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Abstract

As enterprises begin to increasingly adopt the cloud paradigm, Cloud Service Providers

(SPs) need tools to help them plan their infrastructure capacity and decide on Service Level

Agreements (SLAs) with customers prior to deploying their customers’ applications. Service

Level Objectives (SLOs) are specified for customers’ applications as part of customers’ SLAs

with cloud SPs. A cloud SP need Service Level Planning (SLP) tools that consider the

workloads of the applications deployed on the cloud to determine the adequate capacity

required to satisfy the applications’ SLOs. Existing SLP approaches have not considered

important challenges such as workload burstiness, workload uncertainty, and scalability to

large number of applications.

This thesis presents an SLP framework that addresses the above challenges simultane-

ously. The framework implements a novel Resource Allocation Planning (RAP) method to

identify a time varying allocation of resources to applications to satisfy their bursts. RAP

is a heuristic optimization technique that in conjunction with a trace-driven performance

prediction technique estimates the near minimal degree of service level violations that the

cloud SP can incur with a given cloud resource capacity. RAP works in consort with a Monte

Carlo simulation technique, which allows cloud SPs to systematically consider the impact

of workload uncertainty in SLP. Finally, a new burstiness-aware workload clustering algo-

rithm is proposed to increase the scalability of the SLP framework while preserving workload

burstiness.

Detailed simulation results are presented to characterize the behaviour of the proposed

SLP framework. The results show that the proposed RAP variants can identify optimal or

near optimal resource allocation plans without exhaustively generating all possible plans.

Secondly, the results show that RAP can permit cloud SPs to more accurately determine

the capacity required for delivering specified SLOs compared to other competing techniques
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especially for bursty workloads. Thirdly, the results demonstrate that the proposed Monte

Carlo simulation technique enables cloud SPs to accurately estimate the impact of workload

uncertainty in their SLP exercises without exhaustively traversing all combinations of appli-

cation workload scenarios. Finally, the results show that the proposed workload clustering

algorithm reduces the number of computations needed to support SLP exercises without

significantly impacting accuracy.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

Enterprises and organizations used to provide IT services to their customers by purchasing

their dedicated hardware systems including among others servers, storage, switches, routers;

and building their own infrastructure of networks, platforms, and software applications.

This implies the need for administration and management of all of these resources by the

enterprise itself. A cost problem arises here especially for small and medium business orga-

nizations where the resources are not used effectively to outweigh the cost of purchase and

management. The workloads of these organizations change from time to time over the week

and during the time of the day. For example, the resources can be heavily loaded during

working hours while lightly loaded in evenings and weekends. So the cost of purchasing

and managing dedicated resources while not utilizing them efficiently affects an enterprise’s

operating costs and revenues.

Consequently many enterprises today are consuming their IT services including hardware,

platforms and software applications by using the notions of “pay-as-you-go” or “pay-for-

use-only”. Using these paradigms enterprises have to pay for using resources only when

they need these resources. Enterprises do not have to purchase dedicated resources to host

their applications or provide their services. Instead they can rent the required resources

on demand from a Service Provider (SP) and release them when no longer required. In

that way the SP takes the responsibility of administering and management of a system of

interconnected resources to be shared among many enterprises. Consequently, costs can

be distributed among hosted enterprise systems while efficiently utilizing resources. Such a

system of interconnected resources implemented and managed by SPs to support the hosting
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of different IT systems or services is referred to as a cloud [37].

Today there are many commercial cloud SPs such as Amazon Elastic Compute Cloud

(Amazon EC2) [3], Google App Engine [12] and Microsoft Azure [16]. Cloud SPs host dif-

ferent types of systems or services on their managed resources. Depending on the type of

service provided a cloud system can be classified into various categories such as Hardware-

as-a-Service (HaaS), Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and

Software-as-a-Service (SaaS) [85].

HaaS refers to the service of renting physical hardware, e.g., physical servers, to cloud

customers. However, due to the wide implementation of virtualization technologies [97] in

cloud architectures, HaaS is not currently offered by many cloud SPs.

IaaS systems allow customer applications to execute within Virtual Machines (VMs).

Virtualization technologies allow multiple VMs to execute on a single physical machine.

This feature can be exploited to consolidate multiple VMs on a single physical machine to

effectively utilize the machine’s resources and save costs [40, 96]. Examples of IaaS cloud

SPs include Amazon EC2 [3], RackSpace [20] and GoGrid [11].

A PaaS system provides software developers with a complete software development plat-

form. This platform includes tools and environments to support software developers during

the life-cycle of software development including analysis, design, development, testing and

deployment of software applications. Examples of PaaS cloud SPs include Google App En-

gine [12] and Microsoft Azure [16].

Finally, SaaS systems allow cloud customers to share the use of general purpose software

packages deployed on the cloud instead of running these packages locally. Examples of these

packages include online office, web hosting, database and email applications. An example of

a SaaS cloud SP is Google Docs [13].

Many of today’s enterprise applications are interactive in nature, e.g., web-based applica-

tions that employ a multi-tier architecture composed of web, application and database tiers.
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Typically, the owners of these applications need to satisfy good Quality of Service (QoS) to

their end users. For example, the owners of these applications may specify an upper limit on

the response time for a given transaction. As a result, the owners of enterprise applications

often specify the required QoS in the form of Service Level Agreements (SLAs). Specifically,

SLAs stipulate a number of Service Level Objectives (SLOs) to be satisfied by a cloud SP

when delivering a service to an application owner and the penalties imposed on the cloud

SP if the SLOs are violated [31].

Existing cloud offerings do not provide adequate support to explicitly guarantee SLOs

for enterprise applications [31]. Typically, cloud services are provided to cloud customers

with only basic SLO guarantees. For example Amazon EC2 [5] provides a guarantee on the

upper limit of the monthly downtime of their VM instances. RackSpace [21] applies a similar

approach to guarantee the availability time of their hardware, network and infrastructure.

However, most cloud systems currently do not provide performance guarantees for their

customers’ applications [31]. For example, a typical cloud system does not provide any

guarantee on how fast a transaction pertaining to an enterprise application will complete.

Such a performance-agnostic approach poses risks to cloud SPs. If insufficient resources

are provisioned to customers’ applications, the performance of these applications may de-

grade significantly. In particular, violation of performance-related SLOs such as transaction

response times and throughputs can cause cloud SPs to incur significant SLO violation

penalties. SLO violations affect a customer’s satisfaction with the service and as result, the

customer may migrate to other cloud offerings. On the contrary, if a cloud SP overprovisions

resources to preempt performance problems with customers’ applications, this might result

in underutilization of the cloud SP’s resources. As a result, this may increase the cloud SP’s

resource and energy costs. These factors can drive up the cost of the cloud offering thereby

putting the cloud SP at a strategic disadvantage with other cloud SPs. Consequently, cloud

SPs need systematic tools to provide them insights on resource management strategies for

3



optimally utilizing their resources while simultaneously satisfying customers’ SLAs.

Addressing performance related issues in cloud-based services requires both long term

and short term resource management approaches [58]. Both approaches are discussed in the

ensuing paragraphs.

Long term tools help cloud SPs to plan their infrastructure capacity and decide on SLAs

with a customer prior to deploying the customer’s applications. For example, consider

a customer that stipulates a certain mean response time threshold for her application’s

transactions. A cloud SP should consider the application’s workload as well as the workload

of other existing applications on the cloud to determine whether there is adequate capacity

to satisfy this requirement. If the requirement cannot be satisfied, the cloud SP may suggest

a less stringent performance requirement for the transactions of the customer’s application.

Alternatively, the cloud SP may determine the additional capacity needed to satisfy the

request and use that information to present a revised cost estimate for delivering the service

to the customer. Long term tools are referred to in the thesis as Service Level Planning

(SLP) tools. The reader can refer to [24,63,83,87] for examples of these tools.

SLP tools are typically used to plan for cloud resource management over coarse-grained

time periods, e.g., hours or days. Typically, these tools need historical workload traces [58]

that describe the workload experienced by the applications deployed on the cloud over the

time period under consideration. Given such traces, SLP tools attempt to determine a

good baseline strategy for how resources need to be allocated to applications and how such

allocation should change over the duration of interest such that applications’ SLOs are met

while resource costs are minimized. SLP tools are typically used to plan for cloud resources

prior to deploying customers’ applications on the cloud, i.e., offline. This planning can also

be implemented after application deployment on a weekly, bi-weekly or monthly basis to

account for any deviations in customers’ workloads.

SLP tools can provide an optimal resource allocation strategy for a set of applications
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deployed together on the cloud such that all applications’ SLOs are satisfied while minimizing

resource costs. Solving this “global” SLO and resource allocation optimization problem is

challenging for a large number of applications and for applications characterized by workloads

which continuously change over time. Specifically, solving this optimization problem involves

a number of issues.

Firstly, SLP exercises should consider the trade-off between two conflicting types of cost

factors namely, cost of resources allocated and penalties due to applications’ SLO violations.

Minimizing resource costs can lead to degrading performance of the applications deployed

on the cloud. As a result, applications are more likely to violate their SLOs resulting in SLO

violation penalties. On the other hand, satisfying all applications SLOs might end up using

a lot of resources which may drive up costs or which may not be feasible given the resource

constraints faced by the cloud SP.

Secondly, SLP tools should handle heterogeneity among applications with respect to

SLAs and SLO violation penalties. Each application typically has an SLO violation metric

defined in terms of the application’s performance requirements, e.g., an upper threshold for

mean transaction response times [51]. An application SLO violation penalty is typically

defined as a cost function which stipulates the amount of monetary units that a cloud SP

must pay to a customer for a given degree of SLO violation [51]. A set of applications

can have different SLO penalty cost functions. For example, one application can have an

SLO violation which incurs a penalty of 100 monetary units to the cloud SP while another

application can have an SLO violation which incurs a penalty of 10 monetary units. Solving

the global SLO and resource allocation optimization problem for a set of applications while

prioritizing applications with heterogeneous SLO violation penalties increases the complexity

of SLP exercises.

To consider the aforementioned trade-offs, SLP tools typically optimize for a global SLO

violation metric that combines SLO metrics of individual applications together. SLP exer-
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cises optimize this global SLO violation metric while reducing resource costs. For example,

an average or a weighted average SLO violation metric over all applications can be mini-

mized. Another example is to minimize the number of violating applications if all of them

have same SLO violation penalty cost. Determining which global SLO violation metric to

use can affect the complexity of the SLP exercises. In summary, SLP tools should support

a systematic and automated way to address such issues.

To solve the global SLO and resource allocation optimization problem for a set of ap-

plications, SLP tools usually rely on two underlying techniques namely, a search technique

and a performance model. The search technique explores alternative application resource

allocation solutions and selects the optimal solution that satisfies the optimization objective.

As described previously, this optimization objective depends on the applications’ SLO vio-

lations penalties and resource costs. Ideally, the search technique should be able to trade-off

optimality in favour of less computational complexity when a large number of applications

are involved. Specifically, with the large number of applications typically deployed on the

cloud, e.g., hundreds or thousands, it might be prohibitive to traverse all possible solutions

to obtain an exact optimal solution. In such a case obtaining a near optimal solution while

exploring a subset of the possible solutions might be more practical and can reduce the

computational complexity of the problem significantly.

SLP tools also rely on analytic performance models [41, 79, 88] to search for optimal

resource allocation strategies for applications. Analytic models with fast solution techniques

[79] allow a large number of resource allocation strategies to be quickly explored during

SLP exercises. By leveraging information on an application’s workload and the resources

allocated to the application, the model predicts the application’s performance. This in turn

can be used to compute the application’s SLO violation penalty during the search process.

Short term tools adjust cloud resources dynamically, i.e., online, to handle any sudden

workload fluctuations during system operation. These tools are based on measurements
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obtained from the system over fine-grained time scales in the order of seconds or minutes.

Short term tools are typically categorized into approaches that rely on performance models

and those that rely on control theory [91]. The reader can refer to [25,39,92,93] for examples

of these tools.

In contrast to SLP tools, short term tools typically provide a solution to a “local” SLO

and resource optimization problem that considers each application deployed on the cloud

in isolation from other applications. Short term tools have to generate resource allocation

strategies at real time while applications are running. Therefore, it may not be feasible to

do global optimization over short time scales in clouds with large number of applications.

While short term tools are important, they have to be complemented by SLP tools that

provide pre-deployment insights to cloud SPs [62]. Good pre-deployment resource alloca-

tion strategies obtained from SLP tools can increase the effectiveness of short term tools.

Specifically, good pre-deployment strategies can help to minimize the number of resource

migrations among applications after the deployment of these applications on the cloud. For

example, consider a set of applications that are deployed on a cloud. If, prior to deploy-

ment, each application is allocated the required number and type of resources to match its

workload over a given time period, then short term tools may trigger only minor movement

of resources between these applications over the given time period. However, if the pre-

deployment resource allocation strategy is not accurate enough to reflect the workloads of

these applications, short term tools may need to do large scale of deallocation of resources

from some applications and allocate these resources to other applications to match applica-

tion workloads. This involves a lot of resource migrations between applications while the

system is running. These on the fly resource migrations incur migration overheads which

might affect the performance of the running applications [58].

The work in this thesis focuses on SLP tools. Realizing SLP tools for enterprise applica-

tion clouds requires addressing three main challenges namely, workload burstiness, workload
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uncertainty and scalability to a large number of applications. Details on each of these chal-

lenges will be described in the remaining part of this section.

The first challenge which faces the development of SLP tools for clouds is workload

burstiness. Several studies have characterized the behaviour of enterprise application work-

loads [77, 94]. Many of these studies have indicated the presence of workload burstiness

in real workloads [41–43, 81]. Workload burstiness refers to serial correlations in workload

patterns such as correlation between successive arrivals of requests and correlations in the re-

source consumption patterns at various system resources. Typically, applications encounter

periods of sustained workload peaks followed by periods of sustained workload troughs. This

phenomenon can adversely affect the performance of applications running in the cloud and

complicates resource management. Resource contention can increase during workload peaks

thereby degrading performance significantly. Also, resources allocated to applications may

experience underutilization during workload troughs leading to cost increase.

Since clouds allow resources to be allocated and deallocated on the fly, such elasticity can

be exploited to address workload burstiness. However, leveraging this benefit of the cloud

requires SLP tools that are able to accurately predict how many resources each application

should get and how the number of allocated resources should change over time to match

workload patterns. To achieve this objective, application workload characteristics such as

burstiness should be exploited by SLP tools.

Resource allocation policies evaluated as part of SLP exercises that do not leverage com-

plex workload behaviour such as burstiness can provide inaccurate estimates of the capacity

and cost involved in delivering a target SLO. Figure 1.1 shows a simple example of two appli-

cations characterized by non-bursty and bursty workloads. Each workload is represented by

the rate at which the requests arrive over time to the application system. The figure shows

that resource allocation based on the average request arrival rate can provide adequate esti-

mates of the number of cloud resources needed to satisfy the non-bursty workload. However,
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Figure 1.1: Workload burstiness

for the bursty workload cloud resource estimation analyses cannot be done solely based on

average or peak workload requirements. Using average request arrival rate may lead to un-

derprovisioning of resources and hence violation of SLOs. Using peak request arrival rate

may lead to overprovisioning and underutilization of resources. Therefore, SLP tools should

adapt the resource allocation strategies to the burstiness pattern of application workloads

to obtain accurate resource allocation polices. Doing this automatically for clouds hosting a

large number of applications is a big challenge. Furthermore, as mentioned previously in this

section, enterprise applications typically employ the multi-tier architecture. Each tier needs

to be allocated an appropriate number of resources of an appropriate flavour. For example,

as typically done in practice, a web tier is allocated multiple instances where each instance

has a low number of cores, e.g., 1,2 or 4 [4], while a database tier is allocated a single more

powerful instance with more cores, e.g., 8,16 or 32. Supporting different types of resources

at each tier imposes further complications to the design of SLP tools.

Furthermore, as described previously in this section, SLP tools often rely on performance

models to predict service levels for a customer application under a given resource allocation

strategy. Various performance models have been employed including traditional product-

form Queuing Network Models (QNMs) [79] solved using the Mean Value Analysis (MVA)
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technique and enhanced QNMs such as Layered Queuing Models (LQM) [88] which simulta-

neously consider the effect of contention for software and hardware resources. A limitation

of such models is that their predictions can be inaccurate for systems characterized by work-

load burstiness. This limits the applicability of such models for enterprise systems whose

workloads are known to exhibit burstiness [41–43, 81]. Unfortunately, most existing work

in SLP uses these models. Therefore future SLP tools need to employ other performance

modeling techniques that are capable of predicting application performance accurately under

workload burstiness to obtain accurate resource allocation strategies. Recently, performance

modeling techniques such as Markovian Arrival Process QNMs (MAP-QNM) [41] and the

Weighted Average Method (WAM) [64] have been proposed to address this issue.

The second challenge which faces the development of SLP tools for clouds is the need

to assess the risks that arise due to workload uncertainty. The workload experienced by

many applications may deviate significantly from the workload projections estimated by

application owners. Such applications may encounter many possible workload scenarios

with each placing significantly different capacity requirements on the cloud. For example,

Armbrust et. al. [29] described a scenario in Facebook where a sudden deviation from

the normal workload occurred. This sudden peak workload required 3500 servers instead

of 50 servers for the normal workload. Cloud SPs need systematic techniques to evaluate

the impact of such uncertainties on penalties incurred due to SLO violations and resource

allocation costs. Specifically, SLP tools need to allow cloud SPs to quantify the risks which

might occur due to SLO violations because of workload uncertainty over time. For example, a

cloud SP may need to know what penalties will occur due to SLO violations during workload

peaks and how many resources are needed to eliminate these violations.

The final challenge that needs to be addressed by SLP tools is their scalability to large

number of customer applications. SLP involves using performance models to search for

optimal resource allocation strategies. This can take a lot of time with large number of
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customer applications with each application characterized by multiple workload scenarios

due to workload uncertainty. Furthermore, advanced performance models [41, 64] which

accurately predict performance under workload burstiness take relatively longer execution

time than traditional performance modeling techniques such as MVA [79]. This can impact

the performance of the SLP toolset. Therefore, SLP tools should scale well to support a

large number of applications and a large number of workload scenarios per application.

To solve this scalability problem, data reduction techniques such as clustering [50] can

be used. Applications with similar workload characteristics can be grouped together into

clusters. SLP exercises can then be done at the level of these clusters. For each of these

clusters, a workload trace is needed to represent the workload traces of the applications

that belong to this cluster. This introduces two main challenges. The first challenge is to

select an appropriate clustering approach and appropriate clustering attributes to ensure

that applications with similar burstiness characteristics are grouped together. The second

challenge is to generate traces for clusters to accurately preserve the burstiness characteristics

observed in the applications that belong to the same cluster. The clustering approach should

be able to meet these two challenges otherwise the validity of the resource allocation strategies

obtained by SLP tools will be in doubt.

There are no existing tools that address the above challenges simultaneously. Firstly,

commercial tools use a resource utilization based approach [15,17,22,23]. These tools control

resource utilization thresholds to “indirectly” achieve adequate application request response

times. For example, for a multi-tier application, an approach which is usually done in practice

is to limit the utilization of the bottleneck tier to a specific threshold , e.g., 30%-40%, so that

the application per-request response times do not grow significantly. The bottleneck tier is

the tier which has the highest impact on the application’s mean request response time. An

analysis of CPU utilization levels for more than 5,000 servers at Google over a six-month

period [30, 96] shows that that the servers operate most of the time at utilization levels of
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10% to 50%.

The advantage of such a utilization-based approach is that it does not need a performance

model to predict application performance. This is a good advantage especially for bursty

workloads because, as described previously, advanced performance models which predict

accurate performance metrics under workload burstiness take relatively longer execution

time than traditional performance modeling techniques such as MVA. However, as it will be

shown later in this thesis, utilization-based approaches may not be adequate for application

workloads characterized by burstiness.

Secondly, current SLP tools proposed in the literature [67,69,87] do not explicitly consider

application workload burstiness and techniques to leverage information on burstiness to

optimize resource allocations. Thirdly, the impact of workload uncertainty on the penalties

incurred due to SLO violations and the resource costs needed to eliminate these violations

have not been addressed by current SLP tools.

Finally, current SLP tools do not explicitly address the SLP scalability issue when large

number of applications are deployed on the cloud especially when these applications are char-

acterized by alternative workload scenarios to represent workload uncertainty as described

previously.

1.2 Research Objectives

The thesis aims to achieve a number of objectives in three main areas namely, Resource

Allocation Planning (RAP), workload uncertainty characterization and workload clustering.

These objectives will be described in detail in the following three sections.

1.2.1 Resource Allocation Planning

Given a set of applications characterized by historical workload traces and SLOs for these

applications, this thesis aims to solve the global SLO and resource allocation optimization
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problem described in Section 1.1. The solution involves exploring RAP techniques which

exploit given application workload characteristics such as burstiness to minimize a global SLO

objective defined for a set of applications under given cloud resource constraints. Specifically,

the explored RAP techniques should achieve a number of objectives as described in the

ensuing paragraphs.

Firstly, the investigated RAP techniques should be computationally efficient while pro-

viding near optimal resource allocation solutions. In particular, one of the objectives of the

investigated RAP techniques is to determine different heuristics to trade-off the SLP compu-

tation time for the optimality of the solution obtained for the resource allocation problem.

Furthermore, each heuristic should be analyzed to determine under which conditions and

scenarios this heuristic can be used to achieve a trade-off between SLP computation time

and resource allocation optimality.

Secondly, the explored RAP techniques should be compared with other existing tech-

niques for resource allocation which ignore workload burstiness during SLP. In particular,

this objective aims to answer questions regarding the effect of ignoring workload burstiness

in SLP on both resource allocation costs and the costs incurred due to SLO violations.

Thirdly, the explored RAP techniques should be compared with other state-of-the-art

techniques for resource allocation. For example, the explored RAP techniques need to be

compared with resource allocation techniques which typically predict application perfor-

mance based on resource utilization thresholds [87]. In particular, this objective aims to

understand how SLP using utilization-based approaches will impact the accuracy of resource

allocation under workload burstiness.

The fourth objective is to study the fexibility of the explored RAP techniques to handle

a variety of alternative application SLOs in the SLP process. In particular, this objective

aims to understand which approaches can be used to define application SLOs and what effect

each of these approaches imposes on resource allocation costs.
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Finally, as described previously, the explored RAP techniques rely on workload traces to

allocate a pool of resources to a set of applications. This will increase the computational time

of these techniques when large number of applications are deployed on the cloud. As result,

the computational time of the RAP techniques may need to be reduced. This objective aims

to explore techniques that can be used to reduce this computational time.

1.2.2 Workload Uncertainty Characterization

The second objective of the thesis is characterizing workload uncertainty during SLP. In

particular, this objective aims to develop a systematic approach to accommodate workload

uncertainty in SLP exercises. This approach needs to evaluate how workload uncertainty

will affect the penalties which a cloud SP might incur due to SLO violations. This approach

should also be able to determine how many resources are needed to reduce the impact of the

SLO violations that might occur due to workload uncertainty.

A key objective in this space is to explore techniques that can address the combinatorial

explosion triggered by the need to characterize the impact of workload uncertainty. As

mentioned previously in Section 1.1, every application in a cloud may need to be characterized

by multiple workload scenarios to assess the impact of uncertainty. When a cloud hosts a

large number of applications, this can lead to the need to analyze a prohibitively large

number of application workload scenario combinations during SLP. Techniques are needed

to achieve specifiable trade-off between the accuracy of predicting the impacts of workload

uncertainty and the need to bound SLP analysis time.

1.2.3 Workload Clustering

The final objective of the thesis is to address the scalability of SLP tools to large number

of applications as is typically in production clouds. Specifically, this objective aims to allow

SLP tools to scale well to a large number of applications. Clustering techniques [50] can be

used to identify a small set of application clusters where each cluster comprises applications
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with similar workload characteristics. SLP can then be done at the levels of these clusters.

