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Abstract: Introduction: Mild traumatic brain injury (mTBI) outcomes are 

variable, and 10-15% may suffer from prolonged symptoms beyond 3 months 

that impair the child's return to normal activities. Neurophysiological 

mechanisms of mTBI are incompletely understood, particularly in children, 

but alterations in cortical excitability have been proposed to underlie 

post-concussion syndrome. Improved understanding is required to advance 

interventions and improve outcomes. 

Objective/Hypothesis: To determine if cortical excitability is altered in 

children with mTBI, and its association with clinical symptoms. 

Methods: This was a cross-sectional controlled cohort study. School-aged 

children (8-18 years) with mTBI were compared to healthy controls. 

Cortical excitability was measured using multiple TMS paradigms in 

children with (symptomatic) and without (recovered) persistent symptoms 

one-month post-injury. Primary outcome was the cortical silent period 

(cSP), a potential neurophysiological biomarker of GABAergic inhibition. 

Secondary outcomes included additional TMS neurophysiology, safety and 

tolerability. Associations between neurophysiology parameters and 

clinical symptoms were evaluated. 

Results: Fifty-three children with mTBI (55% male; mean age 14.1 SD: 2.4 

years; 35 symptomatic and 27 asymptomatic participants) and 28 controls 

(46% male; mean age 14.3 SD: 3.1 years) were enrolled. cSP duration was 

similar between groups (F(2, 73)=0.55, p=0.582). Log10 Long interval 

intracortical inhibition (LICI) was reduced in symptomatic participants 

compared to healthy controls (F(2, 59)=3.83, p=0.027). Procedures were 

well tolerated with no serious adverse events. 

Conclusions: TMS measures of cortical excitability are altered at one 

month in children with mTBI. Long interval cortical inhibition is 

decreased in children who remain symptomatic at one month post-injury. 
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mTBI. Long interval cortical inhibition is decreased in children who remain symptomatic at one 31 

month post-injury. 32 
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Introduction 37 

Mild traumatic brain injury (mTBI) is a significant public health concern as it is both common, 38 

occurring in 350-799 per 100,000 per year(1–4), and 11-31% of children mTBIs have symptoms 39 

which last longer than 1 month: defined as  post-concussion syndrome (PCS)(5,6). PCS is a 40 

constellation of physical, emotional, and cognitive symptoms following mTBI(7) that 41 

significantly impacts the quality of life of the child and family(8). The mechanisms underlying 42 

the pathophysiology of PCS are poorly understood(9–11), which significantly impedes the 43 

development of better diagnostic tools and treatments. 44 

 45 

Traumatic brain injury results in dysregulated neurotransmitter release, altered receptor 46 

expression, and injury to interneurons and microcircuits, potentially leading to disruption in the 47 

functional balance between cortical excitation and inhibition. This is supported by both murine 48 

models of TBI(12,13), and adult human research(14–17). Initially, TBI results in an uncontrolled 49 

glutamate release and a disruption of ionic balance across neuronal membranes, the extent of 50 

which is dependent on the severity of the injury(18,19). Subsequent alterations in receptor 51 

expression occur, such as early changes in n-methyl-d-aspartate (NMDA) receptor subunit 52 

composition (20) and later shifts in γ-aminobutyric acid (GABA) subtype receptor subunits 53 

ratios(21,22).   54 

 55 

Cortical excitation and inhibition can be interrogated in vivo in humans using transcranial 56 

magnetic stimulation (TMS)(23,24). Using TMS methodologies, cortical inhibition has been 57 

found to be increased both acutely(25) and chronically in adult athletes recovering from mTBI 58 



(e.g., increased cortical silent period (cSP)(26,27) and long interval intracortical inhibition 59 

(LICI)(27,28)).  Whether such alterations in cortical inhibition occur in children, who have  60 

shorter cSP(29), different physiological responses to injury, and different recovery 61 

profiles(30,31),  is unknown. Nor is it known how these physiological changes relate to clinical 62 

symptoms. 63 

  64 

We explored cortical excitability following mTBI in children and its relationship with clinical 65 

symptoms to better understand mechanisms of symptom persistence and the variability in 66 

subject recovery. Specifically, we asked whether children with early versus late recovery 67 

differed in their neurophysiological parameters of cortical excitation and inhibition when 68 

compared to healthy controls of similar age and sex. 69 

 70 

Methods 71 

This prospective controlled cohort study was performed as part of PLAY GAME, a randomized 72 

controlled trial of melatonin for the treatment of PCS following childhood mTBI(32) 73 

(https://clinicaltrials.gov/ct2/show/NCT01874847). This study was approved by the University 74 

of Calgary Conjoint Health Research Ethics Board (REB13-0372).  75 

 76 

Participants: 77 

Children and adolescents (ages 8 to 18 years) presenting to the Alberta Children’s Hospital with 78 

an mTBI were eligible. Mild TBI was defined as an impact to the head or body with a Glasgow 79 

Coma Score of 13-15 resulting in at least one of the following: an observed loss of 80 

https://clinicaltrials.gov/ct2/show/NCT01874847)


consciousness less than 30 minutes, or at least one acute symptom suggesting neurological 81 

dysfunction attributable to the injury (e.g., headache, confusion, vomiting, amnesia, balance 82 

problems)(8,33). Concussion was considered part of the mTBI spectrum(34). Exclusion criteria 83 

were: suspected child abuse; alcohol or drug use at the time of injury; inability to complete 84 

questionnaires; significant past medical or psychiatric history requiring medication; 85 

contraindications to TMS(35); previous mTBI within 3 months or failure to recover from a 86 

previous mTBI; and/or use of neuroactive drugs. Untreated Attention Deficit Disorders (ADHD) 87 

or mild learning disorders were not excluded. Typically developing children (ages 8 to 18 years) 88 

were eligible if they satisfied exclusion criteria and had no history of TBI (healthy controls).  89 

 90 

Children with mTBI were identified from a tertiary care pediatric Emergency Department 91 

(n=761) and eligible children with mTBI were contacted by telephone at 4 weeks post-injury 92 

(n=294). The recruitment process is shown in Figure 1.  Parental consent and participant assent 93 

were obtained. The Post-Concussion Symptom Inventory (PCSI) was used to document 94 

symptoms. Participants who had clinically recovered were selected to be similar in age and sex 95 

to the symptomatic group. Controls were recruited from friends or siblings of the mTBI 96 

participants. Outcome was assessed at 4-6 weeks post-injury before enrolment into the 97 

treatment trial.  98 

 99 

Figure 1: Participant recruitment flow  100 

A flow chart of the recruitment of participants through each step in screening and final samples. 101 

Analysed participants are those whose thresholds permitted at least one TMS paradigm to be performed 102 



Clinical Outcome measures 103 

Post-concussion symptom inventory: This age-appropriate, standardized questionnaire provides 104 

ratings for 26 symptoms (Guttman scale: 0 to 6) and an overall rating of post-concussive 105 

symptoms(5,36). It has 4 factor derived-domains: somatic, cognitive, affective, and sleep. 106 

Participants were asked to retrospectively report pre-injury symptoms at enrolment (baseline), 107 

and were considered symptomatic if they had an increase of two in two or more symptoms 108 

compared to baseline and a score greater than 0 to “Have you felt different from before your 109 

injury?” (score: 0 to 4) (5,32), or recovered if there was no increase in symptoms and a score of 110 

0 to the “feeling different” question. 111 

 112 

CNS Vital Signs: This is a computerized neuropsychological test battery with adequate test-113 

retest reliability(37) and is a validated measure of cognitive skills in children with TBI(38). The 114 

neurocognition index (NCI) is a summary score of the 5 domain scores: composite memory, 115 

psychomotor speed, reaction time, complex attention, and cognitive flexibility. All domain 116 

scores are normalized (mean: 100, SD: 15). The NCI was used to provide an overall estimate of 117 

cognitive function. As children may have an abnormal response to injury or illness, effort during 118 

cognitive testing was assessed using the test of memory malingering (TOMM)(39). Children 119 

were excluded from regression analyses if they scored less than 45 on the test and re-test 120 

TOMM.  121 

 122 

Transcranial magnetic stimulation protocol Participants and parents were first informed about 123 

TMS. Once comfortably seated, participants watched a movie of their choice during the TMS 124 



session. Ag/AgCl EMG electrodes (Kendall; Chicopee, MA, USA, 1.5cm radius) were used to 125 

record surface EMG from first dorsal interosseous (FDI) muscles of both hands with a wrist 126 

ground band. EMG signals were amplified by 1000 and band-pass filtered from 20 to 2000 Hz 127 

and then digitized at a rate of 5000 Hz using CED 1401 hardware and Signal 6.0 software 128 

