THE UNIVERSITY OF CALGARY

A GLOBAL TEST GENERATION SYSTEM FOR
SEQUENTIAL CIRCUITS

Bin Du

A DISSERTATION
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY. ALBERTA
DECEMBER, 1997

© Bin Du 1998

ivl

Your fle Votre rédéérence

Our fig Notre réfdrance

L’auteur a accordé une licence non
exclusive permettant 3 la

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
The author has granted a non-
exclusive licence allowing the
National Library of Canada to

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette theése.
Ni Ia thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-34670-6

Canada

ABSTRACT

With the rapid progress of VLSI technology. integrated circuit complexity increases
greatly. The reliability of a chip is very important to VLSI engineering and even our
daily life. Due to the increase in size and complexity of circuits placed on a chip. it

is very difficult to test a chip at an affordable cost.

Automatic Test Pattern Generation (ATPG) plays an important role in VLSI
technology. Reduction in test application time and test set size is highly desirable for
the reduction of the overall cost in integrated circuit fabrication and testing. Testing
of digital circuits involves the generation of a set of test vectors and their application to
detect faults in the circuits. An important part of testing is the creation of effective
test vectors. The test generation problem for sequential circuits is known to be a
difficult task. It is difficult to achieve a significant breakthrough in realizing efficient

ATPG algorithms to test large sequential circuits.

A global test generation approach for sequential circuits. called GLOBALTEST.
is presented in this dissertation. Global test generation is formulated as the problem
of tracing different sensitive paths from the primary inputs and present state lines
to the primary outputs and next state lines in a circuit. It conmsists of two parts:
a fault-independent test generation algorithm and a fault-oriented test generation
algorithm. At first, 2 new backward assignment method is presented to extract the
ON/OFF sets of the primary outputs and next state lines by partitioning circuits. The

combinational test vectors can be extracted at the same time. State justification and
i

state differentiation are efficiently performed using the ON/OFF sets of the primary
outputs and next state lines. To enhance the efficiency of state differentiation in the
existing three-phase ATPG. a backward deterministic method for state differentiation
is proposed and the order of next state lines in state differentiation is presented. The
fault-independent test generation algorithm can detect most of the testable faults in
the sequential circuits. A disadvantage of the method is that it can not determine

the redundant faults.

The fault-oriented test generation algorithm is developed to detect the remaining
faults and determine the redundant faults. The recent advances in combinational test
generation based on Boolean satisfiability and transitive closure provide a powerful
method for test generation. We extend Boolean satisfiability and transitive closure

to sequential circuit test generation.

Test compaction is an important part in test generation. We formulate the test
compaction problem as the set covering problem. An efficient set covering algorithm
(HICOMPACT) is proposed to compact test vectors. It attempts to select the nec-
essary test vectors for the faults detected and eliminate other redundant test vectors
so the original fault coverage is not compromised. This method generates a compact
testing sequence for a given fault.

The global test generation algorithm for sequential circuits is tested using the IS-
CAS’89 sequential benchmark circuits. The proposed algorithm has vielded a high
fault coverage and provided time efficient procedures to generate tests for large se-
quential circuits. The experimental results are compared with other existing test

generation systems.

v

Acknowledgement

First of all. I want to thank my supervisor, Professor Jun Gu. for his advice
and support during my graduate study. It is my greatest fortune to have Jun as
my advisor. I have benefited tremendously from his guidance and insight over the
vears. | have learnt a lot of engineering optimization methods, and these methods are
quite effective. [have been convinced that Jun is a dedicated educator and first class
researcher. I am very grateful for his constant encouragement and his perspectives

on life at large.

I would like to thank Professor Dave Halliday, Professor Jim Haslett. Professor
Guojun Liu. and Professor Xiaoling Sun for their careful reading of the dissertation
and many helpful suggestions. I want to specially thank all the faculty members
at the department of electrical and computer engineering for providing an excellent
education and a rewarding experience. In particular. [thank Professor R. A. Stein

for his help over the years. I am also grateful to Professor Danny H.K. Tsang for

many valuable discussions.

I have made a number of good friends during my stay in Hong Kong. I thank all
my friends for their friendship, in particular, Wei Xiong, Yong Sun. Lixin Wang. We

witnessed the transition of Hong Kong to China together.

I am greatly indebted to my wife, Xiaoying Liu for her encouragement and support

over these vears. I also thank the Liu family for their constant support.

Finally, I specially thank my family for their love and support. Mere words can not

express my gratitude to my parents. My mother and father have given me everything
v

it takes to be here. My sisters have been a source of inspiration and given me a lot

of support.

vl

To

my Mom. Dad. Xiaoying. Kaixiang. Wen. Heng. and Min

vil

TABLE OF CONTENTS

APPROVAL PAGE e e ii

ABSTRACT . . o e e ii1

ACKNOWLEDGEMENT i v

DEDICATION . . . e e e e vii

TABLE OF CONTENTS i et viil

LIST OF TABLES e e e e xi

LIST OF FIGURES ot e e e e e e xiil
CHAPTERS

1. INTRODUGCTION e e e e 1

1.1 Background 2

1.2 Fault Models e 3

1.2.1 Faultsin VLSI Systems 3

1.22 FaultModels 5

1.2.3 Fault Equivalence and Dominance 6

1.3 Test Generation and Its Problems T

1.3.1 NP-Completeness of Combinational Test Generation T

1.3.2 Test Generation Problems in Sequential Circuits 8

1.4 Approaches to Test Generation Problems Presented in the Dissertation 9

1.5 Organization of the Dissertation 10

2. OVERVIEW OF EXISTING METHODS 12
921 Overview of Test Generation for Combinational Circuits 12
2.1.1 Structural Methodso 12

2.1.2 Algebraic Methods 14

292 Qverview of Test Generation for Sequential Circuits 16

2.3 Overview of Test Compaction 21
2.4 SUMMALY . -« « « o e oo e e e e e e e e e e e 23
3. PRELIMINARIES e 24

4. GLOBAL TEST GENERATION FOR SEQUENTIAL CIRCUITS 37

4] ODBSErVALIONS . - - « = o o« o o e e e e e e e e e e e e e 33
4.2 The Model of Global Test Generation 39
4.3 The Global Test Generation Svstem for Sequential Circuits 41
4.4 The Fault-Independent Test Generation Algorithm 44
4.4.1 Cover and Excitation Vector Extraction 43
4.4.2 State Justification. . -o 43
4.4.3 State Differentiation -o 49
444 Fault Simulation« . . e 33
4.5 The Fault-Oriented Test Generation Algorithm 54
151 Pseudo-Combinational Circuit Test Generation 58
1.5.2 Determination of Redundant Faults 60
4.6 SUIMMAIY . « o o o o o e e e e e e e e e e e e 61

5. EXTRACTION OF COVER SETS AND COMBINATIONAL EX-

CITATION VECTORS e e 63
5.1 Backward Assignment Rules (B-rules). 64
5.2 Consistency and Constraints- 70
5.3 Partitioning Sequential Circuits 72
=1 Generation of Combinational Excitation Vectors from Cover Extraction 73
5.5 The Algorithm of Cover Extraction and Combinational Excitation Vec-

tOor GENETAtION - - - « « « o o ot o e e e e e e e e e e e 76
56 Pseudo-Combinational Circuit Test Generation for Fault-Oriented ATPG
SWSEEIML - « « « « e o e e e e e e e e e e 79
5.6.1 Circuit Representation - - - .« ..o 30
5.6.2 Signal Dependencies 34
5.6.3 Pruning the Search Tree 36
5.6.4 Combinational Circuit Test Generation Procedure 90
5.7 SUMMATY . « - o v o v v o e v e oo e e e e e e e e 90

6. STATE JUSTIFICATION AND STATE DIFFERENTIATION ... 92
6.1 State Justificationo 92
6.2 State Differentiationo oL 97
6.3 SUMIMATY . & =« ot v e e e e e e e e e e e e e e e 109

7. TEST COMPACTION OF SEQUENTIAL CIRCUITS. 111
71 Introduction o e e e e e e e e e e e e 111
7.2 The Formulation of Test Compaction Problem to Set Covering Problem113
7.3 A Multispace Search Algorithm for Test Compaction of Sequential Cir-

CUILS .« -« o v o e 117
T4 SUMMAIV . .+« o ot et e et e et e e e e e e e e 120

8. EXPERIMENTAL RESULTS o 121
3.1 ISCAS’S9 Benchmark Circuits - oo oo vt o oo 121
3.2 Evaluation of the Proposed Test Pattern Generator 123
8.3 Experimental Results of Test Compaction 127
8.4 SUMIALY . - « « ¢ o v o e e oo e e e e e e e e 132

9. CONCLUSIONS AND FUTURE WORK 133

REFERENCES . . . o ottt e e e e et e 136

(v)

oD

o

—

h
(S

o

LIST OF TABLES

Cube intersection operation. - - « « o o o oo 34
Sharp product operation. - - « «o 35
Initial state justification process. 96
Final state justification process. 97
The ON and OFF sets of primary output G17.. 106
The process of exciting the fault G2 s-a-0 to primary output Gl7. 107

State differentiation process for the fault CLRB — UC_17V D s-2-0 in
circuit s382 from ISCAS’89 sequential benchmark circuits. 110

An example ezl of test compaction for sequential circuits with three test
sequences and six faults.o 114

The original there sequences in the example ezl can be divided into eight
subsequences. 115

[SCAS'89 sequential benchmark circuit characteristics. 122

Real execution performance of our algorithm GLOBALTEST on a SUN
Sparc 20 with the ISCAS 39 sequential benchmark circuits with reset. 124

Test generation comparison with STEED and VERITAS on ISCAS'S9
benchmark circuits. « o« o o o oo e e e e 125

Real execution performance of our algorithm HICOMPACT on a SUN
Sparc 20 with the ISCAS'89 sequential benchmark circuits. 128

Test generation comparison with other procedures on the ISCAS'S9 se-
quential benchmark circuits. oo 130

8.6 Real execution performance of HICOMPACT on a SUN Sparc 20 with
randomly generated set covering problem instances. The cost is the
total number of test vectors needed to detect the faults.

1.1

3.1

3.4

LIST OF FIGURES

Three input AND gate with its truth table.
Asequential circuit. Lo

An equivalent pseudo-combinational iterative array to the sequential cir-
cuitimFig. 2.1, Lo

The meaning of logic values FD. FD.TD.TD.

A general pseudo-combinational circuit is obtained from the corresponding
sequential circuit by disabling all flip-flops. e e e e

A sequential circuit s27 from ISCAS’89 benchmarks.
The input cone of the primary output GI17 in circuit s27.
The input cone of the next state line G10 in circuit s27v.
The input cone of the next state line G11 in circuit s2v.
The input cone of the next state line G13 in circuit s2v.

One output is set to logic value D and the combination of logic values on
the inputs is the D set of theoutput.

One sensitive path between one input and one output.

GLOBALTEST: The global test generation system for sequential circuits.

The fault-independent test generation algorithm for sequential circuits.
General iterative array model for state justification.

State transition graph for state justification.

xiil

24

b\
(W]

4.8

4.9

4.10

4.11

5.10

Iterative array model for state differentiation.
State transition graph for state justification and state differentiation.

The fault simulation algorithm.
The fault-oriented test generation algorithm for sequential circuit.

The flow chart of the fault-oriented test generation algorithm for sequential
CITCUITS. = o o o e

The backward assignment rules (B-rules) of AND gate.
The backward assignment rules (B-rules) of NAND gate.
The backward assignment rules (B-rules) of OR gate.
The backward assignment rules (B-rules) of NOR gate.
The backward assignment rules (B-rules) of XOR gate.
The backward assignment rules (B-rules) of XNOR gate.
Extraction of D set of an output in a combinational circuit.
The consistency constraint of logic values.

The input cones of the primary output and next state lines in circuit s27
after the node G11 is considered as a virtual input node.

The Algorithm of Cover Extraction and Combinational Excitation Vector
Generation. - . -« v v v e e e e e e e e e e e e e e e e

The CNF formulae of basic gates.
The CNF formula of 3-input NAND gate.
Implication graph of an AND gate.

Formula extraction of a simple circuit S1.

Xiv

66

66

67

67

69

il

>
o

6.3

Formula extraction of the simple circuit S1 with a fault G s-a-0.

The XOR of the unfaulted and faulted circuits should be 1..

" The procedure of signal dependency computation.

(a). If A is sensitized, B must be sensitized: (EX4 + EXpg). (b). If A s
sensitized. either B or C must be sensitized: (EX4 + EXg + EXc).- -

State justification procedure..
The procedure of obtaining fan-in states of present state.
Three kinds of faults defined in our algorithm.
The procedure of single-vector state differentiation.

The procedure of multi-vector state differentiation.

88

The backward deterministic procedure for single-vector state differentiation.103

A general state differentiation process.
An example of the set covering problem.

The formulation of test compaction for sequential circuits as the set cov-
ering problem.

In the value space. a traditional search process {dashed line) cannot pass
a ~wall” of high cost search states (hatched region). It fails to reach
the final solution state. F. A multispace search process (solid lines)
scrambles across different search spaces. It could bypass this ~“wall”
through the other search spaces.-

XV

CHAPTER 1

INTRODUCTION

Very Large Scale Integration (VLSI) is the process of integrating hundreds of
thousands of semiconductor components and interconnections into a monolithic inte-
grated circuit. As a result of the continuous progress in integrated circuit fabrication
techniques. the complexity of digital systems which can be implemented on a sin-
gle micro-electronic chip has increased. A major problem. one which is growing in
importance. is testing. Since VLSI has been widely used in many application areas.
ranging from consumer products to critical controllers. the reliability of VLSI circuits
is of paramount importance. The problems associated with testing of VLSI circuits
have been exacerbated with the rapid advances in VLSI technology. With little or no
increase in the number of input/output (I/O) pins. more logic must be accessed with
almost the same number of I/O pins. i.e.. reduction in the pin-to-gate ratio. making

it much more difficult to test a VLSI chip.

As a consequence of growing circuit complexity. testing is taking an increasingly
larger proportion of total product cost. Ironically. the very software design tools
that make it possible to put more circuits on a chip at a reduced cost are effectively
increasing the cost of circuit testing. The advantages of VLSI are reduced system
cost. good performance. and great reliability. These advantages would be lost unless

VLSI devices can be tested economically.

(SV]

1.1 Background

The manufacturing of a VLSI chip consists of fabrication and testing. Testing is
required in order to discover defects in the VLSI chip. Design and test development
precede manufacture. Test activities are interwoven with the VLSI design process.
Architectural design consists of the partitioning of a VLSI chip into realizable blocks.
With the increase in complexity of the VLSI system, architectural design becomes
more and more important. Either the logic should be synthesized in a testable form

or the synthesized logic should be analyzed and improved for testability.

The objectives in testing a VLSI design are twofold. The first is to verify logic
correctness and timing behavior of the circuit before fabrication. The second is to
determine. after fabrication. whether components and interconnections on the chip
are fabricated correctly. The testing after fabrication is. by far. the most pressing
problem confronting both designers and test engineers. It is considered as the major
obstacle to the full exploitation of the benefits obtained from realizing extremely
complex VLSI systems [55]. These tests should thoroughly check every node in the
circuit and ideally. cover all faults that can possibly occur during fabrication. In this

dissertation. we concentrated on the second kind of tests.

In VLSI circuit design, the testing process is referred to as test generation and
fault simulation. The goal of test generation is to obtain test vectors of high quality
at an affordable cost. The quality of a set of test vectors is measured by fault coverage
(a fraction of the modeled faults detected by the test vectors) and by test length (the
number of vectors in the test set). Given a set of faults and a set of test vectors.
the goal of fault simulation is to determine which faults can be detected by the test
vectors. Both test generation and fault simulation rank equally in importance and

complement one another. Test vectors capable of distinguishing between good circuits

and faulted circuits do not become effective until these vectors are simulated so that
their effects can be determined. Conversely, extremely accurate simulation with very

precise models, and poor test vectors. will not effectively detect many defects.

Various factors contribute to testing and its cost. Testing cost is determined
mainly by the cost of real time test pattern generation and test application. The
cost of test pattern generation depends on the computer time required to run the test
pattern generation program. The cost of test application is determined by the cost
of equipment plus the testing time required to apply the test. The testing time may
be assumed to be directly proportional to the number of tests. For combinational
circuits. a test is a test vector. For sequential circuits. a test is a sequence of test

vectors.

A straightforward method for determining the testability of a circuit is to use an
Automatic Test Pattern Generation (ATPG) program. It generates test vectors and
determines the fault coverage. The running time of the program. the number of test
patterns generated, and the fault coverage provide a measure of the testability of the

circuit.

1.2 Fault Models

Fault models are a means of describing the effects of defects in a circuit. The
accuracy of the fault models in emulating the operation of the circuit under fault
conditions alters the effectiveness of test patterns in detecting faulty devices. The

test fault models are identified and formulated in this section.

1.2.1 Faults in VLSI Systems

The testing of a digital logic circuit involves the application of stimuli to the

circuit and the measurement of the response to determine whether the circuit is

functionally correct. An important part of testing is the creation of effective stimuli.
A fault is a physical or intellectual defect such as an open circuit. a short circuit. or
a ground in a circuit, component, or line [38]. A defect in a circuit may cause either
a permanent fault or an intermittent fault. Usually, testing is performed primarily
to detect permanent faults. The most commonly occurring faults are modeled. The
fault model is a computer model of the circuit that has been modified to conform
to some premise or conjecture about real physical defects. Then. input stimuli are
created which can distinguish between the fault-free and the faulted models. This

approach has a number of advantages [40]:

e It is effective to create specific tests for faults most likely to occur.

e The effectiveness of the test set can be measured by determining how many faults

can be covered by the set of test vectors.

e Specific defects can be associated with specific test patterns. If a circuit under

test responds to a test pattern incorrectly. the information indicates that the

defects exist.

This method has become a standard approach to developing tests for digital logic

failures.

It is desirable to describe faults at various levels of abstraction in VLSI systems. A
fault which is described at a verv low level. e.g.. the transistor level. may accurately
describe the physical phenomena causing the fault. but one of the difficulties with
this level is the tedious task of analyzing each individual component in the circuit.
Further complicating the task is the fact that there are several technologies in use

and each has its own way to perform digital logic operations.

Logic svmbols have long been used to represent logic circuits. These symbols
reduce the complexity of the logic circuit drawings and have the advantage of being
technology-independent. Consider the logic diagram of an AND gate and its truth

table as an example, as shown in Figure 1.1.

A —
B =™ D
c —

Figure 1.1. Three input AND gate with its truth table.

H R RPRRPO0OO0O0O0O |
OO KFROO|D
RPrororROFLOIN
HOoOOOODOOO|U

With these symbols. the circuits can be logically represented at a higher level. i.e..
the gate level. The faults can be described at the gate level and it would be simpler
to consider the faults at that level. An important advantage of this representation is
the fact that a computer algorithm can be designed upon these logic operators. which
are, for most part, independent of the particular technology chosen to implement the

circuits.

1.2.2 Fault Models

Fault models are used to describe the effect of a defect or failure in a circuit. The
development of a suitable fault model is a complex task and requires a knowledge of
circuit design. logic design, and fault testing. One of the earliest and still widely used
fault models at the gate level of abstraction is the stuck-at model. In this model, it is
assumed that physical defects and faults will result in the lines at the logic gate level

of the circuit being permanently stuck at logic value 0 or 1. This model is popular

since many defects at the transistor level can be modeled at the gate level. It has

proven to be an effective measure of test quality.

It is impractical to test the combinations of all the stuck-at faults in a circuit. This
has led to the adoption of the single-fault assumption. When a test is attempted. it

is assumed that only a single fault exists at a time.

Consider a circuit containing nodes which interconnect various components in the

circuit. At one time. each node may have only one of the following resulits:

o Fault-free.
e Stuck-at-1. i.e.. s-a-1.

e Stuck-at-0. i.e.. s-a-0.

The stuck-at-1 fault inhibits the node from switching to a 0. while the stuck-at-0
fault inhibits switching to a 1. The single stuck-at fault model is adopted in this

dissertation.

1.2.3 Fault Equivalence and Dominance

In building fault lists, it is often observed that some faults are indistinguishable
from others. In Figure 1.1, faults A, B. or C stuck-at 0 would result in the output D
being permanently 0 and, therefore. it is impossible to distinguish between an input
stuck-at 0 from the output stuck-at 0. These faults are said to be equivalent. There
is no test that can distinguish between them. More precisely, if T, is the set of tests
which detect fault a and T} is the set of tests which detect fault b. and if T, = T;.

then it is impossible to distinguish fault e from fault b.

~1

When we test for inputs, e.g.. A, B or C s-a-1. we simultaneously test for the
output D s-a-1. A s-a-1 fault on the output. however. prevents one from testing any
of the input s-a-1 faults. It is said that the output D s-a-1 fault dominates the input
s-a-1 fault. In general. fault a dominates fault b if T; is included in 7. According to
this definition. if fault @ dominates fault b, then any test which detects fault b will

detect fault a.

Since circuit testing time is affected by the size of the fault list. the reduction of the
fault list, a process called fault collapsing, can reduce test generation and simulation
time. Therefore, fault equivalence and dominance relations can be used to reduce the

size of fault lists.

1.3 Test Generation and Its Problems

The objective of test pattern generation is to derive input vectors to the circuit
which will excite the circuit in such a way that if any faults are present in the circuit
the output response of the circuit will differ from that of the fault-free circuit. With
the progress of VLSI technology, the problem of fault testing for logic circuits is
becoming increasingly difficult. Different approaches and much research work have
been applied to deal with the test problem. Despite the maturity of test generation.
the testing of VILSI circuits is still considered to be an area with a number of unsolved

problems [37].

1.3.1 NP-Completeness of Combinational Test Generation

Ibarra and Sahni [28] showed that test generation for combinational circuits be-
longs to the class of NP-complete problems. This strongly suggests that no test
generation algorithm with a polynomial time complexity is likely to exist. The prob-

lem of combinational circuit test generation can be viewed as a finite space search

(4]

problem [19]. For a combinational circuit with m primary inputs. there exist 2™
combinations of input assignments. Therefore. it is impossible to exhaust all the

combinations for large size circuits.

In practice. test generation algorithms for combinational circuits appear to be
able to achieve lower average time growth by using heuristic search techniques. Up
to now, some well-known test generation algorithms for combinational circuits. such
as D-algorithm [53], PODEM ([19]. FAN [16], NEMESIS [32]. and TRAN [9]. have

been developed. Some of them perform well for certain circuit structures.

1.3.2 Test Generation Problems in Sequential Circuits

Test generation for sequential circuits has long been recognized as a difficult task
[7. 39]. It remains to be a challenge in spite of a history of attempts dating back
to the late 1960s. One new factor which complicates the task of creating tests for
sequential circuits is the presence of memory elements. The outputs of the sequential
circuit depend not only on the primary input vectors but also on the present states

of the circuit.

For combinational circuits. it is possible. but not necessarily reasonable. to create
a complete test for logic faults by applying all possible binary combinations to the
inputs. This is not true for sequential circuits with memory elements. Not only may
thev require more than 2™ tests. they are also sensitive to the orderin which stimuli
are applied. It has been shown (7] that a fault in a general synchronous sequential
circuit may require a test sequence of up to 2"*! input test vectors. where n is the
number of memory elements in the sequential circuits. Therefore. the search space

for sequential circuit test generation is very large.

