

Architecting disparate eHealth systems interoperable through Web Services

Safdar Ali (PhD Candidate)

safdar.ali@ibmt.fraunhofer.de

Fraunhofer-Institute for Biomedical Engineering (IBMT) St. Ingbert, Germany

Outline

- Research Areas of the Fraunhofer-IBMT
- TOPCARE e-Homecare Platform
- Application of Semantic Web/Web Services/Ontologies in eHealth
- Functionalities to be offered by Health Information Systems for the interoperability
- Suggested Security Framework
- Augmentation of e-Homecare platform with Web Service
- References

Research Areas of Fraunhofer-IBMT

- Health Telematics (Homecare, Telemedicine, Secure medical communication, Semantic Web based applications)
- Microsystems in biology and medicine, microsensors and microintegration, active Implants
- Neuro prosthetics (Nerve-electrode-arrays, functional electro stimulation)
- Ultrasound systems
- Cellular biotechnology & biochips
- Molecular cell-/ tissue engineering
- Stem cell research
- Cryo-biotechnology

Fraunhofer Society

- of non-profit organisations
- applied R&D on contract base
- 56 institutes
- more than 10.000 employees

Main Research Fields of Health Telematics Dept.

Secure Communication in Medical Networks Development of interoperable and secure communication solutions for the public health system.

e-Homecare, mobile Healthcare, Telemedicine

- Telehealth systems for mobile care and homecare of high risk patients, . elderly and care needing people.
- Open telecare platform solutions for telemedicine services.
- Functional and semantic interoperability between eHealth systems

IT solutions for Biosciences Information systems for Cryo cell banks.

Technik

TOPCARE e-Homecare and Telemedicine Platform

Therapy surveillance by telemonitoring vital signs, in vitro parameters and device parameters:

- Home Ventilation
- Endurance Test and Exercises
- Coagulation Therapy
- Stroke Rehabilitation
- Medication Adherence

TOPCARE Telehealth Server

TOPCARE e-Homecare and Telemedicine Platform (cont.)

Roche Diagnostics Coagucheck S™ Blood Coagulation Testing

RespiCare CV Dräger Medical Ventilator

Careousel™ **Pill Dispenser**

Soehnle S20 Weight Scale

Roche Diagnostics Accucheck S™ **Blood Glucose Testing**

Radical™ **Dräger Medical** Pulse Oxymeter

Boso Medicus™ **Blood Pressure**

Roche Diagnostics Urisys 1100 Urine Analyzer

TOPCARE e-Homecare and Telemedicine Platform (cont.)

TOPCARE e-Homecare and Telemedicine Platform (cont.)

Drawbacks/Limitations

- No interoperability with HL7, xDT etc. compliant systems.
- Interaction is limited to only the clients having Telehealth client (THC) module.
- Interaction is possible only through Web browsers (i.e. Internet Explorer, Netscape)
- No Application Programming Interface (API) is defined.

Semantic Web/ Web Services/ Ontologies

Web Service:

- Interfaces and bindings are capable of being defined, described, and discovered as XML artifacts.
- Supports direct interactions with other software agents.
- XML based message exchanging via internet-based protocols.

Technik

Semantic Web/ Web Services/ Ontologies (cont.)

Semantic Web:

- Making WWW contents *machine-processable* and *machine-interpretable*.
- To Achieve
 - Automatic **Discovery** of Web Services
 - Automatic Composition of Web Services
 - Automatic Invocation of Web Services
 - Automatic Interoperation of Web Services
 - Automatic **Selection** of Web Services

Ontology:

- Defines the terms used to describe and represent an area of knowledge.
- Used by people, databases, and applications that need to share domain information.

Semantic Web/ Web Services/ Ontologies (cont.)

Some Semantic Web based eHealth projects

MedCIRCLE/MedCERTAIN

- To develop and promote technologies able to guide consumers to trustworthy health information on the internet.
- A collaborative system for assessing health information on the web.

• ARTEMIS

• To develop a Semantic Web enabled Web Services (SWWS) based interoperability framework for the healthcare domain.

• NOESIS

- To support health professionals in taking the best possible decision for prevention, diagnosis, and treatment.
- To generate an adaptable framework capable of reasoning about the patient's situation, preliminary diagnosis and dealing with administered therapies.

Functionalities for the Interoperability

Patient

Functionalities for the Interoperability (cont.)

Queries:

- Who has information about the patient xyz? (Broadcasting)
- Is patient's information available?
- What types of information?
- Get a particular type of information

• Sending/Receiving Information:

- Specific medical information
- Patient referrals
- Security:
- Storing the received information locally:
- Logging:
 - Health professional's signature with particular method invocation for a particular patient for a particular type of information.

Fraunhofer _{Institut} Biomedizinische Technik

WS Security Framework

Prominent concerns of a Security Framework

- Authentication Identity
- Authorization Access Control
- Confidentiality Encryption
- Integrity Tamper Proofing

WS Security Framework (cont.)

Health professional logs on

Use of VeriSign's Healthcare Authentication Service (HAS)

TOPCARE Telehealth Server with Web Service

Technik

TOPCARE Telehealth Server with Web Service (cont.)

Institut Biomedizinische Technik

Security Framework for TOPCARE Web Service

References

TOPCARE

An implementation of a Telematic Homecare Platform in Cooperative Healthcare Provider Networks <u>http://www.topcare.info</u>

- Systinet, Introduction to Web Services Architecture
- Christoph B,, Dieter F., Alexander M. *A Conceptual architecture for Semantic Web enabled Web Services (SWWS)* <u>http://swws.semanticweb.org</u>
- Web Services Security Specification (WS-Security)
 OASIS (Organization for the Advancement of Structured Information Standards) Jun.2004
 http://xml.coverpages.org/ws-security.html
- **ARTEMIS**: *Deploying Semantically enriched Web Services in the healthcare domain* Assuman Dogac, G. Laleci, S. Kirbas et al.

Fraunhofer _{Institut} Biomedizinische Technik

Thank you very much for your attention and patience ©