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Abstract 

In this thesis the sequential performance of parallel discrete event simulation 

(PDES) algorithms is explored. These algorithms were originally developed to speed 

up the execution of a single discrete event simulation by using multiple processors. 

Currently most sequential discrete event simulators are based on the Central Event 

List (CEL) algorithm. Excellent sequential performance of the Critical Channel 

Traversing (CCT) algorithm has been reported in the literature. This has motivated 

the investigation of channel based conservative PDES algorithms as an alternative 

approach to sequential discrete event simulation. 

A synthetic workload model is used to compare the sequential performance of 

channel based conservative algorithms with several CEL-based algorithms. The re-

suits demonstrate that a channel based conservative algorithm can often achieve a 

two to three times speedup in event rate over the fastest CEL-based algorithm. The 

greatest performance improvements are observed in situations of low connectivity, 

high event density, and large lookahead. Under adverse conditions the performance of 

the conservative algorithm can be much worse than that of the CEL-based algorithm. 

The potential causes of good and poor performance of channel based conservative 

algorithms are examined in detail. 

111 



Acknowledgments 

I would like to begin by thanking Brian Unger and Rob Simmonds for recruiting 

me into the TeleSim research group. It was there that I was introduced to the inter-

esting and challenging field of parallel discrete event simulation. Being part of this 

research group was an experience that I will always be thankful for. Thank you to 

Rob Simmonds, for encouraging me to pursue graduate studies and for his continual 

support throughout the process. 

I would like to acknowledge our postdoctoral student Cameron Kiddie for his help 

with my thesis. Cameron provided many insights into the sequential cost analysis 

for the 0MB algorithm. Thank you to committee member Dr. Abraham Fapojuwo 

whose comments were very helpful in improving the final version of my thesis. Finally, 

I would like to thank my friends and family for their support and encouragement over 

the last three years. 

Generous financial support was provided by the TeleSim Research Group which 

is funded by ASRA (Alberta Science Research Authority). 

iv 



Table of Contents 

Approval Page 

Abstract 

Acknowledgments iv 

Table of Contents v 

List of Tables ix 

List of Figures x 

List of Abbreviations xii 

1 Introduction 1 

1.1 Motivation and Objectives   2 

1.2 Overview of Thesis   4 

2 Sequential DES Algorithms 5 

2.1 Discrete Event Simulation   5 

2.1.1 Time-Stepped Time Flow Mechanism   7 

2.1.2 Event-Driven Time Flow Mechanism   8 

2.2 GEL   8 

2.2.1 Linked List   10 

V 



2.2.2 Indexed-List   11 

2.2.3 Binary Search Indexed List (Henriksen's algorithm)   12 

2.2.4 Heap   12 

2.2.5 Splay Tree   13 

2.2.6 Calendar Queue   14 

2.2.7 Lazy Queue   16 

2.2.8 Other Priority Queue Implementations   17 

2.3 Summary   17 

3 PDES Algorithms 19 

3.1 Parallel Discrete Event Simulation   19 

3.1.1 LP Modeling Methodology   20 

3.1.2 Causality and Synchronization   21 

3.1.3 Risk and Aggression   22 

3.2 Conservative Synchronization   23 

3.2.1 Chandy Misra Bryant (CMB) null message algorithm   25 

3.2.2 Critical Channel Traversing (CCT)   26 

3.2.3 Deadlock Detection & Recovery   27 

3.2.4 Synchronous Simulation Protocol   28 

3.3 Optimistic Synchronization 30 

3.3.1 Time Warp for PDES  30 

3.3.2 Aggressive No Risk   33 

3.4 Summary   34 

4 Model and Methodology 35 

4.1 Synthetic Workload Model   36 

4.1.1 HOLD model   36 

4.1.2 Interaction HOLD Model  38 

4.1.3 Up and Down HOLD Model   39 

vi 



4.1.4 Dependent HOLD model   39 

4.1.5 PHOLD model   40 

4.1.6 Ring Model   41 

4.1.7 Test Model   42 

4.2 Experimental Methodology  46 

4.2.1 Test System   46 

4.2.2 Implementation and Memory Management   48 

4.2.3 Test Architecture and Compiler   51 

4.2.4 Performance Metrics   52 

4.2.5 Experiment Outline and Parameters   54 

4.3 Analysis   55 

4.3.1 Asymptotic Bounds   55 

4.3.2 Events per LP execution   57 

4.3.3 Comparison with CEL-based approaches   60 

4.4 Summary   61 

5 Sequential Performance of DES Algorithms 62 

5.1 Queue Size Experiments   62 

5.1.1 Number of LPs Experiment   63 

5.1.2 Event Density Experiment   68 

5.1.3 Fixed Queue Size Experiment   73 

5.2 Model Topology Experiments   78 

5.2.1 Channel Delta Experiment   79 

5.2.2 Connection Radius Experiment   84 

5.2.3 Topology Experiments   89 

5.3 Model Characteristics Experiments   98 

5.3.1 Computation Grain Experiment   98 

5.3.2 LP State Size Experiment   102 

5.3.3 Timestamp Increment Distribution Experiment   107 

vii 



5.4 Summary   113 

6 Summary 115 

6.1 Conclusions   116 

6.2 Future Work  118 

A Distribution Experiment Results 120 

Bibliography 127 

viii 



List of Tables 

2.1 Asymptotic Bounds for priority queue operations   18 

3.1 Risk and Aggression of Synchronization Algorithms   23 

4.1 Scheduling Distributions   37 

4.2 Asymptotic bounds for channel based conservative synchronization.   58 

4.3 Expected behaviour of manipulating model parameters   59 

5.1 Controlled variables for Queue size experiments   63 

5.2 Inherent Computation Grain (in microseconds)   100 

5.3 Results for D4..R32L1 Distribution experiment   108 

6.1 Relative Speedup of OCT versus CEL - calendar queue  116 

A.1 Results for D4Jt32I1 Distribution experiment   121 

A.2 Results for DO.251tLL1 Distribution experiment   122 

A.3 Results for D4.R110.125 Distribution experiment   123 

A.4 Results for D4-R1-L1 Distribution experiment   124 

A.5 Results for D4-R1-L2 Distribution experiment   125 

A.6 Results for D32JtLL1 Distribution experiment   126 

ix 



List of Figures 

2.1 Central Event List Algorithm   9 

4.1 4x4 Toroid Network   41 

4.2 Test Model Topologies, 8 LPs with Connection Radius 2   42 

4.3 Event Time Line   44 

5.1 Number of LPs experiment -Plots of A. Model Level Cache Behaviour, 

B. Kernel Level Cache Behaviour and C. Aggregate Cache Behaviour 

versus the number of LPs.   65 

5.2 Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus the number of LPs.   66 

5.3 Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour versus event density. . . . 69 

5.4 Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus event density.   70 

5.5 Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour versus the number of LPs  

Parameter D chosen such that N x D = 131072  75 

5.6 Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus the number of LPs. Parameter 

D chosen such that N x D = 131072  76 

5.7 Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour versus channel delta. . . . 81 

X 



5.8 Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus channel delta.   82 

5.9 Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour versus connection radius. 86 

5.10 Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus connection radius  87 

5.11 Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour versus channel delta. . . . 91 

5.12 Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus channel delta.   92 

5.13 Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour versus connection radius. 95 

5.14 Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate versus connection radius  96 

5.15 Computation Grain Experiment   101 

5.16 Plots of A. Model Level Cache Behaviour, B. Amortized Aggregate 

Cache Behaviour and C. Event Rate versus state size, for D = 1. . . . 104 

5.17 Plots of A. Model Level Cache Behaviour, B. Amortized Aggregate 

Cache Behaviour and C. Event Rate versus state size, for D = 4. . . . 105 

5.18 Plots of A. Model Level Cache Behaviour, B. Kernel Level Cache Be-

haviour and C. Aggregate Cache Behaviour for different algorithms, 

models and timestamp increment distributions.   109 

5.19 Plots of A. Events per LP Execution, B. Kernel Level Amortized Com-

putation Cost and C. Event Rate for different algorithms, models and 

timestamp increment distributions.   110 

xi 



List of Abbreviations 

ANR - Aggressive No Risk 

CCT - Critical Channel Traversing 

GEL Central Event List 

CMB - Chandy, Misra, Bryant 

DES Discrete Event Simulation 

DVE Distributed Virtual Environment 

FF Far Future 

FIFO First In, First Out 

GVT Global Virtual Time 

HLA - High Level Architecture 

LP Logical Process 

LVT Local Virtual Time 

NF - Near Future 

PDES - Parallel Discrete Event Simulation 

PHOLD - Parallel HOLD 

VFF Very Far Future 

xii 



Chapter 1 

Introduction 

Simulation is a way of imitating, understanding, and predicting the behaviour of 

a real world system over time. There are applications of simulation in many problem 

domains. For example, simulation is used in the design and analysis of manufacturing 

systems, air traffic control scenarios, and telecommunication networks. Simulation 

can be used for performance evaluation, forecasting, and sensitivity analysis. In some 

situations a simple analytical model may provide the same information. However, 

real world systems are often too complicated to express or solve mathematically. 

Simulation is an appropriate tool for analyzing the behaviour of such complex systems. 

In addition, simulation can be used when experimenting with a real world system 

would be too costly or dangerous. 

There are several approaches to simulation. Discrete event simulation (DES) is 

one method for modeling a system as it evolves over time. DES is primarily used to 

model systems where state changes occur at discrete points in time. It is possible to 

approximate state changes that occur continuously, but discretization may incur some 

error. Continuous simulation is an alternative to DES that uses iteratively solved 

differential equations to model state changes that occur continuously over time. 

Most discrete event simulations are executed sequentially using the resources of 

a single computer. Parallel discrete event simulation (PDES) refers to the execution 
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CHAPTER 1. INTRODUCTION 2 

of a single simulation using multiple processors. This allows completion of a single 

simulation run in less time. PDES is appropriate when minimizing the execution 

time for a single simulation run is critical, or when the model is too large to simulate 

using the resources of a single computer. For example, PDES techniques are used in 

emulation [33] were real-time execution is necessary. 

In practice, simulation studies often involve executing many independent simula-

tion runs. For example, multiple simulation runs are necessary for variance reduction, 

parameter studies, constructing confidence intervals, or when comparing different so-

lutions to a problem. Parallel simulation techniques reduce the execution time of a 

single simulation run, but sequential simulation achieves better overall efficiency. 

This thesis is focused on improving the speed of sequential DES simulation through 

the use of techniques originally developed for PDES. 

1.1 Motivation and Objectives 

In a DES, events are used to model changes in system state. Each event has an 

associated timestamp that indicates when the state change will occur. Most sequential 

DES programs employ a central event list (CEL) to order execution of events in the 

system. The CEL is implemented using a priority queue of events sorted by event 

timestamp. The event with the smallest timestamp is removed from the CEL and 

then executed. The execution of an event may result in the generation of new events 

which are then inserted into the CEL. Much of the research in sequential DES has 

focused on the implementation of the priority queue used to represent the CEL. 

CCTKit is a parallel simulation kernel that implements the Critical Channel 

Traversing (CCT) algorithm [42]. The CCT algorithm is an extension of the channel 

based conservative PDES algorithms first proposed by Chandy and Misra [4], and 

Bryant [3]. Several simulation systems employing the CCT algorithm have shown 

very good sequential performance. The ATM-TN network simulator achieved a three 
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times greater event rate when using CCT than a GEL-based simulator implemented 

using a splay tree [41]. The IP-TN network simulator has performed up to four times 

better than a GEL-based simulator employing a heap [21]. This contrasts with most 

other PDES systems that perform poorly in sequential runs [38]. Little work has 

been done to explain why a system using the GCT algorithm can perform so well 

sequentially. 

This thesis examines channel based conservative PDES algorithms such as GGT, 

to understand how they achieve better sequential performance than GEL-based sim-

ulators, and under what conditions this occurs. 

A synthetic workload model will be presented and then used to compare the 

sequential performance of the algorithms. Several well-known GEL-based algorithms 

are compared with the channel based conservative PDES algorithms. The asymptotic 

behaviour of the PDES algorithms is analyzed and compared with that of the GEL 

algorithms. Six performance metrics are defined that facilitate empirical comparison 

of the algorithms in terms of cache behaviour, computational complexity, and event 

rate. 

Improving the performance of sequential DES programs has numerous benefits. 

Faster sequential DES will allow scientists and engineers to test and compare design 

options in less time. Where it used to take weeks to compare alternative designs, 

simulation will someday enable these options to be evaluated on the fly. Improving 

the performance of sequential DES algorithms could also lead to improvements in 

PDES simulators since sequential DES algorithms are often part of larger parallel 

simulations. For example, a central event list approach is used to execute events 

which are scheduled in a cluster task in TasKit [42]. Fast sequential DES kernels 

would also benefit the distributed simulation community, since many distributed sim-

ulations are federates of smaller sequential simulations. For example, the high level 

architecture (HLA) is often used to combine independent sequential simulators [14]. 

By demonstrating the benefit of applying parallel simulation techniques to sequential 
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simulation, or simply using parallel simulation algorithms sequentially, it may suggest 

other opportunities to exploit algorithms originally developed for parallel execution 

to more general computer science problems. 

1.2 Overview of Thesis 

The remainder of the thesis is organized as follows. In Chapter 2 background material 

regarding discrete event simulation is presented. Relevant definitions and terminology 

are introduced, followed by a detailed description of the central event list algorithm. 

The chapter describes different priority queue algorithms that have been used to 

implement the central event list. Chapter 3 discusses issues related to the execution 

of a discrete event simulation in parallel. Further terminology is introduced and the 

logical process modeling methodology is explained. The chapter includes descriptions 

of various PDES algorithms, including the CMB and CCT channel based conservative 

PDES algorithms. 

Chapter 4 provides a survey of synthetic workload models that have been used in 

the comparison of both sequential and parallel DES algorithms. A detailed description 

of the workload model used in this thesis is then presented. The next part of this 

chapter covers the experimental methodology, including a description of the metrics 

used in the comparison of the different simulation algorithms. The last part of this 

chapter presents a theoretical cost analysis for the performance of channel based 

conservative PDES algorithms. 

Chapter 5 presents the experiments and corresponding results. The experiments 

are grouped according to the parameters of the synthetic workload model that were 

manipulated. Algorithms are compared using the performance metrics defined in Sec-

tion 4.2.4. Chapter 6 provides a summary of the thesis and outlines the contributions 

made by this thesis. The summary also includes a discussion of potential future work. 



Chapter 2 

Sequential DES Algorithms 

The central event list algorithm is used by many sequential simulators. Much of 

the research in sequential discrete event simulation has focused on the implementation 

of the priority queue data structure used in CEL algorithms. A wide range of priority 

queue implementations are possible; some implementations are general purpose and 

others have been developed specifically for implementing the CEL. Several of the 

CEL implementations in this chapter will be used as a baseline for comparison of the 

channel based conservative algorithms described in the Chapter 3. 

This chapter introduces the terminology and concepts central to DES. The CEL 

algorithm is described in detail and then possible implementations of the priority 

queue are discussed. 

2.1 Discrete Event Simulation 

Discrete event simulation (DES) is a useful tool for modeling the behaviour of systems 

where state changes occur at discrete points in time. Before a system can be simulated 

using DES, it must first be mapped to a logical model. In sequential DES there are 

relatively few restrictions on how that is accomplished. A discrete event simulation 

requires three things; a representation of time, a representation of state, and some 

5 



CHAPTER 2. SEQUENTIAL DES ALGORITHMS 6 

way of changing or affecting the state as time advances. A simulation program could 

use a floating point variable to represent time, in addition to other variables for the 

system state. In DES, system state is affected by executing events. At a minimum 

an object that represents an event will contain information that indicates when the 

event will occur, called the event timestamp, and the type of event that will occur. 

The collection of all unprocessed events in the system is known as the pending event 

set. As events are executed, the representation of time must be updated to reflect 

the passage of time. 

The world view of a discrete event simulation is usually described as event-oriented 

or process-oriented. In the event-oriented view described above, simulation behaviour 

is described in terms of events that are used to affect the state as time advances. 

In the process-oriented view behaviour is described in terms of interacting processes 

that wait for a specific period of time or block until some condition is true. Although 

not as efficient as a strictly event-oriented view, the process-oriented view can offer 

a more intuitive approach to modeling certain physical systems. A process-oriented 

simulator is normally implemented on top of an event-oriented simulation system. 

Simulation can be confusing because there are often several systems of time under 

consideration. This is further complicated in parallel simulation, where different 

parts of the simulation may have advanced further than others. Fujimoto [14] gives 

the following definitions to distinguish the different systems of time. 

• Physical time refers to the time in the physical system. 

• Simulation time is an abstraction used by the simulation program to model 

physical time. 

• Wall-clock time refers to time during the execution of a simulation program. 

The following example illustrates the difference between these systems of time. A 

simulation program begins running at 1:30pm and finishes running at 1:45pm, the 
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elapsed wall-clock time is 15mm. During that period of time, the simulation time 

advanced from Os to 3600s, 1 hour of physical time was simulated. 

In general it is desirable for simulations to execute as fast as possible. There 

may be some situations such as network emulation [33] where simulation execution is 

paced to correspond with the wall-clock or physical time. 

Causality refers to the principle that one action or event leads to another. If a rock 

is thrown at a window, then the window is broken. The action of throwing the rock 

results in the window breaking. The window will not break unless some force causes 

it. In a simulation, certain events may depend on previous events, and a simulator 

must ensure causal relationships are maintained. Simulators are constrained such 

that processing of an event with timestamp t must only result in scheduling new 

events with timestamps greater than or equal to t. Violation of causality can result 

in errors in a simulation. Such errors are called causality errors. 

Simulations can be classified according to the mechanism by which simulation time 

is advanced. There are two time flow mechanisms, event-driven and time-stepped. The 

choice of time-flow mechanism also affects how causal relationships are maintained 

within the simulator. 

2.1.1 Time-Stepped Time Flow Mechanism 

Simulations that use a time-stepped time flow mechanism require that simulation 

time is split into small equal sized intervals. The simulation clock is advanced by 

a fixed increment and then all state variables are updated. If events are used to 

indicate state changes then all events with timestamps less than the simulation time 

are executed. Events which are executed during the same time slice are considered 

to be independent and to occur simultaneously, this may or may not be an issue. In 

order to preserve causal correctness the time-slice must be small enough to prevent 

dependent events from occurring out of order. 

In time-stepped simulation the simulation time generally advances by the same 
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amount, this contrasts with event-driven simulation where simulation time advances 

in arbitrary increments according to the timestamp of each event. The size of the 

time-step is important because it will determine the simulation's precision with re-

spect to time. Time-stepped synchronization has some applications in logical circuit 

simulation and has also been incorporated into numerous parallel DES algorithms. 

More information about time-stepped simulation can be found in [14]. This thesis 

focuses on algorithms which employ event-driven time flow mechanisms, described in 

the next section. 

2.1.2 Event-Driven Time Flow Mechanism 

The central event list (CEL) algorithm is an example of an algorithm that employs 

an event-driven time flow mechanism. A simple way to maintain causal correctness is 

by processing events in chronological order. The event with the smallest timestamp 

is removed from the pending event set and then executed. Executing this event may 

result in the generation of new events which are then added to the pending event 

set. This approach to synchronization is known as the central event list algorithm. A 

CEL-based simulator maintains causal relationships by using a single priority queue 

to order the execution of all events. 

2.2 CEL 

The majority of sequential simulation programs employ the CEL algorithm described 

in the previous section. Variations of the GEL algorithm are confined to the im-

plementation of the priority queue. A priority queue is an abstract data type that 

supports at least two operations, remove-min and insert. The remove-min operation 

removes the element from the collection with the highest priority, while the insert 

operation adds an element to the collection. In this section the GEL algorithm is 

explained in detail and possible implementations of the priority queue are discussed. 
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In a CEL-based simulation the central event list corresponds to an instance of the 

priority queue, i.e., a class supporting operations remove-min and insert. The CEL 

algorithm operates as follows. The event with the smallest timestamp is removed 

from the central event list. Next, the simulation time is updated to the timestamp of 

the event that has just been removed. Finally, processing for the event occurs which 

may result in the generation of new events and their insertion into the central event 

list. If a simulation end time is specified, then events are only inserted into the central 

event list if their timestamps are smaller than the specified end time. This process 

repeats until there are no events left in the central event list. 

Figure 2.1 provides pseudo-code for the CEL algorithm. The current simulation 

time is stored in the sim_time variable, event is a reference to an object that repre-

sents an event and cel is a reference to a priority queue representing the central event 

list. The process procedure handles processing of the event and freeing of memory 

allocated for that event. 

Central Event List (CEL) 

while event= cel->remove_minQ; 

sim_time event->time_stamp; 

process( event ); 

Figure 2.1: Central Event List Algorithm 

Every GEL algorithm processes events in non-decreasing timestamp order which 

guarantees causal correctness of the simulation. The only possible variation is in the 

processing of events with the identical timestamp. There has been extensive research 

into the implementation of general purpose priority queues and those specialized for 

DES. Empirical comparisons of priority queue implementations are available in [27, 20, 

2, 31, 26]. Analytical results relevant to priority queue implementations are available 

in [27]. The following subsections describe various priority queue implementations 
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that have been used in DES systems. 

2.2.1 Linked List 

A linked list of events sorted by timestamp was used in many early simulation lan-

guages such as GPSS [16] and SIMSCRIPT [39]. It is rarely used in modern simulation 

because it does not scale well with respect to the size of the pending event set. Al-

though the remove-min operation is 0(1), the average and worst case insert times are 

0(P) where P is the number of elements in the collection. The worst case scenario is 

that the entire list is traversed before the event can be inserted which requires P com-

parisons. The average case assuming events in the pending event set are uniformly 

distributed would require about half as many comparisons. 

Consider a simple model where the number of events remains constant. Let E 

be an event and E+1 the event generated by the execution of E2. The timestamp 

increment distribution or scheduling distribution describes the difference in times-

tamps between Ej and E+1. The average case search can be improved by employing 

heuristics to determine whether to begin the search from the front or the back of the 

list. As explained by McCormack and Sargent [27], the average portion of the list 

that must be traversed to insert a new event can be determined by computing the 

distribution of the pending event set. This information can be used to decide which 

end of the list to start the insertion from. For example, if the timestamp increment 

distribution is uniform, normal, or Erlang then insertion should start from the back of 

the list. For timestamp increment distributions like the hyper-exponential, mixtures 

of exponentials, and certain Gamma distributions insertion should begin from the 

front. McCormack and Sargent [27] also showed that when the pending event set is a 

mixture of events scheduled by more than one distribution the insertion should start 

from the front of the list. There are other heuristics based on maintaining a pointer 

to the median element or computing the average of the first and last elements, and 

then using this value to determine were to start the search. If the timestamp of the 
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element to be inserted is smaller than the average, start from the beginning while if 

larger, start from the end. This approach known as the median pointer method [39, 8] 

eliminates 50% of the comparisons. 

Another way to exploit knowledge of the timestamp increment distribution is to 

use multiple lists as is done in the process-oriented SIMSCRIPT 11.5 [27]. A sepa-

rate event list is maintained for each simulated process. Events that are repeatedly 

scheduled from the same distribution should be inserted according to their timestamp 

increment distribution. Events associated with simulated processes are usually sched-

uled by a mix of distributions, so insertion should start from the front of the list as 

explained by McCormack and Sargent [27]. 

The linked list is easily implemented and has performed well in situations where 

the event list is relatively small. This is due to the higher overhead associated with 

more complex algorithms. The linked list may have some application as part of a 

larger simulation system. 

2.2.2 Indexed-List 

Indexed list algorithms first proposed by Vaucher and Duval [39] are based on keeping 

an array of pointers into the list spaced according to some increment of time. In this 

case the linked list is logically subdivided into lists whose elements fall within a certain 

quantum. For example, the first sublist contains events timestamped 0 to 5s, the next 

list 5 to lOs, and so on. These algorithms require an overflow list for elements that 

cannot be placed in one of the finite number of sublists. There are serious problems if 

the time increment is too large or too small. If it is too large the number of elements 

in individual sublists grows too much while if it is too small, the overflow list will 

contain too many events. Increasing the number of sublists can help but this delays 

the pointer lookup and uses additional memory. 

