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ABSTRACT 

Image restoration achieved by 3 x 3  filtets may not be ef€èctive as they do not take 

the nonstationary nature of the image into account. We preeent a new adaptive- 

neighborhood noise filtering technique for restoring images with multiplicative noise. 

When eduated by mean-squared error, the adaptive-neighborhood algorithm p m  

duceci superior recovery of images degradecl by multiplicative noise. 

A new method is proposed of computing image edge profile amtance based on 

the mean-squared gradient dong the nomais to the boundary of a region of interest 

(ROI). The acutance algorithm has been tested on different test images, and the 

resuiting values have been found to date  well to the perceived sharpness of the image. 

Image enhancement techniques are then p r o p d  b d  on the idea of increasing the 

acutance of an ROI- The enhancement method has been tested with dXerent blmed 

test images, and has been found to increase their shqness as weli as the objective 

measure of acutance. 
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CHAPTER 1 

INTRODUCTION 

1.1 Classical Image Processing Techniques 

Most images s d e r  degradation during their formation or tecotding due to the use 

of imperfect sensors. Image degradation can be dasifieci in two categories: blur and 

noise. In geneml, a degraded image is modeled as the original image convolveci wïth 

a point spread function plus white noise. Image pmcessing techniques are applied to 

degraded images to make them more suitable than the original image for a speciiic 

application. The established image processing techniques can be broadly daesifid in 

the following categories. 

1.1.1 Locai versus Global Image Pmcessing Techniques 

Early attempts to restore noisy images tteated the image as a homogeneous =dom 

field and used linear global filters for restoration. Global filters can be designed in 

bot h the spatial and the frequency domains, and efnciently implemented in a recussive 

way. Howevet, common global restoration filtes essentidy operate as global low- 

p a s  filters. Thetefore, images may be smoothed excessively by these filters, which 

is especially apparent near edges or at locations of high-frequency information in the 

image. The human visud system is very sensitive to edges, and hence globd methods 

tend to produce sub ject ively poor result S. 

In general, an image is an inhomogeneous random field, and hence it cannot be 

properly represented by a homogeneous model. Recently, better algorithms for image 

restoration have been developed by s~suming that images are locaily stationary. This 



2 

means that the local power spectral density (PSD) changes gradudy as a s m d  

window is moved over the image. A nurnber of experiments by different researchers 

have shown that the approach based on local station- of the image is a signiûcant 

improvement over the assumption of global stationarity. In most practical image 

restoration applications, the restoring filter window is relatively s m d  wmpand to 

the size of the image. If the image is locally stationary in regions covering at least the 

spatial extent of the filter window, then the adsumption of stationarity is rea~onably 

well justifid; consequently, significantly better restored images can be obtained. 

1.1.2 Fixed versus Adaptive Image Processing Techniques 

Image restoration dgorithms can also be classifiet3 as fked and adaptive image 

restoration techniques. Fived methoàs were cornmon in the eady periods of image 

processing, and were designed under the assumption of global stationarity. In fixed 

methods, the coefficients of the filter as  weil as the size and shape of the region of 

support (or application) of the filter remain fixed over the entire image. As the fixed 

filters do not adapt to changing image characteristia, they tend to smooth the image 

in order to reduce noise, and thereby blur edges and structued features. To overcome 

this limitation, a number of adaptive filtering techniques have ben proposed. In some 

adaptive filtes, the region of support remains fixed but the filter cafficient values 

change depending on image characteristics; in some others, the size and shape of the 

neighborhood over which the filter cafncients are dculated are véuied depending 

on local image characteristics. Adaptive filtering techniques are more cornplex than 

fixed techniques and take more computing t h e  to testore images. The h i t e  duration 

taken by adaptive filters to respond to new image characteristia may affkct the filter 

performance in transition areas of the image. However, adaptive filtering methods 

take l o d  stationarity of images into account, and the restored images are better as 



object edges and 0th- sharp features do not get blurted. 

1.2 Scope of the Thesis 

This thesis presents various daptive image restoration and image enhancement 

techniques where local image characteristics dynaLaically conhl the dgorïthms. Ln 

particuiar, the thesis concentrates on adaptive-neighborhood (AN) image p-hg 

techniques which proces images using adaptive regions that correspond to areas of the 

image where relative pixel py-Ievel differences lie within specined lMits of to1erance. 

The ANS tend to be uniform and tend not to include hi&-frequency information such 

as edges. An AN is also d e d  a region. 

The main part of the thesis is centered around new AN techniques for image 

restoration and edge enhancement. In image restoration this thesis desls with only 

signkiaependent multiplicative noise; however, the concept can be extendeci to other 

types of signal-dependent noise such as Poisson noise and film-grain noise. For the 

edge enhancement part, the thesis presents a method for region-based quantitative 

rneasurement of edge sharpness and a new region-based method for improving the edge 

sharpness of bi-level images. It is shown in the thesis that AN-based image processing 

techniques work bet ter than those based on fixed-neighborhood techniques. 

1.3 Thesis Organization 

This thesis is presented in six chapters. Chapter 2 reviews Metent noise filtering 

techniques, and gives a detded review of some of the principal filtering techniques. 

The general principles of noise filtering are discussed h t ,  both for signal-independent 

noise and signai-dependent noise. A comparative discussion on local versus global 

filtering methods, and fixeci versus adaptive image restoration methods is presented. 

Four principal noise restoration Htes are discussed in detail, followed by a summary 
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of the methods. 

Chapter 3 presents the proposed AN filter for restoring images 4 t h  multiplicative 

noise. The concept of AN processing and the method for hding ANS are describeci. 

The stmcture of the noise filter is presented and discussed. Besults of application 

of the AN multiplicative noise filter are shown, and a comparative andysis (both 

qualitative and quantitative) 6 t h  the methods d i s d  in diapter 2 is provided. 

Chapta 4 starts the second part of the thais which deah with the region-based 

image enhancement methodology. The chapter starts with reviews on the need for 

measutes of image sharpness and algorithrns for computing object edge sharpness. 

A new method for computing a region-based quantitative measure of object edge 

sharpness is presented. The method is a modification of an existing aigorithm for 

computing image edge profile amtance. The validity of the algorithm is demonstrated 

by experimentd redts. 

Chapter 5 presents a new method for enhancing object edge sharpness based on 

the amtance property of an image. The method is merent h m  the other methods 

discussed in the thesis that ded with image sharpening in that it does not work on 

a global basis to enhance the image. Instead, the method sharpens the image by 

enhancing the edge of each individual object present in the image. The fiad part of 

this chapter presents a discussion on experimental results and the comparative merits 

and demerits of the new technique. 

Chapter 6, the final chapter, gives a summarizing discussion on the noise filtering 

and edge enhancement techniques presented in the thesis and provides suggestions 

for future work. 



CHAPTER 2 

NOISE FILTERING 

2.1 Principles of Noise Filtering 

Noise filtering deah with the problem of recovering an image from its noisy condi- 

tion. The purpose is to improve the image quaüty or to obtain some type of informa- 

tion that is not readily available from the original degraded image. Many digital imag- 

ing systems introduce noise which cannot be avoided. Film grain, electronic noise, 

and quantization are some of the major noise sources in digital irnaging. Restoration 

of noisy images has a wide range of applications. In photojouniaüsm and forensic 

applications, noisy images are very common. In space research, image restoration is 

becoming an increasingly important aspect because of the inherent noise sssociated 

with any o p t i d  telescope. In general, the range of image restoration applications 

is widening with the contiming in- in the use of imsging systems in numerous 

consumer, a d a i ,  medical, and scientific fields. 

The main strategy in noise filterhg is to define an estimate of the otiginal image on 

a quantitative basis and to incorporate a ptiori information and constaints about the 

actud image, the blur, and the noise into the estimation process. However, a priori 

information about the image, the blur, and the noise are often not readily available. 

Therefore, these quantities need ta be modekd and mode1 parameters should be 

determined properly. The noise process is modeled in two major ways depending on 

the source and nature of the noise - sipal-independent noise and signal-dependent 

noise. 
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2.1.1 Signal-independent N o k  

In mogt image restoration algorith, the observed noise is modeIed as additive, 

white Gaussian noise that is independent of the signal. In this model, the degradation 

of a digital image is expressed as 

for i = 0,1, ..., M - 1, j = 0,1, ..., N - 1, the extent of the image formation system. 

g( i ,  j) is the obsenred degradeci image, h(i, j )  is the image formation system i m p h  

response (or blurring funetion), t represents twdimensional(2D) convolution, f (il j )  

is the original image, and n(i, j) is a realization of the noise process independent of 

the signal process represenfed by f (il j )  . 
Statistidy, noise is considered to be independent of the signal if its statistical 

characteristics of any order are not a function of the signal or its statistics. Since 

a Gaussian process is completely characterized by its mean and variance, Gaussian 

noise is independent of the signal if its first two moments are independent of the 

signal- Although a non-Gaussian noise process is not compietely determinecl fiom its 

first two moments, it may be said to be signal-independent to the second order if its 

mean and vasiance are independent of the signal. 

The signd-independent noise model has resulted in many successflll restoration 

filters in various areas such as biomedical imaging, television, idhred imaging, space 

imaping, and industrial radiography. However, it has been weil established that a 

number of image noise sources are signal-dependent (Walkup and Choens [l], Arse 

nault et al. [2]). Ratoation algorithms based on a signal-independent noise model 

are not expected to be very effective in the signal-dependent noise environment. To 

restore images h m  signal-dependent noise, signal-dependent noise models are more 

appropriate. 



2.1.2 Signal-dependent Noise 

A number of physical noise processes are inherently signaldependent. These in- 

clude photoelectronic shot noise, magnetic tape recording noise, photographk film- 

grain noise, and spedde noise. Signal-dependent noise sources often have a nonlinear 

relationship with signal intensity. It ha9 been shown that restoration algorithms 

which ignore signal dependence of noise pay a penalty in terms of mean squared error 

(MSE) while trying to restore images h m  signal-dependent noise (31. The inclusion 

of signal dependence in the model, while increasing the eomplexity of the restoration 

flters, results in potentidy superior performance. 

A frequently used model for signal-dependent noise was proposecl by Froehlich et 

al. (31 as 

where g(i ,  j) is the observeci degraded image, f (i, j )  is the undegraded or&hal image, 

K is a constant, F( f ((i, j ) )  is a function of the undegraded original image f (i, j), and 

n(i,  j )  is noise which is independent of the original image f ( i ,  3). 

In this thesis, filtering of multiplicative noise wil l  be considered. The degradation 

by multiplicative noise is modeled as 

where the notations have the same meaning as in equation (2.2). A practicai exam- 

ple of multiplicative noise is spedde noise. Coherent illumination tesuits in speckle 

noise in images acquited by imaging systems with wavelength limitations for detecting 

very s m d  variations in ob ject mughness. Many wherent imaghg systems are widely 

used, such as ultrasound medical imaging systems, synthetic aperture radar imag- 

ing systems for remote sensing, astronornical imaging systems, and laser-illuminated 

imaging systems. For multiplicative noise, the noisy images have the properiy that 



brighter areas of the image appear to be noisier. 

Many filtas have been proposed based on signaLindependent and adsign-dependent 

noise modeh for restoring noisy images. They may be dassified either as 1 4  ot 

global filtering methods, based on whether they tske local statistics of the image into 

account or not. They may as0 be classifieci as adaptive or h e d  filtering methods, 

depending on whether or not the dgorithms dynamidy adapt themselves to the 

image chitracteristics. 

