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Abstract 

Network effects exist when there are benefits to aligning one's behaviour with the be-

haviour of others. There is a large literature on network effects, as issues such as tech-

nology adoption, fads, and many others revolve around network effects. Typically, such 

models are specified in a manner so that multiple purely coordinated and Pareto effi-

cient equilibria exist, which introduces an equilibrium selection problem. Strangely, this 

selection problem has largely been ignored, and little effort has been made to examine 

how agents form expectations supporting coordinated outcomes. This thesis attempts to 

fill this gap by introducing a generalized, dynamic network effect model in which agents 

make their decisions sequentially and use their observations of previous decisions to form 

expectations about future decisions. Several results are proven regarding the likelihood 

and extent of coordination, and numerical examples are provided to complement the 

formal theory. The results show that even under strong network effects, purely coordi-

nated outcomes are unlikely to occur, and some coordinated outcomes may actually be 

impossible, even under nontrivial model specifications. 
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Chapter 1 

Introduction 

There is a vast array of decision problems in which there are benefits to aligning one's 

actions with the actions of others. The canonical example involves the choice between 

incompatible communication networks, such as early telephone networks or modem proto-

cols; if more individuals join a particular network, then the value of the network increases 

for all of its members, because each member may now use the network to communicate 

with more people. A modern variation of this includes on-line social networking or dating 

services, since an individual who joins a service with a greater number of subscribers is 

more likely to find old (or new) acquaintances there. A software engineer who learns a 

particular programming language sees a greater return on his investment if additional 

programmers learn the language as well, because his skills will be more widely applica-

ble and transferable. A DVD player technology increases in value as more consumers 

purchase it, because more DVDs will be released which support that technology. 

All of these are examples of positive network effects in that the value of belonging to a 

particular group increases as the group grows larger. In some cases, the network effect is 

direct, meaning that the value of the network comes about directly from its size, and not 

through some intermediate channel. The communication network and social networking 

examples above constitute direct effects. Alternatively, the effect may be indirect, in that 

the value does not derive explicitly from the number of members, but rather through 

intermediate effects caused by an increase in network size. In the DVD example above, 

for instance, no individual receives higher utility from knowing that many others have 

the same technology; instead, his valuation of the network stems from the fact that a 

more popular player technology will be supported by suppliers of complementary goods 
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(in this case, manufacturers of movie discs). The root cause of the increase, however, is 

still network size, so in this thesis the distinction is ignored in favour of a generalized 

definition wherein network effects exist if the value of the network increases as a function 

of its size, regardless of the specific mechanism responsible for the effect. 

The difficulty with network effect models is that there is a coordination problem. 

If there are two competing networks, for instance, which network will be more widely 

adopted? There are many issues to consider in attempting to answer this, but in essence 

it is an equilibrium selection problem. Typically, network effect models are specified in a 

static fashion, and have multiple (Pareto efficient) equilibria corresponding to coordina-

tion on different networks. Exploring how these equilibria may be achieved is the central 

objective of this thesis. Specifically, a generalized definition of network effect models is 

given and, using this definition, a number of results regarding dynamic coordination are 

derived. 

There is a large literature on network effects. Rohlfs (1974), in studying how net-

work effects influence demand for a communication network service, is among the very 

first contributors to this area, although Katz and Shapiro (1985), in a pioneering work, 

construct a simple but more general model of network effects. Their model is static in 

that there is only one period in which consumption decisions are made, but they identify 

multiple coordinated equilibria under the assumption that consumers base their decisions 

on expected network size. Interestingly, they do not investigate how agents form their 

expectations, but simply assume that these expectations are fulfilled in equilibrium. Katz 

and Shapiro (1986) extend this analysis to a two-good, two-period model and find that 

when coordination does occur, the outcome may not be socially optimal. To that effect, 

Katz and Shapiro (1994) provide several examples of how network effects may lead to 

market failure. 

Katz and Shapiro (1985) also contrast direct and indirect network effects. The dis-

2 



tinction between the two, and related issues, is analyzed by Liebowitz and Margolis 

(1994), and also by Clements (2004). While technology adoption problems are the most 

prevalent examples of real-world network effects (see Farrell and Saloner (1985), Farrell 

and Saloner (1986), Choi (1994), Cabral (1990), or, in particular, Church and Gandal 

(1992) for a tangible example of indirect network effects), they are also useful in studying 

other phenomena. A nice example of this is Church and King (1993), which develops a 

model of bilingualism and language adoption by noticing that a language becomes more 

valuable as more people learn it. Economides (1996) explores a variety of sources of 

network effects, and how they influence both prices and market structure. 

There is a related literature on what are usually called "informational cascades" (see 

Bikhchandani, Hirshleifer, and Welch (1998)). While there are some similarities between 

network effect models and information cascade models, informational cascades are differ-

ent in that the behaviour of others is used to make an inference about the information 

others have concerning the quality of a good or technology, and these inferences are 

what drive individual decisions. For example, Choi (1997) develops a model of technol-

ogy adoption where the true value of a technology is revealed to all once an agent has 

adopted it. The models considered in this thesis, however, are "pure" network effect 

models in that all agents are fully informed about the quality of the networks (and dif-

ferent agent types have different private preferences over the set of possible networks), 

but they try to infer which network will be more widely adopted in order to decide which 

one to join. That is, the value of a network is determined by its expected size, and these 

values, together with private preferences, are what drive individual behaviour. 

This thesis examines how agents in a sequential model, with little information, form 

expectations about the magnitude of different networks, and how these expectations 

combine with many other considerations (like private preferences, network values, and 

population composition) to cause (or inhibit) coordinated behaviour. Analysis is carried 
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out at a high level of generality, so that results may be applied to a wide variety of 

network effect models. While some theoretical work has analyzed coordination problems 

in similar settings (see Crawford (1995), which studies coordination problems in the 

context of repeated games), little progress has been made. As Farrell and Klemperer 

(2007) point out, "coordination is hard, especially when different adopters would prefer 

different coordinated outcomes." Using a model inspired by Eaton and Krause (2005), 

a variety of new results concerning network effects and coordination are proven, and 

concrete numerical examples are given to reinforce formal results and provide some insight 

into just how likely (and how complete) coordination may be. 

Chapter 2 begins by introducing relevant mathematical background and notation for 

use throughout the thesis. Chapter 3 then presents the general network effect model 

and identifies a set of assumptions needed to represent almost any network effect model. 

Chapter 4 analyzes the simultaneous-move version of the general network effect model, 

and formalizes conditions under which equilibria of various degrees of coordination are 

guaranteed to exist, as well as an analysis of when these outcomes are Pareto efficient. 

The main focus of the thesis, Chapter 5, introduces a sequential move version of the 

general model, explores two different decision algorithms agents may use, proves com-

parative static results regarding the likelihood of coordination in this dynamic setting, 

and provides several numerical examples to illustrate the comparative static results and 

other issues of interest. Chapter 6 concludes with a summary and evaluation of the 

results herein, as well as some possible avenues for future research. 
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Chapter 2 

Mathematical Prerequisites 

Most of the concepts in this thesis require rudimentary knowledge of real analysis, set 

theory, functions, and combinatorics, so a brief digression on these matters, as well as 

of notational conventions, is presented first. Readers who are familiar with this material 

may safely skip ahead to Chapter 3. 

2.1 Basic Definitions and Notation 

2.1.1 Sets and Functions 

With minor exceptions, all sets in this thesis are subsets of the real line, R, and so the 

naïve (rather than the axiomatic) approach to sets is suitable. This means a set may 

simply be defined to be a collection of objects, called elements, which may themselves 

be numbers, sets, functions, or other constructions deemed necessary. If S is a set, the 

statement "x E 8" is read "x is in 5" and means that x is an element of the set S. 

Likewise, "x 0 5" means that x is not an element of the set S. The symbol 0 denotes 

the empty set, which is the set containing no elements at all. 

Given two sets A and B, A is a subset of B (denoted A C B) if every element of A 

is also an element of B. Obviously, every set is a subset of itself, and if both A C B and 
B C A, then A = B. The empty set, for example, is a subset of every set. Also, letting 

N = {O, 1,2,3 .. .. } denote the set of natural numbers and N = {1, 2,3 .. .. } denote the 

set of nonzero natural numbers, it is clear that N+ c N. Using similar notation, it is also 
clear that IR+ 9 R (here, R+ is not just the set of nonzero real numbers, but instead the 

collection of all real numbers greater than or equal to zero)-
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Next, consider two sets A and B. The union of A and B, denoted AUB, is the set S = 

{x I x E A or x E B}. It consists of all elements in the two sets. Likewise, the intersection 

of A and B, denoted Afli3, is the set S = {x I x E A and x E B}; it consists only of those 

elements which are in both A and B. There is also a "subtraction" operation on sets, 

which is given by A\B = {x I x E A and x V B}. So, A\B contains only those elements 

which are in A but not in B. Finally, suppose A and B are nonempty sets. Then the cross 

product of A with B, denoted Ax B, is given by Ax B = {(x, y) I x  A and  E B}; 

it consists of all ordered pairs (x, y) where x belongs to A and y belongs to B. As a 

notational convenience, A x A is written A2. It is easy to extend the notion of cross 

products to allow ordered triples, quadruples, or, in general, n-tuples. For example, the 

set Rn consists of all n-tuples (x1,. . . , z,-), where xi € R for every 1 ≤ i ≤ n. 

Before discussing functions, it is worthwhile to discuss well-ordered sets. Let X be a 

nonempty set, and let 7 X2. Such a subset is called a relation on X. In this thesis, 7?. 

is called an order relation on X if 7?. is irreflexive (for all x E X, (x, x) 0 7?.), transitive 

(for all x, y, z E X, (x, y) e 7?. and (y, z) E 7?. implies (x, z) E 7?.), and complete (for 

all distinct x, y E 7?., either (x, y) € 7?. or (y, x) E 7?.). Often, the notation "x < y" 

is taken to mean that (x, y) E R. If it happens that every nonempty subset S c x 
has a <,-minimal element (meaning that there is some m E S for which m <R s for 

every s E S\ {m}), then X is said to be well-ordered by R. It is routine to verify that 

both N and N+ are well-ordered by the usual order relation < on the real numbers; note, 

however, that R is not well-ordered by <. That N is well-ordered will be used frequently 

in later sections. 

Now, let X and Y be nonempty sets. A function f from X to 3), denoted f: X - 

is a set f g X x 3) such that (1) for every x E X there exists some y E 3) 50 that 

(X1 Y) E f, and (2) for every x E X, if (x, y) E f and (x, z) E f, then y = z. Here, X 

is the domain of f, and 3) is the codomaim. Property (1) asserts that every x E X must 
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have an image in Y, and property (2) asserts that each x e X has only one image. So, 

the notation f(x) = y really means that (x, y) E f. 

By definition, every x E X has an image f(x) E 3); but, in general, not every y E 3) 

has a preimage in X (that is, an element x E X such that f(x) = y). When every y E 3) 

does have such a preimage, f is said to be an onto function, or a surjection. In general, 

however, preimages are not unique. That is, if f(x) = y for some x E X, it is possible 

that there is some z rh x in X for which f(z) = y as well. If f satisfies the property that 

for all x, z E X, f(x) = y = f(z) => x = z, then f is said to be a one-to-one function, or 

an injection. If f is both a surjection and an injection, then f is a bijection. Bijections 

are useful because, among other reasons, they send distinct elements of X to distinct 

elements of 3) in a manner which "covers" all of Y. Thus, the existence of a bijection 

between two sets indicates that, in an abstract sense, the two sets have the same size. 

For a finite set 8, ISI denotes the cardinality of S (that is, the number of elements in S), 

and if T is another set, then ISI = TI if and only if there exists a bijection between S 

and T. This is perfectly intuitive for finite sets; and although the same is true of infinite 

sets, this thesis will not require knowledge of infinite cardinals, so such matters will not 

be discussed here. 

Given a function f : X - 3), two related sets may be defined. Let A g X. Define 

the image of A to be the set f(A) = {y E 3) I there exists x E A for which f(x) = 

that is, f(A) contains those elements of 3) which are paired with elements of A. f(X) is 

usually called the range of f. Clearly, f(X) = 3) if and only if f is surjective. Similarly, 

if 8 c Y, then the preimage of B is defined as the set 
f'(B) = {x E X I there exists y E B for which f(x) = y}. So, f'(8) contains all ele-

ments x E X for which f(x) E B. If f'({y}) contains exactly one element for every 

y E f(X), then f is said to be invertible and the function f1 f(X) -* X is given by 

f1 (y) = x, where x is the unique preimage of y. 
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Sometimes it is useful to think of a function as a "formula" involving real numbers, 

but quite often the more fundamental (and abstract) idea of a function simply being a 

pairing between two sets is incredibly helpful. Indeed, most of the fundamental theorems 

developed in Chapter 5 require this mindset, as well as command of the set-theoretic 

tools developed above. Still, real-valued functions and sequences play an important role; 

some of their properties are given next. 

2.1.2 Real Functions, Sequences, and Limits 

A real-valued function is simply a function f : D - J, where D is some set (not 

necessarily of real numbers). Most often, real-valued functions are useful due to the 

order properties of R, upon which concepts such as limits and derivatives may be built 

for suitable domains. Unfortunately, the nature of the models in this volume do not 

permit the use of derivatives. For this reason, the following definition of increasing 

functions is used throughout: 

Definition 2.1.1. Let D C Rz and f : D -+ R. Then f is weakly increasing in 

xi if for all (x1,. . . ,x, . . . , x,), (x1) . . . , x,. .. . x,) E D with x > x, it follows that 

f(x1) . . . ,x,. .. ,x,) ≥ f(xi) . . . ,x,, . . . ,x,,). f is strictly increasing if the above state-

ment holds with strict inequality in place of weak inequality, and constant in xi if the 

above statement holds with equality in place of weak inequality. Weakly/strictly decreas-

ing functions are defined similarly. 

So, the idea is that f is increasing in a variable xi if, holding all other variables con-

stant, an increase in xi causes an increase in f. Note that any strictly increasing function 

is necessarily weakly increasing, so any function which is defined to be weakly increas-

ing allows for the possibility that the function is actually strictly increasing. Similar 

statements can be made about decreasing functions. 

8 



A real sequence is a function a : N -+ R; typically, the notation a is used in place 

of a(n) to denote the nth term of the sequence, and (an) refers to the entire sequence. 

A sequence (an) is said to be constant if there exists some c E R such that an = c for 

every n E N; it is non constant if it is not constant (that is, if there are at least two 

distinct n, m E N for which an 54 am ). Since N C R, definition 2.1.1 applies to sequences, 

so increasing/decreasing sequences have already been defined. Finally, a very important 

concept about real sequences is that of a limit: 

Definition 2.1.2. Let (an) be a sequence. Then (an) converges to the limit L E R if for 

all € > 0, there exists N E N such that m ≥ N = Ian - LI < e. The notation a -• L 

indicates that (an) converges to L. 

Obviously, not every sequence has a limit. But if a sequence (an) does have a limit, 

then, by definition, for every C > 0, there is some N E N for which n ≥ N = L - € 

an <L + €; that is, (an) is eventually bounded by the open interval (L - e, L + €). 

