
THE UNIVERSITY OF CALGARY

Sequential Performance of PDES
Algorithms

by

Roger J. Curry

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

September, 2005

© Roger J. Curry 2005

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled "Sequential Performance of PDES

Algorithms" submitted by Roger J. Curry in partial fulfillment of the requirements

for the degree of Master of Science.

:,/'2.00r:

Date

1 Supervisor, Dr. Brian Un
11

/' Department of Computer ience.

/
Dr. Rob Simmomids.

Department of Computer Science.

Dr. Abraham Fapojuwo,

Department of Electrical Engineering.

11

Abstract

In this thesis the sequential performance of parallel discrete event simulation

(PDES) algorithms is explored. These algorithms were originally developed to speed

up the execution of a single discrete event simulation by using multiple processors.

Currently most sequential discrete event simulators are based on the Central Event

List (CEL) algorithm. Excellent sequential performance of the Critical Channel

Traversing (CCT) algorithm has been reported in the literature. This has motivated

the investigation of channel based conservative PDES algorithms as an alternative

approach to sequential discrete event simulation.

A synthetic workload model is used to compare the sequential performance of

channel based conservative algorithms with several CEL-based algorithms. The re-

suits demonstrate that a channel based conservative algorithm can often achieve a

two to three times speedup in event rate over the fastest CEL-based algorithm. The

greatest performance improvements are observed in situations of low connectivity,

high event density, and large lookahead. Under adverse conditions the performance of

the conservative algorithm can be much worse than that of the CEL-based algorithm.

The potential causes of good and poor performance of channel based conservative

algorithms are examined in detail.

111

Acknowledgments

I would like to begin by thanking Brian Unger and Rob Simmonds for recruiting

me into the TeleSim research group. It was there that I was introduced to the inter-

esting and challenging field of parallel discrete event simulation. Being part of this

research group was an experience that I will always be thankful for. Thank you to

Rob Simmonds, for encouraging me to pursue graduate studies and for his continual

support throughout the process.

I would like to acknowledge our postdoctoral student Cameron Kiddie for his help

with my thesis. Cameron provided many insights into the sequential cost analysis

for the 0MB algorithm. Thank you to committee member Dr. Abraham Fapojuwo

whose comments were very helpful in improving the final version of my thesis. Finally,

I would like to thank my friends and family for their support and encouragement over

the last three years.

Generous financial support was provided by the TeleSim Research Group which

is funded by ASRA (Alberta Science Research Authority).

iv

Table of Contents

Approval Page

Abstract

Acknowledgments iv

Table of Contents v

List of Tables ix

List of Figures x

List of Abbreviations xii

1 Introduction 1

1.1 Motivation and Objectives 2

1.2 Overview of Thesis 4

2 Sequential DES Algorithms 5

2.1 Discrete Event Simulation 5

2.1.1 Time-Stepped Time Flow Mechanism 7

2.1.2 Event-Driven Time Flow Mechanism 8

2.2 GEL 8

2.2.1 Linked List 10

V

2.2.2 Indexed-List 11

2.2.3 Binary Search Indexed List (Henriksen's algorithm) 12

2.2.4 Heap 12

2.2.5 Splay Tree 13

2.2.6 Calendar Queue 14

2.2.7 Lazy Queue 16

2.2.8 Other Priority Queue Implementations 17

2.3 Summary 17

3 PDES Algorithms 19

3.1 Parallel Discrete Event Simulation 19

3.1.1 LP Modeling Methodology 20

3.1.2 Causality and Synchronization 21

3.1.3 Risk and Aggression 22

3.2 Conservative Synchronization 23

3.2.1 Chandy Misra Bryant (CMB) null message algorithm 25

3.2.2 Critical Channel Traversing (CCT) 26

3.2.3 Deadlock Detection & Recovery 27

3.2.4 Synchronous Simulation Protocol 28

3.3 Optimistic Synchronization 30

3.3.1 Time Warp for PDES 30

3.3.2 Aggressive No Risk 33

3.4 Summary 34

4 Model and Methodology 35

4.1 Synthetic Workload Model 36

4.1.1 HOLD model 36

4.1.2 Interaction HOLD Model 38

4.1.3 Up and Down HOLD Model 39

vi

4.1.4 Dependent HOLD model 39

4.1.5 PHOLD model 40

4.1.6 Ring Model 41

4.1.7 Test Model 42

4.2 Experimental Methodology 46

4.2.1 Test System 46

4.2.2 Implementation and Memory Management 48

4.2.3 Test Architecture and Compiler 51

4.2.4 Performance Metrics 52

4.2.5 Experiment Outline and Parameters 54

4.3 Analysis 55

4.3.1 Asymptotic Bounds 55

4.3.2 Events per LP execution 57

4.3.3 Comparison with CEL-based approaches 60

4.4 Summary 61

5 Sequential Performance of DES Algorithms 62

5.1 Queue Size Experiments 62

5.1.1 Number of LPs Experiment 63

5.1.2 Event Density Experiment 68

5.1.3 Fixed Queue Size Experiment 73

5.2 Model Topology Experiments 78

5.2.1 Channel Delta Experiment 79

5.2.2 Connection Radius Experiment 84

5.2.3 Topology Experiments 89

5.3 Model Characteristics Experiments 98

5.3.1 Computation Grain Experiment 98

5.3.2 LP State Size Experiment 102

5.3.3 Timestamp Increment Distribution Experiment 107

vii

5.4 Summary 113

6 Summary 115

6.1 Conclusions 116

6.2 Future Work 118

A Distribution Experiment Results 120

Bibliography 127

viii

List of Tables

2.1 Asymptotic Bounds for priority queue operations 18

3.1 Risk and Aggression of Synchronization Algorithms 23

4.1 Scheduling Distributions 37

4.2 Asymptotic bounds for channel based conservative synchronization. 58

4.3 Expected behaviour of manipulating model parameters 59

5.1 Controlled variables for Queue size experiments 63

5.2 Inherent Computation Grain (in microseconds) 100

5.3 Results for D4..R32L1 Distribution experiment 108

6.1 Relative Speedup of OCT versus CEL - calendar queue 116

A.1 Results for D4Jt32I1 Distribution experiment 121

A.2 Results for DO.251tLL1 Distribution experiment 122

A.3 Results for D4.R110.125 Distribution experiment 123

A.4 Results for D4-R1-L1 Distribution experiment 124

A.5 Results for D4-R1-L2 Distribution experiment 125

A.6 Results for D32JtLL1 Distribution experiment 126

ix

List of Figures

2.1 Central Event List Algorithm 9

4.1 4x4 Toroid Network 41

4.2 Test Model Topologies, 8 LPs with Connection Radius 2 42

4.3 Event Time Line 44

5.1 Number of LPs experiment -Plots of A. Model Level Cache Behaviour,

B. Kernel Level Cache Behaviour and C. Aggregate Cache Behaviour

versus the number of LPs. 65

5.2 Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus the number of LPs. 66

5.3 Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour versus event density. . . . 69

5.4 Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus event density. 70

5.5 Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour versus the number of LPs

Parameter D chosen such that N x D = 131072 75

5.6 Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus the number of LPs. Parameter

D chosen such that N x D = 131072 76

5.7 Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour versus channel delta. . . . 81

X

5.8 Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus channel delta. 82

5.9 Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour versus connection radius. 86

5.10 Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus connection radius 87

5.11 Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour versus channel delta. . . . 91

5.12 Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus channel delta. 92

5.13 Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour versus connection radius. 95

5.14 Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus connection radius 96

5.15 Computation Grain Experiment 101

5.16 Plots of A. Model Level Cache Behaviour, B. Amortized Aggregate

Cache Behaviour and C. Event Rate versus state size, for D = 1. . . . 104

5.17 Plots of A. Model Level Cache Behaviour, B. Amortized Aggregate

Cache Behaviour and C. Event Rate versus state size, for D = 4. . . . 105

5.18 Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour for different algorithms,

models and timestamp increment distributions. 109

5.19 Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate for different algorithms, models and

timestamp increment distributions. 110

xi

List of Abbreviations

ANR - Aggressive No Risk

CCT - Critical Channel Traversing

GEL Central Event List

CMB - Chandy, Misra, Bryant

DES Discrete Event Simulation

DVE Distributed Virtual Environment

FF Far Future

FIFO First In, First Out

GVT Global Virtual Time

HLA - High Level Architecture

LP Logical Process

LVT Local Virtual Time

NF - Near Future

PDES - Parallel Discrete Event Simulation

PHOLD - Parallel HOLD

VFF Very Far Future

xii

Chapter 1

Introduction

Simulation is a way of imitating, understanding, and predicting the behaviour of

a real world system over time. There are applications of simulation in many problem

domains. For example, simulation is used in the design and analysis of manufacturing

systems, air traffic control scenarios, and telecommunication networks. Simulation

can be used for performance evaluation, forecasting, and sensitivity analysis. In some

situations a simple analytical model may provide the same information. However,

real world systems are often too complicated to express or solve mathematically.

Simulation is an appropriate tool for analyzing the behaviour of such complex systems.

In addition, simulation can be used when experimenting with a real world system

would be too costly or dangerous.

There are several approaches to simulation. Discrete event simulation (DES) is

one method for modeling a system as it evolves over time. DES is primarily used to

model systems where state changes occur at discrete points in time. It is possible to

approximate state changes that occur continuously, but discretization may incur some

error. Continuous simulation is an alternative to DES that uses iteratively solved

differential equations to model state changes that occur continuously over time.

Most discrete event simulations are executed sequentially using the resources of

a single computer. Parallel discrete event simulation (PDES) refers to the execution

1

CHAPTER 1. INTRODUCTION 2

of a single simulation using multiple processors. This allows completion of a single

simulation run in less time. PDES is appropriate when minimizing the execution

time for a single simulation run is critical, or when the model is too large to simulate

using the resources of a single computer. For example, PDES techniques are used in

emulation [33] were real-time execution is necessary.

In practice, simulation studies often involve executing many independent simula-

tion runs. For example, multiple simulation runs are necessary for variance reduction,

parameter studies, constructing confidence intervals, or when comparing different so-

lutions to a problem. Parallel simulation techniques reduce the execution time of a

single simulation run, but sequential simulation achieves better overall efficiency.

This thesis is focused on improving the speed of sequential DES simulation through

the use of techniques originally developed for PDES.

1.1 Motivation and Objectives

In a DES, events are used to model changes in system state. Each event has an

associated timestamp that indicates when the state change will occur. Most sequential

DES programs employ a central event list (CEL) to order execution of events in the

system. The CEL is implemented using a priority queue of events sorted by event

timestamp. The event with the smallest timestamp is removed from the CEL and

then executed. The execution of an event may result in the generation of new events

which are then inserted into the CEL. Much of the research in sequential DES has

focused on the implementation of the priority queue used to represent the CEL.

CCTKit is a parallel simulation kernel that implements the Critical Channel

Traversing (CCT) algorithm [42]. The CCT algorithm is an extension of the channel

based conservative PDES algorithms first proposed by Chandy and Misra [4], and

Bryant [3]. Several simulation systems employing the CCT algorithm have shown

very good sequential performance. The ATM-TN network simulator achieved a three

CHAPTER 1. INTRODUCTION 3

times greater event rate when using CCT than a GEL-based simulator implemented

using a splay tree [41]. The IP-TN network simulator has performed up to four times

better than a GEL-based simulator employing a heap [21]. This contrasts with most

other PDES systems that perform poorly in sequential runs [38]. Little work has

been done to explain why a system using the GCT algorithm can perform so well

sequentially.

This thesis examines channel based conservative PDES algorithms such as GGT,

to understand how they achieve better sequential performance than GEL-based sim-

ulators, and under what conditions this occurs.

A synthetic workload model will be presented and then used to compare the

sequential performance of the algorithms. Several well-known GEL-based algorithms

are compared with the channel based conservative PDES algorithms. The asymptotic

behaviour of the PDES algorithms is analyzed and compared with that of the GEL

algorithms. Six performance metrics are defined that facilitate empirical comparison

of the algorithms in terms of cache behaviour, computational complexity, and event

rate.

Improving the performance of sequential DES programs has numerous benefits.

Faster sequential DES will allow scientists and engineers to test and compare design

options in less time. Where it used to take weeks to compare alternative designs,

simulation will someday enable these options to be evaluated on the fly. Improving

the performance of sequential DES algorithms could also lead to improvements in

PDES simulators since sequential DES algorithms are often part of larger parallel

simulations. For example, a central event list approach is used to execute events

which are scheduled in a cluster task in TasKit [42]. Fast sequential DES kernels

would also benefit the distributed simulation community, since many distributed sim-

ulations are federates of smaller sequential simulations. For example, the high level

architecture (HLA) is often used to combine independent sequential simulators [14].

By demonstrating the benefit of applying parallel simulation techniques to sequential

CHAPTER 1. INTRODUCTION 4

simulation, or simply using parallel simulation algorithms sequentially, it may suggest

other opportunities to exploit algorithms originally developed for parallel execution

to more general computer science problems.

1.2 Overview of Thesis

The remainder of the thesis is organized as follows. In Chapter 2 background material

regarding discrete event simulation is presented. Relevant definitions and terminology

are introduced, followed by a detailed description of the central event list algorithm.

The chapter describes different priority queue algorithms that have been used to

implement the central event list. Chapter 3 discusses issues related to the execution

of a discrete event simulation in parallel. Further terminology is introduced and the

logical process modeling methodology is explained. The chapter includes descriptions

of various PDES algorithms, including the CMB and CCT channel based conservative

PDES algorithms.

Chapter 4 provides a survey of synthetic workload models that have been used in

the comparison of both sequential and parallel DES algorithms. A detailed description

of the workload model used in this thesis is then presented. The next part of this

chapter covers the experimental methodology, including a description of the metrics

used in the comparison of the different simulation algorithms. The last part of this

chapter presents a theoretical cost analysis for the performance of channel based

conservative PDES algorithms.

Chapter 5 presents the experiments and corresponding results. The experiments

are grouped according to the parameters of the synthetic workload model that were

manipulated. Algorithms are compared using the performance metrics defined in Sec-

tion 4.2.4. Chapter 6 provides a summary of the thesis and outlines the contributions

made by this thesis. The summary also includes a discussion of potential future work.

Chapter 2

Sequential DES Algorithms

The central event list algorithm is used by many sequential simulators. Much of

the research in sequential discrete event simulation has focused on the implementation

of the priority queue data structure used in CEL algorithms. A wide range of priority

queue implementations are possible; some implementations are general purpose and

others have been developed specifically for implementing the CEL. Several of the

CEL implementations in this chapter will be used as a baseline for comparison of the

channel based conservative algorithms described in the Chapter 3.

This chapter introduces the terminology and concepts central to DES. The CEL

algorithm is described in detail and then possible implementations of the priority

queue are discussed.

2.1 Discrete Event Simulation

Discrete event simulation (DES) is a useful tool for modeling the behaviour of systems

where state changes occur at discrete points in time. Before a system can be simulated

using DES, it must first be mapped to a logical model. In sequential DES there are

relatively few restrictions on how that is accomplished. A discrete event simulation

requires three things; a representation of time, a representation of state, and some

5

CHAPTER 2. SEQUENTIAL DES ALGORITHMS 6

way of changing or affecting the state as time advances. A simulation program could

use a floating point variable to represent time, in addition to other variables for the

system state. In DES, system state is affected by executing events. At a minimum

an object that represents an event will contain information that indicates when the

event will occur, called the event timestamp, and the type of event that will occur.

The collection of all unprocessed events in the system is known as the pending event

set. As events are executed, the representation of time must be updated to reflect

the passage of time.

The world view of a discrete event simulation is usually described as event-oriented

or process-oriented. In the event-oriented view described above, simulation behaviour

is described in terms of events that are used to affect the state as time advances.

In the process-oriented view behaviour is described in terms of interacting processes

that wait for a specific period of time or block until some condition is true. Although

not as efficient as a strictly event-oriented view, the process-oriented view can offer

a more intuitive approach to modeling certain physical systems. A process-oriented

simulator is normally implemented on top of an event-oriented simulation system.

Simulation can be confusing because there are often several systems of time under

consideration. This is further complicated in parallel simulation, where different

parts of the simulation may have advanced further than others. Fujimoto [14] gives

the following definitions to distinguish the different systems of time.

• Physical time refers to the time in the physical system.

• Simulation time is an abstraction used by the simulation program to model

physical time.

• Wall-clock time refers to time during the execution of a simulation program.

The following example illustrates the difference between these systems of time. A

simulation program begins running at 1:30pm and finishes running at 1:45pm, the

CHAPTER 2. SEQUENTIAL DES ALGORITHMS 7

elapsed wall-clock time is 15mm. During that period of time, the simulation time

advanced from Os to 3600s, 1 hour of physical time was simulated.

In general it is desirable for simulations to execute as fast as possible. There

may be some situations such as network emulation [33] where simulation execution is

paced to correspond with the wall-clock or physical time.

Causality refers to the principle that one action or event leads to another. If a rock

is thrown at a window, then the window is broken. The action of throwing the rock

results in the window breaking. The window will not break unless some force causes

it. In a simulation, certain events may depend on previous events, and a simulator

must ensure causal relationships are maintained. Simulators are constrained such

that processing of an event with timestamp t must only result in scheduling new

events with timestamps greater than or equal to t. Violation of causality can result

in errors in a simulation. Such errors are called causality errors.

Simulations can be classified according to the mechanism by which simulation time

is advanced. There are two time flow mechanisms, event-driven and time-stepped. The

choice of time-flow mechanism also affects how causal relationships are maintained

within the simulator.

2.1.1 Time-Stepped Time Flow Mechanism

Simulations that use a time-stepped time flow mechanism require that simulation

time is split into small equal sized intervals. The simulation clock is advanced by

a fixed increment and then all state variables are updated. If events are used to

indicate state changes then all events with timestamps less than the simulation time

are executed. Events which are executed during the same time slice are considered

to be independent and to occur simultaneously, this may or may not be an issue. In

order to preserve causal correctness the time-slice must be small enough to prevent

dependent events from occurring out of order.

In time-stepped simulation the simulation time generally advances by the same

CHAPTER 2. SEQUENTIAL DES ALGORITHMS 8

amount, this contrasts with event-driven simulation where simulation time advances

in arbitrary increments according to the timestamp of each event. The size of the

time-step is important because it will determine the simulation's precision with re-

spect to time. Time-stepped synchronization has some applications in logical circuit

simulation and has also been incorporated into numerous parallel DES algorithms.

More information about time-stepped simulation can be found in [14]. This thesis

focuses on algorithms which employ event-driven time flow mechanisms, described in

the next section.

2.1.2 Event-Driven Time Flow Mechanism

The central event list (CEL) algorithm is an example of an algorithm that employs

an event-driven time flow mechanism. A simple way to maintain causal correctness is

by processing events in chronological order. The event with the smallest timestamp

is removed from the pending event set and then executed. Executing this event may

result in the generation of new events which are then added to the pending event

set. This approach to synchronization is known as the central event list algorithm. A

CEL-based simulator maintains causal relationships by using a single priority queue

to order the execution of all events.

2.2 CEL

The majority of sequential simulation programs employ the CEL algorithm described

in the previous section. Variations of the GEL algorithm are confined to the im-

plementation of the priority queue. A priority queue is an abstract data type that

supports at least two operations, remove-min and insert. The remove-min operation

removes the element from the collection with the highest priority, while the insert

operation adds an element to the collection. In this section the GEL algorithm is

explained in detail and possible implementations of the priority queue are discussed.

CHAPTER 2. SEQUENTIAL DES ALGORITHMS 9

In a CEL-based simulation the central event list corresponds to an instance of the

priority queue, i.e., a class supporting operations remove-min and insert. The CEL

algorithm operates as follows. The event with the smallest timestamp is removed

from the central event list. Next, the simulation time is updated to the timestamp of

the event that has just been removed. Finally, processing for the event occurs which

may result in the generation of new events and their insertion into the central event

list. If a simulation end time is specified, then events are only inserted into the central

event list if their timestamps are smaller than the specified end time. This process

repeats until there are no events left in the central event list.

Figure 2.1 provides pseudo-code for the CEL algorithm. The current simulation

time is stored in the sim_time variable, event is a reference to an object that repre-

sents an event and cel is a reference to a priority queue representing the central event

list. The process procedure handles processing of the event and freeing of memory

allocated for that event.

Central Event List (CEL)

while event= cel->remove_minQ;

sim_time event->time_stamp;

process(event);

Figure 2.1: Central Event List Algorithm

Every GEL algorithm processes events in non-decreasing timestamp order which

guarantees causal correctness of the simulation. The only possible variation is in the

processing of events with the identical timestamp. There has been extensive research

into the implementation of general purpose priority queues and those specialized for

DES. Empirical comparisons of priority queue implementations are available in [27, 20,

2, 31, 26]. Analytical results relevant to priority queue implementations are available

in [27]. The following subsections describe various priority queue implementations

CHAPTER 2. SEQUENTIAL DES ALGORITHMS 10

that have been used in DES systems.

2.2.1 Linked List

A linked list of events sorted by timestamp was used in many early simulation lan-

guages such as GPSS [16] and SIMSCRIPT [39]. It is rarely used in modern simulation

because it does not scale well with respect to the size of the pending event set. Al-

though the remove-min operation is 0(1), the average and worst case insert times are

0(P) where P is the number of elements in the collection. The worst case scenario is

that the entire list is traversed before the event can be inserted which requires P com-

parisons. The average case assuming events in the pending event set are uniformly

distributed would require about half as many comparisons.

Consider a simple model where the number of events remains constant. Let E

be an event and E+1 the event generated by the execution of E2. The timestamp

increment distribution or scheduling distribution describes the difference in times-

tamps between Ej and E+1. The average case search can be improved by employing

heuristics to determine whether to begin the search from the front or the back of the

list. As explained by McCormack and Sargent [27], the average portion of the list

that must be traversed to insert a new event can be determined by computing the

distribution of the pending event set. This information can be used to decide which

end of the list to start the insertion from. For example, if the timestamp increment

distribution is uniform, normal, or Erlang then insertion should start from the back of

the list. For timestamp increment distributions like the hyper-exponential, mixtures

of exponentials, and certain Gamma distributions insertion should begin from the

front. McCormack and Sargent [27] also showed that when the pending event set is a

mixture of events scheduled by more than one distribution the insertion should start

from the front of the list. There are other heuristics based on maintaining a pointer

to the median element or computing the average of the first and last elements, and

then using this value to determine were to start the search. If the timestamp of the

CHAPTER 2. SEQUENTIAL DES ALGORITHMS 11

element to be inserted is smaller than the average, start from the beginning while if

larger, start from the end. This approach known as the median pointer method [39, 8]

eliminates 50% of the comparisons.

Another way to exploit knowledge of the timestamp increment distribution is to

use multiple lists as is done in the process-oriented SIMSCRIPT 11.5 [27]. A sepa-

rate event list is maintained for each simulated process. Events that are repeatedly

scheduled from the same distribution should be inserted according to their timestamp

increment distribution. Events associated with simulated processes are usually sched-

uled by a mix of distributions, so insertion should start from the front of the list as

explained by McCormack and Sargent [27].

The linked list is easily implemented and has performed well in situations where

the event list is relatively small. This is due to the higher overhead associated with

more complex algorithms. The linked list may have some application as part of a

larger simulation system.

2.2.2 Indexed-List

Indexed list algorithms first proposed by Vaucher and Duval [39] are based on keeping

an array of pointers into the list spaced according to some increment of time. In this

case the linked list is logically subdivided into lists whose elements fall within a certain

quantum. For example, the first sublist contains events timestamped 0 to 5s, the next

list 5 to lOs, and so on. These algorithms require an overflow list for elements that

cannot be placed in one of the finite number of sublists. There are serious problems if

the time increment is too large or too small. If it is too large the number of elements

in individual sublists grows too much while if it is too small, the overflow list will

contain too many events. Increasing the number of sublists can help but this delays

the pointer lookup and uses additional memory.

Franta and Maly [10] use a second dynamically managed set of pointers allowing

somewhat better management of the length of individual sublists. Events are inserted

CHAPTER 2. SEQUENTIAL DES ALGORITHMS 12

by computing the offset into the first table of pointers and using that result to find the

pointer to the appropriate sublist which the event is then placed in. This algorithm

still suffers the overflow problem associated with Vaucher and Duval's algorithm. The

worst case running time of these algorithms is still 0(P), since a large portion of the

elements can end up in the overflow list. In practice, they perform better than this

but are very sensitive to the timestamp increment distribution.

2.2.3 Binary Search Indexed List (Henriksen's algorithm)

Henriksen's algorithm [17, 18] sizes sublists according to the number of events they

contain, rather than the amount of simulation time the events span. This can be

accomplished using a single array of pointers. Binary search is used to find the pointer

to the sublist for an insert. Pointers are updated with the insertion of each event to

constantly moderate the length and number of sublists. This algorithm avoids a large

overflow list since all sublists are kept approximately the same length.

Henriksen's algorithm was used in GPSS/H [17]. This algorithm displays greater

sensitivity to the timestamp increment distribution than the heap algorithm as ev-

idenced in [27, 20].. The worst case for a single operation is 0(P), but time per

operation amortized over sufficient operations is bounded by O(\/).

2.2.4 Heap

A heap is a complete binary tree meaning that each level of the tree is completely

filled except possibly the last where any nodes in the last level of the tree must occur

as far to the left as possible. The heap condition for a node requires that its key be

greater than or equal to the key of each of its children (if it has any). A complete

binary tree is a heap if and only if each of its nodes obeys the heap condition.

Insertion begins by placing the new node into the last level of tree as far to the left

as possible. If the last level is full, then the node is placed in the next level deeper. If

the heap condition is satisfied for the parent of the inserted node then the insertion

CHAPTER 2. SEQUENTIAL DES ALGORITHMS 13

is finished. Otherwise, the inserted node is swapped with its current parent until the

heap condition is restored. If the inserted node is swapped all the way to the top of

the tree this will require O(1og2 P) operations.

Removing the minimum timestamped event is simple since it is just the root node

of the tree. The last element in the heap is moved to the root of the tree to replace

the element being removed. Starting with the root node the heap condition is tested,

if it is satisfied then the remove-min operation terminates, otherwise the current node

is swapped with its smallest child. This process continues until the heap condition is

restored. If one swap is performed at each level of the tree this will require O(1og2 P)

operations.

The heap algorithm can be optimized so that the heap is restored only once per

pair of insert and remove operations. This is more efficient when the remove-min

operation is followed by an insert operation.

Insertion of new events or removal of the minimum timestamped event requires in

the worst and average cases O(1og2 P) comparisons. One concern when using a heap

is that two events with the same timestamp will not necessarily be executed in first-

in-first-out (FIFO) order. The heap can be modified to ensure the FIFO property if

necessary, but this will incur some additional cost.