Franta and Maly [10] use a second dynamically managed set of pointers allowing 

somewhat better management of the length of individual sublists. Events are inserted 
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by computing the offset into the first table of pointers and using that result to find the 

pointer to the appropriate sublist which the event is then placed in. This algorithm 

still suffers the overflow problem associated with Vaucher and Duval's algorithm. The 

worst case running time of these algorithms is still 0(P), since a large portion of the 

elements can end up in the overflow list. In practice, they perform better than this 

but are very sensitive to the timestamp increment distribution. 

2.2.3 Binary Search Indexed List (Henriksen's algorithm) 

Henriksen's algorithm [17, 18] sizes sublists according to the number of events they 

contain, rather than the amount of simulation time the events span. This can be 

accomplished using a single array of pointers. Binary search is used to find the pointer 

to the sublist for an insert. Pointers are updated with the insertion of each event to 

constantly moderate the length and number of sublists. This algorithm avoids a large 

overflow list since all sublists are kept approximately the same length. 

Henriksen's algorithm was used in GPSS/H [17]. This algorithm displays greater 

sensitivity to the timestamp increment distribution than the heap algorithm as ev-

idenced in [27, 20].. The worst case for a single operation is 0(P), but time per 

operation amortized over sufficient operations is bounded by O(\/). 

2.2.4 Heap 

A heap is a complete binary tree meaning that each level of the tree is completely 

filled except possibly the last where any nodes in the last level of the tree must occur 

as far to the left as possible. The heap condition for a node requires that its key be 

greater than or equal to the key of each of its children (if it has any). A complete 

binary tree is a heap if and only if each of its nodes obeys the heap condition. 

Insertion begins by placing the new node into the last level of tree as far to the left 

as possible. If the last level is full, then the node is placed in the next level deeper. If 

the heap condition is satisfied for the parent of the inserted node then the insertion 
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is finished. Otherwise, the inserted node is swapped with its current parent until the 

heap condition is restored. If the inserted node is swapped all the way to the top of 

the tree this will require O(1og2 P) operations. 

Removing the minimum timestamped event is simple since it is just the root node 

of the tree. The last element in the heap is moved to the root of the tree to replace 

the element being removed. Starting with the root node the heap condition is tested, 

if it is satisfied then the remove-min operation terminates, otherwise the current node 

is swapped with its smallest child. This process continues until the heap condition is 

restored. If one swap is performed at each level of the tree this will require O(1og2 P) 

operations. 

The heap algorithm can be optimized so that the heap is restored only once per 

pair of insert and remove operations. This is more efficient when the remove-min 

operation is followed by an insert operation. 

Insertion of new events or removal of the minimum timestamped event requires in 

the worst and average cases O(1og2 P) comparisons. One concern when using a heap 

is that two events with the same timestamp will not necessarily be executed in first-

in-first-out (FIFO) order. The heap can be modified to ensure the FIFO property if 

necessary, but this will incur some additional cost. 

Porter and Simon [29] and Gonnet [15] show that when insertions are random the 

average insertion time is bounded by a constant. Empirical results suggest that heaps 

are relatively insensitive to the timestamp increment distribution [20, 31] which pro-

vides good motivation for their use in general purpose sequential simulation kernels. 

2.2.5 Splay Tree 

The splay tree [35] algorithm is based on the binary search tree. A binary search tree 

can be an efficient data structure with an average of O(log2 P) operations required to 

access tree elements. However, a binary search tree can become unbalanced if the data 

being inserted is not uniformly distributed, in which case performance can degrade 
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to 0 (v'). There are numerous approaches to maintaining balance or correcting 

imbalance in a binary search tree. 

The splay tree was designed with amortized efficiency in mind. The tree is per-

mitted to be in an arbitrary state, but each operation seeks to improve the structure 

of the tree to facilitate faster future operations. The worst case for a single insert 

or remove-min operation is in 0(P), but the cost per operation amortized over any 

sequence of operations starting from an empty queue is bounded by O(1og2 P). 

Unbalanced trees can be balanced by performing rotations which promote one of 

the child subtrees while demoting the previous root node and any descendant nodes. 

Splay trees avoid part of the balancing cost by avoiding the need to examine both 

halves of the tree. However, it can increase the number of rotations performed. One 

pointer rotation and one comparison are required per item visited during a search of 

the tree. 

The main advantage of a self adjusting tree is its ability to handle skewed data, 

or usage patterns. The drawback of a self adjusting algorithm is that the cost of a 

single operation in a sequence of operations may be expensive. 

Splaying involves a rotation applied to each node in the search path which ef-

fectively halves the length of the search to any node in that path. Splay trees have 

performed better than heaps even though their asymptotic bounds are the same [20]. 

One explanation for this is that the splay tree is reordered bringing smaller elements 

to the top each time, so that on average remove-min requires less than 0(1092 P) 

operations. 

2.2.6 Calendar Queue 

Calendar queues [2] are based on the way humans use desk calendars. In practice 

they can obtain 0(1) average performance. The calendar queue algorithm provides a 

unique solution to the overflow list problem associated with certain other algorithms 

such as Vaucher and Duval's Indexed-list [39]. A calendar queue stores events in 
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sorted linked lists, one for each "day" of the "year". An array is maintained which 

stores a pointer to each of the lists. The remove-min operation returns the first 

element in the current "day", or if the list is empty then the next day is checked and 

so on. An event is inserted by computing which "day" it will occur on, and inserting 

it into that day's list. The calendar queue handles events that are further than a 

"year" into the future by requiring that the remove-min operation check that the 

event belongs to the current year before it is removed. There are two variables which 

determine the structure of the calendar queue, the number of days and the length of 

a day. These variables must be adjusted to obtain good performance as the queue 

size grows and shrinks. 

Performance of the calendar queue will be optimal when the number of events is 

equal to the number of days in the year and events are uniformly distributed across 

the days in the year. In this scenario, insert and remove-min operations can be 

performed in constant time. The heuristic employed by the calendar queue algorithm 

is to double the number of days when the number of events exceeds twice the number 

of days, or halve the number of days when the number of events drops below half 

of the number of days. Whenever a halving or doubling occurs, it restores the ideal 

ratio of number of days to number of events. Changing the number of days requires 

recomputing the length of a day, and reorganizing the array (copying). This operation 

is relatively expensive but should occur infrequently. Unfortunately, the heuristic does 

not guarantee that an individual "day" will not have an excessive number of events, 

or that many days may contain no events at all. The worst case scenario for removing 

the minimum element is 0 (DayslnYear) , and because DayslrtYear is at most 2 x P, 

the worst case is essentially 0(P). The worst case for insertion is also 0(P), assuming 

all events are scheduled for a single day in the year. 0(1) is an amortized bound on 

number of operations required for a resize operation. This means that the cost of a 

resize operation is constant in the number of events when averaged over the execution 

of all insert and remove-min operations. 
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The calendar queue algorithm does not handle the case when there are too many 

sublists and the queue is a constant size [32]. The only time a resize operation occurs 

is when the queue size is changing. As such, if the distribution changes but the queue 

size doesn't the calendar queue can perform quite poorly, though it might be possible 

to monitor the distribution and adjust bucket size dynamically. 

2.2.7 Lazy Queue 

The lazy queue [32] is another multi-list algorithm for a priority queue. The lazy 

queue is modeled after a human approach to scheduling, partitioning events into one 

of three intervals, the near future (NF), the far future (FF), and the very far future 

(VFF). Each interval of events is handled differently, the near future events are kept 

completely sorted, the FF events are partially sorted using a sorted array of unsorted 

months, and the VFF which is not ordered. 

When a remove-min operation occurs the smallest event is removed from the NF, 

if the NF is empty the first month of the FF is sorted and moved into the NF. The cost 

of inserting an event depends on which interval it will be inserted into. The cost of 

inserting events into the NF depends on the implementation of the NF priority queue. 

Insertion into the FF is very efficient since a calculation yields the appropriate month, 

and then the event is inserted into an unordered sublist, requiring 0(1) operations. 

Insertion into the VFF is also done in constant time since it is maintained unsorted. 

As time advances so must the boundaries between NF and FF, and, FF and VFF. 

The performance of the lazy queue algorithm depends greatly on the size of the 

NF, FF, and VFF. There are several algorithm parameters that bound the size of 

the NF, FF, and VFF. Additional parameters control how and when to restructure 

the queue. Resizing the queue is quite expensive but its cost is amortized over the 

relatively inexpensive insert and remove-min operations. 

The unordered sublists of the FF contrast with the ordered sublists of the calen-

dar queue, also the lazy queue reintroduces the overflow list (VFF) and associated 
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problems. 

2.2.8 Other Priority Queue Implementations 

There are many other algorithms that have been used to implement the pending event 

set. A few more are briefly discussed below. 

The priority-tree or ptree is a type of binary tree that can be efficient when 

timestamps of newly inserted events are generally larger than those already in the 

tree. As explained by McCormack and Sargent's theoretical analysis [27] this is 

not usually the case which makes the ptree a poor choice for general purpose CEL 

algorithm. 

Mauricio Mann [26] introduces tournament-based binary trees and demonstrates 

their utility as a priority queue implementation well suited to DES. Complete binary 

trees were a predecessor to binary heaps; both structures have the benefit of being 

relatively insensitive to the scheduling distribution. 

Binomial queues have been tested as a priority queue implementation for DES, 

but according to Jones [20] binomial queues' behaviour is erratic, requires complex 

code and is rarely faster than splay tree implementations. 

Skew heaps can perform very well and they were one of the first tree mechanisms 

that did not restrict the cost of a single operation to 0(1092 F) instructions. Instead 

the algorithm guarantees that the amortized cost for any sequence of operations that 

starts from an empty queue is O(1og2 F) [20]. 

2.3 Summary 

This chapter has presented relevant background for DES. The central event list al-

gorithm has been explained and possible implementations of the priority queue have 

also been discussed. Table 2.1 summarizes the asymptotic behaviour of the different 

algorithms. Henriksen's, heap, splay tree, and calendar queue implementations have 
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Algorithm Worst Average Comments 

linked list P P The insertion cost for a linked list is on average 0(P), but it may be 

significantly more efficient to start the insertion from the front or back 

of the list, depending on the timestamp increment distribution [27]. The 

cost of a remove-min operation is 0(1). 

heap 1092 P 1092 P The insertion cost for a heap is on average 0(1) under the assumption 

that insertions are random (15, 29]. 

impr. heap 1092 P 1092 P The improved heap avoids unnecessarily restoring the heap when a remove 

operation is immediately followed by an insert 0perati0n[27]. 

henriksen P _1/_P The cost of a single operation can be 0(P), but the amortized cost per 

operation is bounded by 0(/P) (22]. Empirical evidence suggests much 

better performance in practice [20]. 

splay tree P 1092 P The cost of a single operation can be 0(P), but the amortized cost per 

operation is bounded by 0(1og2 P) (35). 

calendar queue P 1 informal analysis and empirical evidence suggest 0(1) average perfor-

mance (2]. 

lazy queue 1092 P 1 Informal analysis and empirical evidence suggest 0(1) average perfor-

mance, Worst case performance depends on the implementation of the 

near future and VFF [32). 

Table 2.1: Asymptotic Bounds for priority queue operations 

been incorporated into the test system that is described in Section 4.2.1. These CEL-

based algorithms will be used for comparison with the channel based conservative 

PDES algorithms described in the following chapter. 



Chapter 3 

PDES Algorithms 

Parallel discrete event simulation (PDES) systems use multiple processors to ex-

ecute a single simulation run. This can greatly reduce the time required to execute a 

simulation. Several parallel simulations programs have achieved exceptional sequen-

tial performance, in particular simulators employing the critical channel traversing 

algorithm [41, 21]. This algorithm is an example of a channel based conservative 

synchronization algorithm. 

This chapter introduces terminology and concepts relevant to PDES. Section 3.2 

presents several conservative PDES algorithms including the Chandy-Misra-Bryant 

(CMB) and critical channel traversing (COT) algorithms. For completeness, Sec-

tion 3.3 covers optimistic and aggressive no risk algorithms. 

3.1 Parallel Discrete Event Simulation 

Parallel discrete event simulation (PDES) refers to the execution of a single simulation 

run in a parallel or distributed computing environment. 

There are two major classes of application for PDES technologies, analytical sim-

ulations and distributed virtual environments (DVEs) [14]. Analytical simulations 

are used as problem solving tools to determine particular characteristics of a system. 

19 
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Distributed virtual environments [14] are used for training and entertainment pur-

poses. They use simulation technology to create computer generated worlds in which 

geographically separated users interact. Emulations also allow users to interact in a 

simulated environment, but their purpose is usually to conduct analytical experiments 

in a repeatable test environment [33]. 

Analytical simulations are run as-fast-as-possible, whereas DVEs and emulations 

need only keep up to wall-clock time. Simulations that are paced with wall-clock time 

must execute quickly to meet real-time deadlines. DVEs that incorporate interaction 

with human beings are called human-in-the-loop; ones that support interaction with 

real-world devices are called hardware-in-the-loop. There may be certain situations 

such as the case of human-in-the-loop DVEs, where missing the occasional real-time 

deadline is acceptable provided the user doesn't perceive the virtual environment to 

be unrealistic. 

Fujimoto [14] identifies four benefits of parallel simulation: reduced execution 

time, geographic distribution, integration of simulators that execute on machines 

from different manufacturers, and fault tolerance. Parallel simulation can reduce the 

wall-clock time required for a single execution of a simulation. This is necessary for 

applications such as emulation where meeting real-time deadlines is critical. Parallel 

simulation also enables simulation of larger models than would be possible with the 

resources of a single system. 

3.1.1 LP Modeling Methodology 

Similar to sequential DES, PDES requires that the physical system be mapped to a 

logical model before it can be simulated. PDES techniques generally impose more 

restrictions on how this mapping is accomplished. Most approaches use an object 

oriented or encapsulated approach. The mapping process begins by identifying the 

different parts of the physical system based on their interaction. Different parts 

of the physical system affect one another's state through some type of interaction, 
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whereas a single part may affect its own state directly. These physical components 

can be mapped to logical components within the simulation. A simulation represents 

parts of the physical system using objects, or classes, or whatever modeling tools are 

available to the simulation programmer. In PDES literature these simulation objects 

are called logical processes (LPs). LPs do not modify one another's state directly. 

Instead, they cause state changes in another LP by scheduling events which will later 

affect that part of the system. Representing the physical system in this manner makes 

it easy to understand and validate the model. 

Many PDES algorithms use channels to represent the logical connections between 

LPs that communicate. Channel behaviour is first-in-first-out meaning that messages 

are received in the same order they were sent. A channel from LP A to LP B allows 

LP A to schedule events for LP B. LP A is said to have an output channel connected 

to LP B, while LP B has an input channel to EP A. Channels are often present in 

pairs to allow bidirectional interaction, i.e., a channel from LP A to LP B and a 

channel from LP B to LP A. 

3.1.2 Causality and Synchronization 

Events that depend on previous events must be executed in a causally correct manner. 

An error that occurs as a result of events be executed out of order is referred to as a 

causality error. The synchronization problem (i.e., the problem of maintaining causal 

correctness) is significantly complicated when attempting to run a simulation across 

multiple processors. 

Attempting to use the GEL algorithm described in Chapter 2 for parallel simu-

lation is problematic. The central event list is a shared data structure that will be 

accessed by all processors. It must be locked whenever it is accessed to maintain con-

sistency of the data structure. Locking the CEL does not ensure that events will be 

executed in chronological order. Additional mechanisms that synchronize the execu-

tion of processors or make use of model specific information are necessary to execute 
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multiple events concurrently. Further, the performance of such a system could be 

quite poor due to the contention for access to the GEL. 

Specialized parallel discrete event simulation (PDES) algorithms have been devel-

oped to solve the problem of parallel and distributed synchronization. These algo-

rithms employ multiple event lists, as opposed to GEL-based algorithms which employ 

a single event list. 

Fujimoto [12] describes the local causality constraint as follows: 

A discrete-event simulation, consisting of logical processes (LPs) that 

interact exclusively by exchanging timestamped messages obeys the lo-

cal causality constraint if and only if each LP processes events in non-

decreasing timestamp order. 

The above condition is sufficient but not necessary to guarantee that no causality 

errors occur. If two events are independent then it is not necessary to execute these 

events in timestamp order. In a parallel simulation a synchronization mechanism is 

required to ensure causal correctness for concurrently executed events. 

3.1.3 Risk and Aggression 

Reynolds [30] introduced the terms risk and aggression to help classify the different 

synchronization algorithms. Aggression is a property of synchronization algorithms 

that execute events before causal ordering is guaranteed. Risk is a property of syn-

chronization algorithms that dispatch events before the causal order of the generating 

event is guaranteed. 

Conservative synchronization algorithms strictly avoid causality errors by adher-

ing to the local causality constraint; they do not exhibit risk or aggression. Optimistic 

algorithms exhibit aggression and risk to varying degrees; this requires that they de-

tect and recover from any causality errors that might occur. Aggressive no risk algo-

rithms execute events before their causal ordering is guaranteed, but do not dispatch 
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Algorithm class Risk Aggression Algorithm 

Conservative 

X X 

CMB Null Message [3, 4] 

Deadlock detection [5] 

Cooperative Acceleration [1] 

Bounded Lag [25] 

Critical Channel Traversing [42] 

Optimistic Jefferson's Time Warp [19] 

Aggressive No Risk X Bounded Lag (without Time Warp) [24] 

Breathing Time Buckets [37] 

SRADS/LR [9] 

Table 3.1: Risk and Aggression of Synchronization Algorithms 

new events until the causal order of the generating event is guaranteed. Table 3.1 

classifies numerous PDES algorithms according the properties of risk and aggression. 

3.2 Conservative Synchronization 

Conservative synchronization implies that each LP in the model executes events in 

non-decreasing timestamp order. An event is safe to execute if the LP can determine 

that it is impossible to receive any event with a smaller timestamp. A safe event 

can be executed without violating the local causality constraint. An LP is said to be 

blocked if it has no safe events to execute. Deadlock refers to the situation in which 

all LPs are blocked. When all of the channels in a system are populated with events, 

LPs are unlikely to become blocked since there are always safe events to execute. 

However, deadlock can occur frequently if the ratio of unprocessed events to channels 

is too low, or if unprocessed events become clustered in one part of the simulation, 

i.e., if there are many empty channels. 

There are two main classes of conservative synchronization, asynchronous and 
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synchronous. Asynchronous algorithms avoid synchronizing the execution of proces-

sors as much as possible, while synchronous repeated synchronize execution of the 

processors. Asynchronous algorithms must address the issue of deadlock either by 

avoiding it, or recovering from it when it occurs. Synchronous algorithms do not 

become deadlocked because they repeatedly stop the simulation and determine what 

events are safe to process. 

Consider two LPs p and q. In order for p to affect q, it must send it a timestamped 

message (an event). For the following discussion, p is assumed to be the sending LP 

and q the receiver. p has lookahead £ with respect to q if p can be certain that it will 

not affect (schedule an event for) q for an amount of simulated time £. The following 

categorization of lookahead is from Nicol [28]: 

• Bounded time lookahead suggests that p knows that it will not affect q up to 

some time t. Exact time lookahead means that p knows exactly when it will 

next affect q, i.e., at time t. 

• Content lookahead refers to the situation in which p has information about 

the content of the next message that it will send to q. With time lookahead 

(bounded or exact) only information regarding the time of future events is 

available. If p has both exact time lookahead and content lookahead, it is 

possible to immediately schedule the event for q. 

• Lookahead can be classified as Directed, Semi-directed, or Undirected . This 

indicates whether the lookahead is with respect to a single LP (directed), a 

subset of the LPs (semi-directed), or all LPs (undirected). 

• Some simulation algorithms, typically synchronous algorithms can exploit con-

ditional lookahead. Conditional lookahead exists when p can say that it will not 

affect q before t, provided that some state condition of p does not change before 

time t. Lookahead that is not conditional can be referred to as unconditional 

lookahead. 
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Performance of conservative synchronization mechanisms is tied closely to looka-

head. Conservative algorithms must be adept at determining what will not happen 

before a given point in simulation time. In general, a conservative synchronization 

mechanism cannot fully exploit the available parallelism in the model. 

3.2.1 Chandy Misra Bryant (CMB) null message algorithm 

Chandy and Misra [4], and independently Bryant [3] developed the first asynchronous 

conservative synchronization algorithms. These algorithms assume a static specifica-

tion of channels. They also assume that events are sent down a channel in non-

decreasing timestamp order, this allows an LP to determine a lower bound for the 

timestamp of the next event to arrive on that channel. The channel clock is defined to 

be the timestamp of the first event in the channel, or the timestamp of the last event 

received on that channel if it is currently empty. A lower bound for the timestamp 

of the next event to arrive on a channel can be computed by adding the lookahead 

between sending and receiving LPs to the clock of the sending LP. 

A zero lookahead cycle refers to a cycle in the connection topology of LPs which 

contains zero lookahead, i.e., the lookahead of every channels in the cycles is zero. 

Deadlock can be avoided through the use of null messages provided there are 

no zero lookahead cycles in the model. Null messages are timestamped events that 

have no associated action; they just serve to update the channel clock when they are 

processed. In the original CMB algorithm null messages are sent after each event is 

processed to inform neighboring LPs of a lower bound on the timestamp of the next 

possible event. The timestamp of a null message is set to be the local simulation time 

of the sending LP plus the lookahead between the sending and receiving LPs. Null 

messages do not allow for zero lookahead cycles to exist since there would still be 

potential for a deadlock situation in which the simulation time would not advance. 

A low lookahead cycle refers to a cycle of LPs which contains inadequate lookahead 

to allow the execution of an event without first traversing the cycle to update clock 
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values. Low lookahead cycles can lead to large numbers of null messages being sent 

in the CMB algorithm. 

Optimizations of the 0MB null message algorithm involve reducing the number of 

null messages that must be sent. In particular cooperative acceleration [1] and carrier-

null messages [40] attempt to reduce the number of null messages sent in low lookahead 

cycles. Another approach is to send null messages only on a demand basis [14]. This 

can be better or worse depending on how prone to deadlock the simulation is. Implicit 

null messages avoid sending null messages altogether by modifying the channel clock 

in place. This approach is applicable when the sending and receiving LPs are in the 

same memory space, as all LPs are on a shared memory parallel computer. Taking 

advantage of all available lookahead is important to obtaining good performance in 

an asynchronous conservative simulation [28] 

If a physical system is modeled using more LPs than there are processing elements 

available, this will require a scheduling mechanism to decide which LP should be 

executed next on a given processor. The 0MB algorithm does not specify how LPs 

are scheduled. One simple approach is to select the next LP based on the current 

simulation times of all non-executing LPs in the model. Choosing the LP with the 

smallest simulation time is a reasonable heuristic since that LP is the furthest behind 

and has the greatest potential to advance. 

3.2.2 Critical Channel Traversing (CCT) 

The critical channel traversing algorithm (COT) [42] is based on the 0MB algorithm 

described above. The OCT algorithm attempts to determine which LPs are good 

candidates for execution by observing which LP is preventing the currently executing 

LP from continuing to execute. The goal of this approach is to maximize the number 

of events executed per LP execution session and reduce LP scheduling overheads. 

Each LP in the OCT algorithm maintains a list of LPs that will be scheduled 

once its execution session terminates. The behaviour of the OCT algorithm can be 
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described in terms of a currently executing LP. Each LP is processed according to 

the following steps: 

1. Determine the safetime; this is taken to be the minimum channel clock of all 

empty input channels. 

2. Execute any events with timestamps less than or equal to the safetime, or until 

a previously non-empty channel becomes empty. 

3. Update the safetime, if it has increased return to step 2. 

4. There are no more events that are safe to execute, so determine which channel is 

preventing further execution. This is called the critical channel. The currently 

executing LP is added to the scheduling list of the LP connected to the critical 

channel. 

5. Add any LPs in the local scheduling list to the central LP scheduling queue. 

The TasKit implementation of OCT employs multi-level scheduling, instead of schedul-

ing LPs, the OCT algorithm is used to schedule groups of LPs called tasks. Different 

types of tasks are then processed in different manners. LPs in a cluster task share 

the same event queue. The cluster task operates like a CEL simulation. Pipe tasks 

impose a fixed schedule on the execution order of LPs in the task. The tasks are 

taken from the centralized scheduling queue. 

CCTKit is a second implementation of the OCT algorithm, however each processor 

has its own scheduling queue instead of a single centralized scheduling queue. CCTKit 

also uses tasks to provide multi-level scheduling. 