If there is significant similarity between application workloads, then the number of clusters

will be much less than the number of applications. As a result, SLP exercises will consume

less time than if applications are not clustered.

Firstly, the research in this thesis focuses on identifying attributes and techniques that

are effective for clustering bursty workloads. Specifically, it will consider various workload

attributes for conducting the clustering and compare the effectiveness of these attributes

using different clustering approaches with multiple levels of clustering.

Secondly, the research will focus on novel trace aggregation algorithms. Since SLP exer-

cises require workload traces, techniques are needed to aggregate workload traces of applica-

tions that belong to a cluster into an equivalent trace for this entire cluster. The challenge

is to aggregate traces such that the burstiness characteristics present in the individual ap-

plication traces are preserved in the equivalent aggregate traces. If this challenge is not

addressed, then workload clustering will introduce significant errors in the SLP process.

1.3 Research Contributions

The thesis makes a number of contributions in the three main areas described in Section

1.2. Section 1.3.1 describes the proposed RAP method. Section 1.3.2 describes the pro-

posed workload uncertainty characterization technique. Section 1.3.3 describes the proposed

workload clustering technique. Section 1.3.4 describes a trace-based SLP framework which

integrates the above three techniques together. Finally, a case study is presented in Section

1.3.5 to demonstrate the end-to-end operation of the proposed SLP framework.

1.3.1 Resource Allocation Planning Method

The thesis proposes a novel RAP method to solve the global SLO and resource allocation

optimization problem which was described previously in Section 1.1. To facilitate planning,
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a cloud SP elicits applications’ workload characteristics in the form of a collection of traces

defined as a workload scenario. In particular, a session trace captures information about

user sessions related to the application over a period of time. A session is defined as a

group of inter-related requests that fulfill a certain task, e.g., a web transaction to purchase

a product from an online retail store. The session trace includes information such as arrival

instants of sessions, number and type of requests issued within a session, and the user think

time, i.e., idle time, between successive requests in a session. Furthermore, resource traces

capture the application’s use, i.e., utilization, of low-level resources such as CPU cores over

the same period.

Application traces can be obtained in several ways. For existing applications, a cloud

SP can use historical traces obtained from the application’s deployment in the cloud. Stud-

ies have shown that workload behaviour of many enterprise applications have predictable

patterns. Gmach et al. [56] collected 6 months of resource usage data of 139 workloads in

an enterprise data center. They observed that such application workloads typically follow

well-defined, periodic hour-of-the-day, day-of-the-week, and day-of-the-month patterns. This

provides a strong motivation for a trace-driven RAP method such as the one proposed in

this work.

Traces for new applications can be obtained in several ways. For example, customers

can provide traces from environments external to the cloud where the application was pre-

viously deployed. Alternatively, traces can be derived from application test environments or

synthetically generated based on customer estimates of mean or peak workload behaviour.

Figure 1.2 shows an overview of the RAP method. RAP takes as input a collection of

workload scenarios for a set of applications and SLOs for these applications. In this work an

application SLO is defined based on mean request response time target. However, this work

can also accommodate other types of SLOs. RAP also takes as input resource constraints

faced by a cloud SP. For example, the cloud SP may only have limited number of resources
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Figure 1.2: RAP overview

for allocation to the applications deployed on the cloud.

Given the aforementioned inputs, RAP searches for a time varying resource allocation

strategy that minimizes a global SLO violation metric defined for the input set of applica-

tions. To do this search, RAP relies on a performance model to predict SLO violations given

application workload traces and a resource allocation strategy. The global SLO violation

metric is a combination of the individual SLO violation metrics for all applications. The

SLO violation metric considered in this work is the SLO violation percentage. The SLO

violation percentage for an application is the percentage of deviation of the mean request

response time predicted by the performance model for this application from the target mean

request response time that defines the application’s SLO objective. The global SLO violation

metric considered in the thesis is the mean SLO violation percentage for the input set of

applications. However, the proposed RAP method can be easily adapted to accommodate

other global SLO violation metrics that need to be varied or parameterized by cloud SPs.

Customers specify SLOs for their applications over a planning horizon. The planning

horizon represents the time period over which a cloud SP is obliged to satisfy applications’

SLOs as per its SLA with the customer. The planning horizon can be in the order of minutes,

hours, or even days. The proposed RAP method allows cloud SPs to emulate elastic or time-
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varying resource allocation at fine-grained time intervals within the planning horizon. For a

given planning horizon, resources can be allocated for applications at the start of these fine-

grained time intervals and deallocated at the end of these intervals. Each of these intervals

is referred to as the resource allocation interval. For example, cloud SPs can study the effect

of dynamically changing resource allocations to applications at resource allocation intervals

of 30 minutes within a planning horizon of 24 hours.

Figure 1.3 illustrates the relationship between the planning horizon and the resource al-

location interval over time for two applications characterized by burstiness. In general, the

planning horizon can span one or more resource allocation intervals. This affects the way

an SLO is defined for a customer’s application over the planning horizon. Specifically, if

the planning horizon spans only one resource allocation interval, then a customer’s appli-

cation’s SLO requirement defined over this planning horizon should also be satisfied over

this resource allocation interval. Alternatively, if the planning horizon spans more than one

resource allocation interval, then there are two approaches to define a customer’s applica-

tion’s SLO requirement over this planning horizon. The first approach defines a customer’s

application’s SLO requirement as a single SLO requirement over the entire planning horizon.

The second approach defines a customer’s application’s SLO requirement as a set of multi-

ple SLO requirements where each SLO requirement should be satisfied over each resource

allocation interval within the planning horizon.

The main power of the RAP method comes from having a resource allocation interval

smaller than the planning horizon. This is a key difference from other techniques proposed in

the literature for SLP. The work in this thesis shows that using resource allocation intervals

at a finer time scale than the planning horizon can allow cloud SPs to realize resource savings,

especially when application workloads are bursty. For example, Figure 1.3 shows two bursty

applications with non overlapping peaks, i.e., have peaks in two different resource allocation

intervals. If the two applications compete for the same resource to satisfy their peaks, they
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Figure 1.3: Service level planning under workload burstiness

can both be allocated this resource over the planning horizon. This is not possible if the

planning horizon is of the same granularity as the resource allocation interval. In essence,

having resource allocation intervals at finer time scale than the planning horizon allows a

cloud SP to identify time periods with most burstiness where more resources can be allocated

while allocating fewer resources to time periods of lower burstiness. This in turn can reduce

resource costs.

The RAP method involves searching for an optimal resource allocation plan that mini-

mizes the global SLO violation metric for the input set of applications. A resource allocation

plan defines the number and type of resources allocated to a set of applications over a given

number of resource allocation intervals within a defined planning horizon. Figure 1.3 shows

an example of a resource allocation plan for the two bursty applications described previously.

As shown in the figure, the resource allocation plan is composed of resources, e.g., web or

database servers, allocated over a number of resource allocation intervals.
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As described previously in this section, the RAP method relies on a performance model

to predict applications’ SLO violations. The RAP method is intended to exploit application

workload patterns for SLP. Therefore, RAP requires a performance model that takes as

input a workload trace for a given application and a possible resource allocation plan and

predicts the SLO violation for this application. RAP exploits a trace-driven performance

prediction technique called Weighted Average Method (WAM) [64] that allows it to reflect

the impact of workload burstiness into SLP exercises. The WAM technique was shown to

be more accurate than other traditional performance modeling techniques [79, 88] when it

comes to predicting SLO violations under burstiness.

To do the search for an optimal resource allocation plan, the most straight forward way is

to enumerate all possible resource allocation plans for a given set of applications under given

cloud resource constraints. Then an evaluation of the global SLO violation metric defined

for the set of applications is made. In this way, an exact optimal resource allocation plan

that minimizes this global SLO violation metric can be obtained. However, in practice this

process is prohibitive. This is due to the large number of applications typically considered

for SLP, e.g., hundreds or thousands. Also, resources are allocated over a number of resource

allocation intervals and as this number increases, the number of possible resource allocation

plans increases significantly. Furthermore, an application can have multiple tiers with each

tier allocated a certain resource type, e.g., web or database server. Even for a single tier,

different flavours of resources can be allocated, e.g., single-core or multi-core web server. Due

to the above reasons the enumeration of all possible resource allocation plans is prohibitive

in practice .

To solve this problem, three different variants of the RAP method are developed namely,

RAP-Dynamic Programming (RAP-DP), RAP-Heuristic-AllApps (RAP-AllApps) and RAP-

Heuristic-OneApp (RAP-OneApp). The three techniques are described briefly in the ensuing

paragraphs. More details will be described in Chapter 3. Table 1.1 shows a summary of the
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Table 1.1: Summary of RAP variants

At Each Decision Stage RAP-DP RAP-AllApps RAP-OneApp

applications evaluated all all
application with the

highest SLO
violation metric

resource allocation
all

interval with interval with
intervals the highest mean the highest mean
evaluated request response time request response time
number of product of # of applications

# of applications 1performance model and # of resource
invocations allocation intervals

different aspects of the three RAP variants.

RAP-DP uses dynamic programming [49] to provide an optimal solution. As a dynamic

programming-based technique, RAP-DP divides the search for an optimal resource allocation

plan into decision stages. At each decision stage, a number of possible resource allocation

plans are explored given the cloud resources available for allocation to all applications at

this decision stage. Each decision stage considers the problem of allocating a single resource

to the bottleneck tier of exactly one of the applications considered for SLP over one of the

resource allocation intervals. This allocation is done to minimize the global SLO violation

metric. Thus, the cloud resources available for allocation over this resource allocation interval

decreases by one from this decision stage to the next decision stage. At the end of a given

decision stage, only one resource allocation plan, i.e., the optimal plan, is selected from the

explored resource allocation plans in this decision stage. This optimal resource allocation

plan achieves the minimum global SLO violation metric given the cloud resources available

for allocation in this decision stage. The optimal resource allocation plan selected in this

decision stage is then used as a basis for further exploration in the next decision stage. This

process is repeated over a number of decision stages until a final optimal resource allocation

plan is obtained to minimize the global SLO violation metric under the resource constraints

of the cloud. As shown in Table 1.1, the number of performance model invocations required

by RAP-DP at each decision stage is equal to the product of the number of applications and
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the number of resource allocation intervals.

Although RAP-DP reduces the number of explored resource allocation plans significantly

when compared to the exhaustive approach, it still has to explore a large number of possible

resource allocation plans in each decision stage. This involves exploring all possible resource

allocation plans for all applications over all resource allocation intervals. For each resource

allocation plan explored the performance model employed by RAP has to be invoked to

predict the global SLO violation metric for this resource allocation plan. As described previ-

ously in Section 1.1 the WAM [64] performance modeling technique employed by RAP which

predicts accurate performance metrics under workload burstiness takes relatively longer ex-

ecution time than traditional performance modeling techniques such as MVA [79]. As a

result, RAP-DP may not scale well for large number of applications typically deployed on

the cloud and over a large number of resource allocation intervals. To solve this problem,

two other variants of RAP are developed, i.e., RAP-AllApps and RAP-OneApp. These two

variants are heuristic search techniques that can give nearly optimal solutions but are more

computationally efficient than RAP-DP.

Unlike RAP-DP which runs WAM for all applications in all resource allocations intervals

in each decision stage, RAP-AllApps runs WAM for all applications only in the resource

allocation intervals with the highest mean request response time. This resource allocation

interval represents the most bursty and congested resource allocation interval for each ap-

plication and so the allocation of one more resource instance to the bottleneck tier of such

an interval is likely to result in the most reduction in the global SLO violation metric with

respect to other intervals. As shown in Table 1.1, at each decision stage, the number of

performance model invocations by RAP-Heuristic-AllApps is equal to the number of appli-

cations. In contrast to RAP-DP, RAP-AllApps has no dependence on the number of resource

allocation intervals.

The third RAP variant developed in the thesis is RAP-OneApp. RAP-OneApp makes the
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simplifying assumption that only targeting the application with the highest SLO violation

metric likely yields the least global SLO violation metric over all applications. Accordingly,

at each decision stage RAP-OneApp ranks all applications in a descending order in terms of

their individual SLO violation metrics and selects the topmost application. The allocation of

an incremental resource is explored only for this application rather than for all applications

as in RAP-DP and RAP-AllApps. Thus, RAP-OneApp invokes the performance model only

once at each decision stage as shown in Table 1.1.

The work in this thesis presents detailed simulation results to characterize the behaviour

of the explored RAP techniques. Firstly, the results confirmed previous findings in [64] that

the WAM performance modeling technique which is used in this work can more accurately

predict SLO violations under workload burstiness than other traditional performance model-

ing techniques such as MVA. Specifically, a comparison is made between WAM and MVA to

show the accuracy of WAM over MVA for SLP. WAM shows at most 10% of average predic-

tion error for the performance of applications characterized by different degrees of burstiness.

In contrast, for some applications characterized by highly bursty workload scenarios, MVA

gives prediction errors as high as 90%.

Secondly, a detailed analysis of the computational complexity of the proposed RAP

variants mentioned previously is conducted. The optimality of the three variants is also

studied. The results show that each proposed RAP variant can provide a trade-off between

SLP computational complexity and optimality of resource allocation under certain workload

scenarios as follows:

• The results show that RAP-DP can identify an optimal resource allocation

plan that minimizes SLO violations under given cloud resource constraints

without exhaustively generating all possible resource allocation plans.

• The results also show that RAP-AllApps which is a more computationally

efficient version of RAP-DP is able to identify optimal resource allocation
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plans if the bottleneck tier for all applications remains the same in all resource

allocation intervals. If this condition is violated, RAP-AllApps can still obtain

close to optimal solutions.

• The results show that under both bursty and non-bursty workload scenarios,

RAP-OneApp is able to identify near optimal resource allocation plans while

reducing SLP computational complexity significantly when compared to the

optimal RAP-DP approach and RAP-AllApps. Specifically, in an experiment

conducted for a set of applications characterized by different degrees of bursti-

ness in session arrivals, RAP-OneApp reduces the number of resource alloca-

tion plans explored at each decision stage by 94% and 75% relative to RAP-DP

and RAP-AllApps, respectively. Consequently, RAP-OneApp is better suited

for analyses involving a large number of applications without significantly af-

fecting the optimality of the solutions obtained.

Thirdly, the results show that RAP can permit cloud SPs to more accurately determine

the resources required for delivering specified SLOs compared to other competing techniques

especially for scenarios where applications are subjected to bursty workloads. In particular,

RAP is compared with another approach which considers a resource allocation interval that

is the same as the planning horizon. This approach is referred to as the whole approach. The

results show that for bursty workload scenarios, selecting a resource allocation interval that

is smaller in size than the planning horizon reduces the resource allocation costs required to

deliver a given application SLO. Furthermore, in resource constrained scenarios, the resource

allocation plan identified by the whole approach results in much higher SLO violations than

RAP for highly bursty workload scenarios. Specifically, using the resource allocation plan

suggested by the whole approach achieves a mean SLO violation percentage of 155% for a

set of applications characterized by highly bursty scenarios while RAP achieves a mean SLO

violation percentage of only 71% for the same set of applications.
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Fourthly, the results establish the superiority of RAP to the prevalent practice of con-

sidering SLO targets based on resource utilization thresholds over the planning horizon.

Specifically, unlike utilization-based approaches the results show that RAP can accurately

adapt resource allocation plans to observed burstiness characteristics of application work-

loads. An experiment is conducted for a set of applications characterized by different degree

of burstiness in session arrivals. In each run of this experiment the utilization of the bottle-

neck tier is limited to a specific target, e.g., 30%, 50% and 60% over the planning horizon.

The results show that the number of resources estimated for each utilization target by the

utilization-based approach remains the same regardless of the degree of burstiness in session

arrivals. On the contrary, the results show that, for each utilization target, the application

response time violations increase significantly for highly bursty scenarios. This indicates that

merely relying on utilization-based targets may not be an appropriate method for guaran-

teeing SLOs based on response times for applications characterized by burstiness.

Fifthly, the results show that the proposed RAP method is flexible in accommodating

different approaches for defining application SLOs. As described previously in this section,

if the planning horizon spans more than one resource allocation interval, then there are two

approaches to define an application’s SLO over the planning horizon. The first approach

defines an application’s SLO as a single SLO over the entire planning horizon. The second

approach defines an application’s SLO as a set of multiple SLOs where each SLO should

be satisfied over each resource allocation interval within the planning horizon. A compari-

son is conducted between these two approaches. The results show that under both bursty

and non bursty workload scenarios, cloud customers can obtain cost savings using the first

approach when compared with the second approach. The reason for this is that the first

approach only considers the most heavily loaded resource allocation intervals for additional

resource allocation. On the contrary, the second approach allocates additional resources to

all heavily loaded resource allocation intervals to eliminate all SLO violations which occur in
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all resource allocation intervals. These types of analyses can help cloud SPs negotiate with

their customers the costs related to different ways of defining application SLOs. Based on

this cost estimate cloud customers may revise the granularity of the time period over which

they negotiate their SLOs with the cloud SP.

Finally, an approach to improve the performance of RAP-DP and RAPAllApps by ex-

ploiting parallelism is shown. Specifically, multi-threaded versions of the two RAP variants

are implemented to reduce their computation times for large number of applications. A ma-

chine with 12 processor cores is used to compare the computation times of the single-threaded

and the multi-threaded versions of the two RAP variants. The results show a performance

improvement of the multi-threaded versions over the corresponding single-threaded versions

by a factor of 9.

1.3.2 Workload Uncertainty Module

The thesis proposes a workload uncertainty module to accommodate workload uncertainty in

the SLP process. The uncertainty module employs a Monte Carlo simulation technique [82]

which allows cloud SPs to consider a set of probable workload scenarios for each application.

For example, one workload scenario may represent a typical normal activity while another

workload scenario may represent periods of heightened workload activity. Each workload

scenario is assigned a probability that embodies a cloud SP’s and a customer’s estimate of

how likely that workload scenario is to occur.

Figure 1.4 shows an overview of the uncertainty module. The uncertainty module im-

plements a Monte Carlo simulation technique which accepts workload traces representing

all possible workload scenarios for each application that the cloud SP plans to deploy on

the cloud. Each application workload scenario has an associated probability of occurrence.

The proposed Monte Carlo simulation technique generates a set of combinations of work-

load scenarios. Each combination contains exactly one probable workload scenario for each

application under consideration. Each combination has an associated probability of occur-
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Figure 1.4: Overview of the uncertainty module

rence which is computed based on the probabilities of occurrence of the individual workload

scenarios forming this combination. These combinations of workload scenarios together with

applications’ SLOs and constraints on cloud resources are then input to the RAP module.

The potentially large number of applications involved in SLP, each with multiple workload

scenarios, can lead to an explosion in the number of alternative combinations of workload

scenarios that need to be considered during the SLP process. Specifically, if the number

of applications is denoted by A and the number of alternative workload scenarios for each

application a, is denoted by La, then the number of combinations of workload scenarios which

need to be analyzed will be (La)
A. For 100 applications and 2 alternative workload scenarios

per application the number of combinations of workload scenarios will be 2100. For large

numbers of applications and workload scenarios per application, this becomes practically
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prohibitive.

To address the issue of combinatorial explosion, a certainty threshold is proposed. The

certainty threshold is a value that stipulates a lower bound on the summation of the proba-

bilities of occurrence of the workload scenario combinations that need to be analyzed in SLP

exercises. Using this value a cloud SP can reduce the number of combinations of workload

scenarios that need to be analyzed in the SLP process. The certainty threshold takes a value

from 0 to 1 to determine if all or a subset of the workload scenario combinations will be

analyzed during SLP. If a subset is selected, the proposed Monte Carlo simulation technique

ensures that combinations which are more likely to occur are analyzed. Specifically, the com-

binations which have a cumulative probability of occurrence that is greater than or equal to

the certainty threshold are selected. For example, if the certainty threshold is 0.9, then the

subset of combinations selected for SLP analysis has a cumulative probability of occurrence

of at least 0.9. A certainty threshold value of 1 means all possible combinations are analyzed

in the SLP exercises.

The certainty threshold is used to trade-off the accuracy in predicting the impact of

uncertainty for SLP computation time to speed up the SLP analysis. For example, to accu-

rately predict the impact of workload uncertainty on the risks of SLO violations that might

occur, the certainty threshold should be set to 1 which means that all possible combinations

should be analyzed in the SLP process. However, if this is not feasible, the certainty thresh-

old can be set to a lower value, e.g., 0.95. This reduces the number of combinations that

need to be analyzed. However, there is now a 0.05 probability of mispredicting the impact

of uncertainty.

As described previously in Section 1.3.1 and illustrated in Figure 1.3, the RAP method

estimates a deterministic resource allocation plan for each combination of workload scenar-

ios that attempts to minimize the global SLO violation metric for the applications in this

combination given the resource constraints of the cloud. As mentioned previously in this
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section, each combination of workload scenarios has an associated probability of occurrence.

By considering the deterministic resource allocation plans for all combinations of workload

scenarios and the probabilities of occurrence for these combinations, a probabilistic resource

allocation plan is obtained. A probabilistic resource allocation plan defines for a given tier

a Probability Density Function (PDF) for the number of resources required by either one

or all applications over each resource allocation interval in the planning horizon so that the

applications’ SLO requirements are satisfied. Figure 1.5 shows an example of a PDF for the

number of web server instances required by a set of applications over one of the resource

allocation intervals within the planning horizon. The x-axis shows list of values for a param-

eter denoted by Cmax,n,t. Cmax,n,t is defined as the maximum number of resources available

to all applications at an application tier n in a given resource allocation interval t. In Figure

1.5, the subscript n is replaced with web to refer to the web tier. By experimenting with

various Cmax,n,t values, different PDFs, one for each application tier n, can be computed for

all applications over each of the resource allocation intervals in the planning horizon. These

PDFs are then used to construct the probabilistic resource allocation plan provided by the

uncertainty module in conjunction with RAP.

The probabilistic resource allocation plan helps a cloud SP track the probabilities of

application resource requirements exceeding available resource capacity over a given planning

horizon. These probability estimates can help a cloud SP assess the SLO violation risks

triggered by workload uncertainty. Figure 1.6 shows an example of an analysis obtained from

a probabilistic resource allocation plan provided by the uncertainty module in conjunction

with RAP. Figure 1.6 reports the probability of the number of resource instances for a specific

tier, e.g., web server instances, required by all applications to satisfy their SLO requirements

at each of the resource allocation intervals in the planning horizon. For example, Figure 1.6

shows that there is a 0.9 probability in resource allocation interval 6 that a cloud SP requires

more web server instances than the maximum capacity limit, i.e., Cmax,web,t, to satisfy the
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Figure 1.5: Example of a resource PDF generated for one of the resource allocation intervals

SLOs of all applications.

The results obtained in the thesis demonstrate that the proposed Monte Carlo simulation

technique enables cloud SPs to accurately estimate the impact of workload uncertainty in

their SLP exercises without exhaustively traversing all combinations of application workload

scenarios. Specifically, an experiment is conducted where five applications are considered

with each having two alternative workload scenarios. One of the alternative workload sce-

narios is used to represent the normal operation of the application while the other scenario

is characterized by a heavier load relative to the normal workload scenario. As described

previously in this section, this gives a total possible combinations of workload scenarios of 25

= 32. The probability of encountering the heavy load workload scenario for each application

is set to 0.1. The experiment considers values of 1.0 and 0.9 for the certainty threshold

described previously. By setting the certainty threshold to 1.0, all 32 possible combinations

of workload scenarios are covered. A certainty threshold value of 0.9 causes the uncertainty

module to generate an average of only 9 combinations which have a cumulative probability
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Figure 1.6: Analysis using probabilistic resource allocation plan

of occurrence of at least 0.9. This results in an average reduction of 72% in the number of

combinations that need to be analyzed for SLP. In spite of this dramatic reduction, consid-

ering only 8 combinations of workload scenarios for SLP generates results that are very close

to the results obtained by considering all possible 32 combinations of workload scenarios.

