
Computers & Operations Research 38 (2011) 267–276
Contents lists available at ScienceDirect
Computers & Operations Research
0305-05

doi:10.1

� Corr

E-m
journal homepage: www.elsevier.com/locate/caor
An efficient heuristic for adaptive production scheduling and control
in one-of-a-kind production
Wei Li a, Barrie R. Nault b, Deyi Xue a, Yiliu Tu a,�

a Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada T2N 1N4
b Management Information Systems Area, Haskayne School of Business, University of Calgary, Calgary, Alberta, Canada T2N 1N4
a r t i c l e i n f o

Available online 8 May 2010

Keywords:

Flow shop scheduling

Adaptive production control

Petri nets

Simulation
48/$ - see front matter & 2010 Elsevier Ltd. A

016/j.cor.2010.05.002

esponding author. Tel.: +1 403 220 4142; fax

ail address: paultu@ucalgary.ca (Y. Tu).
a b s t r a c t

Even though research in flow shop production scheduling has been carried out for many decades, there

is still a gap between research and application—especially in manufacturing paradigms such as one-of-

a-kind production (OKP) that intensely challenges real time adaptive production scheduling and

control. Indeed, many of the most popular heuristics continue to use Johnson’s algorithm (1954) as their

core. This paper presents a state space (SS) heuristic, integrated with a closed-loop feedback control

structure, to achieve adaptive production scheduling and control in OKP. Our SS heuristic, because of its

simplicity and computational efficiency, has the potential to become a core heuristic. Through a series

of case studies, including an industrial implementation in OKP, our SS-based production scheduling and

control system demonstrates significant potential to improve production efficiency.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

As a typical manufacturing paradigm, one-of-a-kind produc-
tion (OKP) challenges production scheduling and control differ-
ently than mass production. High throughput in OKP is an
extreme example of mass customization, which is one of the
important strategies in the current economy [1] where the
objective is to maximize the customer satisfaction by producing
highly customized products with near mass production efficiency.
OKP is intensely customer focused such that every product is
based on specific customer requirements, and products differ on
matters of colors, shapes, dimensions, functionalities, materials,
processing times, and so on. Consequently, a product that is
produced on an OKP flow line is rarely repeated [2], although
some processes in the production of similar kinds of products can
be repeated. Moreover, unexpected disturbances frequently and
randomly happen to affect the daily production on OKP shop
floors, such as job insertion/cancellation, machine breakdown/
operator absence, and variations in processing times. Thus, OKP
companies use mixed-product production on a flow line to
improve production efficiency [3,4], and they have to adaptively
schedule and control production online.

If a customer order in OKP is viewed as a project, to schedule
the production of products in the customer order in OKP is very
similar to scheduling a project. In fact, to schedule production in
OKP is concurrent engineering, including product design, process
ll rights reserved.

: +1 403 282 8406.
planning, resource allocation, and finally the production schedule.
Through this concurrent engineering effort, a combined engineer-
ing file for a product, including bill of materials (BOMs), bill of
operations (BOOs), and resource constraints, is generated. This file
is referred to as a product production structure (PPS) [5]. After the
generation of a PPS for an OKP product, the processing times of
each operation in the PPS are quoted based on the previous
production of similar products. After all the PPSs for a batch of
OKP products are determined and the processing times of all the
operations are quoted, heuristics are needed to finally sequence
the products in the batch to minimize the makespan. The state
space (SS) heuristic that we present in this paper is typically for
flow shop scheduling. In project scheduling, the emphasis is
placed on how to allocate scarce resources to dependent activities
or operations of a project to control the budget or minimize the
duration of the project [6,7]. These dependent activities or
operations are normally arranged in a hierarchy, commonly
known as a precedence diagram. If the sequence of a series of
projects needs to be adaptively adjusted in order to minimize the
duration to complete all projects, the SS heuristic may be applied.

Currently, OKP management primarily uses priority dispatch-
ing rules (PDRs) to deal with disturbances. It is fast and simple to
use PDRs to control production online, but PDRs depend heavily
on the configuration of shop floors, characteristics of jobs, and
scheduling objectives [8], and there is no specific PDR that clearly
dominates the others [9]. Moreover, the performance of PDRs is
poor on some scheduling objectives [10], and it is especially
inconsistent when a processing constraint changes [11]. Conse-
quently, there is a considerable difference between the scheduled
and actual production progress [12]: when unexpected changes

www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2010.05.002
mailto:paultu@ucalgary.ca
dx.doi.org/10.1016/j.cor.2010.05.002
dx.doi.org/10.1016/j.cor.2010.05.002

W. Li et al. / Computers & Operations Research 38 (2011) 267–276268
occur and PDRs are used to adaptively control production,
production often runs in a chaotic or an ‘‘ad hoc fire fighting’’
manner [13,14].

Indeed, due to dynamic disturbances, OKP has to be adaptively
scheduled and controlled [2,14]. When adaptive production
control is taken into consideration, a closed-loop control structure
is necessary and an efficient heuristic is critical. We propose a
state space (SS) heuristic to support a computer-aided production
scheduling and control system. We compare the optimality of our
SS heuristic in terms of minimizing the maximum completion
time, to the CDS heuristic [15] and to the NIS heuristic [16] using
case studies based on well-accepted benchmarks, for both
traditional flow shop (TFS) and hybrid flow shop (HFS) problems
under no pre-emption or no wait processing constraints. Both the
CDS and NIS heuristics use Johnson’s algorithm as their core. In
addition to its self-contained performance, we believe that our SS
heuristic – because of its simplicity and computational efficiency
– has the potential to become a core heuristic.

We find that across our different case studies the SS heuristic
outperforms the CDS and NIS heuristics. In addition, in a real
industrial application at an OKP company, Gienow Windows
and Doors, our production scheduling and control system
based on the SS heuristic reduced the company’s original
scheduling period using PDRs by an order of magnitude from 3
days to 2 h, providing the company significant flexibility and
competitiveness.

The rest of this paper is organized as follows: Section 2 gives a
brief literature review. Section 3 introduces the SS heuristic.
Section 4 presents the scheduling system and a closed-loop
control structure for adaptive control in OKP. Section 5 gives the
results from our case studies on TFS and HFS problems under no
pre-emption or no wait processing constraints, operator absence
disturbances, and in an industrial setting. We also provide a
possible extension of our SS heuristic. Finally, Section 6 draws
conclusions and proposes future work.
2. Literature review

Research in production scheduling has been carried out for
many decades, and there are numerous scheduling methods
developed in the literature. In this section, we briefly review flow
shop production scheduling methods, and discuss the require-
ments of heuristics for adaptive production control.

Scheduling is a decision making process of allocating resources
to jobs over time to optimize one or more objectives. According to
[17], one type of flow shop consists of m-machines in series, and
each job has to be processed on each one of m-machines in a
single direction, which means first on machine 1, then machine 2,
and so on. This is typically called a traditional flow shop (TFS).
Another type of flow shop where there are S-stages in series with
a number of machines/operators in parallel in each stage is a
flexible flow shop or hybrid flow shop (HFS). In addition to the
difference in flow shop configurations, processing constraints are
also different for TFS and HFS. For TFS, if the first in first out (FIFO)
discipline is applied to jobs in work-in-process (WIP) inventories,
then it becomes a no pre-emption or permutation (prmu) flow
shop problem. For HFS, if the first come first serve (FCFS)
discipline is applied, then it is still a no pre-emption flow shop
problem but the output sequence from each stage may change.
Another processing constraint could be no wait (nwt), that is, jobs
are not allowed to wait between two machines or stages, which
also means there is no intermediate storage. The most common
objective of flow shop scheduling is to minimize the maximum
completion time or makespan, that is, min(Cmax). Following the
popular three parameter notation, a/b/g, the above problems can
be expressed as Fm/prmu/Cmax for m-machine TFS problems with
no pre-emption constraint to minimize makespan, Fm/nwt/Cmax

for m-machine TFS problems with no wait constraint to minimize
makespan, FFs/FCFS/Cmax for S-stage HFS problems with FCFS

constraint to minimize makespan, or FFs/nwt/Cmax for S-stage HFS
problems with no wait constraint to minimize makespan.