3.2.3 Deadlock Detection & Recovery 

Deadlock detection and recovery is an alternative to deadlock avoidance. Deadlock 

detection and recovery is again a conservative asynchronous approach to synchroniza-

tion. This technique succeeds in eliminating null message traffic and it also allows for 
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zero lookahead cycles. Unfortunately in practice the performance is not good. The 

problem is that a large proportion of the simulation may become deadlocked prior to 

the entire simulation becoming deadlocked, this implies that only a small part of the 

potential parallelism can exploited. Chandy and Misra presented an algorithm based 

on detection and recovery in [5]. 

Fujimoto presents a version of the Dijkstra/Scholton algorithm for deadlock de-

tection [14]. This algorithm assumes that there is a "controller LP" capable of rec-

ognizing a deadlock situation. A LP based simulation is an example of a diffusing 

computation in which individual LPs are initially blocked and only begin to execute 

once they receive an event. They execute for a period of time, possibly generating 

other events and sending them to other LPs until they stop. A stopped LP does 

not resume execution until it receives a message. The basic idea of this algorithm 

is to use a tree to maintain information regarding the LPs currently engaged in the 

simulation. When a message is sent to an LP, that LP adds itself to the tree if it is 

not already part of it. When an LP blocks, it will remove itself from the tree. When 

the controller LP becomes a leaf node in the tree it knows that the simulation has 

deadlocked. 

Given that all LPs are blocked, it is always safe to process the event in the system 

with the smallest timestamp. The controller LP broadcasts a message asking each LP 

to report their minimum timestamped event. Once the controller has this information 

it determines the events which are safe to process and instructs the corresponding 

LPs to begin executing. 

3.2.4 Synchronous Simulation Protocol 

A synchronous simulation protocol cycles through two phases of execution. During 

the global synchronization phase, each LP is able to determine which events are safe 

to process. This is accomplished via a barrier synchronization operation which waits 

for all LPs to stop executing. During the event processing phase each LP executes all 
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of its "safe" events. 

Starting and stopping the LPs has an advantage over certain asynchronous proto-

cols. A simulation based on a deadlock detection and recovery algorithm, such as the 

one presented in the previous section, can degenerate into a sequential computation 

if it takes a long time for the deadlock to finally occur. It is possible that most of 

the simulation is deadlocked while a small portion continues to make progress. A sit-

uation like this can drastically degrade simulator performance'. On the other hand, 

a synchronous simulation protocol has more control over the amount of computation 

performed during each cycle of execution. 

A barrier is a construct for parallel programming that can be used to synchronize 

the execution of multiple processors. Three different types of barriers are presented 

in [14]:, centralized barriers, tree barriers, and butterfly barriers. Centralized barri-

ers require a central controller processor and the technique does not scale well to a 

large number of processors. Tree barriers solve the scalability issue but still require 

broadcasting a message to indicate when global synchronization has been achieved. 

The butterfly barrier is good because there is no need for a central controller. After 

each processor has performed 1092 N pairwise barrier synchronizations, global syn-

chronization has been achieved. 

Transient messages are messages between processors that have been sent but have 

yet to be received. In order to support asynchronous messaging, care must be taken to 

observe all transient messages prior to determining which events are safe to process. 

Barrier synchronization is best suited to shared memory machines because of the 

communication overhead and the need to observe transient messages. 

Bounded Lag [24, 25] uses a time window approach to reduce the amount of 

computation required to determine which events are safe to process. The trick with 

bounded lag is to determine a window size that is optimal. A window that is too 

small will result in few events being executed in each execution phase; if the window 

'Amdahl's law: No more than k-fold speedup is possible if *th of the computation is sequential. 
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is too large the benefit of the window is lost, since the algorithm must again check 

the messages of all other LPs. Bounded lag is an example of an algorithm that can 

exploit both directed and undirected lookahead. 

3.3 Optimistic Synchronization 

Unlike conservative algorithms, optimistic synchronization techniques often process 

an event before it is known to be safe. This occasionally results in causality errors 

which must be detected by the simulation kernel and recovered from. The first sub-

section is focused on the Time Warp synchronization mechanism based on the virtual 

time paradigm. The second subsection briefly covers aggressive no risk algorithms. 

Jefferson introduced the virtual time paradigm [19] as a method for organizing 

distributed systems. Virtual time is less restrictive than real time, it can progress 

forward and backward. Thinking of time in this way can be useful for many dis-

tributed systems. For example, database concurrency control. Time Warp [19] is 

an implementation of virtual time well suited to parallel discrete event simulation 

(PDES). 

3.3.1 Time Warp for PDES 

In Time Warp, each LP processes its events in non-decreasing timestamp order. How-

ever, if an LP receives a message in its past (a straggler message), it detects this 

violation of the local causality constraint and takes appropriate action to recover. 

Rollback is the mechanism responsible for restoring the state of the LP so that the 

straggler message can be correctly inserted and executed. Local virtual time (LVT) 

refers to the current simulation time of an LP. Recall that at a given wall-clock time, 

each LP in the system may have advanced to a different point in simulation time. 

Local virtual time tends forward but it may occasionally jump backward when a 

rollback occurs. To correctly process a straggler message, local virtual time must be 
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rolled back to the timestamp of that message. 

Each event processed with timestamp greater than that of the straggler message 

may have modified state and caused new messages to be generated. This implies 

that not only local state must be restored, but that certain messages may need to be 

"unsent". After the rollback is completed, the simulation can advance forward again, 

possibly re-executing the events that were just rolled back. 

Messages in Time Warp are always created in pairs. The pair consists of a negative 

and positive copy of the information. Negative messages called antimessages are used 

to "unsend" previously sent positive messages. If antimessages and positive messages 

meet before either is processed then they cancel each other out and there is no record 

of either message ever existing. A message can be unsent by sending its corresponding 

antimessage. 

When an LP receives an antimessage several things can happen. If the corre-

sponding positive message has yet to be processed, then the antimessage and the 

positive cancel each other out. If the positive message has already been processed 

then the LVT has already advanced and the antimessage will cause the receiving LP 

to rollback. If an antimessage arrives before the corresponding positive message it 

can be ignored; when the positive message arrives they will cancel each other out. 

Jefferson compares virtual time to virtual memory [19], many of the concepts in 

one have analogues in the other. Each time an LP processes an event it will discover 

that its timestamp is greater than the LVT (akin to a page hit in a virtual memory 

system), or that the event's timestamp is in the past with respect to LVT and that a 

rollback is required (similar to a page fault in a virtual memory system). This is the 

notion of a timefault. 

The rollback mechanism relies primarily on LPs being able to restore their state. 

There are several different approaches to state saving: 

• Copy state saving saves the entire state of the LP after each event is processed. 

This is the simplest mechanism to implement. However, it is very memory 
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intensive. The primary advantage of this technique is that restoring the state 

is quick. 

• Infrequent state saving requires less memory than copy state saving by only 

saving the state of the LP periodically (e.g., after every 10 events). The problem 

with this approach is that the simulation may have to roll back further than 

logically necessary to reinsert the straggler message, and a greater number of 

events will need to be reprocessed. 

• Incremental state saving records the changes to an LP's state after each event. 

This contrasts with the other approaches to state saving that save the entire LP 

state. This approach is more complicated to implement and restoring the state 

requires tracing backward through the saved state changes. The advantage 

of this approach can be a substantial savings in the memory requirements. 

However, it is possible that incremental state saving requires more memory 

than infrequent state saving in some situations. 

A global control mechanism is required to ensure that a simulation does not run 

out of memory and to decide when it is safe to commit irrevocable operations such 

as I/O. 

Global virtual time (GVT) is defined to be the minimum timestamp of all unpro-

cessed messages in the system and those currently being executed, this includes both 

positive messages and antimessages. Care must be taken to observe any messages 

that are still in transit. GVT always progresses forward with respect to wall-clock 

time. 

Fossil collection is the process of reclaiming memory when it is no longer needed 

by the Time Warp system. Once GVT has advanced beyond time t, any messages 

with timestamps less than t can be discarded. Any saved state that is no longer 

necessary to reconstruct the LP state at time t can also be freed. Similarly, I/O 

operations can only be committed once GVT advances beyond the simulation time 
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of those operations. 

There are three GVT algorithms presented in [14]. The synchronous GVT al-

gorithm, Samadi's GVT algorithm and Mattern's GVT algorithm. All algorithms 

must account for transient messages in the system. The synchronous GVT algorithm 

requires that all processors stop processing events while the GVT is being calculated. 

Samadi and Mattern's solutions allow processors to continue executing, but they must 

now account for the fact that different processors will report LVT at different points 

in wall-clock time. 

The Time Warp mechanism does not rely on channels. Conservative synchroniza-

tion mechanisms tend to impose artificial dependencies. For example, even though 

events are independent they must be executed in timestamp order. The Time Warp 

mechanism should perform well if the simulation obeys the temporal locality princi-

pal. That is, that most messages arrive in the future and those that arrive in the 

past, arrive mostly in the near past. 

A rollback echo refers to the situation where the LVT is rolled back by an increas-

ing number of simulation time units each time a rollback occurs. This situation can 

arise when rolling back the simulation by a certain amount of simulation time requires 

more wall-clock time than executing forward by the same amount of simulation time. 

Rollback echoes will continually slow the progress of GVT with respect to wall-clock 

time as the simulation progresses. 

3.3.2 Aggressive No Risk 

The event horizon is defined to be the difference in timestamp between the first event 

that is processed, and the last event that can be processed independently of any events 

generated in that cycle. Steinman [37] has explained how exploiting the concept of 

an event-horizon allows synchronization protocols to reduce the amount of risk when 

sending messages. One example of this strategy can be found in breathing Time 

Warp [36]. 
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Aggressive no risk algorithms (ANR) must support a rollback mechanism but they 

do not need anti-messaging since messages are sent only once it is known that they 

will not cause rollbacks. By not propagating incorrect information ANR algorithms 

avoid compounding problems that occur in optimistic algorithms that exhibit both 

risk and aggression. For example, the likelihood of rollback echoes is less with ANR. 

algorithms. There is an optimistic version of SRADS that allows for local rollbacks 

and aggressive processing of events 191-

3.4 Summary 

This chapter has presented the necessary background in PDES. Several channel based 

conservative simulation algorithms were described. The 0MB null message algorithm 

and the critical channel traversing algorithm will be implemented in the test system 

described in Section 4.2.1. Their sequential performance will be evaluated in compar-

ison to the sequential simulation algorithms described in the previous chapter using 

a synthetic workload model described in Section 4.1.7. Several other conservative, 

optimistic, and aggressive no risk synchronization mechanisms were also discussed. 

Optimistic algorithms which exhibit risk or aggression are not good candidates for 

sequential execution. The overheads of state saving, rollbacks, etc., are prohibitive in 

a sequential execution environment. 



Chapter 4 

Model and Methodology 

The performance of simulation algorithms is usually compared according to some 

simulation model. The question becomes which algorithm can simulate the selected 

model in the least amount of time. Of course some algorithms are better suited to 

some models. The algorithm that performs best for one model might not be the 

best algorithm in another situation. Synthetic workload models are one way that the 

range of performance of an algorithm can be explored. 

The test system used in this thesis is based on a synthetic workload model. The 

test system allows the comparison of a suite of simulation algorithms under many 

different conditions. All simulation algorithms execute the same model level code 

which helps to ensure a fair comparison of the algorithms. In the next chapter ex-

periments are conducted that vary parameters of the synthetic workload. Algorithm 

performance is reported in terms of six metrics that are defined later in this chapter. 

Another way that algorithms can be compared is according to their asymptotic 

complexity or behaviour. This does not give a complete picture of algorithm per-

formance on its own, since it does not reflect the cache behaviour of the algorithms. 

However, it does give an indication of how and when the channel based conservative 

algorithms can achieve better performance than CEL-based approaches. 

35 
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This chapter begins with a survey of existing synthetic workload models, then 

proceeds to detail the model that is used for experiments in this thesis. The second 

section describes the test system and experimental methodology used in comparing 

the sequential execution of the various simulation algorithms. The final section of this 

chapter analyzes the complexity of sequentially executed channel based conservative 

synchronization mechanisms, in general and for the workload model used in this 

thesis. 

4.1 Synthetic Workload Model 

Synthetic workload models attempt to capture the essential characteristics of a wide 

variety of simulations, rather than any particular real world system. The relative 

simplicity of a synthetic workload model makes it easier to understand the behaviour 

of the simulation algorithms without having to deal with the specifics of a real world 

simulation. Synthetic workload models allow stress testing of algorithms under a 

variety of conditions. This helps in understanding the limits of performance for a 

particular algorithm. Assuming that a synthetic workload model accurately captures 

the characteristics of a real simulation, results from the synthetic model can be used 

to estimate performance of the algorithm in a real world simulator. Subsections 4.1.1 

through 4.1.6 describe different synthetic workload models that have been used to 

test simulation algorithms. Subsection 4.1.7 explains the workload model used in the 

experiments conducted in this thesis research. 

4.1.1 HOLD model 

Many comparisons of CEL algorithms have been based on the HOLD model [20, 

2, 32, 31, 39, 27]. The model gets its name from the Simula' hold operation. In 

the context of this thesis, a hold operation consists of removing the event with the 

'Simula was a programming language with mechanisms to support development of simulations. 
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Distribution HOLD model PHOLD Test 

Constant N/A 1.0 1.0 

Exponential —1n(rand) 0.1 - ln(rand) —1n(rand) 

Uniform 2rand 0.1 + rand 2rand 

Biased 0.9 + 0.2rand 

Bi-model 0.95238rand+ if rand < 0.1 then 9.5328 else 0 

Triangular N/A 1.5V/rand 1.5,\/rand 

Table 4.1: Scheduling Distributions 

smallest timestamp from the pending event set, incrementing its timestamp by some 

amount and then reinserting it. A complete description and analysis of this model 

can be found in [27]. 

A hold operation can be simulated by any central event list algorithm using a 

remove-min operation followed by an insert operation. Each simulated hold operation 

removes an event with timestamp t and results in the generation of a new event with 

timestamp t + /t where At A a random variate taken from a distribution F(t). The 

HOLD model column of Table 4.1 shows distributions that are commonly used with 

the HOLD model in evaluating CEL-based algorithms. 

The model parameters are P and F(t). P is the size of the pending event set and 

F(t) is the distribution used to determine when events will occur. F is known as the 

scheduling distribution. The HOLD model has three phases: 

1. [INITIALIZATION]. P events are inserted into the pending event set, times-

tamps of the events are generated from the distribution F(t). 

2. [TRANSIENT]. Execution of M1 hold operations to allow model to reach a 

steady state. 

3. [STEADY STATE]. Execution of 11/12 hold operations while measuring GEL 
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performance. Performance can be measured in terms of time elapsed during 

execution of M2 hold operations or the number of operations required to perform 

M2 hold operations. 

Based on analysis of the interaction HOLD model (see Section 4.1.2), McCormack 

and Sargent [27] determined that the HOLD model should favour scheduling distri-

butions with a coefficient of variation greater than 1, such as the hyper-exponential 

or mixtures of exponentials. When more than one scheduling distribution interact as 

is the case for modeling most real world situations the coefficient of variation tends 

to be greater than 1. This suggests that the scheduling distribution should also be 

chosen to have a coefficient of variation greater than 1 to be more realistic. 

There are three potentially important characteristics of real world simulations that 

the HOLD model fails to address. The first issue is that the event population is fixed. 

The pending event set remains a constant size once the INITIALIZATION phase has 

completed. There are many real world scenarios where the number of events is likely 

to change throughout the simulation. A second issue is that the timestamps of the 

entire event population are generated from the same scheduling distribution. Even 

very simple real world simulations usually involve multiple scheduling distributions. 

Choosing a scheduling distribution with a coefficient of variation greater than 1 will 

help address this concern, but it is not a complete solution. The third issue is that 

all of the events in the HOLD model are independent of one another, this is never 

the case in a real world simulation. In a real world simulation the generation of new 

events depends on the current system state, which was previously acted upon by 

other events. Despite these shortcomings, the HOLD model has been used in many 

empirical comparisons of CEL-based algorithms. 

4.1.2 Interaction HOLD Model 

In a real world simulation, timestamp increments are likely to be taken from multiple 

distributions. For example, a Poisson distribution is used to model the arrival of 
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customers while a normal distribution is used to model the service times for those 

customers. This interaction of distributions is not captured by the HOLD model. 

McCormack and Sargent [27] propose the interaction HOLD model that addresses 

the situation where different scheduling distributions interact. The interaction HOLD 

model is identical to the HOLD model except that event timestamps are generated 

using multiple distributions F (t). The pending event set contains P independent 

events; each hold operation removes an event E, increments its timestamp by At 

where At is taken from a scheduling distribution F (t) and then reinserts the event 

into the pending event set. 

4.1.3 Up and Down HOLD Model 

Randy Brown [2] presents another variation of the HOLD model that compares al-

gorithm performance for queues that change in size over time. The original HOLD 

model assumes that the pending event set size remains fixed. The Up and Down vari-

ation of the HOLD model measures performance as the queue size changes over time. 

Using a random sequence of enqueues and dequeues the queue is first grown until it 

reaches P elements and then emptied. During the growth phase enqueues occur with 

probability p E (0.5, 1.0], dequeues with probability 1 - p. While the queue is being 

emptied the probabilities are reversed. The parameter p effectively controls the rate 

of queue size change. 

4.1.4 Dependent HOLD model 

Marfn [26] introduces another HOLD model variation that addresses the event de-

pendence issue. Marfn's model requires that the CEL algorithm support an operation 

for deleting an arbitrary element in the collection. This synthetic workload model 

views the system as P objects that schedule events independently. The interactions 

occur randomly according to a probability parameter. The higher the probability the 

greater the frequency of interaction. If the probability is 0 then there is no interac-
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tion. If the probability is 1 then after each hold operation, the object interacts with 

another randomly chosen object. When an interaction occurs, an object is randomly 

chosen and the corresponding event is deleted. A new event is created based on the 

last executed hold operation and then inserted into the pending event set. 

4.1.5 PHOLD model 

Fujimoto introduced a parallel HOLD (PHOLD) model used to compare the per-

formance of conservative simulation algorithms based on deadlock avoidance and 

deadlock detection and recovery [11]. This synthetic workload model addresses the 

spatial characteristics of a simulation [11]. This is particularly important for evaluat-

ing parallel simulation algorithms since the spatial characteristics directly affect the 

available parallelism. A later version of the PHOLD model described in [13] was used 

to evaluate the performance of the optimistic TimeWarp PDES algorithm. 

Recall the LP modeling methodology described in Section 3.1.1. The PHOLD 

model consists of a set of LPs connected in a toroid network as shown in Figure 

4.1. When a event arrives at an LP, a busy wait loop is executed to simulate the 

computation grain associated with processing the event. The timestamp of the event 

is updated, and it is sent to a neighboring LP. As events move between LPs their 

timestamps are incremented to model the passage of time. 

There are several parameters for this synthetic workload: timestamp increment, 

event population, topology of logical processes, routing probability and computation 

grain. The timestamp increment parameter selects one of the distributions from the 

PHOLD column in Table 4.1. In order to use the PHOLD model to compare conser-

vative algorithms, the uniform and exponential distributions must be shifted. This 

guarantees that the lookahead is strictly greater than 0, a necessary condition for the 

deadlock avoidance algorithm. A pseudo random number taken from the specified 

distribution determines the amount of simulation time that an event is delayed as it 

travels from one LP to the next. This parameter corresponds to the scheduling distri-
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Figure 4.1: 4x4 Toroid Network 

bution (F(t)) used in the HOLD model. The event population parameter determines 

the number of events in the system in the same manner as the P parameter for the 

HOLD model. The number of events remains fixed throughout the simulation. The 

topology of LPs can be arbitrarily specified. The original PHOLD workload model 

used toroid networks of 4x4 and 8x8 LPs. When an event is finished processing, it 

is forwarded on a randomly chosen output channel. The likelihood of sending on a 

particular channel depends on the routing probability parameters. Finally, the com-

putation grain parameter is used to control the amount of time spent in the busy 

wait loop, this can be stochastic or fixed. Modeling computation grain is necessary in 

the parallel simulation setting since the amount of time that a cpu is busy will affect 

when it can send and receive events and ultimately simulator performance. 

4.1.6 Ring Model 

Liu and Nicol [23] developed a synthetic workload model that can be used to stress 

test the LP scheduling mechanisms of channel based conservative PDES algorithms. 

This model consists of an ordered set of N LPs connected in a ring. Each LP is 

connected to R of its predecessors and R of its successors as shown in Figure 4.2. The 
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a) Ring Topology b)Star Topology 

Figure 4.2: Test Model Topologies, 8 LPs with Connection Radius 2 

connections are symmetric and never duplicated. If there is a channel from LP A to 

LP B, then there is also a channel from LP B to LP A. There will never be more 

than one channel from LP A to LP B. The resulting topology is referred to as the 

ring topology, the parameter R is called the connection radius. In the Ring model, 

no events sent between LPs. Events are only scheduled locally within an LP. At any 

given time there will be at most one event in each LP's local event list. When a local 

event is executed it causes a new local event to be scheduled using an exponentially 

distributed timestamp increment. The exponential distribution has a mean of 1/D, 

where the D parameter refers to event density. There are approximately D events 

executed by each LP per second of simulated time. Again, there are no events sent 

between LPs. The reason for this was the motivation to focus on the overhead of the 

synchronization protocols. 

4.1.7 Test Model 

This subsection describes the synthetic workload model used for the experiments 

presented in this thesis. Any future reference to the test model can be taken to 

refer to the model described in this section. The test model incorporates many of the 
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parameters and characteristics of PHOLD and Ring models previously described. The 

test model was designed to be descriptive, yet simple to analyze. The parameters of 

this model are: number of LPs (N), event density (D), connection radius (R), channel 

delta (L), topology (T), computation grain (C), LP state size (S), and scheduling 

distribution (F(t))-

The simulation is initialized with N x D events. These events are uniformly 

distributed among all LPs in the system such that on average there are D events 

scheduled locally at each LP. The timestamps of these initial events are taken from 

the scheduling distribution F(t). The event population remains constant throughout 

the simulation. 

There are two connection topologies implemented in this workload model, a ring 

topology identical to that described in Section 4.1.6 and a star topology. Consider 

an ordered set of N LPs. In the star connection topology each LP is connected to 

its immediate successor and predecessor, and then connected to 2R - 2 LPs spaced 

approximately equidistantly around the ring. The connections in the star topology 

are not necessarily symmetric. The existence of a channel from LP A to LP B 

does not imply the presence of a channel from LP B to LP A. There will never be 

more than one channel from LP A to LP B. Figure 4.2 shows a sample of the star 

connection topology with 8 LPs and connection radius R = 2. Each LP will have 

exactly 2R input channels and 2R output channels. In addition, each channel has an 

associated channel delay that reflects the minimum lookahead L, between the source 

and destination LP. 

Given an LP and E, the next event to be processed, the following rules describe the 

behaviour of the LP. If E was generated locally, then send a new event to a neighboring 

LP via a randomly selected output channel. There is a uniform probability of selecting 

any particular channel. The timestamp of the new event is the timestamp of E plus 

the channel delta L. If E has arrived from a neighboring LP, schedule an event locally 

for time T(E) +Lt, where the Ati timestamp increment is taken from the scheduling 
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Figure 4.3: Event Time Line 

distribution F(t). Figure 4.3 shows the timeline of an event in the system. In the 

diagram, L is a constant delay which corresponds to the channel delta. At,, Lt2, 

are timestamp increments taken from a stream of pseudo random numbers 

that fit the distribution F(t). 

The test model parameters are summarized below. 

1. N - The number of LPs parameter impacts the number of events in the system 

since the event population is equal to the product of the number of LPs and the 

event density. More importantly, manipulating the number of LPs will affect 

the spatial characteristics of the simulation; with a larger number of LPs, there 

is greater parallelism available in the model. 

2. D - The event density parameter also affects the number of events that are 

instantiated at the beginning of the simulation. N x D events are created 

system wide and then uniformly distributed among the LPs. On average D 

local events are scheduled for each LP. The timestamps of these events are 

taken from a distribution F(t) with a mean of 1.0. 
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3. T - The model topology parameter allows simulation of either a ring or star 

connection topology as previously described. 

