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ABSTRACT

Image restoration achieved by 3x3 filters may not be effective as they do not take
the nonstationary nature of the image into account. We present a new adaptive-
neighborhood noise filtering technique for restoring images with multiplicative noise.
When evaluated by mean-squared error, the adaptive-neighborhood algorithm pro-
duced superior recovery of images degraded by multiplicative noise.

A new method is proposed of computing image edge profile acutance based on
the mean-squared gradient along the normals to the boundary of a region of interest
(ROI). The acutance algorithm has been tested on different test images, and the
resulting values have been found to relate well to the perceived sharpness of the image.
Image enhancement techniques are then proposed based on the idea of increasing the
acutance of an ROI. The enhancement method has been tested with different blurred
test images, and has been found to increase their sharpness as well as the objective

measure of acutance.
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CHAPTER 1

INTRODUCTION

1.1 Classical Image Processing Techniques

Most images suffer degradation during their formation or recording due to the use
of imperfect sensors. Image degradation can be classified in two categories: blur and
noise. In general, a degraded image is modeled as the original image convolved with
a point spread function plus white noise. Image processing techniques are applied to
degraded images to make them more suitable than the original image for a specific
application. The established image processing techniques can be broadly classified in

the following categories.

1.1.1 Local versus Global Image Processing Techniques

Early attempts to restore noisy images treated the image as a homogeneous random
field and used linear global filters for restoration. Global filters can be designed in
both the spatial and the frequency domains, and efficiently implemented in a recursive
way. However, common global restoration filters essentially operate as global low-
pass filters. Therefore, images may be smoothed excessively by these filters, which
is especially apparent near edges or at locations of high-frequency information in the
image. The human visual system is very sensitive to edges, and hence global methods
tend to produce subjectively poor results.

In general, an image is an inhomogeneous random field, and hence it cannot be
properly represented by a homogeneous model. Recently, better algorithms for image
restoration have been developed by assuming that images are locally stationary. This



2
means that the local power spectral demsity (PSD) changes gradually as a small
window is moved over the image. A number of experiments by different researchers
have shown that the approach based on local stationarity of the image is a significant
improvement over the assumption of global stationarity. In most practical image
restoration applications, the restoring filter window is relatively small compared to
the size of the image. If the image is locally stationary in regions covering at least the
spatial extent of the filter window, then the assumption of stationarity is reasonably

well justified; consequently, significantly better restored images can be obtained.

1.1.2 Fixed versus Adaptive Image Processing Techniques

Image restoration algorithms can also be classified as fixed and adaptive image
restoration techniques. Fixed methods were common in the early periods of image
processing, and were designed under the assumption of global stationarity. In fixed
methods, the coefficients of the filter as well as the size and shape of the region of
support (or application) of the filter remain fixed over the entire image. As the fixed
filters do not adapt to changing image characteristics, they tend to smooth the image
in order to reduce noise, and thereby blur edges and structured features. To overcome
this limitation, a number of adaptive filtering techniques have been proposed. In some
adaptive filters, the region of support remains fixed but the filter coefficient values
change depending on image characteristics; in some others, the size and shape of the
neighborhood over which the filter coefficients are calculated are varied depending
on local image characteristics. Adaptive filtering techniques are more complex than
fixed techniques and take more computing time to restore images. The finite duration
taken by adaptive filters to respond to new image characteristics may affect the filter
performance in transition areas of the image. However, adaptive filtering methods

take local stationarity of images into account, and the restored images are better as



object edges and other sharp features do not get blurred.

1.2 Scope of the Thesis

This thesis presents various adaptive image restoration and image enhancement
techniques where local image characteristics dynamically control the algorithms. In
particular, the thesis concentrates on adaptive-neighborhood (AN) image processing
techniques which process images using adaptive regions that correspond to areas of the
image where relative pixel gray-level differences lie within specified limits of tolerance.
The ANs tend to be uniform and tend not to include high-frequency information such
as edges. An AN is also called a region.

The main part of the thesis is centered around new AN techniques for image
restoration and edge enhancement. In image restoration this thesis deals with only
signal-dependent multiplicative noise; however, the concept can be extended to other
types of signal-dependent noise such as Poisson noise and film-grain noise. For the
edge enhancement part, the thesis presents a method for region-based quantitative
measurement of edge sharpness and a new region-based method for improving the edge
sharpness of bi-level images. It is shown in the thesis that AN-based image processing
techniques work better than those based on fixed-neighborhood techniques.

1.3 Thesis Organization

This thesis is presented in six chapters. Chapter 2 reviews different noise filtering
techniques, and gives a detailed review of some of the principal filtering techniques.
The general principles of noise filtering are discussed first, both for signal-independent
noise and signal-dependent noise. A comparative discussion on local versus global
filtering methods, and fixed versus adaptive image restoration methods is presented.

Four principal noise restoration filters are discussed in detail, followed by a summary



of the methods.

Chapter 3 presents the proposed AN filter for restoring images with multiplicative
noise. The concept of AN processing and the method for finding ANs are described.
The structure of the noise filter is presented and discussed. Results of application
of the AN multiplicative noise filter are shown, and a comparative analysis (both
qualitative and quantitative) with the methods discussed in chapter 2 is provided.

Chapter 4 starts the second part of the thesis which deals with the region-based
image enhancement methodology. The chapter starts with reviews on the need for
measures of image sharpness and algorithms for computing object edge sharpness.
A new method for computing a region-based quantitative measure of object edge
sharpness is presented. The method is a modification of an existing algorithm for
computing image edge profile acutance. The validity of the algorithm is demonstrated
by experimental results.

Chapter 5 presents a new method for enhancing object edge sharpness based on
the acutance property of an image. The method is different from the other methods
discussed in the thesis that deal with image sharpening in that it does not work on
a global basis to enhance the image. Instead, the method sharpens the image by
enhancing the edge of each individual object present in the image. The final part of
this chapter presents a discussion on experimental results and the comparative merits
and demerits of the new technique.

Chapter 6, the final chapter, gives a summarizing discussion on the noise filtering
and edge enhancement techniques presented in the thesis and provides suggestions

for future work.



CHAPTER 2

NOISE FILTERING

2.1 Principles of Noise Filtering

Noise filtering deals with the problem of recovering an image from its noisy condi-
tion. The purpose is to improve the image quality or to obtain some type of informa-
tion that is not readily available from the original degraded image. Many digital imag-
ing systems introduce noise which cannot be avoided. Film grain, electronic noise,
and quantization are some of the major noise sources in digital imaging. Restoration
of noisy images has a wide range of applications. In photojournalism and forensic
applications, noisy images are very common. In space research, image restoration is
becoming an increasingly important aspect because of the inherent noise associated
with any optical telescope. In general, the range of image restoration applications
is widening with the continuing increase in the use of imaging systems in numerous
consumer, commercial, medical, and scientific fields.

The main strategy in noise filtering is to define an estimate of the original image on
a quantitative basis and to incorporate a priori information and constraints about the
actual image, the blur, and the noise into the estimation process. However, a priori
information about the image, the blur, and the noise are often not readily available.
Therefore, these quantities need to be modeled and model parameters should be
determined properly. The noise process is modeled in two major ways depending on
the source and nature of the noise ~ signal-independent noise and signal-dependent

noise.



2.1.1 Signal-independent Noise

In most image restoration algorithms, the observed noise is modeled as additive,
white Gaussian noise that is independent of the signal. In this model, the degradation
of a digital image is expressed as

9(i,j) = h(i,3) * f(3,7) + (. 5), (2.1)

fori =0,1,..,.M—1, 7 =0,1,..., N — 1, the extent of the image formation system.
g(%,7) is the observed degraded image, h(i, j) is the image formation system impulse
response (or blurring function), * represents two-dimensional (2D) convolution, f(z, j)
is the original image, and n(%, j) is a realization of the noise process independent of
the signal process represented by f(z,7)-

Statistically, noise is considered to be independent of the signal if its statistical
characteristics of any order are not a function of the signal or its statistics. Since
a Gaussian process is completely characterized by its mean and variance, Gaussian
noise is independent of the signal if its first two moments are independent of the
signal. Although a non-Gaussian noise process is not completely determined from its
first two moments, it may be said to be signal-independent to the second order if its
mean and variance are independent of the signal.

The signal-independent noise model has resulted in many successful restoration
filters in various areas such as biomedical imaging, television, infrared imaging, space
imaging, and industrial radiography. However, it has been well established that a
number of image noise sources are signal-dependent (Walkup and Choens [1], Arse-
nault et al. [2]). Restoration algorithms based on a signal-independent noise model
are not expected to be very effective in the signal-dependent noise environment. To
restore images from signal-dependent noise, signal-dependent noise models are more

appropriate.



2.1.2 Signal-dependent Noise

A number of physical noise processes are inherently signal-dependent. These in-
clude photoelectronic shot noise, magnetic tape recording noise, photographic film-
grain noise, and speckle noise. Signal-dependent noise sources often have a nonlinear
relationship with signal intensity. It has been shown that restoration algorithms
which ignore signal dependence of noise pay a penalty in terms of mean squared error
(MSE) while trying to restore images from signal-dependent noise [3]. The inclusion
of signal dependence in the model, while increasing the complexity of the restoration
filters, results in potentially superior performance.

A frequently used model for signal-dependent noise was proposed by Froehlich et
al. 3] as

9i. ) = f(i. ) + KF(F(i, )mGi, 3), (2.2)

where g(i, j) is the observed degraded image, f(z, j) is the undegraded original image,
K is a constant, F(f(i, 7)) is a function of the undegraded original image f(, j), and
n(%,7) is noise which is independent of the original image f(z, 7).

In this thesis, filtering of multiplicative noise will be considered. The degradation

by multiplicative noise is modeled as
9(3,3) = f(i,J) (3, 5), (2.3)

where the notations have the same meaning as in equation (2.2). A practical exam-
ple of multiplicative noise is speckle noise. Coherent illumination results in speckle
noise in images acquired by imaging systems with wavelength limitations for detecting
very small variations in object roughness. Many coherent imaging systems are widely
used, such as ultrasound medical imaging systems, synthetic aperture radar imag-
ing systems for remote sensing, astronomical imaging systems, and laser-illuminated

imaging systems. For multiplicative noise, the noisy images have the property that



brighter areas of the image appear to be noisier.

Many filters have been proposed based on signal-independent and signal-dependent
noise models for restoring noisy images. They may be classified either as local or
global filtering methods, based on whether they take local statistics of the image into
account or not. They may also be classified as adaptive or fixed filtering methods,
depending on whether or not the algorithms dynamically adapt themselves to the

image characteristics.