Porter and Simon [29] and Gonnet [15] show that when insertions are random the

average insertion time is bounded by a constant. Empirical results suggest that heaps

are relatively insensitive to the timestamp increment distribution [20, 31] which pro-

vides good motivation for their use in general purpose sequential simulation kernels.

2.2.5 Splay Tree

The splay tree [35] algorithm is based on the binary search tree. A binary search tree

can be an efficient data structure with an average of O(log2 P) operations required to

access tree elements. However, a binary search tree can become unbalanced if the data

being inserted is not uniformly distributed, in which case performance can degrade

CHAPTER 2. SEQUENTIAL DES ALGORITHMS 14

to 0 (v'). There are numerous approaches to maintaining balance or correcting

imbalance in a binary search tree.

The splay tree was designed with amortized efficiency in mind. The tree is per-

mitted to be in an arbitrary state, but each operation seeks to improve the structure

of the tree to facilitate faster future operations. The worst case for a single insert

or remove-min operation is in 0(P), but the cost per operation amortized over any

sequence of operations starting from an empty queue is bounded by O(1og2 P).

Unbalanced trees can be balanced by performing rotations which promote one of

the child subtrees while demoting the previous root node and any descendant nodes.

Splay trees avoid part of the balancing cost by avoiding the need to examine both

halves of the tree. However, it can increase the number of rotations performed. One

pointer rotation and one comparison are required per item visited during a search of

the tree.

The main advantage of a self adjusting tree is its ability to handle skewed data,

or usage patterns. The drawback of a self adjusting algorithm is that the cost of a

single operation in a sequence of operations may be expensive.

Splaying involves a rotation applied to each node in the search path which ef-

fectively halves the length of the search to any node in that path. Splay trees have

performed better than heaps even though their asymptotic bounds are the same [20].

One explanation for this is that the splay tree is reordered bringing smaller elements

to the top each time, so that on average remove-min requires less than 0(1092 P)

operations.

2.2.6 Calendar Queue

Calendar queues [2] are based on the way humans use desk calendars. In practice

they can obtain 0(1) average performance. The calendar queue algorithm provides a

unique solution to the overflow list problem associated with certain other algorithms

such as Vaucher and Duval's Indexed-list [39]. A calendar queue stores events in

CHAPTER 2. SEQUENTIAL DES ALGORITHMS 15

sorted linked lists, one for each "day" of the "year". An array is maintained which

stores a pointer to each of the lists. The remove-min operation returns the first

element in the current "day", or if the list is empty then the next day is checked and

so on. An event is inserted by computing which "day" it will occur on, and inserting

it into that day's list. The calendar queue handles events that are further than a

"year" into the future by requiring that the remove-min operation check that the

event belongs to the current year before it is removed. There are two variables which

determine the structure of the calendar queue, the number of days and the length of

a day. These variables must be adjusted to obtain good performance as the queue

size grows and shrinks.

Performance of the calendar queue will be optimal when the number of events is

equal to the number of days in the year and events are uniformly distributed across

the days in the year. In this scenario, insert and remove-min operations can be

performed in constant time. The heuristic employed by the calendar queue algorithm

is to double the number of days when the number of events exceeds twice the number

of days, or halve the number of days when the number of events drops below half

of the number of days. Whenever a halving or doubling occurs, it restores the ideal

ratio of number of days to number of events. Changing the number of days requires

recomputing the length of a day, and reorganizing the array (copying). This operation

is relatively expensive but should occur infrequently. Unfortunately, the heuristic does

not guarantee that an individual "day" will not have an excessive number of events,

or that many days may contain no events at all. The worst case scenario for removing

the minimum element is 0 (DayslnYear) , and because DayslrtYear is at most 2 x P,

the worst case is essentially 0(P). The worst case for insertion is also 0(P), assuming

all events are scheduled for a single day in the year. 0(1) is an amortized bound on

number of operations required for a resize operation. This means that the cost of a

resize operation is constant in the number of events when averaged over the execution

of all insert and remove-min operations.

CHAPTER 2. SEQUENTIAL DES ALGORITHMS 16

The calendar queue algorithm does not handle the case when there are too many

sublists and the queue is a constant size [32]. The only time a resize operation occurs

is when the queue size is changing. As such, if the distribution changes but the queue

size doesn't the calendar queue can perform quite poorly, though it might be possible

to monitor the distribution and adjust bucket size dynamically.

2.2.7 Lazy Queue

The lazy queue [32] is another multi-list algorithm for a priority queue. The lazy

queue is modeled after a human approach to scheduling, partitioning events into one

of three intervals, the near future (NF), the far future (FF), and the very far future

(VFF). Each interval of events is handled differently, the near future events are kept

completely sorted, the FF events are partially sorted using a sorted array of unsorted

months, and the VFF which is not ordered.

When a remove-min operation occurs the smallest event is removed from the NF,

if the NF is empty the first month of the FF is sorted and moved into the NF. The cost

of inserting an event depends on which interval it will be inserted into. The cost of

inserting events into the NF depends on the implementation of the NF priority queue.

Insertion into the FF is very efficient since a calculation yields the appropriate month,

and then the event is inserted into an unordered sublist, requiring 0(1) operations.

Insertion into the VFF is also done in constant time since it is maintained unsorted.

As time advances so must the boundaries between NF and FF, and, FF and VFF.

The performance of the lazy queue algorithm depends greatly on the size of the

NF, FF, and VFF. There are several algorithm parameters that bound the size of

the NF, FF, and VFF. Additional parameters control how and when to restructure

the queue. Resizing the queue is quite expensive but its cost is amortized over the

relatively inexpensive insert and remove-min operations.

The unordered sublists of the FF contrast with the ordered sublists of the calen-

dar queue, also the lazy queue reintroduces the overflow list (VFF) and associated

CHAPTER 2. SEQUENTIAL DES ALGORITHMS 17

problems.

2.2.8 Other Priority Queue Implementations

There are many other algorithms that have been used to implement the pending event

set. A few more are briefly discussed below.

The priority-tree or ptree is a type of binary tree that can be efficient when

timestamps of newly inserted events are generally larger than those already in the

tree. As explained by McCormack and Sargent's theoretical analysis [27] this is

not usually the case which makes the ptree a poor choice for general purpose CEL

algorithm.

Mauricio Mann [26] introduces tournament-based binary trees and demonstrates

their utility as a priority queue implementation well suited to DES. Complete binary

trees were a predecessor to binary heaps; both structures have the benefit of being

relatively insensitive to the scheduling distribution.

Binomial queues have been tested as a priority queue implementation for DES,

but according to Jones [20] binomial queues' behaviour is erratic, requires complex

code and is rarely faster than splay tree implementations.

Skew heaps can perform very well and they were one of the first tree mechanisms

that did not restrict the cost of a single operation to 0(1092 F) instructions. Instead

the algorithm guarantees that the amortized cost for any sequence of operations that

starts from an empty queue is O(1og2 F) [20].

2.3 Summary

This chapter has presented relevant background for DES. The central event list al-

gorithm has been explained and possible implementations of the priority queue have

also been discussed. Table 2.1 summarizes the asymptotic behaviour of the different

algorithms. Henriksen's, heap, splay tree, and calendar queue implementations have

CHAPTER 2. SEQUENTIAL DES ALGORITHMS 18

Algorithm Worst Average Comments

linked list P P The insertion cost for a linked list is on average 0(P), but it may be

significantly more efficient to start the insertion from the front or back

of the list, depending on the timestamp increment distribution [27]. The

cost of a remove-min operation is 0(1).

heap 1092 P 1092 P The insertion cost for a heap is on average 0(1) under the assumption

that insertions are random (15, 29].

impr. heap 1092 P 1092 P The improved heap avoids unnecessarily restoring the heap when a remove

operation is immediately followed by an insert 0perati0n[27].

henriksen P _1/_P The cost of a single operation can be 0(P), but the amortized cost per

operation is bounded by 0(/P) (22]. Empirical evidence suggests much

better performance in practice [20].

splay tree P 1092 P The cost of a single operation can be 0(P), but the amortized cost per

operation is bounded by 0(1og2 P) (35).

calendar queue P 1 informal analysis and empirical evidence suggest 0(1) average perfor-

mance (2].

lazy queue 1092 P 1 Informal analysis and empirical evidence suggest 0(1) average perfor-

mance, Worst case performance depends on the implementation of the

near future and VFF [32).

Table 2.1: Asymptotic Bounds for priority queue operations

been incorporated into the test system that is described in Section 4.2.1. These CEL-

based algorithms will be used for comparison with the channel based conservative

PDES algorithms described in the following chapter.

Chapter 3

PDES Algorithms

Parallel discrete event simulation (PDES) systems use multiple processors to ex-

ecute a single simulation run. This can greatly reduce the time required to execute a

simulation. Several parallel simulations programs have achieved exceptional sequen-

tial performance, in particular simulators employing the critical channel traversing

algorithm [41, 21]. This algorithm is an example of a channel based conservative

synchronization algorithm.

This chapter introduces terminology and concepts relevant to PDES. Section 3.2

presents several conservative PDES algorithms including the Chandy-Misra-Bryant

(CMB) and critical channel traversing (COT) algorithms. For completeness, Sec-

tion 3.3 covers optimistic and aggressive no risk algorithms.

3.1 Parallel Discrete Event Simulation

Parallel discrete event simulation (PDES) refers to the execution of a single simulation

run in a parallel or distributed computing environment.

There are two major classes of application for PDES technologies, analytical sim-

ulations and distributed virtual environments (DVEs) [14]. Analytical simulations

are used as problem solving tools to determine particular characteristics of a system.

19

CHAPTER 3. PDES ALGORITHMS 20

Distributed virtual environments [14] are used for training and entertainment pur-

poses. They use simulation technology to create computer generated worlds in which

geographically separated users interact. Emulations also allow users to interact in a

simulated environment, but their purpose is usually to conduct analytical experiments

in a repeatable test environment [33].

Analytical simulations are run as-fast-as-possible, whereas DVEs and emulations

need only keep up to wall-clock time. Simulations that are paced with wall-clock time

must execute quickly to meet real-time deadlines. DVEs that incorporate interaction

with human beings are called human-in-the-loop; ones that support interaction with

real-world devices are called hardware-in-the-loop. There may be certain situations

such as the case of human-in-the-loop DVEs, where missing the occasional real-time

deadline is acceptable provided the user doesn't perceive the virtual environment to

be unrealistic.

Fujimoto [14] identifies four benefits of parallel simulation: reduced execution

time, geographic distribution, integration of simulators that execute on machines

from different manufacturers, and fault tolerance. Parallel simulation can reduce the

wall-clock time required for a single execution of a simulation. This is necessary for

applications such as emulation where meeting real-time deadlines is critical. Parallel

simulation also enables simulation of larger models than would be possible with the

resources of a single system.

3.1.1 LP Modeling Methodology

Similar to sequential DES, PDES requires that the physical system be mapped to a

logical model before it can be simulated. PDES techniques generally impose more

restrictions on how this mapping is accomplished. Most approaches use an object

oriented or encapsulated approach. The mapping process begins by identifying the

different parts of the physical system based on their interaction. Different parts

of the physical system affect one another's state through some type of interaction,

CHAPTER 3. PDES ALGORITHMS 21

whereas a single part may affect its own state directly. These physical components

can be mapped to logical components within the simulation. A simulation represents

parts of the physical system using objects, or classes, or whatever modeling tools are

available to the simulation programmer. In PDES literature these simulation objects

are called logical processes (LPs). LPs do not modify one another's state directly.

Instead, they cause state changes in another LP by scheduling events which will later

affect that part of the system. Representing the physical system in this manner makes

it easy to understand and validate the model.

Many PDES algorithms use channels to represent the logical connections between

LPs that communicate. Channel behaviour is first-in-first-out meaning that messages

are received in the same order they were sent. A channel from LP A to LP B allows

LP A to schedule events for LP B. LP A is said to have an output channel connected

to LP B, while LP B has an input channel to EP A. Channels are often present in

pairs to allow bidirectional interaction, i.e., a channel from LP A to LP B and a

channel from LP B to LP A.

3.1.2 Causality and Synchronization

Events that depend on previous events must be executed in a causally correct manner.

An error that occurs as a result of events be executed out of order is referred to as a

causality error. The synchronization problem (i.e., the problem of maintaining causal

correctness) is significantly complicated when attempting to run a simulation across

multiple processors.

Attempting to use the GEL algorithm described in Chapter 2 for parallel simu-

lation is problematic. The central event list is a shared data structure that will be

accessed by all processors. It must be locked whenever it is accessed to maintain con-

sistency of the data structure. Locking the CEL does not ensure that events will be

executed in chronological order. Additional mechanisms that synchronize the execu-

tion of processors or make use of model specific information are necessary to execute

CHAPTER 3. PDES ALGORITHMS 22

multiple events concurrently. Further, the performance of such a system could be

quite poor due to the contention for access to the GEL.

Specialized parallel discrete event simulation (PDES) algorithms have been devel-

oped to solve the problem of parallel and distributed synchronization. These algo-

rithms employ multiple event lists, as opposed to GEL-based algorithms which employ

a single event list.

Fujimoto [12] describes the local causality constraint as follows:

A discrete-event simulation, consisting of logical processes (LPs) that

interact exclusively by exchanging timestamped messages obeys the lo-

cal causality constraint if and only if each LP processes events in non-

decreasing timestamp order.

The above condition is sufficient but not necessary to guarantee that no causality

errors occur. If two events are independent then it is not necessary to execute these

events in timestamp order. In a parallel simulation a synchronization mechanism is

required to ensure causal correctness for concurrently executed events.

3.1.3 Risk and Aggression

Reynolds [30] introduced the terms risk and aggression to help classify the different

synchronization algorithms. Aggression is a property of synchronization algorithms

that execute events before causal ordering is guaranteed. Risk is a property of syn-

chronization algorithms that dispatch events before the causal order of the generating

event is guaranteed.

Conservative synchronization algorithms strictly avoid causality errors by adher-

ing to the local causality constraint; they do not exhibit risk or aggression. Optimistic

algorithms exhibit aggression and risk to varying degrees; this requires that they de-

tect and recover from any causality errors that might occur. Aggressive no risk algo-

rithms execute events before their causal ordering is guaranteed, but do not dispatch

CHAPTER 3. PDES ALGORITHMS 23

Algorithm class Risk Aggression Algorithm

Conservative

X X

CMB Null Message [3, 4]

Deadlock detection [5]

Cooperative Acceleration [1]

Bounded Lag [25]

Critical Channel Traversing [42]

Optimistic Jefferson's Time Warp [19]

Aggressive No Risk X Bounded Lag (without Time Warp) [24]

Breathing Time Buckets [37]

SRADS/LR [9]

Table 3.1: Risk and Aggression of Synchronization Algorithms

new events until the causal order of the generating event is guaranteed. Table 3.1

classifies numerous PDES algorithms according the properties of risk and aggression.

3.2 Conservative Synchronization

Conservative synchronization implies that each LP in the model executes events in

non-decreasing timestamp order. An event is safe to execute if the LP can determine

that it is impossible to receive any event with a smaller timestamp. A safe event

can be executed without violating the local causality constraint. An LP is said to be

blocked if it has no safe events to execute. Deadlock refers to the situation in which

all LPs are blocked. When all of the channels in a system are populated with events,

LPs are unlikely to become blocked since there are always safe events to execute.

However, deadlock can occur frequently if the ratio of unprocessed events to channels

is too low, or if unprocessed events become clustered in one part of the simulation,

i.e., if there are many empty channels.

There are two main classes of conservative synchronization, asynchronous and

CHAPTER 3. PDES ALGORITHMS 24

synchronous. Asynchronous algorithms avoid synchronizing the execution of proces-

sors as much as possible, while synchronous repeated synchronize execution of the

processors. Asynchronous algorithms must address the issue of deadlock either by

avoiding it, or recovering from it when it occurs. Synchronous algorithms do not

become deadlocked because they repeatedly stop the simulation and determine what

events are safe to process.

Consider two LPs p and q. In order for p to affect q, it must send it a timestamped

message (an event). For the following discussion, p is assumed to be the sending LP

and q the receiver. p has lookahead £ with respect to q if p can be certain that it will

not affect (schedule an event for) q for an amount of simulated time £. The following

categorization of lookahead is from Nicol [28]:

• Bounded time lookahead suggests that p knows that it will not affect q up to

some time t. Exact time lookahead means that p knows exactly when it will

next affect q, i.e., at time t.

• Content lookahead refers to the situation in which p has information about

the content of the next message that it will send to q. With time lookahead

(bounded or exact) only information regarding the time of future events is

available. If p has both exact time lookahead and content lookahead, it is

possible to immediately schedule the event for q.

• Lookahead can be classified as Directed, Semi-directed, or Undirected . This

indicates whether the lookahead is with respect to a single LP (directed), a

subset of the LPs (semi-directed), or all LPs (undirected).

• Some simulation algorithms, typically synchronous algorithms can exploit con-

ditional lookahead. Conditional lookahead exists when p can say that it will not

affect q before t, provided that some state condition of p does not change before

time t. Lookahead that is not conditional can be referred to as unconditional

lookahead.

CHAPTER 3. PDES ALGORITHMS 25

Performance of conservative synchronization mechanisms is tied closely to looka-

head. Conservative algorithms must be adept at determining what will not happen

before a given point in simulation time. In general, a conservative synchronization

mechanism cannot fully exploit the available parallelism in the model.

3.2.1 Chandy Misra Bryant (CMB) null message algorithm

Chandy and Misra [4], and independently Bryant [3] developed the first asynchronous

conservative synchronization algorithms. These algorithms assume a static specifica-

tion of channels. They also assume that events are sent down a channel in non-

decreasing timestamp order, this allows an LP to determine a lower bound for the

timestamp of the next event to arrive on that channel. The channel clock is defined to

be the timestamp of the first event in the channel, or the timestamp of the last event

received on that channel if it is currently empty. A lower bound for the timestamp

of the next event to arrive on a channel can be computed by adding the lookahead

between sending and receiving LPs to the clock of the sending LP.

A zero lookahead cycle refers to a cycle in the connection topology of LPs which

contains zero lookahead, i.e., the lookahead of every channels in the cycles is zero.

Deadlock can be avoided through the use of null messages provided there are

no zero lookahead cycles in the model. Null messages are timestamped events that

have no associated action; they just serve to update the channel clock when they are

processed. In the original CMB algorithm null messages are sent after each event is

processed to inform neighboring LPs of a lower bound on the timestamp of the next

possible event. The timestamp of a null message is set to be the local simulation time

of the sending LP plus the lookahead between the sending and receiving LPs. Null

messages do not allow for zero lookahead cycles to exist since there would still be

potential for a deadlock situation in which the simulation time would not advance.

A low lookahead cycle refers to a cycle of LPs which contains inadequate lookahead

to allow the execution of an event without first traversing the cycle to update clock

CHAPTER 3. PDES ALGORITHMS 26

values. Low lookahead cycles can lead to large numbers of null messages being sent

in the CMB algorithm.

Optimizations of the 0MB null message algorithm involve reducing the number of

null messages that must be sent. In particular cooperative acceleration [1] and carrier-

null messages [40] attempt to reduce the number of null messages sent in low lookahead

cycles. Another approach is to send null messages only on a demand basis [14]. This

can be better or worse depending on how prone to deadlock the simulation is. Implicit

null messages avoid sending null messages altogether by modifying the channel clock

in place. This approach is applicable when the sending and receiving LPs are in the

same memory space, as all LPs are on a shared memory parallel computer. Taking

advantage of all available lookahead is important to obtaining good performance in

an asynchronous conservative simulation [28]

If a physical system is modeled using more LPs than there are processing elements

available, this will require a scheduling mechanism to decide which LP should be

executed next on a given processor. The 0MB algorithm does not specify how LPs

are scheduled. One simple approach is to select the next LP based on the current

simulation times of all non-executing LPs in the model. Choosing the LP with the

smallest simulation time is a reasonable heuristic since that LP is the furthest behind

and has the greatest potential to advance.

3.2.2 Critical Channel Traversing (CCT)

The critical channel traversing algorithm (COT) [42] is based on the 0MB algorithm

described above. The OCT algorithm attempts to determine which LPs are good

candidates for execution by observing which LP is preventing the currently executing

LP from continuing to execute. The goal of this approach is to maximize the number

of events executed per LP execution session and reduce LP scheduling overheads.

Each LP in the OCT algorithm maintains a list of LPs that will be scheduled

once its execution session terminates. The behaviour of the OCT algorithm can be

CHAPTER 3. PDES ALGORITHMS 27

described in terms of a currently executing LP. Each LP is processed according to

the following steps:

1. Determine the safetime; this is taken to be the minimum channel clock of all

empty input channels.

2. Execute any events with timestamps less than or equal to the safetime, or until

a previously non-empty channel becomes empty.

3. Update the safetime, if it has increased return to step 2.

4. There are no more events that are safe to execute, so determine which channel is

preventing further execution. This is called the critical channel. The currently

executing LP is added to the scheduling list of the LP connected to the critical

channel.

5. Add any LPs in the local scheduling list to the central LP scheduling queue.

The TasKit implementation of OCT employs multi-level scheduling, instead of schedul-

ing LPs, the OCT algorithm is used to schedule groups of LPs called tasks. Different

types of tasks are then processed in different manners. LPs in a cluster task share

the same event queue. The cluster task operates like a CEL simulation. Pipe tasks

impose a fixed schedule on the execution order of LPs in the task. The tasks are

taken from the centralized scheduling queue.

CCTKit is a second implementation of the OCT algorithm, however each processor

has its own scheduling queue instead of a single centralized scheduling queue. CCTKit

also uses tasks to provide multi-level scheduling.

3.2.3 Deadlock Detection & Recovery

Deadlock detection and recovery is an alternative to deadlock avoidance. Deadlock

detection and recovery is again a conservative asynchronous approach to synchroniza-

tion. This technique succeeds in eliminating null message traffic and it also allows for

CHAPTER 3. PDES ALGORITHMS 28

zero lookahead cycles. Unfortunately in practice the performance is not good. The

problem is that a large proportion of the simulation may become deadlocked prior to

the entire simulation becoming deadlocked, this implies that only a small part of the

potential parallelism can exploited. Chandy and Misra presented an algorithm based

on detection and recovery in [5].

Fujimoto presents a version of the Dijkstra/Scholton algorithm for deadlock de-

tection [14]. This algorithm assumes that there is a "controller LP" capable of rec-

ognizing a deadlock situation. A LP based simulation is an example of a diffusing

computation in which individual LPs are initially blocked and only begin to execute

once they receive an event. They execute for a period of time, possibly generating

other events and sending them to other LPs until they stop. A stopped LP does

not resume execution until it receives a message. The basic idea of this algorithm

is to use a tree to maintain information regarding the LPs currently engaged in the

simulation. When a message is sent to an LP, that LP adds itself to the tree if it is

not already part of it. When an LP blocks, it will remove itself from the tree. When

the controller LP becomes a leaf node in the tree it knows that the simulation has

deadlocked.

Given that all LPs are blocked, it is always safe to process the event in the system

with the smallest timestamp. The controller LP broadcasts a message asking each LP

to report their minimum timestamped event. Once the controller has this information

it determines the events which are safe to process and instructs the corresponding

LPs to begin executing.

3.2.4 Synchronous Simulation Protocol

A synchronous simulation protocol cycles through two phases of execution. During

the global synchronization phase, each LP is able to determine which events are safe

to process. This is accomplished via a barrier synchronization operation which waits

for all LPs to stop executing. During the event processing phase each LP executes all

CHAPTER 3. PDES ALGORITHMS 29

of its "safe" events.

Starting and stopping the LPs has an advantage over certain asynchronous proto-

cols. A simulation based on a deadlock detection and recovery algorithm, such as the

one presented in the previous section, can degenerate into a sequential computation

if it takes a long time for the deadlock to finally occur. It is possible that most of

the simulation is deadlocked while a small portion continues to make progress. A sit-

uation like this can drastically degrade simulator performance'. On the other hand,

a synchronous simulation protocol has more control over the amount of computation

performed during each cycle of execution.

A barrier is a construct for parallel programming that can be used to synchronize

the execution of multiple processors. Three different types of barriers are presented

in [14]:, centralized barriers, tree barriers, and butterfly barriers. Centralized barri-

ers require a central controller processor and the technique does not scale well to a

large number of processors. Tree barriers solve the scalability issue but still require

broadcasting a message to indicate when global synchronization has been achieved.

The butterfly barrier is good because there is no need for a central controller. After

each processor has performed 1092 N pairwise barrier synchronizations, global syn-

chronization has been achieved.

Transient messages are messages between processors that have been sent but have

yet to be received. In order to support asynchronous messaging, care must be taken to

observe all transient messages prior to determining which events are safe to process.

Barrier synchronization is best suited to shared memory machines because of the

communication overhead and the need to observe transient messages.

Bounded Lag [24, 25] uses a time window approach to reduce the amount of

computation required to determine which events are safe to process. The trick with

bounded lag is to determine a window size that is optimal. A window that is too

small will result in few events being executed in each execution phase; if the window

'Amdahl's law: No more than k-fold speedup is possible if *th of the computation is sequential.

CHAPTER 3. PDES ALGORITHMS 30

is too large the benefit of the window is lost, since the algorithm must again check

the messages of all other LPs. Bounded lag is an example of an algorithm that can

exploit both directed and undirected lookahead.

3.3 Optimistic Synchronization

Unlike conservative algorithms, optimistic synchronization techniques often process

an event before it is known to be safe. This occasionally results in causality errors

which must be detected by the simulation kernel and recovered from. The first sub-

section is focused on the Time Warp synchronization mechanism based on the virtual

time paradigm. The second subsection briefly covers aggressive no risk algorithms.

Jefferson introduced the virtual time paradigm [19] as a method for organizing

distributed systems. Virtual time is less restrictive than real time, it can progress

forward and backward. Thinking of time in this way can be useful for many dis-

tributed systems. For example, database concurrency control. Time Warp [19] is

an implementation of virtual time well suited to parallel discrete event simulation

(PDES).

3.3.1 Time Warp for PDES

In Time Warp, each LP processes its events in non-decreasing timestamp order. How-

ever, if an LP receives a message in its past (a straggler message), it detects this

violation of the local causality constraint and takes appropriate action to recover.

Rollback is the mechanism responsible for restoring the state of the LP so that the

straggler message can be correctly inserted and executed. Local virtual time (LVT)

refers to the current simulation time of an LP. Recall that at a given wall-clock time,

each LP in the system may have advanced to a different point in simulation time.