This behaviour occurs since not all the possible combinations have a very high likelihood of

occurrence.

1.3.3 Workload Clustering Technique

To enhance the scalability of SLP, a new burstiness-aware workload clustering technique is

developed. The objective of this technique is to group applications with similar workload

characteristics together into a small number of clusters and creates equivalent workload

scenarios for these clusters. These workload scenarios are referred to as clustered workload

scenarios. The proposed workload clustering technique performs two main steps namely,
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cluster generation and clustered workload scenarios generation. The cluster generation step

assesses the similarity in workload characteristics between workload scenarios that belong to

the same combination generated by the uncertainty module as described previously in Section

1.3.2. This step groups applications with similar workload characteristics into clusters.

The clustered workload scenarios generation step implements an algorithm which takes

the clusters generated in the cluster generation step as input and generates clustered work-

load scenarios to represent each cluster. The main objective of this algorithm is to generate

a clustered workload scenario for each cluster to accurately preserve the observed workload

burstiness of the applications which belong to this cluster. SLP is then conducted at the

granularity of these clusters to facilitate faster solutions. This allows cloud SPs to handle

large number of applications typically deployed on the cloud and large number of workload

scenarios per application.

The results obtained show that the proposed workload clustering technique is effective

in grouping applications with similar burstiness characteristics together. Specifically, the

results show the need to consider both coarse-grained, i.e., over entire planning horizon,

and fine-grained, i.e., over each resource allocation interval, workload characteristics for the

clustering approach to be effective under burstiness. Examples of coarse grained workload

characteristics considered in the thesis include mean session arrival rate over the planning

horizon and a parameter called the index of dispersion defined also over the planning horizon.

The index of dispersion is used by Casale et al. [41] to characterize burstiness in application

workloads. Examples of fine-grained workload characteristics considered in the thesis in-

clude the mean session arrival rate over each resource allocation interval within the planning

horizon.

Furthermore, the results show that the accuracy of resource allocation is increased by

increasing the levels of clustering and the number clustering attributes considered. Specifi-

cally, a hierarchical clustering approach that uses three levels of clustering and the clustering
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attributes mentioned in the above paragraph provides a maximum resource allocation error

of 10%. However, clustering at one level using only one of the attributes mentioned above

for clustering gives an error in the range of 25% to 40%.

The results also show the need to implement automatized workload scenario generation

algorithms to reconstruct a workload scenario for each cluster to obtain accurate resource

allocation plans. Specifically, the algorithm developed to generate the clustered workload

scenarios involves accumulating session arrivals at very small time periods, i.e., in the order

of minutes, within each resource allocation interval. Each of these time periods is referred

to as an arrival window. Within each arrival window a histogram of session arrival values

is computed to develop an empirical PDF which is then used to generate traces of session

arrivals for clusters. More details about this technique will be described in Chapter 6.

Finally, the results obtained show that the proposed workload clustering technique re-

duces the number of computations needed to support SLP exercises without significantly

impacting accuracy. In particular, the resource allocation plan obtained by the proposed

workload clustering technique for a case study of 100 applications is compared with the re-

source allocation plan obtained when no clustering is applied. The results show a maximum

resource allocation error of 10% while the reduction obtained in the number of applications

considered for SLP is in the range of 88% to 91%. This significant reduction in the number

of applications occur because of the high degree of similarity between the workload scenarios

of the applications considered in this experiment.

1.3.4 Trace-Based SLP Framework

In this section a trace-based SLP framework is proposed to integrate the above three mod-

ules together. Figure 1.7 shows the interactions between the various components in the SLP

framework. Firstly, as described in Section 1.3.2 due to the large number of applications

involved in SLP, each with multiple workload scenarios, an explosion can occur in the num-

ber of alternative workload scenario combinations that need to be considered during the
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Figure 1.7: SLP framework flowchart

SLP process. The uncertainty module selects a subset of the most likely workload scenario

combinations. This is done by leveraging the probabilities of occurrence associated with

individual workload scenarios of each application and specifying a value for the certainty

threshold parameter as described previously in Section 1.3.2.

Secondly, the clustering module further improves the scalability of the framework. For

every workload scenario combination evaluated, the module groups applications with similar

workload scenarios together into a small number of clusters and creates equivalent clus-

tered workload scenarios for these clusters. Resource allocations are then explored at the

granularity of clusters.
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Finally, for each of the clustered workload scenario combinations generated by the clus-

tering module, the RAP module comes up with a deterministic resource allocation plan over

a given planning horizon with a specified resource allocation granularity. The RAP module

relies on the WAM performance prediction technique which is capable of handling workload

scenarios based on traces. The performance modeling module is employed by RAP to pre-

dict the performance of the set of applications considered, and hence SLO violations, given a

candidate assignment of resources to applications and the applications’ traces. This process

is repeated for all workload scenario combinations identified by the uncertainty module and

clustered using the clustering module. Results are then aggregated taking into account the

workload uncertainty information to offer probabilistic estimates of resource requirements

and SLO violations.

The information provided by the SLP framework can help a cloud SP understand the

physical resources needed to host a given set of applications. Information on the estimated

fluctuations in resource usage of applications can also be leveraged by a cloud SP to plan

efficient deployments of these applications on the cloud. Furthermore, the framework permits

a cloud SP to estimate the cost of hosting each application on the cloud to satisfy its

SLO requirements. The framework also provides SLO violation estimates for customers’

applications which allow cloud SPs to quantify the penalties incurred due to SLO violations.

Moreover, the framework can be used by a cloud SP to experiment with various resource

pool capacities to come up with a plan that strikes a balance between resource costs and

SLO violation costs.

A cloud SP can deploy applications on the cloud based on the estimates provided by the

SLP framework and monitor SLO violations over time. If any deviations occur in customers’

workloads after deployment leading to SLO violations, revised estimates of customers’ work-

load scenarios in addition to any changes in resource instance limits, i.e., Cmax,n,t, can be

input to the framework again to consider changes in resource allocations. This can also
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be used to negotiate new SLAs with customers to specify new SLOs for observed customer

workloads. Furthermore, the SLO violations predicted by the framework need to be com-

pared continually with those observed under deployment. If discrepancies are related to the

performance model, then the model needs to be calibrated to offer better SLO predictions.

This iterating process of estimating and deploying resources can be invoked on a regular

basis, for example weekly, bi-weekly or monthly, to account for any deviations in customer

workloads.

1.3.5 End-To-End Case Study

This section illustrates the end-to-end operation of the proposed SLP framework with a case

study. For details on the simulation setup the reader can refer to Section 4.2. In this case

study, 100 applications are considered. While 95 applications have only one workload sce-

nario, the other 5 applications have uncertainty in their workloads. Specifically, they include

an additional heavy workload scenario with a probability of occurrence of 0.1. To fully cover

all possible workload scenario combinations where each combination contains 100 workload

scenarios pertaining to 100 applications, 25=32 workload scenario combinations have to be

analyzed. As described previously in Section 1.3.2 the uncertainty module requires a cloud

SP to specify a value for the certainty threshold that represents a trade-off between coverage

of all possible workload scenario combinations that can arise due to workload uncertainties

and SLP computation time. In this experiment a certainty threshold value of 0.9 is used.

This generates a subset of the 32 possible workload scenario combinations with a cumulative

probability of occurrence of at least 0.9.

Table 1.2 shows a detailed list of workload combinations identified in the end-to-end

case study. As shown in the table, the uncertainty module identified 8 combinations of

workload scenarios involving these 100 applications that spanned a cumulative probability

of occurrence of 0.96. This reduces the SLP computation time by about 75% with respect

to the exhaustive evaluation of all possible combinations. Each of these combinations is
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Table 1.2: Workload scenario combinations identified in the end-to-end case study

Combinations identified Probability of occurrence Number of clusters
Combination 1 0.59 12
Combination 2 0.07 9
Combination 3 0.07 12
Combination 4 0.01 9
Combination 5 0.07 11
Combination 6 0.07 9
Combination 7 0.01 10
Combination 8 0.07 9

Total 0.96

considered in order by the SLP framework. For each combination, workloads with similar

workload characteristics are then clustered together using the clustering module. Table 1.2

provides information on the number of clusters identified for each of these combinations. For

example, the number of workload scenarios which are considered for SLP in combination

number 2 is reduced from 100 to 9 due to clustering. This reduces the SLP computation

time by more than 90%. This reduction does not affect the accuracy of resource allocation

significantly as will be shown later in Section 6.4. Synthetic workload scenarios are generated

for clusters identified for each combination and these workload scenarios are then input to

the RAP module.

The RAP module was configured to estimate the number of resources at two application

tiers, i.e., web and database, over all resource allocation intervals needed to satisfy applica-

tion SLOs. These results are obtained for all 8 combinations and used in conjunction with

the probability of occurrence of each combination as shown in Table 1.2 to obtain a prob-

abilistic resource allocation plan as described previously in Section 1.3.2. Figure 1.8 shows

the probability of the cloud requiring more than certain number of web server instances,

Cmax,web,t, to satisfy all applications’ SLOs over a planning horizon of 8 hours with 1-hour

resource allocation intervals. This figure explores the effect of imposing different web server

instance constraints, Cmax,web,t, on the risk of satisfying the SLOs of all applications. For

example, in resource allocation interval 3 there is over 0.9 likelihood that the number of web
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Figure 1.8: Sensitivity analysis of the end-to-end case study of the SLP framework

server instances required to avoid SLO violations is more than 240. This probability is re-

duced to 0.2 and reaches zero by relaxing the limits on the number of web server instances to

260 and 270, respectively. In summary, the figure suggests that provisioning 270 web server

instances in each resource allocation interval would allow a cloud SP, with a probability of

0.96, to avoid all risks of SLO violations for this scenario.
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1.5 Thesis Organization

The thesis is organized as follows. Chapter 2 discusses background information and previous

work in areas related to the work in this thesis. Chapter 3 provides a detailed description

of the proposed RAP method. The simulation setup implemented to evaluate the RAP

method and the results obtained are presented in Chapter 4. Chapter 5 provides a detailed

description of the characterization and incorporation of workload uncertainty in SLP and

presents associated evaluation results. Chapter 6 describes in detail the proposed burstiness-

aware clustering technique and presents associated evaluation results. Chapter 7 provides

a detailed description of the SLP framework and presents statistics on the computational

complexity of the framework. Chapter 8 summarizes the thesis conclusions, discusses the

limitations of the SLP framework and outlines future research directions. Finally, a set

of Appendixes are listed. Specifically, Appendix A lists all notations used throughout the

thesis while Appendix B describes the dynamic programming formulation of RAP-DP and

Appendix C provides a proof of the optimality of RAP-DP.
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Chapter 2

Background And Related Work

This chapter describes background information and previous work in areas related to the

work developed in this thesis. Section 2.1 introduces background information on cloud com-

puting. Section 2.2 discusses the prevalence of workload burstiness in enterprise applications

and the metrics used to characterize burstiness in application workloads. Section 2.3 de-

scribes two different performance modeling approaches used for resource allocation in this

work namely, the traditional MVA-based approach and the trace-based WAM approach. Sec-

tion 2.4 discusses related work in cloud resource management including long term and short

term resource management approaches. Section 2.5 describes the k -means clustering tech-

nique which is used in the thesis. Finally, Section 2.6 provides an overview of the dynamic

programming optimization approach which is employed in this work.

2.1 Cloud Computing

This section describes background information on cloud computing. Firstly, an introduction

to cloud computing and a description of its benefits to enterprises are presented. Secondly,

a description of a typical cloud architecture is provided. Thirdly, two cloud categories are

described namely, public and private clouds. Finally, a description of Amazon Web Services

[8] is provided including computing [3], storage [7] and database [6] services. Furthermore,

the Auto Scaling feature [9] of Amazon EC2, which is related to the work developed in the

thesis, is discussed.

Many enterprises today are using the cloud computing model to host their IT services. As

described previously in Section 1.1, a cloud is a pool of interconnected resources implemented

and managed by SPs to support the hosting of different IT systems or services [37,95]. The
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cloud computing model provides a “pay-per-use-only” paradigm for delivering IT services

to customers in the same manner as traditional utilities such as water, gas, electricity and

telephony [37]. Using this model enterprises have to pay for using resources only when

required without the need to purchase dedicated resources to host their applications or

provide their services.

A typical cloud computing architecture includes the following components [37]: Physical

resources, VMs, SLA resource manager, and user interface to manage the cloud. Todays

cloud SPs implement different variations of this architecture to support a number of features

such as virtualization, heterogeneity of resources, automatic scaling and adaptation, resource

management and optimization, fault tolerance, QoS management and ”pay-per-use” payment

model [95].

Clouds can belong to two main categories namely, public and private clouds. The public

cloud provides services to the general public and can be shared among different organiza-

tions. The private cloud is operated and managed internally by a single organization for the

dedicated use of this organization [29]. Large organizations may prefer to set up their own

private clouds as this might be more cost effective than being charged per unit time, e.g.,

per hour, by public cloud SPs [90]. Furthermore, private clouds are usually preferred over

public clouds when organizations are more concerned about the security of their businesses.

Public clouds are still facing unresolved security challenges which limit their use by some

organizations and enterprises [29].

In order for organizations to set up their own private clouds, they need cloud software

framework [90]. Several open source cloud platforms exist which can be used to build such

private clouds. Examples of these platforms are Eucalyptus [10], OpenNebula [19] and

Nimbus [18]. The three cloud platforms provide the IaaS type of service described previously

in Section 1.1. They differ in a number of features such as the degree of security supported,

the number of machines and users that can be supported in the cloud and other network
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Table 2.1: Summary of Amazon EC2 resource instance types

Instance type Performance
General-purpose Provides a balance of compute, memory, and network resources

Compute-optimized Optimized for compute-intensive applications
Memory-optimized Optimized for memory-intensive applications

Storage-optimized
Optimized for applications with specific disk I/O

and storage capacity requirements

Micro Instances
Very low-cost instances used to increase

the compute capacity in short bursts
GPU Instances Supports parallel processing using the Graphics Processing Unit(GPU)

configuration issues [90].

Amazon provides a set of cloud services called Amazon Web Services (AWS) [8] which

include computing, storage and database services. The computing service is referred to as

Amazon Elastic Compute Cloud (Amazon EC2). Amazon EC2 provides customers with VMs

that operate with various operating systems using resource instances of different computing

capacities. Amazon EC2 supports different types or flavours of resource instances to satisfy

various performance requirements of customers’ applications. The prices for Amazon EC2

resource instances are offered on an hourly basis. Table 2.1 shows a summary of selected

types of resources instances supported by Amazon EC2. AWS provide a storage service called

Amazon Simple Storage Service (AmazonS3). Amazon S3 allows customers to store, manage

and secure their data on the web. The prices for Amazon S3 are offered on a monthly basis

for certain amount of data stored, e.g., the number of terabytes stored per month. Finally,

the database service supported by AWS is referred to as Amazon Relational Database Service

(AmazonRDS). Amazon RDS is a specific web service that provides customers with specific

database resource instances to create, manage, and scale a relational database in the cloud.

Examples of database engines that can be created include MySQL, Oracle and Microsoft SQL

Server. Like Amazon EC2, Amazon RDS offers per-hour prices for the database resource

instances supported.

Amazon EC2 offers a dynamic resource management feature called Auto Scaling [9]. Auto
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Scaling allows customers to dynamically increase or decrease their Amazon EC2 resource in-

stances to match peaks and troughs in workload demand. Therefore, this feature allows

customers to minimize resources costs by utilizing resources efficiently while satisfying the

demand and performance required by their applications. To use the Auto Scaling feature

of Amazon EC2, customers should create Auto Scaling Groups for their resource instances.

An Auto Scaling Group is a collection of Amazon EC2 instances to which certain scaling

conditions are applied. The scaling conditions are thresholds defined to pre-selected applica-

tions’ performance metrics to automatically trigger the addition or removal of Amazon EC2

resource instances while the applications are running. An example of a scaling condition is

to add new Amazon EC2 small instances in increments of two to the Auto Scaling Group

when the average CPU utilization of the group goes above 70% for more than 5 minutes and

remove Amazon EC2 instances in the same increments when the average CPU utilization

falls below 10% for the same time period. Applications’ performance metrics are regularly

monitored using a tool called Amazon CloudWatch [1].

In spite of its perceived advantages, auto scaling in cloud environments is not a straight-

forward task and involves a number of complications [74, 75, 89]. Firstly, auto scaling is

typically performed based on low level applications’ performance metrics such as CPU uti-

lization [75]. As mentioned previously in Section 1.1 and will be shown later in this thesis,

CPU utilization might not accurately reflect high level application performance such as user

perceived response time especially with application workloads characterized by burstiness.

Consequently, more appropriate performance metrics should be used for auto scaling to be

effective in satisfying an application’s performance.

Secondly, auto scaling involves acquisition and removal of resource instances while ap-

plications are running. These acquisition and removal times are not negligible and may

affect the performance of the applications deployed on the cloud [74, 75]. For example, a

recent study shows that an average of 10 minutes is required to start a resource instance
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on Windows Azure [61]. Furthermore, as mentioned previously in this section, resource in-

stances are typically charged per hour where a fraction of an hour is still charged as a whole

hour. This means that an acquisition or removal of resource instances should be avoided in

the middle of an hour otherwise unnecessary resource costs are incurred. For example, if

a resource instance is started at the start of an hour and is then shut down and restarted

in the same hour, the customer will be charged for two instance hours rather than one. A

third complication is how long the resource instance should be allocated which depends on

the patterns of applications’ workloads. Accurate prediction mechanisms of workload pat-

terns are required by auto scaling tools to decide on the time required to allocate resource

instances in the cloud [89].

Thirdly, the relation between the processing power of a resource instance and its prices is

not linear [75]. For example, the general-purpose instance type shown in Table 2.1 includes

a resource instance called m1.small while the compute-optimized instance type includes a

resource instance called c1.medium. The price of c1.medium is twice as much as the price

of m1.small while the processing power of c1.medium is five times that of m1.small. Thus,

for applications which need a large processing power allocating one c1.medium instance type

is cheaper than allocating three m1.small instance types. Consequently, an auto scaling

decision of selecting the appropriate number and type of resource instances required to

improve performance and save resource costs is not a straightforward task.

Finally, as described previously in Section 1.1, short-term tools used for auto scaling

have to make scaling decisions at real time while applications are running. It may not be

feasible for these tools to do global optimization over short time scales for large number of

applications typically deployed on the cloud.

To alleviate some of the auto scaling problems described above, the SLP framework

described previously in Section 1.3.4 can provide customers with pre-deployment baseline

resource allocation strategies that define the number and types of resource instances required
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over time based on their historical workload patterns. These resource allocation strategies

can help customers to reduce the auto scaling decisions made to satisfy the performance of

their applications while they are running, therefore reducing the complexity associated with

these decisions.

2.2 Workload Burstiness

This section introduces background information on workload burstiness in enterprise applica-

tions and describes the parameters used to characterize burstiness in application workloads.

Recall from Section 1.1 that workload burstiness is defined as serial correlations or depen-

dencies between successive events which occur in application workload patterns. Examples

of these events are arrivals and completions of requests at various system resources. The

number of requests arriving to system resources is the reciprocal of the mean inter-arrival

time of requests. The inter-arrival time of a request is the difference between the arrival

instant of the request and the arrival instant of the previous request. The number of re-

quests completed at a system resource is the reciprocal of the mean service time of requests

completed at this system resource. The service time of a request at a given system resource

is defined as the time that elapses from the time instant the request starts receiving service

from the resource until the time instant the service is completed.

Correlations can occur between successive requests arriving to system resources if there

are correlations between the values of inter-arrival times of these requests. For example,

in a correlated workload a high inter-arrival time of a request might imply that the next

request is also likely to have a high inter-arrival time. Similarly, correlations can occur

between successive request completions at system resources if there are correlations between

the values of service times of these requests. Correlations between inter-arrival times or

service times of successive requests can be positive or negative. Correlation between two

successive requests is said to be positive if the values of their inter-arrival times or service
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times change in the same direction, i.e., increase together or decrease together. On the

contrary, correlation between two successive requests is said to be negative if the values of

their inter-arrival times or service times change in opposite directions.

Workload burstiness may significantly affect the performance of applications deployed in

the cloud. This is because an application can experience sustained periods of heavy load

followed by sustained periods of relatively low load or even system idle periods. When an

application experiences sustained periods of heavy load, this may increase resource contention

which can degrade application’s performance significantly. Furthermore, workload burstiness

may result in underutilized of resources when sustained periods of low load or system idle

periods are encountered. Consequently, customers may incur unnecessary resources costs for

these low load periods.

Several studies characterized the behaviour of enterprise application workloads [28, 36,

57, 77, 94]. Many of these studies indicated the prevalence of workload burstiness in real

workloads. Menasc et al. [77] characterized two weeks of activity at two real e-business sites.

The authors reported very strong burstiness in the arrival of requests to these sites. Another

study made by Vallamsetty et al. [94] confirmed the above findings by characterizing traffic

arriving at two other real e-commerce sites. Gmach et al. [57] characterized five weeks of

workload traces for 139 enterprise applications hosted on a commercial data center. The au-

thors reported strong bursty nature of CPU demands for most of the enterprise applications

characterized in this study. Bodik et al. [36] analyzed real workload traces from five public

Internet sites. These traces included web server logs from World Cup 1998 website [28], UC

Berkeley Electrical Engineering and Computer Sciences Department website, Wikipedia.org

and Twitter.com. The study showed that these sites experienced periods of arrival bursti-

ness of user requests. Consequently, these studies suggest that workload burstiness should

be taken into consideration during capacity planning and resource provisioning [39,43].

Recall from Section 1.3.1 that an application workload scenario is defined as a collection
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of traces. These traces include a session trace which captures information about user sessions

related to the application over a period of time and resource traces which capture the ap-

plication’s utilization of low-level resources over the same period. Both session and resource

traces can have a bursty nature. The work in this thesis focuses on characterizing burstiness

in session traces. Recall from Section 1.3.1 that a session is a group of inter-related requests

to perform a certain task. The inter-arrival time of a session is equal to the inter-arrival

of the first request in the session. Session traces experience burstiness when there are cor-

relations between the inter-arrival times of successive sessions arriving to system resources.

To characterize burstiness in session traces, the work in the thesis exploits previous work

proposed in [41–43,60]. Gusella [60] characterized burstiness in the inter-arrival times of net-

work packets while Casale et al. [41–43] characterized burstiness in requests service times.

This work focuses on characterizing burstiness in session inter-arrival times.

According to the work proposed by Gusella, the burstiness in the arrivals of sessions

cannot be accurately captured by simple metrics such as coefficient of variation of session

inter-arrival times. The Coefficient of Variation (CV) of session inter-arrival times is defined

as:

CV =
σ

µ
(2.1)

where σ and µ are the standard deviation and mean of session inter-arrival times, respec-

tively. The CV of session inter-arrival times is a statistical measure of the relative variability

of session inter-arrival times to the mean. To characterize burstiness in session arrivals,

more advanced metrics are defined in the work proposed by Gusella [60]. In this work two

dimensionless metrics are defined namely, the Index of Dispersion for Intervals (IDI) and the

Index of Dispersion for Counts (IDC). These metrics are used to to characterize burstiness

in network packets. The IDI is used to characterize burstiness for packet inter-arrival times

while the IDC is used to characterize burstiness for the number of packet arrivals in a given

time interval. They can be used interchangeably [46,60] to characterize burtsiness in session
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inter-arrival times and number of session arrivals, respectively. These two metrics will be

described in more detail the ensuing paragraphs.