1.4 Approaches to Test Generation Problems Presented in
the Dissertation

This dissertation presents a new global search approach for test generation of
sequential circuits. The approach traces different sensitive paths taken by a fault at
a primary output or next state line by justifying the fault to the primarv inputs and
present state lines. Therefore. all fault patterns at the primary inputs and present
state lines are generated. During the global test generation process. many faults are
considered as candidates to be tested simultaneously. Such process aims at utilize
common search spaces for different faults to generate common test sequences. The
approach consists of two parts: a fault-independent test generation algorithm and a

fault-oriented test generation algorithm.

The fault-independent test generation algorithm is independent of individual fault.
It considers all faults simultaneously. At first. by partitioning circuits. a new backward
assignment method is presented to extract the ON /OFF sets of the primary outputs
and next state lines. The combinational excitation vectors can also be extracted at
the same time. So cover extraction and excitation vector generation are combined
into one phase. State justification and state differentiation are performed using the
ON/OFF sets of the primary outputs and next state lines. To enhance the efficiency
of state differentiation in the existing three-phase ATPG. a backward deterministic
method for state differentiation is proposed and the order of choosing next state lines
in state differentiation is presented. The fault-independent test generation algorithm
can detect most of the testable faults in the sequential circuits. A disadvantage of

the method is that it is difficult to determine all redundant faults.

The fault-oriented test generation algorithm is developed to detect the remaining

faults and determine the redundant faults. Each time. it considers one fault at a

10

time. The Boolean satisfiability and the implication graph algorithms are extended
to the sequential circuit test generation. A three-phase test generation for sequential

circuits is used in this algorithm.

Test compaction is an important part in test generation. The test compaction
problem is formulated as the set covering problem. An efficient set covering algorithm
is proposed to compact test vectors. It attempts to select the necessarv test vectors
for the faults detected and eliminate other redundant test vectors. so the original fault
coverage is not compromised. A local reduction and expansion algorithm is then used
to further compact the test set. This method generates compact test sequences for

the given faults.

1.5 Organization of the Dissertation

The dissertation is organized as follows: Previous work in test generation for com-
binational circuits and sequential circuits is reviewed in Chapter 2. Some related

work in test compaction is also presented.

Chapter 3 introduces the related test generation terminologies used in this disser-

tation.

In Chapter 4. observations that initiated this research work in test generation for
sequential circuits are given. A global search test generation system for sequential
circuits is presented. Then the steps of cover extraction. combinational circuit test
generation, state justification, and state differentiation used in the svstem are briefly
introduced. The algorithms used in these steps are described in Chapters 5 - 6 In

detail.

A backward assignment algorithm for cover extraction is described in detail in

Chapter 3. It can efficiently extract the ON/OFF sets of the primary outputs and

11

next state lines and the combinational excitation vectors. A method of partitioning

circuits is proposed to enhance the efficiency of extraction.

In Chapter 6, state justification and state differentiation are described. To enhance
the efficiency of state differentiation in the existing ATPG system. a backward de-
terministic algorithm for state differentiation is developed and the order of choosing

next state lines in state differentiation is studied.

Test compaction for sequential circuit test generation is discussed in Chapter 7.
First. the test compaction problem is formulated as a set covering problem. Then an
efficient set covering algorithm is proposed to compact test vectors. A local reduction

and expansion algorithm is used to further compact the test vectors.

Experimental results with [SCAS’89 benchmarks are presented in Chapter 8. These
results are compared to existing test generation systems. Our algorithm has obtained

close to the maximum fault coverage on the most benchmarks.

Chapter 9 concludes this dissertation and discusses possible future work.

CHAPTER 2

OVERVIEW OF EXISTING METHODS

In this chapter, an overview of the work previously done toward test generation is

presented. Previous work on the test compaction problem is then reviewed.

Since test generation methods for combinational circuits and sequential circuits
are related to each other. previous work on combinational circuit test generation is

first briefly discussed.

2.1 Overview of Test Generation for Combinational Circuits

A theoretical study suggests that no test generation algorithm for combinational
circuits with polynomial time complexity is likely to exist [28]. Though test generation
for combinational circuits is NP-complete. some efficient test generation systems have

been developed.

Up to now. some well-known test generation algorithms for combinational circuits
have been developed and perform well for certain circuit structures. The existing test
generation systems for combinational circuits are divided into two classes: structural

methods, such as PODEM [19]. and algebraic methods.

2.1.1 Structural Methods

The structural methods derive test vectors from a topological gate description of

the circuit. The path sensitization method is one of the frequently used techniques.

13

Among structural search methods in test generation for combinational circuits. the
D-algorithm. developed by Roth [53]. is one of the oldest and the best known test
generation algorithms. This algorithm adopts a five-valued 0. 1. X. D.D calculus
to carry out the sensitization and the line justification procedures in a very formal
manner. The faulty line is assigned a D or D depending on the fault on the line.
The calculus and the circuit structure information are used to determine values on
the other lines so that D or D can be sensitized to the primary outputs. A line
justification step is then carried out to justify the values assigned in the preceding
step. Both the sensitization and the line justification steps may have to be applied

many times before a test vector is obtained.

A class of circuits for which the D-algorithm performs particularly poorly are those
containing exclusive-or trees. Degradation in performance arises due to an excessive
amount of backtracking. This observation motivated Goel {19} to devise a new test
generation algorithm called path oriented decision making (PODEM). A branch and
bound technique was used in PODEM. The algorithm starts by assigning a value
of 0 or 1 to a selected primary input (PI) line. and then determines its implication
on the propagation of D or D to a primary output. If no inconsistency is found.
it again selects another PI line and assigns a 0 or 1 to it. and then repeats the
process. which is referred to as branching. If an inconsistency is determined in the
branching. the branching stops and bounding starts. The PI line which was most
recently assigned a binary value is assigned the complimentary value. and branching
starts again. The complete process stops when either a test vector is found or when
the fault is determined to be undetectable. PODEM implementations are known to

run an order of magnitude faster than the D-algorithm on most circuits.

Fujiwara and Shimono {16] described techniques to further accelerate a path-

14

sensitization algorithm like PODEM. Their algorithm. called FAN. does extensive
analysis of the circuit connectivity in a preprocessing step to minimize backtracking.
FAN has emploved a better heuristic in the bounding-and-branching steps to speed
up the test generation process. Schulz. Trischler. and Sarfert [57] presented a unique
sensitization method and an improved multiple backtrace method to further improve
the performance of FAN. Their system. called SOCRATES. improved the implication

procedure.

In these structural methods, backtracking. which is a branch procedure terminated
by a bound step. is the most computationally expensive step in the process of search-
ing for a test vector. The branching step goes as deep in the binary search tree as
possible. while the bound step backs up in the binary search tree to the most recent

rnode with an unused alternative assignment.

2.1.2 Algebraic Methods

Instead of performing a search on a data structure representing a circuit. algebraic
methods produce an equation describing all possible tests for a particular fault and
then simplifv the resulting equation. A typical algebraic method is the Boolean
difference method. proposed by Sellers et al. [58]. Once the Boolean difference formula
for the testing problem is obtained. it is simplified by using the basic laws of Boolean
algebra or using identities specific to the Boolean difference. The tedious nature of
the algebraic manipulations involved in solving formulae using the Boolean difference

led to its disfavor as a practical tool for test pattern generation [40].

Recently. Larrabee [32] proposed a Boolean satisfiability (SAT) method for gen-
erating test vectors for single stuck-at faults in combinational circuits. This new

method generates test vectors in two steps. First, it constructs a formula expressing

15

the Boolean difference between the fault-free and faulty circuits. Secondly. instead of
performing symbol manipulation. it applies a SAT algorithm to satisfv the formula.
This method has. in practice, produced good results for the problem of combinational
circuit test generation. Many existing SAT algorithms can be used to solve large size

SAT formulas [20. 21. 24. 26].

Later. Chakradhar. Agrawal. and Rothweiler [9] developed a transitive closure
algorithm for combinational circuit test generation. A Boolean difference equation
s derived from the model of the circuit incorporating necessary conditions for fault
activation and path sensitization and then a test vector is obtained by determining
signal values that satisfy the equation. The method consists of two main steps that
are repeatedly executed: transitive closure computation and decision-making. The
transitive closure contains global pairwise (or binary) logical relationships among all
signals. Higher-order signal relationships are represented as additional ternary and
M-ary (M > 3) relations. A key feature of the algorithm is that signal dependencies
derived from the transitive closure are used to reduce ternary relations to binary
relations that in turn dvnamically update the tramsitive closure. The signals are
either determined from the transitive closure or are enumerated until the Boolean

equation is satisfied.

An efficient ATPG system for combinational circuits has been implemented in
SIS [59]. It consists of two parts: random test generation and deterministic test
generation. which is based on the algorithm reported in [32]. Both fault equivalence

and fault dominance are used to reduce the fault list.

Cox and Rajski [15] developed a mathematical basis for the identification of nec-
essary and nonconflicting assignment. The algorithmic assignment identification can

be used to reduce or eliminate backtracking.

16

2.2 Overview of Test Generation for Sequential Circuits

Though adequate test generation systems exist for combinational circuits. the same
cannot be said for sequential circuits. The major difficulty in test generation for
sequential circuits is that the outputs of a sequential circuit depend not only on the

primary input vectors but also on the present states of the circuit.

The earlier algorithms modeled sequential circuits as iterative combinational cir-
cuits. Some test generation algorithms for combinational circuits were extended to
test sequential circuits [31. 41]. An algorithm based on this method has been pro-
grammed into a commercial package called LASAR [61]. Several approaches [36. 60]
based on extensions of the classical D-algorithm were presented to solve the test gen-
eration problem for sequential circuits. Shteingart. Nagle. and Grason [60] gave
an efficient technique for modeling sequential components. Although some progress

was made in these attempts. an effective solution for circuits with more than a few

hundred gates and large sequential depths was not available at that time.

Due to the relative ineffectiveness of these ATPG systems. many large digital sys-
tems are being designed in compliance with design-for-testability rules which attempt
to reduce the complexity of the test problem. The objective of design-for-testability
is to provide guidelines which ensure the creation of testable designs. A popular
approach is to make the memory elements controllable and observable. i.e.. a scan
design [1]. The flip-flops and/or latches are designed to be able to operate in either
parallel load or serial shift mode. In the normal mode of operation. flip-flops and
latches are configured for parallel load. The flip-flops are switched to a serial shift
mode for testing purposes. In serial mode, any needed test values can be loaded by
serially shifting in the desired values. In a similar fashion. any values in the flip-

flops can be observed by shifting out their contents while in the serial shift mode.

17

Scan design approaches have been successfully used to reduce the complexity of the
problem of sequential circuit test generation by transforming the problem into one of
combinational circuit test generation. However. in some cases. the cost in terms of

area and/or performance and/or extra numbers of I/O pins is unaffordable.

For sequential circuit test generation. some progress has been made in the past
several vears. A heuristic. simulation-based test generation algorithm was presented
by V.D. Agrawal. K.-T Cheng, and P. Agrawal [2]. At first. initialization sequence
is generated to bring flip-flops to known states. Then. test generation for a group
of faults and a single fault is performed separately. All functions are accomplished
through a simulator using different cost functions. Vectors are generated to minimize

the cost.

Ma. Devadas. Newton. and Sangiovanni-Vincentelli [35] described a PODEM-
based deterministic approach to sequential circuit test generation. called STALLION.
It first extracts a partial state transition graph (STG) of a sequential circuit. The
construction of the partial STG is based on an efficient state-enumeration algorithm
that aims at finding paths from the reset state to different valid states (states reach-
able from the reset state) in the STG. Then test sequences for line stuck-at faults can
be generated using the two-phase ATPG system: fault excitation and propagation.

and state justification.

Later. a new svstem. STEED. was proposed by Ghosh. Devadas. and Newton (18]
to improve STALLION. STEED decomposes the problem of sequential circuit test
generation into three subproblems: excitation vector generation. state justification.
and state differentiation. Given a fault under test, it first generates a combinational
excitation vector that propagates the effect of the fault to the primary outputs or the

next state lines. Combinational excitation vector generation is based on a PODEM-

18

like algorithm. A justification step is then performed to find 2 justification sequence
for the excitation state. This step is carried out using a sequence of cube intersections
on the complete or partial ON/OFF sets of the next state lines. If the effect of the
fault has been propagated to the next state lines alone. the true-faulty state pair
is generated by the excitation vector. A differentiation sequence for this true-faulty
state pair is obtained using another sequence of cube intersections on the ON/OFF
sets of the primary outputs. The three-phase ATPG system is shown to be an efficient
method. STEED significantly improved STALLION in terms of computing time for
the same fault coverage. Random test generation has been used as a front end of
deterministic test generation. Therefore. random seed has effects on the performance

of the random test generation.

Cho. Hachtel. and Somenzi [12] have recently given an efficient algorithm. VERI-
TAS. for sequential circuit test generation. VERITAS is based on implicit state enu-
meration and a three-phase ATPG. The approach identifies sequential redundancies
through reachability analysis of sequential circuits. It constructs the product ma-
chine of two sequential circuits to be compared. Reachability analysis is performed
by traversing the finite state machine to find any difference in I/O behavior. When
an output difference is detected. the information obtained by reachability analysis is
used to generate a test sequence. As the product machine traversal (PMT) is quite
resource-demanding, a three-phase ATPG system is used first to deal with most of
the faults. PMT is used only for the faults for which the three-phase ATPG fails
to generate test sequences. VERITAS further improved STEED in terms of running
time, test vector length, and fault covérage. It is difficult. however. for VERITAS to

handle large size sequential circuits.

These approaches above are capable of generating tests for sequential circuits with

19

1000-3000 gates. Due to the difficulty of test generation for sequential circuits. sig-

nificant improvements are needed for very large scale sequential circuits.

Niermann and Patel [42] presented HITECT. a sequential circuit test generator
without a reset state. A targeted D element technique is used to increase the number
of possible mandatory assignments and reduce the over-specification of state variables.
The state knowledge of previously generated vectors for state justification. without

the memory overhead of a state transition diagram. is presented.

Lee and Sajula [34] presented a PODEM-based algorithm for sequential circuits.
called FASTEST. The iterative array model and nine-valued logic are used. Each
iteration is called a time-frame. The FASTEST algorithm determines the number of
time-frames required to find a test for a fault and then expends time-frames based

on the state of test generation failure.

Prinetto. Rebaudengo. and Reorda [48] developed a genetic-based algorithm. GATTO.
for verv large sequential circuits. The algorithm starts with a2 number of random
generated sequences. Two operators are used in evolution process: cross-over and
mutation. The cross-over operator selects two parent sequences and builds a new
sequence composed of the first z, vectors of the first sequence and the last r» vectors
of the second sequence (here r; and z, are two random numbers). The mutation

operator randomly selects a sequence and complements a single bit within it.

Chen and Bushnell {11] proposed a test generator (SEST) for sequential circuits.
They observed that test generation for different faults may share identical justifica-
tion decision sequences represented by identical decision spaces. Since justification
decomposition represents the collective effects of prior justification decisions. it is

used to identify previously explored justification decisions.

20

Test cultivation is used for generating test vectors for both combinational and
sequential circuits [36]. This method is based on continuous mutation of a given
input sequence and on analyzing the mutated vectors to select the test set. The test
cultivation algorithms are simulation-based and a test set can be cultivated for any

circuit which can be simulated logically.

Marchok, EI-Maleh, Maly. and Rajski [37] investigated the complexity of sequential
ATPG systems. Three sequential circuit test generators are used in the investigation.
It is found that an circuit attribute. termed density of encoding. is a key indicator of
the complexity of structural, sequential test generation. Density of encoding is the

fraction of the total number of possible states which are valid.

Pomeranz and Reddy [45] analyzed undetectable and redundant faults in sequential
circuits. Faults are classied into three sets: detectable. partially detectable. and
operationally redundant. The last two classes are dependent on the operation mode of
the circuit. Partially detectable faults are the fault for which a test sequence does not
exist: however. under certain initial conditions (or initial states) of the circuit, faulty
behavior may be observed. The notion of redundancy cannot be separated from the
operation mode of the circuit. Two operation modes are considered: svnchronization

mode and free mode.

Recently. hybrid sequential circuit test generation methods are often adopted.
Rudnick and Patel [54] combined deterministic algorithms for fault excitation and
propagation with genetic algorithms for state justification. Deterministic algorithms
for state justification are used if the genetic approach is failed. so it allows for identi-
fication of untestable faults and to improve the fault coverage. Hsiao, Rudnick. and
Patel [27] developed an ATPG system for sequential circuits. called ALTTEST. where

two phases of test generation are used. The first phase uses a simulated-based genetic

algorithm and the second phase uses a deterministic algorithm HITEC.

2.3 Overview of Test Compaction

Test compaction is very important in test generation for both combinational cir-
cuits and sequential circuits. since it allows reduction in test application time and
test vector storage requirements of VLSI testers. The test compaction process can be
performed either statically or dynamically. In static compaction, the merging process
is performed after the test generation phase is completed. In dynamic compaction.

test vectors are merged during the test generation phase.

Several combinational and sequential test generators aimed at generating small
test sets for the stuck-at fault model have been developed. I. Pomeranz. L.N. Reddy.
and S.M. Reddy [44] presented two test vector compaction methods for combinational
circuits: maximal test compaction and rotating backtrace in COMPACTEST. Maxi-
mal test compaction unspecifies some primary input values specified as 1 or 0 in a test
vector for a fault. even if the resulting vector is not a test vector for the fault. The
rotating backtrace increases the potential of detecting additional faults by selecting

different paths for backtracing.

L.N. Reddy. I. Pomeranz. and S.M. Reddy {51] developed the COMPACTEST-II
svstem to generate compact test sets for combinational circuits. Single transition and
CMOS stuck-open faults are considered. Vectors for different faults are dynamically
overlapped. either fully or partially. to reduce the test set size. In ROTCO [52]. the
test vectors are processed in reverse order of generation. Test vectors are allowed to
be modified in the detection of faults detected by earlier vectors and the test vector

length is reduced.

Kajihara, Pomeranz, Kinoshita, and Reddy [30] presented a cost-effective method

N
N

for finding maximum independent fault sets in combinational circuits. A dynamic
fault ordering technique was introduced using independent fault sets and a double
technique that leads to the minimal test sets. Later. they [29] compacted test vectors
for stuck-at faults in combinational circuits by addition and removal of test vectors.
Fach test vector which is added to the test vectors allows the removal of two or more
test vectors. Aourid and Kaminska [4] proposed a neural network method for the
set covering problem. which can be applied to the test compaction for combinational

circuits.

Test vector compaction for sequential circuits is significantly more difficult than
for combinational circuits. Based on sequential testability and iterative model. Ben-
Hamida. Kaminska. and Savaria [3] discussed a pseudo-random vector compaction
technique for sequential circuits in order to conserve the sequences of vectors that de-
tect faults. Sequential testability measures are used to predict the optimum amount

of circuit duplication which is used in test compaction.

Raghunathan and Chakradhar [49] present several accelerating techniques for dy-
namic test compaction for sequential circuits. These techniques are based on the
identification of support sets. target fault switching, and use of dynamic equivalent
and untestable fault analvsis. They [10] also proposed a dynamic vector compaction
and test cyvcle reduction algorithm to identify bottlenecks that prevent compaction

and cycle reduction.

Niermann. Roy. Patel, and Abraham [43] used the compatibility of test sequences
to compact test vectors for sequential circuits. The compaction technique has effect

on the original fault coverage.

Pomeranz and Reddy [46] presented a procedure to generate short test sequences

23

for sequential circuits by selecting one input combination at a time. The procedure
switches between a fault-independent phase and a fault-oriented phase. Later. they

[47] used some static compaction techniques. such as omission and insertion. to do

dyvnamic test compaction for sequential circuits.

2.4 Summary

Up to now. some well-known test generation algorithms for combinational circuits
have been developed and perform well for certain circuit structures. Existing ATPG
svstems for combinational circuits fall into two classes: structural and algebraic meth-
ods. Both Boolean satisfiability and transitive closure methods have produced good

results on popular test pattern generation benchmarks [32, 9].

For sequential circuit test generation. some progress has been made in the past
several vears [18, 42. 12. 11]. The three-phase ATPG system is shown to be an efficient
method. Due to the difficulty of test generation for sequential circuits. significant

improvements are needed for very large scale sequential circuits.

Test compaction is an important part in an ATPG system for both combinational
and sequential circuits. There are two kinds of methods to perform test compaction:

static and dvnamic test compaction [31. 30. 49].

CHAPTER 3

PRELIMINARIES

In this chapter. common terminology related to test generation is introduced. A

sequential circuit is shown in Figure 3.1. The circuit consists of a combinational

Primary
PI) — E— (PO)
taputs n Combinational Logic a Outputs
Present Next
ip- NS
Sutes (P> Flip-Flops K| ¢oree NS

Figure 3.1. A sequential circuit.

logic block and some feedback flip-flops. The inputs and outputs of flip-flops are
the next state and present state lines. respectively. There are p primary inputs. n
present state lines. n next state lines. and g primary outputs. The primary outputs
are the functions of the primary inputs and present state lines. It is assumed that the
present state and next state lines are neither controllable nor observable. The goal
of test generation for sequential circuits is to find primary input sequences which can

propagate the faults in the sequential circuit to the primary outputs.

A conventional iterative array model [7], as shown in Figure 3.2. is used to

illustrate the test generation process of sequential circuits. The iterative array in

[\V]
S]]

PIl POl ' PI2 P02 . ' PIk ‘E’Ok .
" e Ij r— ' —r— '
——— SN] —— —t] .
= F.' . :': [yt ' e E [~—r—

e | & J L et
1] .) k
Ps NSl 13'52 st . . PS NSk
clock cycle 1 clock cycle 2 clock cycle k

Figure 3.2. An equivalent pseudo-combinational iterative array to the sequential
circuit in Fig. 2.1.

Figure 3.2 is logically equivalent to the sequential circuit shown in Figure 3.1. If

an input sequence PI'. PI?, ---. PI* is applied to the sequential circuit in initial
present state PS*. it generates a primary output sequence PO!. PO?. --.. PO* and
the next state sequence NS'. V52, ... NS¥ (PS#*! = NS*. 1 <i<k).

Assume there is a fault, F. in the combinational logic block of the sequential circuit
shown in Figure 3.1. The combinational block is duplicated in terms of each clock
cvcle. i.e.. time-frame. Two iterative array models are considered in test generation:
the fault-free and faulty array models. In the faulty array model. the fault under
test exists in every time frame. The behavior difference between the fault-free and
faulty array models is the effect of the fault on the primary outputs. since other
nodes besides the primary outputs are neither observable nor controllable. The fault

is propagated to the primary output along a sensitized path through each time frame.

Definition 3.1 Beginning with the present state in clock cvcle 1. PS!. we set the
reset state values and wish to produce a primary input sequence. PI'. PI?.---. PI k,
which. when applied to clock cycles 1.2.--- . k. propagates the effect of the fault F to
the primary outputs, PO*. during the kth clock cycle. This primary input sequence

is called a test sequence for the fault.

