwise 

where Jj is the feature transform for image A 

gjj is the feature transform for image B 
p = (ij) is an arbitrary location in the image 

(Eq 39) 

This vector field captures the amount of work that has to be done to transform one image into 

the other. Notice that the Inkwell Hausdorff distance could be calculated directly from this vector 

field; it is the sum of the magnitudes of all the vectors (Eq 40). 

H(A,B) = 
p€AUB 

(Eq 40) 

Similarly, the regular Hausdorff distance could be determined from this vector field (Eq 41); it is 

just the maximum of the vector magnitudes. 

h(A,B) = maxVAfl(p) 
p€AUB 

A sample vector field is shown in Figure 46. 

(Eq 41) 



69 

.1 

-   - 

4-
  4-

4-

Figure 46 Vector field produced from a Hausdorff distance calculation between two images 
of an '8'. 

We can imagine what effect this vector field induces on the plane. Whenever all the vectors in 

a small region point the same way, the effect on the plane is a smooth deformation, much like a 

bending or twisting. However, when vectors are pulling in opposite directions, like in the bottom 

left corner of Figure 46, this could be likened to a tearing or ripping of the plane. By disregarding 

these aspects of the deformation, we are potentially throwing away some useful information about 

the image similarity, i.e. if two images are similar, they should not induce these kinds of abrupt 

deformations to the plane. To model this term, we could look at each pixel location, and compare 

the displacement vectors in a gaussian window. A penalty term would be accumulated, and it 

could be proportional to the difference in angle of the displacement vectors as well as their 

magnitude. So, for example, two vectors of large magnitude pulling in opposite directions, would 

contribute a substantial penalty term to the overall cost of the deformation. 

To see the effects this vector field induces on the plane, we have created a mesh where adjacent 

pixels in the image are connected by straight line segments. We translate each pixel according to 

the total force exerted on it by the vector field. The total force exerted on it is a weighted sum of 

all the vectors within a small radius. 

WqVij (q) 
q€N(p)  

Wq 

(Eq 42) 
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Where 

N(p) = {q;Iq - pj ≤ r}, is the neighbourhood of p. 

r is the radius of the neighbourhood 

W q = 1 11p - q2 is the weight of the vector at point q 

The images in Figure 47, Figure 48, and Figure 49 illustrate these concepts, and show how the 

plane is affected using this deformation model. They are provided for clarity purposes only and 

were not used in the distance calculation. We mention them here since they help explain how 

distance is being measured, and they explain how vector templates are really deformable 

templates. In each of these figures (a) corresponds to image A, (b) corresponds to image B, (c) 

shows the vector field VAR, and (d) shows the mesh under the force function FAR. 
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Figure 47 Deforming a '1' to an '8'. 
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Figure 48 Deforming a '3' to an '8' 
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Figure 49 Two similar shapes, deforming an '8' to an '8' 

In the final three chapters, we discuss design considerations of the vector template library that 

we developed from scratch, results from symbol recognition experiments, and finally some 

concluding remarks. 
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Chapter 5 

System Design 

This section describes some design decisions made while implementing the vector template 

library and the applications that use it. The system was designed in an object oriented fashion in 

C++, using Microsoft Developer Studio v6.O. 

5.1 Modeling Vector Templates 

It is important to model vector templates appropriately so they can be modified without affecting 

the rest of the system. An interface, called IVectorTemplate, was designed to expose only the 

essential properties of a vector template: the set of line segments that it constitutes, as well as 

identification of the class it models. To model affine transformations such as rotation, scaling, 

and shearing, special objects are created and treated as decorators on the IVectorTemplate 

interface. The entire system treats all modified templates through the common interface 

IVectorTemplate and doesn't need to see what is going on behind the scenes in terms of how 

the vector templates are customized via linear transformations, non-linear transformations, and 

others. 

We now explain this interface and present some classes that implement it. But first, a brief 

word about naming conventions is in order. A class that provides no real implementation, and 

serves just like an interface (in the Java sense of the word), or as an abstract base class (in the 

C++ sense), is named with an "r' as a prefix. This includes interface that already start with an 
"I". For example the interface that represents an image metric is called an I ImageMet ri C. 

5.1.1 Interface: IVectorTemplate 

Interface IVectorTemplate 

IPointIterator *createPointlter() = 0; 

ILineIterator *createLjnelter() = 0; 

Pattern *getPattern() = 0; 

Figure 50 IVectorTemplate interface 

This interface represents the essential concepts of a vector template. A vector template is 

really a set of line segments and represents a model of some class. The createPointlter () 
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function creates an iterator over all the points in the vector template, one for each endpoint of 

each line segment, and the createLinelter () produces a view of the vector template as a set 

of lines. The getPattern () function returns the identity information of the vector template, 

and answers questions like which symbol class it represents. 

5.1.2 Classes that Implement IVectorTemplate 

class VTImpl 

class SinhpleVT 

class TransVT 

class DeformVT 

A VTImpl stands for a 'vector template implementation'. It provides 

functionality to read and write templates to a file, and owns the point 

data for the template. The (x,y) points are in that template's native 

coordinate system, whatever that may be; it is not normalized for size, 

translation or any other quantity. 

A SimpleVr is a minimal implementation of the IVectorTemplate 

interface; thus a SimpleVT is an IVectorTemplate. It contains an 

instance of vT Imp l, which contains all of the vector template data. 

A TransVT is an IVectorTemplate, but represents a kind of 

IVectorTemplate that has had a linear transformation applied to it. It 

is synthesized from an existing IvectorTemplate and a linear 

transformation object. Without having to modify the original 

IVectorTemplate object, various transformations can be applied, 

either all at once with a single linear transformation object, or by 

composing independent instances of TransVT objects. This is done 

behind the scenes by having it create smart iterators that apply these 

transformations 'on-the-fly', as they are requested. 

The DeformVT class models vector templates that have had some non-

linear deformations applied to them. Since it is an IVectorTemplate it 

must still represent straight lines. Thus these deformations are applied to 

the endpoints of the vector template lines only, preserving the 

'straightness' of the lines. A DeformVT object is created from an 

existing IVectorTemplate and an object that describes the non-

uniform transformation. 

This design, specifically factoring out the rather simple IVectorTemplate interface, makes 

many sections very easy to code, since any 'flavour' of a vector template could be treated 
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uniformly. This reduces coupling between many sections since they apply their own 

transformations to the vector templates. For example, it is useful to be able to apply non-linear 

transformations to "deform" a template, and then still be able to stretch the template to fit inside a 

certain area. This is accomplished easily, and the drawing routines for templates do not have to 

change at all. 

To have this system work, appropriate interfaces for an i P oint It e rat or and for an 

I Line Iterat or are defined. Subclasses are created when an iterator needs more information, 

like the transformation that needs to be applied to all the individual points or lines. 

The above design is really a disguised version of the 'Factory' pattern from the Gang of Four 

[Gamma1995]. An IvectorTemplate interface really represents a factory that can produce two 

types of products, IPointIterator objects and ILineIterator objects. Concrete factories 

are defined (i.e. TransVT, DeformVT) that build concrete products, (i.e. the specialized line and 

point iterators). All of the products are of the same family, so one factory can be safely replaced 

by another. The new products, though different, behave just like the old ones. 

5.2 Comparing Images and Templates 

It is important to have a good design of classes that compare images and templates because this 

operation is so common. Two broad concepts are distinguished. We need to compare images 

with other images (i ImageMetric) and we also need to compare images to templates 

(ITemplateImageMetric). It is important to model these separately. To make this distinction 

more clear, a function measures distance between a template and an image if it relies on some 

aspect of template representation. A template metric will often make use of an image metric. 
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Figure 51 Differences between the IlmageMetric and ITemplateImageMetric 

5.2.1 Interface: IlmageMetric 

An I ImageMetric interface represents the concept of a function that compares two images. 