(Cambridge Electronic Design, Cambridge, UK). Using a Magstim BiStim 200 Transcranial 129 

Magnetic Stimulator (Magstim Company Limited, Carmarthenshire), stimuli were applied using 130 

an Alpha Branding Iron Range (70mm internal diameter) under image-guided neuronavigation 131 

(Brainsight2, Rogue Research Inc., Montreal) to define the FDI hotspot in the dominant motor 132 

cortex. The hotspot is the point where stimulation over the primary motor cortex produced the 133 

largest contralateral motor evoked potentials (MEPs). MEPs were recorded in Signal 4.0.6 134 

(Cambridge Electronic Design Limited, Cambridge, England). Voluntary contraction was 135 

measured using an EMG oscilloscope (GwINSTEK GDS-1022, 25MHz, 250M Sa/s, Good Will 136 

Instrument Co, New Taipei City, Taiwan).  137 

 138 

Single pulse paradigms 139 

Rest motor threshold (RMT) was defined as the lowest stimulus intensity eliciting an MEP 140 

response of 50µV (the 50µV RMT) in 5 out of 10 consecutive trials. Suprathreshold test stimuli 141 

(TS) were defined by the 1000µV (1mV) motor threshold.  Active motor threshold (AMT) was 142 

the lowest stimulus intensity eliciting 200µV during isometric FDI contraction at 20% maximum 143 

voluntary effort. Stimulus response curves (SRC) were generated using pseudorandomized 144 

stimulus intensities of 10% intervals between 100-150% of the 50μV RMT (rest) and AMT 145 

(active).  146 



Cortical silent period (cSP) was the primary outcome based on previous adult mTBI studies(40). 147 

Fifteen suprathreshold stimuli were applied (separated by 3s) to the dominant FDI hotspot 148 

during contralateral hand contraction at 20% of maximal effort(41). The silent period was 149 

defined as the onset of disrupted EMG waveform after the MEP to the point where EMG 150 

activity exceeds 25% of the rectified pre-stimulus EMG. Ipsilateral silent period (iSP) was 151 

measured in the dominant FDI during 50% maximal contraction in the hand ipsilateral to 152 

stimulation (non-dominant hand).   153 

 154 

Paired-pulse paradigms 155 

Paired pulse TMS was used to evaluate cortical excitatory and inhibitory cortical circuitry. Short 156 

interval intracortical inhibition (SICI) and intracortical facilitation (ICF) stimulations were 157 

randomized. Here, a conditioning stimulus set to 90% of the 50µV RMT preceded a 158 

suprathreshold conditioning test stimulus of 120% of the 50µV RMT. The inter-stimulus interval 159 

was 2ms for SICI and 10ms for ICF.  Ten conditioning-test stimuli pairs were applied for SICI and 160 

ICF and pseudorandomized with 10 unconditioned test stimuli. Long interval intracortical 161 

inhibition (LICI) was investigated with both the conditioning and test stimuli set to the 1000µV 162 

RMT, separated by 100ms. Ten conditioning-test stimuli pairs and 10 test stimuli alone were 163 

applied in pseudorandom order.  164 

 165 

TMS Analysis 166 

Data were processed using Matlab (MATLAB and Statistics Toolbox Release 2014b, The 167 

MathWorks, Inc., Natick, Massachusetts, United States) by an assessor blinded to group. The 168 

duration of cSP was defined as the period between the onset of the disrupted waveform after 169 



the MEP and the point where the EMG activity returned to 25% of rectified background activity. 170 

iSP durations were defined as the onset of EMG disruption after the stimulation to point where 171 

the EMG activity returned to 25% of rectified background activity. 172 

 173 

In the paired-pulse paradigms, peak-to-peak MEP amplitudes were calculated for each stimulus, 174 

then sorted into conditioned or unconditioned. The means of each state were calculated 175 

(unconditioned test stimulus amplitudes below 100µV and their corresponding conditioned 176 

states were removed, as they likely reflect issues with the neuronavigation goggles shifting). 177 

Paired pulse paradigms for each participant are expressed as a ratio of the mean conditioned 178 

response amplitude divided by their mean unconditioned response amplitude.  179 

 180 

Safety and tolerability 181 

At the end of each session, participants completed the pediatric TMS tolerability questionnaire, 182 

documenting and quantifying all potential adverse events (headache, nausea, dizziness, and 183 

neck pain) and ranking their TMS experience against 7 other common childhood 184 

experiences(42).  185 

 186 

Statistical analyses 187 

Analyses were performed using SPSS (IBM Corp. Released 2013. IBM SPSS Statistics for 188 

Windows, Version 22.0. Armonk, NY: IBM Corp.). Graphs were created in Sigmaplot 13.0 (Systat 189 

Software, Inc., San Jose California USA, www.sigmaplot.com). The sample size was estimated as 190 

24 per group using the cSP data from Miller et al.(43). Normality was tested using Shapiro-Wilks 191 

analyses. RMT at 50µV, AMT, rest SRC area under the curve, rest ICF ratio, LICI ratio were 192 

http://www.sigmaplot.com/


transformed to a normal distribution using a log10 transformation. Group differences (CSP, iSP, 193 

SICI, ICF, and LICI) were assessed using analysis of variance (controls, recovered and 194 

symptomatic). Mixed models ANOVAs were used to compare between group differences for 195 

repeated measures paradigms and a Greenhouse-Geisser correction was applied where 196 

sphericity could not be assumed following Mauchly’s test (MT, SRC, cSP). Tukey’s post-hoc tests 197 

were used to correct for multiple comparisons between groups. Differences in group 198 

proportions were compared using chi squared tests. Exploratory analyses of the potential 199 

influence of gender, age, previous concussion, ADHD, PCSI score, and NCI on the outcome 200 

measures (cSP, SICI, LICI, iSP and ICF) were performed. Significant correlating factors (p<0.1) on 201 

univariate analysis were included in exploratory regression models to analyze the relationship 202 

between clinical symptoms (post-injury PCSI score, NCI), cSP and LICI, and mTBI whilst 203 

controlling for the potential effects of age, sex, ADHD(44) (including inattentive subtypes) and 204 

previous mTBI.  205 

 206 

Results 207 

Thirty-five symptomatic, 27 recovered, and 28 healthy control participants were enrolled. 208 

Groups were similar in age (overall mean age 14.16, SD 2.69 years), sex (42 males), handedness 209 

(77 right-handed), ADHD (n=3), and learning support requirements (n=5), see Table 1. A similar 210 

proportion of symptomatic and recovered participants had previous concussions, 22% 211 

(χ2(4)=2.01, p=0.366).  Pre-injury PCS symptoms did not differ between groups (H(2)=0.19, p = 212 

0.909). Injury characteristics are shown in Table 2 and were similar between groups. As 213 



expected, the median post-injury PCSI score was higher in the symptomatic group: 35 (range: 6-214 

122), compared to the recovered group: 3 (range: 0-26), H(2)=4.81, p<0.001.  215 

 216 

Neurophysiology 217 

TMS was well-tolerated with minimal adverse effects reported (see Table 3). Individual TMS 218 

paradigms were excluded if they could not be performed due to the participant’s threshold. 219 

Thirteen participants had thresholds too high to complete rest SRCs, (3 control, 2 recovered, 220 

and 8 symptomatic). Test stimuli could not be evoked in one additional recovered participant. 221 

Two control, 1 recovered, and 2 symptomatic participants had thresholds too high to perform 222 

ICF and SICI.  223 

 224 

Table 1: Pre-injury clinical and demographic details 225 

 226 

Table 2: Injury characteristics and symptom scores in children with mTBI 227 

 228 

Table 3: Tolerability of TMS with subjective sensations 229 

 230 

Table 4: Single pulse TMS paradigm data 231 

 232 

 233 

The results of the single pulse paradigms are shown in Table 4, demonstrating that motor 234 

thresholds were similar between groups. Groups show no group X stimulation intensity 235 

interaction in rest (F(4.52, 167.14)=1.09, p=0.368)) or active SRCs  (F(4.48, 183.84)=1.36, 236 



p=0.244)), see Figure 2. Similarly, during active SRC, there was no group X stimulation 237 

interaction for cSP (F(4.53, 179.03)=0.58, p=0.702). cSP was dependent on the strength of the 238 

stimulation (F(2.27, 179.03)=419.58, p<0.01, see Figure 3) but did not differ between groups 239 

with increasing stimulus intensity (F(2, 79)=0.28, p=0.753). With the more commonly used 240 

practice or using 1000µV RMT, there also were no group differences (F(2, 73)=0.55, p=0.582). 241 

iSP was also similar between groups (F(2,70)=0.12, p=0.890) (Figure 4). 242 

 243 
 244 

 245 

246 
ICF (F(2, 56)=1.81, p=0.174) was similar between groups (Figure 5 and Table 5). SICI (Figure 6) 247 

was similar across groups (F(2, 56)=1.04, p=0.359). LICI differed between groups, see Figure 6 248 

(F(2, 59)=3.83, p=0.027). Post-hoc analysis using Tukey’s correction revealed that the 249 

symptomatic group demonstrated less log10 LICI effect compared to controls (p=0.027). Reverse 250 

Figure 4: Ipsilateral silent period 

Boxplot of the ipsilateral silent period (iSP) were similar between healthy controls, 
recovered, and symptomatic groups, F(2,70)=0.12, p=0.890.  

