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Abstract 

Hydraulic fracturing is an essential tool for economical development of shale gas and 

tight gas reservoirs. Analysis of the performance of fracturing jobs and optimization of 

the treatment design requires modeling which accounts for all important features of the 

process and ideally covers both the treatment and post-stimulation production of the well. 

From micro-seismic monitoring and the stimulated wells production data it is now well 

established that the productivity of the wells is due not only to the classical tensile single 

plane fracture (SPF), but to the development of an enhanced permeability region 

(stimulated reservoir volume or SRV) around it caused by shear fracturing and/or 

stimulation of existing dual porosity. The shape and size of the SRV, and the 

permeability enhancement in the SRV depend on both the injection process and on the 

geomechanics of the reservoir (i.e., development of complex fracturing). Current 

techniques are not able to predict the SRV dependence on fracturing job and rock 

mechanics parameters, which precludes any meaningful optimization. 

In this work we have developed a new 3-D coupled geomechanical and flow model 

for analysis and optimization of tight and shale gas stimulation treatments. The 

formulation includes the dynamic propagation of tensile (SPF) and shear fractures when 

the failure criteria are met. Non-fractured blocks are assumed to be of linear elastic 

material; whereas in the failed blocks, fractures and rock compliance matrices are 

homogenized to form an equivalent compliance matrix. Simple Mohr-Coulomb and 

tensile failure relationships were used as the criteria for detecting fracture creation. 

Hyperbolic function is implemented for each fracture normal deformation analysis which 

will be integrated into the elasto-plastic constitutive model to describe the fracture overall 

normal and shear deformation. The permeability enhancement during the fracturing 

process is computed and is the principal coupling between the flow and geomechanics. 

The region of enhanced permeability with respect to its initially low value presents what 

is called in the literature the stimulated reservoir volume. 

Flexibility of the code to select either tensile or shear fracturing mechanism or 

combination of both allows various scenarios to be examined.  Different cases of 2-D and 
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3-D simulations are presented which demonstrate some important features of the process. 

First, it is found that a wide SRV can result in the case where only shear fracturing is the 

dominant mechanism, and its width depends on the horizontal stress contrast as expected. 

Second, the loss of elastic coupling due to shear failure and relatively low permeability 

enhancement of the growing failed region require increasing pumping pressure with time 

for further failed zone growth, even though the injected fluid is of low viscosity (water). 

Further, under high injection pressure, an efficient fracture elasto-plastic constitutive 

model developed drives both maximum and minimum effective stresses to zero or tensile 

and therefore creation of tensile fracture can be predicted simultaneously with shear 

fracturing. This will then provide means of modeling proppant transport in some 

fracturing cases. The examples also show that in order to obtain a relatively wide SRV 

development, the effective rock cohesion should be of low magnitude. This may be 

explained by the presence of microfractures and other planes of weaknesses, or by 

reactivation of pre-existing, sealed natural fractures. Wider SRV propagation is also 

contributed when the initial reservoir pressure is abnormally high in magnitude. In 

general, closeness of the reservoir initial conditions to shear failure surface is the key 

reason for a wide SRV growth.  

The new model is a significant step towards development of an integrated predictive 

tool for the optimization of shale gas development and offers a valuable insight into the 

(still debated) mechanics of shale stimulation. The approach, based on pseudo-continuum 

treatment using elasto-plasticity combined with SPF modeling has a number of 

advantages compared to discrete fracture network modeling which is also being pursued. 
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CHAPTER 1 - INTRODUCTION 

The fabric of most geological formations is often complex and contains different 

features such as fractures, vugs and inclusions. Micro-fractures, macro-fractures and 

faults are different types of fractures distinguished by their scales from the smallest to the 

largest, which span several orders of magnitude. Naturally fractured reservoirs (NFR) 

usually are known for their abundant number of interconnected conductive fractures 

which substantially affect the formation fluid flow properties. In other types of reservoirs 

which are not even recognized as NFR, micro fractures and small non connected fissures 

usually exist. Although in reservoir modeling these small discontinuous micro-fractures 

are lumped with matrix flow properties and are often a source of anisotropy (Settari, 

2007), under some specific stress conditions they may coalesce to form very conductive, 

larger scale channels and completely change the formation rock flow properties. Efficient 

management and production of these types of reservoirs requires access to an accurate, 

powerful tool to simulate their unusual mechanical and flow behavior. Available 

simulators for modeling naturally fractured and stimulated (hydraulically fractured) 

reservoirs are unable to capture some important phenomena which happen in these types 

of reservoirs. Among them, fracture shear deformation and formation of new fractures 

caused by shear failure appears to be of primary significance. Its importance stems from 

the relation of fracture permeability to the aperture of fractures, which is changing due to 

deformations in the reservoir.  

In underground petroleum reservoirs, obtaining mine-back experiment data to study 

the complexity of fracture network propagation in hydraulic fracturing operation is not 

practicable. Until recently, the complex physics of fracture propagation was estimated 

and interpreted by the pressure data analysis. During the past decade microseismic 

monitoring and tilt fracture mapping technologies have been implemented to characterize 

many hydraulic fracturing treatments. The results of such mapping reveal that the 

stimulated zones are quite diverse, ranging from planar tensile fracture to quite complex 

fracture growth extended across a large region (Weijers et al., 2005; Cipolla et al., 2008). 
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The majority of treatments have shown off-planar and network type of fracture 

propagation especially in the stimulation of tight and shale gas reservoirs. The 

reactivation of the  pre-existing planes of weakness (i.e., natural fractures, micro-

fractures, fissures) during hydraulic fracturing (in particular shear displacement) trigger 

the micro seismic events and the observed complexities (Gale et al., 2007; Nassir et al., 

2012). 

Complex fracturing invalidates some of the basic assumptions made in conventional 

tensile fracture modeling including elastic coupling or the complete surface integral 

solutions (Barree and Winterfeld, 1988), constant permeability in the leak-off equation 

from fracture face and the 1-D assumption of the leak-off. "Elastic coupling" simply 

means that the entire rock mass is elastically coupled such that all stresses and 

deformations interact. These assumptions control the tensile fracture net pressure and the 

growth rate of the fracture wings as well as the containment. Barree & Winterfeld 

furthered illustrated that the slippage along the planes of pre-existing natural fractures 

leads to the loss of elastic coupling in the rock mass and each sheared block deforms 

separately. They concluded that understanding the implications of the slippage and shear 

failure on the fracturing treatment design requires further work. 

In many oilfield operations in naturally fractured, conventional or non-conventional 

reservoirs including stimulation of coal beds and shale gas formations, SAGD (Steam 

Associated Gravity Drainage), water flooding, gas injection, CO2 sequestration and waste 

water disposal, some type of fluid has to be injected into underground formations. In 

most of the time, maintaining injection pressure below formation fracturing pressure 

restricts economical rate of injection, especially when severe formation damage is 

involved. In stimulation operations, the goal is to fracture the formation intentionally. 

Therefore, it is of particular interest to investigate the geomechanical phenomena 

associated with near or above fracturing fluid injection and to determine the respective 

variation in well injectivity performance. These phenomena include normal/shear 

deformation of existing fractures and creation of new fractures by shear failure. Such 

mechanical behavior during high pressure fluid injection usually causes enhancement in 

formation permeability and is advantageous in field operations.  
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In a study conducted on conventional hydraulic fracturing, (Ji and Settari, 2008) 

modeled dynamic propagation of fracture by implementation of a fully coupled reservoir 

flow, fracture propagation and geomechanics. This approach comprehensively accounts 

for the changing stress, pressure, permeability and porosity of reservoir as well as their 

mutual influences. However it is assumed that only a single plane of fracture propagates 

in the stimulation operation which sometimes is not supported by the field observation 

and production analysis. In most fluid injection operations, especially in the fields 

subjected to high deviatoric stresses, the contribution of shear fracturing to the rock 

permeability enhancement is as crucial as fracture normal opening. Microseisms 

occurring as a result of shear slippage in the disturbed rock mass in hydraulic fracturing  

confirm the explained phenomenon (Warpinski and Teufel, 1987; Cipolla et al., 2008). 

The influence of fracture normal deformation on permeability has recently been 

investigated by coupled geomechanical modeling of naturally fractured reservoirs 

(Bagheri and Settari, 2006); however, the effect of fracture shearing on the mechanical 

behavior of fractured formations is not well understood. Furthermore,Bagheri’smodel

does not account for dynamic propagation of fractures (normal and shear) in the 

formation rock. Numerically, dynamic fracture propagation is defined as switching of an 

initially non-fractured Gauss point to a fractured Gauss point when the stress state 

reaches a certain failure criterion. Thereby, the main thesis objective is to investigate the 

effect of fracture shearing phenomena on mechanical and flow properties of the reservoir 

formation rock. This concept will be later used for modeling dynamic fracturing of 

initially non-fractured or slightly fractured formations. The critical pore pressure at which 

shear failure occurs, the orientation of induced fractures within the rock formation and 

the effect of transition from non-fracture mode to fracture mode on the geomechanics and 

the flow problems will also be investigated.  

1.1 Research objectives    

The main goal of the proposed research is to simply model fracture shearing and 

development of shear fracturing phenomena in the stimulation process of mainly non-

conventional reservoirs, by the means of solving numerically the fluid/solid interactions 
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and the respective constitutive equations. To elaborate more, the objectives of the 

research study may be listed as follows:  

1) developing a rather simple 3-D coupled flow and geomechanical code to test 

different constitutive models for shear behavior of fractured media and to set up 

and analyze example problems in large reservoir scale,  

2) analysis of stress and deformation variation in fractured media with changes in 

traction load and pore pressure using the pseudo-continuum approach, 

3) modeling of tensile and shear fracturing by pseudo-continuum method in porous 

media and investigating the initial reservoir conditions under which either tensile 

or shear fracturing is the dominant fracturing mechanism.  

Bagheri and Settari (2006) have extensively investigated the application of a single 

fracture normal deformation in coupled geomechanical/flow simulation of naturally 

fractured reservoirs. Ji and Settari (2008) have improved conventional tensile fracture 

modeling by coupling fracture propagation with geomechanical and flow simulation. This 

inter-disciplinary research project will continue and extend Bagheri and Settari (2006) 

approach towards modeling the shear and dilation behavior of jointed rock and Ji and 

Settari (2008) work towards modeling combined dynamic tensile/shear fracturing. The 

aim is to better understand the complex physics of the fracturing problem and to 

implement the model for meaningful optimization of the complex fracturing.  

In this work, the candidate has developed a new 3-D coupled geomechanics/ fluid 

flow model code similar to, but not as complex as the commercial code GEOSIM (used 

in Bagheri and Settari and in Ji and Settari work). The main advantage of this code is its 

simplicity which allows one to investigate the effect of different rock joint constitutive 

models on formation mechanical behavior under various loading conditions. The 

dynamic tensile/ shear fracturing and the resulting permeability variations in space and 

time in a coupled fashion can be investigated more in details.  

1.2 Methodology and thesis organization 

Achieving the goals of this research requires an integrated modeling in complex 

multidisciplinary areas of coupled fluid flow simulations, rock mechanics and fracture 
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mechanics. The methodology implemented to achieve the goals of this research study can 

be summarized as follows: 

1. Literature review: the review starts with studying the literature directly pertinent 

to mechanical behavior of both natural and artificial fractures either separately as 

a medium or with matrix as pseudo-continuum. Published literature related to 

hydraulic fracturing during low viscosity fluid injection, coupled flow/ 

geomechanical simulation, and other relevant subjects is also reviewed. This 

review is presented in Chapter 2. 

2. 3-D model development: Finite Element Method (FEM) is used to develop a 3-D 

coupled geomechanical - single phase fluid flow code. This code provides a 

framework for investigating different rock matrix or fracture constitutive models 

and testing methods of representing fracture networks by pseudo-continuum. In 

the simulator, fractures are treated in association with the matrix in the form of 

pseudo continuum for each element. For simplicity, single phase fluid flow FEM 

model has been developed to more focus on the geomechanical part of fracturing 

problem. In contrary to finite difference numerical method, FEM can easily 

handle permeability in the full tensor form with no special treatment such as Multi 

Point Flow Approximation, MPFA (Bagheri and Settari, 2006). The mathematical 

statement of the coupled flow and geomechanical system is presented in the first 

part of Chapter 3, followed by the development of the FEM discretization and the 

essential details of the numerical solution in Sections 3.1 and 3.2. Tensile and 

shear fracturing criteria will also be described in Sections 3.3 and 3.4. 

3. Single fracture constitutive model with normal and shear mechanical behavior 

will be explained in detail in Chapter 4. The averaging technique for combining 

the intact rockand thecontaining fracture setsknownasa“pseudo-continuum”

will be also described in this chapter.   

4. Model verification: different parts of the developed code will be verified using the 

existing analytical models in Chapter 5. Single phase fluid flow problems in radial 

and linear geometries are verified by their respective analytical solutions. A single 
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fracture deformation will be compared with both analytical and experimental data. 

The model will be also compared with an existing analytical solution for fractured 

blocks. 2-D conventional tensile fracturing analytical solution from the literature 

will be also used for the verification of the respective part in the code.  

5. The results of the various combined tensile/shear fracturing models in form of 

different example problems will be presented in Chapter 6, the Field Application. 

The conditions under which each of the mechanism prevails will also be 

investigated in more detail. The input data was selected to be representative of 

some real shale gas reservoirs to indicate the applicability of our study for 

modeling hydraulic fracturing in non-conventional reservoirs.  

 



CHAPTER 2 -  LITERATURE REVIEW 

Hydraulic fracturing was first introduced in the oil and gas industry in 1947 in 

Hudson gas field in the U.S. to increase the well productivity (Howard and Fast, 1970). 

The fracturing stimulation operations play a significant role in economical extraction of 

underground resources including oil, natural gas, geothermal energy or even water. In 

tight or shale gas and oil reservoirs hydraulic fracturing is a crucial step in each well 

completion to make the production economical. 

In conventional hydraulic fracturing after isolating the interval of interest for 

stimulation, clear fracturing fluid (pad) is injected at relatively high rate into the 

interested interval until two wings of tensile fracture open up. Slurry containing proppant 

is next injected into the opened fracture wings to both continue with fracture propagation 

and to provide sufficient space for fracture conductivity by the proppant after fracture 

closure. If the main fracturing fluid is quite viscous such as crosslinked polymer gel, it 

must contain some chemicals (called breakers) which decompose the crosslinked viscous 

structure into low viscosity fluid after some time. The treatment fluid can then more 

easily flowback into thewell.Thecleaningprocess is called the“clean-up”or “flow-

back”inwhichthefractureconductivityisrecoveredtoagreatextent.   

In addition to conventional hydraulic fracturing operations, unconventional 

fracturing is widely practiced in many field applications including waterfracs, water 

injection/disposal associated fracturing, induced fracturing in heavy oil and oil sand 

thermal operations. High fluid leak-off from fracture plane into the formation is a known 

characteristic of unconventional fracturing in high permeability formations which 

substantially alters the stress field around the main fracture plane (Settari and Mourits, 

1998). 

The literature review chapter comprises of four sections. In the first section 

conventional fracturing is briefly touched upon. Since the main purpose of this work 

project revolves around off-planar or shear fracturing, mechanical behavior of rock joints 

is reviewed next. The third part focuses on the methods by which jointed rock 
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constitutive models are averaged or pseudoized. In the last section some of the studies 

carried out on dynamic propagation of shear fractures in petroleum reservoirs will briefly 

be pointed out.  

2.1 Conventional tensile fracturing 

In conventional fracture modeling the evolving tensile fracture dimensions are 

related to the injection rate and pumping time. Fracture propagation is governed by 

material balance between the injected fluid, fluid loss (leak-off) and the rate of increase 

in fracture volume (Howard and Fast, 1970). The material balance in differential form is 

written as follows, 

   

  
        (2.1) 

where Vf is the fracture volume, qi is the fluid injection rate and qL is called the fluid 

leak-off rate. The fracture volume can be calculated at any time according to Eq. (2.1) but 

to calculate the fracture dimensions, one needs to assume specific fracture geometry and 

pressure distribution in the fracture. Some of the tensile fracture models are illustrated in 

the following sections.   

2.1.1 Carter 2D fracture model 

In the Carter 2D fracture model, it is assumed that the fracture grows with constant 

height and width, and only the fracture length increases along the fracture propagation 

(Carter, 1957). The pressure drop along the fracture length is negligible and the 1-D fluid 

leak-off at any point of fracture is a function of the exposure time of the point to the 

fracturing fluid. The leak-off velocity function is considered to be the same for all points 

and the function is expressed as below, 

        
 

        
 

   
    

  
 
   

        

(2.2) 
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where t is time, t0 is simply the time when the point x is fractured, C is the leak-off 

coefficient, k and  are the reservoir permeability and porosity, ct is the total 

compressibility,  is the fluid viscosity, Pf and PR are the fracture and reservoir pressure 

respectively.    

Eq. (2.1) can be rewritten in terms of fracture dimensions and combined with Eq. 

(2.2)  as follows,   

          

     

 

  
   

  
    

            
   

  
  

 

 

  
   

  
 

(2.3) 

The solution for the fracture area during fracture propagation was obtained using 

Laplace transformation and is expressed as below (Howard and Fast, 1970), 

         
   

    
    

        
 

  
        (2.4) 

where Lf  is the fracture length, hf  is the fracture height and Z is a dimensionless time 

given by    
     

 
. 

The Carter model gives appropriate solution for two cases. When the leak-off is very 

small in comparison with the fracture volume, it gives a linear growth of fracture length 

with time. On the other hand, when leak-off dominates, Eq. (2.4) gives a growth 

proportional to square root of time.WhileCarter’ssolutionisnotgenerallyusedinthe

design of the stimulation process, the equations for the leak-off are still used in all models 

which are decoupled from full reservoir flow solution. 

2.1.2 KGD fracture model 

Khristianovich-type model developed by Geertsma and de Klerk (KGD) is another 2D 

crack solution in which the fracture height remains constant during fracture propagation. 

The plane strain mode and smooth closure of the fracture tip (Geertsma and Klerk, 1969) 

are the two more assumptions in KGD analytical model. 
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Figure 2.1 – KGD type fracture (from Ji and Settari, 2008) 

 

The pressure gradient along the fracture is inversely proportional to cubic of the 

fracture width and it is expressed by the following equation (Gidley et al., 1989), 

  

  
  

    

    
   (2.5) 

The pressure drop is commonly low along the fracture length except close to the 

fracture tip along which the major portion of the total pressure drop occurs. Since the 

pressure is almost constant along the fracture, the relationship between the maximum 

fracture width, length, net pressure and the elastic properties of the surrounding rock is 

given by the analytical stress solution of a single crack embedded in an infinite plane as 

follows (England and Green, 1963), 

     
            

 
 

      

 
   (2.6) 

where E isYoung’modulus,v isPoisson’sratio,Pwf is the wellbore flowing pressure 

and   
 

 
         . The fracture shape vs. x is found to be elliptical except close to 

the tip. 

Eq. (2.4) can also be used for KGD model if the term w is substituted by an average 

width   which is related to the maximum width by    
 

 
     .  
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2.1.3 Other tensile fracturing models 

Other tensile fracture models have extensively been well developed in the literature. 

Since the main focus of this work is not on single-plane tensile fracturing, the models are 

briefly pointed here but more details can be found in many references such as 

Economides (Economides and Nolte, 2000),SettariorLi’sworks(Settari,2012;Liand

Settari, 2008).  

Perkins and Kern model (Perkins and Kern, 1961), further enhanced by Nordgern 

(Nordgern, 1972) is another 2D model in which the fracture height remains constant as 

the fracture grows. Pressure in any vertical cross-section is constant vertically, fracture 

deformation in vertical direction follows plane strain assumption and the maximum 

opening vertically is in the center of each cross-section.  The fracture shape in each cross-

section can be obtained by the same equations used for the KGD model, applied in a 

vertical plane. 

  

Figure 2.2 – PKN type fracture, figure from (Economides and Nolte, 2000) 

 



L i t e r a t u r e  R e v i e w                                             12 

 

 

For PKN geometry, similarly to KGD model, the fluid flow equations are derived 

and the relationships between the fracture length, width and injection time based on the 

fluid and rock properties and the injection rate are obtained.   

3D planar fracture models (Clifton and Abou-Sayed, 1981; Cleary et al., 1983; 

Cleary and Lam, 1983) and pseudo-3D fracture (Settari and Cleary, 1984) models are two 

other kinds in which the tensile fracture is allowed to propagate along and across the 

fracture plane perpendicular to the minimum effective stress. In full 3D models the 

solution of the three dimensional elasticity deformation problem is reduced to a 2D 

surface integral problem along and across the fracture plane. The fluid flow is solved in 

the 2D in fracture plane and the fluid flow in the third direction is simply expressed by 

Carter leak-off term in the 2D solution. Fracture width is controlled by the net pressure 

acting on the fracture integral surfaces. Fracture stress intensity factor which is a measure 

of the stress singularity in proximity to the fracture tip controls the growth of the fracture 

when it reaches a critical value.  

In pseudo-3D models however it is assumed that the fracture length is substantially 

greater than the fracture height such that deformation in each cross-section is independent 

of the fracture length or the distance from the fracture tip. The fracture width at any point 

is calculated from the fracture height at the corresponding cross-section y-z (if length is 

assumed to be extending in x direction) by implementing a 2D plane strain elasticity 

solution. An important feature of the pseudo 3D model is the key fact that through the use 

oftheconceptof“equilibriumheight”,thenumberofindependentvariablesisreducedto

two (one space direction and time) compared with three in the full 3D model (two space 

directions and time). The fracture fluid flow is also reduced to a one dimensional problem 

along the fracture length with variable cross-sections.  

The pseudo 3D model has variously been modified and implemented for practical 

use by different authors. For example Settari and Cleary (1984, 1986) implemented the 

2D PKN model to estimate the fracture length and the 2D plane strain vertical growth 

solutiontechniquetopredictthefracture“dynamic”heightwhichislinkedtothelateral

model.The“dynamic”heightasopposedto“equilibrium”heightisthenoveltyoftheir

proposed model. The lumped pseudo 3D model is another simplified approach in which 
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the same PKN and KGD models are used to obtain fracture length and height respectively 

if the fracture length is much larger than the fracture height or well contained (Cleary et 

al., 1983; Keck et al., 1984). The above is called lumped lateral model. In the lumped 

vertical model it is assumed that the fracture height grows larger than the length, in which 

case the PKN model is used for the height calculation whereas the KGD model is applied 

to obtain the fracture length. 