26

Unlike combinational circuits. where only one input test vector is needed to test a
fault. a sequential circuit may require a test sequence of up to 27+ input test vectors.

where n is the number of memory elements (flip-flops) in the sequential circuits [7].

In sequential circuit testing, a state is a bit vector. Its length is equal to the
number of memory elements in the sequential circuit. In general. a state is a cube.
i.e.. the values at the different bit positions may be 0. 1 or X (don't care). A minterm
state is a state with only 0’s or 1’s as bit values. A cube state is a group of minterm

states. A universal cube is a cube with all X entries.

Definition 3.2 State S; implicates state S,. if and only if. every state contained in

S, is also contained in S;. That is. state 57 covers state 5.

For example. state (1. 0. 0) is a minterm state. and state (1. 0. X)) is a cube state.
There are two minterm states (1. 0. 0) and (1. 0. 1) in the state (1. 0. X. so state

(1. 0. 0) implicates state (1. 0. X). (X. X. X) isa universal cube.

A nine-value logic (0. 1. X. D, D. FD. FD. TD. TD) is used to describe the
circuit behavior. The logic value D represents a logic value 1 for a node in a fault
free circuit and a logic value 0 for the same node in the faulty circuit. The logic value
D is the complement value of D. The logic value F D is the consistent value of the
logic value D and the logic value 0. The logic value FD is the consistent value of the
logic value D and the logic value 0. The logic value T D is the consistent value of the
logic value D and the logic value 1. and the logic value TD is the consistent value of

the logic value D and the logic value 1. as shown in Figure 3.3.

Definition 3.3 The logic values 0, 1. and X are referred to as the control logic values.

The logic values D, D. FD, F D. TD. TD are referred to as the fault logic values.

—— 0O —— 0
FD— FD —

— p — b

— 1 — 1
TD— D —

— p — b

Figure 3.3. The meaning of logic values F D.FD.TD.TD.

The sequential circuits discussed here are assumed to have a reset state. All test
sequences are applied to the sequential circuit with the reset state as the starting
state. Some faults in the circuit may be redundant, i.e.. their existence does not change
the behavior of the circuit. There are two kinds of redundant faults. combinational

redundant and sequential redundant.

Definition 3.4 A combinational redundant fault is a fault which cannot be propa-
gated to the primary outputs or the next state lines. beginning from any state. with

any input vector.

Definition 3.5 A sequential redundant fault is a fault which cannot be excited or
whose effect cannot be propagated to the primary outputs using any sequence of

input vectors starting from the reset state.

Definition 3.6 An ezcitation vector for a fault is a test vector that propagates the
fault to either the primary outputs or the next state lines. The test vector consists
of two parts, the primary input and the present state. The present state part of an
excitation vector is called an ezcitation state. The primary input part of an excitation

vector is an ezcitation input.

28

Definition 3.7 The process of finding a primary input sequence which takes a cir-

cuit from the reset state into the excitation state is called state justification. The

corresponding input sequence is a justification sequence.

There are two kinds of state justification. forward state justification and backward
state justification. In forward state justification, the search is done from the reset
state to the excitation state; and vice versa for backward state justification. Usually.
backward state justification is used to perform state justification. If the excitation

vector propagates the fault to the next state lines. state differentiation is required.

Definition 3.8 State differentiation is the process of propagating the effect of a fault
on the next state lines to the primary outputs. A differentiation sequence for a pair
of states. fault-free state ST and faulty state SF . which differ in at least one bit. is
a primary input sequence such that. if the circuit is initially in ST. the last vector in
the sequence produces a different logic value in at least one primary output than if

the circuit were initially in S¥.

In sequential circuit test generation. the complete test sequence is obtained by

combining the justification sequence, the excitation vector. and the differentiation

sequence.

Definition 3.9 When all flip-flops in a sequential circuit are disabled. the sequential
circuit becomes a pseudo-combinational circuit. The primary inputs and present state
lines are considered as the inputs of the pseudo-combinational circuit. The primary

outputs and next state lines are the outputs of the pseudo-combinational circuit.

A general pseudo-combinational circuit is shown in Figure 3.4.

. p .
Primary E - S
Ipuss. L) T = 5 pun (O)
ent £ n Combinational Logic n Next E)
Pres PSTY —— >
States () ~ 7 States (NS

Figure 3.4. A general pseudo-combinational circuit is obtained from the corresponding
sequential circuit by disabling all flip-flops.

30

Definition 3.10 The input cone of a primary output is a portion of a circuit which
includes the primary output and its subtree from the primary output to the primary
inputs and present state lines. Any fault site in this subtree is a node in the input
cone. The input cone of a next state line is a portion of a circuit which includes the
next state line and its subtree from the next state line to the primary inputs and
present state lines. The input cone of a node is a portion of a circuit which includes
the node and its subtree from the node to the primary inputs and present state lines.

The size of a node is the number of nodes in its input cone.

The concept of the input cone is suitable for any node in a circuit and includes

the input cones of primary outputs and next state lines.

Definition 3.11 Assuming a fault site in the circuit is a node in the input cones of
r primary outputs. the input cones of these r primary outputs are referred to as the
primary output fault region for the fault under test. Similarly. if a fault site in the
logic circuit is a node in the input cones of s next state lines. the input cones of these

s next state lines compose the nezt state fault region for the fault under test.

To illustrate the idea of an input cone. consider a simple sequential circuit s27
from the ISCAS'89 benchmarks. as shown in Figure 3.3. There is only one primary
output G17. and its input cone is shown in Figure 3.6. There are three next state
lines G10. G11. and G13. The input cones of the next state lines G10. G1L. and
G13 are shown in Figure 3.7 - 3.9. Consider a fault on G15. Since G15 is a node
in the input cone of the primary output G17. its primary output fault region is the
same as the input cone of G17 shown in Figure 3.6. Though G15 is a node in the
input cones of the next state lines G11 and G10. if the fault is propagated to G10. it

must be propagated to G11 first. Therefore, the next state line G11 only needs to be

G3

G8

16 |

Gé

G5

Dff

Gi0

G7

G8

G3

G16

Dff

G9

Figure 3.5. A sequential circuit s27 from ISCAS'89 benchmarks.

Gi1 {(>(>G17

Figure 3.6. The input cone of the primary output G17 in circuit s27.

Gl4

G0 G10
Gl Gl2

GiS | G9

Gli
G5
G8
G16
G3
G7 Gé

——

Figure 3.7. The input cone of the next state line G10 in circuit s27.

GO

Gl

G3

>
—

Gl4

G6

Figure 3.8. The input cone of the next state line G11 in circuit s27.

Gl G12

G7

G2

G13

Figure 3.9. The input cone of the next state line G13 in circuit s27.

considered. The next state fault region for the fault at node G135 is the input cone of
G11. as shown in Figure 3.8.

A set consists of a group of cubes. There are OFF. ON. and D sets corresponding

to logic values 0. 1. and D.

Definition 3.12 The ON set of an output is the complete set of input values which
produces the output logic value 1. The OFF set is the complete set of input values

such that the corresponding output is at logic value 0.

The process of extracting the ON/OFF sets of the primary outputs and next state

lines is called cover extraction.

Definition 3.13 If a sequential circuit can reach a state S,,, during the next clock
cvcle from a state Si,. state Si is said to be a fan-in state of state 5,,.. and state

S, is a fanout state of state Sin.

All fan-in states of a state can be obtained by cube intersection on the ON and

OFF sets of the next state lines.

Definition 3.14 The intersection of two cubes ¢ and d. denoted ¢ N d. is the set of

states that belong to both ¢ and d.

The cube intersection is performed according to the following equation:

cnd= o. if there exists one k. ¢ N di = o. otherwise
T {(eandi)(czNda) -+ (caNda)}.

where k = 1,2,....n.

Table 3.1. Cube intersection operation.

Ci

o0 oOle
— — Q= &
=] I d

M= olD

34

Table 3.2. Sharp product operation.

o m Q- &

o ok
om0

-0 h]|o

The intersection of the three value tuple is defined in Table 3.1. where o is the

empty set.

Definition 3.15 The union of two cubes, i.e.. ¢ U d. is the set of states that belong

to c or d.

Definition 3.16 The sharp product of two cubes. i.e.. c#d. is the set of states that

belong to ¢ but not to d.

c. if there exists one k. ci#dr = ot
citd = { o. if cx#di = <. for all k: else

Ur{cicae.-Cho10kCis1---Ca}
where c#d; = a;, €0.1. k=1.2.....n. And ¢ denotes implication.

The sharp product of the three value tuple is obtained in Table 3.2.

Definition 3.17 The complement of a set s. 3, 1s a set of the same dimension as
the set s. such that its components have their on-sets equal to the off-sets of the
corresponding components of s. The union of the set s and its complement set 3

equals to the corresponding universal cube and their intersection is the corresponding

empty set.

36

Definition 3.18 A graph G = (V. E) consists of 2 finite. nonempty set of vertices V
and a set of edges E. If the edges are ordered pairs (v. w) of vertices. the graph is said

to be directed: v is called the tail and w the head of the edge (v.w).

Definition 3.19 A path is a sequence of edges of the form (vy. v2). (v2. v3). ... (Tn-1.
vn). We say that the path is from v, to vn and is of length n-1. A cycle is a simple

path of at least length 1 which begins and ends at the same vertex.

If a graph contains a cycle. it is cyclic: otherwise it is acyclic. A Directed Acyclic

Graph (DAG) can be used to describe a circuit.

Definition 3.20 The transitive closure of G is defined as a graph G* which has the
same vertex set as G. but has an edge from v to w if and only if there is a path from

rtowinG.

Definition 3.21 The edges V' can be partitioned into equivalence classes V;. 1 > 1.
such that vertices v and w are equivalent if and only if there is a path from v to w
and a path from w to v. The graphs G; = (Vi E) are called the strongly connected

components of G.

The goal of the satisfiability (SAT) problem [13] is to determine whether there
exists an assignment of truth values to a set of variables (z;.z3.....Tn) that makes

the following Boolean formula satisfiable:

C1°€C2" ... Cns (3.1)

where - is a logic and connector and ¢;,¢Cz.- - - . ¢y are n distinct clauses. Each clause
consists of only literals combined by just the logic or (+) connector. A literal is a

variable or a single negation of a variable.

CHAPTER 4

GLOBAL TEST GENERATION FOR SEQUENTIAL
CIRCUITS

In this chapter. an efficient global search system for test generation of sequential
circuits is presented. The system consists of two parts: a fault-independent test gen-
eration algorithm and a fault-oriented test generation algorithm. A novel backward
assignment method is developed to extract the ON/ OFT sets of the primary outputs
and next state lines. The pseudo-combinational excitation vectors can be extracted
at the same time. A method of partitioning circuits is developed to increase the effi-
ciencv of extraction. For each excitation vector. state justification is used to justify
the excitation state. If the excitation vector propagates the fault to the next state
lines. state differentiation is required to continuously propagate the effect of the faulr
on the next state lines to the primary outputs. A backward deterministic method
for state differentiation is presented and the order of choosing the next state lines in

state differentiation is given.

At first. observations that initiated this research work in sequential circuit test
generation are given. A model of global test generation for sequential circuits is
discussed. Then a novel global search test generation system for sequential circuits
is presented. Three important parts in this system are discussed in the following

chapters 5 - 7. They are the extraction of cover sets and combinational excitation

38

vectors. state justification and state differentiation. and test compaction of sequential

circuilts.

4.1 Observations

Some existing test generation systems use random test generation as a front end of
deterministic test generation to reduce test generation time (18. 12. 48]. This results
in a two-step sequential circuit test generation system: random test generation and
deterministic test generation. With the increasing complexity of sequential circuits.
fewer percentage of faults can be detected by random test generation. A large portion
of faults in many practical circuits are random pattern resistant. which causes low
fault coverages for a reasonable test length. The performance of the random test
generation is affected by the random seed. In addition, it may be difficult to find

compact test vectors by random test generation.

Most deterministic methods for sequential circuit test generation are based on
fault-oriented three-phase test generation. For each fault under test. first. a combina-
tional excitation vector is found to propagate the fault to the primary outputs or the
next state lines. Second. the combinational excitation states are backward justified.
Last. if the combinational excitation vector propagates the fault to the next state
lines. state differentiation is needed to forward propagate the effect of fault on the

next state lines to the primary outputs

In order to perform state justification and state differentiation. cube intersections
are used on the complete or partial ON/OFF sets of the primary outputs and next
state lines. Usually, the extraction of cover sets is considered as a pre-processing step
to the three-phase test generation method. So strictly speaking, the conventional
three-phase test generation method have one pre-processing step and three phases.

i.e.. cover extraction, combinational excitation vector generation. state justification.

39

and state differentiation.

4.2 The Model of Global Test Generation

The extraction of cover sets includes the ON/OFF sets of the primary outputs and
the next state lines. Each vector in the ON/OFF sets produces the corresponding
primary output or the next state line to be logic value 1 (ON) or 0 (OFF). We
have developed a backward assignment method to perform cover extraction. In the
backward assignment method, each output (the primary output or the next state line
in the sequential circuit) is set to logic value D and other outputs are set to logic
value X. The logic value D is justified to the inputs of the circuit. The combination
of logic values in the inputs is the D sets of the corresponding output. as shown in

Figure 4.1. When the logic value D is set to 0. the OFF set is obtained. When the

fauit logic value =~ ———

——
— o Combinational | o
——

control logic values { : Module in

: Sequential

——+ Circuit

® X XO

Inputs Outputs

Figure 4.1. One output is set to logic value D and the combination of logic values on
the inputs is the D set of the output.

logic value D is set to 1. the ON set is obtained.

From Figure 4.1. it is noticed that, in one group of assignment. one and only one
input is assigned to the fault logic value. The other inputs are assigned to the control
logic values. This property is determined by the backward assignment rules (we will
discuss the rules in Chapter 3). Therefore, if the fault logic value is considered as
a fault on the input, each vector in the cover sets is equivalent to a combinational

excitation vector. For each vector in the cover sets of the primary outputs. state

40

justification is needed to justify if the vector is reachable from the reset state. For
each vector in the cover sets of the next state lines, state justification is first used
to justify if the vector is reachable from the reset state. If it is reachable. state
differentiation is needed to forward propagate the effect of the fault on the next state

lines to the primary outputs.

Based on the backward assignment method. the extraction of cover sets and the
combinational excitation vectors can be combined into one phase. The conventional
three-phase test generation method (the combinational test generation. state jus-
tification. and state differentiation) and the pre-processing step {cover extraction)
become the real three-phase test generation for sequential circuits. i.e.. the extraction
of cover sets/combinational excitation vector generation. state justification. and state

differentiation.

The proposed real three-phase test generation method for sequential circuits is a
global search method because each time it considers the problem of generating a test
sequence for more than one fault simultaneously. During the test generation process.
all faults in the circuit are considered simultaneously. The concept of considering
more than one fault makes the search space universal and uses the common sub-

search space for different faults.

Consider the circuit shown in Figure 4.2. There is a sensitive path between node
a and node c. All faults along the path can be considered simultaneously. Also. for a
fault. there may exist multi-sensitive paths. The proposed global search method uses
a backward assignment method which traces different sensitive paths for the faults
at the primary outputs and next state lines by justifving the faults to the primary
inputs and present state lines. Therefore, the fault patterns at the primary inputs

and present state lines are generated.

41

) D
input ¢ b
D
a output
1 1
1

Figure 4.2. One sensitive path between one input and one output.

4.3 The Global Test Generation System for Sequential
Circuits
Summarizing the above ideas. a novel global test generation system. GLOBAL-
TEST. for sequential circuits is presented in this section. The GLOBALTEST system
consists of two main algorithms: the fault-independent test generation algorithm and

the fault-oriented test generation algorithm. as shown in Figure 4.3.

In fault-independent test generation. a novel backward assignment method is pro-
posed to perform cover extraction and combinational excitation vector generation.
Thus. the extraction of cover sets and combinational excitation vectors can be com-
bined into one phase. Partitioning circuits is developed to increase the efficiency of
extraction. State justification is used to justify the excitation states. If the combi-
national excitation vector propagates the fault to the next state lines. state differ-
entiation is used to continuously propagate the effect of the faults to the primary
outputs. To enhance the efficiency of state differentiation in the conventional three-
phase ATPG. a backward deterministic method for state differentiation is proposed
and the order of choosing next state lines in state differentiation is presented. The

proposed fault-independent test generation algorithm for sequential circuits can de-

Input : The sequential circuit and a list of faults.
Output : Test sequences for the detected faults.

procedure GLOBALTEST()

begin
/= the fault-independent test generation for sequential circuits =/
fault_independent_test_generation():

/* the fault-oriented test generation procedure */
fault_oriented_test_generation():

output test sequences for the detected faults:
end:

Figure 4.3. GLOBALTEST: The global test generation system for sequential circuits.

43

tect a large percentage of faults. The disadvantage of this method is that it is difficult
to prove redundant faults. It is therefore suitable to be used as a front end to the
deterministic test generation method. Most of the existing ATPG systems use ran-
dom vector test generation as the first step in test generation. Compared to random
test generation. the proposed fault-independent test generation method takes a little
more time but can cover more faults. Also. the random seed has no effect on the

method. Random test generation is not needed in our system.

Following the fault-independent test generation algorithm. a deterministic and
fault-oriented test generation algorithm is used to detect the remaining faults. In
this dissertation. a revised three-phase test generation method is used. It considers
one fault at a time and can determine redundant faults. The Boolean satisfiability
and implication graph methods are extended to the test generation for sequential
circuits. For each fault. at first, the combinational excitation vectors are generated.
Then state justification is used to justify the excitation state. If the effect of the fault
is propagated to the next state line. state differentiation is needed to continuously

propagate the effect of the fault on the next state lines to the primary output.

The state differentiation method in the conventional three-phase ATPG method
lacks efficiency in dealing with the unspecified inputs in the excitation vector and the
justification sequence. STEED [18] has to try all possible assignments to the unspec-
ified inputs before it can be concluded that a test for the fault under consideration
does not exist. We have developed a backward deterministic algorithm for the state
differentiation. Cubes, rather than minterm states, are used in the differentiation
process. Our state differentiation algorithm searches backward to specify the cubes
‘nto the real excitation states. This has significantly reduced the differentiation time.

To make state differentiation cover more faults and find shorter test sequences. our

44

state differentiation algorithm tries the primary output first. If this fails. the algo-
rithm tries the next state lines whose corresponding present state lines are in the
input cones of the primary outputs. Finally, if this fails again. the algorithm tries the

remaining next state lines.

An important goal of the ATPG system is to find a compact test set. The methods
of test compaction can be classified as static and dynamic. In this dissertation. the
test compaction problem is formulated as the set covering problem by the pseudo-
sequence concept. An efficient set covering algorithm is proposed to compact test
vectors. It attempts to select the necessary test vectors for the faults detected and
eliminate other redundant test vectors. Then a local multi-variable search algorithm
for test compaction is developed to further compact test vectors. The original fault

coverage is not compromised.

In the following. we will discuss these two algorithms in detail.
4.4 The Fault-Independent Test Generation Algorithm

The fault-independent test generation algorithm for sequential circuits (fault-

independent_test_generation()) consists of three procedures:

e extraction of the cover sets and the combinational excitation vectors: All flip-
flops in the sequential circuit are disabled. and the sequential circuit becomes a
pseudo-combinational circuit. A backward assignment method is presented to
extract the ON/OFF sets of primary outputs and next state lines. The com-
binational excitation vectors can be generated at the same time. A method of

partitioning circuits is developed to increase the efficiency.

o state justification: A justification sequence is found to take the circuit from the

reset state into the excitation state.

45

e state differentiation: A differentiation sequence is found to propagate the effect

of the fault on the next state lines to the primary outputs.

The fault-independent test generation algorithm for sequential circuits {(fault_
independent_test_generation()) is shown in Figure 4.4. At first. procedure eztract_sets_
and._ezcitation_vectors() is used to extract the ON/OFF sets of the primary outputs
and next state lines. It can also generate the combinational excitation vectors at the
same time. Procedure state_justification() is used to justify each excitation vector. If
state justification succeeds, it is necessary to check which set the excitation vector
comes from. If the excitation vector is from the ON/OFF sets of the primary outputs.
a test sequence is found. If the excitation vector is from the ON/OFF sets of the next
state lines. state differentiation is needed to continuously propagate the effect of the
fault on the next state lines to the primary outputs. If state differentiation succeeds.
a test sequence is found. When a test sequence is found. it is fault simulated by all

faults under test.
In the following. we will briefly describe the extraction of the ON/OFF sets and
combinational excitation vectors. state justification. state differentiation. and fault

simulation.

4.4.1 Cover and Excitation Vector Extraction

The objective of cover extraction is to extract the ON/OFF sets of the primary
outputs and next state lines. A backward assignment method is proposed to extract

the ON/OFF sets and the combinational excitation vectors at the same time.

At first. all flip-flops in a sequential circuit are disabled. The sequential circuit

becomes a pseudo-combinational circuit. The primary outputs and next state lines are

46

Input : The sequential circuit and a list of faults.
Output : Test sequences for the detected faults.

procedure fault_independent _test_generation()
begin
/= phase 1: extracting the ON/OFF sets and combinational excitation
vectors by partitioning circuits */
ezcitation_vectors := extract_sets.and_excitation_vectors():
for each excitational vector ezcitation_vector in ezcitation_vectors do
begin
/* phase 2: state justification ™/
Justification_sequence := state_justification(ezcitation_vector):
if justification_sequence is found do
begin
/= judging if state differentiation is needed since the fault
should be propagated to primary outputs ~/
if the vector is from the ON/OFF sets of some next state lines do
begin
/* phase 3: state differentiation ™/
differentiation_sequence := state_differentiation(ezcitetion_vector):
if differentiation_sequence is not found
continue;
end;
use the test sequence to fault simulate all faults under test:
if all faults are detected then break:
end:
end:
end:

Figure 4.4. The fault-independent test generation algorithm for sequential circuits.

47

considered as outputs of the pseudo-combinational circuit. The primary inputs and

present state lines are considered as the inputs of the pseudo-combinational circuit.

For each output of the pseudo-combinational circuit. the combinational circuit is
represented with its corresponding input cone. The ON/OFF/D sets are extracted
by assigning the output line of the input cone to the logic value 0. 1. or D and using
a backward assignment method to implicitly enumerate the input combinations that
can set the output line to 0. 1. or D. Finally. the combination of the assignments at

the inputs of the cone is the OFF, ON. or D set of the output.

Due to the connectivity of the circuit. some nodes in the circuit may be assigned
more than once. Also. according to the backward assignment rules (we will discuss
the rules in Section 5.1), one assignment on an output may have several groups of
assignments on the corresponding inputs. Therefore with the increase of the circuit’s
depth. the number of assignments for each node per level may increase dramatically.
The CPU time and memory space required for extracting the ON/OFF sets may also
grow exponentially. A simple solution to the problem is to set a limit for the maximum
number of assignments at each node {62]. When the number of assignments at 2 node
reaches the limit. we ignore new assignments and extra assignments are discarded.
Limiting the maximum number of assignments per node can dramatically decrease
the extraction time. However, the ON/OFF sets obtained may be incomplete after

the Iimit is set.