Local virtual time tends forward but it may occasionally jump backward when a

rollback occurs. To correctly process a straggler message, local virtual time must be

CHAPTER 3. PDES ALGORITHMS 31

rolled back to the timestamp of that message.

Each event processed with timestamp greater than that of the straggler message

may have modified state and caused new messages to be generated. This implies

that not only local state must be restored, but that certain messages may need to be

"unsent". After the rollback is completed, the simulation can advance forward again,

possibly re-executing the events that were just rolled back.

Messages in Time Warp are always created in pairs. The pair consists of a negative

and positive copy of the information. Negative messages called antimessages are used

to "unsend" previously sent positive messages. If antimessages and positive messages

meet before either is processed then they cancel each other out and there is no record

of either message ever existing. A message can be unsent by sending its corresponding

antimessage.

When an LP receives an antimessage several things can happen. If the corre-

sponding positive message has yet to be processed, then the antimessage and the

positive cancel each other out. If the positive message has already been processed

then the LVT has already advanced and the antimessage will cause the receiving LP

to rollback. If an antimessage arrives before the corresponding positive message it

can be ignored; when the positive message arrives they will cancel each other out.

Jefferson compares virtual time to virtual memory [19], many of the concepts in

one have analogues in the other. Each time an LP processes an event it will discover

that its timestamp is greater than the LVT (akin to a page hit in a virtual memory

system), or that the event's timestamp is in the past with respect to LVT and that a

rollback is required (similar to a page fault in a virtual memory system). This is the

notion of a timefault.

The rollback mechanism relies primarily on LPs being able to restore their state.

There are several different approaches to state saving:

• Copy state saving saves the entire state of the LP after each event is processed.

This is the simplest mechanism to implement. However, it is very memory

CHAPTER 3. PDES ALGORITHMS 32

intensive. The primary advantage of this technique is that restoring the state

is quick.

• Infrequent state saving requires less memory than copy state saving by only

saving the state of the LP periodically (e.g., after every 10 events). The problem

with this approach is that the simulation may have to roll back further than

logically necessary to reinsert the straggler message, and a greater number of

events will need to be reprocessed.

• Incremental state saving records the changes to an LP's state after each event.

This contrasts with the other approaches to state saving that save the entire LP

state. This approach is more complicated to implement and restoring the state

requires tracing backward through the saved state changes. The advantage

of this approach can be a substantial savings in the memory requirements.

However, it is possible that incremental state saving requires more memory

than infrequent state saving in some situations.

A global control mechanism is required to ensure that a simulation does not run

out of memory and to decide when it is safe to commit irrevocable operations such

as I/O.

Global virtual time (GVT) is defined to be the minimum timestamp of all unpro-

cessed messages in the system and those currently being executed, this includes both

positive messages and antimessages. Care must be taken to observe any messages

that are still in transit. GVT always progresses forward with respect to wall-clock

time.

Fossil collection is the process of reclaiming memory when it is no longer needed

by the Time Warp system. Once GVT has advanced beyond time t, any messages

with timestamps less than t can be discarded. Any saved state that is no longer

necessary to reconstruct the LP state at time t can also be freed. Similarly, I/O

operations can only be committed once GVT advances beyond the simulation time

CHAPTER 3. PDES ALGORITHMS 33

of those operations.

There are three GVT algorithms presented in [14]. The synchronous GVT al-

gorithm, Samadi's GVT algorithm and Mattern's GVT algorithm. All algorithms

must account for transient messages in the system. The synchronous GVT algorithm

requires that all processors stop processing events while the GVT is being calculated.

Samadi and Mattern's solutions allow processors to continue executing, but they must

now account for the fact that different processors will report LVT at different points

in wall-clock time.

The Time Warp mechanism does not rely on channels. Conservative synchroniza-

tion mechanisms tend to impose artificial dependencies. For example, even though

events are independent they must be executed in timestamp order. The Time Warp

mechanism should perform well if the simulation obeys the temporal locality princi-

pal. That is, that most messages arrive in the future and those that arrive in the

past, arrive mostly in the near past.

A rollback echo refers to the situation where the LVT is rolled back by an increas-

ing number of simulation time units each time a rollback occurs. This situation can

arise when rolling back the simulation by a certain amount of simulation time requires

more wall-clock time than executing forward by the same amount of simulation time.

Rollback echoes will continually slow the progress of GVT with respect to wall-clock

time as the simulation progresses.

3.3.2 Aggressive No Risk

The event horizon is defined to be the difference in timestamp between the first event

that is processed, and the last event that can be processed independently of any events

generated in that cycle. Steinman [37] has explained how exploiting the concept of

an event-horizon allows synchronization protocols to reduce the amount of risk when

sending messages. One example of this strategy can be found in breathing Time

Warp [36].

CHAPTER 3. PDES ALGORITHMS 34

Aggressive no risk algorithms (ANR) must support a rollback mechanism but they

do not need anti-messaging since messages are sent only once it is known that they

will not cause rollbacks. By not propagating incorrect information ANR algorithms

avoid compounding problems that occur in optimistic algorithms that exhibit both

risk and aggression. For example, the likelihood of rollback echoes is less with ANR.

algorithms. There is an optimistic version of SRADS that allows for local rollbacks

and aggressive processing of events 191-

3.4 Summary

This chapter has presented the necessary background in PDES. Several channel based

conservative simulation algorithms were described. The 0MB null message algorithm

and the critical channel traversing algorithm will be implemented in the test system

described in Section 4.2.1. Their sequential performance will be evaluated in compar-

ison to the sequential simulation algorithms described in the previous chapter using

a synthetic workload model described in Section 4.1.7. Several other conservative,

optimistic, and aggressive no risk synchronization mechanisms were also discussed.

Optimistic algorithms which exhibit risk or aggression are not good candidates for

sequential execution. The overheads of state saving, rollbacks, etc., are prohibitive in

a sequential execution environment.

Chapter 4

Model and Methodology

The performance of simulation algorithms is usually compared according to some

simulation model. The question becomes which algorithm can simulate the selected

model in the least amount of time. Of course some algorithms are better suited to

some models. The algorithm that performs best for one model might not be the

best algorithm in another situation. Synthetic workload models are one way that the

range of performance of an algorithm can be explored.

The test system used in this thesis is based on a synthetic workload model. The

test system allows the comparison of a suite of simulation algorithms under many

different conditions. All simulation algorithms execute the same model level code

which helps to ensure a fair comparison of the algorithms. In the next chapter ex-

periments are conducted that vary parameters of the synthetic workload. Algorithm

performance is reported in terms of six metrics that are defined later in this chapter.

Another way that algorithms can be compared is according to their asymptotic

complexity or behaviour. This does not give a complete picture of algorithm per-

formance on its own, since it does not reflect the cache behaviour of the algorithms.

However, it does give an indication of how and when the channel based conservative

algorithms can achieve better performance than CEL-based approaches.

35

CHAPTER 4. MODEL AND METHODOLOGY 36

This chapter begins with a survey of existing synthetic workload models, then

proceeds to detail the model that is used for experiments in this thesis. The second

section describes the test system and experimental methodology used in comparing

the sequential execution of the various simulation algorithms. The final section of this

chapter analyzes the complexity of sequentially executed channel based conservative

synchronization mechanisms, in general and for the workload model used in this

thesis.

4.1 Synthetic Workload Model

Synthetic workload models attempt to capture the essential characteristics of a wide

variety of simulations, rather than any particular real world system. The relative

simplicity of a synthetic workload model makes it easier to understand the behaviour

of the simulation algorithms without having to deal with the specifics of a real world

simulation. Synthetic workload models allow stress testing of algorithms under a

variety of conditions. This helps in understanding the limits of performance for a

particular algorithm. Assuming that a synthetic workload model accurately captures

the characteristics of a real simulation, results from the synthetic model can be used

to estimate performance of the algorithm in a real world simulator. Subsections 4.1.1

through 4.1.6 describe different synthetic workload models that have been used to

test simulation algorithms. Subsection 4.1.7 explains the workload model used in the

experiments conducted in this thesis research.

4.1.1 HOLD model

Many comparisons of CEL algorithms have been based on the HOLD model [20,

2, 32, 31, 39, 27]. The model gets its name from the Simula' hold operation. In

the context of this thesis, a hold operation consists of removing the event with the

'Simula was a programming language with mechanisms to support development of simulations.

CHAPTER 4. MODEL AND METHODOLOGY 37

Distribution HOLD model PHOLD Test

Constant N/A 1.0 1.0

Exponential —1n(rand) 0.1 - ln(rand) —1n(rand)

Uniform 2rand 0.1 + rand 2rand

Biased 0.9 + 0.2rand

Bi-model 0.95238rand+ if rand < 0.1 then 9.5328 else 0

Triangular N/A 1.5V/rand 1.5,\/rand

Table 4.1: Scheduling Distributions

smallest timestamp from the pending event set, incrementing its timestamp by some

amount and then reinserting it. A complete description and analysis of this model

can be found in [27].

A hold operation can be simulated by any central event list algorithm using a

remove-min operation followed by an insert operation. Each simulated hold operation

removes an event with timestamp t and results in the generation of a new event with

timestamp t + /t where At A a random variate taken from a distribution F(t). The

HOLD model column of Table 4.1 shows distributions that are commonly used with

the HOLD model in evaluating CEL-based algorithms.

The model parameters are P and F(t). P is the size of the pending event set and

F(t) is the distribution used to determine when events will occur. F is known as the

scheduling distribution. The HOLD model has three phases:

1. [INITIALIZATION]. P events are inserted into the pending event set, times-

tamps of the events are generated from the distribution F(t).

2. [TRANSIENT]. Execution of M1 hold operations to allow model to reach a

steady state.

3. [STEADY STATE]. Execution of 11/12 hold operations while measuring GEL

CHAPTER 4. MODEL AND METHODOLOGY 38

performance. Performance can be measured in terms of time elapsed during

execution of M2 hold operations or the number of operations required to perform

M2 hold operations.

Based on analysis of the interaction HOLD model (see Section 4.1.2), McCormack

and Sargent [27] determined that the HOLD model should favour scheduling distri-

butions with a coefficient of variation greater than 1, such as the hyper-exponential

or mixtures of exponentials. When more than one scheduling distribution interact as

is the case for modeling most real world situations the coefficient of variation tends

to be greater than 1. This suggests that the scheduling distribution should also be

chosen to have a coefficient of variation greater than 1 to be more realistic.

There are three potentially important characteristics of real world simulations that

the HOLD model fails to address. The first issue is that the event population is fixed.

The pending event set remains a constant size once the INITIALIZATION phase has

completed. There are many real world scenarios where the number of events is likely

to change throughout the simulation. A second issue is that the timestamps of the

entire event population are generated from the same scheduling distribution. Even

very simple real world simulations usually involve multiple scheduling distributions.

Choosing a scheduling distribution with a coefficient of variation greater than 1 will

help address this concern, but it is not a complete solution. The third issue is that

all of the events in the HOLD model are independent of one another, this is never

the case in a real world simulation. In a real world simulation the generation of new

events depends on the current system state, which was previously acted upon by

other events. Despite these shortcomings, the HOLD model has been used in many

empirical comparisons of CEL-based algorithms.

4.1.2 Interaction HOLD Model

In a real world simulation, timestamp increments are likely to be taken from multiple

distributions. For example, a Poisson distribution is used to model the arrival of

CHAPTER 4. MODEL AND METHODOLOGY 39

customers while a normal distribution is used to model the service times for those

customers. This interaction of distributions is not captured by the HOLD model.

McCormack and Sargent [27] propose the interaction HOLD model that addresses

the situation where different scheduling distributions interact. The interaction HOLD

model is identical to the HOLD model except that event timestamps are generated

using multiple distributions F (t). The pending event set contains P independent

events; each hold operation removes an event E, increments its timestamp by At

where At is taken from a scheduling distribution F (t) and then reinserts the event

into the pending event set.

4.1.3 Up and Down HOLD Model

Randy Brown [2] presents another variation of the HOLD model that compares al-

gorithm performance for queues that change in size over time. The original HOLD

model assumes that the pending event set size remains fixed. The Up and Down vari-

ation of the HOLD model measures performance as the queue size changes over time.

Using a random sequence of enqueues and dequeues the queue is first grown until it

reaches P elements and then emptied. During the growth phase enqueues occur with

probability p E (0.5, 1.0], dequeues with probability 1 - p. While the queue is being

emptied the probabilities are reversed. The parameter p effectively controls the rate

of queue size change.

4.1.4 Dependent HOLD model

Marfn [26] introduces another HOLD model variation that addresses the event de-

pendence issue. Marfn's model requires that the CEL algorithm support an operation

for deleting an arbitrary element in the collection. This synthetic workload model

views the system as P objects that schedule events independently. The interactions

occur randomly according to a probability parameter. The higher the probability the

greater the frequency of interaction. If the probability is 0 then there is no interac-

CHAPTER 4. MODEL AND METHODOLOGY 40

tion. If the probability is 1 then after each hold operation, the object interacts with

another randomly chosen object. When an interaction occurs, an object is randomly

chosen and the corresponding event is deleted. A new event is created based on the

last executed hold operation and then inserted into the pending event set.

4.1.5 PHOLD model

Fujimoto introduced a parallel HOLD (PHOLD) model used to compare the per-

formance of conservative simulation algorithms based on deadlock avoidance and

deadlock detection and recovery [11]. This synthetic workload model addresses the

spatial characteristics of a simulation [11]. This is particularly important for evaluat-

ing parallel simulation algorithms since the spatial characteristics directly affect the

available parallelism. A later version of the PHOLD model described in [13] was used

to evaluate the performance of the optimistic TimeWarp PDES algorithm.

Recall the LP modeling methodology described in Section 3.1.1. The PHOLD

model consists of a set of LPs connected in a toroid network as shown in Figure

4.1. When a event arrives at an LP, a busy wait loop is executed to simulate the

computation grain associated with processing the event. The timestamp of the event

is updated, and it is sent to a neighboring LP. As events move between LPs their

timestamps are incremented to model the passage of time.

There are several parameters for this synthetic workload: timestamp increment,

event population, topology of logical processes, routing probability and computation

grain. The timestamp increment parameter selects one of the distributions from the

PHOLD column in Table 4.1. In order to use the PHOLD model to compare conser-

vative algorithms, the uniform and exponential distributions must be shifted. This

guarantees that the lookahead is strictly greater than 0, a necessary condition for the

deadlock avoidance algorithm. A pseudo random number taken from the specified

distribution determines the amount of simulation time that an event is delayed as it

travels from one LP to the next. This parameter corresponds to the scheduling distri-

CHAPTER 4. MODEL AND METHODOLOGY 41

Figure 4.1: 4x4 Toroid Network

bution (F(t)) used in the HOLD model. The event population parameter determines

the number of events in the system in the same manner as the P parameter for the

HOLD model. The number of events remains fixed throughout the simulation. The

topology of LPs can be arbitrarily specified. The original PHOLD workload model

used toroid networks of 4x4 and 8x8 LPs. When an event is finished processing, it

is forwarded on a randomly chosen output channel. The likelihood of sending on a

particular channel depends on the routing probability parameters. Finally, the com-

putation grain parameter is used to control the amount of time spent in the busy

wait loop, this can be stochastic or fixed. Modeling computation grain is necessary in

the parallel simulation setting since the amount of time that a cpu is busy will affect

when it can send and receive events and ultimately simulator performance.

4.1.6 Ring Model

Liu and Nicol [23] developed a synthetic workload model that can be used to stress

test the LP scheduling mechanisms of channel based conservative PDES algorithms.

This model consists of an ordered set of N LPs connected in a ring. Each LP is

connected to R of its predecessors and R of its successors as shown in Figure 4.2. The

CHAPTER 4. MODEL AND METHODOLOGY 42

a) Ring Topology b)Star Topology

Figure 4.2: Test Model Topologies, 8 LPs with Connection Radius 2

connections are symmetric and never duplicated. If there is a channel from LP A to

LP B, then there is also a channel from LP B to LP A. There will never be more

than one channel from LP A to LP B. The resulting topology is referred to as the

ring topology, the parameter R is called the connection radius. In the Ring model,

no events sent between LPs. Events are only scheduled locally within an LP. At any

given time there will be at most one event in each LP's local event list. When a local

event is executed it causes a new local event to be scheduled using an exponentially

distributed timestamp increment. The exponential distribution has a mean of 1/D,

where the D parameter refers to event density. There are approximately D events

executed by each LP per second of simulated time. Again, there are no events sent

between LPs. The reason for this was the motivation to focus on the overhead of the

synchronization protocols.

4.1.7 Test Model

This subsection describes the synthetic workload model used for the experiments

presented in this thesis. Any future reference to the test model can be taken to

refer to the model described in this section. The test model incorporates many of the

CHAPTER 4. MODEL AND METHODOLOGY 43

parameters and characteristics of PHOLD and Ring models previously described. The

test model was designed to be descriptive, yet simple to analyze. The parameters of

this model are: number of LPs (N), event density (D), connection radius (R), channel

delta (L), topology (T), computation grain (C), LP state size (S), and scheduling

distribution (F(t))-

The simulation is initialized with N x D events. These events are uniformly

distributed among all LPs in the system such that on average there are D events

scheduled locally at each LP. The timestamps of these initial events are taken from

the scheduling distribution F(t). The event population remains constant throughout

the simulation.

There are two connection topologies implemented in this workload model, a ring

topology identical to that described in Section 4.1.6 and a star topology. Consider

an ordered set of N LPs. In the star connection topology each LP is connected to

its immediate successor and predecessor, and then connected to 2R - 2 LPs spaced

approximately equidistantly around the ring. The connections in the star topology

are not necessarily symmetric. The existence of a channel from LP A to LP B

does not imply the presence of a channel from LP B to LP A. There will never be

more than one channel from LP A to LP B. Figure 4.2 shows a sample of the star

connection topology with 8 LPs and connection radius R = 2. Each LP will have

exactly 2R input channels and 2R output channels. In addition, each channel has an

associated channel delay that reflects the minimum lookahead L, between the source

and destination LP.

Given an LP and E, the next event to be processed, the following rules describe the

behaviour of the LP. If E was generated locally, then send a new event to a neighboring

LP via a randomly selected output channel. There is a uniform probability of selecting

any particular channel. The timestamp of the new event is the timestamp of E plus

the channel delta L. If E has arrived from a neighboring LP, schedule an event locally

for time T(E) +Lt, where the Ati timestamp increment is taken from the scheduling

CHAPTER 4. MODEL AND METHODOLOGY 44

At,

At1

LP LP LP

At,

Figure 4.3: Event Time Line

distribution F(t). Figure 4.3 shows the timeline of an event in the system. In the

diagram, L is a constant delay which corresponds to the channel delta. At,, Lt2,

are timestamp increments taken from a stream of pseudo random numbers

that fit the distribution F(t).

The test model parameters are summarized below.

1. N - The number of LPs parameter impacts the number of events in the system

since the event population is equal to the product of the number of LPs and the

event density. More importantly, manipulating the number of LPs will affect

the spatial characteristics of the simulation; with a larger number of LPs, there

is greater parallelism available in the model.

2. D - The event density parameter also affects the number of events that are

instantiated at the beginning of the simulation. N x D events are created

system wide and then uniformly distributed among the LPs. On average D

local events are scheduled for each LP. The timestamps of these events are

taken from a distribution F(t) with a mean of 1.0.

CHAPTER 4. MODEL AND METHODOLOGY 45

3. T - The model topology parameter allows simulation of either a ring or star

connection topology as previously described.

4. R - The Connection radius parameter controls the number of neighbors that

each LP is connected to. Each LP has 2R output channels on which it may

send events, and 2R input channels on which it may receive events. Connection

radius is used to model the topological characteristics of a system.

5. L - The channel delta parameter affects the available lookahead in the model.

When the channel delta is small, LPs can quickly affect one another since there

is little delay between them. When the channel delta is larger, LPs behave more

independently since they can be further separated in time. Channel delta can

be used to model the physical separation of the interacting processes. Channel

delta, like the number of LPs, helps to model the spatial characteristics of the

a system.

6. G - The computation grain parameter controls the amount of time required to

process an event. It specifies the average time that a busy wait loop is executed

in order to simulate the cost of processing an event.

7. S - The LP state size parameter models the additional LP state that would

be accessed in a real simulation. For example, in a network simulation where

each LP models a network router, additional state might be required to model

output buffers and routing tables.

8. F(t) - The scheduling distribution selects one of the timestamp increment dis-

tributions from the Test column in Table 4.1. All scheduling distributions have

the same mean of 1.0.

To summarize the test model in terms of the previous models, it is similar to the

PHOLD model, however the topology of the LPs bares more resemblance to the ring

model. There are also differences in LP behaviour since test model uses both local

CHAPTER 4. MODEL AND METHODOLOGY 46

and external events. The PHOLD model focused on external events and the Ring

model had only a single local event per LP.

4.2 Experimental Methodology

This section describes the experimental methodology. It is split into several subsec-

tions which describe various aspects of the methodology. The test system is described

in Section 4.2.1. The implementation details are described in sections 4.2.2. The test

architecture is described in Section 4.2.3. Section 4.2.4 describes the performance

metrics that are used to compare the simulation algorithms.

4.2.1 Test System

This section describes the test system used to perform all experiments conducted in

this thesis. The test system simulates the test model described in Section 4.1.7. In ad-

dition to the parameters described for the test model, the test system has parameters

which control the length of a simulation run and the simulation kernel used to execute

the simulation. The length of the simulation can be specified in terms of simulation

time or wall-clock time using the -sim..end_time or -wall-end-time parameters. The

simulation kernel is selected using the -aig and -pq_impl parameters. For the CEL-

based algorithms these parameters allow the selection of the CEL implementation.

For conservative algorithms, these parameters select the LP scheduling mechanism

and the local event queue implementation. The test system implements many of the

CEL algorithms described in Section 2.2 and several variations of the channel based

conservative PDES algorithms described in Section 3.2. These additional test system

parameters are summarized below.

1. -sim_end_time This parameter specifies a simulation end time. Once the sim-

ulation reaches this simulation time, it is terminated.

CHAPTER 4. MODEL AND METHODOLOGY 47

2. -wall-end-time This parameter terminates the simulation after a specified

amount of wall-clock time has elapsed.

3. -aig This parameter is used to specify either CEL, or one of the LP scheduling

mechanisms: PQ, COT, or FIXED. The CEL option executes the well known

central event list algorithm. PQ, COT, and FIXED options execute variants

of the 0MB algorithm. The PQ option schedules LPs for execution according

to their local time. The OCT option executes the critical channel traversing

algorithm described in section 3.2.2. Both the PQ and OCT options make use

of a LP scheduling queue implemented using a heap that is optimized for hold

operations. The FIXED option schedules LPs according to a fixed ordering

using a FIFO queue.

4. -pq_impl In the case of the CEL algorithm, this parameter specifies the imple-

mentation of the central event list. For conservative algorithms it is used to

specify the implementation of the local event queue. Options for this param-

eter are: list, henriksen, heap, splay, and calendar. These options correspond

to the linked list, Henriksen's, heap, splay tree, and calendar queue priority

queue implementations described in Section 2.2. The heap option selects a

heap implementation that is optimized for executing hold operations.

Preliminary tests were performed using different combinations of LP scheduling

mechanism and local event queue implementations. Three implementations were

identified as good candidates for the local event queue. These were the list, heap,

and splay options mentioned above. Because most experiments did not use large event

densities, the implementation of the local event queue did not have a significant effect.

As such, only results for kernels using the linked list local event queue implementation

have been presented. There is one exception to this in Section 5.1.3 where the heap

was used to implement the local event queue. This was necessary due to the large

event densities encountered in that experiment.

CHAPTER 4. MODEL AND METHODOLOGY 48

All experiments were conducted using each of the PQ, COT, and FIXED LP

scheduling mechanisms and either the list or heap local event queue implementation.

The behaviour of the conservative PQ and OCT algorithms was very similar, so

results are only presented for the COT algorithm. The choice to present results for

COT rather than PQ was motivated by the desire to understand the good sequential

performance of the COT algorithm observed in ATM-TN [41] and IP-TN [21]. Results

for the PQ LP scheduling mechanism are presented in [6].

Four GEL implementations were selected for comparison with conservative algo-

rithms. All experiments were conducted using each of the henriksen, heap, splay, and

calendar GEL implementations. These algorithms demonstrate the range of possible

performance for GEL-based approaches. There are some model parameters that have

very little affect on the behaviour of GEL-based algorithms. In these experiments the

results are only presented for the calendar queue as it was the best performing of the

GEL-based algorithms.

4.2.2 Implementation and Memory Management

While comparing the different simulation algorithms, it was observed that small dif-

ferences in the implementation can have significant impacts on performance. Two

examples of this are described here.

A priority queue of events can be implemented using placeholders which each

contain a pointer to an event or alternatively, the priority queue can be implemented

so that it operates directly on the events themselves. Using placeholders allows a

priority queue to be used more generally, but it introduces a level of reference that is

unnecessary. In DES, this level of reference can be eliminated by adding additional

data members to the event objects. For example, heap performance was improved by

10% by adding left and right child pointers to the events and avoiding the additional

level of reference.

Simplifying the logic used in a priority queue by avoiding unnecessary tests can

CHAPTER 4. MODEL AND METHODOLOGY 49

greatly improve performance. For example, eliminating one conditional in the heap

code improved performance by about 10%. Certain assumptions made by some of

the specialized priority queue algorithms may have allowed them to avoid testing

certain conditions. For example, Henriksen's algorithm assumed that the queue would

never be empty or that the user would monitor the queue size independently of the

algorithm. Eliminating the check for an empty queue is fine for the HOLD model

tests since the queue is never emptied. For a general purpose simulator, the algorithm

would need to check if the queue is empty before attempting to remove an event.

Adding this check is likely to negatively impact performance.

One important aspect of implementing an efficient simulation kernel is to provide

a specialized set of memory management routines. In a simulation, events are cre-

ated and destroyed millions of times per second. Memory management using C++

operators new and delete, or C functions malloc and free can incur substantial over-

head. These routines were designed to be general purpose; they can handle objects of

varying size. In a simulation, events can usually be assumed to be of a constant size.

If there are many event types, the size is taken to be the maximum of all event sizes.

Event records are the primary concern rather than the auxiliary data which can be

managed separately. A specialized memory allocation scheme can be designed that

is very efficient for allocating fixed size chunks of memory, such as events.