 

2.2 Mechanical behavior of single fracture 

Many rock masses are characterized by joints, fractures and other planes of weakness 

which reduce the strength and deformation properties of the rock structure (Hoek, 1983; 

Barton, 1986). Under different loading conditions, joints with weaker strength undergo a 

relatively higher strain than intact rock. Mechanical deformation of a single fracture 

usually occurs in a normal and two shear directions, each of which possesses its own 

stress-strain relationship. The interaction term, dilation, has commonly been investigated 

along with the shear fracture shear studies. The normal deformation models will be first 

reviewed briefly and this will be followed by more elaborate literature review of the joint 

shear models in the next section. It should be brought into consideration that the two 

terms “fracture” and “joint” areoften taken tohave the samemeaning in the literature

and we adopt this terminology throughout this work project. 

2.2.1 Fracture normal deformation 

Normal deformation of a single joint has been the subject of much active research in 

the early investigations on mechanical behavior of the jointed rock. It was first 

formulated by Goodman (1976) and later by Swan (1980) in an empirical approach in 

which Power law mathematical function was used to approximate the relationship 

betweenthejoint’snormal stress and normal deformation. Afterward, based on numerous 

experimental results, Bandis et al. (1983) proposed an empirical hyperbolic model for 

normal deformation of rock joints. This model is similar, in both formulation approach 

and functional form, to Goodman’s model; however, each fits best their own 

experimental results. It is obvious that empirical model cannot provide a reasonable 
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simulation of joint behavior under all laboratory test conditions. A general exponential 

function was later suggested by Kulatilake and Maama (2004) which proved to be the 

best fit for his experimental data in comparison with other empirical models. However, 

other models only require two experimental data points to be formulated whereas the 

formulation of general exponential function requires at least three experimental data 

points. Some theoretical models have also been developed using theories borrowed from 

different branches of solid mechanics; for example, the theory of plasticity, damage 

mechanics, and Hertz’s contact theory of elasticity (Plesha, 1987; Amadei and Saeb, 

1990; Jing, 1990). These approaches may suffer from the limitation that no existing 

mathematical theory of classical solid mechanics can conveniently represent all aspects 

of rock joint mechanical behavior. Hence, all approaches have one thing in common: 

their validity is dependent on the range of the certain experimental conditions under 

which they can fit the experimental data.  

2.2.2 Fracture shear deformation 

Under a certain normal load, the shear strength of rock joint is defined as the 

magnitude of the shear stress required to increase the shear displacement in a joint plane 

by a unit value. It is usually controlled by the confining normal stress as well as joint 

properties such as joint surface roughness, joint basic friction angle, joint compressive 

strength, rock compressive strength, and presence of infilled material. The higher the 

joint roughness along and the basic friction angle the higher the joint shear strength. The 

effective roughness of a single joint depends on the ratio of joint compressive strength 

over confining normal stress (Barton, 1973). The effect of infilled materials hinges on 

their material mechanical strength; however, it usually raises the value of the joint shear 

strength. The higher the intact rock compressive strength, the larger the joint compressive 

strength. 

Numerous constitutive relationships have been proposed to model shear stress – shear 

strain of a single joint which also have extensively been reviewed in the literature (i.e., 

Karami and Stread, 2007). They usually fall into two categories.  The first category is the 

incremental relationship, consisting of piecewise linear relationship between increment of 

shear stress and increment of shear strain (Archambault et al., 1990; Boulon and Nova, 
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1990). These relationships are usually developed by direct shear test under constant 

normal stress in the laboratory. The second category of constitutive relationships is the 

elasto-plastic relationship, derived from plasticity theory.  In these constitutive models, a 

joint pre-peak shear behavior is usually assumed to be elastic and recoverable; whereas 

the post-peak shear behavior is considered to be plastic. Some other authors have 

modeled the pre-peak shear behavior by shear hardening concept as opposed to the purely 

elastic shear deformation (i.e., Saada and Bianchini, 1987; Mahin Roosta et al., 2006). In 

these models, the hardening parameter is assumed to be dependent on the joint roughness 

or on the plastic portion of the pre-peak shear deformation of the joint. 

The knowledge of the peak shear strength and the respective shear displacement are 

two important issues in modeling the shear behavior of a single fracture. Obtaining peak 

shear strength criterion for rock joints has been the subject of numerous studies for the 

past three decades. Patton (1966), Ladanyi and Archambault (1969) and Barton (1973) 

were among the first to develop a rock joint shear strength criterion. Patton conducted a 

series of tests on the regular tooth-shape artificial joints under constant normal load. In 

his study he showed that the shear strength of a saw-tooth joint is controlled by the 

effective friction angle, summation of basic joint friction angle and the angle asperities 

build with fracture plane so called dilation angle. Peak shear stresses were expressed by 

the following equations. For low normal stress values: 

    bnp tan  (2.7) 

and for relatively higher normal stresses 

  bnp c  tan0   (2.8) 

where p is the peak shear stress, n is normal stress, b is basic friction angle,  is 

initial asperity or dilation angle and c0 is cohesion intercept. Figure 2.3 shows a typical 

sketch of a joint with idealized asperity geometry, the applied normal and shear stresses 

andthedilationangle.ItshouldbenotedthatPatton’sfindingisonlyvalidatlow normal 

stresses where no asperities are worn off.  
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Figure 2.3- A sketch of a joint with idealized asperity geometry (Nassir et. al. 2009) 

Jaeger (1971) proposed a non-linear failure criterion instead of the bilinear form of 

Patton’s.AtrelativelyhighernormalstresseshiscriterionapproachesPatton’smodelas

shown in Figure 2.4. Another empirical shear strength criterion was suggested by Barton 

(1973) which represents a continuous failure envelope from low to high normal stresses:  

 
















 b

n

np

JCS
JRC 


 logtan  (2.9) 

where JRC and JCS are the joint roughness coefficient and joint compressive strength, 

respectively.Thefirst terminsidethebracket inBarton’scriterion(whichiscommonly

called dilation angle) is an adverse function of normal stress. It implies that when the 

normal compressive stress increases, the mean effective asperity angle decreases and as a 

result the slope of the shear stress – normal stress curve becomes less in magnitude.   

For unweathered joint surfaces JCS is equal to the uniaxial compressive strength of 

the intact rock. Compressive strength of the weathered rock is estimated to be about 0.25 

of uniaxial compressive strength (Barton and Choubey, 1977). In addition, basic friction 

angle is replaced by residual friction angle, r, in the equation above.  Barton (1973) and 

Barton and Choubey (1977) suggested 10 standard profiles for different JRC from which 

by comparison JRC of the joint under study can be estimated. To obtain these 10 standard 

profiles, Barton and Choubey performed the tilt push/pull experiments on over 130 rock 

specimens. This criterion has the advantage of providing a gradual degradation of friction 
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angle with respect to increasing normal stress as opposed to Patton’s bilinear shear

strength criterion.  

  

Figure 2.4- Comparison between shear strength criteria of rock joints, (Mahin Roosta 

et al., 2006) 

The applicability of the Barton criterion is limited by the subjectivity in determining 

the JRC from the standard profiles. In addition, it only assumes an average roughness for 

joint surface asperities, neglecting the localized roughness and the manner in which the 

first and second order asperities affect the shear behavior of the rock joint. Beer et al. 

(2002) showed that often inherent errors are involved in estimating the JRC values when 

visual comparison technique is applied. They concluded that only for favorable joint 

profiles visual inspection provides an accurate estimate of JRC. Yang and Chiang (2000) 

considered the effect of localized roughness on joint surfaces in their study and have 

shown that the behavior of a composite tooth-shaped joint with two different angled teeth 

is first dominated by the steeper teeth while the lower ones participate only in the second 

part of shearing.   

Ladanyi and Archambault (1969) provided an extension of Patton’s jointmodel to

account for the sliding and shearing mechanisms found in natural rock joints. They 

characterized joint shear strength in terms of dilation rate and the proportion of contact 

area that has been sheared off, assuming joint asperities were rigid and the effective 

asperity angle equals the joint dilation angle. Seidel and Haberfield (1995) have shown 

that the latter assumption is not always valid and possibly leads to an underestimation of 
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the joint shear strength if the joint real declining dilation angle is accounted for. Joint 

dilation angle decreases due to elastic deformation of asperities while by applying the 

energy principle Seidel and Haberfield proved that the peak frictional resistance remains 

unchanged. They also demonstrate that both the elastic and plastic behavior of the joint 

asperity should be considered in order to predict the joint shear strength more accurately.  

To better quantify rock joint surface description parameters, some authors have used 

laser profilometry and fractal methods (Kulatilake et al., 1995; Kulatilake et al., 1998; 

Gerasseli and Egger, 2003). Kulatilake et al. proposed a peak shear strength criterion for 

anisotropic rock joints which not only considers the anisotropy but also accounts for the 

effect of backward and forward shearing directions on the peak shear strength. Afterward, 

they extended their method to include dilation as well as the effect of shearing through 

asperities on the peak shear strength. They also used the fractal dimension to characterize 

joint surface roughness. The effects of internal damage and surface degradation on joint 

shear strength behavior were not considered in their method. In addition, an average 

value for joint surface roughness was assigned in the criterion. In another study, 

Gerasselli and Egger (2003) first introduced three-dimensional surface parameters into a 

peak shear strength criterion. Then by using triangulation technique to present roughness 

on joint surface, they proposed a peak shear strength criterion as a function of the 

roughness and joint contact area in the shearing direction. The contacting area also 

changes during shearing in their method.  

The aforementioned criteria are only used to estimate the peak shear strength. 

However, a constitutive model is needed to provide the relationship for the pre-peak 

shear stress and shear displacement in a single joint. Some authors suggested a simple 

linear model for the pre-peak shear behavior of a joint which can easily be determined 

when the peak shear stress and the peak shear displacement values are provided (Nguyen 

and Selvadurai, 1998). The experimental results reveal that this relationship cannot be 

estimated by a linear approximation. In the analysis of the pre-peak shear behavior 

Clough and Duncan (1971) non-linear hyperbolic relationship between shear stiffness ks 

and normal and shear stresses  n and  has been widely used in the literature and is 

expressed by 
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where the parameters ,  and R f are obtained by the direct shear test in the 

laboratory and the peak shear stress  p
  is obtained from an appropriate shear failure 

criterion.  

Post-peak shear behavior of a single joint is totally different from the pre-peak and it 

is completely plastic. Among different existing joint deformation models, the Coulomb 

friction linear model is perhaps the simplest and the most frequently used one in which 

the post-peak shear behavior is assumed to be perfectly plastic. In this approach dilation 

is modeled by a pre-specified angle. This model provides reasonable results for smooth 

joints in which dilation is not associated with joint shearing (Brady and Brown, 2004). 

Numerous elastoplastic models exist in the literature (i.e., Ghaboussi et al., 1973; Roberts 

and Einstein, 1978; Desai and Fishman, 1987; Plesha, 1987; Cundall and Lemos, 1988). 

In these models the state that separates elastic from plastic behavior is defined by appeal 

to a yield criterion in the form of peak shear stress, as discussed earlier in this review. 

Some of the models are capable to model the strain-softening (decrease in shear stress in 

the plastic stage) often observed in experimental behavior of rough joints through 

defining a path dependent declining friction angle. For example, Cundall and Lemos 

(1988) proposed a continuously yielding model to describe shear behavior of rock joints.  

In their model shear deformation and dilation were considered to be non-linear. 

Furthermore, the internal mechanism of progressive asperity damage was captured and 

assumed to be a function of plastic portion of the joint shear displacement.  

To define the elastoplastic model, a known set of yield and potential functions are 

required. The yield function represents the surface at which shear yielding of joint occurs 

and the gradient of the potential function specifies the plastic flow direction. Idealized 

two-dimensional saw-tooth pattern for joint asperities, as proposed by Patton, was used 

by several researchers to define the joint’s yield and potential functions (Roberts and 

Einstein, 1978; Plesha, 1987; Selvadurai and Boulon, 1995). For instance Plesha (1997) 
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proposed the following yield criterion and plastic potential function for joints with saw-

tooth asperities: 

   bF  tancossinsincos   (2.11) 

  sincos Q  (2.12) 

The value of  in the above two equations does not remain constant due to asperity 

degradation caused by shearing. Plesha assumes that the asperity angle decreases as an 

exponential function of plastic work produced by shear, 

 







 

pW
pcdW

0
0 exp  (2.13) 

where  is the original asperity angle, c is the degradation coefficient and W
p
 is the 

plastic work produced by shear stress. 

Nguyen and Selvadurai (1998) extended Plesha model to reproduce the mechanical 

behavior of real joints, such as dilation under shearing as well as strain softening due to 

surface asperity degradation. They also showed that the effective asperity angle in 

Plesha’s model can be estimated from Barton-Bandis empirical coefficients; joint 

roughness coefficient (JRC) and joint compressive strength (JCS) as follows, 

 









n

JCS
JRC


 log  (2.14) 

Prior to peak shear stress, they assumed a linear relationship between shear stress and 

shear displacement. To determine the post-peak behavior, they appealed to the classical 

theory of interface plasticity. The applied yield and potential functions were the same as 

proposed by Plesha.  It should be noted that the two parameters JRC and JCS are scale 

dependent and should be corrected when they are used for problems with different joint 

lengths. For example Barton et. al. (1985) proposed the following empirical equations to 

correct JRC and JCS for the length effect, 
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(2.15) 

Jing et al. (1994) proposed a three dimensional model for rock joints with anisotropic 

friction and stress dependency in shear stiffness. They also validated the proposed model 

by the experimental results conducted on concrete replicas from two natural joint samples. 

Although 3-D modeling of rock joint mechanical behavior involves more complexity 

than 2-D model, the proposed 3-D yield and potential functions were comprehensive and 

at the same time simple enough to describe the joint mechanical behavior in a relatively 

accurateway. In this study, Jing’s approach is first slightlymodified and thenwill be

applied in the developed code. 

Son et al. (2004) also proposed a new elasto-plastic model for simulating softening 

phenomenon, dilation and surface degradation of rough rock joint. To calculate the 

plastic displacements after yielding, the non-associated flow rule was applied. 

Maksimovic’s equation andLee’s empirical formula for joint shear strengthwere used 

for yield and plastic potential functions.   

Now one may debate which model should be used for numerical simulation of jointed 

rock in fractured formations. Majority of the aforementioned shear models were 

formulated to match the shear experimental results obtained in the laboratory. To obtain a 

better match with the experimental data, some authors have tried to develop relatively 

more complicated models. In real field practices, there are so many uncertainties in the 

estimation of the parameters used in these constitutive models. Hence, the most 

appropriate constitutive model is the one which is rather simple meanwhile is capable of 

capturing the important aspects of the joint shear behavior such as changes in stress 

tensor and dilation. Coulomb friction model, Barton and Bandis joint model Barton et al. 

(1985) and the continuously yielding joint model of Cundall and Lemos (1988) are the 

three simple joint shear deformability criteria widely used in different codes. Simplicity 

of these models made them the most frequently used ones in practical applications.  
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Barton’sshearfailurecriterionhasbeenfoundtobestrepresenttheshearstrengthof

rock joints over a wide range of normal stresses and various joint surfaces. This model 

will be discussed in more detail in this study in Chapter 4. The elasto-plastic formulation 

which is used in our work is a revised version of Jing et. al. (1994) model.  

 

2.3 Jointed rock moduli 

Numerical simulation of jointed rock masses can be carried out using the explicit 

(distinct) method or the implicit (continuum) method. The former describes the individual 

behavior of intact blocks and joints whereas the later employs an equivalent continuum 

approach which is well adapted for complex engineering problems. One of the most well 

known explicit methods applied in rock mechanics is the distinct element method (DEM) 

where the joints and intact rock blocks are modeled discretely (Cundall and Hart, 1992; 

Morris et al., 2004; Karami and Stread, 2007). From computational point of view, the 

DEM approach is quite expensive but can be used to calibrate phenomenological 

continuum models both for porous rock samples and in situ blocky rock masses 

(Kulatilake et al., 2001; Cho et al., 2007). The advantage of DEM is that it can deal with 

large deformations of rock masses (block separation, splitting, etc.) in a natural way. The 

disadvantages are in running time inefficiency and difficulties in modeling non-persistent 

(discontinuous) joints and cracks.  

Effects of discontinuities in different rocks have been also studied in numerous 

analytical models in the continuum form. Singh (1973) established a continuum 

characterization for the mechanical properties of the jointed rock by summing the 

compliances of orthogonal joint sets. Gerrard (1982) and Fossum (1985) derived 

equivalent elastic properties for jointed rock assuming that both joints and the rock are 

elastic materials. Cai and Horii (1992) derived equivalent stress–strain response for 

jointed rock masses by assuming that the rock is elastic while the joints are elasto-plastic. 

They also accounted for the interactions between the joints. Gerrard and Pande (1985) 

have considered all the components of jointed reinforced rock to be elasto-visco plastic 

and derived the respective equivalent material properties. 
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Alternative methods to model discontinuous media include the discrete-continuum 

approach, (Lin and Cheng-Yu, 2006), extended finite element method, (Belytschko and 

Gracie, 2007) where the finite elements containing the joints are treated in a special way, 

and the ‘thin’ elements used to model joints (Desai and Fishman, 1987; Wang et al., 

2003). Among the aforementioned methods, the continuum or pseudo-continuum 

technique is widely employed in most commercial codes such as GEOSIM owing to its 

simplicity and numerical efficiency.  

2.4 Some previous studies on shear phenomenon in the reservoir 

stimulation literature 

Geomechanical evidences for shear failure and shear deformation have been observed 

in many petroleum fields including the Ekofisk field in the Norwegian sector of the North 

Sea. In this field, the deviatoric stress between the vertical and horizontal stresses has 

built up during the production period to the shear failure level and shear fractures were 

created in the chalk formation. Fracture shear deformation is usually associated with 

dilation and permeability enhancement. This phenomenon justifies the productivity 

improvement during the field production period despite the pore pressure reduction and 

reservoir compaction (Teufel and Rhett, 1991). Chin et al. (1993) have tried to simulate 

the shear induced compaction of the field during the production and water injection by 

DYNAFLOW code. They obtained some interesting results for the field compaction but 

the enhancement in the formation rock permeability has not been investigated. Even for 

the compaction calculations, their model suffers from the simplifying assumption that the 

strain-stress model for the fractured weakened chalk formation was simply a multiple of 

the non-weakenedchalkformation’sstrain-stress model. 

Some authors have presented alternative techniques for stimulation of fractured tight 

gas, coal beds or hot dry rock (HDR) reservoirs in which conventional hydraulic 

fracturing (single planar model) was inadequate. Barree and Winterfeld (1988) have 

shown that in hydraulic fracture modeling, some assumptions such as elastic coupling 

implemented in plain-strain or the complete surface integral solutions are invalid for 

many reservoirs which are susceptible to complex fracturing. These assumptions control 
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the rate of the growth of fracture wings and containment as well as the predicted net 

pressure. In their study, it was explained that the shear or slippage along the natural 

fracture planes or cleats in coals leads to the loss of elastic coupling in the rock mass and 

each shear block deforms separately. They concluded that additional work is required to 

fully understand the implications of the slippage and shear failure on the treatment design.  

Complex fracture propagation has attempted to be captured based on the interaction 

between the main induced fracture plane and the pre-existing natural fractures (Hossain et 

al., 2002; Dahi-Taleghani and Olson, 2009; Rahman and Rahman, 2009; Tao et al., 2009; 

Chuprakov et al., 2010; Jeffrey et al., 2010; McLennan et al., 2010; Keshavarzi and 

Mohammadi, 2012). The fracturing complexity is believed to be primarily to natural 

fractures which have been cemented and sealed during the diagenesis process (Laubach, 

2003; Gale et al., 2007) however can act as weak path for non-planar fracture propagation. 

In some of the studies fracture/ rock geomechanics solution is coupled with the fracture 

flow solution through iterative or explicit coupling techniques (Settari and Mourits, 1998). 

In these studies the natural fractures join the main plane when they are touched by the tip 

of the main fracture. Required refined meshing and high running time have forced 

majority of the example problems to be limited to 2-D plane-strain assumptions. Lack of 

a good descriptive constitutive model for the elements containing fractures might be 

considered as another limitation of such models.  

Hossain et al. (2002) in a comprehensive study on the Cooper Basin reservoirs in 

Central Australian (characterized by high deviatoric stresses and pre-existing natural 

fractures) investigated the effect of shearing of existing fractures and fissures on the 

formation rock permeability enhancement in hydraulic fracturing practices. Their model 

stochastically simulates field-representative natural fractures by processing field data 

from cores, logs, and other sources. When a fluid is injected into the reservoir, additional 

poroelastic stress which opposes the fracture pressure (“back stress”) develops, and

increases the normal stress acting on the fracture plane. The reactive back stress in their 

study was simply calculated simply from a formula derived for opening of a single 

fracture in a porous elastic medium. In other words, rather than solving the 

geomechanical part separately and coupling it with the flow model, the whole 
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geomechanical effect was incorporated using some empirical correlations and simple 

equations.    

Palmer et al., (2007) have attempted to model the complex phenomena happening in 

hydraulic fracturing of Barnett shale in the Fort Worth basin. The micro-seismic cloud 

around the wellbore has convinced them to think of a failed/stimulated reservoir volume 

(FRV/SRV) containing both shear and tensile fractures rather than assuming only a single 

plane of tensile fracture. In their study, at first they assumed that a stationary vertical 

fracture (with fixed height and length) existed and the pore pressure changes were 

described by confocal elliptical zones when the formation has being stimulated. Next, 

these zones were examined for shear failure. The stress change due to the compression of 

the inflated central fracture was approximated by Sneddon equation (Sneddon and 

Lowengrub, 1969).  

The injection permeability was then approximated from the FRV value by trial and 

error. No orientation was estimated for the stimulated fractures within the failure zone 

around the wellbore. To apply this approach one needs to know the production histories  

of different stimulated wells  in a specific field as well as each well’s net fracturing

pressure and the microseismic data which map out the extend of the failed zone. Then it 

will be possible to model the fracture stimulation for the new wells drilled in the same 

field. This is a reasonable, practical modeling technique; however, more physics still 

needs to be integrated in it. Similar to Hossain et. al. approach, their model cannot 

accurately solve the problem for the displacements and stresses.  

In the above studies, a comprehensive model has not yet been developed to distinctly 

solve the geomechanical part of the proposed problem in parallel, coupled fashion with 

the flow solution. Dynamic combined tensile and shear fracturing as well as the 

mechanical behavior of the induced jointed rock by changes in pore pressure require 

further studies. Moreover, these methods do not allow realistic prediction of the SRV as a 

function of different parameters and therefore are not capable of optimization of the 

treatments. 
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Bagheri and Settari (2006) have extensively investigated the application of a single 

fracture normal deformation in coupled geomechanical/flow simulation of naturally 

fractured reservoirs. Ji and Settari (2008) have improved conventional tensile fracture 

modeling by coupling fracture propagation with geomechanical and flow simulation. In 

this thesis, we continue the inter-disciplinary research  and extend Bagheri and Settari 

(2006) approach towards modeling the shear and dilation behavior of jointed rock and Ji 

and Settari (2008) work towards modeling combined dynamic tensile/ shear fracturing 

using a new coupled geomechanical-flow code which will be described in later Chapters 

of this thesis.  