Gupta and Stafford [18] chronologically reviewed flow shop
scheduling research in the past five decades since the classic
Johnson’s algorithm in 1954. They found that the emergence of
NP-completeness theory in the third decade (1975–1984) pro-
foundly impacted the direction of research in flow shop schedul-
ing. That is why heuristics are required to solve large problems.
HFS problems emerged in the fourth decade (1985–1994), and
various artificial intelligence based heuristics were proposed then.
The fifth decade (1995–2004) witnessed the proliferation of
various flow shop problems, objective functions, and solution
approaches. Although flow shop scheduling has been researched
for more than 50 years, there remains a large gap between
theoretical research and industrial applications [18].

Framinan et al. [19] proposed a general framework for the
development of heuristics which consists of three phases: index
development, solution construction, and solution improvement.
Phase I, index development, means that jobs are arranged
according to a certain property based on processing times. For
example, Campbell et al. [15] extended Johnson’s algorithm and
proposed the CDS heuristic for an n-job m-machine TFS problem
to min(Cmax). The CDS heuristic using Johnson’s algorithm to
arrange jobs is as follows. If there is a counter (Ctr) pointing to a
machine j, then for each job i (i¼1,y, n) the sum of processing
times on the first Ctr machines is regarded as its processing time
on virtual machine 1, and the sum of processing times on the rest
m�Ctr machines as its processing time on virtual machine 2. Then
apply Johnson’s algorithm to this virtual 2-machine flow shop
problem to get a sequence. As Ctr changes from 1 to m�1, m�1
sequences are generated, and the one with the minimum
makespan is the final solution. In phase II, solution construction,
a solution is constructed by a recursive procedure, trying to insert
one or more unscheduled jobs into a specific position of a partial
sequence until the final schedule is completed. NEH [20] is a
typical phase II heuristic for an n-job m-machine TFS problem to
min(Cmax). The NEH procedure is as follows. Firstly, for each job,
NEH sums the processing times on all of m-machines, and then
arranges these sums in a non-ascending order. Secondly, NEH
schedules the first two jobs to get a partial sequence, and then
inserts the third job into three possible positions to get another
partial sequence, and so on. Finally, NEH inserts the last job into n

possible positions, and then determines the final schedule. In
phase III, solution improvement, there are two main character-
istics. The first is that there must be an initial schedule, and the
second is, after using artificial intelligence techniques, the quality
of solution is better than the initial schedule. For the future
development of heuristics, Framinan et al. [19] clearly stated the
importance of heuristic development in phase I, index develop-
ment, should not be underestimated, as it is required for the other
two phases.

In a case study including 19 constructive heuristics for
Fm/prmu/Cmax problems, Ruiz and Maroto [10] concluded that
the NEH heuristic is best, the CDS heuristic is 8th, and two PDRs
(LPT and SPT rules) are the worst. However, the CDS heuristic has
the simplest computational complexity among the first 8
heuristics, O(m2n+mn log n). Moreover, King and Spachis [11]
did case studies of 5 PDRs and the CDS heuristic for two different
TFS problems, Fm/prmu/Cmax and Fm/nwt/Cmax. They concluded
that the CDS heuristic and LWBJD (least weighted between jobs
delay) rules work best for Fm/prmu/Cmax problems and MLSS
(maximum left shift savings) rule works best for Fm/nwt/Cmax

Table 1
Characteristics of heuristics H1 and H2 for disturbances D1 and D2.

Heuristics Disturbance Computation time

D1 D2 D1 D2

H1 Yes No T11 N

H2 Yes Yes T21 T22

W. Li et al. / Computers & Operations Research 38 (2011) 267–276 269
problems, but no single method works best for both Fm/prmu/Cmax

and Fm/nwt/Cmax problems.
Compared with TFS, the literature on HFS is still scarce [21,22].

According to Botta-Genoulaz [23], the CDS heuristic is the best of
6 heuristics, including the NEH heuristic, for HFS problems. The
problem that Botta-Genoulaz solved is an n-job S-stage HFS
problem to minimize the maximum lateness, min(Lmax), which
was cleverly converted to an n-job S+1-stage HFS problem to
min(Cmax). The processing time of job i in stage S+1 is calculated
by piSþ 1

¼Dmax�di, i¼1,y, n, where Dmax¼max[dk], and dk is the
due date for job k, k¼1,y, n. Although the CDS heuristic was
constructed for TFS problems to min(Cmax), when applying the
CDS heuristic to HFS problems, Botta-Genoulaz also converts
the processing times, p0 is ¼ pis=OPTRs,s¼ 1, . . . , Sþ1, where pis is
the original processing time of job i in stage s, and OPTRs is the
number of operators/machines assigned to stage s. It is reasonable
to compare our SS heuristic with the CDS heuristic for FFs/FCFS/
Cmax problems, which is computationally efficient and itself is
based on Johnson’s algorithm, because the basis of Botta-
Genoulaz’s conclusion is to min(Cmax) for n-job S+1-stage HFS
problems.

For HFS problems with identical parallel machines and with a
no wait constraint, FFs/nwt/Cmax, Thornton and Hunsucker [16]
proposed a no intermediate storage (NIS) heuristic, which works
best among the CDS heuristic, LPT and SPT rules, and a heuristic of
random sequence generation. Like the CDS heuristic, the NIS
heuristic also applies Johnson’s algorithm and uses a filter concept
to convert an FFs/nwt/Cmax problem to a 2-machine problem.
The stages before the filter are regarded as virtual machine 1, the
stages after the filter are regarded as virtual machine 2, and the
stages that are covered by the filter are omitted. The filter goes
from stage 2 to stage S�1, and the width of filter changes from 1
to S�2, which means filtering out processing times in 1 stage or
S�2 stages at a time. In total, there are 1+(S�1)� (S�2)/2
sequences generated by the NIS heuristic and the one with the
minimum makespan is the final schedule, from which we can see
that NIS is not very computational efficient. Again, because NIS is
based on Johnson’s algorithm, comparing our SS heuristic to NIS is
reasonable.

From our point of view there are three main criteria on which
to evaluate heuristics: optimality, computational complexity, and
flexibility. Usually optimality is used to evaluate the performance
of a heuristic for offline production scheduling. However, when
adaptive production control is taken into consideration, the
computational complexity becomes critical. That is why some
artificial intelligence based heuristics are not suitable for adaptive
control, although they can get better solutions. Another criterion
is the flexibility of a heuristic, that is, whether a heuristic can deal
with disturbances. Of course, different situations have different
requirements for optimality, computational complexity, and
flexibility of a heuristic. There is inevitably a trade-off among
those three criteria, and the selection of heuristic(s) for adaptive
control depends on the specifics of different situations such as the
value of optimality as compared to close-to-optimal scheduling,
as well as the type and volume of disturbances that underlies the
requirements of response time.

For example, given two heuristics, H1 and H2, two types of
disturbances, D1 and D2, and a maximum response time for online
rescheduling t, some characteristics of heuristics are shown in
Table 1 for a given number of jobs.