2.2 Local versus Global Image Filtering Methods

Early image restoration algorithms were designed under the assumption that the
image under consideration is a wide-sense 2D stationary random process [4]. The sta-
tistical properties of an image, under this assumption, are characterized by its global
stationary correlation function, rather than its local statistical properties. Chan and
Lim [5] stated that such global algorithms are not successful as most image data
that are meaningful to human observers violate the basic assumption of stationarity.
Images are typically only quasi-stationary. As global image filtering methods are de-
signed under the assumption of stationarity, they are insensitive to abrupt changes
in image intensity, and tend to smooth edges and structured features where the as-
sumption of stationarity is violated [6].

Various algorithms have been proposed to restore images using local statistics.
Mean filters [7] restore noisy images, but the edges of the objects are considerably
blurred. Median filters [7] can effectively remove discrete impulse noise, but at the
cost of greater signal suppression.

Naderi and Sawchuck [8] proposed a nonstationary Wiener filter to remove signal-
dependent film-grain noise. Their filter is able to adapt to local signal statistics,
given the conditional noise statistics. Lo and Sawchuck [9] derived a nonlinear filter
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to restore images affected by Poisson noise. Arsenault and Levesque [10] used the
generalized homomorphic transformation to make signal-dependent noise independent
of the signal, and combined it with a local-statistics restoration technique to filter
images degraded by signal-dependent noise. Lee [11, 12] formulated a local-statistics
algorithm using the James-Stein estimator. Jiang and Sawchuck [13] considered the
restoration of images degraded by a class of signal-uncorrelated noise, possibly signal-
dependent, using the noise-updating repeated Wiener filter; they also investigated

other adaptive noise smoothing filters using local image statistics.

2.3 Fixed versus Adaptive Image Filtering Methods

Most of the early image restoration methods were fixed methods, developed using
nonrecursive algorithms and implemented in the discrete frequency domain [7]. To
deal with images degraded by space-variant blur, methods for 2D extension of the
Kalman filtering algorithm [14] and Bayesian estimation were proposed, which led to
2D recursive filtering algorithms.

The constrained least squares filter is an extension of the Kalman filter and was
originally proposed by Phillips [15]; refinements and further extensions have been
developed by MacAdam [16] and Hunt [17]. Another approach to image restora-
tion is homomorphic filtering, which was introduced in one-dimensional (1D) signal-
processing by Oppenheim et al. [18].

Fixed filtering methods often tend to smooth out edges because of the inherent as-
sumption of a stationary image model. Many adaptive restoration systems have been
proposed to rectify this problem. Ingle et al. [19] allowed the parameters describing
the image model to change within the image, and derived an identification-estimation
algorithm. Ingle and Woods [20] considered the case of five models (describing edges

of different orientations), and developed a multiple-channel estimation algorithm. Us-
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ing a totally different approach, Peyrovian and Sawchuck [21] derived nonstationary,
nonrecursive filters that provide a compromise between loss of resolution around edges
and the effect of noise in smooth regions. Rajala and Figueiredo [22] proposed a 2D
recursive filter assuming a piecewise-stationary model for the image. The image was
first segmented into disjoint regions based on local spatial activity and a different
Kalman filter was used for nonstationary restoration of each region. Their method
emphasized nonstationarity within regions.

Lev et al. [23] suggested a 3x3 kernel that is contextually set depending on local
image characteristics. Prager [24] used a simplified form of this technique for noise
suppression and called it conditional smoothing. Nagao and Matsuyama {25] pro-
posed an algorithm which selects the most homogeneous neighborhood and replaces
each pixel by its neighborhood average. Such adaptive algorithms are most suitable
for smoothing noise in images with strong edges as a preprocessing step for future seg-
mentation. However, subtle details, such as thin lines and small but distinguishable
objects, are suppressed by these methods.

In the following chapters we will discuss a few adaptive restoration algorithms in
more detail. Subsequently (in chapter 3), we will compare the results obtained by
these methods with the results obtained by our proposed method, when applied on

the same test images.

2.4 The Adaptive Two-dimensional LMS Algorithm

Hadhoud and Thomas [26] and Mikhael and Ghosh [27] proposed an efficient al-
gorithm they called the adaptive two-dimensional least-mean-squares (ATD LMS)
method. The method uses a causal finite impulse response (FIR) filter W;(i, j) whose
region of support is M xM (M is typically 3) such that
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M-1M~-1

k=0 =0
where f(i, 7) is the restored value of the pixel (3, j), (3, 7) is the noise-corrupted input

image, and p marks the current position of the restoration filter in the input image
computed as

p=1iN +j, (2.5)
for the pixel position (i,j) in an NxN image, and takes values from 0 to N? — 1.
The filter coefficients Wy, (i, j) at the next pixel position (p + 1) are determined by
minimizing the MSE at the pixel location p, using the steepest descent algorithm,

and are computed as
WP+1 (ia j) = Wp(iv j) - ,UA,(C:), (2.6)

where u is the convergence and filter stability factor, e, is the difference between the
desired signal and the estimated signal, and A, is a gradient operator applied to €3
at the pixel location p.

The error signal e, is given by
ep = f(i,5) = f(i,J)- (2.7)

Since the original image is unknown, the error signal e, is typically obtained by
applying a 2D delay operator of (1,1) samples to the degraded image in order to
approximate the original image f(z, 7).

Combining equations (2.4), (2.6), and (2.7), we get

WP‘H(i:j) = WP("?j) + 2"e?APg(i - kaj - l)' (2'8)

The convergence factor u is determined by trial and error. The ATD LMS algorithm
implemented by Rabie [28] is used in this thesis for comparative analysis. The ATD
LMS algorithm tends to reduce the noise uniformly across the entire image, which
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leads to smoothing of edges. Decreased sharpness of edges normally makes images

less pleasing to the viewer.

2.5 The Adaptive Rectangular Window LMS Algorithm
Song and Pearlman [29, 30] proposed a method of adaptive estimation in which
the size of the neighborhood over which filter coefficients are calculated is varied. The
method was refined later by Mahesh et al. [6]. In their method, the same noisy image
model as in equation (2.1) is used, with the additional assumption of no blurring,
that is k(#,7) = 1. The noise n(i, ) is assumed to be of zero mean and variance o2

and uncorrelated to the original signal f(i,j), which is assumed to have mean m;

and variance o%. The estimate of the original signal is given by
fG.5) = ag(i,3), (29)

and the factor a at each pixel location is found by using the minimum MSE criterion

of the standard Wiener filter. The error is given by
e(i,§) = f(i,3) - f(i,5) = f(i,5) — ag(i,i). (2.10)

A necessary and sufficient condition for the minimization of the MSE is that the error

signal e(z, 7) should be orthogonal to the original signal g(3, j), that is,

E{[fG.]) ~ ag(i,f)leG. 1)} =0, (2.11)

where E{.} is the expectation operator. The solution of equation (2.11) gives the
value of a as
o2
a= —2——!-—2, (2.12)
og + o5
which is a first-order LMS estimator at each point in the image. If the original image
has a non-zero mean, then the estimator is found by first subtracting the mean from

both of the images f(i,j) and g(i,7). Since the mean of the noise is zero, the a
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posteriori mean m, of the image g(3, j) at pixel position (7, j) is equal to the a priori
mean m of the original image f(i, 7). Then, the first-order LMS estimate is given as

s o?
F@rd) =mq + S lo0i ) = gl (2.13)

The ARW algorithm starts with the window size of 1x1 for the pixel (1,1). Then,
two thresholds T; and T; are defined as

=% T, =%, (2.14)

n; n;

where n; and n; are the lengths of the ARW in the ¢ and j directions, respectively.
The variances of the signal in the current row (¢?) and the current column (¢0?) are
then computed as

P 2 — 2
tegi-ol,  ol=ai-d,

o’ (2.15)

where o7 and o7 are the values of the variance in the input image calculated over
n; and n; pixels in the i and j directions, respectively. These variances are then
compared with the arbitrarily-defined thresholds given by equation (2.14). If the
variance in the ¢ (or j) direction is greater than the corresponding threshold, then
the ARW size is progressively increased in that direction; otherwise, it is decreased.
The ARW is restricted to a maximum of 11x11 pixels to ensure that each ARW
corresponds to a relatively homogeneous region in the image.

The implementation of the ARW algorithm by Rabie [28] is used in this thesis for
comparative analysis. The ARW LMS method typically smooths uniform regions of
the image with a large window, but leaves the image almost unchanged in regions
containing edges or high spatial variance. The resulting image generally has more
noise at edges than in uniform regions. However, since human observers are typically
able to tolerate more noise at edges than in smooth areas, the resultant image could

be more pleasing than the noisy image [6].
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2.6 The Adaptive-neighborhood Noise Subtraction Algorithm

The adaptive-neighborhood noise subtraction (ANNS) algorithm was proposed by
Paranjape et al. [31]. The method operates on the same general principle as the
ARW LMS algorithm; however, the window size is not necessarily a rectangular one
as in the ARW LMS algorithm. In the ANNS method, the estimate of the additive
noise is computed on the basis of a variable-size, variable-shape AN for each pixel in
the input image.

In the ANNS algorithm, the degraded image is represented by a zero-mean random
variable f(i,7) of variance % with no blurring. The degraded image is represented
as (from equation (2.1))

9(3,5) = f(3,7) + »(3,3), (2.16)
where the noise n(i, ) is of zero mean, of variance o2, and is uncorrelated to f(i, 7).
An estimate of the additive noise, 72(%, 7) is then computed using the pixels in an AN
as

fi(2,7) = Blg(3, ) — mal, (2.17)
where m,, is the mean value computed over the AN and 3 is a scale factor computed
in the following way.

Using the estimate of the noise in equation (2.17), an estimate of f(i, j) is computed

f(i,5) = ma + (1 - B)lg(i, 5) — ma]- (2.18)

From equation (2.17), o2 is expressed as
o? = %2, (2.19)
From equation (2.16), it can be shown that

o, =07 +0 (2.20)
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Combining equations (2.19) and (2.20), we get
op = B*(0% +07), (2.21)
where 0% is the estimated signal variance given by
ot = o =% 2.2)

where o3y, in turn is the variance of the AN. Then, 3 is given by

0’2 1/2
=(—=—2—] . 2.23
g (v% + oi) 22
From equation (2.18), the final estimate for the original image is obtained as
. 0.2 1/2
f(l,]) =mq + [1 - (;2__:—03) ] [g(i’j) - ma]' (2'24)
f n

The AN is formed for each pixel of the image in such a way that it defines a relatively
uniform region in the image. Identification of the AN will be discussed in more detail
later in this thesis. An implementation of the ANNS by Paranjape et al. [31] is used

in this thesis for comparative analysis.

2.7 The Fixed-neighborhood Multiplicative Noise Filter
A fixed-neighborhood filter for multiplicative noise was proposed by Kuan et al.
[32]. The filter algorithm starts with the additive noise model given by equation (2.1).