2.2 Local versus Global Image Filtering Methods 

Early image restoration algorithms were designed under the assumption that the 

image under consideration is a widesense 2D stationary random pro- [4]. The sta- 

t i s t i d  properties of an image, under this assumption, are characterized by its global 

st at ionary correlation fùnction, rather t han its local statistical properties. Chan and 

Lim [5] stated that such global algorithms are not successfd as most image data 

that axe meaningfd to human observers violate the basic assumption of stationarity. 

Images aie typically only quasi-stationary. As giobal image filtering methods are de- 

signed under the assumption of stationarity, they are insensitive to abmpt changes 

in image intensity, and tend to smooth edges and stmctured features where the as- 

sumption of stationady is violated [6]. 

Various algorithms have been proposed to restore images using local statistics. 

Mean filters (71 restore noisy images, but the edges of the objects are considerably 

blurred. Median filters [7] can dectively remove discrete impulse noise, but at the 

cost of greater signal suppression. 

Naderi and Sawchuck [8] proposed a nonstationary Wiener filter to remove signal- 

dependent film-@ noise. Their filter is able to adapt to local signal statistics, 

given the conditional noise statistics. Lo and Sawchuck [9] derived a nonlinear filter 
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to restote images & i e d  by Poisson noise. Arsenadt and Levesque [IO] used the 

genesalized homomorphic transformation to make signal-dependent noise independent 

of the signal, and combineci it with a local-statistiw restoration technique to filter 

images degraded by sigoal-dependent noise. Lee [Il, 121 fomdated a local-statistics 

algorithm using the James-Stein estimator. Jiang and Sawchuck [13] considered the 

restoration of images degraded by a class of signal-ucorre1atd noise, possibly signal- 

dependent, using the noise-updating repeated Wiener filter; they also investigated 

other adaptive noise smoothing flten using local image statistîcs. 

2.3 Fixed versus Adaptive Image Filtering Methods 

Most of the early image restoration methods were fked methods, developed using 

nonrecursive algorithms and implemented in the discrete fÎequency domain ['Il. To 

deal with images degraded by spacevariant blur, methods for 2D extension of the 

KaLnan filtering algorithm [14] and Bayesian estimation were proposed, which led to 

2D recursive filtering algorithms. 

The wnstrained least squares filter is an extension of the K h a n  filter and was 

origindy propod by Phillips [15]; rehements and fuaher extensions have been 

developed by MacAdam [16] and Hunt [17]. Another a p p r d  to image restora- 

tion is hornomorphic filtering, which was introduced in onedimensional (ID) signal- 

processing by Oppenheim et al. [18]. 

Fied filtering methods often tend to srnooth out edges because of the inherent as- 

sumption of a stationary image model. Many adaptive restoration systems have been 

proposed to rectify this problem. hgle et al. [19] dowed the parameters describing 

the image model to change within the image, and derïved an identification-estimation 

algorithm. hgle and Woods [20] considemi the case of five models (desaibing edges 

of dinerent orientations), and developed a multiplechanne1 estimation algorithm. Us- 
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ing a totally different approach, Peyrovian and Sawchudr $11 derived nonstationary, 

nomecursive flters that pmvide a compromise between las  of res01ution atomd edges 

and the dect  of noise in smooth regîons. Rajda and Figueiredo [22l propascd a 2D 

recursive filter assuming a piecewisestationary mode1 for the image. The image was 

b t  segmented into disjoint regions based on local spatial activity and a different 

K h a n  filter was used for nomtationary restoation of each region. Their method 

emphasized nonstationarity within regions. 

Lev et al. [23] suggested a 3x3 kernel that is contextually se.t depending on local 

image characteristics. Pager [24] used a simplified form of this technique for noise 

suppression and d e d  it conditionaI smoothing. Nagao and Matsuyama [25] p m  

posed an algorithm which selects the most homogeneous neighbothood and replaces 

each pixel by its neighborhood average. Such adaptive dgorithms are most suitable 

for smoothing noise in images with strong edges as a preprocessing step for hture seg- 

mentation. Hocsever, subtle details, such as thin lines and small but distinguishable 

objects, are suppressed by these methods. 

In the following chapters we will discuss a few adaptive restoration algorith in 

more detail. Subsequently (in chapter 3), we will compare the d t s  obtained by 

these methods with the results obtained by out propoaed method, when applied on 

the same test images. 

2.4 The Adaptive Two~dimensional LMS Aigorit hm 

Hadhoud and Thomas [26] and Mikhael and Ghosh [27] p r o p d  an efficient al- 

gorithm they d e d  the adaptive twwbnensional least-mean-squares (ATD LMS) 

method. The method uses a c a d  finite impulse response (Fm) filter W,(i, j )  whose 

region of support is MX M (M is typidy 3) such that 



where f (i, j) is the restored d u e  of the pixel (i, j ) ,  g(i, j )  is the noise-compted input 

image, and p marks the cumnt position of the restoration fdter in the input image 

computed as 

p = i N + j ,  (2-5) 

for the pixel position (i, j) in an N x N  image, and takes dues h m  O to fl - 1. 
The filter coefficients WHi(i, j )  at the next pixel position ( p  + 1) are determined by 

minimizing the MSE at the pixel location p, using the steepest descent algorithm, 

and are computed as 

W*l(i, j) = W& il - ~ 4 ( e ; )  9 (2-6) 

where p is the convergence and filter stability factor, % is the difference between the 

desired signal and the estimated signal, and Ap is a gtadient operator applied to e i  

at the pixel location p. 

The error signal % is given by 

Since the original image is unknown, the emx  signal + is typicdy obtsined by 

applying a 2D delay operator of (1,l) siunples to the degrsded image in order to 

approximate the original image f (i, j) .  

Cornbig  equations (2.4), (2.6), and (2.7), we get 

The convergence factor p is determinecl by trial and emr. The ATD LMS algorithm 

implemented by Rabie [28] is used in this thesis for comparative andysis. The ATD 

LMS algorithm tends to d u c e  the noise d o n n l y  across the entire image, which 
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leads to smoothing of edges. D d  sharpness of edges nomdy makes images 

less pleasing to the viewer. 

2.5 The Adaptive Rectanguiar Window LMS Algorithm 

Song and PearIman [29, 301 proposed a method of adaptive estimation in which 

the size of the neighborhood over which filter coeaicients are caiculated is Yafied. The 

method was r&ed later by Mahesh et al. [6]. In thw method, the same noisy image 

mode1 as in equation (2.1) is used, with the additional a~sumption of no blurring, 

that is h(i ,  j )  = 1. The noise n(i, j )  is assumed to be of zero mean and Mnance a: 

and uncorreIated to the onginal signal f (i,i), which is assll~~led to bave mean mf 

and variance 3. The estimate of the original signal is given by 

and the factor a at each pixel location is found by using the minimum MSE criterion 

of the standard Wiener filter. The error is given by 

e(i, j )  = f (i, j )  - f ( i ,  j )  = f (i, i) - di 3)- . (2.10) 

A necessary and d c i e n t  condition for the minimization of the MSE is that the error 

signal e( i ,  j )  should be orthogonal to the original signal g(i, j ) ,  that is, 

where E{.)  is the expectation operator. The solution of equation (2.11) gives the 

value of CY as 

which is a first-order LMS estimator at each point in the image. If the original image 

has a non-zero mean, then the estimator is found by h t  subtracting the mean fiom 

bath of the images f ( i ,  j )  and g(i, j ) .  Since the mean of the noise is =O, the a 
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posteriori mean mg of the image g(i ,  j )  at pixel position (i, j) is equd to the a priori 

mean rnf of the original image f (i, j ) .  Then, the fust-order LMS estimate is given as 

The ARW algorithm starts with the window size of 1 x l  for the pixel (1,l). Then, 

two tkesholds Ti and T'j are d&ed as 

where ni and ni are the lengths of the ARW in the i and j directions, respectively. 

The variances of the signal in the current row (8) and the current coiumn (4) are 

then computed as 

where ~ and $ are the d u e s  of the MRance in the input image calculoted over 

ni and nj pixels in the i and j directions, respectively. These variances are then 

compared with the arbitdy-defined thnsholds given by equation (2.14). If the 

vaxiance in the i (or j )  direction is greater than the correspondkg threshold, then 

the ARW size is progressively inaeased in that direction; otherwise, it is decreaseù. 

The ARW is testricted to a maximum of 11x11 pixels to ensure that each ARW 

corresponds to a relatively homogeneous region in the image. 

The implementation of the ARW algorithm by Rabie [28] is used in this thesis for 

compaative analysis. The ARW LMS method typically smooths d o r m  regions of 

the image with a laxge window, but leaves the image hast unchangeci in tepions 

containhg edges or high spatial variame. The resulting image generally has more 

noise at edges than in d o m  regions. However, since human observers are typically 

able to tolerate more noise at edges than in smooth areas, the resultant image muid 

be more pleasing than the noisy image [6]. 
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2.6 The Adaptive-neighborhood Noise Subtraction Algorithm 

The adaptive-neighborhood noise subtraction ( A m )  algorithm vms proposed by 

Paranjape et al. [3l]. The method operates on the same g e n d  ptinciple as the 

ARW LMS algorithm; however, the window size is not necessarily a rectangular one 

as in the ARW LMS aigorithm. In the ANNS method, the estimate of the additive 

noise is computed on the basis of a variable-size, Mnableshape AN for each pixel in 

the input image. 

In the ANNS algorithm, the degraded image is represented by a -mean random 

Mnable f (i, j )  of variance 6 with no blurring. The degraded image is represented 

as (fkom equation (2.1)) 

di, d = f (6 j )  + n(i, j ) ,  (2.16) 

where the noise n(i, j) is of zero mean, of vasiance 4, and is uncorrelated to f (i, j ) .  

An est imate of the additive noise, rî(i, j )  is then computed using the pixels in an AN 

where rn, is the mean value computed over the AN and P is a scale factor computed 

in the following way. 

Using the estimate of the noise in equation ( Z l T ) ,  an estimate of f (i,  j )  is computed 

Rom equation (2.1 7), 4 is expressed as 

2 O,=$ bs* 

Fmm equation (2.16), it can be shown that 



Combining equations (2.19) and (2.20), we get 

where 0; is the estimatecl signal variance given by 

where gm in twn is the &ance of the AN. Then, f l  is given by 

From eguation (2.18), the final estimate for the original image is obtained as 

The AN is fomed for each pixel of the image in such a way that it defines a relatively 

uniform region in the image. Identification of the AN will be discussed in more detail 

later in this thesis. An implementation of the ANNS by Psranjape et al. [31] is used 

in this thesis for cornpasative analysis. 

2.7 The Fixed-neighb orhood Multiplicative Noise Filt er 

A Gxed-neighborhood filter for multiplicative noise was proposed by Kuan et d. 

[32]. The filter algorithm starts with the additive noise mode1 given by equation (2.1). 

If the conditional mean of the noise given the signal is zero, that is 

where n and f represent the noise and signal processes, respectively, the adaptive 

linear minimum mesn squared emt estimate of the signal is given by [32] 
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where e(i, j )  is the nonstationaty noise ensemble vapiance at the pixel location (i, j); 

E{f  (i, j ) )  and E{g(i, 3)) are the ensemble means of f ( i ,  j )  and g(i, j ) ,  respeetively; 

and vf( i ,  j )  is the local spatial variance of f (i, j). 