Figure 3: Cortical silent period paradigms.  
(A) Boxplot of the cortical silent period (cSP) duration in milliseconds showed no differences 
between healthy controls and mTBI groups. (B) Line graph shows the mean and standard 
deviation of the log

10
 cSP with increased stimulation intensity during active stimulus 

response curve trials for healthy controls, recovered, and symptomatic groups with 
increasing stimulation intensity (no group X stimulus intensity interaction with healthy 
controls, F(4.53, 179.03)=0.58, p=0.702).  
Boxplots show the group median as a black horizontal line inside the box. The top edge of 
the box is the third quartile, and the bottom of the box is the first quartile, with the group 
mean in the middle of the box. The box’s whiskers denote the ends of the inner fence, or 
normal range of data. To calculate the inner fence, 1.5 times the interquartile range is 
subtracted or added to the first or third quartile, respectively.  Outliers are shown as points.  

Figure 2: Rest and active stimulus response curves (SRCs) are shown for healthy controls, 
symptomatic and recovered groups.  
(A) Line graph shows line graphs of resting stimulus response curve (SRC) amplitude for 
healthy controls, recovered, and symptomatic. (B) shows line graphs of the active SRC 
response amplitudes for the healthy controls, recovered, and symptomatic groups. 



transformed LICI means for control, recovered and symptomatic were 0.31 (SD: 0.38), 0.44 (SD: 251 

0.74), and 0.58 (SD:0.60),  respectively. 252 

 253 

Table 5: Paired pulse paradigms 254 

 255 

 256 

 257 
 258 

The influence of covariates 259 

The correlation coefficient matrix is shown in Table 6. The presence of mTBI, ADHD, and LICI 260 

were included in a regression model to predict the PCSI score. The model was significant, 261 

predicting 26.2% (adjusted) of the variance (F(3, 59)=8.34, p< 0.001). The variables that 262 

significantly contributed to the model were ADHD (Beta=0.354, p=0.002), and mTBI 263 

(Beta=0.292, p=0.012). LICI was not predictive of symptoms (Beta=0.194, p=0.094). Factors 264 

influencing LICI were further explored in a regression model including TBI, gender, number of 265 

previous mTBIs, PCSI score, and the interaction effect between gender and PCSI score. The 266 

overall model was significant (F(5, 61)=3.269, p<0.012) and explained 16% of the variance. 267 

Figure 6: Inhibitory paired pulse paradigms 

(A) Short interval intracortical inhibition (SICI): the ratio of conditioned stimulus to test 
stimulus at 2ms inter-stimulus intervals. Values above 1 (black line) are considered 
facilitation, while below 1 indicate inhibition. There are no differences between groups 
(F(2, 56)=1.04, p=0.359). (B) Log

10
 long interval intracortical inhibition (LICI): the log

10
 of 

the ratio of conditioned stimulus to test stimulus alone when inter-stimulus interval is set 
to 100ms. Values above 0 are considered facilitation, while below 0 indicate inhibition. 
There was a difference between groups in omnibus ANOVA tests (F(2, 59)=3.83, p=0.027), 
which post-hoc analyses revealed to be between healthy controls and PCS participants 
(p=0.004) 

Figure 5: Intracortical facilitation 

Intracortical facilitation (ICF) ratio of conditioned stimulus amplitude over the test 
stimulus amplitude, separated by 10ms. Values above 1 (black line) are considered 
facilitation, while below 1 indicate inhibition. There were no group differences (F(2, 
56)=1.81, p=0.174). 



When controlling for the significant interaction between gender and PCSI score (Beta = -.874, p 268 

= 0.041), LICI was predicted by gender (Beta 0.339, p=0.016) and PCSI score (Beta 1.071, 269 

p=0.012). 270 

Table 6: Correlation matrix  271 

 272 

Discussion 273 

This is the first study to investigate cortical excitation-inhibition balance using TMS in children 274 

with different recovery patterns after an mTBI. We are also the first to demonstrate that TMS is 275 

well tolerated by children after an mTBI, and that any adverse events reported were mild to 276 

moderate and were not different between groups. This is similar to children with ADHD who 277 

also tolerate TMS (42), and who share a similar predisposition to injury as children with 278 

mTBI(45).  279 

 280 

In our study, the motor thresholds and SRCs were similar between groups, which is consistent 281 

with the previous literature(27,46,47).  We also evaluated different measures of synaptic 282 

excitability, using silent periods and the MEPS of paired-pulse paradigms. ICF, a measure of net 283 

facilitation mediated via NMDA glutamate (excitatory) receptors, was similar between groups. 284 

SICI is a measure of net inhibition: the short-lasting inhibitory component of SICI is mediated by 285 

GABAa receptor activity. Contrary to our hypothesis of mTBI-induced increased local cortical 286 

inhibition underlying PCS, cSP durations (a GABAb receptor-mediated inhibition dependent 287 

effect) and SICI did not differ between control and mTBI groups regardless of recovery status. 288 

However LICI, which reflects long-lasting inhibition(23,24,48), was decreased in the 289 



symptomatic mTBI group when compared to healthy controls, suggesting a decrease in GABAb 290 

receptor-mediated cortical inhibition.  291 

 292 

Our findings of normal cSP duration and decreased LICI following mTBI is in contrast to results 293 

from the majority of adult studies, which have reported increased inhibition (cSP) after 294 

mTBI(25–27), although two small adult studies have also reported a normal cSP (16,46). It is 295 

unlikely that our observations are due to differences in TMS protocols as we used previously 296 

described standard practices and methods(49). And, the cSP durations in our control group 297 

were similar to reference data for children(29) and were correlated with other measures of 298 

cortical excitability (e.g., LICI and ICF).  299 

 300 

Several factors can affect cortical excitability after TBI including age, time since the injury, 301 

severity of injury, ADHD, use of medications, and repeated mTBI(23,26,28,29,50–52). A 302 

comparison between Miller et al.’s study and ours allows us to consider the effect of age and 303 

population on cortical excitability after mTBI(25). Miller et al. found a prolonged cSP that was 304 

evident 72 hours after the mTBI that persisted at 2 months(25), whereas we found no 305 

difference in the cSP duration. Our cohort was very similar to Miller et al.’s cohort, including 306 

similar methods of eliciting cSP and a common analysis time point of 1 month post-injury(25). 307 

Other than age (mean 14.1 vs. 20.8 years, respectively) and population (paediatric emergency 308 

department patients vs. adult concussion clinic, respectively), the cohorts were similar in sex 309 

(53% vs. 47%) and mechanism of injury (sport-related mTBI: 73% (11 of 15) participants in 310 

Miller’s study compared to 60% in our study).  Age and sex are significant predictors of 311 



symptom persistence after a concussion, controlling for these factors between groups allowed 312 

us to examine the effect of mTBI and recovery on cortical excitability(53–56). Notably, cSP 313 

duration was not correlated with age within our cohort perhaps because the age range (8 to 18 314 

years) was not large enough to detect this. So, although children do have greater variability in 315 

their cSP durations (29) which could have decreased the power of our study (29,51), it is likely 316 

that age is a significant contributor to the differences in cSP duration observed between the 317 

two studies.  318 

 319 

Chistayakov et al. found that injury severity may influence cortical excitability(17). They report a 320 

cohort of adult participants who were admitted to hospital with mTBI. Similar to our study, 321 

participants with “minor head injury” (GCS 15, n=10) did not show an increase in cSP duration 322 

at two weeks post-injury whereas those participants with “mild head injury” (GCS 13-14, n=22) 323 

and moderate head injury (GCS 9-12, n=6) did show increased cSP durations(17). Although this 324 

suggests that increases in cSP may be more likely in more severe injuries, it is also possible that 325 

this effect could be explained by the high proportion of diphenylhydantoin anticonvulsant 326 

medication use in the mild and moderate TBI groups (19 of 22 cases)(17,57). A strength of our 327 

study was that we excluded any children treated with psychoactive or anticonvulsant 328 

medications.  329 

 330 

Other studies that have found prolonged cSP focussed primarily on sports-related concussions, 331 

but do not define the severity of injury(16,25,27). However, those studies show a strong effect 332 

of repeated concussions and sub-concussive events (events that resemble the mechanics of a 333 



concussive event but do not result in symptoms) on cortical excitability. Tremblay et al.(26) and 334 