2.1.3 Basic Combinatorics 

In this thesis, combinatorics refers to the study of how many ways an object may be 

constructed. For example, if one wishes to determine how many ways an arrangement of 

n objects can be made, combinatorics gives the answer: n!. This "factorial" function is 

defined recursively: 

11 ifn=0 
n!= 

ifn≥1 

Sometimes, it is required to determine how many ways k of n objects can be selected 

and then arranged. This is easily determined by identifying a "recipe" for constructing 

such an ordering: there are n choices for the first object in the arrangement, (n - 1) 

choices for the second, and so on, until finally there are (n - k + 1) choices for the k 1 
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object. So, letting ,Pk denote the number of ways to select and order k of n objects, this 

demonstrates that 

nPkn .(n_ 1).(Th_ 2).(Th_ 1)(flk)j . 

This is the first step toward a formula for how many ways k of n objects may be 

selected, given that order is irrelevant. For example, such a formula would indicate how 

many subsets of size k a finite set of n elements has, because sets have no particular 

order. Let (n) denote the number of ways to select k of n objects without regard to 

order. This is related to ,,Pk in that nPk = W • k!, because the number of ways of 
selecting and ordering k of n objects is given by first selecting the objects, and then 

ordering them. Thus 
(m 
k) = k!(n—k)! 

Of course, all of these equations require that 0 ≤ k ≤ n. These formulas, as well as 

similar counting "recipes", will be used extensively throughout Chapter 5. 
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Chapter 3 

The General Network Effect Model 

The principal objective of this chapter is to specify the vital components of a generalized 

network effect model. Instead of restricting attention to a few select models, the focus is 

on identifying a minimal list of properties which network effect models must reasonably 

satisfy. These properties, developed in sections 3.1 and 3.2, serve as basis for all further 

exposition. 

3.1 Agents and their Utility Functions 

Every model in this thesis is built upon a set X of N agents who must choose one of two 

alternatives: A or B. These could represent goods, technologies, patterns of behaviour, or 

any other (abstract or otherwise) collection of choices exhibiting positive network effects; 

they will simply be referred to as goods. All questions in this thesis revolve around the 

composition of X, the preferences of the agents, and the network effects resulting from 

their decisions. By assumption, agents are one of two types (A or B) and have utility 

functions U : {A, B}2 X N2 -+ R of the form 

Cj, nA, Th13) = v(t, ci) + e(ci, mA, 

where ti E {A, B} is agent i's type, Cj E {A, B} is agent i's decision, and nj is the total 

(final) number of agents who adopt good j for j E {A, B}. The function v : {A, B}2 

R represents the direct (private) utility derived from adopting either good, net of any 

costs from doing so, and the function e: {A, B } x N2 -+ R+ represents the network effect 

from choosing good Cj. 

Letting v represent v(X, Y), one of the defining traits of Type A agents is that 
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vA,A > vA,B; similarly, a characteristic of Type B agents is that VB,B > VB,A. These 

relations indicate that a Type i agent has a higher private value of good i than of good 

j 0 i; it does not say that a Type i agent has a higher private value of good i than 

a Type j i agent does. For instance, it could be the case that VA,A = 2, VA,B = 1, 

VB,A = 3, and V)3,B = 4. In this case, the required inequalities are satisfied even though 

Type B agents value both goods more than a Type A agent does; it does not matter as 

long as the original inequalities are satisfied. 

One way of interpreting the condition v > vij for j =A i is to say that a Type i agent 

prefers a small network of Type i over a small network of Type j (specifically, networks 

of size 1). The other defining characteristic also involves network size; namely, a Type i 

agent should prefer a "large" Type i network over a "large" Type j network. This, and 

several other properties of the network function, are made precise in the next section. 

3.2 The Network Effect Function 

For simplicity, the network function e shall be written as a split function: 

I A(fl'AJ3) ifc=A 
e(c,nA,nB) = 

CB(n13,nA) ifc=B 

This is primarily a notational convenience; since nA and nB are reversed as inputs in the 

two functions, only the general function e(n, ni), where j i, must be characterized. 

Of course, eA and 6B could easily be very distinct functions, but to fully capture a wide 

spectrum of possible network effects, certain conditions must be satisfied. While Swann 

(2002) examines conditions under which a network effect function may reasonably be 

assumed to be linear, no such restriction is needed here. Instead, five key properties are 

identified below. In all cases, assume that i 0 j. 

(P1) e(n, n) is weakly increasing in ni and non constant in n. 
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(P2) e1 (n, n) is weakly decreasing in n. 

(P3) There exists M E JR such that for all nj E N, e(n, n) = M. By 

(P1), this means that e(n, n) ≤ Mi for all n, nj E N. Furthermore, it is 

assumed that vi,j + M > Vj + M. 

(P4) For every nj E N, there exists N E N such that for all ni ≥ N, n) > 

v, + e(n, ni). (This is actually a consequence of (P3), but it is handy to 

state it as a separate property; see below). 

(P5) There exists a nonempty set S' C N such that for all ni E S = 8' U {O}, 

there exists N E N for which nj ≥ N implies v,j +e(m, rt) > mi). 

(P1) asserts that, given n, the value of network i increases as it grows, but that 

it is not necessarily strictly increasing in n; there could be constant regions. But it is 

also non constant (that is, it is not constant everywhere), which makes network size a 

nontrivial consideration. Similarly, (P2) states that network i (weakly) diminishes in 

value as network j increases in size. Since the relation is weak, however, this means that 

ej could actually be constant in n, or at least have constant regions. 

(P3) says that network i approaches some maximum value, M, as ni increases, and 

that this maximum value is the same regardless of the value of n. The intuition is that 

even if network j is large, network i can eventually grow large enough to approach its 

maximum value anyway. The second assumption in (P3) + M > v, + M) is the 

second defining characteristic of Type i agents: they prefer high-value good i networks 

over high-value good j networks. 

(P4), a direct result of (P3), states that for any given nj E N, Type i agents will 

eventually prefer network i as ni increases. To see that (P3) = (P4), fix any nj E N 

and let e = + M) - + M) > 0. Since limni,00 e(n, n) = M, Definition 
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2.1.2 says there is some N E N such that for every ni ≥ N, Iei(ni,mj) - MI < 6. Since 

e(n,n) ≤ M, this means that M - e(n,n) < € = (v + M) - + Mj); canceling 

M and rearranging gives v + M <v + e (ni, n) which, together with e (ni, n) ≤ 

yields v + e(n1, rj) > vij + e(n, n) for every n, ≥ N, and so (P4) is satisfied. 

(P5) states that for some values of ni and nj, a Type i agent will find it optimal to 

adopt good j. But depending on the type of competition between networks, the set S 

of ni values where such an n exists may be restricted. To rule out completely trivial 

models, attention is restricted to models where 1 E S by imposing 5' c N. By (P1), it 
is also obvious that 0 must be in S as well. In fact, (P1) also implies that if k E 5, then 

£ E S for every 0 ≤ £ ≤ k. Therefore, the union of all sets S satisfying (PS) is again a set 

satisfying (P5), and is the largest such set (formally, it is the c-maximal set satisfying 

(PS)). This set, denoted S, can be thought of as the "switching set" for Type i agents; 

it consists of all values of ni for which it is possible for Type i agents to end up selecting 

good j. Depending on how the network functions behave, Sicould be all of N, or it could 

be some proper subset of N, in which case Si= {0, 1, 2, . . . , n} for some ri. 

With these properties in place, it is possible to define some useful notation. Let 

nB E N. Then aA(nB) denotes the smallest value of nA for which VA,A + CA(nA, nB) ≥ 

VA,B + CB(ThB, nA); that is, aA(nB) is the smallest value of nA for which Type A agents 

are better off adopting good A. By (P4), there is at least one possible nA for which this 

inequality is true; as N is well-ordered, this means a minimum such nA exists, and so 

aA(nB) is certain to exist. Next, given nA E SA, /3A(nA) denotes the minimum value of 

nB for which VA,B + eB(nB, mA) > vA,A + 6A(flA, nB); that is, /3A(nA) is the smallest value 

of nB for which Type A agents are better off adopting good B. Again, (PS) and the fact 

that N is well-ordered guarantees the existence of /3A (nA). 

Similarly, for nA E N, I3B(nA) is the smallest nB for which Type B agents are better 

off adopting good B, and aB(nB) denotes the smallest nA (given nB E SB) for which 
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Type B agents are better off adopting good A. 

It is straightforward to prove that aA(nB) is weakly increasing in n3 and that /3A(nA) 

is weakly increasing in nA (provided flA e SA). By symmetry, of course, this means 

that aB(nB) (for nB E SB) and 18B(nA) are weakly increasing functions. It is also 

routine to verify that for all riB E SB, aB(nB) ≥ aA(nB); similarly, for all nA E SA, 

/3A(nA) ≥ /3B(nA). These facts play an important role several proofs. 

3.2.1 Competition Between Networks 

It is possible that growth in the size of one network diminishes the quality of the other. 

This is particularly fitting in cases involving fads: if agents are to choose between two 

different clothing styles, for example, the value of the network effect may depend only on 

which style is more widely adopted (in particular, agents may only be concerned about 

the total fraction of individuals who choose the same style they do). In such cases, the 

networks are said to diminish one another. 

Definition 3.2.1. Suppose i,j E {A, B} and that i j. Then network j diminishes 

network i if there exists some ni E N and n, n € N with n > nj such that e(n, n) < 

e(n, n5). Network j strictly diminishes network i if for every ni E N and all n, n E N 

with n > rid, it follows that e(n,n) < e(n,n). 

So, network j diminishes network i only if (P2) acts non trivially (that is, if ej is non 

constant in n, which means there is at least one region where ej decreases strictly in 

ni). Network j strictly diminishes network i if this is true for all values of ni E N and 

all values of n; the restriction to ni E N+ is taken to ensure that e (-) E R+, since one 

would often expect e(O, 0) = 0. 

If both networks (strictly) diminish each other, then the networks are said to be 

(strictly) competitive; if they are not competitive (that is, if each function ej is constant 

in ni), then the networks are independent. Many types of network effects are independent; 
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consider, for example, two communications networks. If, other things equal, one more 

agent joins network A, then network A improves without diminishing the quality of 

network B. Independent networks also have a useful mathematical property, as illustrated 

in the following theorem: 

Theorem 3.2.1. If networks A and B are independent, then BA and SB are bounded. 

Proof. When the networks are independent, each ei is constant in n, j =h i. Since 

lim e(n, n) = M, regardless of n, and since v + Mi > v + M, there is some 

n for which v + e(n,n) > vij + M ≥ v + e(n,nfl for all nj E N. Since e(.) is 

increasing in n, this inequality actually holds for all ni ≥ n. But this means a Type 

i player is always better off with good i than good j whenever ni ≥ n, making n an 

upper bound for S. 0 

An immediate consequence of Theorem 3.2.1 is that if each Si = N, then the networks 

must be competitive, for otherwise at least one network i would not be diminished by 

the other, resulting in a bounded Sifor that network. Note that if each Si= N, then the 

networks are competitive, but not necessarily strictly competitive; see Appendix A. 1. 

Intuitively, one might suspect that a bounded Siputs limits on how likely coordination 

on one good is, because restricting Sirestricts the number of cases in which it is possible 

for a Type i agent to switch to good j. On the other hand, coordination might also seem 

less likely when the networks are competitive, because Type i agents can strengthen their 

own networks (and diminish the j network) simply by adopting good i. Of course, only 

one of these results may be valid; this issue will surface again in Chapter 4, but will not 

be resolved until Chapter 5. 

It is worth noting that the converse of Theorem 3.2.1 does not hold; that is, a bounded 

Sidoes not guarantee that the networks are independent. Also, one may conjecture that 

for strictly competitive networks, the Si sets are unbounded (that is, Si= N). But this 
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is also false; see Appendix A.1 for examples. 
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Chapter 4 

The Simultaneous Move Game 

4.1 Nash Equilibria in Simultaneous Moves 

The simultaneous move game assumes all of the properties defined in Chapter 3, including 

the five characteristics the network effect functions must satisfy, and also assumes that 

the set X = {x1, . . . , xji} consists of a total population of N = NA + NB agents, where 

N is the number of Type i agents. Decision are made simultaneously or, equivalently, 

each agent makes his decision without any knowledge of the choices of other agents. Each 

agent is assumed to be aware of his own private valuations and v1,1), as well as the 

network functions CA and eB and the preferences of all agents (hence the values of NA 

and NB). 

In this framework, a strategy profile is simply an element of the set S = {A, B}N; 

so, a strategy profile s = (Si,. . . , SN) E S represents the choices of all N agents, with 

Si E {A, B) denoting the choice of agent x. Given an agent xj E X and a profile s E 5, 

the profile. s. = (Si,. .. s1,. . . , SN) refers to the strategies of all players other 

than agent i; for convenience, the notation (si, s_i) refers to the entire profile s. Since 

S E S consists of the choices of all players, the values of mA and mE may be inferred from 

s; let A (s) and B (s) represent the number of A and B choices in s, respectively. Then 

agent i's utility function U(t, Cj, nA, flB) may be written as U1(t, mA(S), mE(S)), or simply 

U(t, s) when the context is clear. This permits the following (standard) definition of 

Nash Equilibrium: 

Definition 4.1.1 (Nash Equilibrium). Let s E S. Then s is a Nash equilibrium if, for 

every 0 i < N and s E {A, B}, it happens that U (ti, (si, s_i)) ≥ U (ti, (s, s_i)). 
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So, a strategy profile s is a Nash equilibrium if no individual agent can improve his 

outcome by changing his strategy, given the strategies of all other players. The first type 

of equilibrium in this game is when all players choose the same good. These are called 

"Pure A" or "Pure B" equilibria, depending on which good is chosen. 

Theorem 4.1.1. If VB,A + 6A (NA +NB, 0) > VB,B +eB(1, NA +NB - 1), then the strategy 

profile where all players choose good A is a Nash equilibrium in simultaneous moves. A 

symmetric statement holds for a pure B equilibrium. 

Proof. The given inequality guarantees that no individual agent of Type B will defect 

and choose good B, given that all other players select good A. Next, since VB,B > VB,A, 

the inequality also shows that VB,B + eA(NA + N2, 0) > VB,A + eA(NA + N2, 0) > VB,B + 

eB(1, NA+NB —1), which implies that eA(NA+NB, 0) > e2(1, NA+NB —1). Combined 

with the fact that VA,A > VA,13, this gives VA,A + eA (NA + NB, 0) > vA,A+e13(1, NA+NB - 

1) > vA,B+eB(1,NA+NB - 1), and so vA,A+eA (NA + NB, 0) > vA,.B+eB(1,NA+NB - 1). 

This inequality guarantees that no individual agent of Type A will choose good B, given 

that all other players select good A. Thus, a pure A equilibrium exists. The proof for a 

pure B equilibrium is similar. 0 

Theorem 4.1.1 is fairly obvious and, trivially, its converse is also true. Closer exam-

ination of the required inequalities, however, reveals that a pure equilibrium of either 

type exists if NA and N2 are sufficiently large. This is demonstrated as a corollary to 

the above theorem. 

Corollary 4.1.2. If NA + NB - 1 ≥ a2 (1), then a pure A equilibrium exists. Similarly, 

if NA + N2 - 1 ≥ A(1), then a pure B equilibrium exists. 

