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ABSTRACT 

Incidence matrices associated with a pair of partitions of n are introduced 

to describe the homomorphisms between permutation modules. A partial 

solution to the description of the correspondence between two labellings of 

irreducible modules is given. All partitions jL such that there are non—zero 

homomorphisms from 8(m1,1) into S' are found. The Specht module 

where A = (A1,A 2,lr) with r > 2, is proved to have socle length one. 
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CHAPTER 1  

INTRODUCTION 

The representation theory of finite groups has its roots in character 

theory, emerging around the turn of this century as the work of Frobenius, 

Schur and other authors. In this theory, the symmetric group &n is a simple 

but important case, simple because its characters and irreducible 

representations can be found in the rational field, important because every 

finite group can be embedded in some symmetric group. 

It was Alfred Young's achievement to find a natural classification of all 

irreducible representations of Sn in terms of "Young tableaux" over the 

rational field. W. Speclit's alternative approach in this topic showed how to 

derive representations by considering submodules of a polynomial ring 

K[x1,x2,...,x], where K is a field, and this method yielded interesting results 

without referring to the characteristic of the field K. We shall follow the 

approach in [James and Kerber (1981)] by using modules isomorphic to those 

of Specht. 

The modular structure of permutation modules and the Specht 

modules S' is still at the center stage of the representation theory of 

symmetric groups. The homomorphisms between permutation modules and 

Specht modules provide useful information in many aspects. There are several 

different ways to describe homomorphisms, for instance, Carter and Lusztig 

found a K—basis for the space of homomorphisms from a Specht module to a 

permutation module in terms of so—called semistandard tableaux. In this 

dissertation, we introduce matrices with non—negative integer entries, which we 
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call incidence matrices corresponding to each pair of compositions ). and 14 of 

m, and use them to describe homomorphisms from MA to M". One of the 

advantages of these incidence matrices is their natural connection with the 

bilinear forms on M' and M. Special cases of the incidence matrices are the 

maps introduced in [James, (1977a)]. 

The construction of the modular irreducible representations was given by 

G.D. James in 1976. Each equivalence class of irreducible representations is 

labelled by a so—called "row p—regular" partition of n, where p is the 

characteristic of the ground field K. An alternative way of labelling the 

irreducibles 15 by using the "column p—regular" partitions. An interesting 

question was raised in [James, ( 1977b)] : what is the connection between the 

two labellings? In § 3D of this dissertation, we attempt to describe the links 

between the two labellings by making use of some special features of certain 

incidence matrices. A partial solution of the above question is obtained and 

presented in that section. 

The complete determination of the homomorphisms between two Specht 

modules and S' for a pair of distinct partitions ). and t4 of n. is a difficult 

open question. G.D. James found all partitions p such that HomK(S',S') 

is non—zero; and Gwendolen Murphy made a thorough analysis of the space 

llOmK5(S( n-r)r) ,5t( nk)k)) Also, some very useful information concerning this 

subject can be found in [Carter and Lusztig ( 1974)] and [Carter and Payne 

(1980)]. In § 3E, all partitions I.L such that HomK(S(n1'1), S) is non—zero 

are found and K—bases are given in each case, using computation of 

homomorphisms in terms of incidence matrices. 
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In Chapter 4, we investigate the socle length of some Specht modules by 

using endomorphisms of the permutation modules with certain special 

properties. In the first three sections of Chapter 4, we use our own machinery 

to reproduce the results concerning the socle lengths of Specht modules 

associated with hook partitions and two—parts partitions obtained by M. Peel 

and Gwendolen Murphy in [Peel (1971)] and [Murphy (1982)] respectively. In 

§4D we extend these result to the Specht modules associated with partitions of 

the form (X1,.X2,1'), with r ≥ 2 by calculating the K—space llomK (S *)S)t). 

This provides another example of the application of incidence matrices. 



CHAPTER 2  

BASIC FACTS 

§2A Modules and Their Duals over a Group Algebra 

Let K be a field and G be a finite group. An element in the group 

algebra KG can be written in the form 

e = ci, EK. 
CTEG ci 

The group anti—automorphism 

T: G-4G 

can be extended by linearity to a K—algebra anti—automorphism of KG 

T E ci 

ciEG u crW 

We shall write = T() for KG. 

Unless specified, "a KG—module" means a left KG—module which is also 

a K—space of finite dimension, in most parts of this dissertation. Let M be a 

KG—module. Then M* = llom(M,K) becomes a KG—module, called the dual 

of M, if we define 

(ef)(m) = f(e*m) 

4 
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for f  M*, E KG, M  M. 

Assume that M is a KG—module with a K—valued non—degenerate, 

symmetric bilinear form < , > satisfying 

< em1, m2 > = < m1, >, 

for m1, m2 E M and C E KG. Define 

0: M4M* 

M '-p 

by setting 

Om(m') = < m, m' >, m' E M. 

Then for C E KG, m, m' E M, 

= < Cm, m' > = < m, C* 7n , > = 0m( C*m)) = (C 0m) (m'). 

Thus 0 : m i- 0m is a KG—homomorphism from M to M. In fact, 0 is a 

KG—isomorphism since dimKM = c11mKM*, and < , > is non—degenerate: 

Ker(0)={mEMJ<m,m'>=O (Vm'EM)}=O. 

Let U be a KG—submodule of M, then 

U1 ={meMj<m,u>=O (Vu EU)} 
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is a KG—submodule of M. The following is proved in § 1 [James ( 1978b)]: 

(2.1) LEMMA. Let M be a KG—module with a non—degenerate, symmetric 

bilinear form satisfying < il m2 > = < m1, *m2 >, for m1, m2 E M and 

E KG. Let U, U1 and U2 be KG—submodules of M and assume that U1 ≤ 

U2, then 

(i) U1 is a KG—submodule of M and U12  ≤ Uj. 

(ii) U11 = U. 

(iii) dim KU + dim KU1 = dim KM' 

(iv) ( U2/ U1)* NU/ U, in particular, U Li (M1 U1)* as KG—modules .1 

Note. In § 1 [James (1978b)], the adjective "non—singular" was used for 

"non—degenerate", both mean for every non—zero m in M, there is some m' in 

M, such that < m, m'> 0 0.1 

Let be an element in KG. M. Peel proved a lemma concerning the 

dual of the left ideal KG of KG 

(2.2) LEMMA. (Lemma 1. [Peel (1981)]) Let K be a field, G be a finite 

group. Then if E KG, 

(KGe)* N KGT() = KGe* 

as KG—modules.I 

The proof for ( 2.2) can be found in Peel's original paper. An alternative 

proof, which was suggested by H. K. Farahat, is given in 4.2 [Yang ( 1984)]. 
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Next we turn to some general results about KG—modules and their dual 

modules, where G is an arbitrary finite group. 

For each KG—module M, there is a natural KG—homomorphism from M 

onto 

* 

where a; (f) = f(x), a; c M, f E M , since 

(cx) (f) = f(x) = ( *f)(a;) = ( z)(f). 

Let L and M be KG—modules. Each çü E HomKG(L,M) determines a 

KG—homomorphism 

*  iviA* * ço  

f — 4 fa. 
Further, the mapping 

V  HomKQ(L,M)) co* E HomKQ(M*,L*) 

is a K—isomorphism, since we can identify HomKG(L**,M**) with 

llomKG(L,M) and the composite mapping 

* ** 
co '— ço 

is essentially the identity mapping on HomKG(L,M). Thus we have (c.f. 4.12 

[Yang ( 1984)]) 
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(2.3) LEMMA. Let L and M be be KG—modules, then 

IIOmKG(L,M) N HomKG(M*,L*) 

as K—spaces.I 

The proof of the following lemma concerning dual modules and short 

exact sequences can be found in (4.12) [Yang (1984)] 

(2.4) LEMMA. Let L, M and N be be KG—modules and L*, M* and e be 

their dual modules. Then 

(i) The sequence 

0— W4L--4M-3N-30 (a) 

is exact if and only if the sequence 

* * 

0_N*_4M*_3L —30 (a 

is exact. 

(ii) The sequence (a) is split if and only if (a*) is split. 

Let G be a finite group and M be a KG-module. Let 

M = M0 > M1 > ... > M. 1 > Mr = 0 (b) 

be a composition series of M, i.e. a chain of submodules of M, in which 
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M 1 
=Ji 

M 

is an irreducible KG—module, i = 0, 1, ... , r-1. The composition series (b) 

of M determines a sequences of irreducible KG—modules 

(J1, J2, •.. 

which is called the composition factor sequence associated to (b). The number 

r is called the composition length of M. 

We shall give the proof of the following standard result about the 

composition factor sequences of a KG—module M and its dual M*. 

(2.5) LEMMA. Let 

M = M0 > M1> > M1.1> Mr = 0 

be a composition series of a KG—module M. Assume that 

(J1, 12, Jr) 

is the composition factor sequence of M associated to (b). Then there exists a 

composition series 

such that 

(b) 

M* =NO >Ni> .. . > Nri >Nr =0 (b*) 
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(s*  

is the composition factor sequence of M* associated to (b*). 

PROOF. Use induction on the composition length r of the KG—module M. 

The statement is trivial from (2.4) when r = 1. Now assume r ≥ 2 and the 

statement in (2.5) is true for all KG—modules with composition lengths less 

than or equal to ( r-1). The exact sequence 

0Jr M MIJr 0 

has its "dual" exact sequence 

04(MI Jr) * J30 

by (2.4). The KG—module M/Jr has a descending chain of KG—submodules 

Af IIØ ! I ffr-2 Ifr - 1 

- > >...>   > = 0. (c) 

r r 

But 

Ji 
Iii Hj1/J 

Hi I/J 
i=0, 1,..., r-2. 

Therefore (c) is a composition series for MIJr and the composition factor 

sequence associated to (c) is (J1, ... ' r..j' up to isomorphism. By induction 

hypothesis, (M/Jr)* has a composition series 

(MI Jr) * = Ni> .. . > Nri >N=0 
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* 

such that the composition factor sequence associated to (c ) is 

Clearly 

M* =NO >Ni>"•>Nri >Nr =O (b 

is a composition series of M*, and the composition factor sequence associated 

to (b*) is 

(* sr, * r -1' , J) .1 

(2.6) NOTES ON THE RADICAL AND THE SOCLE OF A MODULE M 

(5 [Curtis and Reiner ( 1981)]) 

Let A be a ring with 1, and M be a (left) A—module. The radical of 

M, denoted by rad(M), is defined as the intersection of all maximal 

submodules of M, 

rad(M) = fl { N < M I Nis a maximal submodule of M}. 

The socle of M, denoted by soc(M), is the sum of all the irreducible 

submodules of M. The radical of the ring A is the radical of the left 

A—module A. In fact, rad(A) is a two—sided ideal of A, and 

rad(A) = { Ann AA I S is an irreducible A—module }. 

Moreover, the radical of the factor ring A/rad(A) is 0. 

A ring A is said to be left artinian if the left ideals of A satisfy the 
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descending chain condition, i.e. for every descending sequence of left ideals of 

A, 

L ≥ L2 ≥ 

there exists an integer k such that 

Lk = Lk +l = 

Clearly, if G is a finite group, K is a field, then the group ring KG is left 

artinian since KG is a finite dimensional K—space. 

Let A be a left artinian ring, then A/rad(A) is a semisimple ring. 

Furthermore, if M is an A—module, then 

rad(M) = (radA)M 

and M/radM is a semisimple A—module. In fact, rad(M) is the smallest 

submodule of M such that the factor module is semisimple. 

The following lemma links up the two semisimple KG—modules: 

M/radM and soc(M*). The proof can be found on page 57, Chapter 4 [Yang 

(1984)] 

(2.7) LEMMA. Let M be a KG—module, where G is a finite group and K is 

a field. Then 

M/rad(M) L, [soc(M*)]* 

as KG—mo dules.l 



§2B Partitions and Tableaux 

We denote by en  group of permutations of the set n = {1, 2,..., n.}, 

which is called the symmetric group of degree n. The alternating group 21,1 is 

the subgroup of consisting of all the even permutations of . Denote by 

and K2( the group algebras of E5n and Qk over a field K respectively. 

Let X be a subset of n. We write 

= { ir E 6. I ir(i) = i (Vi € m\X) }. 

Clearly [X] is a subgroup of Sn, and 

= [ø]  

The product [X] [ 1'] is again a subgroup of , if X C .z, Y C n , and 
Xfl Y = 0. For X = { i1, i2,..., ij ç .n , we shall write 

= [i1, Z2,..' kI 

by omitting the braces { }. 

Let y : C K be a K—valued function on a finite group G. We write 

for H C G, 

7(1]) = 
crH 

13 
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The following two K—valued functions play significant roles in the 

representation theory of 

VU E 

Vcr E 

t is called the trivial character, while c is called the alternating character of 

n. 

The left ideals Kt((5) and KE(e) are K—spaces of dimension 1 

(one). Clearly they are irreducible KS—modules. 

A composition A of a positive integer n is a sequence (A1,A2, ... ) of 

non—negative integers such that 

if, in addition, 

OD 

EAj = n. 

A1 ≥ A2 ≥ 

then A is called a partition of n.. Abbreviations such as (3,0,2,2,0,...) 

(3,0,2,2) = (3,0,2 2) will usually be adopted. 

For a composition A = (A1,A2, ... ) of n, define A' = by setting 

A equal to the cardinality of 
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{ A I A ≥ i }. 

Note that A' is a partition of n. For example, if A = (3,0 ,22) and A = (3,22) 

then 

A' = (32,1) = /L'. 

When A is a partition of n, the mapping 

A A' 

is a bijection from the set of partitions of m onto itself. A' is called the 

conjugate partition of A in this case. 

A diagram D is a finite subset of INxIN. For a composition A of m, [A] is 

the diagram 

{ (i,j ) I j = 1, 2,..., A1, i = 1, 2, ... } 

A A—tableau t is a bijection from [A] onto the set . = {1, 2,..., n}. We shall 

write t1 for t(i,j ), (i,j ) E [A]. A A—tableau t can be depicted by replacing 

the nodes (i,j ) in [A] by t1. For example, if A = (3,0,1,2), then 

t 
426 

3 
15 

is the A—tableau such that t11 = 4, t12 = 2, ... , etc. 
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The group acts on the set of A—tableaux by letter permutations. 

That is 

(rt)1 = ir(t1), ir E (i,j ) E [A]. 

For example, if 

235 
14 

= (1,2,4) E then 

435 

We shall use the lower case letters t, x, y, ... to denote tableaux. Let x 

be a tableau of a composition of n. : A = (A1,A2,...). For a fixed i, the 

subset of n 

X = { x I (i,j) E [A] } 

is the set of elements in the i—th row of (the depiction of) x. Similarly for a 

fixed j, the set of elements in the j—th column of x is 

X'= { x (i,j) E [A] } 

The row stabilizer and column stabilizer of the A—tableau x are defined as 

Rx = H [X], 

Cx 
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The elements in Rx ( Cx) are called row (column) permutations of x. 

Let x and y be two tableaux of a composition A of n. There exists ir in 

, such that y = irx. It is easy to verify that 

R(irx) 

C(irx) = ir(Cx)ir 1. 

Two A—tableaux x and y are said to be row—equivalent, if y arises from x by 

a row permutation of x 

xry 2?rERz,y=lrx. 

The equivalence class of x is denoted by i , called the A—tabloid of x. It is 

convenient to treat as a sequence of subsets of 

(X1, X2, ...). 

Our convention is the following 

(2.8) DEFINITION. For a A —tableau x, the A —tabloid is the column vector 

x1 
x2 

whose entries are subsets of . 

X = { x1 I (i,j ) e [A] }, i = 1) 2, 
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When we want to emphasize the composition A, the notation 

x1 
x2 

A 

is adopted.I 

For example, say A = (3,22), 

x= 456 
17 
23 

we also follow the notation invented by G.D. James (3.9 [James ( 1978b)]): 

= 456. 

17 

23 

There is a natural —action on the set of A—tabloids 

irx= 

x1 
x2 

where ir E E5 and x is a A—tableau. 

irX 

irX2 =, 

Let x be a A—tableau and {ir1, ... h} be a set of left coset 

representatives of Rx in It is easily seen that 

i= 1, 2, ... , h } 
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is the set of all )—tabloids, and the mapping 

ir1x '- ir1Rx 

is a one—to—one mapping from the set of A—tabloids onto the set of left cosets 

of Rx in . The 5—action on A—tabloids agrees with the one which is the 

left multiplication of on the set of the left cosets of Rx in T• 



§2C Specht Modules and Their Duals 

Specht modules can be defined in a few equivalent ways. In this section, 

we shall state the definitions of permutation modules and Specht modules 

given in [James and Kerber (1981)]. 

Let K be an arbitrary field. We shall denote the group algebra K&n by 

F. For a composition A of n, consider the K—space M. having as basis the 

set of all A—tabloids. The —action on the A—tabloids (c.f. the end of last 

section) 

Ir E , t is a A—tableau, 

extends to an —action on the K—space Mj by K—linearity and' turns M 

into a F = K6n module. Thus M , which will be abbreviated as MA if the 
field K is fixed in the context, is a cyclic r—module, generated over. r by any 

one A—tabloid. We call MA the permutation module associated with the 

composition A of n. 

Let t and t2 be A—tableaux, such that t2 = in 1, for some in e . Then 

in the F—module MA, 

c(Ct2) i = in c(Ct1) in1(in ) = in f(Ct1) 

We now define the Specht module SA = SA associated with a composition A 

of m to be the cyclic module 

20 
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where t is an arbitrary A—tableau. By the remark above, the definition of SA 

does not depend on the choice of A—tableau t. Clearly S is a cyclic 

F—submodule of MA. 

Define a K—bilinear form on MA, by setting 

1, if 

0 otherwi s e, 

where t1 and t2 are A—tableaux and extending this to 1k?' by K—linearity. We 

see that < , > becomes a non—degenerate, symmetric bilinear from on MA, 

satisfying 

< m1, m2 > = < m1, m1, m2 E M', e i'. 

The crucial result about this bilinear form on MA is the following 

(2.9) JAMES'S SUBMODULE THEOREM [4.8 James (1978b)] 

Let K be an arbitrary field. If A is a partition of n and U ≤ MA, then 

either U ≥ SA or u < sAl. i 

With the aid of the Submodule Theorem, one can see that if SA 

then 5A8Ai is the unique maximal submodule of This leads to 

(2.10) THEOREM. (4.9 [James (1978b)]) Let A be a partition of n. Then 

is either zero or an irreducible F —module.I 

The F—module SA/(SA flSA1) is called the James module associated with 
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the partition A of n, denoted by 

Let A be a partition of n. We can write 

A = (flrfl (fl_1)rfl _l r 

where r1 is a non—negative integer, i = 1, 2,..., n. For rn E IN, we say that A 

is row rn—regular, if r1 < rn for each i ; otherwise, A is row rn—singular. 

Say A is column rn—regular (singular), if A' is row rn—regular (singular). 

The following theorem, acknowledged as a breakthrough in the 

representation theory of symmetric groups during the last two decades, was 

proved by G. James in 1976: 

(2.11) THEOREM. (Theorem 2 and 6 [James ( 1976)]) Let K be a field of 

characteristic p (p > 0), A be a partition of m. 

(i) JA 0 if and only if A is row p—regular. 

(ii) The set 

A I A is a row p—regular partition of n } 

is a complete set of inequivalent irreducible IT' —rnodules.l 

It is profitable to find certain left ideals, of the group ring 1' = 

which are isomorphic to the modules M'\ S" and 1' respectively. Recall that 

if t is a A —tableau, where A is a partition of n, then 
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t(Rt) = E 0, 

oERt 

E( Ct) = >J sgn(o)a. 
oE Ct 

Write f3 = t ( Rt), at = E ( Ct), then the mapping 

f: mA -4 rot 

e e E F, 

is a F—isomorphism from M' onto r13, and the restriction of f to SA, denoted 

by f, is a F—isomorphism from S onto Fa/3. We shall call Fa8 the Young 

module associated with the A—tableau t, denoted by Y(t). If t1 and t2 are 

A—tableaux, t2 = rt1, ir E S, then 

E ( Ct2)t ( Rt2) = ir e ( Ct1)ir 1ir t ( Rt1)ir = 7r e ( Ct1) i. ( Rtji(1. 

The mapping 

is a F—isomorphism from Y(t1) onto Y(t2). 

The fact that the James modules are also isomorphic to some left ideals 

of F = Kan was first proved in § 2 [Farahat and Peel ( 1980)]. 

(2.12) THEOREM: Let K be a field of characteristic p (p > 0), and A be a 

partition of n. Assume that t is a A—tableau. 

(1) Either ratfitat is zero, or ratflt has the unique maximal submodule 
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and rat0tat is isomorphic to the corresponding irreducible factor module. 

(2) ratfltat is non—zero if and only if A is a row p—regular partition of 

n.I 

Combining (2.9) and (2.12), we have 

(2.13) COROLLARY. If t is a A —tableau, A is a partition of ii, then 

At this stage, we can find two isomorphic copies for the dual of 

when A is a partition of m 

(2.14) LEMMA. Let t be a A—tableau. 

(a) sA* N MA/SE. 

(b) sA* Pt(Rt) c( Ct). 

PROOF. (a) is a straightforward application of (2.1) (iv). For proving (b), 

recall that 

T: E a cT 1-9 a 
o'E en 0• crEe • 

is an anti—automorphism of the group algebra F = and 

T[t(Rt)] = 

T[e(Ct)} = e(Ct), 



25 

since e(u) = €( cr 1), o E Note that 

T [ ( Ct) b ( Rt)] = T [ ( Rt)] T [ ( Ct)] = b ( Rt) 6 ( Ct). 

By (2.2) 

Y(t) * [Pc ( Ct) t( Rt)]* N P T[c ( Ct) t( RI)] = Pt( RI) c ( Ct),I 

(2.15) REMARKS. By the method of the proof in (2.14), one can easily 

show that 

rot !2 (Fflj, 

['as (Fat)*, 

Fcf3a (Faj3a)*. 

Thus the permutation module MA and the James module J, are self dual.I 

Let G be a finite group and K be a field. For each linear representation 

of G 

7: G — K, 

there is a K—algebra automorphism 

KG - KG 

a  a 7(cr)cT. 

Let M and N be KG—modules. The tensor product of M and N over K, 

denoted by M 0 N, becomes a KG—module such that 
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cr(>J m1® n1) = E ( rm1)®(un1), cr e G, m1 E M, ni E N. 
I I 

The following lemma was first proved in [Peel (1981)]. 

(2.16) LEMMA. Let 'y : G ---4 K be a linear representation of a finite 

group G over a field K, such that 'y(o) = 'y(o'), 0 E G. If E KG, then 

KG Lv KG( ) ® KG'y( G) 

as KG—modules. 

SKETCH OF PROOF. Define a mapping 

f: KG -' KG() 0 KG7(G) 

'-4 ?7[(e) 07(G)]. 

Check that f is a KG—epimorphism and Ker( f) = £.AnnKG(), where 

£.AnnKG() = { n I n e KG, q6 = 0 }.l 

Let )' be the conjugate partition of A. Clearly 

(i,j ) E [)'] ( j,i) E [.A]. 