When disturbance D1 happens to production, the selection of
a heuristic between H1 and H2 depends on optimality and
computational complexity, because both heuristics are flexible
enough to deal with D1. If T11pt and T21pt, the selection of a
heuristic depends only on optimality, which means a mutual
comparison. Otherwise, the selection depends on computational
complexity. The mutual comparison is necessary especially when
no benchmarks are available to evaluate optimality of heuristics
separately for large problems. When disturbance D2 happens, we
can only choose heuristic H2 if T22pt. However, if T224t, and such
maximum response time t cannot be relaxed, neither heuristic H2

nor heuristic H1 can be selected.
In general, the flexibility of a heuristic must meet the

requirement of specific scheduling problems. After that, compu-
tational complexity is a critical selection criterion for online
rescheduling (i.e., adaptive production control), whereas optim-
ality is a dominant selection criterion for offline scheduling.
3. The state space (SS) heuristic

The SS heuristic minimizes the maximum completion time (or
makespan) for HFS problems, in which the FCFS discipline is
applied and the capacity of WIP inventories is limited. Because
there are multiple operators in each stage of a flow line, SS
heuristic also maximizes the utilization of the flow line, max(Util).

There are two main concepts applied in our SS heuristic which
we introduce in Section 3.1, and then the main steps of the SS
heuristic are introduced in Section 3.2. Finally, the computational
complexity of the SS heuristic is briefly analyzed in Section 3.3.

3.1. Two concepts in the SS heuristic

3.1.1. The state space concept

Consider a hybrid flow line with 3 work stages and 2 operators
in each stage (Fig. 1). The operators in each stage follow a FCFS

rule, that is, the operator who is available first for the next job
should serve immediately in the stage. Then there is a next
available time of each stage, As, where As ¼minðask

Þ , for
k¼1,y, OPTRs, in which ask

is the next available time of
operator k in stage s, and OPTRs is the number of operators
allocated to stage s. For an S-stage flow line, there are S�1 time
differences between stage available times. In the example above,
there are two differences of the next available times, A2�A1, and
A3�A2. If we regard such a difference of the next available times
as a space, SPACEs¼As +1�As for s¼1,y, S�1, then SPACEs is a
time period available for stage s to finish a job without causing an
operator in stage s+1 to be idle. If the completion time of job i in
stage s is larger than the next available time of stage s+1, then
such a job causes stage s+1 to be idle for IDLEis ¼ cis�Asþ1 time
units, where cis is the completion time of job i in stage s,
cis ¼maxðAs,cis�1

Þþpis , where pis is the processing time of job i in
stage s. The completion time cis depends on the maximum of job
i’s completion time from the previous stage s�1, cis�1

, and the
next available time of current stage s, As. If the completion time of
job i in stage s is smaller than the next available time of stage s+1,
then there are two possibilities depending on whether WIP is full.
If the WIP inventory, WIPs, is full, then a delay happens to operator
k who processed job i in stage s, DELAYis ¼ Asþ1�cis . Such a delay
means that, after finishing job i, operator k in stage s has to hold it
in hand for DELAYis time units until there is a vacancy in WIPs.
Therefore, the next available time of operator k in stage s is

Fig. 2. A lever concept for IDLE in SS.

Fig. 3. A lever concept for DELAY in SS.

Fig. 4. A lever concept for SPACE in SS.

Fig. 1. A 3-stage flow line with 2 operators in each stage.

W. Li et al. / Computers & Operations Research 38 (2011) 267–276270
delayed. Alternatively, if WIPs is not full, job i goes into inventory,
and there is no IDLE and no DELAY.

The main idea of SS is to find a job that fits S�1 spaces,
without causing IDLE or DELAY time. After a job i is processed on a
line, the state of the line, i.e., the next available time of stages, is
changed, and the space is changed accordingly. It is clear that
greater IDLE and DELAY are not good for production if the
objectives are to min(Cmax) and max(Util), while greater SPACE is
good for production to some extent. Therefore, in SS, job i is
chosen according to its performance on IDLE, DELAY, and SPACE.

From the foregoing description of SS, we can see that IDLE and
DELAY are evaluated according to job i and stage s, but SPACE is
only evaluated by stage s. To make SPACE both job and stage
dependant, there could be two ways to model SPACE. One model is
SPACEis ¼ cisþ 1

�As, for s¼1,y, S�1, which means using the
difference between the completion time of job i in stage s+1
and the next available time of stage s as the SPACE created by job i

for stage s to process the next job. The other model is
SPACEis ¼ pisþ 1

, for s¼1,y, S�1, which means using the proces-
sing time of job i in stage s+1 as SPACE. In our current version of
the SS heuristic, we use the latter model of SPACE because there is
one less calculation for each iteration, increasing the computation
speed for adaptive control. However, we illustrate the alternative
model of SPACE, SPACEis ¼ cisþ 1

�As, in a case study in Section 5 to
show the flexibility of the SS concept.

3.1.2. The lever concept

From our previous research on TFS problems, we found that
the lever concept is suitable for flow shop production [24], which
means that IDLE (or DELAY) in an earlier stage is worse for
min(Cmax) objective than in a later stage. Consider a lever where
force F takes effect and causes a torque of F� L, where F is the unit
of force and L is the length of force arm. We model an S-stage flow
line as a lever, and IDLEis caused by job i, or DELAYis , has a torque
effect manifested as IDLEis � LVR_IDLEs or DELAYis � LVR_DELAYs,
where LVR_IDLEs or LVR_DELAYs is the length of arm for IDLEis or
DELAYis , respectively.

The lever concept for IDLE(LVR_IDLEs) in SS is shown in Fig. 2.
For an S-stage flow line, a job could cause at most S�1 times of
IDLE, since no IDLE is caused in stage 1 and an IDLE takes effect in
the next stage. Therefore, the fulcrum of a lever for IDLE is set
between stage S�1 and stage S, and the length of arm for an IDLE

caused by stage s in stage s+1 is LVR_IDLEs¼S�s, for s¼1,y, S�1.
A lever concept for DELAY (LVR_DELAYs) in SS is shown in Fig. 3.

Like the number of possible IDLEs, there could be S�1 DELAYs,
since no DELAY is caused in stage S. But a DELAY takes effect in
current stage s, whereas IDLE is for the next stage. Therefore, one
unit of DELAY in stage s should be worse for min(Cmax) objective
than one unit of IDLE in stage s. So the length of arm for a DELAY is
LVR_DELAYs¼S�s+1, for s¼1,y, S�1. The fulcrum of a lever for
DELAY is set in stage S.

There is also a lever concept for SPACE (LVR_SPACEs) in SS,
shown in Fig. 4. The length of force arm for a space is
LVR_SPACEs¼s, for s¼1,y, S�1. The fulcrum of a lever for
SPACE is set between stage 1 and 2, which means SPACE in a
later stage is better for min(Cmax) than in an earlier stage.

Therefore, all SPACEs, IDLEs, and DELAYs are converted to
torques, that is, SPACE0is ¼ pisþ 1

� LVR_SPACEs, IDLE0is ¼ IDLEis �

LVR _IDLEs, and DELAY 0 is ¼DELAYis � LVR_DELAYs. The job
selection scheme is then

max
1r irn

XS�1

s ¼ 1

SPACE0is�
XS�1

s ¼ 1

IDLE0 isþ
XS�1

s ¼ 1

DELAY 0is

 !" #
,

that is, to select one out of n unscheduled jobs with the maximum
torque difference between SPACE0s and IDLE0s+DELAY0s.