CHAPTER 3 - MATHEMATICAL MODEL 

Modeling dynamic tensile/shear rock fracturing by the means of hydraulic fracturing 

fluid requires combination of two disciplines; fluid flow and the rock mechanics. In this 

chapter the 3-D single phase fluid flow formulation by FEM is first described. 

Mathematical equations for modeling stress-strain behavior of a rock continuum are then 

formulated again by the means of FEM numerical solution. The technique implemented 

to employ block by block tensile/shear fracturing will be described at the end. The aim is 

to develop the formulations to general matrix formats for the ease of coding. The 

programming language used for coding is FORTRAN which is a rather simple while 

powerful language.   

3.1 Mathematical single phase flow model 

3.1.1 Differential Equation and Boundary Conditions 

Fluid flow in porous media is usually described by three equations; material balance 

equation, Darcy transport equation and equation of state. Material balance equation for 

isothermal single phase flow is written as below (Lewis and Schrefler, 1998), 

  
 

q
t

p
mDm

KKKtK

Dm
mu T

T

sfss

T

T
TT 



































2

~

~ 3

11
.

3
.


     (3.1) 

where q is the source or sink term, Ks is grain bulk modulus and Kf is the fluid bulk 

modulus, u is the fluid velocity, DT is the rock stiffness matrix,  is the strain term, p is 

fluid pressure and  is the rock porosity. 

Velocity in the above equation is given by Darcy equation as follows, 
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(3.2) 

in which permeability is a second order tensor. 
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Note that when pore pressure increases, grain volume decreases; whereas, bulk 

volume increases. 

From Eq. (3.2) we will have 
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In the above equation p is a real-valued continuous bounded function. The rate of 

change in strain is given when the flow module is coupled with geomechanical module.  

Eq. (3.2) is usually solved by means of numerical methods as most of the time there 

is no analytical solution, especially in problems with complex geometries. In the next 

section the finite element numerical method for solving the differential equation will be 

explained in detail. 

3.1.2 FEM solution for single phase flow problem 

In the numerical solution method the differential equation is first discretized over 

space and time. Applying appropriate boundary conditions will be required next to make 

the numerical problem well defined. Finally, the system of linear equations is solved by 

the aid of a proper solver for system of linear equations.  

Compared with finite difference method (FDM), finite element method (FEM) has 

some advantages. General boundary conditions, complex geometry, and variable material 

properties can easily be handled by FEM. In most non-homogenous grid blocks, 

permeability is considered to be a 3 by 3 second order tensor with stress dependent 

elements. Since in finite element approach governing flow differential equation is 
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integrated over each discretized domain, permeability can be considered in its full tensor 

form. 

In FEM we rewrite Eq. (3.2) in an equivalent weak variational form. A linear space 

is defined as, 

V =  Functions v: v is continuous function on the domain Ωandhas a piecewise

continuousandboundedfirstpartialderivativesinΩ,andv (Γ)=0  

In terms of computation Eq. (3.2) can be written in a more useful, direct formulation. 

Multiplying it by any vV, and integrating over Ω, then we have, 
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IfweapplyGreen’s formulaon thediffusive term in the above equation, then we 

will have, 
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Since v at boundaries is equal to zero, the left term in the LHS of the above equation 

will become zero and hence, 
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 (3.8) 

Eq. (3.8) is called Galerkin variational or weak form of Eq. (3.6) due to the fact that 

the test or trial function v is assumed to be zero at all boundaries. 

We now construct the FEM for solving Eq. (3.8).First,let’spartitionthedomaininto 

a set of subintervals Ii, and then define the finite element space as below, 

Vh =  Functions v: v is continuous function on the domain Ω, v is linear on each 

subinterval Ii, and v (Γ)=0  

Now here the problem is to find ph   Vh such that,   
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This method is usually called the Galerkin finite element method. 

We introduce the basis or shape function   ,,,2,1, MiVx hji   
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That is i  is a continuous piecewise linear function on Ω such that its value is one at 

node xi, (i=j) and zero at other nodes. Higher order shape functions would definitely give 

more accurate results; however for simplicity the linear approximation is implemented in 

this study. M is the number of nodes in the discretized domain Ω. 

We now seek the solution of (1.9) in form of a function ph(x) which has a unique 

representation through the basis functions as, 
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where pi is the value of pressure at any node i. If we substitute Eq. (3.11) in Eq. (3.9) 

and for each j, take v in Eq. (3.9) to be equal to j then we will have, 
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This is a system of M algebraic equations involving M unknowns Mpppp ,,,, 321  . 
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The temporal term in Eq. (3.12) is also discretized over time by Implicit Euler 

method, 
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If we substitute Eq. (3.13) in (3.12) then the problem will be discretized both over 

space and time as follows, 
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Eq. (3.15) can also be written in form of p = (pi
n
 - pi

n-1
) as follows, 
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In Eq. (3.16) if the pressure coefficient matrices, for transmissibility and storage, are 

assumed to be at the n-1 time step, the fluid pressure solution is called explicit (with 

respect to nonlinearities). On the contrary if the coefficients are forced to be at the n time 

step, implicit formulation of the pressure solution in the matrix form will result.  

Since only single phase flow solution has been integrated into the coupled 

geomechanical-flow code, the explicit treatment of the coefficient matrices has found to 

be adequate. However, a better approach is to treat the coefficient matrices implicitly and 

solve the resulting non-linear equations by Newton method. Fracture creation and 

propagation may substantially alter the transmissibility terms and the Newton method 

would certainly prevent unnecessary oscillation in the pressure solution. 
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3.2 Mathematical geomechanical model 

Galerkin weighted residual method was employed once more in this work to 

approximate the solution for mechanical differential equations of geomaterials. 

Accounting for the body forces and assuming quasi-static condition, force and 

momentum balance for the bulk material reads,  

 3,2,1,;,0,  jib jiijjjij   (3.17) 

where bj is the body force per unit volume of the material. The strain and displacement 

relationship gives, 
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The variational form of linear momentum balance for the quasistatic loadings will be 

as follows, 
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where N is the shape function and t is the traction vector. In matrix form Eq. (3.19) 

can be written as follows, 
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Here K is the stiffness matrix and f is the external force. In the above equations,  is 

the element volume, p is the element pore pressure and  is the Biot`s constant for porous 

geo-materials. The Biot's constant in terms of the grain and skeleton compressibility is 

defined as below, 

 
b

gr

c

c
1   (3.22) 



M a t h e m a t i c a l  M o d e l                                              33 

 

 

3.2.1 Solving 3D Quasi-static problem using FEM 

3.2.1.1 General formulation 

A detailed FEM formulation of the 3-D quasi-static differential equilibrium problem 

subjected to different loading conditions will be addressed in this section. It should be 

noted here that in all of the following formulations the sign convention is positive for 

tensile stress. Eq. (3.17) after expanding in terms of indices can be rewritten as follows, 
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  (3.23) 

where for an infinitesimal control volume, jiij   (momentum balance requirement). 

Here to solve the problem, we implement Galerkin variational finite element method 

in which the trial function and weighting function are chosen to be the same (Kaliakin, 

2001). A linear space can be defined as follows: 

U =  u: u is a continuous function on , 
1x

u
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  are piecewise continuous 

and bounded on   

Now let’smultiplyEq. (3.23-I) by u1, Eq. (3.23-II) by u2 and Eq. (3.23-III) by u3 

with u1, u2, u3   U and integrate them over   
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  (3.24) 

IfweapplyGreen’sformula on the above equations it results in, 
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Since the above three equations are homogeneous, they can be combined into the 

form of a single equation as below, 
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The total stress, effective stress and, strain components can also be written in vector 

form as,  132312332211
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The second term on the RHS can also be written in vector form as, 
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Brick type elements are assumed in the current FEM formulation. The displacement 

at any point is the sum of the products of displacements at the point and their respective 

shape functions,   

 



8

1
~~

k
k

k uNu   (3.29) 

or      



























































































3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

n

n

n

n

m

m

m

m

j

j

j

j

i

i

i

i

u

u

u

N

u

u

u

N

u

u

u

N

u

u

u

N

u

u

u

              

 







































































3

2

1

3

2

1

3

2

1

3

2

1

s

s

s

s

r

r

r

r

q

q

q

q

p

p

p

p

u

u

u

N

u

u

u

N

u

u

u

N

u

u

u

N  (3.30) 

Shape function matrix can be written in the form of 
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and, 
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Hence we have,  
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For linear elastic materials, strain and displacement are related through the following 

equation, 



M a t h e m a t i c a l  M o d e l                                              36 

 

 

 






























































































































3

2

1

23

13

12

3

2

1

23

13

12

33

22

11

0

0

0

00

00

00

u

u

u

xx

xx

xx

x

x

x







  

or  

 
~~
uD


  (3.34) 

Substituting for the displacement vector  
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where the B matrix is derived as below, 

 




















































































































2323

1313

1212

33

22

11

00

00

00

0000

0000

0000

x

N

x

N

x

N

x

N

x

N

x

N

x

N

x

N

x

N

x

N

x

N

x

N

x

N

x

N

x

N

x

N

x

N

x

N

NDB

ssii

ssii

ssii

si

si

si













 (3.36) 

In order to continue developing the equations, it is crucial to have an appropriate 

constitutivemodel’whichintensorformcanbeexpressedasfollows, 
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With the use of (3.37), Eq. (3.28) will become   
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After substituting displacements for strain we will have 
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The first LHS term in Eq. (3.26) contains the traction forces,  

 
~~

333223113323222112313212111 .ˆˆˆˆˆˆˆˆˆ nnnnnnnnnnt T

ext     

 321
~

ˆˆˆ nnnnT   

and by writing the displacement in vector form  321 ,, uuuuT   we will have for 

traction term, 

   


 33222211223132121111
ˆˆˆˆˆˆ nnnunnnuI   

    


dnNudnnnu TT

~~~
3332231133 .ˆˆˆ   (3.39) 

If we consider the body forces then we will have,  
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or 
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where  

 

 



dBDBK mat

T
  and  
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(3.42) 


K  is the total stiffness matrix and 

~

f  is called the load vector which here is a 

summation of traction, pressure and body forces. Obtaining the components of the 

stiffness matrix is quite straightforward and they can be obtained using the following 

equation, 
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  (3.43) 

From chain rule we know that, 
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where J is the Jacobian matrix. 

The above equation can be expressed in another form as, 
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Since the shape functions are all given in local coordinates (1, 2, 3), elements of 

the B matrix in Eq. (3.36) should be transformed from global coordinates into local 

coordinates as follows, 
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(3.46) 

or 
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Therefore, matrix B will become 
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 (3.48) 

Since a linear shape function has been implemented here in the FEM formulation, 

the integration in Eq. (3.43) can be carried out by simply summing the respective 
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integrant values at eight Gauss points with the following coordinates in the local 

coordinates system, 
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 (3.49) 

3.2.1.2 Load vector 

Different types of loads can be applied depending on the kind of the problem which 

is being dealt with. In order to calculate the traction term in Eq. (3.42), the matrix of the 

shape functions needs to be expanded in terms of local coordinates (1, 2, 3) as below,  
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(3.50) 

The product of the transpose of the shape function matrix and the traction vector is 

expressed as, 
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Now we must integrate each term of the above vector over the boundary faces of 

For example, if the implemented brick type element is a cubic rectangle with the 

length of L, width of W and height of H, the integration for the first term becomes, 
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(3.52) 

Where the six faces are defined as 

         1,1,1,1,1,1,1,1,1,1 32123211   , 

         1,1,1,1,1,1,1,1,1,1 31243123   ,      

         1,1,1,1,1,1,1,1,1,1 21362135       

Finally the traction vector is reduced to the following format, 
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(3.53) 

Since quasi-static solution is followed above, the traction terms in nodes inside the 

volume surrounded by other nodes in total traction load compilation will become zero. 

To calculate the load induced by changes in the element pressure, simple integration 

over the volume of each element is required. In Eq. (3.16) the pressure terms are the 

continuum pressure at the nodes of the meshed system. In order to obtain the load vector 

resulting from the pressure change in (3.42), the pressure terms at the Gauss integration 

points are required. Here we implement linear interpolation function to obtain the Gauss 

point pressure from the respective nodal pressure.  B transpose is given in Eq.  (3.48) and 

 (theBiot’sconstant)isgivenbythefollowingequation, 

 
gr

b

K

K
1  (3.54) 
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where Kb is the bulk modulus and Kgr is the grain modulus. 

3.2.1.3 FEM solution flowchart 

The FEM solution flowchart is depicted in Figure 3.1. The model is first initialized 

based on the problem initial effective stress and displacement. The stiffness matrix for 

each element is then calculated and compiled together with matrices for other elements to 

obtain the global or total stiffness matrix. At the current time level the internal force 

vector is calculated from the current effective stress by 

  



dBF

n

T

nInt ~~
'  (3.55) 

All incremental loads (i.e., pore pressure, temperature and traction) are calculated 

and the external force is calculated using the following equation, 

 
extnIntext

FFF
~~~

  (3.56) 

 The residual force vector is defined as the difference between the external force and 

the internal force vectors as follows, 

 
Intext

FFR
~~~

  (3.57) 

Now it is the time to solve the system of linear equations for the displacement vector. 

Incremental displacement and strain vectors for each element can then be obtained from 

the global displacement vector and Eq. (3.35). Next, the effective stress for each element 

must be updated for the strain increment. By knowing the updated effective stress, the 

internal force vector for each element after any Newton iteration can then be calculated 

by Eq. (3.55). If the material constitutive model is linear elastic, the calculated total 

internal vector will be the same as the total external force vector which means that the use 

of more iterations is not needed. However, if the constitutive model is non-linear, the 

obtained total internal force is not usually the same as total external force vector (i.e., 

forces are out of balance). In this case the difference between the total external and 

internal forces is applied to the solution in subsequent iterations until the norm of the 
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residual vector falls below a specified small convergence norm. The iteration technique 

(called Newton Iteration) is widely used in FEM codes to eliminate out of balance forces. 

 

  

Figure 3.1 – Geomechanical loop flowchart 
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3.2.1.4 More on updating the stress vectors 

In any Newton iteration, the effective stresses should be updated. The procedure is 

rather straightforward. After Eq. (3.41) has been solved for the displacement, the 

respective nodal displacements for any element are extracted from the total displacement 

vector. Eq. (3.35) is next used to find each element’s strain tensor from its respective

nodal displacements. In order to update the effective stress, Eq. (3.37) can simply be used, 

if the D matrix remains constant with changes in effective stress. Otherwise integration of 

the D matrix over sub increment of strain will be required,  

  


plus

curr

dD
Tcurrplus

~

~

~

'

~

'

~





  (3.58) 

where the above integration for the fractured block is carried out by a numerical 

technique. Changes in total stress can be obtained from changes in the effective stresses 

and changes in the pressure according to the following equation, 

 p  '  (3.59) 

where the variation in the fluid pressure in the above equation comes from the fluid flow 

solution. 

3.2.1.5 Internal force 

In Eq. (3.40), if the nodal displacement term is moved into the left integral 

expression, the product of the B matrix and u vector will give the strain of the element, . 

Finally the integration of the product of B transpose and strain over the element volume 

will result in a kind of force which is called the element internal force,   
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mat
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k
mat

T
FdBduBDBudBDB 



























 








 ~~~

'  (3.60) 

In majority of real rock mechanical problems, the rock stiffness or the D matrix is a 

function of stress and varies within each time step solution. Therefore the resultant 
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internal force is not usually equal to the external force vector which necessitates the use 

of Newton iteration to eliminate these out of balance forces.   

3.2.1.6 Divergence control in Newton solution 

The solution technique implemented in the code developed in this thesis is the full 

Newton iteration in which the tangent matrix is updated at any iteration. A faster but less 

stabletechniqueis‘quasi-Newton’methodwherethetangentmatrixiscalculatedonlyat

the beginning of a time step. The latter technique works well for problems with small 

degrees of non-linearity; however, the injection/fracturing problem in this study is highly 

non-linear which requires the full Newton method implication. The main source of the 

non-linearity comes from the normal deformation of a fracture and the substantial 

changes in the normal stiffness ranging from zero to infinity within quite subtle change of 

aperture.  

In order to make the Newton method globally convergent, one needs to implement a 

line search algorithm in which at any iteration and after the full Newton update, the 

residual vector norm is checked to be less than the residual norm calculated from the 

previous iteration. In case of divergence (i.e., increasing norm), the Newton update is 

scaled back until the updated state is a better solution compared with the current state. 

Cutting the Newton update into half is an easy way to obtain the scaling parameter; but 

the optimum technique is to find the minimum of a quadratic or cubic functions for the 

first and subsequent steps respectively (Dennis and Schnabel, 1983; Wawrzynek, 1997).   

At any Newton iteration we will have two states: the current and updated. Current 

state refers to the properties which have successfully been calculated from the previous 

iteration. The residual vector norm with the negative sign at the current state is called the 

initial slope for the search line which is defined as               . A measure of the 

quality of the solution, m, for the current state can also be defined as         

          .  

When the current residual vector is applied to the system of linear equations with 

updated tangent, a displacement vector is obtained which is called the Newton 

displacement. Now the question is: For obtaining the trial displacement, should the whole 
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Newton displacement be added to the current displacement vector or should only a 

fraction of it () be used? This is expressed by 

               (3.61) 

For the first step  is assumed to be 1; accordingly the internal force and the quality 

of solution at the plus step can be calculated (              ). If mp is less than mc, 

then we proceed with = 1; otherwise a quadratic model is used to obtain an approximate 

for  only for the first step as follows: 

   
     

             
 (3.62) 

When  is known, the trial displacement can be obtained from Eq. (3.61). 

Accordingly the new internal force and the new “plus” quality of solution can be

calculated (              ). mp will again be checked to be less than mc, if it is not, 

then one needs to minimize a cubic function to find a better approximation for  as below, 

   
             

  
 (3.63) 

Where a and b can be obtained by the following equations, 

  
 
 
  

 

       
 

           
 

               
     

           

                    
  (3.64) 

In the internal iteration loop used for finding , the “prev” subscript in the above 

meansthe”curr”statefromthepreviousiteration..Forexampleifweareatiteration2, 

is from iteration 1 and prev is one, mp calculated at the iteration 2; whereas mp,prev at 

iteration 1 and so on.  

If for any reason the above procedure was unsuccessful and the Newton loop 

diverged, the solution will definitely require to be repeated using a smaller time 

increment (i.e., time step delta time must be cut). The technique explained in this section 

has been implemented in the developed code. 
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3.3 Tensile fracturing 

A tensile fracture located in an infinite continuum generally will propagate if the 

stress intensity factor at the tip of the fracture reaches the critical fracture intensity factor 

according to the linear elastic fracture mechanics (Sneddon and Lowengrub, 1969; Gidley 

et al., 1989). In this study, since the effective stress for each grid block at any time step is 

available from the FEM solution, a different, simple criterion is implemented. To define 

the stress condition at which tensile failure occurs we require  

 T3'  (3.65) 

Therefore the fracture will propagate if the minimum principal effective stress in the 

Gauss point next to the last fractured gauss point falls below the tensile strength of the 

rock material. Here we are not using a fracture mechanics criterion, but rather a strength 

criterion. After failure the minimum effective stress of the Gauss point will be set to zero 

and the forces between the failed Gauss point and the Gauss points around it will be 

rebalanced afterwards. Pseudo-continuum technique is then used to define the 

constitutive model of the failed block. 

 

3.4 Shear fracturing 

 Shear fracturing in brittle materials has been the subject of numerous studies in the 

literature both on micro and macro scales. Micro-scale analysis of shear fracturing is not 

the subject of the current work; however, the concepts are useful for analysis on a macro 

sale. Based on the classical fracture theory in brittle rock materials, under certain 

deviatoric stress (i.e., triaxial test), strain localizations will lead to coalescence of local 

micro planes of weaknesses into a rupture pattern which may or may not result in sharp 

discontinuity such as shear band or fracture. Under some other loading condition such as 

constant shear loading by fluid pressurization, the failure can also occur by diffuse 

instability mechanism in homogeneous kinematic field with no strain localization pattern 

(Wan et al., 2011). From mathematical point of view failure is described by a burst in the 

kinematic energy or a negative in second order work  of a given material system which is 
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caused by a sudden change in the material micro-structure or sharp decrease in the grain 

contacts (Nicot et al., 2007). The second order work in derivative form is simply defined 

as, 

                         (3.66) 

The above equation is more of a generalized failure of which fracture is a special 

case. In case of fracturing, for example in brittle materials, the orientation of macro-

fracture planes vary in different experiments depending on the rock mineralogy, 

heterogeneity, anisotropy etc., and usually build an acute angle between 20
o
 to 35

o
 with 

respect to the axial loading direction.  

The technique implemented here to model shear fracturing is based on the Mohr-

Coulomb shear failure criterion. The failure criterion requires the difference between the 

maximum and minimum effective stress to be large enough for the Mohr circle to touch 

the shear failure surface as shown in Figure 3.2 by the dashed line.  

 

Figure 3.2 – Mohr-Coulomb circle and shear failure criterion 

 

In the principal stress coordinates system, the Mohr-Coulomb shear failure is simply 

expressed as follows,  

      

    

      
   

      

      
 (3.67) 
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where 1 and 3 are the maximum and minimum principal stresses, S0 is the rock 

cohesion and  is the rock internal friction angle. 

After shear failure occurrence in a rock material, based on our simple assumption 

two conjugate sets of fractures are added to the rock constitutive model and hereafter the 

fractured rockmaterial is treatedasa“pseudo-continuum”.Theorientationsof the two 

fracture sets are calculated as follows (Nassir et al., 2010; Nassir et al., 2012), 

 sincos 311 nnn f


 ,   sincos 312 nnn f


 , 

42


 


  (3.68) 

where n1 = n1(n1x, n1y, n1z) and n3 = n3(n3x, n3y, n3z) are the maximum and minimum 

principal stresses directions.  