In addition to the CV of session inter-arrival times, the IDI metric considers the auto-

correlation between session inter-arrival times. Autocorrelation is defined as the degree of

similarity between a given time series and a lagged version of that time series over successive

time intervals. The lag-k autocorrelation, denoted by ρk, is the correlation between a given

time series and itself shifted by k time steps. Given the Squared Coefficient of Variation

(SCV) of session inter-arrival times which is the squared value of CV and a set of ρk where

k ≥ 1, the IDI, denoted by I, is defined as:

I = SCV (1 + 2
∞∑
k=1

ρk) (2.2)

As shown in Equation (2.2), I depends on SCV and the degree of autocorrelation between

session inter-arrival times given by the infinite summation of ρk values. Session inter-arrival

times that are exponentially distributed, i.e., have a Poisson arrival process, have an I value

of 1 [41, 60]. This implies that the I value represents the deviation of any observed set of

session inter-arrival times from a Poisson process. High value of SCV characterizes high

variability in session inter-arrival times but not necessarily a bursty pattern of session inter-

arrival times. The degree of autocorrelation between session inter-arrival times determines

the degree of burstiness encountered in the workload trace under consideration. Workloads

with bursty session arrivals will have very large values for I in the order of hundreds or

thousands to indicate a clear deviation from the Poisson process. Caniff et al. presented

evidence of burstiness in real-life workloads [39]. In particular, the authors showed that the

classic FIFA World Cup trace of web request arrivals has an I value of 8400.

Measuring the value of I based on Equation (2.2) is not practically feasible due to the

infinite summation of the ρk values. To address this issue Gusella [60] defined the IDC

metric. As mentioned previously in this section, IDC characterizes burstiness for number

of session arrivals in a given time interval. Given the number of sessions that arrived at a
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system in a time window t1, denoted by Arrt, the IDC provides an alternative definition for

I 2 as follows:

I = lim
t→+∞

V ar(Arrt)

E(Arrt)
(2.3)

where Var(Arrt) and E(Arrt) are the variance and mean values of Arrt, respectively, over

a time window t.

Using Equation (2.3) the value of I can be estimated practically. Casale et al. proposed an

algorithm [41] to estimate an approximate value of I for request completions using Equation

(2.3). In this thesis the same algorithm is implemented with minor modifications to estimate

the value of I for session arrivals. Figure 2.1 shows a pseudo-code for this algorithm.

The main idea of the algorithm is that an approximate value of I can be computed if

the number of session arrivals at a system is observed over a large time window t, e.g., 2

hours. This time window is divided into smaller O equally sized time periods each of which is

refereed to as the sampling resolution, e.g., 60 seconds. Each sampling resolution is denoted

by o. In each o ∈ {1,2...O}, the number of session arrivals, denoted by Arrot , is computed.

This gives a sequence of Arrot values over t. The variance, Var(Arrt), and mean, E(Arrt), of

this sequence of values are then evaluated to compute the value of I as defined in Equation

(2.3). This process is repeated for larger values of t, e.g., 4, 6, 8 hours, etc... until the value

of I achieves a given convergence criteria.

The algorithm shown in Figure 2.1 takes the following inputs:

• SamplingResolution which is the size of each o sampling resolution over which

the value Arrot is collected.

• TimeIncrement which is the initial size of t and is used to increase the size of

t in each iteration.

1Note that this time window is not the same as the resource allocation interval defined in Section 1.3.1
2In the thesis I refers interchangeably to both IDI and IDC
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Input:  

        SamplingResolution (e.g. 60 secs)  

        TimeIncrement (e.g. 2 hours) 

        Z (e.g. 100)  

       Tol (e.g. 0.2)   

Output: I 

t = TimeIncrement 

Y(0) = 1 

J = 1 

While (ConvergenceMetric > Tol) 

      O = t / SamplingResolution 

      Compute a sequence of  ����
� values over t 

 

      # if the number of session arrivals per SamplingResolution is not enough 

       # restart the algorithm after adjusting the SamplingResolution 

       If  any of  the computed  ����
� values < Z  

            SamplingResolution = SamplingResolution * J 

            t = TimeIncrement  

           Y(0) = 1 

            J = J + 1 

           Break 

       End If 

 

      # Given the sequence of  ����
� values compute Y(t) 

      Y(t) = Var(Arrt) / E(Arrt) 

      ConvergenceMetric = | 1 –  Y(t) / Y(t  –  TimeIncrement) | 

      t = t + TimeIncrement 

 End While     
 I = Y(t) 

 Return  I 

 

Figure 2.1: Estimation of index of dispersion
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• Z which is the lowest number of arrivals that can be observed in each o sam-

pling resolution.

• Tol which is the convergence tolerance of the algorithm. This value is used to

halt the algorithm when the value of I converges.

The values assumed for the algorithm inputs are based on the assumptions made by Casale

et al. in [41].

The algorithm shown in Figure 2.1 is iterative. In each iteration, O time periods are

formed by dividing t into O equally sized sampling resolutions. The number of session

arrivals, Arrot , is counted over each o time period. Given this sequence of Arrot over t, the

ratio Y(t) is computed. A convergence criteria, ConvergenceMetric, is used to compare the

value of Y(t) with a previous value Y(t - TimeIncrement). If the value of Y(t) converges, the

algorithm returns this value as I, otherwise t is incremented and another iteration is started.

If the sequence of Arrot values collected in any iteration is less than Z, the algorithm should

be restarted after setting the SamplingResolution value to a higher value.

2.3 Performance Modeling

As described in Section 1.1, SLP tools usually rely on performance models to predict perfor-

mance of applications given a resource allocation strategy. This section describes the perfor-

mance modeling approaches employed in the thesis. Specifically, two performance modeling

approaches are described namely, traditional MVA-based modeling and trace-based WAM

modeling approaches.

2.3.1 Traditional MVA-Based Modeling Approach

A QNM [65, 79] is a network of inter-connected queues where each queue represents one of

the resources of a computer system. Each queue is referred to as a service center which

serves the customers arriving to the system. A service center can be a delay or a queuing
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center. If a request is submitted to a delay service center, it is served immediately with no

waiting time in a queue, whereas if a request is submitted to a queuing service center, it can

spend more time waiting in a queue before being served. This waiting time depends on the

number of requests ahead in the queue. Each service center has a scheduling discipline which

is the method that determines how customers gain access to the service center. Examples of

scheduling disciplines include First Come First Serve (FCFS) and Processor Sharing (PS).

A customer of a QNM can be a request or a session. Recall from Section 1.3.1 that

a session is a collection of inter-related requests that fulfill a certain task. Customers ar-

riving to a computer system can impose different demands on system resources. However,

it is cumbersome to model the usage profile of system resources for every single customer.

Therefore, customers with similar usage profiles are grouped together into classes where each

class represents the average usage of system resources among the customers in the class. For

example web browsing customers can be modeled by a class which is different from customers

who make a payment order. A QNM can serve a single or multiple classes of customers.

A customer class can be open, closed or hybrid. An open customer class has no bounds

on the number of customers being served by the QNM. A closed customer class specifies

a limited number of customers that are allowed to use the QNM service centers. A hybrid

customer class, as the name implies, is a combination of both open and closed customer

classes where no bounds are specified on the number of customers arriving to the QNM

but each customer specifies a complex workload with a limited number of subcustomers,

e.g. requests. An example of a hybrid customer class is the session-based workload which is

composed of unlimited number of user sessions arriving at a system with each user session

formed of a limited number of user requests. Each customer class has two types of data

namely, workload intensity and service demands [79]. The workload intensity of a class is

the parameters that define the load imposed by its customers on the QNM service centers.

The workload intensity of an open class is specified in terms of the number of customers
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arriving to the system per unit time while the workload intensity of a closed class is specified

in terms of the customer population of the class. The customer population of a closed class

is the number of customers that are concurrently being served by the QNM service centers.

The service demands of a class are the parameters that define the average aggregate service

times required by the customers of the class at various service centers. A QNM can be open,

closed or mixed depending on the type of its customer classes. A QNM is said to be open if

all its customers classes are open, closed if all its customer classes are closed, and mixed if

some of its customer classes are open and some are closed.

Figure 2.2 shows an example of a QNM of a computer system which has two application

tiers namely, web and database tiers. The web tier is modeled by X queuing service centers

that operate in parallel where each service center is used to model a server having a single

processor core. The database tier is modeled by a single queuing service center that is used to

a model a server having Y processor cores. The QNM shown in Figure 2.2 is subjected to an

input trace of customer sessions each of which is formed of limited number of requests. Thus,

the customer class considered in this QNM is hybrid. Each session starts by submitting a

request to the QNM. After the first request in the session is served, another request is

submitted to the web tier after spending a portion of time in a delay service center which

is used to model the think times between successive requests in the same session. A session

leaves the QNM when all its requests complete their service.

The QNM of a computer system can be solved analytically using a technique such as

MVA [79]. As described previously in Section 1.1, such analytical performance modeling

approaches are usually employed in SLP for multi-tier applications since they allow a large

number of resource allocation plans to be analyzed quickly. Specifically, analytical perfor-

mance models are simpler and faster than simulation models when a large number of resource

allocation plans are explored at different application tiers. This section describes briefly the

traditional MVA analytic performance modeling technique [79] which solves product-form
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Figure 2.2: Example of a QNM

QNMs [32] that posses a set of assumptions. Product-form assumptions are a set of assump-

tions that permit efficient analytic solutions of QNMs [65]. MVA is one of the modeling

techniques employed by the proposed RAP method described briefly in Section 1.3.1. The

thesis refers to this technique as MVA-QNM.

MVA-QNM uses a product form QNM to capture an application’s use of cloud resources

and employs the MVA technique [79] to obtain application performance estimates for a given

resource allocation plan. The QNM employed is characterized by the following inputs for a

given application:

• number of resources assigned to each application tier, e.g. web and database

tiers.

• average request service demands for various application tiers.
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• average number of concurrent sessions observed in the queuing network.

• average session think time which is the idle time between successive requests

in a session.

MVA-QNM uses the above inputs to derive the average request response time at each appli-

cation tier when there are S concurrent sessions in the network. The request response time

at a given tier is the time between the time instant at which the request enters the queue of

tier and the time instant at which the request completes its service in the tier. These request

response times are then used to compute the overall response time of the system modeled.

Product-form QNMs solved using the traditional MVA technique has been used exten-

sively in SLP. Urgaonkar et al. validated such a model for the Rice University Bidding

System (RUBIS) multi-tier benchmark application [92]. However, product-form QNMs have

several well known limitations [32]. For example, they cannot cannot handle correlations

between the inter-arrival times and service times of user requests and sessions. Therefore,

MVA-QNM cannot yield accurate performance estimates for systems whose workloads ex-

hibit burstiness in either request arrivals or resource consumption patterns [42,43,81]. Fur-

thermore, MVA-QNM abstracts session and resource traces using average quantities such

as the average number of concurrent sessions and average request service time at each tier.

This may introduce further errors in predictions.

Casale et al. proposed a new technique called MAP-QNM to solve closed QNMs which are

characterized by burstiness in request service demands [41–43]. The authors show a method

that provides upper and lower bounds on several application performance metrics such as

request throughput and response time when request service demands are bursty. While

MAP-QNM can produce more accurate estimates under service time burstiness than tradi-

tional MVA, they are computationally intensive. Furthermore, they currently lack support

for several features that are useful for modeling enterprise applications such as modeling

contention for software resources, e.g., web server threads, modeling multiprocessors, and
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modeling the PS scheduling discipline that is typically used to represent operating system

schedulers. This thesis employs a technique developed by Krishnamurthy et al. [64] called

WAM that can handle burstiness in session arrivals. WAM is described in more detail in

Section 2.3.2.

2.3.2 Trace-based WAM Modeling Approach

This section describes the trace-based WAM performance modeling technique [64] employed

by the proposed RAP method as described briefly in Section 1.3.1. WAM considers session

traces pertaining to applications which is a key difference from MVA-QNM that considers

mean quantities pertaining to session traces of applications as described previously in Section

2.3.1. WAM is a hybrid technique that combines a performance modeling technique such

as MVA-QNM for a given system under study with a fast trace-based simulation. Specif-

ically, WAM peruses the session trace that is part of an application workload scenario to

estimate a probability distribution of the number of concurrent customer sessions at the

application system. This distribution is referred to as the population distribution. For each

population of customer sessions in this population distribution the MVA-QNM is solved

to predict performance metrics pertaining to this population as will be shown later. The

population distribution reflects any bursty session arrival behavior that might be present in

the application’s workload scenario. Specifically, more bursty session arrivals cause higher

probabilities of observing extremely small and extremely large number of concurrent sessions

at the system. In this way, the probability distribution captures the impact of burstiness in

session arrivals. For details on the trace-based simulation employed by WAM to estimate

the probability distribution, the reader can refer to [64].

For a given application, let the number of concurrent sessions at the application system

be s, where s ∈ {1,2...S}. The set of S values represent all session population levels observed

at the system under study. For each session population, s, an MVA-QNM is solved to predict

the mean request response time, Rs, and the mean request throughput, Xs, under a given
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resource allocation plan. Each session population, s, has a probability of occurrence, Ps, as

given by the population distribution.

The per-population request response times, Rs, are weighted by the per-population re-

quest throughputs, Xs, and the per-population probabilities, Ps, to offer an overall request

response time prediction, Rmean, using Little’s Law [79] as shown in the following equation.

Rmean =

S∑
s=1

PsXsRs

S∑
s=1

PsXs

(2.4)

While the use of a simulation component and the need to predict performance for many

different session populations make this technique slower than MVA-QNM, it is shown to

produce more accurate results for bursty workloads [64]. Furthermore, due to its combined

use of simulation and analytic modeling, WAM is faster than approaches that rely solely on

simulation. Relying only on simulations slows down the analysis of large number of resource

allocation plans that need to be analyzed for SLP. Given different types of available resources

for a given application system, simulations performed to obtain the system’s response time

values are time consuming as opposed to obtaining them by quickly solving an MVA-QNM

for the system. Finally, WAM can be integrated with analytic performance models other

than MVA-QNM to support modeling of complex computer systems. For example, WAM can

be integrated with LQMs [88] that are capable of modeling contention for software resources.

The thesis refers to the WAM technique as WAM-QNM

2.4 Cloud Resource Management

This section describes state-of-the-art work in cloud resource management. Specifically, two

main approaches to cloud resource management are discussed namely, long term and short

term resource management approaches. These approaches will be discussed in the following

sections.
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2.4.1 Long Term Resource Management

This section describes related work in long term resource management. As described pre-

viously in Section 1.1, Long term resource management tools help cloud SPs to plan their

infrastructure capacity and decide on SLAs with a customer prior to deploying the customer’s

applications. As mentioned previously, these tools are referred to in the thesis as SLP tools.

As described previously in Section 1.1 SLP tools are typically used to plan for cloud

resource management over coarse-grained time periods using historical traces [58] of appli-

cations that describe the workload experienced over the time period under consideration. A

number of such SLP tools have been introduced in the literature [24,38,53,56,63,67–69,71,

80,83,87].

Rolia et al. [87] proposed an SLP tool, Quartermaster, for enterprise applications sharing

a pool of resources. Quartermaster relies on historical traces of observed demands, e.g., CPU,

disk, and network demands, of applications. This technique exploits predictable patterns in

historical traces of applications, e.g., time-of-the-day, day-of-the-week, and month-of-the-

year patterns, to produce cost-effective resource estimates. Quartermaster allows resource

utilization thresholds to be set as an indirect mechanism for achieving adequate application

response times. However, as will be shown in this thesis, such utilization-based approaches

cannot accurately estimate resources required for application workloads characterized by

burstiness. The proposed work in this thesis allows both utilization and response time

thresholds to be specified directly as part of an application’s SLO.

Jung et al. [63] proposed an SLP approach which combined an LQM [52] with a heuristic

optimization algorithm to generate optimal server configurations. These configurations were

then encoded in the form of rules and policies to be used while the system is running.

In contrast to the work proposed in this thesis, the configuration generation exercise did

not consider fine timescale resource allocation strategies that exploit workload burstiness.

Furthermore, LQMs are not capable of reflecting the impact of burstiness unless they are
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integrated with a trace-based technique such as WAM [64] that is used in this paper.

Mylavarapu et al. [83] proposed a Monte Carlo technique in conjunction with a genetic

algorithm to obtain an optimized VM assignment scheme that ensures peak application de-

mands are satisfied while avoiding over-provisioning of resources. In contrast to the proposed

work, this work only considered SLOs based on CPU utilization targets and did not explicitly

handle workload uncertainty.

Meng et al. [80] proposed a trace-based approach for SLP in compute clouds through VM

multiplexing. Instead of assigning VMs on a one-by-one basis to each application workload,

a joint-VM is allocated to accommodate a group of application workloads at a time. The

applications to group within a VM are selected such that their workload peaks do not overlap

with one another. This approach is similar to the proposed work in the thesis in the sense

that workload properties of applications are exploited to drive the SLP process. However,

this work only considered VM CPU service demands as the workload metric of interest

while the proposed work considers several service and arrival process parameters that are

of importance to SLP. Moreover, the authors did not consider any uncertainties associated

with applications workloads.

Instead of using analytic performance modeling in SLP, simulation-driven techniques can

be used to help SPs analyze cloud resource provisioning policies under varying workloads.

CloudSim toolkit was proposed by Calheiros et al. [38] to allow SPs to model and evaluate

the performance of various cloud components and resource provisioning policies. However

it does not allow SPs to incorporate workload scenarios based on traces of request arrivals

and service times and hence it cannot handle complex workload behaviors such as bursti-

ness. Furthermore, simulation techniques are more time consuming than analytic modeling

techniques.

Malkowski et al. [71] proposed an SLP tool, CloudXplor, to support resource allocation

based on empirical datasets. This empirical dataset is obtained by running a large number
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of experiments over a wide range of resource allocation plans and workloads in various envi-

ronments. Trends present in this dataset are then exploited in resource allocation exercises.

Li et al. [67–69] proposed an offline approach for fast optimal deployment of a given set

of applications in a resource pool. This work combined an LQM [88] with bin-packing and

a linear programming approach based on Network Flow Models (NFMs) [67]. Similar to

our proposed work, the authors address scalability by formulating the NFM in a manner

that permits a large number of applications to be handled. The authors stated that their

approach can provide solutions in 1 or 2 minutes while considering up to 20 applications [69].

Li studied in [66] techniques to apply this approach dynamically while the system is running.

Unlike the work proposed in this thesis, this work did not consider workload uncertainty and

the impact of bursty workloads.

Chaisiri et al. [44] proposed an optimization algorithm that can help a cloud SP to

optimally provision cloud resources to the cloud customers. This algorithm provides an

optimal long term plan of resources to applications deployed on the cloud taking into account

the uncertainties that might occur in the applications’ service demands and in the prices of

the cloud resources. As opposed to the work proposed in this thesis, this work tries to

minimize the total cost of cloud resource provisioning without addressing the problem of

optimally allocating resources to applications to satisfy their SLOs. The authors of this

work exploited an important feature of current cloud offerings such as Amazon EC2 which

is the low price of reserving instances in the cloud relative to purchasing instances when

needed. For example, purchasing Amazon EC2 Reserved Instances can provide up to 65%

reduction in resource costs over On-Demand Instances [2]. This feature provides a strong

motivation to the work proposed in the thesis.

Various commercial offline capacity planning tools have been offered by different vendors.

Examples of such tools include VMware Capacity Planner [23] , VMware vCenter CapacityIQ

[22], NetIQ PlateSpin Recon [17], and Lanamark Suite [15]. To the best of the author’s
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knowledge based on their data sheets, these tools cannot support SLP based on response

time targets. However, they control resource utilization thresholds to indirectly achieve

adequate application request response times. Moreover, they do not explicitly consider SLP

for complex workloads characterized by burstiness and uncertainty.

2.4.2 Short Term Resource Management

This section describes related work in short term resource management. As described previ-

ously in Section 1.1, short term resource management tools adjust cloud resources dynami-

cally to handle any sudden workload fluctuations during system operation. These tools are

based on measurements obtained from the system over fine-grained time scales in the order

of seconds or minutes. Significant research efforts have focused on techniques for short term

resource management. As described previously in Section 1.1 these approaches complement

long term techniques such as the SLP framework proposed in this thesis, therefore, a review

of selected work in this area is presented. Broadly, work in this area can be categorized into

approaches that rely on performance models and those that rely on control theory [91].

Online resource management techniques that rely on performance models employ a queu-

ing network performance model to predict user-level performance metrics such as throughput

and response time. This performance model is usually embedded within a runtime controller

that controls resource allocations to an application so as to satisfy its performance targets.

These techniques are based on the assumption that the application system being controlled

is in a steady state and as a result they have been shown to be effective for decisions spanning

medium term time horizons, e.g., 30 minutes [91].

Urgaonkar et al. [93] proposed a performance-model based approach to dynamically re-

configure an application based on observed and predicted changes to its workload behaviour.

In contrast to the proposed SLP framework which attempts to solve a global SLO and re-

source allocation optimization problem for a set of applications, this work was concerned with

local optimization of a single application. Moreover, it did not take into account resource
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availability constraints and workload burstiness.

Ardagna et al. [25, 26] proposed a runtime resource allocation scheduler that assigns

multi-tier applications to physical resources at fine timescales to satisfy cost and performance

objectives. The approach uses a multi-class QNM and a heuristic search algorithm that solves

a mixed non-linear programming problem. The authors demonstrated that their solution

techniques execute faster and provide better resource allocation solutions than traditional

optimization techniques. As opposed to the work in this thesis, this work did not consider

workload burstiness and uncertainty.

Online resource management techniques that rely on control theory employ an online

feedback controller to adjust resource allocations in response to short time scale workload

fluctuations. These techniques can accurately model system transients and adjust the system

resource configuration within a very short time frame, e.g., a few minutes.

Gmach et al. [54,55] proposed an approach to integrate two types of controllers: a long-

term workload placement controller and a short-term workload migration controller. Another

integrated workload management architecture composed of multiple resource controllers was

proposed by Zhu et al. [99] to consolidate different application workloads having SLOs on a

large data center. In contrast to the work proposed in this thesis, both of these approaches

determined workload placements based on CPU utilization and did not consider the effect

on response time.

Malkowski et al. [72] proposed a multi-model controller for dynamically provisioning VMs

to multi-tier applications in clouds. A knowledge base was used to store all VM configurations

encountered during previous deployments of the applications and the measured performance,

e.g., request throughput, of such configurations. This knowledge base was used to drive future

provisioning decisions. The authors pointed out that a large collection of performance data

spanning multiple different configurations, workload conditions, and SLA specifications were

needed for the knowledge base to be effective.
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Caniff et al. [39] presented an online resource provisioning algorithm, Fastrack, which

exploits workload burstiness to guide dynamic resource allocation in multi-tier systems.

Fastrack detects the bursty periods in the application’s workload trace and accordingly allo-

cates more resources to these periods. This algorithm is quite similar to the work proposed in

the thesis in trying to exploit workload burstiness to save the number of resources allocated.

However, unlike the proposed work which considers all applications in a cloud simultaneously

while making resource allocation decisions, this work only focused on a single application.

2.5 k -means Clustering

This section describes background information on the clustering techniques used in the thesis

to group applications with similar workload characteristics together. In general, the objective

of clustering [73] is to group a set of data points into subsets or clusters. These clusters should

be clearly different from each other such that the degree of similarity between the data points

that belong to the same cluster should be as as high as possible while the degree of similarity

between the data points that belong to different clusters should be as low as possible. Data

points are grouped into clusters using a single or multiple clustering attributes. A clustering

attribute is a variable that defines a specific characteristic to a data point and is used to

assign the data point to a cluster. For example, a data point can be a point in a two-

dimensional space characterized by the Cartesian coordinates of the point. Each data point

in the thesis is a workload scenario of an application.