De Beaumont et al.(27) found increased cSP in adult Canadian athletes with multiple sport-335 

related concussions examined more than 9 months post-injury. In our study, although the 336 

number of previous mTBIs was correlated with LICI on univariate analysis, it was not an 337 

independent predictor of LICI when TBI, PCSI score, and gender were taken into account. 338 

Increases in cortical inhibition in athletes with multiple concussive and sub-concussive events 339 

may take years to develop and reach detectable levels. Therefore, the effect of multiple 340 

concussions on cortical excitability in children over time is worthy of future study. 341 

 342 

In contrast to our cSP results, there was evidence of decreased inhibition i.e. reduced LICI 343 

responses in children who remained symptomatic at one-month post injury, compared to 344 

healthy controls. LICI was modified by sex (more pronounced inhibition in females than males) 345 

and the severity of PCS symptoms. Although cSP and LICI are both considered to reflect GABAb 346 

receptor-mediated inhibition, LICI is thought to measure activity in different aspects of the 347 

inhibitory interneuronal circuit than cSP(58). Previous reports of LICI alterations after TBI are 348 

varied, reporting a range of LICI responses between increased(26–28) and normal(16), to 349 

decreased(59). For example, while Powers et al.(46) did not find differences between mTBI at 350 

one month post-injury and control subjects, most of the other TMS studies were performed at 351 

time points quite remote from the injury and in the setting of multiple mTBIs making it difficult 352 

to directly compare with our data. Therefore, although it is possible that inhibitory cortical 353 

interneuronal circuits may be preferentially affected in pediatric mTBI, our finding of decreased 354 

LICI and its relationship to PCS symptoms needs to be replicated in future studies.  355 



 356 

We are the first to study iSP in mTBI. iSP is thought to be a measure of inhibition of the 357 

contralateral motor cortex via excitatory transcallosal pathways and is often prolonged in 358 

severe TBI(60). These transcallosal tracts are of particular interest as they are susceptible to 359 

injury in TBI(61,62) and we have previously demonstrated altered interhemispheric connectivity 360 

in persistent post-concussion syndrome following mTBI in children(63).  The normal values of 361 

iSP after mTBI in our study suggests either no dysfunction in the transcallosal tracts or a 362 

compensated contralateral response. Future studies investigating iSP in the presence and 363 

absence of transcallosal injury could provide some insight about compensatory intracortical 364 

mechanisms following TBI. 365 

 366 

The ICF paradigm is thought to reflect glutamatergic NMDA-mediated activity(23,64,65), which 367 

animal models have found to be dysregulated within hours of the injury, recovering by 24 368 

hours(12). In our study we found no differences in ICF between groups, which is in keeping with 369 

other studies of mild, moderate, and multiple TBIs(66,67). These studies were performed 370 

longer after the injury than in our study, which may indicate that the normalization of NMDA 371 

receptor-mediated facilitation that is believed to underlie ICF(65) occurs by one month after 372 

injury in children.  373 

 374 

Our study has several limitations. Firstly, only post-injury measures of cortical excitability were 375 

obtained. It is possible that cortical excitability may be different pre-injury in children at risk of 376 

mTBI, especially in females with higher pre-injury PCSI scores. Secondly, our study may be 377 



underpowered to detect group differences given the increased variability of TMS parameters in 378 

children and given the smaller number of participants with LICI measurements. Thirdly, TMS is 379 

an indirect measure of cortical physiology. TMS paradigms were applied to a focal region of the 380 

cortex, which is used as a generalisation of the whole cortex. It is possible that cortical 381 

excitability varies in different regions of the brain especially after injury and that such 382 

generalization is incorrect. The sensitivity of TMS in mTBI could potentially be increased by 383 

correlating cortical excitability with the presence or absence of microstructural injury. Wewe 384 

did not exclude children with a history of attentional problems in order to increase the 385 

generalizability of our results to the group of children who sustain mTBI. However, this could 386 

also have increased the variability of our cortical excitability observations. Lastly, although our 387 

TMS biomarkers are likely to reflect alterations in cortical neurophysiology at the cellular level, it should 388 

be noted that the preclinical and neuropharmacological studies suggesting these associations are not 389 

well established in the developing brain. 390 

 391 

In summary, children are likely to differ from adults in their cortical excitation-inhibition 392 

balance following mTBI. Most TMS parameters of cortical excitation and inhibition are normal 393 

by one month post-mTBI.  Long-lasting intracortical inhibition, however, is decreased in 394 

children who remain symptomatic which suggests a potential vulnerability of select inhibitory 395 

interneurons. Further research using sensitive TMS paradigms is required to validate these 396 

findings, and examine how cortical excitability changes over time and its relationship with 397 

cognitive and behavioural function.  398 

 399 
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Introduction: Mild traumatic brain injury (mTBI) outcomes are variable, and 10-15% may suffer 9 

from prolonged symptoms beyond 3 months that impair the child’s return to normal activities. 10 

Neurophysiological mechanisms of mTBI are incompletely understood, particularly in children, 11 

but alterations in cortical excitability have been proposed to underlie post-concussion 12 

syndrome. Improved understanding is required to advance interventions and improve 13 

outcomes. 14 

Objective/Hypothesis: To determine if cortical excitability is altered in children with mTBI, and 15 

its association with clinical symptoms. 16 

Methods: This was a cross-sectional controlled cohort study. School-aged children (8-18 years) 17 

with mTBI were compared to healthy controls. Cortical excitability was measured using multiple 18 

TMS paradigms in children with (symptomatic) and without (recovered) persistent symptoms 19 

one-month post-injury. Primary outcome was the cortical silent period (cSP), a potential 20 

neurophysiological biomarker of GABAergic inhibition. Secondary outcomes included additional 21 

TMS neurophysiology, safety and tolerability. Associations between neurophysiology 22 

parameters and clinical symptoms were evaluated. 23 

Results: Fifty-three children with mTBI (55% male; mean age 14.1 SD: 2.4 years; 35 24 

symptomatic and 27 asymptomatic participants) and 28 controls (46% male; mean age 14.3 SD: 25 

3.1 years) were enrolled. cSP duration was similar between groups (F(2, 73)=0.55, p=0.582). 26 

Log10 long interval intracortical inhibition (LICI) was reduced in symptomatic participants 27 

compared to healthy controls (F(2, 59)=3.83, p=0.027). Procedures were well tolerated with no 28 

serious adverse events. 29 



Conclusions: TMS measures of cortical excitability are altered at one month in children with 30 

mTBI. Long interval cortical inhibition is decreased in children who remain symptomatic at one 31 

month post-injury. 32 

 33 
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Introduction 37 

Mild traumatic brain injury (mTBI) is a significant public health concern as it is both common, 38 

occurring in 350-799 per 100,000 per year[1–4], and 11-31% of children mTBIs have symptoms 39 

which last longer than 1 month: defined as  post-concussion syndrome (PCS)[5,6]. PCS is a 40 

constellation of physical, emotional, and cognitive symptoms following mTBI[7] that 41 

significantly impacts the quality of life of the child and family[8]. The mechanisms underlying 42 

the pathophysiology of PCS are poorly understood[9–11], which significantly impedes the 43 

development of better diagnostic tools and treatments. 44 

 45 

Traumatic brain injury results in dysregulated neurotransmitter release, altered receptor 46 

expression, and injury to interneurons and microcircuits, potentially leading to disruption in the 47 

functional balance between cortical excitation and inhibition. This is supported by both murine 48 

models of TBI[12,13], and adult human research[14–17]. Initially, TBI results in an uncontrolled 49 

glutamate release and a disruption of ionic balance across neuronal membranes, the extent of 50 

which is dependent on the severity of the injury[18,19]. Subsequent alterations in receptor 51 

expression occur, such as early changes in n-methyl-d-aspartate (NMDA) receptor subunit 52 

composition [20] and later shifts in γ-aminobutyric acid (GABA) subtype receptor subunits 53 

ratios[21,22].   54 

 55 

Cortical excitation and inhibition can be interrogated in vivo in humans using transcranial 56 

magnetic stimulation (TMS)[23,24]. Using TMS methodologies, cortical inhibition has been 57 

found to be increased both acutely[25] and chronically in adult athletes recovering from mTBI 58 