Shear failure is associated with a sudden release of kinetic energy. A special 

technique is implemented to soften the high deviatoric stress to a residual level or 

decrease the mobilized friction angle from a hypothetical peak value to a residual friction 

angle. At the moment of fracturing, the peak mobilized friction angle, the hypothetical, in 

the plane of created fracture is obtained from the respective normal and shear stresses 

acting on the plane of fracture as follows, 

          
 

  
  (3.69) 

According to Mohr-Coulomb criterion for the intact rock at the time of fracturing the 

shear stress is 

            (3.70) 

where n is given by 

   
       

 
 

       

 
     (3.71) 

If in the above equation is written as the summation of basic friction angle, b,  and 

a declining angle, , an exponential function for the declining angle has been introduced 

in the numerical method according to the following equation, 
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              (3.72) 

where u
p
 is the plastic shear displacement and m is the exponential coefficient. The 

function will then drive the peak friction angle to a residual friction angle, which is the 

same as the friction angle of the induced fractures. The main question in implementing 

the above technique is how to find a correct value for the m parameter. Figure 3.3 

illustrates how this mobilized friction angle softening technique reduces the deviatoric 

stress to a residual value after shear fracturing. A decline coefficient of 100 m
-1

 was used 

in this example problem. In real cases the m coefficient may be a relatively difficult 

parameter to estimate. Furthermore, very high value of m parameter usually leads to 

divergence problems in the Newtonian solution. 

  

Figure 3.3 – Shear fracturing and deviatoric stress softening by declining mobilized 

friction angle technique in a triaxial test 

 

In the next chapter it will be shown that when the above mentioned friction angle 

softening technique is used, usually only the maximum stress declines and as a result 

reduces the deviatroic stress to a residual level. Sometimes using the mobilized friction 

angle technique leads to some numerical convergence problem especially when 

approaching the tensile stress region. An alternative technique to release the kinetic 

energy or reducing the deviatoric stress from the peak to a residual in the FEM solution is 
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the penalty method. After failure the residual deviatoric stress is controlled by the 

induced fracture shear resistance. The failure function for a fracture with zero cohesion is 

simply written as follows, 

          (3.73) 

where f is the induced fracture friction angle. As mentioned before, a certain 

amount n must be subtracted from the maximum principal stress to allow transition of 

failure function from the intact rock to the fracture plane. So if 1 and 3 are the 

maximum and minimum principal stresses when shear fracturing occurs in an intact rock, 

the required value of normal stress drop,n, can be obtained by the following equations. 

Requiring that the stress state after the correction is at the failure surface with the residual 

angle φf  gives, 

 

 
                

  
 

 
              

 

 
                       

(3.74) 

and, solving this for  σn we get 

    
                                         

                      
 (3.75) 

After principal stresses have been modified in the principal coordinates and then 

transformed back from the principal coordinates to the global coordinates system, the 

forces will be rebalanced to account for the deliberate change in the fractured block stress 

tensor due to failure. The internal forces prior and after stress modification are calculated 

and the difference between the two will be applied in form of an incremental load in the 

FEM solution to rebalance the stress field in the blocks around the failed block. It should 

be noted that the external force vector remains the same as the internal force vector 

before the stress modification. The above mentioned technique can be graphed by axial 

stress vs. axial displacement in a triaxial test on a brittle rock as shown in Figure 3.4. The 

applied stress is increased up to a peak value at which the rock fails and a sudden 

decrease in the axial stress will result.   
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Figure 3.4 – Shear fracturing and sudden axial stress drop after the failure to a 

residual value in a triaxial test 

 

In the next chapter we will present some examples showing that under some 

reservoir initial conditions, secondary fracturing might also occur. In that case the same 

procedure explained above for the primary fracturing will be repeated for the second set 

of shear fractures. This repeated failure mode (when the secondary fracturing takes place) 

isreferredtohereasthe“crushing”oftheblock. 

3.5 Coupling algorithm  

As explained earlier in this work the flow, geomechanical and fracture creation 

modules are coupled explicitly during each time step. Pressure variations in all the Gauss 

points are calculated in the flow module which indeed acts as the source of external 

forces for the geomechanical part. Effective stresses updated in the geomechanical 

section, are then checked in the failure module for either tensile or shear fracture creation. 

The permeability changes due to creation and deformation of the fracture system are 

carried into the flow solution for the next time step.  Figure 3.5 depicts the coupling 

algorithm between the different modules.  

A more accurate flow/geomechanical solution can be obtained by extending the 

explicit coupling shown in Figure 3.5 into iterative coupling by defining some 

convergence criteria (Settari and Mourits, 1994). The results after the convergence will 

be so close to the case where the solid and fluid interaction equations are solved 

simultaneously or the solution is fully coupled. 
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Figure 3.5 – flow, geomechanical and failure modules explicit coupling 

flowchart 

 

 

 

 

 



CHAPTER 4 - CONSTITUTIVE MODELS 

Within the realm of continuum mechanics, an appropriate constitutive model will be 

required to describe the mechanical behavior of different rocks or to model them by 

Finite Element Methods. Constitutive laws basically relate the confining effective stress 

acting on a continuum and the resultant strain.  

A discontinuity may be considered as being a continuum if the discontinuous points 

can be related by some constitutive formulas. If the mechanical behavior of the embedded 

fractures (joints) in a damaged rock is known, the whole fractured rock can also be 

pseudoized as a continuumor inmore appropriatewords as a “pseudo-continuum”. In

this chapter the constitutive models for individual fractures (joints) and next for the 

fractured rock mass will be derived and described.   

4.1 Intact rock constitutive model 

Since the main focus of this research is to investigate the influence of fracture 

mechanical behavior on the overall fractured blocks stress strain performance, the intact 

rock is simply assumed to be of linear elastic type (LE). The intact rock constitutive 

model for an LE material is expressed as follows, 
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and in tensor form, 
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(4.2) 



C o n s t i t u t i v e  M o d e l s                                             56 

 

 

where E istheYoung’smodulusandv isthePoisson’sratio.Thisformulationisalso

valid for nonlinear elastic behavior if the equations are written in an incremental form. In 

this case the stiffness matrix D is nonlinear and must be evaluated at the current stress. 

 

4.2 Single fracture constitutive model 

4.2.1 Fracture normal deformation 

Bandis et al. (1983) suggested a hyperbolic model to describe normal deformation of a 

single fracture under compressive stress as below (Bandis et al., 1983), 
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(4.3) 

where jv , kni, maxv  respectively are the joint normal deformation, initial normal 

stiffness and the maximum joint closure. Normal stiffness of the joint can be obtained by 

taking the derivative of the normal effective stress with respect to the normal deformation. 
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(4.4) 

Initial normal stiffness, kni, is a measure of the joint normal toughness at initial load. 

The effect of initial normal stiffness on mechanical deformation of a sample joint is 

shown in Figure 4.1 . It is observed that the normal toughness of a joint is a strong 

function of the initial normal stiffness.  



C o n s t i t u t i v e  M o d e l s                                             57 

 

 

  

Figure 4.1 – Normal stress vs. normal deformation of a single fracture with different 

fracture initial stiffness 

 

4.2.2 Fracture peak shear strength and shear deformation 

The general form of the empirical shear strength criterion based on joint surface 

parameters proposed by Barton is as shown below (Barton et al., 1985), 
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where JRCn, JCSn, r and n are mobilized joint roughness coefficient, joint wall 

compressive strength, residual friction angle of the rock mass, and applied normal 

effective stress, respectively. The term enclosed by brackets in Eq. (4.5) is called the peak 

friction angle and its first term is usually referred to as the dilatancy angle. 

JRCn can be obtained by the following equation (Barton et al., 1985), 
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where  is the tilt angle in the tilt test when sliding occurs. In the above equation 

JRC is specifically related to peak shear strength and ranges between 1 and 15. For non-

dilatant joint surfaces (smooth joint), the value of is equal to residual friction angle, r. 
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Note that in the above equations, JRC and JCS were corrected for changes in length from 

laboratory scale to in situ scale values by the following equations (Barton et al., 1985), 
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If rock joint surfaces remain unweathered during shearing, residual friction angle will 

be the same in magnitude as basic friction angle, b. Wearing or degradation of asperities 

causes residual friction angle to be usually smaller than basic friction angle.  

In general, at any given shear displacement () before the respective peak value, the 

shear strength can be obtained in Eq. (4.5) by defining a mobilized friction angle, ’ 

(mob) as, 
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where JRCn(mob) is the mobilized joint roughness coefficient and r is the residual 

angle. JRCn(mob) can be obtained by the following equation as suggested by Barton et. 

al., 
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The magnitude of the mobilized friction angle varies from zero up to the peak shear 

angle. JRCn(mob) in the above equations changes within the following range. 

 
nn

no

n

r JRCmobJRC
JCS

















)(

log


  
(4.11) 



C o n s t i t u t i v e  M o d e l s                                             59 

 

 

At peak shear stress, the following empirical equation was developed from analysis of 

650 shear tests which can provide an estimate of the peak shear displacement, p (Barton 

and Bandis, 1982).
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Here Ln is the sample length and JRCn is its respective roughness coefficient. The 

simplest relation between shear stress and strain before failure will be written in a linear 

form as, 
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where kt , the shear or tangent stiffness, can be obtained by the following equation: 
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 (4.14) 

As discussed in the previous section, most experimental data indicate that this 

relationship is not linear. A non-linear function should be implemented to describe the 

pre-peak shear stress –shear displacement behavior of a single joint.  

 

4.2.3 New hyperbolic empirical equation for shear deformation 

To describe a single joint shear behavior, an empirical hyperbolic function is proposed 

here by the authors to fit the experimental data obtained by Barton as (Nassir et al., 

2009): 
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  (4.15) 

where  and su  are shear stress and shear displacement respectively. a and b are two 

constants which will be defined later in this section. The above equation is similar to 
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what Barton et. al. suggested for normal deformation of a single joint. To obtain a and b 

in the above correlation, at least two non-zero sets of data points are required. One is the 

available data at peak shear stress and peak shear displacement. The other is the point at 

which dilation begins in the fracture shearing process.  

 

  

Figure 4.2 – Axial stress vs. axial strain of fractured blocks with different fracture 

orientations (Barton et al., 1985) 

 

Results of experiments performed by Barton et al. showed that dilation initiates when 

usus
p
 is around 0.3, at which point the mobilized friction angle is equal to the basic 

friction angle as shown in Figure 4.2. Let’s define coef as the fraction of peak shear 

displacement at which dilation initiates. Then, in other words, at uscoef.us
p
, the amount 

of shear stress will be ’ntan (b). This point can be used as the second data point to 

calculate a and b parameters in Eq. (4.15) which are then obtained by the following 

equations: 
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Shear stiffness in differential form can be obtained by differentiating shear stress in Eq. 

(4.15) with respect to shear displacement as follows: 
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  (4.17) 

The effects of JCS, JRC and coef on shear behavior of a joint are shown in Figure 4.3. 

JRC and JCS have the same effect on shear stiffness of the joint. Lower values of JRC 

and JCS result in stiffer shear resistance at lower shear stress levels and softer shear 

resistance at higher shear stress values (Figure 4.3a). JCS does not influence the peak 

shear displacement while higher JRC is associated with greater peak shear displacement. 

This is due to the fact that the peak shear displacement in Eq. (4.12) is only a function of 

JRC and the length of the joint, not JCS. The curvature of the functions is highly affected 

by coef as shown in Figure 4.3b. The concave loading path turns to a convex one when 

coef takes values greater than 0.824. This critical value depends on the surface (frictional) 

properties of the joint and can be obtained by zeroing b in Eq. (4.16).  
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Dilation (defined as a change of joint aperture un due to shear) is another important 

phenomenon commonly associated with shearing of rough walled fractures. Dilation can be 

defined as a function of shear displacement and the tangent of dilation angle as: 

 d
k

duddud
t

ntnn

1
)tan()tan(   (4.19) 

where dun, dut and dn are the normal displacement, tangential displacement and the 

dilation angle, respectively.  
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Figure 4.3 – The effect of different joint properties on the shear stress vs. shear 

displacement hyperbolic function (Nassir et al., 2009) 

 

To estimate the value of the mobilized dilation angle the following empirical model 

was used (Barton and Choubey, 1977), 
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It should be noted that the above value is half of the dip angle () of the joint mean 

asperities. (Seidel and Haberfield, 1995) showed that elastic deformation of asperities in 

shear displacement of a joint with two initially matched faces explains the reduction in 

the mean asperities’ dip angle. They also proved that the peak shear stress remains

unchanged even though asperities elastically deform. 

4.2.4 Fracture constitutive model of type I 

To model the mechanical behavior of rock joints, they are considered in this work to 

be continuum possessing their own constitutive models, rather than treating them as 

discontinuities. Fracture constitutive matrix is obtained in two different ways in the 

current research project. The fracture constitutive model type (I) is merely a compilation 

of empirical models which describe the normal, shear and dilation behavior of a single 

fracture. 

Consider a local coordinate system for a planar joint where n denotes the direction 

normal to the joint plane, and s and t are two orthogonal directions in the joint plane. The 

constitutive model relating displacement and stress is then expressed as follows,  
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 (4.21) 

Eq. (4.21) can be rewritten in tensor form as follows, 
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   (4.22) 

where K
J
 is the fracture stiffness matrix and it is the inverse of the fracture 

compliance matrix (F
J
 ). The diagonal terms in Eq. (4.21) can be substituted by the 

normal and shear stiffness Eqs. (4.4), (4.14) and (4.17) from the previous sections as 

follows, 
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The prime notation in Eq. (4.21) denotes the effective form of stress. The effective 

stress is important when the porous rock or fracture is saturated with fluid. 

Here we have assumed that the fracture compliance matrix Eq. (4.21) is symmetric. 

The off-diagonal or dilation terms are obtained from Eq. (4.19) as shown below.  
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These terms represent the effect of shear stress on normal deformation (dilation). In 

Eq. (4.24) it is assumed that the asperity dip angles in both shear directions, strike and 

tangent, are the same but in general they can be different.  

4.2.5 Fracture constitutive model of type II 

The major difference between the first and the second types of fracture constitutive 

models is the way in which the shear and off-diagonal terms are treated. Elasto-plastic 

model is implemented in the type II formulation, in which the fracture elastic shear 

stiffness is assumed to be either a fraction of the intact rock shear modulus or a fraction 

of the fracture normal stiffness. The normal stiffness will be described by the same non-

linear hyperbolic equation like in the type I fracture constitutive model. Hence the elastic 

part of the fracture constitutive model when the fracture elastic shear stiffness is a 

fraction of the intact rock shear modulus is written as follows, 
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(4.25) 

where G is the intact rock shear modulus, Sf is the fracture spacing and is the shear 

modulus fraction as discussed above. Alternatively, the fracture elastic shear stiffness 

might be expressed as a fraction of the fracture normal stiffness. Then Eq. (4.25) will be 

rewritten as follows, 
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(4.26) 

The derivation of the elasto-plastic model will be addressed in the next section. 

4.2.6 Elasto-plastic formulation for fracture constitutive model type II 

The contact area of a discontinuity can be idealized of a small differential zone of 

material in which the normal and tangential relative deformations can be decomposed 

into the reversible (elastic) and irreversible (plastic) parts, denoted by superscripts e and p. 
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From the classical theory of interface plasticity, the permanent discontinuity 

deformations are given by the following plastic potential flow rule, 
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  (4.28) 

where 
p

ud
~

 is the plastic displacement vector and ),(
~

PWFF  is the yield 

function which depends on stress and plastic work associated with plastic shear 

displacement. The value of F is negative for elastic behavior and attains zero value when 

slip is imminent.  ),'(
~

PWQQ   is the potential function whose gradient gives the 

direction along which plastic displacement occurs.  is a positive scalar that specifies the 

amount of plastic deformation. 

Elastic deformation is accompanied by stress alteration while plastic deformation 

corresponds to permanent sliding and other features such as dilation and bulking. 

Changes in effective stress are related solely to changes in elastic portion of total 

deformations, 
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At a given instant in time when slip is imminent; yield function attains the zero value 

(F = 0). At the next instant in time the yield interface remains still zero, or in 

mathematical form dF = 0. By using the consistency condition for the yield function, 

infinitesimal change in failure function is written as follows. 
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Since changes in effective stress only depend on elastic deformation we will have, 
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p
ud
~

in the equation above can be substituted by the gradient of plastic potential from 

Eq. (4.28), and next it can be solved for the slip multiplier  as shown below:  
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From elastic constitutive law we have, 
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Nowlet’ssubstitute in the above equation, 
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This leads to an equation most commonly used for calculating the elasto-plastic 

stiffness matrix of a single fracture expressed in terms of the yield and potential functions 

F and Q as, 
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Jing et al. proposed the following set of yield and potential functions to model 

mechanical behavior of a single fracture (joint) as shown below (Jing et al., 1994), 
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where C is the cohesion and x and z, the peak shear strength in x and y directions, 

are defined as: 

 ),tan( xrx   )tan( zrz    (4.38) 

where x and z are the asperity angles of the rock joints in the x and z directions. 

The  term in Eq. (4.37) is called the dilation angle which can be taken as an average 

between x and z. 

The gradient of F with respect to the stress vector is also expressed as, 
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or 
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The gradient of plastic potential function with respect to the stress vector can take 

the following form: 
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Fracture asperity degradation upon shearing can be expressed in terms of specific 

cumulative plastic shear displacement as, 
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The derivative of the failure function with respect to the plastic part of the 

displacement can also be expanded as a function of the degrading asperity angle as 

follows,  
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The specific cumulative plastic work, the second term in the denominator of Eq. 

(4.35), then will be defined as, 
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Since  is always positive and Eq. (4.41) says the plastic shear displacement term has 

the same sign as the respective shear stress term, Eq. (4.46) takes the following simple 

form, 
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The denominator of Eq. (4.35) is obtained by substituting the equivalent terms for the 

gradient of the failure function, the joint elastic constitutive matrix and the plastic 

potential gradient vector as follows:   
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From Eq. (4.35) we will have, 
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Finally, the elasto-plastic constitutive model finds the following form: 
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    (4.50) 

Eq. (4.50) shows a direct relationship between the effective stress and total 

displacement vectors. Dilation is non-zero if  in the equation above is greater than zero. 

Reader should be reminded that our convention is that tensile stress is positive in the 

above equations. 

4.2.7 Implementation in the FEM code 

Implementing elasto-plastic model in the FEM code requires special considerations. 

Constitutive models are usually employed in two main parts of the FEM model: in the 

element stiffness calculation and in the element effective stress update calculation from 

each element displacement. 

In the effective stresses and stiffness update calculation routine, first stress change is 

calculated by using only the elastic part of the constitutive model and the given element 

total strain. If the updated stress was below the shear failure surface, the fracture 

constitutive model is merely elastic and the solution will be continued for the next 

iteration or time step. Otherwise, the elasto-plastic constitutive model as described above 

will be implemented to update the effective stress. The elasto-plastic solution is carried 

out only in time steps in which loading towards the shear failure surface occurs and in 

cases of unloading only the elastic portion of the fracture constitutive model is 

implemented.   

The fracture constitutive model of type II has been used extensively in major parts of 

this research, especially in the modeling of dynamic shear fracture propagation as will be 

described in detail in the model validation chapter.  
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4.3 Fractured block constitutive model 

In order to use the constitutive models for a joint in the conventional FEM model, it is 

necessary to use a pseudoization (upscaling) technique that will convert a rock mass 

containing fractures into a pseudo-continuum which will exhibit the same stress-strain 

behavior. This section describes the analytical upscaling technique which results in a 

constitutive model of a fractured computational block. This technique requires that the 

population of the fractures can be represented by several sets of parallel fractures (joints). 

Each set can have different orientation of fracture planes and different properties, but 

fractures in a given set have the same properties and constant spacing. 

The average strain energy in a region of composite material can be calculated from the 

average of the stress and strain components within that region when the boundary traction 

is macroscopically uniform (Hill, 1963). Singh (1973) established a continuum 

characterization for the mechanical properties of the jointed rock by summing the 

compliances of orthogonal joint sets. Using the above concept and the fact that the 

compliance matrix for any existing joints can be transformed easily into the global 

coordinate system, Gerrard and Pande (1985) developed a pseudoization technique to 

obtain the equivalent modulus of a jointed rock.  The transformation of the stress vector 

from the global coordinates for the joint x,y,z to local coordinates x’,y’,z’ (normal, shear 

and tangential directions in the fracture plane)  is (Cook et al., 1989),  
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where T, the transformation matrix, is a 6 x 3 matrix defined as shown below. 
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 (4.52) 

The compliance matrix of a jointed rock containing different joint sets is obtained by 

summing the contributions of the individual joint sets and adding them to the intact rock 

compliance matrix, resulting in the following equation, 
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 (4.53) 

where nJ is the total number of fracture sets, TJ is the transformation matrix for the 

joint set J given by Eq. (4.52), and SJ is the joint spacing in the joint set J. FI is the 

compliance matrix of the intact rock material which in our calculation is assumed to be 

linear-elastic; but can be more general if required. Eq. (4.53) implies that under a given 

stress variation in a jointed block the total deformation is simply the sum of the 

deformation in the intact rock and all the embedded joints. 

The constitutive equations derived in this chapter are used in development of the 

FEM code explained in the theory chapter.  A good and efficient constitutive law is the 

key to a success of an FEM solution. During our development of the code, we have 

observed that any singular point in the constitutive model (determinant of stiffness matrix 

equals to zero) could cause problems in the Newton iteration loop, and in some cases the 

resultant uncontrollable divergence would lead to the crash of the entire numerical 

solution.  But as discussed in Chapter 3, the special technique implemented to handle the 

divergence problem in the Newton loop somehow allows the solution to pass over the 

singular points.  

  

 



CHAPTER 5 - MODEL VERIFICATION 

5.1 Single phase flow code verification 

In order to prove the accuracy of the developed finite element code for modeling of 

fluid flow through porous media, couple of example problems are solved here for which 

an analytical solution exists, which is taken to be the exact solution of the fluid flow 

differential equations. In the next step the numerical results will be compared against the 

analytical solution and errors resulted from the numerical solution then will be 

investigated. 

5.1.1 Analytical solutions   

5.1.1.1 Radial transient flow 

For an infinite acting reservoir, the pressure distribution solution of the diffusivity 

equation as a function of space and time in an axisymmetric coordinate system can be 

obtained by the following equation (Chen, 2008), 

           
     

    
    

     
 

   
            (5.1) 

where  is the fluid viscosity, k is the rock permeability, H is the height of the flow 

cross section,  is the rock porosity, ct is the total compressibility and r is radius. In the 

above solution, spatially it is assumed that pressure is only a function of distance from the 

well radius as shown in Figure 2.3. Injection rate Qinj is constant and the gravity effect is 

ignored to simplify the analytical solution.  

 

 

Figure 5.1- A sketch from geometry of the analytical solution 
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Exponential integral function, the E1 function and their relationship for a real, 

nonzero x are defined as follows. 

 
       

  

 
   

 

  

         
   

 
  

 

 

   

              

(5.2) 

E1(x) can be estimated by the following series given large enough upper limit to n. 

               
       

   

 

   

 (5.3) 

where  is the Euler-Mascheroni constant which isequalto0.5772156649…. 