If it models a function, why is it a class? Modeling functions with classes is not a new idea and it 

is often a good idea if one function needs to be easily replaced by another. Also, in the case that 

one function can be parameterized by many different settings, it is convenient to store these as 

state variables of a class and not pass them to every function call. This avoids bulky parameter 

lists and hence confusion. An additional benefit of this design pattern is that if a function needs 

to have 'memory', it can do so. This can be done with static variables in the C programming 

language, but this raises other issues. For example, you cannot have two instances of the function 

with each having its own independent memory. 

Objects of the IlmageMetric class need a memory for caching. It is often the case that a 

single image will be compared against a set of other images. One can often benefit from 

computing certain static features of the single image and caching them to avoid recomputing them 

in each comparison. For example, pre-computing a distance map can be a time-saving operation. 

Thus this interface exposes two different sets of functions for image comparison (see Figure 52). 
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Interface IlmageMetric 

II Scenario 1: unoptimized 

virtual double dist(Bilevellmage &A, Bilevellmage &B) = 0; 

II Scenario 2: optimized for 1-many comparisons 

virtual void setCache(Bilevellmage &A) = 0; 
virtual double fastDist(Bilevellmage &B) = 0; 
virtual void clearCache() = 0; 

Figure 52 The IlmageMetric Interface 

The first scenario has the easier syntax, and allows a direct comparison of two images. Of 

course, no caching is performed in this case. In the second set (three functions), a user first 

identifies the image that will remain constant in future comparisons, then calls the fastDist () 

function for arbitrary images, and finally clears the cache. An I ImageMet nc object only 

compares binary images that are of the same size. 

There are many descendants from this class that allow for different types of image 

comparisons. The most simple of these is ImageMetnicxOR which performs a binary 

correlation. It superimposes the two images and counts how many pixels overlap. Next, there is 

a family of classes based on the Hausdorff distance. The classes ImageMetricND8, 

ImageMetricND8_2, ImageMetricSND8, ImageMetricSND8-2 comprise the complete list. 

These functions all look at the sum of minimum distances to neighbouring pixels in the 

corresponding image, but change the way they define the distance measure between pixels. See 

Figure 53 for a summary. 

ImageMetricND8 implements H(A,B) using L. 

ImageMetnicND8_2 implements H(A,B) using L 2. 

ImageMetricSND8 implements H(A,B) using La,. 

ImageMetricSND8-2 implements H(A,B) using L,2. 

Figure 53 Image Metrics in the software. 

5.2.2 Interface: ITemplateImageMetric 

Another interface, called ITemplateImageMetric represents the concept of a function 

that compares a static image and a dynamic template. This class might add too much 
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unnecessary complexity if it only plots the template on an empty canvas and then delegates the 

rest of the work to an IlmageMetric object. But, even this is still useful, and the 

GenericTlM embodies this task. However, we often need to do quite a bit more when 

comparing an image and a template. We would like to consider different transformations of 

the template, and this is what the descendants of the I Template ImageMetric class are 

responsible for. They try many different 'versions' of a template, and report only the distance 

to the best one. 

An ITemplateImageMetric may also need to cache information about the image it is 

comparing. Often the same instance is used to compare a single image against many templates. 

In these cases, all features of the image itself can be precomputed to save time. The syntax for 

evaluating the distances with and without caching is very similar to that of the IlmageMetric 

interface. 

class GATP recess The GATP recess (standing for Global Affine Transformation) class 

handles global transformations to the template, such as rotation, shearing 

and scaling. When measuring distance, it can be customized with the 

range of rotation angles to try, and the angle increment that is used. It 

can be told whether or not to use shearing, and to what size to scale the 

vector template. It will try all parameters in this range on a given 

template, and give back the distance to the best transformed template. 

Again, for each transformation, the template is plotted onto a canvas, and 

the actual comparison is delegated to an IlmageMetric. There is no 

cost attached to any of these transformations. 

class DefF recess In the case of deformable templates, we need to comb a large parameter 

space to find an optimal deformation of a given template. Basis vector 

coefficients are sought so the resulting deformation minimizes the 

distance between the template and the image. Many image to image 

comparisons are needed during this search. Thus, a DefProcess object 

delegates this work to an IlmageMetric Object. 

The suffix 'Process' is given to these metrics since we want to emphasize that the set of 

transformations of each template are examined. 
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5.3 Modeling Images 

Images are modeled as 2D arrays of bytes (in the range 0 to 255). A common implementation 

is created in a class called Image, and then three classes are derived from this. The 

Bi level Image class is mainly for binary images, and primarily the values 0 and 1 are used. 

Other values are occasionally used to mark special pixels. The GreyScalelmage class models a 

grey-scale image, and can use the default implementation more or less as-is. Finally, the 

Colorlmage class models color images. Unfortunately, 0-255 doesn't give much room for color 

information, so these are indicies into a 256-entry colormap with 24-bit color values, much like a 

GIF representation. 

5.4 Image Transforms 

Since distance transforms have become such an important part of the efficient computation of 

the Inkwell Hausdorff distance, we spent some time modeling these classes as well. A feature 

transform of an image is a matrix of point data, stating for each image location where the nearest 

foreground pixel is. Similarly, a distance transform is a matrix of scalars, and records, for each 

image location, the distance to the nearest foreground pixel. We have created a separate class for 

each of these, called FeatureTrans form and DistanceTransform and then another class 

called the Ent i reTrans form which is just a data structure housing both the distance transform 

and the feature transform. 

We have created classes for computing the distance transform using any one of L1, L2, and L. 

pixel metrics. These classes all implement a common interface called IFTAlgorithm, which 

represents an algorithm to build either a distance transform, a feature transform, or both. The 

added function to return both at once is useful because sometimes one type of transform is 

necessary to build the other. For example, building a distance transform for the L2 metric 

involves building a feature transform anyway. Thus, to retain system efficiency, we provide a 

way to get both transforms at once. 



79 

Interface IFTTransform 

// Methods 

virtual DistanceTransform *createDxform (ailevellmage &img) =0; 

virtual FeatureTransform *createFxform (Bilevellmage &img) =0; 

virtual EntireTransform *createExform(ajlevellmage &img) =0; 

Figure 54 Interface for an IFTAIgorithm 

The FTAlgorithmLl, FTAlgorithm_L2, and FTAlgorithm_L8 implement the 

IFTT ran s form interface, for the pixel metrics L1, L2, and respectively. The algorithm ideas 

for FTAlgorithm_L1 and FTAlgorithm_L8 were taken from J.R. Parker (Parker1991) and the 

algorithm for FTAlgorithm_L2 was taken from M. Gavrilova [Gavrilova2000]. All transforms 

can be computed in linear time for an image with a pixels, and require only two passes through 

the image. The Euclidean Distance transform is somewhat slower however, since it relies on 

floating point calculations, whereby the other transforms rely solely on integers. 

5.5 Interactive Symbol Recognizer for Windows 98 

We performed an interactive demo on symbol recognition at ICCV 2001 in Vancouver 

[Parker2001bJ. The vector template code was used to build a system that allowed user input of 

arbitrary symbols with a pointing device: either a mouse or a WACOM Tablet, which is a touch 

sensitive pad with a stylus, and is a more natural interface for capturing handwritten symbols. 

After a symbol is drawn, the system cycles through all of the templates in its library, searching 

for the best match. It shows the current template in the top right corner, while the bottom row 

displays the top 3 templates in its search so far. It is possible to adjust the range of rotation 

angles and transformations in general that are applied to each template (see Figure 56). The line 

thickness can be set accordingly as well, to use either skinny templates, templates with uniformly 

thick lines, as well as variable width lines. It is also possible to try different techniques for 

measuring distance, and tune the parameters for them. These include distance using the LCS 

algorithm, as well as using bipartite matching, and of course the whole host of Hausdorff distance 

functions. 