Proof. First, note that by definition of a2, the hypothesis gives VB,A + eA(aB(1), 1) > 

VB,B +eB(1, a2 (1)). Next, since e(n, n) is weakly increasing in ni and weakly decreasing 
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in n, this means that VB,A + eA(NA + NB, 0) ≥ VB,A + eA(NA + NB - 1,0) ≥ VB,A + 

eA(cEB(1), 0) ≥ VB,A + eA(aB(1), 1) > VB,B + 6B (1, czB(1)) ≥ VB,B + eB(1, NA + NB - 1), 

and so VB,A + 6A (NA + NB, 0) > VB,B + eB(1, NA + NB - 1). But this is exactly the 

inequality required by Theorem 4.1.1, so a pure A equilibrium exists. Naturally, the 

proof for a pure B equilibrium is similar. 

Corollary 4.1.2 demonstrates that in all but the most trivial cases, there is both a pure 

A equilibrium and a pure B equilibrium in the simultaneous move game. Specifically, 

the corollary reveals an important condition under which the network effect is actually 

interesting, because without it no Type i agent would ever adopt good j. Therefore, all 

models from this point forward are required to satisfy the following condition: 

(NT) For all i, j E {A, B} with j 0 i, v, v, e, and N must satisfy NA+NB —1 ≥ 

B(1) and NA+NB-1≥/3A(1). 

There is another interesting type of equilibrium which can occur in simultaneous 

moves: a "split" equilibrium where all agents simply adopt the good corresponding to 

their own type. Intuition might suggest that a split only occurs under weak network 

effects (for example, in models where (NT) is not satisfied), but this is not the case. 

The following theorem provides some general conditions under which a split equilibrium 

exists: 

Theorem 4.1.3. If NA - 1 ≥ aA(NB + 1) and NB - 1 ≥ /3B(NA + 1), then there exists 

a Nash equilibrium in simultaneous moves where all players adopt the good according to 

their own type. 

Proof. By definition, NA — i ≥ aA (NB +i) vA,A+eA (NA —1,NB+1) ≥ vA,J3+6B (NB + 

1, NA—i). Since VA,A+eA(NA, NB) ≥ VA,A+eA(NA1, NB+1) ≥ VA,B+eB(NB+1, NA — i), 

no agent of Type A will choose good B, given that all other players choose the good 
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according to their own type. Similarly, NB - 1 ≥ /3B(NA + 1) V13,B + eB(NB, NA) ≥ 

VB,A + eA(NA +1, NB - 1), so no agent of Type B will choose good A, given that all other 

agents adopt the good corresponding to their own type. This gives a split equilibrium in 

simultaneous moves. 0 

Again, Theorem 4.1.3 is quite obvious; however, the hypothesis of Theorem 4.1.3 

may not always be satisfied since aA(•) and /3B() are weakly increasing functions. So, 

for competitive network effects, the hypothesis can fail; see Appendix A.2 for examples. 

Independent networks, however, will always have a split equilibrium provided there are 

enough agents of each type. This is presented as a corollary to Theorem 4.1.3. 

Corollary 4.1.4. If the networks are independent and NA and NB are sufficiently large, 

then there is a split equilibrium in simultaneous moves. 

Proof. Since the networks are independent, Theorem 3.2.1 asserts that SA and SB are 

bounded sets; in particular, there are constants SA, 8B E N such that SA = {O,.. . , SA} 

and SB = {O,. . . , s}. So, if NA ≥ mm (N\SA) and NB ≥ mm (N\SB) then, by definition 

of S, all agents will choose the good corresponding to their own type, and so a split 

equilibrium exists. 0 

Having established the existence of multiple equilibria, it is worthwhile to ask which, 

if any, are Pareto efficient. The easiest way to test for Pareto efficiency in this model is 

to use the Pareto dominance criterion; this is defined next. 

Definition 4.1.2. Let s, s' E S. If U(t,s') ≥ U(t,$) for every 1 ≤ i ≤ N and 

U(t, s') > U(t, s) for at least one i, then s' Pareto dominates s; if p e S is not 

dominated by any other profile, then p is Pareto efficient. 

A surprising fact is that under (P1)-(P5) and (NT), none of the equilibria identified 

thus far are guaranteed to be Pareto efficient; see Appendix A.2 for examples. If, however, 
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each ej is strictly increasing in n, then at least one pure equilibrium is efficient. Before 

stating and proving this fact, a useful lemma is required. 

Lemma 4.1.5. If eA is strictly increasing in nA and eB is strictly increasing in nB, then 

any profile s E S with nA(s) > 0 and nB(s) > 0 does not Pareto dominate any pure 

profile (i) = (i, ... , i) for i E {A, .B}. 

Proof. In the profile (i), the payoff to agents of Type i is v + e(N, 0), and the payoff for 

Type j =A i agents is v + e(N, 0). Now, suppose s E S with nA(s) > 0 and nB(s) > 0. 

There are two cases. First, if at least one Type i agent has chosen i in the profile s, then 

this agent receives utility equal to e(n(s) , ni(s)) < v,+e(N, ni(s)) v,+e(N, 0), 

so this agent is worse off under a than under (i), and so s does not Pareto dominate (i) 

in this case. On the other hand, if all Type i agents choose j in a, then at least one Type 

j agent chooses i in s, because ni(s) > 0. Then this Type j agent receives utility equal 

to v + e(n(s), ni(s)) < vj,i + e(N, ni(s)) ≤ vj,i + e(N, 0), so he is also worse off under 

s. Hence s does not Pareto dominate (i). LI 

Lemma 4.1.5 demonstrates that a pure equilibrium cannot be dominated by an "in-

terior" profile where some agents choose A and some choose B. This is essential for 

demonstrating that at least one pure equilibrium is Pareto efficient; this is made precise 

in the next theorem. 

Theorem 4.1.6. Suppose eA is strictly increasing in nA and CE is strictly increasing in 

nE. Then at least one pure equilibrium is Pareto efficient. 

Proof. Suppose (A) is not efficient. It suffices to show that (B) is efficient. Since (A) 

is not efficient, this means (A) is dominated by some other profile s E 5; in particular, 

s =A (A) implies that either a = (B) or nA(s) > 0 and nB(s) > 0. If nA(s) > 0 and 

nB(s) > 0, then (by Lemma 4.1.5) s does not dominate (A), and therefore it must be the 
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case that s = (B) dominates (A). But this means (B) is efficient, for any a' E S is either 

(A) (which (B) dominates) or nA(S') > 0 and nB(S') > 0, which (by Lemma 4.1.5) means 

s does not dominate (B). Thus no profile a' E S dominates (B), so (B) is efficient. D 

Theorem 4.1.6 guarantees that at least one of the pure equilibria is efficient in any 

given model, but are they both efficient? Indeed, it is possible that they are, but it turns 

out that even with strictly increasing network functions, one of the equilibria may be 

dominated by the other; see Appendix A.2 for examples. Similar issues arise for split 

equilibria: sometimes the split outcome is efficient, but one or both of the pure equilibria 

may dominate it. Again, see Appendix A.2 for an example. 

The above analysis suggests that there is a difficult equilibrium selection (coordina-

tion) problem to be solved. There are many possible equilibria, and even with the non 

triviality condition, criteria for the existence of the qualitatively different types of out-

comes are similar (namely, large Ni). Furthermore, the equilibria are not guaranteed to 

be Pareto efficient, so this does not help solve the selection problem; indeed, which equi-

libria are optimal is highly circumstantial and may vary under changes to the population 

composition or the relative value of the networks. Finally, the simultaneous move game 

may not be a realistic choice problem, because quite often agents are able to observe the 

actions of some of the other agents prior to making their own decision. For this reason, 

two different types of sequential move games are considered in Chapter 5; these allow 

much more to be said about the likelihood of the various outcomes. 

23 



Chapter 5 

Sequential Choice Games 

The elementary components of the sequential move game are the same as those of the 

simultaneous game; there is a set X of N = NA + NB agents who must choose between 

good A or good B, agents of type i have private valuations satisfying v > vij for i j, 

and there are network functions eA and CB satisfying (P1)-(P5) and (NT). Of course, 

choices are now made sequentially, so the order in which agents appear is relevant. A 

bijection w : {1,. . . , N} - X is called a permutation, or ordering, of the agents, and 

may be represented by an N-tuple w = Pi) ... . WN), where wi is shorthand for w(i). The 

collection 92 consists of all possible permutations w; obviously there are N! permutations 

ma 

Exactly which permutation is realized is assumed to be exogenous; letting agents 

choose when to make their decisions opens up some interesting possibilities, but this thesis 

does not address them. Instead, the emphasis is on deriving comparative static results on 

the likelihood of eventual coordination among the agents, which requires an analysis of 

which, and how many, permutations result in coordination. Since the object of interest 

is a likelihood or probability, a random determination of which permutation is realized 

is required. However, no assumption about the probability distribution F : Q - [0, 1] 

imposed on Q is needed to achieve the theoretical results in section 5.3, but for simplicity 

a uniform distribution is used in numerical examples and algorithms. 

Rather than appealing to standard equilibrium concepts such as subgame perfect 

Nash equilibrium (requiring perfect information) or variations on sequential equilibrium 

notions (requiring arbitrary beliefs to support equilibrium strategies), the problem is 

simply viewed as one of dynamic choice. Agents are assumed to know the total number 
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of agents, N, but not the values of NA and NB. So, given an ordering w E Q, each 

agent observes the choices of all previous agents (formally, the jth agent observes the 

choices of all agents in the set {x E X I w 1 (x) <i}) and uses this information, along 

with his own type, to form an expectation about the population composition and future 

decisions. From this information, agents compute their expected utility from selecting A 

or B, and simply act to maximize their expected utility (as a convention, a Type i agent 

will adopt good i if the expected utilities to choosing A and B are equal). From this, one 

may deduce which permutations result in coordination on good A, good B, or neither, 

allowing the probability of such outcomes to be unambiguously determined. 

The tricky bit is in deciding how agents form their expectations. This is a matter of 

taste, and subject to a variety of considerations contingent on what is being modeled. 

This thesis contrasts two opposing cases: the "sophisticated" case (requiring 6A,, 6B, 

VA,A, VA,B, VB,A, and VB,B to be known by all agents), and the "naïve" case (requiring 

Type i agents only to be aware of CA, CB, v, and These models, as well as 

their motivation, are discussed in sections 5.1 and 5.2, respectively, and generalized 

comparative static results for both cases (including "mixed" models which have some 

sophisticated and some naive agents) are presented in section 5.3. Finally, numerical 

examples are discussed in section 5.4. 

5.1 Sequential Decision Making for Sophisticated Agents 

As noted above, sophisticated agents are aware of most relevant parameters in the model 

(N, CA,, eB, vA,A, VA,B, VB,A, and VB,B), but they do not know the values of NA and NB. 

They are also unaware of which order w E l the set X is given, so that they cannot 

always anticipate future decisions perfectly. Instead, each agent k observes the decisions 

already made, and from this determines the values Ak and Bk of A and B adoption 
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decisions made prior their own. Since sophisticated agents know the private valuations 

of both player types, they are able to determine how different types will respond to their 

own decision. That is, agent k, given Ak and Bk, decides the values of Ak+1 and Bk+1, 

and uses this to anticipate how agent k + 1 (and subsequent agents) will behave. This 

requires two constructions: first, agent k must form a probability distribution over what 

sequence of types (not decisions) will occur after him; second, he must be able to evaluate 

each of these sequences to compute the final values of nA and nB, given his own decision 

and the fact that subsequent agents behave optimally. In this way, agent k may compute 

the expected utility to choosing A or B (denoted EUk(A) and EUk(B)), and acts to 

maximize his expected utility. 

For a given agent k, a sequence of types for the remaining N - k agents is called a 

form, and is simply a member of the set 1k = {A, BIN-k . To help distinguish forms 

from other mathematical objects, they will be represented using angled brackets; for 

example, (A, B, B) € .FN-3. To set a probability distribution over the set Fk, agent k 

uses the values Ak and Bk, together with his own type, to estimate the probability of 

an agent being Type A or Type B; in particular, if agent k is Type A, then Pk(A) = 

and Pk(B) = ; if he is Type B, then the probabilities are Pk(A) = and 

Pk(B) = 1. Finally, let tA(F) and t2(F) denote the number of Type A and Type B 

agents, respectively, in the form F E Fk. Then agent k will assign probability Pk(F) = 

Pk(A)tA Pk(B)(5') to the form F. 

Before proceeding further, some explanation of these probabilities is needed. The 

probabilities .Pk(A) and Pk(B), by construction, only give consistent estimates for the 

likelihood of player types if each player chooses the good corresponding to his own type. 

But this need not be the case; once sufficiently many Type A agents have selected good 

A, for example, a Type B agent may find it optimal to choose good A also. But then any 

subsequent agents will have inconsistent probabilities Pk(A) and Pk(B). The difficulty 
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here is that subsequent agents have no way of knowing if everyone else who chose A is 

Type A or not; it could be the case that many consecutive Type A agents appeared, and 

only they selected A's, or it could be the case that some Type B agents along the way 

selected A as well. The given probabilities, however, will result in consistent behaviour, 

in that an agent of Type i will only adopt good j i if all subsequent agents also adopt 

j. 

Next, for every F E let A(FIc) and B(Fc) denote the number of A and B choices 

in F, given that agent k selects c E {A, B}. Only by computing A(FIc) and B(FIc) for 

each c E {A, B} and F E .Fk can agent k determine his expected utility from choosing A 

or B. But determining these values requires a dynamic approach. Let AN be the smallest 

value of AN for which agent N will select good A, regardless of type. This is equivalent 

to the smallest value of AN for which a Type B agent in position N will select A, since 

a Type A agent will also select A if a Type B agent does. So, AN is the smallest AN 

satisfying 

vB,A+eA (AN +1, BN) >vB,B+eB (BN +l, AN) . 

Of course, it is also possible to define a parameter RN, which is the smallest value of BN 

for which agent N of Type A will select good B. It follows that agent N will choose A 

if AN ≥ AN, B if BN ≥ EN , and tN (his own type) otherwise. But agent N - 1 is aware 

of the values AN and LIN , and since agent N - 1 (given AN1 and BN-1) determines the 

values of AN and BN through his own actions, he is able to evaluate A(FIc) and B(FIc) 

for c E {A, B} and F E FN_1 = {(A), (B)}. This means he can compute EUN_l(A) 

and .EUN_l(B), and thereby the values AN_i and N-1 may be defined similarly to AN 

and BN. Then agent N - 2 is aware of the values AN_i and N1 and, by a similar 

process, this allows AN-2 and N-2 to be defined. In general, agent k < N uses the 

values Ae and Be for £> k to evaluate A(FIc) and B(FIc) for each F E .'Fk, and in this 

way computes EUk(A) and EUk(B) in order to make an adoption decision. Note that 
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since Ak + Bk + 1 = k, Ak and Bk may not be defined for small values of k; in that 

case, they will simply be set to oo, with the understanding that no history of choices are 

sufficient for agent number k to switch his choice. 