Table 5.1 - The example reservoir and fluid properties  

  = 0.2 pi = 4500 kPa 

kh = 10 md Qinj = 1,000 m
3
/Day 

w  = 1000 kg/m
3
 rw = 0.1414 m 

w  = 1 cp h = 30 m 

cf  = cr = 1.00E+06 kPa
-1

   

 

To test the accuracy of the developed single phase flow code, it has been compared 

against the analytical solution at three arbitrary points; 0.1414m (well radius), 1.414m 

and 14.14m from the well center. For the well block, permeability and porosity are set to 

be high in magnitude to resemble the empty wellbore. Figure 5.2 illustrates the way that 

wellbore radius for analytical solution is chosen from the wellbore element based on the 

size of the well block in a Cartesian grid (rw=0.1414m).  If the wellbore radius, rw, was 

selected based on the equivalent area of the well grid block, then the well block nodes 

would fall out of the wellbore circle; however the assumed configuration of the well 

block as shown in Figure 5.2 is such that the element nodes fall on the wellbore perimeter. 

It should be reminded that the FEM solves the pressure only at the existing nodes in the 

problem which then each element eight node pressures are averaged to obtain the grid 

block pressure. 
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Figure 5.2- A sketch from the wellbore block 0.2 x 0.2m and the selected wellbore 

radius 

 

In the selected example, the water is injected at 1000m
3
/day into the center of a 

reservoir with the dimensions of 4000m x 4000m x 30m. The reservoir properties are 

given in Table 5.1. The model has been gridded in Cartesian coordinates based on a 

logarithmic scale from the wellbore (Aziz & Settari, 1979), in which the well block size 

is assumed to be 0.2 by 0.2 m (Figure 5.2). The comparisons of the results for the three 

arbitrary picked radii are shown in Figure 5.3, Figure 5.4 and Figure 5.5. Although the 

pressures are solved for nodes in FEM solution, in the developed code nodes pressures 

are averaged to obtain the element pressure. As one may expect and as seen in these 

figures, when the elements are refined, the numerical solution approaches the analytical 

solution. The results prove the reliability of the developed fluid flow code which will be 

coupled to geomechanics in the dynamic fracture modeling. 

 

Figure 5.3- Analytical and numerical solution comparison for r = 0.1414m 
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Figure 5.4- Analytical and numerical solution comparison for r = 1.414 m 

 

 

 

Figure 5.5- Analytical and numerical solution comparison for r = 14.14 m, element 

center pressure 
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When pressures at the 8 nodes of an element are arithmetically averaged to find the 

element pressure, there will be an inherent averaging error. To illustrate this fact, 

meshing of the model is adapted such that a certain node in the numerical solution is 

located exactly at the radius of 14.14 m from the center of the well grid block. The 

pressure vs. time for the specified node is plotted in Figure 5.6. The results can be 

compared with Figure 5.5 in which the depicted pressure is for the center of an element 

14.14 m away from the center of the well grid block, and uses the averaging. The 

convergence is more rapid;  an accurate match is obtained already for the 19x19 blocks 

case, for the node based pressure (Figure 5.6) as opposed to finer grid  with element 

centered pressure (Figure 5.5). The discrepancy arises from the arithmetic averaging 

technique mentioned above. 

 

 

Figure 5.6- Analytical and numerical solution comparison for r = 14.14 m, node 

pressure 

 

5.1.1.2 Linear flow 

Transient linear flow regime with a constant flow rate q across the boundary is 

diagnosed by a linear profile when bottomhole pressure is plotted against the square root 
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of time. In this example a linear flow problem is solved both by the analytical solution 

and the code developed here for further flow model validation. For slightly compressible 

linear flow, the relationship between pressure and time is expressed as follows. 

        
  

  
 

 

     
 
   

   (5.4) 

In the example problem the width is w = 10 m, the height h = 1 m, viscosity = 1cp, 

permeability k = 1 md, porosity  = 0.09, total compressibility ct = 2x10
-6

 kPa
-1

, total 

flow rate q = 100 m
3
/day and the initial pressure is Pi = 64000 kPa. The comparison 

between the numerical and the analytical solutions is presented in Figure 5.7. The x 

direction grid block sizes were chosen to be irregular based on the second power of i 

index (x direction), which resulted in almost perfect data match. 

 

 

Figure 5.7- Analytical and numerical solution comparison, linear flow 

 

5.2 Mechanical behavior of fractured block 

The geomechanical part of the developed FEM code has been first tested for 

different simple example problems with linear elastic materials. The code has given the 
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same results as the respective analytical solutions for different tests such as uniaxial and 

triaxial compression. Here we begin the description of the geomechanical validation part 

from the testing of the constitutive model of a single fracture and then the equivalent 

medium representation of fractured blocks, to keep the writing brief (Nassir et. al. 2009).  

5.2.1     Single fracture 

Single fracture mechanical behavior comprises of two parts depending on the 

deformation direction; normal and shear. In this section, the validity of the developed 

finite element code for estimating the mechanical behavior of a single fracture will be 

shown. 

5.2.1.1 Normal deformation 

As previously described in the theory chapter, the normal behavior of a single 

fracture is described by a hyperbolic model proposed by Barton et. al. (1985). Hyperbolic  

 

Figure 5.8 - Comparison between the analytical fit of Barton’sexperimentaldataand

the developed code results for normal deformation of a range of fresh joints 
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model fitting parameters were obtained from their experimental data. The experimental 

results (from Barton 1985) are compared with our numerical solution as shown in 

Figure 5.8. Since the model is non-linear, Newton iteration is used to eliminate out of 

balance forces when increment of normal stress is applied. Although only two iterations 

were used in the numerical solution in Figure 5.8, the results agree very well. 

 

  

Figure 5.9 - Comparison between the analytical fit of Barton’sexperimentaldataand

the developed code results for normal deformation of a range of fresh joints 

 

In the next example, normal deformation of a cubical block which contains a single 

horizontal fracture is compared with the result from the GEOSIM as shown in Figure 5.9. 

The analytical model is very well approximated by the developed code using 2 iterations. 

Although the load increments are the same in GEOSIM and in our FEM code, the results 

for 1 iteration case from GEOSIM and the current code are not the same. This is  

explained by the fact that in GEOSIM the fracture normal stiffness at the first iteration is 

estimated at a normal effective stress which is the average of the stress at the current time 

step and one time step before; whereas in the FEM code it is estimated at the current time 

step. GEOSIM will also present a good match with the analytical solution if larger 

number of iterations is used. The above comparison shows that even small details in the 

iteration strategy can cause significant differences in accuracy. 
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5.2.1.2 Shear deformation 

The new non-linear hyperbolic model for pre-peak shear behavior of a single fracture 

proposed in this work is evaluated here to see how well it predicts some of the Barton’s 

experimental data (Barton et al., 1985). It should be noted that the model is not elasto-

plastic and it is simply a non-linear (pre-peak) model. A schematic of an initially loaded 

fracture (with 2 MPa of confining normal stress), the way it is sheared and all the fracture 

properties are shown in Figure 5.10. The tested fracture is horizontally embedded within 

a very hard rock (high value of Young’s modulus, 10
15 

kPa) to eliminate the rock effect 

on the overall fracture deformation. The bottom of the sample problem is fixed in all 

three directions. On the top displacement will be applied in one of the shear directions in 

lieu of shear stress increments.  

We can see in Figure 5.10 how closely the proposed model fits the experimental data 

for pre-peak shear and dilation behavior of different tested fractures. The value of coef 

used in the numerical solution is 0.3 which is what has been observed in majority of the 

tested joints by Barton et. al. (1985). The new hyperbolic model has also proved to be 

valid for a wide range of normal effective stresses as shown in Figure 5.11. 

Post-peak portion of a fracture shear deformation with shear stress is modeled by 

elasto-plastic model as developed in previous chapter. The set of example problems 

selected for the model validation is the same as presented for the pre-peak shear 

deformation part, with further extension of shear displacement into the post-peak region 

which activates the elasto-plastic constitutive model.   
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Figure 5.10 - Comparison between the numerical model and Barton experimental 

data for shear stress and dilation vs. displacement 
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Figure 5.11 - Comparison of shear stress and dilation vs. displacement between the 

numerical model and Barton experimental data for the effect of normal stress – only pre-

peak part 

 

Figure 5.12 indicates the full pre-peak and post-peak shear and dilation comparison 

between experimental data and numerical results for different fractures. Properties of 

each fracture are shown in the respective figure. Shear softening in the post-peak portion 
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occurs. The elastic deformation of the asperities will not affect the peak shear stress 

calculation, as explain in the literature review chapter (Seidel and Haberfield, 1995).  

Number of iterations quoted on the Figures refers to the number of iterations in 

Newton solution implemented in the code for the non-linear constitutive model.  As 

shown in Figure 5.12, when only one iteration is used, the induced out of balance forces 
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higher number of iterations. In many real large models where the running time is an 

important issue, 2 iterations for the Newton solution might be sufficient. The rapid 

convergence of the technique developed here is an important result. 

In the current results it is obviously seen that the stress state is not checked to be either 

below or at the fracture shear failure surface. The constitutive model for the post-peak is 

just the elasto-plastic model developed in the previous Chapter. Later on in this chapter 

(especially for more practical examples) a special method of checking the stress state 

with respect to shear failure surface, the drifting of the shear failure surface and a 

technique to control the possible divergence in the Newton loop will be implemented and 

used in example problems.  

The depicted figures are all for 2D models; however, the developed code handles 3D 

models as well. In the 3D model there are two shear directions in the fracture constitutive 

model. Two mean asperity angles are defined for the two shear directions which initially 

are assumed to be the same and the degradation in any shear direction depends on the 

respective cumulative plastic strain. 
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Figure 5.12 – Shear and dilation behavior of single fractures with different properties 

 

The next step in a single fracture constitutive model validation is to subject the code 

to different confining normal stresses and to check for the applicability of the model. 

Depending on the depth of the fractured reservoir and the fluid pressure in it, fractures are 

subjected to a wide range of effective normal stresses. For example in a deep reservoir 

during fluid production and depletion, the confining stresses on the existing fracture 

planes are usually high. On the other hand in injection scenarios, high pressure may lead 
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to very low amount of effective confining stresses. Therefore, it is crucial for a fracture 

constitutive model to be applicable for a wide range of effective normal stresses.  

A relatively good match is observed between the numerical results and the 

experimental data for a range confining stresses in Figure 5.13. One iteration appears to 

be insufficient in the Newton solution as shown in the figure. Two iterations usually 

result in almost the same outcome as the case when the Newton solution fully converges 

in these studied cases. 
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Figure 5.13 – Shear and dilation behavior of a single fracture under different 

confining stresses 

 

5.2.2 Equivalent fractured block compliance matrix from known fracture sets 

The technique implemented to obtain the equivalent modulus of a fractured block 

has been extensively discussed in the theory chapter. Here the same method is used to 

obtain the analytical solution for a triaxial test and to validate the accuracy of the 

numerical solution. A single fracture in 3D space is defined with a set of dip and azimuth 

angles as follows, 
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 (5.5) 

Local coordinates for a fracture are defined based on the local normal, strike and 

tangential directions as defined above. If the stress and strain tensors are known for a 

block that contains a single fracture defined above, the three stress components, one 

normal and two shear, can be obtained by a transformation matrix as follows (Cook et al., 

1989), 

 

Figure 5.14 – A sketch of a fracture plane specified by a set of dip and azimuth 

angles  

     
                         

                          

                                    

                              
                         

                                
   (5.6) 

The above transformation matrix can be used to obtain the compliance matrix of a 

single fracture in global coordinate system (x, y, z) from the local ones (n, s, t) by the 

following equation, 

 J
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  (5.7) 

In a triaxial test if we assume that the axial load exclusively leads to increase in the 

axial stress, only the third column of the total compliance matrix will be needed to 

calculate the strain components (F13, F23, F33, F43, F53, F63).  
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 (5.8) 

Let’s assume the single fracture compliancematrix in the local coordinate system

contains two equal shear compliance terms as follows. 

    
   

      
      
      

  (5.9) 

Now from Eq. (5.6), the third row of the compliance matrix for a single fracture set 

in the global coordinates can simply be calculated by the following equations. 

  

    
 

    
            

 

    
            

    
 

    
            

 

    
             

    
 

   
      

 

    
       

     
 

    
            

 

    
            

     
 

   
               

 

    
          

    
 

   
               

 

    
          

(5.10) 

Compliance matrix for a fractured block containing n fracture sets is then calculated 

by the following summation. 
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 (5.11) 
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Table 5.2 gives the properties of three fracture sets in a block of fractured rock (1m x 

1m x 1m) for the first case studied here. In the second and third cases, the dip angles of 

fracture sets 1 and 2 are changed to 30 and 45 respectively. 

Table 5.2 – Fracturesets’ properties 

Case#1 FS#1 FS#2 FS#3 

Dip angle 15 15 90 

Azimuth angle 0 180 90 

Kn(kPa/m) 1.00E+06 1.00E+06 1.50E+06 

Ks(kPa/m) 1.00E+05 1.00E+05 1.50E+05 

Spacing(m) 0.4 0.4 0.4 

 

Table 5.3 shows the comparison between the analytical and numerical solutions as 

well as the results from the GEOSIM code when 1 MPa of axial load is applied on the 

assumed fractured blocks in the triaxial test. In GEOSIM, Chang and Huang (1988) 

approach is implemented by Bagheri and Settari (2006). A perfect match is seen between 

all methods which prove the accuracy of the numerical code in calculating the equivalent 

modulus of the fractured blocks from known sets of fracture moduli. 

 

Table 5.3 – Comparison of strains caused by 1 MPa of axial load between analytical 

and numerical solutions 

  
11

  
22

  
33

  
12

  
23

  
13

  

Case 1 # 
(= 15

o
) 

Analytical -0.0281375 -0.0000125 0.0748256 -3.446E-18 -5.01E-18 6.25E-34 
Numerical -0.0281375 -0.0000125 0.0748256 0 0 0 
Geosim -0.0281375 -1.252E-05 0.0748256 -5.933E-18 6.939E-18 1.39E-17 

Case 2 # 

(= 30
o
) 

Analytical -0.0843875 -0.0000125 0.121925 -1.034E-17 -5.57E-18 6.25E-34 
Numerical -0.0843875 -0.0000125 0.121925 0 0 0 
Geosim -0.0843875 -1.252E-05 0.121925 -4.291E-17 4.857E-17 1.73E-17 

Case 3 # 

(= 45
o
) 

Analytical -0.1125125 -0.0000125 0.13755 -1.378E-17 -1.17E-17 6.25E-34 
Numerical -0.1125125 -0.0000125 0.13755 0 0 0 
Geosim -0.1125125 -1.252E-05 0.13755 7.6734E-17 -7.63E-17 0 

 

In the second example the fracture sets are assumed in a way such that the 

compliance matrix of the fractured rock becomes non-symmetric. The properties of the 

fracture sets are shown in Table 5.4. 
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Table 5.4 – Different fracturesets’ properties 

Case#1 FS#1 FS#2 FS#3 

Dip angle 45 15 90 

Azimuth angle 0 180 90 

Kn(kPa/m) 1.00E+06 5.00E+06 3.50E+06 

Ks(kPa/m) 2.00E+05 4.00E+05 1.50E+05 

Spacing(m) 0.6 0.4 0.5 

 

In this example where the compliance matrix of the fractured rock is non-symmetric 

or anisotropic, the applied normal stress usually induces a certain shear stress which 

arises from the nature of the anisotropy and the displacement fixity assumptions which 

have been specified on the back (x direction), left (y direction) and bottom (z direction) 

faces of the block in the triaxial test. In the current example 13 is induced when axial 

stress is applied. Since the term 13 is non-zero, according to Eq. (5.8) we will need the 

last column of the fractured block compliance matrix which can be obtained by the 

following equations. 

 

    
 

   
                

 

    
              

 
 

    
           

    
 

   
                   

 
 

    
              

  
 

    
               

    
 

   
               

 

    
          

(5.12) 
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Still to have the problem solved completely, it is required for the shear term, 13, to 

be known whereas the only given loading data is the applied axial stress. When the 

example problem is run by the developed code, the shear term, 13, will result when the 

stress is updated from the displacement in the stress update routine. In order to compare 

the developed code, the shear stress which resulted from the numerical solution is used in 

the analytical solution to obtain the additional strain components. Table 5.5 shows the 

comparison between the analytical solution and the numerical solution from the 

developed code as well as the GEOSIM results. The value of the induced shear stress  

 

Table 5.5 - Comparison between the analytical and numerical methods for the 

fractured block with non-symmetric compliance matrix 

  11  22  33  12  23  13  

Case 1 

Analytical -0.0196367 -0.0000125 0.0309929 2.5889E-19 -5.68E-18 0.011835 

Numerical -0.0196367 -0.0000125 0.0309929 -4.78E-06 -5.26E-06 0.011835 

Geosim -0.0196367 -0.0000125 0.0309929 -4.779E-06 -5.26E-06 0.011835 

 

from numerical solution for this example is obtained to be -118.57 kPa which is used in 

analytical solution as discussed above. Like in the previous example, the comparison 
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results of this example indicate that the developed code is totally correct in terms of 

calculating the compliance matrix of a fractured block. 

5.2.3 Examples on fractured rock mechanical behavior  

This section comprises of two parts. In the first part some examples of stress-train 

behavior of fractured rock subjected to different loading conditions and fracture 

configurations will be shown and discussed. In the second part, the model is used to 

match the results from the experiments conducted by Kulatilake et al. (2001) on fractured 

blocks.  

Planes of weakness in a block have a major influence on the deformation behavior of 

the block compared with the intact one. The deviation is even more pronounced when the 

weak planes are subjected to high shear loadings and are freed to deform in terms of 

boundary fixity. The example problem compares axial stress and axial deformation of 

fractured blocks with different fracture orientations as shown in the schematic sketch of 

the example setup on Figure 5.15. The block dimensions are 1x1x1 m and the two 

conjugate fracture sets are spaced equally with 0.4 m of spacing. The initial confining 

stress is assumed to be 0.25 MPa and the specimen is axially loaded with the means of 

displacement boundary loading. The intact rock Young's Modulus is 80 GPa and the 

Poisson's ratio is 0.25. 

In the example problem among all the fracture configurations, shear slippage occurred 

only in the case with 60
o
 of dip angle. As shown in Figure 5.15 the axial stress reaches in 

this case a plateau in which sliding on the fracture planes occurs. The shear slippage is 

usually associated with opening of the fracture aperture or dilation as indicated from the 

solution. Since shear associated dilation is considered to be plastic and permanent (such 

as in the SRV created by hydraulic fracturing), this phenomenon is quite favorable. In 

other cases where the dip angles are not large enough for shear slippage, axial loading 

resulted in increase in axial stress and decrease in fracture aperture as shown in 

Figure 5.15. The lower the dip angle, the higher the magnitude of the axial stress if 

someone wants to generate the same axial strain. This is due to the influence of the pre-
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peak shear term in total deformation of the fractured block. Only in the last case (dip 

angle= 60
o
), the shear stress can reach its peak value and then slippage happens. 

 

 

Figure 5.15 – Axial stress vs. axial strain of fractured blocks with different fracture 

orientations 

 

5.2.4 Matching the experimental data by the use of pre-peak hyperbolic shear model  

In this section, we attempt to match a set of experimental data by the aid of fractured 

block constitutive model in which only pre-peak hyperbolic shear model is used. Despite 

the large amount of experimental data for shear behavior of a single fracture, not enough 

experimental work has been carried out to investigate the mechanical deformation of 

composite fracture/rock or jointed rock system. (Kulatilake et al., 2001) conducted a 

series of laboratory experiments on jointed material blocks. The constituent prismatic 

parts of the jointed blocks made of plaster, sand, and water were separately mixed, cast 

and cured. About 15 wooden frames were constructed to use as molds to prepare 

prismatic jointed block samples with different joint geometry configurations.  
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It should be noted that the initial normal stiffness and the maximum fracture closure 

for the first loading cycle were correlated as functions of JCS, JRC and initial unstressed 

joint aperture aj by Bandis et al. (1983) as follows:  
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  From Eqs. (5.13),  (5.14) and initial aperture size of 1.4 mm, the initial guesses for 

JCS and JRC were obtained to be 4 MPa and 4.4 respectively. Since no two real joints are 

the same in term of their physical properties, the resulting simulation data based on the 

above joint properties will not necessarily match all experimental data.  

To model stress-strain behavior of the jointed rock, one needs to know both the 

properties of the intact rock as well as the embedded joints. The average intact rock 

Poisson’s ratio, compressive strength and Young’s modulus were taken as 0.24, 5.15 

MPa and 1.1 GPa respectively.  

Unfortunately not enough measurement was performed to obtain physical properties 

of all the joints. The only available experimental data was the normal stress-normal strain 

of a jointed rock containing a single horizontal joint, subjected to uniaxial vertical 

loading as shown in Figure 5.16. Bandis normal deformation model with kni = 0.55 

MPa/mm and vm = 1.22 mm appeared to be the best fit for this experimental data. JCS 

and JRC are usually estimated by Schmidt hammer and tilt tests in the laboratory; 

however, the experimental data did not include such measurements. JCS can take a 

maximum value of the intact rock compressive strength when the joint faces are 

completely mated and non-weathered (Barton and Choubey, 1977). However, in this case 

study the surfaces were not fully matched, since the two slabs of the joints were molded 

separately. 

Figure 5.17 shows a picture of the experimental setup as well as the grid geometry 

used for modeling the jointed block stress-strain behavior with the finite element code. 

Conjugate joints with 0.075 m of spacing in a single element construct the numerical 
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model. The experimental setup in Figure 5.17 indicates the direction along which the 

jointed block is uniaxially loaded. It is assumed that the bottom face is fixed in z 

direction and only a quarter of the whole block is modeled to take advantage of no 

displacement boundaries in the vertical planes of symmetry.   

 

 

Figure 5.16  - Normal stress-normal displacement behavior of a single horizontal 

joint under uniaxial vertical loading 

 

Table 5.6 - Joint properties used in numerical modeling of different jointed blocks 

Dip Angles 5-5 10-10 15-15 20-20 

JRC = 4.4 4.4 4.4 0.6 

JCS (Mpa) = 4 4 4 4 

Lref (m) = 0.13 0.13 0.13 0.13 

b = 22 22 22 24 

aj (mm) = 0.2 0.4 0.55 0.6 

vmax (mm) = 0.15 0.37 0.49 0.55 

Kni 
(MPa/mm)= 

0.7 1.0 0.4 7 

Spacing (m) = 0.07
5 

0.075 0.075 0.075 
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Figure 5.17 - A schematic of the sample jointed block for numerical modeling 

 

Figure 5.18 shows the comparison between the experimental data for jointed blocks 

with different joint dip angles 5°-5°, 10°-10°, 15°-15° and 20°-20° and the numerical 

model which did not consider any shear effect of the joints. Figure 5.19 presents the same 

experimental data in comparison with a model which accounts for the shear effects, using 

the non-linear hyperbolic modeled method developed in this work. Low dip angles of the 

embedded fractures have kept the shear constitutive model to move only in the pre-peak 

non-linear part. Comparison of Figure 5.19 with Figure 5.18 indicates how much the 

shear deformation can affect the overall deformation of a loaded jointed rock. The 

deviation in the match caused by neglecting the shear effects is more noticeable for joints 

with larger dip angle. The joint properties used to obtain the match for each jointed 

blocks are listed in Table 5.6.  