The demo application can also be used as a browser of template libraries. It shows a screen 

with the entire template library, as well as individualized screens for each template, emphasizing 

their underlying, line segments. 
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Figure 55 Screen Shot of the Interactive Symbol Recognizer 
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Figure 57 Transformation of Template improves Distance Calculation 

In Figure 57, we see that applying linear transformations to the template can improve the 

distance value. In the two images at the bottom the text "[3] 1.81643" indicates the template 

represents a symbol class of '3', and the distance value was 1.81643. This distance goes down 

considerably as a shearing operation is performed on the template. 

5.6 Conclusions 

We have implemented an object oriented vision library for symbol recognition systems using 

vector templates. Some foresight went into making the separate algorithms interchangeable 

through the use of the 'Strategy' pattern [Gamma] 995]. This frees us to use different image 

metrics or template metrics in the system, thus reducing the dependency of the overall technique 

upon any one specific algorithm choice and/or implementation. This facilitates making 

comparisons of individual components, as well as providing a fertile test bed in which to more 

readily test out new ideas. 



82 

Chapter 6 

Results and Experiments 

6.1 Overview of Chapter 

In order to test out the general applicability of vector templates, we used them in many symbol 

recognition experiments. Experiments were performed on hand-written digit databases, as well as 

on machine-printed electrical engineering symbols, and symbols from a chess openings book. 

This chapter is organized into 3 main sections, one for each dataset. 

The first dataset consists of isolated hand-drawn digits. We had access to four different 

databases, some publicly available and others purchased privately. A brief description of each set 

is provided along with some sample images that show the quality of the data. In this section on 

digits, we also explore different parameters of the Hausdorff distance function for comparing 

images, and provide evidence as to why the final function chosen works the best. We discuss the 

different image alignment techniques that were tried, and how they compared against each other. 

We present our recognition rates on the four aforementioned databases, and where possible, 

compare them to the best published results to date. Finally we describe the template selection 

strategies that were tested, and which one was used for our final published results. 

The second dataset consists of noisy, machine drawn symbols from electrical engineering. 

This dataset was provided as part of a symbol recognition contest for ICPR 2000 (International 

Conference on Pattern Recognition), in which our algorithm won first place [Yel999], 

[Askoy2000], [Parker2000]. We examine the question of how to measure the line thickness of an 

image, and present and compare three algorithms. Noise removal strategies are also discussed. 

In the final dataset, we consider an application of machine-drawn symbol recognition from a 

chess openings book. This has practical value as most opening books are available only in 

printed form. One can make use of a digital chess openings book in chess software, and in tuning 

static evaluation functions during the early stages of a chess game. 
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6.2 Handwritten-Digit Databases 

We had access to four different handwritten digit databases. These consist of the MNIST 

database, the CENPARMI database, the USPS database, and the ETL database.4 Each is 

organized quite differently; the images are stored in various formats and some datasets have an 

official partitioning into training data and test data, while others do not. We put them all under a 

common organizational umbrella to make conducting experiments and comparisons easier. All 

the datasets luckily fit onto a single CD, and we chose to store one image per file for easy random 

access. Although this is somewhat wasteful, as there are 100,000 files and each file header 

wastes some space, it makes the dataset very easy to access. Also, we chose the uncompressed 

file formats PBM and PGM for their simplicity in file 110, as we felt this outweighed the storage 

penalties. The CD also has a short HTML documentation section that discusses the technical 

description of the datasets, and is included here. 

Number of Images 
Dataset Entire Database Training Data Testing Data 
MNIST 70000 60000 10000 

SIJEN 13982 
TrainA 1578 12404 

TrainB 1610 12372 

USPS 9298 7291 2007 

JAPAN 2000 1200 800 

Table 3 A Size Comparison of Handwritten Digit Databases 

4 We had named two of our datasets initially with informal names, and as a result some of them have two 

names. The CENPARMI dataset is informally called the "SUEN" dataset on the CD, and the ETL dataset 

is informally called the "JAPAN" dataset on the CD. 
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Technical Description of Database 

Dataset Data Type File Format 
Image 
Resolution 

Pattern 
Resolution 

MNIST Greyscale *.PGM 28x28 approx 20x20 

SUEN Bilevel *.PBM approx 20x20 approx 12x15 

USPS Greyscale *.PGM 16x16 approx 12x16 

JAPAN Bilevel *.PBM 72x76 approx 36x38 

Table 4 Description of Image Content in Databases 

The CENPARMI Dataset 

The CENPARMI dataset consisted of 13,982 isolated hand-printed digits. It has two training sets 

of approximately 2,000 digits each. 

O q 

O / $4/c2yq 
Figure 58 Sample Digits from the CENPARMI Dataset 

Most of our effort was spent on this database, and for a number of reasons: (i) this dataset had 

characters that are quite difficult compared to the neat characters in the ETL dataset, (ii) its size is 

manageable compared to the large MNIST database, and finally (iii) the segmentation seems 

cleaner than for the USPS database, where occasionally fragments of other digits appear on some 

test cases. Also, this dataset is in black and white, which is easier to work with than greyscale, 

the format used in the MNIST and USPS datasets. 

The CENPARMI dataset comes with two partitions of the data into training and testing data. 

Unfortunately, even though both official training sets have 2000 images, there are many 

duplicates in both of them. After removing duplicates, there remained 1578 and 1610 distinct 

images in 'traina' and 'trainb' training sets, respectively. 
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Most of our experiments were conducted using the CENPARMI dataset, using the traina 

training set with the duplicates removed. 

The ETL Dataset 

C123L1L5b?d1 

Oi23Li-679 

O123L456vS? 
Figure 59 Sample Digits from the ETL Database 

The ETL database was collected by the Japanese Technical Committee, and consists of digits 

drawn by Japanese students. The digits are subjectively very neat and consistent. The size of the 

dataset is quite small, consisting of only 2000 images in total. 

The MNIST Dataset 

Due to its large size of 70,000 images, this dataset is one of the standards for symbol recognition 

benchmarking. A standard such as this is necessary to provide meaningful comparisons between 

symbol recognition algorithms. Many different algorithms have been tried on this database, and 

their recognition rates have been tabulted by the dataset' s maintainer, Yann LeCun of AT&T 

Labs-Research [LeCun1995]. The dataset contains digits from high school students and census 

employees in the United States. 

"I 
Figure 60 Sample Digits from the MNIST Dataset 

The USPS Dataset 

This dataset was collected from ZIP codes on United States Postal Code envelopes. 
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Figure 61 Sample Digits from the USPS Dataset 

The dataset we have, of 9,000+ images, is actually only a (free) sampler of the true database, 

which is much larger. 

6.2.1 Image Metric Comparisons 

Before getting to the recognition rates we achieved on these datasets, we would like to discuss 

how we arrived at our choice for an image metric, the important function that compares two 

images. Due to its popularity and demonstrated success, we have focused on the Hausdorff 

distance and our improvements to it, namely the creation of the new Inkwell Hausdorff distance. 

In fact, we compared many different types of Hausdorff distances, as well as other distance 

metrics. To arrive at a fair comparison, we repeated the same symbol recognition experiment, 

using vector templates, while varying only the underlying distance metric. 

There are many different ways to take advantage of the Hausdorff distance. Since we want to 

demonstrate an improvement over the traditional Hausdorff distance, we wanted to make sure to 

explore a good sample of the possibilities. Table 5 contains a review of the definitions for 

Hausdorff distance and a standard pixel metric. 