A second aspect that is particularly important to parallel simulation is memory

alignment of events and simulation objects. Memory alignment has numerous bene-

fits. Assume that the size of an event is smaller than the length of the cache line. If

the event falls entirely within a single cache line, then it can be retrieved from mem-

ory in one go. However if it crosses a cache line boundary, it will require two memory

accesses. This is very expensive. Roughly speaking, a memory access is two orders

of magnitude more expensive than a cache hit. Also, it may fill up the cache faster

since it will require two cache lines and result in more cache invalidation. In parallel

there is an added cost that occurs when multiple objects share the same cache line.

CHAPTER 4. MODEL AND METHODOLOGY 50

If one of the objects is modified, this invalidates the entire cache line and it means

that every processor caching an object sharing the same cache line will need to reload

that cache line.

Cache performance can be improved by ensuring that objects are allocated on

cache line boundaries and that no objects share the same cache line. Allocating

objects on cache line boundaries ensures that the object will occupy the fewest possible

cache lines. If the object is not aligned to the beginning of a cache line it will use more

cache memory and require additional reads and writes to update. Padding objects

so that they do not share cache lines ensures that modification of one object cannot

invalidate the cached copy of another. This is particularly important in parallel

execution where cache lines might be accessed by multiple processors and result in

premature invalidation.

Cache alignment can require more memory so in some situations it can have a

negative affect on cache performance. For example, if cache aligning objects means

that only half as many objects will fit in the cache, then the benefit of cache alignment

may be offset by fewer objects being cached at any given time.

The test system uses specially designed memory management routines optimized

for allocating and deallocating events. Other objects are allocated using the standard

C++ new operator. In addition, the test system uses cache aligned events and cache

aligned LPs. Each event is cache aligned and padded to occupy the entire cache

line. In the test environment each event occupies exactly a single cache line due to

its size being equal to the length of one cache line. Each LP is cache aligned and

padded to the next larger multiple of cache line length. Since the size of an LP is

not a multiple of cache line length some memory is wasted in cache alignment of

LPs. It should also be noted that although the LPs themselves were cache aligned,

dynamically allocated data members of the LPs were not. This was an oversight at

the time of implementation and it could have some affect on performance.

In some situations, particularly for models with a large number of LPs it was

CHAPTER 4. MODEL AND METHODOLOGY 51

observed that cache alignment of LPs could have a slight negative impact. One

explanation for this is the larger memory requirement to cache align the LPs. Cache

aligning each LP requires more space and potentially results in more cache misses.

Cache alignment of events was observed to improve performance by as much as 10%.

This improvement is due to avoiding unnecessary cache invalidation that would occur

if an event were to overlap a cache line boundary. Cache alignment of events did not

require additional memory since as mentioned previously, the event and cache line

sizes were equal. Further work would be required to quantify the affects of cache

alignment on simulator performance.

4.2.3 Test Architecture and Compiler

All experiments were conducted using a Dell desktop computer with an 866 MHz

Pentium III processor and 128 MB of RAM. This computer has a 16KB, 4-way set

associative first level (Li) instruction cache with a 32 byte line size, a 16KB, 4-way

set associative first level (Li) data cache with a 32 byte line size, and a 256KB, 8-way

set associative second level (L2) cache with a 32 byte line size. The operating system

was Red Hat Linux 7.3 with the v2.4.18 kernel.

There was some dependence observed on the optimization level used in compi-

lation. In one situation the performance order of the algorithms actually changed

depending on which level of compilation was used: "-00", "-01" and "-02". Op-

timizations tended to reduce the observed performance difference among the algo-

rithms. It would be interesting to examine what particular optimizations benefited

the individual algorithms, but this is beyond the scope of this thesis.

The results for all experiments conducted in this thesis were obtained using soft-

ware that was compiled with level 2 optimizations enabled (using the -02 flag) using

GNU g++ version V2.96.

CHAPTER 4. MODEL AND METHODOLOGY 52

4.2.4 Performance Metrics

In order to compare the different algorithms, six performance metrics have been de-

fined. The majority of these metrics are obtained from calculations based on the out-

put of valgrind, an open-source memory debugger for x86-GNU/Linux. Cachegrind is

one of the valgrind performance tools and is used to perform detailed simulations of

the instruction and data caches, while executing the different simulation algorithms.

It records cache performance data for each function and procedure in the program.

Cachegrind reports level 1 and 2 cache misses. Level 2 cache misses have a greater

impact on performance than level 1 cache misses so all cache metrics have been de-

fined in terms of the number of level 2 cache misses (reads or writes). For model level

cache behaviour and kernel level cache behaviour the metric is reported as a percent-

age of the total memory accesses. The amortized aggregate cache behaviour metric

is reported as the total number of level 2 cache misses amortized over the number

of events executed. Metrics obtained from cachegrind are based on a simulation run

that lasted 100 seconds of simulation time. The bias of simulation initialization was

removed by executing the initialization code separately and then subtracting these

measurements from those obtained in the run of 100 seconds of simulation time. The

event rate metric is obtained directly from the execution of the native code and is

based on a simulation run that lasted 60 seconds of wall-clock time. There is no bias

in the execution of the native code, since the 60 seconds of wall-clock time does not

begin until initialization has completed.

The first metric is model level cache behaviour. The model level cache behaviour

measures data cache behaviour in the process method and in any calls associated

with random number generation. Recall that the simulation API requires the modeler

to implement the process method for the logical processes and this is where the

majority of the simulation specific work occurs. Random number generation is used

in the process method when choosing a timestamp for the next local event.

The second metric also measures cache performance, but in the simulation algo-

CHAPTER 4. MODEL AND METHODOLOGY 53

rithm rather than in the model level code. Kernel level cache behaviour excludes

memory accesses related to random number generation and the process method.

Amortized aggregate cache behaviour is a third cache metric that combines both

the kernel and model level cache behaviour. This metric is amortized over the number

of events, it is the average number of level 2 data cache misses that occur in processing

a single event.

For PDES algorithms, events per LP execution is defined to be the average num-

ber of events that are processed each time an LP is executed. It is computed by

taking the total number of events executed during the simulation and dividing by the

total number of LP execution sessions. Although events per LP execution is model

dependent, it is still helpful in explaining algorithm behaviour and performance. In

a conservative parallel simulation, an events per LP execution less than one would

suggest the presence of a low-lookahead cycle that might warrant re-partitioning the

model. The concept of events per LP execution can be extended to GEL-based al-

gorithms by counting the average number of consecutive events executed at one LP

before executing an event at a different LP. Note that a GEL-based algorithm always

achieves an Events per LP execution greater than or equal to 1; frequently it is very

near 1 due to the total timestamp ordering imposed by a GEL-based algorithm.

The events per LP execution metric is extracted from the cachegrind run, but it

is obtained directly from the simulation kernel. Due to the synthetic workload model

that was used, the events per LP execution is approximately 1 for all GEL-based

algorithms. There are workload models in which events are localized in time and

space where the events per LP execution could exceed 1; however, this test model

does not explore these situations. As such, the events per LP execution plots for

GEL-based algorithms will not usually be commented upon. Attention is focused on

the behaviour of the different conservative scheduling mechanisms. Also note that

plots of events per LP execution have logarithmic scales for both the x and y axis.

The fourth metric is kernel level amortized computation cost. It is a count of all

CHAPTER 4. MODEL AND METHODOLOGY 54

instructions (excluding the model level code) divided by the number of events exe-

cuted by the simulation kernel. The metric is obtained using data from the cachegrind

tool (cachegrind also counts the instructions per function or procedure). The metric

excludes instructions that are executed in the model level code, including random

number generation. The decision to exclude model level code was motivated by the

desire to highlight the differences between the algorithms.

The most comprehensive metric is event rate. It corresponds to the number of

events executed per second of wall-clock time. This metric is obtained by execut-

ing the simulation for a specified amount of wall-clock time and then calculating the

event rate based on the number of events that were executed. It should be noted

that different implementations of the same model level behaviour can result in sig-

nificant differences in event rate. Consider a network simulation that uses 3 events

to model FIFO transmission of a packet through a router. As described in [7], the

same behaviour can be accomplished using only 2 events. The event rates for these

two model implementations could vary significantly, even though they model the

same behaviour. The experiments in this thesis compare the algorithms under the

same implementation of model level behaviour. The event rate metric can hide the

variation between the algorithms since it includes the cost of the model level code

associated with the simulation. For the same reason, it is the most realistic metric as

it corresponds exactly to how someone would use the simulation in practice.

4.2.5 Experiment Outline and Parameters

A single simulation run was completed for each point in each plot. Multiple simulation

runs could have been used to obtain confidence intervals, but due to the well behaved

nature of the simulation metrics this was not done. 100 seconds of simulation time

and 60 seconds of wall-clock time were both adequate to obtain a stable measurement

for each point. For the results published in [6], 5 simulations runs were adequate to

achieve a 95% confidence interval such that the half-width was within 5% of the

CHAPTER 4. MODEL AND METHODOLOGY 55

sample mean for every point.

In general, the controlled experiment parameters have been chosen to simplify

the analysis and highlight the differences among the algorithms. For example, using

the uniform distribution as the scheduling distribution demonstrates the greatest

variation among the algorithms, so only these graphs are presented. Other experiment

parameters have been chosen to simplify the analysis. For example, the connection

radius might be set to 1 so that issues related to larger connection radii do not come

into play.

4.3 Analysis

In this section the theoretical computation cost of the conservative simulation algo-

rithms will be examined. The computation cost here refers to the number of kernel

level instructions required to execute the simulation. First a general cost expression

is described in terms of the events per LP execution metric. Then an estimate for the

minimum and maximum number of events per LP execution are developed. Finally

the asymptotic behaviour of channel based conservative algorithms is compared to

that of CEL-based algorithms.

4.3.1 Asymptotic Bounds

Just as the asymptotic behaviour of CEL-based algorithms depends on the implemen-

tation of the priority queue, the behaviour of conservative algorithms depend on the

implementation of their subcomponents. For a channel based conservative algorithm,

the implementations of the LP scheduling queue, safetime calculation and local event

queue will affect asymptotic performance.

The cost of executing a single event breaks down into three parts; the LP schedul-

ing queue cost, the safe-time calculation cost and the local event queue cost. Consider

a model with N LPs, an average event density of D events per LP, an average of C

CHAPTER 4. MODEL AND METHODOLOGY 56

channels per LP. Suppose that on average the simulation kernel executes E events

per LP execution session. Table 4.2 summarizes the asymptotic bounds in terms of

the different synchronization algorithms and different algorithm components.

The LP scheduling queue cost is associated with inserting or removing an LP from

the LP scheduling queue. For the PQ and FIXED schedule algorithms, a single LP

is removed from the LP scheduling queue and the same LP is returned to the queue

once its execution session is complete. The behaviour of the OCT algorithm is more

complex. A single LP is removed from the LP scheduling queue but after completing

its execution it is not reinserted into the scheduling queue. Instead it schedules all

of the neighboring LPs that had marked their connection to it marked as critical by

inserting them into the LP scheduling queue. Still, the asymptotic LP scheduling

queue cost for COT is dominated by the cost of an insert or remove operation rather

than the number of insert operations an LP performs per execution session.

The LP scheduling cost depends on the synchronization algorithm. If a heap is

used to schedule LP execution and all LPs in the system are maintained in the LP

scheduling queue, as is the case with the PQ algorithm, then the cost is O(1og2 N).

Another approach is to execute each LP in the system according to some fixed order-

ing, this type of LP scheduling queue is used by the FIXED schedule algorithm and

has a constant access cost 0(1). The critical channel traversing algorithm is more

complicated. One of the advantages of the OCT algorithm is that it is not necessary

to maintain all LPs in the LP scheduling queue. This results in a smaller queue and

smaller access costs. The LP scheduling queue in COT is implemented using a heap,

so again the cost is logarithmic in N', the number of LPs in the scheduling queue.

Empirical observations indicate for the test model used in thesis experiments, in the

case of connection radius 2, ring topology, the LP scheduling queue contains on aver-

age N/2 LPs. Increasing the connections radius increases the number of LPs in the

LP scheduling queue.

The cost of scheduling LPs is a function of the number of LPs and depends on

CHAPTER 4. MODEL AND METHODOLOGY 57

the choice of scheduling mechanism (FIXED schedule, PQ, CCT, etc.) and on the

implementation of that scheduling mechanism.

The second part of the cost of executing an event is computing the safe time for

an LP execution session. Computing the safetime requires determining the minimum

possible timestamp of the next event that could arrive on each empty channel. For

algorithms tested in this thesis all channels are examined regardless of whether they

are empty. This is used to ensure that each channel that has events, has a represen-

tative in the local event queue. The cost of the safetime calculation is linear in the

number of channels, 0(C).

The third part of the cost of executing an event is removing the event from the

local event queue. The cost to obtain an event from the LP's local event queue

is a function of the number of events in the queue. This cost depends on D, the

average event density in the model and the implementation of the local event queue.

If the local event queue is implemented using a heap the cost is 0(1092 D), while if

implemented using a linked list the cost is 0(D). If no events are generated locally

then the size of the local event queue is bounded by the number of channels since

it contains at most one representative from each channel. However, the test model

under consideration in this thesis uses local events so the cost depends on the average

event density in the model D.

Both the LP scheduling queue cost and the safetime calculation costs are amortized

over the execution of multiple events. The per event cost for these components is

divided by E, the average number of events executed per LP execution session.

4.3.2 Events per LP execution

The next part of this analysis is to derive an expression for E, the number of events

executed per LP execution session.

The lifetime of an event refers to the difference between its timestamp and the

timestamp of the event that caused its generation. If is the average lifetime of an

CHAPTER 4. MODEL AND METHODOLOGY 58

Synchronization

Algorithm

LP scheduling

queue cost

Safe time

calculation cost

Event queue

cost

Per event

cost

FIXED

PQ

OCT

1

1092 N

1092 N'

C

C

C

1092 D

1092 .D

1092 D

If 1092 D +

1092 N+C
1092 D +

log2 IV' +C + 1092 D

Table 4.2: Asymptotic bounds for channel based conservative synchronization

event in the simulation then in one second of simulation a time, 1/p events can be

executed. If there are D timelines within a given LP, then DIA events are executed

at that LP per second of simulation time. Suppose the available lookahead allows an

LP to advance its clock by L seconds of simulation time, then the number of events

executed during that LP execution session is LD/t. On average there are E = LD/,u

events executed per LP execution session.

In the case of the PQ algorithm, all LPs are stored in a priority queue according

to their clock. The timestamp of an LP taken from the LP scheduling queue must

have the smallest timestamp in the system. The timestamp of the LP will be less

than or equal to the timestamps of each of its neighbours. This means that it can

advance at least the minimum lookahead L.

A similar situation occurs for the FIXED schedule algorithm. Every LP in the

fixed order is executed exactly once, prior to subsequent execution of LPs that have

already executed. Each time an LP executes, its clock will be less than or equal to

each of its neighbors. This means that every LP will advance at least the minimum

lookahead L.

This is also true for the COT algorithm. When an LP executes, it has the smallest

timestamp of any LP in the scheduling queue. There may be other LPs that have yet

to be scheduled placed in the scheduling queue, but their local time would be greater

than or equal to the local time of the currently executing LP. By the same rational,

each LP can advance by the minimum lookahead, L.

CHAPTER 4. MODEL AND METHODOLOGY 59

Synchronization

Algorithm

Per event

cost N

Parameters

D C L

FIXED p(1+C)
1092 D 1 LD +

PQ p(log2 N+C)
1092 D 1092 N + 1092 D C LD +

CCT p(log2 N-FC) D 1092 N' + 1092 LD

Table 4.3: Expected behaviour of manipulating model parameters

Thus the minimum expected events per LP execution is given by Emin =

regardless of the algorithm. Table 4.3 shows the per event cost expressed in terms of of

N, L, C, D and u. The second half of the Table shows the expected behaviour when

the identified parameter is varied while keeping the others constant. These expected

behaviours will be compared against the measured instruction counts obtained in

Chapter 5. In Section 5.1.3, an experiment is conducted that maintains a constant

event population of P events while varying the ratio of LPs to event density. The

number of LPs parameter is manipulated while D is selected such that N x D = P.

The expected cost in terms of the number of LPs parameter is N 1092 N + N - 1092 N.

This is easily obtained by substituting f for D and taking all other parameters to be

constant.

Recall that there are two types of event used in the synthetic workload model.

The average lifetime of local events is determined by timestamp increment distribution

which has a mean of 1. The average lifetime of external events is equal to the channel

delta parameter L. Since each internal event is followed by an external event, the

average lifetime of an event in the test model is given by j = 1.OL In terms of model

parameters, the minimum expected events per LP execution is Emin =

The maximum expected events per LP execution can also be computed. Relative

to L, the channel lookahead an LP can advance at most 2L seconds of simulation time.

If the simulation time of LP A is t, then the simulation times of its neighbours are at

most -t + L, since they would have blocked when they reached this time. This means

CHAPTER 4. MODEL AND METHODOLOGY 60

that LP A can safely advance up to the simulation time of its neighbors t + L, and

then up to one channel delta ahead, i.e., to simulation time t + 2L. This implies that

the maximum events per LP execution that can be achieved for any of the algorithms

7;;i _4LD
is -'-'max - i+L

4.3.3 Comparison with CEL-based approaches

Parallel algorithms can conceivably achieve better cache performance under the as-

sumption that event execution accesses the state of the LP. In terms of cache be-

haviour, a high event density does not guarantee better performance for the con-

servative algorithms; if the event density is high and localized, then both CEL and

conservative algorithms can achieve good cache performance due to the localized be-

haviour. In this case both algorithms would exhibit events per LP execution greater

than 1. However, when the event density is high and distributed, then the con-

servative algorithms are better able to achieve good cache performance, since they

relax the total timestamp ordering imposed by CEL approaches. In this case only

the conservative algorithms would achieve significantly greater than 1 event per LP

execution.

There are many scenarios where event density is high and distributed; for exam-

ple, packet based simulation of telecommunication networks. There are many events

occurring across the system at any given time.

The behaviour of a CEL-based algorithm with logarithmic behaviour in event

population is O(log2 P = 1092 ND = 1092 N+1og2 D). This is similar to the expression

for channel based conservative algorithms, if the safetime calculation is ignored, i.e.,

0(IoN + 1092 D). It is clear that for channel based conservative algorithms with

events per LP execution greater than 1 the LP queue is sorted less frequently and the

per event cost is reduced. This will also benefit the algorithm's cache behaviour. If the

events per LP execution is less than 1, then the LP queue is sorted more frequently

in comparison to a CEL-based algorithm with logarithmic behaviour in the event

CHAPTER 4. MODEL AND METHODOLOGY 61

population. An events per LP execution greater than 1 is a necessary condition for

channel based conservative algorithms to achieve better asymptotic behaviour than

CEL-based algorithms with O(1og2 F) behaviour.

4.4 Summary

This chapter has surveyed existing synthetic workload models and presented the test

model that is used for experiments conducted in this thesis. The model was cho-

sen for its ability to demonstrate the range of performance possible using channel

based conservative techniques. The test model is implemented in the test system.

Parameters of the test system are used to select the simulation kernel and simulation

termination conditions. The test model parameters allow selection of three variations

of the Chandy-Misra-Bryant algorithm, and five CEL implementations. The exper-

imental methodology was discussed, including a description of performance metrics

used for empirical comparison of the algorithms. The chapter also included theoreti-

cal analysis of the channel based conservative algorithms that will be compared with

the simulation results in the following chapter.

Chapter 5

Sequential Performance of DES

Algorithms

This chapter presents the results of the experiments conducted for this thesis.

The experiments are grouped according to the parameters that they manipulate.

Section 5.1 presents experiments that manipulate the event population, Section 5.2

presents experiments that manipulate the model topology including the connection

radius and lookahead parameters. Section 5.3 presents experiments that manipulate

computation grain, LP state size, and the timestamp increment distribution. Each

section will review the parameters to be manipulated and identify the controlled

variables. Table 5.1 summarizes the parameters used in the different experiments. An

asterisk indicates the parameter that was manipulated for a particular experiment.

The chapter concludes with a brief summary of the experiments conducted.

5.1 Queue Size Experiments

Varying the size of the event population is the standard approach that is used to

evaluate the scalability of a simulation algorithm. This approach has been used in

previous empirical studies of central event list implementations [27, 20], and in the

62

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 63

Experiment

Number

of LPs

Event

Density

Channel

Delta

Connection

Radius

Computation

Grain

LP State

Size

Topology Distribution

Number of LPs * 4 1.0 1 0.0 0 ring uniform

Event Density 8192 * 1.0 1 0.0 0 ring uniform

Fixed Queue Size * * 1.0 1 0.0 0 ring uniform

Connection Radius 8192 4 1.0 * 0.0 0 ring uniform

Lookahead 8192 4 * 1 0.0 0 ring uniform

Topology 8192 4 1.0 * 0.0 0 * uniform

8192 4 * 4 0.0 0 * uniform

Computation Grain 8192 4 1.0 4 * 0 ring uniform

16384 8 1.0 1 * 0 ring uniform

LP State Size 8192 1 1.0 1 0.0 * ring uniform

8192 4 1.0 1 0.0 * ring uniform

-

Timestamp

Increment

Distribution

8192 0.25 1.0 1 0.0 0 ring *

8192 32 1.0 1 0.0 0 ring *

8192 4 1.0 1 0.0 0 ring *

8192 4 1.0 32 0.0 0 ring *

8192 4 0.125 1 0.0 0 ring *

8192 4 2.0 1 0.0 0 ring *

Table 5.1: Controlled variables for Queue size experiments

analysis of many parallel simulation algorithms [11, 23]. This group of experiments

examines what happens to the performance of the various algorithms as the event

population changes. In the test model, there are two parameters that affect the event

population, the number of LPs (N) and the event density (D). The event density

parameter determines the number of events initially generated for each LP, thus the

total event population is equal to N x D.

In the first experiment a constant event density of 4 is assumed and the number

of LPs is varied between 16 and 65536. In the second experiment the number of LPs

is fixed at 8192 and the event density varied from 1 to 64. Finally a third experiment

assumes a constant event population of 131072 events and varies the ratio of the

number of LPs to event density. See Table 5.1 for additional experiment parameters.

5.1.1 Number of LPs Experiment

This experiment assumes a constant event density of 4 while varying the number

of LPs between 16 and 65536, resulting in queue sizes ranging from 64 to 262144

events. The purpose of this experiment is to study how the number of LPs affects the

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 64

performance of the different algorithms. The graphs in Figures 5.1 and 5.2 compare

the observed metrics for the tested algorithms.

Figure 5.1A plots model level cache behaviour versus the number of LPs. For less

than 128 LPs the entire model fits into the cache, resulting in nearly 0% cache misses.

As the number of LPs increases from 128 to 1024, the percentage of cache misses

climbs for both the conservative and GEL algorithms. For greater than 1024 LPs,

the model level cache behaviour of the conservative algorithms is constant, while it

continues to increase for the GEL algorithms. Estimating from the graphs, the model

level cache behaviour of the GEL algorithms appears to be approaching a constant of

about 5.5%. The CCT algorithm remains at about 1%, the fixed schedule algorithm

at 1.5%. The CCT and CMI3 algorithms schedule LPs based on local virtual time

or critical channels in order to avoid scheduling LPs which are blocked. Since the

fixed schedule algorithm pays no attention to whether an LP is a good candidate

for execution, it is more likely to schedule an LP that has no events safe to execute.

This negatively affects cache performance by performing unnecessary loads into the

cache. In the context of this experiment, it is clear that the conservative algorithms

are superior to the GEL algorithms in terms of model level cache behaviour.

As can be observed in the graph for kernel level cache behaviour (Figure 5.1B),

the conservative algorithms achieve a constant cache miss percentage in the number

of LPs. This is approximately 2.5% for the fixed schedule algorithm and 1.7% for the

CCT algorithm. The calendar queue algorithm demonstrates the next best kernel

level cache behaviour which appears sub-logarithmic in the number of LPs. The heap

and splay tree algorithm are approximately logarithmic, and Henriksen's algorithm

increases faster than logarithmically over the observed range. For 65536 LPs, the

OCT algorithm has less than one half the cache miss percentage of the calendar

queue, and one seventh that of Henriksen's algorithm. The conservative algorithms

demonstrate superior performance over GEL algorithms in terms of kernel level cache

behaviour. Although kernel level cache behaviour of the conservative algorithms

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 65

6

0

16

14

12

10

8

6

4

2

0

60

0

COT —4—
FIXED ---*---

GEL-CALENDAR -El....
GEL-SPLAY —e--

CEL HO_HEAP --—
CEL-HENRIKSEN •-a:'--

U
16 64 256 1024 4096 16384 65536

Number of LPs (N)

•...................... -.......-._............

I
16 64 256 1024 4096 16384 65536

Number of LPs (N)

I...
- ..

-
16 64 256 1024 4096 16384 65536

Number of LPs (N)

Figure 5.1: Number of LPs experiment.Pllots of A. Model Level Cache Behaviour, B.

Kernel Level Cache Behaviour and C. Aggregate Cache Behaviour versus the number

of LPs.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 66

1000

900

800

700

600

500

400

300

200

100
16

x........

CCT —'-
FIXED -..*..-

CEL-CALENDAR tI....
CEL-SPLAY -e--

CEL-HO_HEAP ..-A
CEL-HENRIKSEN -.-..-.-

16 64 256 1024 4096 16384 65536

Number of LPs (N)

0.6

0.4

0.2

0
16

64 256 1024 4096 16384 65536

Number of LPs (N)

:.
64 256 1024 4096 16384 65536

Number of LPs (N)

Figure 5.2: Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus the number of LPs.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 67

appears constant in the number of LPs, this is probably due to characteristics of

the model and implementation of the LP scheduling queue. For a different synthetic

workload model, a slightly increasing cache miss percentage might be observed.

Figure 5.1C shows the combined affect of model and kernel level cache behaviour in

terms of the number of cache misses per event executed. For 65536 LPs, there are over

3 times more cache misses involved with processing an event using the calendar queue

algorithm, than when using the COT algorithm and over 15 times as many when using

Henriksen's algorithm. The superior cache performance of the conservative algorithms

is due to a large extent to the greater number of events executed per LP execution

session.

The number of events per LP execution is plotted in Figure 5.2A. Analysis of

the conservative algorithms in section 4.3 suggested that the number of events per

LP execution was independent of the number of LPs in the model, this is confirmed

by the plot. Recall the formulas for the Emim and Emax derived for the synthetic

workload model in section 4.3. In this experiment the fixed schedule algorithm is

observed achieving the minimum expected events per LP execution of about EminDL =

= = = 4. COT achieves nearly the optimal expected behaviour of

-'--'max = 2DL - 2DL - 2x2x4x1 - - f:pr - 1+1 - 8.