An efficient partitioning circuit method is developed. The pseudo-combinational
circuit is partitioned into several smaller circuits according to some important par-
titioning nodes. Instead of extracting the ON/OFF sets of the original circuit. the
ON/OFF sets of these smaller partitioning circuits are extracted. Since these parti-

tioning circuits are smaller than the original circuit. it is more efficient to extract the

48

ON/OFTF sets of these partitioning circuits. After extracting the ON/ OFF sets of the
partitioning circuits, it is necessary to combine the ON/OFF sets of the partitioning
circuits into the ON/OFTF sets of the original circuit. The detailed extraction method

will be discussed in Chapter 3.

4.4.2 State Justification

Since the sequential circuit discussed here is assumed to have a reset state. all
valid states begin from this reset state. State justification is used to justifv if the
combinational excitation state is reachable from the reset state. If the excitation state
implicates the reset state, the fault can be excited by the reset state. Otherwise. the

excitation state should be justified by state justification.

The iterative array model in Figure 4.5 is used to illustrate state justification. The

Justification 1 Justificaton k Excitation
1 J1 Jk JK = E
o1’ 20" pr” po~ " »I 20
——— [yt il e it F—r—a
. . . PR | . ra—— kg
—tgd . —heaied g
JI = E
257t Ns” pg ¥ ns'® o5 NS
(Reset state)

Figure 4.5. General iterative array model for state justification.

excitation input PIZ and excitation state PSE excite the effect of a fault under test
to POE or NSE. The goal of state justification is to find a primary input sequence.
prJt. pI92. PI'%. which places the sequential circuit into the excitation state
PSE from the reset state. If PS7! is the reset state, the justification sequence P/ J1,

PI2, ... PI'* is found. The justification path is the set of states traversed during

state justification, PS7t, PS72. ---, PSYk.

49

State justification can also be illustrated by the state transition graph (STG) shown

in Figure 4.6. where PSE is the excitation state. We need to find a justification path

S=S

Reset state Excitation state

Figure 4.6. State transition graph for state justification.

from the reset state to the excitation state PSE.

State justification can be performed by two methods: forward and backward.
depending on whether the search is conducted from the reset state to the excitation
state or vice versa. In this dissertation. a backward state justification is adopted.
All fan-in states of the excitation state are obtained by cube intersection on the
corresponding ON/OFF sets of the next state lines. If the reset state implicates the
fan-in states. a single vector justification sequence is found. Otherwise. the process
is repeated for the fan-in states being currently justified to try to find multi-vector

justification sequence.

Cubes. instead of minterm states. are used to represent the excitation state and all
fan-in states in state justification. Using cubes is helpful to find shorter justification
sequences. Thus the justification time is reduced and the quality of the test pattern

generator increases.

4.4.3 State Differentiation

If the combinational excitation vector propagates the fault to the primary outputs

and the excitation state is justified, a test sequence for the fault is successfully gen-

Justification 1 Justification k Excitation Differentiation | Differentiation r

31 J1 Jk £ E
pr” PO PI po’ pr po® pzl? po”” p1”% 20°%
ey e e —— et — B = .. ——
——et F e ———et F F F —— —t F ———
— @ bt — @ [[} . ——— ® .

5 M Ji Jk . _E i 234 c c
ps’t Ns-t ps”* Ns'* ps® nsE psP? Ns® ps”* ns®

(Reset state)

Figure 4.7. Iterative array model for state differentiation.

@ = Jl @ PIJk @ PIDI

Reset state Excitation state

Figure 4.8. State transition graph for state justification and state differentiation.

erated. However. if the combinational excitation vector propagates the fault to the
next state lines. state differentiation is required to continuously propagate the effect

of the fault on the next state lines to the primary outputs.

State differentiation is illustrated by the iterative array model in Figure 4.7. The
excitation input PI¥ and excitation state PSE excite the effect of a fault under test
to the next state lines VSE. and a justification path from the reset state PS7' to
PS7% is found. The goal of state differentiation is to find a primary input sequence.
P[Pt prb? ... PIPr which propagates the effect of the fault on the next state
lines of the excitation state clock cvcle to the primary outputs of the rth differ-
entiation clock cvcle. The differentiation sequence is the primary input sequence.
PIDP pD2 ... PIPr and the differentiation path is the set of states traversed dur-
ing state differentiation. PSPt _psb2 ... PSPt The test sequence is obtained by
concatenating the justification sequence, the combinational excitation vector. and
the differentiation sequence. The state transition graph can also be used to illustrate

state justification and state differentiation, as shown in Figure 4.8.

51

In the procedure state.differentiation() shown in Figure 4.4. in order to reduce the
time of state differentiation. random state differentiation is used first. If random state

differentiation fails. a deterministic state differentiation algorithm is used.

At first. with the combinational excitation vector as the inputs to the primary
inputs and present state lines, the fault-free and faulty states (ST. SF) on the next
state lines are created by fault simulation. At the next clock cycle. the fault-free and
faulty states (ST. SF) on the next state lines are propagated to the present state lines.
By employing cube intersection on the ON and OFF sets of each primary output. a
primary input vector is attempted to find which produces a different output on the
corresponding primary output. beginning from the fault-free and faulty states on the
present state lines separately. Such a primary input vector constitutes a single-vector

differentiation sequence.

If a single-vector differentiation sequence cannot be found. all the fan-out states
of the fault-free and faulty states are found via repeated cube intersection. This is
performed by finding a primary input vector that produces a different output on at
least one mext state line for the fault-free and faulty states with the ON/OFF sets of
each next state line. If the primary input vector is found. a new pair of fault-free and
faulty states (SI. ST) are obtained. For the new fault-free and faulty states. a single-
vector differentiation sequence is sought again. If found. a two-vector differentiation
sequence is constructed. Otherwise. a pair of states fanning out from some fan-
out state pair are picked and differentiation between this pair is attempted. The
process continues until a differentiation sequence is found or there does not exist any
differentiation sequence for ST and SF. Once the differentiation sequence is found.

the entire test sequence is fault simulated to check if the fault can be detected.

In the general case, similar to state justification. state differentiation is attempted

Ot
N

between disjoint groups of states (cube states) rather than a minterm state pair. This
means that some bits in the true and faulty states are unknown. The existence of
a differentiation sequence between two groups of states means that if any state ST
from the fault-free group is chosen, along with a corresponding state SF from the
faulty group. then the differentiation sequence will be able to differentiate between
the states ST and SF. Since this is a strong requirement. it is often impossible to
find a differentiation sequence between the state groups [18]. However. it does not
mean that a test for the fault does not exist. In order to find a test. usually it is
necessarv to set some unspecified bits in the primary inputs or the present states of
the justification sequence and excitation vector to either 0 or 1. A simple method
can be applied where the excitation state is separated into a group of minterm states.
and state justification and differentiation are performed on the minterm states. The

disadvantage of this method is its long running time.

We propose an efficient backward deterministic method for state differentiation to
solve this problem. After the combinational excitation state is found to propagate
the fault to the next state lines with as many don’t care entries as possible and is
justified successfully. the backward deterministic method for state differentiation is
used. When we search forward to perform state differentiation. if some unspecified
bits in the present states and the primary inputs of the whole sequence are needed
to be set to either 0 or 1. the backward deterministic method is used to determine
the logic values of these unspecified bits and justify the new specific states by cube
intersection on the ON and OFF sets of the primary outputs or the next state lines.
If justification succeeds, the fault can then be propagated to the primary outputs or
the next state lines. If this setting causes conflict in the unspecified bits between the

fault-free and faultv states, the differentiation sequence does not exist. When the

53

unspecified bits are on the primary inputs. they are just set to the required values.
When the unspecified bits are on the present state lines. we check if the present state
is justified from the next state of the last clock cycle. If the justification step needs
to set some unspecified bits in the present state lines of the last clock cycle to specific

logic value 1 or 0. the same process is repeated on the last clock cycle.

When we trv to propagate the fault to the next state lines in state differentiation.
the next state line whose corresponding present state line is in the input cones of
primary outputs is chosen first. If this fails. the remaining next state lines are chosen.
Such an order of choosing the next state lines is helpful to find a shorter test sequence.

The method will be discussed in detail in Section 6.2.

4.4.4 Fault Simulation

When a potential test sequence for a fault is found. fault simulation is needed to
check if the sequence detects the fault and other faults. In sequential circuits. the
fault appears in every clock cycle. Hence. the single fault model becomes a multi-fault
model. The test sequence is fault simulated by applying it to the fault-free circuit
and the faulty circuit. If two groups of circuit outputs (as determined by simulation:
differ. the fault is detected by the sequence. The quality of the test sequence can be

estimated by

fault coverage = (no. of faults detected) / (total no. of faults simulated).

Test efficiency is the percentage of detected and provably redundant faults over
total number of faults. Fault simulation is an important step in an ATPG system
for both combinational and sequential circuits. Much research has been done in this

area and many efficient fault simulation algorithms have been developed. In general.

54

there are three kinds of fault simulation methods: parallel fault simulation. deductive

fault simulation. and concurrent simulation.

In this dissertation, fault simulation has two main purposes:

e confirms detection of a fault for which an automatic test pattern generator

(ATPG) claims that a successful test is found.

e computes fault coverage for a given test sequence.

For the first purpose. a simple event-driven fault simulation is used. The algorithm
of fault simulation is shown in Figure 4.9. At first. the initial states of the fault-
free circuit and the faulty circuit are set to the reset state. For each clock cycle. the
corresponding test vector is used to deduct the logic values of the fault-free circuit and
the faulty circuit. If the logic values at the primary outputs of the faulty circuit are

different from those of the fault-free circuit. the fault is detected by the test sequence.

For the second purpose. we use HOPE as the fault simulator. HOPE is an efficient

sequential circuit parallel fault simulator which simulates 32 faults at a time [33].

4.5 The Fault-Oriented Test Generation Algorithm

The test vectors generated by the fault-independent test generation algorithm
can detect most of the faults in a sequential circuit. For the remaining undetected
faults. we extend the Boolean satisfiability and the implication graph methods to the
three-phase test generation algorithm for sequential circuits. The three-phase test
generation algorithm is used as the fault-oriented test generation algorithm. The
algorithm consists of three parts: combinational excitation vector generation. state
justification. and state differentiation. as shown in Figure 4.10. The flow chart of the

algorithm is shown in Figure 4.11.

(V]
(U1}

Input : A sequence of test vectors and a fault under test.
Output : The fault is detected by the sequence or not.

procedure fault_simulator(a fault under test)
begin
set the initial states of the fault-free and faulty circuits to the reset state:
for each clock cycle of test vector do
begin
deduct signals values at the fault-free circuit:
deduct signals values at the faulty circuit:

for each primary output
if the fault-free value is different from the faulty value
return that the fault is detected by the test sequence:

end:
return that the fault can not be detected by the test sequence:

end:

Figure 4.9. The fault simulation algorithm.

Input : The sequential circuit and a list of faults.
Output : Test sequences for the detected faults.

procedure fault_oriented_test_generation()
begin
for each fault under test do
begin
/= try to propagate the fault to primary outputs ~/
if the fault site is a node in input cones of some primary outputs
begin
/= extracting the input cones of these primary outputs =/
cone := extract_primary_output_cone():
/* extracting combinational excitation vectors =/
while (new ezcitation_vector := combin _test_generation(cone) is found)
begin
* justification_sequence := state_justification(ezcitation_vector):
if justification_sequence is found
use the test sequence to fault simulate all faults under test:
if fault simulation succeeds then break:
end:
end:
if the test sequence is found then continue:
/> trv to propagate the fault to next state lines as it can't be
propagated to primary outputs directly ~ /
if the fault site is a node in input cones of some next state lines
begin
cone = extract_next_state_cone():
while (new ezcitation_vector := combin_test_generator(cone) is found)
begin
justification_sequence := state_justification(excitation_vector):
if justification_sequence is found
differentiation_sequence := state_differentiation(ezcitation_vector):
if differentiation_sequence is found
use the test sequence to fault simulate all faults under test:
if fault simulation succeeds then break:
end:
end;
end:
end:

Figure 4.10. The fault-oriented test generation algorithm for sequential circuit.

(S]]
-1

The fault-oriented test genmeration algorithm fault_oriented_test_generation() con-

siders a single fault at a time. It consists of the following steps:

Step 1. The fault is attempted to be propagated to the primary outputs directly. If
the fault site is a node in the input cones of some primary outputs. the corresponding
input cones of these primary outputs are extracted, and go to step 2. Otherwise. go

to step 3.

Step 2. A Boolean satisfiability and implication graph based test generation al-
gorithm for pseudo-combinational circuits is used to find a (new) combinational ex-
citation vector. If the combinational excitation vector has the present state part
disjointed from the present state part of all the previously generated test vectors, go
to step 3 to perform state justification. If such a new vector is not found. the fault

cannot be propagated to the primary outputs directly. and go to step 3.

Step 3. State justification is performed to justify if the excitation state is reachable
from the reset state. If the justification is not found. return to step 2. If found. go

forward to step 4.

Step 4. Fault simulate the test sequence. If it detects the fault. return with the

test sequence. Otherwise. go back to step 3.

Step 5. Since the fault can not be propagated to the primary outputs directly.
the fault is attempted to be propagated to the next state lines first. If the fault
site is a node in the input cones of some next state lines. the corresponding input
cones of these next state lines are extracted, and go to step 6. Otherwise. the fault is

redundant.

Step 6. The combinational test generation algorithm is used to find a (new) com-

binational excitation vector. If the combinational excitation vector has the present

58

state part disjointed from the present state part of all the previously generated test
vectors. go to step 7 to perform state justification and state differentiation. If such a

new vector is not found. exit without test for the fault.

Step 7. State justification is used to justify if the excitation state is reachable
from the reset state. If such a justification sequence is not found. return to step 6.
If found. state differentiation is performed to propagate the effect of the fault on the
next state lines to the primary outputs. If a differentiation sequence is found. go to
step 8 to do fault simulation. Otherwise, go back to step 6 to find a new excitation

vector.

Step 8. Fault simulate the test sequence. If it detects the fault. return with the

test sequence. Otherwise. go back to step 7.

When a test sequence is found, the test sequence is used to simulate all faults
in the fault list. Thus all the faults that can be detected by the test sequence are

removed from the fault list.

4.5.1 Pseudo-Combinational Circuit Test Generation

Given a fault under test. the first step in the fault-oriented test generation al-
gorithm is to generate combinational excitation vectors in the pseudo-combinational
circuit. The primary output fault region for a fault under test is extracted first if the
fault site is a node in the input cones of some primary outputs. If all combinational
excitation vectors generated in the primary output fault region are not reachable from
the reset state by state justification, the fault is needed to be propagated to the next
state lines. In this case, the next state fault region for the fault should be extracted
if the fault site is a node in the input cones of some next state lines. When the fault

is combinational redundant, the effect of the fault cannot be propagated to either the

primary outputs or the next state lines.

Figure 3.4 shows a pseudo-combinational circuit obtained from a general se-
quential circuit by disabling all flip-flops. The goal of test generation for a pseudo-
combinational circuit is to find a combinational excitation vector (PJ E PSE) which

excites the fault to POF or NSE.

Our test generation algorithm for combinational circuits, which will be described
in Chapter 5 in detail, is based on SAT model and implication graph methods [32. 9].
By incorporating necessary conditions for fault activation and path sensitization. an
implication graph and SAT formula is extracted from the circuit. Any assignment
which satisfies the implication graph and SAT formula constitutes a combinational
excitation vector for the fault. In this dissertation. we will adopt a SAT solver in SIS

developed by the University of California, Berkeley [59].

To make state justification easier. the combinational excitation vector is generated
with as many don’t care entries as possible. i.e.. some bits remain unknown. If the
excitation state is not justified, a new excitation vector is generated. To assure that
the newly generated excitation vectors are not used previously, all new vectors should

be disjointed from all previous states.

It is noted that a fault often affects a portion of a circuit. To reduce search space
in combinational test generation, the corresponding fault region is considered instead
of the whole circuit. Since the related fault region is usually smaller than the original

circuit. the excitation vector can be generated efficiently.

60

4.5.2 Determination of Redundant Faults

The determination of redundant faults is a difficult problem in test generation for
sequential circuits. Low fault coverage on certain sequential circuits does not mean
that the test generation system is not suitable for the circuits if we can prove that
the detected faults are close to the maximum possible number of detectable faults. In
general. the determination of redundant faults may need a large amount of CPU time.

since the search space should be exhausted before the fault is said to be redundant.

There are two kinds of redundant faults: combinational redundant faults and se-
quential redundant faults. Faults in sequential circuits are classied into three sets: de-
tectable. partially detectable. and operationally redundant. [45] The last two classes

are dependent on the operation mode of the circuit.

Combinational redundant faults are relatively easier to determine compared to the
sequential redundant faults. If a fault can not be propagated to the primary outputs
or the next state lines. no matter what inputs vectors are excited. beginning from
any states. the fault is said to be a combinational redundant fauit. Therefore. if none
of the combinational excitation vectors can be found for a fault in the corresponding

pseudo-combinational circuit. the fault is said to be a combinational redundant fault.

The sequentially redundant faults can be determined using theorem 1 in {35]. This
theorem states that if all excitation states are not reachable from the reset state in
the fault-free circuit. the fault is sequentially redundant. To determine a sequential
redundant fault. all combinational excitation vectors should be generated. If none of

the excitation states are justifiable. the fault is sequentially redundant.

61

4.6 Summary

Observations that initiated the research work in test generation for sequential
circuits have been presented in this chapter. A novel global test generation system.
GLOBALTEST. for sequential circuits is presented. At first. a fault-independent test
generation algorithm for sequential circuits is used and detects most detectable faults.
It can be used to replace random test generation as a front end test generator. Then
a fault-oriented test generation algorithm for sequential circuits is executed to deal

with the remaining faults and determine the redundant faults.

Jnej ‘unpay

Wy

) 4

pasoons
O11RIUSISJIP 9)18IS

pasoons
uonedynsnl aerg

paaoons
uoneoynsni aje1g

poyiowt ydesd uoneorjdw pue Anjiqelsies ueajoogd

Sau0? Jle)s 1Xau Ul Jjne,

A

souod indino Arewnd up jne

Figure 4.11. The flow chart of the fault-oriented test generation algorithm for sequen-

tial circuits.

CHAPTER 5

EXTRACTION OF COVER SETS AND
COMBINATIONAL EXCITATION VECTORS

In state justification and state differentiation. the ON/OFF sets of primary outputs
and next state lines are used to perform cube intersections. The process of extracting
the ON/OFF sets of the primary outputs and next state lines is called cover extrac-
tion. To generate a test sequence for a fault in sequential circuits. combinational
excitation vectors are generated which propagate the fault to the primary outputs or
the next state lines. In the conventional three-phase ATPG system. cover extraction
and combinational excitation vector generation are performed separately. Cover ex-
traction is the pre-processing step and combinational excitation vector generation Is

the first phase.

In this chapter, an efficient backward assignment method for cover extraction and
excitation vector generation is presented. By the backward assignment method. cover
extraction and excitation vector generation can be combined into one phase. A circuit

partitioning method is developed to make the extraction efficient.

At first. the backward assignment rules (referred to as B-rules) are introduced. The
consistency and algorithm constraints are presented. Then the circuit partitioning
method is discussed. The new backward assignment procedure is presented. Finally.

a combinational test generation algorithm based on Boolean satisfiability and impli-

64

cation graph is given. This algorithm is used for the fault-oriented test generation

algorithm for sequential circuits.

5.1 Backward Assignment Rules (B-rules)

At first. all flip-flops in a sequential circuit are disabled. The sequential circuit be-
comes a pseudo-combinational circuit. For each output of the pseudo-combinational
circuit. the corresponding circuit is represented as a separate input cone of each out-
put. The ON/OFTF sets of each output are extracted by assigning the corresponding
output of the cone to logic value 1 or 0 and using the backward assignment method
to implicitly enumerate the input combinations that can set the output to 1 or 0.
The combination of the assignments at the inputs of the cone is the ON or OFF set

of the output.

The objective of the B-rules is to justify the assignment of a logic value at the
output of a circuit to each node in the corresponding input cone during the backward

assignment procedure. The B-rules for AND. NAND. OR. NOR. XOR. and XNOR

gates are shown in Figures 5.1 - 5.6. respectively.

A nine-value logic (0. 1. X. D. D. FD. FD.TD. TD) (refer to the definitions on
page 26) is used to describe the circuit behavior. Consider the 3-input NAND gate
shown in Figure 3.2. Suppose that the ON set is extracted. From the K-map. if any
input of the NAND gate is logic value 0. the output of the NAN D gate is logic value
1. Therefore. when the output is set to logic value 1. one of the inputs must be 0.
Three groups of inputs for the ON set of the NAND gate are obtained: (0.X.X).
(X.0.X). and (X.X.0). Similarly, we can obtain the OFF set. D set. D set. FD
set. FD set. TD set. and TD set for the NAND gate. If the output of a gate is X
(don’t care), all inputs are don’t care. In this case, we just skip the output and leave

the inputs to keep the original values. Since the logic value 0 or 1 (OFF or ON set)

[o

TD

b

B O

1]

[ur

L

]
g
'_l

PO
A

1 1) TD 1 1
™ 1 — FD 1™ 1
1 TD 1 1 TD

Figure 5.1. The backward assignment rules (B-rules) of AND gate.

|

vy

'_-l
'
H
=3
)

|1

e
R
l&%)
g
ng
'3»—»&—4
!HL Hj

Ty

o

-
g -+

= O -
O R o
)
= = O
T v A
g+

Figure 5.2. The backward assignment rules (B-rules) of NAND gate.

-
o

S

(el

E
g

5!
g

0 __7/ 0 X 1 X

0 X 1-—//
1‘300——?\\ Doo—J\\
0o D 0 B 0 D O
ooﬁ——U oon——L//
FD O O——:\ FDOO——R\
0 FD O TD 0 FD O
oomi———!/ oom——!/
™ 0 O_ﬂ\ TDoo——R\
0 TO O FD 0 TOD O
00T15-7/ 0 0 TD

Figure 5.3. The backward assignment rules (B-rules) of OR gate.

1 X X 0

X 1 X 0 0

X X 1 0

D 0 O D 0 O
0 D O D 0 D O
0 0 D 0 0 D
FD 0 O FD 0 O
0 FD O TD 0O FD 0
0 0 FD 0 0 FD
TO 0 O T 0 O
0 TD O FD 0 T 0
0 0 TD 0 0 TD

Figure 5.4. The backward assignment rules (B-rules) of NOR gate.

66

t\l?

D 1) >) D 1) >
D - D
1 D j 1 D j
FD 1 - FD 1
_ D TD
LT D—= 72) D—
™ 1 >) - ™D 1) >
- FD FD
1 TD j 1 TD j
Figure 5.5. The backward assignment rules (B-rules) of XOR gate.
0 1
0] 0 1 1
D 1) D 5
1 D 1 D
FD 1 - FD 1
i \o— TD i ’ \o— TD
1 FD ;—\) 1 FD j
™ 1 - ™ 1
@ \o—— FD)) \o—— FD
1 TD j) 1 T j

Figure 5.6. The backward assignment rules (B-rules) of XNOR gate.

[

o]}

67

68

is a control logic value. all inputs for the OFF/ON set are assigned the control logic

values.