For a A—tableau t, let t' be the A Ltableau such that 

(2.17) V. = tji, (i,j) E [A']. 
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It can be easily seen that 

Rt = Ct', 

Ct=Rt'. 

t' is called the conjugate tableau of t. The relationship between the Young 

modules Y(t) and Y(t') was discovered by M. Peel in 1981 

19 

(2.18) PROPOSITION. [Peel (1981)] Let t be a A—tableau, t' be the 

conjugate tableau of t, where A is a partition of n. Then 

Y(t') L,, Y(t)*® r0). 

PROOF. Recall that 

if T E 2, 

if o E 

is a linear character of Apply (2.16), 

Y(t') = PE(Ct') t(Rt') 

r[ ( Ct) L ( Rt')] ® 

= rt(Ct(Rt ® 

= r't(Rt)E( Ct) ® 

Thus Y(t') Y(t)*ø Fe() by (2.14) (b) and the fact Y(t) stated in 

the notes following (2.11)1 
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(2.19) REMARKS. Applying the same method in the proof of (2.18), one 

obtains 

Ft(Rt) Fe(Rt) 

Fe ( Ct) t ( Rt) c ( Ct) Lv Ft ( Ct) c ( RI) t ( Ct) o F e( 

Also, as a corollary of (2.18), we have 

® 

for each partition A of n. 

At the end of this section, we are to state the result concerning the 

K—dimension and the K—bases for the Specht modules. 

Let A be a partition of n. Say a A—tableau x is standard, if 

x(i,j) < x(i,j-i-1), 

x(i,j) < x(i+1,j) 

whenever (i,j) , (i,j+1) and (i+1,j) belong to the A—diagram [A]. 

(2.20) THEOREM. [3.5. Peel (1975)] The set 

{ c( Cx) x is a standard A —tableau } 

forms a K—basis for the Specht module 



CHAPTER 3 

INCIDENCE MATRICES AND HOMOMORPHISMS 

§3A Homomorphisms 

In this section, we shall construct a K—basis for the K—space 

HomF(M),M1), where ) and A are compositions of n. A general treatment 

concerning homomorphisms between permutation modules can be found in § 10 

[Curtis and Reiner ( 1981)]. 

(3.1) DEFINITION. Let .X and jt be compositions of n. A matrix M = 

(Mb), (i,j) E EHxEN, is called a (A,)—incidence matrix, if mij is a non—negative 

integer, such that 

i 2 

for all (i,2) in INxIN. The set of ( A, /.h)—incidence matrices is denoted by 

Let x be a )—tableau, and 

be the corresponding )—tabloid, viewed as a column vector with entries subsets 

of m . For a a)—incidence matrix M = (m) denote by (M, ) the set of 

ti—tabloids in the form 

X,1  X12 U... 

X21 U X22 U... 

where for all (i,j), 

29 
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UXii = , = m1. 

That is to say, a /.t—tabloid = y1, y2, ••• ]" belongs to (M, ) if and only 

if for each i, i ≥ 1, Y1 has m11 elements coming from X1, m 2 elements coming 

from X2, ... , etc. 

(3.2) EXAMPLE. When ). = (3,2) and p = (4)1), there are two (A,p)— 

incidence matrices: 

M= 1311, N= f22 
Lou L'° 

Take a (3,2)—tableau x = , then the first column [3] of M 

4 6indicates that 1, 2 and 3, the elements in the first row of x, all lie in the 

first row in each of the (4,1)—tabloid in (M, ); while 4 and 5, the elements 

in the second row of x, are sent to two different rows in all possible ways to 

obtain all the (4,1)—tabloids in (M ), according to the second column [] of 

M. Thus 

(M, 123)= { 1234, 1235}. 
45 5 4 

Similarly we have 

(N, 123) = { 1 2 4 5 , 1 3 4 5 , 2345}.I 
45 3 2 

The set (M, ) is in fact an Rx—orbit of p—tabloids. Some useful facts 

concerning the ,p)—incidence matrices are listed in the following 
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(3.3) OBSERVATION. Let x be a X—tableau. 

(i) Each n—tabloid falls into a set ( Iv!, ) for some (A,p)—incidence 

matrix M. 

(ii) The set ( M, ) is an Rx—orbit of a—tabloids, where Rx is the row 

stabilizer of x, for each M in W1()). 

(iii) For ir E and M E we always have 

(M, ñ) = 'ir(M, x ). 

(iv) (M, ) and (N, ) are distinct Rx—orbits if M I N. 

PROOF. (i) Let 

be an arbitrary u—tabloid. Put = fl X. , for all i and j , then 

Yi=uxi., x.=uxi.. 
3 3 ii 

Define a matrix M = (m ) via mij = X4, for all (i,j) in iNxIN. Then 

E (M, ). 

(ii) If , are in (M, ), then 

I Yi. n X) = m ij = fl x 

for all i and j. Thus there exists u in Rx, such that oY = Z for each i, 

hence u-2 = . Conversely, if o- E Rx, it is clear that 
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Y. fl = J 1'. fl = rn, 

therefore cr € (M, ), whenever o E Rx. 

(iii) Take € (M, ), then 
- Y1 

where I Y fl = for all i and j. Thus 

where ir E ) and 

(ir Y) n (irX) = 7r( Y. n x ) 

has cardinality for all i and j . Thus ir E (M, ñ ). This shows that 

) ç (M, ñ ). The inclusion in the other direction can be proved by 

the same argument. The proof of (iv) is omitted.I 

(3.4) PROPOSITION. Let P be a (A,)—incidence matrix. There is a 

F—homomorphism 

co: 

such that for any A—tableau x 

co() ={ I € (P ,x) }. 

PROOF. First we fix an arbitrary A—tableau z. According to (3.3) (ii) 

above, there exists a F—homomorphism 

co: 
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such that 

p() ={ I E (P,) }. 

Let x be a )—tableau. Then we can find ir E , such that x irz. Thus 

by (3.3)(iii), 

w( ) = co( ir) irco( ) = irE { IE (P, ) } 

={JEir(P,fl} 

= { E (F,  

(3.5) PROPOSITION. Let ), and ft be compositions of n. Then the set 

{ co I P E Wt()) } 

forms a K—basis for the K—space Hom(M,.M1). 

PROOF. The above set is linearly independent over K because of ( 3.3)(iv). 

Let cc: M - Ik# be a F—homomorphism, x be a )—tableau. Write 

cca(fl, a(flEK, 

where the sum is taken over all/4—tabloids . We shall show .that if and 

are a—tabloids and = u— or e Rx, then a( ) = ). We have 

a() = = < co(), ory  = < u1cc(),> 

= < cc(o'),> = < cc(),> = 

Thus and have their coefficients equal in co x ), whenever they are in the 
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same Rx—orbit. This proves o is a K—linear combination of VP, P E WA,L).r 

(3.6) REMARKS. 

(i) In practice, there is no harm in writing a A,i)-.incidence matrix as 

a row— and column— finite matrix according to the number of non—zero parts 

of A and . Also, it is convenient to identify a (A,p)—incidence matrix P and 

the F—homomorphism ço given in (3.4) above without much risk of ambiguity. 

Thus, we shall say that W(A,) is a K—basis for Uomp(M',M1), and for P in 

we write 

P()=E{I E (PI )}. 

(ii) Let x and y be A— and u—tableaux respectively. There is a 
/ 

one—to—one correspondence between the set of Rx—Ry double coset 

representatives in Sn and the set R(A,i). For 'ir E E5n, define a matrix p'lr = 

(pu) in the following manner: 

pjj = IrY fl (i.j) E [N- 1N. 

If ir, ir' C , then P = P if and only if for all i and j 

IirY fl X I = k'Y n X , 

if and only if ir'y = oiry for some 0 C Rx, if and only if 

= oirr, cr C Rx, T E Ry.0 

In § 9 [James (1977a)], the Specht module where A is a partition of 
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n, is characterized as the intersection of some particular F--homomorphisms 

from M' to other permutation modules. Those homomorphisms, which are 

called —maps by James, will play very important roles in our discussion. We 

shall give the definition of those maps in our language, which is equivalent to 

the one given by James in § 8 [James ( 1977a)]. 

Let A = (A1,A2, ... ) be a composition of m. Note that the ( A,A)—incidence 

matrix 

Al 
A2 

represents the identity mapping of the F—module MA. Let k and .1 be two 

distinct positive integers. If 0 < w < A  

(A,/.z)—incidence matrix 

denote by (k -+ 1) the 

0 

A 

in case Ic < 1, and with the similar convention if k > 1. 

By ( 3.4), we have immediately if x is a A—tableau and = [X1,X2,...]T 

is the corresponding tabloid, 
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T 

[xl ,... ,xkl, Xk\W, Xk+l, ... ,Xll, x1u w, x1+1,...] 

For example, if ) = (3,3,2) and x is the )—tableau 

123 

456 

78 

then 

(2 _+1):::_ :356 + 2346 + 2345 . 

(3.8) LEMMA. If w > A -  Al  ) ≥ w > 0, then for any .\—tableau x 

(k 2_+l) E(Cx) X = 0, 

PROOF. Let be an arbitrary tabloid in the set 

((k Y- 40 x 

Then y is of the form 

[Xl,...,Xkl, Xk\W, Xk+l)...,Xll, xu w, x11 

where W is some subset of Xk with cardinality w. The l—th row of has 

+ W > Xk elements, all from X U X1 . The elements of the set XkU X1 

appear in max{)k,Al} columns of x. It follows that two elements in the l—th 

row of , say a and b, appear in the same column of x. Thus 

[1 - (a,b)] = 0. 



37 

Hence e(Cx) annihilates , since {1,(a,b)} is a subgroup of Cx. As is 

arbitrary, we have 

0 = e(Cx)(k l)( ) = (Ic l)c(Cx)( x ),I 

If ;\ = (A1,.X2, ... ) is a partition of n, then A  - < w for all k > I 

and w > 0. Therefore, one can easily deduce that 

ç fl fl Ker(k-)1). 

Ic)l O<W<,k 

One of James' results is the following 

(3.9) THEOREM. (17.18 [James (1978b)]) Let A = (Al,A2,...Ah) be a 

partition of n with .Ah > 0, then 

h—i 

S" = fl fl Ker(i+1 Z i). 
i=1 

I 

This powerful theorem has many applications. For instance, if ço E 

HomF(MA,M), where u is a partition of n, the ImV ç SA if and only if 

(i+1 i?_i i)co = 0, i=1,2, ..., 0< w≤i 1. 

To determine the K--dimension of Homp(MA,S1), we must calculate in general 

(k 'Uj 1)P, where P is a ( A,i)—incidence matrix. We shall derive a formula, 

found by G.D. James in his proof of 24.6 [James (1978b)], by using our own 

machinery. Many of our later discussions and calculations are based on that 
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formula. 

Consider compositions A and i of ii. Assume that 0 < w ≤ ljk. Let '1-' 

be the composition defined as 

if i k , i 0 1 

if i = k 

if i= 1. 

For each P E OJt(A,), there is a diagram: 

AP ii A! - IA! 

(kOP\ (k 4 1) 

Thus (k OP is a F—homomorphism from MA to M'1, and we can write 

(k OP = a(Q)Q, a( Q) E K. 

Q E Wt(A,4u) 

Since the mapping (k W i 1) keeps all the rows of a/.k--tabloid unchanged 

except the rows Ic and 1, we may study a two—parts composition IL = (i1,ji) 

first, and then extend the result easily to the general case. 

Let I.L = ( 1'2) be a two—parts composition of n, and 

p11 p12 

p21 p 22 
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be a (A,/L)—incidence matrix. Our goal is to find a( Q) in the expression 

(2-1)P= I  a(Q)Q. 

Q E 

Let x be a )—tableau. If is a IL—tabloid in (F, ), then 

W (2-41) Y11= 4.rYiuw1 

C y L 2 \ wj Y2j 

w 

Look at one of the resulting u—tabloid 

Y1uw 

Y2 \W 

where W is a subset of Y2 with cardinality w. Write 

I w  X I, j= 1, 2, 

Then (w1,w2, ... ) is a composition of the integer w, satisfying 0 ≤ wj ≤ p2 , for 

all j Thus the u—tabloid 

Y1uw 

Y2\W 

belofigs to the Rx—orbit (Q, ), where 

p 11 +W I ... p 1 .+ W. ... Q=  .L.L .L 3 
P21 -Wi .. 2j - Wi 
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Thus (2 -+ 1)P is a li—linear combination of the (A,z)—incidence matrices of 

the form Q above, where (w1,w2, ... ) is a composition of w satisfying ≤ p 

for all j . To see the (integer) coefficient of Q above in the expression of 

(2 i2) 1)P, we notice that in the Rx—orbit (P, ), there are exactly 

H [ P+w] 
i :7 

/j.—tabloids yielding the v—tabloid 

Y1uw 

Y2 \W 

under the action of (2 -* 1). Therefore, we have 

(2 1)P = ]J f P17+ Wj 1 1 P 1+ W1 ... p111- 

3 L W ] H21_ w1 ... 

where the sum is over all compositions (w1,w2,...) of the positive integer w, 

satisfying 0 < wj≤ P 2j 

In general, if ). and i are compositions of n, k and 1 are positive 

integers, 0 <w< Ak , P = (pij  ) is a (A,ji)—incidence matrix, then 

(3.10) FORMULA. 

(k-) OP= H Wi L wi] 
Pt1 + W  P 1+ W2 

ki - l - W2 
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where the sum is over all compositions (w1,w2 .... ) of w satisfying 0 <w ≤pkj for 

all j. 

In particular, if A is a composition of n, 0 < w < A  , u + v = w, we 

have the following diagram: 

U 

M'—+0 M 

J (k1?l) 

where 

Ai = Vi = Ai 

= A  - U 

= A1 + u; 

= A  - w 

111=  A1+ w. 

if i 0 k, i 0 1 

Noticing that (k -+ 1) is the (A,4—incidence matrix 

A 
1 

0 Ak—U 

Ak+l 
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we can apply (3.10) above to obtain 

(3.11) COROLLARY. (k 1) (k -+ o = [u + v] (jIL+V 1)1 

A reasonable question is whether any of the kernels in (3.9) can be 

omrnitted. A discussion of which kernels are redundant when the field has 

characteristic 2 or zero is given in § 3 [James ( 1976)] and 12.1 [James ( 1977a)]. 

We shall study the general case by making use of the formula in (3.11) above. 

If char(K) = 0, the binomial coefficient (i) is never zero. Thus by 

(3.11), 

Ker(k"-+--v4 1) J Ker(k L4 0, 

Ker(k 2 -4 1) 2 Ker(k L 1), w ≥ u. 

we have at once 

(3.12) COROLLARY. When char(K) = 0, if A = (A1,A2, ... ,A) is a 

partition of n. with A  > 0 

h—i 

= Ker(i+1 -+ i),I 

Now consider a field K of characteristic p, where p is a positive prime. 

Let 

a=ao +alp+...+arp', 0≤a1<p, 

b= b0 + b1p+...+ brP', 0≤ b<p. 
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The congruence (1 + 1 + x (mod p) easily gives the following 

(3.13) LEMMA. a 
b [] [ ab ] abr bo I [] (mod p). 

In particular, p divides [ ] if and only if a1 < b1 for some i . 

Write 

Consider the intersection 

.n Ker(k 'w ) 

Ak =ao +alp+...+arpr, O≤aj<p,ar >O; 

w = b0 + b1p + + brp", 0 ≤ bi < p. 

Assume that b3 > 0, = 0 if 0 < j < s. Then 

[bs+ ,] ... [ b r] 

1 0 0 

b5 (mod p) 
1 

b5 (mod p) 

(mod p). 

which is nonzero modulo p Therefore for each vi, 0 < vi < ), there exist 

some s, 0 ≤ s < r, such that 
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Ker(k 1) J Ker(k P4 0. 

This proves that 

(3.14) fl Ker(k 0 = Ker(k o i 
O<'w≤)tk s=O 

As a summary, we have 

(3.15) PROPOSITION. Let A = (A1)A2, ) be a partition of n with 

Ah > 0. 

(i) If char(K) = 0, then 

h—i 

n 
i=1 

(ii) If char(K) = p > 0, 

h—i 

n n 

Ker(i+1 L, i). 

Ker(i+1 L i) 
.i=i j 

where the second intersection is taken over all j , such that j is a 

power of p. 



§3B Adjoint Maps 

Recall that for each composition A of n., a non—degenerate, symmetric 

K—bilinear form is defined on the permutation module M' via 

- - ( 1, if=, 

- L o, otherwise, 

where and are A—tabloids, and the submodule of M' which is orthogonal 

to SA is given by 

SAi={mEMAI< In, In' >= O(VmE SA) } 

(c.f. § 2C). In § 3 [James ( 197Th)], S is characterized as the sum of images 

of P—homomorphisms from some permutation modules into MA, where P = 

In order to study the K—space 

we shall use the concept of adjoint maps, which will provide a shorter proof of 

Theorem 2 in [James ( 1977b)], and make a comparison between the K—spaces 

Hom(M',S') and llomp(MA/S Ai ,MA). 

In general, let us consider KG—modules M1 and 1.1/12 (here we allow M1 to 

be a finite or infinite dimensional K—space), where K is an arbitrary field and 

G is a finite group. Assume that a non—degenerate, symmetric K—bilinear 

form < , >j is defined on M1, which is G—invariant, i.e. satisfying 

45 
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< em, m' >j = < m, C*m > 

for m, m' E M1, C = au )=E a5 r in KG. Let 0: M1  4 M2 be 
oEG oEG 

a K—homomorphism. A K—homomorphism b: M2 -' M1 is called an adjoint 

of çb, if the following equality holds for all m1 in M1, i = 1, 2: 

(M), m2 > 2 = < m1, 0(m2) > 1. 

We shall state the following basic facts on the adjoints without proofs: 

(3.16) FACTS. 

(i) If b: M1 - M2 has an adjoint, then it is unique. The adjoint of 4 

is denoted by 0A 

(ii) If both M1 and M2 are finite dimensional K—spaces, then each 

K—homomorphism 0: M1 -, M2 has its adjoint. 

(iii) If M3 is also a KG—module equipped with a non—degenerate, 

G—invariant, symmetric K—bilinear form < > 3, and 

M1 -4 M2 , 0: M2 - i 

are K—homomorphisms, such that ç0, 0A and (00)A exist, then 

(00)A = 0A0A1 

We are interested in the case 0: M1 -* M2 is a KG—homomorphism. 
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(3.17) LEMMA. If : M1 -' li/I2 is a KG—homomorphism and 0  exists, 

then 0A : M 2 ---4 M,  is also a KG—homomorphism. 

PROOF. It suffices to show that for all m1 E M1, m2 e M2, E KG, 

< m, >' < m, OA() > 1 

But 

< m1, >1 = < 0(70(n)'7n)'m2 >2 

= < * 0(m1), m2 >2 

= < (*) m2 >2 

= < OA(M 2) >1 

= < mi,, q5A(m2) >1.1 

Before working on the family of permutation modules 

{ M' I A is a composition of m } 

we shall try to unify the K—bilinear forms on MI's by defining a F—module 

with each MA being a direct summand, where F = Fix an integer n. 

Let Mn be the K—space with the following set as a K—basis: 

{ is a A—tabloid }, 
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U X1 

X2 

oX1 

(TX2 

which makes M a F—module by K—linearity. It is clear that M is the 

internal direct sum of all the permutation modules MA, where A is a 

composition of n. 

= • { M' I A is a composition of m }. 

Define a K—bilinear form on M, by setting 

<,>= 
if = 

otherwise. 

and extending this to M by K—linearity. It can be easily shown that < , > 

above is —invariant, non—degenerate, symmetric. Also, we can see that 

< MA,M> = 0, whenever A # t. 

The bilinear form on MA defined in §2C is the restriction of the one above to 

the F—submodule MA of M 

Let A and i be compositions of n. We have seen in §3A that the sets 

of incidence matrices fl(A,ji) and Wt(i,A) are K—bases for llomF(MX,MIL) and 

Hom(M!',M") respectively. The following lemma reveals that the natural 

bijection 

P E W(A,) PT E n(,A) 
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is identical to the map P i-* PA: 

(3.18) LEMMA. Each P e 3t(At) has its adjoint, and PA = pT 

PROOF. It is enough to show that 

< P(35),> = <, P'r() > 

for arbitrary )—tabloids [ x1, X2, I", a—tabloids = 

Recall that 

Thus 

Meanwhile, 

21 ) 

1, 

0 

Y1, Y2' ... 

znx p (Vi,}. 

if I YnXI = p,foralli,j, 

otherw i se. 

11 if I x  Y. = PfOr all 

>=1 
L 0, otherwise. 

i, j, 

f1, if YflXI_P ,for all i,j, 

L 0, otherwise. 

= < P( x ), >.I 

(3.19) COROLLARY. The adjoint of 

iT 
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a(P)P: MA 3MO, a(P)K, 

P E it) 

is I  a( p )pr: Mit -, MA.I 

P E (A,it) 

Let i,j and w be positive integers, with j > i. The K—homomorphism 

(j!-+i): M Th _-4M?.,, 

is defined in the following manner: 

(j 2J_ i)( ) = 0, if I xjj < 

(jZi)()= [xi, 

I VI=w 
vç 

,xi-1,xiuw,...,xj Uwxj+1,... 

if I x jj ≥ w. It can be easily verified that (j -' i) : Mn -+ Mn is a 

P—homomorphism (comparing with the definition of (k -i 1) in §3A). 

Similarly, one can defined (i w, J) when j > i. Let ). be a composition of n, 

and assume that Aj ≥ w. The restriction of (j w, i) to MA, still denoted by 

(j i), is a F—homomorphism from M' to Mit, where IL is the composition 

(A1, ..., A 1, A+w  A. .+ 1' ...) i , i' r' 

The P—homomorphism (j i) : M' -* Mit is an element in U1(A,it) ( c.f. 
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the matrix illustration of (k -i 1) in 3A). We have at once 

•w • T 
(.i — 'z) =(i-): Ii4—MA. 

Thus according to the viewpoint in (3.18), we obtain 

(3.20) PROPOSITION. The P —homomorphisms 

(j-4i): M A M g, 

(i 3): M MX 

are adjoints of each other.I 

(3.21) REMARKS. As P.-endomorphisms of M, the relation 

•w . A 
(3z) =(z3) 

still holds, since it is true on every direct summand M' of 

The following lemma is a restatement of Theorem 2 in [James ( 1977b)], 

but our proof is shorter due to the adoption of adjoint maps. 

(3.22) LEMMA. The sequence 

.w. 
A ( z) 

M --+ M 

has the property 

Im(i -i 3) = [Ker(j !?+ i)]1. 

PROOF. We have to show that m e Ker(j W  j i) if and only if 

< m, m' > = 0, Ym' E Im(i -i ). 

Note that 
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M E Ker(j i) 

(j-3i)m=O 

4= < (j-. i) M, rn" > = 0 (Vmt' E M1) 

< m, (ij)m1! > = 0 (Vmt' E M) 

< m, m' > = 0, (Vm' E Im(i )),I 

By (3.9), if ). is a partition of n, 

S'= fl fl Ker(j—.i) 

j> i w≥ 1 

=n n Ker(i+1 ?_, i) 

i≥1 w≥1 

Therefore, combining the result in (3.22), we deduce that 

(3.23) PROPOSITION. (Corollary 2 [James (1977b)]) If ). is a partition of 

n, 

= :: Im(i.!) 

j> i w≥ 1 

= Im(i !94 i+1),I 

Consider the subspace of End (M '): 

= 1 0 E Endp(MA) I Ker(Ø) 2 SA-L }, 
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where A is a partition of n. It is clear that 

Hom(M'/S, M') 

as K—spaces. The K—space H and Homr(MX,SX) are linked up in the 

following 

(3.24) PROPOSITION. 0 E 11A if and only if 0A, the adjoint of 0, belongs to 

HomF(MA,SA). In other words, the mapping 

ØEHA 

is a K—isomorphism. 