(e.g., increased cortical silent period (cSP)[26,27] and long interval intracortical inhibition 59 

(LICI)[27,28]).  Whether such alterations in cortical inhibition occur in children, who have  60 

shorter cSP[29], different physiological responses to injury, and different recovery 61 

profiles[30,31],  is unknown. Nor is it known how these physiological changes relate to clinical 62 

symptoms. 63 

  64 

We explored cortical excitability following mTBI in children and its relationship with clinical 65 

symptoms to better understand mechanisms of symptom persistence and the variability in 66 

subject recovery. Specifically, we asked whether children with early versus late recovery 67 

differed in their neurophysiological parameters of cortical excitation and inhibition when 68 

compared to healthy controls of similar age and sex. 69 

 70 

Methods 71 

This prospective controlled cohort study was performed as part of PLAY GAME, a randomized 72 

controlled trial of melatonin for the treatment of PCS following childhood mTBI[32] 73 

(https://clinicaltrials.gov/ct2/show/NCT01874847). This study was approved by the University 74 

of Calgary Conjoint Health Research Ethics Board (REB13-0372).  75 

 76 

Participants: 77 

Children and adolescents (ages 8 to 18 years) presenting to the Alberta Children’s Hospital with 78 

an mTBI were eligible. Mild TBI was defined as an impact to the head or body with a Glasgow 79 

Coma Score of 13-15 resulting in at least one of the following: an observed loss of 80 

https://clinicaltrials.gov/ct2/show/NCT01874847)


consciousness less than 30 minutes, or at least one acute symptom suggesting neurological 81 

dysfunction attributable to the injury (e.g., headache, confusion, vomiting, amnesia, balance 82 

problems)[8,33]. Concussion was considered part of the mTBI spectrum[34]. Exclusion criteria 83 

were: suspected child abuse; alcohol or drug use at the time of injury; inability to complete 84 

questionnaires; significant past medical or psychiatric history requiring medication; 85 

contraindications to TMS[35]; previous mTBI within 3 months or failure to recover from a 86 

previous mTBI; and/or use of neuroactive drugs. Untreated Attention Deficit Disorders (ADHD) 87 

or mild learning disorders were not excluded. Typically developing children (ages 8 to 18 years) 88 

were eligible if they satisfied exclusion criteria and had no history of TBI (healthy controls).  89 

 90 

Children with mTBI were identified from a tertiary care pediatric Emergency Department 91 

(n=761) and eligible children with mTBI were contacted by telephone at 4 weeks post-injury 92 

(n=294). The recruitment process is shown in Figure 1.  Parental consent and participant assent 93 

were obtained. The Post-Concussion Symptom Inventory (PCSI) was used to document 94 

symptoms. Participants who had clinically recovered were selected to be similar in age and sex 95 

to the symptomatic group. Controls were recruited from friends or siblings of the mTBI 96 

participants. Outcome was assessed at 4-6 weeks post-injury before enrolment into the 97 

treatment trial.  98 

 99 

Figure 1: Participant recruitment flow  100 

A flow chart of the recruitment of participants through each step in screening and final samples. 101 

Analysed participants are those whose thresholds permitted at least one TMS paradigm to be performed 102 



Clinical Outcome measures 103 

Post-concussion symptom inventory: This age-appropriate, standardized questionnaire provides 104 

ratings for 26 symptoms (Guttman scale: 0 to 6) and an overall rating of post-concussive 105 

symptoms[5,36]. It has 4 factor derived-domains: somatic, cognitive, affective, and sleep. 106 

Participants were asked to retrospectively report pre-injury symptoms at enrolment (baseline), 107 

and were considered symptomatic if they had an increase of two in two or more symptoms 108 

compared to baseline and a score greater than 0 to “Have you felt different from before your 109 

injury?” (score: 0 to 4) [5,32], or recovered if there was no increase in symptoms and a score of 110 

0 to the “feeling different” question. 111 

 112 

CNS Vital Signs: This is a computerized neuropsychological test battery with adequate test-113 

retest reliability[37] and is a validated measure of cognitive skills in children with TBI[38]. The 114 

neurocognition index (NCI) is a summary score of the 5 domain scores: composite memory, 115 

psychomotor speed, reaction time, complex attention, and cognitive flexibility. All domain 116 

scores are normalized (mean: 100, SD: 15). The NCI was used to provide an overall estimate of 117 

cognitive function. As children may have an abnormal response to injury or illness, effort during 118 

cognitive testing was assessed using the test of memory malingering (TOMM)[39]. Children 119 

were excluded from regression analyses if they scored less than 45 on the test and re-test 120 

TOMM.  121 

 122 

Transcranial magnetic stimulation protocol Participants and parents were first informed about 123 

TMS. Once comfortably seated, participants watched a movie of their choice during the TMS 124 



session. Ag/AgCl EMG electrodes (Kendall; Chicopee, MA, USA, 1.5cm radius) were used to 125 

record surface EMG from first dorsal interosseous (FDI) muscles of both hands with a wrist 126 

ground band. EMG signals were amplified by 1000 and band-pass filtered from 20 to 2000 Hz 127 

and then digitized at a rate of 5000 Hz using CED 1401 hardware and Signal 6.0 software 128 

(Cambridge Electronic Design, Cambridge, UK). Using a Magstim BiStim 200 Transcranial 129 

Magnetic Stimulator (Magstim Company Limited, Carmarthenshire), stimuli were applied using 130 

an Alpha Branding Iron Range (70mm internal diameter) under image-guided neuronavigation 131 

(Brainsight2, Rogue Research Inc., Montreal) to define the FDI hotspot in the dominant motor 132 

cortex. The hotspot is the point where stimulation over the primary motor cortex produced the 133 

largest contralateral motor evoked potentials (MEPs). MEPs were recorded in Signal 4.0.6 134 

(Cambridge Electronic Design Limited, Cambridge, England). Voluntary contraction was 135 

measured using an EMG oscilloscope (GwINSTEK GDS-1022, 25MHz, 250M Sa/s, Good Will 136 

Instrument Co, New Taipei City, Taiwan).  137 

 138 

Single pulse paradigms 139 

Rest motor threshold (RMT) was defined as the lowest stimulus intensity eliciting an MEP 140 

response of 50µV (the 50µV RMT) in 5 out of 10 consecutive trials. Suprathreshold test stimuli 141 

(TS) were defined by the 1000µV (1mV) motor threshold.  Active motor threshold (AMT) was 142 

the lowest stimulus intensity eliciting 200µV during isometric FDI contraction at 20% maximum 143 

voluntary effort. Stimulus response curves (SRC) were generated using pseudorandomized 144 

stimulus intensities of 10% intervals between 100-150% of the 50μV RMT (rest) and AMT 145 

(active).  146 



Cortical silent period (cSP) was the primary outcome based on previous adult mTBI studies[40]. 147 

Fifteen suprathreshold stimuli were applied (separated by 3s) to the dominant FDI hotspot 148 

during contralateral hand contraction at 20% of maximal effort[41]. The silent period was 149 

defined as the onset of disrupted EMG waveform after the MEP to the point where EMG 150 

activity exceeds 25% of the rectified pre-stimulus EMG. Ipsilateral silent period (iSP) was 151 

measured in the dominant FDI during 50% maximal contraction in the hand ipsilateral to 152 

stimulation (non-dominant hand).   153 

 154 

Paired-pulse paradigms 155 

Paired pulse TMS was used to evaluate cortical excitatory and inhibitory cortical circuitry. Short 156 

interval intracortical inhibition (SICI) and intracortical facilitation (ICF) stimulations were 157 

randomized. Here, a conditioning stimulus set to 90% of the 50µV RMT preceded a 158 

suprathreshold conditioning test stimulus of 120% of the 50µV RMT. The inter-stimulus interval 159 

was 2ms for SICI and 10ms for ICF.  Ten conditioning-test stimuli pairs were applied for SICI and 160 

ICF and pseudorandomized with 10 unconditioned test stimuli. Long interval intracortical 161 

inhibition (LICI) was investigated with both the conditioning and test stimuli set to the 1000µV 162 

RMT, separated by 100ms. Ten conditioning-test stimuli pairs and 10 test stimuli alone were 163 

applied in pseudorandom order.  164 

 165 

TMS Analysis 166 

Data were processed using Matlab (MATLAB and Statistics Toolbox Release 2014b, The 167 