The situation is different when a fault logic value set is extracted. For example.
consider the D set of the 3-input NAND gate in Figure 5.2. Three groups of inputs
for the D set of the NAND gate are obtained: (D,1.1). (1.D.1), and (1.1. D). It is
shown that one and only one input in the D set is assigned to the fault logic value.
Other inputs in the D set are assigned the control logic values. Therefore. it can be
concluded that for the fault logic value set of any gate. there is one and only one
input assigned to the fault logic value and the other inputs are assigned the control
logic values. Actually. the conclusion can be extended to the whole circuit. From the

conclusion. a lemma can be obtained:

Lemma 1 In each vector in the fault logic value sets. such as D and D sets. one and
only one input has the fault logic value. and the other inputs are assigned the control
logic values. In each vector of the control logic value sets. such as OFF and ON sets.

all inputs are assigned the control logic values.

The proof of Lemma 1 is quite easy. since all B-rules of different gates are given
in Figures 5.1 - 5.6 separately. 1) We want to extract the fault logic value sets. such
as D set. Consider a combinational module from a sequential circuit. as shown in
Figure 5.7. One output is set to the logic value D and other outputs are set to don't
care values X. The backward assignment rules are used to justify the logic values at
outputs to inputs. According to the backward assignment rules. since only one node
at each group of assignment is set to the fault logic value. one and onlv one input
of the circuit has the fault logic value. 2) We want to extract the control logic value
sets. All outputs of the circuit are set to the control logic values. so according to the

backward assignment rule, all inputs of the circuit are assigned control logic values.

69

fault logic value — . D
control logic values ¢ | goggg&%%g?%lﬁfggule — X
7 — X

Inputs Outputs

Figure 5.7. Extraction of D set of an output in a combinational circuit.

5.2 Consistency and Constraints

The proposed backward assignment method is to propagate logic values at the
primary outputs and next state lines to the inputs of the circuit. For each gate in
the circuit. the B-rules are used to justify logic values at the output to its inputs.
Since some nodes may have multiple fanout nodes, these nodes may be assigned logic
values more than once by their multiple fanout nodes. Therefore. it is necessary to

check at each level of assignment for these nodes that have been assigned new values.

The consistency constraint is proposed to ensure that the assignments of logic
values are correct. as shown in Figure 5.8. If these logic values are in conflict with
each other - for e;cample, one fanout requires the node to be logic value 0. and another
fanout requires the node to be logic value 1 - the assignment is in conflict and should
be discarded. If logic value v; assigned by one fanout implies logic value v, assigned

by another fanout. the consistent logic value v; should be chosen.

When the B-rules are used to justify logic values at the outputs to the inputs of the
circuit. the combination of the inputs may exceed one. For example. in the ON set of
the 3-input NAND gate. three groups of inputs are obtained. In this case. every time.
one group of assignments is used as the outputs of backward stage gates. Therefore.
with the increase of the circuit’s depth. the number of assignments for each node per
level may increase dramatically. Also, the CPU time for extracting the ON/OFF sets
may increase greatly. A simple method is to set a limit for the maximum number
of the assignments at each node [62]. Limiting the maximum number of assignments
per node can dramatically decrease the extraction time. However, the ON/OFF sets

obtained may be incomplete.

In this dissertation, circuit partitioning is proposed to solve this problem. This

—— 0
conflict —
— 1
—— 0 —— 0
— TD — D
— 1 1
- FD — rD
—— 0 —— O
Partially-conflict FD— FD —
— D — D
— 1 —— 1
TD— Th —
— D — b
— 0 I
FD— FD —
— FD — FD
— 1 — 1
TD— Th —
— TD — TD
— D — 1
Conflict-free D — 1 —
— X — X

Figure 5.8. The consistency constraint of logic values.

-1
o

method assures that the complete or near complete ON/OFF sets are obtained. Also.
logic minimization is used to compress the assignments after the number of assign-
ments reach a limit. It makes the storage of ON/OFF sets memory efficient. In the

following section. a method of partitioning sequential circuits is introduced.

5.3 Partitioning Sequential Circuits

Usually. in order to get the cover sets of each output. we need to obtain their
corresponding circuit cones and then extract the cover sets of each output from its
circuit cone. For large circuits, the extraction process may be time-consuming. We
developed an efficient method to extract the cover sets by partitioning the sequen-
tial circuit. The partitioning method is illustrated by a circuit s27 from ISCAS'39
benchmark circuits. as shown in Figure 3.5. There are one primary output G17 and
three next state lines G10. G11. and G13. They are considered as the outputs of the

pseudo-combinational circuit after the flip-flops are disabled.

The corresponding input cones of the primary output and next state lines are
shown in Figures 3.6. 3.7. 3.8, and 3.9. From these input cones. it is found that some
parts of circuit are repeatedly extracted. For example. the input cone of G11 appears
in the input cone of the primary output GI7 and the input cones of the next state

lines G10 and G11. So the input cone of G11 is extracted three times.

The pseudo-combinational circuit can be partitioned according to some important
nodes in the circuit. These nodes are called partitioning nodes. Node G11I has three
fan-out lines: G17. G10. and G6. The cover sets of node GI1I should be extracted
first and are represented as Cg11(GO0, G1.G3.G5.G6.G7). After that. the node G1!
can be considered as a virtual input node to other related outputs. The extraction

of cover sets of the output nodes GI1, G10, and G17 is simple. The corresponding

3

input cones for nodes G11, G10. and G17. as shown in Figure 5.9. are smaller than
the previous ones. Previously. the input cone of the node G10 contains 8 gates: GI10.
G14. G11. G9. G135, G16. G8, and G12. After the node G11is considered as an input
node. the input cone of the node G10 has only 2 gates. i.e., G10 and G14. Also. the
size of the input cone of the node G17 is reduced from 8 gates to | gate. Therefore.
the size of input cones is reduced after partitioning and the extraction efficiency is

increased greatly.

To extract the ON/OFF sets of the primary outputs and next state lines. first the
ON/OFF sets of the partitioning node G11 are extracted from its input cone. Then
the ON/OFF sets of the primary output GI7 and next state lines G10. G1I. and
G 13 are extracted from their corresponding input cones after the partitioning node
G11is considered as the virtual input node to the input cones. After the extraction.
the obtained cover sets need further processing since the partitioning node is not the
real input node. The cover sets of node G10 are represented as Cgi0(G0. G11). where
node GO is the input node to the input cone and node GI!is the virtual input node
(partitioning node) to the input cone. Cube intersection is needed to extend the cover
sets of the node G11 into the cover sets Cgio(G0.G11) of the node G10. If the node
G11 in the sets Cgio(GO0.G11) has logic value 0 (or 1). the OFF set (or ON set) of
the node G11 is picked. The cube intersection of the OFF set (or ON set) of the node
G11 and the sets Cgio(G0.G11) gives the real cover sets of the node G10. Therefore.
the real cover sets of the node GI0 are obtained as Cgio(GO.G1.G3.G5.G6.GT).

The nodes GO. G1. G3. G5. G6. and G7 are the input nodes to the circuit.

It is important to choose adequate partitioning nodes in the circuit. A simple and
efficient method is presented to determine partitioning nodes. The weight of each

node is defined as the product of its size and its fan-out number. The size of a node

Gl4
GO
G1 G12
Gis | G9
Gl1l

G8

G16

G3

G7 — G6 —

a) The circcuit cone of G11 in circuit s27

G1l1
o G17

b) The output cone of G17 in circuit s27 after partitioning circuit at node G11

G14
GO G10

Gl1

c) The next state cone of G10 in circuit s27 after partitioning circuit at node G11

Gl1i Gll

d) the next state cone of G11 in circuit s27 after partitioning circuit at node G11

Figure 5.9. The input cones of the primary output and next state lines in circuit s27
after the node G11 is considered as a virtual input node.

is defined as the number of nodes in the input cone of the node. It is found that
if the size of a partitioning node is too large. it is still time-consuming to extract
the cover sets of the partitioning node. Therefore. a limit is set on the size of each
partitioning node. In our experiments, the limit is set to 70 to 100. When the size
of a node exceeds the limit, its weight is set to zero. Each time. the node with the
maximum weight is chosen as the partitioning node. After a partitioning node is
chosen, at first the partitioning node is taken as a virtual output node and its cover
set is extracted. Then. another partitioning node is chosen and all previously chosen

partitioning nodes are taken as the virtual input nodes to its input cone.

5.4 Generation of Combinational Excitation Vectors from
Cover Extraction
Each time. one primary output or next state line is set to logic value D. Other
primary outputs and next state lines are set to don’t care values. The B-rules are used
to justifv the logic values to the inputs of the circuit and the D set of the primary
output or next state line is obtained. According to Lemma 1. one and only one input
in each vector of the D set is assigned to the fault logic value. and the other inputs
are assigned to the control logic values. If the fault logic value is considered as a fault

in the input, each vector is equivalent to a combinational excitation vector.

For example, one vector in the D set of the next state line G13is (X. 1. D. X. X.
X. X) for nodes GO. G1. G2. G3. G5. G6. and GT (see Figure 3.5). When D is set to
0. one vector in the OFF set of line G13 and one combinational excitation vector are
generated. i.e.. (X. 1.1, X. X. X. X). It is obvious that the combinational excitation
vector can detect a fault s-a-0 at the input G2. When D is set to 1. one vector in the
ON set of line G13 and one combinational excitation vector are generated. i.e.. (X.

1.0. X. X. X. X). It can detect a fault s-a-1 at the input G2.

76

Therefore. from Lemma 1, the ON/OFF sets and the combinational test vectors
can be extracted from the D set in one phase by the proposed backward assignment

method.

5.5 The Algorithm of Cover Extraction and Combinational
Excitation Vector Generation
Three methods can be used to extract the ON/OFF sets of the primary outputs

and next state lines in a pseudo-combinational circuit.

e One output of the circuit is set to 1 or 0. and the backward assignment method

is used to extract the ON or OFF set of the output separately.

e The ON set and OFF set for the same output are complementary. which means
that the union of the ON set and OFF set for the same output should be the
corresponding universal cube. So when the ON set is extracted. the OFF set can
be easily obtained by disjointing the ON set from the corresponding universal
cube. The limitation of this method is that the ON or OFF set must be com-
plete. Otherwise. it may cause errors in the extracting the OFF or ON set by

disjointment.

e One output of the circuit is set to the logic value D. The backward assignment
method is used to extract the D set of the output. When D is equal to 1 or 0.
the ON or OFF set is obtained. Also. the combinational excitation vectors can

be generated from the D set.

Since the third method is time-efficient and also can generate combinational exci-
tation vectors, the third method is used to extract the ON/OFF sets of the primary

outputs and next state lines combined with the circuit partitioning method. A high

level description of the cover extraction and combinational excitation vector gener-
ation algorithm by the backward assignment method is shown in Figure 5.10. The
procedure ertract_sets_and_ezcitation_vectors() first chooses partitioning nodes and
partitions the circuit according to the partitioning nodes. It selects a partitioning
node and assigns it logic value D. The backward assignment procedure is used to
extract the D set. Since the previous partitioning nodes may be considered as virtual
input nodes to the following partitioning nodes. the D sets of the following partition-
ing nodes are obtained by cube intersection on the D sets of the previous partitioning
nodes. After extracting the D sets of the partitioning nodes. the D sets of the pri-
mary outputs and next state lines are extracted. Finally. the ON/OFTF sets and the

combinational excitation vectors are generated from the D sets.

Consider the circuit s27 from ISCAS'89 sequential benchmark circuits as an exam-
ple. as shown in Figure 3.5. Assume that extract_sets_and_excitation_vectors() chooses
the node G11 as the partitioning node and assigns it logic value D. The input cone
of G11 needs to be considered. as shown in Figure 5.9. Node G11 now represents the
only currently assigned node in the node list of assignment and is assigned to logic
value D. According to the B-rules. both inputs of the NOR gate G11 are assigned
logic values (0.D) and (D.0). At this point. a new level of assignment list includes
two nodes G9 and G5. Since node G5 is an input. its value is left unchanged and
it is removed from the node list. From node G9. the procedure assigns values to
nodes G15 and G16. The backward assignment process repeats until all values at the
intermediate nodes are justified to the input nodes by using the B-rules. The D set

C11(G0.G1.G3.G5.G6.G7) of node G11 is extracted.

Then the procedure selects the primary output G17 and assigns logic value D to

it. We only need to consider the input cone of G17. as shown in Figure 5.9. The D

Input : A sequential circuit’s netlist.
Output : The ON/OFF sets of the primary outputs and next state lines and
the combinational excitation vectors.

procedure extract_sets_and_excitation_vectors()
begin
choose partitioning nodes according to the weight of each node:
partition the circuit according to the partitioning nodes:
for each partitioning node. primary output. and next state line do
begin
arrange the partitioning node. primary output. or next state line in the
list of node assignments:
assign logic value D to it:
while the list of node assignments is not empty do
begin
for each node in the list of node assignments
execute the backward-assignment function:
refresh the list of node assignments:
end:
get the D sets by cube intersection to extend the cover sets of
the previous partitioning nodes into the cover sets of inputs:
get the ON/OFF sets and combinational test vectors from the D sets:
end:
return the ON/OFF sets of the primary outputs and next state lines
and the combinational excitation vectors:
end:

Figure 5.10. The Algorithm of Cover Extraction and Combinational Excitation Vector
Generation.

79

set Cg1-(G11) of the primary output G17 is extracted by considering the node G11 as
a virtual input to the input cone of G17. Cube intersection is performed to get the D
set Cerr(GO.G1,G3,G5,G6,GT) from Ca17(G11) and Cei (GO, G1.G3.G5.G6. G7).
The input node G2 is not a node in the input cone of the primary output G17. so its
value is set to X in the D set of the primary output G17. Finally. the D set of the

primary output G17 is Cs17(G0.G1.G2.G3. G5,G6.G7).

The process repeats until the D sets of all primary outputs and next state lines are
extracted. From the D sets, the ON/OFF sets and combinational excitation vectors
are generated. The ON/OFF sets are represented as bit vectors which are similar to

those used in ESPRESSO [6].

5.6 Pseudo-Combinational Circuit Test Generation for
Fault-Oriented ATPG System
The combinational excitation vector generation discussed above is used for the
fault-independent test generation algorithm for sequential circuits. Besides the fault-
independent test generation algorithm. a fault-oriented test generation algorithm
for sequential circuits is also used in the proposed ATPG system. In the fault-
oriented test generation algorithm, a fault-oriented pseudo-combinational test gen-

eration method is used. The method considers one fault at a time.

In this dissertation, a Boolean satisfiability and implication graph formula is ex-
tracted that defines the structure of the related circuit and incorporates necessary
conditions for fault activation and path sensitization. Then a SAT solver procedure

is used to satisfy the formula.

80

5.6.1 Circuit Representation

In the 1960s and early 1970s, an algebraic or symbolic manipulation method called
Boolean difference, differing from structural methods. was developed. This method
did not achieve the popularity of the structural methods because of its complexity of
computation. Since the combinational test generation method based on Boolean sat-
isfiability was introduced in [32]. this method has received more and more attention.

In the following. the method of Boolean difference is described briefly.

Given a function f(z) = f(z1,z2,---- Zi;...Tn) Which describes the behavior of
a combinational circuit, where z,....zn are the inputs of the circuit. the Boolean

difference of f(z) with respect to its ith input variable is defined as

Then

=1 (3.
T

[W1]
o
~——

.. 9
o

is the necessarv and sufficient condition of fault z; stuck at a detected by vector
T. where @ = 1 or 0. X! = X;. and X? = X;. Equation 5.2 implies that the fault
under test is first excited to the logic value opposite to the stuck-at value. and then the
change of the logic value at the fault location can be observed at the primary outputs.
In short. test generation for combinational circuits can be viewed as a search of an
n-dimensional 0-1 space defined by the variables z; (1 < < n) for points that satisfy

the above equation.

When all flip-flops in a sequential circuit are disabled, the sequential circuit be-

81

comes a pseudo-combinational circuit. The digital combinational circuit can be rep-

resented as a set of unary, binary, ternary, and M-ary (M > 3) relations.

At first, the pseudo-combinational circuit is represented as the conjunctive normal
form, i.e.. CNF (also known as product of sums). As an example. a two input AND
gate is used to illustrate how to get a CNF formula from a circuit, as shown in Figure

5.11.

The CNF formula of the AND gate is:

CNF=(Z+X)-(Z+Y)- (X+Y+2) (5.3)

If and only if the values of the variables are consistent with the truth table of the

AND gate. Equation 5.3 equals to 1.

Figure 5.11 illustrates the CNF formulae for the basic gates (one or two inputs).
In the CNF formula. one sum is called a clause and each term in a clause is called
a variable. Clauses with one, two, or three variables are unary. binary. or ternary
clauses. respectively. It is convenient to extend the basic CNF formulae in Figure
5.11 to gates which have more than two inputs. For example. the CNF formula for a

NAND gate with three inputs X.Y, and W is shown in Figure 5.12.

The implication graph of the two-input AND gate can be obtained from the unary
and binary clauses, as shown in Figure 5.13. There are two binary clauses (Z + X)
and (Z + Y) in the AND gate. When the formula is satisfied. each clause should be
satisfied. For instance, to meet the clause (Z + X), when X = 0. Z should be 0:
when Z = 1, X should be 1. Two implications. X — Z and Z — X. are obtained
from the clause, where — means implication. The ternary or M-ary (M > 3) clauses

cannot be transferred to the implication graph. But if one or more variables in the

»s

<

D

X
Z O YA
b 4

Figure 5.11. The CNF formulae of basic gates.

(Zz+X) .
(Z+Y) -
[(Z+W) -

(Z+X+Y+W)

Figure 5.12. The CNF formula of 3-input NAND gate.

83

OQOPO.
. >

A
ONONO

Figure 5.13. Implication graph of an AND gate.

(Z+X) -
(Z+Y) -
(Z+X+Y)

Y——‘

clauses are known or assumed. the clauses become binary or unary clauses.

Consider a simple circuit S1 shown in Figure 5.14 and we want to derive a test
for the fault G s-a-0. By extracting each formula for each gate in the circuit using

the above method. the CNF formula for the output of the circuit is:

CNF = (G+4)-(G+B)-(G+A+ B)-(E+C)-(E+C)-(F+G)-(F+E)-(F+G+E)

(5.4)

The faulted circuit is produced by copying the original circuit. renaming all related
variables. and disconnecting the faulted site (all faulted signals are labeled with ™'7).
as shown in Figure 3.15. Because of the fault G s-2-0, the signal G is always at logic
value 0 no matter what values are at the inputs A and B. The signal G is disjointed
into two signals: fault-free G and faulted D’. In order to detect the fault. G’ has logic

value of s-a-0 and G must have logic value 1.

Since the unfaulted and faulted circuits have the same behavior except those nodes
that are affected by the fault, only the nodes that lie on a path between the fault site

and a circuit output need to be renamed. The CNF formula for the faulted circuit is

(W 1)
(S]]
~—

C.NF:(E+C)-(E+E)-('G—')-(F’+G’)-(F’+E)-(F+'G"+’E‘) (5.

(G+a)*
(G+B) -
(G+A+B

Figure 5.14. Formula extraction of a simple circuit SI.

It is not necessary to include the OR gate G in the CNF formula for the faulted

circuit because of the implied discontinuity at the fault site.

According to Boolean difference, in order to detect the fault at G. the unfaulted
and faulted circuits are put together and an XOR gate is added to their outputs. The
final circuit is shown in Figure 35.16. In order to cover the fault G s-a-0. the output
of the XOR gate BD should be 1. If the CNF formula equals to 1. 2 solution is found.

Otherwise. no test exists. The formula of the final circuit is:

The problem of combinational circuit test generation is formulated as one of finding

a consistent signal logic assignment which satisfies the above formula.

5.6.2 Signal Dependencies

On the basis of the CNF formula of the circuit, two kinds of signal dependencies

are used: fixation and contradiction. If a path z — T is found in the implication

A
B (F*+G*) -
(F'=~E) - I
(B+ =G’ +E) F
E
C O

Figure 5.15. Formula extraction of the simple circuit 51 with a fault G s-a-0.

Figure 5.16. The XOR of the unfaulted and faulted circuits should be 1.

86

graph. it implies that = should be 0. Similarly. if a path 7 — z is found. = should be
1. If both paths £ — Z and T — z are present in the implication graph at the same
time. the contradiction exists and no solution exists. By using this method. we can
find whether or not a variable is set to a given value. A breadth-first search algorithm
is used to find a path between a variable z and its complement Z. The procedure of

signal dependency computation is quite simple. as shown in Figure 5.17.

If a contradiction occurs in the signal dependency. it means that some variable(s)
must be simultaneously assigned to logic values 0 and 1. In this case, there is no
solution for this variable assignment. If signal values which have been determined
satisfv the Boolean equation, the solution is found. Otherwise. the partial set of
signal values determined may reduce some of the ternary relations to binary relations.
These new binary relations are included in the implication graph and new signal
dependencies should be determined. The process continues until no ternary or M-ary

relations reduce to binary relations.

5.6.3 Pruning the Search Tree

Several methods are used to prune the search tree. According to our experience.
the more constraints the variables have. the smaller the search tree. This is because
when some variables are assigned to logic value 0 or 1. their relations with other

variables may help in determining other unassigned variables logic values easily.

If a fault can propagate to one or more outputs of the circuit, there must be at
least one sensitized path (similar to D algorithm) from the fault site to the output.
In this path, the fault-free and faulted values must be different. Suppose that if we
add an XOR gate whose inputs are the fault-free and faulted values. the output of

the XOR gate must be one. The concept is similar to the active line variables used

Input : The directed graph G = (V. E) and the assignment array of signals.
Output : The signal dependencies of the graph.

procedure signal_dependency()
begin
for each variable v and its complement 7 do
begin
if a path from v to T is found
if v is assigned to 1
/™ contradiction */
return no solution:
else v is assigned to 0:
if a path from T to v is found
if v is assigned to 0
/> contradiction */
return no solution:
else v is assigned to 1:
end:
return the signal dependencies of the implication graph:
end:

Figure 5.17. The procedure of signal dependency computation.

Adw B
B a
(o}

(a) (b)

Figure 5.18. (a). If A is sensitized. B must be sensitized: (EX4 + EXp). (b). If A
is sensitized. either B or C must be sensitized: (FX4 + EXg + EX¢).

in [32]. Letting 4 be the fault-free value. A’ the faulted value. and EX the output
of an XOR gate whose inputs are A and A’. we obtain these two clauses in ternary

relation (EX + A+ A") - (EX + A+ A"). If this path is active. that means £X = 1.

4 and A’ must be different.

If a sensitized variable A has a single output B. the clause (EX4 + EXp) is added.
which means that if A is the sensitized variable. B is sensitized. Also. if the sensitized
variable 4 has two outputs B and C. then the clause (EX4+ EXg + EX¢) should
be added. That means that if the variable A is sensitized. either the variable B or C

must be sensitized. Figure 5.18 shows two examples of these clauses.

On the other hand. some vertices in the directed graph may belong to a strongly
connected component. So these vertices can be considered as one vertex. When the
value of a vertex is obtained. the other vertices in this strongly connected component

can be easily determined.