A Homr(M,SA) 

PROOF. Let 0 be a F—endomorphism of MA. Then 0 E 11A if and only if 

(i i+1) - 0, 

by (3.23); if and only if 

if and only if 

[q5(i i+l)]A = 0, 

i ≥ 1, w ≥ 1, 

(i+1 IV i i)Ø = 0,...i ≥ 1, w ≥ 1 

by (3.16)(iii); if and only if OA e Homp(MA,S) by (3.9).1 



§3C Bases for Homp(S,MhL) 

A theorem concerning K—bases and K—dimension of HomF(SA,M1) was 

first proved in § 3 [Carter and Lusztig ( 1974)], and the proof was modified in 

§13 [James (1978b)]. In this section, we shall describe the ideas of the above 

authors briefly and state the main results about llomp(SA,M) needed in our 

later discussions. 

We have seen in §3A that W(A,j) forms a K—basis for Homp(M',IVJ1) 

since we can characterize an Rx—orbit of ji—tabloids by a ,—incidence 

matrix, where x is a A—tableau. The following sequence of definitions is 

essentially an alternative way of describing an Rx—orbit of u—tabloids. 

Let A and A be compositions of n. A function T : [A] -' IN, where [A] 

is the diagram of A, is called a (A,ii)—tableau, if the cardinality of 

{ (k,l) E [A] I T(k,l) = i} 

is equal to Ai for each i. ( T was called a A—tableau of type ji by Carter, 

Lusztig and James in the references above.) For example, if A = (4,1), jt = 

(3,2), we define 

T(1,1) = T(1,2) = 2, 

T(1,3) = T(1,4) = T(2,1) = 1, 

then T is a ((4,1),(3,2))—tableau, depicted as 

2211. 

1 

54 
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The set of all (X,)—tableaux is denoted by T(.X,i). 

A A—tableau x induces an —action on the diagram [A] via 

CT (i,3) = x1cr x (i,2), (i,j) e [A], CT E 

That is to say, ( a.): [A] -' [A] is the bijection which makes the following 

diagram commute 

An —action on the set I(A,p) can be defined in the following manner: 

aT 

It is easy to check that the above action on ¶(A,) is eventually the place 

permutation of u)—tableaux. For example, if 

x= 1234 
5 

and T is the ((4,1),(3,2))—tableau 2 1 1 , then 

(23)T = 2 1 2 1 
1 
1221 

(123)T = 1 
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We say that T and T1 in j) are row equivalent, if 

'uT = T1, for some 'ur E Rx. 

In the above example, the row equivalence class of T = 2 1 1 is 

p2211,2121,2112,1212,1122,1221 
1 1 1 1 1 

A one—to--one correspondence between A,t) and the set of —tabloids 

can be established as follows: fix a A—tableau x, for each T E let ;(T) 

be the ti—tabloid satisfying that xij  lies in the T ( i,.))—th row of 'y(T). It is 

not difficult to check that ; is a bijection. We shall prove that if T E 

T(A,), then 

{ y.(TI)) I T1 is row equivalent to T } 

is an Rx—orbit of it—tabloids, stated in the following lemma. 

(3.25) LEMMA. Fix a A—tableau x, let T, T1 E (A,i), P E W(A,). Them 

(i) -y.( T) belongs to the Rx—orbit (F, i ) if and only if the number of 

i's in the j—th row of T is equal to pij for all i and j. 

(ii) T1 is row equivalent to T if and only if y( T) and 'y,( T) belong to 

the same Rx—orbit. 

PROOF. It suffices to show (i). Let 

Y1 
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Recall that xk, lies in the T(k,l)—th row of -y.( T). Thus 

the number of i's in the j—th row of T 

= the cardinality of { z1 I T(j,l) = i } 

= I Y fl , for all i and il 

(3.26) DEFINITIONS. 

(i) A (A,/L)—tableau T is said to be semistandard (reverse semistandard) 

if the numbers in the depiction of T are non—decreasing (non—increasing) along 

the rows of T and strictly increasing ( strictly decreasing) down the columns 

of T. 

(ii) A F—homomorphism P E 9Jt(A,1i) is said to be semistandard (reverse 

semistandard), if for some A—tableau x, (F, ) contains a u—tabloid 7.(T), 

where T is semistandard (reverse semistandard). This condition is independent 

of the choice of x. Note also that T is uniquely determined by x( T). 

(3.27) EXAMPLE. Let A = (2,2), = (2,12), and z be a (2,2)—tableau. 

There are four (A,)—incidence matrices (Rx—orbits): 

12 01 

(0 iI,) { 7( ), 7x(3 1 1 2) }' LO lj 

11 

( 10 ,)= 
01-

0 2 
( 1O,)= 

10 

11 
( 01,)= 

10 

12 21 2 
{ 7x(i 3) 'i( 3) 7x(3 

,23 (32 { Y. 
i i i) } 

1 12 
7(3 ) } 

{'() 13 31 
7x(2 i) ' (2 ) 

1 
2 
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20 02 
The F—homomorphism 0 1 is semistandard, while 1 0 is reverse 

01 10 

semistandard.I 

(3.28) THEOREM. ( 3 [Carter and Lusztig (1974)], and § 13 [James ( 1978b)] 

Let A and A be partitions of n, P be the restriction of P E YJt(A,1i) to SA. 

Unless char(K) = 2 and A is row 2—singular, 

{ P I P E Jt(A,ji), P is semistandard } 

forms a K—basis of HomF(SA,M). The set 

{ P I P E W(A,), P is reverse semistandard } 

also forms a K—basis of HomF(S\IkL1L),I 

It is sometimes handy if we have a criterion for semistandard (reverse 

semistandard) homomorphisms according to the features of the incidence 

matrices themselves. The following facts concerning reverse semistandard 

homomorphisms will be used in the later sections. 

(3.29) LEMMA. Let A and IL be partitions of n, and let N = (n) be a 

(A,)— incidence matrix. Then N : MA -+ M is a reverse semistandard 

homomorphism if and only if 

w 

(n1 - n+,) ≥ 0, 

i=k 

k=1,2, ... ,j= 1,2..... 
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PROOF. We shall prove that the above condition is necessary, the converse 

part can be proved by the similar argument. 

Assume that N: M' - i MA is reverse semistandard. Let x be a 

)-tableau and T be the reverse semistandard ji)-tableau such that y.(T)) 

belongs to (N, ). The numbers along each row of T are non-increasing, and 

the number of i's in the j-th row of T is nij (c.f. 3.25 and 3.26). The 

(j+1)-th row of T is thus of the form 

1 ... 1 ( 1+1) ... (1+1) ... 2 2 1 ... 1 
______ -I •,__,__/ 

fl,j+l fl_l,j+l 2,j+ln 1,j+1 

For each entry 1 (one) in the (j+1)-th row of T, there must be an entry in 

the same column and the j-th row, which has the value greater than 1 (one). 

Therefore, necessarily, the number of entries with values greater 1 in the j-th 

row of T must be at least the number of all entries in the (j+1)-th row of T. 

That is 

Co Go 

ni+1,j ≥ Thij+1 

i.e. 

w 

( i+l,j - m+,) ≥ 0. 

i=1 

Similarly, for each entry 2 in the (j+1)-th row of T, there must be an entry 

with its value greater than 2 in the same column and the j-th row of T. 

This forces 
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Go 

- ≥ 0. 

i=2 

Repeating this process, we have 

CD 

( i+,j - ≥ 0, 

i=k 

k= 1) 2, ... ,j= 1,2..... 

The converse part of the proof can be done by the same argument. 



§3D On the Labelling of the Irreducibles 

When the ground field K has its characteristic p, p > 0, the irreducible 

F—modules can be labeled by row p—regular partitions of n, where r is the 

group algebra since each Specht module S', with A row p—regular, has 

the unique maximal submodule fl S, and the set of factor modules 

{ J' = SA/(SnSA1) I A is a row p—regular partition of m } 

forms a complete set of inequivalent irreducible F—modules (see 2.11). By 

working with S1, where A is a column p—regular partition of n, we can find 

another labelling of irreducible r— modules, based on the following facts: 

(3.30) LEMMA. Every Specht module with i a column p—regular partition 

of n., has the unique irreducible submodule L, and the set 

{ L J 1a is a column p—regular partition of n } 

forms a complete set of inequivalent irreducible F—modules. 

SKETCH OF THE PROOF. Note that a partition A, of ii is row p—regular if 

and only if its conjugate partition A' is column p-regular. A Specht module 

A A* A 
S unique the uque maximal submodule if and only if (S ) , the dual of S 

has the unique irreducible submodule by (2.7); if and only if )' has the 

unique irreducible submodule, because of (2.18): 

,, 

S  N (SA )* ® Fe(). 

61 
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It is easy to see that 

L"N iX® Fe(e), 

and thus the mapping JA ,+ L" is a bijection from the set 

X I A is a row p—regular partition of ii } 

onto the set 

{ L1 J t a column p—regular partition of n 1.1 

A difficult question was raised at the end of [James (1977c)]: what is 

the connection between the two labl1ings? In the proof of the above lemma, 

we have seen that tensoring with P 6(S. ) yields a bijection (up to 

isomorphism) from the set of inequivalent irreducibles onto itself 

X® F6() L, LX', 

for each row p-regular partition of n. A much harder problem is the 

following: 

(3.31) PROBLEM. For each row p—regular partition A of n, search for a 

column p—regular partition of n, denoted by (X), such that is isomorphic 

to the unique irreducible submodule L Y A) of 

(3.32) NOTE. When p = 2, e() = t(). Thus 

LA) N jAe P6(S) = X® Pt(S) 
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and the mapping § 2 is the trivial one: 

2(A) = A', for all 2—regular A. 

If p > m, for each partition A of n the Specht module S is irreducible 

over r, hence (A) = 

We shall give a partial solution for Problem 3.31 by showing that if A is 

a row p—regular partition satisfying some stronger conditions, there is an easy 

combinatorial way to describe 

Let A and IL be partitions of n. Write i = (a1,Ih1,. i) Ih > 0. 

According to ( 3.9), a P—homomorphism 0: M" - i M' has its image contained 

in S if and only if 

(i+1 !L4 i)0 = 0, i=1,2, ... ,h-1; 0<w≤/i1. 

In some ideal cases, we can find an element N in the basis IT(A,u) of 

llomp(MA,M), satisfying 

(i-i-i 2:!4 i)N = 0, i=1,2, ... ,h-1; O<w≤i 1. 

Let a and b be non—negative integers. Write 

b=bo+bip+ ... + brpr, 0 ≤bi<P,br > 0. 

The integer p' 1 is the smallest power of p larger than b. Denote (r+1) by 
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When b = 0, define = 1. The following result can be deduced 

from 22.5 [James (1978 )] 

(3.33) LEMMA. (a+w) 0(mod p) for all w, 0 < w < b, if and only if 

a —1(mod p ip(b)).j 

The following proposition, first proved by G.D. James, is our main tool 

in this section: 

(3.34) PROPOSITION. (24.6 (1) [James (1978b)] Let A and [t be partitions 

of n. If N = (n1) e OJt(A,1t) satisfies 

n1 = —1(mod tP(nl+lJ)) 

then Im(.N) C S. 

PROOF. Recall the formula in (3.10), for each i, vi 

(i+1 !+ i)N = I n +w ] N( 
Wi w1)w2,...) 

2 

where the sum is taken over all compositions (w1,w2,...) of w satisfying 

0 ≤ w ≤ for all j 

and N( W1)W2,... ) . IS the incidence matrix having the rows i and (i+1) of the 
"  
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form 

[ fljj + W 1 nj2 + W2 . . . fljj + Wj 

[ nj+1,1 w1 nj+1,2 W2 . . . n1+1, - 

and the other rows identical to the corresponding rows of N. The conditions 

assures that 

Thj = -1(mod pp (Thi +i j)) = 1, 2, 

nj+wi] O(mod p) 11 1 Wj 
.7 

for all i, all compositions (w1,w2, ... ) of w satisfying 

0 ≤ w ≤ n.1+1,, for all j 

by (3.33) above. Therefore 

(i+ 1 -+ i) N = 0, for all i, w, 

and it follows that Im(JV) ç S' by (39 )•I 

G.D. James obtained the following result concerning llom( 5(n), S) by 

applying the proposition above: 

(3.35) COROLLARY. (24.4. [James ( 1978b)]) Let tt = (p. . h) be a 

partition of n. The trivial module 

of S14 if and only if 

S (n) is isomorphic to a submodule 
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—1(mod pp(/i+1)). i = 1, 2, ... ,h-1.I 

(3.34) has many other applications. For each partition ) = (Al,.X2, .... )h) 

of n, with Ah > 0, we can construct a partition O(A) and a 

incidence matrix N' ) , such that 

Im( N( ")) ç s0p(A). 

(3.36) CONSTRUCTION. Let ). = (A1,A2, ... ) be a partition of n. Write for 

each j, 

Aj = 8i (P - 1) + 0 ≤ r < p - 1.. 

Let N' '' be the integral matrix whose j—th column is 

p 

p—i 

0 

The row sums of N( '') determines a partition of n, denoted by O(A). 

Clearly N( ') E 

According to this construction and (3.34), we have at once 

(3.37) Im( N( '')) C s0(A). 

When A is a partition satisfying certain conditions, more information 
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one must have 

about the irreducible submodules of can be found through the 

F—homomorphism N( '). We shall prove the following combinatorial lemma: 

(3.38) LEMMA. Let A = (A1,A2,. h) be a partition of n. satisfying 

.Xh > O 

Ai - A +1 ? P - 1, j = 1, 2, ... , h—i. 

Then, 

(i) The F—homomorphism N( '): M"— MP(') is reverse semistandard. 

(ii) OP(A) is a column p—regular partition of n. 

PROOF. (i) Write N() = (n.1) and 

A=s(p—i)+r, O≤r<p—i,j=i,2,...,h. 

For each j, i ≤ j ≤ h - 1, we have 

Ai - A +1 = (s - s+1)(p - 1) + (r - r+1) ≥ p - 1. 

It is clear that !rj - r+11 < P - i. If 

0 < r - r+1 < p - 
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(p—i) or rp i.e. the columns j and (j+i) are of the form 

or 

1 

+1 

Si +1+2 

1 

Sj + 1 

sj + 1+2 

Sj+i 

If rj - Tj +i < 0, then 

p—i 
p—i 
p— i 

6 
0 0 

if s - = 1; 

if sj - 8i+1 ≥ 2. 

- s+j)(p - i) ≥ (p - 1) + ( r 1 - r ). 

Hence s - Si +1 ≥ 2, and the j—th and the (j+i)—th column of j(Th") are of 

the form shown above. In either cases, 

ni+1,i - 7t1,i+l 0, i ≤ i ≤ 

Thc+2'j - k+1'j+1 ≥ o, where Ic = 

Therefore the conditions in (3.29) are satisfied: 
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CO :: (n1+1, - nj, +) ≥ 0, k = 1, 2. 

i=k 

Since j is arbitrary, we have proved that N (PA) is reverse semistandard. 

(ii) The first column of the matrix N(p,A) determines the lengths of the 

first (p - 1) columns in the diagram of Since the first column of 

I 

the first r1 columns in the diagram of have their lengths equal to 81+ 1, 

and the next (p - 1 - r) columns have lengths equal to s. According to the 

discussion in the proof of (i), either 

Si - = 1 or Si - 2 ≥ 2. 

When s, - 1, r, - r2 ≥ 0, since A, - 2 ≥ p - 1. There are 

(p - 1 - r) + r2 

columns with lengths s1 in the diagram of O'). But 

(p-1—r1)+r2=p-1— Or, — r2)≤p-1. 
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When s - 2 ≥ 2, the columns p to 2(p - 1) in the diagram of have 

their lengths less than s. Repeating this process, we can prove that no more 

than (p - 1) columns in the diagram of L(A) have the same lengths, hence 

is column p—regular. 

The F—homomorphism N(p,A) has some interesting properties when ) is 

a partition described in (3.38): 

(3.39) PROPOSITION. Let ). = be a partition of n satisfying 

Ali > 0, 

Ai - )+ ≥ p - 1, j = 1, 2, .. , h—i. 

Then 

(i) S' is not contained in Ker[ N( "')]. 

(ii) S = Ker[ N( ")], hence (S.))* is isomorphic to a submodule of 

30p(/\) 

PROOF. (i) By (3.38)(i), N( '): M' - Mp(').is a reverse semistandard 

F—homomorphism. Thus N(P))(SA) 0, since the restriction of N( ") to SA 

is an element in a K—basis of llomF(SA, M°P(A)), according to (3.28). 

(ii) We first show that SA-L  C Ker[ N(")]. By (3.23), 

SI-L = Y Im(i 2 4i+1). 

01 w≥1 
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i.e. 

Thus it is enough to show that 

N ( '')(ij i+1) 0, 1 ≤ i ≤ h—i, w ≥ 1. 

Let NT be the transpose of N( ''). By (3.16)(iii), it is enough to show that 

[N(")( i 4 i+i)]A = 0, 

(i+i_,i)NT=O, i≤i_<h—i,w≥i, 

by (3.18) and (3.20). Notice that in the matrix N (p,)), the last non—zero 

entry in the j—th column, Tj, is also the last non—zero entry in its row, by the 

proof of (3.38) (i). Thus the matrix NT satisfies the conditions in (3.34), 

which imply that 

(i+i)i)NTO, 1≤i≤h—i,w≥i. 

Thus SC Ker[ N()] The submodule Ker[ N()] of M' does not contain 

SA by (i), hence it is contained in by the Submodule Theorem (2.8). 

Therefore = Ker[ N(Z'')]. To verify the last statement, we simply apply 

(2.14): 

M/SA1, 

and note that there is a monomorphism from M'/S into S0p() induced by 
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It is worth naming those partitions described in (3.39) at this stage: 

(3.40) DEFINITION. A partition ,\ = ( l,A2, .... Ah) is said to be strongly row 

p—regular, if Ah > 0, and 

Ai - )j+j ≥ p - 1, j = 1, 2, ... , h—i. 

A partition IL is said to be strongly column p—regular, if its conjugate i' 

is strongly row p—regular. 

(3.41) THEOREM. Let ). be a strongly row p—regular partition of n. Let 

be the partition constructed in (3.36). Then O') is column p—regular, 

and the unique irreducible submodule of 5Op()t) is isomorphic to 

PROOF. Only the last statement need to be. verified. By (3.39) above, 

(S)\)* is isomorphic to a submodule of SO(A). But (SA)* has its unique 

irreducible submodule isomorphic to J', by (2.7). Thus as 0,()) is column 

p—regular, J is isomorphic to the unique irreducible submodule of SOPP),I 

An alternative proof of the last statement above is the following (see 

also, 24.6, 24.7 in [James ( 1978b)]): 

(3.42) PROPOSITION. If A is a strongly row p—regular partition of n, then 

the restriction of N.(1',') to is a non—zero F—homomorphism from 

SA to s0(A). Furthermore, there exists a F—homomorphism 

A 
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which makes the following diagram commute: 

sx 

JA 

where ir is the coset map. 

\ NP() 

-4 

PROOF. ImN( ")} ç by (3.37). N( '): S -s is non—zero 

since N( ') is reverse semistandard, hence A)(S) 0 0, as seen in (3.39). 

By (3.39) (ii), 

thus 

and 

= Ker[1V(PA)], 

Ker[ ic?(p,)t)] = g X.i. 

Im[ A(') 
- sAnsA1 

S 

(3.43) REMARKS. For a positive prime p, B, is a map from the set of 

partitions of n to itself. When p = 2, 0, sends each partition to its 

conjugate, hence 02 is a bijection. When p > 2, @, is neither one—to—one nor 

onto. For example, when p = 3, =9, 

@3(7,2) = (4,2 2,1) = 03(71 12), 
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while the partitions ( is), (2,1), etc., are not in the image set of 03. Recall 

that in Problem (3.31), we look for a column p—regular partition when 

) is row p—regular. 

According to our Thebrem (3.41), we have ,(A) = @(), when ) is 

strongly row p—regular. Now we reverse the problem as follows: if a strongly 

column p—regular partition tt is given, can we find a row p—regular partition ), 

such that 

ji ? 

The answer is yes and the proof is based on Peel's result (2.18) and Theorem 

(3.41) above.I 

We state the following lemma without proof: 

(3.44) LEMMA. Let M and N be P—modules. The mapping 

çü E Homp(M,JV) i.- çü'E Hom{M N ® 

where ço' is defined by 

ço'[m ® = W(m) ® C(e.), m E lvi, 

is a K—isomorphism. Furthermore, cc is onto ( one—to—one) if and, only if cc' 

is onto ( one—to—one),I 

Let .\ be a row p-regular partition of n, ii be a column p-regular 
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partition of m, such that ji = That is to say, there are 

P—homomorphisms in the following sequence 

Air A 4 S ii 

such that ir is onto and 0 is one—to—one. In the dual sequence, by (2.4), 

(Su)* ( X)* ()* 

* * 

we have '0 onto and ir one—to—one. Applying (3.44) above, one obtains 

* * 

(Sh1)*® PE() (iL)' (JA)*Ø Pe() (2L3)' (SA)*® F€(), 

* 

in which ('0* )' is onto and (7r ' is one—to—one. Notice that JA L, (J)* by 

(2.19), and by (2.18) and (2.19) 

(JA)*® rc() j jAe Fc(), 

(S Y o PE() 

(SA)*® Pc() N 5A' 

Therefore we have a sequence 

A A' S'1 - J ® PE() - 4 S 

in which ir1 is onto and '0j is one—to—one, ii' is row p—regular, A' is column 

p—regular. It also means 
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ii' , A® re() 

is isomorphic to the unique irreducible submodule of That is to say, 

(3.45) PROPOSITION. Let A (ii) be row (column) p—regular partition of n. 

Then ii = A) if and only if A' = 

For example, if p = 3, n = 9, noticing that (8,1)' = (2,1), we have 

3(8,1) = (3,2 3), 

3(4,1) = (2,1). 

The above observation is useful when we look for a row p—regular 

partition A, such that (A) = u, where tt is a given strongly column 

p—regular partition. Since p' is strongly row p—regular, we have 

= 

by (3.41). Thus we can find ; 1() through the following algorithm: 

l- I-+ O(ii') tL(it')' = 

for each strongly column p—regular partition of n. 

When A is a row and column p—regular partition of n and the Specht 

module S is irreducible over F = the answer to (3.31) concerning A is 

certainly (A) = A. We now summarize our results in this section which 
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provide partial answers to Problem (3.31): 

(3.46) THEOREM. (1) Let A be a strongly row p—regular partition of n. 