4. R - The Connection radius parameter controls the number of neighbors that 

each LP is connected to. Each LP has 2R output channels on which it may 

send events, and 2R input channels on which it may receive events. Connection 

radius is used to model the topological characteristics of a system. 

5. L - The channel delta parameter affects the available lookahead in the model. 

When the channel delta is small, LPs can quickly affect one another since there 

is little delay between them. When the channel delta is larger, LPs behave more 

independently since they can be further separated in time. Channel delta can 

be used to model the physical separation of the interacting processes. Channel 

delta, like the number of LPs, helps to model the spatial characteristics of the 

a system. 

6. G - The computation grain parameter controls the amount of time required to 

process an event. It specifies the average time that a busy wait loop is executed 

in order to simulate the cost of processing an event. 

7. S - The LP state size parameter models the additional LP state that would 

be accessed in a real simulation. For example, in a network simulation where 

each LP models a network router, additional state might be required to model 

output buffers and routing tables. 

8. F(t) - The scheduling distribution selects one of the timestamp increment dis-

tributions from the Test column in Table 4.1. All scheduling distributions have 

the same mean of 1.0. 

To summarize the test model in terms of the previous models, it is similar to the 

PHOLD model, however the topology of the LPs bares more resemblance to the ring 

model. There are also differences in LP behaviour since test model uses both local 
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and external events. The PHOLD model focused on external events and the Ring 

model had only a single local event per LP. 

4.2 Experimental Methodology 

This section describes the experimental methodology. It is split into several subsec-

tions which describe various aspects of the methodology. The test system is described 

in Section 4.2.1. The implementation details are described in sections 4.2.2. The test 

architecture is described in Section 4.2.3. Section 4.2.4 describes the performance 

metrics that are used to compare the simulation algorithms. 

4.2.1 Test System 

This section describes the test system used to perform all experiments conducted in 

this thesis. The test system simulates the test model described in Section 4.1.7. In ad-

dition to the parameters described for the test model, the test system has parameters 

which control the length of a simulation run and the simulation kernel used to execute 

the simulation. The length of the simulation can be specified in terms of simulation 

time or wall-clock time using the -sim..end_time or -wall-end-time parameters. The 

simulation kernel is selected using the -aig and -pq_impl parameters. For the CEL-

based algorithms these parameters allow the selection of the CEL implementation. 

For conservative algorithms, these parameters select the LP scheduling mechanism 

and the local event queue implementation. The test system implements many of the 

CEL algorithms described in Section 2.2 and several variations of the channel based 

conservative PDES algorithms described in Section 3.2. These additional test system 

parameters are summarized below. 

1. -sim_end_time This parameter specifies a simulation end time. Once the sim-

ulation reaches this simulation time, it is terminated. 
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2. -wall-end-time This parameter terminates the simulation after a specified 

amount of wall-clock time has elapsed. 

3. -aig This parameter is used to specify either CEL, or one of the LP scheduling 

mechanisms: PQ, COT, or FIXED. The CEL option executes the well known 

central event list algorithm. PQ, COT, and FIXED options execute variants 

of the 0MB algorithm. The PQ option schedules LPs for execution according 

to their local time. The OCT option executes the critical channel traversing 

algorithm described in section 3.2.2. Both the PQ and OCT options make use 

of a LP scheduling queue implemented using a heap that is optimized for hold 

operations. The FIXED option schedules LPs according to a fixed ordering 

using a FIFO queue. 

4. -pq_impl In the case of the CEL algorithm, this parameter specifies the imple-

mentation of the central event list. For conservative algorithms it is used to 

specify the implementation of the local event queue. Options for this param-

eter are: list, henriksen, heap, splay, and calendar. These options correspond 

to the linked list, Henriksen's, heap, splay tree, and calendar queue priority 

queue implementations described in Section 2.2. The heap option selects a 

heap implementation that is optimized for executing hold operations. 

Preliminary tests were performed using different combinations of LP scheduling 

mechanism and local event queue implementations. Three implementations were 

identified as good candidates for the local event queue. These were the list, heap, 

and splay options mentioned above. Because most experiments did not use large event 

densities, the implementation of the local event queue did not have a significant effect. 

As such, only results for kernels using the linked list local event queue implementation 

have been presented. There is one exception to this in Section 5.1.3 where the heap 

was used to implement the local event queue. This was necessary due to the large 

event densities encountered in that experiment. 
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All experiments were conducted using each of the PQ, COT, and FIXED LP 

scheduling mechanisms and either the list or heap local event queue implementation. 

The behaviour of the conservative PQ and OCT algorithms was very similar, so 

results are only presented for the COT algorithm. The choice to present results for 

COT rather than PQ was motivated by the desire to understand the good sequential 

performance of the COT algorithm observed in ATM-TN [41] and IP-TN [21]. Results 

for the PQ LP scheduling mechanism are presented in [6]. 

Four GEL implementations were selected for comparison with conservative algo-

rithms. All experiments were conducted using each of the henriksen, heap, splay, and 

calendar GEL implementations. These algorithms demonstrate the range of possible 

performance for GEL-based approaches. There are some model parameters that have 

very little affect on the behaviour of GEL-based algorithms. In these experiments the 

results are only presented for the calendar queue as it was the best performing of the 

GEL-based algorithms. 

4.2.2 Implementation and Memory Management 

While comparing the different simulation algorithms, it was observed that small dif-

ferences in the implementation can have significant impacts on performance. Two 

examples of this are described here. 

A priority queue of events can be implemented using placeholders which each 

contain a pointer to an event or alternatively, the priority queue can be implemented 

so that it operates directly on the events themselves. Using placeholders allows a 

priority queue to be used more generally, but it introduces a level of reference that is 

unnecessary. In DES, this level of reference can be eliminated by adding additional 

data members to the event objects. For example, heap performance was improved by 

10% by adding left and right child pointers to the events and avoiding the additional 

level of reference. 

Simplifying the logic used in a priority queue by avoiding unnecessary tests can 
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greatly improve performance. For example, eliminating one conditional in the heap 

code improved performance by about 10%. Certain assumptions made by some of 

the specialized priority queue algorithms may have allowed them to avoid testing 

certain conditions. For example, Henriksen's algorithm assumed that the queue would 

never be empty or that the user would monitor the queue size independently of the 

algorithm. Eliminating the check for an empty queue is fine for the HOLD model 

tests since the queue is never emptied. For a general purpose simulator, the algorithm 

would need to check if the queue is empty before attempting to remove an event. 

Adding this check is likely to negatively impact performance. 

One important aspect of implementing an efficient simulation kernel is to provide 

a specialized set of memory management routines. In a simulation, events are cre-

ated and destroyed millions of times per second. Memory management using C++ 

operators new and delete, or C functions malloc and free can incur substantial over-

head. These routines were designed to be general purpose; they can handle objects of 

varying size. In a simulation, events can usually be assumed to be of a constant size. 

If there are many event types, the size is taken to be the maximum of all event sizes. 

Event records are the primary concern rather than the auxiliary data which can be 

managed separately. A specialized memory allocation scheme can be designed that 

is very efficient for allocating fixed size chunks of memory, such as events. 

A second aspect that is particularly important to parallel simulation is memory 

alignment of events and simulation objects. Memory alignment has numerous bene-

fits. Assume that the size of an event is smaller than the length of the cache line. If 

the event falls entirely within a single cache line, then it can be retrieved from mem-

ory in one go. However if it crosses a cache line boundary, it will require two memory 

accesses. This is very expensive. Roughly speaking, a memory access is two orders 

of magnitude more expensive than a cache hit. Also, it may fill up the cache faster 

since it will require two cache lines and result in more cache invalidation. In parallel 

there is an added cost that occurs when multiple objects share the same cache line. 
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If one of the objects is modified, this invalidates the entire cache line and it means 

that every processor caching an object sharing the same cache line will need to reload 

that cache line. 

Cache performance can be improved by ensuring that objects are allocated on 

cache line boundaries and that no objects share the same cache line. Allocating 

objects on cache line boundaries ensures that the object will occupy the fewest possible 

cache lines. If the object is not aligned to the beginning of a cache line it will use more 

cache memory and require additional reads and writes to update. Padding objects 

so that they do not share cache lines ensures that modification of one object cannot 

invalidate the cached copy of another. This is particularly important in parallel 

execution where cache lines might be accessed by multiple processors and result in 

premature invalidation. 

Cache alignment can require more memory so in some situations it can have a 

negative affect on cache performance. For example, if cache aligning objects means 

that only half as many objects will fit in the cache, then the benefit of cache alignment 

may be offset by fewer objects being cached at any given time. 

The test system uses specially designed memory management routines optimized 

for allocating and deallocating events. Other objects are allocated using the standard 

C++ new operator. In addition, the test system uses cache aligned events and cache 

aligned LPs. Each event is cache aligned and padded to occupy the entire cache 

line. In the test environment each event occupies exactly a single cache line due to 

its size being equal to the length of one cache line. Each LP is cache aligned and 

padded to the next larger multiple of cache line length. Since the size of an LP is 

not a multiple of cache line length some memory is wasted in cache alignment of 

LPs. It should also be noted that although the LPs themselves were cache aligned, 

dynamically allocated data members of the LPs were not. This was an oversight at 

the time of implementation and it could have some affect on performance. 

In some situations, particularly for models with a large number of LPs it was 
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observed that cache alignment of LPs could have a slight negative impact. One 

explanation for this is the larger memory requirement to cache align the LPs. Cache 

aligning each LP requires more space and potentially results in more cache misses. 

Cache alignment of events was observed to improve performance by as much as 10%. 

This improvement is due to avoiding unnecessary cache invalidation that would occur 

if an event were to overlap a cache line boundary. Cache alignment of events did not 

require additional memory since as mentioned previously, the event and cache line 

sizes were equal. Further work would be required to quantify the affects of cache 

alignment on simulator performance. 

4.2.3 Test Architecture and Compiler 

All experiments were conducted using a Dell desktop computer with an 866 MHz 

Pentium III processor and 128 MB of RAM. This computer has a 16KB, 4-way set 

associative first level (Li) instruction cache with a 32 byte line size, a 16KB, 4-way 

set associative first level (Li) data cache with a 32 byte line size, and a 256KB, 8-way 

set associative second level (L2) cache with a 32 byte line size. The operating system 

was Red Hat Linux 7.3 with the v2.4.18 kernel. 

There was some dependence observed on the optimization level used in compi-

lation. In one situation the performance order of the algorithms actually changed 

depending on which level of compilation was used: "-00", "-01" and "-02". Op-

timizations tended to reduce the observed performance difference among the algo-

rithms. It would be interesting to examine what particular optimizations benefited 

the individual algorithms, but this is beyond the scope of this thesis. 

The results for all experiments conducted in this thesis were obtained using soft-

ware that was compiled with level 2 optimizations enabled (using the -02 flag) using 

GNU g++ version V2.96. 
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4.2.4 Performance Metrics 

In order to compare the different algorithms, six performance metrics have been de-

fined. The majority of these metrics are obtained from calculations based on the out-

put of valgrind, an open-source memory debugger for x86-GNU/Linux. Cachegrind is 

one of the valgrind performance tools and is used to perform detailed simulations of 

the instruction and data caches, while executing the different simulation algorithms. 

It records cache performance data for each function and procedure in the program. 

Cachegrind reports level 1 and 2 cache misses. Level 2 cache misses have a greater 

impact on performance than level 1 cache misses so all cache metrics have been de-

fined in terms of the number of level 2 cache misses (reads or writes). For model level 

cache behaviour and kernel level cache behaviour the metric is reported as a percent-

age of the total memory accesses. The amortized aggregate cache behaviour metric 

is reported as the total number of level 2 cache misses amortized over the number 

of events executed. Metrics obtained from cachegrind are based on a simulation run 

that lasted 100 seconds of simulation time. The bias of simulation initialization was 

removed by executing the initialization code separately and then subtracting these 

measurements from those obtained in the run of 100 seconds of simulation time. The 

event rate metric is obtained directly from the execution of the native code and is 

based on a simulation run that lasted 60 seconds of wall-clock time. There is no bias 

in the execution of the native code, since the 60 seconds of wall-clock time does not 

begin until initialization has completed. 

The first metric is model level cache behaviour. The model level cache behaviour 

measures data cache behaviour in the process method and in any calls associated 

with random number generation. Recall that the simulation API requires the modeler 

to implement the process method for the logical processes and this is where the 

majority of the simulation specific work occurs. Random number generation is used 

in the process method when choosing a timestamp for the next local event. 

The second metric also measures cache performance, but in the simulation algo-
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rithm rather than in the model level code. Kernel level cache behaviour excludes 

memory accesses related to random number generation and the process method. 

Amortized aggregate cache behaviour is a third cache metric that combines both 

the kernel and model level cache behaviour. This metric is amortized over the number 

of events, it is the average number of level 2 data cache misses that occur in processing 

a single event. 

For PDES algorithms, events per LP execution is defined to be the average num-

ber of events that are processed each time an LP is executed. It is computed by 

taking the total number of events executed during the simulation and dividing by the 

total number of LP execution sessions. Although events per LP execution is model 

dependent, it is still helpful in explaining algorithm behaviour and performance. In 

a conservative parallel simulation, an events per LP execution less than one would 

suggest the presence of a low-lookahead cycle that might warrant re-partitioning the 

model. The concept of events per LP execution can be extended to GEL-based al-

gorithms by counting the average number of consecutive events executed at one LP 

before executing an event at a different LP. Note that a GEL-based algorithm always 

achieves an Events per LP execution greater than or equal to 1; frequently it is very 

near 1 due to the total timestamp ordering imposed by a GEL-based algorithm. 

The events per LP execution metric is extracted from the cachegrind run, but it 

is obtained directly from the simulation kernel. Due to the synthetic workload model 

that was used, the events per LP execution is approximately 1 for all GEL-based 

algorithms. There are workload models in which events are localized in time and 

space where the events per LP execution could exceed 1; however, this test model 

does not explore these situations. As such, the events per LP execution plots for 

GEL-based algorithms will not usually be commented upon. Attention is focused on 

the behaviour of the different conservative scheduling mechanisms. Also note that 

plots of events per LP execution have logarithmic scales for both the x and y axis. 

The fourth metric is kernel level amortized computation cost. It is a count of all 
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instructions (excluding the model level code) divided by the number of events exe-

cuted by the simulation kernel. The metric is obtained using data from the cachegrind 

tool (cachegrind also counts the instructions per function or procedure). The metric 

excludes instructions that are executed in the model level code, including random 

number generation. The decision to exclude model level code was motivated by the 

desire to highlight the differences between the algorithms. 

The most comprehensive metric is event rate. It corresponds to the number of 

events executed per second of wall-clock time. This metric is obtained by execut-

ing the simulation for a specified amount of wall-clock time and then calculating the 

event rate based on the number of events that were executed. It should be noted 

that different implementations of the same model level behaviour can result in sig-

nificant differences in event rate. Consider a network simulation that uses 3 events 

to model FIFO transmission of a packet through a router. As described in [7], the 

same behaviour can be accomplished using only 2 events. The event rates for these 

two model implementations could vary significantly, even though they model the 

same behaviour. The experiments in this thesis compare the algorithms under the 

same implementation of model level behaviour. The event rate metric can hide the 

variation between the algorithms since it includes the cost of the model level code 

associated with the simulation. For the same reason, it is the most realistic metric as 

it corresponds exactly to how someone would use the simulation in practice. 

4.2.5 Experiment Outline and Parameters 

A single simulation run was completed for each point in each plot. Multiple simulation 

runs could have been used to obtain confidence intervals, but due to the well behaved 

nature of the simulation metrics this was not done. 100 seconds of simulation time 

and 60 seconds of wall-clock time were both adequate to obtain a stable measurement 

for each point. For the results published in [6], 5 simulations runs were adequate to 

achieve a 95% confidence interval such that the half-width was within 5% of the 
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sample mean for every point. 

In general, the controlled experiment parameters have been chosen to simplify 

the analysis and highlight the differences among the algorithms. For example, using 

the uniform distribution as the scheduling distribution demonstrates the greatest 

variation among the algorithms, so only these graphs are presented. Other experiment 

parameters have been chosen to simplify the analysis. For example, the connection 

radius might be set to 1 so that issues related to larger connection radii do not come 

into play. 

4.3 Analysis 

In this section the theoretical computation cost of the conservative simulation algo-

rithms will be examined. The computation cost here refers to the number of kernel 

level instructions required to execute the simulation. First a general cost expression 

is described in terms of the events per LP execution metric. Then an estimate for the 

minimum and maximum number of events per LP execution are developed. Finally 

the asymptotic behaviour of channel based conservative algorithms is compared to 

that of CEL-based algorithms. 

4.3.1 Asymptotic Bounds 

Just as the asymptotic behaviour of CEL-based algorithms depends on the implemen-

tation of the priority queue, the behaviour of conservative algorithms depend on the 

implementation of their subcomponents. For a channel based conservative algorithm, 

the implementations of the LP scheduling queue, safetime calculation and local event 

queue will affect asymptotic performance. 

The cost of executing a single event breaks down into three parts; the LP schedul-

ing queue cost, the safe-time calculation cost and the local event queue cost. Consider 

a model with N LPs, an average event density of D events per LP, an average of C 
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channels per LP. Suppose that on average the simulation kernel executes E events 

per LP execution session. Table 4.2 summarizes the asymptotic bounds in terms of 

the different synchronization algorithms and different algorithm components. 

The LP scheduling queue cost is associated with inserting or removing an LP from 

the LP scheduling queue. For the PQ and FIXED schedule algorithms, a single LP 

is removed from the LP scheduling queue and the same LP is returned to the queue 

once its execution session is complete. The behaviour of the OCT algorithm is more 

complex. A single LP is removed from the LP scheduling queue but after completing 

its execution it is not reinserted into the scheduling queue. Instead it schedules all 

of the neighboring LPs that had marked their connection to it marked as critical by 

inserting them into the LP scheduling queue. Still, the asymptotic LP scheduling 

queue cost for COT is dominated by the cost of an insert or remove operation rather 

than the number of insert operations an LP performs per execution session. 

The LP scheduling cost depends on the synchronization algorithm. If a heap is 

used to schedule LP execution and all LPs in the system are maintained in the LP 

scheduling queue, as is the case with the PQ algorithm, then the cost is O(1og2 N). 

Another approach is to execute each LP in the system according to some fixed order-

ing, this type of LP scheduling queue is used by the FIXED schedule algorithm and 

has a constant access cost 0(1). The critical channel traversing algorithm is more 

complicated. One of the advantages of the OCT algorithm is that it is not necessary 

to maintain all LPs in the LP scheduling queue. This results in a smaller queue and 

smaller access costs. The LP scheduling queue in COT is implemented using a heap, 

so again the cost is logarithmic in N', the number of LPs in the scheduling queue. 

Empirical observations indicate for the test model used in thesis experiments, in the 

case of connection radius 2, ring topology, the LP scheduling queue contains on aver-

age N/2 LPs. Increasing the connections radius increases the number of LPs in the 

LP scheduling queue. 

The cost of scheduling LPs is a function of the number of LPs and depends on 
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the choice of scheduling mechanism (FIXED schedule, PQ, CCT, etc.) and on the 

implementation of that scheduling mechanism. 

The second part of the cost of executing an event is computing the safe time for 

an LP execution session. Computing the safetime requires determining the minimum 

possible timestamp of the next event that could arrive on each empty channel. For 

algorithms tested in this thesis all channels are examined regardless of whether they 

are empty. This is used to ensure that each channel that has events, has a represen-

tative in the local event queue. The cost of the safetime calculation is linear in the 

number of channels, 0(C). 

The third part of the cost of executing an event is removing the event from the 

local event queue. The cost to obtain an event from the LP's local event queue 

is a function of the number of events in the queue. This cost depends on D, the 

average event density in the model and the implementation of the local event queue. 

If the local event queue is implemented using a heap the cost is 0(1092 D), while if 

implemented using a linked list the cost is 0(D). If no events are generated locally 

then the size of the local event queue is bounded by the number of channels since 

it contains at most one representative from each channel. However, the test model 

under consideration in this thesis uses local events so the cost depends on the average 

event density in the model D. 

Both the LP scheduling queue cost and the safetime calculation costs are amortized 

over the execution of multiple events. The per event cost for these components is 

divided by E, the average number of events executed per LP execution session. 

4.3.2 Events per LP execution 

The next part of this analysis is to derive an expression for E, the number of events 

executed per LP execution session. 

The lifetime of an event refers to the difference between its timestamp and the 

timestamp of the event that caused its generation. If is the average lifetime of an 
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Synchronization 

Algorithm 

LP scheduling 

queue cost 

Safe time 

calculation cost 

Event queue 

cost 

Per event 

cost 

FIXED 

PQ 

OCT 

1 

1092 N 

1092 N' 

C 

C 

C 

1092 D 

1092 .D 

1092 D 

If 1092 D + 

1092 N+C 
1092 D + 

log2 IV' +C + 1092 D 

Table 4.2: Asymptotic bounds for channel based conservative synchronization 

event in the simulation then in one second of simulation a time, 1/p events can be 

executed. If there are D timelines within a given LP, then DIA events are executed 

at that LP per second of simulation time. Suppose the available lookahead allows an 

LP to advance its clock by L seconds of simulation time, then the number of events 

executed during that LP execution session is LD/t. On average there are E = LD/,u 

events executed per LP execution session. 

In the case of the PQ algorithm, all LPs are stored in a priority queue according 

to their clock. The timestamp of an LP taken from the LP scheduling queue must 

have the smallest timestamp in the system. The timestamp of the LP will be less 

than or equal to the timestamps of each of its neighbours. This means that it can 

advance at least the minimum lookahead L. 

A similar situation occurs for the FIXED schedule algorithm. Every LP in the 

fixed order is executed exactly once, prior to subsequent execution of LPs that have 

already executed. Each time an LP executes, its clock will be less than or equal to 

each of its neighbors. This means that every LP will advance at least the minimum 

lookahead L. 

This is also true for the COT algorithm. When an LP executes, it has the smallest 

timestamp of any LP in the scheduling queue. There may be other LPs that have yet 

to be scheduled placed in the scheduling queue, but their local time would be greater 

than or equal to the local time of the currently executing LP. By the same rational, 

each LP can advance by the minimum lookahead, L. 
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Synchronization 

Algorithm 

Per event 

cost N 

Parameters 

D C L 

FIXED p(1+C) 
1092 D 1 LD + 

PQ p(log2 N+C)  
1092 D 1092 N + 1092 D C LD + 

CCT p(log2 N-FC) D 1092 N' + 1092 LD 

Table 4.3: Expected behaviour of manipulating model parameters 

Thus the minimum expected events per LP execution is given by Emin = 

regardless of the algorithm. Table 4.3 shows the per event cost expressed in terms of of 

N, L, C, D and u. The second half of the Table shows the expected behaviour when 

the identified parameter is varied while keeping the others constant. These expected 

behaviours will be compared against the measured instruction counts obtained in 

Chapter 5. In Section 5.1.3, an experiment is conducted that maintains a constant 

event population of P events while varying the ratio of LPs to event density. The 

number of LPs parameter is manipulated while D is selected such that N x D = P. 

The expected cost in terms of the number of LPs parameter is N 1092 N + N - 1092 N. 

This is easily obtained by substituting f for D and taking all other parameters to be 

constant. 

Recall that there are two types of event used in the synthetic workload model. 

The average lifetime of local events is determined by timestamp increment distribution 

which has a mean of 1. The average lifetime of external events is equal to the channel 

delta parameter L. Since each internal event is followed by an external event, the 

average lifetime of an event in the test model is given by j = 1.OL In terms of model 

parameters, the minimum expected events per LP execution is Emin = 

The maximum expected events per LP execution can also be computed. Relative 

to L, the channel lookahead an LP can advance at most 2L seconds of simulation time. 