For blocks containing dip angle sets of 5°-5°, 10°-10° and 15°-15° as shown in 

Table 5.6, the input values for the maximum joint closure are not the same. This indicates 

how initial assemblage of the jointed block constituents can affect the initial aperture and 

consequently the maximum deformation of the joints. An abnormal behavior is observed 

in stress-strain diagram of the sample 20°-20°. The experimental data shows that in this 

case, both initial normal and shear stiffness of the rock are of large magnitude. Lower 

JRC usually results in lower peak shear displacement which will increase the pre-peak  
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Figure 5.18 - Stress-strain behavior comparison between jointed blocks having 

symmetric joint configurations without considering the shear effect 

 

shear stiffness at lower stress levels. It seems that in this jointed block sample (20°-20°), 

the embedded joint physical properties are quite different from the physical properties of 

the sample tested joint. 

 

 

Figure 5.19 - Stress-strain behavior comparison between jointed blocks having 

symmetric joint configurations with shear effect 
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5.3 Conventional tensile hydraulic fracturing by Pseudo-continuum 

element 

In conventional hydraulic fracturing, tensile, vertical plane of fracture with two wings 

growing symmetrically from the well is usually assumed for the fracture geometry. Here 

we attempted to model the conventional tensile fracturing by iterative coupling of the 

single phase flow and FEM models. In the FEM the constitutive models of the fracture 

and the block containing it are averaged. The tensile type fracture is a discontinuity and 

one may fundamentally question considering the problem as a continuum or pseudo-

continuum; however, in the developed numerical model the stiffness of the fractured 

block perpendicular to the fracture plane is assumed to be extremely low which can be 

considered as a discontinuity in practice. On the other hand, as long as the discontinuity 

holds even a small hypothetical amount of stiffness, the pseudoized model reasonably 

describes a real tensile type fracturing problem, as will be shown below.  

The key element is that the Bandis et. al. hyperbolic model for normal deformation 

already used in this work must be extended into tensile effective stress region to find a 

hypothetical stiffness for a fracture under tensile condition (see Figure 5.20). Although 

the assumption made is not based on real physics, the extremely low strength of the 

hyperbolic model in the tensile region somehow replicates the discontinuity. The highly 

non-linear nature of the problem demands the use of an efficient Newtonian solution 

which has been coded and implemented in this work. 

A rather straightforward strategy is implemented here to model conventional 

fracturing, somewhat similar to the technique used by (Ji and Settari, 2008) except that 

the fracture is treated in pseudoized form. The block at the tip of the fracture is 

pressurized by fluid injection. When the minimum effective stress in the Gauss point 

ahead of fracture tip falls below the tensile strength of the rock, a single fracture is then 

embedded in the failed Gauss point perpendicular to the minimum effective stress. If two 

or more Gauss points fail at a specific time step, the time increment is cut and the 

solution is repeated to assure that only one Gauss point fails at a time step. Pseudo-

continuum constitutive model will be constructed for the fractured Gauss point. The 
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above is then repeated for other Gauss points of this or other blocks in a row until a 

certain length of fracture is attained. 

 

  

Figure 5.20 – Bandis et. al. fracture normal deformation extended into tensile region 

 

After failure, the forces are rebalanced in the failed Gauss point and the Gauss points 

around. This is due to the fact that for tensile fracturing, at a certain plus time step when 

theminimumeffectivestressofablockfallsbelowtheblock’stensilestrengthafracture

is needed to be  embedded in the block, time step is repeated plus the effective stress 

perpendicular to the fracture plane is manually set to zero. Manual modification of any 

block’s stress components requires forces rebalancing. The difference between the

internal forces before and after forcing the minimum effective stress to zero will be used 

to rebalance the stresses in all the Gauss points. Here to obtain a better control a term 

called“stress norm”isintroduced,which is the maximum stress change allowed within 

a time step solution in all the existing Gauss points.  Themodelwon’tallowtheGauss

point stress to change more than a specified stress norm within a time step. The norm is 

further forced to be as low as 200 kPa when the minimum stress approaches the tensile 

failure. If the norm is violated the time step t is cut and the solution is repeated with the 

cut t. 
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Selecting appropriate physical properties for the induced tensile fracture is also 

important. The residual fracture width (the difference between the fracture aperture at 

zero effective stress and the maximum fracture deformation), is assumed to be very low 

because the fracture is new and it is not of shear type. The product of the maximum 

fracture deformation and the initial fracture stiffness gives the maximum assumed tensile 

stress that the fracture can sustain. In order to avoid numerical divergence problems, it is 

not desirable to select a very small value for; around 100 kPa is chosen in our study.  

The fracture length growing under tensile mode is an unknown obtained from 

geomechanical solution. The fracture width can either be obtained from the hyperbolic 

constitutive model by knowing the updated effective stress at any time step or from the 

fractured block strain term perpendicular to the fracture plane. Although tensile fracturing 

is modeled, spacing is needed to be defined for the single fracture because pseudo-

continuum model requires that. If the spacing is defined the same as the width of the 

block containing the tensile fracture, it means only one single fracture exists in that block 

which suits our purpose. If the problem is a quarter of symmetry and only half of the 

fracture exists in the block, then spacing can be defined to be as twice as the block width. 

The tensile fracture length is the distance from the last Gauss point failed in tensile mode 

to the well block. 

Although fractured rocks can be modeled, for simplicity single porosity and single 

permeability assumption has been made in the flow solution. The fractured rock 

permeability term is the coupling between the geomechanical and flow models.  

5.3.1 Harmonic treatment of permeabilities 

The example problem chosen to validate the developed numerical model is a 2-D 

KGD plane-strain tensile fracture model. The analytical solution is given in the theory 

chapter. Table 5.7 provides the reservoir, geomechanical and the tensile fracture 

properties. In this section the permeability between two consecutive blocks is 

harmonically averaged in the FEM solution. This is what naturally occurs in the FEM 

solution without any special treatment of coefficients. 
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Table 5.7 – Reservoir flow, fracture and geomechanical properties 

 = 0.09      aj  = 1.001e-2 mm E =    4.14x10
7
 kPa 

   kxi = kyi =kz= 0.6 md   vmax = 1.0e-2 mm v =    0.2   

   kxyi = kyzi = kzxi = 0 md    Kni = 10,000 kPa/m kgr =    2.35x10
7
 kPa 

 = 1,000 Kg/m
3
 = 1.0   T0=    0 kPa 

 = 0.2 cp    Sf =  fractured block width m Sh,i =    71,550 kPa 

   cf =cr= 0.6x10
-6 

kPa
-1
   Pay Thickness = 1 m SH,i =    72,000 kPa 

   pi = 64,000 kPa    Q (full model) = 355.6 M
3
/Day Sv,i =    78,450 kPa 

 

The example problem consists of a quarter of symmetry of a full model with the well 

block located at the left bottom corner. In this example problem and in the rest of the 

example problems studied in this research, no wellbore model has been taken into 

consideration. Injection is simply assumed to be a source term in the flow diffusivity 

equation. Three gridding scenarios are examined. Tensile fracture propagates in x 

direction through equally gridded blocks with 6 m in length for the first case, 3 m in the 

second case and 1 m in the last (most refined) case. The width of the first grid size in y 

direction is 0.05 m and will contain a tensile fracture with 0.1 m of spacing (element of 

symmetry). To eliminate the poroelasticity effect,Biot’sconstantissettobealmostzero

by equating the bulk modulus and the grain modulus. The comparisons between the 

analytical and numerical solutions are shown in Figure 5.21, Figure 5.22 and Figure 5.23. 

If there is no initial shear stress in the model, at the line of symmetry the shear stress 

must be zero. Since the fracture grows through the elements which have only one side at 

the boundary line, some shear stress is also induced which re-orients the principal stress 

directions. The problem is resolved here by selecting smaller width for the boundary 

elements and also neglecting the small induced shear stress when the fracture orientation 

is calculated in the numerical model.  

In the fluid flow FEM solution the diffusivity equation coefficients are treated 

explicitly and there is no upstream treatment of permeability unless the solution is forced 

to use upstream permeability for each Gauss point. Since tensile fracture also propagates 

Gauss point by Gauss point, the well block pressure oscillates with time which also 

causes oscillation in the maximum fracture width with time as opposed to the fracture 

length which monotonically increases as fracture grows along. Hence expressing the 

compressibility of the fractured blocks as a function of fracture length (rather than 
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fracture width) is preferable. Here the tensile fracture contribution to the pore volume of 

the fractured blocks can be represented by compressibility of the blocks in the fluid flow 

solution, which is obtained from the following approximation as a function of fracture 

half length, 
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  (5.15) 

where Lf is the fracture half length, E isYoung’sModulusandv isthePoisson’sratio and 

wb is the width of the block which contain the tensile fracture.  

 

 

Figure 5.21 – Numerical and analytical fracture well block pressure comparison for 

differentblocks’length 
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Figure 5.22 – Numerical and analytical fracture half length comparison for different 

blocks’length 

 

 

Figure 5.23 – Numerical and analytical fracture width comparison for different 

blocks’length 
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The numerical model is quite sensitive to the grid size around the fracture tip as 

shown in the figures. When the grid size decreases from 6 m to 1 m the well block 

pressure moves toward the analytical solution and better matches will be obtained for the 

fracture width. A perfect match between the analytical and numerical solution requires 

the grid size to be substantially refined. This will eliminate the grid size effect in the 

numerical model.  

A simple test is conducted here to show the net pressure effect on the quality of 

matches between the numerical and analytical results. To obtain the match for the case 

with 6 m size of the block length, the net pressure or the net stress (pwf – min) in the 

analytical solution has been multiplied by 2 and the results are shown in Figure 5.24. The 

similar factor for the 3 m block length case has reduced to 1.6 and for the last case of 1m 

was found to be 1.37. This can be justified as follows.  

The stress profile at the tip of the fracture is extremely non-linear and the linear shape 

function implemented in the FEM code cannot capture the extreme non-linearity very 

well. The net pressure is overestimated in the numerical solution when the block length is 

not well refined. More net pressure results in more fluid loss, which also causes the 

fracture length to be smaller in numerical solution. In addition, in the numerical solution 

leak-off is computed to be 2 dimensional whereas in the analytical solution it is based on 

1-D leak-offCartermodel.That’swhy if in the analytical solution thewellpressure is

manually modified to match the well block pressure from the numerical solution, other 

fracture parameters such as length and width will also match. 
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Figure 5.24 – Comparison between numerical and analytical solutions for KGD type 

fracture, the analytical net pressure is modified 

 

5.3.2 Upstream treatment of permeabilities 

In most finite difference numerical solution, transmissibilities or permeabilities along 

the blocks which are going to be fractured are treated by “upstream” technique. The

upstream means using the permeability of the block which has the higher potential when 

calculating the flow resistance between each two consecutive nodes. At any time step the 

potential at any Gauss point is compared with the potentials of all the Gauss points 

around either in the same block or the blocks around and if a certain Gauss point located 

around has a higher potential, its permeability will be used for the  Gauss point being 

evaluated. 

The example problem discussed in the previous sub-section is repeated here with the 

difference that the permeability of each block is approximated by upstream technique. As 

indicated in Figure 5.25, less oscillation is observed in the well block pressure compared 

with the case where permeability between the blocks is harmonically averaged. A better 

match for fracture width is also observed as the block size is refined from 6 m to 1 m. 

The fracture length on the other hand is overestimated by the upstream technique as 

opposed to the harmonic example case in which the fracture length is slightly 

underestimated (Figure 5.26 compared with Figure 5.22).   
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Figure 5.25 – Numerical and analytical fracture well block pressure comparison for 

differentblocks’length,upstreampermeability 

 

 

Figure 5.26 – Numerical and analytical fracture half length comparison for different 

blocks’length, upstream permeability 
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Figure 5.27 – Numerical and analytical fracture width comparison for different 

blocks’length, upstream permeability 

 

5.3.3 Poroelasticity effect 

The poroelasticity effect on the tensile fracture propagation problem has also been 

investigated here. The example problem is the same as the case with 3 m grid size 

mentioned in Section 5.3.1 except the grain modulus is selected to be a large number 

(10
15

 kPa)tomaketheBiot’sconstantalmostequalto1. 

The comparison with the no-poroelasticity case is shown in Figure 5.28 . In general if 

pore pressure effect or the back stress is taken into consideration, the well block pressure 

and the maximum fracture width increase while the fracture length decreases. The effect 

in this example is small in magnitude.  
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Figure 5.28 – Poroelasticity effect on fracturing pressure and geometry 

 

5.4 Intact rock shear fracture modeling in a single block 

Shear fracturing in an intact brittle rock occurs when the stress state of the block 

reaches the shear failure surface. In the current numerical analysis for shear fracturing, 

loading is provided by contained fluid pressurization in the problem elements or blocks. 

Couple of displacement loading examples will be shown to illustrate the technique 

implemented for shear fracturing.  

The types and directions of the induced shear fractures in the current work are 

obtained by rather simple assumptions. By using Mohr-Coulomb failure criterion and 

assuming only two conjugate shear fractures are induced in a single numerical element, 

the induced shear fracture orientations can be calculated. As an example a cubical block 

(1 m
3
) with cohesion of 500 kPa, internal friction angle of 30 deg, initial effective stress 

vector of [5000  2000  3500  450  450  450] kPa, and initial pore pressure of 1000 kPa is 
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pressurized up to the failure point. The example is a kind of triaxial test in which the 

specimen is loaded by increase in the pore pressure. At the failure point the effective 

stress is obtained to be [3905   905    2405    450    450    450] kPa from the numerical 

solution. Since the internal friction angle and cohesion of the intact rock are known, the 

orientation of the created fracture can be easily calculated. At any time steps, if failure 

occurs at the end of the time step, the shear fractures are embedded in the model and time 

step is repeated. It should be noted here that the shear fracture orientation calculation is 

carried out using the stress tensor at the beginning of the time step.  

Finding principal stresses of a stress tensor is an Eigenvalue problem which can be 

calculated from the following equation:  

 

         

                  

            

            

            
    

(5.16) 

By substituting for    the maximum, intermediate and minimum principal stresses 

are obtained to be 4126, 2341 and 747 kPa respectively. After substituting the respective 

values of principal stresses in Eq. (5.16) and solving the system of linear equations, the 

eigenvector V = V(v1,v2,v3) or the principal directions for each of principal stresses are 

then calculated (V1=[0.941  0.172   0.291], V2=[-0.322   0.190   0.928] and V3=[0.104       

-0.967   0.234]).  

Since it is assumed only two conjugate shear fractures are created when shear failure 

occurs, according to Mohr-Coulomb criterion the normal vectors of the two induced 

fractures from Eq. (3.68) are calculated to be nfp1=[ -0.380   -0.923   0.057] and 

nfp2=[ 0.561   -0.751   0.348]. Here the dip angle of a fracture ranges between 0
o
 and 90

o
, 

and the azimuth angle varies from 0
o
 to 360

o
. For the two fracture normal vectors, the 

fracture dip and azimuth angles are also (86.72
o
, 112.38

o
) and (69.62

o
, 52.24

o
) 

respectively.  

The simple technique explained above for determining the shear failure point and 

orientation of induced fractures has been implemented in all dynamic shear fracturing 

problems which will be discussed in the following sections. 
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5.4.1 Intact rock shear fracturing under triaxial displacement loading 

In this example problem a homogenous intact rock with linear elastic constitutive 

model is loaded by controlling the axial displacement under the triaxial test conditions. 

The purpose of the example is to indicate how the developed numerical model predicts 

the stress-strain behavior of a non-fractured rock when it fails in shear mode as explained 

in previous section. 

The numerical technique implemented to apply the displacement loading is simple. 

The stiffness matrix of an element is multiplied by the prescribed element displacement 

vector and will be integrated over the Gauss points to obtain the change in the force 

associated with displacement loading. Instead of adding the load to the external load 

vector, the load will be subtracted from the internal load vector and in the next step, the 

residual vector (the difference between external and internal forces) is obtained. The 

prescribed displacements will not be considered in counting of the number of degrees of 

freedom; therefore, one should manually insert the prescribed displacements of the 

specified nodes in the local element displacement vector in the stress updating step of the 

FEM solution. 

Under axial displacement loading, the axial stress increases up to a peak point at 

which the intact rock fails in shear. Two conjugate shear fractures with dip angle of 60 

will be induced in all 8 Gauss points due to the fact that stress changes in all Gauss points 

are the same in triaxial loading. Deviatoric stress softening or loss of cohesion is 

commonly observed in brittle rock materials after the shear failure. To capture the 

softening behavior in this work, a hypothetical exponential function with coefficient 

(exponent) of n is used to represent the declining form of the mobilized friction angle 

with respect to the plastic shear strain. The initial value of the mobilized friction angle is 

calculated from the normal and shear stresses at the hypothetical fracture planes on which 

failure is about to occur (mi = arctan(/n)). The elasto-plastic solution derivation has 

been given in the constitutive models chapter. The intact rock elastic data and the fracture 

elastic/plastic physical properties are given in Table 5.8.  
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Table 5.8 – Rock and fracture physical properties 

Intact 

Rock 

E v Cohesion Friction Angle xi, yi, zi 

10 GPa 0.2 1 MPa 30
o
 0.9, 1.9, 2.4 MPa 

Fracture 
Kni vmax Spacing 

Exponential 

coefficient, n 

Basic Friction 

Angle 

0.5 GPa/m 6mm 1 m 100 m
-1

 25
o
 

 

The exponential coefficient (n) effect on the post-failure deviatoric stress-strain 

relationship is indicated in Figure 5.29. Higher n corresponds to quicker softening of the 

fractured rock shear modulus. On the other hand, the solution is relatively insensitive to 

the value of the shear modulus. Figure 5.30 compares an intact rock post-failure 

deviatoric stress-strain behavior for different values of fracture elastic shear modulus (Ks) 

when n=100 m
-1

. Only a slight change in the results is observed when the fracture elastic 

shear modulus varies from 0.2 to 0.8 times the intact rock shear modulus divided by the 

induced fracture spacing.  

 

  

Figure 5.29 – Intact rock post-failure deviatoric stress-strain behavior comparison for 

the effect of exponential coefficient, n, (Ks = 0.2 G / Spacing).  
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Figure 5.30 – Impact of fracture elastic shear modulus, Ks on the post-peak shear 

softening, n =100 m
-1

. 

 

5.4.2 Intact rock shear fracturing by fluid pressurization 

In real hydraulic fracturing, injected fluid usually pressurizes the rock to fail mainly 

in tensile mode. Only under some unusual physical conditions such as high stress contrast 

and low rock cohesion, shear failure, or combination of both can occur. It is believed that 

shear fracturing (which triggers the microseismic events) usually occurs in blocks close 

to the main tensile fracture. We attempted to model a 2-D plane-strain shear type fracture 

example problem which comprises of 21 by 21 grid blocks with the injection block 

located at center. There is no real cylindrical wellbore in the injection block, the wellbore 

is represented by a fluid source or sink in the well block in the numerical analysis. Only 

the well block is allowed to fail in shear and after failure. It is also important to 

investigate how the developed constitutive model for the fractured blocks behaves under 

loading and unloading conditions. In this example problem the injection is manually 

switched to production and vice versa in cycles to model the loading and unloading effect 

on the stress path. The reason for cyclic loading assumption in this particular example is 

explained by the fact that in dynamic fracturing in which fluid is continuously injected; 

the blocks are fractured one after another. The newly fractured blocks permeability 
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enhancement and pressure redistribution will create pressure oscillation with time in the 

previously fractured blocks but that will not reverse the flow. The rock, fracture and fluid 

physical properties for the example problem are given in Table 5.9. 

 

Table 5.9 – Rock, fracture and fluid physical properties 

Intact 

Rock 

E v Cohesion Friction Angle xi, yi, zi 

100 GPa 0.2 2 MPa 30
o
 22, 12, 15 MPa 

Fracture 
Kni vmax Spacing 

Exponential 

coefficient, n 

Basic Friction 

Angle 

0.1 GPa/m 6mm 1 m 800 m
-1

 25
o
 

Fluid 

Permeability, 

kh & kv 
 cf & cr 

Injection, 

production rates 

1 d 0.2 10
-6

 kPa
-1

 1 cp  -40, 40 M
3
/Day 

 

 

  

Figure 5.31 – Stress path of intact rock shear fracturing caused by fluid 

pressurization with post-failure cyclic loading and unloading.  
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Figure 5.32 – Stress path of intact rock shear fracturing caused by fluid 

pressurization with post-failure cyclic loading and unloading.  

 

Figure 5.31 pictures the failure of the well block and cycles of loading and unloading 

after failure. The Mohr-Coulomb shear failure criterion in terms of 1 and 2 and I1 and 

J2 can respectively be written as follows (Wan, 2010): 

                              (5.17) 

  
  
 
              

 

  
                   (5.18) 

Here  is the friction angle,    is cohesion and  is called Lode angle obtained from 

the following equation, 

  
 

 
       

   

 

  

  
   

  (5.19) 

 The Lode angle varies between -30 to 30 degrees and in this example problem is 

obtained to be around -25
0
. The loading and unloading is obtained in fact from the 

internal product of two vectors; one is the gradient of the failure function and the other is 

the loading vector. Positive product value means loading. Here we assumed that the 
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fracture elastic modulus remain the same in loading and unloading stages. Accumulation 

of plastic shear strain will shift the fracture failure surface downward as shown in the 

figure. The fracture elastic shear modulus in this example is picked to be 0.1×G/Spacing. 

Higher fracture elastic shear modulus steepens the slope of the loading and unloading 

curve in Figure 5.31. The same results but plotted in terms of the minimum and 

maximum effective stresses are shown in Figure 5.32. Fracture failure surface shifting 

from the initial intact rock failure surface can better be seen when compared to 

Figure 5.31. In fact expressing the stress path of a block in terms of stress invariants after 

the block failure is incorrect. The fractured block constitutive model is no longer 

isotropic and depends on the direction. Figure 5.31 is presented here only for more 

illustration. 

 

  

Figure 5.33 – Wellbore block effective stresses in cyclic pressure loading example 

problem  

 

Figure 5.33 shows the well block effective stresses verses time. After failure, 

although the block has experienced number of loading and unloading stages, the change 

in the maximum principal effective stress, ’x, was substantially higher than the minimum 

principal stress, ’y. Immediately after failure, it is observed that the minimum principal 
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stress remains almost constant while the maximum effective stress declines. Reduction in 

the deviatoric stress can result from both decreasing of the maximum effective stress 

and/or increasing in the minimum effective stress. It is a significant result that the 

reduction in the deviatoric stress in this type of example problems is mainly caused by 

the reduction in the maximum effective stress. 