Definitions of Hausdorff Distance, Pixel Norms 

Directed Hausdorff Distance h(A, B) = max mind (a, b) 
aA bB 

Directed Inkwell Hausdorff Distance H(A,B) = min d(a,b) 
b aEA EB 

Symmetrical Hausdorff Distance h(A,B) = max(h(A, B), h(B, A)) 

Symmetrical Inkwell Hausdorff Distance H(A,B) = H(A,B)+H(B,A) 

Pixel Norm 
I,((x1, YO, (X" y2)) = I(dx" + dy"), 
where 

dx = xi - x2, and 

dy=y1-y2 
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Table 5 Review of Definitions of Hausdorff distance, Pixel metrics 

First off, we computed the directed (one-way) Hausdorff distances and Inkwell Hausdorff 

distances. We want to compare how various underlying pixel metrics affect these distances. To 

perform the comparison, 200 random images from the traina training set of the SUEN dataset 

were chosen with 20 templates for each digit class. For test data, we selected 200 images from 

the testing dataset, again choosing 20 images for each digit class. We used vector templates with 

angles, in degrees, at {-10,-5,0,+5,+10} and shearing constants at {-0.4,-0.2,0,+0.2,0.4}. Thus, 

we performed a total of 200 images x 200 templates x 10 orientations/template = 400,000 image 

comparisons to arrive at a recognition rate for each combination of a Hausdorff distance variant 

with a pixel metric. 

Recognition Rates for One Way Hausdorff Distance 

Pixel Metric h(A,B) H(A,B) 

IL0 10.00% 59.00% 

L1 52.50% 62.50% 

L12 52.50% 60.50% 

L2 53.50% 61.00% 

53.50% 60.50% 

L. 45.00% 59.50% 

45.00% 59.50% 

Table 6 One-way Hausdorff distance (left) compared with one-way Inkwell Hausdorff 
distance 

The one-way Hausdorff distance performed quite poorly, as is evidenced in Table 6. This is 

mainly due to the fact that larger images are preferred by a one-way Hausdorff distance. We 

noticed that regions with a large area can be easier to match (at least in one direction). For 

example, consider images A and B where B has substantially more area. Then, when iterating 

over pixels in A to find their nearest neighbours in B, most distances will be small since B is large 

- it is like the difference between landing a plane on a runway and on an aircraft carrier. 

Matching one image to another image with a large area is like landing a plane on a spacious 

runway. 

To compensate for this fact, we tried measuring distance using both the symmetrical Hausdorff 

distance and the symmetrical Inkwell Hausdorff distance, again under varying pixel metrics. By 
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measuring distance from A to B as well as B to A, we neutralize the one-way bias a large image 

can cause in the overall distance. 

We conducted the same experiment as in Table 6, but using the symmetrical Hausdorff 

distances. Table 7 presents our results. In the first column, we see the performance of the 

(symmetrical or two-way) Hausdorff distance, and in the second column we see how the Inkwell 

Hausdorff distance outperforms it in every case. Recall that the metric L0 corresponds to binary 

correlation, and counts a penalty for each foreground pixel that doesn't overlap with a 

corresponding foreground pixel in the other image. Thus it is expected to perform poorly, 

especially when used with h(A,B), as all mismatched pixels are said to be distance one away from 

a nearest neighbour. It is included for the sake of completeness only. We would like to note as 

well that these recognition rates are not maximal. The experiments were run solely to better 

understand the role of pixel metrics in the Hausdorff distance, and to compare the Hausdorff 

distance with the Inkwell Hausdorff distance. Once we have acquired this understanding, we can 

focus on achieving higher recognition rates by tuning the operations we perform on vector 

templates. 

The third column of this table shows what happens when we perform the Inkwell Hausdorff 

distance computation on the negatives of the images as well. The motivation to try this idea came 

from some special cases. If we are computing H(A,B) and A is empty, it will have a small 

distance to any image B. To avoid this situation, we also tried inverting the images 

(complementing each bit) and combining these results with the Inkwell Hausdorff distance on the 

plain images. However, there is no noticeable improvement in the recognition rate offered by this 

extra term, so it was discarded. 
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Pixel Metric h(A, B) H(A, B) H(A, B) + H(A, B) 

L0 10.00% 67.50% 67.50% 

L1 78.50% 90.50% 90.00% 

L12 78.50% 88.50% 88.50% 

IL2 83.50% 89.50% 

83.50% 89.50% -H(A,B)2 

L,. 77.50% 89.50% 88.00% 

L,,2 77.50% 89.50% 90.00% 

Table 7 Hausdorff distance (left) compared with Inkwell Hausdorff distance (right). 

It is interesting to note how much better the Inkwell Hausdorff distance performs over the 

regular Hausdorff distance. 

In Table 8 we provide some comparisons of different variations of the Hausdorff distance that 

we tried, as we were zeroing in to the best fit of the Hausdorff distance. Also, we tried to run a 

more substantial experiment to ensure we had significant recognition rates. The table shows 

results from an experiment run with 150 templates, 15 for each digit, randomly selected from the 

traina subset of the CENPARMI dataset. With this template set, we recognized 1000 symbols 

chosen randomly from the test data. In addition to resizing all templates, each underwent a small 

set of linear transformations to aid in the search for the best fitting template.6 The data shows the 

recognition rates for the given Inkwell Hausdorff function. 

The running time was too slow, so the run was aborted midway. However, the results appeared consistent 

with H(A,B) when image negatives were not used. 

6A11 templates were rotated from -10 degrees to 10 degrees at 2 degree increments. Shearing was also 

performed with a shear constant ranging from -0.4 to +0.4. 
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Inkwell Hausdorff Function 
Recognition Rate 

using L0. using 

H(A,B) 80.80% 80.35% 

H(B,A) 87.39% 83.90% 

H(A,B) 88.59% 90.24% 

min(H(A,B),(B,A)) 82.07% 80.86% 

Table 8 Combinations of the Hausdorff distance using different pixel metric functions 

From this data, we have decided to use the (undirected) Inkwell Hausdorff distance in 

combination with the metric L 2. From this point forward, H(A,B) will mean this distance. We 

have not mentioned the LCS distance metric yet, and we have tested this metric in an experiment 

identical to that of Table 8. It's recognition rate was 88.50%, but this number was not 

significantly higher than the (more efficient) Inkwell Hausdorff distance functions. Even though 

it looks at quite different features of the images when comparing them, we could not find a good 

way to make use of this metric. More work would need to be done to possibly increase its 

efficiency or improve its rates. 

6.2.2 Performance Comparisons on Handwritten Digit Databases 

We now present our results on the four handwritten digit databases. Before proceeding however, 

a word on recognition rates is in order. What recognition rate are we trying to achieve? Well, 

one might think 100% but it turns out that even human experts would have a hard time achieving 

that. The reason is that we are given a set of digits, and their classes, but the class information 

was determined by the person that drew the digit. The best recognition rate we can get is 

dependent upon what the digit looks like, not what it was intended to be. We only have the latter 

information, and determine what it looks like on our own. The exact recognition rates for these 

databases (that is, as determined by a panel of human experts) is not known; as to our knowledge 

this experiment has not yet been done. We would estimate at least 1% to 2% of the digits could 

have controversial identities according to a small panel of people. Conservatively, on MNIST, at 

least 0.7% of the images are misclassified by the world's top programs. 
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We have conducted these experiments differently from the preliminary experiments to 

measure Hausdorff distance. To achieve as high a recognition rate as possible, we have increased 

the number of transformations of each template that we consider at each comparison. We now try 

a total of 18 different orientations of each template, (as opposed to about 10 for the Hausdorff 

distance tests). These orientations are made up of rotation angles, in degrees, of (-10, -8, -6, ..., 6, 

8, 10) and of shear values (-0.6, -0.4, -0.2,...,+0.2,+0.4,+0.6). A set of 200 templates was chosen 

from the training set in each of the databases, and then a small test set of 200 images was chosen 

from the test data. 