If the conditional mean of the noise given the signal is zero, that is

E{n|f} =0, (2.25)

where n and f represent the noise and signal processes, respectively, the adaptive

linear minimum mean squared error estimate of the signal is given by [32]

Frr =\ — - . ‘U(l,]) - . . 0
fd) = B G} + o 20ar=sloi ) — E{g@}l, (2:26)
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where o2(%, j) is the nonstationary noise ensemble variance at the pixel location (2, j);
E{f@i,7)} and E{g(i,7)} are the ensemble means of f(t,5) and g(i, ), respectively;
and vg(z, j) is the local spatial variance of f(i,J).

For multiplicative noise, the same filter in equation (2.26) can be used. However,
the multiplicative noise variance cannot be used directly, as the noise is not additive;
instead, 02(i,j) is computed in the following way. The degradation model for the
multiplicative noise model can be written as (using a different notation than that

used in equation (2.3)) [32]
g (i,3) = f(2,5) u(3, 5), (2:27)

where u(z, j), the multiplicative noise, is independent of f(i,j). The observation is

normalized by the known noise mean as

9(i,j) = ¢'(i, )/ E{u}, (2.28)

where u is the noise process, and E{u} is the noise mean. Expressing equation (2.28)
in terms of signal plus signal-dependent additive noise, the additive noise is found as
(32]

The additive noise variance is

of [[B{f G )] + 03(i. )]
[E{u}f’ ’

where o2 is the noise variance, and a}(i, j) is the ensemble signal variance. It can

on(i,j) = (2.30)

be verified that the noise n(z, j) in equation (2.29) satisfies the condition in equation
(2.25). Replacing ensemble statistics in equations (2.30) and (2.26) by local spatial
statistics and using the value of o2(7, ) from equation (2.30) in equation (2.26), Kuan
et al. [32] proposed the following adaptive noise smoothing filter for the multiplicative
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noise model:
- i) = 7 i 7 Uf(i,j)[g(i,i)_— f(i,j)] 2.31
Jea = e S TG + o B

where f(3,7) is the filter output for the pixel location (i, 5), (%, 7) is the normalized

observation, f(i,j) is the local 3x3 mean, and v(%, j) is the local 3x3 variance.
From equation (2.31), it is seen that the filter adapts itself to local variations
in image statistics. The implementation of the filter shows that the filter is noise
smoothing; however, the filter blurs object edges to some extent as it operates on
3x3 neighborhoods. The filter works better than the ATD LMS, the ARW LMS and

the ANNS algorithms in restoring images with multiplicative noise.

2.8 Summary

In this chapter, the principles of noise filtering and some of the existing restoration
filters were discussed. In particular, mean and median filters, the ARW LMS algo-
rithm, the ATD LMS algorithm, the ANNS algorithm, and the 3x3 multiplicative
noise filter of Kuan et al. were discussed in detail, as we will compare their perfor-
mance with that of our proposed method later in this thesis. It should be noted that
the ARW LMS, the ATD LMS, and the ANNS algorithms are not expected to work
well in the presence of multiplicative noise as they were designed for restoring images
with additive noise. The algorithms were chosen for comparative analysis as they rep-
resent powerful adaptive methods. The 3x3 multiplicative filter, on the other hand,
was designed to restore images with multiplicative noise; however, the filter suffers
from the same limitations as any 3x3 image processing technique. The next chapter
shows that the multiplicative noise filter can be improved if it is applied on the basis
of ANs instead of 3x3 neighborhoods. It is also shown that the restoration method
works better as the computer-generated variable-size, variable-shape regions match

more closely with visually identifiable regions in the image.
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CHAPTER 3

ADAPTIVE-NEIGHBORHOOD FILTERING OF

MULTIPLICATIVE NOISE

In this chapter a new adaptive-neighborhood restoration filter to restore images
degraded by multiplicative noise is proposed. The filter uses statistics computed over
adaptive-neighborhoods which are grown to include statistically stationary regions
with similar gray levels. The method is a new algorithm for restoring images degraded
by multiplicative noise using the adaptive-neighborhood image processing paradigm
which was first proposed by Gordon and Rangayyan in 1984 [33].

3.1 Adaptive-neighborhood (AN) Image Processing

In AN image processing, an AN is defined about each pixel in the image, the extent
of which is dependent on the characteristics of the image feature in which the given
pixel is situated. Such a neighborhood of similar pixels is called a region. In image
segmentation, groups of pixels are found that have some property in common (such as
similar gray level) and are used to define disjoint image regions. AN processing may be
performed by initially segmenting the given image and then processing each segment
in turn. Alternatively, AN processing may define possibly overlapping regions for each
pixel and process each of these regions independently. Then, features in the image
are processed as units, rather than pixels being processed using arbitrary groups of
neighboring pixels (for example 3x3 masks). Image processing procedures can then

be applied on an image feature basis, rather than on a pixel-by-pixel basis.
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3.1.1 Region Growing

The fundamental step in AN image processing is defining the extent of regions in
the image. Of the two classes of regions, namely non-overlapping regions obtained
using image segmentation techniques, and overlapping regions obtained from region
growing techniques, overlapping regions are used in the proposed method, as pro-
cessing disjoint segments of an image may result in noticeable edge artifacts and an
inferior restored image.

The region growing method used in the proposed filter is based on a simple graph-
ical seed-fill algorithm, known as pixel aggregation [34]. Details of implementation
of the method may be found in the paper by Morrow et al. {35]. In this method,
regions consist of connected pixels that fall within a specified gray-level deviation
from the starting or seed pixel. Either 8-connectivity or 4-connectivity may be used.
8-connectivity has been used here, as it has been found to result in more accurate
matches between the regions grown and visually identifiable objects.

The AN is defined using 8-connected region growing and a pre-specified tolerance

about the seed pixel’s gray level. The tolerance is defined as

IP(IB, l) - p(i’ j)l
p(i, 5) sh (3-1)

where p(z, j) is the gray level of the seed pixel (i, j) and p(k,!) is the gray level at the
connected pixel (k,[). The tolerance ¢t is given as a fraction of the seed pixel’s gray
level, and determines the maximum gray-level deviation allowed within the region.

For each seed pixel, the tolerance t is initially set to 0.01 (allowing 1 percent
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deviation about the seed pixel’s value). If the number of pixels in the region grown is
less than four, then the tolerance is increased by 0.01. The process is continued until
a region is grown with four or more pixels, or the tolerance reaches a maximum value
of 0.4. Any deviation less than the tolerance level is considered to be an intrinsic
property of the region, or to be noise.

An AN typically groups pixels that are similar to the seed pixel in terms of both
gray level and proximity (connectivity). These pixels are usually contextually related
and are likely to belong to the same object or region. Figure 3.1(a) shows an actual
AN region grown from the seed pixel at location (76, 83) in a synthesized test image
(the characteristics of the synthesized test image will be described later in subsection
3.3.1). The AN exactly matches the part of a circular object of the image (not
overlapped by neighboring objects) which contains the seed pixel. Figure 3.1(b)
shows an AN region grown from the seed pixel at location (58, 73) in the hat region
of the Lenna image. The region grown includes a uniform region surrounding the
seed pixel. Figure 3.1(c) shows the region grown from the seed pixel at the location
(165, 43). The seed pixel lies in the mane region of the Lenna image and the region
contains texture. The AN grown is very small. Any textured region contains many
different adjacent high-frequency pixel ensembles. As the AN grown tries to identify
a uniform region and tends to avoid edges and other nonstationary areas present in
a textured region, the size of the AN grown is likely to be small in textured areas.

As mentioned at the beginning of this subsection, the ANs can be overlapping.

Figure 3.2 shows an example of two overlapped regions in a noisy version of the
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Lenna image. The first AN was grown from the seed pixel at the location (153, 135)

and the boundary of the AN is marked white. The second AN was grown from the
seed pixel at the location (165, 134) and the boundary of the AN is marked black.
The two ANs encompass two different uniform regions with significant overlap.

The basic idea in an AN filter is to apply filtering methods based on the statistics
of adaptive regions whose size and shape are based on the structural information
content of the image, rather than of arbitrarily formed rectangular regions. It should
be noted that each pixel in the given image is treated as a seed pixel for region growing

and filtering.

3.2 Local Statistics-based Filter for Multiplicative Noise

In the proposed AN method, the same filter structure as in equation (2.31) is used.
However, the statistics used in the filter are not computed over a 3x3 neighborhood;
instead they are computed over the AN for each pixel for the reason described below.

Any restoration filter filters noise by replacing the pixel value by a certain average
computed over a predefined neighborhood. Mathematically, ensemble statistics are
used as the parameters of the filters. However, in practice, the ensemble statistics
are not available. Often, the ensemble statistics are approximated by local statistics
under the assumption that the pixels within the averaging neighborhood are from
the same ensemble. However, if there is a high-frequency component in the averaging
window, the sample variance tends to overestimate the ensemble variance, because

samples in two entirely diflerent ensembles are used to calculate the sample variance.
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The sample variance is much higher than the ensemble variance in a high-frequency
region of the image. The sample mean is also inaccurate.

The effects of inaccurate estimates of signal mean and signal variance can be ex-
plained from the structure of an image. Many researchers have proven that images
cannot be modeled as wide-sense stationary process and that the statistical proper-
ties of an image cannot be characterized by its global stationary statistics. A more
accurate model was given by Kuan et al. [32], where the image is described by a non-
stationary mean, nonstationary variance process. The nonstationary mean accounts
for the general structure of the image, whereas the nonstationary variance character-
izes the high-frequency components of the image, e.g., edges and textures. It may
now be seen that an inaccurate signal variance has a severe effect on the restored
image as it tends to obscure the high-frequency information in the image and the
edges get blurred. If an inaccurate mean is used to describe the gross structure of the
image, the effect of the nonstationary mean is not prominent in the restored image,
as it may only affect the relative brightness or intensities of objects.

To avoid this problem, the ANs (discussed in section 3.1) are grown in such a
way that they include uniform areas only and do not include edges. For a uniform
region, the regions grown include the pixels which tend to belong to the same object
or ensemble only (figure 3.1(b)). For a textured region where there are many high-
frequency components, the size of a typical AN is usually very small in order to avoid
including two different pixel ensembles or components of the texture in the same

AN or averaging neighborhood. Therefore, it can be expected that AN mean and
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AN variance provide better estimates of the ensemble mean and ensemble variance,
respectively.