Because of the duality of the implication graph. if some vertices belong to a strongly
connected component. the corresponding complemented vertices must belong to an-
other strongly connected component. For example. in the circuit S1. there is a path
from C to E and a path from E to C. Vertices C and E belong to a strongly con-
nected component, and their complemented vertices C and E must belong to another

strongly connected component. After all implication relations with vertices C and C

89

are transformed to vertices E and E. the vertices C and C can be deleted from the
implication graph. By finding strongly connected components, the implication graph
is condensed. The algorithm of finding strongly connected components in a directed

graph can be found in [3].

Consider the simple circuit S1 with the fault G s-a-0 shown in Figure 5.15. In
order to excite the fault. the logic values of G and G’ must be different. The faulted
value G’ is 0. so the unfaulted value G should be 1. A clause (G) is added to the
formula in Equation 5.6. G has one fanout F and an XOR gate has been added to
the unfaulted line F and faulted line F’. After the sensitized path is considered. the

CNF formula obtained for the fault is

CNF=(G+3)-(G+B)-(G+A+B)-(E+C)-(E+C)-(F+G)-

(F+E)-(F+G+E)-(G)-(F+G)-(F+E)-(F+G +E)-(BD)-
(F+ F'+BD)-(F+F +BD)-(F+F +BD)-(F+ F'+ BD)-(G) (3.7)
From the clause (7). we know that in order to satisfy the CNF formula. G’ must
be set to 0. The logic value of G’ can be used to simplify the CNF formula. Since the
clause (F’ + G’ + E) is satisfied due to the logic value of G'. the clause is omitted.
The clause (F’ + G') becomes (F”). From the new clause (F "}, F' must be set to 1.
The logic value of F” is used again to simplify the formula. The process continues
until the formula can not be simplified any further. The final simplified CNF formula

is:

CNF=(A+ B)-(E)-(G)-(F)-(F)-(BD)-(G) (5.8)

Ot

90

An efficient SAT solver from SIS [59] is used to solve the above SAT formula. The

branch and bound method is used in the SAT solver.

5.6.4 Combinational Circuit Test Generation Procedure

The test generation procedure for combinational circuits based on the ideas pre-

sented above is as follows.

1. Derive the CNF representation of the combinational circuit with the fault. The
unary and binary clauses are saved in the implication graph. and ternary and M-arv

(M > 3) clauses are saved in the satisfiability form (SAT form).

2. Simplifv the implication graph by using signal dependencies. If a contradiction
is found. the fault is combinational redundant. If variable values satisfy the Boolean
equation. a solution is found without backtracking. Otherwise. only a partial set of
variables is determined. These determined variables are used to reduce some ternary

and M-arv (M > 3) clauses into binary clauses.

3. Find strongly connected components in the implication graph. A condensed
implication graph is obtained.

1. The SAT solver from SIS is used to solve the problem.

5. If the variable assignments satisfy the Boolean equation. return the combina-
tional excitation vector. If the excitation vector can comstitute a test sequence for
the fault in the sequential circuit. the test for the fault is found. Otherwise. a new

combinational excitation vector should be found.
5.7 Summary

In this chapter, the backward assignment rules (B-rules) are presented to extract

the ON/OFF sets of the primary outputs and next state lines. By using Lemma 1.

91

the backward assignment method can also generate the combinational excitation vec-
tors. The consistent constraint is proposed to ensure that the backward assignments
are logically correct. To make extraction efficient. an novel method is developed to
partition circuits. In addition, a new fault-oriented combinational test generation
algorithm based on the Boolean satisfiability and implication graph is proposed in
this chapter. A Boolean satisfiability and implication graph formula is extracted that
defines the structure of the related circuit and incorporates necessary conditions for

fault activation and path sensitization. Then a SAT solver procedure is used to satisfy

the formula.

CHAPTER 6

STATE JUSTIFICATION AND STATE
DIFFERENTIATION

In test generation for combinational circuits. when a combinational excitation
vector is found for 2 fault. the fault is detected. The situation is different for sequential
circuit test generation. State justification and state differentiation are needed to
justify the combinational excitation state and continuously propagate the effect of a

fault on the next state lines to the primary outputs.

State justification and state differentiation play on important role in the proposed
three-phase ATPG system. GLOBALTEST. In this chapter. state justification and

state differentiation algorithms are described in detail.

6.1 State Justification

For a fault under test in a sequential circuit. in the three-phase ATPG system. a
combinational excitation vector is found to propagate the fault to the primary outputs
or the next state lines. State justification attempts to justify the combinational
excitation state. If the excitation state covers the reset state. the fault can be excited
from the reset state. Otherwise, state justification is used to justify the excitation
state and find a justification sequence from the reset state to the excitation state SE.

Initially. the state justification procedure tries to find a single-vector justification

sequence from the reset state to the excitation state. The entire fan-in states SE

93

of the excitation state S¥ can be obtained by cube intersections on the ON/OFF
sets of the next state lines. The cubes of fan-in states are chosen according to the
excitation state. If a present state line in the excitation state has logic value 1(0). the
ON set (OFF set) of the corresponding next state line is picked. If a present state
line has logic value X. the next state line is ignored and nothing is picked. The cube
intersection of the ON and OFF sets of the next state lines gives the fan-in states
of the excitation state SE. The ON/OFF sets of the next state lines include both
primary input and present state parts. The present state vectors are used to check if
thev cover the reset state and to get their fan-in states if the next state justification
is needed. The primary input vectors are used to generate a test sequence if the fault
is detected. If the present states cover the reset state. the single-vector justification

sequence is obtained.

If the single-vector state justification fails. a two-vector justification sequence is
sought. This is performed by attempting to justify the fan-in states S£ via a single
vector justification sequence. If the state justification procedure succeeds. a two-
vector justification sequence is found. Otherwise. a three-vector justification sequence
is attempted. The process is repeated for the fan-in states of the state currently

justified.

When the fan-in states are obtained. these states should be disjointed from the
previously used states to prevent cycles. The state justification procedure state_
Jjustification() is shown in Figure 6.1. Figure 6.2 shows the procedure of obtaining

fan-in states of present state get_fanins().

Fault-free state justification is performed here since the cover sets are extracted
in fault-free circuits. It may not always generate the correct justification sequence.

Therefore, fault simulation is needed when a test sequence is found.

Input : The excitation state state and ON/OFTF sets of next state lines.

Output : A justification sequence from reset state to state if found:

else return NOT-FOUND.

procedure state_justification(state)
begin

/= put the primary input part of state into PI Stack */

push state into PI Stack;

fanins := get fanins(state):

for each fan-in state fanin in fanins

if fanin covers the reset state
return the state justification sequence saved in PI Stack:

for each fan-in state fanin in fanins do
begin
state_justification(fanin):
if the justification sequence is found
return the state justification sequence:
end:
pop state from PI Stack():
return (NOT-FOUND):
end:

Figure 6.1. State justification procedure.

94

Input : The present state state and ON/OFF sets of next state lines.
Output : All fan-in states of state except those included in used states
(exist_state).

procedure get_fanins(state)
begin
first.mark := TRUE:
for each present state line that isa 1 or 0 do
begin
if first_mark is TRUE
begin
fanins :== ON or OFF set of corresponding next state line:
first_mark := FALSE:
end:
else
fanins := fanins U (ON or OFF set of corresponding next state line)
end:
/= do sharp produce to remove used cubes from fanins =/
sharp_product(fanins, erist_state):
/= logic minimization */
minimization(fanins):
add _fanins_to_exist{fanins):
return fanins:
end:

Figure 6.2. The procedure of obtaining fan-in states of present state.

96

Consider the fault G2 s-a-0 in the circuit s27 shown in Figure 3.5. One of the
combinational excitation vectors is (X, X.1. X. X. X.1) for GO. G1, G2. G3. G35. G6.
and G7. The corresponding excitation state is (X.X.1) for G5. G6. and G7. The
states of G5 and G6 are the logic value X. so we can ignore them. As line G7 is at
logic value 1. we pick up the ON set of G13. The ON set of G13 is (X.1.0. X. X. X. X))
and (X, X.0,X.X.X.1) for GO, Gl. G2. G3. G5. G6. and GT7. From the first vector
in the ON set, we know that when G1 and G2 have logic values (1.0). G13 has a
logic value 1. In the next clock cycle. GT would be logic value 1. As the reset state
(0.0,0) implicates the states of G5. G6. and G7 (X.X. X) in the first vector of the
ON set. the excitation state is reachable from the reset state. The initial justification
process is given in Table 6.1. where 0/1 means that 0 is the unfaulted value and 1 is

the faulted value. etc.

Table 6.1. Initial state justification process.

t primary inputs | present states next states | POj
gates GOIGL|G21G31G5[G6]|G7|Gl0]|Gll|GI3 Gl

justification vector | X ' 1 10/0 XX | X X' X X j1/1!1 X

excitation vector | X | X [1/0] X | X | X | 1 | X X 10/1] X

Since the sequential circuit starts from the reset state. we should set the initial
states of G3. G6 and GT7 to (0.0.0). After fault simulation. the justification sequence

is a valid justification sequence. The final state justification is shown in Table 6.2.

97

Table 6.2. Final state justification process.

[primary inputs present states next states PO |
gate GO[GI[G2|G3|{G5|G6|GT7]|Gl0! Gl1l | Gl13:GI7

justification vector | X | 1 |0/0] X | O 010 X 0 1/1 I

excitationvector | X | X 1 1/0} X | X | 0 1 | X 0 0/1 I

6.2 State Differentiation

In our algorithm. the flip-flops are disabled and the sequential circuits are converted
into pseudo-combinational circuits. For pseudo-combinational circuits. faults can be

divided into three kinds:

1) The fault site is a node in the input cones of the primary outputs. and a

combinational excitation vector can be found for the fault.

2) The fault site is a node in the input cones of the primary outputs. but a

combinational excitation vector cannot be found.

3) The fault site is not a node in any input cones of the primary outputs. but is a

node in the input cones of the next state lines.

Consider the circuit shown in Figure 6.3. The fault C s-2-0 can be propagated to
the primary output A" and belongs to the first kind of fault. For the fault B s-a-1.
though B is a rode in the input cone of the primary output A the fault cannot be
propagated to the primary output A" directly. The fault should be propagated to the
next state line [first (the effect of the fault on I would be propagated to the present
state line J in the next clock cycle). and then the effect of the fault on J is propagated
to the primary output A. Therefore, the fault belongs to the second kind of fault.

For the fault F — I s-a-0, as [is not a node in the input cone of the primary output

93

[D G

PI p

A

B PO

sal K
PI —e=—9p

B

sal
PI ———r—] F

_.\ ‘
C ‘-/ sal I
o] o
J

PS Dff NS

Figure 6.3. Three kinds of faults defined in our algorithm.

99

A" the fault belongs to the third kind of fault.

For the latter two kinds, these faults should be propagated to the next state
lines first by using the test generation procedure for combinational circuits. If a
combinational excitation state is found and justified, state differentiation is used
to continuously propagate the effects of these faults on the next state lines to the
primary outputs. If state differentiation succeeds. a differentiation sequence is found.
Otherwise. the combinational excitation vector cannot constitute a test sequence for

the sequential circuit.

When the excitation vector propagates the fault to the next state lines. the true
state ST is the state in the fault-free circuit and the faulty state S| is the state in the
faulty circuit. ST and SF are guaranteed to differ in at least 1 bit. Since the effect
of the fault has been propagated to S F it is assumed that ST and S¥F are states in
the fault-free circuit. The purpose of state differentiation is to find a differentiation
sequence which causes ST and S¥ to have at least one different bit at the primary

outputs.

To make the state differentiation procedure more time-efficient. a random differ-
entiation sequence is used as a first step. Some random vectors are added to the
sequence starting from the reset state to the excitation state. and the unspecified
primary inputs in the whole sequence are assigned randomly specified logic values.
The whole sequence is used to fault-simulate the fault. If the sequence can detect

the fault. a test sequence is found. Otherwise. a deterministic state differentiation

method is used.

The idea of deterministic state differentiation is presented as follows: According

to the ON and OFF sets of every primary output, we search for a primary input

100

vector which exists in both the ON and OFF sets where the present state parts of
the ON (or OFF) set and the OFF (or ON) set cover ST and SF separately. If such
a primary input vector is found. the primary input vector constructs a single-vector
differentiation sequence. The procedure of single-vector state differentiation is shown

in Figure 6.4. Otherwise. multi-vector differentiation sequences should be searched.

In multi-vector state differentiation. first we try to find a two-vector differentiation
sequence. then a three-vector sequence and so on. We attempt to propagate the true
state ST and the faulty state S{ to the next state lines by using 2 method similar to
the one used in single-vector state differentiation. Instead of using the ON/OFF sets
of the primary outputs in single-vector state differentiation. the ON/OFF sets of the
next state lines are used. If the new true and faulty states are not found. quit without
a solution. Otherwise. the single-vector state differentiation method is used to find
a single-vector differentiation sequence on the new true and faulty states (S7.S%)
again. If found. a two-vector differentiation sequence is constructed. Otherwise. a
three-vector differentiation sequence is attempted. The procedure of multi-vector

state differentiation is shown in Figure 6.3.

Each time a pair of new true and faulty states is found. these states are disjointed
from the used true and faulty states. Thus. cycles during state differentiation are

prevented.

Since test generation for combinational circuits produces an excitation vector with
as many don’t care entries in the primary inputs and present state lines as possible. if
we just use the above state differentiation procedure, in most cases a differentiation
sequence may not be found even if it exists. This is because it is necessary to set some
unspecified inputs in the test sequence to either 1 or 0. However. some primary inputs

and present states obtained by the combinational test generation, state justification.

101

Input : The true and faulty states ST and SF. and the ON/OFF sets of
: primary outputs.
Output : A single-vector differentiation sequence if found:

else return NOT-FOUND.

procedure single_vector state_differ(S7, SF)
begin
for each primary output do
begin
/* find a primary input vector existed in the ON and OFF sets of
the output */
if (PLvector := find_ PI(ON-set. OFF-set)) is found do
begin
/= judge if ST implies the ON-set and §* implies the OFF-set =/
if Judge_implication(S7. ON-set, S¥. OFF-set) is TRUE
return(Plvector);
/= judge if ST implies the OFF-set and SF implies the ON-set =/
if Judge_implication(ST, OFF-set. S¥. ON-set) is TRUE
return(Pl_vector);
end;
end:
return (VOT-FOUND);
end;

Figure 6.4. The procedure of single-vector state differentiation.

Input : The true and faulty states ST and SF, and the ON/OFF sets of
primary outputs and next state lines.

Output : A multi-vector differentiation sequence if found:
else return NOT-FOUND.

procedure multi_vector state differ(S”, SF)
begin
/* find all (new) excitation vectors fanouts which propagate ST and SF
to the next state lines */
get_next_differ _state(S7. S¥. fanouts):
for each fan-out state fanout in fanouts do
begin
/= create new true and faulty states */
create_new _states(fanout. ST. SF):
/= use single state differentiation method =/
if single_vector_state_differ(ST. SF) succeeds
return (FOUND):
end:
for each new true and faulty states ST and S¥ in fanout
if multi_vector_state_differ(57, SF) succeeds
return (FOUND);
return (NOT-FOUND):

end:

Figure 6.5. The procedure of multi-vector state differentiation.

103

and state differentiation may have some don’t care entries. Therefore. in order to
detect the fault, these don’t care entries in the primary inputs and present state lines

have to be determined.

In STEED (18], all possible assignments to the unspecified inputs have to be made
before it can be concluded that a test for the fault under consideration does not exist.
There exists 2" possible assignments for n unspecified inputs. Considering that each
possible assignment may need to perform state justification. the real search space is

much larger than 2".

We have proposed a backward deterministic method for state differentiation. This
method can help in finding the differentiation sequence and determining the don’t
care entries. When the fault is attempted to propagate to a primary output or next
state line in state differentiation. if some present state lines in the current clock cycle
are don't care entries while the same bits in the ON and OFF sets of the primary
output or next state line are deterministic logic values (e.g.. 0 or 1). it is known that.
in order to obtain a ‘differentiation sequence. these present state lines must be set
to the deterministic logic values. After these present state lines are set to the same
deterministic logic values as in the ON and OFF sets. a new problem arises. l.e..

whether the new specific present state is still justified from the previous clock cvcles.

To solve the problem. in the backward deterministic method a revised state jus-
tification algorithm is presented to justify the specific present states. Because a
justification sequence has been found from the reset state to the excitation state. in
the revised state justification algorithm, it is just needed to specify some don’t care
entries in the justification sequence. When the specific present state requires that
some of the don’t care entries of the present state lines of the last clock cycle be set

to deterministic logic values, the revised state justification procedure is used again to

104

justify the modified present state of the last clock cvcle. The process continues until
no more specified states need to be justified. If the specific present state is reached
from the previous clock cycles, the state differentiation process continues. Otherwise.

a differentiation sequence cannot be found for the true and faulty states.

When some don’t care entries of the primary inputs need to be set to deterministic
logic values. we just set them according to the ON/OFF sets and justification is not
required. The backward deterministic procedure for single-vector state differentiation

is shown in Figure 6.6.

When the backward deterministic procedure for single-vector state differentiation
fails to find a single-vector differentiation sequence, a2 backward deterministic proce-
dure for multi-vector state differentiation is used. The procedure is similar to the

multi-vector state differentiation procedure shown in Figure 6.5. The only two dif-

ferences are:

e The backward deterministic procedure for single-vector state differentiation. as

shown in Figure 6.6, is used to replace the single-vector state differentiation

procedure shown in Figure 6.4.

e In order to propagate the fault to the next state lines. if some don’t care bits
in the state need to be set to specific values. we set them to the required values

and then justify if the new specific state is reachable from the previous states.

To explain the idea of backward deterministic state differentiation. we continue to
consider the fault G2 s-a-0 in circuit s27 shown in Figure 3.5 as an example. The
fault has been propagated to the next state line G13 and the justification sequence

has been found. From Table 6.2, the true and faulty states are (X.0.0) and (X.0.1)

105

Input : The true and faulty states ST and S¥. and the ON/OFF sets of
primary outputs.

Output : A single-vector differentiation sequence if found:
else return NOT-FOUND.

procedure single_vector_back state_differ(S7. 5F)
begin
for each primary output do
begin
/* find a PI vector existed in the ON and OFF sets of the output */
if (Pl_vector := find_PI(ON-set, OFF-set)) is found do
begin
/* get intersections: STN ON-set, and S FA OFF-set */
if intersections(S7, ON-set. S¥, OFF-set) is not empty do
begin
/= judge if some bits in ST and S¥ are X. while the same bits in
both intersections are deterministic values =/
if some bits are needed to be set to specific values do
begin
/= set these bits to the specific values. and then justify the new
deterministic state is reachable from the previous states */
set_new _state();
if new_state_justification() succeeds return (Pl.vector):
end:
else return PI_vector:
end:
/> get intersections: ST OFF-set. SFM ON-set =/
if intersections(ST. OFF-set. SF. ON-set) is not empty do
begin
if some bits are needed to be set to specific values
set_new state{):
if new _state_justification() succeeds return (Pl vector):
else return Pl_vector:
end;
end:
end:
return (NOT-FOUND):
end:

Figure 6.6. The backward deterministic procedure for single-vector state differentia-
tion.

106

for lines G5. G6 and G7. The ON and OFF sets of primary output G17 are shown

in Table 6.3.

Table 6.3. The ON and OFF sets of primary output G17.

primary inputs present states
gate GO|Gl1|G2|G3|G5|G6|GT
ON-set 1 X1 X1 X | X | X 1
1 1 | X | X[X | X X
X 1 X | X! X 0 X
X1 X1 X[XX 0 1
1 Xi1X1i0 X1 XX
X|IX|X 1|0 X 0 X
X1 XX | X 1 X X
OFFset | X [0 [X] 1 10X :!0'
0 X |1 X1 X 0 1 | X |

The intersection of the primary input part on the first vectors of the ON set and
the OFF set is not empty. i.e., (1,0. X.1). The present state in the first vector of the
ON set is (X.X.1). and its intersection with the faulty state (X.0.1) is not empty.
i.e.. (X.0.1). The present state lines in the first vector of the OFF set are (0. X.0).
and its intersection with the true state (X.0.0) is not empty. i.e.. (0.0.0). In order to
propagate the fault to the primary output. the first bit should be set to logic value 0.
After setting, the differentiation vector becomes (1.0.X.1.0.0.0). For the primary
inputs, we just set them to the new logic values. But the new differentiation state

(0.0.0) should be justified if it is reachable from the previous clock cycle.

From the partial OFF set of next state line G10. (0. X. X. X. X. X. X). we know
that if line GO in the previous clock cycle is set to 1, the new state would be reached

from the previous clock cycle. The original vector in the previous clock cycle is the

107
excitation vector, (X, X,1, X, X,0,1) and its intersection with the OFF set of next
state line G10 is not empty, i.e., (0,X,1.X,X.0,1). The excitation vector should
be set according to the intersection. As all bits needed to be set are in the primary
inputs. we just change the original logic value X to the new deterministic value.
The differentiation sequence is found. The final test sequence is composed of the
justification sequence. the excitation vector, and the differentiation sequence shown
in Table 6.4. After finding the test sequence. we use it to fault simulate the fault G2

s-a-0. and the result is the same with Table 6.4.

Table 6.4. The process of exciting the fault G2 s-a-0 to primary output G17.

primary inputs present states next states PO

gate GO|Gil] G2 |G3|G5|G6[GT |[Gl0o|Gll! Gi3 ! GI7
justification vector X 1]0/0] X | O 0 0 X 0 | 1/1 1
excitation vector 0o | X (10X]| X 1O 1 0 0 0/1 1

differentiation vector | 1 0 | X/0] 1 0 o |o/1}10/1]1/00/1:0/1

It is shown above that, in state differentiation, the fault is initially attempted
to be propagated to the primary outputs. If this fails. the fault is attempted to be
propagated to the next state lines. Then. in the following clock cycles. the effect of the
fault on the next state lines is attempted to be propagated to the primary outputs. An
important problem in multi-vector state differentiation is deciding which next state
line is attempted first. The next state lines in a sequential circuit can be divided into

two kinds:

e The corresponding present state lines of the next state lines are the nodes in the

input cones of some primary outputs.

108

o The corresponding present state lines of the next state lines are not the nodes in
the input cones of some primary outputs. They are the nodes in the input cones

of some next state lines.

To find a shorter test sequence, the first kind of the next state lines is attempted
first. If a differentiation vector cannot be found for the next state lines. the second

kind of the next state lines is attempted.

In our experiments on the ISCAS’89 benchmark circuits, an interesting phenomenon

about state differentiation is found. as shown in Figure 6.7. When a combinational

pr' po'" pr? po®: ‘pr* po* p<*! po**!
-_x—‘ :|: ¢ —n.‘] ' L— ' ') ‘ __n—.
e . - e __, —i=— . —t] _—
- : E = =/l =
—L—v‘ | v l-.,_g . " . Fe . ¢ —:—»
ps! Ns! | ps? Ns2' ps® NSk psk*] Nsk*!
clock cycle 1 clock cycle 2 clock cycle k clock cycle k+1

Figure 6.7. A general state differentiation process.

excitation vector for a fault is found which excites the fault to one of the next state
lines. a number of differentiation vectors are needed to propagate the effect of the
fault on the next state lines to some next state lines of the second kind. In this case.
the state of the total next state lines is changed so that in some next clock cycle. the
effect of the fault on the next state lines of the second kind can be propagated to the
next state lines of the first kind. Finally, the effect of the fault on the next state lines

of the first kind is propagated to the primary outputs.