There are two main approaches to clustering namely, flat and hierarchical clustering

[50,73]. Flat clustering creates a flat set of clusters without any explicit structure that relates

these clusters to each other. This flat set of clusters is created by applying clustering once to

all data points. Hierarchical clustering creates a hierarchy of clusters by applying clustering

successively in distinct iterations. The hierarchy of clusters represents a structure that is

more informative than the unstructured set of clusters created by flat clustering. There
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are two approaches to hierarchical clustering namely, bottom-up and top-down approaches.

Bottom-up hierarchical clustering starts with individual data points and successively merges

these data points into clusters. This approach is referred to as agglomerative clustering.

Top-down hierarchical clustering starts with all data points grouped in one cluster and

splits clusters recursively until individual data points are reached. This approach is referred

to as divisive clustering. Top-down hierarchical clustering is conceptually more complex

than bottom-up clustering since it needs a flat clustering algorithm to be applied at each

iteration. However, it has the advantage of being more efficient when a complete hierarchy

all the way down to individual data points is not needed. Top-down hierarchical clustering

is the clustering approach used in the thesis. At each iteration the k -means clustering

algorithm [50,70] is employed.

The k -means clustering algorithm aims to partition a set of l data points, (x1, x2,..., xl),

into k non overlapping clusters, k<l. Each cluster, i, contains the set of data points denoted

by Φi so as to minimize the Within-Cluster Sum of Squares (WCSS) defined as:

WCSS =
k∑
i=1

∑
xj∈Φi

‖xj − µi‖2 (2.5)

where µi is the centroid of cluster i. The centroid of a cluster acts as a prototype of the

data points in the cluster and is computed based on the values of these data points. For

example, a centroid of a cluster can be the mean value of the data points which belong to

the cluster. k -means clustering aims to assign each data point, xj, to the cluster, Φi, which

has the nearest centroid to xj among all clusters.

To assign a data point to a cluster the distance between the variables or clustering

attributes of the data point and the corresponding variables or clustering attributes of the

centroid of each cluster should be measured. To measure this distance, a distance metric

is required. Many distance metrics are proposed in the literature [50]. An example of such

a distance metric is the Euclidean distance. Given two points p and q where each point

is characterized by a vector of r variables, the Euclidean distance, DIp,q, between the two
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points is defined as:

DIp,q =

√√√√ r∑
i=1

(qr − pr)2 (2.6)

where (p1, p2, ..., pr) and (q1, q2, ..., qr) are two r -dimensional vectors which characterize

the points p and q, respectively.

The Euclidean distance defined in Equation (2.6) can be squared in order to place greater

weight on the data points that are farther apart. This is referred to as the Squared Euclidean

distance. The work in this thesis uses this metric to measure the distance between data

points, i.e., application workload scenarios.

In general, the k -means clustering algorithm [50,70] operates as follows:

1. Initially, k data points are selected from the l data points. The selected data

points are referred to as seeds. Each seed forms a cluster of exactly one data

point which is the centroid of the cluster.

2. The data points which are not selected in step 1 are then examined in sequence.

Each of these data points is assigned to the cluster with the nearest centroid in

terms of the distance metric considered such as the Euclidean distance defined

in Equation (2.6). When a data point is assigned to a cluster, the centroid of

the cluster is recalculated to take into account the added data point.

3. For each data point, the distances between the data point and the centroids

of all clusters are computed. If the data point belongs to a cluster which does

not have the lowest distance among all clusters, the data point is moved to

the cluster with the lowest distance.

4. The centroids of the clusters which experience any change in their data point

memberships are recalculated.

5. Steps 3 and 4 are repeated until no more data points are moved between

clusters or until a specific maximum number of iterations is reached. If there
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are no movements of data points between clusters, then the clusters are said

to be stable and the algorithm converges to a final solution.

The k -means clustering algorithm has a number of limitations [84]. Firstly, the final

solution obtained by k -means clustering is highly dependent on the way the initial cluster

centriods are selected. To overcome this limitation, different methods to initialize the k -

means clustering algorithm are proposed in the literature, however, this is out of the scope

of the thesis. In this work, the initial cluster centriods are selected at random.

Secondly, the k -means clustering algorithm assumes the prior knowledge of the number

of clusters, k, before running the algorithm which might not be feasible in practice. Further-

more, selecting the wrong number of clusters may result in too few or two many clusters.

Specifically, if the number of clusters is too small, data points with widely different clustering

attributes may belong to the same cluster. On the other hand, if the number of clusters is

too large, data points that belong to different clusters may have similar clustering attributes.

Furthermore, specifying too large number of clusters may result in only a small reduction

in the number of data points which might not be beneficial for some applications. In sum-

mary, effectiveness of the solution obtained by k -means clustering is highly dependent on

the number of clusters specified.

To overcome the limitation of requiring prior knowledge of the number of clusters, the

work in the thesis employs an approach described by Menasce et. al. [76] to automatically

select the number of clusters. This selection optimizes the degree of similarity between the

data points within the cluster and the degree of similarity between the clusters. Specifically,

two random variables are considered namely, intracluster and intercluster distances. For a

cluster i, the intracluster distance random variable, denoted by d(x,µi) is defined as follows:

d(x, µi) = the distance between any data point, x ∈ Φi and µi (2.7)
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The intercluster distance between clusters i and j, denoted by C̄Di,j, is defined as follows:

C̄Di,j = the distance between the centroids of clusters i and j such that i 6=j (2.8)

These two random variables are used in the thesis to automatically decide on the number

of clusters, k, used as input to the k -means clustering algorithm as shown in the ensuing

paragraph.

The average intracluster distance for a cluster i, denoted by d̄i, is defined as follows:

d̄i =
1

ri

∑
x∈Φi

d(x, µi) (2.9)

where ri is the number of data points that belong to cluster i. Given d̄i ∀ i ∈ {1,2,...,k},

three statistical measures are computed for the intracluster distance namely, sample mean

denoted by d, sample variance denoted by σ2
intra and sample coefficient of variation denoted

by CVintra. These statistical measures are computed as follows:

d =
1

k

k∑
i=1

d̄i (2.10)

σ2
intra =

1

k − 1

k∑
i=1

(d̄i − d)2 k > 1 (2.11)

CVintra =
σintra
d

(2.12)

The same three statistical measures are computed for the intercluster distance which are

the sample mean denoted by CD, sample variance denoted by σ2
inter and sample coefficient

of variation denoted by CVinter. These statistical measures are computed as follows:

CD =
1

k(k−1)
2

k∑
i=1

k∑
j=i+1

C̄Di,j k > 1 (2.13)

σ2
inter =

1
k(k−1)

2
− 1

k∑
i=1

k∑
j=i+1

(C̄Di,j − CD)2 k > 2 (2.14)
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CVinter =
σinter
CD

(2.15)

The objective of the approach described in [76] is to select the number of clusters that

maximizes the similarity between the data points that belong to each cluster while mini-

mizing the similarity between the data points that belong to different clusters. To achieve

this objective the intercluster variance, σ2
intra, should be minimized while maximizing the

intracluster variance, σ2
intra. This can be done by minimizing either of the following two

ratios:

βvar = (
σintra
σinter

)2 , βcv =
CVintra
CVinter

(2.16)

The values of βvar and βcv decrease by increasing the number of clusters. If the number of

clusters, k, is equal to the number of the data points, l, considered for clustering, then both

βvar and βcv are minimized, however, the clustering process will be of no use in this case.

Therefore, Menasce et. al. described in [76] an empirical method to select an appropriate

value of k for clustering. In this method k different values, starting from 1 to l, are tried.

Either βvar or βcv values are calculated and compared for all k values. The result of this

process is selecting the k value above which no significant decrease is achieved in the β values

considered. In this way, the selected value of k achieves a relatively small number of clusters

while obtaining small values of βvar or βcv. It should be noted that the value of k selected

in this manner is completely dependent on the data points under consideration.

2.6 Dynamic Programming

This section describes the motivation for selecting the dynamic programming optimization

method [49] which is employed by the proposed RAP-DP technique described briefly in Sec-

tion 1.3.1. The section also provides background information on the dynamic programming

method.
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As described previously in Section 1.3.1, this work proposes a set of RAP techniques

to solve the global SLO and resource allocation optimization problem. This optimization

problem involves a non-linear objective function as will be described later in Section 3.1.

However, there is no closed form for the objective function which rules out traditional non-

linear programming optimization techniques [48]. Existing work that solves similar opti-

mization problems uses heuristic search techniques such as hill climbing [78] to find near

optimal solutions. The work proposed by Bennani et al. in [35] also uses other heuristic

search techniques to solve a similar optimization problem.

Solving the global SLO and resource allocation optimization problem using discrete opti-

mization techniques such as Branch-and-Bound is prohibitive with the increase in the number

of applications considered for SLP. The Branch-and-Bound technique [48] starts from an ini-

tial solution and successively generates branches of possible solutions. Each branch is then

evaluated against a specific bound where branches which are expected to generate solutions

that will violate this bound are not explored. For example, if the objective is to minimize a

cost function, the least cost value obtained from the branches explored is used as a bound

to prune other non explored branches. Any non explored branch is not evaluated if the cost

obtained from this branch is expected to be higher than the bound. For large scale problems

such as the global SLO and resource allocation optimization problem, it is prohibitive to use

the Branch-and-Bound technique [48]. This is because a large number of solutions has to

be evaluated to obtain the optimal solution which might not be possible for large number

of applications deployed on the cloud and for a wide variety of resource types supported to

each application tier. Therefore, as will be shown later in the thesis, the dynamic program-

ming optimization method is used to provide a more salable solution for the global SLO and

resource allocation optimization problem.

Dynamic programming is an optimization method used to solve complex problems by

breaking them down into a set of simpler interrelated subproblems. Each of the subproblems
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is solved individually and the solutions of the subproblems are then combined together to

reach an overall solution for the complex problem. A problem that can be solved using

dynamic programming should exhibit two characteristics namely, overlapping subproblems

and optimal substructure. A problem is said to have overlapping subproblems if it can be

broken down into interrelated subproblems which are reused multiple times. A popular

example of this problem is the problem of calculating the terms of the Fibonacci series. The

value of any term i, of the Fibonacci series is the sum of the previous two terms of the

series, i.e., (i-1 )th and (i-2 )th terms. The problem of evaluating the ith term in the series is

broken into two subproblems in which the (i-1 )th and (i-2 )th terms are evaluated and then

the solutions of the two subproblems are combined to obtain the value of the ith term.

The second characteristic of problems that can be solved using dynamic programming is

optimal substructure. A problem is said to have optimal substructure if an optimal solution

for the problem can be constructed from optimal solutions to its subproblems. The optimal

substructure characteristic of a problem is described by Richard Bellman who defined the

Principle of Optimality [33] as follows:

“An optimal policy has the property that whatever the initial state and initial decision are,

the remaining decisions must constitute an optimal policy with regard to the state resulting

from the first decision.”

Bellman’s Principle of Optimality implies that an optimal solution can be obtained for a

given complex problem by obtaining the optimal solutions of its simpler subproblems. For

example, consider the problem of calculating the shortest path between two points , a and

f, as shown in Figure 2.3. To solve this problem using dynamic programming, the shortest

path from a to f can be obtained by recursively obtaining the shortest paths from each of

points b and c to f. Each direct link between any two points, i and j, in the figure has an

associated cost, denoted by C(i,j). For example, the cost, C(a,b), of the direct link between

points a and b is 2. Any two points, i and j, can be connected with more than one path.
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Figure 2.3: Obtaining the shortest path between two points, a and f, using dynamic pro-
gramming

The set of paths connecting points, i and j, is denoted by Ψi,j. Each of these paths, ψ , has

an associated total cost, denoted by TCψ which is the sum of the costs of the direct links

that form this path. This cost is used to determine the shortest path between any two points

in Figure 2.3.

Dynamic programming involves a multi-stage process to obtain an optimal solution for a

given complex problem. This process starts by breaking the complex problem into simpler

subproblems as described previously. In the initial stage an optimal solution is obtained for

the simplest subproblem among all subproblems. This solution should be obtained directly

from the statement of the problem. In any subsequent stage an optimal solution is obtained

for one of the subproblems using the optimal solution of a relatively simpler subproblem

obtained in the previous stage. To solve a problem using this process, three terminologies

should be defined [49] namely, an optimal value function, a recurrence relation and a bound-

ary condition. The optimal value function is a rule which is used to assign a value to the
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solution obtained for each subproblem of the given problem. For example, in the shortest

path problem shown in Figure 2.3, the optimal value function, S(a,f), can be defined as:

S(a, f) = min TCψ ∀ψ ∈ Ψa,f (2.17)

According to Bellman’s Principle of Optimality the optimal value function of any subproblem

should be related to the optimal value function of another subproblem. This relation is

defined by a formula or a set of formulae called the recurrence relation. For example, the

following recurrence relation can defined for the optimal value function, S(a,f):

S(a, f) = min

 C(a, b) + S(b, f)

C(a, c) + S(c, f)

 (2.18)

Finally, as described previously, the solution of the simplest subproblem that is solved

in the initial stage should be obtained directly from the statement of the problem without

the need for any computations and without dependence on any other stages. This obvious

solution is referred to as the boundary condition of the problem. For example, the boundary

condition for the shortest path problem shown in Figure 2.3 can be defined as:

S(f, f) = C(f, f) = 0 (2.19)

which states that the minimum total cost among the different paths connecting point f and

itself is simply the cost of the direct link between f and itself which is zero.

2.7 Summary

This chapter describes background information and previous work in areas related to the

research work developed in this thesis. Firstly, background information on cloud computing

is introduced. This information describes typical cloud architecture and cloud services,

different categories for cloud systems and examples of commercial and open source clouds.

Moreover, a brief description of AWS is provided including computing, storage and database
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services. The Auto Scaling feature of Amazon EC2 is also described with a brief discussion

of its challenges. Secondly, the prevalence of burstiness in application workloads is discussed

and the characterization of workload burstiness using the index of dispersion is described.

Also an algorithm for the estimation of the index of dispersion is described.

Thirdly, the performance modeling approaches which are employed in the thesis are

introduced. This includes two performance modeling approaches which are the traditional

MVA-based modeling and the trace-based WAM modeling approaches. Fourthly, related

work in cloud resource management is discussed. This includes long term and short term

management approaches. Fifthly, k -means clustering which is employed in the thesis is

described. Finally, background information on dynamic programming is introduced. This

optimization method is employed by the RAP-DP technique described briefly in Section

1.3.1.
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Chapter 3

Resource Allocation Planning (RAP) Method

This chapter provides a detailed description of the RAP method described briefly in Section

1.3.1. Section 3.1 describes the global resource allocation optimization problem which is

solved by the RAP method. Section 3.2 describes an overview of the RAP method. Section

3.3 discusses in detail the three RAP variants described briefly in Section 1.3.1. Finally,

Section 3.4 describes two SLP approaches which do not take into account workload variability

and burstiness. These approaches will be compared with RAP in Section 4.6.

3.1 Global SLO and Resource Allocation Optimization Problem

This section describes in detail the global SLO and resource allocation optimization problem

described briefly in Section 1.1. Recall from Section 1.1 that the global SLO and resource

allocation optimization problem for a set of applications is a multi-objective optimization

problem in which a pool of available resources are allocated to these applications so that

each application’s SLO violations are minimized while using the least possible number of

resources. The problem has two cost factors: cost of resources allocated and penalties due to

applications’ SLO violations. It should be noted that both costs can be equally weighted by

the cloud SP or one of them can be assigned a higher priority than the other. The work in

this thesis focuses on minimizing the SLO violations objective. The study of more complex

objective functions that explicitly minimizes resource costs is deferred to future work.

The optimization problem assumes a given set of A applications. Each application a

employs a multi-tier architecture which is composed of Na tiers. For ease of explanation,

it is assumed in this work that all applications considered for resource allocation have the

same number of application tiers. However, this assumption can be relaxed by invoking the
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appropriate performance model for each application depending on the number of its tiers.

For ease of discussion, each application tier is also assumed to be associated with a

specific type or flavour of resource instances. For example, the web tier of an application

might use a large number of resource instances each containing small number of cores and

memory while the database tier might use a single instance with larger number of cores and

memory. This assumption can also be relaxed by supporting multiple flavours of resource

instances at each application tier and storing a performance profile for each resource flavour.

This performance profile can be used to select between different flavours when allocating

resources to an application tier.

As described previously in Section 1.3.2, each application a is characterized by a set of

probable workload scenarios, denoted by Wa. Each probable workload scenario is denoted

by Wa,k where Wa,k ∈ Wa and k ∈ {1,...La}. La is the number of alternative workload

scenarios per application to account for uncertainty in customer workloads. In this chapter

each application is assumed to have only one workload scenario, i.e., k = La = 1, however,

La can take other values as will be shown later in Chapter 5.

As described previously in Section 1.3.1, the optimization problem assumes a planning

horizon divided into T equal sized resource allocation intervals. Resource constraints place

an upper limit on the number of resources available to each tier. The maximum number of

resources available to all applications at tier n in a resource allocation interval t is denoted

by Cmax,n,t. The total number of resource instances allocated to tier n of application a in

resource allocation interval t is denoted by Ca,n,t.

As described previously in Section 1.3.1, RAP relies on a performance model to predict

applications’ SLOs given applications’ workloads scenarios and resources allocated to appli-

cation tiers. This work mainly considers SLOs based on mean response time. However, the

proposed RAP method can invoke performance modeling approaches which are capable of

predicting other response time statistics such as 95th percentile of request response times.
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The SLO violation percentage Va for an application a is defined as:

Va =


Ra−RTa
RTa

∗ 100% if Ra > RTa

0 otherwise

(3.1)

where Ra is the mean response time of application a over the planning horizon as predicted

by the performance model and the SLO of application a, denoted by SLOa, is specified

as a target mean response time RTa over T resource allocation intervals constituting the

planning horizon. When T equals 1 then the resource allocation interval is the same as the

planning horizon. This allows cloud SPs to handle SLO requirements of customers who are

more concerned about bursts which may occur at certain resource allocation intervals rather

than a single SLO requirement over a wider planning horizon.

The global SLO and resource allocation optimization problem can be defined by the

following set of equations.

min
A∑
a=1

Pena (3.2)

Pena = f(Va) (3.3)

s.t. Ca,n,t ≥ 1 ∀a ∈ {1, ...A}, n ∈ {1, ...Na}, t ∈ {1, ...T} (3.4)

s.t.
A∑
a=1

Ca,n,t ≤ Cmax,n,t ∀n ∈ {1, ...Na}, t ∈ {1, ...T} (3.5)

Ra = f(Wa,k k ∈ {1, ...La}, Ca,n,t ∀n ∈ {1, ...Na}, t ∈ {1, ...T}) (3.6)

Equation (3.2) specifies the objective to minimize SLO violation penalties over all applica-

tions. Equation (3.3) defines an SLO violation penalty cost Pena for a given application a

as function of the application violation percentage Va defined in Equation (3.1). The penalty
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cost due to an SLO violation of a given application may increase with higher violation per-

centage. For example, an application with a 50% violation percentage over the planning

horizon may incur higher violation penalty than an application that has a violation percent-

age of 10%. Equations (3.4) and (3.5) place upper and lower constraints on the size of the

SP’s resource pool, respectively. Equation (3.4) shows that each application, a, should be

allocated at least one resource of an appropriate flavor in each tier, n, in every interval, t.

Equation (3.5) places a maximum limit on the number of available resource instances for all

A applications at each tier n in each resource allocation interval t. Equation (3.6) relates

application mean response time Ra as a function of one of its probable workload scenarios

Wa,k and the resources allocated to all tiers n ∈ {1,...Na} of application a for all resource

allocation intervals t ∈ {1,...T}.

The formulation of the optimization problem provides flexibility with respect to the

overall objective of the SLP process. From Equations (3.2) and (3.3) the Sum of Violation

percentages (SV) over all applications can be minimized by simply setting Pena to Va for

each application a. Therefore the SLO objective can be modified to:

min SV =
A∑
a=1

Va (3.7)

If the cloud SP is interested in minimizing the number of applications violating their SLOs,

it can be assumed that all applications’ violation penalties are equal. Specifically, each

Pena value in Equation (3.2) can be defined as a binary variable which takes zero for no

violation and one for any positive violation percentage. In this way the objective defined

in Equation (3.2) leads to minimizing the total number of applications with positive Pena

values. Minimizing the SV objective defined in Equation (3.7) is the focus of this work. To

solve the global resource allocation optimization problem presented in this section, the RAP

method described briefly in Section 1.3.1 is proposed. The next section provides an overview

of the RAP method.
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3.2 RAP Overview

Recall from Section 1.3.1 that the RAP method allows SPs to a priori garner insights on the

relationship between application workloads, resource allocation policy, cloud capacity, and

application service levels. To effectively support such an objective, the RAP method should

mimic the elastic nature of resource allocation in clouds. For example, cloud SPs should be

able to use the RAP method to emulate dynamic allocation and de-allocation of resources

to applications based on their workload patterns.

RAP employs an iterative, interval-based resource allocation algorithm in conjunction

with a trace-based performance modeling approach such as WAM [64]. The inputs to the

algorithm are as follows:

• A set of workload scenarios with exactly one workload scenario per application

a. This set is denoted by W. The set W contains one probable workload

scenario Wa,k for each application a considered for resource allocation.

• The SLO for each application a over the planning horizon. This is denoted by

SLOa.

• The maximum number of resources Cmax,n,t available for allocation to all ap-

plications at each tier n in each resource allocation interval t.

The RAP method generates a resource allocation plan for all applications characterized by

the workload scenarios in the set W so that all SLOs are satisfied or all available resources are

allocated. The allocation plan generated is represented by the number of resources allocated

to each tier n per application a, in each resource allocation interval t. If any SLO violations

occur, a list of these violations for all A applications is returned by the RAP algorithm.

Recall from Section 1.3.1 that one approach to achieve an optimal solution for the global

SLO and resource allocation optimization problem described previously in Section 3.1 is to
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exhaustively evaluate all resource allocation plans for all tiers of all applications over all re-

source allocation intervals. This exhaustive evaluation becomes computationally prohibitive

with the increase in the number of applications, number of resource allocation intervals,

number of tiers and number of resource flavours associated with each tier. To overcome this

problem three variants of RAP are introduced in the next section.

3.3 RAP Variants

This section provides a detailed description of the three RAP variants described briefly in

Section 1.3.1. Recall from Section 1.3.1 that RAP-DP is a dynamic programming based ver-

sion [49] of RAP while RAP-AllApps and RAP-OneApp are two heuristic resource allocation

approaches.

3.3.1 RAP-Dynamic Programming (RAP-DP)

RAP-DP starts with a basic resource allocation plan as captured previously by Equation

(3.4) and then traverses a sequence of decision stages. Each decision stage generates an

optimal resource allocation plan given that an incremental amount of resources is available for

allocation. This involves using the performance modeling module to carry out the following

tasks:

1. Identify a candidate application for resource allocation.

2. For the identified application, identify the interval over which one additional

resource has to be allocated.

3. For the identified interval, select the tier to which the additional resource has

to be allocated.

These tasks are carried out such that the lowest possible SV value as shown in Equation

(3.7) is achieved at each decision stage. The next decision stage uses only this optimal plan
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as a basis for further incremental resource allocation, ruling out other plans explored in the

previous stage. This avoids the exhaustive evaluation of all possible combinations of resource

allocation plans as described previously in Section 3.2.

RAP-DP is guaranteed to obtain an optimal solution. Recall from Section 2.6 that an

optimal solution is obtained at the end of the final stage if each stage generates an optimal

solution while starting from the solution obtained in the previous stage [49]. The reader can

refer to Appendix B for a formulation of RAP-DP using dynamic programming concepts [49].

Appendix C also provides an example to show more details on how RAP-DP can achieve an

optimal solution. In RAP-DP, each stage yields an optimal resource allocation plan and is

based on the optimal plan obtained from the previous stage. It should be noted that the

optimal resource allocation plan generated at each decision stage is obtained by allocating

the least possible number of resources. Specifically, at each decision stage, one resource

instance of the appropriate flavor is allocated to the identified tier in the identified resource

allocation interval to the identified application. Thus an optimal resource allocation plan is

obtained at each decision stage using the least possible number of resources.