Figure 5.213 plots the average number of kernel level instructions required to pro-

cess a simulation event. The asymptotic behaviour of the algorithms breaks down

into three categories: radical, logarithmic and constant. The kernel level computa-

tion cost grows faster than logarithmically for Henriksen's algorithm, this follows the

O(/J 7) expected behaviour. The behaviour of the calendar queue and fixed schedule

algorithms remain constant in the number of LPs, while the heap, splay tree and OCT

algorithms exhibit logarithmic behaviour. As predicted by the theoretical analysis in

section 4.3, the behaviour of the COT algorithm is logarithmic in the number of LPs.

This dependence does not occur for the fixed schedule algorithm since the scheduling

queue operations are 0(1), rather than O(log N'). The fixed schedule conservative

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 68

algorithm achieves a kernel level computation cost of approximately 190 instructions

per event, the calendar queue is 37% more expensive at 260 instructions per event.

Although the cost of the CCT algorithm is increasing, it remains less than that of

the calendar queue for up to 65536 LPs. For 65536 LPs, the cost of heap, splay

and Henriksen's algorithms are significantly greater and increasing faster than for the

calendar queue or conservative approaches.

As can be observed in Figure 5.2C, the event, rate of all algorithms decreases

rapidly as the number of LPs grows from 128 to 1024. This is a result of the model

becoming larger than the size of the cache. For models smaller than 128 LPs, essen-

tially no cache misses were observed. For greater than 1024 LPs, the fixed schedule

algorithm achieves a nearly constant event rate of about 860,000 events per second.

As noted in Figure 5.2B, the per event cost of the CCT algorithm is logarithmically

increasing in the number of LPs. This explains why the event rate of the CCT algo-

rithm continues to decline. The event rate of the CDL algorithms also declines, but

more rapidly than for the conservative algorithms. For 65536 LPs, the conservative

algorithms are observed to be over 2 times faster than the calendar queue algorithm.

The variation of performance between the CDL algorithms is quite large, Henrik-

Sen's algorithm achieves about 108,000 events per second, while the calendar queue

achieves around 385,000.

5.1.2 Event Density Experiment

In this set of experiments event density is manipulated in order to study its effect

on the performance of the different algorithms. The number of LPs is fixed at 8192

and the event density is varied between 0.25 and 64. This combination of parameters

will result in queue sizes ranging from 2048 to 524288. Like increasing the number of

LPs, increasing the event density has the effect of increasing the size of the event list

and the memory footprint of the model. Figures 5.3 and 5.4 compare the different

algorithms.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 69

0.25 05 2 4 8 16

Event Density (D)

18

16

14

12

10

B

6

4

2

0
0.25

70

60

50

40

30

20

10

0
0.25 05

CCI ----
FIXED ---X----

GEL-CALENDAR -fl....
GEL-SPLAY —5--

CEL-HO_HEAP -----'
CEL-HENRIKSEN ...'o.-.-

32 64

'.... p._

IX ,- --. —

05 1 2 4 8 16

Event Density (D)

32 64

I
-_-.- --.-,-........- -.----.,.--.-

2 4 8 16

Event Density (D)

32 64

Figure 5.3: Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour versus event density.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 70

128

64

32

16

8

4

2

0.5

0.25
0.25

1400
0

1200
a)

0-15 1000

•- 800

600

400

200

Cd 0
0.25 05

1.4

1.2

0.2

0.6

0.4

0
0.25 0.5

CCT
FIXED ----x----

GEL-CALENDAR -0....
CEL-SPLAY —4—

GEL-HO-HEAP --'--
- CEL-HENRIKSEN -•--•-

a —0 - D fl

05 1 2 4 8 16 32 64

Event Density (D)

\ o.--.:.--t-+.......
-r-----

-

2 4 8 16 32 64

Event Density (D)

--._..-.-....

III II IJIIII II

(_...............

II..................... ...
2 4 8 16 32 64

Event Density (D)

Figure 5.4: Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus event density.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 71

Figure 5.3A plots model level cache behaviour versus the event density. The model

level cache behaviour of the CEL algorithms is independent of the priority queue

implementation, i.e., the cache behaviour is the same for all CEL algorithms. For the

conservative algorithms there appears to be some dependence on the LP scheduling

method, this can be seen from the plot of the COT algorithm which performs slightly

better than the fixed schedule algorithm for moderate event densities. For very large

or very small event densities there seems to be less dependence on the LP scheduling

mechanism. For small event densities the variation in cache behaviour is less evident

due to the presence of a low-lookahead cycle. For large event densities the overhead

of using a linked list to implement the local event queue hides the variation between

the fixed schedule and COT algorithms. The model level cache behaviour of the

CEL algorithms is relatively independent of the event density, and is just over 5% for

event densities greater than 2. The model level cache behaviour of the conservative

algorithms improves rapidly with increasing event density. For an event density of

0.25 the percentage of cache misses is near 4%, for event densities greater than 8 it

is consistently less than 1% (approaching 0 % cache misses). Even for small event

densities (less than 1), the conservative algorithms maintain better model level cache

behaviour than the CEL algorithms.

As can be observed in Figure 5.3B, the kernel level cache behaviour of most of

the GEL algorithms deteriorates logarithmically with increasing event density. The

calendar queue implementation has nearly constant kernel level cache behaviour of

about 4% cache misses. The kernel level cache behaviour of conservative algorithms

improves as event density increases and is less than 4% for event densities greater

than 2. For an event density of 64, the percentage of cache misses for the conservative

algorithms is less than 1/5 that of the calendar queue algorithm, and less than 1/20

that of Henriksen's algorithm. The kernel level cache behaviour of the conservative

algorithms can be poor if the event density is less than 1. This is due to the presence

of low-lookahead cycles which prevent the execution of the next event until LP clocks

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 72

have advanced.

The overall cache performance of the algorithms is compared in Figure 5.3C. The

number of cache misses per event is approximately constant for the calendar queue

algorithm, increasing logarithmically for the heap and splay tree algorithms, and

increasing faster than logarithmically for Henriksen's algorithm. For the conservative

algorithms, the number of cache misses decreases exponentially in the event density.

For an event density of 0.25, the conservative algorithms suffer about 30 cache misses

in processing a single event, for event densities greater than 1 this drops below 10

cache misses per event. For an event density of 64, there is approximately 1 cache

miss associated with processing an event using a conservative approach, 12 misses

using the calendar queue algorithm and 65 misses using Henriksen's algorithm.

Figure 5.4A plots the events per LP execution for the tested simulation algorithms.

As previously discussed the metric is very close to 1 for all CEL algorithms. The

fixed schedule algorithm achieves the minimum expected events per LP execution

Emin = D, while the CCT algorithms achieve nearly twice that value at Emax = 2D.

The improvement in cache behaviour is explained by the increasing events per task

LP execution observed with increasing event density.

The performance of the algorithms in terms of kernel level amortized computa-

tion cost is plotted against event density in Figure 5.413. The number of kernel level

instructions required to process an event is approximately constant for the calendar

queue algorithm, independent of the event density. The heap and splay tree algo-

rithms exhibit a logarithmic dependence on the event density, with the number of

instructions growing slightly slower for the splay tree than for the heap. Henriksen's

algorithm performs poorly, the computation cost is in O(\/). The behaviour of the

conservative algorithms matches the O(D + I), predicted in section 4.3. For event

densities less than 8, the O(11D) term dominates the behaviour. For event densities

greater than 8, the behaviour is affected more by the 0(D) term. As discussed previ-

ously, this second term depends on the implementation of the local event queue. If a

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 73

heap structure was used the cost would increase in 0 (log D), rather than 0(D). For

event densities less than 8, the kernel level amortized computation cost of the fixed

schedule algorithm can be significantly less than for the COT algorithm even though

it fails to achieve the same number of events per LP execution. For event density

64, Henriksen's algorithm requires about 5 times the number of instructions as does

either conservative approach, the calendar queue requires about 2 times as many.

Figure 5.40 plots event rate versus event density for each algorithm. The event

rate of the CEL algorithms decreases as the event density increases, the rate of de-

crease is greatest for Henriksen's algorithm, followed by the heap, splay and calendar

queue algorithms. The event rate of the conservative algorithms actually improves

with increasing event density until the cost of managing the local event queue becomes

too large, i.e., when the 0(D) term begins to dominate the kernel level computation

cost. Actually, although the computation cost begins to increase at event density 8,

the effect of the increasing cost is not observed in the event rate metric until event

density 32, this is due to the cache behaviour of the conservative algorithms which

continues to improve beyond event density 8, offsetting the increased computation

cost. For event densities of 1 or greater the conservative algorithms are faster than

the CEL algorithms. For event density 32, the conservative algorithms achieve over

1.2 million events per second and are about 3 times faster than the calendar queue

algorithm and about 6 times faster than Henriksen's algorithm.

5.1.3 Fixed Queue Size Experiment

The purpose of this experiment is to examine the effect of the ratio of LPs to event

density. The queue size is fixed at 131072 events, while the number of LPs and the

event density are varied such that the queue size remains constant. The number

of LPs is increased from 2 to 65536, while the event density is chosen such that

N x D = 131072. The conservative algorithms in this experiment were tested using

a hold optimized heap for the local event queue implementation. The cost of using a

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 74

linked list for the local event queue would be excessive for the queue sizes encountered

in this experiment.

The graphs in Figures 5.5 and 5.6 show the entire spectrum of performance for each

algorithm and partitioning of the model into LPs. The smallest model contains 2 LPs

each with about 65536 events, the largest model contains 65536 LPs with an average

of 2 events per LP. The extreme cases with 131072 LPs and 1 event per LP, and 1

LP with 131072 events were not tested since they are equivalent to CEL simulation.

The performance in the case of a single LP would be similar to the hold optimized

heap since there would be very little additional synchronization overhead. The case

of 131072 LPs would have asymptotic behaviour similar to the hold optimized heap

but would incur additional overhead due to the synchronization protocol.

Figure 5.5A plots model level cache miss behaviour versus the number of LPs,

with the event density parameter selected to obtain a population of 131072 events.

Although the number of events is constant, increasing the number of LPs has the

effect of increasing the memory footprint of the model. For up to 16 LPs, most of the

simulation fits into memory and thus relatively few cache misses are observed. As the

number of LPs increases from 16 to 16384, the percentage of cache misses increases

rapidly for the CEL algorithms. The onset of increasing model level cache misses

is delayed for the conservative algorithms due to the large number of events per LP

execution (see Figure 5.6A). Even for 65536 LPs, the model level cache behaviour is

still 2 times better than that of any CEL algorithm.

The increasing memory footprint of the model is also observed in the graph of

kernel level cache behaviour (Figure 5.5B), particularly for the CEL algorithms which

are otherwise unaffected by the number of LPs. The conservative algorithms show

a decrease in the percentage of cache misses as the number of LPs increases from

2 to 16. At this extreme, i.e, when the number of LPs equals 2, the conservative

algorithms have degenerated to almost a CEL approach. The cache behaviour of the

simulator now depends on the implementation of the LP's local event list, in this case,

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 75

14

12

10

8

6

4

2

0

45

40

35

30

25

20

15

10

5

0

Cd-HO_HEAP —+---
FIXED-HO_HEAP ---
CEL-CALENDAR

dEL-SPLAY —.0--
CEL-HO_HEAP -----

CEL-HENRIKSEN -.-.0.-.-

16 64 256 1024 4096 16304 65536

Number of LPs (N)

0'...........

-

-.... .:T....

--•-••----

IjIi_ I

16 64 256 1024 4096 16384 65536

Number of LPs (N)

.

—G

.,.:_.. ... -
f..4

4 16 64 256 1024 4096 1638465536

Number of LPs (N)

Figure 5.5: Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour versus the number of LPs. Parameter D

chosen such that N x D = 131072.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 76

262144

65536

16384

4096

1024

256

64

16

4

900
0

- 800

O. 700
0>
ow
-u-- 600

E.Q
500

•E 400

300

200

1.2

0.2

0

-

-

H[
Yf

l COT-HO_HEAP —4----
FIXED-HO_HEAP ---
CEL-CALENDAR -3 -

GEL-SPLAY -€4---- -

CEL-HO_HEAP -.---- -
CEL-HENRIKSEN ...€4.....-

4 16 64 256 1024 4096 1638465536

Number of LPs (N)

 _1......

4 16 64 256 1024 4096 16384 65536

Number of LPs (N)

ru
ii

:_
IL

.J
i

.I p

 -o--o-

4 16 64 256 1024 4096 1638465536

Number of LPs (N)

Figure 5.6: Plots of A. Events per LP Execution, B. Kernel Level Amortized Compu-

tation Cost and C. Event Rate versus the number of LPs. Parameter D chosen such

that N x D = 131072.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 77

2 hold optimized heaps of 65536 events each. When the size of the model increases

an increase in the percentage of kernel level cache misses for conservative algorithms

is also observed. This is due to the increasing memory footprint and the decreasing

number of events per LP execution (Figure 5.6A). The kernel level cache behaviour

of the conservative algorithms remains better than for CEL algorithms throughout.

Discussion of the aggregate cache miss behaviour (Figure 5.5C) follows that for

the kernel level cache behaviour above. The calendar queue achieves better overall

cache performance when the ratio of the number of LPs to events is very small (less

than 4:32768). Although not entirely obvious from the plot, the cache misses per

event increase by 67% from 0.9 to 1.5 as the number of LPs increases from 1024 to

8192. For 1024 LPs, the number of cache misses per event using the CCT algorithm

is about 1/10 that when using the calendar queue and about 1/50 that when using

Henriksen's algorithm.

The events per LP execution plots are shown in Figure 5.6A. For 2 LPs, the CEL

algorithms achieve 2 events per LP execution since each LP executes a single event

with 100% probability, then a second event with 50% probability, then a third event

with 25% probability, etc. A rapid decline in events per LP execution is observed

for the conservative algorithms, this due to the decreasing event density. For this

experiment Emim1ILL = = 2XJ O7Xl = 1372 and E,,,,,, = = ik =

2x231O'2x1 = 2644 The COT algorithm achieves nearly optimal behaviour, while

the fixed schedule algorithm achieves about half that. The fixed schedule does obtain

the expected maximum events per LP execution when the number of LPs is 2. This

occurs because the only permutation of 2 LPs is optimal in the sense that each LP

will always advance one lookahead interval up to the time of its neighbor and then

one lookahead interval beyond.

It is evident in Figure 5.613 that the kernel level computation cost of CEL algo-

rithms is independent of the ratio of the number of LPs to event density. This makes

sense since the cost of these algorithms is only dependent on the number of events in

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 78

the central event list which remains constant. The asymptotic behaviour of the con-

servative algorithms is more complicated. Assuming a heap is used for both the LP

scheduling mechanism and the local event queue implementation, the computation

cost is in O(Nlog2 N + N - 1092 N) (Section 4.3). As evidenced by the decreasing

kernel level computation cost, the - log N dominates for up to 8192 LPs. The kernel

level computation cost for conservative algorithms begins to increase at 8192 LPs.

The increase is greater for the COT algorithm since it must maintain an increasing

number of LPs in the scheduling queue.

Figure 5.60 plots event rate versus the ratio of the number of LPs to event density.

The event rates for GEL algorithms are governed by their respective cache perfor-

mance. As the memory footprint of the model increases, the event rate decreases in

proportion to the number of cache misses per event. The event rates of the conserva-

tive algorithms increase from about 2 to 1024 LPs after which they begin to decrease.

From the kernel level computation cost one would expect the optimal ratio of LPs

to event density to be higher, i.e., 8192 LPs. The reason the optimal performance is

observed for 1024 LPs is likely due to the better cache performance at the smaller

model size. There are 67% fewer cache misses per event at 1024 LPs and 15% more

instructions as compared to 8192 LPs. For 8192 LPs, the event rate of the COT

algorithm is approximately 2.6x that of the calendar queue algorithm.

5.2 Model Topology Experiments

In this group of experiments, the topological characteristics of the model will be var-

ied. Three parameters have been introduced to allow simulation of a wide variety of

topologies. The behaviour of the CEL algorithms was not significantly affected by

the model topology parameters. Results are presented comparing the conservative

algorithms to the calendar queue algorithm. The first two experiments include sim-

ulation runs with event density 1 and event density 4. This shows how event density

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 79

affects the sensitivity of the conservative algorithms to the channel delta and connec-

tion radius parameters. Table 5.1 contains the controlled variables used in the Model

Topology experiments.

The first parameter is the channel delta, this will determine the available amount of

lookahead between neighboring LPs. The significance of lookahead to the performance

of PDES algorithms has been extensively researched, and was discussed in Chapter 3.

Limiting the available lookahead when event density is small, is likely to have a

significant impact on the conservative algorithms. In this experiment the channel

delta is varied between 0.015625 and 4, while keeping the connection radius fixed at

1.

The second topology related parameter is the connection radius, this parame-

ter controls the number of neighbors that each LP is connected to. Increasing the

connection radius is expected to have a negative impact on the performance of the

conservative algorithms. The reason for this is that the safetime calculation per-

formed at the beginning of each LP execution session is dependent on the number of

channels. The connection radius may impact the model in other ways since it will

affect the movement of events throughout the entire system. This experiment will

consider the effect of varying the connection radius with the channel delta fixed at

1.0 unit of simulation time.

The third parameter manipulated in this section selects either the ring or star

topology as described in section 4.1.7. Each algorithm is tested for both topologies.

Two experiments are conducted. In the first experiment channel delta is manipulated,

in the second experiment connection radius is manipulated. The event density is kept

constant at 4 for both experiments.

5.2.1 Channel Delta Experiment

The purpose of this experiment is to observe the effect of channel delta on the per-

formance of the different algorithms. The channel delta should have little impact on

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 80

the performance of GEL algorithms, although it will affect the model behaviour and

could affect performance that way. Reducing the channel delta is expected to have

a negative impact on the conservative algorithms, since this will reduce the number

of events per LP execution. For this set of tests the connection radius is fixed at 1,

and the channel delta is varied between 0.015625 and 4.0. Performance metrics are

graphed in Figure 5.7 and 5.8.

In terms of model level cache behaviour (Figure 5.7A), the GEL algorithms appear

insensitive to the channel delta. The slight downward trend observed with increasing

channel delta is due to the model not reaching a steady state by the specified sim-

ulation end time. The channel delta affects the timestamp increment function, and

thus how many events are executed prior to the simulation end time. The downward

trend is not observed if the termination condition is changed to require the execution

of a certain number of events. Increasing channel delta improves the model level

cache behaviour of the conservative algorithms. When event density is 1, the CCT

algorithm exhibits better model level cache behaviour for channel delta greater than

0.25. When event density is 4, the CCT algorithm exhibits better model level cache

behaviour for channel delta greater than 0.0625. As channel delta decreases, the

model level cache behaviour of the conservative algorithms declines to approximately

the level of the calendar queue algorithm.

The kernel level cache behaviour plotted in Figure 5.7B is approximately constant

for GEL algorithms, suggesting that their cache performance is unaffected by chan-

nel delta. The performance of the conservative algorithms is dependent on channel

delta, with kernel level cache performance improving with increasing channel delta.

This improvement is due to the increased number of events per LP execution (see

Figure 5.8A). For event density 1 the kernel level cache miss percentage for the CCT

algorithm is better than for the calendar queue algorithm, provided the channel delta

is greater than 0.125. For a given event density the kernel level cache behaviour of

the CCT algorithm is consistently better than that of the fixed schedule algorithm.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 81

6.5

5

4.5

4

3.5

3

2.5

2

1.5

0.5
0.015625

9

8

7

6

5

4

3

2

0.015625

N

......

I
-

0.0625 0.25

Channel Delta (Id)

. . -

•

.............................

A

1.•'••
-,-,........................

••—• -•-..j........ e-........

--S

0.0625 0.25

Channel Delta (Id)

CEL-CALENDAR, D —1 —B—
CCT,D=1 ..4...

FIXED, D=t
CEL-CALENDAR, D =4 —I—

CCT,D = 4 --..--'

FIXED, D=4A...

0
0.015625 0.0625 0.25 4

Channel Delta (Id)

Figure 5.7: Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour versus channel delta.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 82

L
0

NC

o

w
E

ai

16

8

4

2

0.5

0.25

0.125

0.0625

0.03125

0.015625
0.015625

10000

9000

8000

7000

6000

5000

I •

.1
4

- •_.-

2 :-•-
P........

-

a

•
T....

.-.• . I

I'.....CEL-CALEN DAR, D_1 —8—
CCTD = 1

FIXED ,D=1 a---
CEL-CALENDAR, D = 4 —u—

CCT, D = 4 --...-.
FIXED, D=4 -.-.A.....

0.0625 0.25

Channel Delta (Id)

Q

4000 -,

3000

2000 i.........

1000 - j::

0.015625 0.0625 0.25 4

Channel Delta (Id)

1.2

0.8

0.6

0.4

0.2

0
0.015625

-

H-
;-'• -

0.0625 0.25

Channel Delta (Id)

4

Figure 5.8: Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus channel delta.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 83

Figure 5.7C gives a full picture of the per event cache behaviour of the different

algorithms. Again independence of CEL algorithms with regard to channel delta is

observed. The cost of using a conservative algorithm is quite severe when channel

delta is small; however, this expense can be moderated by a larger event density as

is observed in the graph. In a model were the event density is 1 and the channel

delta is 0.015625, the fixed schedule algorithm experiences 241 cache misses during

the execution of a single event. Increasing the event density to 4 reduces the number

of cache misses to about 70 per event. For the conservative algorithms, the number of

cache misses per event rapidly decreases with increasing channel delta and eventually

becomes less than that of the calendar queue, how quickly this happens depends on

the event density of the model.

Figure 5.8A plots the number of events per LP execution versus the channel delta.

Again, this metric is consistently 1 for the CEL algorithms. For the conservative

algorithms, the fixed schedule algorithm achieves the expected minimum events per

LP execution. Emin(D = 1) = = I X L 2L/(1 +L), Emin(D = 4) = 2L = 4xL =

8L/ (I+ L). For both D=1 and D=4, the COT algorithm achieves nearly the expected

maximum events per LP execution. Emax(D = 1) = 2DL 2L = 4L/(1 + L),
2

2DL - 2x4xL Emax(D4) 1+L 16L/(1+L).
2

Figure 5.8B plots kernel level computation cost against channel delta. This graph

is very similar to the graph of amortized aggregate cache behaviour in Figure 5.7C.

Again, the CEL algorithms are unaffected by channel delta, whereas the conservative

algorithms are extremely sensitive to channel delta, this is particularly obvious for

channel deltas less than 1. The difference that can be seen here is in the relative

performance of the CCT and fixed schedule algorithms. In terms of cache behaviour

CCT had better performance than the fixed schedule algorithm, whereas in terms of

kernel level computation the fixed schedule requires fewer instructions per event than

the COT algorithm. The behaviour of the conservative algorithms is 1/L, where L is

the lookahead. The horizontal and vertical asymptotes, y = 0 and x = 0 can be easily

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 84

observed in the graph. In other words, the cost of the simulation increases rapidly as

the lookahead approaches 0, and vanishes as the lookahead approaches infinity. If the

lookahead is as long as the simulation itself, then in some sense there is no simulation

to execute, and thus the cost is zero.

The event rate graph (Figure 5.8C) plots the number of events executed per second

of wall-clock versus the channel delta. The performance of the calendar queue algo-

rithm is approximately constant in the channel delta. The conservative algorithms

do well when the channel delta is large, and poorly when the channel delta is small.

For the range of channel deltas tested in this experiment when event density is low

(D=1), the conservative algorithms can be up to 17x slower than the calendar queue

algorithm, and up to 2x faster. When event density is larger (D=4), the conservative

algorithms can be about 4x slower than the calendar queue algorithm and up to 2.5x

faster. The point at which the conservative algorithms gain advantage of the CEL al-

gorithms depends both on the lookahead and the event density. A necessary condition

evident from the graphs, is that the events per LP execution greater for conservative

algorithms must be greater than 1 to achieve better performance than the calendar

queue algorithm, i.e., when DL/1,t > 1, it is possible for the conservative approach

to outperform the optimal CEL approach. It is interesting that the CCT algorithm

achieves better cache performance than the fixed schedule algorithm, due in part to

maximizing the events per LP execution. However, the kernel level computation cost

is still lower for the fixed schedule. In the end the modest cache advantage is enough

to put the CCT algorithm ahead of the fixed schedule in terms of event rate.

5.2.2 Connection Radius Experiment

The purpose of this experiment is to study the effect of connection radius on the

performance of the different algorithms. Fixing the channel delta at 1.0 units of

simulation time, the connection radius is varied between 1 and 32. The experiment is

conducted with event densities 1 and 4 to help illustrate how greater event densities

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 85

can offset the increased costs of a larger connection radius.

Figure 5.9A plots the percentage of level 2 cache misses in model level code ver-

sus the connection radius. The model level cache behaviour of the CEL algorithms

appears unaffected by connection radius. With increasing connection radius the per-

centage of cache misses for conservative algorithms is observed to increase, although

slower than logarithmically. The model level cache behaviour of conservative al-

gorithms is consistently better than that of CEL algorithms for connection radius

between 1 and 32, even when D=1. For the conservative algorithms, a higher event

density results in significantly lower cache misses as can be seen from curves where

D=4. The fixed schedule algorithm outperforms the COT algorithm for a connection

radius of 4 or greater. This is probably due to the OCT algorithm achieving more

events per LP execution than the fixed schedule algorithm for smaller connection ra-

dius (See Figure 5.1OA). For connection radius of 4 or more there is little difference

between the events per LP execution of the fixed schedule and COT algorithm.

The kernel level cache behaviour plotted in Figure 5.9B shows the independence of

CEL algorithms with respect to connection radius. The conservative algorithms must

perform a safetime calculations that requires accessing a different memory location

for each channel. If none of these channels are cached then executing the first event

will require 2R cache misses.

The percentage of kernel level cache misses increases faster than logarithmically for

the COT algorithm. It increases approximately logarithmically for the fixed schedule

algorithm when D=4, and slower than logarithmically when D=1. The fixed schedule

algorithm outperforms the OCT algorithm for connection radii larger than 4. When

event density equals 1 the percentage of kernel level cache misses for conservative

algorithms is almost immediately larger than for GEL algorithms, for event density

4 the conservative algorithms maintain a cache advantage up to a connection radius

of 8.

The amortized aggregate cache behaviour can be observed in Figure 5.90. The

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 86

5.5

&

4.5

4

3.5

3

2.5

2

1.5

12

11

10

9

8

7

6

5

4

3

2

200

180

160

140

120

100

80

60

40

20

0

_

:i:

A_...

16

Connection Radius (R)

32

• CEL-CALENDAR, D —1 —B—
CCT,D=1 -• e -•--

- FIXED, D=1A....
CEL-CALENDAR, D = 4 —U—

CCT,D=4 ---s--............ -....
FIXED, D=4 ..-.A..-..