In the proposed filter for multiplicative noise, the ensemble signal mean E{f(3, 5)},
and the ensemble signal variance o%(3, j) are approximated by the AN mean m (%, j),

and the AN variance 0% v (%, 7), respectively. The filter is then given by

ain (i 7) + 02[(m 4n (G, 5)) + 0% G DI/ [E{u}]”’

f(3,5) = mun(i5) +
where f| (2, 7) is the filter output for the pixel location (%, ) and ¢(, ) is the normalized
observation. The factor [(m 4y (i,7))? + 625 (3, 7)] is an index of the signal-dependent
properties of the multiplicative noise, and the presence of this factor shows how the
filter adapts itself to smooth the signal-dependent noise. The factor o2/[E{u}]?

denotes the multiplicative noise level.

To understand the behavior of the filter, a filter control factor can be defined as

oini, i)
C= AN 22 , .
T (od) F oA man (.9 + G EIT (3.3)

so that the filter in equation (3.2) can be rewritten as
F(3,3) = man(is3) + C = [g(i, 5) ~ man (i 5)]- (3-4)

If the noise is high, then o2 is comparable to [E{u}]* and C is low (from equation
(3.3)). Then, the filter in equation (3.4) puts more weight on the a posteriori mean
m 45 (2, 7). Inthis situation, the observation is very noisy, and the a posteriori averages
are used to smooth the noise. In the case of low noise, o2 is very small compared to

[E{u}}®. Then, from equations (3.3) and (3.4), we can see that the filter puts more
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weight on the noisy observation g(z, j) and edges are preserved better as a result of

less averaging.

3.3 Results

In order to test the proposed method, 3x3 mean and median filters [7], the ATD
LMS algorithm [26], the ARW LMS algorithm [29, 30], the ANNS algorithm [31}, the
3 x3-neighborhood multiplicative noise filter of Kuan et al. [32], and the proposed
AN multiplicative noise filter were applied to two synthesized test images and two
natural images after they had been contaminated with multiplicative, white Gaussian
noise. The resultant images were analyzed by visual examination and by calculation
of the MSE between the original and the restored images. The visual quality of each
filtered image was judged by the author by observing the extent of noise reduction
in smooth regions, and by observing the retention of sharp edges as well as textual

details in the image.

3.3.1 Generation of Synthesized Test Images

Two synthesized test images were generated in order to test the AN algorithm.
The first synthesized test image (figure 3.3(a)) is a 128 x128 image containing many
objects in the form of rectangles, circles, and triangles of various gray levels and size.
The objects are placed at randomly-selected positions. The gray level values of the
objects vary from 0 to 255, with the background being a constant of 60. Figure 3.3(b)

shows the degraded image with signal-dependent multiplicative white noise of mean
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0.5 and variance 0.007. Since the noise is muitiplicative, the noisy image has reduced
intensity, by an average factor of 2 (reciprocal of the noise mean). The noisy image
may be normalized by dividing each pixel of the image by the known noise mean.
The MSE between the normalized noisy image and the original image is 382.5. The
test image has a number of almost-ideal edges, which are useful for observing the
edge-degrading characteristics of the different algorithms.

The second synthesized test image was prepared in a manner similar to the first
synthesized image. However, the uniform background of the image has a gray level
value of 65. The image was corrupted by signal-dependent multiplicative Gaussian
noise of mean 1 and variance 0.05. Figures 3.4(a) and 3.4(b) show the original and
noisy versions of the second synthesized test image. Since the noise mean is 1 here,
the noisy image need not be normalized for MSE calculation. The MSE between the

original and noisy versions of the second synthesized image is 100.2.

3.3.2 Restoration of Synthesized Images

Figures 3.3(c) to 3.3(f) show the different restored images for the first synthesized
image. Images restored by the 3x3 mean filter, the ARW LMS filter, the 3x3 filter of
Kuan et al., and the AN method are displayed for comparison. The mean filter results
in a considerably blurred image, as shown in figure 3.3(c). The image produced by the
3x3 median filter (not shown) was better than the image restored by the 3x3 mean
filter both in terms of edge sharpness and noise retained in the images. However,

both the images show that simple, conventional 3x3 techniques fail to restore images
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affected by signal-dependent multiplicative noise without blurring.

The ATD LMS method (result not shown) performed almost as poorly as the 3x3
mean and median filters. The convergence factor used in the ATD LMS algorithm was
40x10~2; the value was selected after many trials. The output image was significantly
blurred with most of the noise largely intact. The ARW LMS-restored image is
presented in figure 3.3(d). The ARW size was restricted to be a minimum of 1x1 and
a maximum of 5x5. The image appears to be noisier than the other restored images.
Both the ATD LMS and the ARW LMS methods are designed for restoring images
with additive noise, and failed to restore images contaminated with multiplicative
noise.

The ANNS method restores the image on the basis of ANs, instead of rectangular
neighborhoods. The filter used in the ANNS method was specifically designed for
signal-independent additive Gaussian noise. The ANNS method also failed to restore
the image affected by signal-dependent multiplicative noise (result not shown).

The output of the 3x3 multiplicative noise filter of Kuan et al. [32] is shown in
figure 3.3(e). The image appears to be better than the other restored images discussed
so far. However, considerable noise is still present in the restored image. The noise
is prominent both in the uniform background and within the objects.

Figure 3.3(f) shows the image restored by the AN method. The image was obtained
after four iterations of the AN method (iterating the AN method is discussed in
subsection 3.3.3). The uniform regions in the image contain much less noise in the

restored image than in the input image or any of the other filtered images. The noise
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is more prominent in some of the brighter objects of the image. On the otker hand,
in the case of very-low-contrast regions, the regions may not be visible after filtering.
In spite of these limitations, the image restored by the AN method is clearly the best
restored image based on direct visual examination of the filtered images in figure 3.3.

The MSE values between the original and the restored images are listed in table
3.1. The 3x3 filter of Kuan et al. and the AN method perform normalization of the
restored image as part of the algorithm. For the other restored images, the results
were normalized by the known noise mean before computing the MSE (the MSE
values would be much larger without the normalization step). From the table, it is
seen that the image restored by the AN method has the lowest MSE in the series of
images and methods considered. Thus, the AN method appears to be the best of all
the methods studied, both qualitatively and quantitatively for images degraded by
multiplicative white Gaussian noise.

A similar set of tests was performed on the second synthesized test image, and
figure 3.4 presents some of the results obtained. Only the original and noisy images,
and the results of the 3x3 filter of Kuan et al. and the AN method are shown.
The MSE values for the second synthesized image are also listed in table 3.1. Visual
inspection of the images in figure 3.4 and their MSE values indicate that the AN
method consistently produces better restored images than those generated by the

other algorithms for the synthesized test images.
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3.3.3 Repeated Application of the AN Algorithm

Repeated application is a powerful and useful attribute of the AN image filtering
methods, which was first proposed by Paranjape et al. [36] and used in their ANNS
algorithm [31] and the AN mean and median filters [37]. For iterative application
of the filters, knowledge of noise variance is required at each pass through the filter.
In the present study, it was found that the original noise variance works well for
successive iterations as well. Thus, no additional information is used in the successive
iterations.

Figure 3.5 displays the results of repeated application of the AN method for the first
synthesized image. The MSE values of the restored images after successive iterations
are listed in table 3.2. From the table it is seen that the MSE value continues to
decrease until the fourth iteration, after which it starts to increase. Thus, the AN
method may be iterated and the MSE observed after each iteration. When the MSE
starts to increase, processing may be stopped, and the restored image obtained from
the previous iteration taken as the final restored image. For the first synthesized
image, the restored image obtained after the fourth iteration of the AN method was
taken as the final restored image. The final restored image (figure 3.5(f)) is seen
to be almost free of noise. The successive iterations restore the images without any
blurring of the edges of the objects in the image.

Figure 3.6 shows regions grown for the same seed pixel (with co-ordinates (52, 94))
for the original, noisy, and the restored images obtained after the first few iterations

of the AN algorithm. The same region growing criterion as given in equation (3.1)



29

was used for all the images. The images show that the region grown for the original
image (figure 3.6(a)) includes exactly the object containing the seed pixel. For the
noisy image, the region grown (see figure 3.6(b)) is small, and does not cover much
of the object containing the pixel. After the first iteration, the region grown for the
same seed pixel (see figure 3.6(c)) includes three different objects (two other objects
besides the object containing the seed pixel). The region grown for the restored image
obtained after the second iteration (not shown) is almost the same as that after the
first iteration. After the third iteration, however, the region grown (see figure 3.6(d))
includes only two objects (one other object besides the object which contains the seed
pixel). The region grown for the restored image obtained after the fourth iteration
(figure 3.6(e)) includes only the object in which the seed pixel is located. After
the fifth iteration, the region grown (figure 3.6(f)) again includes another object in
addition to the object containing the seed pixel. The images in figure 3.6 and the
MSE values listed in table 3.2 suggest that as regions are identified better (i.e. as
the regions grown are more properly matched with the objects in the image), the AN
method works better in noise removal. It should be noted that the regions grown for
the original image and for the image obtained after the fourth iteration (the regions
illustrated in figures 3.6(a) and 3.6(e)) are almost identical for the same seed pixel
under consideration.

For the second synthesized image, the MSE started to increase after the second
iteration of the AN method. The MSE after the first pass of the AN method is the

lowest of all the restored images obtained in this study (see table 3.1), and the best
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restored image is obtained after the very first pass of the AN method.

3.3.4 Restoration of Natural Images

Figure 3.7 presents results obtained with the commonly-used Lenna image. The
original image is a 256 x256 image with gray levels ranging from 0 to 255, and is
shown in figure 3.7(a). The Lenna image was corrupted with multiplicative noise of
mean 1 and variance 0.05; the corrupted image is shown in figure 3.7(b), which has an
MSE of 882.8. The results of the 3x3 median, ATD LMS, 3x3 multiplicative noise
filter of Kuan et al., and the AN filters are presented in figures 3.7(c) - 3.7(f). The
convergence factor used for the ATD LMS algorithm was 40x10~°. The AN method
was iterated until the MSE started to increase; for the Lenna image, the minimum
MSE was achieved after 3 iterations. Again, the final restored image produced by
the AN method is clearly the best output image based on direct visual examination
of the different restored images.

The MSE values between the original and the restored versions of the Lenna image
are shown in table 3.3. The ATD LMS method suppressed the noise to some extent
without blurring the image. The restored images produced by the 3x3 median filter
and the filter of Kuan et al. also have low MSE values compared to that of the noisy
image. The median filter-restored image is, however, badly blurred. The AN method
has produced the restored image with the least MSE value and the best visual quality.

Figure 3.8 shows the regions grown for the Lenna image for a particular seed pixel

(co-ordinates (153, 135)) for the original, noisy, and the restored images obtained
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after each of the first three iterations of the AN method. It is seen that the region

grown in the noisy image is very small, and that after each iteration of the AN filter,
the region grows bigger. The region grown for the restored image obtained after the
second iteration matches most closely with the region grown for the original image
for the same seed pixel. The MSE attains its lowest value after the third iteration of
the filter (note that the third iteration of the filter is applied on the basis of regions
grown on the restored image obtained after the second iteration).