Consider the state differentiation process for a fault CLRB — UC 17V D s-a-0 in

circuit s382 from ISCAS’S9 benchmark circuits, as shown in Table 6.2.

109

The first column gives the primary input vector (PI) and the next 21 columns give
the states of 21 next state lines (VSI to NS2!). Initially, the combinational excitation
vector (vector) excites the fault to the next state line NSI15. The next state line .VS15
belongs to the second kind of the next state lines, so it is needed to propagate the
fault to the first kind of next state lines before the fault is propagated to one of the
primary outputs. After some primary input vectors. the effect of fault is propagated
to the next state line :V§3. Since the next state line NS3 belongs to the first kind of
the next state lines, the effect of the fault on the line NS3 can be propagated to the

primary outputs.

6.3 Summary

In this chapter, two important steps in our ATPG system. state justification and
state differentiation. are described in detail. State justification and state differenti-
ation are efficiently performed using cube intersection on the ON/OFF sets of the
primary outputs and next state lines. To increase the efficiency of the existing state
differentiation in dealing with the unspecified inputs in the excitation vector and
justification sequence. a backward deterministic method for state differentiation is
presented. In addition, the order of choosing the next state lines in state differentia-

tion is important to the quality of the test sequence.

110

8P222ONE HOLIRIULLD)JIP 2IN8 000
1/1 o/o_Jofo Jofo Jo/o o/t Toli 0/0 1/0 1/1 ofo Jofo TofoTo/o o/t Ti/i T/t Ti/i]1/o |o/o | olo 000
0/0 o/o o/ lo/o |o/o o/t o/t 0/0 1/0 i/1 0/0 0/0 o/o Lofo L/t L o/i 13/t [t/1 | ofo | ofo | oo 000
/1 o/o 0/0 1/1 1/1 o/a o/1 1/0 0/0 /1 0/0 0/0 o/fo Lofo 1o/t T o/u L/t [/t [o/o | ofo | ofo 000
0/o o/o o/o 11 i/ 0/o o/1 1/o 0/o 1/1 o/o o/o o/o fofo V o/t Lv/v T 1/u |1/t {o/fo | o/o | ofo 000
1/1 1/1 /1 o/o /1 0/o o/1 1/0 0/0 1/1 o/o o/o ofo Tofo [v/r T1/i [v/i J1/1 1ofo |ofo | ofo 000
0/o0 1/1 1/1 ofo Jo/o Jo/o [1/o Jofo Jofo Jofo Jo/o Jo/o [of/o [o/o T/t T/t [/t [/t Tolo Jofo [o/o 000
1/1 o/o0 i/1 ofo [o/fo |o/o [1/o [ofo [o/o |ofo [ofo [o/o Jofo [ofo [1/v [1/x |1/t [1/1 Jo/o [o/o |o/o 000
o/o_Jo/o i/t [ofo {o/o [ofo [1/o Jofo |ofo [ofo Jolo [o/o [ofo [ofo |t/ [i/t [i/t [i/1 [o/o |o/o | o/o 000
1/1 1/1 o/o [ofo oo [o/o J1/o |[ofo Jojo |o/o [o/o [ofo |ofo [ofo | 1/t Tt/t [/1 { /1 [o/o |o/o |o/o 000
i1 o/o_[ofo [ofo [ofo [o/o 1/o 1o/o {o/o [o/fo [o/o [o/o [o/o {ofo {1/t T/t T/t [1/v [o/o |o/o | oo 000
o/o [ofo Jofo Jofo [ofo [ofo 1fo {ofo jo/o [o/fo [ofo_[ofo fofo {o/o [1/t /i [1/t |1/t Jo/o [ofo | ofo | 10as
125N | 0zsN [6isN [81sN | 215N | 91sN | sisN | visn [cisN [21N | 1isN | otsN [6sN [ssN | 2oN | osN [9sN | psN | €SN | 25N | 1SN Id

[eruonbas 68,.SV()S] Woap gges MDD UL 0-v-8 (J ALY} & HYTD) N

FHNDA YIRudq
o} 10} ss000ad HOMRIMDIDYIP MYRIS G D[R],

CHAPTER 7

TEST COMPACTION OF SEQUENTIAL CIRCUITS

7.1 Introduction

Test compaction is very important in test generation, since it allows to reduce
test application time and test storage requirement of VLSI testers. The goal of
test compaction for sequential circuits is to generate compact test sequences. It is
especially important for circuits using a scan design. as the test application time
increases proportionally to the product of the number of tests and the number of
flip-flops in the scan chain. Therefore, it is preferable to have a test set with shorter

length. provided the fault coverage is not compromised.

Usually. the test vectors generated by an ATPG system are not compact. It is
necessary to include test compaction methods into ATPG systems. such as COM-
PACTEST [44]. ROTCO [52]. and COINS [47]. The first two methods are used for
combinational circuit test compaction. The third one is for sequential circuit test
compaction. Test compaction for sequential circuits is much more difficult than for

combinational circuits.

The methods of test compaction can be classified as static and dynamic. Static
methods attempt to reduce the length of test vectors in a given test set [37. 29].
Static test compaction is usually applied as a postprocessing step. after the test

sequences have been generated by an ATPG system. Dynamic methods consider

112

test compaction during the generation of the test set [19. 30. 10]. When a test
sequence for a fault is generated, dynamic test compaction attempts to generate
short test sequences. It is indicated that dynamic test compaction is very hard and
computationally expensive to implement in sequential circuit test generation [43].
The advantage of static compaction is that. since the test set is available. it is easier

to find optimal or near optimal solutions among the test sets.

The existing techniques for static test compaction of sequential circuits attempt
to merge two or more test sequences into one test sequence [43]. and some vectors
of one sequence may be omitted and then inserted into another sequence. Thus the
test sequences in a test set are significantly modified. This may affect the original
fault coverage and also be time-consuming. In this chapter. a static test compaction
algorithm is proposed. Test compaction is performed on a given test sequence set for
all detected faults. The test compaction problem is formulated as the set covering
problem. An efficient set covering algorithm is proposed to compact test vectors. It
attempts to select the necessary test vectors for the faults detected and eliminate other
redundant test vectors. Then a local reduction and expansion algorithm is presented
to further compact test vectors. The original fault coverage is not comprormised.
Experimental results on the ISCAS’89 benchmark circuit. discussed in section 8.3.
showed that this test compaction algorithm can efficiently and quickly provide very
good performance.

The rest of the chapter is organized as follows. The formulation of test compaction

as a set covering problem is described iz Section 7.2. In Section 7.3. a multispace

search test compaction algorithm is presented. Section 7.4 summarizes this work.

113

7.2 The Formulation of Test Compaction Problem to Set
Covering Problem

The set covering problem is an optimization problem that models many resource-
selection problems. It is an NP-complete problem [17]. Given an instance (Z. F).
where Z is a finite set and a family F consists of sets Sy. Sa, ---. S,. such that
everv element of Z belongs to at least one subset in F. The problem is to find a

minimum-size subfamily C (cover) of k sets S;,, S;,. - --. Si, such that

Consider an example of the set covering problem. as shown in Figure 7.1. There are

(e)51 (o) ° o)
sS4 S6

<0520 ° °

©S3w P P I)

Figure 7.1. An example of the set covering problem.

12 black points in Z and 6 sets in F. The minimum-size set cover is C = {5;. 52. 53}

The weighted set covering problem is a generalization of the set covering problem.
Each set S; on the family F has an associated weight w; and the weight of a cover C

is ©s5.cc wi- We need to find a minimum-weight cover. i.e..

k
min (Z w,;J)

j=1

subject to:
k n
Si, = U S

1 =1

J

114

When w; = 1 for all i. the weighted set covering problem becomes the set covering

problem.

The test set for a sequential circuit consists of test sequences. where each test
sequence consists of a number of test vectors and can detect some faults in the se-
quential circuit. Each fault is detected by at least one test sequence. All undetected

faults are not needed to be considered in test compaction.

The test compaction problem for sequential circuit test generation can be defined
as: Given a sequential circuit, the ATPG system generates a test set with the shortest
length to ensure the maximum fault coverage. For static test compaction. the ATPG
svstem has generated a set of redundant test vectors for sequential circuits. So the
static test compaction problem for sequential circuits can be simplified as: Given a set
of test sequences. it is needed to select a test set with the shortest length among the
given test vectors to ensure the maximum fault coverage. The problem is whether it
is possible to remove some redundant test vectors without compromising the original

fault coverage.

Example ezl: To show this, consider a simple example ezl. as shown in Table

7.1. There are three test sequences and six faults. For the first sequence. 2(1) means

Table 7.1. An example ezl of test compaction for sequential circuits with three test
sequences and six faults.

Sequences || Vectors and faults detected
1 2(1) | 3(2, 3) 6(4)
2 3(4) | 4(1, 3) 3(2. 3)
3 2(6) | 7(3) B

that the first two vectors can detect the fault 1, and so on. It is obvious that some

115

vectors in the three sequences are redundant. The problem is how to find a test set

with the shortest length.

It is noted that it is not always necessary to apply the whole test sequence to
detect every fault. For example, to detect fault 1. the first two vectors in the first
sequence are enough. The first four vectors in the second sequence can also detect

fault 1.

In order to formulate the test compaction problem. a subsequence concept is pro-
posed. A subsequence is a portion of a test sequence. Each test sequence can be
divided into several subsequences according to the faults detected. Sequence 1 can be
divided into three subsequences: Sj-1. Si—2, and S,-3. Subsequence S;_; consists of
the first two vectors of sequence 1. Its length is 2 and can detect fault 1. Subsequence
S,_, consists of the first five vectors of sequence 1 and detects faults 1. 2. and 3. and

so on. Therefore, we can get Table 7.2 from Table 7.1. It is known that subsequence

Table 7.2. The original there sequences in the example ezl can be divided into eight
subsequences.

Sequences | Length | Faults detected
1-1 2 1
1-2) 1.2.3
1-3 6 1.2.3. 4
2-1 3 4
2-2 4 1.4.5
2-3 3 1,2.3,4.5
3-1 2 6
3-2 7 5.6

S;-; is included in subsequence S1-2. and so on. All faults detected by subsequence

S;_; can be detected by subsequence S;_;. O

116

A sequence consists of a number of subsequences and all related subsequences are
considered to be contained in the sequence. There is at most one subsequence of
one sequence which can be chosen for the chosen sequence set. The reason for this
is quite straightforward. If two or more subsequences of one sequence are chosen.
all subsequences with the shorter length are covered by the subsequence with the
longest length. All faults detected by the subsequence with the shorter length can be
detected by the corresponding subsequence with the longest length. Therefore. only
the subsequence with the longest length is kept in the chosen sequence set. When one
subsequence seq; of one sequence is needed to be replaced by another subsequence
seq, of the same sequence, the subsequence seqz can be considered to be obtained by

addition/removal of some test vectors to/from the sequence seq;.

According to the subsequence concept. each subsequence can be considered as
a set. The faults detected by the subsequence refer to the elements of the set X.
The subsequences are considered as the sets in F. The length of the subsequence
is regarded as the weight of the sequence. So the test compaction problem can
be formulated as the weighted set covering problem. The set representation of the

example ez] is shown in Figure 7.2, where Fl, F2, ---. F6 are six faults.

It is necessary to choose a subfamily of subsequences with the minimum number

of vectors while the total testable faults are still tested by the chosen subsequences.

In the next section, a set covering algorithm is presented to solve the test com-
paction problem. Then a local reduction and expansion algorithm is developed to

further compact test vectors.

Sia
1
Fl @ F1 F2 Fi F2
S3a

S22
Si2 St
F3 F4 F5 F3 S,y F5 @ F4 F5
S
1-3 Sy3
Sequence 1 Sequence 2 Sequence 3

Figure 7.2. The formulation of test compaction for sequential circuits as the set
covering problem.

7.3 A Multispace Search Algorithm for Test Compaction of
Sequential Circuits

Multispace search is a new optimization approach developed to handle difficult sit-

uations in search and optimization. It can improve the performance of the traditional

value search methods [23. 22. 25].

In multispace search. any active component related to the given problem structure
can be manipulated and thus can be formulated as an independent search space. Fora
given optimization problem. for its variables. values. constraints. objective functions.
and key parameters (that affect the problem structure). we define a variable space.
a value space (i.e.. the traditional search space). a constraint space. an objective
function space. a parameter space. and other search spaces. respectively. The totality

of all the search spaces constitutes a multispace (see Figure 7.3).

The basic idea of multispace search is simple. Instead of being restricted in the
value space. the multispace is taken as the search space. In the multispace, compo-
nents other than values can be manipulated and optimized as well. During the search.

a multispace search algorithm not only alters values in the value space. it also walks

118

.. Variable space

Objective space

Parameter >space

Figure 7.3. In the value space, a traditional search process (dashed line) cannot pass
a “wall” of high cost search states (hatched region). It fails to reach the final solution
state, F. A multispace search process (solid lines) scrambles across different search
spaces. It could bypass this “wall” through the other search spaces.

119

across the variable space and other active spaces, dynamically changes the problem
structure related to variables, constraints. parameters. and other components. and
svstematically constructs a sequence of intermediate problem instances. Each inter-
mediate problem instance is solved by an optimization algorithm and the solution
found is used as the initial solution to the next intermediate problem instance to
be constructed in the next iteration. By interplaying value search and structured
operations. multispace search solves the sequence of intermediate problem instances
incrementally constructs the final solution. through a sequence of structured inter-
mediate problem instances. Only at the last moment of search. the reconstructed
problem structure approaches the original problem structure, and thus the final value

assignment represents the solution to the given search problem.

The proposed multispace search algorithm for test compaction of sequential circuits
(HICOMPACT) mainly consists of two parts: a fast set covering algorithm for test

compaction and a local reduction and expansicn algorithm for test compaction.

An initial solution of test compaction is obtained in the fast set covering algorithm
for test compaction. The test vectors obtained with this algorithm may not have the
shortest length. but it is a good starting point for the succeeding local reduction and

expansion algorithm.

It is noted that. each time a corresponding subsequence. instead of the original
whole test sequence. is chosen according to a fault. When two subsequences cor-
responding to the same test sequence are chosen. they are merged in the longer

subsequence.

An effective local reduction and ezpansion (LRE) technique was developed based

on multispace operations. LRE is effective to reduce the length of test sequences.

120

Since the number of faults affected may be more than one. multiple faults should be
considered. To avoid being stuck at local minima, we will always consider a new test
sequence whose length was not reduced. After a sequence multispace operations. if
the new length of the chosen sequence set is reduced. the new chosen sequence set is

taken as the new solution. The process repeats until no more improvement is found.

7.4 Summary

The test compaction problem is very important in test generation. since it al-
lows to reduce test application time and test storage requirement of VLSI testers.
In this chapter, an efficient algorithm was presented to solve the problem. The test
compaction problem is formulated to the set covering problem by introducing the
subsequence concept. A fast set covering algorithm is presented to solve the test
compaction problem for sequential circuits. Then 2 local reduction and expansion
algorithm is developed to further compact the test set. The algorithm is capable of
find satisfactory solutions for ISCAS’89 sequential benchmark circuits. The perfor-
mance is achieved because of an efficient set covering algorithm and an efficient local

reduction and expansion algorithm for test compaction.

CHAPTER 8

EXPERIMENTAL RESULTS

In this chapter. the ISCAS’89 sequential benchmark circuits are used to evaluate
the proposed ATPG system for sequential circuits. At first. the ISCAS"89 benchmark
sequential circuits used in this dissertation are briefly described. Then the ISCAS’89
benchmark circuits are used to evaluate the proposed global test generation system
for sequential circuits. called GLOBALTEST. Finally. the experimental results of the

test compaction algorithm for sequential circuits called HICOMPACT are given.
8.1 ISCAS’89 Benchmark Circuits

In order to accurately evaluate a test generation system. real circuit examples
should be used. Benchmark circuits constitute good circuit examples to evaluate a test
system and are also suitable for comparing results with other test generation systems.
The ISCAS'S9 sequential benchmark circuits (8] have been used to evaluate the
proposed test system GLOBALTEST and test compaction algorithm HICOMPACT.
None of the ISCAS’89 benchmark examples have a specified reset state. It is assumed
that a vector of all zeros is the reset state, as in [12. 18]. Table 8.1 shows a subset
of the ISCAS’S9 benchmark circuits used in this research. The five columns give the
name and the numbers of primary inputs, primary outputs, flip-flops. and gates of

each circuit.

Table 8.1. ISCAS’89 sequential benchmark circuit characteristics.

circuit | pi | po | dff | gate
s298 3 61 14 119
s344 9111 15 160
s349 9111 15 161
s382 3] 6 21| 138
s386 T 7 159
s400 3| 6 21| 162
| s444 3: 6(21| 181
| 510 19 7 6 211
| 5526 31 6] 21| 193
s641 35124 19! 379
s713 35({23; 19 393
s820 18} 19 5| 289
s953 16 | 23| 29| 418
s1196 141 14 18 | 529
s12338 14} 14 18 { 510
s1423 17 51 74| 637
s1494 8119 6| 647
s3378 | 35|49} 179 | 277

{RV]

123
8.2 Evaluation of the Proposed Test Pattern Generator

The test generation algorithm for sequential circuits described in the previous
chapters has been implemented in the program GLOBALTEST. It consists of about
25 000 lines of C code and runs in a UNIX environment. Table 8.2 gives the statis-
tics of running GLOBALTEST for sequential circuit test generation. Experiments
were performed on a SUN Sparc 20 workstation. For each circuit. the total number
of faults (total faults), the number of detected faults (det. fault) and the number of
faults that were proven redundant (red. fault) are given. The fault coverage (cover-
age) includes detected faults. The test efficiency (efficiency) includes detected and
provably redundant faults. The next column (Zest time) reports the execution times
for test generation in CPU seconds and includes test compaction time. The total
number of test vectors in test sequences is given in the column compact test vec. The
test compaction time (compact time) is CPU time needed to perform test compaction.

The test compaction time only takes a small portion of total test generation time.

The experimental results of the proposed system GLOBALTEST are compared
with those of STEED [18] and VERITAS (12] on the ISCAS’89 benchmark circuits.
as shown in Table 8.3. All these system have assumed a vector of all zero to be
the reset state for the circuits. The test efficiency (effici.) includes detected and
provably redundant faults. The total number of test vectors (vectors) and the CPU
time (time) are also compared. The CPU times of STEED and VERITAS were on
DEC 5000/200. DECstation 5000 model 200 uses a 64 KB instruction cache and 64
KB data cache. It has a performance rating of 18.5 SPECmarks [50]. The System
Performance Evaluation Cooperative (SPEC) is a vendor-sponsored benchmarking
project. A performance index called the SPECmark is defined as the geometric mean

of the relative performance of the ten separate programs in the SPEC suite.

124

Table 8.2. Real execution performance of our algorithm GLOBALTEST on a SUN
Sparc 20 with the ISCAS’89 sequential benchmark circuits with reset.

circuit | total | det. | red. | coverage | efficiency test | compact | compact

faults | fault | fault (%) (%) | time(s) | test vec. | time(s)
s298 308 | 273 35 88.64 100 2.4 99 0.23
s344 342 | 337) 98.54 100 5.5 33 0.21
s349 350 | 343 7 98.00 100 7.6 . 45 0.34
s382 399 | 379 20 94.99 100 252 1536 0.23
s386 384 | 314 70 81.77 100 9.8 168 0.03
s400 424 | 397 27 93.63 100 663 1850 0.22
s444 474 | 439 35 92.62 100 975 187 0.14
s510 364 | 564 0 100 100 14.6 210 0.31
$526 335 | 466 89 83.96 100 1023 2637 0.16
s641 467 | 408 59 87.37 100 25.7 398 0.55
s713 581 | 480 | 101 82.62 100 1001 216 0.64
s820 850 | 814 35 95.76 99.88 46 542 8.11
s953 1079 | 1069 10 99.07 100 20.2 436 0.94
s1196 | 1242 | 1239 3 99.76 100 95 469 5.45
s1238 1355 | 1283 72 94.69 100 78 3389 1.85
s1423 | 1515 | 1007 14 66.47 67.39 1563 1232 0.59
s1494 1506 | 1453 51 96.61 100 238 598 6.39
s5378 | 4603 | 3375 | 915 73.32 92.66 3761 515 16.3

125

Table 8.3. Test generation comparison with STEED and VERITAS on ISCAS'89
benchmark circuits.

circuit GLOBALTEST STEED VERITAS
effici. | vectors | time | effici. | vectors | time | effici. | vectors | time
(%) (s) | (%) (s) | (%) (s)
s298 100 99| 24| 99.0 280 3 100 119 1
s344 100 38 3.3 100 125 b} 100 48 4
s349 100 45| 7.6 100 120 3 100 56 4
s382 100 1536 | 252 95.2 1633 | 1320 100 1028 | 195
s386 100 168 | 9.8 100 238 4 100 168 3
s400 100 1850 | 663 | 95.8 409 | 1200 100 1091 | 195
s444 100 1871 | 975 | 95.6 994 [1992 100 1026 | 152
s510 100 210 | 14.6 | 99.8 733 7 100 584 7
s326 100 2637 | 1023 | 91.0 2037 | 1060 100 1457 | 207
s641 100 398 | 25.7 | 93.1 327 | 10200 100 134 15
s713 100 216 | 1001 | 93.1 315 | 10440 100 139 1 21
s820 99.88 542 46 100 1304 120 100 785 40
s953 100 436 | 20.2 100 1050 29 100 578 40
s1196 100 469 95| 98.7 545 | 4080 100 376 41
s1238 100 389 78| 99.0 576 | 3600 100 339 52
s1423 | 67.39 1232 | 1565 | 56.4 4026 | 10800 - | - -
51494 100 598 { 238 100 1374 147 100 | 1040 | 103
s5378 | 92.66 515 | 3761 | 99.3 1037 | 12000 - | - -

126

STEED employs a random vector test generation technique to detect some of the
easily testable faults. The random seeds have effects on the experimental results.
GLOBALTEST uses a two-step test generation method: fault-independent test gen-
eration and fault-oriented test generation, so the results of GLOBALTEST do not
depend on the choices of random seeds. From Table 8.3, for most sequential cir-
cuits. GLOBALTEST obtains higher fault coverages than those of STEED with more

compact test sets and less CPU time.

VERITAS can get good results in most small-to-middle size circuits. However, it
fails to detect faults in large size circuits in ISCAS’89 benchmarks. The proposed test
generation systeth GLOBALTEST can perform test generation on large size sequential

circuits.