MathWorks, Inc., Natick, Massachusetts, United States) by an assessor blinded to group. The 168 

duration of cSP was defined as the period between the onset of the disrupted waveform after 169 



the MEP and the point where the EMG activity returned to 25% of rectified background activity. 170 

iSP durations were defined as the onset of EMG disruption after the stimulation to point where 171 

the EMG activity returned to 25% of rectified background activity. 172 

 173 

In the paired-pulse paradigms, peak-to-peak MEP amplitudes were calculated for each stimulus, 174 

then sorted into conditioned or unconditioned. The means of each state were calculated 175 

(unconditioned test stimulus amplitudes below 100µV and their corresponding conditioned 176 

states were removed, as they likely reflect issues with the neuronavigation goggles shifting). 177 

Paired pulse paradigms for each participant are expressed as a ratio of the mean conditioned 178 

response amplitude divided by their mean unconditioned response amplitude.  179 

 180 

Safety and tolerability 181 

At the end of each session, participants completed the pediatric TMS tolerability questionnaire, 182 

documenting and quantifying all potential adverse events (headache, nausea, dizziness, and 183 

neck pain) and ranking their TMS experience against 7 other common childhood 184 

experiences[42].  185 

 186 

Statistical analyses 187 

Analyses were performed using SPSS (IBM Corp. Released 2013. IBM SPSS Statistics for 188 

Windows, Version 22.0. Armonk, NY: IBM Corp.). Graphs were created in Sigmaplot 13.0 (Systat 189 

Software, Inc., San Jose California USA, www.sigmaplot.com). The sample size was estimated as 190 

24 per group using the cSP data from Miller et al.[43]. Normality was tested using Shapiro-Wilks 191 

analyses. RMT at 50µV, AMT, rest SRC area under the curve, rest ICF ratio, LICI ratio were 192 

http://www.sigmaplot.com/


transformed to a normal distribution using a log10 transformation. Group differences (CSP, iSP, 193 

SICI, ICF, and LICI) were assessed using analysis of variance (controls, recovered and 194 

symptomatic). Mixed models ANOVAs were used to compare between group differences for 195 

repeated measures paradigms and a Greenhouse-Geisser correction was applied where 196 

sphericity could not be assumed following Mauchly’s test (MT, SRC, cSP). Tukey’s post-hoc tests 197 

were used to correct for multiple comparisons between groups. Differences in group 198 

proportions were compared using chi squared tests. Exploratory analyses of the potential 199 

influence of gender, age, previous concussion, ADHD, PCSI score, and NCI on the outcome 200 

measures (cSP, SICI, LICI, iSP and ICF) were performed. Significant correlating factors (p<0.1) on 201 

univariate analysis were included in exploratory regression models to analyze the relationship 202 

between clinical symptoms (post-injury PCSI score, NCI), cSP and LICI, and mTBI whilst 203 

controlling for the potential effects of age, sex, ADHD[44] (including inattentive subtypes) and 204 

previous mTBI.  205 

 206 

Results 207 

Thirty-five symptomatic, 27 recovered, and 28 healthy control participants were enrolled. 208 

Groups were similar in age (overall mean age 14.16, SD 2.69 years), sex (42 males), handedness 209 

(77 right-handed), ADHD (n=3), and learning support requirements (n=5), see Table 1. A similar 210 

proportion of symptomatic and recovered participants had previous concussions, 22% 211 

(χ2(4)=2.01, p=0.366).  Pre-injury PCS symptoms did not differ between groups (H(2)=0.19, p = 212 

0.909). Injury characteristics are shown in Table 2 and were similar between groups. As 213 



expected, the median post-injury PCSI score was higher in the symptomatic group: 35 (range: 6-214 

122), compared to the recovered group: 3 (range: 0-26), H(2)=4.81, p<0.001.  215 

 216 

Neurophysiology 217 

TMS was well-tolerated with minimal adverse effects reported (see Table 3). Individual TMS 218 

paradigms were excluded if they could not be performed due to the participant’s threshold. 219 

Thirteen participants had thresholds too high to complete rest SRCs, (3 control, 2 recovered, 220 

and 8 symptomatic). Test stimuli could not be evoked in one additional recovered participant. 221 

Two control, 1 recovered, and 2 symptomatic participants had thresholds too high to perform 222 

ICF and SICI.  223 

 224 

Table 1: Pre-injury clinical and demographic details 225 

 226 

Table 2: Injury characteristics and symptom scores in children with mTBI 227 

 228 

Table 3: Tolerability of TMS with subjective sensations 229 

 230 

Table 4: Single pulse TMS paradigm data 231 

 232 

 233 

The results of the single pulse paradigms are shown in Table 4, demonstrating that motor 234 

thresholds were similar between groups. Groups show no group X stimulation intensity 235 

interaction in rest (F(4.52, 167.14)=1.09, p=0.368)) or active SRCs  (F(4.48, 183.84)=1.36, 236 



p=0.244)), see Figure 2. Similarly, during active SRC, there was no group X stimulation 237 

interaction for cSP (F(4.53, 179.03)=0.58, p=0.702). cSP was dependent on the strength of the 238 

stimulation (F(2.27, 179.03)=419.58, p<0.01, see Figure 3) but did not differ between groups 239 

with increasing stimulus intensity (F(2, 79)=0.28, p=0.753). With the more commonly used 240 

practice or using 1000µV RMT, there also were no group differences (F(2, 73)=0.55, p=0.582). 241 

iSP was also similar between groups (F(2,70)=0.12, p=0.890) (Figure 4). 242 

 243 
 244 

 245 

246 
ICF (F(2, 56)=1.81, p=0.174) was similar between groups (Figure 5 and Table 5). SICI (Figure 6) 247 

was similar across groups (F(2, 56)=1.04, p=0.359). LICI differed between groups, see Figure 6 248 

(F(2, 59)=3.83, p=0.027). Post-hoc analysis using Tukey’s correction revealed that the 249 

symptomatic group demonstrated less log10 LICI effect compared to controls (p=0.027). Reverse 250 

Figure 4: Ipsilateral silent period 

Boxplot of the ipsilateral silent period (iSP) were similar between healthy controls, 
recovered, and symptomatic groups, F(2,70)=0.12, p=0.890.  

Figure 3: Cortical silent period paradigms.  
(A) Boxplot of the cortical silent period (cSP) duration in milliseconds showed no differences 
between healthy controls and mTBI groups. (B) Line graph shows the mean and standard 
deviation of the log

10
 cSP with increased stimulation intensity during active stimulus 

response curve trials for healthy controls, recovered, and symptomatic groups with 
increasing stimulation intensity (no group X stimulus intensity interaction with healthy 
controls, F(4.53, 179.03)=0.58, p=0.702).  
Boxplots show the group median as a black horizontal line inside the box. The top edge of 
the box is the third quartile, and the bottom of the box is the first quartile, with the group 
mean in the middle of the box. The box’s whiskers denote the ends of the inner fence, or 
normal range of data. To calculate the inner fence, 1.5 times the interquartile range is 
subtracted or added to the first or third quartile, respectively.  Outliers are shown as points.  

Figure 2: Rest and active stimulus response curves (SRCs) are shown for healthy controls, 
symptomatic and recovered groups.  
(A) Line graph shows line graphs of resting stimulus response curve (SRC) amplitude for 
healthy controls, recovered, and symptomatic. (B) shows line graphs of the active SRC 
response amplitudes for the healthy controls, recovered, and symptomatic groups. 



transformed LICI means for control, recovered and symptomatic were 0.31 (SD: 0.38), 0.44 (SD: 251 

0.74), and 0.58 (SD:0.60),  respectively. 252 

 253 

Table 5: Paired pulse paradigms 254 

 255 

 256 

 257 
 258 

The influence of covariates 259 

The correlation coefficient matrix is shown in Table 6. The presence of mTBI, ADHD, and LICI 260 

were included in a regression model to predict the PCSI score. The model was significant, 261 

predicting 26.2% (adjusted) of the variance (F(3, 59)=8.34, p< 0.001). The variables that 262 

significantly contributed to the model were ADHD (Beta=0.354, p=0.002), and mTBI 263 

(Beta=0.292, p=0.012). LICI was not predictive of symptoms (Beta=0.194, p=0.094). Factors 264 

influencing LICI were further explored in a regression model including TBI, gender, number of 265 

previous mTBIs, PCSI score, and the interaction effect between gender and PCSI score. The 266 

overall model was significant (F(5, 61)=3.269, p<0.012) and explained 16% of the variance. 267 

Figure 6: Inhibitory paired pulse paradigms 

(A) Short interval intracortical inhibition (SICI): the ratio of conditioned stimulus to test 
stimulus at 2ms inter-stimulus intervals. Values above 1 (black line) are considered 
facilitation, while below 1 indicate inhibition. There are no differences between groups 
(F(2, 56)=1.04, p=0.359). (B) Log

10
 long interval intracortical inhibition (LICI): the log

10
 of 

the ratio of conditioned stimulus to test stimulus alone when inter-stimulus interval is set 
to 100ms. Values above 0 are considered facilitation, while below 0 indicate inhibition. 
There was a difference between groups in omnibus ANOVA tests (F(2, 59)=3.83, p=0.027), 
which post-hoc analyses revealed to be between healthy controls and PCS participants 
(p=0.004) 

Figure 5: Intracortical facilitation 

Intracortical facilitation (ICF) ratio of conditioned stimulus amplitude over the test 
stimulus amplitude, separated by 10ms. Values above 1 (black line) are considered 
facilitation, while below 1 indicate inhibition. There were no group differences (F(2, 
56)=1.81, p=0.174). 