There are different approaches to obtain an optimal resource allocation plan at a given

decision stage. The naive approach is to evaluate all possible resource allocation plans at

this decision stage. As shown in Table 3.1, this involves evaluating all tiers in all resource

allocation intervals for all applications which results in invoking the performance model

A*T *Na times. To reduce the computation time at each decision stage three variants of

RAP are developed. Table 3.1 summarizes the operation and computational complexity

of the three RAP variants relative to the naive approach of exhaustively enumerating all

possible resource allocation plans at each decision stage.

Table 3.1 illustrates the difference between RAP-DP and the naive enumeration of all

possible resource allocation plans at each decision stage. RAP-DP considers only the bot-

tleneck tier of each application in all T resource allocation intervals rather than considering
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Table 3.1: Computational complexity of RAP variants

At Each Naive Exhaustive
RAP-DP RAP-AllApps RAP-OneAppDecision Enumeration At Each

Stage Decision Stage
applications

all all all
application with the

evaluated highest Va
resource allocation

all all
interval with interval with

intervals the highest mean the highest mean
evaluated request response time request response time
tiers evaluated all bottleneck tier bottleneck tier bottleneck tier
number of

A*T *Na A*T A 1performance model
invocations

all tiers as per the naive approach described previously. As a result, RAP-DP decreases

the computational complexity required to generate an optimal resource allocation plan at

each stage relative to naively evaluating all possible resource allocation plans. Among all

application tiers, the bottleneck tier has the most effect on the mean response time of an

application and consequently the application’s Va. Specifically, at each decision stage for

each application in each resource allocation interval, one resource instance of the appropri-

ate flavour is allocated to the bottleneck tier of every application. The performance model is

then invoked to compute Equation (3.7). This process is then repeated for all applications.

The resource allocation plan which gives the least SV value is selected and used to obtain

the resource allocation plan in the next decision stage. As shown in Table 3.1, the number

of performance model invocations required by RAP-DP is reduced to A*T.

Although, the solution obtained by RAP-DP is guaranteed to be optimal, the performance

model has to be invoked for all applications in all intervals to decide which application

and which resource allocation interval to select for additional resource allocation at each

decision stage. This increases the computation time at each decision stage because the

performance model is the most time consuming part of the RAP algorithm. Alternatively,

two more computationally efficient variants of RAP are proposed. These two variants trade-

off optimality for computation time as will be described in the next two sections.
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3.3.2 RAP-Heuristic-AllApps (RAP-AllApps)

Unlike RAP-DP which runs the performance model for all applications in all resource al-

location intervals at each decision stage, RAP-AllApps runs the performance model for all

applications only in the resource allocation intervals with the highest mean response time.

This resource allocation interval represents the most bursty and congested interval for a given

application and so the allocation of one more resource instance to the bottleneck tier in this

resource allocation interval is likely to result in the most reduction in the application’s Va

with respect to other resource allocation intervals. As shown in Table 3.1, at each decision

stage RAP-AllApps invokes the performance model A times. In contrast to RAP-DP, the

algorithm has no dependence on the number of resource allocation intervals T.

The optimality of RAP-AllApps is guaranteed if the bottleneck tier is the same in all

resource allocation intervals for a given application. If all resource allocation intervals for a

certain application have the same bottleneck tier, then allocating more resources to this tier

in the highest mean response time interval results in the most reduction in the application’s

Va. However, if the bottleneck tier for an application is not the same in all resource allocation

intervals, an optimal solution is not guaranteed. To obtain an optimal solution in this case,

all resource allocation intervals have to be evaluated since the addition of different resource

flavours can have different impact on the value of Va. Results which confirm this finding will

be shown later in Section 4.4.

3.3.3 RAP-Heuristic-OneApp (RAP-OneApp)

RAP-OneApp makes the simplifying assumption that targeting the application with the

highest Va likely yields the least SV value. Accordingly, at each decision stage it ranks all

applications in a descending order in terms of their Va and selects the topmost application.

The allocation of one additional resource instance is explored only for this application rather

than for all applications as in RAP-DP and RAP-AllApps. Specifically, similar to RAP-
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AllApps, the additional resource instance is allocated for the bottleneck tier of the selected

application in the resource allocation interval with the highest mean response time. As

a result, RAP-OneApp invokes the performance model only once at each decision stage

as shown in Table 3.1. RAP-OneApp is not guaranteed to produce an optimal solution

since targeting the application with the highest Va might not yield the highest reduction in

SV. Results which evaluate the optimality and computational complexity of the three RAP

variants will be shown later in Section 4.4.

In the remaining chapters of the thesis RAP-OneApp and RAP are used interchangeably

to refer to the same RAP variant. If the other two variants of RAP, i.e., RAP-DP and

RAP-AllApps, are involved, then all variants are explicitly called by their names. Figure

3.1 shows the pseudo-code of the RAP-OneApp algorithm or simply the RAP algorithm. As

described previously in Section 3.2 that the inputs to the algorithm are the set W of workload

scenarios with one workload scenario per application a, the SLOa for each application a over

the planning horizon and Cmax,n,t available for allocation to all applications at each tier n in

each resource allocation interval t.

The pseudo-code of the RAP algorithm shown in Figure 3.1 is described in more detail

in the remaining part of this section. Initially each probable workload scenario Wa,k, where

k = 1, representing an application a is allocated one resource instance at each tier n and

for each resource allocation interval t. The WAM performance modeling technique is then

invoked by RAP through the function WAM-QNM() as shown in Figure 3.1. This function

takes as inputs the workload scenario Wa,k and the number of resource instances assigned to

application a at each tier n per resource allocation interval t. The outputs returned by this

function are the mean response time Ra of application a over the planning horizon and the

mean response time Ra,t of application a over each resource allocation interval t. After this

step Va is calculated for each application a.

The RAP algorithm then enters a loop. In each iteration of this loop, the application

83



 

Input: W, SLOa a {1,2,…, A}, Cmax,n,t  n {1,2,…, Na}, t {1,2,…, T} 

Output: Ca,n,t a {1,2,…, A}, n {1,2,…, Na}, t {1,2,…, T}, Va a {1,2,…, A} 

For a = 1 to A 

# for each application a allocate one resource instance to each tier n in each interval t 

Ca,n,t = 1  a {1,2,…, A}, n {1,2,…, Na}, t {1,2,…, T} 

# invoke the WAM performance model for each application workload scenario Wa,k W, a {1,2,…,A} 

[Ra,t , Ra] = WAM-QNM (Wa,k, Ca,n,t n {1,2,…, Na})  t {1,2,…, T} 

Va = CalculateViolationPercentage(Ra, SLOa)  

End For 

#calculate total number of remaining resources at tier n over all intervals 

# this is used to stop the algorithm once all remaining resources are allocated 

For n = 1 to Na 

       RemainResourcesTier(n)  = Cmax,n,t * T  – (∑Ca,n,t  a {1,2,…, A}, t {1,2,…, T}) 

End For 

While (RemainResourcesTier(n) > 0  n {1,2,…, Na}) 

           [amax ,MaxViolationPercentage,] = GetAppwithMaxViolationPerentage(Va a {1,2,…, A}) 

           # if all clustered workload scenarios satisfy their violation percentages 

           If MaxViolationPercentage, == 0 

Return  Ca,n,t a {1,2,…, A}, n {1,2,…, Na}, t {1,2,…, T}, Va  a {1,2,…, A} 

Where Va = 0 a {1,2,…, A} 

           End If  

           tmax= GetFreeIntervalwithMaxRmean(amax, (Ra,t  for a= amax , t {1,2,…, T}))  

 nbottleneck=GetBottleneckTier(amax, tmax) 

# allocate one additional resource instance to tier n of application amax in interval tmax   

ΔCa,n,t = 1 for a=amax , n nbottleneck, t=tmax 

          Ca,n,t = Ca,n,t + ΔCa,n,t  for a=amax , n=nbottleneck ,t=tmax 

RemainResourcesTier(nbottleneck)  = RemainResourcesTier(nbottleneck)  – ΔCa,n,t        

#re-invoke The WAM performance model for the application amax only 

[Ra,t, Ra] = WAM-QNM (Wa,k, Ca,n,t n {1,2,…, Ne})  for e=amax , t {1,2,…, T},  

Va = CalculateViolationPercentage(Ra, SLOa) for a=amax 

End While 

Return Ca,n,t a {1,2,…, A}, n {1,2,…, Na}, t {1,2,…, T}, Va a {1,2,…, A} 

Figure 3.1: RAP algorithm

amax with the top most SLO violation percentage, i.e., maximum Va, is selected first. For

the selected application amax the resource allocation interval tmax with the maximum Ra,t

over all T resource allocation intervals is selected. This represents the interval where the

application is most heavily loaded. It should be noted that tmax can only be an interval for

which the system has free resources remaining to be allocated. The bottleneck application

tier nbottleneck is then determined for a=amax and t=tmax. Finally one additional resource

instance is allocated to application amax in tier nbottleneck at resource allocation interval tmax.

The algorithm terminates when either all the available resources are allocated in all resource
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allocation intervals or the maximum Va is equal to zero which means that all applications

have achieved their SLOs.

As described previously in Section 1.3.1, RAP can rely on any performance model that can

predict an application’s SLO under a given resource allocation plan. Instead of WAM-QNM,

RAP can invoke MVA-QNM. RAP invokes MVA-QNM by calling the function MVA-QNM().

This function takes as inputs the following parameters:

• The number of resources assigned to each tier n of application a in each time

interval t.

• A vector of mean number of concurrent sessions, i.e., session populations,

observed for application a per resource allocation interval t as shown in:[
MSa,1 MSa,2 ... MSa,t ... MSa,T

]
(3.8)

This vector can be approximated from the application’s workload scenario

using the method described by Krishnamurthy et al. [64].

• A vector of mean session think time values for application a per resource

allocation interval as shown in:[
Za,1 Za,2 ... Za,t ... Za,T

]
(3.9)

• The following matrix of mean service demands of each application a for various

Na tiers over each of the T resource allocation intervals

Da,1,1 Da,1,2 ... Da,1,t ... Da,1,T

.

.

.

Da,Na,1 Da,Na,2 ... Da,Na,t ... Da,Na,T


(3.10)
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MVA-QNM is used to solve a single hybrid class QNM characterized by these inputs. The

function MVA-QNM() returns the same outputs returned by the function WAM-QNM() as

described previously.

3.4 Burstiness-Agnostic SLP Approaches

This section describes two SLP approaches in which workload variability and burstiness are

not taken into account. Experiments that show the operation of these two approaches and

results that compare them with RAP will be shown later in Section 4.6.

The first approach is referred to as the whole approach. Unlike RAP, the allocation

of resource instances in this approach is carried out for the whole planning horizon at each

decision stage without considering finer-grained resource allocation intervals. In other words,

the whole approach considers a resource allocation interval of the same size as the planning

horizon. Specifically, this approach ranks applications in terms of their SLO violations.

Starting from the application with the highest Va value it allocates an additional resource

instance to an application tier over the entire planning horizon until the application’s SLO is

satisfied or until all resources have been allocated. Simulation results that show the operation

of the whole approach will be shown later in Section 4.6.

The second burstiness-agnostic approach is referred to as the basic interval approach.

Similar to RAP, this approach attempts resource allocation at a finer time scale than the

planning horizon starting with the application having the highest Va value. However, it

differs from RAP in the way it selects the candidate resource allocation interval for the

additional resource instance allocated to an application tier at each decision stage. In RAP

the candidate resource allocation interval is the resource allocation interval with the highest

mean response time, i.e., the most heavily loaded resource allocation interval, to account for

both workload variability and burstiness. On the contrary, the basic interval approach applies

a simple technique to select resource allocation intervals chronologically. Specifically, after
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selecting the application with the highest Va value, the resource instances are allocated for the

resource allocation interval which comes in sequence starting from the first resource allocation

interval in the planning horizon. After each decision stage the applications are re-ranked

in terms of their Va values to select the next candidate application. An additional resource

instance is allocated to an application tier in the resource allocation interval which comes

next in the chronological sequence for this application provided that the selected resource

allocation interval has free resources. This process is repeated until all application SLOs

are satisfied or all resources in the cloud are exhausted for all resource allocation intervals.

Section 4.6 shows results which describe the operation of the basic interval approach.

3.5 Summary

This chapter provides a detailed description of the RAP method. Firstly, it describes the

global resource allocation optimization problem which is solved by the RAP method. Sec-

ondly, a detailed description of the RAP method and its variants are presented. Finally,

two burstiness-agnostic SLP approaches are described. These approaches will be compared

with RAP as will be shown later in Section 4.6. The next chapter discusses RAP evaluation

results.
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Chapter 4

RAP Evaluation

This Chapter discusses results of evaluating the RAP method described previously in Chapter

3. Section 4.1 describes an approach used in the thesis to characterize the workload scenarios

which are considered in the experiments. Section 4.2 provides a description of the simulation

setup used to obtain the results. Section 4.3 presents results of comparing MVA-QNM

and WAM-QNM performance modeling techniques for SLP. Section 4.4 shows results which

characterize the optimality of the three RAP variants described previously in Section 3.3.

Section 4.5 shows a sensitivity analysis of the three RAP variants to the degree of similarity

in resource demands between application tiers and the degree of homogeneity in resource

scaling among application tiers. Section 4.6 shows results of comparing RAP with the two

burstiness-agnostic approaches for SLP described previously in Section 3.4. Section 4.7

presents results of comparing RAP with SLP approaches that rely on utilization of system

resources as described previously in Section 1.1. The flexibility of RAP in handling different

SLOs is shown in Section 4.8. Finally, Section 4.9 presents results that show the improvement

achieved in the performance of RAP-DP and RAP-AllApps by exploiting parallelism within

these algorithms.

4.1 Using Traces to Characterize Application Workloads

This section introduces a formal approach for succinctly characterizing an application’s work-

load scenario. As described previously in Section 1.3.1, each application a is characterized

by a workload scenario consisting of a collection of traces. An arrival process model is used

to characterize the session trace associated with a workload scenario. Similarly, a service

process model is used to describe the resource usage trace of a workload scenario. As men-
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tioned previously in Section 3.1, for each application a there are many probable workload

scenarios. Each probable workload scenario Wa,k has a certain probability of occurrence,

denoted by Pa,k , where k ∈ {1,2,...La}, with the sum of all these probabilities from k=1 to

La is equal to 1. Similar to the previous chapter, La is set to 1 in this chapter.

The arrival process model of the probable workload scenario Wa,k of application a over

the planning horizon is denoted by AMa,k. AMa,k is characterized by the set of parameters

{Sa,k, Fa,k, Za,k, λa,k, SCVa,k, Ia,k}. This characterization is based on the approach described

by Casale et al. [41] that accounts for both variability and burstiness in the arrival of user

sessions to an application system. The parameter Sa,k is the number of user sessions in the

workload scenario. Fa,k and Za,k specify the distributions of the number of requests per

session and the think time between session requests, respectively. λa,k denotes the mean

session arrival rate. The variability of the session inter-arrival time distribution is captured

by SCVa,k which is the SCV of inter-arrival time between chronologically successive sessions

in the trace. Finally, the arrival burstiness is summarized by the parameter Ia,k which is the

index of dispersion of session inter-arrival times as described previously in Section 2.2.

The application’s service process model for the probable workload scenario Wa,k is de-

noted by SMa,k. SMa,k captures the service demands placed on application system resources,

e.g., CPUs and disks. As mentioned previous in Section 3.1, each application a has a number

of application tiers Na. The application’s service process model SMa,k is characterized by

the set Da,k,n representing the mean service demands at various tiers, i.e., n ∈ {1,2,...Na}.

4.2 Simulation Setup

To evaluate RAP a discrete event simulation model for each application is used. In this

simulation model each application is represented by a queuing network consisting of two

resources representing the typical web and database tiers of an enterprise application. Figure

4.1 shows the same queuing network shown previously in Figure 2.2 and described in Section
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Figure 4.1: Queuing network representing a two tier application

2.3.1. This figure is reproduced in this section for completeness. As shown in Figure 4.1,

similar to best practices used in enterprise applications, the web and database tiers employ

different types of resource instances. The web tier employs horizontal scalability. X resource

instances each containing one processing core can be allocated at the web tier. The database

tier exploits vertical scalability. One resource instance with Y cores can be allocated to

the database tier. The values of X and Y are varied during the SLP process to achieve

application SLO objectives. The single core instance is similar to the standard small instance

type used in Amazon EC2 while the multi-core instance is similar to Amazon EC2 instance

types characterized by a higher number of cores such as the standard large and extra large

instances [3]. The simulation model takes into account the processing power of each instance

without considering memory, storage or I/O issues. These factors will be considered in future

work.

As described previously in Section 2.3.1, the application represented by the queuing

network of Figure 4.1 is subjected to an input workload scenario consisting of a trace of

customer sessions. The experiments use a variety of synthetic traces with characteristics as
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Table 4.1: Values of the parameters used in the experiments

Parameter Value
Planning horizon ∼ 4 and 8 hours

Resource allocation interval 1 hour
Sa,k {75,000, 85,000, 100,000}
Fa,k empirical distribution with mean 9.4 request/session [27]
Za,k empirical distribution with mean 40 s [27]
λa,k 3.33, 2.86, 2.5 session/s

SCVa,k 1, 3, 4, 5
Ia,k {1, 100, 500, 1000, 10,000}
Da,k,1 exponential distribution with mean 20 ms
Da,k,2 exponential distribution with mean 10 ms

shown in Table 4.1 to assess the behaviour of RAP under varying levels of arrival variability

and burstiness. The parameters shown in Table 4.1 were described previously in Section

4.1. The service demands at the web and database tiers for all experiments are fixed as per

Table 4.1. The session length and think time distributions are chosen to match empirical

distributions observed at a real web-based application system [27]. Experiments presented in

the thesis employ a planning horizon of 4 and 8 hours and a resource allocation granularity

of 1 hour. All applications in the experiments have an application SLO defined as a target

mean response time that is twice the demand at the bottleneck resource. Practitioners often

use such an SLO as an indirect measure to indicate the queuing that can be tolerated at the

bottleneck resource.

As mentioned previously in Section 2.3, both MVA-QNM and WAM-QNM techniques

are used to model the simulated cloud environment. Standard single server residence time

expressions [65] are used to model the single-core web tier. Multi-server residence time

expressions developed by Rolia [86] are used for modeling the multi-core database tier. It

should be noted that analytically modeling this system is a challenge when workload traces

exhibit characteristics such as burstiness. The impact of model inaccuracies can have on the

SLP process is characterized in Section 4.3.
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4.3 Comparing MVA-QNM and WAM-QNM for SLP

In this section MVA-QNM and WAM-QNM are used to predict the mean response times

for a number of applications whose workloads exhibit the same mean session arrival rate

but progressively higher degrees of session arrival variability and burstiness. The degree of

variability and burstiness is controlled by using different values for SCVa,k and Ia,k, respec-

tively, as described previously in Section 4.1. Figure 4.2 shows an example of two typical

session arrival traces. The exponential trace shown in Figure 4.2a is non-bursty with session

inter-arrival times following an exponential distribution. In contrast, a variable and bursty

trace shown in Figure 4.2b is obtained by specifying SCVa,k=5 and Ia,k= 1000. Both of

these traces have the same mean session arrival rate i.e., λa,k = 3.33 sess/s, over the plan-

ning horizon and are part of the workloads used in evaluating RAP. From the figure, one

can observe that the highly variable and bursty workload has more pronounced crests and

troughs when compared to the exponential workload.

The mean response time predictions of WAM-QNM and MVA-QNM are compared for

various degrees of variability, i.e., exponential and SCVa,k = 1, 3, 4 and 5, and various degrees

of burstiness, i.e., Ia,k= 100, 1000 and 10,000. Actual mean response times are obtained by

using the discrete event simulation model outlined previously in Section 4.2. These mean

response times are compared with their corresponding predicted mean response times from

both modeling approaches.

Figure 4.3 shows the average prediction error over an eight-hour planning horizon for both

approaches for different session arrival processes. Table 4.2 lists the SCVa,k and Ia,k values

used to obtain each session arrival process in Figure 4.3. From the figure, for the non-bursty

exponential workload both techniques yield very accurate predictions. However, the MVA-

QNM technique yields very poor predictions with increasing variability and burstiness for

most of the session arrival processes shown. For example, for a session trace with medium

variability and high burstiness, i.e., SCVa,k = 3 and Ia,k = 1000, MVA-QNM yields an
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(a) exponential

 

(b) variable and bursty (SCVa,k = 5, Ia,k = 1000)

Figure 4.2: Two sets of arrival instances with same mean session inter-arrival time = 300 ms
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Figure 4.3: Mean response time prediction error of WAM-QNM and MVA-QNM

accuracy of 25% while WAM-QNM’s predictions closely match the actual mean response

time obtained through simulation. However, it can be noticed from the figure that for the

session trace with medium variability and extreme burstiness, i.e., SCVa,k = 3 and Ia,k =

10,000, MVA-QNM yields an average prediction error of only 10%. This is because for this

session trace the extremely bursty session arrivals occur only in some resource allocation

intervals while other resource allocation intervals experience much lower level of burstiness.

Therefore, MVA-QNM was able to obtain low average prediction error over the planing

horizon. This can also be seen in the results shown later in Figure 4.4d. In summary, the

results shown in 4.3 broaden the findings reported by Krishnamurthy et al. on a TPC-W

web application system [64].

Figure 4.4 shows error percentiles for mean response times predicted by both WAM-

QNM and MVA-QNM over the same eight-hour planning horizon shown in Figure 4.3. As

shown in Figure 4.4, the prediction accuracies of both WAM-QNM and MVA-QNM are

affected by increasing the degree of variability and burstiness in session arrivals, however,

94



Table 4.2: Parameters of the session arrival processes shown in Figure 4.3

Session Arrival Process Sa,k Ia,k
Exponential 1 1

Medium variability, medium burstiness 3 100
Medium variability, high burstiness 3 1000

Medium variability, extreme burstiness 3 10,000
High variability, high burstiness 4 1000

Extreme variability, high burstiness 5 1000

the effect is more significant on MVA-QNM than on WAM-QNM. For example, for the non-

bursty exponential session arrival process shown in Figure 4.4a the maximum prediction

error over all resource allocation intervals for MVA-QNM is only 5% while the maximum

error percentile for the session arrival process shown in Figure 4.4f, which is characterized

by extreme variability and high burstiness, is close to 100%. On the other hand, the error

percentiles of WAM-QNM are much lower than their corresponding error percentiles of MVA-

QNM for all session arrival processes. Specifically, the maximum per-interval prediction

error of WAM-QNM for the session arrival processes shown in Figures 4.4a to 4.4d does

not exceed 20%. However, WAM-QNM gives poor prediction errors for the session arrival

processes characterized by high variability as shown in Figures 4.4e and 4.4f. The reason for

this is that WAM-QNM depends on the predictions obtained by MVA-QNM as described

previously in Section 2.3. Therefore, the accuracy of MVA-QNM affects that of WAM-QNM.

The prediction accuracy of WAM-QNM can be improved by relying on other advanced

performance modeling techniques that are capable of predicting application performance

more accurately under high session arrival variability. Addressing this issue is left for future

work.

In summary, the results shown in Figures 4.3 and 4.4 suggest that using WAM-QNM

in conjunction with RAP is likely to give more accurate resource allocation estimates than

MVA-QNM when the application workload scenarios are bursty in nature. As a result,

WAM-QNM is used in the experiments which involve bursty workloads in the rest of the
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(b) medium varaibility and medium burstiness
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(c) medium varaibility and high burstiness
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(d) medium varaibility and extreme burstiness
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(e) high varaibility and high burstiness
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Figure 4.4: Response time prediction error percentiles of WAM-QNM and MVA-QNM
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thesis. In this work it is assumed that WAM-QNM gives correct predictions for all session

arrival processes used in the experiments. Although this assumption might not be valid

for the extremely bursty session arrival processes as shown in the previous paragraph, the

development of more accurate performance models to deal with such workloads is beyond

the scope of this work.