Recognition Rates for various Databases 
Database 20 templates per 

class, alignment by 
bounding box, 200 
test images 

20 templates per 
class, alignment 
by centroid, 200 
test images 

40 templates per 
class, alignment 
by centroid, 600 
test images 

40 templates per 
class, alignment 
by centroid, 600 
test images, 
LCS 

MNIST 91.00% 91.50% 93.50% 92.83% 

SUEN 91.50% 93.00% 94.50%" 94.83% 

USPS 88.50% 88.00% 89.33% 90.67% 

JAPAN 98.50% 98.50% 99.00% 98.67% 

Table 9 Algorithm Performance across different databases 

From the data in Table 9, we see that the algorithm is capable of extremely high recognition 

rates. True, the JAPAN dataset is perhaps easier than the others because (visually) the 

handwriting is very neat, the images are large, and very cleanly segmented, but the effectiveness 

of the technique is still demonstrated. The first column in the table shows some preliminary 

results when using a smaller dataset for both testing and training. Only 200 images were used for 

training, and only 200 images were used for testing. In the next column, we have demonstrated 

the effects of improved image alignment. In the first column, images were aligned by their 

bounding boxes only. In the second column, we have used the bounding boxes to guide us in 

how large to make the template, but then have aligned the images properly by their centroids. A 

slight improvement in recognition rates was observed in nearly all cases. From this point, we 

increased the size of the training and testing data, to 400 templates and 600 images for testing. 

These experiments ran for approximately 1 hour per dataset on a Celeron PC. Again, a slight 

improvement in the recognition rates was observed. After looking at the errors that were made, 

7 On a more substantial test, using the leave-one-out approach on 1578 symbols, we scored 96.39% 
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we thought of trying an optimization with another classifier. We used the Inkwell Hausdorff 

distance only to select the 5 best templates, and each template at it's best orientation. Looking at 

only these 5 images (of drawn templates), we asked the LCS Image Metric function to decide the 

closest match. Although this fresh perspective helped in some cases, it decreased the 

performance in others. Thus we ultimately left this metric out. 

It seemed like the system under the Inkwell Hausdorff distance was making mistakes on pretty 

easy test cases, so we introduced a slight optimization, that of getting a second opinion. We use 

the LCS distance metric to re-sort the top 5 candidates as determined by the Inkwell Hausdorff 

distance. The Inkwell Hausdorff distance compares images only spatially and doesn't care about 

what structure an image has; are certain loops closed, do certain lines touch? The LCS metric, on 

the other hand, disregards the spatial similarity, and looks only at the structure of an image. It 

seemed like a reasonable idea to try: to have the Inkwell Hausdorff distance first find the best 

candidates for best matching template, according to spatial reasoning, and then have a second 

opinion from a source that doesn't look at spatial features. The attempt we made was somewhat 

ad-hoc but it does demonstrate (1) that the LCS metric and the Inkwell Hausdorff distance are 

looking at quite different features of the images and (2) that it is pässible to combine them to 

achieve higher recognition rates. Further work would have to be done to combine them in an 

"optimal sense", and this falls more under the heading of strategies for combining multiple 

classifiers. 

6.2.3 Errors 

We now explain the types of errors that were made for each database. We have chosen four 

errors that represent the mistakes made in that database. For each error, we will show three 

images, to show not only the image that was misclassified, but also the best matching template. 

The first of these three images is the image we are trying to classify. The second and third both 

represent the best matching template. The second image shows the template in it's original form 

and the third image shows the rendition of the template we have produced after creating a vector 

template, re-sizing to fit the original's bounding box, applying linear transformations, and finally 

matching the line width of the first image. 

Again, the three-part figures represent Image 11 Template 11 Rendered Vector Template. 
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(a)0asa6 (c)8asa0 

(b) 1 as an 8 8 / (d) 9 as a 4 

Figure 62 Selected Misclassifications from the MNIST database 

(a)lasa7 

I 7 / 
(c)4asa9 

(b)2asa7 (d)8asa2 
2— 

Figure 63 Selected Misclassifications from the SUEN database 

(a)0asa4 (c)2asa3 alialia 
(b) 1 as a 7 111,711 1 (d) 9 as an 8 911 ,711 7 

Figure 64 Selected Misclassifications from the USPS database 

(a) 1 as a 7 I (c) 3 as an 8 
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Figure 65 Selected Misclassifications from the JAPAN database 

These mistakes show two things. First, the problem of symbol recognition is very difficult. 

Achieving 100% recognition is unreasonable as some data is entirely unrecognizable even to a 

human (see Figure 62 (a)). At other times, the data can be very ambiguous (see Figure 65 (d)). 

Second, sophisticated as it is, the algorithm we are using can still produce fairly naive mistakes, 

such as Figure 65 (c), where even though the '3' is drawn with the loop sections almost closed, 

there should still be no mistaking it for an '8'. We think part of this is due to the fact that we still 

suffer from making templates "too" elastic. Very thin regions should not cause templates to be 

deformed into such a degenerate case. Although this does not happen when the images are 

oriented with parallel the coordinate axes, it still happens with thin, slanted figures. 
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The examples of errors in Figures Figure 62 through Figure 65 were drawn from an 

experiment with a training set size of 400 and test set size of 600. The actual recognition rates for 

these experiments were published in the second last column of Table 9. 

6.2.4 Comparison to Other Works 

We compared our algorithm against two of the top published results on this database. 

Unfortunately, we did not have the time to do an exhaustive test, using the enormous amount of 

training data, 60,000 images coupled with a test set of 10,000 images. Thus, the resulting 

comparisons may not be on a level playing field. 

Performance Comparisons on MNIST Database 

Algorithm Recognition 

Rate 

Experiment Size Running Time 

K-NN, shape context 

matching [Belongie1999] 

99.93% 20,000 Training 

10,000 Testing 

63 comparisons! 

minute8 

Boosted LeNet-4, 

distoritions [LeCun1998] 

99.30% 60,000 Training 

10,000 Testing 

extremely fast 

Deformable Templates 

[Jain1997] 

99.25% 2000 Training 

2000 Testing 

26 comparisons! 

minute 

Vector Templates' 93.5% 400 Training 

600 Testing 

4000 comparisons/ 

minute 

Vector Templates 95,0% 2000 Training 

2000 Testing 

4000 comparisons! 

minute 

Table 10 Comparison on MNIST Database 

The numbers in Table 10 show that our technique is very fast but about 4 percent less accurate 

than existing techniques. We have done some other preliminary experiments with our technique 

that would give us recognition rates in the ballpark of 95.7% using a few simple extensions to the 

Inkwell Hausdorff distance (covered more in the Future Extensions section of Chapter 7). Thus, 

When I asked the authors how long it took to run this experiment, they said it was 6 computer years. 

Time and CPU resources were not available to use all 60,000 images as templates, and then to conduct an 

experiment on 10,000 images of test data. 
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with a little more algorithmic refinement, this technique could be used as an efficient 

alternative to expensive variations of deformable template matching. We present the results for 

running times in "comparisons per minute", which means how many templates an image could be 

compared against in each minute on a modern machine. These units were chosen since the 

number of training images varies in many of the above experiments, and thus quoting a number 

of symbols per second would be not as meaningful. 

However, to give an estimate of running times required to achieve the published recognition 

rates, we will consider two examples. In our case, a running time of 4000 comparisons per 

minute means that if the library size is 2000 templates, we can recognize one symbol every 30 

seconds. To use the shape context technique and achieve a 99.93% recognition rate, 20,000 

comparisons must be made at 63 comparisons per minute, which yields one symbol every 5.3 

hours. 

We now move to a comparison on another database, the JAPAN database. Besides the 

published rates from previous work of J. R. Parker, we did not find other published rates on this 

database. However, we were able to demonstrate an improvement over these previous results. 

Performance Comparisons on JAPAN Database 

Algorithm Recognition 

Rate 

Experiment 

Size 

Running Time 

Vector Templates [Parker1999] 94.3% 25 prototypes 

(hand-drawn) 

2000 testing 

4.4 sec / symbol 

Vector Templates, with 

improvements 

99.0% 400 training 

600 testing 

-. 1 minute / symbol 

Table 11 Comparison on JAPAN Database 

The principal differences in these experiments were in template generation and use of 

specialized code. The work done in [Parker1999] used hand-drawn templates after a human 

looked at the training data. In our work, we automatically generated templates by selecting them 

at random from the training data. Also, in the first work specialized code was used to handle the 

'1' digits, and in our case we had a more generalized technique that handled this problem. We 

enforced a minimum aspect ratio to avoid deforming images into a degenerate 1D object such as a 
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line. If an image (or template) had a bounding box with an aspect ratio that was too "thin", 

white space was added until a reasonably-dimensioned image was produced. 