If the simulation time of LP A is t, then the simulation times of its neighbours are at 

most -t + L, since they would have blocked when they reached this time. This means 
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that LP A can safely advance up to the simulation time of its neighbors t + L, and 

then up to one channel delta ahead, i.e., to simulation time t + 2L. This implies that 

the maximum events per LP execution that can be achieved for any of the algorithms 

7;;i _4LD 
is -'-'max - i+L 

4.3.3 Comparison with CEL-based approaches 

Parallel algorithms can conceivably achieve better cache performance under the as-

sumption that event execution accesses the state of the LP. In terms of cache be-

haviour, a high event density does not guarantee better performance for the con-

servative algorithms; if the event density is high and localized, then both CEL and 

conservative algorithms can achieve good cache performance due to the localized be-

haviour. In this case both algorithms would exhibit events per LP execution greater 

than 1. However, when the event density is high and distributed, then the con-

servative algorithms are better able to achieve good cache performance, since they 

relax the total timestamp ordering imposed by CEL approaches. In this case only 

the conservative algorithms would achieve significantly greater than 1 event per LP 

execution. 

There are many scenarios where event density is high and distributed; for exam-

ple, packet based simulation of telecommunication networks. There are many events 

occurring across the system at any given time. 

The behaviour of a CEL-based algorithm with logarithmic behaviour in event 

population is O(log2 P = 1092 ND = 1092 N+1og2 D). This is similar to the expression 

for channel based conservative algorithms, if the safetime calculation is ignored, i.e., 

0(IoN + 1092 D). It is clear that for channel based conservative algorithms with 

events per LP execution greater than 1 the LP queue is sorted less frequently and the 

per event cost is reduced. This will also benefit the algorithm's cache behaviour. If the 

events per LP execution is less than 1, then the LP queue is sorted more frequently 

in comparison to a CEL-based algorithm with logarithmic behaviour in the event 
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population. An events per LP execution greater than 1 is a necessary condition for 

channel based conservative algorithms to achieve better asymptotic behaviour than 

CEL-based algorithms with O(1og2 F) behaviour. 

4.4 Summary 

This chapter has surveyed existing synthetic workload models and presented the test 

model that is used for experiments conducted in this thesis. The model was cho-

sen for its ability to demonstrate the range of performance possible using channel 

based conservative techniques. The test model is implemented in the test system. 

Parameters of the test system are used to select the simulation kernel and simulation 

termination conditions. The test model parameters allow selection of three variations 

of the Chandy-Misra-Bryant algorithm, and five CEL implementations. The exper-

imental methodology was discussed, including a description of performance metrics 

used for empirical comparison of the algorithms. The chapter also included theoreti-

cal analysis of the channel based conservative algorithms that will be compared with 

the simulation results in the following chapter. 



Chapter 5 

Sequential Performance of DES 

Algorithms 

This chapter presents the results of the experiments conducted for this thesis. 

The experiments are grouped according to the parameters that they manipulate. 

Section 5.1 presents experiments that manipulate the event population, Section 5.2 

presents experiments that manipulate the model topology including the connection 

radius and lookahead parameters. Section 5.3 presents experiments that manipulate 

computation grain, LP state size, and the timestamp increment distribution. Each 

section will review the parameters to be manipulated and identify the controlled 

variables. Table 5.1 summarizes the parameters used in the different experiments. An 

asterisk indicates the parameter that was manipulated for a particular experiment. 

The chapter concludes with a brief summary of the experiments conducted. 

5.1 Queue Size Experiments 

Varying the size of the event population is the standard approach that is used to 

evaluate the scalability of a simulation algorithm. This approach has been used in 

previous empirical studies of central event list implementations [27, 20], and in the 

62 
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Experiment 

Number 

of LPs 

Event 

Density 

Channel 

Delta 

Connection 

Radius 

Computation 

Grain 

LP State 

Size 

Topology Distribution 

Number of LPs * 4 1.0 1 0.0 0 ring uniform 

Event Density 8192 * 1.0 1 0.0 0 ring uniform 

Fixed Queue Size * * 1.0 1 0.0 0 ring uniform 

Connection Radius 8192 4 1.0 * 0.0 0 ring uniform 

Lookahead 8192 4 * 1 0.0 0 ring uniform 

Topology 8192 4 1.0 * 0.0 0 * uniform 

8192 4 * 4 0.0 0 * uniform 

Computation Grain 8192 4 1.0 4 * 0 ring uniform 

16384 8 1.0 1 * 0 ring uniform 

LP State Size 8192 1 1.0 1 0.0 * ring uniform 

8192 4 1.0 1 0.0 * ring uniform 

- 

Timestamp 

Increment 

Distribution 

8192 0.25 1.0 1 0.0 0 ring * 

8192 32 1.0 1 0.0 0 ring * 

8192 4 1.0 1 0.0 0 ring * 

8192 4 1.0 32 0.0 0 ring * 

8192 4 0.125 1 0.0 0 ring * 

8192 4 2.0 1 0.0 0 ring * 

Table 5.1: Controlled variables for Queue size experiments 

analysis of many parallel simulation algorithms [11, 23]. This group of experiments 

examines what happens to the performance of the various algorithms as the event 

population changes. In the test model, there are two parameters that affect the event 

population, the number of LPs (N) and the event density (D). The event density 

parameter determines the number of events initially generated for each LP, thus the 

total event population is equal to N x D. 

In the first experiment a constant event density of 4 is assumed and the number 

of LPs is varied between 16 and 65536. In the second experiment the number of LPs 

is fixed at 8192 and the event density varied from 1 to 64. Finally a third experiment 

assumes a constant event population of 131072 events and varies the ratio of the 

number of LPs to event density. See Table 5.1 for additional experiment parameters. 

5.1.1 Number of LPs Experiment 

This experiment assumes a constant event density of 4 while varying the number 

of LPs between 16 and 65536, resulting in queue sizes ranging from 64 to 262144 

events. The purpose of this experiment is to study how the number of LPs affects the 
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performance of the different algorithms. The graphs in Figures 5.1 and 5.2 compare 

the observed metrics for the tested algorithms. 

Figure 5.1A plots model level cache behaviour versus the number of LPs. For less 

than 128 LPs the entire model fits into the cache, resulting in nearly 0% cache misses. 

As the number of LPs increases from 128 to 1024, the percentage of cache misses 

climbs for both the conservative and GEL algorithms. For greater than 1024 LPs, 

the model level cache behaviour of the conservative algorithms is constant, while it 

continues to increase for the GEL algorithms. Estimating from the graphs, the model 

level cache behaviour of the GEL algorithms appears to be approaching a constant of 

about 5.5%. The CCT algorithm remains at about 1%, the fixed schedule algorithm 

at 1.5%. The CCT and CMI3 algorithms schedule LPs based on local virtual time 

or critical channels in order to avoid scheduling LPs which are blocked. Since the 

fixed schedule algorithm pays no attention to whether an LP is a good candidate 

for execution, it is more likely to schedule an LP that has no events safe to execute. 

This negatively affects cache performance by performing unnecessary loads into the 

cache. In the context of this experiment, it is clear that the conservative algorithms 

are superior to the GEL algorithms in terms of model level cache behaviour. 

As can be observed in the graph for kernel level cache behaviour (Figure 5.1B), 

the conservative algorithms achieve a constant cache miss percentage in the number 

of LPs. This is approximately 2.5% for the fixed schedule algorithm and 1.7% for the 

CCT algorithm. The calendar queue algorithm demonstrates the next best kernel 

level cache behaviour which appears sub-logarithmic in the number of LPs. The heap 

and splay tree algorithm are approximately logarithmic, and Henriksen's algorithm 

increases faster than logarithmically over the observed range. For 65536 LPs, the 

OCT algorithm has less than one half the cache miss percentage of the calendar 

queue, and one seventh that of Henriksen's algorithm. The conservative algorithms 

demonstrate superior performance over GEL algorithms in terms of kernel level cache 

behaviour. Although kernel level cache behaviour of the conservative algorithms 
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Figure 5.1: Number of LPs experiment.Pllots of A. Model Level Cache Behaviour, B. 

Kernel Level Cache Behaviour and C. Aggregate Cache Behaviour versus the number 

of LPs. 
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appears constant in the number of LPs, this is probably due to characteristics of 

the model and implementation of the LP scheduling queue. For a different synthetic 

workload model, a slightly increasing cache miss percentage might be observed. 

Figure 5.1C shows the combined affect of model and kernel level cache behaviour in 

terms of the number of cache misses per event executed. For 65536 LPs, there are over 

3 times more cache misses involved with processing an event using the calendar queue 

algorithm, than when using the COT algorithm and over 15 times as many when using 

Henriksen's algorithm. The superior cache performance of the conservative algorithms 

is due to a large extent to the greater number of events executed per LP execution 

session. 

The number of events per LP execution is plotted in Figure 5.2A. Analysis of 

the conservative algorithms in section 4.3 suggested that the number of events per 

LP execution was independent of the number of LPs in the model, this is confirmed 

by the plot. Recall the formulas for the Emim and Emax derived for the synthetic 

workload model in section 4.3. In this experiment the fixed schedule algorithm is 

observed achieving the minimum expected events per LP execution of about EminDL = 

= =   = 4. COT achieves nearly the optimal expected behaviour of 

-'--'max = 2DL - 2DL - 2x2x4x1 - - f:pr - 1+1 - 8. 

Figure 5.213 plots the average number of kernel level instructions required to pro-

cess a simulation event. The asymptotic behaviour of the algorithms breaks down 

into three categories: radical, logarithmic and constant. The kernel level computa-

tion cost grows faster than logarithmically for Henriksen's algorithm, this follows the 

O(/J 7) expected behaviour. The behaviour of the calendar queue and fixed schedule 

algorithms remain constant in the number of LPs, while the heap, splay tree and OCT 

algorithms exhibit logarithmic behaviour. As predicted by the theoretical analysis in 

section 4.3, the behaviour of the COT algorithm is logarithmic in the number of LPs. 

This dependence does not occur for the fixed schedule algorithm since the scheduling 

queue operations are 0(1), rather than O(log N'). The fixed schedule conservative 
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algorithm achieves a kernel level computation cost of approximately 190 instructions 

per event, the calendar queue is 37% more expensive at 260 instructions per event. 

Although the cost of the CCT algorithm is increasing, it remains less than that of 

the calendar queue for up to 65536 LPs. For 65536 LPs, the cost of heap, splay 

and Henriksen's algorithms are significantly greater and increasing faster than for the 

calendar queue or conservative approaches. 

As can be observed in Figure 5.2C, the event, rate of all algorithms decreases 

rapidly as the number of LPs grows from 128 to 1024. This is a result of the model 

becoming larger than the size of the cache. For models smaller than 128 LPs, essen-

tially no cache misses were observed. For greater than 1024 LPs, the fixed schedule 

algorithm achieves a nearly constant event rate of about 860,000 events per second. 

As noted in Figure 5.2B, the per event cost of the CCT algorithm is logarithmically 

increasing in the number of LPs. This explains why the event rate of the CCT algo-

rithm continues to decline. The event rate of the CDL algorithms also declines, but 

more rapidly than for the conservative algorithms. For 65536 LPs, the conservative 

algorithms are observed to be over 2 times faster than the calendar queue algorithm. 

The variation of performance between the CDL algorithms is quite large, Henrik-

Sen's algorithm achieves about 108,000 events per second, while the calendar queue 

achieves around 385,000. 

5.1.2 Event Density Experiment 

In this set of experiments event density is manipulated in order to study its effect 

on the performance of the different algorithms. The number of LPs is fixed at 8192 

and the event density is varied between 0.25 and 64. This combination of parameters 

will result in queue sizes ranging from 2048 to 524288. Like increasing the number of 

LPs, increasing the event density has the effect of increasing the size of the event list 

and the memory footprint of the model. Figures 5.3 and 5.4 compare the different 

algorithms. 
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Figure 5.3A plots model level cache behaviour versus the event density. The model 

level cache behaviour of the CEL algorithms is independent of the priority queue 

implementation, i.e., the cache behaviour is the same for all CEL algorithms. For the 

conservative algorithms there appears to be some dependence on the LP scheduling 

method, this can be seen from the plot of the COT algorithm which performs slightly 

better than the fixed schedule algorithm for moderate event densities. For very large 

or very small event densities there seems to be less dependence on the LP scheduling 

mechanism. For small event densities the variation in cache behaviour is less evident 

due to the presence of a low-lookahead cycle. For large event densities the overhead 

of using a linked list to implement the local event queue hides the variation between 

the fixed schedule and COT algorithms. The model level cache behaviour of the 

CEL algorithms is relatively independent of the event density, and is just over 5% for 

event densities greater than 2. The model level cache behaviour of the conservative 

algorithms improves rapidly with increasing event density. For an event density of 

0.25 the percentage of cache misses is near 4%, for event densities greater than 8 it 

is consistently less than 1% (approaching 0 % cache misses). Even for small event 

densities (less than 1), the conservative algorithms maintain better model level cache 

behaviour than the CEL algorithms. 

As can be observed in Figure 5.3B, the kernel level cache behaviour of most of 

the GEL algorithms deteriorates logarithmically with increasing event density. The 

calendar queue implementation has nearly constant kernel level cache behaviour of 

about 4% cache misses. The kernel level cache behaviour of conservative algorithms 

improves as event density increases and is less than 4% for event densities greater 

than 2. For an event density of 64, the percentage of cache misses for the conservative 

algorithms is less than 1/5 that of the calendar queue algorithm, and less than 1/20 

that of Henriksen's algorithm. The kernel level cache behaviour of the conservative 

algorithms can be poor if the event density is less than 1. This is due to the presence 

of low-lookahead cycles which prevent the execution of the next event until LP clocks 
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have advanced. 

The overall cache performance of the algorithms is compared in Figure 5.3C. The 

number of cache misses per event is approximately constant for the calendar queue 

algorithm, increasing logarithmically for the heap and splay tree algorithms, and 

increasing faster than logarithmically for Henriksen's algorithm. For the conservative 

algorithms, the number of cache misses decreases exponentially in the event density. 

For an event density of 0.25, the conservative algorithms suffer about 30 cache misses 

in processing a single event, for event densities greater than 1 this drops below 10 

cache misses per event. For an event density of 64, there is approximately 1 cache 

miss associated with processing an event using a conservative approach, 12 misses 

using the calendar queue algorithm and 65 misses using Henriksen's algorithm. 

Figure 5.4A plots the events per LP execution for the tested simulation algorithms. 

As previously discussed the metric is very close to 1 for all CEL algorithms. The 

fixed schedule algorithm achieves the minimum expected events per LP execution 

Emin = D, while the CCT algorithms achieve nearly twice that value at Emax = 2D. 

The improvement in cache behaviour is explained by the increasing events per task 

LP execution observed with increasing event density. 

The performance of the algorithms in terms of kernel level amortized computa-

tion cost is plotted against event density in Figure 5.413. The number of kernel level 

instructions required to process an event is approximately constant for the calendar 

queue algorithm, independent of the event density. The heap and splay tree algo-

rithms exhibit a logarithmic dependence on the event density, with the number of 

instructions growing slightly slower for the splay tree than for the heap. Henriksen's 

algorithm performs poorly, the computation cost is in O(\/). The behaviour of the 

conservative algorithms matches the O(D + I ), predicted in section 4.3. For event 

densities less than 8, the O(11D) term dominates the behaviour. For event densities 

greater than 8, the behaviour is affected more by the 0(D) term. As discussed previ-

ously, this second term depends on the implementation of the local event queue. If a 
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heap structure was used the cost would increase in 0 (log D), rather than 0(D). For 

event densities less than 8, the kernel level amortized computation cost of the fixed 

schedule algorithm can be significantly less than for the COT algorithm even though 

it fails to achieve the same number of events per LP execution. For event density 

64, Henriksen's algorithm requires about 5 times the number of instructions as does 

either conservative approach, the calendar queue requires about 2 times as many. 

Figure 5.40 plots event rate versus event density for each algorithm. The event 

rate of the CEL algorithms decreases as the event density increases, the rate of de-

crease is greatest for Henriksen's algorithm, followed by the heap, splay and calendar 

queue algorithms. The event rate of the conservative algorithms actually improves 

with increasing event density until the cost of managing the local event queue becomes 

too large, i.e., when the 0(D) term begins to dominate the kernel level computation 

cost. Actually, although the computation cost begins to increase at event density 8, 

the effect of the increasing cost is not observed in the event rate metric until event 

density 32, this is due to the cache behaviour of the conservative algorithms which 

continues to improve beyond event density 8, offsetting the increased computation 

cost. For event densities of 1 or greater the conservative algorithms are faster than 

the CEL algorithms. For event density 32, the conservative algorithms achieve over 

1.2 million events per second and are about 3 times faster than the calendar queue 

algorithm and about 6 times faster than Henriksen's algorithm. 

5.1.3 Fixed Queue Size Experiment 

The purpose of this experiment is to examine the effect of the ratio of LPs to event 

density. The queue size is fixed at 131072 events, while the number of LPs and the 

event density are varied such that the queue size remains constant. The number 

of LPs is increased from 2 to 65536, while the event density is chosen such that 

N x D = 131072. The conservative algorithms in this experiment were tested using 

a hold optimized heap for the local event queue implementation. The cost of using a 



CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 74 

linked list for the local event queue would be excessive for the queue sizes encountered 

in this experiment. 

The graphs in Figures 5.5 and 5.6 show the entire spectrum of performance for each 

algorithm and partitioning of the model into LPs. The smallest model contains 2 LPs 

each with about 65536 events, the largest model contains 65536 LPs with an average 

of 2 events per LP. The extreme cases with 131072 LPs and 1 event per LP, and 1 

LP with 131072 events were not tested since they are equivalent to CEL simulation. 

The performance in the case of a single LP would be similar to the hold optimized 

heap since there would be very little additional synchronization overhead. The case 

of 131072 LPs would have asymptotic behaviour similar to the hold optimized heap 

but would incur additional overhead due to the synchronization protocol. 

Figure 5.5A plots model level cache miss behaviour versus the number of LPs, 

with the event density parameter selected to obtain a population of 131072 events. 

Although the number of events is constant, increasing the number of LPs has the 

effect of increasing the memory footprint of the model. For up to 16 LPs, most of the 

simulation fits into memory and thus relatively few cache misses are observed. As the 

number of LPs increases from 16 to 16384, the percentage of cache misses increases 

rapidly for the CEL algorithms. The onset of increasing model level cache misses 

is delayed for the conservative algorithms due to the large number of events per LP 

execution (see Figure 5.6A). Even for 65536 LPs, the model level cache behaviour is 

still 2 times better than that of any CEL algorithm. 

The increasing memory footprint of the model is also observed in the graph of 

kernel level cache behaviour (Figure 5.5B), particularly for the CEL algorithms which 

are otherwise unaffected by the number of LPs. The conservative algorithms show 

a decrease in the percentage of cache misses as the number of LPs increases from 

2 to 16. At this extreme, i.e, when the number of LPs equals 2, the conservative 

algorithms have degenerated to almost a CEL approach. The cache behaviour of the 

simulator now depends on the implementation of the LP's local event list, in this case, 
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2 hold optimized heaps of 65536 events each. When the size of the model increases 

an increase in the percentage of kernel level cache misses for conservative algorithms 

is also observed. This is due to the increasing memory footprint and the decreasing 

number of events per LP execution (Figure 5.6A). The kernel level cache behaviour 

of the conservative algorithms remains better than for CEL algorithms throughout. 

Discussion of the aggregate cache miss behaviour (Figure 5.5C) follows that for 

the kernel level cache behaviour above. The calendar queue achieves better overall 

cache performance when the ratio of the number of LPs to events is very small (less 

than 4:32768). Although not entirely obvious from the plot, the cache misses per 

event increase by 67% from 0.9 to 1.5 as the number of LPs increases from 1024 to 

8192. For 1024 LPs, the number of cache misses per event using the CCT algorithm 

is about 1/10 that when using the calendar queue and about 1/50 that when using 

Henriksen's algorithm. 

The events per LP execution plots are shown in Figure 5.6A. For 2 LPs, the CEL 

algorithms achieve 2 events per LP execution since each LP executes a single event 

with 100% probability, then a second event with 50% probability, then a third event 

with 25% probability, etc. A rapid decline in events per LP execution is observed 

for the conservative algorithms, this due to the decreasing event density. For this 

experiment Emim1ILL = = 2XJ O7Xl = 1372 and E,,,,,, = = ik   = 

2x231O'2x1 = 2644 The COT algorithm achieves nearly optimal behaviour, while 

the fixed schedule algorithm achieves about half that. The fixed schedule does obtain 

the expected maximum events per LP execution when the number of LPs is 2. This 

occurs because the only permutation of 2 LPs is optimal in the sense that each LP 

will always advance one lookahead interval up to the time of its neighbor and then 

one lookahead interval beyond. 

It is evident in Figure 5.613 that the kernel level computation cost of CEL algo-

rithms is independent of the ratio of the number of LPs to event density. This makes 

sense since the cost of these algorithms is only dependent on the number of events in 
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the central event list which remains constant. The asymptotic behaviour of the con-

servative algorithms is more complicated. Assuming a heap is used for both the LP 

scheduling mechanism and the local event queue implementation, the computation 

cost is in O(Nlog2 N + N - 1092 N) (Section 4.3). As evidenced by the decreasing 

kernel level computation cost, the - log N dominates for up to 8192 LPs. The kernel 

level computation cost for conservative algorithms begins to increase at 8192 LPs. 

The increase is greater for the COT algorithm since it must maintain an increasing 

number of LPs in the scheduling queue. 

Figure 5.60 plots event rate versus the ratio of the number of LPs to event density. 

The event rates for GEL algorithms are governed by their respective cache perfor-

mance. As the memory footprint of the model increases, the event rate decreases in 

proportion to the number of cache misses per event. The event rates of the conserva-

tive algorithms increase from about 2 to 1024 LPs after which they begin to decrease. 

From the kernel level computation cost one would expect the optimal ratio of LPs 

to event density to be higher, i.e., 8192 LPs. The reason the optimal performance is 

observed for 1024 LPs is likely due to the better cache performance at the smaller 

model size. There are 67% fewer cache misses per event at 1024 LPs and 15% more 

instructions as compared to 8192 LPs. For 8192 LPs, the event rate of the COT 

algorithm is approximately 2.6x that of the calendar queue algorithm. 

5.2 Model Topology Experiments 

In this group of experiments, the topological characteristics of the model will be var-

ied. Three parameters have been introduced to allow simulation of a wide variety of 

topologies. The behaviour of the CEL algorithms was not significantly affected by 

the model topology parameters. Results are presented comparing the conservative 

algorithms to the calendar queue algorithm. The first two experiments include sim-

ulation runs with event density 1 and event density 4. This shows how event density 
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affects the sensitivity of the conservative algorithms to the channel delta and connec-

tion radius parameters. Table 5.1 contains the controlled variables used in the Model 

Topology experiments. 

The first parameter is the channel delta, this will determine the available amount of 

lookahead between neighboring LPs. The significance of lookahead to the performance 

of PDES algorithms has been extensively researched, and was discussed in Chapter 3. 

Limiting the available lookahead when event density is small, is likely to have a 

significant impact on the conservative algorithms. In this experiment the channel 

delta is varied between 0.015625 and 4, while keeping the connection radius fixed at 

1. 

The second topology related parameter is the connection radius, this parame-

ter controls the number of neighbors that each LP is connected to. Increasing the 

connection radius is expected to have a negative impact on the performance of the 

conservative algorithms. The reason for this is that the safetime calculation per-

formed at the beginning of each LP execution session is dependent on the number of 

channels. The connection radius may impact the model in other ways since it will 

affect the movement of events throughout the entire system. This experiment will 

consider the effect of varying the connection radius with the channel delta fixed at 

1.0 unit of simulation time. 

The third parameter manipulated in this section selects either the ring or star 

topology as described in section 4.1.7. Each algorithm is tested for both topologies. 

Two experiments are conducted. In the first experiment channel delta is manipulated, 

in the second experiment connection radius is manipulated. The event density is kept 

constant at 4 for both experiments. 

5.2.1 Channel Delta Experiment 

The purpose of this experiment is to observe the effect of channel delta on the per-

formance of the different algorithms. The channel delta should have little impact on 
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the performance of GEL algorithms, although it will affect the model behaviour and 

could affect performance that way. Reducing the channel delta is expected to have 

a negative impact on the conservative algorithms, since this will reduce the number 

of events per LP execution. For this set of tests the connection radius is fixed at 1, 

and the channel delta is varied between 0.015625 and 4.0. Performance metrics are 

graphed in Figure 5.7 and 5.8. 