Then (A) = 

(2) If ,u is a strongly column p—regular partition of n, = 

(3) If A is a row and column p—regular partition of n and the Specht module 

S' is irreducible over F = then (A) = A 

(3.47) EXAMPLE. Take n = 6. All partitions of 6 are listed below in 

pairs of conjugation: 

(6), (16) 

(5,1), (2,1) 

(4,2), (22,12) 

(4,12), (3,1) 

(32), (2) 

(3,2,1), (3,2,1) 

(a) When char(K) = 2, the mapping 2 sends every 2—regular partition to its 

conjugate, as we have seen in ( 3.32). 

(b) When char(K) = p > 6, every partition of 6 is row and column 

p—regular, and the mapping § P is the identity mapping on the set of partitions 

of 6, by (3.32). 

(c) When char(K) = 3, there are seven row 3—regular partitions: (6), ( 5,1), 

(4,2), (32), (4,12), (3,2,1), (22,12). Among them, (6), (5,1) and (4,2) are 

strongly row 3—regular, hence their conjugates (16), (2,1) and (22,12) are 

strongly column 3—regular. The following table lists all strongly 3—regular 
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partitions of 6, the matrices and the partitions O3 ) by the 

construction of (3.36): 

A N(3,A) 03(A) 

r21 
(6) I 2 I (2) 

[2] 

r2 11 
(5,1) 2 0 (3,2,1) 

[lOj 

(4,2) 
r1 22 
[ 2 0 ] (4,2) 

r1 2 2 (32) 

[ii ] (4,2) 

(4,1 2) 211 1 
[2 0 0] 

(4,2) 

(3,2,1) 
221 1 

[1 0 0 

(22,12) [ 2 2 1 ] (6) 

By applying (3.46)(2), we have 

-1(16) = (2)' (32), 

= (3,2,1)' = (3,2, 1), 

;1(22,12) = (4,2)' = (22,1 2). 

In the set of row 3—regular partitions of 6, (4,12) is the only one whose 

3—image can not be found by using (3.45). But (3,1 3) is the only leftover in 

the set of column 3—regular partitions, thus we are lucky to see that 
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(4,1) = (3,1). 

In the following diagram, we list all 3—regular partitions of 6 along the 

vertical line, in the dictionary order. Their conjugates are listed along the 

horizontal line, from right to the left. The circles with coordinates (\),A) 

illustrates the correspondence 3. 

(6) 

(5,2) 

(4,2) 

(4,1 2) 

(3 2) 

(3,2,1) 

(2 2,1 2) 

0 

0 

0 

0 

0 

0 

I T T I I 

(4,2) (3,2,1) (2) (3,1) (22,12) (2,1) '(16) 

(d) When char(K) = 5, all the partitions of 6 are row 5—regular except (16), 

but (6) and (5,1) are the only strongly row 5—regular ones. By applying 

(3.46), we have 

5(6) (4,2), 

5(5,1) = (5,1), 

5(2,1) (16) 
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5(2,1) = (2,1). 

We may apply (3) in Theorem (3.46) to get more information about the 

correspondence . The detail is omitted here. In general there might be 
11 

more leftovers after, we apply O to strongly row p—regular partitions and 

to strongly column p-regular partitions. A complete description of the 

correspondence §P is still an open question. 



§3E The Homomorphisms from S (m-1,1) to Other Specht Modules 

The determination of the K--dimension of Homp(S\ S1) for a pair of 

partitions of n, where F = is a difficult question. When char(K) = 0, 

or char(K) = p, p > n, 

11, if A  

dim K llomF(SA, S) = , if A 

since { S'I A is a partition of n } forms a complete set of inequivalent 

irreducible F—modules. In the case char(K) = p < n, some partial results 

have been obtained by a few authors. G. James solved the problem when A 

is the partition (n) and p is arbitrary in 24.4 [James (1978b)] (see 3.35 in 

§3D), while another special case, when both A and p are two—parts partitions 

of n, was studied in [Gwendolen Murphy ( 1982)]. 

We set up our goal in this section as the following: 

(3.48) PROBLEM. Let K be a field of characteristic p > 0. 

(a) Find all partitions p of n such that 

llom(S("),S') # 0. 

When Hom( 5 (n4,1) gIL) 1 0, exhibit a K—basis for this K—space thus find 

the K—dimension. 

(b) Find all partitions p of n, n ≥ 3, such that the irreducible module 

81 
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j(n.-1,1) is isomorphic to a submodule of S.I 

For a pair of partitions A and IL of m, we may list all the semistandard 

(reverse semistandard) F—homomorphisms from M' to M's, and then test 

whether some K—linear combinations of them send into the kernel 

intersection in (3.9). 

(3.49) NOTATIONS AND NOTES. 

(i) For a partition A = (1,p2,. /h) of n, I.Lh > 0, there are h 

((n-1J),/L)—incidence matrices, each of which has zero in all but one place in 

its second column. Denote by P the ((m-1,1),)—incidence matrix whose 

second column has 1 (one) in the i—th row, i.e. 

0 

= Pi i=1,2, ... ,h. 

It can be easily checked that P,, Ph-i are reverse semistandard, by the 

criteria in (3.29). 

(ii) If : M(Th_1,1) .- M'L is a F—homomorphism, we shall use to 

denote the restriction of v to S ( 1,1) Thus according to (3.28): 

{i I i=1,2,... , h-1} 

is a K—basis for the K—space Homp(S(Th_11), M'L). In this section we choose 
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those reverse sernistandard homomorphisms to work with because they seem to 

have a better performance in our very last section, although we believe that 

the results of this section are independent of the choice of the basis. 

(iii) Let x be the (n-1,1)—tableau 

13•••n 
2 

Our later analysis is based on the positions of the elements 1 and 2 in some 

tabloids. Let ii be a composition of n. The sum of all v—tabloids with 1 

(one) in the i—row and 2 in 'the j—th row is written as 

YZI 

or abbreviated by 

1 E Y, 2 E Yj 

i E Y,2E Yj 

1EY1 

2E Yj 

1'1 

V 

For example, if Pj is the ((n-1,1),p)—incidence matrix defined in (i) then we 

can write 
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(iv) In the notation of (iii), we have 

(1,2) IYV 

where (1,2) is the transposition in S. It is clear that 

[1 - (1,2)] { y v I 1 e Y, 2 E Yj I = 

for all i and any composition ii of n. 

Assume that 

h-i 11 
= zP : M - M 

is a F—homomorphism, z € K. Let x be the ( n.-1,1)—tableau ... m 

From (3.9) and (3.28), the restriction cc of cc to is a 

F—homomorphism from S(n-111) to S if and only if ço{[l—(12)] } E S, if 

and only if 

h-i 

(3.50) [1_(1,2)](i+1 2!_i)zP1(z)=O, 1≤i≤h-1,1<w<p1+1 ; 

if and only if 

h-i 

(3.51) [1 - (1,2)] (k L 1) ) = 0, k > 1 ≥ 1, 1 ≤ w < Ik 
i=1 
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Both (3.50) and (3.51) yield systems of linear equations in unknowns 

{ z}' over K. When we want to find the necessary conditions on , (3.51) 

provides a faster algorithm, although some of the linear equations given by 

(3.51) are clearly consequences of those given by (3.50). The following arises 

from (3.10): 

(3.52) FORMULAE. 

(i) For k=2,3, ... ,h,w=i,2,...,pk, 

(k -i 1) P, = (k -) 1) 

(ii) For k = 2, ... , h—i, 

(k-4 ) k= (k.-) 1) 

P2 

Pk 

Ph 

P1 

Pk -1 

Pk - 1 

Pk+1 

Ph 

0 

0 

1 

0 

0 

1 

0 

0 

0 

= f pç-i+w 
w 

p1-1+w 1 

P2 0 

PkW 

Ph 

0 

0 
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= 1", 
+w] 
wJ 

if 1 ≤ w < /. k; and 

(k 1)Pk = (kAk 1) 

Ih 

0 

0 

1 

0 

0 

+ [ILI + w-1 w-1 

= fi + Ik —1 
L Pk - 1 

(iii) For k=2, ... ,h-1,2<i<h--1 and ik, 

k 

(k1)P1 =(k-41) 

1 

for all w, 1 < w 

IILI+w1 
LwJ 

ILj+w-1 1 

ILdI'k1 1 

ILh 0 

ILi+W 0 

ILk° 0 

ILr4  

A  0 

(3.53) LEMMA. (a) Let ço = E zP : M(Th_1,1)_I M' be a 
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P—homomorphism satisfying (3.51). Them 

Zk + Alzi = 0, k = 2, ... , h—i. 

Hence go must be of the form 

z1(P1 - 1u1P2 - •.. - PiPhi), z1 E K. 

(b) The K—dimension of Hom( s(''), S) is either zero or one. 

Hom( S ( 1,1), SI) has dimension one if and only if 

P1 - t1(P2 + + P.1) 

satisfies (3.50) or (3.51). 

PROOF. To prove (a), we take w = 1 in Formulae (3.52) above. Let z.' be 

the composition of n. 

(p1+i, P2, •.. ' ... , Ph). 

We have by (i) in ( 3.52) 

p1 1 

P2 0 

-31)P1= [ui] 
1 Pk1 0 

- Ph 0 

Thus in (k 14 i)P1( ), the sum of v—tabloids 
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if YV 1 1 E 17h' 2 E Y1 I 

has coefficient IL,. Meanwhile, for 2 ≤ k < h - 1, by (3.52)(ii), 

i1+1 O - ILi 1 

1 
(k2-1)Pk= = [ i +1 j 

Ah 

Al 

(k 1)Pk = 

0 

1 

0 

0 

+ 

Ih 

0 

0 

0 

0 

ifl2k= 1. 

ifik ≥ 2; 

In both cases, the sum of v-tabloids 

{ Y 1 E 'h' 2 E '1 } 

in (k -+ 1)Pk( ) has coefficient 1 (one). If i I k, 2 ≤ i ≤ h-i, by 

(3.52) (iii), 
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Therefore 

11 
(k- 1) Pi A, +1 j 

0 A  

2 E y1 I does not occur in (k 1+ i)P1( X ), if 

i # k, 2 ≤ i ≤ h-i. Also, we notice that 

Iy 1 E Y1, 2 E 'h } 

has coefficient zero in (k 2_ i)P , 1 ≤ j ≤ h-i. Therefore in the expression 

of 

(k i. h-i z1P( ) 

the sum of v-tabloids fYv 
i1 

1 E Yh, 2 C Y1 I has coefficient 

Zk + /tlZl , 

while 11 YV 1 1 E Y1, 2 € Yh I has coefficient zero. It follows that in the 

expression 

[1 - (1,2)] (k h-i z1P1( X ), 
i=1 

the sum 
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fj ,. E 'h' 2 E - 1 E Y1, 2 E h I 

h-i 
has coefficient (Zk + j1z). Since çü = E z1P satisfies (3.51), we must have 

Zk + /. jZj = 0, 

(b) is an easy corollary of (a),I 

When p = (pr, A2), a two—parts partition, {P1} is a K—basis for 

Hom(S (m-1,1), Mn). Thus the K—space Hom( S(m_l,l) S1) is non—zero if 

and only if 

k= 2, ... ,h — i. 

P1( 5(n._11)) ç 

This is the special case of 2.12 in [Gwendolen Murphy (1982)]. We shall state 

and sketch the proof of the following 

(3.54) PROPOSITION. If = (, Al≥ A2 > 1, is a two—parts 

partition of m, them the K—dimension of Hom( S (m_1,1), S1) is either zero or 

one. Hom( S(m1,1) S) has dimension one if and only if 

0 (mod 

Note. The definition of t(b), b a positive integer, is given in § 3D, prior to 

(3.33). 
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PROOF OF (3.54). Take k = 2 in Formulae (3.52)(i): 

i1-1 1] 

[2 -[ vi p-1+w r 
1-1+w 1] 

(2 2-41)P1 =(2--1) - 

where vi = 1, 2, ... , p2. For vi = 1, 2, ,p2-1, let v(w) be the partition of 

n : (p1+w, p2-w), then 

(2 W i 1)P1( ) 

= [pt-i + W J 
w] [ [ ( vi) + r yi LP21] [y2] u( w)j 

16Y1 16Y2 

2E Y1 26 Y1 

By applying (3.49)(iv), we have 

[1 - (1,2)] (2 -i 1)P1( ) 

= 1p'-1 + vi]  ii( w)] LwJ 
1 6 2 L 2iu(w) 

1 6 Y1 

2€Y1 26Y2 

Therefore, P1( S(Th_11)) c S only if 

= 0 (mod p), for vi = 1, 2, ... 

W 

By (3.33), this is equivalent to, 
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- 1 —1 (mod P(2-1)), 

i.e. 

Al 0 (mod tp(/2.4)) 

Conversely if 0(mod p P(/2-1 )), then 

[1 - (1,2)] (2 1)P1( ) = 0, for w = 1) 2, ... , 

/2 
It is clear that [1 - (1,2)] (2 - 1)P1( ) = 0, since 1 and 2 lie in the same 

- row of each tabloid occuring in (2 ' 1)P1( A 

Now we assume that A = (All A2 , i) h > 0, h ≥ 3. Consider the 

following cases: 

CASE A. p divides p,. 

CASE B. p does not divide a1. 

• In CASE A, p 0 (mod p), flom( s(1'1), S) is non—zero if and 

only if P1( S ( Th_11)) c S, by (3.53)(iii). We have the the following assertion 

by making use of Formulae (3.52): 
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PROOF. First assume that P1( S(Th_1'i)) ç s, i.e. 

[1 - (1,2)] (i+l -i i) P1( ) = 0, 1 < i ≤ h—i, 1 ≤ w ≤ 

Take lc = 2 in (3.52), 

(2 - 1)P1 = I iuri+w] 
Lw 

Since h ≥ 3, the sum 

{ y u(2,w)  

0 Ph 

1 E 1Th' 2 C Y1 I 

1 ≤ w ≤ 

where u(2,w) is, the composition (p1+w, /. 2—w, p, ... , pa), has coefficient 

[i1+w] in the expression of (2 Z i)P1( ), 1 < w ≤ 2. Thus the sum 

Iyzi(,w)  1E Yh,2E Yj}_{ 'v(2,IV)  

has coefficient L w jin 

Therefore 

i.e. 

1 C 1'1, 2 C 'h I 

[1 - (1,2)] (2 W i 1)P1( ) = 0, for w = 1, 2, ... , p2. 

fpi-1+w 
Lw. 0 (mod p), for w = 1, 2; ... 
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0 (mod t(2)) 

Furthermore, for each i, 2 ≤ i ≤ h—i) 

1 

0 

(i+i !?) i)P1 = f "i+ 'V Lw 

By counting the coefficients of 

V  

0 

1L1+i—w 0 

Ah 0 

1 E Y, 2 E ri I 

1 ≤ w 

where "(i,w) is the composition 

(ii1 , it.+w) j11—w, 

in (i+1 W j i)P1( ), we must have + w] 0 (mod p), w = 

Thus 

Ai —1(mod t(•1)) i = 2, ..., h—i. 

The converse part of the proof is clear from the above discussion.I 

It remains to study the case p does not divide . We first assume that 

= (ILI, A21 IL3), a 3—parts partition of m. Then Hom( 5(m_1,1), S1) is 
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non—zero if and only if 

(P1 - it1P2)( S(Th_11 )) C SIL, 

by (3.53). Put k = 3, w = 1 in (3.52): 

- 1a1 11 

(3 l)P1 A2 0 

IL34 oj 

ILi+l 01 

(3 14 1)P2  IL2 4 1 ii 
IL31 0] 

Thus the sum 

1 E '2, 2 E Y1 

where v = (IL1+l, IL2 IL3—l) has coefficient ILi in (3 L 1)P1( ), and zero in 

(3 1)P2( ), while 

1 e Y1, 2 E Y2 I 
has coefficient (ji1+1) in (3 -i 1)P2(x ), zero in (3 1)P1( ). Therefore 

the sum 

1 E 1'2, 2 E Y1 - 

- Y1 
1 E 1'1, 2 e 1"2 
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has coefficient tt, 
- (—Ii1)(1L1+l) in 

[1 - (1,2)](3 1 4 1)(P1 - )-

It forces that 

i.e. 

[L1 + t1(p1+1) E O(mod p), 

O(mod p). 

Because p does not divide by assumption, it follows that 

(3.56) (p1-i-2) O(mod p). 

Hence we have 

(3.57) PROPOSITION. If ,u = (i1, P2', ) is a partition of n, g, is an odd 

integer, then 

Horn p(S(Th_1)1),Sit) = 0 

when F = KS., n. ≥ 3, char(K) = 2.1 

Assume now char(K) = p ≥ 3. By taking k = 2 in (3.52): 
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'2 1)P1 - I —1+w] 
LW 

(2 W i 1)F'2 = I ii+w] 

if 1 ≤ w 

of 

i1-1+w 1 

P2° 0 

0 

11+w 0 I 
It 1+w-1 

2—w-1 1 + [ w-1 
0] 

1 ≤ w ≤ 

IL I+ W—1 1 

P2 0 

- It3 0 

[It1+It2-1 1 
=  0 0 

(2-31)P2 tIt2-1  
L i3 0. 

Write v(W) = (i1+w, It2—w, A,). For w = 1, 2, • It2', the coefficient 

in (2 1)P2( 1 

11 YP3,[1V(W) 
I
 A,+1 Thus 
W . 

1 € Y3, 2 E Y2 

1 f 
1E Y3,2e Y2 Y1J — 

u(w) 

has coefficient - t11 j in 

[1 - (1,2)](2 1)(P1 - It1P2)( ). 

1 E '2, 2 e Y3 I 
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This forces 

1t1+w1 O(mod. p), for w = 1, 2, ... Lwi 
i.e. 

Al = —1 (mod  

Combining this with (3.56): 

0 (mod p), 

we must have p2 - 1 = 0, hence p2 = p3 = '. We now state the following 

(3.58) 'PROPOSITION. Let p = (pr, p2, p3) be a 3—parts partition of n, such 

that p1 is not be divisible by p. When p ≥ .3, Hom( S(Th_1,1), S1) is 

non—zero if and only if 

Ai = —2 (mod p) 

Under the above conditions, the restriction of (P1 + 2P2) to S (1,1) is a 

K—basis for llom( S(n_1,1) S). 

PROOF. We have shown that the conditions 

Al = —2 (mod p) 

A2 = p3 = 1. 
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are necessary for ffom( 5(m_1,1), S) being non—zero in the note above. To 

show that they are sufficient, it is enough to check that 

[1 - (1,2)](2 -.+ l)(P1 + 2P2)(x ) = 0, 

[1 - (1,2)](3 L 2)(P1 + 2P2)(x ) = 0. 

We have 

(2 1)(P1+ 2P2) = (2 1) [ 

1i 1 Ii 1 

fh1 ° 0 + 2 0 0 

10 10 

= (p1+2) 

since (+2) 0 (mod p); and 

[2 

p1 1 

0 0 = 0, 

10 

(3 2)(P1 + 2P2)( ) 

Pr1 1 

20 

00 

+2 

Al 0 

+2 0 1 

10 

P1 0 

1 1 () 
00 

I 
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Y11 'l 
{r 

1=1,2 Y 
j=1,2 

therefore 

1 E Y, 2 E 

[1 - (1,2)](3 4 2)(P1 + 2P2)( ) = 0.1 

The remaining case is p = ( , ..., ,a), with Ah > 0, such that h > 3 

and p does not divide We intend to show that Hom( S(Th_1,1), S1) = 0 

whenever IL is a partition of the above type. Suppose 

Homp(S(_11),S) # 0, 

then according to (3.53), the restriction of 

= P1 - p1(P2 + + h) 

to g(m1,1) is a non—zero F—homomorphism from S ( 1,1) to S. Necessarily, 

[1 - (1,2)](2 1)ço( ) = 0, 1 ≤ w ≤ 142. 

Recalling (iii) in Formulae (3.52), for each i, 2 < i ≤ h—i, 
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wl (2-1)P1= [ui + 

- 

/13 

A  

0 

0 

0 

0 

1 ≤ w p2. 

Thus i f j 1 e Yh, 2 E y I , where v = (u1+w, u2—w, A31 ... I uh), has 

coefficient [iti + ID] in (2 Z •i)P1( ). We notice that if j I i, 1 ≤ j h—i, 

neither f y,, 1 E 'h' 2 E y } nor it  i E Y, 2 E 'h } occurs 

in (2 - 1)P( ). It follows that 

{FV 1 i E Yh, 2 E Yi} 

has coefficient I,a + w] 
- lilt in 

1 E Y1, 2 E 'h I 

[1 - (1,2)](2 -' l)ço( ), 

since p does not divide j.t that forces 

+ w] 0 (mod p), 1 ID ≤ 

Therefore 
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Al E —i(mod p). 

Hence 

= P1 - 1(P2 + + h) = P1 + P2 + + h 

On the other hand, ço must satisfy 

[1 - (i,2)](h h—i)( ) = 0. 

We have 

1 

0 

(h 1+ h-1)P1 = [ /2+1 ] 
/li1+i 0 

Ph1 0 

(h h—l)Ph. 1 = (h -i h—i) = f 1Lh-lJ 
L 1 

Al 0 

Let v(h) be the composition (, ... , /i+1, h-1 ). The sum of v(h)—tabloids 

{   1 E 1Th-i' 2 E Y1 } 

has coefficient ( h1+1) in (h h-1)P1( ), zero in (h - h-1)P( ), for 



103 

j = 2, 3, ..., h—i; while 

E 1'1, 2 E 17h-1 I 

has coefficient h-1 in (h - h-1)Phj( ), zero in (h -, h—i)P( ), when 

= 1, 2, ..., h-2. Therefore, 

I  v(h) 1 E h1' 2 E Yj I -  if  u(h) I 1 E Y1, 2 E 17h-i I 

has coefficient 

(Ph1+1) - Ph-i = 1. 

in [1 - (i,2)](h 2_, h-1)go( ). This is a contradiction, since we must have 

[1 - (i,2)](h h—i)( ) = 0, 

according to our analysis above. Thus we have proved 

(3.59) PROPOSITION. Let p = ( /L, ..., Ph) be a partition of n, such that 

Ph > 0, h > 3, p does not divide p. Them 

llomp(S(Th_11),SA) = 0.1 

As a summary, we have the following 

(3.60) THEOREM. Let K be a field of charcteristic p, p > 0. The 
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K—dimension of Hom( s(1'1), SI2) is either one or zero. The K—space 

llomF( s (n1,1), 512) has dimension one if and only if I.L is a partition of n 

belonging to one of the following categories: 

(a) i 0 (mod pp(t22)), —1(mod pp(12i+1)), i ≥ 2. In this case, 

r'1 is a K—basis for llom( S( 1,1)) 512) 

(b) 12 = GLiI 122), 122 > 1, 0 (mod p P(122-1)). In this case, i is a 

K—basis for Hom( 5(n1,1) S12). 

—2 (mod p), p 3. In this case, P1+ 2P2 is a 

K—basis for Hom( 5 (n-1,1), SI2) 

(d) 12 = (n-1,1) itself.I 

(3.61) COROLLARY. The James module j(n-1,I) is isomorphic to a 

submodule of S11, where p # (m-1,1), if and only if /2 is a partition in one of 

the categories ( a), (b) and (c) in (3.60). 