Take the process of job i on a 4-stage flow line as an example.
The operation of job i in stage 1 would cause a 3-time unit idle to
stage 2. The operation of such job in stage 2 would cause 0-time
unit idle to stage 3, but a 2-time unit delay in stage 2, and the
operation of such job in stage 3 would cause a 1-time unit idle to
stage 4. Accordingly, such job would create a 2-time unit space
between stage 1 and 2, a 6-time unit space between stage 2 and 3,
and a 3-time unit space between stage 3 and 4. Thus,

P3
s ¼ 1 IDLE0is

created by job i equals to 3�3+0�2+1�1¼10,
P3

s ¼ 1 DELAY 0is
equals to 0�4+2�3+0�2¼6, and

P3
s ¼ 1 SPACE0s equals to

2�1+6�2+3�3¼23.
3.2. The steps to achieve the SS heuristic

3.2.1. Initial job selection

The main idea of SS is to select a successive job according to
the state space generated by previous jobs in a sequence.
Therefore, it is important to select initial jobs to create an initial
state space, which affects the selection of successive jobs and
ultimately the schedule performance.

Two items should be taken into consideration for initial job
selection in SS. One is the number of initial jobs—which is
straightforward, and the other is the initial job selection scheme.
The number of initial jobs is set as min(OPTRs, for s¼1,y, S). The
reason is that if the number of initial jobs is smaller than
min(OPTRs), then the state (the first available time of a stage) is
zero since all operators in all stages are available at time zero;
if the number is greater than min(OPTRs), then the number of jobs
(initial job number�min(OPTRs)) are not selected by the state
space concept.

W. Li et al. / Computers & Operations Research 38 (2011) 267–276 271
For initial job selection scheme, five 1� S vectors are
introduced as follows:

Vector_1¼[0];
Vector_3¼[APTs], where APTs ¼ ð

PN
i ¼ 1 pi,sÞ=n, i.e., the average

processing time of stage s;
Vector_5¼[maxðpis Þ, i¼1,y, n] for s¼1,y, S, i.e., the max-
imum processing time in each stage;
Vector_2¼Vector_3/2;
Vector_4¼Vector_3+[Vector_5�Vector_3]/2.

Take an n-job 4-stage production problem as an example.
Vector_1 should be [0,0,0,0], if Vector_3¼[4,6,8,10], and
Vector_5¼[10,12,16,20], then Vector_2¼[2,3,4,5] and Vector_5¼
[7,9,12,15].

The initial number of jobs are selected according to
minð

PS
s ¼ 1ðjpis�Vector_vðsÞjÞÞ for i¼1,y, n, which means the

minimum absolute difference between one job’s processing times
and the vector.
3.2.2. Steps

The following steps represent the generic programming logic
of the SS heuristic:

Step 1: Determine the number of operators in each stage, i.e.,
OPTRs. (1a) Calculate n and S. (1b) Set an expected throughput
rate, r, which means in every r time units a job is expected to
be finished in a stage. (1c) OPTRs¼Roundup (APTs/r). (1d) Set
the start time of every operator to 0. (1e) Put all of n jobs into a
candidate pool. (1f) Set an output sequence to be a 1�n zero
vector, Sequence_v.
Step 2: Set the capacity of each of S�1 WIP inventories. The
capacity of each WIP inventory could be different.
Step 3: Calculate five vectors for initial job selection.
Step 4: FOR v¼1:5. This is an iteration loop to select initial jobs
according to one of five vectors, i.e., Vector_v.
Step 5: Select min(OPTRs, for s¼1,y, S) number of jobs

according to Vector_v by the equation minð
PS

s ¼ 1

ðjpis�Vector_vðsÞjÞÞ for i¼1,y, n. Then put selected jobs into a

Sequence_v and eliminate them from the candidate pool.
Calculate the next available time of each operator, and then
the next available time of each stage, namely STATE, and WIP
inventory status, namely WIP_Status, which is now a 1� (S�1)
zero vector.
Step 6: FOR i¼min(OPTRs)+1: n. This is an iteration loop to
sequence the rest of n�min(OPTRs) jobs in the pool.
Step 7: According to STATE and WIP_Status, calculate IDLE0 is ,
DELAY 0is , and SPACE0 is .
Step 8: Select job i according to

max
i

XS�1

s ¼ 1

SPACE0 is�
XS�1

s ¼ 1

IDLE0isþ
XS�1

s ¼ 1

DELAY 0is

 !" #
,

and then put such job number into Sequence_v and eliminate it
from the candidate pool.
Step 9: Calculate intermediate completion time of a partial
schedule Sequence_v, update WIP_Status, and update STATE.
Step 10: END i. Calculate the utilization of a line. (10a) Calculate
utilization of each stage first, Utils¼ð

Pn
i ¼ 1 pis=OPTRsÞ=

ðcnks
�c1k0s�1

Þ, c1k0
¼ 0, s¼1,y, S, in which cnks

is the completion
time of the last finished job in stage s, and c1k0s�1

is the start time
of the first job in stage s, i.e., the completion time of the first
finished job in stage s�1. (10b) Calculate the average utilization
of each stage, i.e., the utilization of a line, Util¼average (Utils),
s¼1,y, S.
Step 11: END v. Output each of five sequences and related
makespan and utilization, and the minimum makespan and
the maximum utilization are regarded as the final performance
of SS.

3.3. The computational complexity of the SS heuristic

The computational complexity of a heuristic is the highest
order of operations for a specific problem. For an n-job S-stage
HFS problem the computational complexity of our SS heuristic
consists of two parts: job selection and the makespan calculation.
The main scheme of SS heuristic to construct a job sequence is to
select the next successive job according to the current state of the
flow line. This scheme is for both offline scheduling and online
adaptive control. Makespan calculation is to calculate the current
state of the flow line, but it is carried out five times in the SS
heuristic for offline scheduling, since there are five sequences
generated by the SS heuristic, although only one of them will be
chosen as the final production schedule.
3.3.1. Computational complexity of job selection

If the state of the flow line is known, then to select one out of n

unscheduled jobs takes S�n operations, which means the
computational complexity for adaptive control is O(Sn). As n

decreases from n to 1, the computational complexity of overall
selection of n jobs is O(Sn2). Although there are five sequences
generated by the SS heuristic, the computational complexity of
job selection of SS heuristic is not O(5Sn2), because only the
highest order of operations is counted in computational complex-
ity and 5 is a constant.
3.3.2. Computational complexity of the makespan calculation

An n-job and S-stage HFS problem can be modelled by a two-
dimensional matrix, where the row dimension is for n jobs, and
the column dimension is for S-stages. The makespan calculation
could be carried out along the column dimension. It means that, if
the input sequence of n jobs of stage 1 is known, then the output
sequence of n jobs of stage 1, which is also the input sequence of
stage 2, can be calculated; the output sequence is in a non-
descending order of completion times of n jobs; and then the
output sequence of stage 2 can be calculated, and so on, finally
the output sequence of stage S can be calculated. However, the
capacities of WIP inventories are limited, which means the
completion times of jobs in stage s are constrained by the next
available times of operators in stage s+1. For example, when
calculating the output sequence of stage s, if a job i’s completion
time in stage s causes the WIPs inventory to be overloaded, which
means at that time the WIPs inventory is full and there is no
operator available in stage s+1 to process a job in the WIPs

inventory, then a DELAY happens to such job i. This DELAY means
the job i’s completion time is delayed to a later time, and so is the
next available time of operator k, who processes the job i in stage
s. Consequently, the DELAY affects the completion times of all jobs
following job i in stage s, and the completion times in the previous
stage need to be checked because of the limitation on WIP
inventories. In an extreme situation, when a DELAY happens in
stage S�1, the completion times of jobs in all previous stages
have to be recalculated. Because of the many recalculations, it is
time consuming to calculate makespan along the column
dimension when the capacity of each WIP inventory is small.
Therefore, the makespan calculation should be done along the
row dimension, i.e., calculated by jobs and not by stages.