After the third iteration, the region grows much larger, and includes other visually
different regions in the image; the MSE starts to increase at the same time. These
results suggest that optimal restoration of the noisy image is achieved when the
regions identified by the AN method match closely with actual regions in the original
image.

All of the restoration methods under consideration were applied to another nat-
ural image (Sarah), which is of a girl sitting on a beach. The size of the image is
128 x128 and the gray level values range from 0 to 255. The image was corrupted by
multiplicative noise of mean 1 and variance 0.01. Figure 3.9(a) and 3.9(b) show the
original and noisy images, respectively. The image contains some very bright areas
where the multiplicative noise looks very prominent, in the form of black dots. The
MSE of the noisy image is 679.2.

Figures 3.9(c) and 3.9(d) show the restored images given by the 3x3 filter of Kuan
et al. and by the AN method, respectively. The minimum MSE was achieved after

two iterations of the AN method. From visual inspection (by the author only) of the
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restored images, it is seen that the AN method does not work well in removing the
black spots from the bright regions of the noisy image (e.g. the hat and the upper
arm); however, the method still gives the best restored image in the present study.
The MSE values of the different restored images for the Sarah image are listed in
table 3.3. Again, the restored image obtained by the AN method has the least MSE
value.

It should be mentioned here that the AN filter did not work consistently as well
in textured regions as in uniform regions of the test images. For example, the MSE
value computed over a 24x12 area in the mane region (figure 3.10(a)) of the restored
Lenna image obtained by the AN method is 480.1, whereas the MSE value for the
same area in the noisy Lenna image is 571.0. The MSE value computed over the
same area of the restored Lenna image obtained by the 3x3 filter of Kuan et al. is
339.2. The MSE value computed over a 289 area in the sand region (figure 3.10(b))
of the restored Sarah image obtained by the AN method is 112.5; the MSE values
computed over the same area for the noisy and the restored image obtained by 3x3
filter of Kuan et al. are 415.8 and 217.2, respectively.

On the other hand, the MSE value computed over a 19x14 area which contains
two uniform regions with a distinct edge between the regions (figure 3.10(c)) of the
restored Lenna image obtained by the AN method is 154.4. The MSE value for the
same area in the noisy Lenna image is 921.5, and that of the restored Lenna image
obtained by the 3x3 filter of Kuan et al. is 380.7. The same trend was observed in

a few regions containing edges for the Sarah image also.
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Finally, the MSE value computed over a 16x11 area containing a uniform region

with no edges (figure 3.10(d)) of the restored Lenna image obtained by the AN method
is 48.6. The MSE values computed over the same area for the noisy Lenna image
and the restored image obtained by 3x3 filter of Kuan et al. are 1005.1 and 276.9,
respectively. For the Sarah image also, the MSE values computed over rectangular
areas containing uniform regions (with no edges and textures) for the restored image
obtained by the AN method were found to be consistently much lower than the
corresponding MSE values for the restored image obtained by the 3x3 filter by Kuan
et al.

From the above discussion it may be concluded that the AN method works better
than the 3x3 multiplicative filter of Kuan et al. in uniform regions and regions
containing edges, both qualitatively and quantitatively. However, the method may
not always work better than the 3x3 filter of Kuan et al. in textured areas. A
more sophisticated region growing criterion tailored for textured regions may further
improve the performance of the AN filter. Regardless, the MSE computed over the
entire image was consistently the lowest for the AN-restored image in all experiments

conducted in this study.

3.4 Summary

We have proposed a new method for restoring images corrupted by signal-dependent
multiplicative noise. The method is based on applying an adaptive local-statistics-

based filter over adaptive-neighborhoods. The filter has a very simple structure and
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does not require any a priori information about the original image. The noise mean
and variance required may be easily obtained from other data or by other methods.
The method consistently produces better restored images than the 3x3 mean, 3x3
median, ATD LMS, ARW LMS, and ANNS filters, as well the 3x3 multiplicative
noise filter of Kuan et al., in terms of both visual quality and MSE. The AN method
was further applied in a multi-pass procedure, and was observed to provide superior
performance with the least MSE for two synthesized test images and two natural
images. The AN method restores images without blurring edges. The method also
works well for removing noise around edges and other sharp features in the image.
The AN method takes into account the nonstationarities of the given image, and
the success of the method relies on identifying actual regions and objects present in
the image. The method is most suitable for restoring images which are originally
piece-wise stationary.

The AN approach can be successfully applied to obtain a quantitative measurement
of object edge-sharpness and for image enhancement as well, by sharpening the edges

of the objects present in the image. This will be discussed in the following chapters.



Figure 3.1. ANs grown in two test images (outlined in white):

(a) With seed pixel (76, 83) for a synthesized test image of size 128x128, (b) with
seed pixel (58, 73) for the Lenna image of size 256256, (c) with seed pixel (165, 43)
for the Lenna image. ’



Figure 3.2. Overlapping ANs grown in the Lenna image.

36
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(b)

(d)

(e) ()

Figure 3.3. Original, noisy, and restored versions of the first synthesized image:

(a) Original, (b) image with multiplicative noise, (c) image restored by the 3x3 mean
filter, (d) image restored by the ARW LMS method, (e) image restored by the method
of Kuan et al., (f) image restored by the AN method after 4 iterations.



(a) (b)

() (d)

Figure 3.4. Original, noisy, and restored versions of the second synthesized image:
(a) Original, (b) image with multiplicative noise, (c) image restored by the method
of Kuan et al., (d) image restored by the AN method after 1 iteration.
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(a) (b)
(c) (d)
(e) 0

Figure 3.5. Restored images obtained after successive iteration with the AN method
for the image in figure 3.3(b):

(a) after iteration 1, (b) after iteration 2, (c) after iteration 3, (d) after iteration 4,
(e) after iteration 5, and (f) after iteration 6.



Figure 3.6. ANs grown with seed pixel (52, 94) for the original, noisy, and AN-restored
versions of the first synthesized image in figure 3.3:

(a) region grown for the original image, (b) region grown for the noisy image,

(c) region grown for the image after iteration 1, (d) region grown for the image after
iteration 3, (e) region grown for the image after iteration 4, (f) region grown for the
image after iteration 5.
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(2) (b)

(c) (d)

(e) (f)

Figure 3.7. Original, noisy, and restored versions of the Lenna image:

(a) Original, (b) image with multiplicative noise, (c) image restored by the 3x3
median filter, (d) image restored by the ATD LMS method, (e) image restored by the
method of Kuan et al., (f) image restored by the AN method after 3 iterations.



Figure 3.8. ANs grown with seed pixel (153, 135) for the original, noisy, and
AN-restored versions of the Lenna image in figure 3.7:

(2) region grown for the original image, (b) region grown for the noisy image, (c)
region grown for the image after iteration 1, (d) region grown for the image after
iteration 2, (e) region grown for the image after iteration 3.
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(a) (b)

(c) (d)

Figure 3.9. Original, noisy, and restored versions of the Sarah image:
(a) Original, (b) image with multiplicative noise, (c) image restored by the method
of Kuan et al., (d) image restored by the AN method after 2 iterations.



(b)

© | @

Figure 3.10. Rectangular areas for computing MSE in different regions of two natural
images.



MSE values for the
synthesized test images
first image | second image
Noisy image 3285 100.2
Image restored by the 3x3 mean filter 4524 364.9

Images

Image restored by the 3x3 median filter 342.1 251.3
Image restored by the ATD LMS algorithm 321.9 177.0
{| Image restored by the ARW LMS algorithm 369.1 313.3

Image restored by the ANNS algorithm 374.9 95.1
Image restored by the 3x3 filter of Kuan et al. 277.6 61.0
Image restored by the AN method (*) 128.5 34.8

Table 3.1: The MSE values of the noisy and restored versions of the two synthesized
images in figure 3.3 and figure 3.4. (* After 4 iterations for the first image, and 1
iteration for the second image.)

[teration

Table 3.2: The MSE values of restored result after each of the first seven iterations
of the AN method for the first synthesized test image in figure 3.3.
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Images MSE values for the natural images
Lenna image Sarah image
Noisy image 882.8 679.2
Image restored by 396.7 395.8
the 3x3 mean filter
Image restored by 296.9 388.3
the 3x3 median filter
Image restored by 400.7 4144
the ATD LMS algorithm
[ Tmage restored by 876.3 675.2

the ARW LMS algorithm
Image restored by 870.2 671.5
the ANNS algorithm
Image restored by 204.7 470.8
the 3x3 filter of Kuan et al.
Image restored by 219.2 331.7
the AN method (*)

Table 3.3: The MSE values of the noisy and restored versions of the two natural
images in figure 3.7 and figure 3.9. (* After 3 iterations for the Lenna image and 2
iterations for the Sarah image.)
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CHAPTER 4

REGION-BASED IMAGE EDGE PROFILE ACUTANCE

The sharpness of an image is related to the higher-frequency content of the image
and to the edge information in the image. The mean-squared gradient is a reliable
measure of edge sharpness, and has been used in the definition of the “acutance” of
an edge or region of interest (ROI). In this chapter a new method of computing image
edge profile acutance based on the mean-squared gradient along the normals to the

boundary of an ROI is proposed.

4.1 Need for Measures of Image Sharpness

The process of capturing images of objects and scenes usually involves some degra-
dation and loss of quality. The field of digital image processing provides a number of
techniques to improve the quality of digital images by modifying image characteristics
such as sharpness, contrast, dynamic range, and frequency content. However, judging
the degree of improvement in perceptual quality provided by an operation is a rather
difficult task as the quality of an image is a subjective concept dependent on various
image characteristics, viewing coﬁditions, and the visual system of the observer. Con-
sequently, the need for objective correlates of the inherently subjective properties of
image sharpness, crispness, quality, and perceptibility of details has been recognized
for a long time (see Rangayyan and Elkadiki [38] for a review on this topic).

Higgins and Jones [39] discussed evaluation of sharpness of photographic im-
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ages, with particular attention to the importance of gradients. They found that
the maximum gradient or average gradient measures along knife-edge spread func-
tions (KESFs) failed to correlate with sharpness, but that the mean-squared gradient
across the KESFs, called acutance, indicated excellent correlation with subjective
judgement of sharpness.

Wolfe and Eisen [40] stated that the sharpness of an image is a subjective concept
as it is an impression made on the mind of an observer when viewing a picture.
They observed that resolving power and sharpness do not have any psychophysical
relationship, and found that the maximum and average gradients do not correlate
well with the sharpness of the image. They stated that the variation of density across
an edge is an obvious physical measurement to be investigated to obtain an objective
correlate of sharpness.