PROOF. Assume that j(m_1,1) is isomorphic to a submodule of g12, then 

5 (n-1,I) , j(n—1,l) L3s12 

gives a non—zero P—homomorphism Oir from 1,1) to S12, where ir is the 

coset map and 0 is the monomorphism. Thus llomp( 5(n—1,l) S12)0 0. Now 

apply (3.60). 
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Conversely, assume that Hom( S(Th_1,1), St') 0. We need the 

structure theorem of the F—module s(''), proved by H.K. Farahat in 1961: 

THEOREM. (5.2 [Farahat ( 1962)]) Let K be a field with characteristic p, 

p > 0. s 1') is an irreducible F—module if and only if p does not divide 

n. When p divides n, is reducible, and there exists an exact sequence 

0 _3j(n) —4(") (n-1,1) 

According to the above result, we have only to verify that J(n) is not 

isomorphic to a submodule of S1' if Hom( 5(n4,1) S) is non—zero. (3.35) 

in §3D gives the criterion of , for j(Th) being isomorphic to a submodule of 

Sk Since none of the partitions in categories (a), (b) and (c) satisfies the 

conditions in (3.35): 

/Aj —1(mod pp(/'i+1)), i ≥ 1, 

we can conclude that ( 1)1) is a submodule of S'.1 



CHAPTER 4 

SOCLE LENGTH OF SOME SPECHT MODULES 

§4A The Problem of Calculating Homp(M\SA) 

Let A be a partition of n.. Write P = If J is an irreducible 

submodule of 5A, then 

A * 
M /J' J Li J 

by (2.1)(iv) and (2.19). Thus 

MX M A/,7i L, j 8 

gives a non—zero element in Hom(M",S'), where ir is the coset map and 0 is 

the inclusion map. Assume that the socle of SA (c.f. 2.6) is the direct sum of 

irreducible submodules J of 

soc(SA)=Jje ... Jk, 

and ço is the non—zero homomorphism constructed above corresponding to J1, 

1 < i < k. Then it is not difficult to show that V1, •• Wk are linearly 

independent elements in llomp(MA,SX). Hence we have 

(4.1) LEMMA. The socle length of does not exceed the K—dimension of 

Horn 

We notice that the K—dimension of Homp(S'',M") is equal to 1 (one) in 

most of the cases, according to (3.28). 
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(4.2) LEMMA. Unless char(K) = 2 and A is a row 2—singular partition, the 

K—space llomF(SA,MA) is isomorphic to K. 

PROOF. By (3.28), unless char(K) = 2 and A is a row 2—singular, the 

K—dimension of Homp(SA,MA) is equal to the number of semistandard (A,)) 

tableaux. But there is only one semistandard ,A)—tableau for each partition 

A of n.I 

When char(K) = 0, the K—algebra r = is semisimple, thus 

Hom(M',SA) has also K—dimension one. In the case char(K) = p > 0, we 

only know that 

dirnKHomF(M,SA) ≥ 1. 

Since the dimension of Homp(MA,S)) gives an upper bound of the socle length 

of S'', by (4.1), we shall discuss this problem in general and calculate the 

K—dimension of llomF(MA,SA) when A is a "hook" partition of n and char(K) 

2 in this section. 

Let çü: MA -+ MA be a F—endomorphism, where A is a partition of n. 

Then Im( o) ≤ 5A if and only if 

(kL)ço=0, k>≥1,w>0, 

by (3.9). Let U(A,A) be the set of (A,A)—incidence matrices, viewed as a 

K—basis of Endr(MA) (see 3.5 and 3.6). We can express ço as 
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ço= zE,P, zEK 

P E 9Jt(),A) 

The conditions 

(4.3a) (k IV i £) I zP P = 0, k > £ ≥ 1, vi > 0. 

P E 9)t, A) 

yield a system of homogeneous linear equations in the set of unknowns 

{ z I P E Wt(A,A) } 

over K. In fact, 

(4.3b) OBSERVATION. The K—dimension of Hom(M',S') is equal to the 

dimension of the solution space determined by (4.3a)j 

Solving such a linear system is certainly a tedious task, but not 

altogether impossible. We shall try to classify the set J31(),A), hoping that 

some of the "large" linear equations will break into "smaller" linear equations 

which are easier to work with. 

Let ). be a partition of n, such that 

Ak = 0, if k > h+r. 
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(4.4) DEFINITION. The block of a (A,.X)—incidence matrix M consisting the 

first h rows of M is called the hat of M. Say that M and N in R())) are 

hat—equivalent, if the hats of M and N are the same. This is an equivalence 

relation on the set W(A,X). An equivalence class in Ut(A,A) is called a 

hat—class .1 

Let M be a ,)—incidence matrix, viewed as an (h+r)-(h+r) matrix. 

If h < i < h+r, the i—th row of M is Bk for some k, where Bk is the k—th 

basic row vector with (h+r) components: 

k 

Ek=(0,... , 0,1,0) ...,0). 

Thus every M in J,A) defines a function 

m: 

such that Em(j) is the i—th row vector of M, i = h+1, ... , h+r. If we 

denote the hat of M by HM , then M can be written as 

(4.5) LEMMA. For each i, h < i < h+r, 
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(i-I-1 1-4i) I  Z1M=O, zMEK, 

Me WA , A) 

implies that 

(i+l 1.-*i) I  ZM=O, zMEK, 

MeS5 

for each hat—class S5 in W1(A,A). 

PROOF. (i+1 1.4 i) M can be calculated by applying the formula in (3.10), 

for i = h+1, ... , 

where 

(i+1-9i)M=(i+1 1.3i) 

M 1 = 

= kiM M1 

HM  

E( h+1) 

- Em( h+r) 

HM  

E( h+1) 

E(h+i) + E(h+i+l) 

0 

E( h+ r) 

and kiM is 1 if m(h+i) = m(h+i+1), or 2 otherwise, according to (3.10). 

Thus if M and N are in D1(A,A), HM  HN, then M 1 1 N 1 in 
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(i-i-1-+i) I  ZMO• 

ME Jtt , A) 

Therefore 

(i-i-1--'i) Z, M= 

ME S5 

for each hat—class S5 in 9Yt(A,A),I 

The above lemma suggests a thorough investigation on the equations 

(i-i-1--+i) ZMO 

ME5 

for a hat—class and for each i, i = h+1, ... , h+r-1. The following simple 

observation is the base of our further discussion: 

(4.6a) LEMMA. If M and M' are (A,A)—incidence matrices in a hat— class ., 

then M' arises from M by permuting the rows h+1, ... , h+r of M. 

PROOF. Here we treat M (M') as an integral matrix (not a 

F—homomorphism), hence we can perform matrix operations on M (M'). The 

partition A of n can be viewed as a row vector 

[A1, •.. Ah, Ah+l, ..., Ah+rl. 

Write 
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We have, by the definition of ,A)—incidence matrices, 

A = [A1, ••• 'h' Ah+l, ..., A] 

,1]M 

l]HM + E(h+l) + + 

If M' is also a (A,A)—matrix with the same hat as M, it follows that 

Em (h+1)+ + E(h+) = Em (h+1) + + 

where m' is the function defined by M'. The basic row vectors Ek thus occur 

with the same frequency on both sides of this. And thus the lemma follows.0 

Let Gr be the group of all the permutations on the set { 1, 2, ... , 

such that 

ir(i)=i, 1 < i < h . 

Define a Gr—action on the hat—class S5 in t(A,A) in the following manner: if 

€ Gr, M E S5 , then ir*M is the incidence matrix 
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E 1 
Mir  

It is easy to check that 

(ur1ur2)*M = 

1' 2 E Gr, M c S5. We can restate (4.6a) as follows 

(4.6b) If M and M' are ,.X) —incidence matrices in some hat— class S5 of 

9J(.\,)), then 

= ur*M 

for some ur in Gr.I 

For example, if ). = (2,1) and 

then 

(2,3)*M = 

M= 

2 000 
0010 
0100 
0001 

2 000 
0100 
0010 
0001 

E )t(, X), 

(2,3,4)*M = 

2000 
0001 
0100 
0010_ 

It is worth noting that the group Gr is generated by the transpositions 

(h+1,h+2), (h+2,h+3), ... , (h+r-1,h+r). 
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(4.7) LEMMA. If M and N are (\,A)-incidence matrices in some hat-class 

5, such that N = (i,i+1)*M for some i, h < i < h+r, then 

(i-i--1-ii) zP=O 

PE55 

implies 

ZN+ ZM= 0. 

PROOF. Write 

where 

(i+1-4i)M=(i+1--4i) 

= 

E( h+r) 

ffff 

B(hi) + B(hil) 

0 

B(h) 

f L, IL iI11& 4,TI) - 

= kiM M . 

- I!14tt'TiTi), 

kiM = 
1, if m(h+r) j m(h+r+1). 

It is clear that if M' belongs to the same hat-class in which M lies, then 

(i+1-3i)M'=(i+1-3i)M 
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if and only if 

= , j # i, j 1 i+1, 

{ E ,( h+i+l) } { Em (h+i+1) } 

if and only if 

= (i,i+1)*M or M' = M. 

Assume now that 

(i+lLi) ,Pp = O 

PEuj 

for some hat—class 5 of 9)t()\). It follows that 

Zp k,P 1 = 0. 

PES5 

If M E S5 and ki = 2, then M = (i,i+1)*M, and 

0 = 2z1 = z1 + 

from the comments above. If k ij = 1, M # (i,i+1)*M, then 

[z1 + = 0, 

it follows that 

Zild. + Z(j i+1)*Af = 0. 

Thus (4.7) holds.I 
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(4.8) COROLLARY. Let M and N be two arbitrary ()) —incidence matrices 

in a hat— class ,S5. The conditions 

i) I  z1P=O, h<i<h+r 

PE 

imply that either ZN = ZN or ZN = - 

PROOF. There exists a set of transpositions Ti, r2' •.• in the set of 

generators of the group Gr: 

{ (i,i+1) I i = h+1, ... , h-i--1 } 
such that 

N= r* ... *r1*M. 

Now apply (4.7) above repeatedly.I 

(4.9) COROLLARY. Assume that char(K) f 2. If M is a ()\)—incidence 

matrix of the form 

such that the function m: {h-i--1,...,h-i--r} - i {1,2,...,h+r} is not one—to—one, 

then the conditions 
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imply 

i) ZF=O, 

FE )t(A,)t) 

h< i< h+r 

imply z  = 0. 

PROOF. Let Sj be the hat—class in R(A,A) to which M belongs. By (4.5), 

(i+1-4i) zP=0, h<i<h+r 

P E W1(.X,)) 

(i+1 L i) zP = 0, h < i < h+r. 

PES5 

According to (4.8), it is enough to show that ZQ = 0, for some Q in S5 . 

Note that if Q E S5 , then H. = HQ 

Q 
Eq(h+1) 

- Bq(h+r) 

The function q: {h+1, ... , h+r} - {1, 2, ... , h+r} determined by Q is not 

one—to—one, since q = mo- for some a in Gr. Take Q in S5, such that 

q(i) = q(i+1), for some i , h+1 ≤ i ≤ h+r 
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(i-i--1-'i) I  zP=O 

PE 

implies 2z  = 0 by (4.7). Therefore ZQ = 0 since char(K) # 2.1 

Now we are ready to study the K-space Hom(M',S'), where 

A = (n-r,1"), 1 < r < m-2, 

a hook partition of n. Our goal is to show the following 

(4.10) PROPOSITION. Assume that char(K) / 2, and A is the partition 

(n-r,11'), 1 ≤ r < n-2. 

Then dim Kliomp(M ',S ') ≤ 1. 

The proof consists of a sequence of notes ending on page 126. 

(4.11) NOTES. Let A = (n-r,1"), 1 ≤ r < n-2. 

(i) Two (A,A)-incidence matrices M and N belong to the same 

hat-class if and only if their first rows are identical. 

(ii) If M E S5, where J5 is some hat-class in U1A,A), we shall write 

HJk!. = [ m11, ... 7 
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M= 

The function m: {2, ... ,r-i--1} - i {1,2,...,r+1} is not one-to-one if and only if 

for some u and v, 2 < u < v < r+1, 

Em (u) = Em (v)• 

It is clear that in this case we must have 

Em (u)=Em (v)=[lO•••O1=El. 

Thus m is not one-to-one if and only if m11 ≤ m-r-2. By (4.9), the 

conditions 

(i+1 1-3i) I  zP=O, 2<i≤r, 

FE Wt, A) 

imply that 

ZM = 0, 

if char(K) 0 2. 

whenever m11 ≤ n-r-2, 

(iii) Thus we only have to take account of the following hat-classes in 

the calculation of Hom(M',S') 
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(1) = { M E Jt(.\,A) m11 = m—r } 

(q) = { M E '(A\) m 1 = n—r-1, mlq = 1 } 

for q= 2,3,..., r+1. 

(iv) From (4.8), we know that if M, N E 35(i), for some i, 1 ≤i ≤ r+1, 

then either ZN = ZM or ZN = - ZM. Our next task is to discover the links 

between 35(i) and 35(j) when i j . We shall concentrate on the conditions 

(2-31) zP=0.I 

P E 9Jt(A,X) 

Let us start with the case r > 2 and consider 

35(2) = { M E Wt(X)) m11 = n.—r-1, 711,2 = 1 } 

35(3) = { M 9Jt(A,A) m 1 = n—r-1, m13 = 1 } 

Take 

m- r-1 1 0 
0 01 

M= 1 00 

N= 

Apply (3.10), 

0 

0 

n-r-1 0 1 
0 10 
1 00 

Ir -2 

0 

0 Ir -2 

€ 35(2), 

E 35(3). 
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(2 -i l)M = M11 = (2 1)N, 

where 

= 

We want to show that if 

n- r-1 1 1 
0 00 0 
1 00 

0 Ir -2 

r+1 

PEU5(i), PIk1PN, 
i=1 

then 

P1,1 

where P11 arises from (2 -* 1)P = k1 P11, k1 E Y. Consider the 

following cases: 

(i) P E 5(1). Then Pu = m—r, p21 = 0. Hence the ( 1,1)—entry of 

P11 is n—r. It is clear that P11 # M11. 

(ii) P e (2), P I M. There exists an integer £, 2 < £ ≤ r+1, such 

that the £—th row of M of P is different from the £—th row of M. Therefore 

the £—th row of P1,1 . is different from the £—th row of M1 

(iii) P e (3), P I N. Use the same argument in (ii). 

(iv) P e 55(q), q > 3. Then Piq = 1 and P2q = 0. The (1,q)—entry 

of P11 is then Piq + P2q = 1 + 0 = 1. Therefore P111 M I) since the 
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(1,q)-entry of M11 is 0 when q > 3. 

Hence 

implies 

which forces 

(2 i){ zpP 

r+1 

FE U S)(i) 
;1  

(2 1) [zMM+ ZNN] = (zM + ZN) M11 = 0, 

ZM + ZN = 0. 

The above discussion shows that if M, N E (2) U (3), then either ZN = 
ZM 

or ZN = - ZM, by combining the result in (4.8). In general, we have 

(4.12) LEMMA. Assume ) = (n—r,11'), ' ≥ 2. Let M and N be elements in 

(2) U .(3) U •.. U (r+1), 

- (i+1i) z,P=O. 1≤i≤r, 

FE YJt(A,A) 

imply that ZN = ZM or ZN = - ZM. 

PROOF. The similar argument can be applied to 

then 

(2) U (4), ... , (2) U .$5(r+1),I 



123 

Q 

[ n-v 0 01 

0 

0 

n-v-1 1 
10 

Ir - 

0 

0 

Ir i 

We intend to show that if ) = (n—r,1"), r ≥ 2, then 

(4.13) OBSERVATION. The condition 

r+1 

(2-4 i){ zMM ME  0zP 

implies that 

+ (m_r)z = 0. 

PROOF. By applying (3.10) again, we have 

(2 L 1)P = 

(2 1)Q = (n—r)P11, 

where 

P1,1 = 

We must show that if 

n-v 1 
00 0 

0 -Tr -1 
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MEUui(i), M#P,MQ, 
1=1 

then M111 P, 2 1, where Mill arises from (2 -i 1)M = kM11, k e 71. 

Consider the following cases: 

(i) M E (1), M 0 P. Notice that in the incidence matrix P, 

= E , i = 2, ... , r+1. 

If M # F, There exists an integer £, 2 < £ ≤ r+1, such that 

E(e) #It = Ep e). 

But Em (t) and Ep(e) are the £—th rows of M11 and P11 respectively. Thus 

M11 # pill* 

(ii) M E (2), M Q. The argument is similar to (i). 

(iii) M E 5(v), v ≥ 3. Then miv = 1, and thus the ( 1,v)—entry of 

is one, but the ( 1,v)—entry of P11 is zero, which means M11 P1,1. 

Therefore the condition 

(2 i){ zMM 

implies 

MEUSXi)}=O 
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(2 1) {zP + ZQ Q] = 0, 

i.e. 

[z + (n_r)zQ] P11 = 0. 

Thus 

zP + (n-_r)zQ = 0 

as claimed.l 

When ). = (n—i,1), there are only two ,A)—incidence matrices 

n—i 0 

01 

m-2 1 

10 

it is easy to check that (2 L 4 1)(zP + zQ) = 0 implies that 

Zp + (ni)z = 0. 

We summarize the above investigations in the following 

(4.14) NOTES. Assume that char(R) J 2 and ) = (n_r,1'), 1 < r < n-2. 

Let { ZM M E O)1(A,A) } be a solution to 

Then 

(i+i-i) I  z,P=0. 1≤i≤r. 

P E )t(A,A) 

r+i 

(1) ZM = 0 whenever M 
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(2) If ZM t, t E K, for some M E 5(2), then ZN E Kt, for each N in 

The notes above gives a proof for Proposition (4.10). 

(4.15) EXAMPLE. Take ) = (3,12). The following table gives the 

(A,\)—incidence matrices and the results of (i+1 -' i)M by applying (3.10) 

Al E Wt(A,A) (3 2) A! 

300 3 roo 
'1= oo 011 00 

001 0 0000  0101 

300 300 301 
I2 _ 0 0 1 0 1 1 0 0 0 

0 1 0 0 0 0 0 1 0 

rol 

1010310 
13 00 101 3000 

01 000 001 

201 rl 01 301 
A14 _ 100 10 3000 

010 00 010 

210 210 211 
15 001 101 000 

100 000 100 

r201 201 211 
16 010 110 000 

100 000 100 

111 111 rO 
11100 2200 00 

100 000 00 
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111 
Note that 11/17 = 1 0 0 is the only element in R(A)) with two rows 

100 

identical below the hat. We can see from the column (3 -+ 2)M in the table 

that 

ri 1 11 
(3 2)M7 = 22 0 0 

[o 0 0] 

hence E z(3 2)11/11 = 0 yields 

2z7 = 0, 

i.e. z7 = 0, when char(K) 0 2. 

The other six matrices split into three hat—classes: 

(1) = { M1, M2 }, 

(2) = { M3, M5 }, 

(3) = { M, M6 }. 

Again from the column (3 - 2)M in the table, we deduce that (refer to 4.8): 

z1 + z2 = 0, 

Z3 + z5 = 0, 

Z4 + z8 = 0. 

the condition • z1(2 IkT 1) = 0 yields three equations (Refer to 4.13): 

z1 + 3z3 = 0, 
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which links up .$5(1) and .$5(2); 

z2 + 3z4 = 0, 

which links up (1) and (3); and the equation 

Z5 + z6 = 0, 

linking up 5(2) and i(3). Put z5 = t, then 

Z4 = 

Z3 = z6 = 

= 3t, 

= —3t. 

It is easy to check that 

p0 =3M1-3M2+M4—M3+M5—M5 

300 300 201 210 210 201 
= 010 — 3001 + 100 - 100 + 001 - 010 

001 010 010 001 100 100 

is a F—homomorphism from M' to SA, and spans the K—space llomp(MA,SA), 

where F = K 5, char(K) 0 2.1 

In (4.1), we have seen that 

dim K llomp(MA,SA) ≥ the socle length of SA > 0. 
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Thus (4.10) in fact provides the proof of the following 

(4.l0a) THEOREM. Assume that char(K) [ 2 and 

= (mr,1r), 1 ≤ r < m-2. 

Then, Homp(M,SA) has K—dimension 1 (one), and S has a unique irreducible 

submo dule.I 



§4B The Two—parts Partitions : Special Cases 

When r is an integer, 1 ≤ r ≤ n/2, A = (n—r,r) is called a two—parts 

partition. Although a great effort has been made by many authors at clearing 

up the modular structure of the Specht modules S's, A is a partition of ii, it 

seems that most of the Specht modules are still left in mystery, except those 

of hook partitions and two—parts partitions. The homomorphisms from 

S(n—r,T) to 8(n—k,k) were studied by Gwendolen Murphy, who proved that 

n—r,r) has a unique irreducible submodule, hence its socle length is equal to 

one (see [Murphy, ( 1982)]). G.D. James found a way of determining the 

decomposition numbers of S(T,T) in § 24 [James, (1978b)]. According to his 

result, each composition factor of i n—r r) has multiplicity exactly one. 

Combining these two facts we can deduce that the K—space HomKe (SA ,S) 

has dimension one, when A = (n—r,r). In the following two sections, we 

attempt to prove the fact dimK HomK (SA ,SA) = 1, A = (n.—r,r), by 

direct computations with incidence matrices corresponding to endomorphisms of 

M( n—r,r) Our interest in HomK (SA ,S)) originated in a separate study of 

the Specht modules restricted to the alternating groups. 

Let A = (A1,A2) be a two—parts partition of m, i.e. 

Al + )t2 = 

0 < A2 ≤ Al 

The set Dt(A,A) consists of the following incidence matrices: 

[A 1 0 1 1A-1 1 1 1A1—A2 A21 

to A2], L 1 A2_1] ..... ' L A2 0 ]. 
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It is clear that each P = (pu) in Jt,A) is uniquely determined by p12 or 

P,,. We shall denote the incidence matrix 

A1—k k 

k A2—k 

by Pk, k = O,1, ... ,A2. We notice that each Pk in Wt(A,A) is a symmetric 

matrix, hence in the points of view in § 3B, we have 

(4.16) LEMMA. Let A = (A1,A2) be a two—parts partition of n. 

(i) Each P—endomorphism V of M' is self—adjoint, i.e. V1 = V. 

(ii) If çü is a F —endomorphism of M", them Im(ço) ≤ S if and only if 

Ker(co) ≥ S. 

PROOF. Write ço = E ZkPk, zk E K. Then 

A pp 

according to (3.18). Recall that Im(ço) ≤ 5A if and only if 

(2 l)ço = 0, w = 1, 2, ..., A2, 

by (3.9); if and only if for w = 1, 2, ..., A2, 

A(2 W 1)A = 0; 

if and only if 

Iw 
çol -+ 2) = 0, w = 1, 2, ..., A2, 
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since = ço and (2 - i)A = (1 -i 2) by (3.20); if and only if 

co(S) = 0 

by (3.23).1 

The lemma above implies that 

(4.17) COROLLARY. If A is a two—parts partition of n, then the 

K—dimensions of flomF(MA,SA) and HomF(MA/S,SA) are equal. 