In summary, selecting the right input data for the elasto-plastic model is a key issue 

for the accuracy of the numerical model. The question of how fast the post-failure 

softening occurs and which value of the exponential coefficient should be selected is 

difficult to answer.  

 



CHAPTER 6 - MODEL APPLICATION 

Sets of 2-D and 3-D example problems will be presented in this section to indicate 

the application of the developed code in dynamic shear/tensile fracturing. The input data 

were selected to be representative of actual typical shale gas reservoirs data. In the first 

section, different possible modes of shear fracturing (including primary shear fracturing, 

primary shear plus tensile fracturing and secondary fracturing or ‘block crushing’) are

examined by 2-D example problems. In the second section, the effects of reservoir initial 

conditions on the extent of the SRV will be discussed. This will be followed by some 

discussion on fracturing issue in the third section. The 2-D example problem will be 

extended into 3-D in the fourth section. Finally, in the last section an example problem 

with completely different initial conditions will be shown and discussed both in 2-D and 

3-D formats. 

6.1 Example problems of fracturing 

In this section all examples are again 2-D plane-strain quarter of symmetry problems 

where water is injected at the left bottom corner.  It should be reiterated here that in 2-D 

plane strain case, the failure is still computed considering all three stresses; furthermore, 

the fracture aperture changes and the permeability are also calculated 3-dimensionally. 

Displacements at the boundary nodes are fixed in the directions perpendicular to the six 

boundary faces (top, bottom, left, right, front and back). Rock, fluid and fracture 

properties used in the example problems are shown in Table 6.1.  

In the applied pseudo-continuum technique which represents the constitutive law for 

the blocks after fracturing occurred, each fracture sets widths are updated based on the 

Bandis’s hyperbolic equation as shown in the Constitutive equations chapter. The 

induced dilation term resulting from the plastic shear strain and the dilation angle is also 

added to the conductive width of each fracture set.  

For a single tensile fracture modeling as shown in the previous chapter the 

compressibility of the blocks containing tensile fracture was modified according to an 

equation which was an inverse function of the well block pressure. However, in 
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combined shear and tensile fracture example problems in the following sections, no block 

pore volume modification due to fracture creation (either tensile or shear) has been 

considered in the numerical calculation. In other words, the coupling between the flow 

and geomechnical modules is merely through the permeability term. The pore volume 

coupling and the compressibility variation of the respective blocks in naturally fractured 

reservoirs have been investigated by Bagheri and Settari (2006). 

The assumptions made above will be valid for all the following example problems 

including in those where an additional tensile fracture is added. Example problems are 

categorized based on different initial reservoir conditions as follows: 

1) Only shear fracturing, no tensile plane of fracture is considered. ’x is the 

maximum and ’y is the minimum effective stress. 

2) A plane of possible tensile failure is added to the first example problem. From 

here all example problems will contain a tensile plane perpendicular to minimum 

stress in j=1 row. 

3) ’z is the maximum and ’y is the minimum effective stress; otherwise as 

Example 2).  

4) Example 3 with secondary fracturing (crushing mechanism). 

5) Grid refinement and comparison with Example 4 

6) Example 3, two close initial horizontal stresses 

6.1.1 Only shear fracturing - maximum stress in horizontal direction 

In this section the shear fracturing is allowed to propagate in all Gauss points 

beginningfromthewellblock’swhenthestressstatetouchestheshearfailuresurface.It

is important to remind the reader that shear fracturing mechanism and the created fracture 

pattern (especially from microscopical point of view) are much more complex than the 

physics represented in the model, and assumptions were made here to make the problem 

easier for the modeling purposes. The high stress intensity and the required grid 

refinement around the tip of the created fractures are other important factors that may 

influence the accuracy of the results. However, in this work an overall estimation of the 

complex phenomena suits the modeling purposes.  
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Table 6.1 – Rock, fluid and fracture physical properties 

 (porosity)= 0.07      aj,  vmax = 0.13, 0.1  mm E =    2 x10
7
 kPa 

 kxi = kyi = 7E-5 md    Kni = 1.0E6  kPa/m v =   0.18   

 kzi =  3E-5 md   JRC = 2   kgr =    

5.0x10
15

 

kPa 

 = 1000 Kg/m
3
   JCS  = 30000 kPa S0 

(cohesion)= 

  500 kPa 

 = 0.4 cp bf(fracture) 25
o
   (rock)=   30

o
  

 cf =cr= 0.6x10
-6 

kPa
-1
   Ks/ Kn =  0.6  Sh,i =   40,000 kPa 

 pi = 36000 kPa    n = 0.5 m
-1
 SH,i =   47,000 kPa 

 Q (full model) = 12000 M
3
/Day = 1.0   Sv,i =   42,000 kPa 

 Pay Thickness = 40 m    Sf =  0.2 (Shear frac) m    

 

The simulation results presented in Figure 6.1 indicate how the shear fracture zone 

propagates in the y and (more preferentially) the x directions. Two sets of conjugate shear 

fractures are embedded in the failed Gauss points and their orientations are calculated 

based on the principal stress directions and the intact rock shear failure parameters. In 

this example problem both induced fracture sets are vertical (we consider the x-y plane to 

be the horizontal plane) and are propagating preferentially towards x direction. Figure 6.1 

shows the permeability enhancement in the stimulated reservoir volume after selected 

specified injection times of 100, 500 and 1722 seconds. It is clearly shown that the 

stimulation is not confined solely to a single plane and it forms a much more spread out 

SRV.  

Perpendicular to the minimum stress direction, a plane originating from the well 

block with relatively large permeability enhancement is also observed. In these blocks the 

elasto-plastic model has forced the minimum and maximum effective stresses to decline 

down to zero or even fall into the tensile zone at higher fluid injection rates (see 

Figure 6.2).  

The well block pressure and stress profile versus time are presented in Figure 6.2. In 

spite of this being a 2-D model, in contrary to KGD tensile fracture the well block 

pressure gradually increases with time which is a characteristic behavior in a shear 

dominated fracturing problem.  
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Figure 6.1 – Permeability variation with time in only shear fracturing case 

 

As discussed before, the two main reasons for shear fracturing are low rock cohesion 

and high contrast between the initial minimum and maximum total stresses. The 

maximum and minimum effective stresses in the shear fractured block decline to zero or 

even to tensile in relatively tighter formations as the stimulation proceeds (Figure 6.2). 

Theconcept isbetterexplained in theeffectivestresspathplotof thewellblock’s first

Gauss point as shown in Figure 6.3. Prior to fracturing, it is clearly seen that the plane, 

which later becomes the fracture plane and is initially close to the shear failure point is 

loaded toward the shear failure plane. The sudden drop in the stress path is caused by the 

post-failure stress correction as explained before. The effective stress path proceeds on 

the fracture shear surface afterwards until it reaches the tension surface. Below a pre-
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determined small effective stress (here it is assumed to be 10 kPa), the fracture 

constitutive model is switched to onlytensilewithverylowshearresistance(a“tension

cut-off”model). In any time step it is assumed that the constitutivemodel typeof any

fracture set remains the same during the Newton iteration. For example, if the 

constitutive model of a specific fracture is elasto-plastic at the beginning of a time step it 

won’tbeswitchedtotensioncut-off during the Newton iteration. 

 

  

Figure 6.2 – Pressure, total and effective stresses of the well block in only shear 

fracturing case 
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Figure 6.3 – Stress path in one of the well block Gauss points during the stimulation 

process. 

  

One of the most common problems in the Newtonian loop is the drift from the yield 

surface in different iterations of a specific time step. If divergence occurs at a certain 

iteration, the respective displacement vector at that iteration is instead projected by a 

factor of  which is calculated by either quadratic or cubic functions of the calculated 

residual vectors’ norms of older iterations (Dennis and Schnabel, 1983; Wawrzynek, 

1997). The iteration proceeds until the residual force vector norm is forced below a 

desired stop norm. For details, see Chapter 3 (Mathematical Models). 

6.1.2 Shear & tensile fracturing - maximum stress in horizontal direction 

In this example problem in addition to two conjugate shear fractures a tensile 

fracture perpendicular to the initial minimum stress direction is allowed in the well block 

and the blocks located at j=1. This example serves to examine how the simulation results 

may change if a fracture set perpendicular to the initial minimum effective stress (i.e., a 

planar fracture) is added as another failure mechanism. The tensile fracture parameters aj, 

vm and kni are assumed to be 1.0110
-4

, 1.010
-4

 and 1.010
6
 respectively. The resulting 

permeability enhancement as indicated in Figure 6.4 is almost the same as previous 

example problem, which indicates the fact that under the current initial problem 
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conditions the back stress on the expected tensile plane constricts its opening as the SRV 

length and width grow.  

 

 

 

Figure 6.4 – Permeability variation with time in combined shear and tensile 

fracturing case 

 

Pressure versus time profile is also plotted in Figure 6.5 which is almost the same as 

the well block pressure behavior in the previous example problem. The raise in the well 

block pressure verses time is mainly caused by the non-tensile (shear) SRV development. 
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Figure 6.5 – Pressure-time profile comparison between only shear fracturing and the 

one with added tensile cases and the effective stresses profile 

 

6.1.3 Shear & tensile fracturing – maximum stress in vertical direction 

In the previous example problems the maximum stress was in the horizontal y 

direction. In this and the following sections the maximum stress is assumed to be in the 

vertical direction to see how the stimulated region evolves with time under this more 

common stress regime. In majority of underground formations, the maximum stress is in 

the vertical direction caused by sediments deposition loading.    

Figure 6.6-I indicates the orientation of induced shear and tensile fractures along the 

blocks in which both tensile and shear fracturing occurs (j=1). Figure 6.6-II also shows 

the conjugate shear fracture orientation in other surrounding blocks. The dip and azimuth 
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angles of the induced fractures depend on the orientation of principal stresses at the time 

of fracturing. 

  

Figure 6.6 – Induced conjugate shear and tensile fractures when z is the maximum 

stress direction and y is the minimum 

 

Figure 6.6 presents the development of the SRV after 100, 500 and 1700 seconds of 

fluid injection. The SRV shape is more elongated compared with the previous cases 

(Figure 1.1 or 1.4 in Section 6.1.2). The so-called pseudo-tensile fracture length is also 

better visible under the current example problem initial conditions.  

After the early stage of the stimulation, the rate of increase in the well block pressure 

in the current case appears to be less when compared with the previous case (both cases 

are compared in the top graph of Figure 6.8). The reason is simply due to the shape of 

SRV which is more elongated; in the current case (similar to tensile fracturing) stress 

localization also contributes to the SRV propagation. Stress localization is not an 

effective fracturing mechanism in cases which the SRV is more of a circular shape and 

more off-planar SRV development is observed.   

The effective stress in the x direction increases with time after the early stimulation 

time. It suggests the possibility of secondary fracturing which can be also called 

“crushing”inthealreadystimulatedor“primary”fracturedblocks(Figure 6.8). It should 

be noted that no secondary fracturing was permitted in the current case. In the next 
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example problem the secondary fracturing or crushing of the blocks also will be 

investigated. 

Figure 6.9 indicates the stress path along the created shear fracture for the first Gauss 

point of the well block. The shear stress declines along with the normal effective stress 

under pressurization of the well block by the injecting fluid. This demonstrates the 

efficiency of the elasto-plastic model developed in this work, 

 

  

  

Figure 6.7 – Permeability variation with time in the combined shear and tensile 

fracturing case, vertical stress is the maximum 
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Figure 6.8 – Pressure, effective and total stresses - time profile, vertical stress is the 

maximum 

 

 

 

Figure 6.9 – Stress path in one of the well block Gauss points during the stimulation 

process, vertical stress is the maximum 
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6.1.4 Shear & tensile fracturing – crushed blocks allowed 

In this example, we consider two modes of shear fracturing. In the first, a block 

which has been already fractured can subsequently fail in the code in shear along a 

differentdirection.Thisphenomenonofmultiplefracturingwillbereferredtoas“block

crushing”. The crushing leads to more complexity (and density) of fracturing and

therefore the capability of our code to capture it is important. 

In the previous example problems, either the case where the maximum stress was in 

the horizontal x direction or in the vertical z direction, a high possibility of secondary 

fracturing is expected as a large deviatoric stress may build up between the two other 

principal stresses. The minimum effective stress which has declined to zero is also a main 

contributing factor (Figure 6.2 and Figure 6.8). In the current example problem, the 

vertical stress is the maximum and secondary fracturing is also allowed in the dynamic 

fracture modeling as depicted in Figure 6.10.  

  

Figure 6.10 – Induced conjugate shear and tensile fractures when z is the max stress 

direction and y is the minimum 

 

Figure 6.11 presents the permeability in x and y directions along with the 

development of the SRV after 100, 500 and 1730 seconds of fluid injection. The pseudo-

tensilefractureplaneisalsoobservedwhen“blockcrushing”isthedominantfracturing

mechanism.  
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Figure 6.11 – Permeability variation with time in the crushed fracturing case - 

vertical stress is the maximum 

 

As expected and shown in Figure 6.12, in the block crushing mechanism all stresses 

become almost the same. A continuous increase in the well block pressure is also 

observed which presents a gradual off-planar propagation of the SRV after the early 

stages of the stimulation process. It is worthwhile to recall that the minimum initial total 

stress is 40 MPa. The rate of off-planar SRV increase at the early stages of the 

stimulation is observed to be larger when compared with the later time of the stimulation 

process. The diagnostic is the larger increase in the well block pressure as shown in 

Figure 6.12. 
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The secondary fracturing in this example problem is explained by the increase in the 

intermediate stress caused by the directional SRV growth and force rebalancing. 

However, after secondary fracturing the mechanical behavior of the crushed blocks under 

high fluid pressure condition will be of liquefaction type with low shear resistance. 

 

 

Figure 6.12 – Pressure, effective stresses, total stresses and strains - time profile of 

the first Gauss point of the well block 

 

Figure 6.13 presents the stress path for the two shear fracture sets induced during the 

crushing mechanism. One fracture set is between the z and y direction (dip angle of round 

60
o
 and azimuth angles of about 90

o
 and -90

o
), the second fracture set is between the x 

and y direction (dip angle of around 90
o
 and azimuth angles of about 60

o
 and -60

o
). It 

should be noted that the dip angle varies between 0
o
 and 90

o
; whereas the azimuth angle 

varies between -180
o
 to 180

o
.  

 



M o d e l  A p p l i c a t i o n s                                                            134 

 

 

 

Figure 6.13 – Stress path and y direction displacement in the first Gauss point of the 

crushed well block during the stimulation process 

 

6.1.5 Crushing mechanism– grid refinement 

Sensitivity of the developed fracturing model to grid size is investigated in this 

section. The grids sizes were reduced to half in both x and y directions while the 

remaining input data were assumed to be the same as the previous example problem 

(crushed mechanism). It should be noted here that the fracture spacing is an input data 

which remain the same regardless of the grid size in the grid refinement analysis.  

 

     

Figure 6.14 – Permeability variation with time in the refined grids case after 1130 

seconds of stimulation 
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In general the stimulated region is slightly smaller in the refined grid case. Coarser 

block gridding slightly overestimates the SRV size. The overall configuration of the 

permeability enhancement is shown to be very similar to the non-refined case 

(Figure 6.14 which compares the two cases).  

The well block pressure during the stimulation period is also compared with the base 

crushing case non-refined model in Figure 6.15. Both pressure profiles follow the same 

trend; however in the refined case less perturbation is observed at the early time. The well 

block total and effective stresses were almost the same in both non-refined and refined 

cases. 

 

 

Figure 6.15 – Pressure-time profile comparison between refined and non-refined 

cases, grid block crushing mechanism in both 

 

6.1.6 Close horizontal stresses – crushing mechanism 

Intuitively it is expected that the SRV would grow in a circle if the two horizontal 

stresses were identical or very close in magnitude. Since the induced fracture directions 

are obtained from the principal stress directions, if two of the initial stresses are assumed 

to be identical then no unique principal directions can be obtained as the minimum and 

the intermediate principal stresses can take any directions in their plane. In this example 
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problem the two horizontal stresses in the x and y directions are chosen to be 40100 kPa 

and 40000 kPa respectively; whereas the vertical stress remains the same as previously, 

47000 kPa. The maximum deviatoric stress is obviously between the vertical and 

horizontal directions.  

 

  

  

Figure 6.16 – Permeability variation for the case with close horizontal stresses  

 

Permeability enhancement due to shear fracturing (including crushing) and tensile 

opening is shown in Figure 6.16. As expected the stimulated zone grows more in y 

direction compared with the previous example problem and a wider, almost symmetric 

SRV results. At first, because of the small difference between the two horizontal stresses, 
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the SRV growth is mainly in the x direction; however, after a while due to increase in 

total stress in y direction and switching of the minimum stress direction from y to x in 

areas above the initial failed zone, the SRV begins to propagate further in y direction as 

well, as shown after 1660 seconds in Figure 6.16. The contrast between the x and y 

permeability is also greatly diminished and the SRV approaches a radial growth. The well 

block pressure profile versus time in Figure 6.17 indicates a lower slope when compared 

with the crushed blocks case for the base case (Section 6.1.4). 

 

  

Figure 6.17 – Pressure vs. time for the case with close horizontal stresses  

 

6.2 Significance of the initial conditions for the SRV shape   

The SRV shape was found to be dependent substantially on the initial reservoir 

conditions such as initial stresses, initial reservoir pressure, rock resistance to shear 

failure, and other parameters which control failure. The closer the initial conditions to the 

shear fracturing point, the wider the width of the SRV will be in the stimulation of tight 

formations. If the initial conditions are far from the shear fracturing point, since the fluid 

diffusivity of a tight formation is low, the blocks around the main plane of tensile fracture 

cannot be pressurized enough to fail in shear and compete with the stress localization 
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mechanism which occurs at the tip of the SRV zone. As a result, the width of the SRV 

zone grows much less than the length, such that the SRV will be elongated. In the 

following sections the above will be further demonstrated by means of a few example 

problems. 

The shear fracturing mechanism in all the following example problems is set to be of 

the“crushing”typeandthebasecaseisalsogivenfromSection6.1.4. 

6.2.1 Lower reservoir initial pressure 

For the example problem given in Section 6.1.4 if one decreases the initial reservoir 

pressure, the reservoir blocks will then require more pressure build up to reach the shear 

failure surface. The initial reservoir pressure is assumed to be 31000 kPa instead of 

36000 kPa of the base case. The dynamic combined shear and tensile fracturing 

simulation presents much narrower SRV in comparison with the base case as shown in 

Figure 6.18. The single plane tensile fracture is well developed and provides majority of 

the injectivity. 

  

Figure 6.18 – Permeability variation for the case with lower initial reservoir pressure 
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6.2.2 Effect of reservoir rock cohesion 

The reservoir rock cohesion was found to be an extremely important factor 

controlling the shape of SRV. The higher the rock cohesion, the larger the fluid 

pressurization in each grid block is required for shear fracturing to occur. In the base 

example problem the rock cohesion was assumed to be 0.5 MPa whereas in this section 

magnitudes of 1 MPa and 2 MPa for cohesion are tested. Figure 6.19 maps the 

permeability distribution for all three rock cohesion values. The simulation results reveal 

how the SRV shape narrows down to a single line when the rock cohesion increases from 

0.5 MPa to 2 MPa. Associated with this is the increase in the propagation of the SRV in 

the x direction. The well block pressures for the three different cohesion cases are also 

compared in Figure 6.20. The continuous pressure increase for the rock cohesion of 0.5 

MPa indicates an uninterrupted elliptical-like growth of the SRV with time. The decline 

in the well block pressure after 60 seconds of fluid injection in the case with 1 MPa of 

rock cohesion indicates narrower form of SRV growth whereas the increase in pressure 

that follows later is the diagnostic of a wider SRV development at later time. In the last 

case with 2 MPa of rock cohesion, the SRV has only grown along one row of grid blocks 

which indicates that only tensile fracturing has occurred in this case. The fracture has 

propagated very fast - up to 160 m within one minute which may be considered excessive. 

There may be several reasons for overestimating the growth in the purely tensile case. It 

should be noted first that the porosity term coupling has not been used in these 

simulations; therefore the fracture volume is not accounted for and the length growth is 

therefore exaggerated if there is virtually no leak-off.  Secondly, the 52 bbls/min injection 

rate for 40 m of pay zone is also a high rate if there is no off-planar SRV growth. Finally, 

there may be also some matrix permeability enhancement with fluid pressurization which 

is not accounted for.   

The above proves the fact that a large SRV is imminent when the reservoir initial 

conditions are relatively close to the shear failure surface of the formation rock or the 

pre-existing planes of weakness. One obvious example would be stimulation in a 

naturally fractured reservoir in which the fractures are poorly cemented and by a slight 

increase in the pore pressure, the rock shear failure is triggered. Another example could 
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be tight or shale gas reservoirs in which the existing micro- or meso-scale fractures have 

weakened the shear strength of the formation rock.  
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Figure 6.19 – Permeability variation for three different cohesion values 

 

  

Figure 6.20 – Rock cohesion effect on the pressure vs. time profile 
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6.3 Discussion of some aspects of fracturing 

6.3.1 Important discussion on the tensile fracture width calculation 

In all the examples above the fracture width at any time step is updated by the 

Bandis et. al. normal effective stress/displacement hyperbolic equation plus the dilation 

term obtained from the plastic shear displacement. For tensile fractures the hyperbolic 

relationship is extended into the pseudo tensile region as explained before.  