For the makespan calculation, as n increases from 1 to n, the
computational complexity is also O(Sn2), although makespan

W. Li et al. / Computers & Operations Research 38 (2011) 267–276272
calculation is carried out five times. Therefore, the overall com-
putational complexity of the SS heuristic is O(Sn2).
4. A close-loop production scheduling and control structure

Our proposed production scheduling and control system is
based on a closed-loop control structure, which is common in
adaptive control theory. The system, as illustrated in Fig. 5,
consists of our SS heuristic and a simulation model that is called
temporized hierarchical object-oriented coloured Petri nets with
changeable structure (THOCPN-CS) [25]. High customization and
dynamic uncertainties in OKP demand for a great effort on a
simulation model. Simultaneously, adaptive production control
demands for prompt solutions in time. Therefore, the unique
feature of the THOCPN-CS simulation model, changeable
structure, makes it easy and flexible to simulate frequent
changes in OKP for adaptive production control. Steps to achieve
adaptive production scheduling and control in OKP are
summarized as follows:

Step 1: Manually assign possible manufacturing resources
(e.g., operators/machines) to each stage, and hence form a
task-resource matrix (TRM) with jobs.
Step 2: Schedule the jobs by the SS heuristic.
Step 3: The THOCPN-CS model will simulate the production,
and identify the bottleneck stage(s). Human schedulers may
re-allocate operators/machines in stages accordingly, to
smooth the production flow.
Step 4: Re-schedule the jobs by the SS heuristic.
Step 5: Repeat Steps 3 and 4 in the offline production
scheduling phase until a satisfactory production schedule is
obtained. This production schedule contains a job sequence
and a number of operators/machines in each stage, nearly
balancing the utilization of a production line. In the adaptive
production control phase, this step may be omitted, depending
on specific production requirements.
Step 6: Deliver the production schedule to the shop floor and
switch the control loop from the simulation model to the shop
floor.
Step 7: If any disturbance occurs on a shop floor, switch the
control loop back to the simulation model, and go back to Step
3 if operators/machines re-allocation is necessary, or go back
to Step 4.

Through iteratively repeating the above-mentioned steps, the
production of an OKP shop floor can be adaptively scheduled
and controlled to cope with disturbances. Various disturbances
Fig. 5. A computer-aided production
frequently happen to the OKP shop floor. Thus, the adaptive
production control is a combination of users’ knowledge and the
heuristics’ ability (optimality, computational complexity, and
flexibility).

Having been implemented in an OKP company, Gienow
Windows and Doors, our production scheduling and control
system has reduced Gienow’s original production scheduling
period from 3 days to 2 h. It means that the production schedule is
fixed only for 2 h, making the company more flexible in dealing
with customer orders and improving its competitiveness.
5. Case studies

To test the performance of our SS heuristic, we carry out three
kinds of case studies: SS performance as compared to other
heuristics, SS performance with disturbances, and an industrial
case study. For the performance of SS compared with other
heuristics, we carry out four separate studies on different flow
shop configurations: Fm/prmu/Cmax, Fm/nwt/Cmax, FFs/FCFS/Cmax,
and FFs/nwt/Cmax. Taillard’s benchmarks are used in case studies
[26], because, to our best knowledge, such benchmarks are well
designed and the most accepted for flow shop scheduling
problems. In Taillard’s benchmarks, the machine number ranges
from 5 to 20, the job number ranges from 20 to 500, the
processing time follows a uniform distribution from 1 to 99, and
there are 120 instances in total. Although all these case studies are
carried out based on Taillard’s benchmarks, the result of Fm/prmu/
Cmax is a comparison with best known upper bounds. For the
remaining case studies on SS performance, the results are mutual
comparisons, that is, the improvement of one heuristic over
another.

To examine the performance of SS in the presence of
disturbances, we examine the performance of SS with operator
absence/machine breakdown under two definitions of SPACE, and
using a simple optimization method together with SS.

In the third kind of case study we compare the SS heuristic
with data provided by an industry partner, and measure the
improvement due to SS. Finally, we show with a simple two-
machine TFS example that the state space concept can provide
more solutions than Johnson’s algorithm, and thus provide more
opportunities as the core of a more elaborate heuristic.

5.1. Case studies on Taillard’s benchmarks

5.1.1. Fm/prmu/Cmax

For traditional permutation (or no pre-emption) flow shop
scheduling problems, the deviation (DEV) from the best known
scheduling and control system.

W. Li et al. / Computers & Operations Research 38 (2011) 267–276 273
upper bounds is used to evaluate the performance of a heuristic,
where DEV¼(Cmax of a heuristic–The upper bound)/(The upper

bound) in percentage. The results of the deviation studies for CDS,
NIS, SS, and a version of SS without the lever concept, SSnoLVR,
heuristics are shown in Table 2.

In Table 2, the column ‘‘Scale’’ means the size of problems. For
example, 20�5 means 20-job 5-machine problems. The column
‘‘Instance’’ means the number of instances in each scale. Columns
3, 4, 5, and 6 represent the average deviation of each of the CDS,
NIS, SS, and SSnoLVR heuristics, respectively. For the total average
deviation, the SS heuristic has the smallest deviation from
Taillard’s benchmarks, 8.11%, SSnoLVR heuristic ranks second at
8.80%, the NIS heuristic ranks third at 9.01%, and the CDS heuristic
ranks last at 11.28%. These results show the strength of the SS
heuristic and the value of the lever concept.

5.1.2. Fm/nwt/Cmax

For traditional no wait flow shop scheduling problems, an
improvement (IMPR) over the NIS heuristic is used to evaluate the
performance of the CDS and SS heuristics based on Taillard’s
benchmarks, where IMPR¼(Cmax of NIS–Cmax of CDS or SS)/(Cmax of

NIS) in percentage is shown in Table 3.
For Fm/nwt/Cmax problems, the CDS heuristic performs 1.04%

worse than the NIS heuristic. In contrast, the SS heuristic performs
on average 2.27% better than the NIS heuristic. However, we
recognize that for HFS problems the improvements of SS over NIS
will shrink as the number of operators/machines in each stage
increases. For example, if the number of operators/machines in
each stage is the same as the number of jobs, then the Cmax is fixed
as max

PS
s ¼ 1 pis for i¼1,y, n, even for no wait or no pre-emption

flow shop problems.
Table 2
Average deviation from Taillard’s benchmarks (%).

Scale Instance CDS NIS SS SSnoLVR

20�5 10 9.05 7.41 9.14 7.80

20�10 10 13.48 9.46 10.18 13.13

20�20 10 11.07 7.30 10.64 14.02

50�5 10 7.15 4.96 3.60 3.38

50�10 10 14.46 11.57 9.67 9.24

50�20 10 18.13 14.50 16.15 16.12

100�5 10 5.25 4.70 1.60 1.75

100�10 10 9.51 8.27 6.71 6.05

100�20 10 16.45 13.50 11.83 15.71

200�10 10 7.55 6.61 3.09 2.48

200�20 10 13.75 11.33 9.10 11.31

500�20 10 9.56 8.44 5.63 4.60

Total average 11.28 9.01 8.11 8.80

Table 3
Improvement over NIS heuristic for Fm/nwt/Cmax problems (%).