In terms of model level cache behaviour (Figure 5.7A), the GEL algorithms appear 

insensitive to the channel delta. The slight downward trend observed with increasing 

channel delta is due to the model not reaching a steady state by the specified sim-

ulation end time. The channel delta affects the timestamp increment function, and 

thus how many events are executed prior to the simulation end time. The downward 

trend is not observed if the termination condition is changed to require the execution 

of a certain number of events. Increasing channel delta improves the model level 

cache behaviour of the conservative algorithms. When event density is 1, the CCT 

algorithm exhibits better model level cache behaviour for channel delta greater than 

0.25. When event density is 4, the CCT algorithm exhibits better model level cache 

behaviour for channel delta greater than 0.0625. As channel delta decreases, the 

model level cache behaviour of the conservative algorithms declines to approximately 

the level of the calendar queue algorithm. 

The kernel level cache behaviour plotted in Figure 5.7B is approximately constant 

for GEL algorithms, suggesting that their cache performance is unaffected by chan-

nel delta. The performance of the conservative algorithms is dependent on channel 

delta, with kernel level cache performance improving with increasing channel delta. 

This improvement is due to the increased number of events per LP execution (see 

Figure 5.8A). For event density 1 the kernel level cache miss percentage for the CCT 

algorithm is better than for the calendar queue algorithm, provided the channel delta 

is greater than 0.125. For a given event density the kernel level cache behaviour of 

the CCT algorithm is consistently better than that of the fixed schedule algorithm. 
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Figure 5.7C gives a full picture of the per event cache behaviour of the different 

algorithms. Again independence of CEL algorithms with regard to channel delta is 

observed. The cost of using a conservative algorithm is quite severe when channel 

delta is small; however, this expense can be moderated by a larger event density as 

is observed in the graph. In a model were the event density is 1 and the channel 

delta is 0.015625, the fixed schedule algorithm experiences 241 cache misses during 

the execution of a single event. Increasing the event density to 4 reduces the number 

of cache misses to about 70 per event. For the conservative algorithms, the number of 

cache misses per event rapidly decreases with increasing channel delta and eventually 

becomes less than that of the calendar queue, how quickly this happens depends on 

the event density of the model. 

Figure 5.8A plots the number of events per LP execution versus the channel delta. 

Again, this metric is consistently 1 for the CEL algorithms. For the conservative 

algorithms, the fixed schedule algorithm achieves the expected minimum events per 

LP execution. Emin(D = 1) = = I X L 2L/(1 +L), Emin(D = 4) = 2L =  4xL = 

8L/ (I+ L). For both D=1 and D=4, the COT algorithm achieves nearly the expected 

maximum events per LP execution. Emax(D = 1) = 2DL 2L = 4L/(1 + L), 
2 

2DL - 2x4xL Emax(D4) 1+L  16L/(1+L). 
2 

Figure 5.8B plots kernel level computation cost against channel delta. This graph 

is very similar to the graph of amortized aggregate cache behaviour in Figure 5.7C. 

Again, the CEL algorithms are unaffected by channel delta, whereas the conservative 

algorithms are extremely sensitive to channel delta, this is particularly obvious for 

channel deltas less than 1. The difference that can be seen here is in the relative 

performance of the CCT and fixed schedule algorithms. In terms of cache behaviour 

CCT had better performance than the fixed schedule algorithm, whereas in terms of 

kernel level computation the fixed schedule requires fewer instructions per event than 

the COT algorithm. The behaviour of the conservative algorithms is 1/L, where L is 

the lookahead. The horizontal and vertical asymptotes, y = 0 and x = 0 can be easily 
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observed in the graph. In other words, the cost of the simulation increases rapidly as 

the lookahead approaches 0, and vanishes as the lookahead approaches infinity. If the 

lookahead is as long as the simulation itself, then in some sense there is no simulation 

to execute, and thus the cost is zero. 

The event rate graph (Figure 5.8C) plots the number of events executed per second 

of wall-clock versus the channel delta. The performance of the calendar queue algo-

rithm is approximately constant in the channel delta. The conservative algorithms 

do well when the channel delta is large, and poorly when the channel delta is small. 

For the range of channel deltas tested in this experiment when event density is low 

(D=1), the conservative algorithms can be up to 17x slower than the calendar queue 

algorithm, and up to 2x faster. When event density is larger (D=4), the conservative 

algorithms can be about 4x slower than the calendar queue algorithm and up to 2.5x 

faster. The point at which the conservative algorithms gain advantage of the CEL al-

gorithms depends both on the lookahead and the event density. A necessary condition 

evident from the graphs, is that the events per LP execution greater for conservative 

algorithms must be greater than 1 to achieve better performance than the calendar 

queue algorithm, i.e., when DL/1,t > 1, it is possible for the conservative approach 

to outperform the optimal CEL approach. It is interesting that the CCT algorithm 

achieves better cache performance than the fixed schedule algorithm, due in part to 

maximizing the events per LP execution. However, the kernel level computation cost 

is still lower for the fixed schedule. In the end the modest cache advantage is enough 

to put the CCT algorithm ahead of the fixed schedule in terms of event rate. 

5.2.2 Connection Radius Experiment 

The purpose of this experiment is to study the effect of connection radius on the 

performance of the different algorithms. Fixing the channel delta at 1.0 units of 

simulation time, the connection radius is varied between 1 and 32. The experiment is 

conducted with event densities 1 and 4 to help illustrate how greater event densities 
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can offset the increased costs of a larger connection radius. 

Figure 5.9A plots the percentage of level 2 cache misses in model level code ver-

sus the connection radius. The model level cache behaviour of the CEL algorithms 

appears unaffected by connection radius. With increasing connection radius the per-

centage of cache misses for conservative algorithms is observed to increase, although 

slower than logarithmically. The model level cache behaviour of conservative al-

gorithms is consistently better than that of CEL algorithms for connection radius 

between 1 and 32, even when D=1. For the conservative algorithms, a higher event 

density results in significantly lower cache misses as can be seen from curves where 

D=4. The fixed schedule algorithm outperforms the COT algorithm for a connection 

radius of 4 or greater. This is probably due to the OCT algorithm achieving more 

events per LP execution than the fixed schedule algorithm for smaller connection ra-

dius (See Figure 5.1OA). For connection radius of 4 or more there is little difference 

between the events per LP execution of the fixed schedule and COT algorithm. 

The kernel level cache behaviour plotted in Figure 5.9B shows the independence of 

CEL algorithms with respect to connection radius. The conservative algorithms must 

perform a safetime calculations that requires accessing a different memory location 

for each channel. If none of these channels are cached then executing the first event 

will require 2R cache misses. 

The percentage of kernel level cache misses increases faster than logarithmically for 

the COT algorithm. It increases approximately logarithmically for the fixed schedule 

algorithm when D=4, and slower than logarithmically when D=1. The fixed schedule 

algorithm outperforms the OCT algorithm for connection radii larger than 4. When 

event density equals 1 the percentage of kernel level cache misses for conservative 

algorithms is almost immediately larger than for GEL algorithms, for event density 

4 the conservative algorithms maintain a cache advantage up to a connection radius 

of 8. 

The amortized aggregate cache behaviour can be observed in Figure 5.90. The 
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behaviour of the calendar queue algorithm is constant in the number of LPs. The 

conservative algorithms show significant increases in the number of cache misses per 

event as the number of channels in the model increases. These increases are greatly 

reduced with larger event densities, as can be seen comparing the curves for D=1 

and D=4. The rate of increase is approximately linear in the connection radius. The 

fixed schedule algorithm consistently experiences fewer cache misses per event than 

the CCT algorithm. For event density 4, the conservative algorithms achieve better 

cache performance than the calendar queue algorithm for a connection radius up to 

8. The calendar queue demonstrates better amortized aggregate cache behaviour for 

any connection radius larger than 8. 

Figure 5.1OA plots the number of events per LP execution. This metric is con-

sistently 1 for the CEL algorithms. For the conservative algorithms, the fixed sched-

ule algorithm achieves the minimum expected events per LP execution. Emin(D = 

1) = =   = 1, Emin(D = 4) = Pl- =    = 4. The COT algorithm 

is capable of achieving greater events per LP execution, but for larger connection 

radius this advantage quickly disappears. Emax (D = 1) = 2>1 = 2, 

Emax(D = 4) = 2DL = 21+1 ><1 = 8. With a larger connection radius, there is a 

greater chance that one of the neighbors may not have advanced ahead of the cur-

rently executing LP (i.e., the currently executing LP and one of its neighbors have 

the same timestamp at the beginning of the execution session), this means that the 

executing LP will only advance a single lookahead interval. 

Kernel level computation cost is plotted in Figure 5.1OB. Again, the behaviour of 

GEL algorithms is observed to be constant in the connection radius. The number of 

kernel level instructions per event increases linearly for the conservative algorithms. 

This confirms the analysis of section 4.3. The rate of increase of this metric is about 

the same regardless of event density, but the value of this metric is offset depending 

on the event density parameter. For a connection radius of 4 or greater, the kernel 

level computation cost is greater for conservative algorithms than for the calendar 
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queue algorithm. The conservative algorithms must perform a safetime calculation, 

which is theoretically a function of the number of channels, this cost is not incurred 

by CEL algorithms which explains the difference in behaviour observed here. 

The event rate metric is plotted in Figure 5.100. The behaviour of GEL algorithms 

is almost constant, although there is a very slight downward trend possibly due to 

other interactions in the model. When the event density is equal to 1 the performance 

of the conservative algorithms is poor in comparison to the calendar queue algorithm. 

The conservative algorithms achieve comparable performance for connection radius 

1, and then worse performance as the connection radius is increased. With a larger 

event density such as D=4, the conservative algorithms are able to outperform the 

calendar queue algorithm for a greater range of connection radius. However, their 

performance is still declining relative to the GEL algorithms. For a connection radius 

of 2 or greater, the fixed schedule conservative algorithm consistently performs better 

than the COT algorithm. One would expect COT to do better for larger connection 

radius by maximizing the events per LP execution. The reason this has not been 

observed is that the fixed schedule always achieves Emin events per LP execution, 

while the COT algorithm only achieves greater than Emin for small connection radius. 

Although the behaviour of the fixed schedule and COT algorithms is similar in terms 

of events per LP execution, the kernel level computation cost is lower for the fixed 

schedule and thus its event rate is greater. 

5.2.3 Topology Experiments 

The connection radius and channel delta experiments above are repeated using both 

star and ring connection topologies. To simplify the graphs results are only presented 

for the calendar queue, CCT, and fixed schedule algorithms. As mentioned previously, 

the behaviour of the GEL algorithms is approximately constant in both connection 

radius and channel delta. The controlled variables for each of the experiments can be 

found in Table 5.1. 
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Channel Delta 

In the first experiment, the connection radius is fixed at 4, the event density is fixed 

at 4, and the channel delta is varied between 0.015625 and 4.0. The experiment is 

conducted using a connection radius of 4 since for R=1, the ring and star topologies 

are identical. A separate curve is plotted for execution of each algorithm on each 

of the topologies (ring and star). The graphs in Figures 5.11 and 5.12 compare the 

effect of varying channel delta under both the ring and star topologies. 

Figure 5.11A plots model level cache behaviour against the channel delta. In 

terms of model level cache behaviour, the topology of the model had no effect on 

the calendar queue algorithm, it had a very small effect on the CCT algorithm, and 

only a slightly larger effect on the fixed schedule algorithm. For a ring topology, the 

model level cache behaviour of the fixed schedule algorithm is slightly better than 

that of COT (particularly for small channel deltas). For the star topology CCT has 

consistently better cache performance than the fixed schedule. 

The kernel level cache behaviour is plotted in Figure 5.11B. Kernel level cache 

behaviour showed sensitivity to model topology, particularly for the fixed schedule 

algorithm. The cache performance was close to 2 times worse in a star connected 

model than in a ring connected model with the same channel delta. The cache 

performance of OCT was also affected by model topology but to a much lesser degree. 

Again, performance of the calendar queue algorithm appears independent of model 

topology. For the star topology, the kernel level cache behaviour of OCT is better 

than that of the fixed schedule algorithm; for the ring topology, the fixed schedule is 

slightly better. 

Figure 5.110 plots the aggregate cache behaviour versus channel delta. Comments 

regarding the kernel level cache behaviour apply to the aggregate cache behaviour of 

the algorithms as well. Topology has no effect on the calendar queue, a small effect 

on the performance of COT algorithm, and a significant effect on the fixed schedule 
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algorithm. The fixed schedule algorithm experiences between 30% and 40% more 

cache misses processing a star topology than a ring topology with the same channel 

delta. The affect of topology on cache is more evident for smaller channel deltas. For 

the star topology, the aggregate cache behaviour of CCT is better than that of the 

fixed schedule algorithm; for the ring topology, the fixed schedule is better. 

As can be seen in Figure 5.12A, topology has almost no effect on the average 

number of events executed per LP execution session regardless of the algorithm. The 

issue is that all of the LPs in the system end up synchronized to the same clock value, 

so connecting to LPs other than your immediate successor and predecessor makes no 

difference in terms of the available lookahead. The reason LPs are synchronized to 

the same clock value is due to the same lookahead being available on each channel 

(all channel deltas are the same). If LPs further away in the ring were at different 

times then we might have seen a decreased window of execution (number of events per 

LP execution). CCT would probably overcome this scenario better than fixed since 

it would schedule LPs. A better experiment would have used randomly generated 

channel deltas, so that LPs could actually execute to different times. 

In Figure 5.1213, kernel level computation cost is plotted against channel delta. 

Topology has no observable effect on the kernel level computation cost regardless of 

the algorithm. This makes sense for the conservative algorithms as there was almost 

no dependence on topology for the number of events per LP execution. If there was 

greater variation in the number of events per LP execution, then we might expect a 

variation in the kernel level computation cost as well. 

Figure 5.12C plots the event rate metric versus channel delta. The event rate 

metric echoes the effect observed in cache behaviour. The conclusions are the same, 

calendar queue is unaffected by the choice of topology, OCT is somewhat dependent 

on choice topology, and fixed schedule shows the greatest dependence on topology. 

The OCT algorithm outperforms the fixed schedule algorithm for the star topology, 

whereas the fixed schedule outperforms CCT for the ring topology. This behaviour 
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is due almost entirely to kernel level cache behaviour. This is explained by the kernel 

level cache behaviour in Figure 5.11C. Although topology does not affect the kernel 

level computation cost, it does affect the cache behaviour. 

Connection Radius 

For the second experiment, the channel delta is fixed at 1.0 unit of simulation time 

and event density is set to 4, while the connection radius is varied between 1 and 32. 

Again a separate curve is plotted for the execution of each algorithm on each of the 

topologies. Performance metrics are graphed in Figure 5.13 and 5.14. 

The model level cache behaviour (Figure 5.13A) of the calendar queue is unaffected 

by connection topology. In terms of model level cache behaviour, the affect of topology 

on the CCT algorithm is negligible, while its affect on the fixed schedule algorithm is 

at least observable. The larger the connection radius, the greater affect the connection 

topology has on the fixed schedule algorithm. The ring topology is handled more 

efficiently than the star topology by the fixed schedule algorithm. 

Kernel level cache behaviour is plotted in Figure 5.13B. Again the calendar queue 

is unaffected by choice of connection topology. In terms of kernel level cache be-

haviour, both the OCT and fixed schedule algorithms show sensitivity to the topol-

ogy. The fixed schedule algorithm exhibits consistently greater kernel level cache 

misses simulating the star model than the corresponding ring model. Up to twice 

as many cache misses were observed for the star topology than the ring topology 

when the connection radius was 16 or greater. The fixed schedule algorithm executes 

LPs executes each LP in the ring in a clockwise fashion. The execution of LP x is 

followed by the execution of LP x + 1, eventually wrapping back around to LP x. 

This implies that the execution of each LP is preceded and followed by the execution 

of its closest neighbours. In the ring connection topology the fixed schedule benefits 

because neighboring LPs are brought into the cache prior to execution. In the star 

topology, each LP accesses other LPs that are further separated from itself in terms 
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of execution order, i.e., for a given LP, the LPs that must be accessed are not those 

preceding or following the execution of that LP. The variation in OCT's kernel level 

cache behaviour is smaller, but more complex. For smaller connection radius the 

kernel level cache behaviour of OCT is better for the ring topology than for the star 

topology, but around connection radius 16, the performance of OCT becomes better 

for the star topology. CCT does not execute the LPs in a fixed order, the order can 

change and it depends on how critical channels are set. Regardless of topology, it is 

equally likely that OCT schedules any of its neighbours regardless of where they are 

in the ring. This implies that the kernel level caching behaviour is similar for both 

topologies. 

The amortized aggregate cache behaviour graph (Figure 5.130) shows the su-

periority of the fixed schedule algorithm for the ring connection topology, and the 

superiority of COT for the star topology. However, extrapolating from the graph it 

appears that for a larger connection radius COT may actually experience more cache 

misses than the fixed schedule algorithm, independent of topology. 

The plots of events per LP execution (Figure 5.14A) show no dependence on 

topology for any of the three algorithms. As discussed in the previous topology 

experiment where channel delta was manipulated, it is believed that the events per LP 

execution are unaffected by topology because the clocks of all LPs are synchronized to 

the same simulation time. It doesn't matter if the neighbours that an LP is connected 

to are close by, or far away in the ring they have the same local simulation times and 

the same lookahead. 

The plots of kernel level amortized computation cost (Figure 5.14B) show very 

little dependence on the choice of topology, for any of the algorithms. Had there been 

a greater variation in events per LP execution, then greater variation could have been 

expected in the computation cost also. 

The event rate metric is plotted in Figure 5.14C. This graph confirms what was 

observed in the previous metrics. The calendar queue algorithm's performance is 
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independent of the topology. The OCT algorithm is less sensitive to the choice of 

topology than the fixed schedule algorithm, but fails to achieve significantly greater 

performance. The fixed schedule algorithm shows the greatest dependence on topol-

ogy, but performs better than OCT in the case of ring topology and comparable in 

the case of the star topology. 

5.3 Model Characteristics Experiments 

There are many other model characteristics that could affect algorithm performance. 

This section will consider a few more model parameters, that ultimately result in the 

described synthetic model being quite general and comparable to many real world 

systems and scenarios. 

This group of tests will examine the remaining model parameters and study how 

they affect the performance of the different simulation algorithms. The first experi-

ment considers computation grain, which corresponds to the amount of work required 

to process an event. The second experiment will compare the performance of the dif-

ferent algorithms when the amount of LP state is varied. The third experiment 

manipulates the timestamp increment distribution to observe the effect on algorithm 

performance. 

5.3.1 Computation Grain Experiment 

This experiment will involve varying the amount of work done to process an event 

at the model level. If the processing of an event by the model level code is simple, 

and quick, this corresponds to a small computation grain. If the processing of an 

event at the model level is complicated or time consuming this corresponds to a large 

computation grain. Computation grain experiments are not particularly relevant to 

testing sequential simulation kernels. Their applicability is in parallel simulation 

where busy cycles of one cpu could affect the arrival of events at another Cpu. Also, 
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for parallel simulation a large computation grain provides opportunity for parallelism. 

This test demonstrates that choosing an efficient algorithm is only relevant if the 

model has been described in a manner such that the computation grain does not 

nullify the benefits of the different algorithms. Graphs are only presented for the 

event rate metric, since the behaviour of the other metrics is essentially constant in 

terms of additional computation grain. Cache behaviour and kernel level computation 

costs are unaffected by additional computation grain. 

Two different computation grain experiments were conducted. In experiment 1, 

the number of LPs is fixed at 8192, the connection radius is 4, and the event density is 

4. In experiment 2, the corresponding model parameters were 16384 LPs, connection 

radius of 1, and event density of 8. The controlled experiment parameters are in 

Table 5.1. 

Consider the computation grain of the synthetic workload that is already present. 

The synthetic workload has an inherent computation grain which corresponds to ex-

ecution of the model level code, the computation grain that is manipulated in these 

experiments is in addition to this inherent computation grain. It is possible to esti-

mate the inherent computation grain for the synthetic workload; however, equating 

computation grain with a measurement of time is error prone, since the time could 

change depending on the performance of the algorithm. All model parameters come 

into play so the tolerable amount computation grain may vary widely between dif-

ferent simulations. The inherent computation grain is estimated by taking the event 

rate and inverting it, this gives the time to execute a single event. Multiply this by 

the ratio of model level instructions to total instructions to obtain the time spent per 

event in model level code on average (i.e., the inherent computation grain). Multiply 

this by 1e6 to get the time in microseconds. Using time to measure the additional 

computation is not as error prone, since the time spent in the busy wait loop which 

simulates the additional computation grain, does not depend on algorithm perfor-

mance. Table 5.2 shows the estimated inherent computation grain ( TMLPE) , the time 
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Experiment 1 (N8192, R4, D4) 

Algorithm T(Its) TILpE(us) TMLPE(S) 

CEL-CALENDAR 2.32 1.10 (47.34%) 1.22 (52.66%) 

CEL-SPLAY 3.10 1.08 (34.82%) 2.02 (65.18%) 

CEL-HO.HEAP 3.34 0.90 (26.84%) 2.45 (73.16%) 

CEL-HENRIKSEN 5.20 1.32 (25.41%) 3.88 (74.59%) 

CCT-FIFO 1.77 0.73 (41.17%) 1.04 (58.83%) 

FIXED-FIFO 1.52 0.72 (47.34%) 0.80 (52.66%) 

Experiment 2 (N16384, Ri, D8) 

Algorithm T(ts) TKLpE([Ls) TMLPE(S) 

CEL-CALENDAR 2.40 1.15 (47.66%) 1.26 (52.34%) 

CEL-SPLAY 3.70 1.24 (33.45%) 2.46 (66.55%) 

CEL-HOJIEAP 4.41 1.09 (24.69%) 3.32 (75.31%) 

CEL-HENRIIKSEN 7.64 1.59 (20.80%) 6.05 (79.20%) 

CCT-FIFO 0.91 0.48 (52.42%) 0.43 (47.58%) 

FIXED-FIFO 0.94 0.52 (55.42%) 0.42 (44.58%) 

Table 5.2: Inherent Computation Grain (in microseconds) 

spent per event in kernel code per event (TKLPE), and the total time spent in the 

simulator per event (T). 

As the additional computation grain is increased the difference between the algo-

rithms becomes rapidly smaller, as can be seen in Figure 5.15. For simulated com-

putation grains of less than 1 microsecond there are substantial differences between 

the algorithms, but for larger computation grains, i.e., 4 microseconds or greater, the 

choice of algorithm is almost irrelevant. The results of this experiment confirm the 

larger the computation grain, the less the kernel algorithm will impact performance. 

The rapid decrease in event rate was surprising at first, but this does make sense 



CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 101 

Ev
en
t 
Ra
te
 (
 1O
"6
 e
ve

nt
sl

s)
 

Ev
en
t 
Ra
te
 ('

 1O
"6

 e
ve
nt
s/
s)
 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0.0078125 0.125 2 

Additional Computation Grain (microseconds) 

1.2 

0.8 

0.6 

Exp. 1 Simulation Results 

32 

0.2 " 

0   

CCI —3— 
FIXED -..*..-

CEL-CALENDAR ..'o.... 
CEL-SPLAY —e--

CEL-HO_HEAP ---
CEL-HENRiKSEN --'G.... 

0.0078125 0.125 2 

Additional Computation Grain (microseconds) 

Exp. 2 Simulation Results 

32 

Es
ti

ma
te

d 
Ev

en
t 
Ra
te

 (
* 
1O
"6
 e
ve
nt
s/
s) 

Es
ti

ma
te

d 
Ev
en
t 
Ra

te
 (
 10
A6

 e
ve
nt
s/
s 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

._........ 

:ITT: 

0.0078125 

0.8 

0.6 

0.4 

0.125 2 

Additional Computation Grain (microseconds) 

Exp. 1 Analytical Estimation 

32 

.:..'.. ...... 

.......... .... 

0.2' 

0 
0.0078125 0.125 2 

Additional Computation Grain (microseconds) 

Exp. 2 Analytical Estimation 

Figure 5.15: Computation Grain Experiment 

32 



CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 102 

since as the following derivation will show, event rate is a rational function of 1/G. 