..............

....

..........:::':

........

- . '.

,. I

2 4 8 16

Connection Radius (R)

32

..

. ..

I

2 4 8

Connection Radius (R)

16 32

Figure 5.9: Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour versus connection radius.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 87

_J

__j

0-

a) >

Lu is

0.5

3500
0

3000
(a

0 -15 2500
Em
0
ow

2000
NC

1500

16
1000

500

Cd 0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

GEL-CALENDAR, D —1 —8--
CCT,D=1 ---6----

FIXED, D =1
CEL-CALENDAR, D = 4 —U---

CCT,D=4 --.---
FIXED, D=4 A-.-

2 4 8 16

Connection Radius (R)

32

L -
I

:i
IIIII

2 4 8 16

Connection Radius (R)

32

:

±

2 4 8

Connection Radius (R)

16 32

Figure 5.10: Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus connection radius.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 88

behaviour of the calendar queue algorithm is constant in the number of LPs. The

conservative algorithms show significant increases in the number of cache misses per

event as the number of channels in the model increases. These increases are greatly

reduced with larger event densities, as can be seen comparing the curves for D=1

and D=4. The rate of increase is approximately linear in the connection radius. The

fixed schedule algorithm consistently experiences fewer cache misses per event than

the CCT algorithm. For event density 4, the conservative algorithms achieve better

cache performance than the calendar queue algorithm for a connection radius up to

8. The calendar queue demonstrates better amortized aggregate cache behaviour for

any connection radius larger than 8.

Figure 5.1OA plots the number of events per LP execution. This metric is con-

sistently 1 for the CEL algorithms. For the conservative algorithms, the fixed sched-

ule algorithm achieves the minimum expected events per LP execution. Emin(D =

1) = = = 1, Emin(D = 4) = Pl- = = 4. The COT algorithm

is capable of achieving greater events per LP execution, but for larger connection

radius this advantage quickly disappears. Emax (D = 1) = 2>1 = 2,

Emax(D = 4) = 2DL = 21+1 ><1 = 8. With a larger connection radius, there is a

greater chance that one of the neighbors may not have advanced ahead of the cur-

rently executing LP (i.e., the currently executing LP and one of its neighbors have

the same timestamp at the beginning of the execution session), this means that the

executing LP will only advance a single lookahead interval.

Kernel level computation cost is plotted in Figure 5.1OB. Again, the behaviour of

GEL algorithms is observed to be constant in the connection radius. The number of

kernel level instructions per event increases linearly for the conservative algorithms.

This confirms the analysis of section 4.3. The rate of increase of this metric is about

the same regardless of event density, but the value of this metric is offset depending

on the event density parameter. For a connection radius of 4 or greater, the kernel

level computation cost is greater for conservative algorithms than for the calendar

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 89

queue algorithm. The conservative algorithms must perform a safetime calculation,

which is theoretically a function of the number of channels, this cost is not incurred

by CEL algorithms which explains the difference in behaviour observed here.

The event rate metric is plotted in Figure 5.100. The behaviour of GEL algorithms

is almost constant, although there is a very slight downward trend possibly due to

other interactions in the model. When the event density is equal to 1 the performance

of the conservative algorithms is poor in comparison to the calendar queue algorithm.

The conservative algorithms achieve comparable performance for connection radius

1, and then worse performance as the connection radius is increased. With a larger

event density such as D=4, the conservative algorithms are able to outperform the

calendar queue algorithm for a greater range of connection radius. However, their

performance is still declining relative to the GEL algorithms. For a connection radius

of 2 or greater, the fixed schedule conservative algorithm consistently performs better

than the COT algorithm. One would expect COT to do better for larger connection

radius by maximizing the events per LP execution. The reason this has not been

observed is that the fixed schedule always achieves Emin events per LP execution,

while the COT algorithm only achieves greater than Emin for small connection radius.

Although the behaviour of the fixed schedule and COT algorithms is similar in terms

of events per LP execution, the kernel level computation cost is lower for the fixed

schedule and thus its event rate is greater.

5.2.3 Topology Experiments

The connection radius and channel delta experiments above are repeated using both

star and ring connection topologies. To simplify the graphs results are only presented

for the calendar queue, CCT, and fixed schedule algorithms. As mentioned previously,

the behaviour of the GEL algorithms is approximately constant in both connection

radius and channel delta. The controlled variables for each of the experiments can be

found in Table 5.1.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 90

Channel Delta

In the first experiment, the connection radius is fixed at 4, the event density is fixed

at 4, and the channel delta is varied between 0.015625 and 4.0. The experiment is

conducted using a connection radius of 4 since for R=1, the ring and star topologies

are identical. A separate curve is plotted for execution of each algorithm on each

of the topologies (ring and star). The graphs in Figures 5.11 and 5.12 compare the

effect of varying channel delta under both the ring and star topologies.

Figure 5.11A plots model level cache behaviour against the channel delta. In

terms of model level cache behaviour, the topology of the model had no effect on

the calendar queue algorithm, it had a very small effect on the CCT algorithm, and

only a slightly larger effect on the fixed schedule algorithm. For a ring topology, the

model level cache behaviour of the fixed schedule algorithm is slightly better than

that of COT (particularly for small channel deltas). For the star topology CCT has

consistently better cache performance than the fixed schedule.

The kernel level cache behaviour is plotted in Figure 5.11B. Kernel level cache

behaviour showed sensitivity to model topology, particularly for the fixed schedule

algorithm. The cache performance was close to 2 times worse in a star connected

model than in a ring connected model with the same channel delta. The cache

performance of OCT was also affected by model topology but to a much lesser degree.

Again, performance of the calendar queue algorithm appears independent of model

topology. For the star topology, the kernel level cache behaviour of OCT is better

than that of the fixed schedule algorithm; for the ring topology, the fixed schedule is

slightly better.

Figure 5.110 plots the aggregate cache behaviour versus channel delta. Comments

regarding the kernel level cache behaviour apply to the aggregate cache behaviour of

the algorithms as well. Topology has no effect on the calendar queue, a small effect

on the performance of COT algorithm, and a significant effect on the fixed schedule

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 91

5.5

5

4.5

4

3.5

3

2.5

2

1.5

0.015625

............

14

2

0.0625 0.25

Channel Delta (Id)

4

CEL-CALENDAR, star —s—
CCI, star -O--

FIXED, star
CEL-CALENDAR, ring —N--

COT ring .—.--.
FIXED, ringA....

_"a'C •-e

•'e. 'f

0.015625

250

200

150

100

50

0

0.0625 0.25

Channel Delta (Id)

4

cc..**

16 t

'A \

::I,
0.015625 0.0625 0.25

Channel Delta (Id)

4

Figure 5.11: Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour versus channel delta.

0.1

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 92

8

2

0.5

0.25

0.125

0.0625
0.015625 0.0625 0,25

Channel Delta (Id)

6000
0

5000

OE 4000
ow

3000

2000

' 1000

0
0.015625

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0

-

/7

GEL-CALENDAR, star —a-
CCI, star --•e--- -

FIXED, starA.-.
GEL-CALENDAR, ring —U—

CCI, ring -.---'
FIXED, ring A...

4

0.0625 0.25

Channel Delta (Id)

i..

0.015625 0.0625 0.25

Channel Delta (Id)

Figure 5.12: Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus channel delta.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 93

algorithm. The fixed schedule algorithm experiences between 30% and 40% more

cache misses processing a star topology than a ring topology with the same channel

delta. The affect of topology on cache is more evident for smaller channel deltas. For

the star topology, the aggregate cache behaviour of CCT is better than that of the

fixed schedule algorithm; for the ring topology, the fixed schedule is better.

As can be seen in Figure 5.12A, topology has almost no effect on the average

number of events executed per LP execution session regardless of the algorithm. The

issue is that all of the LPs in the system end up synchronized to the same clock value,

so connecting to LPs other than your immediate successor and predecessor makes no

difference in terms of the available lookahead. The reason LPs are synchronized to

the same clock value is due to the same lookahead being available on each channel

(all channel deltas are the same). If LPs further away in the ring were at different

times then we might have seen a decreased window of execution (number of events per

LP execution). CCT would probably overcome this scenario better than fixed since

it would schedule LPs. A better experiment would have used randomly generated

channel deltas, so that LPs could actually execute to different times.

In Figure 5.1213, kernel level computation cost is plotted against channel delta.

Topology has no observable effect on the kernel level computation cost regardless of

the algorithm. This makes sense for the conservative algorithms as there was almost

no dependence on topology for the number of events per LP execution. If there was

greater variation in the number of events per LP execution, then we might expect a

variation in the kernel level computation cost as well.

Figure 5.12C plots the event rate metric versus channel delta. The event rate

metric echoes the effect observed in cache behaviour. The conclusions are the same,

calendar queue is unaffected by the choice of topology, OCT is somewhat dependent

on choice topology, and fixed schedule shows the greatest dependence on topology.

The OCT algorithm outperforms the fixed schedule algorithm for the star topology,

whereas the fixed schedule outperforms CCT for the ring topology. This behaviour

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 94

is due almost entirely to kernel level cache behaviour. This is explained by the kernel

level cache behaviour in Figure 5.11C. Although topology does not affect the kernel

level computation cost, it does affect the cache behaviour.

Connection Radius

For the second experiment, the channel delta is fixed at 1.0 unit of simulation time

and event density is set to 4, while the connection radius is varied between 1 and 32.

Again a separate curve is plotted for the execution of each algorithm on each of the

topologies. Performance metrics are graphed in Figure 5.13 and 5.14.

The model level cache behaviour (Figure 5.13A) of the calendar queue is unaffected

by connection topology. In terms of model level cache behaviour, the affect of topology

on the CCT algorithm is negligible, while its affect on the fixed schedule algorithm is

at least observable. The larger the connection radius, the greater affect the connection

topology has on the fixed schedule algorithm. The ring topology is handled more

efficiently than the star topology by the fixed schedule algorithm.

Kernel level cache behaviour is plotted in Figure 5.13B. Again the calendar queue

is unaffected by choice of connection topology. In terms of kernel level cache be-

haviour, both the OCT and fixed schedule algorithms show sensitivity to the topol-

ogy. The fixed schedule algorithm exhibits consistently greater kernel level cache

misses simulating the star model than the corresponding ring model. Up to twice

as many cache misses were observed for the star topology than the ring topology

when the connection radius was 16 or greater. The fixed schedule algorithm executes

LPs executes each LP in the ring in a clockwise fashion. The execution of LP x is

followed by the execution of LP x + 1, eventually wrapping back around to LP x.

This implies that the execution of each LP is preceded and followed by the execution

of its closest neighbours. In the ring connection topology the fixed schedule benefits

because neighboring LPs are brought into the cache prior to execution. In the star

topology, each LP accesses other LPs that are further separated from itself in terms

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 95

5.5

5

4.5

4

3.5

3

2.5

2

1.5

14

12

10

aC ..

ag 8
Ca

CD - 6

4

2

0

60

50

40

30

20

10

0

I......................

CEL.CALENDAR, star —E—
CCT, star

FIXED, star
CEL-CALENDAR, ring —.—

CCT, ring --•-•--

FIXED, ring A...

1
2 4 8

Connection Radius (R)

16 32

-...........

2

Connection Radius (R)

16 32

4

....
r A

2 4 8

Connection Radius (R)

16 32

Figure 5.13: Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour versus connection radius.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 96

ts 900
0

800
Ca

700

600

I

300

200

si 100

09

0.8

0.7

06

0.5

0.4

0.3

0.2

0.1

CEL-CALENDAR, star -e-
CCT, star ----e----

FIXED, star
CEL-CALENDAR, ring —I--

CCT, ring --•-
FIXED, ring A...

2 4 8 16

Connection Radius (R)

 U
82

1111 IIIIII1IIIIIIIIIII
I

- *_

-,-1.............................
U

2 4 8

Connection Radius (R)

16 32

\ i I
....

2

Connection Radius (R)

16 32

Figure 5.14: Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus connection radius.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 97

of execution order, i.e., for a given LP, the LPs that must be accessed are not those

preceding or following the execution of that LP. The variation in OCT's kernel level

cache behaviour is smaller, but more complex. For smaller connection radius the

kernel level cache behaviour of OCT is better for the ring topology than for the star

topology, but around connection radius 16, the performance of OCT becomes better

for the star topology. CCT does not execute the LPs in a fixed order, the order can

change and it depends on how critical channels are set. Regardless of topology, it is

equally likely that OCT schedules any of its neighbours regardless of where they are

in the ring. This implies that the kernel level caching behaviour is similar for both

topologies.

The amortized aggregate cache behaviour graph (Figure 5.130) shows the su-

periority of the fixed schedule algorithm for the ring connection topology, and the

superiority of COT for the star topology. However, extrapolating from the graph it

appears that for a larger connection radius COT may actually experience more cache

misses than the fixed schedule algorithm, independent of topology.

The plots of events per LP execution (Figure 5.14A) show no dependence on

topology for any of the three algorithms. As discussed in the previous topology

experiment where channel delta was manipulated, it is believed that the events per LP

execution are unaffected by topology because the clocks of all LPs are synchronized to

the same simulation time. It doesn't matter if the neighbours that an LP is connected

to are close by, or far away in the ring they have the same local simulation times and

the same lookahead.

The plots of kernel level amortized computation cost (Figure 5.14B) show very

little dependence on the choice of topology, for any of the algorithms. Had there been

a greater variation in events per LP execution, then greater variation could have been

expected in the computation cost also.

The event rate metric is plotted in Figure 5.14C. This graph confirms what was

observed in the previous metrics. The calendar queue algorithm's performance is

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 98

independent of the topology. The OCT algorithm is less sensitive to the choice of

topology than the fixed schedule algorithm, but fails to achieve significantly greater

performance. The fixed schedule algorithm shows the greatest dependence on topol-

ogy, but performs better than OCT in the case of ring topology and comparable in

the case of the star topology.

5.3 Model Characteristics Experiments

There are many other model characteristics that could affect algorithm performance.

This section will consider a few more model parameters, that ultimately result in the

described synthetic model being quite general and comparable to many real world

systems and scenarios.

This group of tests will examine the remaining model parameters and study how

they affect the performance of the different simulation algorithms. The first experi-

ment considers computation grain, which corresponds to the amount of work required

to process an event. The second experiment will compare the performance of the dif-

ferent algorithms when the amount of LP state is varied. The third experiment

manipulates the timestamp increment distribution to observe the effect on algorithm

performance.

5.3.1 Computation Grain Experiment

This experiment will involve varying the amount of work done to process an event

at the model level. If the processing of an event by the model level code is simple,

and quick, this corresponds to a small computation grain. If the processing of an

event at the model level is complicated or time consuming this corresponds to a large

computation grain. Computation grain experiments are not particularly relevant to

testing sequential simulation kernels. Their applicability is in parallel simulation

where busy cycles of one cpu could affect the arrival of events at another Cpu. Also,

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 99

for parallel simulation a large computation grain provides opportunity for parallelism.

This test demonstrates that choosing an efficient algorithm is only relevant if the

model has been described in a manner such that the computation grain does not

nullify the benefits of the different algorithms. Graphs are only presented for the

event rate metric, since the behaviour of the other metrics is essentially constant in

terms of additional computation grain. Cache behaviour and kernel level computation

costs are unaffected by additional computation grain.

Two different computation grain experiments were conducted. In experiment 1,

the number of LPs is fixed at 8192, the connection radius is 4, and the event density is

4. In experiment 2, the corresponding model parameters were 16384 LPs, connection

radius of 1, and event density of 8. The controlled experiment parameters are in

Table 5.1.

Consider the computation grain of the synthetic workload that is already present.

The synthetic workload has an inherent computation grain which corresponds to ex-

ecution of the model level code, the computation grain that is manipulated in these

experiments is in addition to this inherent computation grain. It is possible to esti-

mate the inherent computation grain for the synthetic workload; however, equating

computation grain with a measurement of time is error prone, since the time could

change depending on the performance of the algorithm. All model parameters come

into play so the tolerable amount computation grain may vary widely between dif-

ferent simulations. The inherent computation grain is estimated by taking the event

rate and inverting it, this gives the time to execute a single event. Multiply this by

the ratio of model level instructions to total instructions to obtain the time spent per

event in model level code on average (i.e., the inherent computation grain). Multiply

this by 1e6 to get the time in microseconds. Using time to measure the additional

computation is not as error prone, since the time spent in the busy wait loop which

simulates the additional computation grain, does not depend on algorithm perfor-

mance. Table 5.2 shows the estimated inherent computation grain (TMLPE) , the time

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 100

Experiment 1 (N8192, R4, D4)

Algorithm T(Its) TILpE(us) TMLPE(S)

CEL-CALENDAR 2.32 1.10 (47.34%) 1.22 (52.66%)

CEL-SPLAY 3.10 1.08 (34.82%) 2.02 (65.18%)

CEL-HO.HEAP 3.34 0.90 (26.84%) 2.45 (73.16%)

CEL-HENRIKSEN 5.20 1.32 (25.41%) 3.88 (74.59%)

CCT-FIFO 1.77 0.73 (41.17%) 1.04 (58.83%)

FIXED-FIFO 1.52 0.72 (47.34%) 0.80 (52.66%)

Experiment 2 (N16384, Ri, D8)

Algorithm T(ts) TKLpE([Ls) TMLPE(S)

CEL-CALENDAR 2.40 1.15 (47.66%) 1.26 (52.34%)

CEL-SPLAY 3.70 1.24 (33.45%) 2.46 (66.55%)

CEL-HOJIEAP 4.41 1.09 (24.69%) 3.32 (75.31%)

CEL-HENRIIKSEN 7.64 1.59 (20.80%) 6.05 (79.20%)

CCT-FIFO 0.91 0.48 (52.42%) 0.43 (47.58%)

FIXED-FIFO 0.94 0.52 (55.42%) 0.42 (44.58%)

Table 5.2: Inherent Computation Grain (in microseconds)

spent per event in kernel code per event (TKLPE), and the total time spent in the

simulator per event (T).

As the additional computation grain is increased the difference between the algo-

rithms becomes rapidly smaller, as can be seen in Figure 5.15. For simulated com-

putation grains of less than 1 microsecond there are substantial differences between

the algorithms, but for larger computation grains, i.e., 4 microseconds or greater, the

choice of algorithm is almost irrelevant. The results of this experiment confirm the

larger the computation grain, the less the kernel algorithm will impact performance.

The rapid decrease in event rate was surprising at first, but this does make sense

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 101

Ev
en
t
Ra
te
 (
 1O
"6
 e
ve

nt
sl

s)

Ev
en
t
Ra
te
 ('

 1O
"6

 e
ve
nt
s/
s)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0.0078125 0.125 2

Additional Computation Grain (microseconds)

1.2

0.8

0.6

Exp. 1 Simulation Results

32

0.2 "

0

CCI —3—
FIXED -..*..-

CEL-CALENDAR ..'o....
CEL-SPLAY —e--

CEL-HO_HEAP ---
CEL-HENRiKSEN --'G....

0.0078125 0.125 2

Additional Computation Grain (microseconds)

Exp. 2 Simulation Results

32

Es
ti

ma
te

d
Ev

en
t
Ra
te

 (
*
1O
"6
 e
ve
nt
s/
s)

Es
ti

ma
te

d
Ev
en
t
Ra

te
 (
 10
A6

 e
ve
nt
s/
s

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

._........

:ITT:

0.0078125

0.8

0.6

0.4

0.125 2

Additional Computation Grain (microseconds)

Exp. 1 Analytical Estimation

32

.:..'..

..........

0.2'

0
0.0078125 0.125 2

Additional Computation Grain (microseconds)

Exp. 2 Analytical Estimation

Figure 5.15: Computation Grain Experiment

32

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 102

since as the following derivation will show, event rate is a rational function of 1/G.

V average Event Rate during simulation

M Total Events executed during simulation

T Total Time required for the simulation

Tk Total Time spent in the simulation kernel level code

Tm Total Time spent in model level code

TKLPE Time spent in kernel level code per event (on average)

TMLPE Time spent in model level code per event (on average)

G Additional computational grain to be simulated

T

Tk

TM

= Tk+Tm

= TKLPEXM

= TMLPEXM

- M
- Tk- +Tm

= TKLPE+TMLPE

M
TKLPE XM+TMLPE xM

1

TKLPE is constant in G, so we have a rational function of TMLPE. In fact, given the

event rate of the simulation where G = 0, the event rate for any given value of C

can actually be predicted with the formula V(G) = o 1/v()+a• The second column of

graphs in Figure 5.15 demonstrates the use of the analytical formula for predicting

the event rate of the different algorithms.

5.3.2 LP State Size Experiment

The purpose of this experiment is to study the effect of LP state size on the perfor-

mance of the different algorithms. It is anticipated that the effect of changing the LP

state size will be noticed primarily in the model level cache behaviour. This exper-

iment is included to highlight the model level cache advantages of the conservative

algorithms.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 103

The model parameter SS is used to specify the number of elements in the LP state

array. Each time an event is executed the entire array is examined and the average

of the elements is computed. The problem with modeling LP state in this manner is

that although the model level cache performance is affected, the computation grain is

also significantly increased. This is due to running a loop to examine each element in

the array. To reduce this affect, each element in the array is cache aligned and padded

to the length of a cache line. This ensures that the greatest amount of memory can

be accessed using the fewest possible instructions. This will highlight the affects of

cache behaviour while minimizing the increase in computation grain. In the case of

the conservative algorithms it is expected that the values in the array will be cached

and reused approximately as many times as the event density parameter (D). The

CEL algorithms will jump back and forth between LPs and as a result may need to

reload the array each time an event is executed.

The LP state size experiments fix the number of LPs at 8192. Two experiments are

conducted: one with event density 1, one with event density 4. In each experiment,

the standard set of algorithms are compared as the LP state size is varied between 1

and 32 items. Each item corresponds to a cache aligned chunk of memory 32 bytes

long, the size of one cache line. Table 5.1 contains the remaining controlled parameters

for this experiment. Since varying the LP state size had no observable effect on kernel

level cache behaviour, events per LP execution, and kernel level computation cost,

only the model level cache behaviour, aggregate cache behaviour, and event rate

metrics are presented. See Figures 5.16 and 5.17 for the results.

Figures 5.16A and 5.17A plot the percentage of cache misses as LP state size

is increased from 1 to 32. As LP state size increases, the cache miss percentage is

increasing approximately linearly for both GEL and conservative algorithms. The

conservative algorithms are able to maintain a lower percentage of model level cache

misses than the GEL algorithms. The GEL algorithms show a significant dependence

on the LP state size, reaching 18% for models with larger LP state sizes, this is about

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 104

18

16

14

10

8

6

4

55

50

45

40

35

30

25

20

15

10

5

0,5

0.45

0.4
>

0,35

0.25
'C

Ii
0.2

0,15

ccl
- FIXED --.-..'"........

CEL-CALENDAR n....
-. CEL-SPLAY —e—

CEL.HO_HEAP
CEL-l-IENRIKSEN '.'.o....

....'..-

.1 *
4 8

LP State Size

2 16

LP State Size

16 32

32

FL..................><--"....

- T >< S

:
2

LP State Size

16 32

Figure 5.16: Plots of A. Model Level Cache Behaviour, B. Amortized Aggregate

Cache Behaviour and C. Event Rate versus state size, for D = 1.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 105

18

16

14

12

10

8

6

4

2

0

70

50

40

30

20

10

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

COT —I--
FIXED ---X

CEL-CALENDAR

- CEL-SPLAY ----
CEL-HO_HEAP -'---

- CEL-HENRIKSEN ..4..........

-

I_.iIIIII

-.

2

LP State Size

16 32

.-.-.............

X................X................

2 4 8

LP State Size

16 32

2 4 8

LP State Size

16 32

Figure 5.17: Plots of A. Model Level Cache Behaviour, B. Amortized Aggregate

Cache Behaviour and C. Event Rate versus state size, for D = 4.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 106

9x worse cache performance than the CCT algorithm (in the case where event den-

sity = 4). For model level cache behaviour the variation between the GEL algorithms

themselves is altogether absent, while there is some difference observed between the

fixed schedule and CCT algorithm. Comparing Figures 5.16A and 5.17A, it is ob-

served that for GEL algorithms, the model level cache behaviour is unaffected by the

event density parameter; the cache performance does not depend on event density.

For conservative algorithms the sensitivity to state size is negatively correlated with

the event density. The higher the event density, the less affect larger state sizes have

on cache behaviour.

The graph of amortized aggregate cache behaviour (Figures 5.1613 and 5.17B)

illustrates the same behaviours observed in model level cache behaviour. The GEL

algorithms are spread out over a wider range but the shape and slope of the curves is

the same. In Figure 5.17B, Henriksen's algorithm experiences about 6x as many cache

misses as the conservative algorithms for an LP state size of 32. The Calendar queue

has better cache performance but still results show about 4x more cache misses than

the conservative algorithms. COT performs around 30% better than the fixed schedule

algorithm in terms of amortized aggregate cache behaviour when event density is 1,

but this is less pronounced for event density 4 (Figure 5.17B).

The Event Rate graphs (Figures 5.160 and 5.170) show the superiority of the

conservative algorithms. Although the absolute event rate is decreasing on account

of the increase in computation grain, the relative performance of the conservative

algorithms continues to improve. It is possible to infer that this relative improvement

is due to better cache performance since the kernel level computation cost metric (not

shown) is constant in the LP state size, and the model level computation cost is the

same, independent of the algorithm.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 107

5.3.3 Timestamp Increment Distribution Experiment

The purpose of this set of experiments is to determine the extent to which the times-

tamp increment distribution affects the performance of the different algorithms. This

experiment will compare the performance of the algorithms for six timestamp incre-

ment distributions: constant, exponential, uniform, biased, bi-modal, and triangular

(See table 4.1). Six models were selected to illustrate the range of behaviours of the

algorithms: (N8192, D4, R32, Li), (N8192, DO.25, Ri) Li), (N8192, D4, Ri, LO.125),

(N8i92, D4, Ri, Li), (N8i92, D4, Ri, L2), (N8192, D32, Ri, Li). For each model,

each algorithm was tested using each of the six timestamp increment distributions.

Table 5.3 shows the results obtained for the first model (N8i92, D4, R32, Li),

results for the other models are available in appendix A. The data collected for all

models is presented in Figures 5.18 and 5.19. Vertical columns of the graphs separate

the different algorithms, the linestyle of the individual markers distinguishes between

the model topologies, and finally the markers themselves indicate the minimum, max-

imum, average, and standard deviation of the different distributions with regards to

a particular metric. Within a column the six markers from left to right correspond

to the six model topologies listed top to bottom in the legend. The marker is a rect-

angular box, limited vertically by the average +1- one standard deviation. A vertical
line segment extends from the top of the box to the maximum value, a second line

segment extends from the bottom of the box to the minimum value. The average is

indicated by a horizontal bar in the middle of the box.