For multiplicative noise, the same filter in equation (2.26) can be used. Howwer, 

the multiplicative noise vasiance cannot be used directly, as the noise is not additive; 

instead, <(i, j )  is computed in the following way. The degradation model for the 

multiplicative noise model caa be written as (using a different notation than that 

used in equation (2.3)) [32] 

where u(i, j), the multiplicative noise, is independent of f ( i ,  j ) .  The observation is 

normalized by the known noise mean as 

where u is the noise process, and ECU} is the noise mean. Expressing equation (2.28) 

in terms of signal plus signai-dependent additive noise, the additive noise is found as 

[321 

The additive noise variance is 

where a: is the noise variance, and $(i, j )  is the ensemble signal variance. It can 
Y 

be verSeci that the noise n(i, j) in equation (2.29) satisfis the condition in equation 

(2.25). Replacing ensemble statistics in equations (2.30) and (2.26) by local spatial 

statistics and using the value of ot(i,  j )  from equation (2.30) in equation (2.26), Kuan 

et al. [32] proposeci the following adaptive noise smoothing flter for the multiplicative 



noise modd: 

where f(i ,  j )  is the Bter output for the pixel location (i, j), g(i, 3) is the normalized 

observation, f(i,  j )  is the local 3x3 mean, and vf( i ,  j) is the local 3 x 3  variance- 

From equation (2.31), it is see~ that the filter adapts itself to local variations 

in image statistics. The impIemeatation of the filter shows that the filter is noise 

smoothlig; however, the filter blurs object edges to some extent as it operates on 

3 x 3 neighborhoods. The filter works better than the ATD LMS, the ARW LMS and 

the ANNS algorithms in restoring images with multiplicative noise. 

2.8 S u m m a r y  

In this chapter, the principles of noise filtering and some of the existing restoration 

filters were discussed. In particular, mean and median filters, the ARW LMS algo- 

Bthm, the ATD LMS dgorithm, the ANNS dgorithm, and the 3 x 3  multiplicative 

noise filter of Kuan et al. were discussed in detd,  as we will compare their perfor- 

mance with that of out proposeci method later in this thesis. It should be noted that 

the ARW LMS, the ATD LMS, and the ANNS algorithms are not expected to work 

welI in the presence of multiplicative noise as they were designed for restoring images 

with additive noise. The algorithms were chosen for comparative analysis as they rep 

tesent powerful adaptive methods. The 3x3 multiplicative filter, on the other hand, 

was designed to restore images with multiplicative noise; however, the filter d e r s  

from the same limitations as any 3x3 image prowssing technique. The next chapter 

shows that the multiplicative noise filter can be improved if it is applied on the basis 

of ANS instead of 3 x3 neighborhoods. It is a h  shown that the testoration method 

works better as the computer-generated variable-size, variableshape regions match 

more closely with visudy identifiable regions in the image. 



CHAPTER 3 

ADAPTIVE-NEIGHBORHOOD FILTERING OF 

MULTIPLICATIVE NOISE 

In this chapter a new adaptiveneighbothood restoration filter to restote images 

degraded by multiplicative noise is proposed. The filter uses statistics computed ova 

adap tive-neighborhoods which axe grown to include statistically stationary regions 

with similar gray levels. The method is a new algorithm for restoting images degraded 

by multiplicative noise using the adaptive-neighborhood image processing paradigm 

which was first pmposed by Gordon and Rangayyan in 1984 (331. 

3.1 Adaptive-neighborhood (AN) Image Processing 

In AN image processing, an AN is defined about euch pixel in the image, the extent 

of which is dependent on the characteristics of the image featue in which the given 

pixel is situated. Su& a neighborhood of similar pixels is called a region. In image 

segmentation, groups of pixels are found that have some property in common (such as 

simi1a.r gray level) and are used to define disjoint image regions. AN processing may be 

performed by initially segmenthg the given image and then processing each segment 

in turn. Alternatively, AN processing may define possibly overlapphg regions for each 

pixel and process esch of these regions independently. Then, features in the image 

are processed as units, rather than pixels being processed using arbitrary group of 

neighboring pixels (for example 3 x3 masks). Image processing procedures cm then 

be applied on an image feature basis, rather than on a pixel-by-pixel basis. 



The fimdamentd step in AN image pmeeasing is denning the extent of mgions in 

the image. Of the two classes of ripions, namely non-overlapping regions obtained 

using image segmentation techniques, and overlappiog regions obtained h m  region 

gowîng techniques, overlapping regions are used in the proposed method, as pt* 

cessing disjoint segments of an image may d t  in noticeable edge artif'acts and an 

inferior restored Mage. 

The region growing method used in the p r o p d  filter is based on a simple graph- 

icd seed-fill algorith, known as pixel aggregation [Ml. Details of implementation 

of the method may be found in the paper by Morrow et al. i35]. In this method, 

regions consist of connected pixels that fd within a specified gray-level deviation 

from the starting or seed pixel. Either 8connectivity or 4-c0nnectiviQ may be used. 

8-comectivity has been used here, as it has been fomd to resuit in more accurate 

matches between the regions grown and visually identifiable objects. 

The AN is defined using û-connected region growing and a pre-specified tolerance 

about the seed pixel's gray level. The tolerance is dehed as 

where p(i ,  j )  is the gray level of the seed pixel (i, j )  and p(k, f )  is the gray level at the 

connected pixel (k, f ) .  The tolerance t is given as a fraction of the seed pixel's gray 

level, and detemines the maximum gray-level deviation dowed within the region. 

For each seed pixel, the toletance t is initidly set to 0.01 (dowing 1 percent 
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deviation about the s d  pixel's value). If the number of pixels in the region gram is 

less than four, then the tolerance is inereased by 0.01. The pmcess is eontinued until 

a region is grown with four or more pixeIs, or the tolerance reaches a maximum value 

of 0.4. Any deviation less than the tolerance level is considered to be an intrinsic 

property of the region, or to be noise. 

An AN typically gronps pixels that are similar to the seed pixel in terms of both 

gray ievel and proximity (connectivity). These pixels are usually contextually related 

and are likely to belong to the same object or region. Figure 3.1(a) shows an adual 

AN region grom fiom the seed pixel at location (76, 83) in a synthesized test image 

(the characteristics of the synthesized test image WU be describecl later in subsection 

3.3.1). The AN exactly matches the part of a circular object of the image (not 

overlapped by neighboring ob jects) which contains the seed pixel. Figure 3.l(b) 

shows an AN region grown fkom the seed pixel at location (58, 73) in the hat region 

of the h a  image. The region grown includes a uniform region surrounding the 

seed pixel. Figure 3 4 c )  shows the region grown fkom the seed pixel at the location 

(165, 43). The seed pixel lies in the mane region of the Lenna image and the region 

contains texture. The AN grown is very smd.  Any textured region contains many 

different adjacent high-frequency pixel ensembles. As  the AN grown tries to identifjr 

a uniform region and tends to avoid edges and other nonstationary areas present in 

a texturad region, the size of the AN p w n  is &ely to be s m d  in textured areas. 

As mentioned at the beginning of this subseztion, the ANS can be overlapping. 

Figure 3.2 shows an example of two overlapped regions in a noisy version of the 



Lenna image. The first AN was grown h m  the seed pixel at the location (153, 135) 

and the boundary of the AN is marked white. The second AN was grown fiom the 

seed pixel at the location (165, 134) and the boundary of the AN is marked black. 

The two ANS encompas two dXerent d o m  regions with signifiant overlap. 

The basic idea in an AN filter is to apply filtering methods based on the statistics 

of adaptive regions whose size and shape are b d  on the structural information 

content of the image, rather than of arbitrarily formed rectangular regions. It should 

be noted that euch pixel in the given image is treated as a seed pixel for region growing 

and filtering. 

3.2 Local S tatistics-based Filter for Multiplicative Noise 

In the proposed AN method, the same filter structure as in equation (2.31) is used. 

However, the statistics used in the filter are not computed over a 3 x3 neighborhood; 

instead they are computed over the AN for each pixel for the reason describecl below. 

Any restoration filter filters noise by replacing the pixel d u e  by a certain average 

corn puted over a predefined neighborhood. Mathematicaiiy, ensemble s tatistics are 

used as the parameters of the filters. However, in practice, the ensemble statistics 

are not adable. Often, the ensemble statistics are approximated by l d  statistics 

under the assnmption that the pixels withiri the averaghg neighborhood are from 

the same ensemble. However, if thete is a high-fnquency component in the averaging 

window, the sample variance tends to ovetestirnate the ensemble variance, because 

samples in two entirely different ensembles are used to calculate the sample Mnance. 



The sample variance is much higher than the ensemble variance in a high-fkquency 

region of the image. The sample mean is a h  inaccurate. 

The dects  of inaccurate estimates of signal mean and signal variance can be ex- 

plained fiom the stmcture of an image. Many mearchers have proven that images 

be modeled as widesense stationary process and that the statistical proper- 

ties of an image cannot be characterized by its global stationary statistics. A more 

accurate mode1 was given by Ku- et al. [32], where the image is describecl by a non- 

stationary mean, nonstationary Mnance process. The nonstationary mean acwunts 

for the general stmcture of the image, whereas the nonstationsry variance character- 

izes the high-fiequency components of the image, e-g., edges and textures. It may 

now be seen that an inaccurate signal Mnance has a severe effect on the restored 

image as it tends to obscure the hi&-frequency information in the image and the 

edges get blurred. If an inaccurate mean is used to describe the p s  structure of the 

image, the &t of the nonstationary mean is not prominent in the restored image, 

as it may only &t the relative brightness or intensities of objects. 

To avoid this problem, the ANS (discussed in section 3.1) are grown in such a 

way that they include uniform areas only and do not inchde edges. For a uniform 

region, the regions grom include the pixels which tend to belong to the same object 

or ensemble only (figure 3.1 (b)). For a textured region where there are many high- 

frequency components, the size of a typical AN is usually very s m d  in order to avoid 

including two different pixel ensembles or components of the texture in the same 

AN or avetaging neighborhood. Thdore ,  it can be expected that AN mean and 
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AN variance provide better estimates of the ensemble mean and ensemble vaziance, 

h the proposed filter for multiplicative noise, the ensemble signal mean E {f(i,  j )  ), 

and the ensemble signal variance 4(i, j )  are approximated by the AN mean mm& j ) ,  

and the AN variance gM(i, j ) ,  respectively. The filter is then given by 

where f ( i ,  j )  is the filter output for the pixel location (i, j )  and g(i, j )  is the normalized 

observation. The factor [(mm(i, j ))* + gM(i, j )]  is an index of the signal-dependeot 

properties of the multiplicative noise, and the presence of this factor shows how the 

filter adapts itself to smooth the signal-dependent noise. The factor </[E{u)]* 

denotes the multiplicative noise level. 

To understand the behavior of the filter, a filter control factor can be defineci as 

so that the filter in equation (3.2) can be rewritten as 

If the noise is high, then 4 is comparable to [ ~ { u ) ] ~  and C is low (from equation 

(3.3)). Then, the nIter in equation (3.4) puts more weigbt on the a posteriori mean 

m,&, j). In this situation, the observation is very noisy, and the a posteriori averages 

are used to smooth the noise. In the case of Iow noise, O$ is very small compared to 

[ ~ { u ) ] ~ .  Then, fiom equations (3.3) and (34), we can s e  that the filter puts more 
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weight on the noisy observation g(i,  j )  and edges are pteserved better as a d t  of 

less averaging. 