Given 1 ≤ k ≤ N, let N = {(p,q)EN2 p+q+l=k}. Then, agent k's choice 

function Ck : {A, B} x N2 - {A, B} is given by 

A ifAk≥Ak 

Ck(tk, Ak, Bk) = B if Bk ≥ Bk 

tk otherwise 

Note that, given Ak, Bk, and Ak+1' ... ,Ar, EUk(A) is 

EUk(A) = Vtk,A + >, Pk(F)eA(Ak + 1 + A(FIA), Bk) 
FEFk 

and that EUk(B) may be defined similarly. Ak is therefore the smallest value of Ak 

for which EUk(A) > EUk(B), and Bk is the smallest value of Bk for which EUk(B) > 

EUk(A). 

With this notation in place, algorithms may be devised to compute how many per-

mutations of the N agents result in an A cascade, a B cascade, or a split outcome. An A 

cascade is simply an ordering w E n in which at least one Type B agent chooses A, be-

cause then all subsequent agents choose A. B cascades are defined similarly. The notion 

of a cascade, however, relies on the property that if a Type i agent chooses j =A i, then all 

subsequent agents will choose j as well. This is inarguably the most important property 

for a network effect model to have. Let (Ni) = (NA, NB), (v,) = (VA,A, VA,B) VB,A, vB,B), 

(e) = (eA, eB), and (ci) = (c1, . . . , CN) be a vector of choice functions (not necessar-

ily the sophisticated choice functions described thus far). Then the collection M = 

((Ni), (e), (ci)) is a model, for it contains all relevant information for constructing 

a sequential choice model. The Cascade Property is therefore defined as follows: 

Definition 5.1.1 (The Cascade Property). A model M = ((Ni), (ed), (ci)) satisfies 
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the Cascade Property if for every permutation w E ci, every i, j G {A, B} with i 54 j, and 

every 1 ≤ k ≤ N with tk = i, it happens that Ck(i, Ak, Bk) = j == c(te, A, B) = j for 

every k ≤ £ ≤ N. 

Luckily, any model with sophisticated agents (that is, any model where the functions 

(ci) are those given above) will satisfy the Cascade Property. 

Theorem 5.1.1. Let M be a model with sophisticated agents. Then M satisfies the 

cascade property. 

At first glance, the Cascade Property seems like a trivial matter to verify, for intuition 

strongly suggests that it must be true. If, for example, one Type B agent optimally selects 

A, then his expected payoff to choosing B must be fairly bleak compared to choosing A. 

A subsequent Type B agent will then have an even worse expectation from choosing B, 

because now one more A choice is locked in (diminishing the quality of a B cascade if 

one were to occur), and his subjective probability of a Type B agent occurring is also 

lower, so that the probability of a Type .8 cascade is also diminished. These statements 

are much more difficult to verify rigorously, however, so the (lengthy) proof is given in 

Appendix A.3 instead. 

As mentioned previously, subjective probabilities are inconsistent once, for example, 

a Type B agent selects A. But if all agents are using these probabilities, then their 

behaviour will be consistent due to the Cascade Property; the first Type B agent to select 

good A will only do so if he finds it optimal to do so, and he assumes that all others are 

using the same decision procedure, so that by selecting A he is guaranteeing for himself 

that all subsequent agents select A as well, regardless of their types, and regardless of 

how probable those types are. Formally, a consequence of the Cascade Property is that 

Ak + 1 ≥ Ak+1• So, by using this decision algorithm, sophisticated agents are able to 

properly deduce outcomes, even though their estimates of the population composition 
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will be inconsistent. 

With the Cascade Property in place, it is now possible to formulate algorithms for 

finding out how many permutations result in A cascades, B cascades, or split outcomes. 

This is detailed in the next section. 

5.1.1 Pure Cascades, General Cascades, and Split Outcomes for Sophisti-

cated Agents 

A pure cascade is one in which every agent chooses the same good. This possibility, of 

course, is motivated by the equilibrium results in the simultaneous move game. Given 

that sophisticated agents satisfy the Cascade Property, counting the number of permuta-

tions which result in a pure A cascade, for instance, is fairly simple. All that is required 

is to find out how many leading Type A agents are needed to ensure that a subsequent 

Type B agent will select A. Let A* be the minimum number of leading Type A agents 

required to cause an A cascade (formally, A* is the smallest integer k so that k ≥ 4k+1)• 

Then, by the Cascade Property, any combination of agent types may follow the initial 

A* Type A agents, so that the number of permutations which result in a pure A cascade 

is 

NA PA- (N - A*)! = (NA) A*! (N - A*)! = NA! (N_A*)! (5.1) 
(NA - 

The term NA PA* gives the number of ways to select and arrange the initial A* Type A 

agents, given that there are NA Type A agents available to choose from, and (N - A*)! 

counts the number of ways to arrange all remaining agents. 

Some caution is needed, however, because this construction assumes that 1) the value 

A* exists (that is, a value k exists so that if the first k agents choose A, then all subsequent 

agents will choose A), and 2) A* ≤ NA. Whether these considerations hold or not depends 

on all parameters of the model. It is therefore necessary to restrict attention to models 

where cascades are actually possible. More precisely, attention must be restricted to the 
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set M(N) of models ((Ni), (ed), (ci)) where NA + N2 = N and both types of pure 

cascades are possible. Of course, every model M E M(N) also satisfies (P1)-(P5) and 

(NT). 

Given that expression 5.1 yields the number of permutations resulting in a pure A 

cascade, and assuming a uniform distribution over the NI possible permutations, the 

probability of a pure A cascade is given by 

NA! (NA +NB _A*)! (52) 
(NA + NB) !(NA - 

Using this expression, simple comparative static results may be derived. For example, 

routine algebra verifies that the probability is strictly decreasing in A*, strictly increasing 

in NA, and strictly decreasing in N2. This is intuitive, because if more leading A's are 

required for a pure A cascade, then one would expect such a cascade to be less likely. 

Similarly, if the proportion of Type A to Type B agents increases (decreases), then one 

would expect the probability of a pure A cascade to increase (decrease). Comparative 

statics are treated separately in section 5.3, so at present it is best to think of expressions 

5.1 and 5.2 simply as algorithms for computing the probability of a pure A cascade in a 

given model. Naturally, similar formulas may be derived for pure B cascades. 

A general A (or B) cascade is simply an A (or B) cascade; the term general is used to 

distinguish this case from pure cascades, although every pure cascade obviously qualifies 

as a general cascade. For this reason, no modification to the definition of M(N) is needed, 

because guaranteeing the existence of pure cascades trivially guarantees the existence of 

general cascades as well. The procedure for counting the number of general cascades, 

however, is considerably more involved than that for pure cascades. Once again, the 

algorithm will be outlined for the case of A cascades; the procedure for B cascades is 

analogous. 

Given a model M E M(N), let FA C {A, BIN denote the set of forms which result 
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in an A cascade. Then F may be represented by the sequence 

F = ((a1), (b1), (a2), (b2), . . . , (a,._1), (b_1), (an), *) 

where (as) represents a sequence of ai consecutive A's, (b) represents a sequence of b 

consecutive B's, and * represents any combination of A's and B's so that F has length 

N. Some restrictions are needed for this representation to be useful. In particular, each 

bi is strictly greater than zero, and for every 1. <i ≤ n, ai > 0 as well. But a1 ≥ 0 since 

a1 = 0 is needed to describe forms which begin with a B. In addition, it is assumed that 

the final segment of A's, (as), is the segment which causes an A cascade, and that given 

(a) and (b) for i < n, a is the exact minimum number of additional Type A agents 

needed to cause the cascade. To ensure that the outcome is not a split outcome, it must 

also be the case that bi <NB; in this way, at least one Type B agent will choose 

A. There are also only NA Type A agents available, so ai ≤ NA is needed as well. 

Since (an) is the segment which causes an A cascade, all prior segments may not 

cause cascades of either type. In particular, a1 is restricted so that a1 < 4ai+1' b1 is 

restricted so that b1 < 1+bi+1' a2 is restricted to a1 + a2 < l+bl+a2+1' and so on. 

In general, aj must satisfy ai < and bi must satisfy 

Finally, (an), being the segment which causes an A cascade, must satisfy 

a = A segment (a) for i <n is said to be maximal i a = 

41(aj+bj)+1 - 1; that is, (a) is maximal if adding one more Type A agent to it causes 

an A cascade. Maximal (b) segments are defined similarly. Note that .FA contains all 

possible forms which result in an A cascade, and therefore will contain forms which have 

maximal A segments, maximal B segments, or both, provided that non-pure cascades 

exist. 

Given a form F E FA, how many permutations in Q will satisfy F? Letting PermA(F) c 
be the set of permutations satisfying form F and IPermA(F)I the number of permu-
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tations in this set, observe that there are NP,,, ways of selecting and arranging the first 

segment (a1), there are NBPbl ways of selecting and arranging the segment (b1), there are 

NA—a1a2 ways of selecting and arranging the segment (a2), and so on, until finally there 

are (N - E'-'(a  + b) - an )! ways of arranging all remaining agents after the segment 

(an). Therefore, JPerMA(F)J is equal to 

(NAPal) (NB-Pbj) (NA-aj1a2) (NB-b11b2) (NA - (al+a2)P a3) (NB-(b1+b2)1 3) 

(NB_r--2 bibn 1) ('—E--1ajPa-) (N - (a + b) - an)!. 

(5.3) 

Noting that nPk = (n)(n - 1)... (ri - k + 1) and rearranging the terms, expression 5.3 

becomes 

(NA)... (NA 
n 

i=1 

ai+1 ).(NB) ... (NB _bi+1)( 
i=1 i=1 

a + b) - an)!. 

Simplifying this expression yields 

N— E 
- NA!NB! (' 

PermA (F) - (a+b) - an)! (5.4) 
(NA —Elaj)!(NB—Ebi)! 

With the function IPermA(F) in place, it is possible to compute the total number of 

permutations which result in an A cascade. Letting 

A PermA(F) 54 FYA 

denote the set of all permutations for which an A cascade occurs, and noting that 

PermA(F) n PermA(F') = 0 whenever F F', it follows that 

Al = > IPermA(F)I, 
FE.'FA 

and so 1j is the probability of a general A cascade occurring. Naturally, the sets .F13 c 
{A, BIN , PermB(F) c , and may be defined similarly, so that IPerm3 (F)l and 

181 may also be determined. 
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For split outcomes, it is possible to characterize all forms in a manner similar to 

that for general cascades. But since the only possible outcomes are general A cascades, 

general B cascades, or split outcomes, it is easier to simply compute the number of splits 

as ISI = N! - Al - Il, and so the probability of a split is just isl• 
While it was possible to deduce some comparative static results for the probability 

of a pure cascade in a combinatorial manner, there is little hope of doing so for general 

cascades; the dynamics are more involved, and the distinction between the number of 

forms versus the number of permutations adds another layer of complexity in computing 

how the probability reacts to various parameter modifications. A higher-level approach 

is needed; before delving into this, however, a similar framework is developed for naïve 

agents. 

5.2 Sequential Decision Making for Naïve Agents 

In many ways, agents in the sophisticated model are very "ideal"; they have perfect 

knowledge of the private valuations of both types of players, and they use this infor-

mation to anticipate how all remaining agents will respond to their decision. But the 

informational assumption is questionable in many applications, and the notion that each 

agent performs a complex series of dynamic computations is troublesome as well, espe-

cially when N is large. Sophisticated agents use these calculations to recognize whether 

or not they are in a cascade (or about to start one through their own decisions); naïve 

agents, on the other hand, do not recognize if they are in a cascade (or about to start 

one). Instead, they take their subjective probabilities of player types as given properties 

of the world, and use these probabilities to examine the likelihood of different outcomes 

(that is, the different final values of nA and flB) using the binomial distribution. Once 

again, these subjective probabilities will be inconsistent once an agent chooses to switch 
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networks. The difference now is that naïve agents will not even correctly identify all 

outcomes resulting from their actions, because they do not recognize cascades. The term 

naïve, then, is quite fitting. 

5.2.1 Utility Maximization for Naïve Agents 

Suppose agent i (1 ≤ i ≤ N) has observed Ai agents select A, and Bi agents select B. 

What is agent i to do? Letting P(A) denote the subjective probability of an agent being 

Type A (from agent i's perspective), it is clear that if agent i is Type A, then P(A) = A-1  

and that P(B) = 1 - P(A) = if i is Type B, then P(A) = and P(B) = 

These probabilities can be used to form a binomial distribution on the set of possible 

outcomes, for after i makes his adoption decision, there are only N - A - B - 1 = N - i 

agents remaining. Then, if ti E {A, B} denotes agent i's type, his expected payoff from 

choosing A (denoted EU(A I t, N, A, B)) is 

Vt,A + E (N_ i) P .(A)i P(B)N_i_i eA(A + 1 +j,N - A - 1. (5.5) 

j=O  1 ' Utility derived when nA = Ai + 1 + j 
Prob. of j additional A's 

Similarly, the expected payoff from choosing B, denoted EU(B I t, N, A, B), is 

N—i 

VL1,B + (N— i) Pj(B)iPj(A)_i_ieB(Bi +1+ j, N - B - 1 - j). (5.6) 

In this way, all agents can make their decision by comparing EU(A I t, N, A, R) and 

EU(B I t, N, A, B) (by convention, a Type i agent will adopt good i if the two quan-

tities happen to be the same). Like the sophisticated case, variables Ai and Ri may be 

defined as the smallest values of Ai and Bi which will cause agent i to choose A or B, 

respectively, regardless of type. So, for instance, Ai is the smallest value of Ai for which 

EU(A I B, N, A, B) > EU(B I B, N, A, B); noting that Bi = i - 1 - A, this means 
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Ai is the smallest value of Ai for which 

VB,A + (N_ i) P(A)iP(B)N_i_i eA(A +1+ j, N - A - 1 - j)> (5.7) 

VB,B + (N— i)P.(B)iPi(A)N_i_ieB(i - A + j, N - i + A -  

Of course, fi may be defined analogously. This allows the choice function Ck : {A, B} x 

- {A, B} for naïve agents to be given by 

A ifAk≥Ak 

Ck(tk,Ak,Bk) B ifBk≥ k 

tk otherwise 

and so the same combinatorial approach to pure and general cascades will work, provided 

the choice function c for naïve agents satisfies the Cascade Property. Fortunately, it does: 

Theorem 5.2.1 (Cascade Theorem for Naïve Agents). Let M E M(N) be a model with 

naïve agents. Then M satisfies the cascade property. 

Like the sophisticated case, intuition strongly suggests that this theorem must be 

true, but it is actually a nontrivial matter to prove it rigorously. Due to length and 

technicality considerations, the formal proof is given in Appendix A.4. 

5.2.2 Pure Cascades, General Cascades, and Split Outcomes for Naïve Agents 

Like the sophisticated case, the number of permutations which result in a pure A cascade 

is given by 

NAPA '(N - A*)! = (NAA* ) A!(N - A*)! = NA! (N_A*)! 
(NA -

A*)! 

where A* is the smallest integer k so that k ≥ Ak+1. The only difference now is the 

specific condition this implies. Note that for the first Type B agent after k initial 
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ki  Type A's, Pk(A) - k and Pk(B) = . Thus Pk(A)ipk(B)Nku i - — (k+i)N_1_1 —r 
N_i_i = (k+i)N_1 k"_1  and Pk(B)iPk(A) For naïve agents, therefore, A* is the smallest 

integer k so that 

VJ3,A + 

N-k-1 

j=o 

(N—k-1\  k  
i ) (k + l)N_k.1 eA(k + 1 + j, N - k - 1 - i) > (5.8) 

V13,B + 

N-k-

j=o 

(N - k - 1" kN_i_i 
j ) (k + l)N_k_i eB(1 + j, N - I - j). 