Looking first at the model level cache behaviour (Figure 5.18A), it can be seen

that the timestamp increment distribution has a significant effect on all of the GEL al-

gorithms. For any given model the percentage of cache misses observed ranges about

1.0-1.5%. For example, refering to Table 5.3 it was observed for GEL algorithms

that using the exponential distribution resulted in approximately 4.16% cache misses,

while the uniform distribution saw approximately 5.27% for the model (N8192, D4,

R32) Li). The affect of the timestamp increment distribution on model level cache

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 108

Algorithm Distribution Mean Standard

Constant Exponential Uniform I Biased I Si-model Triangular Deviation

Model Level Cache Behaviour

Cache Misses (%)
CEL-CALENDAR 3.88 4.12 5.23 5.19 4.79 5.26 4.75 0.60

CEL-SPLAY 3.89 4.16 5.27 5.19 4.83 5.24 4.76 0.60

CEL-HO.flEAP 3.92 4.17 5.29 5.24 4.85 5.27 4.79 0.60

CEL-HENRIKSEN 3.88 4.18 5.29 5.20 4.85 5.27 4.78 0.61

CCT-FIFO 2.36 2.11 2.65 2.63 2.56 2.64 2.49 0.22

FIXED-FIFO 2.06 1.89 2.37 2.36 2.31 2.37 2.23 0.20

Kernel Level Cache Behaviour

Cache Misses (%)
CEL-CALENDAR 1.65 4.12 4.27 4.77 4.19 7.20 4.37 1.77

CEL-SPLAY 2.88 5.35 5.11 3.66 5.00 4.74 4.46 0.97

CEL-FlO_HEAP 5.64 4.51 4.62 4.70 4.46 4.70 4.44 0.40

CEL-HENRIKSEN 1.90 8.74 10.42 4.59 9.44 10.49 7.60 3.54

OCT-FIFO 8.02 9.67 9.73 9.71 10.06 9.71 9.48 0.73

FIXED-FIFO 4.68 5.73 5.79 5.77 5.97 5.77 5.61 0.47

Amortized Aggregate Cache Behaviour

Cache Misses / Event
CEL-CALENDAR 6.43 12.27 12.47 13.59 12.28 21.94 13.18 4.99

CEL-SPLAY 8.25 17.80 17.08 13.01 16.63 16.12 14.82 3.82

CEL-HO..HEAP 10.91 18.62 18.94 19.27 18.30 19.24 17.55 3.27

CEL-HENRIKSEN 7.08 24.59 30.39 14.42 27.46 31.40 22.55 9.74

COT-FIFO 24.81 47.88 47.95 47.91 57.00 47.92 45.58 10.80

FIXED-FIFO 14.44 27.58 27.72 27.87 32.68 27.65 26.29 6.14

Events Per LP Execution

Events / LP Execution
CEL-CALENDAR 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL-SPLAY 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL-HO..}IEAP 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL-HENRIKSEN 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CCT-FIFO 7.96 4.00 3.99 3.95 3.33 3.99 4.54 1.70

FIXED-FIFO 7.88 3.95 3.94 3.94 3.29 3.94 4.49 1.68

Amortized Kernel Level Computation Cost

Instructions / Event
CEL-CALENDAR. 235.09 243.79 252.23 266.99 240.94 624.69 310.62 154.26

CEL-SPLAY 248.65 428.77 421.69 360.86 413.28 413.21 381.08 69.19

CEL-HO..HEAP 385.55 609.43 612.12 618.02 602.74 616.54 574.07 92.52

CEL-HENRIKSEN 398.37 576.33 659.13 462.38 635.41 689.33 570.16 116.23

COT-FIFO 513.15 883.03 879.05 879.31 1027.40 880.19 843.69 172.28

FIXED-FIFO 476.21 809.35 805.90 806.09 938.98 806.26 773.80 155.07

Event Rate

*j6 events / second)
CEL-CALENDAR 0.67 0.40 0.42 0.38 0.41 0.22 0.41 0.14

CEL-SPLAY 0.63 0.30 0.32 0.41 0.32 0.33 0.39 0.13

CEL-HO_FIEAP 0.46 0.29 0.30 0.29 0.30 0.28 0.32 0.07

CEL-HENRIKSEN 0.62 0.21 0.18 0.34 0.19 0.17 0.29 0.18

COT-FIFO 0.29 0.16 0.17 0.17 0.14 0.16 0.18 0.06

FIXED-FIFO 0.39 0.22 0.22 0.22 0.19 0.22 0.25 0.07

Table 5.3: Results for D4...R32L1 Distribution experiment

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 109

A. Model Level Cache Behavior

C
a
c
h
e
 M
is
se
s
(%

)
C
a
c
h
e
 M
is

se
s
(%

)
C
a
c
h
e
 M
is
se
s
I
 Ev
en
t

6

5

4

3

2

0

18

16

14

12

10

8

6

4

2

0

60

50

40

30

20

10

Calendar Splay

LI.

D4_R32_L1
-. 00.25_Ri_Li ==J

0----
.

..... -

04_R1_LO.125
D4R1Li
04 Ri L2
D32:R1:L1 I I

Calendar Splay HoHeap Henriksen

Algorithm

B. Kernel Level Cache Behavior

CCT/FIFO FIXED/FIFO

-...................._.,,..............................

..Lfi._,................. i.

......................

__

.. ..

... e.
..

...

T

.....

.

....... . .

- .,4j............. ,

....

r

nI

.J]_

.........................

D4_R32_Li 00.25_Ri_Li

D4 Ri LO.125
04_Ri_Li ==J
D4_Ri_L2

032_Ri_Li I .

........ ..L._..__.

.

Calendar Splay HoHeap Henriksen CCT/FIFO

Algorithm

C. Amortized Aggregate Cache Behavior

FIXED/FIFO

L.

EP EP p

D4_R32_L1
00.25_Ri_Li [

04_Ri_LO.125
D4_Ri_Li =
04_R1_L2 cz:j
D32_Rli ' I

HoHeap Henriksen CCT/FIFO FIXED/FIFO

Algorithm

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 110

A. Events Per LP Execution

Ev
en
ts
!
L
P
 E
xe
cu
ti
on

In
st

ru
ct

io
ns

 /
 Ev
en
t

(*
 1
O'
6
ev
en
ts
/s
)

120

100

80

60

40

20

0

-20

1600

1400

1200

1000

800

600

D4_R32_L1
-, DO.25_R1_L1 J ...••

.- ..

D4_R1_LO.125
D4_Ri_L1 I I

-. D4_R1_L2 L:T:::
D32_Ri_L1 I

Calendar Splay

400

200

0

-200

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Calendar

I-i

L..Et3...- ..

HoHeap Henriksen CCT/FIFO

Algorithm

B. Kernel Level Amortized Computation Cost

--...,. I

FIXED/FIFO

D4_R32_L1
DO.25_R1L1 .

D4_Ri_LO.125
D4_RI_Li
D4_R1_L2 c:
D32_P1 Li 1

 1}............

I-I

Splay HoHeap Henriksen

Algorithm

C. Event Rate

CCT/FIFO

D4_R32_L1
DO.25_Ri_Ll J
D4_RiL0.125 I

D4_R1_L1 I
D4 Ri L2 c:,
D32:R1:LiI

Calendar Splay

H
J

FIXED/FIFO

FIXED/FIFO

-1

HoHeap Henriksen

Algorithm

CCT/FIFO

Figure 5.19: Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate for different algorithms, models and timestamp

increment distributions.

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 111

behaviour seems about the same regardless of CEL algorithm. For the conserva-

tive algorithms, slightly less variation was observed within a given model, except for

model (N8192, D4, Ri, LO.125) where significantly greater variation was observed.

Less variation suggests less sensitivity to the timestamp increment distribution, at

least in models with large channel delta that avoid low lookahead cycles. The key

observation is that in most cases, the conservative algorithms show less sensitivity to

the timestamp increment distribution in terms of their model level cache behaviour.

The CEL algorithms can be roughly ranked according to their kernel level cache

behaviours' (Figure 5.1813) sensitivity to the timestamp increment distribution. From

most sensitive to least sensitive: Henriksen, Calendar, Splay, and Ho-Heap. The

conservative algorithms are again less sensitive to timestamp increment distribution,

except in cases of low lookahead. Kernel level cache behaviour appears extremely

sensitive to distribution for calendar queue and Henriksen's algorithm when the event

density is large (or possibly when the event population is large), as evidenced by model

(N8i92, D32, Ri, Li).

For the CEL algorithms, observations made regarding kernel level cache behaviour

apply also to amortized aggregate cache behaviour (Figure 5.i8C). For the conser-

vative algorithms, aggregate cache behaviour exhibits variation comparable to GEL

algorithms for models with low lookahead ((N8i92, DO.25, Ri, Li), (N8192, D4, Ri,
LO.125)) or high connectivity (N8192, D4, R32, Li). For the other models, conser-
vative algorithms show far less dependence on the timestamp increment distribution

than the CEL algorithms do. Another interesting observation is that CCT shows

greater sensitivity to distribution when connection radius is high, while fixed shows

greater sensitivity when event density is low.

The number of events per LP execution (Figure 5.19A) shows no sensitivity to the

timestamp increment distribution for GEL algorithms. The CEL algorithms achieve

2 events per LP execution for the constant distribution because the increment was

constant at 1.0. For the conservative algorithms, there is very little dependence on

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 112

timestamp increment distribution when event density is small (N8192, DO.25, Ri,

Li) and significant dependence when event density is large (N8i92, D32, Ri, Li).

Dependence on timestamp increment distribution for conservative algorithms seems

to be proportional to some function of event density. When event density is large,

CCT shows greater sensitivity to distribution than the fixed schedule.

Figure 5.i9B plots the kernel level computation cost. The splay, ho-heap, and

Henriksen's algorithms show moderate variation in their kernel level computation cost

as timestamp increment distribution is varied. The calendar queue seems particularly

sensitive to timestamp increment distribution for models (N8192, D4, Ri, LO.125),

(N8i92, D32, Ri, Li). For the conservative algorithms, again greater sensitivity to

scheduling distribution is observed in cases of low lookahead ((N8192, DO.25, Ri,
Li), (N8192, D4, Ri, LO.125)) or high connectivity (N8192, D4, R32, Li). The fixed
schedule is less sensitive to timestamp increment distribution than CCT in terms of

kernel level computation cost.

When looking at the event rate metric it is important to keep in mind that this

reflects the inherent computation grain of the simulation. Variation in event rate

between different distributions for the same algorithm could be due in part to the

expenses associated with genethting different random variates. For example, generat-

ing a pseudo random number that fits a normal or uniform distribution is much less

expensive than generating one that fits an exponential distribution. Computation

grain aside, several observations can be made regarding the variation in event rate

across different timestamp increment distributions.

The event rate metric is plotted in Figure 5.19C. For most models, the CEL

algorithms ranked according to increasing variation in event rate are ho-heap, splay,

calendar, and Henriksen's. The conservative algorithms exhibit less absolute variation

in event rate than the CEL algorithms in models ((N8192, D4, R32, Li), (N8192,
DO.25, Ri, Li), (N8192, D4, Ri, L2)). They exhibit greater variation in models (
(N8192, D4, Ri, Li), (N8192, D4, Ri, LO.125), (N8192, D32, Ri, Li)). The relative

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 113

variation as compared to the average event rate, is less for conservative algorithms

than GEL-based algorithms in all but two models, (N8192, D4, Ri, LO.125) and

(N8192, DO.25, Ri) Li) where available lookahead was not always adequate to execute

an event. These are situations in which the conservative algorithms achieved less than

1 event per LP execution. The variation in event rate observed for OCT and the fixed

schedule algorithm are very close.

5.4 Summary

This chapter has presented the results of thesis research conducted. These exper-

iments demonstrate the range of performance possible using the tested simulation

algorithms. Most experiments manipulated a single model parameter while holding

other model parameters constant. The parameters of the synthetic workload model

that were manipulated were: number of LPs, event density, connection radius, chan-

nel delta, connection topology (ring and star), computation grain, LP state size, and

timestamp increment distribution.

The performance of the conservative algorithms decreases as connectivity is in-

creased and eventually becomes worse than that of the GEL algorithms. This is due

to increased channel scanning costs that result in increased instruction cost and worse

cache behaviour. The cache behaviour is negatively affected for higher connectivity

because more state is accessed. GEL algorithms are insensitive to changes in the

connection radius of the model.

The average number of events per LP execution is influenced by the event density

and the lookahead. Increasing event density results in more events per LP execution

session for the conservative algorithms resulting in better cache behaviour and reduc-

ing the frequency of accessing the LP scheduling queue. The conservative algorithms

achieved event rates of over 5 times that of a heap GEL algorithm, and up to nearly 3

times that of a calendar queue GEL algorithm. The L2 cache miss rate was up to 18

CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 114

times lower than that for the splay tree GEL algorithm and up to 12 times lower than

that for the calendar queue algorithm. However, with low event density an event rate

up to 2.5 times less than that of GEL algorithms was observed.

Increasing the lookahead also results in more events per LP execution session

giving better cache behaviour and reducing the LP scheduling cost. Although the

conservative algorithms achieved an event rate over 3 times that of heap and splay

tree GEL algorithms at high lookahead, an event rate 4 times lower than that of

the calendar queue GEL algorithm was observed at low lookahead. As lookahead

decreases the temporal separation of events becomes greater than the lookahead re-

sulting in low lookahead cycles and in turn many LP execution sessions in which no

events are executed.

The choice of model topology, either ring or star, did not have much affect on

the performance of the various algorithms. The computation grain experiment serves

as a reminder that the larger the computation grain the less dependence there is on

choice of algorithm. When the scheduling distribution was manipulated the relative

variation of CMB-based algorithms was in general smaller than for GEL algorithms

except when events per LP execution was less than 1.

The behaviour of the calendar queue algorithm was very stable in the experiments

conducted. Research conducted by Ronngren et al. has shown that the performance

of the calendar queue can vary significantly with certain distributions, or when the

distribution is changing [32]. Also, because the queue size was not changing during

these simulation runs, the calendar queue did not need to perform resizes. If the queue

size was dynamic, the calendar queue might not have performed as well. Parallel

variations of the up down hold model and the interaction hold model could have

perhaps demonstrated these scenarios.

Chapter 6

Summary

Discrete event simulation (DES) is in widespread use as tool for modeling a system

as it evolves over time. The majority of simulation studies are conducted sequentially.

One reason for this is the availability of single or dual processor computers that can be

more cost effective than larger parallel computers. A second reason that simulations

are conducted sequentially is that simulation studies often require the execution of

thousands of simulation runs. In this situation better throughput is achieved using

sequential DES rather than parallel discrete event simulation (PDES) techniques, due

to the lower computational efficiency generally achieved by PDES systems.

Most sequential discrete event simulators are based on the central event list (GEL)

algorithm which uses a single priority queue to order the execution of all events in

the system. Much of sequential DES research has focused on the implementation of

the priority queue. This thesis proposes a different approach to sequential DES based

on using PDES algorithms in a sequential execution environment.

The critical channel traversing (COT) algorithm is a PDES algorithm that has

demonstrated excellent performance in sequential runs. Using the COT algorithm,

the ATM-TN network simulator was able to achieve an event rate three times greater

than when using a splay tree based GEL [41]. The IF-TN network simulator has

performed up to four times better using OCT than using a GEL-based simulator

115

CHAPTER 6. SUMMARY 116

employing a heap [21]. The excellent performance results in these papers motivated

the examination of PDES algorithms for potential application to sequential DES.

This thesis has explored the use of channel based conservative PDES mecha-

nisms in a sequential execution environment. The performance of the conservative

algorithms was compared with numerous implementations of a CEL-based simula-

tor including Henriksen's, heap, splay tree, and calendar queue. The complexity of

channel based conservative algorithms was analyzed and compared to that of various

CEL implementations. A parameterized synthetic workload model was developed as

a basis for empirical comparison of the different algorithms. Six performance metrics

were defined and used to analyze the range of performance possible for each of the

model parameters.

It was shown that several channel based conservative algorithms including CCT

could under identifiable conditions, achieve significantly better performance than a

wide range of CEL-based algorithms. This chapter summarizes the results and con-

cludes with an exploration of future work.

6.1 Conclusions

Table 6.1 summarizes the relative speedup in event rate of the CCT algorithm versus

the calendar queue. The calendar queue was the best performing CEL-based algo-

Experiment Worst Best

Number of LPs 1.3x 2.3x

Event Density O.40x 3.Ox

Channel Delta O.06x 2.5x

Connection Radius O.70x 2.2x

LP State Size 2.2x 2.8x

Table 6.1: Relative Speedup of CCT versus CEL - calendar queue.

CHAPTER 6. SUMMARY 117

rithm in all experiments conducted with the synthetic workload model used in this

thesis. The results presented here indicate the best and worst performance observed

while manipulating the associated model parameter in the corresponding experiment

(see Chapter 5). The relative speedup observed was between 2x and 3x across a

wide range of model parameters. However, under adverse model conditions the CCT

algorithm was almost 17x slower than the calendar queue.

Channel based conservative PDES algorithms relax the total timestamp ordering

normally imposed by CEL-based simulators. This difference allows certain events to

be executed out of timestamp order, provided that the events are independent and

executed by different LPs. Consider two events A and B with timestamps TA and

TB, respectively. Event A can be executed before event B even though Tb < Ta, if

there is enough lookahead between the LPs for which events A and B are scheduled.

Relaxing the total timestamp ordering has two benefits: reduced complexity through

simplified event scheduling and improved cache behaviour.

When the average number of events processed in an LP execution session is greater

than 1, the conservative algorithms can achieve significantly better cache performance

than CEL algorithms. The conservative algorithms execute numerous events at the

same LP whose state is already cached, while the CEL-based algorithms may need

to re-fetch the LP state for each event processed since it will be interleaved with

the execution of other events at other LPs. In addition to cache advantages, the LP

scheduling queue is sorted less frequently resulting in lower instruction costs. This

can occur whenever the events executed per LP execution session is greater than 1.

If there is not enough lookahead in the model, then a low-lookahead cycle may

occur. In this situation LPs are scheduled for execution, but they are unable to process

their next event. This has a negative impact on cache performance and results in the

LP scheduling queue being sorted multiple times to execute a single event. If there is

not adequate lookahead in the model such that each LP can execute at least 1 event

on average, then performance will be poor relative to CEL-based algorithms.

CHAPTER 6. SUMMARY 118

Channel based conservative algorithms are also sensitive to the connectivity of

the model. For the algorithms tested in this thesis, the complexity of the safetime

calculation was linear in the number of channels. The performance benefits of a

conservative approach are offset when the cost of the safetime calculation becomes

too high.

This thesis has demonstrated that channel based conservative algorithms can be

an efficient option for sequential simulation under identifiable conditions. The ideal

conditions are situations where there is relatively low connectivity of LPs, high event

density, and adequate lookahead to ensure at least 1 event is executed per LP execu-

tion session. As evidenced by the sequential performance of IF-TN [21] and ATM [41]

these conditions are present in many real world simulation problems.

6.2 Future Work

This thesis explored the range of performance possible using a channel based conserva-

tive PDES algorithm to simulate a particular synthetic workload model. Future work

could include examination and development of new algorithms, as well as comparison

of these algorithms under different workloads.

Further experimentation with synthetic workload models could address some of

the shortcomings of the hold model used in this thesis. The interaction hold model [27]

addresses the interaction of multiple timestamp increment distributions that is com-

mon in real world simulation. The up/down hold model [2] addresses the changing

queue size also observed in many real world simulations. Experimenting with addi-

tional model topologies such as toroid or tandem networks could also prove interesting.

In addition, obtaining benchmark results for real world simulations such as network

simulation, or process control modeling would provide further evidence to support

the use of PDES techniques sequentially.

Optimistic algorithms are not good candidates for sequential execution due to

CHAPTER 6. SUMMARY 119

the large overheads of state saving and rollback. For a sequential simulator, time

not spent executing events is time wasted. Sequential time-stepped algorithms or

synchronous conservative algorithms would be worth exploring as channel scanning

costs are avoided. Variations on the OCT mechanism, such as Receive side CCT [34]

might also be able to reduce channel scanning costs. Another approach is to employ a

deadlock detection and recovery algorithm such as the one described by Fujimoto [14].

The drawback of a deadlock detection and recovery approach in parallel is that it

can result in a large portion of the simulations being deadlocked and thus running

almost sequentially. This is not an issue in a sequential execution environment, since

simulator execution is already sequential.

A final area of interest is that of cost efficient techniques for overcoming the low-

lookahead cycle problem. Many such techniques have been developed for 0MB-based

algorithms in a parallel environment such as Carrier NULL Messages [40] and Cooper-

ative Acceleration [1]. Optimization of these techniques for a sequential environment

could be explored.

Appendix A

Distribution Experiment Results

120

APPENDIX A. DISTRIBUTION EXPERIMENT RESULTS

Algorithm Distribution Mean Standard

Constant I Exponential Uniform I Biased I Bi-model Triangular Deviation

Model Level Cache Behavior

Cache Misses (%)
CEL-CALENDAR 3.88 4.12 5.23 5.19 4.79 5.26 4.75 0.60

CEL-SPLAY 3.89 4.16 5.27 5.19 4.83 5.24 4.76 0.60

CEL-HO..HEAP 3.92 4.17 5.29 5.24 4.85 5.27 4.79 0.60

CEL-HENRIKSEN 3.88 4.18 5.29 5.20 4.85 5.27 4.78 0.61

CCT-FIFO 2.36 2.11 2.65 2.63 2.56 2.64 2.49 0.22

FIXED-FIFO 2.06 1.89 2.37 2.36 2.31 2.37 2.23 0.20

Kernel Level Cache Behavior

Cache Misses (%)
CEL-CALENDAR 1.65 4.12 4.27 4.77 4.19 7.20 4.37 1.77

CEL-SPLAY 2.88 5.35 5.11 3.66 5.00 4.74 4.46 0.97

CEL-HO..HEAP 3.64 4.51 4.62 4.70 4.46 4.70 4.44 0.40

CEL-HENRIKSEN 1.90 8.74 10.42 4.59 9.44 10.49 7.60 3.54

COT-FIFO 8.02 9.57 9.73 9.71 10.06 9.71 9.48 0.73

FIXED-FIFO 4.66 5.73 5.79 5.77 5.97 5.77 5.61 0.47

Amortized Aggregate Cache Behavior

Cache Misses / Event
CEL-CALENDAR 6.43 12.27 12.47 13.59 12.28 21.94 13.16 4.99

CEL-SPLAY 8.25 17.80 17.08 13.01 16.63 16.12 14.82 3.62

CEL.HO..HEAP 10.91 18.62 18.94 19.27 18.30 19.24 17.55 3.27

CEL-HENRIKSEN 7.06 24.59 30.39 14.42 27.46 31.40 22.55 9.74

OCT-FIFO 24.81 47.88 47.95 47.91 57.00 47.92 45.58 10.80

FIXED-FIFO 14.44 27.58 27.72 27.67 82.68 27.65 26.29 6.14

Events Per LP Execution

Events / LP Execution
CEL-CALENDAR 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL-SPLAY 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL-HO..HEAP 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL-HENRIKSEN 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CCT-F'IFO 7.96 4.00 3.99 3.98 3.33 3.99 4.64 1.70

FIXED-FIFO 7.88 3.95 3.94 8.94 8.29 3.94 4.49 1.68

Amortized Kernel Level Computation Cost

Instructions / Event
CEL-CALENDAR 235.09 243.79 252.23 266.99 240.94 624.69 310.62 154.26

CEL-SPLAY 248.65 428.77 421.69 360.86 413.28 413.21 381.08 69.19

CEL-HO.JIEAP 385.55 609.43 612.12 618.02 602.74 616.54 574.07 92.52

CEL-HENRIKSEN 398.37 576.33 659.13 462.38 635.41 689.33 570.16 116.23

CCT-FIFO 513.15 883.03 879.05 879.31 1027.40 880.19 843.69 172.28

FIXED-FIFO 476.21 809.35 805.90 806.09 938.98 806.26 773.80 155.07

Event Rate

*106 events / second)
CEL-CALENDAR 0.67 0.40 0.42 0.38 0.41 0.22 0.41 0.14

CEL-SPLAY 0.63 0.30 0.32 0.41 0.32 0.33 0.39 0.13

CEL-HO..HEAP 0.46 0.29 0.30 0.29 0.30 0.28 0.32 0.07

CEL-HENRIKSEN 0.62 0.21 0.18 0.34 0.19 0.17 0.29 0.18

CCT-FIFO 0.29 0.16 0.17 0.17 0.14 0.16 0.18 0.06

FIXED-FIFO 0.39 0.22 0.22 0.22 0.19 0.22 0.25 0.07

121

Table A.1: Results for D4-R32-L1 Distribution experiment

APPENDIX A. DISTRIBUTION EXPERIMENT RESULTS 122

Algorithm Distribution Mean Standard

Constant Exponential Uniform I Biased I Bi-model Triangular Deviation

Model Level Cache Behavior

Cache M sses (%)
CEL-CALENDAR 3.62 3.50 4.56 4.73 3.85 4.72 4.16 0.57

CEL-SPLAY 3.65 3.57 4.61 4.73 3.90 4.73 4.20 0.55

CEL-HO_FIEAP 3.63 3.49 4.53 4.70 3.82 4.67 4.14 0.55

CEL-HENB.IKSEN 3.64 3.59 4.64 4.72 3.91 4.76 4.21 0.56

COT-FIFO 3.17 2.96 3.75 3.73 3.31 3.74 3.44 0.34

FIXED-FIFO 3.00 2.99 3.85 4.08 3.31 3.96 3.53 0.49

Kernel Level Cache Behavior

Cache M sses (%)
CEL-CALENDAR 1.63 2.86 3.04 3.27 2.70 2.83 2.72 0.57

CEL-SPLAY 2.09 2.58 2.75 3.18 2.19 2.89 2.62 0.42

CEL-HO..HEAP 1.21 1.41 1.49 1.58 1.33 1.55 1.43 0.14

CEL.HENRIKSEN 1.81 2.74 2.85 3.27 2.12 2.92 2.62 0.54

COT-FIFO 3.45 3.95 3.96 3.96 4.06 3.96 3.89 0.22

FIXED-FIFO 5.52 6.65 6.69 6.72 6.88 6.71 6.53 0.60

Amortized Aggregate Cache Behavior

Cache Misses / Event
CEL-CALENDAR 6.24 9.61 10.12 10.91 9.11 10.48 9.41 1.68

CEL-SPLAY 6.92 10.47 10.90 11.23 9.29 11.25 10.01 1.68

CEL-HO_HEAP 5.73 8.30 8.69 9.17 7.88 0.04 8.13 1.27

Ol1L-FIENRIKSEN 6.64 10.27 10.71 10.91 8.87 11.05 9.74 1.71

CCT-FIFO 16.00 29.64 29.72 29.77 34.61 29.79 28.25 6.31

FIXED-FIFO 17.52 32.88 33.17 33.59 38.18 33.38 31.45 7.11

events Per LP Execution

Events / LP Execution
CEL-CALENDAB. 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL.SPLAY 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL-HO_HEAP 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL.HENRIKSEN 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CCT-FIFO 0.98 0.46 0.46 0.46 0.38 0.46 0.53 0.20