3.3 Resdts 

In order to test the proposed method, 3 x 3  mean and median fiiters [7], the ATD 

LMS algorithm [26], the ARW LMS algorithm [29,30], the ANNS algorithm [31], the 

3 x3-neighborhood multiplicative noise filter of Kuan et al. [32], and the p r o p d  

AN multiplicative noise filter were applied to two synthesized test images and two 

natural images after they had been contaminated with multiplicative, white Gaussian 

noise. The resultant images were analyzed by visual examination and by calculation 

of the MSE between the original and the restored images. The visual quality of each 

filtered image was judged by the author by observing the extent of noise reduction 

in smooth regions, and by obsenring the retention of sharp edges as well as textual 

details in the image. 

3.3.1 Generation of Synthesized Test Images 

Two synthesized test images were generated in order to test the AN algorithm. 

The fist synthesized test image (figure 3.3(a)) is a 128 x 128 image containhg many 

objects in the form of rectangles, cides, and tnmgle~ of various gray levels and size. 

The objects are placed at randomly-selected positions. The gray level d u e s  of the 

objects vary fiom O to 255, with the background being a constant of 60. Figure 3.3(b) 

shows the degraded image with signal-dependent multiplicative white noise of mean 
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0.5 and variance 0.007. Since the noise is multiplicative, the noisy .mage bas reduced 

intensity, by an average factor of 2 (reciprocal of the noise mean). The noisy image 

may be normalized by dividhg each pixel of the image by the known noise mean. 

The MSE between the normaüzed noisy image and the original image is 382.5. The 

test image has a number of oimost-ideal edges, which are aseful for observing the 

edgedegrading characteristics of the different dgorithms. 

The second synthesized test image was prepared in a marner similar to the f b t  

synthesized image. However, the d o m  background of the image has a gray level 

value of 65. The image was corrupted by signal-dependent multiplicative Gaussian 

noise of mean 1 and Mnance 0.05. Figures 3.4(a) and 3.4(b) show the original and 

noisy versions of the second synthesized test image. Since the noise mean is 1 here, 

the noisy image need not be normalized for MSE cdculation. The MSE between the 

original and noisy versions of the second synthesized image is 100.2. 

3.3.2 Restoration of Synthesized Images 

Figures 3.3(c) to 3.3(f) show the Werent restored images for the h t  synthesized 

image. hages restored by the 3x3 mean filter, the ARW LMS filter, the 3x3 fiter of 

Kuan et al., and the AN method are displayed for cornparison. The mean filter results 

in a considerably blurred image, as shown in figure 3.3(c). The image produced by the 

3 x3 median filter (not shown) was better than the image restored by the 3 x3 mean 

filter both in terms of edge sharpness and noise retained in the images. However, 

both the images show that simple, conventional 3x3 techniques f d  to restore images 
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affecteci by signddependent multiplicative noise without b l d g .  

The ATD LMS method (resnlt not shom) performed h t  as poorly as the 3x3  

mean and median filters The convergence factor used in the ATD LMS algorithm was 

40x10-~; the value was selected &er many trials. The output image was significantly 

blurred 6 t h  moat of the noise largely intact. The ARW LMSrestored image is 

presented in figure 3.3(d). The ARW size was restncted to be a minimum of 1 x 1 and 

a maximum of 5 x 5 .  The image appears to be noisier than the other restored images. 

Both the ATD LMS and the ARW LMS methods are designed for restoring images 

with additive noise, and failed to restore images contaminated with multiplicative 

noise. 

The ANNS method restores the image on the basis of ANS, instead of rectanguiar 

neighborhoods. The filter used in the A N N S  method was specifically designed for 

signal-independent additive Gaussian noise. The ANNS method also failed to restore 

the image &ected by signal-dependent multiplicative noise (result not shown). 

The output of the 3 x 3  multiplicative noise filter of Kuan et al. (321 is shown in 

figure 3.3(e). The image appears to be better than the 0th- restored images disnissed 

so far. However, considerable noise is stiU present in the restored image. The noise 

is prominent both in the d o m  background and within the objects. 

Figure 3.3(f) shows the image restored by the AN method. The image was obtained 

after four iterations of the AN method (iterating the AN method is discussed in 

subsection 3.3.3). The d o r m  regions in the image contain much less noise in the 

restored image than in the input image or any of the other fütered images. The noise 



is more prominent in some of the brighter objects of the image. On the other hand, 

in the case of very-low-contrast regions, the regions may not be visible aRa filtering. 

In spite of these limitations, the image restored by the AN method is cleatly the best 

restored image based on direct visual exsrnination of the filtered images in figure 3.3. 

The MSE values between the original and the restored images are listed in table 

3.1. The 3 x3  filter of Kuan et al. and the AN method perfom normalization of the 

restored image as part of the algorithm. For the other restored images, the results 

were nomaüzed by the known noise mean before computing the MSE (the MSE 

values would be much larger without the nomalization step). From the table, it is 

seen that the image restored by the AN method has the lowest MSE in the series of 

images and methods considered. Thus, the AN method appears to be the best of all 

the rnethods studied, both qualitatively and quantitatively for images degraded by 

multiplicative white Gaussian noise. 

A similar set of tests was performed on the second synthesbed test image, and 

figure 3.4 presents some of the results obtained. Only the original and noisy images, 

and the results of the 3x3 filter of Kuan et al. and the AN method are shown. 

The MSE d u e s  for the second synthesized image are also Listed in table 3.1. Visual 

inspection of the images in figure 3.4 and their MSE dues indicate that the AN 

rnethod consistently produces better restored images than those generated by the 

other algorithms for the synthesized test images. 



3.3.3 Rcpeated Appkation of the AN Algorithm 

Repeated application is a powerfid and d attribute of the AN image filtering 

methods, which was first proposed by Paranjape et al. [36] and used in their ANNS 

algorithm [31] and the AN mean and median 6lters [37I. For iterative application 

of the filters, knowledge of noise variance is required at each pass through the filter. 

In the present study, it was found that the original noise variance works well for 

successive iterations as weil. Thus, no additionai information is used in the successive 

iterations. 

Figure 3.5 displays the resdts of repeated appücation of the AN method for the h t  

synthesized image. The MSE values of the restored images &et successive iterations 

are listed in table 3.2. From the table it is seen that the MSE value continues to 

decrease until the fourth iteration, after which it starts to ina'ease. Thus, the AN 

method may be iterated and the MSE observed after each iteration. When the MSE 

starts to increase, processing may be stopped, and the restored image obtained fiom 

the previous iteration taken as the final restored image. For the first synthesid 

image, the restored image obtained after the fourth iteration of the AN method was 

taken as the h a 1  restored image. The final restored image (figure 3.5(f)) is seen 

to be almost free of noise. The successive iterations restore the images without any 

blurring of the &es of the objects in the image. 

Figure 3.6 shows regions grown for the same seed pixel (with mrdinates (52,94)) 

for the original, noisy, and the restored images obtained after the first few iterations 

of the AN algorithm. The same region growing aiterion as given in equation (3.1) 
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was used for alI the images. The images show that the region grown for the original 

image (figure 3.6(a)) includes exzLctIy the object containhg the seed piml. For the 

noisy image, the region grown (see figure 3.6(b)) is small, and d a s  not cover much 

of the object containing the pixel. After the first iteration, the region grown for the 

same seed pixel (see figure 3.6(c)) includes three different objects (two other objats 

besides the object containing the seed pixel). The region grown for the restored image 

obtained after the second iteration (not shown) is almost the same as that f i e r  the 

first iteration. After the third iteration, however, the region p w n  (see figure 3.6(d)) 

includes only two objects (one 0th- object besides the object which contains the seed 

pixel). The region grovvn for the restored image obtained f i e r  the fourth iteration 

(figure 3.6(e)) includes only the object in which the seed pixel is located. After 

the f3fth iteration, the region grown (figure 3.6(f)) again indudes another object in 

addition to the object containing the seed pixel. The images in figure 3.6 and the 

MSE values listed in table 3.2 suggest that as regions axe identifid better (Le. as 

the regions grown are more properly matched with the objects iri the image), the AN 

method works better in noise remod.  It should be noted thst the regions grown for 

the original image and for the image obtained after the fourth iteration (the regions 

illustrated in figures 3.6(a) and 3.6(e)) are hast identical for the same seed pixel 

under consideration. 

For the s m n d  synthesized image, the MSE started to increase after the second 

iteration of the AN method. The MSE &er the first pass of the AN rnethod is the 

lowest of ail the restored images obtained in this study ( s e  table XI), and the bat  



restored image is obtained aRer the very fùst p a s  of the AN method. 

3.3.4 Restoration of N a t d  Images 

Figure 3.7 presents results obtained with the commonly-used Lenna image, The 

original image is a 256x256 image with gray levels ranghg fiom O to 255, and is 

shown in figure 3.7(a). The Lenna image was comipted with multiplicative noise of 

mean 1 and variance 0.05; the compted image is shown in figure 3.7(b), which has an 

MSE of 882.8. The results of the 3 x3 median, ATD LMS, 3 x3  multiplicative noise 

filter of Kuan et al., and the AN filters are presented in figures 3.7(c) - 3.7(f). The 

convergence factor used for the ATD LMS algorithm was 40~10 -~ .  The AN method 

was iterated until the MSE started to increase; for the Lenna image, the minimum 

MSE was achieved aiter 3 iterations. Again, the final restored image produced by 

the AN method is clearly the best output image based on direct visual examination 

of the different restored images. 

The MSE values between the original and the restored versions of the Lema image 

are shown in table 3.3. The ATD LMS method suppressed the noise to some extent 

without bl-g the image. The restored images produced by the 3x3 median filter 

and the filter of Kuan et al. a h  have low MSE dues  compared to that of the noisy 

image. The median filter-nstored image is, however, badly blurred. The AN method 

has produced the restored image with the least MSE value and the best visual quality. 

Figure 3.8 shows the regions p w n  for the Lema image for a particular seed pixel 

(co-ordinates (153, 135)) for the original, noisy, and the restored images obtained 
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after each of the h t  three iterations of the AN m e t h d  It is seen that the region 

grown in the noisy image is very smd, and that aRer each iteration of the AN filter, 

the region grows bigger. The region grown for the restored image obtained aRer the 

second iteration matches most dosely with the region p w n  for the origind image 

for the same seed pixel. The MSE attains its lowest value &er the third itaation of 

the filter (note that the third iteration of the fdter is applied on the bais  of regions 

grown on the restored image obtained after the second iteration). 

After the third iteration, the region grows much larger, and indudes 0th- visually 

different regions in the image; the MSE starts to increase at the same time. These 

results suggest that optimal restoration of the noisy image is achieved when the 

regions identifid by the AN method match closdy with actud regions in the original 

image. 

AU of the restoration methods under consideration were applied to another nat- 

ural image (Sarah), which is of a girl sitting on a beach. The size of the image is 

128 x 128 and the gray level values range fiom O to W. The image was corrupted by 

multiplicative noise of mean 1 and variance 0.0 1. Figure 3.9(a) and 3.9(b) show the 

original and noisy images, respectively. The image contains some very bright areas 

where the multiplicative noise looks very prominent, in the forrn of black dots. The 

MSE of the noisy image is 679.2. 