For general cascades, the counting procedure for sophisticated agents will also work 

for naïve agents; the only difference is that the values Ai and Ei satisfy different equa-

tions here than they do in the sophisticated case. For naïve agents, then, the set A of 

permutations resulting in A cascades also originates from the sets PermA(F) for every 

F E FA, with the understanding that agents now use the binomial distribution. 

These combinatorial properties suggest that the naïve and sophisticated models, de-

spite differences in informational and behavioural assumptions, behave similarly to one 

another. In the next section, the Cascade Property is shown to be the vital link between 

the two, and that this property ensures both models will have the same comparative 

static properties. 

5.3 General Comparative Statics 

The sophisticated and naïve models are, in a sense, complete opposites of each other. 

Sophisticated agents have more information available to them, and they use this infor-

mation to recognize cascades. In contrast, naïve agents have limited information and 

do not recognize cascades. Despite this, both types satisfy the Cascade Property. This 

section shows how any network effect model satisfying the Cascade Property will behave 

under various parameter changes. 

The main object of interest is the probability of coordination in a generalized model 
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M(N). Whereas the models in the sophisticated and naïve cases were restricted to contain 

only sophisticated or only naïve agents, respectively, the generalized model M(N) may 

contain any collection of agents satisfying the Cascade Property, including mixtures of 

sophisticated, naïve, or even other kinds of agents, provided they all satisfy the Cascade 

Property. 

Demonstrating these results relies on the fact that the sets A and B of permutations 

resulting in A and B cascades, respectively, are both finite, so that if these sets change 

in size, the probability of coordination changes accordingly, regardless of the probability 

distribution imposed on c≥. To avoid notational difficulties, it is assumed that all models 

in M(N) originate from the same set X = {x, ... , x} of N agents, so that each agent 

may be uniquely identified in each model, but that agent types may vary across models. 

For example, if M, M' E M(N) are models where N > NA (forcing N < N2 since 

there must be a total of N agents), then both models still have the same set of agents, 

but the types associated with some of the agents have changed. This is useful for directly 

converting a permutation w E Q of model M into a permutation w' € l' of M'. For 

a subset S of n, let 0 : S - f' be the identity map. To understand exactly what this 

map does, recall that a permutation w is really a bijection w {1, . . . , N} - X, with 

Wi = w(i) representing the particular agent which appears in position i. Thus 0 sends 

an ordering of X to the same ordering. Obviously = el', but it is sometimes useful 

to distinguish between them so that it is clear which model is being analyzed. Note 

that 0 is an injection, and that every permutation w may be identified with a sequence 

((W1, kil) I I . . , (WN )tWN )), where wi is the ith agent and t is that agent's type. 

The basic principle behind the following demonstrations is that if (A) c A', then 

A 9 A', which means JAI ≤ IA'l. This means the probability of an A cascade is at least 

as large in model M' as it is in M. Being the identity map, the condition q(A) c A' 

may seem trivial, but the usefulness of this method is apparent when an agent changes 
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type, so that his position may be kept constant for comparison purposes. 

The first comparative static result involves an increase in how valuable one network 

is relative to the other. For example, the value of network A could increase relative 

to network B if private valuations Vt,A have increased or if the network function eA has 

transformed to attain higher values over the entire domain N2. Or, it could be that private 

valuations for network B have decreased, or that eB has decreased, or any combination 

of these events. This is made precise in the following definition: 

Definition 5.3.1. Let M, M' E M(N). Then switching from model M to M' is said to 

increase the value of network i relative to network j =A i if each of the following conditions 

is satisfied: 

1. for every k E {A, B}, ≥ vk,; 

2. for every k E {A, B}, v ≤ vk,; 

3. for all nA, nB €N, e(n1,n)' ≥ e(n,n1); and 

.4. for all nA, nB EN, e(n,n)' ≤ e(n1,rt). 

The increase is said to be nontrivial when at least one of the above statements is satisfied 

with strict inequality in place of weak inequality. 

Intuitively, one would expect an increase in the value of one network to increase the 

probability of a cascade on that network. This is indeed correct. Let P(pure) and P(i en) 

denote the probability of a pure i cascade and a general i cascade, respectively, for some 

i E {A, B}. Consider the following: 

Theorem 5.3.1. Let M, M' E M(N) be models where each choice function satisfies the 

Cascade Property. If switching from M to AT increases the value of network i relative 

to network j h i, then P(ipure I M') ≥ P(ip re I M) and P(Ggm I M') ≥ P(Gen I M). 
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Proof. For simplicity, the proof is given for the case of A cascades. Given a permutation 

w E A which results in an A cascade (pure or otherwise), let wi be the first Type B agent 

in w to choose A. This means EU(A) > EU(B) in model M. The same permutation 

O(w) in model M', however, must also have EU(A) > EU(B) for the same agent w, 

because the relative increase in value for network A implies that every possible outcome 

from selecting A is at least as good in M' as it is in M, and that every possible outcome 

resulting from the choice of B in M is at least as good as it is in M'. Hence, agent w 

will select A in model M'. By the cascade property, this means w will also result in an 

A cascade in M', so both Apure 9 Apure' and AG., c A en'. If the relative change is 

sufficiently large and if 8Gen\l3pure 0, then there is also a permutation w E 8 where a 

Type B agent who, in M, selected B, but will now select A (for example, the first Type 

B agent after a maximal segment of Type A agents will switch to A if the relative increase 

is sufficiently large). So, in some cases, the previous subset relations are strict. 0 

In Chapter 3, the concept of competitive networks was introduced. Central to this 

concept was the notion of one network diminishing the other (see Definition 3.2.1). It 

is possible to compute some basic comparative statics in relation to how the networks 

diminish each other, provided one can define what it means for networks to become more 

competitive. This is difficult and subjective, but the following definition is suitable in a 

variety of cases: 

Definition 5.3.2. A competitive diminishing of network i by network j =A i is a trans-

formation of ei to e so that for all n, nj E N, e(n, ni)' ≤ e(n, ni). The diminishment 

is said to be nontrivial if e(n, n) < e(n, n) for at least one pair (ni, ni). 

The idea is that, for example, network B will diminish network A more if it weakly 

decreases the value of eA on its entire domain. Of course, it could be that network A 

has simply decreased in value without the networks being more "competitive", so some 
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caution is needed in applying this definition. One example where network B diminishes 

A in a competitive sense is if e'A(flA, nB) = eA(max{O, nA - n3}, nB). This is simply a 

rightward "shift" of eA, resulting in lower values, and the size of the shift is proportional 

to the increase in nB. Thus, the greater in magnitude network B is, the more network A 

suffers (although, holding nB constant, network A can still approach the same maximum 

value MA that it could before the transformation). 

To see how such a diminishment affects the probability of coordination on A or B, 

notice that a competitive diminishing satisfies the definition of an increase in network 

B relative to network A (or, equivalently, a decrease in the value of network A rela-

tive to network B). So Theorem 5.3.1 applies, and the probability of A cascades will 

decrease while the probability of B cascades will increase. The size of these changes 

depends on the size of the diminishment. Consequently, the effect is ambiguous if both 

networks transform so that they competitively diminish each other. Without specify-

ing all functions and parameters of the model, including the transformed functions, it 

is impossible to determine which effect will dominate. Thus no general conclusion may 

be drawn regarding how competition between networks affects the probabilities of the 

various outcomes. 

Finally, comparative static results may be deduced for changes to the population 

composition, NA and N3. If, for instance, an agent changes from Type A to Type B, 

one would expect the probability of a B cascade to increase. This intuition is correct, as 

the following theorem demonstrates. 

Theorem 5.3.2. Let M, M' E M(N) be models where each choice function satisfies the 

Cascade Property. If Ni'> N, then P(pure M') ≥ P(ipure I M) and P(i0 I M') ≥ 

I M). 

Proof. For simplicity, the proof is once again given for A cascades. Let w be a permutation 

of the agents. Note that if NA < N (under the interpretation that the set of Type A 
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individuals has expanded in model M'), then any of the new Type A agents who originally 

selected good A in w will still select A, so that if w was an A cascade in .M, it will still 

be an A cascade in M'. 0 

All of these results indicate that the Cascade Property is, indeed, an essential property 

for a network effect model to have, and that it is likely the relevant characteristic to look 

at when exploring new conjectures at this level of generality. Ignoring this property, for 

example, makes proving the above results for heterogeneous models (that is, those which 

include both sophisticated and naïve agents) extremely difficult, if not impossible. Indeed, 

the dynamic aspect makes proving comparative static results for general cascades even 

in homogeneous models extremely difficult as well. It follows that identifying primitives 

like (P1)-(P5), which help ensure the Cascade Property, should be made a priority when 

constructing new network effect models. 

5.4 Numerical Examples 

The comparative statics derived in section 5.3 show how the probabilities of various 

outcomes change as different model parameters are modified, but due to the level of 

generality, nothing has been said about the magnitudes of these changes (or even initial 

probability sizes), and nothing has been said about the degree of coordination in non-

pure cascades. In this section, a number of concrete examples are given using a Java 

implementation of the algorithms derived in section 5.3. 

Four different network effect functions are used. Consider first the function 

e(n,n) = { 0 ifn=n=0 

ni 
ni+nj 

5 otherwise 

This is a simple, strictly-competitive network function where agents are only concerned 

about the ratio of ni relative to the total number of decisions made. This is useful for 
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constructing strictly competitive models. Note that e1(n1, n) never attains the maximum 

value of 5 if nj > 0. Next, consider the function 

e(n1,m) = 
ml 

m1 + 1 
12. 

This is similar to e1, except that the value of network i does not depend on the the size of 

the other network. This will be used for constructing examples of independent networks. 

Note that e2 never attains a maximum value, although it has a least upper bound of 12. 

Another function for creating independent networks is 

d (mi, n) = { m1 - 1 if n <5 

S ifm1≥5 

The main difference between e3 and e2 is that e3 actually attains, and remains constant 

at, a maximum value of 5 once 5 agents have joined the network. Clearly, then, this 

function is only suitable for models with a relatively small population size (such as the 

N = 5 and N = 10 cases illustrated first). For larger populations (like N = 20 and 

N = 25, examined afterwards), a similar function is given by e4: 

aL 4 J ifn<15 
e1(n,m) = s 

15 ifn1≥15 
The only other ingredient needed is a set of private values vi,i, vjj for each i, j E 

{A, B}. All models will consider two cases: a "symmetric" case where VA,A = 4 = 

and VA,B = 1 = VB,A, and an "asymmetric" case where VA,A = 4, VA,B = 1, VB,B = 3, and 

vB,A = 2. Various population compositions are then imposed, and outcome probabilities 

computed. As the reader may verify, each model satisfies the properties (P1)-(P5) and 

(NT). 

Table 5.1 gives outcome probabilities for naïve agents in the symmetric model with 

N = 5 and N = 10. The labels are self-explanatory, except for NB (A) and NA(B); NB (A) 
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represents the average (expected) percentage of Type B agents in the given population 

who choose good A, given that an A cascade occurs. NA(B) is defined similarly. Similar 

results are given in table 5.2, which gives outcome probabilities for sophisticated agents. 

The first thing to notice is that, in a number of cases, the outcomes are identical for 

sophisticated and naïve agents, and that sophisticated agents generally are less likely to 

have split outcomes. Indeed, for a given model, the probability of a split for sophisticated 

agents never exceeds that for naïve agents. This is a common theme throughout all of 

the simulation results, suggesting that a general theorem in this regard may be provable. 

Table 5.1: Outcomes for Naïve Agents and Small N. 

(VA,A,VA,B) = (4,1) 
(vB,B,vB,A)=(4,1) 

Population Composition (NA, NB) 

(4,1) (3,2) (2,3) (1,4) (9,1) (7,3) (5,5) (2,8) 

- 1 
CA I 
CB - B 

P(Apure) 
P(AGCfl) 
E[N(A)] 
P (Bpure) 
P (B0) 
E[NA(B)] 
P(Split) 

0.4 
0.4 
100% 
0 
0 
- 

0.6 

0.1 
0.1 
100% 
0 
0 
- 

0.9 

0 
0 
- 

0.1 
0.1 
100% 
0.9 

0 
0 
- 

0.4 
0.4 
100% 
0.6 

0.6 
0.6 

100% 
0 
0 
- 

0.4 

0.1667 
0.2 

94.4% 
0 
0 
- 

0.8 

0.02381 
0.02381 

100% 
0.02381 
0.02381 
100% 
0.9524 

0 
0 

- 

0.3333 
0.5111 
82.6% 
0.4889 

- 2 
CA I CA 
CB - eB 

P(Apure) 
P(AGCfl) 

E[NB(A)] 
P (Bpure) 
p (B0 ) 
E[NA(B)] 
P (Split) 

0.4 
0.4 
100% 
0 
0 
- 

0.6 

0.1 
0.1 

100% 
0 
0 
- 

0.9 

0 
0 

- 

0.1 
0.1 
100% 
0.9 

0 
0 

- 

0.4 
0.4 
100% 
0.6 

0.6 
0.6 

100% 
0 
0 
- 

0.4 

0.1667 
0.1667 

100% 
0 
0 
- 

0.8333 

0.02381 
0.02381 

100% 
0.02381 
0.02381 
100% 
0.9524 

0 
0 

- 

0.3333 
0.4222 
89.5% 
0.5778 

- 3 
CA I Ct 
eB - CB 

P (Apurc) 
P (A00 ) 
E [NB (A)] 
P (Bpure) 
P (B0 ) 
E[NA(B)] 
P(Split) 

0.6 
0.6 
100% 
0 
0 
- 

0.4 

0.3 
0.3 
100% 
0.1 
0.1 
100% 
0.6 

0.1 
0.1 
100% 
0.3 
0.3 
100% 
0.6 

0 
0 
- 

0.6 
0.6 
100% 
0.4 

0.7 
0.7 

100% 
0 
0 
- 

0.3 

0.2917 
0.4417 

88.7% 
0.008333 
0.008333 
100% 
0.55 

0.08333 
0.09524 

97.5% 
0.08333 
0.09524 
97.5% 
0.8095 

0 
0 

- 

0.4667 
0.7333 
81.8% 
0.2667 

Tables 5.1 and 5.2 also provide concrete examples of how changes to the population 

composition affect the likelihood of different outcomes. Models where Type A agents 

greatly outnumber Type B agents have greater probabilities of A cascades, and this 

probability gradually diminishes (and the probability of B cascades gradually increases) 

as the population composition shifts to favour Type B agents. As one would expect, 
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Table 5.2: Outcomes for Sophisticated Agents and Small N. 
(VA,A,VA,B) = (4,1) 
(vB,B,vB,A)=(4,1) 

Population Composition (NA, NB) 
(4,1) (3,2) (2,3) (1,4) (9,1) (7,3) (5,5) (2,8) 

P (Apure) 0.6 0.3 0.1 0 0.8 0.4667 0.2222 0.02222 

P(A en) 0.6 0.3 0.1 0 0.8 0.5667 0.2302 0.02222 

- 

CA I 
1 E[N(A)] 

P (Bpure) 
100% 
0 

100% 
0.1 

100% 
0.3 

- 

0.6 
100% 
0 

94.1% 
0.06667 

99.3% 
0.2222 

100% 
0.6222 

eB - eB P (BGen) 0 0.1 0.3 0.6 0 0.06667 0.2302 0.8 

E[NA(B)] - 100% 100% 100% - 100% 99.3% 88.9% 

P (Split) 0.4 0.6 0.6 0.4 0.2 0.3667 0.5397 0.1778 

P(Apure) 0.4 0.1 0 0 0.6 0.1667 0.02381 0 

P(A0) 0.4 0.1 0 0 0.6 0.1667 0.02381 0 

- 2 
CA I e 

E[N2 (A)] 
P (Bpure) 

100% 
0 

100% 
0 

- 

0.1 
- 

0.4 
100% 
0 

100% 
0 

100% 
0.02381 

- 

0.3333 
eB - eB P (Bcj) 0 0 0.1 0.4 0 0 0.02381 0.4222 

E[NA(B)] - 
- 100% 100% - 

- 100% 89.5% 

P (Split) 0.6 0.9 0.9 0.6 0.4 0.8333 0.9524 0.5778 

P (Apure) 0.8 0.6 0.4 0.2 0.7 0.2917 0.08333 0 

P (AGcn) 0.8 0.6 0.4 0.2 0.7 0.4417 0.09524 0 

3 
- CA I e 

E[N(A)] 
P (Bpure) 

100% 
0.2 

100% 
0.4 

100% 
0.6 

100% 
0.8 

100% 
0 

88.7% 
0.008333 

97.5% 
0.08333 

- 

0.4667 
CB eB P (Bc3) 0.2 0.4 0.6 0.8 0 0.008333 0.09524 0.7333 

E[NA(B)] 100% 100% 100% 100% - 100% 97.5% 81.8% 

P (Split) 0 0 0 0 0.3 0.55 0.8095 0.2667 

the probability of a split outcome is greatest when there are roughly the same number 

of Type A and Type B agents, and lowest when one type significantly outnumbers the 

other. 