As for the CENPARMI database and the USPS database, it was difficult to find published 

results of recognition rates on these sets. We now present the full confusion matrices for the 

recognition rates in the third column of Table 9. 
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Confusion Matrix on MNIST Database (Recognition Rates in Percent) 
Actual Recognized As 

0 1 2 3 4 5 6 7 8 9 

0 98.33 - - - - - 1.67 - - - 

1 - 85.00 - 5.00 - - - 5.00 3.33 1.67 

2 - - 98.33 - 1.67 - - - - - 

3 - - 1.67 93.33 - 1.67 - - 1.67 1.67 

4 - - - - 96.67 - 1.67 1.67 - - 

5 - - - 3.33 - 95.00 1.67 - - - 

6 - - - - - - 100.00 - - - 

7 - - 1.67 - 3.33 - - 91.67 1.67 1.67 

8 1.67 - 1.67 - 1.67 1.67 - - 91.67 1.67 

9 - 1.67 - 5.00 - - 5.00 3.33 85.00 

Table 12 MNIST Confusion Matrix, overall recognition rate of 93.50% 

Confusion Matrix on SIJEN Database (Recognition Rates in Percent) 
Actual Recognized As 

0 1 2 3 4 5 6 7 8 9 

0 100.00 - - - - - - - - - 

1 - 91.67 - - - - - 3.33 3.33 1.67 

2 3.33 - 93.33 - - - - 3.33 - - 

3 1.67 - 5.00 83.33 - 5.00 - - 5.00 - 

4 - - - - 95.00 - - 1.67 - 3.33 

5 1.67 - - - - 93.33 5.00 - - - 

6 - - - - - - 100.00 - - - 

7 - - 1.67 - - - - 96.67 - 1.67 

8 - - 3.33 - 1.67 - - - 93.33 1.67 

9 . - - - - - - - 1.67 - 98.33 

Table 13 SUEN Confusion Matrix, overall recognition rate of 94.50% 
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Confusion Matrix on USPS Database (Recognition Rates in Percent) 
Actual Recognized As 

0 1 2 3 4 5 6 7 8 9 

0 93.33 - - 1.67 1.67 - - 1.67 1.67 - 

1 1.67 81.67 5.00 1.67 - 1.67 3.33 5.00 - - 

2 - - 90.00 5.00 1.67 - - - 3.33 - 

3 - - 1.67 88.33 3.33 - 1.67 3.33 1.67 

4 - 1.67 - - 86.67 1.67 3.33 1.67 - 5.00 

5 3.33 - - 3.33 - 81.67 3.33 - 1.67 6.67 

6 - - - - - - 100.00 - - - 

7 - - - - 3.33 - - 96.67 - - 

8 1.67 - 1.67 - 3.33 1.67 - 3.33 86.67 1,67 

9 - - - 1.67 3.33 - - 5.00 1.67 88.33 

Table 14 USPS Confusion Matrix, overall recognition rate of 89.33% 

Confusion Matrix on JAPAN Database (Recognition Rates in Percent) 
Actual Recognized As 

0 1 2 3 4 5 6 7 8 9 

0 100.00 - - - - - - - - - 

1 - 96.67 - 1.67 - - - 1.67 - - 

2 - - 100.00 - - - - - - - 

3 - - - 98.33 - - - - 1.67 - 

4 - - - - 100.00 - - - - - 

5 - - - - - 100.00 - - - - 

6 - - - - - - 100.00 - - - 

7 - 5.00 - - - - - 95.00 - - 

8 - - - - - - - - 100.00 - 

9 - - - - - - - - - 100.00 

Table 15 JAPAN Confusion Matrix, overall recognition rate of 99.00% 
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Finally, we performed one substantial test on the CENPARMI dataset, to see what the 

recognition rate was using a leave-one-out test. In this test, we looked at 1578 images in the 

traina dataset. For each image, we built vector templates from the 1577 other images to see if we 

could recognize it correctly. We achieved a recognition rate of 96.40% using this testing method, 

and the running time was still approximately 60 sec / symbol. 

Confusion Matrix on SUEN Database, Leave one out (Recognition Rates in Percent) 
Actual Recognized As 

0 1 2 3 4 5 6 7 8 9 

0 96.77 - - 1.61 - 1.61 - - - - 

1 - 96.00 - 0.67 - 0.67 - 2.67 - - 

2 0.64 - 98.09 0.64 - - - - 0.64 - 

3 - - 1.13 94.35 - 3.39 - 0.56 0.56 - 

4 - - - - 97.79 - - 0.74 - 1.47 

5 1.69 - - 0.56 - 96.07 - - 1.12 0.56 

6 0.70 - - - - 2.11 97.18 - - - 

7 - - 0.74 - - - - 97.78 - 1.48 

8 0.53 3.21 0.53 - 0.53 - - - 95.19 - 

9 - 0.52 1.04 1.04 - 0.52 - - 1.04 95.83 

Table 16 SUEN Confusion Matrix, overall recognition rate of 96.39% 

6.2.5 The Template Selection Problem 

One of the problems with template based symbol recognition systems, is that it can be time 

consuming to compare an image against so many templates. One way around this is to reduce the 

number of templates. This is not a trivial task by any means. In his paper on Deformable 

Templates, [Jain 1997], Anil K. Jain describes a technique he used. His approach clusters the 

patterns for each class, and selects a representative from each cluster. This was implemented 

using a complete-link hierarchical clustering on the patterns of each class, independently. All of 

the data for one digit class was cut into p clusters, and a representative was chosen for each class. 

The representative was chosen to minimize its total distance to the other templates in that cluster. 

In this way p prototype images were chosen for each digit class. [Jain1988]. 

Here are the recognition rates based on the number of templates 
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Recognition Rates using Complete Link Hierarchical Clustering 

(on Deformable Templates) 

Number of Templates per class Recognition Rate 

5 73.60% 

10 77.40% 

20 84.90% 

30 84.30% 

200 (full database) 92.50% 

Table 17 improvements from Template Selection 

Again, Table 17 is the table reported in [Jain 1997]. A good template selection strategy however, 

should pick prototypes that are similar to others in their own class, but also as different as 

possible from other classes. We tried to make use of this idea when designing our own prototype 

selection strategy. 

In fact, a few techniques were mentioned in [Belongie1999], in which he termed this problem 

nearest neighbour editing methods. He cites [Ripley1996] and [Dasarathy1991] as good 

references on algorithms for this problem. The approach also computes a matrix of pairwise 

similarities between all possible prototypes. From that point on, the individual classes are split 

into clusters, just as before, and then a representative is chosen. They come up with some rules 

for choosing how many representatives are needed, which is an improvement over the simplistic 

assumption that the same number of templates should be used for each class. 

We first built a distance matrix, a square matrix that represents the distances between all pairs 

of prototypes. Du = distance when treating image i as the test image, and imagej as a template. 

Thus one row represents a view of a prototype as an image, and one column represents it as a 

template. The templates are sorted by their classes, so we can even look at the block diagonal 

portions of this distance matrix, where there are 10 "blocks", one for each digit class. It was very 

useful to have this matrix stored once since we could then try different template selection 

strategies on it, without having to re-compute distances between all the prototypes. This was a 

substantial saving as it took at least 12 hours to build it initially. The distance matrix we built 

was for the CENPARMI dataset, on the traina training data file. This yielded a 1578 x 1578 

matrix of distance values. 
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We chose templates from this matrix by a popularity criterion. We define a radius of 

distance values for each template as follows: 

r(I)= min d(4,T)) 
vllcj*cj 

where A1 is the ith image, 7) is the 1tb template, and ci is the classification of pattern i. That is, the 

radius is the distance to the nearest out-of-class image from this template. The neighbourhood of 

a template T is the set of all images that are within a distance r(7)). By definition, only images of 

the same class as the template will be in its neighbourhood. A large neighbourhood indicates that 

the template is similar to many other images of the same class, and is not easily confused with 

images of other classes. 