Perrin [41] took the mean-square gradient measurement over many sections of the
KESF, normalized the measured values with respect to the density difference across
the knife edge, and called it acutance.

Crane [42] discussed the need for objective correlates of the subjective property of
image sharpness or crispness; he remarked that resolving power is misleading, that
the averaged squared gradient of edge profiles is dependable but cannot include the
effects of all components in a photographic system (camera to viewer), and that spread
functions and modulation transfer functions (MTFs) are not easy to comprehend,
compare, or tabulate. He proposed a single numerical rating based on the areas

under the MTF curves of all the systems in the chain from the camera to the viewer
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called “system modulation transfer or SMT acutance” (SMTA). Later, Gendron [43]

proposed a “cascaded modulation transfer or CMT” measure of acutance (CMTA) to
rectify some deficiencies in SMTA. CMTA was used by Kriss to compare sharpness
of imaging systems [44].

Higgins discussed various methods for analyzing photographic systems, including
the effects of nonlinearity, line spread functions (LSFs), MTF's, granularity, and sharp-
ness [45]. He also discussed quality criteria as related to objective or subjective tone
reproduction, sharpness, and graininess, and recommended that MTF-based acutance
measures are good when no graininess is present; signal-to-noise ratio (SNR) based
measures were found to be better otherwise [46].

The concept of image sharpness or acutance has the potential to serve as a local
measure of image quality or the perceptibility of a region or feature of interest. This
has immense application in various fields, such as medical imaging, where one may
obtain an array of images of the same patient (or phantom) using different imaging
systems. The radiologist or medical physicist would be interested in evaluating which
system or set of parameters provides an image of a specific object, such as a tumor,
that can be perceived most accurately. Consequently, intensive research has been
directed towards finding a quantitative measure of sharpness of an object or region

of interest (ROI) (see Rangayyan and Elkadiki [38] for a review).



4.2 Methods for Computation of Edge Profile Acutance
The acutance measure A, proposed by Higgins and Jones [39] is given by the

formula

.
4=l (&) =

where f(z) is a section across the edge image (or KESF), and a and b are the edge
start and end points, respectively. (b— a) is related to the resolution of the edge, and
[£(®) — f(a)] is related to the contrast of the edge (see Hall [47]).

Rangayyan and Elkadiki [38] proposed a measure of mean-squared gradient com-
puted across and around the contour of an ROI and called it “a region-based measure
of image edge profile acutance (IEPA)”. They used a region growing method (Mor-
row et al. [35]) for finding the boundary of the region. The method starts with a
seed pixel within the ROI. A region is grown by aggregating 4-connected pixels which

meet a pre-specified tolerance ¢t about the seed pixel’s gray level, defined as

where p(i,7) is the gray level of the seed pixel and p(k,l) is the gray level at a
connected pixel (k,l). The region growing process stops when no 4-connected pixel
within the specified gray level tolerance can be found. When the region growing
process is completed, the outermost layer of pixels of the region gives the region’s
external boundary.

Once the boundary is identified, the next task is to find the normals at all posi-

tions on the boundary. Rangayyan and Elkadiki [38] suggested consideration of three
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boundary pixels at a time - the current, next, and previous — to find the normal to
the boundary at the current pixel. The algorithm selects a set of nine pixels that
approximate the normal at each pixel on the boundary by comparing the relative
positions of the three boundary pixels selected.

A new method to determine the normals has been suggested by El-Faramawy et al.
[48]. Instead of taking only three pixels on the boundary at a time to approximate the
normals, they fitted a polygon to the ROI boundary, with the number of sides being
dependent upon the ROI shape complexity. A linear equation is then available for
each of the sides of the polygon, from which the equation for the normal to each side
can be found easily. Using the equations of the normals, the pixels along the normals
at each boundary pixel can be obtained. The details of the polygonal approximation
method are provided in a paper by Ventura and Chen {49].

Rangayyan and Elkadiki [38] used four foreground pixels inside the region and four
background pixels outside the region to define the normal. In the modified version
proposed by El-Faramawy et al. [48], the number of pixels taken along each normal is
variable, taking into consideration edge thickness and the available number of normal
pixels. The edge pixel itself is not used in the computation. The following equation
is then used to calculate the gradient at the boundary point under consideration
(indexed j):

) =5 3 L0220, «3)
where N is the number of pixels taken along the normal, and f(i) and b(i) are the

foreground and background pixels, respectively (see figure 4.1 for details on the index
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i).

The procedure is repeated at all edge pixels (i.e. all pixels on the boundary of the
ROI). After all the normal derivatives are calculated, the root mean squared (RMS)
gradient is calculated over all pixels on the ROI boundary. The RMS value is then
normalized by the maximum possible RMS derivative. The expression for IEPA is
given by .

A= [i > m’(j)] 2, (44

i |BZ

where A is the IEPA, m(j) is the averaged derivative at a particular boundary pixel
7, B is the number of boundary pixels, and dpm,. is the maximum possible averaged
derivative. In the paper by Rangayyan and Elkadiki [38], dmsr Was calculated to be
132.8125, assuming 8-bit digitization. In the modification suggested by El-Faramawy
et al. [48], the value of d,,, varies, depending upon the number of points taken along
each normal. Acutance is 2 dimensionless quantity.

Olabarriaga and Rangayyan [50] explored the effectiveness of the IEPA measure
in analyzing relative sharpness of different images affected by blur and noise. They
obtained the subjective ranking of a set of test images and compared the results with

the ranking according to the acutance values of the images. They found that trends

of IEPA agree well with subjective ranking of sharpness of an ROI.

4.3 Continuous-gradient-based Image Edge Profile Acutance
In this section, a modification to the formula for computing the gradient across

the edge pixel is suggested. The computation of acutance from the gradients is also
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modified. The gradient is computed continuously instead of being computed using
differences between corresponding pixels across the edge [38, 48].

For an image with digitized, finite pixels, a continuous derivative operation cannot
be performed in the true sense — the normalized difference value between adjacent
pixels can be calculated only as an approximation to the continuous derivative. The
difference is normalized in order to take into account the varying distance between two
adjacent pixels. In an 8-connected neighborhood, the four pixels at the corners are
/2 distance units apart from the central pixel under consideration; the corresponding
distance to the other four neighboring pixels is one unit. The gradient or derivative

at the pixel 7 is computed as

_ n) —ni+1)

dist,- ? (4.5)

d;

where d; is the derivative at the i’th pixel, and n(3), t = 1,2, ..., N, are the foreground
and background pixels along the normal indexed successively (see figure 4.1). dist; is
the distance between the i’th and (i + 1)’th pixel, which is either 1 or v/2 as discussed
earlier.

After the gradient is calculated, the local acutance at the j’th boundary pixel is

computed as
N-1

2 dl'za (4'6)

=1

1

A = |0 < (W)

where n(N) and n(1) are the pixel values of the N’th and the first pixel along the
normal. The edge pixel is used in the computation, contrary to the previous methods

[38, 48].
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The local acutance value is then normalized by the maximum possible acutance
value at point j, which is

N-1

Amcz,' = z 25521 (4'7)
=1

for 8-bit quantization.

A; in equation (4.6) is maximum when the numerator is maximum and the de-
nominator is minimum. The numerator is maximum when each pair of pixels has
unit distance and a pixel value difference of 255. It is assumed that the background
of an object does not include another object, and that the denominator can have a
minimum value of 1.

Equations (4.6) and (4.7) are applied at all edge pixels. After all normalized local
acutance values have been calculated, the final acutance is computed by averaging

the normalized local acutance values over all pixels on the boundary as

1{& A;
A= — i-], 4.8
B[,.;A,,,,,,] (48)

where A is the final acutance value and B is the number of pixels on the boundary.
Acutance A above is a dimensionless quantity similar to the one defined by Higgins
and Jones [39].

The most important difference between the proposed algorithm and the previous
algorithms [38, 48] is in the definition of the gradient. According to the original
definition given by Higgins and Jones [39], acutance or edge sharpness is related to
the mean-squared gradient of the edge. The algorithms of Rangayyan and Elkadiki

[38] and El-Faramawy et al. [48] used the RMS value of averaged differences.
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Secondly, the previous method of taking the differences between corresponding
pixels across the edge is dependent on the knowledge of the exact position of the
edge pixels. The exact position of edge pixels cannot be determined for most natural
images. In real situations one can identify only a region containing the edge instead
of finding the exact edge-pixel. Approximating the derivative by taking differences
across the edge pixel is arbitrary as well. Theoretically, the gradient at any point
of a discrete function is approximated by the normalized difference with respect to
the previous point. The edge function of a digital image is a discrete function and
hence the gradient of the edge should be calculated using the method described in
the proposed algorithm based on differences between successive pixels. The method
proposed in this section is independent of the knowledge of the exact edge pixel.
Therefore the proposed algorithm can be taken as the formal definition of acutance
for digital images as it agrees with the original definition of acutance given by Higgins

and Jones [39].

4.4 Evaluation with Test Images

The modified algorithm was evaluated with two test images (used by Rangayyan
and Elkadiki [38]). The first image is an image of the letter R (figure 4.2(a)) which was
produced by digitizing a printout of the letter R to a 256 x256 array with 256 gray
levels. The R image was corrupted by adding uniformly-distributed random noise
in the range of +50 to —50 (figure 4.2(b)) and blurred using a 3x3 mean lowpass

filter. Figures 4.2(c) and 4.2(d) show the blurred versions of the R image after one
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pass and four pass of the mean lowpass filter, respectively. The original R image
was converted to a bi-level (gray values 0 and 255) image (figure 4.2(e)) to find the
maximum achievable acutance by the proposed method.

The second test image is a dragonfly image (figure 4.3(a)) which was obtained by
digitizing a natural image. The image is a 256 x256 image with gray levels varying
from 0 to 255. The image was corrupted by adding uniformly-distributed noise in
the range of +50 to —350 (figure 4.3(b)). Blurred versions of the image were acquired
by adjusting the focus of the digitizing camera. Figures 4.3(c) and 4.3(d) show the
blurred dragonfly images with level 1 and level 2 blurring, respectively. The origi-
nal and blurred dragonfly images were enhanced by the 3x3 subtracting Laplacian
operator [34] to verify if acutance values are higher for the enhanced images. All
the processed and unprocessed versions of the image were histogram equalized to
permit direct comparison. Figure 4.3(e) shows the original image after histogram
equalization, and figure 4.3(f) shows the original image after subtracting Laplacian
and histogram equalization operations.