It is worth mentioning that even though each of these models satisfies (P1)-(P5) and 

(NT) (in particular, conditions which guarantee purely coordinated equilibria of both 

types in the simultaneous move game), some of these models in fact have a 0 probability 

of either an A cascade or a B cascade. In all cases, the reason for this is that there are 

simply not enough agents of that type to start even a pure cascade, which therefore rules 

out the possibility of a general cascade of that type. This happens for at least one model 

in the N = 20 and N = 25 cases as well (and for less trivial population compositions), 

suggesting that even "reasonable" looking models may fail to exhibit certain outcomes 

once dynamics come into play. 

It is also interesting to note that the degree of coordination does not necessarily 
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improve as the probability of a cascade improves. Consider, for example, the B cascades 

in tables 5.1 and 5.2 where both network functions are given by e3. As the population 

composition changes from (7,3) to (5,5) to (2,8), the probability of a B cascade increases 

significantly, but the degree of coordination diminishes from 100% to 81.8%. This is due 

to the fact that the probability of a general B cascade increases at a much greater rate 

than a pure cascade for those models, resulting in relatively more outcomes which are 

not purely coordinated. 

These results are not restricted to models with symmetric preferences. Tables 5.3 and 

5.4 give outcomes for the case where VA,A = 4, V,B = 1, v)3,B = 3, and VB,A = 2. The 

same population compositions and network functions are used to allow comparisons with 

the symmetric case. 

Table 5.3: Outcomes for Naïve Agents and Small N (Asymmetric Preferences). 

(VA,A, VA,B) = (4,1) - Population Composition (NA, NB) 

(VB,B,VB,A) = (3,2) (4,1) (3,2) (2,3) (1,4) (9,1) (7,3) (5,5) (2,8) 

P(Apure) 0.6 0.3 0.1 0 0.8 0.4667 0.2222 0.02222 

P(Acen) 0.6 0.5 0.1 0 0.8 0.8833 0.4762 0.02222 

- 1 eA = eA E[N(A)J 
(Bpure) 

100% 
0 

80.0% 
0 

100% 
0.1 

- 

0.4 
100% 
0 

78.0% 
0 

81.3% 
0.02381 

100% 
0.3333 

CB - eB 
. (B) 0 0 0.1 0.4 0 0 0.02381 0.5111 

E[NA(B)] - 
- 100% 100% - 

- 100% 82.6% 

P(Split) 0.4 0.5 0.8 0.6 0.2 0.1167 0.5 0.4667 

P(Apurc) 0.6 0.3 0.1 0 0.8 0.4667 0.2222 0.02222 

P(Acjen) 0.6 0.5 0.1 0 0.8 0.8083 0.2897 0.02222 

2 
- C CA t 

E[NB(A)] 
P (Bpure) 

100% 
0 

80.0% 
0 

100% 
0.1 

- 

0.4 
100% 
0 

78.7% 
0 

93.4% 
0.02381 

100% 
0.3333 

eB - CB P (B) 0 0 0.1 0.4 0 0 0.02381 0.4222 

E[NA(B)j - 
- 100% 100% - - 100% 89.5% 

P(Split) 0.4 0.5 0.8 0.6 0.2 0.1917 0.6865 0.5556 

P (Apure) 0.8 0.6 0.4 0.2 0.8 0.4667 0.2222 0.02222 

P(AGen) 0.8 0.7 0.4 0.2 0.8 0.8833 0.4722W 0.02222 

- 3 
eA = e E[NB(A)] 

(Bpure) 
100% 
0 

92.9% 
0.1 

100% 
0.3 

100% 
0.6 

100% 
0 

78.0% 
0.008333 

81.7% 
0.08333 

100% 
0.4667 

CB - CB P (Ba0 ) 0 0.1 0.3 0.6 0 0.008333 0.09524 0.7333 

E[NA(B)] - 100% 100% 100% - 100% 97.5% 81.8% 

P(Split) 0.2 0.2 0.3 0.2 0.2 0.1083 0.4325 0.2444 

All of the patterns and regularities for the symmetric case also show up in the asym-

metric case, although the probability of a split is lower and the likelihood of A cascades 
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Table 5.4: Outcomes for Sophisticated Agents and Small N (Asymmetric Preferences). 

(VA,A, VA,B) = (4, 1) 
(v3,B,vB,A)=(3,2) 

Population Composition (NA, N3) 
(4,1) (3,2) (2,3) (1,4) (9,1) (7,3) (5,5) (2,8) 

- 1 
CA I eA 
eB - CB 

P (Apure) 
P(AGCfl) 

E[NB(A)] 
P (Bpure) 
P (BG) 
E[NA(B)] 
P(Split) 

0.8 
0.8 

100% 
0 
0 
- 

0.2 

0.6 
0.8 

87.5% 
0.1 
0.1 
100% 
0.1 

0.4 
0.5 

93.3% 
0.3 
0.3 
100% 
0.2 

0.2 
0.2 

100% 
0.6 
0.6 
100% 
0.2 

0.9 
0.9 

100% 
0 
0 
- 

0.1 

0.7 
0.9833 

88.7% 
0.008333 
0.008333 
100% 

0.008333 

0.5 
0.8611 

89.6% 
0.08333 
0.08730 
99.1% 
0.05159 

0.2 
0.4 

93.1% 
0.4667 
0.5556 
92.0% 
0.04444 

- 2 
CA I 
eB - CB 

P (Apure) 
P(AGC ) 
E[N3 (A)] 
P (Bpuro) 
P (B0en) 

E[NA(B)] 
P(Split) 

0.8 
0.8 
100% 
0 
0 
- 

0.2 

0.6 
0.8 

87.5% 
0 
0 
- 

0.2 

0.4 
0.5 

93.3% 
0.1 
0.1 
100% 
0.4 

0.2 
0.2 
100% 
0.4 
0.4 
100% 
0.4 

0.9 
0.9 
100% 
0 
0 
- 

0.1 

0.7 
0.925 
90.1% 
0 
0 
- 

0.075 

0.5 
0.6468 

95.2% 
0.02381 
0.02381 
100% 
0.3294 

0.2 
0.2222 

98.8% 
0.3333 
0.4 

91.7% 
0.3778 

- CA = eA 
eB - 

P(Apure) 
P(AG n) 
E[N3(A)] 
P (Bpurc) 
P (B.) 
E[NA(B)] 
P (Split) 

0.8 
0.8 
100% 
0 
0 
- 

0.2 

0.6 
0.8 

87.5% 
0.1 
0.1 
100% 
0.1 

0.4 
0.5 

93.3% 
0.3 
0.3 
100% 
0.2 

0.2 
0.2 
100% 
0.6 
0.6 
100% 
0.2 

0.9 
0.9 
100% 
0 
0 
- 

0.1 

0.7 
0.9417 

89.1% 
0.008333 
0.008333 
100% 
0.05 

0.5 
0.6944 

92.1% 
0.08333 
0.09127 
98.3% 
0.2143 

0.2 
0.2222 

98.8% 
0.4667 
0.6444 
86.2% 
0.1333 

is higher in the asymmetric models. This comes as no surprise, because the the change in 

private valuations for Type B agents is a relative increase in the value of network A, and 

the comparative static theorems of section 5.3 guarantee that A cascades will be more 

likely and B cascades will be less likely after such a change. What is surprising is that, 

once again, this increase in the likelihood of an A cascade does not always improve the 

average degree of coordination in A cascades. In both the naïve and sophisticated cases, 

switching from the symmetric to asymmetric models with population composition (7,3) 

reduces the average percentage of Type B agents who end up choosing A in A cascades. 

Once again, this is because the probability of a general cascade has increased more sig-

nificantly than the probability of a pure cascade, resulting in a lower overall degree of 

coordination. 

Finally, observe that the three different network effect combinations (namely, the 

cases where both network functions are e1, both are e2, or both are e3) can be used 
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to examine how "competitiveness" affects the likelihood of coordination. When both 

functions are e1, the networks are strictly competitive; for the other two, the networks 

are independent. But a moments' observation reveals that there is no regular pattern 

between the likelihood of split outcomes between competitive and independent networks, 

and that there also is not a regular pattern for how well coordinated the cascades are. 

This is consistent with the ambiguity result hinted at in section 5.3. 

For larger populations (namely, N = 20 and N = 25), outcomes for symmetric prefer-

ences are given in tables 5.5 and 5.6, and asymmetric outcomes are given in tables 5.7 and 

5.8. The same comparative static patterns (and ambiguities) for outcome probabilities 

are present in these outcomes, as are the ambiguities relating to the level of coordination 

in general cascades. 

Table 5.5: Outcomes for Naïve Agents and Large N. 

(VA,A, VA,B) = (4, 1) Population Composition (NA, NB) 
(VB,B, VB,A) = (4, 1) (18,2) (14,6) (10,10) (4,16) (20,5) (15,10) (12,13) (8,17) 

P (Apure) 0.6316 0.2066 0.0433 2.1E 4 0.3830 0.1079 0.0391 5.5E 

P(A00 ) 0.8842 0.3124 0.0481 2.1E 4 0.7806 0.1259 0.0406 5.5E 3 

- 1 
CA - CA 

E[NB(A)] 
P (Bpure) 

85.7% 
0 

92.9% 
3.1E 3 

99.0% 
0.0433 

100% 
0.3756 

77.1% 
4.0E 4 

98.2% 
0.0166 

99.7% 
0.0565 

100% 
0.1881 

CB = 8B P (.Bjen) 0 3.1E 3 0.0481 0.7529 4.0E 4 0.0168 0.0602 0.2561 

E[NA(B)] - 100% 99.0% 77.6% 100% 99.9% 99.4% 95.3% 

P (Split) 0.1158 0.6845 0.9038 0.2469 0.2190 0.8574 0.8992 0.7383 

P(Apure) 0.4105 0.0443 1.6E 0 0.1165 6.0E 3 4.6E 4 9.3E 7 

P(A 0fl) 0.5579 0.0443 1.6E 3 0 0.1187 6.0E 3 4.6E 4 9.3E 

- 2 
e - e P(Bpure) 

E[NB (A)] 86.8% 
0 

100% 
0 

100% 
1.6E 3 

- 

0.1476 
99.6% 
0 

100% 
4.2E 5 

100% 
1.2E 3 

100% 
0.0225 

eB - CB P (BG0fl) 0 0 1.6E 3 0.1534 0 4.2E 3 1.2E 3 0.0225 

E[NA(B)] - 
- 100% 99.1% - 100% 100% 100% 

P (Split) 0.4421 0.9557 0.9969 0.8466 0.8813 0.9940 0.9984 0.9775 

P (Apure) 0.7158 0.3193 0.1053 3.5E 0.3830 0.1079 0.0391 5.5E 

P(AGCfl) 0.9211 0.6449 0.1205 3.5E 3 0.8666 0.1479 0.0442 5.6E 3 

- 4 
CA - e 

E[N(A)] 
(Bpure) 

88.9% 
0 

77.5% 
0.0175 

98.4% 
0.1053 

100% 
0.4912 

75.4% 
4.0E 4 

96.5% 
0.0166 

99.1% 
0.0565 

99.9% 
0.1881 

- CB P (Bc) 0 0.0176 0.1205 0.9005 4.0E 4 0.0174 0.0673 0.3158 

E[NA(B)] - 100% 98.4% 79.6% 100% 99.7% 98.5% 91.7% 

P (Split) 0.079 0.3375 0.7589 0.096 0.1330 0.8347 0.8885 0.6786 

One noteworthy result is that despite the larger number of agents, the level of coordi-

nation in cascades is typically quite high. The overall probability of coordination is also 
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Table 5.6: Outcomes for Sophisticated Agents and Large N. 
(VA,A,VA,B) = (4,1) 
(VB,B, VB,A) = (4, 1) 

Population Composition (NA, NB) 
(18,2) (14,6) (10,10) (4,16) (20,5) (15,10) (12,13) (8,17) 

P (Apure) 0.8053 0.4789 0.2368 0.0316 0.6333 0.35 0.22 0.0933 

P(AGCfl) 0.9632 0.6881 0.2964 0.032 0.9395 0.5635 0.3428 0.1315 

- 

eA I 
1 E[N3 (A)] 

P (Bpure) 
91.8% 
5.3E 3 

93.5% 
0.079 

97.8% 
0.2368 

99.9% 
0.6316 

90.9% 
0.0333 

95.5% 
0.15 

97.0% 
0.26 

98.3% 
0.4533 

eB P (BGen) 5.3E 3 0.0844 0.2964 0.9123 0.0412 0.2241 0.4113 0.7263 

E[NA(B)] 100% 99.5% 97.8% 89.1% 99.0% 97.7% 96.6% 94.1% 

P(Split) 0.0316 0.2276 0.4072 0.0557 0.0193 0.2125 0.2459 0.1422 

P (Apure) 0.4789 0.0775 5.4E 0 0.1613 0.0134 1.6E- 1.7E 

P(A) 0.6053 0.0775 5.4E 3 0 0.1632 0.0134 1.6E 3 1.7E 5 

- 2 
eA I e t 

E[NB(A)] 
P (Bpur ) 

89.6% 
0 

100% 
2.6E 5 

100% 
5.4E_3 

- 

0.2066 
99.8% 
0 

100% 
2.5E 4 

100% 
3.6E 3 

100% 
0.0405 

- 3I P (B) 0 2.6E 5 5.4E 3 0.2190 0 2.5E 4 3.6E-3 0.0405 

E[NA(B)] - 100% 100% 98.6% - 100% 100% 100% 

P (Split) 0.3947 0.9225 0.9892 0.7810 0.8368 0.9864 0.9948 0.9595 

P(Apure) 0.8053 0.4789 0.2368 0.0316 0.6333 0.35 0.22 0.0933 

P (Ac,,) 0.9632 0.7873 0.3081 0.032 0.9155 0.4239 0.2415 0.0951 

E[N3(A)] 91.8% 87.2% 97.1% 99.9% 88.7% 97.8% 99.2% 99.9% 
eA t P (Bpur) 5.3E 3 0.079 0.2368 0.6316 0.0333 0.15 0.26 0.4533 
=eB 

P (Bc1n) 5.3E 3 0.0845 0.3081 0.9408 0.0334 0.1574 0.2938 0.5983 

E[NA(B)] 100% 99.5% 97.1% 87.5% 100% 99.7% 98.9% 95.5% 

P(Split) 0.0316 0.1282 0.3837 0.0272 0.0511 0.4187 0.4647 0.3066 

quite high, except when both network functions are e2, in which case the likelihood of 

a split is very high under a number of population compositions. This is due to the fact 

that the networks are independent, but also (and more importantly) the fact that the 

network approaches a higher maximum value (12) than it does in other models. As such, 

agents are only likely to switch networks if the other network already has a large size 

and if their own (privately preferred) network has a small size. This is why most of the 

cascades in those models are purely coordinated and are fairly unlikely to come about. 