After determining the radius and neighbourhood for each template, we selected the best 

template for each class, the one with the largest number of points in its neighbourhood. Since this 

template has the largest neighbourhood, we call it the most popular template (for that class, for 

that iteration). After identifying these templates, we mark off all images that are in one of their 

neighbourhoods. We then repeat the experiment, with all unmarked images in the training set. 

Thus from the set of images we start with, we whittle it down at each step by picking out the best 

templates from each class, and discarding all images that fall into a neighbourhood of a chosen 

template. 

(Eq 43) 

To do this test, we partitioned traina into testing and training data. We chose 500 images of 

the 1578 for training, and the remaining 1078 for testing. 

The results show what one would expect. Template selection helps if we are only allowed to 

use a small number of templates per class. Picking k templates randomly, when k is small, is 

significantly worse and much less consistent (higher standard deviation on recognition rates) than 

choosing them carefully. However, in the limit, as k gets large we see that the recognition rate 

from the randomized strategy gets closer and closer to that of the recognition rate of the 

popularity strategy. Thus, if the number of templates that we are allowed is not important, 

selecting templates randomly works just fine. If an application is very sensitive to the amount of 

work being performed, then a template selection strategy improves things. Also, it seems that 

with twice as many templates per class chosen randomly as opposed to selected carefully, we get 

approximately the same recognition rate. So for example, if three digits per class are chosen via 

the algorithm, we can match this recognition rate with approximately six digits per class chosen 

randomly. This is not 100% accurate, but could be used as a good rule of thumb. 
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Comparing Template Selection Strategies 

Number of Templates 

per Class 

Randomized Template 

Selection 

Template Selection Strategy by 

Popularity 

Rate Stdev Rate Stdev 

1 64.06% 6.9% 73.77% 2.1% 

2 72.70% 3.1% 80.34% 2.1% 

3 77.94% 2.4% 83.96% 1.4% 

4 79.97% 2.5% 85.58% 1.5% 

5 83.69% 1.3% 86.91% 1.1% 

10 88.19% 1.2% 89.17% 1.2% 

15 90,07% 0.6% 90.70% 1.2% 

20 91.39% 1.1% 91.78% 0.9% 

30 92.93% 0.8% 92.70% 0.7% 

Table 18 Comparing Template Selection Strategies 
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6.3 The Electrical Engineering Dataset 

This dataset was designed by the Intelligent Systems Laboratory at the University of Washington 

[Ye1999]. This same dataset was used as the dataset for the Symbol Recognition Contest for 

ICPR 2000, called the "Algorithm Performance Contest". 

A 
Ammeter Annunciator Battery 

tJ\ 
Buzzer 

LX 
Amplifier 

Buzzer2 Capacitor 
Regulator 
Current Ctrletrode DC Converter 

t4 
Diode FRT Beadring 

x 
Ground Fuse Direct Coupler 

P 
Lamp Manual Ctrl Lgongloop2 Loud Speaker Keyctrl 

44 
Resistor Touch Sensor 

V 
Voltmeter Telrecv One way RPT 

Table 19 The electrical symbol library 
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Figure 66 Sample Symbols from the EE Dataset 

The symbol library consists of 25 electronic symbols, shown in Table 19, and the software 

package was able to produce images with a varying number of symbols on them and at different 

scales and orientations. The official dataset consists of 600 images of symbols, with 25 symbols 

per image. The 600 symbols are partitioned into 12 classes, crossing three scale levels (50x50, 

7505, and random scale) with four different levels of noise (no noise, level 1 noise, level 2 

noise, and level 3 noise). The noise model was introduced to simulate two effects that are often 

produced by photocopiers. A photocopier may sometimes blur the edges of the text, and can also 

leave little pieces of "dirt" on the white areas. The latter kind of noise is called salt and pepper 

noise, and is modeled with a random variable for each pixel in the image. With probability p, the 

pixel is flipped. The other kind of noise, called edge blurring noise, was also imposed. To 

achieve the edge-blurring effect, a decision is made whether or not to toggle a pixel based on how 

far away it was from an edge in the image. Pixels closer to object boundaries have a higher 

chance of being toggled than pixels that are farther away. In all three increasing levels of noise, 

both salt and pepper noise and edge blurring noise were present. 
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Electrical symbols under varying levels of noise. 
No Noise Noisel Noise2 Noise3 

Scale: 
50x50 

,. . 

.' . . .... 

.;. •.. 

.. 

I 
-. 

0 

Scale:  

75x75 .• . -. . 

Scale: 
random 

.•. . 
. , . ..• . 

Table 20 Organization of the EE Dataset 

Each of the 12 cells in Table 20 corresponds to a test set of 50 images, each containing a grid 

of 25 randomly-selected symbols matching the noise levels indicated. Thus we attempted to 

recognize 1,250 symbols in each category for a total of 10,000 symbols overall. 

Table 21 contains a summary of our algorithm performance using a simplified noise removal 

algorithm. Small isolated black regions were removed from the background and small white 

regions from the foreground. The recognition rates were sensitive to how noise was removed 

from the images. As a result, we spent some time improving the noise removal algorithm. 
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Algorithm Performance 

No Noise Noisel Noise2 Noise3 

50x50 100% 100% 99.92% 

(1 error) 

95.04% 

(62 errors) 

75x75 100% 100% 100% 97.44% 

(32 errors) 

rand 100% 100% 100% 99.28% 

9 errors 

Table 21 Recognition Rates on noisy machine-drawn images, using naive noise removal 
strategy. 

Below is a table of our algorithm performance using a noise removal filter developed by D. 

Royko [Parker2000] which uses a median filter and then an edge filter. The median filter counts 

the number of background and foreground pixels in a 3x3 region around each pixel. It replaces 

the center pixel with whatever type is most prominent. This filter provides a first phase of 

"cleanup" to clarify the image around the edges, but the edges are still quite jagged. The edge 

filter is then applied to smooth them out. Each background pixel that looks like it is on an edge 

(its crossing index is 1) is toggled into a foreground pixel. Also, a final noise removal pass is 

made to trim bounding boxes, as the algorithm relies on an accurate bounding box for image 

alignment. In Figure 67, we see an illustration of the noise removal algorithm. In (a) we see an 

example of an ammeter under level 3 noise. In (b) we have removed most of the salt and pepper 

noise, by toggling isolated pixels. In (c) we have applied the median filter and finally in (d) we 

have applied the edge filter. 

(b) (c) 

Figure 67 An illustration of the noise removal algorithm 

(d) 
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Nearly identical results were obtained using both handdrawn and machine-generated vector 

templates. 

Algorithm Performance 

No Noise Noisel Noise2 Noise3 

50x50 100% 100% 99.6% 

(5 errors) 

100% 

75x75 100% 100% 100% 100% 

rand 100% 100% 100% 100% 

Table 22 Recognition Rates on Machine Drawn Electrical Symbols 

The images in the test set were slightly rotated, from —3 degrees to +3 degrees. We tried 

rotations of our templates at degree increments in this interval. After finding the best orientation, 

we further rotated a half degree in either direction. 

6.3.1 Matching the Line Width 

The test images have symbols with thick lines, and we try to match this as closely as possible 

when drawing vector templates. The vector templates are created from large bitmap templates of 

the symbols drawn with a pen width of 30 pixels. One easy technique for estimating the correct 

line width is to first resize the vector template to match the image, and then compare its total line 

length to that of the original image it was created from. As a ratio, this number gives us the ratio 

of the stroke width we should be using. For example, if the total length of the line segments in 

the original template (drawn with line width 30) is 1000 pixels, then if we resize a template that 

has a new length of only 100 pixels, then we could try drawing it with a line width of 3 pixels. 