V average Event Rate during simulation 

M Total Events executed during simulation 

T Total Time required for the simulation 

Tk Total Time spent in the simulation kernel level code 

Tm Total Time spent in model level code 

TKLPE Time spent in kernel level code per event (on average) 

TMLPE Time spent in model level code per event (on average) 

G Additional computational grain to be simulated 

T 

Tk 

TM 

= Tk+Tm 

= TKLPEXM 

= TMLPEXM 

-  M  
- Tk- +Tm 

= TKLPE+TMLPE 

M 
TKLPE XM+TMLPE xM 

1 

TKLPE is constant in G, so we have a rational function of TMLPE. In fact, given the 

event rate of the simulation where G = 0, the event rate for any given value of C 

can actually be predicted with the formula V(G) =  o 1/v()+a• The second column of 

graphs in Figure 5.15 demonstrates the use of the analytical formula for predicting 

the event rate of the different algorithms. 

5.3.2 LP State Size Experiment 

The purpose of this experiment is to study the effect of LP state size on the perfor-

mance of the different algorithms. It is anticipated that the effect of changing the LP 

state size will be noticed primarily in the model level cache behaviour. This exper-

iment is included to highlight the model level cache advantages of the conservative 

algorithms. 
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The model parameter SS is used to specify the number of elements in the LP state 

array. Each time an event is executed the entire array is examined and the average 

of the elements is computed. The problem with modeling LP state in this manner is 

that although the model level cache performance is affected, the computation grain is 

also significantly increased. This is due to running a loop to examine each element in 

the array. To reduce this affect, each element in the array is cache aligned and padded 

to the length of a cache line. This ensures that the greatest amount of memory can 

be accessed using the fewest possible instructions. This will highlight the affects of 

cache behaviour while minimizing the increase in computation grain. In the case of 

the conservative algorithms it is expected that the values in the array will be cached 

and reused approximately as many times as the event density parameter (D). The 

CEL algorithms will jump back and forth between LPs and as a result may need to 

reload the array each time an event is executed. 

The LP state size experiments fix the number of LPs at 8192. Two experiments are 

conducted: one with event density 1, one with event density 4. In each experiment, 

the standard set of algorithms are compared as the LP state size is varied between 1 

and 32 items. Each item corresponds to a cache aligned chunk of memory 32 bytes 

long, the size of one cache line. Table 5.1 contains the remaining controlled parameters 

for this experiment. Since varying the LP state size had no observable effect on kernel 

level cache behaviour, events per LP execution, and kernel level computation cost, 

only the model level cache behaviour, aggregate cache behaviour, and event rate 

metrics are presented. See Figures 5.16 and 5.17 for the results. 

Figures 5.16A and 5.17A plot the percentage of cache misses as LP state size 

is increased from 1 to 32. As LP state size increases, the cache miss percentage is 

increasing approximately linearly for both GEL and conservative algorithms. The 

conservative algorithms are able to maintain a lower percentage of model level cache 

misses than the GEL algorithms. The GEL algorithms show a significant dependence 

on the LP state size, reaching 18% for models with larger LP state sizes, this is about 
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9x worse cache performance than the CCT algorithm (in the case where event den-

sity = 4). For model level cache behaviour the variation between the GEL algorithms 

themselves is altogether absent, while there is some difference observed between the 

fixed schedule and CCT algorithm. Comparing Figures 5.16A and 5.17A, it is ob-

served that for GEL algorithms, the model level cache behaviour is unaffected by the 

event density parameter; the cache performance does not depend on event density. 

For conservative algorithms the sensitivity to state size is negatively correlated with 

the event density. The higher the event density, the less affect larger state sizes have 

on cache behaviour. 

The graph of amortized aggregate cache behaviour (Figures 5.1613 and 5.17B) 

illustrates the same behaviours observed in model level cache behaviour. The GEL 

algorithms are spread out over a wider range but the shape and slope of the curves is 

the same. In Figure 5.17B, Henriksen's algorithm experiences about 6x as many cache 

misses as the conservative algorithms for an LP state size of 32. The Calendar queue 

has better cache performance but still results show about 4x more cache misses than 

the conservative algorithms. COT performs around 30% better than the fixed schedule 

algorithm in terms of amortized aggregate cache behaviour when event density is 1, 

but this is less pronounced for event density 4 (Figure 5.17B). 

The Event Rate graphs (Figures 5.160 and 5.170) show the superiority of the 

conservative algorithms. Although the absolute event rate is decreasing on account 

of the increase in computation grain, the relative performance of the conservative 

algorithms continues to improve. It is possible to infer that this relative improvement 

is due to better cache performance since the kernel level computation cost metric (not 

shown) is constant in the LP state size, and the model level computation cost is the 

same, independent of the algorithm. 



CHAPTER 5. SEQUENTIAL PERFORMANCE OF DES ALGORITHMS 107 

5.3.3 Timestamp Increment Distribution Experiment 

The purpose of this set of experiments is to determine the extent to which the times-

tamp increment distribution affects the performance of the different algorithms. This 

experiment will compare the performance of the algorithms for six timestamp incre-

ment distributions: constant, exponential, uniform, biased, bi-modal, and triangular 

(See table 4.1). Six models were selected to illustrate the range of behaviours of the 

algorithms: (N8192, D4, R32, Li), (N8192, DO.25, Ri) Li), (N8192, D4, Ri, LO.125), 

(N8i92, D4, Ri, Li), (N8i92, D4, Ri, L2), (N8192, D32, Ri, Li). For each model, 

each algorithm was tested using each of the six timestamp increment distributions. 

Table 5.3 shows the results obtained for the first model (N8i92, D4, R32, Li), 

results for the other models are available in appendix A. The data collected for all 

models is presented in Figures 5.18 and 5.19. Vertical columns of the graphs separate 

the different algorithms, the linestyle of the individual markers distinguishes between 

the model topologies, and finally the markers themselves indicate the minimum, max-

imum, average, and standard deviation of the different distributions with regards to 

a particular metric. Within a column the six markers from left to right correspond 

to the six model topologies listed top to bottom in the legend. The marker is a rect-

angular box, limited vertically by the average +1- one standard deviation. A vertical 
line segment extends from the top of the box to the maximum value, a second line 

segment extends from the bottom of the box to the minimum value. The average is 

indicated by a horizontal bar in the middle of the box. 

Looking first at the model level cache behaviour (Figure 5.18A), it can be seen 

that the timestamp increment distribution has a significant effect on all of the GEL al-

gorithms. For any given model the percentage of cache misses observed ranges about 

1.0-1.5%. For example, refering to Table 5.3 it was observed for GEL algorithms 

that using the exponential distribution resulted in approximately 4.16% cache misses, 

while the uniform distribution saw approximately 5.27% for the model (N8192, D4, 

R32) Li). The affect of the timestamp increment distribution on model level cache 
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Algorithm Distribution Mean Standard 

Constant Exponential Uniform I Biased I Si-model Triangular Deviation 

Model Level Cache Behaviour 

Cache Misses (%) 
CEL-CALENDAR 3.88 4.12 5.23 5.19 4.79 5.26 4.75 0.60 

CEL-SPLAY 3.89 4.16 5.27 5.19 4.83 5.24 4.76 0.60 

CEL-HO.flEAP 3.92 4.17 5.29 5.24 4.85 5.27 4.79 0.60 

CEL-HENRIKSEN 3.88 4.18 5.29 5.20 4.85 5.27 4.78 0.61 

CCT-FIFO 2.36 2.11 2.65 2.63 2.56 2.64 2.49 0.22 

FIXED-FIFO 2.06 1.89 2.37 2.36 2.31 2.37 2.23 0.20 

Kernel Level Cache Behaviour 

Cache Misses (%) 
CEL-CALENDAR 1.65 4.12 4.27 4.77 4.19 7.20 4.37 1.77 

CEL-SPLAY 2.88 5.35 5.11 3.66 5.00 4.74 4.46 0.97 

CEL-FlO_HEAP 5.64 4.51 4.62 4.70 4.46 4.70 4.44 0.40 

CEL-HENRIKSEN 1.90 8.74 10.42 4.59 9.44 10.49 7.60 3.54 

OCT-FIFO 8.02 9.67 9.73 9.71 10.06 9.71 9.48 0.73 

FIXED-FIFO 4.68 5.73 5.79 5.77 5.97 5.77 5.61 0.47 

Amortized Aggregate Cache Behaviour 

Cache Misses / Event 
CEL-CALENDAR 6.43 12.27 12.47 13.59 12.28 21.94 13.18 4.99 

CEL-SPLAY 8.25 17.80 17.08 13.01 16.63 16.12 14.82 3.82 

CEL-HO..HEAP 10.91 18.62 18.94 19.27 18.30 19.24 17.55 3.27 

CEL-HENRIKSEN 7.08 24.59 30.39 14.42 27.46 31.40 22.55 9.74 

COT-FIFO 24.81 47.88 47.95 47.91 57.00 47.92 45.58 10.80 

FIXED-FIFO 14.44 27.58 27.72 27.87 32.68 27.65 26.29 6.14 

Events Per LP Execution 

Events / LP Execution 
CEL-CALENDAR 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL-SPLAY 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL-HO..}IEAP 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL-HENRIKSEN 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CCT-FIFO 7.96 4.00 3.99 3.95 3.33 3.99 4.54 1.70 

FIXED-FIFO 7.88 3.95 3.94 3.94 3.29 3.94 4.49 1.68 

Amortized Kernel Level Computation Cost 

Instructions / Event 
CEL-CALENDAR. 235.09 243.79 252.23 266.99 240.94 624.69 310.62 154.26 

CEL-SPLAY 248.65 428.77 421.69 360.86 413.28 413.21 381.08 69.19 

CEL-HO..HEAP 385.55 609.43 612.12 618.02 602.74 616.54 574.07 92.52 

CEL-HENRIKSEN 398.37 576.33 659.13 462.38 635.41 689.33 570.16 116.23 

COT-FIFO 513.15 883.03 879.05 879.31 1027.40 880.19 843.69 172.28 

FIXED-FIFO 476.21 809.35 805.90 806.09 938.98 806.26 773.80 155.07 

Event Rate 

*j6 events / second) 
CEL-CALENDAR 0.67 0.40 0.42 0.38 0.41 0.22 0.41 0.14 

CEL-SPLAY 0.63 0.30 0.32 0.41 0.32 0.33 0.39 0.13 

CEL-HO_FIEAP 0.46 0.29 0.30 0.29 0.30 0.28 0.32 0.07 

CEL-HENRIKSEN 0.62 0.21 0.18 0.34 0.19 0.17 0.29 0.18 

COT-FIFO 0.29 0.16 0.17 0.17 0.14 0.16 0.18 0.06 

FIXED-FIFO 0.39 0.22 0.22 0.22 0.19 0.22 0.25 0.07 

Table 5.3: Results for D4...R32L1 Distribution experiment 
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A. Model Level Cache Behavior 
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A. Events Per LP Execution 
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behaviour seems about the same regardless of CEL algorithm. For the conserva-

tive algorithms, slightly less variation was observed within a given model, except for 

model (N8192, D4, Ri, LO.125) where significantly greater variation was observed. 

Less variation suggests less sensitivity to the timestamp increment distribution, at 

least in models with large channel delta that avoid low lookahead cycles. The key 

observation is that in most cases, the conservative algorithms show less sensitivity to 

the timestamp increment distribution in terms of their model level cache behaviour. 

The CEL algorithms can be roughly ranked according to their kernel level cache 

behaviours' (Figure 5.1813) sensitivity to the timestamp increment distribution. From 

most sensitive to least sensitive: Henriksen, Calendar, Splay, and Ho-Heap. The 

conservative algorithms are again less sensitive to timestamp increment distribution, 

except in cases of low lookahead. Kernel level cache behaviour appears extremely 

sensitive to distribution for calendar queue and Henriksen's algorithm when the event 

density is large (or possibly when the event population is large), as evidenced by model 

(N8i92, D32, Ri, Li). 

For the CEL algorithms, observations made regarding kernel level cache behaviour 

apply also to amortized aggregate cache behaviour (Figure 5.i8C). For the conser-

vative algorithms, aggregate cache behaviour exhibits variation comparable to GEL 

algorithms for models with low lookahead ( (N8i92, DO.25, Ri, Li), (N8192, D4, Ri, 
LO.125) ) or high connectivity (N8192, D4, R32, Li). For the other models, conser-
vative algorithms show far less dependence on the timestamp increment distribution 

than the CEL algorithms do. Another interesting observation is that CCT shows 

greater sensitivity to distribution when connection radius is high, while fixed shows 

greater sensitivity when event density is low. 

The number of events per LP execution (Figure 5.19A) shows no sensitivity to the 

timestamp increment distribution for GEL algorithms. The CEL algorithms achieve 

2 events per LP execution for the constant distribution because the increment was 

constant at 1.0. For the conservative algorithms, there is very little dependence on 
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timestamp increment distribution when event density is small (N8192, DO.25, Ri, 

Li) and significant dependence when event density is large (N8i92, D32, Ri, Li). 

Dependence on timestamp increment distribution for conservative algorithms seems 

to be proportional to some function of event density. When event density is large, 

CCT shows greater sensitivity to distribution than the fixed schedule. 

Figure 5.i9B plots the kernel level computation cost. The splay, ho-heap, and 

Henriksen's algorithms show moderate variation in their kernel level computation cost 

as timestamp increment distribution is varied. The calendar queue seems particularly 

sensitive to timestamp increment distribution for models (N8192, D4, Ri, LO.125), 

(N8i92, D32, Ri, Li). For the conservative algorithms, again greater sensitivity to 

scheduling distribution is observed in cases of low lookahead ( (N8192, DO.25, Ri, 
Li), (N8192, D4, Ri, LO.125) ) or high connectivity (N8192, D4, R32, Li). The fixed 
schedule is less sensitive to timestamp increment distribution than CCT in terms of 

kernel level computation cost. 

When looking at the event rate metric it is important to keep in mind that this 

reflects the inherent computation grain of the simulation. Variation in event rate 

between different distributions for the same algorithm could be due in part to the 

expenses associated with genethting different random variates. For example, generat-

ing a pseudo random number that fits a normal or uniform distribution is much less 

expensive than generating one that fits an exponential distribution. Computation 

grain aside, several observations can be made regarding the variation in event rate 

across different timestamp increment distributions. 

The event rate metric is plotted in Figure 5.19C. For most models, the CEL 

algorithms ranked according to increasing variation in event rate are ho-heap, splay, 

calendar, and Henriksen's. The conservative algorithms exhibit less absolute variation 

in event rate than the CEL algorithms in models ( (N8192, D4, R32, Li), (N8192, 
DO.25, Ri, Li), (N8192, D4, Ri, L2) ). They exhibit greater variation in models ( 
(N8192, D4, Ri, Li), (N8192, D4, Ri, LO.125), (N8192, D32, Ri, Li) ). The relative 
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variation as compared to the average event rate, is less for conservative algorithms 

than GEL-based algorithms in all but two models, (N8192, D4, Ri, LO.125) and 

(N8192, DO.25, Ri) Li) where available lookahead was not always adequate to execute 

an event. These are situations in which the conservative algorithms achieved less than 

1 event per LP execution. The variation in event rate observed for OCT and the fixed 

schedule algorithm are very close. 

5.4 Summary 

This chapter has presented the results of thesis research conducted. These exper-

iments demonstrate the range of performance possible using the tested simulation 

algorithms. Most experiments manipulated a single model parameter while holding 

other model parameters constant. The parameters of the synthetic workload model 

that were manipulated were: number of LPs, event density, connection radius, chan-

nel delta, connection topology (ring and star), computation grain, LP state size, and 

timestamp increment distribution. 

The performance of the conservative algorithms decreases as connectivity is in-

creased and eventually becomes worse than that of the GEL algorithms. This is due 

to increased channel scanning costs that result in increased instruction cost and worse 

cache behaviour. The cache behaviour is negatively affected for higher connectivity 

because more state is accessed. GEL algorithms are insensitive to changes in the 

connection radius of the model. 

The average number of events per LP execution is influenced by the event density 

and the lookahead. Increasing event density results in more events per LP execution 

session for the conservative algorithms resulting in better cache behaviour and reduc-

ing the frequency of accessing the LP scheduling queue. The conservative algorithms 

achieved event rates of over 5 times that of a heap GEL algorithm, and up to nearly 3 

times that of a calendar queue GEL algorithm. The L2 cache miss rate was up to 18 
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times lower than that for the splay tree GEL algorithm and up to 12 times lower than 

that for the calendar queue algorithm. However, with low event density an event rate 

up to 2.5 times less than that of GEL algorithms was observed. 

Increasing the lookahead also results in more events per LP execution session 

giving better cache behaviour and reducing the LP scheduling cost. Although the 

conservative algorithms achieved an event rate over 3 times that of heap and splay 

tree GEL algorithms at high lookahead, an event rate 4 times lower than that of 

the calendar queue GEL algorithm was observed at low lookahead. As lookahead 

decreases the temporal separation of events becomes greater than the lookahead re-

sulting in low lookahead cycles and in turn many LP execution sessions in which no 

events are executed. 

The choice of model topology, either ring or star, did not have much affect on 

the performance of the various algorithms. The computation grain experiment serves 

as a reminder that the larger the computation grain the less dependence there is on 

choice of algorithm. When the scheduling distribution was manipulated the relative 

variation of CMB-based algorithms was in general smaller than for GEL algorithms 

except when events per LP execution was less than 1. 

The behaviour of the calendar queue algorithm was very stable in the experiments 

conducted. Research conducted by Ronngren et al. has shown that the performance 

of the calendar queue can vary significantly with certain distributions, or when the 

distribution is changing [32]. Also, because the queue size was not changing during 

these simulation runs, the calendar queue did not need to perform resizes. If the queue 

size was dynamic, the calendar queue might not have performed as well. Parallel 

variations of the up down hold model and the interaction hold model could have 

perhaps demonstrated these scenarios. 



Chapter 6 

Summary 

Discrete event simulation (DES) is in widespread use as tool for modeling a system 

as it evolves over time. The majority of simulation studies are conducted sequentially. 

One reason for this is the availability of single or dual processor computers that can be 

more cost effective than larger parallel computers. A second reason that simulations 

are conducted sequentially is that simulation studies often require the execution of 

thousands of simulation runs. In this situation better throughput is achieved using 

sequential DES rather than parallel discrete event simulation (PDES) techniques, due 

to the lower computational efficiency generally achieved by PDES systems. 

Most sequential discrete event simulators are based on the central event list (GEL) 

algorithm which uses a single priority queue to order the execution of all events in 

the system. Much of sequential DES research has focused on the implementation of 

the priority queue. This thesis proposes a different approach to sequential DES based 

on using PDES algorithms in a sequential execution environment. 

The critical channel traversing (COT) algorithm is a PDES algorithm that has 

demonstrated excellent performance in sequential runs. Using the COT algorithm, 

the ATM-TN network simulator was able to achieve an event rate three times greater 

than when using a splay tree based GEL [41]. The IF-TN network simulator has 

performed up to four times better using OCT than using a GEL-based simulator 
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employing a heap [21]. The excellent performance results in these papers motivated 

the examination of PDES algorithms for potential application to sequential DES. 

This thesis has explored the use of channel based conservative PDES mecha-

nisms in a sequential execution environment. The performance of the conservative 

algorithms was compared with numerous implementations of a CEL-based simula-

tor including Henriksen's, heap, splay tree, and calendar queue. The complexity of 

channel based conservative algorithms was analyzed and compared to that of various 

CEL implementations. A parameterized synthetic workload model was developed as 

a basis for empirical comparison of the different algorithms. Six performance metrics 

were defined and used to analyze the range of performance possible for each of the 

model parameters. 

It was shown that several channel based conservative algorithms including CCT 

could under identifiable conditions, achieve significantly better performance than a 

wide range of CEL-based algorithms. This chapter summarizes the results and con-

cludes with an exploration of future work. 

6.1 Conclusions 

Table 6.1 summarizes the relative speedup in event rate of the CCT algorithm versus 

the calendar queue. The calendar queue was the best performing CEL-based algo-

Experiment Worst Best 

Number of LPs 1.3x 2.3x 

Event Density O.40x 3.Ox 

Channel Delta O.06x 2.5x 

Connection Radius O.70x 2.2x 

LP State Size 2.2x 2.8x 

Table 6.1: Relative Speedup of CCT versus CEL - calendar queue. 
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rithm in all experiments conducted with the synthetic workload model used in this 

thesis. The results presented here indicate the best and worst performance observed 

while manipulating the associated model parameter in the corresponding experiment 

(see Chapter 5). The relative speedup observed was between 2x and 3x across a 

wide range of model parameters. However, under adverse model conditions the CCT 

algorithm was almost 17x slower than the calendar queue. 

Channel based conservative PDES algorithms relax the total timestamp ordering 

normally imposed by CEL-based simulators. This difference allows certain events to 

be executed out of timestamp order, provided that the events are independent and 

executed by different LPs. Consider two events A and B with timestamps TA and 

TB, respectively. Event A can be executed before event B even though Tb < Ta, if 

there is enough lookahead between the LPs for which events A and B are scheduled. 

Relaxing the total timestamp ordering has two benefits: reduced complexity through 

simplified event scheduling and improved cache behaviour. 

When the average number of events processed in an LP execution session is greater 

than 1, the conservative algorithms can achieve significantly better cache performance 

than CEL algorithms. The conservative algorithms execute numerous events at the 

same LP whose state is already cached, while the CEL-based algorithms may need 

to re-fetch the LP state for each event processed since it will be interleaved with 

the execution of other events at other LPs. In addition to cache advantages, the LP 

scheduling queue is sorted less frequently resulting in lower instruction costs. This 

can occur whenever the events executed per LP execution session is greater than 1. 

If there is not enough lookahead in the model, then a low-lookahead cycle may 

occur. In this situation LPs are scheduled for execution, but they are unable to process 

their next event. This has a negative impact on cache performance and results in the 

LP scheduling queue being sorted multiple times to execute a single event. If there is 

not adequate lookahead in the model such that each LP can execute at least 1 event 

on average, then performance will be poor relative to CEL-based algorithms. 
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Channel based conservative algorithms are also sensitive to the connectivity of 

the model. For the algorithms tested in this thesis, the complexity of the safetime 

calculation was linear in the number of channels. The performance benefits of a 

conservative approach are offset when the cost of the safetime calculation becomes 

too high. 

This thesis has demonstrated that channel based conservative algorithms can be 

an efficient option for sequential simulation under identifiable conditions. The ideal 

conditions are situations where there is relatively low connectivity of LPs, high event 

density, and adequate lookahead to ensure at least 1 event is executed per LP execu-

tion session. As evidenced by the sequential performance of IF-TN [21] and ATM [41] 

these conditions are present in many real world simulation problems. 

6.2 Future Work 

This thesis explored the range of performance possible using a channel based conserva-

tive PDES algorithm to simulate a particular synthetic workload model. Future work 

could include examination and development of new algorithms, as well as comparison 

of these algorithms under different workloads. 

Further experimentation with synthetic workload models could address some of 

the shortcomings of the hold model used in this thesis. The interaction hold model [27] 

addresses the interaction of multiple timestamp increment distributions that is com-

mon in real world simulation. The up/down hold model [2] addresses the changing 

queue size also observed in many real world simulations. Experimenting with addi-

tional model topologies such as toroid or tandem networks could also prove interesting. 

In addition, obtaining benchmark results for real world simulations such as network 

simulation, or process control modeling would provide further evidence to support 

the use of PDES techniques sequentially. 

Optimistic algorithms are not good candidates for sequential execution due to 
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the large overheads of state saving and rollback. For a sequential simulator, time 

not spent executing events is time wasted. Sequential time-stepped algorithms or 

synchronous conservative algorithms would be worth exploring as channel scanning 

costs are avoided. Variations on the OCT mechanism, such as Receive side CCT [34] 

might also be able to reduce channel scanning costs. Another approach is to employ a 

deadlock detection and recovery algorithm such as the one described by Fujimoto [14]. 

The drawback of a deadlock detection and recovery approach in parallel is that it 

can result in a large portion of the simulations being deadlocked and thus running 

almost sequentially. This is not an issue in a sequential execution environment, since 

simulator execution is already sequential. 