Although these examples are only a few among (infinitely) many possible network 

effect models, they help to reinforce the point that purely coordinated outcomes are not 

particularly likely to occur, and that split outcomes are a real possibility even under dif-

ferent population compositions and models which favour coordination on one good (such 

as the asymmetric models, which favour coordination on good A). They also highlight 

the importance of population composition as a real factor in determining different out-
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Table 5.7: Outcomes for Naïve Agents and Large N (Asymmetric Preferences). 

(VA,A, VA,B) = (4, 1) 
(VB,B,VB,A) = (3,2) 

Population Composition (NA, N2) 
(18,2) (14,6) (10,10) (4,16) (20,5) (15,10) (12,13) (8,17) 

P (Apure) 0.8053 0.4789 0.2368 0.0316 0.6333 0.35 0.22 0.0933 

P(AGen) 0.9737 0.9719 0.4714 0.0382 0.9955 0.8931 0.4323 0.1377 

1 E[N(A)] 91.4% 81.7% 89.8% 98.9% 88.4% 78.0% 92.1% 97.7% 
- 

eA I e4 P (Bpure) 0 3.1E 3 0.0433 0.3756 4.0E 4 0.0166 0.0565 0.1881 
CB - CB P (B) 0 3.1E 3 0.0481 0.7406 4.0E 4 0.0168 0.0602 0.2550 

E[NA(B)] - 100% 99.0% 78.4% 100% 99.9% 99.4% 95.4% 
P (Split) 0.0263 0.025 0.4805 0.2213 4.1E 3 0.0902 0.5075 0.6073 

P (Apure) 0.7158 0.3193 0.1053 3.5E 0.4957 0.1978 0.0957 0.0244 

P(AGC ) 0.9368 0.6769 0.1488 3.5E 3 0.9383 0.2807 0.1105 0.02479 

2 

- CA I ' 
E[NB(A)] 
P (Bpure) 

88.2% 
0 

82.5% 
0 

96.3% 
1.5E 3 

100% 
0.1476 

80.5% 
0 

95.3% 
4.2E 5 

98.7% 
1.2E 3 

99.9% 
0.0225 

eB - CB P (B n) 0 0 1.5E 3 0.1534 0 4.2E 5 1.2E 3 0.0225 

E[NA(B)] - 
- 100% 99.1% - 100% 100% 100% 

P (Split) 0.0632 0.3231 0.8497 0.8431 0.0617 0.7193 0.8884 0.9527 

P (Apure) 0.8053 0.4789 0.2368 0.0316 0.6333 0.35 0.22 0.0933 

P (Ac..) 0.9737 0.9685 0.5562 0.03922 0.9965 0.9524 0.5297 0.1584 

- 

CA I C1 
E[N8(A)] 
P (Bpurc) 

91.4% 
0 

83.2% 
0.0175 

86.3% 
0.1053 

98.6% 
0.4912 

88.8% 
4.0E 4 

78.0% 
0.0166 

87.8% 
0.0565 

96.2% 
0.1881 

eB - CB P 0 0.0176 0.1203 0.8801 4.0E 4 0.0174 0.0672 0.3122 

E[NA(B)] - 100% 98.5% 80.6% 100% 99.7% 98.5% 92.0% 

P (Split) 0.0263 0.0139 0.3235 0.0807 3.1E 3 0.0301 0.4030 0.5294 

comes. Models where a particular type of cascade is literally impossible, for example, 

illustrate this point well. Consider the naïve case for N = 20 and asymmetric preferences. 

This model has likelihood 0 of coordination on B when e2 is used and the composition is 

(14, 6), even though Type B agents constitute 30% of the population! For sophisticated 

agents using e1, switching from composition (18,2) to (4,16) reduces the probability of 

an A cascade from 0.96 to about 0.03 (and yet, the average level of coordination in A cas-

cades increases). These results, together with the comparative static theorems of section 

5.3 suggest that outcome probabilities behave as expected, but the level of coordination 

(hence related welfare considerations) do not. 
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Table 5.8: Outcomes for Sophisticated Agents and Large N (Asymmetric Preferences) 

(VA,A,VA,B) = (4,1) 
(VB,B,VB,A) = (3,2) 

Population Composition (NA, NB) 
(18,2) (14,6) (10,10) (4,16) (20,5) (15,10) (12,13) (8,17) 

P(Apuro) 0.9 0.7 0.5 0.2 0.8 0.6 0.48 0.32 

P (AG,,) 0.9947 0.9825 0.8947 0.5088 0.9957 0.9478 0.8757 0.7043 

E[N(A)] 95.2% 94.2% 94.1% 94.5% 95.5% 95.3% 95.3% 95.5% 
CA : CA P (Bpur) 0 0.0175 0.1053 0.4912 4.3E 3 0.0522 0.1243 0.2957 
eB - 

P (Bcjen) 0 0.0175 0.1053 0.4912 4.3E 3 0.0522 0.1243 0.2957 

E[NA(B)] - 100% 100% 100% 100% 100% 100% 100% 

P (Split) 5.3F ,3 0 0 0 0 0 0 0 

P(Apure) 0.9 0.7 0.5 0.2 0.8 0.6 0.48 0.32 

P(AG0n) 0.9842 0.9044 0.5852 0.2033 0.9868 0.7209 0.5445 0.3392 

- 2 
CA = E[NB(A)] 

P (Bpure) 
95.7% 
0 

93.7% 
2.6E 5 

98.1% 
5.4E 3 

99.9% 
0.2066 

93.7% 
0 

97.8% 
2.5E 4 

99.0% 
3.6E 3 

99.7% 
0.0405 2A 

- CB P (Been) 0 2.6E 5 5.4E 3 0.2169 0 2.5E 4 3.6E 3 0.0405 

E[NA(B)] - 100% 100% 98.8% - 100% 100% 100% 

P (Split) 0.0158 0.0956 0.4094 0.5798 0.0132 0.2789 0.4519 0.6203 

P(Apure) 0.9 0.7 0.5 0.2 0.8 0.6 0.48 0.32 

P(A en) 0.9947 0.9825 0.8947 0.5088 0.9956 0.9437 0.8462 0.6144 

4 E[NB(A)] 95.2% 94.2% 94.1% 94.5% 95.4% 94.7% 95.0% 96.3% - 

CA I St 
- 6B 

P (Bpure ) 
P (B) 

0 
0 

0.0175 
0.0175 

0.1053 
0.1053 

0.4912 
0.4912 

4.3E 3 
4.4E 3 

0.0522 
0.0558 

0.1243 
0.1401 

0.2957 
0.3541 

E[NA(B)] - 100% 100% 100% 100% 99.6% 99.0% 97.4% 

P (Split) 5.3E 3 0 0 0 7.5E 5 5.4E 4 0.0137 0.0315 
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Chapter 6 

Conclusion 

This thesis constructed a generalized network effect model for the two good case and 

explored a number of issues related to coordination. In particular, properties have been 

identified which guarantee multiple coordinated equilibria in simultaneous move games, 

and these conditions have been shown to be insufficient for guaranteeing the existence of 

highly coordinated outcomes in a dynamic setting. To arrive at these results, two very 

distinct decision algorithms (the sophisticated and naïve algorithms) were developed 

and shown to satisfy the Cascade Property, which asserts that a good i cascade will 

form if an agent of Type j i optimally selects good i. Comparative static results 

regarding the likelihood of various outcomes were then derived for arbitrary models which 

satisfy the Cascade Property, demonstrating that even "mixed" models consisting of some 

sophisticated and some naïve agents will have the same comparative static properties. 

Using the Java programming language, numerical examples were computed for a variety 

of cases, showcasing both the comparative static results already derived, as well as some 

initial results about how well-coordinated cascades will be on average. 

There are a number of possible directions for future research stemming from this 

work. An obvious drawback to the models in this thesis is that they are restricted to two 

goods only. While it is likely that similar results would hold in an arbitrary n-good case, 

it would be interesting to identify a suitable generalization of the Cascade Property to 

n goods; indeed, this seems like the central contribution that an n-good extension could 

make. 

The numerical examples of section 5.4 identified an interesting regularity: models 

consisting only of sophisticated agents never have a greater probability of a split outcome 
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than models consisting only of naïve agents do. A rigorous proof of this statement, if 

possible, would be quite interesting, especially if one could prove comparative static 

results in this regard as a population shifts from having more naïve agents to having 

more sophisticated agents. 

There are several interesting issues related to the timing of decisions. A nice general-

ization of this work would be to allow groups of agents to simultaneously make adoption 

decisions, and to consider all possible sequences of groups. This thesis has laid important 

groundwork in this respect, for the choice functions derived do not depend on how previ-

ous decisions were timed. Indeed, generalizing to allow groups would really only change 

the combinatorial aspects of this thesis. This could be difficult, but it would surely be a 

worthwhile endeavor. 

Another timing issue would be to allow agents the opportunity to defer their decisions 

to a later point in time, or to attempt to make their decisions sooner. Such a model 

would be fundamentally different from this one, although, once again, this work may 

prove useful as a starting point. 

At present, very little is understood about how coordination problems may be re-

solved. Hopefully, this thesis has made a useful new contribution, and provided an 

interesting new perspective on, the general theory of network effects. 
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Appendix 

A.1 The Network Effect Function 

SA = 53 = N does not imply strictly competitive networks. 

For example, suppose i j and take vi,j = 2 and vij = 1. Consider the network function 

e(n,n) = { (max 10,  1) 10 if nj is even 
2n+1 

(Max {0 2n-n1-1l 
2n+1 10 if n is odd 

It is routine to verify that this model satisfies (P1)-(P5); to see that SA = SB = 

fix any ni E N and observe that + 6j(Thj, n1)) = 11 > 2 = lim 10 (v, + 

e (mi, ni)), so there is some n for which nj ≥ rt + e1 (m, n) > v + e (ni, n.y). 

But, given rt 'E N+, ej is not strictly decreasing in n, because if nj is even, then 

e(m, n) = e(ri, ri + 1). (Trivially, sufficiently large n1 such as nj > 2ni will also 

cause constant regions due to the max{ -1 component of e, but the other case is more 

interesting). 

Bounded switching sets do not imply independent networks. 

To see this, suppose i =A j and take vij = 2 and vj, = 1. Consider the network function 

I  max{0,n—n} ifn<10 
10+niifn≥10 

ni+nj 

It is routine to verify that this model satisfies (P1)-(P5); in particular, 

12+j. > for all ni,nj E N, so Type i agents will always choose good i when 

ni ≥ 10. But the networks are not independent; in fact, they are strictly competitive. 
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(Strictly) competitive networks do not imply that each Si= N. 

The above example suffices in this case as well, for the networks are strictly competitive 

(and therefore competitive), but Si= {0, 1, . . . 1 91. 

A.2 The Simultaneous Move Game 

Some (strictly) competitive networks have a split equilibrium. 

Suppose i 0 j and let v = 5, vij = 1, and NA = NB = 25. Suppose the network 

functions are of the form 

10 ifri=n3=0 
e(n,n) = s 

ni 50 otherwise 

Clearly, this model satisfies (P1)-(P5) as well as (NT), and also has a split equilibrium 

because v + e(N, N) = 30 > 27 = vjj + e(Nj + 1, Ni - 1). 

Some competitive networks do not have a split equilibrium. 

Consider the above example, but with v = 1 and vi,j . Then there is no split 

equilibrium, because v + e(N, N) = 26 <26 + = v + e(N + 1, N - 1). 

Pareto efficiency of pure and split equilibria under (P1)-(P5) and (NT). 

Consider the model where v = 3, vij = 1, NA = 15, and NB = 8. Suppose the network 

effect functions are 

I  CA(mA, n11)0 ifnA<10 11) = and e(n, n) = 
10 ifmA≥1O 

Jo ifnB <10 

12 ifnB≥10 

It is easy to verify that this model satisfies (P1)-(P5) and (NT), and that both pure 

equilibria and split equilibria exist. Under a pure A equilibrium, the payoff to each Type 

A agent is 13, and the payoff to each Type B agent is 11. In the split equilibrium, Type 
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A agents receive payoffs of 13 and Type B agents receive payoffs of 11. But if two Type A 

agents switch to good B, then all Type A agents (including those who defect) still receive 

payoffs of 13, while the Type B agents receive payoffs of 15. This profile dominates both 

the pure and split equilibria, so they are not Pareto efficient. 

Pareto efficiency of pure equilibria with strictly increasing network functions. 

To see that both pure equilibria need not be Pareto efficient, take v = 2, vj, = 1, 

NA = 5, and NB = 4. Suppose the network functions are of the form e(n, mj) = 

where M > 0 is some constant. 

If MA = MB = 10, then it is easy to verify that both pure A and pure B equilibria 

exist. In the pure A equilibrium, Type A agents receive utility of 11, and Type B agents 

receive utility equal to 10. But these numbers are reversed in the pure B equilibrium, so 

neither pure equilibrium dominates the other. Combined with Lemma 4.1.5, this means 

both pure equilibria are Pareto efficient. 

On the other hand, if MA = 10 and MB = 14, then both pure equilibria exist, but 

only the pure B outcome is efficient. This is because payoffs are once again 11 and 10 for 

Type A and Type B agents, respectively, in the pure A equilibrium, but these become 

13.6 and 14.6 in the pure B equilibrium, so (B) Pareto dominates (A). Together with 

Lemma 4.1.5, this means that only (B) is Pareto efficient. 

Pareto efficiency of split equilibria with strictly increasing network functions. 