In the shear/tensile fracturing modeling, along with shear fracture sets (which can 

occur everywhere), a tensile fracture perpendicular to the minimum effective stress is 

embedded in the blocks along the designated fracture plane (at j=1). In this situation, the 

opening of the tensile fractures calculated by the pseudo-continuum technique may not 

correspond to what is seen in reality. The above does not question the validity of the 

pseudo-continuum method; but since other shear fracture sets are also embedded in the 

crushed block, the crushed block overall deformation has to be distributed among all the 

fracture sets. However, if one assumes that the single tensile fracture width is the same as 

the overall deformation of the block containing the tensile fracture (neglecting the intact 

rock deformation), permeability enhancement of the block calculated from such 

“modified”tensilefracturewidthinthetensilefractureplanedirectionwouldcertainlybe

much greater in comparison with the non-modified case. Figure 6.21 depicts a schematic 

of the crushed blocks containing tensile fracture and the blocks around them. Only one 

shear fracture set is shown in the figure, although usually a minimum of two fracture sets 

are induced in our simulation cases with the crushing mechanism. Now if one assumes 

the overall displacement of the crushed block in direction perpendicular to minimum 

stress to calculate the change in the tensile fracture width, then a more dominant tensile 

fracture will result from the numerical model. 
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Figure 6.21 – Shear and tensile fracture sets in a stimulated region  

 

The example problem modeled in Section 6.1.4 (crushing mechanism) is repeated 

here with the difference described above. In other words, the tensile fracture width is 

obtained from the total block deformation of the block in y direction (perpendicular to the 

initial minimum stress). The resultant permeability distribution map is shown in 

Figure 6.22. The single tensile fracture is relatively better developed in this example 

when the tensile fracture width is calculated from the total block displacements. The SRV 

dimensions are substantially more elongated for this case when compared with the base 

case. The lower well block pressure shown in Figure 6.23 indicates a longer SRV 

development for the modified case and also the development of a more conductive path 

for flow in the middle of the SRV region when compared with the non-modified case. 
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Figure 6.22 – Permeability variation for the case with modified tensile fracture width 

and non-modified case after 1720 seconds of injection 

 

  

Figure 6.23 – Pressure vs. time for the case with tensile fracture width correction 

compared with the base non-corrected case  
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6.3.2 Significance of stress rebalancing 

Shear softening after shear fracturing as discussed in the previous section and in the 

theory chapter is modeled by two techniques; first, the deviatoric stress is forced to 

decline by means of mobilized friction angle, and second, through immediate correction 

of the fracture Gauss point effective stresses by decreasing the maximum principal 

effective stress and rebalancing the forces afterward. Drifting of the shear failure surface 

in the former technique sometimes causes uncontrollable divergence problem in the 

Newton loop especially when the stress path approaches the tension cut-off surface. 

Choosing an appropriate value of the exponent for the softening function, n, is also a 

problem that needs further study.  

The technique implemented in all the example problems to treat the post-shear 

failure deviatoric stress drop is to modify (re-set) the effective stress of the failed Gauss 

point to a residual. Forces acting on different nodes are then required to be rebalanced 

when the magnitude of stress at some Gauss points has been manually altered. In this 

section the significance of the force rebalancing after failure is shown by comparing the 

base case from Section 6.1.4 with a problem which is the same except that no force 

rebalancing after shear failure is carried out. The effective stress at the failed Gauss point 

is just modified to the residual amount by reducing the maximum principal effective 

stress. The comparison is presented in Figure 6.24. A major difference is observed 

between the two SRV sizes, and we believed that the solution with force rebalancing 

resembles more the real phenomenon happening in most non-conventional reservoirs 

fracturing in which micro-seismic events are also observed. When a block fails in shear, 

the non-fractured blocks around are loaded by force rebalancing mainly in the maximum 

effective stress direction. Since the geomaterial is bounded, the blocks minimum stress 

increases as well and the stress state of the non-fractured blocks is drifted away from the 

shear failure surface. This is explained the smaller SRV when force re-balancing 

technique is implemented in the numerical solution. 
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Figure 6.24 – Effect of post-failure forces rebalancing on the SRV distributions  

 

Figure 6.25 compares the well block pressure profile for the two cases. The larger 

SRV size in the non-rebalanced case is associated with a greater pressure drop within the 

SRV zone from the well block to the boundary of the larger SRV within the same 

stimulation time. 
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Figure 6.25 – Pressure vs. time profiles, effect of forces rebalancing  

 

6.3.3 Alternate method for stress rebalancing 

The other approach for post-shear failure treatment, defining a mobilized friction 

angle and reducing it from a maximum value calculated at the failure point to a 

predetermined residual level, is also investigated here. The example shown is for 

exponent coefficient n of 1000 m
-1 in the equation of friction angle reduction as a 

function of plastic shear strain. The effective stresses, strain and the stress paths of the 

fracture sets for the first Gauss point of the well block are shown in Figure 6.26. It is 

apparent that after shear fracturing occurs, the maximum effective stress smoothly 

declines as a function of cumulative plastic shear strain.  Likewise, after secondary shear 

fracturing ’z, ’x also decreases to zero as expected. Strain component in y direction 

increases, whereas the component in the x direction decreases after shear failure. 

The most difficult challenge in this technique is the uncontrollable divergence which 

may occur after fracture propagation within some blocks around the well block. It might 

be explained mainly by the large drift in the shear failure surface, or by frequent 

switching of the constitutive model from elasto-plastic to tensile at the tensile cut-off 

surface. As indicated in Figure 6.26, after the model has been run only for 34 seconds 

divergence caused so many time step cuts in the solution that the simulation could not 

continue. The other post-shear failure treatment technique, in which the failed Gauss 
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point effective stress tensor is modified followed by forces rebalancing, has been found to 

be more stable in terms of solution convergence. 

 

  

Figure 6.26 – Effective stresses, strains and the fracture sets stress paths for the first 

Gauss point of the well block  
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6.4 3D fracture modeling of the base case 

The 2-D example problem solved in Section 6.1.4 is extended here to 3-D to 

investigate the permeability distribution, the well block pressure and other fracturing 

properties in realistic 3-D settings. The gridding in the x and y directions is retained the 

same as in the 2-D case but the number of grids in the z direction has increased to 8 (300, 

15, 15, 14, 12, 14, 15, 200 m from top to bottom, reservoir thickness of 40 m consisting 

of layers 4-6). In the vertical direction the SRV is assumed to be confined between strong 

cap and base rocks. The elastic properties of the cap and base rocks are the same as for 

the reservoir rock; however, the cohesion and tensile strength are much higher (18 MPa 

and 8 MPa respectively) such that failure will not occur. Obviously, the failure of the cap 

rock is also of interest and the model is capable of investigating it, but this topic is 

beyond the scope of this thesis.  
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Figure 6.27 – Induced SRV after 1710 seconds of stimulation in the crushed 

fracturing case – 3-D model 

 

  

Figure 6.28 – Well block pressure, effective stresses, total stresses and stress path in 

the first Gauss point of the well block in the 3-D model 
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Figure 6.27 indicates the SRV growth after 1710 seconds of reservoir stimulation 

which is around 60 m in half length, 12 m in half width and of course is confined 

vertically to 40 m pay zone. In comparison with the 2-D model the SRV areal extent is 

less in the 3-D case. However, as shown in Figure 6.28 the overall injection pressure is 

higher. Similar to the 2-D case after crushing, all the effective stresses at the first Gauss 

point of the well block decline to around zero. The stress path at the respective Gauss 

point also moves along the shear surface all the way to around zero coordinates.   

To provide an estimate of the computational time, it took about 9 seconds for one 

geomechanical Newton iteration and about 8 hours for the entire 3-D model run to be 

completed. The run consisted of 612 time steps and each time step required between 3 to 

5 iterations in the geomechanical Newton loop to converge. Furthermore as explained 

before when a Gauss point fails, the model is first run through the Newton loop to 

rebalance the forces and next the whole time step is repeated. There is also a maximum 

stress variation controlling parameter (SNORM) which causes time cut and repeat 

whenever it is exceeded. The time repeats could be as many as the number of time steps.  

In the second 3-D example problem, the cohesion has been increased to 2 MPa. As 

expected (and observed also in the 2-D analysis), the fracture plane was much narrower 

and more tensile-like in comparison as shown in Figure 6.29. Each oscillation in the well 

block pressure profile represents one step of lateral growth in the SRV width as presented 

in Figure 6.29 and Figure 6.30.  
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Figure 6.29 – Induced SRV after 520 seconds of stimulation in the crushed fracturing 

case – 3-D model, cohesion 2 MPa 

 

  

Figure 6.30 – Well block pressure in the first Gauss point of the well block in the 3-

D model – cohesion 2 MPa 
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are higher. The water is injected at various rates from low to high in magnitudes. The 

fluid, reservoir, rock and fracture properties are given in Table 6.2. 

6.5.1 2-D model 

The gridding procedure for this example is the same as the previous problem (50 x 

25 x 1). The blocks are equally spaced in x direction (4 m each) and in y direction are 

selected tobe in increasingsequenceof0.5,0.7,1,1.5,2,2.5,4,4,…inmeters. The

model has been run for three different full field injection rates of 5200, 10400 and 20800 

M
3
/Day (~ 23, 45, 90 bbls/min). Other required data to set up the model are given in 

Table 6.2. 

As mentioned before, a tensile fracture set is allowed in the row of blocks in which 

tensile fracturing is assumed to propagate (j=1). The embedded tensile fracture has a 

spacing defined as twice as the grid block width size due to the quarter of symmetry 

assumption (grid width =0.5m and tensile fracture spacing =1m for all blocks at j=1). 

This ensures that only half of tensile fracture will exist in the boundary blocks to meet the 

quarter of symmetry requirement. The residual tensile fracture width is assumed to be 

0.01 mm (aj, vmax = 0.11 mm, 0.1 mm as assumed for all induced tensile fracture in 

previous sections). Other tensile fracture properties are the same as the shear fracture sets 

given in the second column in Table 6.2. 

 

Table 6.2 – Rock, fluid and fracture physical properties for the 2
nd

 example problem  

 (porosity)= 0.07      aj,  vmax = 0.13, 0.1  mm E =    3 x10
7
 kPa 

 kxi = kyi = 1E-5 md    Kni = 1.0E6  kPa/m v =   0.3   

 kzi =  1E-5 md   JRC = 2   kgr =    15.0x10
15

 kPa 

 = 1000 Kg/m
3
   JCS  = 30000 kPa S0 

(cohesion)= 

  500 kPa 

 = 0.3 cp bf(fracture) 25
o
   (rock)=   30

o
  

 cf =cr= 0.6x10
-6 

kPa
-1
   Ks/ Kn =  0.6  Sh,i =   63000 kPa 

 pi = 60000 kPa    n = 0.5 m
-1
 SH,i =   64000 kPa 

 Pay Thickness = 66 m = 0.6   Sv,i =   70000 kPa 

      Sf =  0.2 (Shear frac) m    

 

The simulation results of the SRV distribution after 1700 seconds of stimulation job 

are presented in Figure 6.31 for the three different injection rates. The main difference 
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between the three cases is the maximum amount of permeability enhancement which is 

the highest for the case with the maximum injection rate.  

The well block pressure is also compared in Figure 6.32. It is worth to recall that the 

minimum total stress is 63000 kPa and therefore in all the three cases a substantial 

increase in the well block pressure is observed at the early stage of fracturing. For the low 

injection rate the profile is then almost flat whereas for the other higher injection rates 

there is some degree of raise in the well block pressure afterward. The higher the rate of 

the fluid injection, the higher the slope of the well block pressure versus time. 

 

  

 

Figure 6.31 – Induced 2-D SRV development for three different injection rates 
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The effective stress profiles for the first Gauss point of the well block as shown in 

Figure 6.32 reveal the fact that for the low injection flow rate, no secondary fracturing 

has occurred; whereas in the mid and high injection rates both primary and secondary 

fracturing (i.e., block crushing) were the dominant mechanism. The Gauss point strain 

profiles indicate higher contrast between normal strain in y and x directions as the 

injection flow rate is ramped up. It is worthwhile to mention that the well block strain in 

the main SRV propagation direction is compressive as opposed to the strain in the 

perpendicular direction.  

  

 

Figure 6.32 – Well block pressure, effective stresses and x, y strain components in 

the first Gauss point of the well block (4m x 0.5m x 66m) for the 2
nd

 example, 2-D plane-

strain model 

 

 

6.5.2 3-D model 

The 2-D example problem in the previous section is extended here to 3-D by 

retaining the gridding in the x and y directions and increasing the number of grids in the z 
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direction to 8 (300, 24, 24, 22, 22, 22, 24, 200 m from top to bottom, 66 m of reservoir 

thickness consisting of layers 4-6). The initial stresses for the reservoir layers are kept the 

same as in the 2-D case. The cap and base rocks have been again assumed to be strong 

enough against shear or tensile fracturing such that the SRV only grows within the 66m 

pay zone.  

 

 

 

Figure 6.33 – Induced 2-D SRV development for three different injection rates 

 

The SRV propagations for the three low, mid and high injection rates are presented 

in Figure 6.33. Since we compare results for the same stimulation period, increasing the 
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rate also means increasing the treatment volume. As one expects, the SRV size increases 

with the injection rate (or volume); likewise the maximum permeability enhancement 

also rises with the treatment volume. In the case of the injection rate of 23 bbls/min, the 

running time was about 4 hours, for 45 bbls/min the running time was around 8 hours and 

for the maximum injection rate of 90 bbls/min the respective value reached about 9 hours.  

Similar to what resulted in the 2-D example analysis, higher injection rate steepens 

the well block pressure versus time curve as shown in Figure 6.34. In all three tested 

injection rates the main rise in the pressure profile occurred at the early time and pressure 

exceeded significantly the minimum total stress of 63000 kPa.  In the case of 23 bbls/min 

injection rate only primary shear fracturing occurred, but secondary fracturing was 

observed in the mid and high injection rates. The well block strain in the y direction 

reaches values as high as 0.0025. This gives the equivalent displacement in the full field 

model of 5 mm. It should be noted that the well block (which was crushed) contains two 

shear fracture sets with 0.2 m of fracture spacing in addition to the tensile fracture; the 

block in total undergoes 5 mm of deformation in the y direction. 

In Section 6.2.2 the significance of the rock cohesion on the overall shape of SRV 

has been discussed. The sensitivity of the above results to this parameter is presented next. 

Figure 6.35 presents the shape of SRV for the case of 23 bbls/min injection rate when the 

rock cohesion is chosen to be 2 MPa instead of 0.5 MPa. The induced SRV almost 

resembles a single tensile plane of fracture with only minor shear fracture development at 

the sides.  

The well block pressure as indicated in Figure 6.36 remains almost constant after an 

early drop which is the typical for the low viscous fluid injection in the field. The 

effective stress in the x direction increases with time; however secondary shear fracturing 

will not occur due to the relatively higher rock cohesion. Strain component in y direction 

increases with time (0.005 x 0.5m = 2.5 mm, 5mm in the full field model), the respective 

value in z direction however declines after a slight increase in the early time. This is 

explained by the creation of conjugate shear fracture planes between the maximum 

direction of z and the minimum direction of y in the well block first and the blocks 

around it afterward. 
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Figure 6.34 – Well block pressure, effective stresses and x, y strain components in 

the first Gauss point of the well block (4m x 0.5m x 22m) for the 2
nd

 example, 3-D model 

 

  

Figure 6.35 – Induced SRV after 400 seconds of stimulation in the crushed fracturing 

case – cohesion 2 MPa 
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Figure 6.36 – Pressure, effective stresses and strain in the first Gauss point of the 

well block in the 3-D model – cohesion 2 MPa 

 

 



CHAPTER 7 - CONCLUSIONS & 

RECOMMENDATIONS 

During the course of this research project, dynamic tensile/shear fracturing which 

occurs in stimulation of unconventional reservoirs was studied and modeled by the use of 

an iteratively coupled single phase flow/geomechanical code. Permeability was the main 

coupling term between the flow and geomechanical modules.  

The developed code captured successfully the main aspects of the dynamic fracturing 

problem including: 

1) fluid flow injection and the respective pore pressure variation in the porous 

media, 

2) variation in the stress/strain tensors for each reservoir block prior fracturing, 

3) dynamic creation of tensile and shear fractures in the model elements when their 

respective failure (fracturing) criteria are met, 

4) shear softening behavior  after fracture creation due to sudden release of the 

stored elastic energy, and its modeling by force-rebalancing technique 

5) estimating the mechanical behavior of the fractured blocks both in normal and 

shear directions by pseudo-continuum approach, 

6) Changing the permeability tensor in failed blocks as a function of creation and 

further deformation of the fractures, and its link to flow modeling, 

7) predicting the extent of the stimulated reservoir volume (SRV) and the 

permeability distribution within the SRV during the formation stimulation.  

The above were the main elements of the developed code; however integration of all 

the parts required implementation or development of other techniques as well. Some 

examples are: the use of an efficient non-symmetric solver (bi-conjugate gradient solver), 

special techniques in managing the allocated memory for all required arrays including the 

global stiffnessmatrix, solver, all Gauss points’ state variables, special techniques for

time step control, and so on.   
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7.1 Conclusions  

We have succeeded to model simultaneous development of tensile and shear 

fracturing, as well as the phenomena of secondary shear fracturing (leading to “block

crushing”),itoccursinwellstimulation. 

The numerical techniques developed can accurately represent elasto-plastic shear 

behavior of created (or existing) fractures including shear softening and dilation. 

Extensive validation of the code on examples contributed significant insight into the 

combined normal and shear behavior of the fractures induced in well stimulation.  

It is believed that the model is sufficiently realistic to be used in predictive mode for 

estimating the size and permeability of the SRV. Therefore the methodology developed 

in this work can be now applied to optimization of the multi-stage stimulation treatments 

with respect to fracturing job parameters, which is a significant advance compared to 

existing tools.    

 Simulation results of field applications indicate a substantial difference between the 

cases where tensile fracturing is the dominant mechanism and the cases where the initial 

reservoir conditions are such that the shear fracturing is the dominant fracturing 

mechanism. Some of the major differences between the two cases when water is the 

stimulation fluid are listed below in a table: 

Table 7.1 – Tensile and shear dominated fracturing comparison  

Tensile dominated fracturing Shear dominated fracturing 

A large SRV with considerable width is 

generated, an opening path for proppant 

injection sometime is created in the middle 

A single tensile fracture is created, the 

length of the created fracture is 

substantially longer in comparison 

A continuous raise in the well block 

pressure for 2-D and 3-d cases 

An almost constant well block pressure for 

3-D and declining for 2-D cases 

Well block pressure is substantially higher 

than the minimum total stress 

Well block pressure is slightly higher than 

the minimum total stress 
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Permanent permeability enhancement due 

to dilation 

Considerable permeability enhancement if 

proppant is injected  

 

Fracturing analysis revealed that the closeness of the initial reservoir conditions to 

the shear failure surface is the main cause for the shear failure to be the dominant 

fracturing mechanism. Low formation rock cohesion, high contrast between the initial 

total stresses and abnormally high reservoir initial pore pressure are some factors 

increasing tendency for shear failure. The levels of rock cohesion below which relatively 

wide SRV’s were observed in the simulations were of low magnitude (less than 1 MPa). 

Therefore, only in formations where the rock is weakened by pre-existing fractures or 

micro fractures, a large and wide SRV is probable; otherwise conventional tensile 

fracturing mechanism will prevail. 

The main problem with stimulation of tight formations (such as shale gas reservoirs) 

is the very low matrix permeability which substantially impedes the injected fluid from 

diffusing and pressurizing the blocks that are about to join the body of the SRV. The pre-

existing opened micro-fractures might expedite this process and the subsequent shear 

fracturing. This phenomenon can be modeled by stress-dependent matrix permeability 

and has been used successfully in several detailed studies in tight gas (Settari et al., 2002; 

Settari et al., 2009; Islam et al., 2012) Although it was not captured in this research work, 

it is thought to play a significant additional role in the SRV modeling. Thermal effect has 

also not been investigated in this study. Cooling the formation creates tensile stresses 

which may lead to secondary tensile fracturing (Tran et al., 2012). Created permeability 

might have a significant influence on the SRV growth. These aspects will be investigated 

in future studies. 

In general the pseudoization or averaging technique appears to be an efficient tool in 

the SRV modeling in terms of capturing the main physical aspects of fracturing, while 

being time-efficient. Numerically discrete consideration of fracture networks in a big 

model, although having the potential to be more accurate in cases with large dominant 

fractures, require a large number of elements both for the intact rock and the fracture sets 
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which heavily increases the running time and requires detailed data on the fracture 

network. It should be emphasized that a modeling problem involving dynamic fractures is 

highly non-linear and requires iterations to eliminate out of balance forces. Furthermore, 

whenever some fracture sets are added to a certain block either in the primary or 

secondary fracturing phase, a repeat in the time step is required. The time repeat was 

found to be a significant factor in escalating the running time. 

 

7.2 Recommendations 

There are still several details which require further study and development both in 

the flow and geomechanical parts of the code resulting from the current work. Most of 

these are concerned with extending the physics or further integration of the system 

components. Some of the recommended studies on the fluid flow part might be: 

1) Extension of the 3-D flow model to multi-phase flow 

2) Inclusion of the thermal effect which requires further development in the flow 

model. The fracturing fluid in the hydraulic fracturing operation is usually colder 

than the formation fluid and there will be a considerable thermal effect on the 

stresses and therefore final fracturing results  

3) In the current developed code at any time step in the flow module, the 

permeability term is assumed to be constant. A non-linear pressure dependent 

permeability function for the fractured rock in the flow module can be defined to 

better estimate the elements pressures changes. The permeability function can 

then be corrected by the stress-strain results of the geomechanical solution 

following the flow solution 

4) Determining the fractured block compressibility from the stress-strain data and 

implementing it in the flow solution  

5) In real shale gas reservoirs, the reservoir rock is macroscopically and 

microscopically fractured, heterogeneous such that the linear elastic and simple 

Mohr-Coulomb failure criterion for the non-stimulated rock may not be a valid 

assumption. A recommended and better approach is to assume that pre-existing 
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natural fractures exist in the reservoir rock such that pseudo-continuum 

constitutive model accounts for the jointed reservoir rock prior to being 

stimulated. The challenge is to specify an appropriate mean friction angle and 

specially an average cohesion for the naturally fractured rock. It should be 

recalled that in the presented example problems in the Model Application 

Chapter, the upper limit of rock cohesion below which a wide SRV has been 

generated was as low as 1 MPa. Since intact non-fractured shale cohesion is 

typically at least an order of magnitude higher than 1 MPa, unless the reservoir 

rock is weakened by some natural failure planes, there would be no justification 

for such low rock cohesion. Therefore the small-scale heterogeneity 

characterization is important for future applications. 

The geomechanical part and the coupled software would also benefit from further 

work. Some of the issues suggested are: 

1) Further work on the post-failure shear softening part which implements the 

mobilized friction angle and large exponent coefficient value to soften the 

material. We have encountered some divergence problems in the Newton 

solution due to presence of strong shear softening while the stress path is moving 

toward tensile failure surface. 

2) Optimization of the numerical solution such as adding pre-conditioners to the 

non-symmetric bi-conjugate solver, minimizing the required memory storage for 

the existing arrays, etc. 

3) Running more example problems with different input data to further sensitize the 

problem with respect to various input variables. The goal would be to provide 

practicing engineers with some guidelines about expected behavior of the SRV as 

a function of operating conditions and geomechanical parameters. 

 

It would be also desirable to apply the developed code for the analysis of field hydraulic 

fracturing data with sufficient data to perform detailed history match and field calibration. 

This exercise would also provide real bounds on some of the geomechanical data, 

especially for the created shear fractures. Unfortunately, such study was beyond the scope 
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of this thesis, but it is hoped that the code developed here will be used in the future in this 

mode. 
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