Figures 3.9(c) and 3.9(d) show the restored images given by the 3 x3 filter of Kuan 

et al. and by the AN method, respectively. The minimum MSE was achieved &et 

two iterations of the AN method. Rom visual inspection (by the author only) of the 
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restored images, it is seen that the AN method does not work well in removing the 

black spots fiom the bright regions of the noisy image (e.g. the hat and the upper 

azm); however, the method still gives the best restorad image in the pfesent study. 

The MSE dues  of the dXerent restond images for the Sarah image are Iisted in 

table 3.3. Again, the restored image obtained by the AN method has the least MSE 

due. 

It should be mentioned here that the AN ater did not work wnsistently as well 

in textureci regions as in d o m  regions of the test images. For example, the MSE 

value computed over a 24x12 area in the mane region (figure 3.10(a)) of the restored 

Lenna image obtained by the AN method is 480.1, whereas the MSE value for the 

same a r a  in the noisy Lenna image is 571.0. The MSE value computed over the 

same area of the restored Lema image obtained by the 3x3 filter of Kuan et al. is 

339.2. The MSE value computed over a 28x9 area in the sand region (figure 3.10(b)) 

of the restored Sarah image obtained by the AN method is 112.5; the MSE values 

computed over the same area for the noisy and the restored image obtained by 3 x3 

filter of Kuan et al. are 415.8 and 217.2, respectively. 

On the other hand, the MSE value computed over a 19x14 area which contains 

two d o r m  regions with a distinct edge between the regions (figure 3.10(c)) of the 

restored h a  image obtained by the AN method is 154.4. The MSE value for the 

same area in the noisy Lemna image is 921.5, and that of the restored Lenna image 

obtained by the 3 x 3  filter of Kuan et ai. is 380.7. The same trend was observed in 

a few regions containing edges for the Sarah image &o. 
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Fially, the MSE d u e  computed over a 16x11 ana containing a uniform region 

with no edges (figure 3.10(d)) of the restored Lema image obtained by the AN method 

is 48.6. The MSE values computed over the same area for the noisy Lenna image 

and the restored image obtained by 3x3 filter of Kuan et al. are 1005.1 and 276.9, 

respectively. For the Sarah image also, the MSE d u e s  cornputeci over rectanguiar 

areas containhg d o r m  regions (with no edges and textures) for the nstored image 

obtained by the AN methad were found to be eonsistently much lower than the 

corresponding MSE values for the restored image obtained by the 3 x 3  füter by Kuan 

et al. 

From the above discussion it may be concluded that the AN method works better 

than the 3 x 3  multiplicative filter of Kuan et al. in uniform regions and regions 

containing edges, both qualitatively and quantitatively. However, the method may 

not always work better than the 3 x3 filter of Kuan et ai. in textured areas. A 

more sophisticated region growing criterion tailored for textured regions may further 

improve the performance of the AN fdter. Regardless, the MSE computed over the 

entire image was consistently the lowest for the AN-restored image in d experiments 

conducted in t his st udy. 

3.4 Summary 

W e  have proposed a new method for restoring images compted by signai-dependent 

multiplicative noise. The method is b d  on applying an adaptive local-statistics- 

based filter over adaptiveneighborhoods. The filter has a very simple structure and 
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does not require any a priori idormation about the original image. The noise mean 

and variance requind may be easily obtained fiom other data or by other methods. 

The method consistently produces better restored images than the 3x3 mean, 3x3 

median, ATD LMS, ARW LMS, and ANNS Glters, as w d  the 3 x 3  multiplicative 

noise filter of Kuan et al., in t e m  of both visual quality and MSE. The AN method 

was further applied in a multi-pass produre ,  and was obsenred to pmvide superior 

performance with the least MSE for two synthesized test images and two natural 

images. The AN method restores images without blurring edges. The method dso 

works well for removing noise aound edges and other sharp featmes in the image. 

The AN method takes into account the nonstationarities of the given image, and 

the success of the method relies on identwg actud regions and objects present in 

the image. The method is most suitable for restoring images which are originally 

piece-wise stationary. 

The A N  approach can be successfully applied to obtain a quantitative measuemmt 

of object edgesharpness and for image enhancement as weU, by sharpening the edges 

of the objects present in the image. This will be discussed in the following chapters. 



Figure 3.1. ANS grown in two test images (outlined in white): 
(a) With seed pixel (76, 83) for a synthesized test image of size 128x128, (b) with 
seed pixel (58, 73) for the h a  image of size 256 ~ 2 5 6 ,  (c) with seed pixel (165,43) 
for the Lema image. 



Figure 3.2. Ovdapping ANS grown in the Lenna image. 



Figure 3.3. Original, noisy, and restored versions of the fitst synthcsized image: 
(a) Original, (b) image with multiplicative noise, (c) image restored by the 3x3 mean 
filter, (d) image n s t o d  by the ARW LMS method, (e) image restored by the method 
of Kuan et al., (f) image restored by the AN method after 4 iterations. 



Figure 3.4. Original, noisy, and restored versions of the second synthesized image: 
(a) Original, (b) image with multiplicative noise, (c) image nstored by the method 
of Ku- et al., (d) image restored by the AN method after 1 iteration. 



;ure 3.5. Restored images obtained 
the image in figure 3.3(b): 
after iteration 1, (b) &er iteratic 
after iteratian 5, and (f) &er ita 

. after successive iteration with the A 

2, (c) Bfta iteration 3, (d) aRer il 
bation 6- 

N method 

teration 4, 



Figure 3.6. ANS grown with seeà pixel (52,94) for the original, noisy, and AN-restored 
versions of the first synthesized image in figure 3.3: 
(a) region p w n  for the original image, (b) @on grown for the noisy image, 
(c)  region gmwn for the image after itetation 1, (d) region grown for the image aRer 
iteration 3, (e) region grown for the image aRa iteration 4, (f) region grown for the 
image after iteration 5. 



Figure 3.7. Original, noisy, and nstored versions of the Lenna image: 
(a) Original, (b) image with multiplicative noise, (c) image restored by the 3x3 
median filter, (d) image restored by the ATD LMS method, (e) image restored by the 
method of Kuan et al., (f) image restored by the AN method after 3 itaations. 



Figure 3.8. ANS grown with seed pixel (153, 135) for the original, noisy, and 
AN-restored versions of the Lenna image in figure 3.7: 
(a) region grown for the original image, (b) region grown for the noisy image, (c)  
region grown for the image after iteration 1, (d) region grom for the image aRet 
iteration 2, (e) region grown for the image &et iteration 3. 



Figure 3.9. Original, noisy, and restored versions of the Sarah image: 
(a) Onpinal, (b) image with multiplicative noise, (c) image restored by the method 
of Kuan et al., (d) image restored by the AN method after 2 iterations. 



Figure 3.10. btangular asea~ for wmputing MSE in difEerent regiom of two natural 
images. 



Table 3.1: The MSE values of the noisy and restored versions of the two synthesized 
images in figure 3.3 and figure 3.4. (* After 4 iterations for the fîrst image, and L 
iteration for the second image.) 

Table 3.2: The MSE values of restored result d e r  each of the first seven iterations 
of the AN method for the first synthesized test image in figure 3.3. 
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Images 

Noisy image 
Image restored by the 3x3 mean filter 
Image restored by the 3x3 median filter 
Image nstond by the ATD LMS algorithm 
Image restored by the ARW LMS algorithm 
Image restored by the ANNS algorithm 
Image restored by the 3x3 filter of Kuan et al. 
Image restored by the AN method (*) 

MSE dues for the 
synthesized test images 

' h t  image 
328.5 
452.4 
342.1 
321.9 
369.1 
374.9 
277.6 
128.5 

second image 
100.2 
364.9 
251.3 
177.0 
313.3 
95.1 
61.0 
34.8 



L 

Images MSE values for the naturd images 
Lenna image Sarah image 

Noisy image 882.8 679.2 
Image restored by 396.7 395.8 
the 3x3 mean filter 
knage restored by 296.9 388.3 
the 3 x3 median filter 

a .  

Image restored by 400.7 414-4 
the ATD LMS algorithm 
Image restored by 876.3 675.2 
the ARW LMS algorith 

1 Image restored by 870.2 671.5 
the ANNS algorithm 
Image restored by 294.7 470.8 
the 3 x 3  filter of Kuan et al. 
Image restorecl by 219.2 331.7 
the AN method (*) 

Table 3.3: The MSE values of the noisy and iestored versions of the two natural 
images in figure 3.7 and figure 3.9. (* After 3 iterations for the Lenna image and 2 
iterations for the Sarah image.) 



CHAPTER 4 

REGION-BASED IMAGE EDGE PROFILE ACUTANCE 

The sharpness of an image is rdated to the higber-fkquency content of the image 

and to the edge information in the image. The mean-squared gradient is a reliable 

measure of edge sharpness, and has been used in the definition of the ''amtance" of 

an edge or region of interest (ROI). In this chapter a new method of computing image 

edge profile amtance based on the mean-squared gradient dong the normals to the 

boundôry of an ROI is proposed. 

4.1 Need for Measures of Image Sharpness 

The process of capturing images of objects and scenes usudy involves some degra- 

dation and loss of quaiity. The field of digital image processing provides a number of 

techniques to improve the quality of digital images by modifying image characteristics 

such as sharpness, contrast, dynamic range, and fkquency content. However, judging 

the degree of improvement in perceptual quality provided by an operation is a rather 

difficult task as the quality of an image is a subjective concept dependent on various 

image characteristics, viewing conditions, and the visual system of the observer. Con- 

sequent ly, the need for objective correlates of the inherent ly subjective propert ies of 

image sharpness, crispness, quality, and perceptibility of details has ben recognized 

for a long time (see Rangayyan and Elkadiki [38] for a review on this topic). 

Higgins and Jones [39] d i s d  evaluation of sharpness of photographie im- 
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aga, 6 t h  particular attention to the importance of gradients. They found that 

the maximum gradient or average gradient measuns dong knifcedge spread h c -  

tions (KESFs) failecl to correlate with sharpness, but that the mean-squareci gradient 

açross the KESFs, cded acutance, indicated excellent correlation with subjective 

judgement of sharpness. 

Wolfe and Eisen [40] stated that the shatpness of an image is a subjective concept 

as it is an impression made on the mind of an observer when viewing a picture. 

They obsewed that reso1ving power and sharpness do not have any psychophysical 

relationship, and found that the maximum and average gradients do not correlate 

well with the sharpness of the image. They stated that the variation of density acrwis 

an edge is an obvious physical measurement to be investigated to obtain an objective 

correlate of sharpness. 

Perrin [41] took the mean-square gradient measurement over many sections of the 

KESF, normalizeci the measured values with respect to the density difference aaoss 

the knife edge, and d e d  it acutance. 

Crane [42] discussed the need for objective correlates of the subjective property of 

image sharpness or crispness; he remarked that reso1ving power is misleading, that 

the averaged s q u d  gradient of edge profiles is dependable but cannot indude the 

effects of al1 components in a photographie system (camera to viewer), and that spread 

functions and modulation trmsf'er hctions (MTFs) are not easy to compnhend, 

compare, or tabulate. He proposecl s single numerical rating based on the areas 

under the MTF m e s  of all the systems in the chah fÎom the camera to the viewer 
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called %ystem modulation t d e r  or SMT acutsnce" (SMTA). Later, Gendron [43] 

p r o p d  a "cascaded modulation d e i .  or CMT" meastue of amtance (CMTA) to 

rectify some deficiencies in SMTA. CMTA was used by Knss to compare sharpness 

of imaging sys tans  [44]. 