For the sake of consistency, the same ROI boundary derived from the original im-
age was used for computing acutance for all the versions of each test image. Tables
4.1 and 4.2 list the acutance values for the test images using the method by Ran-
gayyan and Elkadiki (38], the method by El-Faramawy et al. [48], and the method
described in the previous section. From the results in the tables, it is seen that the
acutance values computed by the proposed modified algorithm lie in a different range,

but follow the same trend for different versions of the test images as exhibited by the
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acutance values obtained by the other two methods: acutance decreases as sharp-
ness decreases (with increased blurring). Histogram equalized images have increased
acutance values, with the versions after subtracting Laplacian and histogram equal-
ization operations having larger acutance values than the original and the one after
histogram equalization alone. The modified method, however, is more sensitive to
noise, and acutance increases slightly with the addition of noise.

The magnitude of the acutance computed by the proposed method is small, which
may be due to the over-restrictive nature of the maximum value used for normaliza-
tion. The algorithm takes the maximum pixel value difference between two adjacent
pixels as 255 (assuming 8-bit digitization). However, within an ROI, the differences
between two adjacent pixels both belonging to the ROI (and quite likely the back-
ground as well) cannot be 255 because of the way the pixels are aggregated to form
the ROI. The maximum value of acutance, which occurs for a bi-level ROI, is thus

far less than 1.

4.5 Summary

We have proposed a modified method for computing the acutance of an ROI:
the proposed algorithm is an extension of the work by Rangayyan and Elkadiki [38]
and El-Faramawy et al. [48]. The method uses the conventional difference operator
instead of a variable-step difference operator. The proposed algorithm can be taken as
the discrete version of the original mean squared gradient definition of acutance as a

continuous integral of the edge spread derivative proposed by Higgins and Jones [39].
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The validity of the algorithm is demonstrated by the fact that the measure decreases

with blurring and increases with sharpening. Further tests need to be conducted
in order to establish the relation between the acutance values proposed by the new
method and subjective ranking [50].

IEPA gives a quantitative measurement of the gradients across boundaries of an
ROI, which is very important for visual perception. Given the improved definition of
IEPA in this chapter, image enhancement algorithms can be designed specifically to
increase IEPA and hence improve the perceptibility of an ROI. In the next chapter,
we will propose 1D enhancement operators for application along the normals of an

ROI to improve edge sharpness, acutance, and hence perceptibility.



59

Discontinuous indexing

Continuous indexing of

pixels on normal line #1

Polygonal approximation of the
boundary of the ROI

1

[ 2

|- background
fi-1.

[

[ 541

|.

| M (boundary pixel)
|.

fi1

| i

[ i+1

[ foreground
[ N-1

N

of normal pixels across

the boundary pixel

Figure 4.1. Indexing of normal pixels inside and outside an ROI.
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Figure 4.2. Original, noisy, blurred, and bi-level versions of the R image:
(a) Original, (b) image with noise, (c) image blurred by one pass of the 3x3 mean
filter, (d) image blurred by four passes of the 3x3 mean filter, (e) bi-level image.
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Figure 4.3. Original, noisy, blurred and enhanced versions of the dragonfly image:
(a) Original, (b) image with noise, (c) image with level 1 blurring by lens misfocus,
(d) image with level 2 blurring by lens misfocus, (e) original image after histogram
equalization, (f) original image after subtracting Laplacian and histogram equaliza-
tion operations.
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Images IEP acutance values by -
the method by | the method by | the proposed
Rangayyan and | El-Faramawy method
Elkadiki et al. (x 100)
Original R 0.410 0.587 0.205
Original + noise 0.395 0.562 0.232
Blurred once 0.373 0.581 0.182
Blurred twice 0.339 0.442 0.168 i
Blurred thrice 0.313 0.375 0.158 ﬂ
Blurred four times 0.278 0.245 0.152
bi-level 1.000 1.000 0.443

Table 4.1: Image edge profile (IEP) acutance values of the original, noisy, blurred,
and bi-level versions of the R image obtained by using the method by Rangayyan and
Elkadiki, the method by El-Faramawy et al., and the proposed method.
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Images IEP acutance values by
the method by | the method by | the proposed
Rangayyan and | El-Faramawy method

H Elkadiki et al. (x 100)
Original dragonfly 0.331 0.462 0.362
Original + noise 0.311 0.452 0.365
Blur level one 0.271 0.431 0.213
Blur level two 0.213 0.438 0.195
Original histogram 0.415 0.654 0.682
equalized
Original after subtracting 0.485 0.650 0.726
Laplacian and histogram
equalization
Blur level one histogram 0.357 0.488 0.320

| equalized
Blur level one after sub- 0.397 0.522 0.591
tracting Laplacian and
histogram equalization
Blur level two histogram 0.294 0.414 0.275
equalized
Blur level two after sub- 0.313 0.507 0.516
tracting Laplacian and
histogram equalization

Table 4.2: Image edge profile acutance values of the original, noisy, blurred, and
enhanced versions of the dragonfly image obtained by using the method by Rangayyan
and Elkadiki, the method by El-Faramawy et al., and the proposed method.



CHAPTER 5

REGION-BASED EDGE ENHANCEMENT

As acutance is correlated with image sharpness (Olabarriaga and Rangayyan [50]),
one possible approach to image enhancement is to apply enhancement techniques in
such a way as to increase the acutance of the ROL Then, we may expect the perceived
sharpness of the ROI to be increased as a result. A new image sharpening method
designed on the basis of acutance is proposed in this chapter. In this method, one-
dimensional operators are applied to sets of pixels along the normals at each boundary

pixel of an ROIL.

5.1 Edge Enhancement

As discussed in the previous chapter, the concept of edge sharpness of an image
is particularly important in the visual perception of an image. Grossberg [51] stated
that an important early stage of human vision involves the calculation of an edge
map. He also proposed that the perception of brightness is controlled by a diffusion
process in which the perceived contrast of the edges acts as an insulation strength
that partially blocks the diffusion. Attenave (52] proposed that human beings are
able to recognize objects starting from a very crude outline, and that edge detection
may be the most important method of feature extraction in low-level vision.

The psychophysical importance of edge sharpness reflects itself in recent adaptive

image contrast enhancement techniques. Some of the current adaptive contrast en-
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hancement techniques have been developed with a view to take explicit account of
local image structures (Morrow et al. [35]). Perona and Malik [54], working in the
context of edge detection and the theory of scale-space anisotropic diffusion, devel-
oped a way of producing truly variable contextual regions for contrast enhancement in
a manner very much like the description of the human visual system given by Gross-
berg [52]. Beghdadi and Le Negrate [55] used a modified contrast definition based on
the detection of edges within contextual regions. Cromartie and Pizer [56] discussed
the importance of edges in contrast perception and outlined the development of two
adaptive contrast enhancement methods which take into account edge information in
the image.

Many methods are available to increase edge sharpness; they may be classified
into two broad categories: fixed-neighborhood methods such as subtracting Laplacian
and unsharp masking (see Gonzalez and Woods [34]), and adaptive image sharpening
methods. Some of the adaptive image sharpening and edge enhancement methods
are reviewed below.

Marr [57] and Hildreth [58] relied on the knowledge that the human visual system
uses edge detection techniques in the early stages of visual processing. They tried
to understand and model this process, and on the basis of neurophysical studies de-
veloped a computational model for edge detection. Van Vliet et al. [59] developed
an adaptive edge detection method based upon the detection of zero crossings in the
output image of a nonlinear Laplacian filter adaptively oriented to the direction of

the local gradient. Moron [60] presented a gradient-determined gray level morpho-
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logical opening procedure for edge enhancement. Saint-Marc et al. [61] proposed

a nonlinear filtering method for discontinuity-preserving smoothing; their methods
were able to achieve edge sharpening after a few iterations. However, as the method
was not primarily designed for sharpening the image, the enhancement achieved was
not prominent.

In section 5.2 we will discuss a region-based method for edge enhancement of bi-
level images. Though the method is intended to increase the edge-sharpness in bi-level

images, the concept can be extended to sharpen gray level images.

5.2 Region-based Edge Enhancement

As acutance is related to the sharpness of the image, the image could be enhanced
by using operators which increase the acutance of the ROI. Acutance is calculated
using pixels along the normal at each boundary point. The proposed enhancement
algorithm applies 1D operators on the normal pixels. The operators are derived using
the following process.

When an image is blurred, the gradient of the edge is decreased, which is confirmed
by a reduced acutance value. The gradient of the edge becomes lower as the differences
between the values of pixels belonging to the foreground (object) and the background
become smaller. This implies that the values of the background (or the foreground)
pixels get farther from the average background (or the average foreground) value.

The gradient value of a blurred edge may be increased by processing the edge pixels

so that they become closer to the foreground (or the background) value. There are
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two difficulties associated with this approach: The first difficuity lies in identifying
the edge pixels; in real images, the edge pixels are not defined well. The second
difficulty is that a priori knowledge of the image is not available in most cases, and
hence it may not be possible to ascertain the amount by which the pixel values need
to be changed. The proposed algorithm reduces the gray level differences between
the edge pixels and the foreground (or the background) pixels without assuming any
prior knowledge of the edge pixels or their values before blurring, as follows.

The normal pixels at each boundary point are found by the method proposed by
El-Faramawy et al. [48] and summarized in chapter 4. The enhancement algorithm
starts with the farthest normal pixel in the background and proceeds towards the
ROI boundary along the normal, while applying an operator such that the processed

normal pixel values get closer to the background value. The 1D operator used is
n’(j) = 2n(j - 1) - n(j + 1)a J = 2’ 31 eeey Mv (5’1)

where n is the normal pixel array, j is the index of the pixel under consideration,
and M is the index of the boundary pixel in the normal array (see figure 4.1). The
operator in equation (5.1) applies more weight to the pixel closer to the background
than to that closer to the boundary. The changed pixel value is successively used for
processing subsequent pixels.

The operator is applied along the normal pixels at each ROI boundary pixel. Some
pixels may be selected for processing more than once. There are two approaches to

consider regarding multiple processing of a normal pixel. The first approach is to allow
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several modifications to the same pixel and then to take the average of the processed

values. The second approach is to process each pixel only once by using flags. We
observed in our experiments that the second approach provides better performance
than the first.

A problem associated with the operator in equation (5.1) is that false contours
may appear in the processed image. As the operator is a 1D operator, it processes
a pixel on the basis of its two neighbors only, instead of the 2D 4-connected or 8-
connected neighborhood. As a result, the value of the processed pixel may change
drastically after processing when compared to the unchanged neighborhood, resulting
in false contours. To prevent this problem we add a restriction such that the difference
between a pixel value before and after processing is less than a threshold value. If the
processed pixel value changes by more than the threshold, then the algorithm retains
the original value of the pixel and does not mark it as “processed”, and the pixel is
available for further processing. The value of the threshold is determined by trial and
error.