FIXED-FIFO 0.49 0.25 0.25 0.25 0.21 0.25 0.28 0.10

Amortized Kernel Level Computation Cost

Instructions / Event
CISL-CALENDAR 238.09 246.90 259.09 268.31 243.62 351.40 267.90 42.36

CEL-SPLAY 248.85 377.68 371.20 312.58 364.63 363.00 339.66 50.17

CEL-HO_HEAP 316.23 470.95 473.89 479.69 465.02 478.23 447.34 64.45

CEL-HENRIKSEN 338.49 431.13 443.06 341.22 433.26 447.16 405.72 51.37

COT-FIFO 740.59 1351.86 1350.41 1350.40 1595.69 1351.27 1290.04 286.42

FIXED-FIFO 446.83 763.47 762.61 762.32 888.43 762.69 731.06 148.04

Event Rate

(*106 events / second)
CEL-CALENDAR 0.71 0.49 0.50 0.47 0.53 0.46 0.53 0.09

CEL-SPLAY 0.74 0.45 0.48 0.50 0.52 0.47 0.53 0.11

CISL-HO_HEAP 0.78 0.53 0.56 0.54 0.58 0.52 0.59 0.10

CEL-HENRIRSEN 0.70 0.44 0.45 0.51 0.50 0.44 0.51 0.10

CCT-FIFO 0.35 0.19 0.20 0.20 0.17 0.20 0.22 0.06

FIXED-FIFO 0.34 0.19 0.19 0.19 0.17 0.19 0.21 0.06

Table A.2: Results for D0.25-R1 L1 Distribution experiment

APPENDIX A. DISTRIBUTION EXPERIMENT RESULTS 123

Algorithm Distribution Mean Standard

Constant Exponential Uniform I Biased I Bi-model Triangular Deviation

Model Level Cache Behavior

Cache Misses (%)

CEL-CALENDAR 3.71 4.00 5.07 5.04 4.64 5.20 4.61 0.62

CEL-SPLAY 3.72 4.10 5.17 5.07 4.73 5.15 4.66 0.61

CEL-HO..HEAP 3.84 4.11 5.19 5.15 4.75 5.18 4.70 0.59

CEL-HENRIKSEN 3.72 4.07 5.22 5.10 4.76 5.21 4.68 0.64

CCT-FIFO 0.60 2.37 2.98 2.84 3.10 2.98 2.48 0.95

FIXED-FIFO 0.97 2.71 3.41 3.26 3.38 3.41 2.86 0.96

Kernel Level Cache Behavior

Cache Misses (%)

CEL-CALENDAR 1.44 4.14 4.26 4.46 4.14 5.51 3.99 1.35

CEL-SPLAY 2.84 5.73 5.59 3.99 4.93 5.25 4.72 1.11

CEL-I-lO..FIEAP 3.81 4.52 4.62 4.73 4.26 4.69 4.44 0.35

CEL-HENRIKSEN 1.87 6.48 9.09 5.13 7.11 9.02 6.45 2.71

COT-FIFO 1.09 3.45 3.49 3.45 3.74 3.50 3.12 1.00

FIXED-FIFO 1.28 5.64 5.71 5.62 6.23 5.72 5.04 1.85

Amortized Aggregate Cache Behavior

Cache Misses / Event

CEL-CALENDAR 6.13 12.17 12.44 12.70 12.04 21.22 12.78 4.83

CEL-SPLAY 8.02 18.77 18.25 14.07 16.48 17.36 15.49 4.02

CEL-HO..HEAP 11.14 18.31 18.56 18.99 17.26 18.82 17.18 3.02

CEL-HENRIKSEN 6.84 17.75 25.45 15.36 19.75 25.55 18.45 7.01

CCT-FIFO 1.86 11.93 11.97 11.73 14.89 12.00 10.73 4.51

FIXED-FIFO 2.37 14.74 14.78 14.44 18.07 14.82 13.20 5.48

Events Per LP Execution

Events / LP Execution

CEL-CALENDAR 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL-SPLAY 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL-HO.JIEAP 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL-HENRIKSEN 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

COT-FIFO 15.66 1,75 1.74 1.74 1.29 1.74 3.99 5.72

FIXED-FIFO 7.92 0.88 0.88 0.88 0.65 0.88 2.02 2.89

Amortized Kernel Level Computation Cost

Instructions / Event

CEL-CALENDAR 311.73 254.24 274.02 250.97 247.41 936.66 379.17 274.15

CEL-SPLAY 248.37 437.97 431.30 394.48 418.10 423.61 392.30 72.07

CEL-HO_HEAP 384.62 596.40 598.16 604.13 582.73 601.65 561.28 86.87

CEL-HENRIKSEN 399.98 471.97 589.17 479.09 515.49 599.67 509.23 75.95

COT-FIFO 182.99 484.68 481.99 478.33 595.63 480.95 450.76 138.91

FIXED-FIFO 164.31 332.37 329.33 325.06 391.18 328.55 311.80 76.47

Event Rate

*106 events / second)

CEL-CALENDAR 0.67 0.41 0.42 0.42 0.43 0.22 0.43 0.14

CEL-SPLAY 0.66 0.29 0.31 0.39 0.34 0.32 0.39 0.14

CEL-HO..HEAP 0.48 0.30 0.31 0.30 0.32 0.30 0.34 0.07

CEL-HENRIKSEN 0.65 0.30 0.22 0.35 0.28 0.22 0.34 0.16

CCT-FIFO 1.29 0.40 0.42 0.43 0.35 0.42 0.55 0.36

FIXED-FIFO 1.26 0.38 0.40 0.40 0.33 0.39 0.53 0.36

Table A.3: Results for D4Jt1..LO.125 Distribution experiment

APPENDIX A. DISTRIBUTION EXPERIMENT RESULTS 124

Algorithm Distribution Mean Standard

Constant Exponential Uniform I Biased I Bi-model Triangular Deviation

Model Level Cache Behavior

Cache Misses (%)
CEL-CALENDAR 3.70 3.97 5.05 5.01 4.62 5.19 4.59 0.62

CEL-SPLAY 3.71 4.07 5.15 5.00 4.72 5.13 4.63 0.60

CEL-HO.JIEAP 3.83 4.09 5.19 5.13 4.75 5.17 4.69 0.60

CEL-HENRIKSEN 3.71 4.09 5.23 5.04 4.79 5.22 4.68 0.64

CCT-FIFO 0.62 0.85 1.06 1.05 1.14 1.06 0.96 0.19

FIXED-FIFO 0.97 1.22 1.53 1.53 1.58 1.53 1.39 0.25

Kernel Level Cache Behavior

Cache Misses (%)

CEL-CALENDAR 1.59 4.06 4.22 4.72 4.13 7.03 4.29 1.73

CEL-SPLAY 2.84 5.54 5.30 3.80 5.20 4.93 4.60 1.06

CEL-HO_HEAP 3.80 4.76 4.87 4.96 4.72 4.98 4.68 0.44

OEL-HENRIKSEN 1.86 8.76 10.08 4.51 9.39 10.33 7.49 3.48

CCT-FIFO 1.10 1.68 1.71 1.71 1.87 1.71 1.63 0.27

FIXED-FIFO 1.29 2.36 2.41 2.43 2.72 2.42 2.27 0.50

Amortized Aggregate Cache Behavior

Cache Misses / Event
CEL-CALENDAR 6.16 11.96 12.20 13.31 11.97 21.48 12.85 4.93

CISL.SPLAY 8.01 18.11 17.37 13.06 18.93 16.39 14.98 3.84

CEL-HO..HEAP 11.12 19.21 19.53 19.89 18.89 19.84 18.08 3.43

CEL.HENRIKSEN 6.83 24.53 29.48 14.08 27.25 30.97 22.19 9.62

CCT-FIFO 1.89 3.48 3.48 3.48 4.04 8.48 3.31 0.73

FIXED-FIFO 2.88 4.58 4.60 4.62 5.28 4.61 4.34 1.00

Events Per LP Execution

Events / LP Execution

CEL-CALENDAR. 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

0111.-SPLAY 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL.HO..HEAP 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL-HENRTKSIIIN 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CCT-FIFO 14.88 7.48 7.47 7.46 6.23 7.46 8.50 3.17

FIXED-FIFO 7.88 3.95 3.94 3.94 3.29 3.94 4.49 1.68

Amortized Kernel Level Computation Cost

Instructions / Event
CEL-CALENDAR 235.09 243.79 252.22 266.97 240.91 624.49 310.58 154.18

CEL-SPLAY 248.65 428.79 421.73 360.61 413.25 413.23 381.04 69.22

CEL.HO..HEAP 385.55 609.42 612.10 618.02 602.75 616.53 574.06 92.51

CEL-HENRIESEN 398.37 578.22 657.33 462.16 634.25 690.12 570.08 116.05

CCT-FIFO 185.28 233.75 230.23 227.87 247.92 229.46 225.75 21.13

FIXED-FIFO 165.19 193.97 190.29 188.16 200.23 189.41 187.87 11.94

Event Rate

*106 events / second)
CEL-CALENDAR 0.70 0.42 0.43 0.39 0.43 0.24 0.44 0.15

CEL-SPLAY 0.66 0.30 0.33 0.42 0.33 0.34 0.40 0.14

CEL-HO..HEAP 0.48 0.29 0.30 0.29 0.30 0.29 0.33 0.08

CEL-HENRIESEN 0.65 0.22 0.19 0.36 0.20 0.18 0.30 0.18

CCT-FIFO 1.29 0.83 0.93 0.93 0.84 0.90 0.95 0.17

FIXED-FIFO 1.26 0.79 0.87 0.87 0.79 0.84 0.90 0.18

Table A.4: Results for D4Jt111 Distribution experiment

APPENDIX A. DISTRIBUTION EXPERIMENT RESULTS

Algorithm Distribution Mean Standard

Constant Exponential Uniform I Biased I Bi-model Triangular Deviation

Model Level Cache Behavior

Cache Misses (%)
CEL-CALENDAR 3.68 3.94 5.01 4.96 4.57 5.18 4.56 0.62

CEL-SPLAY 3.70 4.05 5.14 4.98 4.69 5.12 4.61 0.61

CEL-HO..HEAP 3.82 4.07 5.17 5.12 4.73 5.16 4.68 0.60

CEL-HENRIKSEN 3.70 4.08 5.23 4.99 4.73 5.08 4.63 0.61

CCT-FIFO 0.63 0.67 0.84 0.83 0.86 0.83 0.73 0.10

FIXED-FIFO 0.96 0.97 1.22 1.19 1.22 1.21 1.13 0.13

Kernel Level Cache Behavior

Cache Misses (%)

CEL-CALENDAR 1.62 3.92 4.19 4.78 4.02 7.85 4.40 2.01

CEL-SPLAY 2.84 5.50 5.69 4.19 4.91 5.34 4.74 1.08

CEL-HO..HIIAP 3.78 4.67 4.81 4.95 4.62 4.92 4.63 0.43

CEL-HENRIKSEN 1.87 9.23 10.92 4.54 7.87 6.39 6.80 3.27

CCT-FIFO 1.11 1.41 1.44 1.44 1.55 1.44 1.40 0.15

FIXED-FIFO 1.30 1.86 1.90 1.90 2.09 1.90 1.82 0.27

Amortized Aggregate Cache Behavior

Cache Misses / Event
CEL-CALENDAR. 6.19 11.68 12.05 13.53 11.76 21.41 12.77 4.93

CEL-SPLAY 8.00 17.83 17.97 13.66 16.15 17.07 15.11 3.83

CEL-HO..FIEAP 11.11 18.89 19.32 19.85 18.54 19.73 17.91 3.37

CEL-HENRIKSEN 6.82 26.22 32.62 13.94 22.16 17.34 19.85 9.16

CCT-FIFO 1.93 2.74 2.75 2.75 3.05 2.75 2.66 0.38

FIXED-FIFO 2.39 3.51 3.52 3.51 3.91 3.52 3.40 0.52

Events Per LP Execution

Events / LP Execution

CEL-CALENDAR 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL-SPLAY 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL-HO..HEAP 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL-HENRIKSEN 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CCT-FIFO 14.18 9.50 9.49 9.47 8.37 9.48 10.08 2.06

FIXED-FIFO 7.82 5.24 5.23 5.22 4.62 5.23 5.56 1.13

Amortized Kernel Level Computation Cost

Instructions / Event
CEL-CALENDAR. 231.28 239.36 241.17 274.98 237.94 491.77 286.08 101.93

CEL-SPLAY 248.37 422.19 410.72 352.44 407.31 404.37 374.24 66.26

CEL-HO..HEAP 386.59 605.92 609.76 618.52 599.46 615.17 572.57 91.36

CEL-HENRIKSEN 397.50 605.11 697.34 458.01 558.14 466.35 530.41 110.66

CCT-FIFO 186.14 212.93 210.26 211.05 220.72 210.49 208.60 11.68

FIXED-FIFO 164.76 180.64 177.84 179.41 184.43 178.03 177.52 6.70

Event Rate

(*106 events / second)
CEL-CALENDAR 0.70 0.42 0.44 0.38 0.44 0.25 0.44 0.15

CEL-SPLAY 0.66 0.31 0.32 0.41 0.34 0.33 0.39 0.14

CEL-HOJEAP 0.48 0.29 0.30 0.29 0.31 0.29 0.33 0.08

CEL-HENRIKSEN 0.65 0.21 0.18 0.40 0.24 0.33 0.33 0.17

CCT-FIFO 1.29 0.92 1.04 1.04 0.96 1.00 1.04 0.13

FIXED-FIFO 1.26 0.89 1.00 0.99 0.92 0.96 1.00 0.13

125

Table A.5: Results for D4RLL2 Distribution experiment

APPENDIX A. DISTRIBUTION EXPERIMENT RESULTS 126

Algorithm Distribution Mean Standard

Constant Exponential Uniform I Biased I Bi-model Triangular Deviation

Model Level Cache Behavior

Cache Misses (%)
CEL-CALENDAR 3.70 3.99 5.06 5.01 4.65 5.27 4.61 0.64

CEL-SPLAY 3.71 4.12 5.20 5.05 4.78 5.17 4.67 0.62

CEL-HOJIEAP 3.87 4.15 5.24 5.19 4.82 5.22 4.75 0.60

CEL-HENRIKSEN 3.70 4.13 5.29 5.10 4.83 5.27 4.72 0.66

CCT-FIFO 0.08 0.11 0.14 0.14 0.16 0.14 0.13 0.03

FIXED-FIFO 0.13 0.19 0.24 0.24 0.27 0.24 0.22 0.05

Kernel Level Cache Behavior

Cache Misses (%)
CEL.CALENDAR 1.60 4.20 4.30 4.95 4.39 12.74 5.36 3.80

GEL-SPLAY 2.92 7.41 7.15 5.64 7.14 6.74 6.17 1.71

CEL-HO..HEAP 5.84 7.30 7.42 7.49 7.29 7.49 7.14 0.64

CEL-HENRIKSEN 2.63 13.19 16.20 9.46 14.55 15.57 11.77 5.00

CCT-FIFO 0.60 0.84 0.86 0.86 0.90 0.85 0.82 0.11

FIXED-FIFO 0.61 1.07 1.10 1.11 1.08 1.09 1.01 0.19

Amortized Aggregate Cache Behavior

Cache Misses / Event
GEL-CALENDAR 6.17 12.20 12.30 13.73 12.40 55.93 18.79 18.39

CEL-SPLAY 8.14 23.37 22.46 17.48 22.14 21.29 19.15 5.77

CI3L-HO..HBAP 16.28 29.52 29.87 30.29 29.18 30.23 27.56 5.54

CEL-HENRIKSEN 8.25 40.24 53.61 26.70 48.80 58.14 39.26 18.81

CCT-FIFO 0.68 1.12 1.12 1.12 1.18 1.12 1.05 0.19

FIXED-FIFO 0.74 1.47 1.48 1.48 1.49 1.48 1.36 0.30

Events Per LP Execution

Events / LP Execution
GEL-CALENDAR 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL.SPLAY 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL-HO..HISAP 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CEL-HENRIKSEN 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41

CCT-FIFO 119.22 59.82 59.70 59.74 49.81 59.64 67.99 25.41

FIXED-FIFO 63.00 31.61 31.56 31.53 26.30 31.54 35.92 13.43

Amortized Kernel Level Computation Cost

Instructions / Event
CEL-CALENDAR 232.61 241.86 246.24 268.18 241.17 1559.80 464.93 536.51

CEL-SPLAY 248.57 464.27 457.13 395.96 447.29 448.62 410.30 82.83

CEL-HO..HEAP 437.49 713.31 716.00 721.92 706.42 720.43 669.26 113.68

CEL-HENRIKSEN 443.03 772.31 971.90 616.25 897.70 1051.20 791.90 229.84

CCT-FIFO 154.28 215.29 213.15 207.97 200.77 214.85 201.05 23.56

FIXED-FIFO 151.76 209.97 207.80 202.92 194.38 209.50 196.05 22.47

Event Rate

*106 events / second)
GEL-CALENDAR 0.69 0.40 0.42 0.39 0.41 0.09 0.40 0.19

GEL-SPLAY 0.64 0.24 0.25 0.31 0.25 0.26 0.33 0.16

CEL-HO..HEAP 0.35 0.20 0.20 0.20 0.21 0.20 0.23 0.06

CEL-HENRIKSEN 0.61 0.15 0.11 0.22 0.13 0.10 0.22 0.20

COT-FIFO 1.67 1.08 1.25 1.28 1.21 1.19 1.28 0.20

FIXED-FIFO 1.68 1.05 1.21 1.23 1.19 1.16 1.26 0.22

Table A.6: Results for D32-R111 Distribution experiment

Bibliography

[1] BLANCHARD, T. D., LAKE, T. W., AND TURNER, S. J. Cooperative acceler-

ation: Robust conservative distributed discrete event simulation. In PADS '94:

Proceedings of the 8th Workshop on Parallel and Distributed Simulation (1994),

pp. 58-64.

[2] BROWN, R. Calendar queues: a fast 0(1) priority queue implementation for the

simulation event set problem. Communications ACM 31, 10 (1988), 1220-1227.

[3] BRYANT, R. E. Simulation of packet communication architecture computer

systems. Technical Report TR-188, MIT Labratory for Computer Science, 1977.

[4] CHANDY, K. M., AND MISRA, J. Distributed simulation: A case study in

design and verification of distributed programs. IEEE Transactions on Software

Engineering SE-5, 5 (1979), 440-452.

[5] CHANDY, K. M., AND MISRA, J. Asynchronous distributed simulation via a

sequence of parallel computations. Communications ACM 24, 4 (1981), 198-206.

[6] CURRY, R., KIDDLE, C., SIMMONDS, R., AND UNGER, B. Sequential perfor-

mance of asynchronous conservative PDES algorithms. In PADS '05: Proceed-

ings of the 2005 Workshop on Principles of Advanced and Distributed Simulation

(2005), IEEE Computer Society, pp. 217-226.

127

BIBLIOGRAPHY 128

[7] CURRY, R., SIMMONDS, R., AND UNGER, B. Simulating diffsery in conser-

vative PDES. In Proceedings of .003 Winter Simulation Conference (2003),

pp. 658-666.

[8]

[9]

DAVEY, D., AND VAUCHER, J. Self-optimizing partition sequencing sets for

discrete event simulation. In INFOR (1980), vol. 18 of 1, pp. 21-41.

DICKENS, P. M., AND REYNOLDS, JR., P. F. SRADS with local rollback. In

Proceedings of the SCS Multiconference on Distributed Simulation (1990), vol. 22

of SCS Simulation Series, pp. 161-164.

[10] FRANTA, W., AND MALY, K. An efficient data structure for the simulation

event set. Communications. ACM 8, 20 (1977), 596-602.

[11] FujiMoTo, R. M. Time Warp on a shared memory multiprocessor. Transac-

tions of the Society for Computer Simulation 6, 3 (1989), 211-239.

[12] Fu.JIMoTo, R. M. Parallel discrete event simulation. Communications ACM

33,10 (1990), 30-53.

[13] FujiMoTo, R. M. Performance of Time Warp under synthetic workloads. In

Proceedings of the SCS Multiconference on Distributed Simulation (1990), vol. 22,

pp. 23-28.

[14] FUJIMOTO, R. M. Parallel and Distributed Simulation Systems. John Wiley &

Sons, Inc., New York, 2000.

[15] GONNET, G. H. Heaps applied to event driven mechanisms. Communications

ACM 19, 7 (1976), 417-418.

[16] GORDON, G. The development of the general purpose simulation system (gpss).

In The first ACM SIGPLAN conference on History of programming languages

(1978), ACM Press, pp. 183-198.

BIBLIOGRAPHY 129

[17] HENRiKSEN, J. 0. An improved events list algorithm. In Proceedings of the 9th

Winter Simulation Conference (1977), pp. 546-557.

[18] HENRIKSEN, J. 0. Event list management - a tutorial. In Proceedings of the

15th Winter Simulation Conference (1983), IEEE Press, pp. 543-551.

[19] JEFFERSON, D. R. Virtual time. ACM Transactions on Programming Languages

and Systems 7, 3 (1985), 404-425.

[20] JONES, D. W. An empirical comparison of priority-queue and event-set imple-

mentations. Communications ACM .9, 4 (1986), 300-311.

[21] KIDDLE, C., SIMMONDS, R., AND UNGER, B. Performance of a mixed
shared/distributed memory parallel network simulator. In PADS '0.4: Pro-

ceedings of the 18th Workshop on Parallel and Distributed Simulation (2004),

pp. 17-25.

[22] KINGSTON, J. H. The amortized complexity of Henriksen's algorithm. Technical

Report 85-06, University of Iowa, 1985.

[23] Liu, J., NIcoL, D. M., AND TAN, K. Lock-free scheduling of logical pro-

cesses in parallel simulation. In PADS '01: Proceedings of the 15th Workshop on

Parallel and Distributed Simulation (2001), pp. 22-31.

[24] LUBACHEVSICY, B. D. Bounded lag distributed discrete event simulation.

In Proceedings of the SCS Multiconference on Distributed Simulation (1988),

pp. 183-191.

[25] LUBACHEVSKY, B. D. Efficient distributed event-driven simulations of multiple-

loop networks. Communications ACM 8, 1 (1989), 111-123.

[26] MARIN, M. On the pending event set and binary tournaments. In 10th Annual

SCS European Simulation Symposium (1998), Society for Computer Simulation

European Publishing House, pp. 110-114.

BIBLIOGRAPHY 130

[27] M000RMACK, W. M., AND SARGENT, R. G. Analysis of future event set

algorithms for discrete event simulation. Communications ACM 24, 12 (1981),

801-812.

[28] NICoL, D. M. Principles of conservative parallel simulation. In Proceedings of

the 1996 Winter Simulation Conference (1996), pp. 128-135.

[29] PORTER, T., AND SIMON, I. Random insertion into a priority queue structure.

IEEE Transactions on Software Engineering 1, 3 (1975), 292-298.

[30] REYNOLDS, JR., P. F. A spectrum of options for parallel simulation. In Pro-

ceedings of the 1988 Winter Simulation Conference (1988), pp. 325-332.

[31] RöNNGREN, R., RIBOE, J., AND AYANI, R. A comparative study of some pri-

ority queues suitable for implementation of the pending event set. ACM Trans-

actions on Modeling and Computer Simulation 7 (1993), 157-209.

[32] RöNNGREN, R., RIBOE, J., AND AYANI, R. Lazy queue: A new approach

to implementation of the pending-event set. Internation Journal of Computer

Simulation 8 (1993), 303-332.

[33] SIMMONDS, R., BRADFORD, R., AND UNGER, B. Applying parallel discrete

event simulation to network emulation. In PADS '00: Proceedings of the 14th

Workshop on Parallel and Distributed Simulation (2000), pp. 15-22.

[34] SIMMONDS, R., KIDDLE, C., AND UNGER, B. Addressing blocking and scal-

ability in critical channel traversing. In PADS '0: Proceedings of the 16th

Workshop on Parallel and Distributed Simulation (2002), pp. 17-24.

[35] SLEATOR, D. D., AND TARJAN, R. E. Self-adjusting binary search trees.

Journal ACM 32, 3 (1985), 652-686.

BIBLIOGRAPHY 131

[36] STEINMAN, J. S. Breathing time warp. In PADS '93: Proceedings of the seventh

workshop on Parallel and Distributed Simulation (1993), ACM Press, pp. 109-

118.

[37] STEINMAN, J. S. Discrete-event simulation and the event horizon. In PADS '94:

Proceedings of the 8th Workshop on Parallel and Distributed Simulation (1994),

pp. 39-49.

[38] UNGER, B., XIAo, Z., CLEARY, J., TsAi, J.-J., AND WILLIAMSON, C. Par-

allel shared-memory simulator performance for large atm networks. ACM Trans-

actions on Modeling and Computer Simulation 10, 4 (2000), 358-391.

[39] VAUCHER, J. G., AND DUVAL, P. A comparison of simulation event list algo-

rithms. Communications ACM, 4 (1975), 223-230.

[40] WOOD, K. R., AND TURNER, S. J. A generalized carrier-null method for

conservative parallel simulation. In PADS '94: Proceedings of the 8th Workshop

on Parallel and Distributed Simulation (1994), pp. 50-57.

[41] XIAo, Z., SIMMONDS, R., UNGER, B., AND CLEARY, J. Fast cell level ATM

network simulation. In Proceedings of the 2002 Winter Simulation Conference

(2002), pp. 712-719.

[42] XIAo, Z., UNGER, B., SIMMONDS, R., AND CLEARY, J. Scheduling criti-

cal channels in conservative parallel discrete event simulation. In PADS '99:

Proceedings of the 13th workshop on Parallel and distributed simulation (1999),

IEEE Computer Society, pp. 20-28.