Higgins discussed various methods for analyzing photographie systems, induding 

the e f f e t s  of n~nlinearity~ line spread functions (LSFs), MTFs, gtanularity, and sharp 

ness [45]. He also discussed quality criteria as related to objective or subjective tone 

reproduction, sharpness, and gminhess, and recommended that MTF-based acutance 

measures are good when no graininas is present; signal-bnoise ratio (SNR) based 

measures were found to be better otherwise [46]. 

The concept of image sharpness or amtance has the potential to serve as a local 

rneasure of image quality or the paceptibility of a regian or feature of interest. This 

has immense application in various fields, such as medical imaging, where one may 

obtain an array of images of the same patient (or phantom) using different imaging 

systems. The radiologist or medicai physicist would be interestecl in eduating which 

system or set of parameters provides an image of a specific object, such as a tumor, 

that can be perceived mat  accurately. Consequently, intensive =ch has been 

dVected towards finding a quantitative measure of sharpness of an object or region 

of interest (ROI) (see Rangayyan and Elkadiki [38] for a review). 



4.2 Methods for Cornputafion of Edge Pronle Acutance 

The amtance measure A, propœed by Higgins and Jones [39] is given by the 

formula 

where f (z) is a section across the edge image (or KESF), and a and b are the edge 

start and end points, respectively. (b  - a) is related to the nsolution of the edge, and 

[ f (b)  - f (a)] is related to the contrast of the edge (see H d  [47]). 

Rangayyan and Elkodiki [38] pmposed a measure of mean-squared gradient corn- 

puted across and amund the contour of an ROI and dled it "a region-based measure 

of image edge profile aatance (IEPA)". They used a region growhg method (Mor- 

row et al. [35]) for finding the boundary of the region. The method starts  with a 

seed pixel within the ROI. A region is p w n  by aggregating Cconnected pixels which 

meet a pre-specified tolerance t about the seed pixel's gray level, dehed as 

where p(i ,  j )  is the gray level of the seed pixel and p(k, 1)  is the gray level at a 

connected pixel (k,I). The region growing process stops when no konnected pixel 

within the spec%ed gray level toleragce can be found. When the region gmwing 

process is completed, the outemirnt layer of pixels of the region gives the region's 

external boundary. 

Once the boundary is identined, the next task is to find the nomals at aii posi- 

tions on the boundary. Rangayyan and Ellcadilri [38] suggested consideration of three 
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boundary pixels at a time - the curent, next, and previous - to h d  the normal to 

the boundary at the cumnt phel. The algorithm selects a set of nine pixels that 

approximate the normal at eadi pixel on the boundary by cornparhg the relative 

positions of the three boundary pixels selected. 

A new method to determine the normals has been suggested by El-Faramawy et al. 

[48]. Instead of taking only three pixels on the boundary at a time to appmximate the 

nom&, they fitted a polygon to the ROI boundary, with the number of sides being 

dependent upon the ROI shape complexity. A Iinear equation is then available for 

each of the sides of the polygon, fiom which the eqnation for the normal to each side 

ckn be found easiiy. Using the equations of the nomah, the pixels dong the nomals 

at each boundary pixel c m  be obtained. The details of the polygonal approximation 

method are provided in a papa by Ventura and Chen [49]. 

R a n g a m  and Ell<adiki [38] used four foreground pixels inside the region and four 

background pixels outside the region to define the normal. In the modified version 

proposecl by El-Faramawy et al. [48], the number of pixeis taken ahmg each nomai is 

variable, taking into consideration edge thiclmess and the available number of normal 

pixels. The edge pixel itself is not used in the computation. The following equation 

is then used to calculate the gradient at the boundary point under mideration 

(indexed j ) :  

1 f ( i )  - b(i) 
m(j )  = - 

,l 2i ' 

where N is the number of pixels taken dong the normal, and f ( i )  and b(i) are the 

foregound and background pixels, respectively (see figure 4.1 for details on the index 
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i )  . 

The procedure is repeated at d edge pixels (Le. all pixels on the boandary of the 

ROI). After aU the normal derivatives are d d a t e d ,  the mot mean squated (RMS) 

gradient is CaCUIated oves aU pixels on the ROI boundary. The RMS d u e  is then 

norm&zed by the maximum possible RMS derivative. The expression for IEPA is 

where À is the IEPA, fi($ is the averaged derivative at a particular boundary pixel 

j ,  B is the number of boundary pixeIs, and &n, is the maximum possible averaged 

derivative. In the paper by Rangayyan and Elkadjki [38], &., was calculated to be 

132.81 25, assuming û-bi t digitization. In the modification suggested by El-Faramawy 

et al. [dg], the value of &, varies, depending upon the nwnber of points taken along 

each normd. Acutance is a dimensionless quantity. 

Olabarriaga and Rsngayysn [50] explorecl the effixtivmess of the IEPA rneaswe 

in analyzing relative sharpness of dinerent images affected by blur and noise. They 

obtained the subjective ranking of a set of test images and compared the redts 4 t h  

the ranking according to the amtance values of the images. They found that trends 

of IEPA wee well with subjective ianking of sharpness of an ROI. 

4.3 Continuous-gradient-based Image Edge ProNe Acutance 

In this section, a modification to the f o d a  for computing the gradient across 

the edge pixel is suggested. The computation of acutance from the gradients is also 
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modifieci. The gradient is computed continuotlsly instead of being cornputecl using 

dinerences between correspondhg pixels amss the edge [38,48]. 

For an image with digitized, finite pixels, a continuous derivative operation cannot 

be performed in the true sense - the normalized d i f f i c e  value between adjecent 

pixeis ean be caldateci only as an approximation to the continuous derivative. The 

difference is normalized in order to take into sccount the vatying distance betw- taro 

adjacent pixels. In an 8-connecteci neighborhood, the four pixels at the corners are 

distance unïts apart fkom the central pixel under consideration; the correspondhg 

distance to the other four ne ighbo~g  pixels is one unit. The gradient or derivative 

at the pixel i is computed as 

where 4 is the derivat ive at the i'th pixel, and n(i)  , i = 1,2, ..., N, are the foreground 

and background pixels dong the normal indexed successively (see figure 4.1). di& is 

the distance between the i7th and ( i  + I)'th pixel, which is either 1 or fi as discussed 

After the gradient is calculated, the l o d  amtance at the j'th boundary pixel is 

computed as 

where n ( N )  and n(1) are the pixel dues of the N'th and the first pixel along the 

normal. The edge pixel is used in the computation, contrary to the previous methods 
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The local acutance value is then nomalized by the maximum possible amtance 

value at point j ,  which is 

for %bit quantkation. 

Ai in equation (4.6) is maximum when the numerator is m k u m  and the de- 

nominator is minimum. The namaator is maximum when each pair of pixels has 

unit distance and a pixd value ciifference of 255. It is assurneci that the background 

of an object does not include another abject: and that the denominator can have a 
9 

minimum value of 1. 

Equations (4.6) and (4.7) are applied at all edge pixels. After aU normalized local 

acutance values have ben d d a t e d ,  the final acutance is computed by averaging 

the normalized local acutance values over a l l  pixels on the boundary as 

where A is the final acutance value and B is the number of pixcls on the boundasy. 

Acutance A above is a dimensionless quantity similar to the one defined by Eiikgins 

and Jones [39]. 

The most important Merence between the proposed algorithm and the previous 

dgorithms [38, 481 is in the definition of the gradient. Accotding to the original 

definition given by Eiggins and Jones (391, amtance or edge sharpness is related to 

the mean-squared gradient of the edge. The dgorithms of Rangayyan and Elkadiki 

[38] and El-Farsmawy et al. [48] used the RMS value of aveaged differences. 
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Semndly, the previow method of taking the differeaces between correspondhg 

pixels across the edge is dependent on the knowledge of the exact position of the 

edge pixels. The exact position of edge pixds cannot be detesaulnecl for most nahirsl 

images. In real situations one ûui identify only a region containhg the edge instead 

of h d h g  the exact edgtpixel. Approximating the desivative by taking diEerences 

across the edge pixel is arbitrary as well. Theoreticdy, the gradiemt at any point 

of a discrete function is approximated by the nonnalized dine~ence with respect to 

the previous point. The edge fundion of a digital image is a disaete b c t i o n  and 

hence the gradient of the edge should be caldated using the method descRbed in 

the proposed dgorithm based on diflerences between successive pixels. The method 

proposed in this section is independent of the knowledge of the exact edge pixel. 

Therefore the proposed dgorithm can be taken as the formal definition of acutance 

for digital images as it agrees with the original d a t i o n  of acutance given by Higgins 

and Jones [39]. 

4.4 Evaluation wit h Test Images 

The modified algorithm was evaluated with two test images (used by Rangayyan 

and Elkadjki [38]). The first image is an image of the letter R (figure 4.2(a)) which was 

produced by digitizing a printout of the letter R to a 256x256 array with 256 gray 

levels. The R image was compted by adding dody-distributed random noise 

in the range of +50 to -50 (figure 4.2(b)) and blwed using a 3x3 mean iovpass 

filter. Figures 4.2(c) and 4.2(d) show the blurred versions of the R image after one 
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p a s  and four pass of the mean lowpass filter, respedively. The original R imwe 

was converted to a bï-level (gray values O and 255) image (figure 4.2(e)) to h d  the 

maximum achievable acutance by the proposed method. 

The second test image is a dragody image (figure 4.3(a)) which was obtained by 

digitizing a natural image, The image is a 256x256 image with gray leveb varying 

from O to 255. The image was corrupted by adding dordy-distributed noise in 

the range of +50 to -50 (figure 4.3(b)). B l d  versions of the image were acquired 

by adjusting the focus of the digitking camera. Figures 4.3(c) and 4.3(d) show the 

blmed dragody images with level 1 and level 2 blurring, respectively. The origi- 

nal and blurred dragorifly images were enhanced by the 3x3 subtracting Laplacian 

operator [34] to venfy if amtance values are higher for the enhancd images. AU 

the processed and unprocessed versions of the image w a e  histogram e q u w  to 

permit direct cornparison. Figure 4.3(e) shows the original image &er histogram 

equalization, and figure 4.3(f) shows the original image after subtracting Laplacian 

and his togram equalization operatiom. 

For the sake of consistency, the same ROI boundary derived from the original im- 

age was used for computing amtance for ail the versions of each test image. Tables 

4.1 and 4.2 list the amtance d u e s  for the test images using the method by Ran- 

gayyan and Elladilci (381, the method by El-Faramawy et al. [48], and the method 

described in the previous section. From the resalts in the tables, it is sem that the 

ocutance values cornputed by the p r o p d  modified dgorithrn lie in a dzerent range, 

but fdow the same trend for Merent versions of the test images as exhibited by the 
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amtance values obtained by the other two methods: amtance dccreacles as sharp 

ness decreapes (with inaeased bl&g). Histogtam equalized images have i n d  

amtance values, 6 t h  the vexsions dter subtracting LaplaQan and histopam equal- 

ization opaations having I q e r  acutance values than the original and the one aRer 

histogram quakation done. The modifieci method, however, is more sensitive to 

noise, and acutance inmeases süghtly with the addition of noise. 