Consider a model with vi,j = 3, vij = 1, NA = NB = 10, and network functions of the 

form ej (ni, i-ti) =  ni 11. Then a split equilibrium exists, and in this equilibrium Type 

A agents receive payoffs of 13 and Type B agents see payoffs of 11.08. However, there is 

also a pure A equilibrium in which these payoffs become 13.47 and 11.47, dominating the 

split outcome (similarly, the pure B equilibrium will also dominate the split outcome). 
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A.3 Proof of the Cascade Theorem for Strategic Agents 

The proof is an "induction" -style argument, but is only applied to a finite subset { 1, . . . , N} 

of the natural numbers, and builds up backwards, starting with agents N and N - 1. 

The first lemma below is the "base case". 

Lemma A.M. For N > 2, there exists an integer 1. < k < N such that for every 

k ≤ i <N, ci satisfies the Cascade Property. 

Proof. Since N > 2, k = N - 1 is between 1 and N, and the only integer i for which 

k < i < N is k itself. So, it suffices to show that CN_1 satisfies the Cascade Property; 

that is, it suffices to show that CN_1(Z, AN-1, BN_1) = i CJ\T(t i AN, BN) = j 0 i. 

For brevity, this will only be demonstrated for the case of Type B agents selecting A, 

but symmetric arguments may be used to demonstrate it for the other case as well. So, 

assume agent N - 1 is Type B and that he optimally chooses A. 

First, observe that from agent (N - 1)'s perspective, the probability of a Type A 

agent is and the probability of a Type B agent is B.1+1 Since there is only one 

agent remaining after N - 1, the set of possible forms from agent (N - 1) 's perspective is 

FN_1 ={(A), (B)}, with P((A)) = and P((B)) = BNl+i• Then agent (N— 1)'s 

expected utility to choosing A is 

EUN_l(A) = VB,A + P((A))eA(AN_1 + A((A)) + 1, BN_1 + B((A))) 

+P((B))eA(AN_1 + A((B)) + 1, BN_i + B((B))) 

and his expected utility to choosing B is 

EUN_l(B) = V13,13 +P((A))eB(BN_l +B((A)) + 1,AN_i +A((A))) 

+P((B))eB(BN_l + B((B)) + 1, AN-1 + A((B))). 

Now, agent N - 1 optimally chooses A, which means EUN_i(A) > EUN_i(B). It suffices 

to show that a Type B agent N optimally selects A (because then a Type A agent N 
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would also select A, which means A((A)) = 1. and B((A)) = 0); so, suppose to the 

contrary that agent N, of Type B, optimally selects B. Agent N - 1 is aware that a 

Type B agent would do this, because agent N - 1 knows the values of AN and UN. So, 

agent N - 1 knows that A((B)) = 0 and B((B)) = 1. Plugging these into the above 

expressions gives 

EUN_l(A) = VB,A + P((A))eA(AN_1 +2, BN_i) + P((B)eA(AN_i + 1, + 1) 

and 

EUN_i(B) = VB,B + P((A))eB(BN_1 +1, AN-1 + 1) + P((B))eB(BN_j. +2, AN_i), 

where, of course, the first expression is greater than the second because EUN_i (A) > 

EUN_i(B). Next, notice that vB,A+eA(AN_i+2, BN_i) ≥ EUN_i(A) (because eA(AN_i+ 

2, BN_i) ≥ eA(AN_i + 1) BN_i + 1) and P((A)) + P((A)) = 1). Similarly, EUN_i(B) ≥ 

VB,B + eB(BN_i + 1, AN_i + 1) because 6B(BN_i +2, AN_i) ≥ eB(BN_i + 1, AN_i + 1). 

Since EUN_J. (A) > EUN_i (B), this means that 

VB,A + eA(AN_i +2, BN_i) > vB,13 + CB(BN_i + 1, AN_i + 1). (A.1) 

But this contradicts the fact that agent N selected B, because given that agent N - 1 

selected A, agent N will select B if and only if VB,A + eA(AN_1 + 2, BN_i) ≤ VB,B + 

eB(BN_1 + 1, AN_i + 1). Therefore agent N, of Type B, will select A also. This implies 

that a Type A agent in position B would also select N, and the proof is complete. 0 

The next lemma establishes the following: if agent £ is Type i and optimally selects 

j =A i, then, if every agent after £ satisfies the Cascade Property, agent £ will satisfy the 

Cascade Property as well. 

Lemma A.M. Suppose that every choice function c, 1 < k ≤ i < N, satisfies the 

Cascade Property. Then Ck_i satisfies the Cascade Property also. 
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Proof. To see that Ck_i satisfies the Cascade Property, suppose (for simplicity) that agent 

k - 1 is Type B and ck_i(B, Ak_i, Bk_i) = A. It suffices to show that a Type B agent k 

will also choose A, because that would cause an A cascade, which means Ak_i+2 >A k+1-; 

and a Type A agent in position k would also choose A after k - 1 chooses A, so that 

Ak_i + 2 is realized and a cascade occurs. 

The first thing to note is that since a Type B agent in position k will cause an A 

cascade if he selects A, this means EUk(A) = VB,A + eA(Ak + 1 + N - k, k - Ak - 1). 

This is the best possible outcome for agent k - 1, given that he selected A. Thus 

EUk(A) ≥ EUk_i(A). Since k - 1 chooses A, this inequality may be combined with 

EUk_i(A) > EUk_l(B) to yield EUk(A) ≥ EUk_i(A) > EUk_i(B). Finally, it must also 

be the case that EUk_i(B) ≥ EUj(B), because relative to agent k - 1, agent k has a 

lower subjective probability of Type B agents appearing because agent k - 1 selected 

A. Thus, combining inequalities yields EUk(A) > EUk(B), so that all agents after k - 1 

choose A, as required. 

A similar argument may be used to show that if k - 1 is Type A and chooses B, then 

all subsequent agents will also choose B. Thus, Ck_i satisfies the Cascade Property. E 

With these results in place, it is easy to prove the Cascade Theorem for strategic 

agents. 

Proof of the Cascade Theorem for Strategic Agents. By repeated use Lemma A.3.2, it is 

clear that if there exists some agent k> 1 for which every agent i in k ≤ i < N satisfies 

the Cascade Property, then every agent 1 ≤ i < N satisfies the Cascade Property (simply 

take the lemma to get that k - 1 satisfies the Cascade Property; then reapply it to get 

that k - 2 satisfies it also, until finally every agent satisfies it). Lemma A.3.1 establishes 

that at least one such agent k exists (namely, k = N - 1), and so all strategic agents 

satisfy the Cascade Property. E 
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A.4 Proof of the Cascade Theorem for Naïve Agents 

In order to prove this theorem, two basic facts about the binomial distribution must first 

be established. They are as follows: 

Lemma A.4.1. Let x = (x0, x1,. . . , x,) E Rn be a vector for which xi ≤ x 1 for every 

1 < i < n. Let 23 be the random variable formed by placing a binomial distribution 

on x with probability of success p E (0, 1); let 13' be the random variable formed by 

placing a binomial distribution on (x1,. . . , x) with probability of success q E (0, p). Then 

E[B'] ≥ E[B]. 

Proof. Step 1: There exists a minimal 0 ≤ j ≤ N for which j ≥ j* P(13' = xj) ≥ 

= x1). To see this, note that P(23' = x) = (n - 1)(1 _p)fl_l_J and P(5 = x) = 

(n ) q.i+1(]. - q)_1. Then the statement P(13' = x) ≥ P(13 = x) is algebraically j + 1 

equivalent to 

(j+1)  ≥nq() ' (A.2) 

Notice that the right hand side is constant in j, and that since p > q, the left hand 

side is increasing in j. Notice also that if j = n - 1, then the condition is equivalent to 

pfl_l > qfl, which is satisfied because p > q and p E (0, 1) imply that p' qfl > qflp. 

Thus, at least one value of j exists for which the inequality is satisfied, which means 

there is a smallest value of j, j, which satisfies the inequality. Since the left hand side 

is increasing in j and the right hand side is constant, this means that the inequality is 

also satisfied for every j ≥ j* (subject, of course, to the constraint that j ≤ n - 1). 

Step 2: E[B'] ≥ E[13]. Step 1 implies that P(13' = x) < P(13 = x) for every 0 ≤ i 

and that P(13' = x) ≥ P(5 = x) for every j' ≤ i < n. So, the difference between the two 

distributions is that relative to 23, 13' has shifted probability weight to higher indices x; 

since the xi are increasing in i, this means that relative to 13, 23' places higher probability 

mass on greater values and lower mass on smaller values, so that E[23'] ≥ E[13]. 0 
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Lemma A.4.2. Let x = (x0, x1,.. . , x) E Rn be a vector for which xi ≤ Xj1 for every 

1 < i <n. Let 13 be the random variable formed by placing a binomial distribution on 

x with probability of success p E (0, 1); let 13' be the random variable formed by placing 

a binomial distribution on (x0,. .. . x,_i) with probability of success q E (0, p). Then 

E[13] ≥ E[B'] 

Proof. The argument is similar to that in Lemma A.4.i and therefore omitted. D 

These lemmas allow two results about the choice functions ci to be deduced. For 

simplicity, the following results are given (and the main theorem is proved for) the case 

in which an A cascade occurs. Obviously, symmetric arguments may be used to establish 

the same results for the case of B cascades. 

The first result states that if any agent (regardless of type) optimally selects A, then 

the next agent, if he is Type A, will also select A. 

Lemma A.4.3. For every model .A4 E M(N) with naive agents and every 1 ≤ k < N, 

Ck(tk,Ak,Bk) = A Ck+i(A,Ak+1,Bk+i) = A. 

Proof. Suppose Ck(tk, Ak, Bk) = A. In particular, this means that a Type A agent in 

position k finds it optimal to choose A, so that 

N-k 

VA,A + (N T k) (A i) ()_ eA(Ak + i+j,N - Ak — i —i)> 

N  N k ( ) (Bk) (Ak+ 1) 
VA,13 + eB(Bk+ 1+i,N—Bk - i — j). 

Notice that the left hand side is the expectation of a binomial distribution, with probabil-

ityq = over the values x = vA,A+eA(Ak+1+j,N—Ak—i—j) for 0 ≤ j ≤ N—k. 

Notice also that the expression 

vA,A + 

Nki 

f 

3= 

/ \ N—k-1'\ (Ak+2\I Bk  
)k+1) k+i) N-k-i-j eA(Ak+2+,N—Ak-2-3) 
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is the expectation of a binomial distribution, with probability p = > A+i = q, over 

the values x =vA,A +6A(Ak+1+(j+1),N—Ak---l—(j+1)) for  ≤j ≤N—k-1. 

Thus, Lemma A.4.1 applies, and so 

N-k-1 (N —k - 1) Pj (1 - )N_k_i_i eA(Ak + 2 + j, N - Ak - 2—j) ≥ 

N-

VA,A + 

VA,A + 
j=0 

) q3 (1 - q)N_k_i 6A (Ak +1+ j, N - Ak - 1 - j). 

In a similar fashion, letting p = j. and q = , Lemma A.4.2 may be used to determine 

that 

VA,B + ( 
VA,B+ : 

3 

N-k-i 

j=0 

)(1_p)N_k_ieB(Bk+1+j,N_Bk_1_j) ≥ P j 

- k - (\ ) q.1 (1 - q)N_k_i_i eB(Bk + 1 + j, N - Bk - 1 - j). 

Combining these inequalities yields 
N-k-1 / 

VA,A+ t I) PI  
j=0 

N-k-1 
VA,B+ (N_k_1) qi(1 _q)N_k_i_ieB(Bk+1+j,N _Bk _1_j), 

j=0 

where p = and q = ft, which is exactly what is required to show that a Type A 
agent in position lc + 1 will select A. 

Repeated application of this result shows that if one agent selects A, then any subse-

quent chain of Type A agents will also select A. Of course, it is possible that a Type B 

agent will appear and select B, breaking the cascade. So, the next theorem demonstrates 

that if a Type B agent, k, optimally selects A, then a Type B agent in position k + 1 

will also select B (which, by the previous lemma, means that a Type A agent in position 

k + 1 would also select A). Because of this, the following lemma is generalized to show 

that if agent k of Type B selects A, then a Type B agent in position k +'M (m ≥ 1) will 

also select A, given that agents k, k + 1, idots, k + m - 1 all selected A. 
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Lemma A.4.4. For every model M E M(N) with naïve agents and every 1 ≤ k < N, 

Ck(B, Ak, Bk) = A Ck+rn(B, Ak + m, Bk) = A for every 1 ≤ m ≤ N - k. 

Proof. Let 1 ≤ m ≤ N - k and suppose ck(B, Ak, Bk) = A. This means that 

N-k 

V13,A + \ j / k k ) N-k-3' k - 1 - j)> eA(Ak +1+ j, N - A 
(N_k\1 (Ak\ ) (Bk+1  

N-k 
vB,B + (N - k (Bk +1  \) (Ak) N-k-3' 

k eB (Bk+1+j,N—Bk -1—j). 

Notice that the left hand side is the expectation of a binomial distribution, with proba-

bility q = , over the values xj v,A+eA(Ak+1+j,N — Ak - 1— j) for  < j ≤ N —k. 

Notice also that the expression 

Nkrn N 
VB,A + ( - - - eA(Ak + m + 1+ j, N - Ak - m - 1 - j) g  

is the expectation of a binomial distribution, where p - Ak+rn > = q, over the values 
- k+im 

x1 =vB,A+eA(Ak+m+1+j,N—Ak—m-1—j) for O≤j≤ IV— k—m. Repeated 

application of Lemma A.4.1 therefore implies that 
N-k-m 

VB,A+ (N_k_m) (1 _p)N_k_rn_i eA(Ak+m+1+j,N _ Ak _ m _ 1_j)> 

N 

vB,A + -

i=o 

- k'\ (\ )qi(1_ q)I\T_l_i eA(Ak+1+j,N_Ak _1_j). 

Similarly, repeated application of Lemma A.4.2 may be used to establish that 
N-k 

VB,B+ (N_k) (1_)N_j eB(Bk+1+j,NBk 1—j) ≥ 
'\j iO 

N-k-m N— k —m'\ 
VB,B + ( . ) q1 (1 - q)Nkmi eB(Bk +1+ j, N - Bk - 1 - 

where p = Bk+1 > Combining these inequalities gives 
k k+m 

N-k-m 

VB,A + (N - - m) (1 - eA(Ak + m.+ 1 + j, N - Ak - m - 1 - j) ≥ 

vB,B + 
N m (N_k_m)qi(lq)N-k-rn-i e3(Bk+1+j,N—Bk— 1j), 

j 
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which is exactly what is required to show that Ck+m(B, Ak + m, Bk) = A. 0 

With these results in place, it is simple to prove the Cascade Theorem for Naïve 

Agents: 

Proof of the Cascade Theorem for Naïve Agents. Let 1 < k <N and suppose 

ck(B, Ak, Bk) = A. It suffices to show that ct (tt, A, B) = A for every k < £< N. 

Lemma A.4.3, any consecutive sequence of Type A agents after agent k will choose A; 

and, because of this, Lemma A.4.4 guarantees that the first Type B agent after agent k 

will also select A. Applying the same argument, then, all agents after this Type B agent 

will also select A, resulting in an A cascade. 0 
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