When controlling for the significant interaction between gender and PCSI score (Beta = -.874, p 268 

= 0.041), LICI was predicted by gender (Beta 0.339, p=0.016) and PCSI score (Beta 1.071, 269 

p=0.012). 270 

Table 6: Correlation matrix  271 

 272 

Discussion 273 

This is the first study to investigate cortical excitation-inhibition balance using TMS in children 274 

with different recovery patterns after an mTBI. We are also the first to demonstrate that TMS is 275 

well tolerated by children after an mTBI, and that any adverse events reported were mild to 276 

moderate and were not different between groups. This is similar to children with ADHD who 277 

also tolerate TMS [42], and who share a similar predisposition to injury as children with 278 

mTBI[45].  279 

 280 

In our study, the motor thresholds and SRCs were similar between groups, which is consistent 281 

with the previous literature[27,46,47].  We also evaluated different measures of synaptic 282 

excitability, using silent periods and the MEPS of paired-pulse paradigms. ICF, a measure of net 283 

facilitation mediated via NMDA glutamate (excitatory) receptors, was similar between groups. 284 

SICI is a measure of net inhibition: the short-lasting inhibitory component of SICI is mediated by 285 

GABAa receptor activity. Contrary to our hypothesis of mTBI-induced increased local cortical 286 

inhibition underlying PCS, cSP durations (a GABAb receptor-mediated inhibition dependent 287 

effect) and SICI did not differ between control and mTBI groups regardless of recovery status. 288 

However LICI, which reflects long-lasting inhibition[23,24,48], was decreased in the 289 



symptomatic mTBI group when compared to healthy controls, suggesting a decrease in GABAb 290 

receptor-mediated cortical inhibition.  291 

 292 

Our findings of normal cSP duration and decreased LICI following mTBI is in contrast to results 293 

from the majority of adult studies, which have reported increased inhibition (cSP) after 294 

mTBI[25–27], although two small adult studies have also reported a normal cSP [16,46]. It is 295 

unlikely that our observations are due to differences in TMS protocols as we used previously 296 

described standard practices and methods[49]. And, the cSP durations in our control group 297 

were similar to reference data for children[29] and were correlated with other measures of 298 

cortical excitability (e.g., LICI and ICF).  299 

 300 

Several factors can affect cortical excitability after TBI including age, time since the injury, 301 

severity of injury, ADHD, use of medications, and repeated mTBI[23,26,28,29,50–52]. A 302 

comparison between Miller et al.’s study and ours allows us to consider the effect of age and 303 

population on cortical excitability after mTBI[25]. Miller et al. found a prolonged cSP that was 304 

evident 72 hours after the mTBI that persisted at 2 months[25], whereas we found no 305 

difference in the cSP duration. Our cohort was very similar to Miller et al.’s cohort, including 306 

similar methods of eliciting cSP and a common analysis time point of 1 month post-injury[25]. 307 

Other than age (mean 14.1 vs. 20.8 years, respectively) and population (paediatric emergency 308 

department patients vs. adult concussion clinic, respectively), the cohorts were similar in sex 309 

(53% vs. 47%) and mechanism of injury (sport-related mTBI: 73% (11 of 15) participants in 310 

Miller’s study compared to 60% in our study).  Age and sex are significant predictors of 311 



symptom persistence after a concussion, controlling for these factors between groups allowed 312 

us to examine the effect of mTBI and recovery on cortical excitability[53–56]. Notably, cSP 313 

duration was not correlated with age within our cohort perhaps because the age range (8 to 18 314 

years) was not large enough to detect this. So, although children do have greater variability in 315 

their cSP durations [29] which could have decreased the power of our study [29,51], it is likely 316 

that age is a significant contributor to the differences in cSP duration observed between the 317 

two studies.  318 

 319 

Chistayakov et al. found that injury severity may influence cortical excitability[17]. They report a 320 

cohort of adult participants who were admitted to hospital with mTBI. Similar to our study, 321 

participants with “minor head injury” (GCS 15, n=10) did not show an increase in cSP duration 322 

at two weeks post-injury whereas those participants with “mild head injury” (GCS 13-14, n=22) 323 

and moderate head injury (GCS 9-12, n=6) did show increased cSP durations[17]. Although this 324 

suggests that increases in cSP may be more likely in more severe injuries, it is also possible that 325 

this effect could be explained by the high proportion of diphenylhydantoin anticonvulsant 326 

medication use in the mild and moderate TBI groups (19 of 22 cases)[17,57]. A strength of our 327 

study was that we excluded any children treated with psychoactive or anticonvulsant 328 

medications.  329 

 330 

Other studies that have found prolonged cSP focussed primarily on sports-related concussions, 331 

but do not define the severity of injury[16,25,27]. However, those studies show a strong effect 332 

of repeated concussions and sub-concussive events (events that resemble the mechanics of a 333 



concussive event but do not result in symptoms) on cortical excitability. Tremblay et al.[26] and 334 

De Beaumont et al.[27] found increased cSP in adult Canadian athletes with multiple sport-335 

related concussions examined more than 9 months post-injury. In our study, although the 336 

number of previous mTBIs was correlated with LICI on univariate analysis, it was not an 337 

independent predictor of LICI when TBI, PCSI score, and gender were taken into account. 338 

Increases in cortical inhibition in athletes with multiple concussive and sub-concussive events 339 

may take years to develop and reach detectable levels. Therefore, the effect of multiple 340 

concussions on cortical excitability in children over time is worthy of future study. 341 

 342 

In contrast to our cSP results, there was evidence of decreased inhibition i.e. reduced LICI 343 

responses in children who remained symptomatic at one-month post injury, compared to 344 

healthy controls. LICI was modified by sex (more pronounced inhibition in females than males) 345 

and the severity of PCS symptoms. Although cSP and LICI are both considered to reflect GABAb 346 

receptor-mediated inhibition, LICI is thought to measure activity in different aspects of the 347 

inhibitory interneuronal circuit than cSP[58]. Previous reports of LICI alterations after TBI are 348 

varied, reporting a range of LICI responses between increased[26–28] and normal[16], to 349 

decreased[59]. For example, while Powers et al.[46] did not find differences between mTBI at 350 

one month post-injury and control subjects, most of the other TMS studies were performed at 351 

time points quite remote from the injury and in the setting of multiple mTBIs making it difficult 352 

to directly compare with our data. Therefore, although it is possible that inhibitory cortical 353 

interneuronal circuits may be preferentially affected in pediatric mTBI, our finding of decreased 354 

LICI and its relationship to PCS symptoms needs to be replicated in future studies.  355 



 356 

We are the first to study iSP in mTBI. iSP is thought to be a measure of inhibition of the 357 

contralateral motor cortex via excitatory transcallosal pathways and is often prolonged in 358 

severe TBI[60]. These transcallosal tracts are of particular interest as they are susceptible to 359 

injury in TBI[61,62] and we have previously demonstrated altered interhemispheric connectivity 360 

in persistent post-concussion syndrome following mTBI in children[63].  The normal values of 361 

iSP after mTBI in our study suggests either no dysfunction in the transcallosal tracts or a 362 

compensated contralateral response. Future studies investigating iSP in the presence and 363 

absence of transcallosal injury could provide some insight about compensatory intracortical 364 

mechanisms following TBI. 365 

 366 

The ICF paradigm is thought to reflect glutamatergic NMDA-mediated activity[23,64,65], which 367 

animal models have found to be dysregulated within hours of the injury, recovering by 24 368 

hours[12]. In our study we found no differences in ICF between groups, which is in keeping with 369 

other studies of mild, moderate, and multiple TBIs[66,67]. These studies were performed 370 

longer after the injury than in our study, which may indicate that the normalization of NMDA 371 

receptor-mediated facilitation that is believed to underlie ICF[65] occurs by one month after 372 

injury in children.  373 

 374 

Our study has several limitations. Firstly, only post-injury measures of cortical excitability were 375 

obtained. It is possible that cortical excitability may be different pre-injury in children at risk of 376 

mTBI, especially in females with higher pre-injury PCSI scores. Secondly, our study may be 377 



underpowered to detect group differences given the increased variability of TMS parameters in 378 

children and given the smaller number of participants with LICI measurements. Thirdly, TMS is 379 

an indirect measure of cortical physiology. TMS paradigms were applied to a focal region of the 380 

cortex, which is used as a generalisation of the whole cortex. It is possible that cortical 381 

excitability varies in different regions of the brain especially after injury and that such 382 

generalization is incorrect. The sensitivity of TMS in mTBI could potentially be increased by 383 

correlating cortical excitability with the presence or absence of microstructural injury. Lastly, 384 

we did not exclude children with a history of attentional problems in order to increase the 385 

generalizability of our results to the group of children who sustain mTBI. However, this could 386 

also have increased the variability of our cortical excitability observations.  387 