This gave very good estimates of stroke width, not surprisingly, as both the length and the stroke 

width are parameters measured in the same "space". In addition to measuring the stroke width in 

this way, we also estimate the stroke width with two other algorithms, described in Chapter 4. 

We use the scale method described above to compare how well our own estimates of stroke width 

measure up. 

If we define E1 to be this true width, and E2 to be the estimated width, with E2 = 2A/P, then we 

can observe the distribution of the error variable E1 - E2 in Table 23. 
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Stroke Width Error Rate 

Data Mean (pixels) Standard Deviation (pixels) Mm (pixels) 

Clean 0.37 0.66 -.75 

Noisy 0.51 0.61 -.57 

Table 23 Statistical Distribution of error in stroke width estimation 

From this it can be seen that the estimated stroke width is within half a pixel of the correct width, 

and because the mean is positive, it means that the width is almosi always underestimated. This 

could be corrected once a great deal more data has been collected for various symbol types. As a 

final note on stroke width, we emphasize again that these estimates are of uniform stroke width 

and that a different technique would be necessary if the stroke width varied locally. We refer the 

reader to Chapter 4 for more details on variable stroke width estimation. 

6.3.2 Skeletal Heuristic 

To improve the performance of the algorithm, we came up with an easily-implementable 

heuristic. Especially for machine drawn symbols, one would expect that a vector template plotted 

with thin lines would have a high level of overlap with an image that is a good match. Thus, 

when comparing a template and image, we first plot the template using a 1-pixel wide line, and 

count which percentage of the pixels overlap with the image. If we have 75% or more of the 

pixels hitting the target, then we perform the full match. The full match entails plotting the vector 

template with thick lines that try to duplicate the style of the original image. This heuristic gives 

us about a 35% performance increase. In handwritten digit recognition, we cannot demand such a 

high level of correspondence between templates and images, and thus this heuristic is not used. 

This heuristic is similar to the more detailed work done in [Vanderbrug 1977], where a search 

for an optimal 'sub-template' size was carried out. 

6.4 The NCO Dataset 

We obtained scanned images of pages from "Nunn's Chess Openings" [Nunn1999] to assess the 

feasibility of recognizing all of the symbols using a combination of the vector templates and the 

image metrics described in this thesis. 
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13 4)xd4 1&f6 =; 7 Wc2 d7 8 e4 dxe4 9 Wxe4 
g6 10 id3 .g7 ii 0-0 0-0 12 Zfel c5 .13 d5.: 
b6 ; 7 e4 dxe4 8 xe4 &b4+-.9. tel Wf4 10 
c2 .e7= 

Figure 68 Sample Text and Chess Piece Symbols from NCO 

Although we did not have time to complete this project, we were able to identify all the chess 

symbols on the page with 100% accuracy. The algorithm made mistakes with one's and 

lowercase L's but this was expected as they appear almost indistinguishable. The running time 

was very fast because, rather than recognizing each symbol as we encountered it, we made of list 

of the distinct symbols on the page, and then performed a full classification only on this list. The 

list was constructed by using raw bitmaps as templates in conjunction with the Inkwell Hausdorff 

distance. This saved a lot of time because when comparing a vector template and an image, we 

have to scale, transform, and plot the vector template, and we do this for a few orientations. 

Rather than going through all this work at each step, we just compared a particular symbol with 

all of the symbols we had seen to date (often much smaller than the full library), to see if it was a 

new one. If it's minimal distance to this growing library exceeded a threshold, we could assume 

it represented a new symbol and added it to the library. By using such simple templates, we 

could quickly identify the distinct symbols and then proceed to run a thorough symbol recognizer 

on them, using vector templates. 

This experiment helps to show the more general applicability of using vector templates, even 

for machine printed symbols, and helps re-affirm the superiority of the of the Inkwell Hausdorif 

distance to standard bitmap template matching. 
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Chapter 7 

Conclusions 

7.1 Summary 

Symbol recognition is a complicated problem and many different approaches have been tried to 

build accurate, efficient symbol recognizers. The approaches can be broken down into two broad 

categories, prototype-based and prototype-free. These two categories take fundamentally 

different approaches to solving the problem, and each has its strengths and limitations. Under the 

umbrella of prototype-based symbol recognizers, there is a spectrum of template models, ranging 

from rigid to deformable. However, the former is usually fast but not so accurate and the latter 

are very accurate but also very slow. We consider merging the best of both worlds into a new 

prototype-based classifier, one that is fast and robust. 

We have tried to solve this problem from two angles; choosing an appropriate prototype 

representation coupled with a sophisticated image metric. We represent prototypes as vector 

templates, which are lightweight, flexible and can be quickly normalized to match the style of an 

arbitrary image. We measure distance between images using the Inkwell Hausdorff distance, 

which, improving over other techniques, is tolerant to local misalignments. Our technique is 30 

to 70 times faster than current techniques but only provides a recognition rate of 95% compared 

to 98% or 99% reported by these same algorithms. However, the approach shows promise as an 

efficient alternative to expensive template matching. 

What sets our technique apart from true deformable templates? The primary difference is that 

a deformable template should smoothly deform into a new alignment. Our templates are allowed 

to "rip" or break in half, and undergo other non-continuous transformations while deforming to 

match the target image. We model a term for how much work is required to do the deformation, 

but without analyzing how natural or how likely this transition might be. Since this term is 

lacking in our model, it allows us to have a very fast technique which is essentially an 

approximately deformable template. But there is hope to retain efficiency while introducing 

terms that evaluate the likelihood of a certain deformation. This leads us into some possible 

future extensions. 
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7.2 Future Extensions 

While studying the Inkwell Hausdorff distance, we have come to see how to derive the mutual 

proximity vector field. This vector field is really a combination of feature transforms for the two 

images, and records for each point in one image where it must move to find its nearest neighbour 

in the other image. (See Chapter 3). By visualizing this vector field, we have come across some 

key observations. By smoothing the vectors and applying them to a mesh, we can see the effect 

the vector field has on the plane, and this gives us a measure (at least visually) of how costly the 

implied deformation would be. Also, by examining a quantity very similar the divergence of a 

vector field, we can identify areas where the vectors are pulling on a point from opposite 

directions, as in Figure 69. 

Figure 69 Points of high divergence in a vector field. 

By identifying these locations, we can then proceed to use them as a weight on the Inkwell 

Hausdorff distance contributions. In fact, we have implemented an experiment to test this idea, 

and it does appear to improve our results on a 25 hour (somewhat substantial) experiment 

involving 2000 templates. However, more testing would be necessary to understand the exact 

relationship between the divergence of the vector field and how to combine it with the Inkwell 

Hausdorff distance. 

Another idea to try is to reverse the roles of the templates and the images we are recognizing. 

That is, we could treat the image we're recognizing as the template, and all the templates as if 

they are images. It would be interesting to see how the recognition rates compare. We have gone 

with the principle of trying to avoid any alterations to the input image, for fear of changing it into 

something it is not. How important is this really? Also, trying this idea would give us an 

understanding of how robust the vector template generation software is. By that, we mean that 

the software relies on thinning to create a vector template from an image, which is a process that 
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can create artifacts. By converting many exemplars into vector templates, we minimize the 

impact of creating an non-representative template from an exemplar. However, if we only have 

one opportunity to convert an image into a vector template, and we produce a poor result, the 

flaws, if significant, in the vector template generation would be accentuated. 

As an interesting side effect of the mutual proximity vector field mentioned earlier, we have 

found a way to quickly produce a morphing animation between two black and white images. The 

algorithm produces visually convincing animations in many cases, but more work is necessary to 

understand its strengths and limitations. 
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