4.4 Characterizing Optimality of RAP Variants

This section focuses on characterizing the optimality of the three RAP variants. As described

previously in Section 3.3 there are three variants of RAP, i.e., RAP-DP and RAP-AllApps

and RAP-OneApp. These variants are compared against the exhaustive enumeration of all

possible solutions.

Two controlled experiments are preformed to show the degree of optimality achieved by

the three variants and their limitations. In the first experiment four different applications

subjected to exponential session arrivals are analyzed over a planning horizon of 4 hours with

a resource allocation interval of 1 hour. In each resource allocation interval, the number of

database instance cores is kept constant at 1 for each application. Initially, all applications

are allocated one web server instance in each resource allocation interval. The maximum

number of available web server instances per resource allocation interval in the cloud is set

to 7. These settings allow the exhaustive enumeration of all possible resource allocation

plans for these applications. Since MVA-QNM is effective for exponential workloads, mean

response times were predicted for each application for each of these resource allocation plans

using this modeling technique. Based on these predictions, the SV value defined previously

in Equation (3.2) divided by the number of applications is calculated for each resource

allocation plan. This value represents the mean SLO violation percentage for each resource

allocation plan. Finally, each of the three RAP variants is used in conjunction with MVA-

QNM to obtain a resource allocation plan for this experiment.
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The second experiment explores more bursty workloads. The four applications are char-

acterized by more session arrival variability, i.e.,SCVa,k= 3, and progressively higher degrees

of session arrival burstiness, i.e., Ia,k = 100, 1000 and 10,000. The maximum number of

available web server instances per resource allocation interval is limited to six in order to

enumerate all possible resource allocation plans. WAM-QNM is used as the performance

modeling technique instead of MVA-QNM because it is more accurate for bursty workloads

as shown previously in Section 4.3.

Table 4.3 shows some statistics about the two experiments described in the above para-

graphs. As shown in the table, exhaustive enumeration requires the generation of approx-

imately 1.5 million and 50,000 solutions for the two experiments, respectively. Clearly,

exhaustive enumeration is prohibitive even for a small-scale SLP exercises.

Figure 4.5 shows the optimality of the solutions obtained by the three RAP variants. It

should be noted that the optimality of the RAP variants can be affected by the accuracy

of the performance model used in the experiments. Therefore, Figure 4.5 characterizes

the optimality of the RAP variants given the assumption stated previously in Section 4.3

that WAM-QNM gives correct performance predictions for the applications used in these

experiments.

Figure 4.5 compares the mean SLO violation percentages of the solutions obtained by

each of the three RAP variants against the mean SLO violation percentages of the solutions

obtained by exhaustive enumeration. Specifically, the figure organizes the exhaustive enu-

meration of all possible solutions obtained based on the decision stages explored by the three

RAP variants. The x-axis represents the decision stages through which the RAP variants

proceed. At decision stage 0, an initial resource allocation plan is generated by allocating

one web resource instance to each application over each resource allocation interval. For

example, in Figure 4.5a an initial resource allocation plan is generated at decision stage 0

by allocating one web resource instance to each of the four applications over each of the 4
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Table 4.3: Statistics of the results obtained in Figure 4.5

Exhaustive enumeration
RAP-DP RAP-AllApps RAP-OneAppof all resource

allocation plans
performance model

N/A 16 4 1invocations per
decision stage
number of solutions

1.5 million 192 48 12
explored in Figure 4.5a
number of solutions

50,000 128 32 8
explored in Figure 4.5b

resource allocation intervals leading to an aggregate of 16 web resource instances allocated

in this resource allocation plan. For each subsequent decision stage i the black dots repre-

sent the mean SLO violation percentages obtained for the various possibilities of allocating

i additional web server instances to the initial resource allocation plan generated at decision

stage 0.

The total number of decision stages shown in Figure 4.5 can be calculated by subtracting

the aggregate number of web resource instances allocated to all applications over all resource

allocation intervals at decision stage 0 from the maximum number of web resource instances

available over all resource allocation intervals. For example in Figure 4.5a a total of 16 web

server instances are initially allocated over all resource allocation intervals and a maximum

of 28 web server instances are available for allocation over all resource allocation intervals.

This results in a total of 12 decision stages. It should be noted that the legends used to

represent the results shown in Figure 4.5 for RAP-OneAPP and RAP-AllApps are selected

to be straight lines not discrete points although there is no meaning of intermediate results

that can exist between decision stages. The reason for this selection is to clearly illustrate

the differences in accuracies between the RAP variants.

Figure 4.5 provides some insights on the behaviour of the RAP variants. Figure 4.5a

shows the results obtained for application workloads with exponential session arrivals while

Figure 4.5b shows workloads with variable and bursty session arrivals. It is observed in Figure
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(a) workloads with exponential session arrivals

 

(b) workloads with variable and bursty session arrivals

Figure 4.5: Optimality of RAP variants
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4.5a with exponential workloads that both RAP-DP and RAP-AllApps are able to generate

the optimal plans at each decision stage while RAP-OneApp can generate the optimal plan

in all stages except decision stages 7, 8, and 9. In most decision stages the application which

causes the most reduction in the SV value has also the highest Va value. The difference

in behaviour between RAP-DP and RAP-AllApps on one side and RAP-OneApp on the

other side can be observed more clearly in Figure 4.5b with bursty workloads. However,

the RAP-OneApp’s solution is still very close to the solutions obtained by the other two

variants. Appendix C describes a more detailed analysis of the results shown in Figure 4.5b

to show how RAP-DP achieves an optimal solution in this experiment.

Figure 4.5 characterizes the optimality of the resource allocation plans obtained at each

decision stage by the three RAP variants with respect to the SLO violation percentage only.

However, the figure does not show the optimality of the solutions obtained by the RAP

variants with respect to the aggregate number of web server instances allocated in each

plan. Analysis of the results obtained from this experiment show that the optimal plans

obtained by RAP-DP at the different decision stages have the same aggregate number of

web server instances allocated when compared to the optimal plan obtained using exhaustive

enumeration of all possible plans at the corresponding decision stages. This is because, as

described previously in Section 3.3.1, RAP-DP allocates exactly one extra resource instance

to the bottleneck tier of one of the applications in one resource allocation interval. Therefore,

RAP-DP allocates the least possible number of resources at each decision stage to achieve

the most reduction in the SLO violation percentage.

It can be noticed in Figure 4.5 that there is no difference between the solutions obtained by

RAP-DP and RAP-AllApps in all decision stages. This is because the workloads considered

in the two experiments have the same bottleneck tier, i.e., web tier, in all resource allocation

intervals at all decisions stages. To illustrate the difference between the solutions obtained

by RAP-DP and RAP-AllApps, another experiment is conducted with the same settings
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Figure 4.6: Solutions obtained by RAP variants with workloads having different bottleneck
tiers over the planning horizon

used in the first experiment whose results are shown in Figure 4.5a. However, the maximum

number of web server instances and database instance cores per resource allocation interval

are set to much higher values than the values used in the first experiment. This is done to

allocate enough resources to all applications so that they can satisfy their SLO requirements.

To force the workloads to change their bottleneck tiers in some resource allocation intervals

at some decision stages, the mean database demand is increased from 10 to 18 ms to be close

to the mean web demand of 20 ms.

Figure 4.6 shows slight differences in the solutions obtained by RAP-AllApps from the

optimal solutions obtained by RAP-DP. These differences occur at decision stages 7 to 13

and 18 to 25. This is because in each of these decision stages the bottleneck tier is not

the same in all resource allocation intervals for some of the workloads considered in the

experiment. This affects the optimlaity of the solutions obtained by RAP-AllApps which

evaluates at each decision stage the performance of all applications in only the resource
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allocation intervals with the highest mean response. This is opposed to RAP-DP which

evaluates the performance of all applications in all resource allocation intervals at each

decision stage as described previously in Section 3.3.2. Section 4.5 shows more detailed

analysis of the workload characteristics which cause the solutions obtained by RAP-AllApps

to differ from the corresponding solutions obtained by RAP-DP.

Figure 4.6 shows that the three RAP variants are able to converge to the optimal solution

which results in zero mean SLO violation percentage. This happens because, as described

previously, the resource limits per each resource allocation interval are set to very high values

which are sufficient for each RAP variant to eventually obtain the optimal resource allocation

plan.

Table 4.3 shows that RAP-OneApp reduces the number of solutions explored, i.e., per-

formance model invocations, relative to RAP-DP and RAP-AllApps at each decision stage

significantly. For example, in the experiment shown in Figure 4.5a RAP-OneApp reduces

the number of solutions explored per decision stage by 94% and 75% relative to RAP-DP

and RAP-AllApps, respectively. Consequently, RAP-OneApp is better suited for analyses

involving a large number of applications without significantly affecting the optimality of the

solutions obtained.

4.5 Sensitivity Analysis of RAP Variants

This section shows results which analyze the sensitivity of the three RAP variants to two

factors namely, the degree of similarity in resource demands between application tiers and

the degree of homogeneity in resource scaling among application tiers. Both factors will be

described in more detail in the ensuing paragraphs.

The sensitivity of the RAP variants to the degree of similarity in resource demands

between application tiers is explored first. An experiment is conducted where four different

applications subjected to exponential session arrivals are analyzed over a planning horizon
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of 4 hours with a resource allocation interval of 1 hour. The maximum number of web server

instances and database instance cores per resource allocation interval are set to very high

values which are sufficient to allocate enough resources to all applications so that they can

satisfy their SLO requirements. In this experiment the mean demand of the web tier is kept

at 20 ms while the mean demand of the database tier is varied from 10 to 18 ms. In this

way, the degree of demand similarity between the two tiers is varied. Finally, each of the

three RAP variants is used in conjunction with WAM-QNM to obtain a resource allocation

plan for this experiment.

Figure 4.7 shows the sensitivity of the three RAP variants to the similarity in demands

between application tiers when subjected to workloads with exponential session arrivals.

Figure 4.7a compares the mean SLO violation percentages of the solutions obtained by each

of the three RAP variants when the mean demands of the two tiers are significantly different

while Figure 4.7b compares the mean SLO violation percentages of the solutions obtained

by the three RAP variants when the mean demands of the two tiers are more similar. It

should be noted that Figure 4.7b reproduces the same results shown previously in Figure

4.6 for comparison with the results shown in Figure 4.7a and with the results shown later in

Figures 4.8 and 4.9.

Figure 4.7a shows that the solutions obtained by the optimal RAP-DP and RAP-AllApps

are the same in all decision stages. This is because the web mean demand is twice as much

as the database mean demand which makes the web tier always the bottleneck tier for all

workloads considered in the experiment in all resource allocation intervals at all decision

stages. The solutions obtained by RAP-OneApp are also the same as those obtained by

RAP-DP except for the decision stages 8, 9 and 10.

Figure 4.7b shows more differences in the solutions obtained by RAP-AllApps from those

obtained by RAP-DP at some decision stages when compared with the results shown in Fig-

ure 4.7a. The reason for this is that the similarity of the demands between the web and
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(a) mean demands of web and database tiers are significantly different

 

(b) mean demands of web and database tiers are smiliar

Figure 4.7: Sensitivity of RAP variants to similarity resource demands between application
tiers when subjected to workloads with exponential session arrivals
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database tiers makes the workloads change their bottleneck tiers in some resource allocation

intervals at some decision stages. This affects the optimlaity of the solutions obtained by

RAP-AllApps as described previously in Section 3.3.2. In comparison with the results shown

in Figure 4.7a, Figure 4.8b shows more differences in the solutions obtained by RAP-OneApp

from those obtained by RAP-DP. As described previously in Section 3.3.3, RAP-OneApp

makes the simplifying assumption that targeting the application with the highest SLO vio-

lation percentage likely yields the highest reduction in mean SLO violation percentage over

all applications. Changing the bottleneck tier in some resource allocation intervals at some

decision stages causes RAP-OneApp to not obtain the optimal solution at these decision

stages.

Figure 4.8 shows the same results shown in Figure 4.7 for four workloads characterized by

more session arrival variability, i.e.,SCVa,k= 3, and progressively higher degrees of session

arrival burstiness, i.e., Ia,k = 100, 1000 and 10,000. In general, the same trends for the

three RAP variants shown in Figure 4.7 for exponential session arrivals are confirmed in

Figure 4.8 for bursty session arrivals. However, for the bursty workloads shown in Figure

4.8a the solutions obtained by RAP-OneApp are deviated slightly more from those obtained

by RAP-DP when compared with corresponding results for exponential workloads shown in

Figure 4.7a.

The sensitivity of the RAP variants to the degree of homogeneity in resource scaling

among application tiers is now explored. In the experiments described previously in this

section the web tier is modeled by a multi-server service center while the database tier is

modeled by a multi-core service center. Therefore, the effect of adding one more resource

instance to the web tier on the overall application response time is not the same as adding

one more resource instance to the database tier. This is referred to as heterogeneous resource

scaling among application tiers. To study the effect of heterogeneous resource scaling among

application tiers on the optimlaity of the RAP variants a set of experiments are conducted.
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(a) mean demands of web and database tiers are significantly different

 

(b) mean demands of web and database tiers are smiliar

Figure 4.8: Sensitivity of RAP variants to similarity in resource demands between application
tiers when subjected to workloads with bursty session arrivals
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The experiments described previously in this section with similar mean web and database

demands are repeated. However, the database tier is modeled by a multi-server service center

instead of a multi-core service center. In this way, the web and database tier are allocated

same types of resource instances which yields homogeneous scaling of resources in both tiers.

The results obtained from the three RAP variants using homogeneous resource scaling are

compared with the previous results obtained using heterogeneous resource scaling. It should

be noted that in the following experiments only similar mean web and database demands are

explored. This allows resource scaling to be explored in both tiers rather than the web tier

only which is the case when the mean web demand is much higher than the mean database

demand.

Figure 4.9 shows the mean SLO violation percentages of the solutions obtained by the

three RAP variants for both exponential and bursty workloads when resource scaling is homo-

geneous in the two tiers. The results obtained in Figure 4.9a for exponential workloads using

homogeneous resource scaling are compared with corresponding results shown previously in

Figure 4.7b using heterogeneous resource scaling. It is noticed from this comparison that

allocating same types of resource instances to application tiers, i.e., homogeneous resource

scaling, makes the solutions obtained by the RAP variants at various decision stages more

close than those obtained when the application tiers are allocated different resource types,

i.e., heterogeneous resource scaling. The same findings can be observed for bursty workloads

when comparing the results shown in Figure 4.8b with corresponding results shown in Figure

4.9b. The is because using heterogeneous resource scaling among application tiers can trigger

more changes in the bottleneck tier over the planning horizon than with using homogeneous

resource scaling.

In summary, the more degree of similarity in resource demands between application tiers

and the more the degree of heterogeneity in resource scaling among application tiers, the

more the deviation in the solutions obtained by RAP-AllApps and RAP-OneApp from those
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(a) workloads with exponential session arrivals

 

(b) workloads with bursty session arrivals

Figure 4.9: Sensitivity of RAP variants to homogeneity in resource scaling among application
tiers
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obtained by RAP-DP. However, both heuristic RAP variants, i.e., RAP-AllApps and RAP-

OneApp, can obtain close to optimal solutions in most of the experiments conducted for

both exponential and bursty workloads.

4.6 Comparing RAP with Burstiness-Agnostic SLP Approaches

In this section and in the following chapters of the thesis RAP refers to the RAP-OneApp

variant. The other two variants of RAP, i.e., RAP-DP and RAP-AllApps, are explicitly called

by their names. In this section RAP is compared to the whole and basic interval approaches

described previously in Section 3.4. As mentioned previously these two approaches are

simpler than RAP. However, they do not take into account either workload variability or

burstiness. The whole approach considers a resource allocation interval that is the same as

the planning horizon. In contrast, the basic interval approach considers a resource allocation

interval with finer time scale granularity than the planning horizon.

Figure 4.10 shows the number of web server instances and database instance cores al-

located to a combination consisting of five identical application workload scenarios, i.e., in

terms of variability and burstiness, over eight 1-hour intervals. Specifically, the five workload

scenarios are characterized by medium variability and extremely high burstiness in session

arrivals, i.e., SCVa,k= 3 and Ia,k= 10,000. The setup of this experiment is performed to

allocate as many resources needed to satisfy the SLOs of all five applications.

Figure 4.10 illustrates the operation of each resource allocation approach. In the whole

approach all resource allocation intervals are allocated the same number of web server in-

stances and database instance cores. In the basic interval approach resource allocations follow

almost a chronological order. Specifically, for resource allocation intervals 1 to 6, resource

allocations in any given resource allocation interval either remain the same or drop when

compared to the resource allocations in the previous resource allocation interval. In resource

allocation interval 7 this observation is violated since the bottleneck tier switches from the
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(a) web server instances

 

(b) database instance cores

Figure 4.10: Three different resource allocation approaches over an eight-hour planning
horizon
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web tier to the database tier in one of the workload scenarios. RAP selects the resource

allocation interval with the highest mean response time. Consequently, its resource alloca-

tions show a pattern that reflects the burstiness characteristics of the application workload

scenarios. For example, in Figure 4.10a the five applications considered in this experiment

are allocated the highest number of web server instances in resource allocation interval 8.

The happens because this resource allocation interval is the most bursty one among all other

resource allocation intervals. On the contrary, the resource allocation interval 4 is allocated

the least number of web server instances because it is the least bursty one. From Figure 4.10,

RAP estimates a requirement of at most 14 web server instances and 9 database instance

cores per resource allocation interval to satisfy application SLOs. The other two approaches

estimate higher numbers since they do not take into account either variability or burstiness.

The sensitivity of the three policies to burstiness is now explored. Figure 4.11 shows

the total number of web server instances and database instance cores allocated over eight

hours using the three resource allocation approaches mentioned above to satisfy SLOs of

four different combinations of workload scenarios. The four combinations are characterized

by progressively higher degrees of session arrival burstiness. Each combination consists of

five workload scenarios which have identical session arrival process characteristics. Table

4.4 lists the values of the parameters which characterize the session arrival process of each

combination of workload scenarios shown in Figure 4.11. Figure 4.11 confirms that RAP

estimates the least number of resources in most cases especially those with high degree of

burstiness.

Figure 4.12 shows the effect of each of the three resource allocation approaches on the

mean violation percentage for four different combinations of workload scenarios. Each com-

bination consists of ten application workload scenarios. The four combinations have progres-

sively higher degrees of burstiness. Refer to Table 4.4 for a list of parameters that characterize

the session arrival process of each combination. The number of web server instances and
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(a) web server instances

 

(b) database instance cores

Figure 4.11: Total number of resource instances allocated by three different approaches
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Table 4.4: Parameters of the session arrival processes of the workload scenario combinations
used in the experiments

Session Arrival Process
Sa,k Ia,kof Each Combination

Exponential 1 1
Medium bursty 3 100

High bursty 3 1000
Extreme bursty 3 10,000

 

Figure 4.12: Mean SLO violation percentages of four combinations of workload scenarios

the number of database instance cores available per interval are set to 16 each. This setting

is selected such that the SLOs of the applications represented by the workload scenarios in

each combination are violated. Therefore, the violation percentages of the different combi-

nations using the three resource allocation approaches can be compared. Finally, the results

are shown again for a planning horizon of eight hours and a resource allocation interval of 1

hour.

As shown in Figure 4.12, all three resource allocation approaches estimate the same mean

SLO violation percentage for the non-bursty exponential combination of workload scenarios.

Thus it does not matter which resource allocation approach is used for exponential workload
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scenarios. However, the whole and basic interval approaches provide highly pessimistic SLO

violation percentage estimates for the highly bursty combinations of workload scenarios.

In particular, both of these approaches estimate mean SLO violation percentages of 155%

and 226%, respectively, for the extremely bursty combination of workload scenarios while

RAP estimates a 71% mean violation. The mean SLO violation percentage of RAP is still

high because a very tight constraint is enforced on the number of web server instances and

database instance cores available per interval. A lower violation percentage can be achieved

by relaxing the resource constraints.

Figure 4.13 provides a more detailed view of the four combinations of workload scenarios

evaluated in 4.12. This detailed view shows the individual SLO violation percentages of

the ten workload scenarios constituting each combination. It can be noticed that for all

combinations, the whole approach achieves very low violation percentages for some workload

scenarios while very high violation percentages for other workload scenarios. For example,

in Figure 4.13a which shows the SLO violation percentages of the exponential combination,

the SLO violation percentage estimated by the whole approach is close to 70% for workload

scenarios 2, 6, 7 and 10 while the SLO violation percentage for workload scenarios 1,3,4 and 5

are less than 10%. This is not the case with both basic interval and RAP approaches. These

two approaches achieve an SLO violation balance across the ten applications. However RAP

has the added advantage of obtaining the least per-application violation percentages except

for the workload scenarios 4, 7 and 10 in the exponential distribution shown in Figure 4.13a.

Furthermore, as shown in Figures 4.13b to 4.13d, as the degree of burstiness increases RAP

achieves less SLO violation percentages than those achieved by the basic interval approach.

For example, for the medium bursty combination shown in Figure 4.13b, the maximum

difference in SLO violation percentage achieved by the basic interval approach and RAP

among all workload scenarios is 13% for workload scenario 10. However, for the extremely

bursty combination shown in Figure 4.13d, the maximum difference is 189% for workload
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scenario 5.

Figure 4.13 also illustrates the number of violating applications that result from each

of the three approaches.In general, the figure shows that neither basic interval nor RAP

approaches are able to reduce the number of violating applications. However, the whole

approach reduces the number of violating applications in the exponential and medium bursty

combinations shown in Figures 4.13a and 4.13b, receptively. For example, the whole approach

reduces the number of violating applications in the exponential combination to 7 instead

of 10 where application 5, 8 and 9 have zero violations. However, this happens at the

expense of other violating applications such as applications 2, 6, 7 and 10, which have much

higher violation percentages than those achieved by basic interval and RAP approaches.

Furthermore, the whole approach is not able to reduce the number of violating applications

in the high and extremely bursty combinations shown in Figures 4.13c and 4.13d, receptively.

These results are consistent with the formulation of the optimization problem described

previously in Section 3.1 which minimizes the sum of SLO violations for a given set of

applications rather than minimizing the number of SLO violating applications.

Recall from Section 3.1 that the objective of the global SLO and resource allocation opti-

mization problem can be modified to minimize the number of violating applications instead

of minimizing the SV value as captured by Equation (3.7). To minimize the number of vio-

lating applications at each decision stage, the RAP-DP approach described in Section 3.3.1

can be modified to select the application which achieves a Va value of zero instead of the

application which results in the most reduction in Va.

In summary, the RAP method can take advantage of burstiness characteristics of applica-

tions hosted on a cloud to suggest cost-effective resource allocations. In resource constrained

scenarios, it can suggest strategies that lead to balanced SLO violations across applications

thereby minimizing penalties due to SLO violations. Furthermore, selecting a resource al-

location interval that is smaller in size than the planning horizon reduces the number of

116



 

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

vi
o

la
ti

o
n

 %

workload scenario 

Whole

Basic Interval

RAP

(a) violation percentages of the exponential combination

 

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

vi
o

la
ti

o
n

 %

workload scenario 

Whole

Basic Interval

RAP

(b) violation percentages of the medium bursty combination

Figure 4.13: Detailed SLO violation percentages of four combinations of workload scenarios
with each combination consisting of ten workload scenarios
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Figure 4.13: Detailed SLO violation percentages of four combinations of workload scenarios
with each combination consisting of ten workload scenarios (Continued)
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resources required to satisfy the SLOs of applications characterized by bursty workload sce-

narios.