 388 

In summary, children are likely to differ from adults in their cortical excitation-inhibition 389 

balance following mTBI. Most TMS parameters of cortical excitation and inhibition are normal 390 

by one month post-mTBI.  Long-lasting intracortical inhibition, however, is decreased in 391 

children who remain symptomatic which suggests a potential vulnerability of select inhibitory 392 

interneurons. Further research using sensitive TMS paradigms is required to validate these 393 

findings, and examine how cortical excitability changes over time and its relationship with 394 

cognitive and behavioural function.  395 

 396 
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Table 1: Pre-injury clinical and demographic details 

  
Healthy Recovered Symptomatic 

χ2 p 
(n=28) (n=27) (n=35) 

Mean age (SD) 14.31 (3.14) 14.13 (2.35) 14.06 (2.55) - - 

Female 15 14 19 - - 

Left handed 3 3 7 1.43 0.489 

ADHD 0 1 2 1.6 0.451 

Learning Support 1 1 3 0.99 0.609 

Previous  0 28 22 24 

2.01 0.366 Concussion 1 - 2 7 

  ≥2 - 3 4 

Median pre-injury PCSI 
(Range) 

2 (0-29) 0 (0-9) 3 (0-46) KW = 0.19 0.909 

mTBI: mild traumatic brain injury; ADHD: Attention deficit disorder; PCSI: Post-concussion 
symptom inventory *Pre-injury PCSI scores were compared using Kruskal-Wallis test. 
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Table 2: Injury characteristics and symptom scores in children with mTBI 

  
Recovered Symptomatic 

χ2 p 
 (n=27)  (n=35) 

Cause of Injury, n (%)     

  
  

•Sport-related  20 (74.0) 17 (45.9) 

•Fall  2 (7.4) 1 (2.9) 

•MVA 0 (0) 2 (5.8) 

•Other  1 (3.7) 2 (5.7) 

•Unknown  4 (14.8) 12 (34.3) 

Loss of consciousness, n (%) 3 (11.1) 3 (8.6) 1.91 0.385 

Anterograde Amnesia, n (%) 6 (22.2) 4 (11.4) 3.54 0.171 

Retrograde amnesia, n (%) 6 (22.2) 1 (2.9) 7.3 0.026 

Time since injury, days (mean, SD) 39.89 (10.53) 39.56 (5.13) 0.16 0.873 

Median post–injury PCSI (range) 3 (0-26) 35 (6-122) U=4.81 <0.001* 

PCSI: Post-concussion symptom inventory; MVC: Motor vehicle collision;                                     
mTBI: mild traumatic brain injury. Post–injury PCSI were compared using Mann-Whitney U 
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Table 3: Tolerability of TMS with subjective sensations 

  Healthy Recovered Symptomatic χ2 p 

Headache Mild 1 1 0 1.2 0.548 

Neck Pain Mild 0 2 3 4.31 0.365 

Moderate 0 0 1 

Tingling Mild 1 1 6 5.6 0.061 

Lightheaded/ Mild 0 0 1 1.74 0.42 

Faint 

Nausea Mild 1 0 2 1.79 0.408 

Median TMS Rating (range) 
(1 to 8) 

5 (2-7) 4 (1-7) 4 (2-8) 16.05 0.311 

Subjective symptom ratings and TMS ratings are compared using chi-squared tests 
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Table 4: Single pulse TMS paradigm data 

Test 

Controls Recovered Symptomatic 

Statistic p  n Mean (SD) n Mean (SD) n Mean (SD) 

Log10 RMT50uV 27 1.67 (0.11) 25 1.65 (0.10) 33 1.67 (0.12) F(2, 82)=0.16 0.851 

RMT1mV 25 59.64 (18.09) 23 58.35 (16.55) 27 52.78 (11.1) F(2, 72)=1.46 0.239 

Log10 AMT200uV 27 1.53 (0.11) 26 1.53 (0.12) 34 1.56 (0.13) F(2, 84)=0.53 0.589 

RSRC Curve 24 - 25 - 28 - F(2, 74)=1.99 0.144 

ASRC Curve   - 25 - 33 - F(2, 82)=0.36 0.698 

cSP 25 
114.58 
(46.15) 24 

116.62 
(41.12) 27 

104.92 
(41.94) F(2,73)=0.55 0.582 

Log cSP curve 27 - 25 - 33 - F(2, 79)=0.28 0.753 

iSP 24 15.03 (7.63) 24 14.69 (6.38) 25 14.07 (7.10) F(2,70)=0.12 0.89 

RMT: Rest motor threshold, AMT: Active motor threshold, RSRC: Rest stimulus response curve, 
ASRC: Active stimulus response curve, cSP: Cortical silent period, iSP: Ipsilateral silent period 
Statistics shown are between groups analyses of variance. 
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Table 5: Paired pulse paradigms 

  Healthy Recovered Symptomatic Statistic p  

n Mean (SD) n Mean (SD) n Mean (SD) 

Log10 ICF 15 -0.03 (0.22) 20 0.12 (0.24) 24 -0.01 (0.30) F(2, 56)=1.81 0.174 

SICI 15 0.64 (0.47) 20 0.90 (0.60) 24 0.77 (0.54) F(2, 56)=1.04 0.359 

Log10 LICI 21 -0.83 (0.58) 20 -0.72 (0.54) 21 -0.40 (0.42) F(2, 59)=3.83 *0.027 

ICF: Intracortical inhibition, SICI: short interval intracortical inhibition, LICI: long interval 
intracortical inhibition 
*Post-hoc analyses show symptomatic participants were significantly less inhibited than 
controls (p=0.027) 
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Table 6: Correlation matrix 

  Group Age Gender Number of 
previous 

mTBI 

Attention 
Problems 

Post PCSI NCI cSP SICI  LICI  iSP1mV 

Age r 0.116 1                   

N 90 90                   

Gender r -0.006 -0.058 1                 

N 91 90 91                 

Number of 
previous mTBI 

r **0.235 0.026 -0.008 1               

N 91 90 91 91               

Attention 
Problems 

r 0.164 -0.015 -0.158 -0.059 1             

N 91 90 91 91 91             

Post PCSI r **0.583 0.053 0.092 0.033 **0.311 1           

N 91 90 91 91 91 91           

NCI r 0.006 0.092 0.115 -0.039 **-0.212 -0.109 1         

N 89 88 89 89 89 89 89         

cSP r -0.086 -0.048 **-0.324 -0.168 -0.178 -0.081 0.045 1       

N 77 76 77 77 77 77 75 77       

SICI ratio r 0.046 -0.153 0.105 0.03 -0.13 0.04 0.159 -0.114 1     

N 60 59 60 60 60 60 58 59 60     

LICI ratio r 0.3 0.118 *0.22 *0.212 0.116 **0.282 0.123 **-0.55 **0.382 1   

N 63 62 63 63 63 63 61 63 52 63   

iSP1mV r -0.058 0.039 **-0.349 0.025 -0.083 -0.097 -0.043 **0.306 -0.07 -0.15 1 

N 74 73 74 74 74 74 72 74 57 61 74 

RICF ratio r -0.023 0.041 -0.085 0.034 **-0.266 -0.144 0.083 *0.23 **0.359 0.032 -0.159 

N 60 59 60 60 60 60 58 59 60 52 57 

* p < 0.1, ** p < 0.05 

Abbreviations: r = Pearson’s r; n = sample size; PCSI: Post concussion symptom inventory; NCI: Neurocognitive index; cSP: cortical silent period; 

SICI: Short interval intracortical inhibition; LICI: Long interval intracortical inhibition; iSP: ipsilateral silent period  
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