Scale Instance CDS SS

20�5 10 �0.32 2.01

20�10 10 �2.59 �2.86

20�20 10 �3.50 �2.71

50�5 10 0.29 8.29

50�10 10 �1.29 0.49

50�20 10 �2.42 �1.67

100�5 10 �0.27 9.20

100�10 10 �0.61 3.78

100�20 10 �1.00 �0.02

200�10 10 �0.22 5.59

200�20 10 �0.41 1.69

500�20 10 �0.10 3.46

Total average �1.04 2.27
5.1.3. FFs/nwt/Cmax

For hybrid no wait flow shop problems with identical parallel
operators/machines in each stage, two operators/machines are
assigned to each stage. The improvement of the CDS or SS
heuristics over the NIS heuristic is shown in Table 4. For such
hybrid no wait flow shop problems with two operators/machines
in each stage, the SS heuristic has a small improvement over the
NIS heuristic, 0.39%, and the CDS heuristic still performs slightly
worse, �1.33%.

5.1.4. FFs/FCFS/Cmax

For HFS problems with the FCFS discipline applied to jobs in
WIP inventories, we set two variables. One is a throughput rate
r¼31, used to calculate the number of operators in each stage,
where OPTRs¼Roundup (APTs/r). The average processing time of
each stage ranges from 30.75 to 64.40 for all of 120 instances in
Taillard’s benchmarks, therefore, OPTRs varies from 1 to 3 for each
stage. Another variable is the capacity of WIP inventories.
Different configurations of WIP inventories have different impacts
on production [27]. For the ease of case study, we simply set each
WIP inventory at the same WIPs¼5, even though in theory each
could be set to a different value. The calculation of processing
times in CDS is p0 is ¼ pis=OPTRs, s¼1,y, S [23]. The improvement
(IMPR) of the SS heuristic over the CDS heuristic is used to
evaluate performance for such scheduling problems for both
min(Cmax) and max(Util) objectives, where IMPR1¼(Cmax of CDS–
Cmax of SS)/(Cmax of CDS) in percentage, and IMPR2¼(Util of SS–Util

of CDS)/(Util of CDS). The results are shown in Table 5. Over the
120 instances in Taillard’s benchmarks, the SS heuristic has an
average 1.16% improvement over the CDS heuristic on the
min(Cmax) objective and 3.96% on the max(Util) objective.
Table 4
Improvement over NIS heuristic for FFs/nwt/Cmax problems (%).

Scale Instance CDS SS

20�5 10 �1.71 �2.66

20�10 10 �2.72 �2.02

20�20 10 �3.06 �2.88

50�5 10 �0.77 3.34

50�10 10 �1.50 �2.18

50�20 10 �3.48 �2.04

100�5 10 0.21 7.15

100�10 10 �0.55 0.60

100�20 10 �1.75 �1.13

200�10 10 �0.15 3.54

200�20 10 �0.50 0.97

500�20 10 0.01 2.00

Total average �1.33 0.39

Table 5
Improvement over CDS heuristic for FFs/FCFS/Cmax problems (%).

Scale Instance min(Cmax) max(Util)

20�5 10 �2.39 7.33

20�10 10 0.27 5.66

20�20 10 �2.65 �0.02

50�5 10 2.87 4.90

50�10 10 2.47 6.17

50�20 10 0.08 1.45

100�5 10 2.42 3.47

100�10 10 1.34 4.69

100�20 10 1.54 2.43

200�10 10 3.14 3.96

200�20 10 2.03 4.41

500�20 10 2.79 3.14

Total average 1.16 3.96

Table 7
Improvement adaptive control over no adaptive control, where SPACEis ¼ cisþ 1

�As .

Scale Instance min(Cmax)

20�5 10 7.75

20�10 10 6.62

20�20 10 �8.49

50�5 10 1.23

50�10 10 3.10

50�20 10 2.99

100�5 10 0.22

100�10 10 3.26

100�20 10 4.50

200�10 10 0.55

200�20 10 1.64

500�20 10 0.86

Total average 2.02

W. Li et al. / Computers & Operations Research 38 (2011) 267–276274
5.1.5. Summary

In all four separate studies on different flow shop problems, on
average, the SS heuristic performs better than the CDS and NIS
heuristics, although worse for a few instances. However, the SS
heuristic performs much better than the CDS and NIS heuristics
for each of 30 large sized instances, in which the job number
Z200.

5.2. Case studies on operator absence

To test the suitability of our SS heuristic to adaptive control, a
case study of operator absence is carried out based on the data
from Taillard’s benchmarks. Modeling operator absence is the
same as modeling machine breakdown. For this case study, we
assume that, when a half of jobs are finished, one operator is
absent in the middle stage of a flow line, specifically in stage 3, 6,
or 11 according to the scale of instances in Taillard’s benchmarks.
For the remaining half of the jobs, if the production is carried on
according to the original schedule when such disturbances
happen to the shop floor, then the completion time is recorded
as Original. If adaptive control is applied, that is, using the SS
heuristic to re-schedule the remaining jobs, then the completion
time is recorded as Adaptive. The improvement of adaptive control
over no adaptive control is used to evaluate the performance,
which means (Original–Adaptive)/(Original) in percentage.

To show the potential of our SS heuristic as a core heuristic,
case studies on operator absence are carried out under the two
definitions of SPACE, SPACEis ¼ pisþ 1

and SPACEis ¼ cisþ 1
�As. As a

third case study in this section we integrate a simple optimization
method with the SS heuristic.

5.2.1. SPACEis ¼ pisþ 1

The results are given in Table 6. As we see, adaptive control is
slightly better than no adaptive control with a 0.10%
improvement if SPACEis ¼ pisþ 1

.

5.2.2. SPACEis ¼ cisþ 1
�As

The results are given in Table 7. We can see that adaptive
control has a 2.02% improvement over no adaptive control.

5.2.3. Integration with an optimization method

It is easy to integrate other optimization techniques into the
State Space concept. For example, in the SS heuristic, there are
two effects impacting the final production performance. Increased
SPACE improves production, and IDLE and DELAY make production
worse. If we introduce a weighting factor, a, into our SS heuristic
that allows different weights for SPACE and for IDLE or DELAY,
Table 6
Improvement adaptive control over no adaptive control, where SPACEis ¼ pisþ 1

.

Scale Instance min(Cmax)

20�5 10 2.46

20�10 10 1.81

20�20 10 3.01

50�5 10 0.88

50�10 10 2.17

50�20 10 �2.80

100�5 10 0.39

100�10 10 0.29

100�20 10 �4.18

200�10 10 �0.41

200�20 10 �1.25

500�20 10 �1.21

Total average 0.10
then we could sequence the jobs according to

max
i
ð1�aÞ �

XS�1

s ¼ 1

SPACE0is�a�
XS�1

s ¼ 1

IDLE0 isþ
XS�1

s ¼ 1

DELAY 0 is

 !" #
:

As a changes from 0 to 1 with increments of 0.1, the
performance of the SS heuristic, in which SPACEis ¼ pisþ 1

, is shown
in Table 8. The columns represent the performance of each a
integrated with the SS heuristic. A weight a¼0.0 means no IDLE or
DELAY is taken into consideration to sequence the jobs, and a¼1.0
means no SPACE is taken into consideration. The weighting factor
a reveals the relationship between SPACE, IDLE and DELAY in
adaptive control with Taillard’s benchmarks: SPACE affects the
production performance more than IDLE or DELAY, where a¼0.1
has the greatest improvement, 2.77%.
5.3. An industrial case study

To validate our SS heuristic in a real setting, an industrial case
study has been carried out in Gienow Windows and Doors. This
case consists of 1396 jobs on a flow line with 5 stages for 1-day
production. These jobs are delivered to customers in 28 batches.
Each batch of products is destined for customers in a given
geographic area. Using data provided by Gienow and using the SS
heuristic in its basic form, our heuristic produced the results
shown in Table 9.