Let çü = S zkPk be a F—endomorphism of M, A 1,A2). For an 

integer w, 0 < w ≤ A2, the condition 

(4.18) (2 -' 1)E ZkPk = 0 

yields a homogeneous linear system in the set of unknowns {ZkI k = 0,...,A 2} 

over K. Applying Formula (3.10), we have 

(4.19) 

(2 1)IAi_k kl = I Ai-k+wilfk+w211Ai-k+wi k+w2 1 

kA2_k] w1 Jw2J k—w, A2—k—w2j w1+w2=w 
O<w1<k 

which is a IL—linear combination of (A,ii(w))—incidence matrices Qi, for all i, 

0 ≤ i ≤ A2—w, where 

= (X1+w, A2—w), 
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= Al—i w+i , 0 ≤ i ≤ 

'2 (w+i) 

Let ew ij be the (integer) coefficient of Zj in the equation concerning Q 

given by (4.18) above. Then the homogeneous system on Zj, j = 0,1,...,) 2 has 

its coefficient matrix c°) of the size (X2—w+1) by (A2+1). 

(4.20) OBSERVATIONS. 

(i) Let Cij w be the integer coefficient of 

= Al—i w+i 

z 2 (w-i-i) 

in 

(2 1)P. = (2 [xci j 1 
L 

From (4.19), it is easily seen that 

ij = 0 if i > j or j > w+i. 

(ii) If we agree with the convention 

[] = 0 

the general formula can be written as 

1)—i I [W— w+i i)]Cjj _ t3j (j—' 0≤j ≤ ≤ ≤ 2,0i≤2—w,1wA2. 
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(iii) From (ii) above the set of non-zero entries of the integral matrix 

has the shape of a parallelogram 

0 

in which the (i+1)-th row is as follows 

zi -'i+1 

* 

* 
0 

zi+w Zj+w+l Z> 

I,,+j] E" 1_i] [11+fl 
W  w-u 

1, 1-i] 
t w j 

w-i-i] 0 
• 0 

In particular, the first and the last (from left to the right) non-zero entries in 

the ( i-i--1)--th row of (w) are 

w w = I 
X1-ilcii = j , , Cii+w  wj 

(&21) EXAMPLE. Take .X = (12,4), a partition of 16. There are 5 

(A,X)-incidence matrices, labelled as 

[12 01 [11ii [10 21 [9 3] r8 41= [0 4]' l 1 3]' 2  2 2]' 3 [3 1]' 4 = [4 of 

The condition 

(2 -4 1) Z kO kPk = 0 
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yields a homogeneous linear system in the unknowns Zk, k = 0,1,2,3,4, with 

coefficient matrix 

1121 111 1121 11 
[ ojij lJ[0 

fill 121 1111 [2]Loj[l t ijo 

1101 131 1101 [3] oti t lio 

1 91141 191 14 
L °i Lii Lii to 

When K is the field of rational numbers Q, it is clear that the solution space 

has dimension one, since the first four columns of CM  form a submatrix 

which has non—zero determinant. 

(4.22) OBSERVATION. If K has characteristic zero, the K—space 

flom(M',S') has dimension one, where A is a two—parts partition of m 

PROOF. Ker(2 L 1) when char(K) = 0, by (3.12). Thus the 

K—dimension of Homp(MA,SA) is equal to the dimension of the solution space 

on unknowns { Zk k=O yielded by 

(2 1)rj ZkPk = 0. 

The coefficient matrix has rank A2, according to the analysis in (4.20). 

Therefore 

dim  Homp W A, SA) 1.. 
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The above result is true for all partition A when Q is the ground field, 

in fact Hom(M',S") is isomorphic to llomr(SA,MA) as Q—spaces since F = 

is a semisimple ring. When char(K) is a positive prime p, the matrix 

dl) has rank less than or equal to A2 over K. Denote by C(W)(mod p) the 

matrix obtained from CM  by taking every entry modulo p, where p = 

char(K). For instance, in Example (4.21), 

CM (mod 2) = 

which has rank 3 over 712 ; and 

C(1) (mod 3) = 

which has also rank 3 over 713. 

10 
01 
10 
01 

1 0 
22 
01 
10 

Let K be a field of characteristic p where p is a positive prime. If A = 

(A 1,A 2) is a two—parts partition of n, then 

s'= n  Ker(2 4 1) 
s≥0 

by (3.14) and (3.15). If 

A2 = brp' + br..ip" 1 + .. + b1p + b0, 0 ≤ b1 ≤ p_i, br> 0, 

we can work on the linear system with coefficient matrix 
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or C(mod p) --

C (1)  (mod p) 

(mod p) 

- C(mod p) 

In fact, 

(4.23) LEMMA. The K—dimension of Hom(M'',S') is equal to 

(2+1) - rank[C(mod p)]. I 

Let [NO be the set of non—negative integers. We shall write 

a = (a,a5_1,...,a1,a0) 

if a € EN0 and a = asps + a 1p 1 + ••• + a1p + a0, O< a1 < p. For 

non—negative integers a and b, we say that a ? b if ak ≥ bk, k ≥ 0. This 
p 

defines a partial order on the set NO, 

If a, b c No and a < b, we write [a,b] to denote the set of consecutive 

integers { a,a+1,...,b}. For example, [0,4] = {0,1,2,3,4} and the diagram of the 

poset ([0,4], ) is as follows 
3 

(1,1) 3 = 4 2 

/•\ / 
3 = (1,0) 3. / 0 1 

S 

0 
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Note that 2 = (2) 3 and 4 = (1,1)3 are the two maximal elements in this set 
tt It 

under the order >- 
3 

In general, there might be more than one maximal elements in the poset 

(S, ), for a subset S of IN0. We shall soon see that in the homogeneous 

system on z0, z1,..., z>, with coefficient matrix 

the values of Zm'S, where m is one of the maximal elements in the poset 

([0,A2], - ), play important roles in the solutions. 

(4.24) LEMMA. Assume that 0 ≤ a < b ≤ A2, and b j for all j in 

([a,b],). If [C0, 1,...,Cx ]T is a solution to the system 

C 

zO 

z1 

2-

= 0 3 

then e KCb for all j in [a, b]. 

PROOF. It suffices to show the following 

(4.25) There exists a submatrix of C, consisting of (b— a) rows of C, which is 
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of the form 

ZO• Z. 1 Za Za+1 Zbl Zb Zb+1 •Z 2 

0 

ta * 

ta+ 

*...* 

*...* 

0 tbi 

satisfying t 0 (mod p), i = a, a+1, ... , b—i. 

0 

Write b = (brbr_i...bibo)p br > 0. If ? (.. .i1i0) is an 

integer in the set [a,b], then 

bk≥ik, k=0,1, ... ,r, 

since b i by assumption. If a < i < b, there exists s, 0 ≤ s ≤ r, such that 
p 

o ≤ is < b ≤ p—i, 

ik = bk, 0 ≤ k < 5. 

Consider the block () of C. By (4.20) (iii), the first non—zero integer 

entry in the ( i+1)—th row of Q(P) is 

By (3.13), 

ps - li+ps 
ii_ Lps 

[+i] (mod p) 0 (mod p) 
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since 0 ≤ i < p—i. Furthermore, if j > b, then j > i+ps, since i5 < b. 

Thus by (4.20) (i), 

ij = 0, whenever j > b. 

Therefore the submatrix claimed in (4.25) does exist and (4.24) is proved. 

(4.26) NOTES ON THE PARTIAL ORDER" " 

(1) Let p be a positive prime and d = (dr, ... ,dj)do)p > 0, 0 ≤ d1≤ p', 

(Vi). Examine the sequence d0, d1, ... , di.. 

that Ic ≥ 1, dk 1 0, and the set {d0, d1, 

from (p —1), if such a k exists. Then define 

Let Ic be the first index such 

dk1} contains a digit different 

1(d) = (dr,...,dk+l,d i)p4,...,p-1) 

This defines f(d) for all d not of the form d = for r ≥ 1, or 

0 < d < p—i. We shall state and prove the following facts. 

(2) If 1(d) is defined for some d, then f(d) is a maximal element in 

the poset ([0,d], ). 

PROOF. It is enough to show that if j e ({0,, ) and j f(d), then 

j = f(d). Obviously f(d) ≤ j ≤ d. I Write j = (r'•••'i'o)p' then j, dr,..., 

.Jk+1 = dk+j, and .Jk-i = = —1• 3k is either dk or dk—l. Notice that 

one of dk -j , dk-2 ,..., d0 is less than p—i, according to the construction of f(d). 

Suppose 3k = dk, then 



141 

j=  (dr)...,dk+l,dk,P4, ... ,P4 )p > d, 

a contradiction. Therefore ik = dk—l. It follows that j = 1(d). 

(3) If 1(d) is defined for some d, then d i for all i in [f(d)+1,d]. 

PROOF. Assume that 1(d) < i ≤ d, i = (ir, ... ,ii,io)p, 0 ≤ i ≤ p—i, for 

all s. We must have ir = dr, ,k+t = dk+l. Noticing that 

? ≥ f(d)+1 = (dr,...,dk+l,dk,0,...,0)p, 

we can see that ik = dk, hence i = Suppose that 

dk 1 = = dk..l = 0, dkh 1 # 0. 

Then 

k-i = 2k-1 = 0, k-h-1≤ dkh1 

and by construction of f(d) dl,-h-2 = . = d0 = p—i. It follows that d i 

for all i in [f(d)+1,d]. 

(4) If f(d) is defined for some d, then f(d) is the largest maximal 

element in ([0,d-1], ?). 

PROOF. This is a corollary of (3). 

(5) For d = (dr,...,di,do)p > 0, 0 ≤ d1≤ p—i, (Vi), dr > 0, we can 

construct a sequence in the set [0,d] as follows. Take d as the first term. If 

f(d) is not defined, stop. Otherwise, take f(d) to be the second term. 

Applying the process in ( 1) to f(d), we either stop or construct 
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f2(d) = f(f(d)). 

Repeat this process, to obtain 

d,f(d), , fS(), 

such that f[ fs(d)] is not defined. This is the descending sequence of all the 

maximal elements in the poset ([0,4, ), by (2) and (3) above. In particular, 

the smallest maximal element in ([0,4, ) is d itself when f(d) is not defined, 

and is (dr_i,P4,...,P1)p = drP' i otherwise.I 

In the poset ([O)2], ), let A2 = m(0) > ... > m(s) be the 

descending sequence of all the maximal elements constructed as in (4.26)(5), 

then we have immediately from (4.24) and (4.26)(2) and (3): 

(4.27) COROLLARY. T. 
If is 

C 

zo 

2 

then E KCm(k), rn(k+1) < j ≤ m(k), k = 0, 1, ... , s—i ; and 

E K m(s) , for all jim [0,rn(s)].I 

In (4.25), we carefully choose a submatrix whose ( a+i)—th, 

(a+2)—th,...,b—th columns form an upper triangular matrix. A parallel 

discussion leads to a lower triangular one. 

a solution to the system 

=0, 

(4.28) LEMMA. Assume that Aj—A2 a < b ≤ ), and b >- j for all j in 
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C 

then Cx1kE K(>, -b for all k in [ a,b]. 

PROOF. If k < b and k = (krkr_i...ktko)p b = 

br > 0, there exists s, 0 ≤ s ≤ r, such that 

0 ≤ k8 < b8 ≤ p—i, 

b, 0 < j< s. 

In the ( i+1)—th row of C(), the last (from left to the right) non—zero entry 

is 

PS 

Cjj+ps = [ pS ] 

by (4.20) (iii). Put i = )— k — pS, then 

ps p8 — 1k+p = 
Ciis Cix 1k - j - [ks + '] (mod ) 0 (mod ). 

Thus we can choose a submatrix of C, consisting of (b—a) rows of C, in the 

form 

(4.29) 

Z' Zxb1ZxbZxb+j••• - 

2 

* 4 
Ub1 

0 

0 

ta 
0 
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satisfying t 0 (mod p), j = a, a+1, ... , 

(4.30) EXAMPLES AND REMARKS. 

(1) We shall complete the computation started in (4.21) dealing with 

A = (12,4). By applying (4.20), we have 

2) 

1121 111 [121 Ii 
L oitli  liLo 

1111 121 [11] 12 
L oJ1J  1 Lo 

1101 131 [101 13 
L ofliJ  liLo 

1 91141 191 14 
L Ui Lii Lii LU 

1121 121 [121 121 [121 12 
L 01 L2i  ii Lii  2j to 

1111 131 1111 131 1111 13 
L Ui L2J t iJ Lii L 2J LU 

1101 141 [10] 141 [10] 14 
I Ui L2i  i Lii  2 LU 

1121 131 [12] [3] [121 [3] [121 13 
L oJ [3j  i 2  2j i  3i tO 

1111 141 [11] 141 [111 141 [11] 14 
L Ui L3i  i L2i  2j Lii  3 10 - 

1 12 
2 ii 
3 10 
49 

1 24 66 
= 3 33 55 

6 40 45 

- 11 36 198 220 
- L 4 66 220 165 

= r1121 I4' [12] 14 [12 14] [121 14] [124]p4110.1 [4J  i L3j  2j L2i  3i [ij  Lou = [1 48 396 880 495] 

(2) Assume that char(K) = 2. The diagram of the poset ([0,4], ) is 

as follows 
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= (1,1) 2 

/1 
2 = (1)0) 2 • . 1 • 4 = (11010)2 

S 

0 

3 = (1,1) 2 is the smallest maximal element in the poset above, while 4 

(1,0,0)2 is another maximal element. The K—dimension of 

Hom(.lkT( 12)4) ,5( 12,4) ' ), where r = 

is now equal to the solution space of the system 

Using ( 1), we have 

zo 
z1 

Cz2 
Z3 
-z4-

1 12 

=0, 

2 11 
3 10 
49 

where C = 

1 24 66 
3 33 55 

6 40 45 

1 48 396 880 495 

1 0 
01 
10 
11 

(2) 

100 
111 
001 

1 0 0 0 

(mod 2). 

In the integral matrix C, the first, sixth and the third rows form form a 

submatrix 

1 12 
3 33 55 
3 10 0 

zo zi z2 z3 z4 

10 
= 1 1 1 (mod 2). 

100 
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Put z3 = t, t E K, then 

z0 =z2 =0, z1— t. 

On the other hand, the poset ([8,12], ) has two maximal elements 

11 =(1,0,1,1)2 and 12 = (1,1,0,0)2. 

We can find a submatrix of C according to (4.28) 

001 
111 

01 

which gives z4 = = 0, z1 = ;. Combining these results, we have the 

general solution 

[Co,C1,C2,34i = t[ololo]T t E K. 

(3) Assume char(K) = 3. There are two maximal elements in 

2 = (2) and 4 = (1,1). We are now working on the linear system 

where 

1 
C— ) - 

C 

1 12 
2 11 

3 10 
49 

1 36 198 220 
4 66 220 165 

10 
22 
01 
10 

1001 
1010 

(mod 3). 
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The first two rows of C constitute the submatrix corresponding to ([0,2],). 

We have z0 = 0, z1 = —z2. The poset ([8,12],) has maximal elements 

8 = (2,2) 3, 11 = (1,0,2) 3, 12 = (1,1,0) 3. 

The second and the third rows make up the submatrix corresponding to 

which gives z3 = 0, z1 = —z2. This example show that the 

information from (4.25) and (4.28) is not adequate in determining the 

dimension of the solution space. In fact, we need the last row of C: 

Z1 + Z3 = 0. 

Thus z1 = —z3 = 0, and z2 = —z1 = 0. Setting 

Z4 t, teK, 

we obtain the general solution 

1•01(11(21 ( 31•4 
T = t[0000l]T t E K.I 

In the remaining part of this section, we shall prove that Homp(MX,SA) 

has dimension one if A is a two—parts partition with some special features, by 

making use of (4.25) and (4.28), and leave the proof for a general two—parts 

partition to the subsequent section by using mathematical induction. 

(4.31) LEMMA. Let A = (A1,A2) be a two—parts partition of n. If 
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A2 >- i, for all i, 0 ≤ i ≤ A2, 

then 

dim  Homp(MA,S') = 1. 

PROOF. According to (4.24), 

dim  Hom(M,S) ≤ 1. 

Recall (4.1), 

dim  Homp(M,SA) > 0. 

Therefore dim  Homp(MA,S) = 1.. 

(4.32) LEMMA. The K—dimension of Homp(MA,SA) is equal to one, if A is 

the partition ( b,b) and F = KS2b. 

PROOF. Write b = 0 ≤ b1 ≤ —i (Vi), br > 0. If b < P 

or b = —1 (mod pr), we can apply (4.31). Now assume that b > p and b 

—1 (mod p"). We shall prove that the dimension of the solution space to 

C 

does not exceed one. 

zo 
z1 

Zb 

=0, where C= 

By (4.26)(5), m = brP' - 1 is the smallest maximal element in the poset 

([0,b], ). Thus, if [Co,C1, CbI is a solution to the above system, then 
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€ K p j E [0, m], 

by applying (4.27). Meanwhile, (4.28) gives 

b-k E KCb..m, k € [0, 7Th}. 

Note that 

2m = 2(brpr - 1) 

(brp 1) + (br_1)pF + (p-4)p 1 + ••• + (p—l)p + (p—i) 

(br)p4,...,p4)p - 1 +(br4)PT 

≥ (brbr_i  ... bibo)p = b. 

Therefore 

b — m≤m, 

and it follows from the discussion above 

(b -m E KCm. 

Hence 

€ K for all j in [0, b]. 

This proves that 

Thus 

by (4.'),I 

dimKHomr WA, S>) ≤ 1. 



§4C Two—parts Partitions General Case 

In this section we shall complete the proof of the following 

(4.33) THEOREM. Let A = (A1,A2) be a two—parts partition of n and K is 

an arbitrary field. Then 

dimKHomK(M,S) = ii 

In the previous section, we have seen in (4.30) that if A2 i for all i, 

0 < i ≤ A2, then the conclusion in (4.33) above holds. In particular, if A is 

the partition ( n-1,1), dimKHomK (MA,SX) = 1 for all n. This suggests the 

mathematical induction for proving (4.33), based on the following 

(4.34) LEMMA. If 2 ≤ r ≤ n/2, then 

dim KHomK(M( n-r)r) ,S ≤ dim KHomK (M( n-r,r-1) ,( n-r,r-1) )i 

The method applied in the proof of the lemma above is quite different 

from the argument used in 4B. We need to take some notes on the 

invariants and standard tableaux. 

Let A be a partition of n and x be a A—tableau. Recall that Rx is the 

row group of x. Define 

S={ uE SAI lru = u for all rinRx}, 

150 
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then S is a K—subspace of S'. Note that M' is a cyclic K—module 

generated by , where is the corresponding A—tabloid. For each u in S 

there is a K—homomorphism So: M' satisfying Vu( ) = u 

Conversely, if s' : --4 SA is a K5—homomorphism, then it is easy to 

verify that 

where 'ii 

Thus 

(4.35) The map u E S Vu Ke E llom(M),SA) is a K—isomorphism. 

Let be the group of all permutations on the set IN = { 1,2,.. .}. The 

symmetric group on the set can be viewed as the subgroup of 

{1rEI ir(k)=k, k>n}. 

In this point of view, m is a subgroup of whenever m m. We shall 

write P for the group algebra in this section. Thus every r.—module is 

also a P 1—module in the natural manner. In the following we shall have a 

classification of standard (n.—r,r)—tableaux (ref. 2.20) in order to analyze the 

F 1—structure of M and S n-r,r) A general treatment on the 

restrictions of Specht modules can be found in § 15 [Peel (1969)]. 

(4.36) NOTES ON STANDARD TABLEAUX 
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p(i,j) - i, (i,j) E INxIN. 

Write 

= { x x is a standard )—tableau }, 

{ z I x e TA, px 1(n) = i }, i = 1,2,..., 

then 

= T(n-r,r) u c,(n-r)r) 

(2) Assume r < n/2, hence r < n - r. Let 

y : [(n—r-1,r)] -' 

be a standard (n—r-1,r)—tableau. define a .X—tableau f0(y) : [( n.—r-1,r)] -' 

via 

f0(y)(i,j) = yij if (i,j) E [(n-r-1,r)] 

f0(y)(1,m-r) = m. 

Then f0 : (fl-r-1,r) , is a bijection. 

(3) Let x : [( m—r,r)] - i n be a )—tableau in ", hence X2r = n. 

Define g0(x) to be the restriction of x to [( n—r,r-1)]. Then 

Yb : T "'' 1' n-r,r-1) 

is a bijection.I 

(4.37) NOTES ON THE P..1-MODIJLE STRUCTURE OF M fl-r,r) 
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(1) The r.—module M "" has a K—basis (ref. 2C) 

{= [XXI 
21 

Let 

U X2 = 2i , x, n X2 = 0, lxii = n—r }. 

= I K[i] 
3 n, 

M2= K[ 1j. 

X2 3 n, 

Then M1 and 11/12 are F 1—submodu1es of M(n-i) Furthermore, M1 is 

isomorphic to M( n-r1,r), M2 is isomorphic to M n-r,r-1) as F 1—modules. 

(2) M( n-r,r) is the internal direct sum of M1 and M2 over 

(3) For a (n—r-1,r)—tabloid = [] , define 

f: rY1 [Yi U {n,}i] 1'2  
(n-r)r) 

then f extends to a F 1—homomorphism from M" 1" to M(n-r)r). 

lxi define (4) For a ( n—r,r)—tabloid Lx i] 

9 I Xi 2 

[xi' 

0, otherwise. 

if ?2 6 X2, 
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Then g extends to a F 1—homomorphism from M '' to M( n-r,r-1) 

(5) The short F 1—sequence 

9 
0 M n-r-1,r) M -r,r) M n-r,r-1) __ 

is split exact.I 

(4.38) LEMMA. Assume that 2 ≤ r < n/2. 

(i) f(S( n-r-1,r) ) ≤ S( fl-r,r) 

(ii) g(S""1') < ( n-r,r-1) 

(iii) The short F 1—sequence 

Sc n 9 -r-1,r) S n-r,r) g( n-r)r-1) 0 

is exact, where f and g are corresponding restrictions of f and g respectively. 

PROOF. (1) Let 

Yii Yjr YI'r+l Vj,n-r-j 

Y21 Y2r 

be an (n—r-1,r)—tableau. 5(nr1,r) is generated over F1.1 by E(Cy) , where 

e( Cy) can be written as 

' - (Y1J'Y2j)] 
j = 1  - 

Let z be the ( n—r,r)—tableau 
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Yii Yjr Yj'r+l Yj,n-r-j 

Y2i • Yr 

Then the column groups of y and z are identical, hence E(Cz) = E(Cy). Note 

that = J( ) by (4.37) (3), and c(Cy) E r _i, 

= c(Cy)J() = 

which is an element of S""'. This proves (i). 

(ii) S('-"') has its standard basis 

{ (C) I } 

If -r, then XI,fl..r = ii. Since n—r > r by assumption, 

1≤ Wjj < X2j < n, 1 ≤ .7≤ r, 

thus 

r 

E(Cx) = rl [1 - (x1,x2)] € 
j= 1 

Therefore 

g[c(Cx) J = c(Cz)g() = 0 

by (4.37) (4). 

If X E ( n-r,r) then X2r = n, consider the (n.—r,r-1)—tableau 
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t = = 

We have 

1— 

Therefore 

x2 )] = (Ct)[1 - (ir,Th)] 

g[c(Cx) x ] = E(Ct) g f 1 - (Xir,Th)} } 

= e(Ct) g rE 
011 • Xj,fl 

X2,r_1 X1r 

=.e(Ct) g ( ) = (Ct) g ( I ) 

by (4.37) (4). 