The magnitude of the amtance computed by the proposed method is small, which 

may be due to the over-restrictive nature of the maximum value ased for normalha- 

tion. The aigorithm takes the maximum pixel value difference between two adjacent 

pixels as 255 (assuming %bit digitization). However, within an ROI, the difkrences 

between two adjacent pixels both belonging to the ROI (and quite likeIy the back- 

ground as well) cannot be 255 because of the way the pixels are aggregated to form 

the ROI. The maximum d u e  of acutance, which occurs for a bi-level ROI, is thus 

far less than 1. 

We have p r o p d  a modified method for computing the acutance of aa ROI: 

the proposed aigorithm is an extension of the work by Rangayyan and Elkadiki [38] 

and ECFatamawy et al. [48]. The method uses the conventional clifference operator 

instead of a variablestep Merence operator. The proposecl algorithm can be taken as 

the discrete version of the original mean squared gradient definition of acutance as a 

continuous integral of the edge spread derbative proposed by Higgins and Jones [39]. 
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The validity of the aigorithm is demonstrateci by the fact that the messare daneses 

with blmrhg and increases witb sharpening. Furtha tests need to be conducted 

in order to establish the relation betwecn the acutance values pro@ by the new 

method and subjective ranking [50]. 

IEPA gives a quantitative measurernent of the gradients w o s s  boadaries of an 

ROI, which is very important for visud perception. Given the improved definition of 

IEPA in this chapter, image enhancement aigorithma can be designecf specifically to 

increase IEPA and hence improve the perceptibility of an ROI. In the next chapter, 

we WU propose 1D enhancement operators for application dong the normals of an 

ROI to improve edge sharpness, mtance, and hence perceptibity. 



Polygonal approximation of the 
boundary of the ROI 

Figure 4.1. Indexing of normal pixels inside and out side an ROI. 



Figure 4.2. Original, noisy, b l d ,  and bi-level versions of the R image: 
(a) Original, (b) image with noise, (c) image blurred by one pass of the 3x3 mean 
filter, (d) image blurred by four panses of the 3 x3 mean filter, (e) bi-level image. 



Figure 4.3. Original, noisy, blurred and e n h d  versions of the dragody image: 
(a) Original, (b) image with noise, (c) image with levd 1 blurring by lens misfocus, 
(d) image with level2 blurring by lens misfbcus, (e) original image affer histogram 
equalization, (f) original image &et subtracting Laplaician and histogram equaliza- 
t ion operations. 



Table 4.1: Image edge profile (IEP) acutance values of the original, noisy, blurred, 
and bi-level versions of the R image obtained by using the method by Rangayyan and 

, 

, 

Images 

Original R 

- - 

Blued twice 
Blurred thrice 
BIurred four t h e s  
bi-level 

Elltadiki, the method by El-Faramawy et al., and the proposad method. 

IEP acutance values by 

0.339 
0.313 
0.278 
1.000 

the pro@ " 

method 
(X LOO) 
0.205 
0.232 
0.182 

the method by 
Rkngayyan and 

Elkadiki 
0.430 

0.442 
0.375 
0.245 
1.000 

the method by 
El-Faramawy 

et al. 
0.587 
0.562 
0.581 

Original + noise 
Blurred once 

0.395 
0.373 

L 

0.168 
0.158 
0.152 
O A43 

I 



n ~ m a ~ e s  I IEP acutance values by 
1 the method by 1 the rnethod by / -the propcmd 
Rangayyan and method 

Original dragonfly 
' Original + noise 
Blur levei one 
Blur level M o  
Original histogram 
equalized 
Original after subtracting 

(1 tracthg Laplacian and / 1 1 

Laplacian and histogram 
equalization 
Blur level one histogam 
equalized 
Blur level one after sub- 

0.331 0.462 

trading Laplacian and 
hist ogram equahation 

e 

0.311 
0.271 
0.213 
0.415 

0.485 

0.357 

0.397 

hist ogram equalizat ion 
Blur level two histogram 
equalized 

I r  

Blur level two after sub- 

Table 4.2: Image edge profde amtance d u e s  of the original, noisy, b l d ,  and 
enhancd versions of the dragonfly image obtained by using the method by kgayyan 
and Elkadiki, the method by ELFaxamawy et al., and the proposed method. 

0.452 
0.431 
0.438 
0.654 

0.650 

0.488 

0.522 

0.294 

0.313 

0.365 
0.213 
0.195 
0.682 

0.726 

0.320 

0.591 

0.414 

0.507 

0.275 

0.516 



CHAPTER 5 

REGION-BASED EDGE ENHANCEMENT 

As acutance is correlated wïth image sharpness (OIabarriaga and Rangayyan [50]), 

one possible approadi to image enhancement is to apply enhancement techniques in 

such a way as to increase the acutance of the ROI. Then, we may expect the perceived 

sharpness of the ROI to be increased as a r e d t .  A new image sharpening method 

designed on the basis of acutance is proposeci in this chapter. In this method, one- 

dimensional operators are applied to sets of pixels dong the n o d  at each boundq 

pixel of an ROI. 

5 -1 Edge Enhancement 

As discussed in the previous chapter, the concept of edge sharpness of an image 

is particularly important in the visual perception of an image. Grossberg [SI] stated 

that an important early stage of human vision involves the caldation of an edge 

map. He also proposeà that the perception of brightness is controlled by a dinusion 

process in which the perceived contrast of the edges acts as an insulation strength 

that partially blocks the dithision. Attenave (521 proposed that human beings are 

able to recognize objects starting from a very crude outline, and that edge detection 

may be the most important method of feature extraction in lowlevel vision. 

The psychophysical importance of edge sharpness refiects itself in recent adaptive 

image contrast enhancement techniques. Some of the m e n t  adaptive contrast en- 
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hancement teehniques have been dew1oped with a view to take expliut account of 

i o d  image structures (Morrow et aI. [35]). Perona and Malik [54, working in the 

context of edge detection and the theory of scalespace anisotropic dahision, deveL 

oped a way of produchg truly variable contextual regions fot eontrast enhancement in 

a manner very much Iüre the description of the human v i d  system given by Gros- 

berg [52]. Beghdadi and Le Negrate [55] used a modified contrast definition based on 

the detedion of edges within contextual repions. Cromartie and Pizer [56] discussed 

the importance of edges in contrast perception and outlined the devdopment of two 

adaptive contrast enhancement methods which take into account edge information in 

the image. 

Many methods are adable to inaease edge sharpness; they may be classified 

into two broad categories: fixed-neighborhood methods such as subtracting Laplacian 

and unsharp masking (see Gomalez and Woods [34]), and adaptive image sharpening 

methods. Sorne of the adaptive image sharpening and edge enhancement methods 

are reviewed below. 

Marr [57] and Hildreth [58] died on the knowledge that the human visuai system 

uses edge detection techniques in the early stages of visual pmcessing. They tried 

to understand and model this process, and on the bais of neurophysicai studies d e  

veloped a computational model for edge detection. Van Vliet et al. [59] developed 

an adaptive edge detection method based upon the detection of zero aossings in the 

output image of a nonlinear Laplacian filter adaptiveiy oriented to the direction of 

the local gradient. Moron [60] presented a gradient-determined gray level morph* 
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i0gica.l opening procedure for edge enhancement. Saint-Marc et al. [61] pro@ 

a nonlinear filtering method for dixontinuity-presembg smoothing; th& methods 

were able to achieve edge sharpening d e r  a few iterations. However, as the method 

was not primarily designed for sharpenïng the image, the enhancement achieved was 

not prominent. 

In section 5.2 we will discuss a region-based method for edge enhancement of bi- 

Ievel images. Though the method is intended to increase the edge-sharpnes in bi-level 

images, the concept can be extended to sharpen gray level images. 

5.2 Region-based Edge Enhancement 

As acutance ie related to the sharpness of the image, the image wuld be enhanced 

by using operators which inaease the adance of the ROI. Acutance is calculatecl 

using pixels dong the normal at each boundary point. The p r o p d  enhancement 

algorithm applies 1D operators on the normal pixels. The operators an derived using 

the following process. 

When an image is b l u d ,  the gradient of the edge is decreased, which is codhned 

by a reduced acutance value. The gradient of the edge becornes lower as the dinerences 

between the d u e s  of pixels belonging to the foreground (object) and the background 

become smallet. This impiies that the values of the background (or the foreground) 

pixels get farther fkom the average background (or the average foreground) value. 

The gradient value of a b l d  edge may be inaeased by processing the edge pixels 

so that they become closer to the foregmund (or the background) due. There are 
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two difBdties assocjated with this a p p d :  The fint dBicuIity lies in identifying 

the edge pixels; in real images, the edge pixds are not d&ed well. The second 

difüdty is that a priori knowledge of the image is not availab1e in most cases, and 

hence it may not be possible to ascertain the amount by which the pixel values need 

to be changed. The proposeci algorithm reduces the gray level difEerences between 

the edge pixels and the foreground (or the background) pixels without assumuig any 

pnor knowledge of the edge pixels or theV dues before blurrhg, as follows. 

The normal pixels at each boundary point are found by the method pro@ by 

El-Foramawy et al. [48] and summaRzed in chapter 4. The enhancement algorithm 

starts with the farthest normal pixel in the background and proceeds towards the 

ROI boundary dong the normal, while applying an operator such that the processed 

normal pixel values get closer to the background value. The ID operator used is 

where n is the normal pixel array, j is the index of the pixel under consideration, 

and M is the index of the boundary pixel in the n o d  array (see figure 4.1). The 

operator in equation (5.1) applies more weight to the pixel closer to the background 

than to that closer to the boundaty. The changed pixel value is successively used for 

processing subsequent pixels. 

The operator is applied dong the normal pixels at each ROI boundary pixel. Some 

pixels may be selected for processing more than once. There are two approacbes to 

consider regarding multiple processing of a normal pixel. The first approach is to d o w  
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several modifications to the same pixel and then to take the average of the p d  

d u e s .  The second approach is to proces each pixel only once by using fiags. We 

observed in our experknents that the secund approach provides better performance 

than the h t .  

A problem associated with the operator in equation (5.1) is that false contours 

may appear in the processed image. As the operator is a ID operator, it processes 

a pixel on the basis of its two neighbors only, instead of the 2D konnected or 8- 

connected neighborhood. As a result, the value of the processed pixel may change 

drasticdy after processing when compared to the unchanged neighborhood, redting 

in false contours. To prevent this problem we add a restriction sach that the difference 

between a pixel value before and after processing is les than a threshold d u e .  If the 

processed pixel vaiue changes by more than the thteshold, then the algorithm retains 

the original d u e  of the pixel and dws not mark it as "processed", and the pixel is 

available for further processing. The value of the threshold is determinecl by trial and 

error . 

The algorithm compares the relation between the j'th and the ( j  - 1)'th pixel 

before and after processing. If the d u e  of the j'th pixel was less (more) than the 

d u e  of the ( j -  l)'th pixel before processing but becornes more (less) &a processing, 

then the algorithm retains the ong.ial value of the pixel. The pixel is not marked as 

processed, and is available for iùsther processing. 