As shown in the Table, Gienow used 42,300 time units to finish
1396 jobs. The production of 1396 jobs in 42,300 time units was
achieved by Gienow’s original schedule, which was generated by a
production scheduler who has worked in Gienow for many years.
Our SS heuristic can generate a new schedule, reducing 42,300
time units to 41,771, a 1.25% improvement in productivity. Such
an improvement on daily production translates into the produc-
tion of 17 additional products daily, or more than $5000 revenue
per day.

The SS heuristic was programmed in C++ language, and run on
an Intel Pentium IV personal computer with a 3.20 GHz CPU and
1.00 GB RAM. The computation time of the SS heuristic to
schedule 1396 jobs on 5 machines was 70.67 s. Those 70.67 s
are for offline production scheduling, generating and evaluating
five sequences for all 1396 jobs. However, for online adaptive
production control, the computational complexity of SS heuristic
is O(Sn) (please refer to Sections 3.3.1 and 3.3.2). Therefore,
if there are 1396 jobs left unproduced when a disturbance
occurs, it takes only 10.12 ms (‘‘the overall computation time ’’/‘‘5
sequences’’/‘‘1396 jobs’’) for SS heuristic to select the next
successive job, which is fast enough to respond to a disturbance
on the shop floor.

Table 8
Improvement adaptive control over no adaptive control with integration of SS heuristic with a weighted factor, where SPACEis ¼ pisþ 1

.

Scale Instance 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

20�5 10 �0.59 0.75 2.17 3.12 1.97 2.46 �2.31 �7.08 �7.68 �9.25 �2.30

20�10 10 0.67 0.77 0.56 5.01 3.68 1.81 �2.86 �4.62 �2.11 �1.59 �4.27

20�20 10 7.50 10.00 8.69 6.74 6.15 3.01 0.00 �9.46 �9.12 �8.99 �9.79

50�5 10 0.22 1.11 1.17 0.97 1.55 0.88 0.15 �1.66 �1.33 �1.24 �0.64

50�10 10 5.50 4.97 4.06 2.80 2.75 2.17 �4.35 �7.10 �6.20 �8.76 �8.89

50�20 10 1.65 3.67 1.94 2.90 �5.41 �2.80 �5.53 �5.22 �7.50 �0.22 �1.07

100�5 10 0.43 0.88 0.36 0.49 0.58 0.39 0.17 �0.98 �1.09 �1.16 �2.24

100�10 10 3.05 3.02 2.20 2.42 1.05 0.29 �2.35 �1.97 �2.76 �1.42 �2.50

100�20 10 5.94 5.24 5.79 4.76 �0.39 �4.18 �5.26 �5.76 �6.61 �5.73 �7.49

200�10 10 0.47 0.47 0.05 0.27 0.15 �0.41 �0.75 �1.26 �1.10 �1.58 �1.15

200�20 10 1.53 2.24 2.39 0.82 �0.15 �1.25 �1.44 �1.48 �2.34 �2.36 �1.98

500�20 10 0.17 0.18 0.16 �0.02 �0.64 �1.21 �1.63 �1.69 �1.66 �1.59 �1.54

Average 2.21 2.77 2.46 2.52 0.94 0.10 �2.18 �4.02 �4.96 �5.33 �6.15

Table 9
An industrial case study.

Gienow SS Improvement

1 1795 1711 84

2 1458 1444 14

3 1698 1697 1

4 2292 2261 31

5 1570 1556 14

6 1798 1753 45

7 1420 1420 0

8 1573 1567 6

9 1828 1805 23

10 1676 1676 0

11 1568 1568 0

12 1691 1691 0

13 1465 1465 0

14 1364 1353 11

15 1323 1323 0

16 1489 1489 0

17 1477 1477 0

18 1743 1712 31

19 1751 1745 6

20 1434 1430 4

21 1587 1570 17

22 1587 1393 194

23 1196 1165 31

24 1094 1083 11

25 1362 1362 0

26 1281 1281 0

27 923 923 0

28 857 851 6

Total 42,300 41,771 529

Percent 1.25%

Table 10
A two-machine flow shop example.

Machine 1 Machine 2

Job 1 5 20

Job 2 20 10

Job 3 10 15

Job 4 15 12

W. Li et al. / Computers & Operations Research 38 (2011) 267–276 275
Originally, it took 3 days for the experienced production
scheduler to offline schedule 1-day production of customer orders
in Gienow. This manual scheduling process made it difficult for
the company to respond to changes of customer orders in time
and at a low cost. Therefore, the company used a fixed 3-day
production scheduling policy, which means customers are not
able to change or place an urgent order 3 days before production.
With the proposed computer-aided production scheduling and
control system which is based on the SS heuristic, Gienow could
change the production scheduling policy from 3 days to 2 h, taking
into consideration of other constraints, e.g., raw material handling
speed and capacity in the company, convenience of operators to
switch between workstations or production lines.

5.4. An extension of SS heuristic

To further illustrate the state space concept, we compare
a scaled down version of SS with Johnson’s algorithm for a
two-machine TFS scheduling problem, F2/prmu/Cmax. For F2/prmu/
Cmax problems, the lever concept that is part of our SS heuristic
has no effect on the job selection. This is because for such
problems, there is no limit to the WIP inventory between machine
1 and 2, then no DELAY is taken into consideration. In addition,
the length of force arm for SPACE or IDLE is equal to one for two-
machine TFS scheduling problems. However, the state space
concept can yield different job sequences than Johnson’s algo-
rithm. A numerical example is provided in Table 10.

Johnson’s algorithm sequences the jobs according to the
following scheme. If min(pa1, pb2)pmin(pa2, pb1), then job a

should be processed earlier than job b. Therefore, for the example
in Table 10, Johnson’s algorithm generates a sequence of
[Job 1, 3, 4, 2] with Cmax¼62.

According to the state space concept (again, not exactly the SS
heuristic), and using Johnson’s algorithm for initial job selection,
we obtain two additional sequences, both of which have Cmax¼62,
and are different from the one generated by Johnson’s algorithm:
[Job 1, 2, 3, 4] and [Job 1, 4, 3, 2]. Thus, we can see that the state
space concept can yield different sequences than Johnson’s
algorithm with the same level of optimality, and hence can
provide greater opportunities for improvement as the core of a
more elaborate heuristic.
6. Conclusions

In this research we have presented the state space concept and
developed the concept into a SS heuristic. As both a model (the
state space concept) and a heuristic, we have shown that SS is
useful for flow shop production scheduling and control when the
number of machines or stages is greater than or equal to 3. In
addition, we developed a lever concept to linearly scale measures
of time availability (SPACE) and of idle and delay (IDLE, DELAY).
Combining the state space and lever concepts in our SS heuristic,
we showed that our heuristic has the computational complexity
of O(Sn2). We also showed through case studies that the SS
heuristic outperforms the most popular alternative heuristics
(CDS, NIS) against Taillard’s benchmarks both without and with

W. Li et al. / Computers & Operations Research 38 (2011) 267–276276
disturbances. We note that the CDS heuristic has a simpler
computational complexity than our SS heuristic for scheduling
itself, but if we take sequence evaluation into consideration, the
CDS heuristic has the same computational complexity as the SS
heuristic. The NIS heuristic has a higher computational complex-
ity than our SS heuristic. To gauge the performance of the SS
heuristic in an industrial setting, we obtained a dataset from a
local OKP manufacturer, and found the schedule generated by our
SS heuristic outperformed the manufacturer’s schedule, and the
schedule could be calculated in an order of magnitude less time.