(iii) The restriction f of f to S( n1,) is one—to—one, since / is. In fact, if y 

is a standard (n—r-1,r)—tableau, then c(Cy) is a member. in the standard 

basis of S and we have seen in the proof of (i) that 

f(e(Cy) ) = f(Cz) z, 

where z = f0(y) (ref. 4.36). Thus 

f(S'' 1") = Kc(Cz) 

E 
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By the proof of (ii), if x E 2 

g[E(Cx) ] = €( Ct) 

where t g0(x). Since g0 T(n -r,r) c,(n-r,r-1) is a bijection, 

n-r,r) n-r,r-1) 

is onto. It is also clear from the proof of (ii) that 

Ker(g) = K e(CZ) = Im(f).l 

z E 

Recall that if x e (n-r,r) the row group of g0(x) can be viewed as a 

subgroup of Rx 

{ ir E Rx J 'ir(n) = n }. 

Thus if u E S'" and ir is in the row group of g0(x), 

irg(u) = g(ir) = 

This proves 

.1 (4.39) LEMMA. g ( S(n-rr) s( -', r_1) ) ç g0(x) 
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We shall analyze the K—space f( S(n1)) n s('-')) in the r,,-,—exact 

sequence 

1 

o 9 s n-r-1,r) n-r,r) _ 5 n-r,r-1) 

If we can prove that f( S')) ç 5cn-r,r) = 0, then the restriction of g to 

S(n1-1'-1,r) is a one—to--one K—linear mapping into 5(n -r,r-1), and (4.34) will 
90(X) 

follow. 

From the proof of (4.38) 

f( S -- ')) = Ke(Cz). 

Z E T(n-r)r) 

A finer classification of the set ' n-r,r) is needed at this stage. Let 

= { x E q(n-r,r) 

12 { X E T(n-r,r) 

I px'(n) = 1, px 1(n-1) = 1 }, 

I px(n) = 1, px'(n—l) = 2 }. 

Informally speaking, 'I is the set of standard (n.—r,r)—tableaux such that both 

ii and ( iz.-1) lie in the first row, while T ,2 consists of all standard 

(n—r,r)—tableaux with n. in the first row and (n.-1) in the second row. It is 

clear that 

(n-r,r) = ej 
11 U 1112' 

Assume that t is a standard (n.—r,r)—tableau in Then 
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tlj <t2j <m-1, 1≤j≤r, 

hence 

r 

c(ct) = ri [1 - (t1,t2 )] E r_2 
j= 1 

and E( Ct) commutes with the transposition (n-1,m). Therefore 

(n—i'm) c(Ct) 7 = c(Ct) (m—i,m)( 7 ) = c(Ct) 

If t C 11,2, say 
t11 tj tl, fl .r 

t = 

with tj,nr = 'fl, t2r = n—i. Then 

r 

c(Ct) }J [1 - (t1,t2 )] 

j = 1 

[1 
- (tir,Th4)] 

It is clear that H[1 - (t1,t2 )] commutes with (n-1,n), and 

hence 

(m—i,n). [1 - (tfr,m-1)] (m—i,n) = 1 - (tir,n), 

(n-1,n) c(Ct) 
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r-1 

= rl [1 - (t1,t2 )] (n—i,n). [1 - (tir,Th4)]( 7) 
3=1 

(ti,t2 )].(n-1,n).[1 - (tfr,n-1)].(n-1,n)2( fl 

r-1 

]II[ [1 - (t1)t2)].[1 - (tir,flt)}(n1,n)( ) 
j=1 

= E(Ct*) , 

where 

tjj tjl._j ti) . n—i 
=  

2i  • 2'r-1 n 

which is a standard ( n—r,r)—tableau in T'' (c.f. 4.36 (i)). We claim the 

following based on the discussion above 

(4.40) OBSERVATION. f( S --1 ) ç' S -" C K 6(Cz) z 

Z E T11 

PROOF. Let u be an element in f( S(,,-I,1')) n s( n-r,r) Write 
x 

u= a€(Cz), aEK. 

z C 

Then necessarily (n—i,n)u = u, hence by the notes above 
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ii = a E(Cz) + a e(Ct) 7 

tEI 12 

= (m-1,m)u 

=az C(CZ) + at C(ct*) t 

z E Til t E 12 

it follows that at = 0, t c T12.I 

If m—r = r+1, then = 0, f ( S r' S'' ) = 0 by (4.40). 

Hence (4.34) holds in this case. Assume that n.—r > r+1, i.e. 

m—r ≥ r+2, 

then T 0 and = " Ili U T ,,21 where 

Till = { x E px 1(n.-2) = 1 } 

112 = { x E Til p 1(n-2) = 2 }. 

Let u be an element in 

-r,r) n I KE(Cz). 

z E Tl i 

Then by comparing the both sides of (n-2,m-1)u = u, the similar argument as 

in (4.40) leads us to 

f( 5( nr1)r)) f S( n-r,r) C K(Cz 

Z E Ti ll 
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Repeating this process, we find that it remains to consider the following case 

(4.41) m-r ≥ 2r. 

In this case, 

f( S(-- ')) n S -' C K c(Cz) z 

Z E T 

where 

= { z I z is a standard (n-r,r)-tableau, pz 1(k) = 1, 

Ic = m-r+1, ... , n-1, n } 

Informally speaking a standard (n-r,r)-tableau z is in T if and only if the 

numbers n-r-i-1, ... , m-1, n are all lying in the first row of z. 

Note that 

K(Cz) 

Z E * 

is a Pnr-submodule of S r,, isomorphic to the Specht module S over 

"n-r' Take the ( n.-r,r)-tableau x to be 

1 2 ... r r+1•••m—r 
n—r+1 m—r+2 ... 

then the stabilizer group of the first row of z is the symmetric group Sn ..r on 

the set {1,2,...,m— r}. If 

Lt E U ri sx 
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then necessarily 

iru = u for all ir in (. 

Suppose u 0 0, then Ku is a r,,r—submodule of 

U= I  Kc(Cz). 

Z € 

Note that Ku is isomorphic to the trivial module over flr' while U is 

isomorphic to the Specht module S -2 ' over "flr By appying ( 3.35) to 

the Fn..rm0du1e S(n-2',i'), we learn that S n2,1 has a submodule isomorphic 

to the trivial I'nr—module if and only if 

n - 2r —1 (mod ps), 

where £ = £( r) ( c.f. the note prior to 3.33). Therefore, we have proved 

(4.42) OBSERVATION. Assume that 2 < r < n/2. Unless 

m - 2r —1 (mod pt) £ = 

f( S n s n-r,r) = 0, hence 
x 

•1 dim K sr-,I' < dimK s -,'.-g0(x) 

If A = (n.-r,r), 2 < r < m/2, m - 2r —1 (mod ps), where £ = 
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we can prove that the Specht module S("") is irreducible over P. The 

general criterion for a Specht module being irreducible was conjectured by 

R. W. Carter (ref. 1.2 [James ( 1978a)]) and was proved in [James ( 1978a)] 

and [James and Murphy (1979)]. Instead of quoting this deep result, we 

adopt a sufficient condition found by James in 24.9 [James ( 1978b)] 

(4.43) LEMMA. Let A = (A1,A2) be a two-parts partition of n. Assume 

that char(K) = p and 

Al 2 -1 (mod ps), 

where £ = £(A2), then the Specht module SA is irreducible over rn = 

PROOF. (c.f. the proof of 24.1 in [James (1978b)]) 

Consider the F-endomorphism of 

A1-A2 A2 

1t2 ' (1 J 

By (3.29), Q is reverse semistandard homomorphism, hence Q ( s') # 0 (c.f. 

3.28). By the Submodule Theorem (2.8), Ker( Q) ≤ SA-. The condition 

A1 -A2 -1 (mod p) 

assures that 
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Q (1 -w ì 2) = [(2 W 1)QT]T = [(2 W  j)Q ]T 

by (3.16) (iii) and (3.18). It follows from (3.23) that ≤ Ker( Q), 

hence 

= Ker( Q). 

Q thus induces a F—isomorphism from onto since 

( S') 

and dim K$' = dimK (S \)*. Therefore ( SA) S. Let U be an irreducible 

submodule of SA, then S has a submodule V, such that 

U, 

by (2.4) and (2.19), therefore 

sA-ì5A/v -ì us 

is a non—zero homomorphism from SA to itself. By assumption, A, > ), \ is 

row p--regular for any prime p. But (4.2) gives 

dim  llom(S,M") 1. 

This forces that SA = U is irreducible.I 

(4.44) LEMMA. Assume that S' is irreducible over P, where A is a 

partition of n. Unless char(K) = 2 and i is row 2—singular, 



166 

dim  Hom( M, S1') = 1. 

PROOF. According to (2.3) and (2.19), 

Hom( M, S)L, Hom( S, M) Homp ( S, m) 

as K—spaces. Now apply (4.2).1 

(4.45) COROLLARY. Let A = (A1,A2) be a two—parts partition of n. 

Assume that char(K) = p and 

Al -A2 E —1 (mod ps), 

where £ = £(A2). Then dim  Homp(MA,S)) = 1j 

When A1 = n—r, A2 = r, the condition 

n - 2r —1 (mod ps), £ = 

is equivalent to 

Al —A2 —1 (mod ps), £ = 

Therefore, combining (4.42) and (4.45), we have proved Lemma (4.34), 

presented at the beginning of this section. 

(4.46) THE PROOF OF THEOREM (4.33). Let A = (A1,A2) be a two—parts 

partition. If Al = A2, (4.33) follows from (4.32). Assume A1 > A2. Use 

induction on A2. When A2 = 1, (4.33) holds because of (4.31). Assume that 
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(4.33) holds for some 8 1,A21), 2 > 1. That is to say, 

dim  81,A2_1) dimK ibm (MtX2_1),S(12_1)) = 1 
l'n I 

for any (A1,) 2-1)—tableau y. Apply Lemma (4.34), when ) = n—r, )t2 = 

dimK ≤ clim Home 1"2 )8(.XlX2_1)) 1. 

But dimK Homp (MA,S)) ≥ 1 by (4.1). Therefore (4.33) holds.I 

By using (4.1), we have immediatedly 

(4.47) COROLLARY. The Specht module S has unique irreducible submodule 

over for arbitrary field K, when ) is a two—parts partition of ni 



§4D The Calculations of Homp(SA*,SA) 

Let ), be a partition of m. Consider the K—subspace of End(M'), 

where F = 

D A = { çü E End(MA) I Im(go) ç S, .Ker(o) 2 S }. 

Write 7r: MA - MA/S± as the coset map. Each V E D induces a 

F—homomorphism from MA/SA N (SA) into S 

ço 
1W -* S C 1W 

which makes the above diagram commute. On the other hand, if 

: M'/S' 

is a F—homomorphism, then it is clear that b'ir E D. Therefore DA is 

isomorphic to llomp(S)*,SX) as K—spaces. D, can also be viewed as a 

K—subspace of HomF(M\SA). In (4.1), we have seen that the socle length of 

S' does not exceed the K—dimension of Homp(MX,SA). In fact, the similar 

argument leads to 

(4.48) 1 < socle length of dim(D) ≤ thmKllomp(M'\S')i 

Let ço be an element in End (M). Take 9JA,A) as the K—basis of 

168 
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Endr(M"). Then 

zP, SEK, 

P E )(A, A) 

is in DA if and only if, by (3.9) and (3.23), 

(4.49) (i) (t-m)co= 't ID -- 

(ii) ço (m ID - 

M) I zP=0, 

P E Wt(A,.X) 

1) = zP(vi!3 £)= 0, 

P E Jt(A,A) 

for all £ > m ≥ 1, ID > 0.1 

(4.50) REMARKS. 

(i) In § 4A, we have proved that if char(K) 0 2, A = (n—r,1'), then 

llomp(MA,SA) has K—dimension 1 (one). Thus (4.48) above implies that 

1 = socle length of SA= dimK(DA) = dimKllomp(M,S). 

(ii) In §4B and §4C, we have proved that for any char(K) = p, 

dim K llomp(MA,S)\) = 1 when A = (A1,A2) is a two—parts partition of m. By 

(4.16) and (4.17), 

DA = llomF(M',S'), 

it follows that dimK(DA) = 1 when A = (A1,A2). 
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(iii) In this section, we shall study the K—space DA, when A is the 

partition 1,A 2,1'), by combining the results and techniques in the previous 

three sections. Since the case A2 = 1 and the case r = 0 have been discussed 

before, we shall always assume that A2 ≥ 2 and r ≥ 1. In the first half of 

this section, we shall be carefully classifying the (A,A)—incidence matrices in 

order to analyze the solution space of the linear system yielded by (4.49) in 

the unknowns { z I P E Wt(A,A) I. 

(4.51) NOTES ON THE CLASSIFICATION OF (A1)A2,1F)_INCIDENCE 

MATRICES 

(i) Each (A,A)—incidence matrix Q, where A = (A1,A2,1r), can be 

partitioned into blocks in the following manner: 

2 r 

AB 

IC D 

2 

r 

In the point of view of §4A (c.f. the note following 4.4), the block [ A,B ] is 

called the hat of Q. Each row of [ CD ] is of the form Ek for some k, 

1 ≤ k ≤ r+2, where Ek is the k—th basic row vector with ( r-i--2)—components. 

Each Q in 9Jt(A,A) defines a function: 

q : [3,r+2] - [1,r+2}, 

such that Eq( is the i—th row of Q, 3 ≤ i ≤ r+2. Thus, we can write 
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Eq( 3) 

[C,D] = 

Eq(r+2) 

Similarly Q also defines a function 

[3,r+2] - i [1,r+2], 

such. that E',(J) is the j—th column of Q, 3 ≤ j ≤ r+2. This is to say, 

[B1 [ 7,T . . . E T ] . 
[D] [' q'(1) q'(r+1) 

(ii) We shall concentrate on those Q's in 9RA)) satisfying that both 

functions q and q' are one—to—one. The cardinality of the set 

{ i E [3,r+2] I q(i) ≤ 2 } 

is equal to the number of non—zero entries in block C of Q, which can be 0, 1 

or 2. 

(iii) If C = 0 in 9, then 

q(i) ≥ 2, 3 ≤ i≤ r+2. 

and q(i) I q(j) if i I j, since q is one—to—one. That implies that the rxr 

matrix D can be obtained by permuting the rows of the rxr identity matrix 
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l.. Hence B must also be zero matrix. The block A can then be written as 

[) 1-k k 1 
[ k ,\2_k] O≤k≤A2, 

which is a [( X1)2), (A1,2)}-incidence matrix. 

(iv) We claim that if 

2 r 

Q= [AB 2 
CD] r 

is a (A,A)-incidence matrix such that both functions q and q' are one-to-one, 

then the block C has exactly one non-zero entry if and only if B does. 

From the definition of ( X))-incidence matrices, each row of [ CD ] has 

its entries summed up to 1 (one). If C has exactly one non-zero entry (which 

is 1), D must have (r-1) non-zero entries located in different columns, since q 

is one-to-one. Hence D has exactly one zero column. This forces that B has 

exactly one non-zero entry. The converse part can be shown by the same 

argument. 

(v) The notes (iii) and (iv) above imply that if r ≥ 2, C has exactly 

two non-zero entries if and only if B does. It is clear that the two non-zero 

entries of C (B) are in different columns (rows), since q and q' are 

one-to-one. The block A in this case is a (At,\t)-incidence matrix: 
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)1-1—k k 

k A2-1—k 

here At is the partition (A1-1,A2-1) of m-2. 

(vi) Return to the case C (hence B) has exactly one non—zero entry. 

Let Q be such a ,A)—incidence matrix, satisfying 

q(i) 2, q(k)> 2ifk# i; 

q'(j)≤ 2, q'(k)> 2ifk#j. 

There are four possibilities concerning the values of q(i) and q'(j) 

If q(i) = q'(j) = 1, then A must be of the form 

)1-1-k k 
k X2—k 0 ≤ k≤ rnin{ 

If q(i) = 1, q'() = 2, then A must be of the form 

1—k k i 

[ k—i Ag_k] 1 ≤ k ≤ 2 

If q(i) = 2, q'(j) = 1, then A must be of the form 

.Xçk k1 

k 1 < k ≤ AT 
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If q(i) = q'(j) = 2, then A must be of the form 

k 

k A2-1—k 0 ≤ k≤ A 2 1I 

(4.52) NOTES AND DEFINITIONS ON (4! L m)P 

(i) This might be the right time to introduce some new tools before 

diving into the calculations in front of us. Let's turn back to a partition 

= ( ... i) of n. Assume that 1 ≤ 4!, m ≤ h, £ I m, 0 < w < p. Let 

u be the composition of n, such that 

Vi 

Vj = - 

VM = Pm + W, 

= p, if j I 4!, j I M. 

Let P be a (p,p)—incidence matrix. (i m)P is then a F—homomorphism 

from M' to M": 

MA 4 M 

(4!m)P\ 

(ii) ( 4! m)P, P E 9J(p,p), is a 21—linear combination of elements in 

D1(p,v) by (3.10), say 

(I! W i m)P = a(Q)Q, a(Q) E IL 

Q E J1(, u) 
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Define the support of ( -i m)P to be the subset of 1(t,u) in which each 

element has non—zero coefficient in the expression of ( -) m)P, denoted by 

supp{(t m)P} = { Q E JYt(,v) I 0 [ a(Q) e 71 in ( m)P }. 

(iii) Let Q be a (jt,v)—incidence matrix. (m W i t) is a 

P—homomorphism from M' to M's, hence (m -i £)Q is a P—endomorphism of 

(fi? 
M' 

(mVfl \ 
M V 

Write according to (3.10): 

(m -+ £) Q = fi(R)R, fl(R) E ii. 

R E Jt(ii,ii) 

Similar to (ii) above, we can define 

supp{(m £) Q} = { R E Ji,j)1 0 j /3(R) E Ii in (m 'JI-' £) Q }. 

(iv) For P E 3I(t,i), Q E Wt(,v), we have the following simple but 

significant fact: P belongs to supp{(m £) Q} if and only if Q belongs to 

supp{(e ! i m)P}. 

(v) Consider the condition ( c.f. 4.49 (i)): 
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(u-3m) zP=0. 

P E 9R(X,A) 

For each Q E W1(t,u), one can find supp{(m i £) Q} by computing (m -i £) Q 

according to (3.10). For each P in supp{(m assume that the integer 

coefficient of Q in (i -i m)P is y( Q,P), then the coefficient of Q in 

(Ln,) z,P=0 

P E Wt(), A) 

is 

{ 7(Q,P)z I P E supp{(m £) Q} I - 

Thus, we have an equation on { z, I P E lJ(i) } regarding Q in Jt(,u): 

{ 'y(Q,P)z, I P E supp{(m V £) Q} } = 0. 

In fact, every linear equation on z,'s yielded by (4.49) (i) arises in this 

manner. 

(vi) In our later calculation, we are sometimes concentrating on ZM for 

some particular M in Jt(ji,ji). The following algorithm will be used for finding 

linear equations involving ZM yielded by 

zP=0. 

P E WA)) 

(4.53) ALGORITHM. 
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(a) Find supp{( im)M, for M in 

(b) For Q in supp[(1 -+ m)M], find supp{(m i £) Q}. 

(c) For each P e supp{(m ' £) Q}, calculate the ( integer) coefficient 

'y(Q,P) of Q in ( -) m)P. 

(d) Write down the equation 

{ 'y(Q,P)z I P E supp{(m !V £) Q} I = 0.1 

(4.54) EXAMPLE. Let tt = (5,2,1), ii = (6,1,1), partitions of 8. Take 

rl 

10 

M=  1 1 €00 

Consider the equations yielded by 

(2L,i) 1  zpP=0. 

P E 9Jt(A,A) 

(a) supp{(2 1)M} = { Q, Q' }, where 

411 420 
Q= 010 , Q'= 001 

r100 100 

(b) supp{(1 Li 2)Q} = { M, N, P }, where 

311 r01 
N= 110 , P= 20 

100 00 
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(c) By applying (3.10), we have the coefficient of Q in (2 1)1k!, 

(2 - i 1)]V (2 - i l)P are 

'y(Q,M)=l, y(Q,N)=4, -y(Q,P)=l. 

(d) Thus the equation regarding Q is 

ZM + 4zN + Zp 0. 

Similarly we can find the equation regarding Q'. The detail is ommitted 

here.I 

(4.55) NOTES ON P(m 1) 

Let i and ii be compositions of n as in (4.52). The linear equations 

yielded by 

z P(m 2Vt) = 0 

P E 

are closely related to those yielded by 

(n  -3m) zP=0. 

P E 

Notice that 

P E R(A,A) 

is equivalent to 
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z,[P (m ?_, £)]A 0. 

P E A) 

By (3.16) (iii) and (3.19), 

m)2DT = 0. 

P E 9Jt(A,A) 

Let Q be an arbitrary (,v)—incidence matrix, 7(QpT) be the (integer) 

coefficient of Q in ( -i m)PT, then (4.53) gives 

Note that the following equation 

is yielded by 

pT E supp{(m !/ £) Q} I = 0. 

J{ (Q,P)z I P E supp{(m £) Q} I = 0 

(-9m) zP=0. 

P E Ut(A,A) 

Therefore, there is a one—to—one correspondence between the two homogeneous 

systems, given by (i) and (ii) in (4.49), summarized as the following: 

(4.56) OBSERVATION. The condition (4.49) (i) yields an equation 
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'y(P)z = 0, 7(P) E K, 

P E W1(pjt) 

if and only if the condition (4.49) (ii) yields 

7(P)Z = 0, 7(P) E K, 

P E t(,) 

where Q = pT• 

Let us now turn back to the partition A = 1,.X2,1"), A2 ≥ 2, r ≥ 1. 

Assume that (zp)pE(Ax) is a solution to (4.49) (i) and (ii). We intend to 

give an estimation of the dimension of the solution space by revealing the 

interrelation, of the z,'s. 

(4.57) OBSERVATION. Let Q be a (A,A)—incidence matrix, q and q' be the 

functions from [3,r+2,] to [1,r+2} determined by Q as in (4.51) (i). 

(i) If q : [3,r+2,] -, [1,r+2] is not one—to—one, then (4.49) (i) yields 

an equation 

2zQ = 0. 

(ii) If q': [3,r+2,] -* [1,r+2] is not one—to—one, then (4.49) (1) yields 

an equation 

2zQ = 0. 
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PROOF. (i) Although this follows from the proof of (4.9) in §4A, we shall 

sketch the proof by making use of the machinery in (4.53). Write 

2 r 

[A B1 2 
Q- [CD]r where [ CD] = 

Eq(3) - 

- Eq(r+2) 

There exist £ and m, 3 < m < £ < r+2, satisfying q(t) = q(m), since q is 

not one-to-one by asumption. Apply Algorithm (4.53) to Q 

(a) supp{(€ L in) Q} = { Q*} where 

2 

AB1 2 Q* [C*D*jr where [ C, D] = 

(b) supp{(m Li £) Q} = { Q } 

(c) (1 -4 m)Q = 2Q*. 

(d) The equation regarding Q* in 

(-m) zP=O 

P E 9)1t, A) 

is 2Z Q= 0. 