For processing nomid pixels belonging to the foreground, the aigorithm is the 

same as for processing the background pixels; howeva, the sense of Merentiation 
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dong of the normal array is in the o p p i t e  direction (see figm 4.1). The operotor 

used for processing the foreground pixels is 

where N is the number of pixels in the normal army and M is the boundq pixel 

index. 

The operator in equation (5.2) applies more weight to the pixel which is closer 

to the foreground or ROI enter than to the other pixel used in the differentiation 

operation. For maintaining the mutual relationship between neighboring pixels, the 

algorithm compares the j'th pixel with the ( j  + 1)'th pixel. 

The image enhancement algorithm was tested on tm synthesized images. The first 

image is a 256x256 synthesized image containhg a d o m  square of size 90x90 and 

gray levei 128 on a uniform background of gray level255 (figure 5.l(a)). The second 

image is a 512x512 bi-level image with Valpious objects in the form of rectangles, 

circles, and triangles. The gray level value of the objects was 0, with the background 

being a constant of 255. The various objects were allowed to intersect, with the gray 

level of the intersection being O. Each region is thus d o r m  (Le. the second test 

image is piece-Wise constant). Figure 5.2(a) shows the second test image. Both the 

images were blurred once by applying a 7x7 mean filter; the correspondhg images 

are shown in figures 5.l(b) and S.2(b), respectively. 

The first test image ras  sharpened by 3x3 subtracting Lapladan, 3x3 unshaip 
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masking, and the pro- method. The pixel dues in the p- images wete 

linearIy mapped to the range 0-255 for display. The conventional spatial domain 

sharpening operators (the subtracting Laplacian operator and the unsharp masking 

operator) did not produce any significant improvement in the images; fisrther, they 

produced noticeable edge ar t i f ' s  in the proeessed images. The different images in 

figure 5.1 illustrate the enhancement achieved by the proposed method and also by 

the conventional sharpening operators. Edge profiles for the original, b l d ,  and 

the processed images are shom in figure 5.3. The profiles confirm that the proposed 

method sharpem the image more than the conventional methods, and furthet that 

the edge aztifact produced by the 3x3 operators is absent in the result of the proposed 

method. 

The acutance dues  (computed by the proposed method described in chapter 4) of 

the original, blurred, and processed versions of the square image ate listed in table 5.1. 

From the table it can be observed that the subtracting Laplacian operator increases 

the acutance & of the blmed image. The increase in acutance value due to the 

unsharp masking operator is less than that produeed by the subtracting Laplacian 

operator. The p r o p d  dancernent algorithm hcreases the acutance value by the 

largest extent. 

The second test image was sharpened by applying the subtracting Laplacian opera- 

tor and the p r o p d  method to each of the five objects in the image. The subtracting 

Laplacian operator produced edge artifaets and did not produœ good enhancement. 

On the other hand, the image was sharpened considerably by the proposed method. 



Figure 5.2 shows the different versions of the second test image, and figure 5.4 shows 

representative edge profiles of one of the objeets in the images in figure 5.2. The p w  

fies show that the proposed rnethod inaeases sharpness more than the subtncting 

Laplacian operator. However, figure 5.2(d) shows that some artifads appear at the 

corners of the objects. Note also that the circular region has been sharpened to a 

laser extent than the other regions. 

The acutance values of the five regions in the four images in figure 5.2 are listed 

in table 5.2. The blurred regions have mach less acutance values compared to their 

origind dues. The acutance d u e s  are slightly increased by the subtracting Lapla- 

cian. The proposed method increases the acutance values by a larger factor than the 

subtracting Laplacian. 

5.4 S n m m a r y  

We have suggested a method for increasing the sharpness of an image on the 

basis of its acutance property. The method has shown much bettei performance 

than conventional spatial operators (such as 3x3 subtracting Lapl& and unsharp 

masking operators) and fiequency domain sharpening operators (e.g. Buttetworth 

high-emphasis filter; results not shown here) when applied to test images. The p m  

posed method has achieved the main objective of the work - that of enhancing edge 

sharpness without artifacts such as overshoot and undershoot (tinging). 

Initial tests of the methods, as reported here, have been limited to bi-level, synthe- 

sized images. Thholding the blurred image could be an effective way to remove the 



effects of b l d g  in bi-levd images. Howeva, wwhi thresholding restores the sharp 

ness of the image, edges are ofken d i s p 1 d  in the enhancd image. The pro@ 

enhancement &orithm maintains edges in ahost the same positions as in the origi- 

nal image. Restoration flters such as the Wiener filter [34] lrequire exact knowledge 

of the blurrîng function. The proposed method, on the 0th- hand, works without 

any a priori knowledge of the blurrhg fùnction or the origind image. 

The propod  rnethod has some minor limitations as mentioned eariier. The prob- 

lem of corner artifacts is due to diffidties in finding the normal pixels at corners. 

The boundary of a cirdar ROI cannot be very welI approximated by a finite number 

of linear segments; thus the degree of enhancement is less for a cirdat ROI. mese 

limitations need to be addresseci in future work. 



Figure 5.1. Original, blurred, and sharpened versions of the first test image: 
(a) original, (b) b l d ,  (c) enhanced by subfracting Laplacian, (d) enhanced 
by ullsharp masking, (e) enhanced by the proposed method. 



Figure 5.2. Origind, blurred, and shaqened versions of the second test image: 
(a) original, (b) b l d ,  (c) enhand by subtradïng Laplacian, (d) enhanced 
by the proposed method. 
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Figure 5.3. Edge profiles of the images in figure 5.1. 
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Figure 5.4. Edge profiles of the images in figure 5.2. 



Tabie 5.1: Acutance d u e s  for the dinerent versions of the synthesized square image 
in figure 5.1. 

, 
0.43 
0.16 
0.23 
0.19 
0.31 

' 

' 

Table 5.2: Acutance d u e s  for the different versions of the synthesized test image in 
figure 5.2. 
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,, e 
ongina 
% I d  
Enhanced by subtracting Laplaàan 
Enhanced by ansharp masking 
Enhmced by the proposed method 

r . 
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Y 

Original image 1 Blurred image 1 Sharpened by 1 Sharpened by 
Acutance times 100 
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the proposecl 
method 

0.46 
0.36 
0.50 
0.46 
0.47 
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I 
2 
3 
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0.59 
0.56 
0.71 
0.75 
0.70 

0.34 
0.22 
0.32 
0.28 
0.04 

subtracting 
Laplacian 

0.40 
0.23 
0.45 
0.34 
0.37 



CONCLUDING REMARKS 

6.1 Summary 

This thesis eduated adaptive-neighborhmd or region-bd image processing 

techniques. The techniques dealt with two different image processing pmbl-: Un- 

age restoration in the presence of multiplicative noise, and analysis and enhancement 

of edge-sharpness of objets present in an image. 

The discussion on image restoration started with a generd review of selected &st- 

ing noise filtering techniques. The filtering methods were categorized as local versus 

global methods and fixed versus adaptive methods. Four noise filtering methods were 

discussed in detail in chapter 2. The kt three (the ATD LMS filter, the ARW LMS 

filter, and the ANNS filter) are adaptive filtering methods but designed to restore - 

images with signd-independent additive Gaussian noise; these methods do not work 

well in the presence of signal-dependent multiplicativ=noise. The fourth method (the 

3 x 3 multipücative noise füter of Kuan et al.) is a fixed-neighborhood multiplicative 

filter which worked reasonably well in restoring images degraded by multiplicative 

noise. 

In chapter 3, an AN filter for removing multiplicative noise was presented. Appli- 
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cation of the methods on the test images showed that fixed-neighborhood methods, as 

a result of Iack of accommodation of nonstationary image statistics, often smooth the 

high-fkequency infornotion in the noisy image. The AN method, on the other hand, 

provides better approximation of local stationatity, better estimation of the signal and 

noise statistics, and hence improves noise reduction without blurring object edges, It 

was shown that repeated application of the AN method h t h e r  improves the given 

image. It was dso shown that the method works better as the ANS p w n  match 

more closely with the actual objects present in the image. The AN multiplicative 

noise filter was shown to produce better images than the other methods discusseà 

(the mean and median filters, the ATD LMS filter, the ARW LMS filter, the ANNS 

filter, and the 3x3 multiplicative noise filter) in terms of both visual qudity and 

MSE. 

6.1.2 Edge Sharpness 

In chapter 4, the focus was shifted to the measurement of edge sharpness. The need 

for a quantitative measure of edge shqness was discussed fmt. Then, established 

methods of computing measures of edge shqness or acutance were presmted. The 

methods of Rangayyan and Ebdiki and E l - fmawy et al. for computing amtance 

(IEPA) were discussed in detail. A modified formula for computing the IEPA was 

presented: the p r o p d  method computes acutance on the bais of the continuous 

gradient dong the nomals to the ROI boundary pixels, i n s t d  of approximathg the 

gradients by dinerences between corresponding pixels across the edge. The acutance 
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vahe cornputed by the method inaeases with inaease in sharpness of the image and 

decreases with b l k g .  

Chapta 5 presented a region-based edge enhancement algorithm which a b  at 

increasing IEPA, and hence at improving the edge sharpness of each object p-t 

in the image. At the beginning of the chapter, the importane of edge shsrpness 

was reviewed again and the influence of the concept of edge sharpness on recent 

image processing techniques was discussed. A review of some fixed and adaptive edge 

sharpening methods for gray level images was presented. A rnethod for improving edge 

sharpness in images of bi-level objects was proposeci. In this method 1D operators 

are applied on the normal pixels at each boundaxy point of each object in the image. 

The operators are designed such that the differences between the foregroud and the 

background pixels are increased, and hence the edges get sharper. 

The proposed method shqens the image by sharpening each object of the image 

separately instead of sharpening the image as a whole as is the case with mmt of 

the existing image sharpening dgorithmp. The method does not assume any a priori 

knowledge of the degraded image. The method was applied to increase the edge 

shaspness of bi-level images and it was shown that the method worked significantly 

better than conventional fixed-neighborhood shazpening methods; the observation 

was supported by increased acutance values of the enhmced regions. 



6.2 Suggestions for Future Work 

Although v a y  good results have been obtained in this work in image restoration 

and edge enhsncanent, there are many anas which are open to further impmvement. 

The ideas presented in this thesis may be extended and applied in many other &&hg 

image restoration and image enhancement problems. 

The concept of the AN fdter for restoring images with multiplicative noise can 

be extended to filter Poisson noise in nudear medicine imagiag and other Srpes of 

signal-depadent noise. Further investigation is warranteci towards developing more 

sophisticated region growing methods suited to different image and noise chzuacter- 

istics. Inclusion of a debiurrïng step to take into account shift-variant point spread 

functions would be the next logid, but more chdenging, step. 

For the continuous-gradient-based IEPA measluement, t here are two limitations 

which can be ex;uïiined in hture research. The method is sensitive to noise as acu- 

tance inmeases siightly with the addition of noise. Also, the maximum value of 

acutance computed by the method, which occurs for a bi-level ROI, is Less than 1. 

For the method of region-based edge enhancement, more accurate algorithm for 

hding the normal pixels at sharp corners of ROIS and to the boundary of cirdat 

ROIS should be design&. The present method concentrates on improving edge sharp 

ness only. In future work, the pibîl it îes of enhanchg or sharpening the interior 

details of regions with gray level variations by suitable modification of the present al- 

gorithm need to be ucplored. The effectiveness of the algorithm in enhancing naturd 

and medical images should also be tested. 
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