A final area of interest is that of cost efficient techniques for overcoming the low-

lookahead cycle problem. Many such techniques have been developed for 0MB-based 

algorithms in a parallel environment such as Carrier NULL Messages [40] and Cooper-

ative Acceleration [1]. Optimization of these techniques for a sequential environment 

could be explored. 
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Algorithm Distribution Mean Standard 

Constant I Exponential Uniform I Biased I Bi-model Triangular Deviation 

Model Level Cache Behavior 

Cache Misses (%) 
CEL-CALENDAR 3.88 4.12 5.23 5.19 4.79 5.26 4.75 0.60 

CEL-SPLAY 3.89 4.16 5.27 5.19 4.83 5.24 4.76 0.60 

CEL-HO..HEAP 3.92 4.17 5.29 5.24 4.85 5.27 4.79 0.60 

CEL-HENRIKSEN 3.88 4.18 5.29 5.20 4.85 5.27 4.78 0.61 

CCT-FIFO 2.36 2.11 2.65 2.63 2.56 2.64 2.49 0.22 

FIXED-FIFO 2.06 1.89 2.37 2.36 2.31 2.37 2.23 0.20 

Kernel Level Cache Behavior 

Cache Misses (%) 
CEL-CALENDAR 1.65 4.12 4.27 4.77 4.19 7.20 4.37 1.77 

CEL-SPLAY 2.88 5.35 5.11 3.66 5.00 4.74 4.46 0.97 

CEL-HO..HEAP 3.64 4.51 4.62 4.70 4.46 4.70 4.44 0.40 

CEL-HENRIKSEN 1.90 8.74 10.42 4.59 9.44 10.49 7.60 3.54 

COT-FIFO 8.02 9.57 9.73 9.71 10.06 9.71 9.48 0.73 

FIXED-FIFO 4.66 5.73 5.79 5.77 5.97 5.77 5.61 0.47 

Amortized Aggregate Cache Behavior 

Cache Misses / Event 
CEL-CALENDAR 6.43 12.27 12.47 13.59 12.28 21.94 13.16 4.99 

CEL-SPLAY 8.25 17.80 17.08 13.01 16.63 16.12 14.82 3.62 

CEL.HO..HEAP 10.91 18.62 18.94 19.27 18.30 19.24 17.55 3.27 

CEL-HENRIKSEN 7.06 24.59 30.39 14.42 27.46 31.40 22.55 9.74 

OCT-FIFO 24.81 47.88 47.95 47.91 57.00 47.92 45.58 10.80 

FIXED-FIFO 14.44 27.58 27.72 27.67 82.68 27.65 26.29 6.14 

Events Per LP Execution 

Events / LP Execution 
CEL-CALENDAR 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL-SPLAY 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL-HO..HEAP 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL-HENRIKSEN 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CCT-F'IFO 7.96 4.00 3.99 3.98 3.33 3.99 4.64 1.70 

FIXED-FIFO 7.88 3.95 3.94 8.94 8.29 3.94 4.49 1.68 

Amortized Kernel Level Computation Cost 

Instructions / Event 
CEL-CALENDAR 235.09 243.79 252.23 266.99 240.94 624.69 310.62 154.26 

CEL-SPLAY 248.65 428.77 421.69 360.86 413.28 413.21 381.08 69.19 

CEL-HO.JIEAP 385.55 609.43 612.12 618.02 602.74 616.54 574.07 92.52 

CEL-HENRIKSEN 398.37 576.33 659.13 462.38 635.41 689.33 570.16 116.23 

CCT-FIFO 513.15 883.03 879.05 879.31 1027.40 880.19 843.69 172.28 

FIXED-FIFO 476.21 809.35 805.90 806.09 938.98 806.26 773.80 155.07 

Event Rate 

*106 events / second) 
CEL-CALENDAR 0.67 0.40 0.42 0.38 0.41 0.22 0.41 0.14 

CEL-SPLAY 0.63 0.30 0.32 0.41 0.32 0.33 0.39 0.13 

CEL-HO..HEAP 0.46 0.29 0.30 0.29 0.30 0.28 0.32 0.07 

CEL-HENRIKSEN 0.62 0.21 0.18 0.34 0.19 0.17 0.29 0.18 

CCT-FIFO 0.29 0.16 0.17 0.17 0.14 0.16 0.18 0.06 

FIXED-FIFO 0.39 0.22 0.22 0.22 0.19 0.22 0.25 0.07 
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Table A.1: Results for D4-R32-L1 Distribution experiment 
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Algorithm Distribution Mean Standard 

Constant Exponential Uniform I Biased I Bi-model Triangular Deviation 

Model Level Cache Behavior 

Cache M sses (%) 
CEL-CALENDAR 3.62 3.50 4.56 4.73 3.85 4.72 4.16 0.57 

CEL-SPLAY 3.65 3.57 4.61 4.73 3.90 4.73 4.20 0.55 

CEL-HO_FIEAP 3.63 3.49 4.53 4.70 3.82 4.67 4.14 0.55 

CEL-HENB.IKSEN 3.64 3.59 4.64 4.72 3.91 4.76 4.21 0.56 

COT-FIFO 3.17 2.96 3.75 3.73 3.31 3.74 3.44 0.34 

FIXED-FIFO 3.00 2.99 3.85 4.08 3.31 3.96 3.53 0.49 

Kernel Level Cache Behavior 

Cache M sses (%) 
CEL-CALENDAR 1.63 2.86 3.04 3.27 2.70 2.83 2.72 0.57 

CEL-SPLAY 2.09 2.58 2.75 3.18 2.19 2.89 2.62 0.42 

CEL-HO..HEAP 1.21 1.41 1.49 1.58 1.33 1.55 1.43 0.14 

CEL.HENRIKSEN 1.81 2.74 2.85 3.27 2.12 2.92 2.62 0.54 

COT-FIFO 3.45 3.95 3.96 3.96 4.06 3.96 3.89 0.22 

FIXED-FIFO 5.52 6.65 6.69 6.72 6.88 6.71 6.53 0.60 

Amortized Aggregate Cache Behavior 

Cache Misses / Event 
CEL-CALENDAR 6.24 9.61 10.12 10.91 9.11 10.48 9.41 1.68 

CEL-SPLAY 6.92 10.47 10.90 11.23 9.29 11.25 10.01 1.68 

CEL-HO_HEAP 5.73 8.30 8.69 9.17 7.88 0.04 8.13 1.27 

Ol1L-FIENRIKSEN 6.64 10.27 10.71 10.91 8.87 11.05 9.74 1.71 

CCT-FIFO 16.00 29.64 29.72 29.77 34.61 29.79 28.25 6.31 

FIXED-FIFO 17.52 32.88 33.17 33.59 38.18 33.38 31.45 7.11 

events Per LP Execution 

Events / LP Execution 
CEL-CALENDAB. 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL.SPLAY 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL-HO_HEAP 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL.HENRIKSEN 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CCT-FIFO 0.98 0.46 0.46 0.46 0.38 0.46 0.53 0.20 

FIXED-FIFO 0.49 0.25 0.25 0.25 0.21 0.25 0.28 0.10 

Amortized Kernel Level Computation Cost 

Instructions / Event 
CISL-CALENDAR 238.09 246.90 259.09 268.31 243.62 351.40 267.90 42.36 

CEL-SPLAY 248.85 377.68 371.20 312.58 364.63 363.00 339.66 50.17 

CEL-HO_HEAP 316.23 470.95 473.89 479.69 465.02 478.23 447.34 64.45 

CEL-HENRIKSEN 338.49 431.13 443.06 341.22 433.26 447.16 405.72 51.37 

COT-FIFO 740.59 1351.86 1350.41 1350.40 1595.69 1351.27 1290.04 286.42 

FIXED-FIFO 446.83 763.47 762.61 762.32 888.43 762.69 731.06 148.04 

Event Rate 

(*106 events / second) 
CEL-CALENDAR 0.71 0.49 0.50 0.47 0.53 0.46 0.53 0.09 

CEL-SPLAY 0.74 0.45 0.48 0.50 0.52 0.47 0.53 0.11 

CISL-HO_HEAP 0.78 0.53 0.56 0.54 0.58 0.52 0.59 0.10 

CEL-HENRIRSEN 0.70 0.44 0.45 0.51 0.50 0.44 0.51 0.10 

CCT-FIFO 0.35 0.19 0.20 0.20 0.17 0.20 0.22 0.06 

FIXED-FIFO 0.34 0.19 0.19 0.19 0.17 0.19 0.21 0.06 

Table A.2: Results for D0.25-R1 L1 Distribution experiment 
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Algorithm Distribution Mean Standard 

Constant Exponential Uniform I Biased I Bi-model Triangular Deviation 

Model Level Cache Behavior 

Cache Misses (%) 

CEL-CALENDAR 3.71 4.00 5.07 5.04 4.64 5.20 4.61 0.62 

CEL-SPLAY 3.72 4.10 5.17 5.07 4.73 5.15 4.66 0.61 

CEL-HO..HEAP 3.84 4.11 5.19 5.15 4.75 5.18 4.70 0.59 

CEL-HENRIKSEN 3.72 4.07 5.22 5.10 4.76 5.21 4.68 0.64 

CCT-FIFO 0.60 2.37 2.98 2.84 3.10 2.98 2.48 0.95 

FIXED-FIFO 0.97 2.71 3.41 3.26 3.38 3.41 2.86 0.96 

Kernel Level Cache Behavior 

Cache Misses (%) 

CEL-CALENDAR 1.44 4.14 4.26 4.46 4.14 5.51 3.99 1.35 

CEL-SPLAY 2.84 5.73 5.59 3.99 4.93 5.25 4.72 1.11 

CEL-I-lO..FIEAP 3.81 4.52 4.62 4.73 4.26 4.69 4.44 0.35 

CEL-HENRIKSEN 1.87 6.48 9.09 5.13 7.11 9.02 6.45 2.71 

COT-FIFO 1.09 3.45 3.49 3.45 3.74 3.50 3.12 1.00 

FIXED-FIFO 1.28 5.64 5.71 5.62 6.23 5.72 5.04 1.85 

Amortized Aggregate Cache Behavior 

Cache Misses / Event 

CEL-CALENDAR 6.13 12.17 12.44 12.70 12.04 21.22 12.78 4.83 

CEL-SPLAY 8.02 18.77 18.25 14.07 16.48 17.36 15.49 4.02 

CEL-HO..HEAP 11.14 18.31 18.56 18.99 17.26 18.82 17.18 3.02 

CEL-HENRIKSEN 6.84 17.75 25.45 15.36 19.75 25.55 18.45 7.01 

CCT-FIFO 1.86 11.93 11.97 11.73 14.89 12.00 10.73 4.51 

FIXED-FIFO 2.37 14.74 14.78 14.44 18.07 14.82 13.20 5.48 

Events Per LP Execution 

Events / LP Execution 

CEL-CALENDAR 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL-SPLAY 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL-HO.JIEAP 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL-HENRIKSEN 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

COT-FIFO 15.66 1,75 1.74 1.74 1.29 1.74 3.99 5.72 

FIXED-FIFO 7.92 0.88 0.88 0.88 0.65 0.88 2.02 2.89 

Amortized Kernel Level Computation Cost 

Instructions / Event 

CEL-CALENDAR 311.73 254.24 274.02 250.97 247.41 936.66 379.17 274.15 

CEL-SPLAY 248.37 437.97 431.30 394.48 418.10 423.61 392.30 72.07 

CEL-HO_HEAP 384.62 596.40 598.16 604.13 582.73 601.65 561.28 86.87 

CEL-HENRIKSEN 399.98 471.97 589.17 479.09 515.49 599.67 509.23 75.95 

COT-FIFO 182.99 484.68 481.99 478.33 595.63 480.95 450.76 138.91 

FIXED-FIFO 164.31 332.37 329.33 325.06 391.18 328.55 311.80 76.47 

Event Rate 

*106 events / second) 

CEL-CALENDAR 0.67 0.41 0.42 0.42 0.43 0.22 0.43 0.14 

CEL-SPLAY 0.66 0.29 0.31 0.39 0.34 0.32 0.39 0.14 

CEL-HO..HEAP 0.48 0.30 0.31 0.30 0.32 0.30 0.34 0.07 

CEL-HENRIKSEN 0.65 0.30 0.22 0.35 0.28 0.22 0.34 0.16 

CCT-FIFO 1.29 0.40 0.42 0.43 0.35 0.42 0.55 0.36 

FIXED-FIFO 1.26 0.38 0.40 0.40 0.33 0.39 0.53 0.36 

Table A.3: Results for D4Jt1..LO.125 Distribution experiment 
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Algorithm Distribution Mean Standard 

Constant Exponential Uniform I Biased I Bi-model Triangular Deviation 

Model Level Cache Behavior 

Cache Misses (%) 
CEL-CALENDAR 3.70 3.97 5.05 5.01 4.62 5.19 4.59 0.62 

CEL-SPLAY 3.71 4.07 5.15 5.00 4.72 5.13 4.63 0.60 

CEL-HO.JIEAP 3.83 4.09 5.19 5.13 4.75 5.17 4.69 0.60 

CEL-HENRIKSEN 3.71 4.09 5.23 5.04 4.79 5.22 4.68 0.64 

CCT-FIFO 0.62 0.85 1.06 1.05 1.14 1.06 0.96 0.19 

FIXED-FIFO 0.97 1.22 1.53 1.53 1.58 1.53 1.39 0.25 

Kernel Level Cache Behavior 

Cache Misses (%) 

CEL-CALENDAR 1.59 4.06 4.22 4.72 4.13 7.03 4.29 1.73 

CEL-SPLAY 2.84 5.54 5.30 3.80 5.20 4.93 4.60 1.06 

CEL-HO_HEAP 3.80 4.76 4.87 4.96 4.72 4.98 4.68 0.44 

OEL-HENRIKSEN 1.86 8.76 10.08 4.51 9.39 10.33 7.49 3.48 

CCT-FIFO 1.10 1.68 1.71 1.71 1.87 1.71 1.63 0.27 

FIXED-FIFO 1.29 2.36 2.41 2.43 2.72 2.42 2.27 0.50 

Amortized Aggregate Cache Behavior 

Cache Misses / Event 
CEL-CALENDAR 6.16 11.96 12.20 13.31 11.97 21.48 12.85 4.93 

CISL.SPLAY 8.01 18.11 17.37 13.06 18.93 16.39 14.98 3.84 

CEL-HO..HEAP 11.12 19.21 19.53 19.89 18.89 19.84 18.08 3.43 

CEL.HENRIKSEN 6.83 24.53 29.48 14.08 27.25 30.97 22.19 9.62 

CCT-FIFO 1.89 3.48 3.48 3.48 4.04 8.48 3.31 0.73 

FIXED-FIFO 2.88 4.58 4.60 4.62 5.28 4.61 4.34 1.00 

Events Per LP Execution 

Events / LP Execution 

CEL-CALENDAR. 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

0111.-SPLAY 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL.HO..HEAP 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL-HENRTKSIIIN 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CCT-FIFO 14.88 7.48 7.47 7.46 6.23 7.46 8.50 3.17 

FIXED-FIFO 7.88 3.95 3.94 3.94 3.29 3.94 4.49 1.68 

Amortized Kernel Level Computation Cost 

Instructions / Event 
CEL-CALENDAR 235.09 243.79 252.22 266.97 240.91 624.49 310.58 154.18 

CEL-SPLAY 248.65 428.79 421.73 360.61 413.25 413.23 381.04 69.22 

CEL.HO..HEAP 385.55 609.42 612.10 618.02 602.75 616.53 574.06 92.51 

CEL-HENRIESEN 398.37 578.22 657.33 462.16 634.25 690.12 570.08 116.05 

CCT-FIFO 185.28 233.75 230.23 227.87 247.92 229.46 225.75 21.13 

FIXED-FIFO 165.19 193.97 190.29 188.16 200.23 189.41 187.87 11.94 

Event Rate 

*106 events / second) 
CEL-CALENDAR 0.70 0.42 0.43 0.39 0.43 0.24 0.44 0.15 

CEL-SPLAY 0.66 0.30 0.33 0.42 0.33 0.34 0.40 0.14 

CEL-HO..HEAP 0.48 0.29 0.30 0.29 0.30 0.29 0.33 0.08 

CEL-HENRIESEN 0.65 0.22 0.19 0.36 0.20 0.18 0.30 0.18 

CCT-FIFO 1.29 0.83 0.93 0.93 0.84 0.90 0.95 0.17 

FIXED-FIFO 1.26 0.79 0.87 0.87 0.79 0.84 0.90 0.18 

Table A.4: Results for D4Jt111 Distribution experiment 
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Algorithm Distribution Mean Standard 

Constant Exponential Uniform I Biased I Bi-model Triangular Deviation 

Model Level Cache Behavior 

Cache Misses (%) 
CEL-CALENDAR 3.68 3.94 5.01 4.96 4.57 5.18 4.56 0.62 

CEL-SPLAY 3.70 4.05 5.14 4.98 4.69 5.12 4.61 0.61 

CEL-HO..HEAP 3.82 4.07 5.17 5.12 4.73 5.16 4.68 0.60 

CEL-HENRIKSEN 3.70 4.08 5.23 4.99 4.73 5.08 4.63 0.61 

CCT-FIFO 0.63 0.67 0.84 0.83 0.86 0.83 0.73 0.10 

FIXED-FIFO 0.96 0.97 1.22 1.19 1.22 1.21 1.13 0.13 

Kernel Level Cache Behavior 

Cache Misses (%) 

CEL-CALENDAR 1.62 3.92 4.19 4.78 4.02 7.85 4.40 2.01 

CEL-SPLAY 2.84 5.50 5.69 4.19 4.91 5.34 4.74 1.08 

CEL-HO..HIIAP 3.78 4.67 4.81 4.95 4.62 4.92 4.63 0.43 

CEL-HENRIKSEN 1.87 9.23 10.92 4.54 7.87 6.39 6.80 3.27 

CCT-FIFO 1.11 1.41 1.44 1.44 1.55 1.44 1.40 0.15 

FIXED-FIFO 1.30 1.86 1.90 1.90 2.09 1.90 1.82 0.27 

Amortized Aggregate Cache Behavior 

Cache Misses / Event 
CEL-CALENDAR. 6.19 11.68 12.05 13.53 11.76 21.41 12.77 4.93 

CEL-SPLAY 8.00 17.83 17.97 13.66 16.15 17.07 15.11 3.83 

CEL-HO..FIEAP 11.11 18.89 19.32 19.85 18.54 19.73 17.91 3.37 

CEL-HENRIKSEN 6.82 26.22 32.62 13.94 22.16 17.34 19.85 9.16 

CCT-FIFO 1.93 2.74 2.75 2.75 3.05 2.75 2.66 0.38 

FIXED-FIFO 2.39 3.51 3.52 3.51 3.91 3.52 3.40 0.52 

Events Per LP Execution 

Events / LP Execution 

CEL-CALENDAR 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL-SPLAY 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL-HO..HEAP 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL-HENRIKSEN 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CCT-FIFO 14.18 9.50 9.49 9.47 8.37 9.48 10.08 2.06 

FIXED-FIFO 7.82 5.24 5.23 5.22 4.62 5.23 5.56 1.13 

Amortized Kernel Level Computation Cost 

Instructions / Event 
CEL-CALENDAR. 231.28 239.36 241.17 274.98 237.94 491.77 286.08 101.93 

CEL-SPLAY 248.37 422.19 410.72 352.44 407.31 404.37 374.24 66.26 

CEL-HO..HEAP 386.59 605.92 609.76 618.52 599.46 615.17 572.57 91.36 

CEL-HENRIKSEN 397.50 605.11 697.34 458.01 558.14 466.35 530.41 110.66 

CCT-FIFO 186.14 212.93 210.26 211.05 220.72 210.49 208.60 11.68 

FIXED-FIFO 164.76 180.64 177.84 179.41 184.43 178.03 177.52 6.70 

Event Rate 

(*106 events / second) 
CEL-CALENDAR 0.70 0.42 0.44 0.38 0.44 0.25 0.44 0.15 

CEL-SPLAY 0.66 0.31 0.32 0.41 0.34 0.33 0.39 0.14 

CEL-HOJEAP 0.48 0.29 0.30 0.29 0.31 0.29 0.33 0.08 

CEL-HENRIKSEN 0.65 0.21 0.18 0.40 0.24 0.33 0.33 0.17 

CCT-FIFO 1.29 0.92 1.04 1.04 0.96 1.00 1.04 0.13 

FIXED-FIFO 1.26 0.89 1.00 0.99 0.92 0.96 1.00 0.13 
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Table A.5: Results for D4RLL2 Distribution experiment 



APPENDIX A. DISTRIBUTION EXPERIMENT RESULTS 126 

Algorithm Distribution Mean Standard 

Constant Exponential Uniform I Biased I Bi-model Triangular Deviation 

Model Level Cache Behavior 

Cache Misses (%) 
CEL-CALENDAR 3.70 3.99 5.06 5.01 4.65 5.27 4.61 0.64 

CEL-SPLAY 3.71 4.12 5.20 5.05 4.78 5.17 4.67 0.62 

CEL-HOJIEAP 3.87 4.15 5.24 5.19 4.82 5.22 4.75 0.60 

CEL-HENRIKSEN 3.70 4.13 5.29 5.10 4.83 5.27 4.72 0.66 

CCT-FIFO 0.08 0.11 0.14 0.14 0.16 0.14 0.13 0.03 

FIXED-FIFO 0.13 0.19 0.24 0.24 0.27 0.24 0.22 0.05 

Kernel Level Cache Behavior 

Cache Misses (%) 
CEL.CALENDAR 1.60 4.20 4.30 4.95 4.39 12.74 5.36 3.80 

GEL-SPLAY 2.92 7.41 7.15 5.64 7.14 6.74 6.17 1.71 

CEL-HO..HEAP 5.84 7.30 7.42 7.49 7.29 7.49 7.14 0.64 

CEL-HENRIKSEN 2.63 13.19 16.20 9.46 14.55 15.57 11.77 5.00 

CCT-FIFO 0.60 0.84 0.86 0.86 0.90 0.85 0.82 0.11 

FIXED-FIFO 0.61 1.07 1.10 1.11 1.08 1.09 1.01 0.19 

Amortized Aggregate Cache Behavior 

Cache Misses / Event 
GEL-CALENDAR 6.17 12.20 12.30 13.73 12.40 55.93 18.79 18.39 

CEL-SPLAY 8.14 23.37 22.46 17.48 22.14 21.29 19.15 5.77 

CI3L-HO..HBAP 16.28 29.52 29.87 30.29 29.18 30.23 27.56 5.54 

CEL-HENRIKSEN 8.25 40.24 53.61 26.70 48.80 58.14 39.26 18.81 

CCT-FIFO 0.68 1.12 1.12 1.12 1.18 1.12 1.05 0.19 

FIXED-FIFO 0.74 1.47 1.48 1.48 1.49 1.48 1.36 0.30 

Events Per LP Execution 

Events / LP Execution 
GEL-CALENDAR 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL.SPLAY 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL-HO..HISAP 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CEL-HENRIKSEN 2.00 1.00 1.00 1.00 1.00 1.00 1.17 0.41 

CCT-FIFO 119.22 59.82 59.70 59.74 49.81 59.64 67.99 25.41 

FIXED-FIFO 63.00 31.61 31.56 31.53 26.30 31.54 35.92 13.43 

Amortized Kernel Level Computation Cost 

Instructions / Event 
CEL-CALENDAR 232.61 241.86 246.24 268.18 241.17 1559.80 464.93 536.51 

CEL-SPLAY 248.57 464.27 457.13 395.96 447.29 448.62 410.30 82.83 

CEL-HO..HEAP 437.49 713.31 716.00 721.92 706.42 720.43 669.26 113.68 

CEL-HENRIKSEN 443.03 772.31 971.90 616.25 897.70 1051.20 791.90 229.84 

CCT-FIFO 154.28 215.29 213.15 207.97 200.77 214.85 201.05 23.56 

FIXED-FIFO 151.76 209.97 207.80 202.92 194.38 209.50 196.05 22.47 

Event Rate 

*106 events / second) 
GEL-CALENDAR 0.69 0.40 0.42 0.39 0.41 0.09 0.40 0.19 

GEL-SPLAY 0.64 0.24 0.25 0.31 0.25 0.26 0.33 0.16 

CEL-HO..HEAP 0.35 0.20 0.20 0.20 0.21 0.20 0.23 0.06 

CEL-HENRIKSEN 0.61 0.15 0.11 0.22 0.13 0.10 0.22 0.20 

COT-FIFO 1.67 1.08 1.25 1.28 1.21 1.19 1.28 0.20 

FIXED-FIFO 1.68 1.05 1.21 1.23 1.19 1.16 1.26 0.22 

Table A.6: Results for D32-R111 Distribution experiment 
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