- Eq(3) 

m 

£ 0' 
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(ii) is a corollary of (4.56) and (i) above-1 

(4.58) OBSERVATIONS. Let Q be a ()) —incidence matrix such that both 

functions q and q' are one—to--one. Then 

ZQ E KzQ 

for some Q0, which is one of the following (A,A) —incidence matrices listed 

below: 

(1) L(k) = 

(2) M(k) = 

(3) N(lc) = 

A1—k Ic 

k ' 2 

0 

0 Ir 

A1—k Ic 0 

k A2 1 1 0 

k= 0,1,..., A2 

0 1 0 0 

0 

)1—k k—i 1 

Ic 0 

0 Ir ..1 

0 

0 1 0 0 

0 0 Ir ..1 

k=0, 1,. 

k=1,... , A2. 
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(4) P(k) = 

(5) Q(k) = 

(6) R(k) = 

A1—k k 0 

k—i A2—k 1 0 

1 0 0 0 

0 0 

A1—i—k k 1 

k A2—k 0 
0 

1 0 0 0 

0 0 Ir ..1 

A1—i—k k 1 0 

k ) 2-.1—k 0 1 
0 

1 0 

0 1 0 0 

0 

Note. R(k) occurs only if r > 2. 

0 

k= 1,... , A2. 

0 ≤ k ≤ min{A 1-1,A2}. 

k= 0,1,... A2.-1. 

PROOF. In this proof, we shall write Z[Q} for the unknown ZQ Q e 

(for the sake of typing). Write (c.f. the notes 4.51) 

AB 2 

CD 

According to (4.51), there are three possibilities for the block C: 

(a) C=0. 

(b) C (hence B) has exactly one non—zero entry. 
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(c) C (hence B) has two non—zero entries in different rows (columns). 

In the case (b) above, We have four subcases as shown in (4.51) (vi). 

We shall prove the following: 

If q(i) = q'(j) 1, for some i and j in [3,r+2], q(l) > 2, q'(l) > 2 

whenever 10 i, 10 j, then z[Q] E Kz[Q(k)] for some k, 0 < k < min{) 1-1,.\2}. 

For a ,A)—incidence matrix Q described above, its block A is a 

(p,ji)—incidence matrix, where A = (A1-1, 2)• Thus A must be of the form 

)1-1-k k 

k Ark 

for some Ic, 0 ≤ Ic ≤ min{A 1-1,) 2}. Applying (4.8) to Q, we have 

z[ Q] = z[M], or Z[ Q1 = —z[MI 

for some 

10 
M= [ A B1 

C1 D1J 

Note that 

Applying (4.8) to MT, 

where C1 

MT= AT C' 

BD' 

00 

0 0_ 

z[MT] = z[NT], or z[ MT] = —z[NT] 
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for some 

NT= AT cI ] 

B2 D2 

where 

B2 

1 0 
00 

00 

1 r-1 

0 01 1 

D2 = 0 I ..jjn1 

From (4.56) the equation z[MT] = z[NT] (or z[MT] = _. NT] ) has its " dual" 

equation z[M] = z[A] (or z[M = —z[JV] ). Therefore we have 

Notice that 

N = 

z[ Q] = z[JV} or z[Q] = —z[JV]. 

A-1--1c k 1 

k ) 2—k 0 
0 

1 0 0 0 

0 'r - l 

= 

for some Ic, 0 ≤ Ic ≤ min{X 1-1) 2}. Thus we arrive at 

z[Q] E Kz[Q(Ic)]. 

The similar discussions will cover the other cases. The detail is omitted here. 

I 

(4.59) OBSERVATION. 
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(1) ZL(k) + kzN(k) + (Af_k)zQ(k) = 0, for each k, 1 ≤ k < A2 

(2) + A1ZQ(0) = 0. 

PROOF. We apply Algorithm (4.53) to the following cases. 

If k = 0, L(0) = 

Al 0 0 

o A2 0 
001 

0 

(a) supp{ (3 Li 1)L(0) } = 

(b) supp{ (1 -4 3)L0 } = 

Ir i 

and 

Al 0 1 

0 A2 0 

000 

0 

0 

A1-1 0 1 

0 A2 0 

100 

0 

0 

(c) (3 1)L(0) = L0, (3 -i 1)Q(0) =A1L0. 

(d) There arises an equation 

ZL(0) + AlzQ(0) = 0. 

If 0 < k< A2 < A1, or 0< k < A2 A1, 

A1—k k 

k A2—k 0 

(a) supp{ (3 L 1)L(k) } = 

I r - 1 

= {L(o), Q(0)}. 

0 

0 0 0 0 

0 0 Ir1 
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(b) supp{ (1 1 4 3)Lk } = { L(k), N(k), Q(k) }. 

(c) The coefficient of Lk in (3 -+ 1)L(k), (3 -* 1)N(k) and (3 1)Q(k) are 

1, k and (A1—k) respectively. 

(d) There arises an equation 

+ kZN k +(A1_k)zQ(k) = 0. 

If A2 = ) and k = 

(a) supp{ (3 1)L(A2) } = L A2 

0 A2 1 

A2 0 0 

000 

0 

0 

(b) supp{ (1 4 3)LA } = { L(A2)1 N(A2) }. 

(c) (3 1)L(A 2) = A2' (3 1+ 1)N(A2) =A1LA. 

Ir i 

(d) There arises an equation, which is a special case of ( 1) 

ZL(k) + kzN(k) = 0, where k = A2.I 

Note. (2) can be viewed as the special case of (1) if we agree with the 

convention "'N( 0) 0. 

(4.60) OBSERVATION. For each k, 0 < k ≤ A2-1, 

+ (Ark)zN(k+l) + kzN(k) = 0. 

PROOF. We can apply (4.53) to the following cases: 

(i) k=0. 
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(ii) 0 < k ≤ A 2 1. 

We shall work out the detail for case (ii), and case (1) can be done by the 

same argument. 

(a) supp{(2 -+ 1)M(k)} contains 

M'= 

)1—k k 1 

k A2-1 0 0 

0 1 0 0 

0 0 1jj 

(b) supp{(l -+ 2)M'} = {M(k), N(k-i-1), N(k)}. 

(c) (2 1..' 1)M(k) = M'. The coefficient of M' in (2 1)N(k+1) and 

(2 1)N(k) are (A1—k) and Ic respectively. 

(d) There arises an equation 

ZM(k) + ()—k)zN(k+l) + kzN(k) = 0. 

In case (i), we have the equation 

ZM(0) + = 0, 

viewed as the special case of the equation obtained in (d) when k = 0.1 

(4.61) OBSERVATION. 

(1) -P(k) + (Al_k)zQ(k) + kzQ(kl) = 0, for each Ic, 1 < k < A2 if 

Al > X2, and for each k, 1 ≤ k < )t2 if A, = 
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(2) Zp(k)+kZQ(ki)0 if) 1=) 2 =k. 

PROOF. In order to prove (1) we apply (4.53): 

(a) P'= 

A1—k k 1 

k—i X2—k 0 0 

1 0 0 0 

0 0 

E supp{(2 L 1)P(k)} 

(b) supp{(i 2)P'} = {P(k), Q(k), Q(k-1)}. 

where 

Q(k-1) = 

1—k k—i 1 

k—i ) 2—k+1 0 0 

1 0 0 0 

0 0 Ir ..1 

(c) The coefficient of F' in (2 1 -4 i)P(lc), (2 13 i)Q(k), (2 L i)Q(k—i) are 1, 

1—k) and k respectively. Thus 

(d) ZP(k) + (—k)zQ(k) + kzQ(kl) = 0. 

When k = A 2 = we obtain equation (2) by the similar method: 

Zp(A) + )' 1ZQ(A1) 0.1 

Note. (2) can be viewed as the special case of ( 1) in (4.61) if we agree to 

define 

ZQ p) 0 when A2 = A1. 
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(4.62) OBSERVATION. For each Ic, 1 < k ≤ A2, 

ZN(k) +(Ai_k)z + kZQ(kl) = 0. 

PROOF. This is a corollary of (4.56) and (4.61) above. Notice that 

N(k) = p(k)T, Q(k) = Q(k)T. 

From (4.61), we have 

Zp(k) + (A—k)zQ(k) + k--Q(k-1) = 0, 

and (4.56) claims that 

ZN(k) + + kZQ(kl) = 0, 1 ≤ Ic ≤ A21 

(4.63) OBSERVATION. Assume that char(K) J 2. For each k, 0 ≤ k < A2, 

ZQ(k) + (.X2—k)zR(k) = 0. 

PROOF. By computing 

(4 2)Q(lc) = (4 L, 2) 

where 

A1-1—k Ic 1 

Ic X2—k 0 
0 

1 0 0 0 

0 0 Ir.1 
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Q': 

A1—i—k k 1 0 

k A2—k 0 1 
0 

1 0 

0 0 
0 0 

0 0 Ir -2 

we have supp{(4 2)Q(k)} = { Q'}. When 0 < k < A2, 

where 

supp{(2 -i 4)Q'} = {Q(k), R(k), V(k)}, 

V(k) = 

A 1-1—k k 

k—i A2—k 

10 
0 

1 0 

1 0 
0 0 

- 0 0 

The coefficients of Q' in (4 2)Q(k), (4 -i 2)R(k) and (4 2)V(k) are 1, 

(A2—k) and k respectively. Therefore 

ZQ(k) + (A2—k)zR(k) +kZv(k) 0. 

By (4.57) (i), 2zV(k) = 0, because there are two rows identical in V(k). Thus 

zV(k) = 0, since char(K) 1 2. We then have for 0 < k < A2, 

ZQ(k) + (A2—k)zR(k) = 0. 

When k = 0, supp{(2 -i 4)Q'} = {Q(0), R(0)}, and the coefficients of 
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Q' in (4 2)Q(k) and (4 -i 2)R(k) are 1 and )t2 respectively. There arises 

ZQ (0) + = 0. 

Therefore the equation 

ZQ(k) + (X2_k)zft(k) = 0. 

is valid for k = 0, 1, ..., 

• (4.64) REMARKS. The above observation shows that every zQ(k) can be 

solved in terms of zR(k)) for k = 0, 1, ..., )2-1. If Al = 

Q(0), Q(1), ... , 

are all the (A))—incidence matrices of type (v) in (4.58). When ) > A21 the 

incidence matrix 

Q(2) = 

12 1 A2 1 

0 0 
0 

1 0 0 

0 0 Ir .. f 

is not covered by (4.63). But it is not hard to show that if char(K) 1 2, 

ZQ p) = 0, by the same type of calculations in (4.63). Note that 
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(4 - 2)Q 2) = 

A 1-A 2-1 

A2 

A2 

0 

10 

01 
0 

1 0 

0 0 0 0 

0 0 Ir -2 

The support of (2 2_ 4) Q* contains two elements: Q(A2) and 

V(A2) 

A1—A2-1 A2 1 0 

A2-1 0 0 1 
0 

1 0 

1 0 0 0 

0 0 Ir -2 

Thus, by calculating the coefficient of Q*, we have 

ZQ(A) + A2zv(A)= 0. 

Hence zQ(A) = 0, since char(K) 1 2 and zV(A)= 0.1 

At this stage it is wise to make a general survey of the situation after 

obtaining the observations from (4.59) to (4.64). We order the unknowns ZQ S 

where Q is a (A,A)—incidence matrix listed in (4.59) from (i) to (vi), in the 

following manner: 

ZL(0)) ... , 
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ZM(0) 

ZN(1) 

Zp(1y 

ZN(A 2) 

Zp(A 2) 

ZQ(m ) 

ZR(0)) i 

m = min{X1-1,A2}; 

We also order the equations obtained in those observations as 

(4.59) ZL(k) + kzN(k) + ( 1—k)zQ(k) = 0, k = 0, ' 

(4.60) ZM(k) + kZN(k) + (\ 1_k)zN(k+l) = 0, Ic = 0, ... , 

(4.62) ZN('C) + ICZQ(kl) + l_k)zQ('C) = 0, ic = 1, ' A 2-

(4.61) Zp('C) + IeZQ(1) + ( A,—Ic)zQ('C) = 0, 'C = 1, ' A 2-

(4.63) ZQ('C) + ( 2—k)zR('C) = 0, 'C = 0, ... , min{A 1-1,A2}. 

(4.64) 

The coefficient matrix of the equations above is of the form 
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(4.65) 

ZL (k) Z/,f(k) ZN(k) Zp (k) Zq () ZR (k) 

1 

1 
o * 0 * 0 

1 

•1 

* 0 0 0 

1 

1 
o * 0 

1 

1 

* 0 

1 

1 

* 

This suggests the further analysis on the equations yielded by (4.49), in which 

R(k), k = 1, 2, ... , .X2-1, are involved. 

Each R(k) (c.f. (vi) in 4.58) can be written as 

Rk 

12 

12 0 

Ir2] 

00 

0 0 

IA1-1—k kwhere Rk =  k ' 2-1—k] 

for 0 < Ic ≤ here At is the partition (A1-1,A2-1) of n-2. The 

?lembeddingl! Rk '-+ R(k) is a one—to—one mapping from 9Yt(At,At) onto the 

set { R(k) I 0 ≤ Ic ≤ A2-1 }. We shall compare the equation system yielded 

by 
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(h -1 1) 1  ZRRk = 0 

with the one yielded by 

(n W 1) ZR(k)R(k) = 0. 

k 

It is conceivable that our results concerning two—parts partitions in §4B and 

§40 are corning into play. 

(4.66) NOTES. 

(i) Let us start with a 2x2 matrix with non—negative entries: 

p b1 
- Lc d] 

viewed as an incidence matrix in 9Jl(p,v) for suitable compositions jh and v. 

The matrix 

P 12 0 

12 0 0 

0 0 11.2 

is abbreviated in this note by 

lE P, 12 ]1 = ablO c d  1 
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its 2x4 block at the upper left corner, since the rows from 3 to (r+2), as well 

as the columns from 5 to (r+2), remain unchanged under the left action of 

(2 1) and (1 2). 

(ii) For each w, 0 < w ≤ c+d, 

w [a + w11 lb + w21 [ a+w1 b+ W2 
WI J [ w2 j [ c-w1 d—w2 I 

the sum is taken over all ordered pairs (w1,w2), such that 

0 ≤ w1 ≤ C, 0 ≤ w2 ≤ d, w1 + w2 = to, 

by Formula (3.10). Therefore, every element in the set supp{(2 -' 1)P} is 

uniquely determined by some ordered pair (w1,w2) satisfying the above 

conditions. Similarly 

ía + w11 lb + w21 
(2 ')[ '2 ]I = L4t WI it W2 i 

- a+w1 b+w2 1 w 3 

- c—w1 d—w2 0 1—w3 

where the sum is taken over all triples (w1, to2, to3), satisfying 

0≤w1 ≤c, 0≤w2 ≤d, 0≤w3 ≤1, W1 +W2 +W3 W. 

It is clear that each element in supp{ (2 1) F, '2 ] } is uniquely 

determined by some triple (to1, w2, to3) described above. There is an injection 

from the set supp{(2 1)P} into the set supp{ (2 1)[ F, 12 ] } 
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[ a+w 1 b+w2 1 a+w1 b+w2 1 0 - 
[ c—w1 d—w2 j - c—w1 d—w2 0 1 

I 
(w1,w 2 ) (w1) w2) 0) 

Or we can simply write this injection as 

Q e supp{(2 1)P} '- [ Q, 12 ] E supp{ (2 -i 1)[ F, 12 ] }• 

(iii) Let 

[eli 

be a 2x2 matrix with non—negative entries. For each w, 0 < w ≤ e+f, there 

is a one—to—one correspondence between the set supp{ (1 2)[ Q, I ] } and 

the set of triples (w1, w2) w3), satisfying 

0< W1 < e, 0 ≤ w2 ≤f 0< w3 1, w1+ w2 + w3 = W. 

The correspondence is given by 

- e—w1 f—w2 1—w3 0 
g+w1 h+w2 w3 1 - 

'-) (w1, w2) w3). 

Similar to (ii) there is an injection from the set supp{(1 2) Q} into the set 

supp{ (1 1:3 2)[ Q 12 ] } 
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[ e—w1 f—w2 
[g+w 1 h+w2 

1 
(w1, w 2 ) - 4 

e-w1 f-w2 1 0 
g+w1 h+w2 0 1 

I 
(w1) w2) 0) 

(iv) Now we turn back to the partition A = (A1, A2, 1) of n, A2≥2, 

r≥2, and the partition At = (A1-1, A2-1). For an integer w, 0 < w ≤ 

take an incidence matrix 

such that 

_[ef 
- Lg h 

e+g=A1-1, f+h=A2 -1, 

e+f=A1-1+w, g+h=A2-1—w. 

In supp{(1 2) Q}, the (At,At)_incidence matrix determined by the ordered 

pair (w1, w2), where 0 ≤ w1 c, 0 < w2 ≤ d, w1 + w2 = W, is 

f- w2 
h+ w2 

1 
The (integer) coefficient of Q in (2 W-4 e—w1 f—w2 I 9+W1 h+w2 j 

The coefficient of Q in 

(2 1) Iz P P = 0 

P E 9Y(At,At) 

is lellf 
LW1J LW2 

is zero, which yields a linear equation on zr's. If P e supp{(1 -+ 2) Q} and 

P is determined by (w1, w2), we shall write 
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Thus 

[,e f j [] ((w" w') = 0. 

W1+W2 W 

O≤w 1≤e 
0<w2<f 

Also, we know that every linear, equation on zr's yielded by 

(h - i 1)zP = 0 

P 

arises in this manner. 

(v) Consider the set supp{ (1 -' 2)[ Q, 12 ] } in 'R(A,)). The 

incidence matrix in supp{ (1 -+ 2)[ Q, I ] } determined by the triple 

(w1,w2)w3) is 

e—w1 f—w2 1—w3 0 
g+w1 h+w2 w3 1 

where 0 ≤ w1 ≤ e, O < w2 f, 0< % 1, w1 + w2 + w3 = w. The 

coefficient of lE Q, 12 ] in 

(2 W  —41) - e—w1 f—w2 1—w3 0 - 
- g+ w1 h+w2 w3 1 - 

is [,j [ j. If M e supp{ (1 -i 2)[ Q, 12 ] }, determined by the triple 

(w1,w2,v 3), we write 
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Then the coefficient of [ Q I ] in 

(2 1) 1z NN= 0 

N E 9)t(.X,A) 

is 

O = [  ] [ &] (( W" 
(w1,w2 ) w3) 

= [ej [ 2]C(wi, 

W1 +W 2=W 
0≤w 1≤e 
0≤w2≤f 

W21 0) + 
I [ e '] [] ((w, 

w1+w2=w-1 
0≤w 1≤e 
0≤w2<f 

W2) 1). 

(vi) If N € supp{ (1 2)[ Q I ] } and N arises from a triple 

(w1,w2,1), then 

N= 

e—w1 f—ui2 0 0 

g-i-w 1 h-i-ui2 1 1 
0 

1 0 

0 1 
0 0 

0 0 

The third and the fourth columns of N are identical. By (4.57), 2ZN = 0. 

Thus, if char(K) 1 2, 

C(w1, w2, 1) = ZN - 0. 

Hence the equations obtained in (iv) and (v) are 
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[j [&] C(w1, W2) = 0, 

(w 1,w2) 

[i [wf,] C(wi, W2, 0) = 0, 

where (w1,w2) runs over all ordered pairs such that w1 + w2 = w. 0 ≤ w1 e, 

0≤w2≤f.I 

The notes above provide the proof of the following lemma: 

(4.67) LEMMA. Assume that char(K) 0 2,. For each linear equation 

0 

yielded by 

-+ 1)Z"k Rk = 0, 

there exists an equation, yielded by 

( - m) IzMM= 0, 

M e 

which is of the form 

k=O 

£ > m, V > 0, 

akz(k) = 0.1 
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(4.68) THEOREM. Assume that char(K) 0 2. If A = (A1,A2,1') is a partition 

ofn,A2≥ 2,r≥ 2. Then 

dimKllomp(SA*,SA) 1. 

PROOF. By (4.48), it is enough to show that the solution space of (4.49) (i) 

and (ii) has dimension less than or equal to 1 (one). 

By (4.33) in 4C, we know that 

dimK llomp(MAt ,SAt) = 1, At = (An, A2-1). 

That is, the solution space of 

>2 

(2 l)zRRk = 0, W > 0, 

kO 

has dimension 1 (one). Assume that T is the coefficient matrix of the 

unknowns { z I k = 0,...,A2-1 }. i.e. 

T 

Then the lemma (4.67) above gives 

=0. 
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T 

Z (0) 

Zft(x1) 

=0. 

Combining this system with the one in (4.65),. we conclude that the solution 

space of (4.49) (i) and (ii) has dimension less or equal to 1 (one),I 

(4.69) REMARKS. Surprizingly, it is hard to give a satisfactory estimation 

of the K—dimension of HomF(S)*,SA), when A = (A1,A2,1), A2 ≥ 2. For time 

being, we only know that (4.68) fails to hold for A = (5,2,1), when char(K) is 

3. 

(1) One can check that the trivial K8—module 5(8) is isomorphic to a 

submodule of 5(521), by applying (3.35) in § 3D. 

(2) The Specht module S 5'3 is irreducible over K 8, by (4.45) in §40. 

(3) The Ke8—homomorphism 

23 
o = 2 0 M 5'3 -' M 5'2" 

10 

has the property 9(S( 53)) 0, since 0 is reverse semistandard (c.f. 3.28 and 

3.29 in § 3C); furthermore, Im(0) c 5(521), since over the field K = 713, 

(3 2)0 = 0, 

(2-1)0=0, 0<w≤2 
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(c.f. 3.9 in § 3A). 

(4) From (ii) and (iii) above, we know that S( 1,2, 1)  has at least two 

non—isomorphic irreducible submodules, isomorphic to S(8) and S(5)3) = j( 5)3) 

respectively. 

(5) By direct calculations on the system 

(I-3m)zP=0, £> m,w>0, 

P E M(X,X) 

when char(K) = 3, we can find that 

dim KHomK(M,SA) = 2. 

In fact the homomorphisms 

221 
P= 200 

1 0 0 

and 

Q 

Q E Jtt,X) 

Q#P 

form a K—basis for HomKS 8 (M,S'). It can also be verified that 

P(S') = 0, 0(S') = 0. 

Thus the K—dimension of HomK(S)*,S)) is equal to two. 
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(iv) From the facts above, we conclude that S( 1,2, 1)  has socle length 

2.1 

(4.70) COROLLARY. When char(K) 1 2, if A = ( 1,A2,1r) is a partition of 

n, r ≥ 2, the Specht module S has unique irreducible submodule.l 
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short exact sequence 
socle 
socle length 
Specht module 
standard basis 
standard tableau 
strongly row p-regular 
strongly column p-regular 
Submodule Theorem 
support 
symmetric group 
symmetric matrix 

tableau 
tabloid 
tensor product 
3-parts partition 
transposition 
trivial character 
trivial module 
two-parts partition 

unique irreducible submodule 

131 
12 
1, 57, 58, 82 
8 
2 
106, 130, 168, 169, 206 
1, 20 
155, 156 
150, 151, 152, 158, 162 
72 
74, 76, 77, 80 
21, 71, 164 
175 
1, 13, 22, 151 
131 

15, 16, 18, 21, 24, 26, 27, 31 
17, 19, 29, 30, 31, 151 
25 
98 
84, 113, 116, 159 
14 
65, 163, 204 
3, 38, 81, 90, 130, 135, 147, 150, 169 

61, 62, 72, 76, 129, 167 

Young tableau 1 
Young module 23 
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