The algorithm compares the relation between the j’th and the (5 — 1)’th pixel
before and after processing. If the value of the j’th pixel was less (more) than the
value of the (7 —1)’th pixel before processing but becomes more (less) after processing,
then the algorithm retains the original value of the pixel. The pixel is not marked as
processed, and is available for further processing.

For processing normal pixels belonging to the foreground, the algorithm is the

same as for processing the background pixels; however, the sense of differentiation
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along of the normal array is in the opposite direction (see figure 4.1). The operator

used for processing the foreground pixels is
n(G)=2m(G+1)—n(j—1,i=N-LN =2, M+1, (5.2)

where N is the number of pixels in the normal array and M is the boundary pixel
index.

The operator in equation (5.2) applies more weight to the pixel which is closer
to the foreground or ROI center than to the other pixel used in the differentiation
operation. For maintaining the mutual relationship between neighboring pixels, the

algorithm compares the j’th pixel with the (7 + 1)’th pixel.

5.3 Results

The image enhancement algorithm was tested on two synthesized images. The first
image is a 256x256 synthesized image containing a uniform square of size 90x90 and
gray level 128 on a uniform background of gray level 255 (figure 5.1(a)). The second
image is a 512x512 bi-level image with various objects in the form of rectangles,
circles, and triangles. The gray level value of the objects was 0, with the background
being a constant of 255. The various objects were allowed to intersect, with the gray
level of the intersection being 0. Each region is thus uniform (i.e. the second test
image is piece-wise constant). Figure 5.2(a) shows the second test image. Both the
images were blurred once by applying a 7x7 mean filter; the corresponding images
are shown in figures 5.1(b) and 5.2(b), respectively.

The first test image was sharpened by 3x3 subtracting Laplacian, 3x3 unsharp
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masking, and the proposed method. The pixel values in the processed images were

linearly mapped to the range 0-255 for display. The conventional spatial domain
sharpening operators (the subtracting Laplacian operator and the unsharp masking
operator) did not produce any significant improvement in the images; further, they
produced noticeable edge artifacts in the processed images. The different images in
figure 5.1 illustrate the enhancement achieved by the proposed method and also by
the conventional sharpening operators. Edge profiles for the original, blurred, and
the processed images are shown in figure 5.3. The profiles confirm that the proposed
method sharpens the image more than the conventional methods, and further that
the edge artifact produced by the 3x3 operators is absent in the result of the proposed
method.

The acutance values (computed by the proposed method described in chapter 4) of
the original, blurred, and processed versions of the square image are listed in table 5.1.
From the table it can be observed that the subtracting Laplacian operator increases
the acutance value of the blurred image. The increase in acutance value due to the
unsharp masking operator is less than that produced by the subtracting Laplacian
operator. The proposed enhancement algorithm increases the acutance value by the
largest extent.

The second test image was sharpened by applying the subtracting Laplacian opera-
tor and the proposed method to each of the five objects in the image. The subtracting
Laplacian operator produced edge artifacts and did not produce good enhancement.

On the other hand, the image was sharpened considerably by the proposed method.
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Figure 5.2 shows the different versions of the second test image, and figure 5.4 shows
representative edge profiles of one of the objects in the images in figure 5.2. The pro-
files show that the proposed method increases sharpness more than the subtracting
Laplacian operator. However, figure 5.2(d) shows that some artifacts appear at the
corners of the objects. Note also that the circular region has been sharpened to a
lesser extent than the other regions.

The acutance values of the five regions in the four images in figure 5.2 are listed
in table 5.2. The blurred regions have much less acutance values compared to their
original values. The acutance values are slightly increased by the subtracting Lapla-
cian. The proposed method increases the acutance values by a larger factor than the

subtracting Laplacian.

5.4 Summary

We have suggested a method for increasing the sharpness of an image on the
basis of its acutance property. The method has shown much better performance
than conventional spatial operators (such as 3x3 subtracting Laplacian and unsharp
masking operators) and frequency domain sharpening operators (e.g. Butterworth
high-emphasis filter; results not shown here) when applied to test images. The pro-
posed method has achieved the main objective of the work — that of enhancing edge
sharpness without artifacts such as overshoot and undershoot (ringing).

Initial tests of the methods, as reported here, have been limited to bi-level, synthe-

sized images. Thresholding the blurred image could be an effective way to remove the
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effects of blurring in bi-level images. However, while thresholding restores the sharp-
ness of the image, edges are often displaced in the enhanced image. The proposed
enhancement algorithm maintains edges in almost the same positions as in the origi-
nal image. Restoration filters such as the Wiener filter [34] require exact knowledge
of the blurﬁng function. The proposed method, on the other hand, works without
any a priori knowledge of the blurring function or the original image.

The proposed method has some minor limitations as mentioned earlier. The prob-
lem of corner artifacts is due to difficulties in finding the normal pixels at corners.
The boundary of a circular ROI cannot be very well approximated by a finite number
of linear segments; thus the degree of enhancement is less for a circular ROI. These

limitations need to be addressed in future work.



(2) (b)

(e)

Figure 5.1. Original, blurred, and sharpened versions of the first test image:
(a) original, (b) blurred, (c) enhanced by subtracting Laplacian, (d) enhanced
by unsharp masking, (e) enhanced by the proposed method.



(a) (b)

Figure 5.2. Original, blurred, and sharpened versions of the second test image:
(a) original, (b) blurred, (c) enhanced by subtracting Laplacian, (d) enhanced
by the proposed method.
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Acutance times 100

Enhanced by subtracting Laplacian
Enhanced by unsharp masking
Enhanced by the proposed method

Table 5.1: Acutance values for the different versions of the synthesized square image
in figure 5.1.

=Region - Acutance times 100 I]

q Original image | Blurred image | Sharpened by | Sharpened by
subtracting | the proposed

Laplacian method
1 0.59 0.34 0.40 0.46
2 0.56 0.22 0.23 0.36
3 0.71 0.32 0.45 0.50
4 0.75 0.28 0.34 0.46
5 0.04 0.37 0.47

Table 5.2: Acutance values for the different versions of the synthesized test image in
figure 5.2.
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CHAPTER 6

CONCLUDING REMARKS

6.1 Summary

This thesis evaluated adaptive-neighborhood or region-based image processing
techniques. The techniques dealt with two different image processing problems: im-
age restoration in the presence of multiplicative noise, and analysis and enhancement

of edge-sharpness of objects present in an image.

6.1.1 Image Restoration

The discussion on image restoration started with a general review of selected exist-
ing noise filtering techniques. The filtering methods were categorized as local versus
global methods and fixed versus adaptive methods. Four noise filtering methods were
discussed in detail in chapter 2. The first three (the ATD LMS filter, the ARW LMS
filter, and the ANNS filter) are adaptive filtering methods but designed to restore
images with signal-independent additive Gaussian noise; these methods do not work
well in the presence of signal-dependent multiplicative noise. The fourth method (the
3x3 multiplicative noise filter of Kuan et al.) is a fixed-neighborhood multiplicative
filter which worked reasonably well in restoring images degraded by multiplicative
noise.

In chapter 3, an AN filter for removing multiplicative noise was presented. Appli-
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cation of the methods on the test images showed that fixed-neighborhood methods, as
a result of lack of accommodation of nonstationary image statistics, often smooth the
high-frequency information in the noisy image. The AN method, on the other hand,
provides better approximation of local stationarity, better estimation of the signal and
noise statistics, and hence improves noise reduction without blurring object edges. It
was shown that repeated application of the AN method further improves the given
image. It was also shown that the method works better as the ANs grown match
more closely with the actual objects present in the image. The AN multiplicative
noise filter was shown to produce better images than the other methods discussed
(the mean and median filters, the ATD LMS filter, the ARW LMS filter, the ANNS
filter, and the 3x3 multiplicative noise filter) in terms of both visual quality and

MSE.

6.1.2 Edge Sharpness

In chapter 4, the focus was shifted to the measurement of edge sharpness. The need
for a quantitative measure of edge sharpness was discussed first. Then, established
methods of computing measures of edge sharpness or acutance were presented. The
methods of Rangayyan and Elkadiki and El-faramawy et al. for computing acutance
(IEPA) were discussed in detail. A modified formula for computing the IEPA was
presented: the proposed method computes acutance on the basis of the continuous
gradient along the normals to the ROI boundary pixels, instead of approximating the

gradients by differences between corresponding pixels across the edge. The acutance
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value computed by the method increases with increase in sharpness of the image and
decreases with blurring.

Chapter 5 presented a region-based edge enhancement algorithm which aims at
increasing IEPA, and hence at improving the edge sharpness of each object present
in the image. At the beginning of the chapter, the importance of edge sharpness
was reviewed again and the influence of the concept of edge sharpness on recent
image processing techniques was discussed. A review of some fixed and adaptive edge
sharpening methods for gray level images was presented. A method for improving edge
sharpness in images of bi-level objects was proposed. In this method 1D operators
are applied on the normal pixels at each boundary point of each object in the image.
The operators are designed such that the differences between the foreground and the
background pixels are increased, and hence the edges get sharper.

The proposed method sharpens the image by sharpening each object of the image
separately instead of sharpening the image as a whole as is the case with most of
the existing image sharpening algorithms. The method does not assume any a priori
knowledge of the degraded image. The method was applied to increase the edge
sharpness of bi-level images and it was shown that the method worked significantly
better than conventional fixed-neighborhood sharpening methods; the observation

was supported by increased acutance values of the enhanced regions.
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6.2 Suggestions for Future Work

Although very good results have been obtained in this work in image restoration
and edge enhancement, there are many areas which are open to further improvement.
The ideas presented in this thesis may be extended and applied in many other existing
image restoration and image enhancement problems.

The concept of the AN filter for restoring images with multiplicative noise can
be extended to filter Poisson noise in nuclear medicine imaging and other types of
signal-dependent noise. Further investigation is warranted towards developing more
sophisticated region growing methods suited to different image and noise character-
istics. Inclusion of a deblurring step to take into account shift-variant point spread
functions would be the next logical, but more challenging, step.

For the continuous-gradient-based IEPA measurement, there are two limitations
which can be examined in future research. The method is sensitive to noise as acu-
tance increases slightly with the addition of noise. Also, the maximum value of
acutance computed by the method, which occurs for a bi-level ROI, is less than 1.

For the method of region-based edge enhancement, more accurate algorithms for
finding the normal pixels at sharp corners of ROIs and to the boundary of circular
ROIs should be designed. The present method concentrates on improving edge sharp-
ness only. In future work, the possibilities of enhancing or sharpening the interior
details of regions with gray level variations by suitable modification of the present al-
gorithm need to be explored. The effectiveness of the algorithm in enhancing natural

and medical images should also be tested.
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