From Tables 8.2 to 8.3. the performance of our algorithm can be evaluated as

follows:

o The proposed algorithm GLOBALTEST outperforms the ATPG system STEED
in terms of time. fault coverage. and test length for most ISCAS'89 benchmark

circuits.

e The global test generation system GLOBALTEST can perform test generation

on larger sequential circuits while the system VERITAS fails.

e With the increase of the circuit size and the number of flip-flops. the algorithm
GLOBALTEST provides an efficient performance. The proposed test generation
svstem has successfully generated tests for sequential circuits with a reasonable

amount of CPU time and has obtained close to maximum fault coverage.

e For some large circuits, when complete covers cannot be enumerated. the partial

cover is generated and the algorithm can work on it.

e The proposed fault-independent test generation algorithm can be used as a front-

end algorithm to efficiently perform test generation for sequential circuits.

e The proposed fault-oriented algorithm. based on the Boolean satisfiability and
implication graph. is useful as a deterministic algorithm for sequential circuit

test generation.

8.3 Experimental Results of Test Compaction

The test compaction algorithm for sequential circuits HICOMPACT was imple-
mented in C language. The ISCAS'89 benchmark circuits were used to evaluate the
performance of the HICOMPACT algorithm. It is assumed that a vector of all zeros
was the reset state for the ISCAS'89 sequential benchmark circuits. We used the
proposed global test generation algorithm GLOBALTEST for sequential circuits as

the test generator. All experiments were conducted on a SUN Sparc 20 workstation.

The experimental results of the HICOMPACT algorithm with the ISCAS’89 bench-
mark circuits are shown in Table 8.4. For each sequential circuit. the total number
of faults (total faults). the number of detected faults (det. fault). and the number of
redundant faults (red. fault) are given. The fault coverage (coverage) only includes
the detected faults and the test efficiency (efficiency) includes the detected faults and
redundant faults. The compacted test vector length and the test compaction time

are given in the columns test vec. and compact time.

From Table 8.4. it is shown that as the circuit size and number of flip-flops increase.
our algorithm still shows efficient performance. It has successfully compacted test

vectors for sequential circuits within a small amount of CPU time.

The performance of HICOMPACT is compared with several other test generation

128

Table 8.4. Real execution performance of our algorithm HICOMPACT on a SUN

Sparc 20 with the ISCAS’89 sequential benchmark circuits.

Ccircuit | total | det. | red. | coverage | efficiency | test | compact

! faults | fault | fault (%) (%) | vec. | time (s)
5298 308 | 273 35 88.64 100 99 0.23
s344 342 | 337 5 98.54 100 38 0.21
s349 350 | 343 v 98.00 100 45 0.34 ;
s382 399 | 379 20 94.99 100 | 1536 0.23 !
s386 384 | 314 70 81.77 100 | 168 0.03

+ 5400 424 | 397 27 93.63 100 | 1850 0.22

+ s444 474 | 439 35 92.62 100 | 1871 0.05
s510 364 | 564 0 100 100 | 210 0.31
$526 535 | 466 89 83.96 100 ! 2637 0.16
s641 467 | 408 39 87.37 100 | 398 ! 0.35
s713 581 | 480 101 82.62 100 | 216 0.64
s820 850 | 814 35 95.7 99.88 | 542 3.11
s933 1079 | 1069 10 99.07 100 | 436 0.94
s1196 | 1242 | 1239 3 99.76 100 | 469 5.45
s1238 1355 | 1283 72 94.69 100 | 389 1.85
s1423 1515 | 1007 14 66.47 67.39 | 1232 0.39
s1494 | 1506 | 1455 51 96.61 100 | 598 6.39
s53378 | 4603 | 3375 | 915 73.32 92.66 | 515 16.3

129

procedures in Table 8.5. The fault coverage (coverage) and the total number of test
vectors (test vec.) are compared between these systems. The fault coverage only in-
cludes the detected faults. The lengths of test vectors generated by HICOMPACT are
shorter that those of STEED and VERITAS for the most benchmarks. For example.

for the circuit s510. the reduction in test vector length is over two times compared to

STEED and VERITAS [18.12].

It is obvious that the results of HICOMPACT on ISCAS'89 sequential benchmark
circuits depend on the test set generated by the test generator. To exactly evaluate
HICOMPACT. some random instances of the set covering problem are generated.
The execution performance of HICOMPACT on these random instances of the set
covering problem is shown in Table 8.6. For each problem instance. the number of
sequences. the number of faults, and density are given in columns no. of sequence.
no. of faults. and density, respectively. The density of the set covering problem is

defined as
total number of sequences for all faults

density =
v no. of sequences x no. of faults

The minimum and maximum lengths of the sequences are given in column min/maz
length. The cost is the total number of test vectors needed to detect the faults.
The optimal cost is obtained by an exhaustive search algorithm for the set covering
problem. The exhaustive search algorithm tries all possible combinations of sequences
to obtain the optimal solution. Therefore. it takes quite a long time to get the solution.
For example. for the instance of 20 sequences. 20 faults. and 30% density. it takes
about 4 hours to get the optimal solution on a SUN Sparc 20 workstation. A greedy
search algorithm. similar to that in [14]. is used to give greedy cost. The cost and
CPU time by HICOMPACT are given in columns HICOMPACT cost and time. All

these problem instances can be solved in less than 0.001 seconds in a SUN Sparc 20

130

Table 8.5. Test generation comparison with other procedures on the ISCAS'89 se-
quential benchmark circuits.

HICOMPACT | STEED [18] | VERITAS [12

circuit | coverage | test | coverage | test | coverage | test

(%) | vec. (%) | vec. (%) | vec.
s298 88.64 99 87.66 | 280 88.64 | 119
s344 98.54 33 98.5 | 125 98.54 48
s349 98.00 45 97.9 | 120 97.89 56
s382 94.99 | 1536 90.73 | 1633 94.99 | 1028
5386 81.77 | 168 81.8 | 238 81.77 | 168
s400 93.63 | 1850 89.86 | 409 93.63 | 1091
s444 92.62 | 1871 88.39 | 994 92.62 | 1026
s510 100 | 210 99.82 | 733 100 | 584
$526 83.96 | 2637 76.58 | 2037 83.96 | 1457
s641 87.37 | 398 86.5 | 327 87.37 | 134
sv13 82.62 | 216 81.58 | 315 82.74 139
s820 95.65 | 542 95.83 | 1304 95.88 | 785
s953 99.0v | 436 99.1 | 1050 99.07 | 578
s1196 99.76 | 469 98.7 245 99.76 | 376
51238 94.69 | 389 93.96 | 576 94.69 | 339
s1423 66.47 | 1232 56.43 | 4026 - -
s1494 96.61 | 598 96.62 | 1374 96.61 | 1040
s5378 73.32 | 515 69.00 | 1037 - -

131

Table 8.6. Real execution performance of HICOMPACT on a SUN Sparc 20 with
randomly generated set covering problem instances. The cost is the total number of
test vectors needed to detect the faults.

no. of no. of | density | min/max | optimal | greedy | HICOMPACT
sequences | faults (%) length cost cost | cost | time(s)
10 10 25 1/20 16 16 16 | <0.001
10 10 50 1/20 6 6 6| <0.001
10 10 79 1/20 5 11 5| <0.001
15 15 25 1/20 18 21| 20| <0.001
15 15 50 1/20 8 9| S| <0.001
15 15 It 1/20 b) 11 71 <0.001
20 20 25 1/20 23 23| 23| <0.001
20 20 50 1/20 5 5 51 <0.001
20 20 75 1/20 2 6 2| <0.001

workstation.

It is shown that, in Table 8.6, the greedy search procedure can only find good
solutions in some instances. HICOMPACT improves the results of the greedy search
procedure. In most problem instances, HICOMPACT can find the optimal or near

optimal solutions.

8.4 Summary

ISCAS’89 sequential benchmark circuits are used to evaluate the proposed test
generation algorithm GLOBALTEST and the test compaction algorithm HICOM-
PACT. Two algorithms are capable of finding satisfactory solutions for ISCAS™89
benchmarks. Experimental results show that faults that require long test sequences
are handled efficiently and finite state machines with a large number of states are
tested using a reasonable amount of CPU time. For test generation. the performance
is achieved because of a global test generation algorithm. For test compaction. the
performance is achieved because of an efficient set covering algorithm and an efficient

local multi-variable search algorithm.

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

With the rapid advances in integrated circuit technology. it is possible to fabricate
digital circuits with a very large number of devices on a single VLSI chip. The
increase in size and complexity of circuits placed on a chip. with little or no increase
in the number of input/output (I/O) pins. drastically reduces the controllability and
observability of the logic on the chip. More logic must be accessed with almost the
same number of I/O pins. thus making testing of chips much more difficult. Since
VLSI engineering has been used in a wide range of applications. the need for testing

is becoming more and more important.

Test generation for sequential circuits has been recognized as a difficult problem.
Different approaches have been used to deal with the testing problem. either by

randomly generating test sequences or by using deterministic test generation methods.

The existing test generation algorithms for sequential circuits can generate test
sequences for large sequential circuits. However, with increasing circuit complexity,
either test generation time increases exponentially or it cannot produce test sequences

due to the exponential increase of reachable states.

In this dissertation, we propose a new approach for designing test generation al-
gorithms with better time complexity and fault coverage. A global search approach

has been developed for the test generation of large sequential circuits. The approach

134

justifies a fault at a primary output or next state line in order to trace different
sensitive pathes from the primary inputs and present state lines to the primary out-
put or next state line. During the global test generation process. many faults are
considered as candidates to be tested simultaneously. It consists of two algorithms:
a fault-independent test generation algorithm and a fault-oriented test generation

algorithm.

A new and efficient backward assignment method is presented to perform cover
extraction by partitioning circuits. It can extract both the ON/OFF sets of the
primary outputs and next state lines and the combinational excitation vectors. Thus
it makes the conventional three-phase ATPG system into the exact three-phase. i.e..
extraction of cover sets and combinational excitation vectors, state justification. and

state differentiation.

After a combinational excitation vector is obtained. state justification is used to
find a justification sequence from the reset state to the excitation state. If the ef-
fect of the fault is propagated only to the next state lines. state differentiation is
needed to continuously propagate the fault-effect to the primary outputs. To en-
hance the efficiency of state differentiation, a backward deterministic algorithm for
state differentiation is developed and the order of choosing the next state lines in

state differentiation is studied.

Since the fault-independent test generation algorithm cannot determine the redun-
dant fault. a fault-oriented test generation algorithm is used to detect the remaining

faults and determine the redundancy of the faults.

The fault-oriented test generation algorithm considers one fault at a time. A

Boolean satisfiability and implication graph method is extended to test generation

135

for sequential circuits. By disabling all flip-flops in the sequential circuits. the se-
quertial circuits become pseudo-combinational circuits. A combinational circuit test
generation algorithm based on Boolean satisfiability and implication graph is pre-
sented to obtain combinational excitation vectors. Then state justification and state
differentiation are used again to justify the excitation states and to continuously

propagate the effect of the fault to the primary outputs.

Test compaction is an important part in an ATPG system. The test compaction
problem is formulated as a set covering problem and a fast and efficient set covering
algorithm is used to solve the test compaction problem. A local reduction and ex-
pansion algorithm for test compaction is then developed to further compact the test

set.

The proposed test generation algorithm for sequential circuits was implemented
and used on the ISCAS'89 sequential benchmark circuits. The results on large se-
quential circuits suggest that our algorithm outperforms other existing test generation
algorithms. The overall test system has vielded a high fault coverage and provided

time efficient procedures to generate tests for large size sequential circuits.

Our algorithm can efficiently perform test generation for sequential circuits. It
has obtained close to the maximum fault coverage on the most ISCAS'89 sequential
benchmark circuits. Consequently. as was pointed out in [9]. the parallelization of
transitive closure computation. though not attempted in the present work, is easily
possible. The proposed test generation system, we hope, can be developed into a
parallel test generation system. Since the testing problem for VLSI engineering is
getting more and more difficult with the advent of VLSI. parallelism of test generation

svstems may be a possible solution.

REFERENCES

[1] V.D. Agarwal, S. K. Jain, and D. M. Singer. Automation in design for testability.
In Proc. Custom Integrated Circuit Conf.. pages 21-23. Rochester. NY. May 1984.

[2] V. D. Agrawal, K.-T. Cheng, and P. Agrawal. Contest: A concurrent test gener-
ator for sequential circuits. In Proc. 25nd Design Automat. Conf.. pages 34~89.

June 1988.

[3] A. V. Aho. J. E. Hopcroft. and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Reading, Addison-Wesley. MA. 1974

[4] M. Aourid and B. Kaminska. Neural networks for the set covering problem: An
application to the test vector compaction. In JIEEFE International Conference on

Veural Networks, pages 4645-4649. 1994.

[5] N. BenHamida. B. Kaminska. and Y. Savaria. Pseudo-random vector compaction
for sequential testability. In IEEE International Symposium on Circuits and

Systems. pages 63-66, 1994.

(6] R. K. Brayton, G. D. Hachtel. Curt McMullen. and A. Sangiovanni-Vincentelli.
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic. Hingham.

MA, 1984.

[7] M. A. Breuer and A. D. Friedman. Diagnosis and Reliable Design of Digital

Systems. Computer Science, New York. 1976.

[8] F. Brglez, D. Bryan. and Kozminski. Combinational profiles of sequential bench-
mark circuits. In Proc. [EEE Int. Symp. Circuits and Systems.. pages 1929-1934.

May 1989.

137

[9] S. T. Chakradhar, V. D. Agrawal. and S. G. Rothweiler. A transitive closure
algorithm for test generation. [EEE Trans. on CAD. 12(7):1015-1027. July 1993.

[10] S.T. Chakradhar and A. Raghunathan. Bottleneck removal algorithm for dy-
namic compaction and test cycles reduction. In Proceedings European Design

Automation Conference. pages 98-104, 1995.

[11] X. Chen and M.L. Bushnell. Sequential circuit test generation using dynamic
justification equivalence. Journal of Electrical Testing: Theory and Application.
8(1):9-33. Feb. 1996.

[12] H. Cho. G. D. Hachtel, and F. Somenzi. Redundancy identification/removal and
test generation for sequential circuits using implicit state enumeration. [EEE

Trans. on CAD. 12(7):935-945, July 1993.

[13] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of

the Third ACM Symposium on Theory of Computing. pages 151-153. 1971

[14] T.H. Cormen, C.E. Leiserson. and R.L. Rivest. Introduction to Algorithms. The
MIT Press. Cambridge. Massachusetts. 1990.

[15] H. Cox and J. Raajski. On necessary and nonconflicting assignments in algo-
rithmic test pattern generation. [EEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems. 13(4):515-530. Apr. 1994.

[16] H. Fujiwara and T. Shimono. On the acceleration of test generation algorithms.

IEEE Trans. Comp.. C-32:1137-1144, Dec. 1983.

[17] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. freeman. 1979.

[18] A. Ghosh, S. Devadas. and A. R. Newton. Test generation and verification for

highly sequential circuits. JEEE Trans. on CAD, 10(5):652-667, May 1991.

138

[19] P. Goel. An implicit enumeration algorithm to generate tests for combinational

logic circuits. IEEE Trans. Comp., C-30:215-222, Mar. 1981.

[20] J. Gu. Local search for satisfiability (SAT) problem. [EEE Trans. on Systems.
Man, and Cybernetics, 23(4):1108-1129, Jul. 1993. and 24(4):709. Apr. 1994.

[21] J. Gu. Global optimization for satisfiability (SAT) problem. IEEE Trans. on
Knowledge and Data Engineering, 6(3):361-381, Jun. 1994.

[22] J. Gu. Multispace Search: A New Optimization Approach (Summary). In Lecture

Notes in Computer Science, Vol. 834, pages 252-260. 1994.

[23] J. Gu. Optimization by multispace search. Technical Report UCECE-TR-90-
001. Dept. of Electrical and Computer Engineering. Univ. of Calgary. Jan. 1990.

(24] J. Gu. Design Efficient Local Search Algorithms. In F. Belli and F.J. Raderma-
cher. editors, Lecture Notes in Artificial Intelligence, Vol. 604: IEA/AIE. pages

651-654. Springer-Verlag, Berlin, Jun. 1992.

[25] J. Gu. Constraint-Based Search. Cambridge University Press, New York. to

appear.

[26] J. Gu, Q.P. Gu. and D.-Z. Du. Convergence properties of optimization algorithms
for the satisfiability (SAT)problem. IEEE Trans. on Computers, 45(2):209-219.
Feb. 1996.

[27] M.S. Hsiao, E.M. Rudnick. and J.H. Patel. Alternating strategies for sequential

circuit ATPG. In European Design and Test Conference. pages 368-374. 1996.

[28] O. H. Ibarra and S. K. Sahni. Polynomially complete fault detection problems.
IEEE Trans. on Comp., C-24:680, Mar. 1975.

139

[29] S. Kajihara and I. Pomeranz aand S.M. Reddy. On compacting test sets by
addition and removal of test vectors. In VLSI Test Symposium, pages 202-207.
Apr. 1994.

[30] S. Kajihara. I. Pomeranz. K. Kinoshita, and S.M. Reddy. Cost-effective gener-
ation of minimal test sets for stuck-at faults in combinational logic circuits. In

Proc. 30th Design Automat. Conf., pages 102-106, 1993.

[31] H. Kubo. A procedure for generating test sequences to detect sequential circuit

failures. NEC Res. and Dev., 12:69-78, Oct. 1968.

[32] T. Larrabee. Test pattern generation using Boolean satisfiability. /EEE Trans.

on CAD, 11(1):4-15, Jan. 1992.

(33] H. K. Lee and D. S. Ha. Hope: An efficient parallel fault simulator for syn-
chronous sequential circuits. In 29th ACM/IEEE Design Automation Confer-

ence. pages 336-340. 1992.

(34] S.Y. Lee and K.K. Saluja. Efficient test vectors for ISCAS sequential benchmark
circuits. In IEEE International Symposium on Circuits and Systems. pages 1511-

1514. Chicago. IL. 1993.

135] H. T. Ma, S. Devadas. A. R. Newton. and A. Sangiovanni-Vincentelli. Test
generation for sequential circuits. IEEE Trans. on CAD. 7(10):1081-1093. Oct.

1988.

[36] S. Mallela and S. Wu. A sequential test generation system. In Proc. Int. Test

Conf.. pages 57-61, Philadelphia, PA, Oct. 1985.

[37) T.E. Marchok, A. El-Maaleh, W. Maly, and J. Rajski. A complexity analysis of
sequential ATPG. IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, 15(11):1409-1423, Nov. 1996.

140

[38] J. Markus. Electronics Dictionary. McGraw-Hill. New York. 1978.

[39] A. Miczo. The sequential ATPG: A theoretical limit. In Proc. Int. Test Conf..
pages 143-147, Oct. 1983.

[40] A. Miczo. Digital Logic Testing and Simulation. Harper and Row. Publishers.
New York. 1986.

[41] P. Muth. A nine-valued circuit model for test generation. IEEE Trans. Comput-

ers. C-25:630-636. June 1976.

[42] T. Niermann and J.H. Patel. HITEC: A test generation package for sequential

circuits. In European Design Automation Conference, pages 214-218, 1991.

[43] T.M. Niermann, R.K. Roy. J.H. Patel. and J.A. Abraham. Test compaction for
sequential circuits. JEEE Trans. on CAD. 11(2):260-267. Feb. 1992.

[44] L. Pomeranz. L.N. Reddy, and S.M. Reddy. COMPACTEST: A method to gener-
ate compact test sets for combinational circuits. IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems, 12(7):1040-1049, July 1993.

[45] . Pomeranz and S.M. Reddy. Classification of faults in svnchronous sequential

circuits. JEEE Trans. on Computers. 42(9):1066-1077. Sep. 1993.

[46] I. Pomeranz and S.M. Reddy. On generating compact test sequencefor syun-
chronous sequential circuits. In Proc. European Design Automation Conference.

pages 105-110, 1995.

[47] 1. Pomeranz and S.M. Reddy. Dynamic test compaction for synchronous sequen-
tial circuits using statis compaction techniques. In Proc. of Annual Symposium

on Fault Tolerant Computing, pages 5361, Sendai, Japan. 1996.

141

[48] P. Prinetto. M. Rebaudengo. and M.S. Reorda. An automatic test pattern gen-

erator for large sequential circuits based on genetic algorithms. In International

Test Conference, pages 240-249, 1994.

[49] A. Raghunathan and S.T. Chakradhar. Acceleration techniques for dynamic

vector compaction. In ICCAD. pages 310-317. 1995.

[50] A. Ralston and E.D. Reilly. Encyclopedia of Computer Science. Van Nostrand

[51]

Reinhold. New York, 1993.

L.N. Reddy. I. Pomeranz, and S.M. Reddy. COMPACTEST-II: A method to
generate compact two-pattern test sets for combinational logic circuits. In IEEE
International Conference on Computer-Aided Design. pages 568-574. Los Alami-
tos. CA, 1992.

L.N. Reddy. . Pomeranz, and S.M. Reddy. ROTCO: A reverse order test com-
paction technique. In Proc. Euro. ASIC, pages 189-194. 1992.

J. P. Roth. Diagnosis of automata failures, a calculus and a method. IBM J.

Res. Dev.. 10:278-291. July 1966.

E.M. Rudnick and J.H. Patel. Combining deterministic and genertic approaches
for sequential circuits test generation. In 32nd Design Automation Conference.

pages 183-188. San Francisco. CA. June 12-16 1995.

G. Russell and LL. Sayers. Advanced Simulation and Test Methodologies for
VLSI Design. Van Nostrand Reinhold (International), London. 1989.

D.G. Saab. Y.G. Saab, and J.A. Abraham. Automatic test vector cultimation for
sequential circuits using generatic algorithms. IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems, 15(10):1278-1285, Oct. 1996.

142

57] M.H. Schulz, E. Trischler, and T.M. Sarfert. SOCRATES: A highly efficient
automatic test pattern generation system. IEEE Trans. on CAD, 7(1):126-136.

Jan. 1988.

[58] F. F. Sellers, M. Y. Hsiao, and L. W. Bearnson. Analyzing errors with Boolean
difference. IEEE Trans. Computers, C-17:676-683, July 1968.

[539] EXM. Sentovich, K.J. Singh, C. Moon, H. Savoj. R.K. Brayton. and
A. Sangiovanni-Vincentelli. Sequential circuit design using synthesis and op-

timization. In Proc. Int. Conf. Computer Design, pages 328-333. 1992.

[60] S. Shteingart, A. W. Nagle, and J. Grason. Rtg: Automatic register level test
generator. In Proc. 22nd Design Automat. Conf., pages 803-807. Las Vegas.

June 1985.

[61] J. J. Thomas. Automated diagnostic test program for digital networks. Com-

puter Design. pages 63-67. Aug. 1971.

[62] A.S. Yousif. A novel search approach for test generation. Master's thesis. Dept.
of Electrical and Computer Engineering, The University of Calgary. Calgary. AB

T2N 1N4, September 1992.

o2 v 0 ‘O
«M&N\ &\%%e » \\\AA//\\//
Q ,.v,,,\«e«, . N 7 « oéo
N S TIT ¥
/ //\ /\\\ \.\4 >
W N L PRA
W ¢ DA
nNuy_; »
=S EFEE yitl |
> S B EE . mmwn §
N._rl._ m_l—._._._.““u; M|=___ om % M_wm%m W
wm - m________E_ |
4= 2l =1 3l g v
=== ¢
—
N
Y
\\\&/\Nl %% o,\...l
0\6’ A