According to the framework of heuristic development pro-
posed by Framinan et al. [19], the SS heuristic is in the first of
three phases (index development), a phase that is beneficial for
heuristic development in other two phases (solution construction
and improvement). Indeed, we also showed using a simple
example, that as compared with Johnson’s algorithm our state
space concept can generate alternative schedules at the same
level of optimality. Given that both the CDS and NIS heuristics
have Johnson’s algorithm as their core, the state space concept
might be a good starting point to develop more elaborate
heuristics for production scheduling with adaptive control.

The suitability of state space concept and the SS heuristic for
adaptive control depends on its ability to handle disturbances and
its computational complexity. Many disturbances can be handled by
the state space concept. According to Pinedo [17], there can be three
kinds of disturbances: job insertion/cancellation, operator absence/
machine breakdown, and variation of processing times. For job
insertion/cancellation, the processing times of jobs to be inserted or
cancelled affect the next available times of operators in each stage,
and consequently affect the time space between stages; similarly for
operator absence/machine breakdown and variation of processing
times. However, more research could improve the optimality of the
SS heuristic beyond the implementation and case studies we
describe. For computational complexity perspective, the SS heuristic
is fast enough to generate a feasible solution for adaptive control
because when a disturbance occurs, the computational complexity
of the SS heuristic to choose the next job is only O(Sn).

We recognize that implementing adaptive control solutions to
deal with dynamic disturbances in manufacturing industries is
difficult, and the gap between the theoretical research and
industrial application is still large. More research is in need to
reveal the relationship between jobs, stages, and operators in each
stage. Better approximations for these relationships than the
linear version of the lever concept we use may be helpful, and this
is one of the directions of our future research.
Acknowledgements

This research project has been funded by the Natural Sciences
and Engineering Research Council (NSERC) of Canada through
NSERC Strategic Project Grant and NSERC Discovery Grants, and
by Gienow Windows and Doors Co. Ltd., Calgary, Alberta, Canada.
References

[1] Blecker T, Friedrich G, editors. Mass customization: challenges and solutions.
New York: Springer Science+Business Media, Inc.; 2006.

[2] Wortmann JC, Muntslag DR, Timmermans PJM. Customer-driven manufac-
turing. London: Chapman & Hall; 1997.

[3] Dean PR, Tu YL, Xue D. A framework for generating product production
information for mass customization. Int J Adv Manuf Technol 2008;
38(11–12):1244–59.

[4] Dean PR, Tu YL, Xue D. An information system for one-of-a-kind production.
Int J Prod Res 2009;47(4):1071–87.

[5] Dean PR, Xue D, Tu YL. Prediction of manufacturing resource requirements
from customer demands in mass-customization production. Int J Prod Res
2009;47(5):1245–68.

[6] Brucker P, Drexl A, Mohring R, Neumann K, Pesch E. Resource-constrained
project scheduling: notation, classification, models, and methods. Eur J Oper
Res 1999;112(1):3–41.

[7] Herroelen W, De Reyck B, Demeulemeester E. Resource-constrained project
scheduling: a survey of recent developments. Comput Oper Res
1998;25(4):279–302.

[8] Goyal SK, Mehta K, Kodali R, Deshmukh SG. Simulation for analysis of
scheduling rules for a flexible manufacturing system. Integr Manuf Syst
1995;6(5):21–6.

[9] Park SC, Raman N, Shaw MJ. Adaptive scheduling in dynamic flexible
manufacturing systems: a dynamic rule selection approach. IEEE Trans Robot
Autom 1997;13(4):486–502.

[10] Ruiz R, Maroto C. A comprehensive review and evaluation of permutation
flowshop heuristics. Eur J Oper Res 2005;165(2):479–94.

[11] King JR, Spachis AS. Heuristics for flow-shop scheduling. Int J Prod Res
1980;18(3):345–57.

[12] Ovacik IM, Uzsoy R. Decomposition methods for complex factory
scheduling problems. Boston/Dordrecht/London: Kluwer Academic Publish-
ers; 1997.

[13] Tu YL. A framework for production planning and control in a virtual OKP
company. Trans North Am Manuf Res Inst SME 1996;24:121–6.

[14] Tu YL. Automatic scheduling and control of a ship welding assembly line.
Comput Ind 1996;29(3):169–77.

[15] Campbell HG, Dudek RA, Smith ML. A heuristic algorithm for the n-job, m-
machine scheduling problem. Manage Sci 1970;16(10):630–7.

[16] Thornton HW, Hunsucker JL. A new heuristic for minimal makespan in flow
shops with multiple processors and no intermediate storage. Eur J Oper Res
2004;152(1):96–114.

[17] Pinedo M. Scheduling theory, algorithms, and systems. New Jersey: Prentice-
Hall; 2002.

[18] Gupta JND, Stafford Jr EF. Flowshop research after five decades. Eur J Oper Res
2006;169(3):699–711.

[19] Framinan JM, Gupta JND, Leisten R. A review and classification of heuristics
for permutation flow-shop scheduling with makespan objective. J Oper Res
Soc 2004;55(12):1243–55.

[20] Nawaz M, Enscore Jr EE, Ham I. A heuristic algorithm for the m-machine,
n-job flow-shop sequencing problem. OMEGA—Int J Manage Sci 1983;11(1):
91–5.

[21] Linn R, Zhang W. Hybrid flow shop scheduling: a survey. Comput Ind Eng
1999;37(1):57–61.

[22] Wang H. Flexible flow shop scheduling: optimum, heuristic and artificial
intelligence solutions. Expert Syst 2005;22(2):78–85.

[23] Botta-Genoulaz V. Hybrid flow shop scheduling with precedence constraints
and time lags to minimize maximum lateness. Int J Prod Econ 2000;64(1):
101–11.

[24] Li W, Luo X, Tu YL, Xue D. Adaptive production scheduling for one-of-a-kind
production with mass customization. Trans North Am Manuf Res Inst SME
2007;35:41–8.

[25] Li W. Adaptive production scheduling and control in one-of-a-kind produc-
tion. Thesis (MSc), University of Calgary, Canada, 2006.

[26] Taillard E. Benchmarks for basic scheduling problems. Eur J Oper Res
1993;64(2):278–85.

[27] Vergara HA, Kim DS. A new method for the placement of buffers in serial
production lines. Int J Prod Res 2009;47(16):4437–56.

	An efficient heuristic for adaptive production scheduling and control in one-of-a-kind production
	Introduction
	Literature review
	The state space (SS) heuristic
	Two concepts in the SS heuristic
	The state space concept
	The lever concept

	The steps to achieve the SS heuristic
	Initial job selection
	Steps

	The computational complexity of the SS heuristic
	Computational complexity of job selection
	Computational complexity of the makespan calculation

	A close-loop production scheduling and control structure
	Case studies
	Case studies on Taillard’s benchmarks
	Fm/prmu/Cmax
	Fm/nwt/Cmax
	FFs/nwt/Cmax
	FFs/FCFS/Cmax
	Summary

	Case studies on operator absence
	SPACEisequalpisplus1
	SPACEisequalcisplus1minusAs
	Integration with an optimization method

	An industrial case study
	An extension of SS heuristic

	Conclusions
	Acknowledgements
	References