4.7 Comparing RAP with Utilization Based SLP

This section investigates a technique that only considers resource utilization thresholds,

e.g., a CPU utilization target, instead of SLOs based on response times. As mentioned

previously in Section 1.1, these techniques are commonly used in practice since they do

not require detailed performance models such as those employed in this work. An example

of a utilization-based technique is the Quartermaster capacity manager service proposed

by Rolia et al. [87]. Quartermaster allows resource utilization thresholds to be set as an

indirect mechanism for achieving adequate application response times. The RAP method

accommodates both utilization and response time based SLO thresholds. This section uses

this feature to compare these two different methods to SLP.

Figure 4.14 shows the total number of web server instances and database instance cores

allocated to four different combinations of workload scenarios where each combination has

five applications. Similar to the previous sections, the four combinations have progressively

higher degrees of burstiness. Refer to Table 4.4 for a list of parameters that characterize the

session arrival process of each combination. RAP, i.e., RAP-OneApp, is used as the resource

allocation approach in all cases. However, two different versions are explored. The first

version is the same as the approach taken in the previous sections where SLOs are specified

based on mean response times. This version is referred to as RAP-Resp. The other version

accepts an SLO threshold based on a mean resource utilization target of the bottleneck

resource over the planning horizon. This is referred to as RAP-Ux% where x refers to the

value of the threshold. Specifically, we experiment with x values of 30%, 50% and 60%. The

setup of this experiment is performed to allocate as many resources needed to satisfy the

SLOs of all five applications in each combination.

119



 

0

20

40

60

80

100

120

exponential medium bursty high bursty extreme bursty

to
ta

l 
n
u
m

b
e
r 

o
f 
w

e
b
 s

e
rv

re
r 
in

st
a
n
ce

s

session arrival process of each combination

RAP-Resp

RAP-U30%

RAP-U50%

RAP-U60%

(a) web server instances

 

0

10

20

30

40

50

60

70

exponential medium bursty high bursty extreme bursty

to
ta

l 
n
u
m

b
e
r 

o
f 
d
a
ta

b
a
se

 i
n
st

a
n
ce

 c
o
re

s

session arrival process of each combination

RAP-Resp

RAP-U30%

RAP-U50%

RAP-U60%

(b) database instance cores

Figure 4.14: Comparing utilization based SLP with response time based SLP
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Figure 4.14 illustrates several potential problems with a utilization based approach for

bursty workloads. From the figure, as expected, the lower the utilization target the higher

the number of resources estimated by RAP. However, the number of resources estimated for

a given utilization threshold remains the same regardless of the degree of burstiness in session

arrivals. In contrast, RAP-Resp adapts the number of resources provisioned depending on

the level of burstiness. This indicates that merely relying on utilization-based targets may

not be an appropriate method for guaranteeing SLOs of applications with high degree of

burstiness.

Figure 4.15 shows the effect of using utilization-based targets on application response

times. For each of the RAP-Ux% estimated allocation plans, the mean response time SLO

violations are calculated as defined previously in Section 3.1. From Figure 4.15, response

time violations increase with burstiness for a given utilization target. Furthermore, the de-

gree of violation is larger for higher thresholds. From the figure, the likelihood of minimizing

response time violations for bursty workloads increases if one were to choose very low uti-

lization targets. However, such policy requires trying a wide range of utilization targets to

reach a certain target which achieves the required SLO. Such randomly selected target may

allocate excessive resources over the planning horizon thereby increasing costs. For example,

Figure 4.15 shows that a 30% utilization target cannot satisfy the SLOs of all applications

which requires trying a lower utilization target such as 20%. This lower utilization target

may satisfy the SLOs of all applications at the expense of increased resource costs..

In summary, these results show the challenges in meeting response time targets for appli-

cations with bursty workloads by controlling their resource utilizations. The results suggest

that SLP methods should incorporate analytic models that can help SPs directly specify

response time based SLOs.
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Figure 4.15: Effect of utilization based SLP on response time violation

4.8 Flexibility of RAP in Handling Alternative Service Level Objectives

In all preceding sections it is assumed that an application’s SLO is defined over a planning

horizon spanning multiple resource allocation intervals. In this section this assumption is

relaxed by showing the ability of RAP to accommodate different techniques for defining

application SLOs. Specifically, the previous approach of defining application SLOs over the

entire planning horizon is compared with another approach of defining application SLOs over

each resource allocation interval.

An experiment is conducted for four different combinations of workload scenarios with

progressively higher degrees of session arrival burstiness over a planning horizon of eight

1-hour resource allocation intervals. Each combination has five workload scenarios. Refer

to Table 4.4 for a list of parameters that characterize the session arrival process of each

combination. For each combination of workload scenarios, resource estimate obtained by
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RAP to satisfy each application’s SLO defined over the entire planning horizon is compared

with the corresponding resource estimate obtained when the application’s SLO is defined

over each resource allocation interval.

Figure 4.16 shows the total number of web server instances and database instance cores

allocated over eight hours for the two approaches denoted by SLOOverPlanningHorizon and

SLOOverAllocationInterval. The figure shows that the SLOOverAllocationInterval approach

needs more resources than SLOOverPlanningHorizon approach in all combinations of work-

load scenarios. The reason for this is that the SLOOverPlanningHorizon approach only con-

siders the most heavily loaded resource allocation intervals for additional resource instances

to handle any SLO violations which occur over the whole planning horizon. On the contrary,

the SLPOverAllocationInterval approach allocates additional resource instances to all heav-

ily loaded resource allocation intervals to handle the SLO violations which can occur in these

resource allocation intervals. In summary, the results show that under both bursty and non

bursty workload scenarios, customers can obtain cost savings if their SLOs are defined over

timescales that are longer than the timescales over which dynamic resource allocations are

explored. This type of an analysis can help cloud SPs negotiate with their customers the

cost of resource allocation estimated for different ways of defining SLOs. Based on this cost

estimate customers may revise their way of defining the SLOs of their applications to lower

their costs.

4.9 Improving Performance of RAP-DP and RAP-AllApps by Exploiting

Parallelism

This section discusses the improvement that can be achieved in the performance of RAP-

DP and RAP-AllApps by exploiting parallelism. Recall from Section 3.3.1 that RAP-DP is

guaranteed to obtain an optimal solution for the global SLO and resource allocation opti-

mization problem described previously in Section 3.1. However, this requires the invocation
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Figure 4.16: Flexibility of RAP to different application SLO definitions
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of WAM-QNM for all applications in all resource allocation intervals that have free resource

instances to decide on the candidate application and the candidate resource allocation inter-

val for additional resource instance. This set of invocations should be done at each decision

stage. As described previously, the number of WAM-QNM invocations made by RAP-DP

at each decision stage is equal to the product of the number of applications and the number

of resource allocation intervals. This increases the computation time because the invocation

of WAM-QNM is the most time consuming part of RAP-DP.

Parallelism can be exploited to improve the performance of RAP DP since at each deci-

sion stage the invocation of WAM-QNM for a given application in a given resource allocation

interval is completely independent of the WAM-QNM invocation for the the same applica-

tion in a different resource allocation interval. It is also independent from the WAM-QNM

invocation for another application in either the same or in a different resource allocation

interval. Therefore, this set of invocations can be done in parallel at each decision stage by

assigning each invocation to a separate thread of execution.

The same parallelization approach can also be applied to RAP-AllApps. As described

previously in Section 3.3.2, at each decision stage RAP-AllApps has to invoke WAM-QNM

for all applications like RAP-DP. However, RAP-AllApps makes only one WAM-QNM in-

vocation for each application by allocating one additional resource instance in the resource

allocation interval which has the highest mean response time and which has free resource

instances available for allocation. Therefore, at each decision stage WAM-QNM is invoked

by RAP-AllApps a number of times equal to the number of applications. This also increases

the computation time at each decision stage if the number of applications increases signifi-

cantly. This set of invocations can also be done in parallel at each decision stage by exploiting

multi-threading.

As described previously in Section 3.3.3, RAP-OneApp is the most computationally effi-

cient RAP variant because it makes only one WAM-QNM invocation at each decision stage.
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Therefore, RAP-OneApp will not benefit from parallelism at each decision stage. As a re-

sult, only the previously implemented single-threaded version of RAP-OneApp is used in

this section.

Based on the above observations multi-threaded versions of both RAP-DP and RAP-

AllApps are implemented. These versions are implemented using the well-known Open

Multi-Processing (OpenMP) Application Programming Interfaces (APIs) for shared memory

multiprogramming [47]. OpenMP defines a set of compiler directives that creates and assigns

selected sections from the code of a software program to separate threads of execution. As

as result, these threads can run in parallel by assigning each thread to an idle processor core

in the machine running the code. To compare the performance of the single-threaded with

that of the multi-threaded versions of RAP-DP and RAP-AllApps variants a machine with

12 processor cores and 64 GB RAM is used. Each core is a 2.4 GHz Intel Xeon processor.

An experiment is conducted to compare the performance of the previously implemented

single-threaded versions of the different RAP variants with the corresponding multi-threaded

versions. In this experiment forty different applications are analyzed for SLP with twenty

applications subjected to exponential session arrivals and twenty applications subjected to

bursty session arrivals. These applications are analyzed over a planning horizon of 4 hours

with a resource allocation interval of 1 hour. The mean demands of the web and database tier

are selected to be similar, i.e., 20 ms and 18 ms, receptively. These settings are done to allow

the bottleneck tier to change over the planning horizon for some or all of the applications

when moving from one decision stage to another. Therefore, both the web server instances

and database instance cores available for allocation per resource allocation interval can be

used.

The maximum number of web server instances and database instance cores per resource

allocation interval are set to 41 each. The choice of these settings were driven by the need

to bound the computation time of the single-threaded versions of RAP-DP to a few hours.
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Specifically, as described previously in Section 4.4, all RAP variants start with an initial

resource allocation plan at decision stage 0 which involves allocating one web server instance

and one database instance core to each application in each resource allocation interval. This

makes an initial aggregate allocation of 40 web server instances and 40 database instance

cores to the forty applications over all resource allocation intervals. Therefore, only one

web server instance and one database instance core will be available for allocation for all

applications in each resource allocation interval in the subsequent decision stages. In this

way each RAP variant will run for a maximum of 8 decision stages which puts an upper

bound on the computation time of each RAP variant. Finally, each single-threaded and

multi-threaded version of the three RAP variants is used in conjunction with WAM-QNM

to obtain a resource allocation plan for this experiment.

Table 4.5 lists the number of WAM-QNM invocations and the corresponding computa-

tion times for each of the single-threaded and multi-threaded versions of the different RAP

variants. As shown in the table, both RAP-AllApps and RAP-DP gained performance im-

provement by exploiting parallelism. Specifically, when comparing the computation times of

the single-threaded and the multi-threaded versions of both variants, it can be noticed that

their computation times are improved by a factor of 9. Although this factor is expected to

be close to 12 which is the number of processor cores of the machine used in the experiment,

this is not the case. The reason for this is the tight resource constraints applied in the

experiment. For example, at the initial decision stages RAP-DP can make 160 WAM-QNM

invocation, i.e., 40 applications times 4 resource allocation intervals, per decision stage. This

can be done because initially each resource allocation interval has free resource instances.

However, as the resource allocation process continues in subsequent decision stages the num-

ber of resource allocation intervals that have free resource instances decreases. Therefore,

WAM-QNM is not invoked for all applications in these reserved resource allocation intervals.

Furthermore, WAM-QNM is invoked by an application in a given resource allocation interval
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Table 4.5: Execution times of single-threaded and multi-threaded versions of the three RAP
variants on a 12 core machine

RAP Variant
Number of Computation Time

WAM-QNM Invocations in Minutes
RAP-OneApp 48 18

Single-threaded RAP-AllApps 210 75
Multi-threaded RAP-AllApps 210 9

Single-threaded RAP-DP 456 163
Multi-threaded RAP-DP 456 19

if and only if this resource allocation interval has free resource instances for the bottleneck

tier of this application. These reasons limit the number of WAM-QNM invocations that can

be assigned to separate threads of execution at the final decision stages.

It can also be noticed in Table 4.5 that the computation time of RAP-OneApp is still

slightly lower than that of the multi-threaded version of RAP-DP. However, the computation

time of the multi-threaded version of RAP-AllApps is half that of RAP-OneApp. This

might suggest that the multi-threaded version of RAP-AllApps can be used instead of RAP-

OneApp because it provides more close to optimal solutions and at the same time it is

more computationally efficient. However, the performance gain depends on the number of

applications and the number of processor cores. For a given number of cores, the gain of the

multi-threaded version of RAP-AllApps over RAP-OneApp will diminish with an increase

in the number of applications. Since the number of WAM-QNM invocations is even more in

RAP-DP than in RAP-AllApps, the gains from using the multi-threaded version of RAP-DP

for a given number of cores will reduce even more rapidly with an increase in the number

of applications to be analyzed and with an increase in the number of intervals over which

resource allocations are explored.

In summary, the multi-threaded versions of RAP-DP and RAP-AllApps can provide sig-

nificant performance gains if the number of cores is comparable to the number of WAM-QNM

invocations in each decision stage. This suggests that cloud SPs can use large, inexpensive,

”pay as you go” compute clusters such as Amazon Cluster Compute Instances [14] to speed
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up SLP analysis using these techniques. In scenarios where deployment of such clusters is

not feasible, RAP-OneApp remains the most computationally efficient variant for conduct-

ing SLP analysis. Chapter 6 introduces a clustering technique to reduce SLP analysis time

using all three RAP variants.

4.10 Summary

This chapter describes a detailed simulation evaluation of RAP. Firstly, it describes the

approach used in the thesis to characterize application workload scenarios and the simulation

setup employed in evaluating RAP. Secondly, it shows results that compare the accuracy of

WAM-QNM and MVA-QNM techniques which are employed by RAP. These results confirms

the findings reported by Krishnamurthy et al. which show the accuracy of WAM-QNM over

MVA-QNM for bursty workload scenarios.

Thirdly, results which characterize the optimality of the three RAP variants are shown.

The results show that the proposed RAP variants can identify optimal or near optimal

resource allocation plans without exhaustively generating all possible plans. Specifically,

RAP-DP can identify a plan that minimizes SLO violations for a given cloud resource ca-

pacity. It is also shown that RAP-AllApps is able to identify optimal plans of resource

allocations if the bottleneck resource remains the same in all resource allocation intervals.

Furthermore, the results show that under both bursty and non-bursty workload scenarios,

the heuristic baseline RAP approach, i.e., RAP-OneApp, is able to identify near optimal

plans of resource allocations while reducing computational complexity significantly when

compared to the optimal RAP-DP approach.

A study is also conducted which explores the sensitivity of the RAP variants to the degree

of similarity in resource demands between application tiers and the degree of homogeneity

in resource scaling among application tiers. This study shows that more deviation occurs in

the solutions obtained by RAP-AllApps and RAP-OneApp from those obtained by RAP-DP
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when the demands of application tiers become more similar and when the application tiers

are allocated resources of different types.

Fourthly, the chapter shows results that RAP is able to more accurately determine the

resources required for delivering specified SLOs compared to other competing techniques

especially for applications characterized by bursty workload scenarios. Furthermore, the

results establish the superiority of RAP to the prevalent practice of considering SLO targets

based on resource utilization thresholds over the planning horizon.

Fifthly, the results show the flexibility of RAP to accommodate different techniques for

defining application SLOs. Specifically, the results show that under both bursty and non

bursty workload scenarios, customers can obtain cost savings if their SLOs are defined over

timescales that are longer than the timescales over which dynamic resource allocations are

explored.

Finally, an approach to improve the performance of RAP-DP and RAPAllApps by ex-

ploiting parallelism is shown. Specifically, multi-threaded versions of the two RAP variants

are implemented to reduce their computation times for large number of applications. A ma-

chine with 12 processor cores is used to compare the computation times of the single-threaded

and the multi-threaded versions of the two RAP variants. The results show a performance

improvement of the multi-threaded versions over the corresponding single-threaded versions

by a factor of 9. These results suggest that a cloud SP can find optimal or close to optimal

solutions by leveraging inexpensive, on-demand, cluster compute instances to execute the

parallel versions of RAP.
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Chapter 5

Workload Uncerainty Module

This chapter provides a detailed description of the workload uncertainty module described

briefly in Section 1.3.2. Section 5.1 describes the proposed Monte Carlo simulation technique

[82] employed by the uncertainty module. Section 5.2 presents results to illustrate the utility

and sensitivity of the Monte Carlo simulation technique to various parameters.

5.1 Monte Carlo Simulation Technique

As mentioned previously in Section 1.3.2 and Section 4.1, each application is characterized

by a set of alternative workload scenarios. As opposed to the previous chapter, the value

of k for each workload scenario Wa,k can be more than one. Each workload scenario has a

certain probability of occurrence Pa,k. Characterizing each application by a set of alternative

workload scenarios can lead to an explosion in the number of alternative combinations of

workload scenarios that need to be considered during the SLP process. The objective of

the uncertainty module is to select a small subset of the most likely workload scenario

combinations out of all the possible combinations of workload scenarios.

The uncertainty module employs a Monte Carlo simulation algorithm. As mentioned

previously in Section 1.3.2, the algorithm requires a cloud SP to specify a certainty threshold

h that specifies a trade-off between the accuracy in predicting the impact of uncertainty

for SLP and computation time. The basic idea behind this approach is that many of the

workload scenario combinations may not be worth exploring since they may have a very

small probability of occurrence. The Monte Carlo simulation algorithm generates a subset

of workload scenario combinations such that these combinations should have a cumulative

probability of occurrence greater than or equal to the certainty threshold h.
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Figure 5.1 shows the pseudo-code of the Monte Carlo simulation algorithm. As shown in

the figure, the algorithm takes the following inputs:

• A set of alternative workload scenarios Wa,k for each application a ∈ {1,2,...A}.

This set is denoted by Wa.

• A set of probabilities of occurrence Pa,k of these workload scenarios for each

application a. This set is denoted by Pa. It should be noted that the proba-

bilities in this set should add up to 1.0 for a ∈ {1,2,...A}.

• The certainty threshold 0 ≤ h ≤ 1.

• A value for a variable called RunLength which represents the maximum number

of iterations of the algorithm.

In each iteration, the algorithm selects a workload scenario Wa,k for each application a

from its set Wa. This selection is driven by the PDF of workload scenarios for this application

as specified in Pa. This is repeated for all A applications. The selected workload scenarios for

all A applications form one workload scenario combination denoted by m ∈ M. It is assumed

that the probability of occurrence Pa,k of a workload scenario of any given application in

any workload scenario combination m is independent of the probability of occurrences of the

other workload scenarios in the same combination. The reason for this assumption is that

application workloads belong to different customers. Therefore, as shown in Figure 5.1, the

probability of occurrence Probm of a combination m can simply be obtained as the product

of the probability of occurrences of the individual application workload scenarios in the

combination. The iterations are continued to select more scenario combinations till the sum

of the Probm values of the selected scenario combinations is greater than or equal to h or the

number of iterations equals RunLength. If the simulation terminates before producing the

desired h, a cloud SP can rerun the simulation by reducing h or increasing RunLength. As a

132



 

Input: Wa, Pa, a  {1, 2,…, A}, h, RunLength 

Output: M, ProbM, ToTProb 

ToTProb = 0   

M = { } 

Run = 1 

# run Monte Carlo simulation until achieving a list of workload scenario combinations M  

# with a total probability of occurrence more than or equal to h or  RunLength reached 

While (ToTProb < h && Run ≤  RunLength) 

For Run = 1 to RunLength 

m = { } 

# cumulative probability distribution of set Pa  

# is used to select a workload scenario for each application a 

For a = 1 to A 

r= GenerateRandomNumber() where r  [0,1] 

ProbSum = 0 

For k = 1 to La 

ProbSum += Pa,k 

If r ≤ ProbSum 

Add Wa,k to m 

Break 

End If 

                     End For 

End For 

# if the selected workload scenario combination m is not generated before, add it to set M  

If m is not found in M   

Add m to M 

Probm = P1,f1*P2,f2*…*Pa,fa*…*PA,fA | Pa,fa  Pa  
Add Probm to ProbM 

ToTProb += Probm 

     End If 

End For 

Run ++ 

End While 
Return M, ProbM, ToTProb 

Figure 5.1: Monte Carlo simulation algorithm
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Table 5.1: Alternative workload scenarios characterizing five applications considered in Fig-
ures 5.2,5.3 and 5.4

Application Workload Scenarios λa,k SCVa,k Ia,k

1
heavy load 3.33 3 1000
normal load 2.5 1 (Exp) 1(Exp)

2
heavy load 3.33 3 10,000
normal load 2.5 1 (Exp) 1(Exp)

3
heavy load 3.33 3 10,000
normal load 3.33 1 (Exp) 1(Exp)

4
heavy load 3.33 4 1000
normal load 2.5 1 (Exp) 1(Exp)

5
heavy load 3.33 5 1000
normal load 2.5 1 (Exp) 1(Exp)

result of this process, M captures a set of workload scenario combinations whose probability

of occurrences cumulatively sum up to a value greater than or equal to h.

5.2 Evaluation Results

This section discusses evaluation results of the uncertainty module. The section illustrates

the utility of the uncertainty module and its sensitivity various parameters. As mentioned

previously in Section 5.1, the uncertainty module considers a number of probable workload

scenarios, each with a certain likelihood of occurrence, for each application. Based on these

workload scenarios, a number of highly likely combinations of workload scenarios are gen-

erated such that their combined probability of occurrence is greater than or equal to the

certainty threshold h. As described previously in Section 1.3.2, RAP in conjunction with

WAM-QNM are then invoked on each combination to obtain estimates of the number of

resource instances needed over all resource allocation intervals over a planning horizon.

To illustrate the utility of the uncertainty module, a set of experiments are conducted

where five applications are considered with each having two alternative workload scenarios.

Table 5.1 lists the selected workload parameters for the two alternative workload scenarios.

These parameters were described previously in Section 4.1. For each application, one of the
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alternative workload scenarios is used to represent the normal operation of the application.

It is assumed that this scenario has exponential, i.e., ”Exp”, session inter-arrival times. The

other workload scenario is characterized by a higher session arrival rate, arrival variability,

and arrival burstiness relative to the normal workload scenario. While the normal work-

load scenario could represent typical behaviour over a planning horizon, the other workload

scenario could represent the activity in the planning horizon during periods of heightened

customer use of the application, e.g., customers using an e-commerce site during the hol-

iday season. The probability of encountering the heavy load workload scenario is denoted

by p. Different values of p are explored in the experiments. Furthermore, the experiments

consider values of 1.0 and 0.9 for the certainty threshold h. By setting h to 1.0, all possible

combinations of workload scenarios are covered. A h value of 0.9 causes the uncertainty

module to generate a subset of combinations with that cumulative likelihood of occurrence.

It is assumed that this system has a capacity constraint which limits the maximum number

of resource instances available at each application tier n over any given resource allocation

interval. To show the utility of the uncertainty module under different resource constraints,

Cmax,n,t values of 11, 12, and 13 are explored in the experiments.

Figure 5.2 illustrates the types of insights a cloud SP can obtain from the uncertainty

module. The figure shows the probability of the cloud requiring more than Cmax,n,t = 12

web server instances for each resource allocation interval for three different values of p. The

results shown in this figure are obtained by setting h to 1.0. As shown in the figure, increasing

the value of p, i.e., the probability of encountering the heavier load workload scenario for

each application, increases the likelihood of requiring more resources in most of the resource

allocation intervals. Interestingly, there are some exceptions to this behaviour in resource

allocation intervals 6 and 7. In these two resource allocation intervals an increase in the

value of p does not translate to an increase in the number of resources required. Deeper

analysis revealed that these two resource allocation intervals are not likely to experience a
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Figure 5.2: Probability of allocating per interval web server instances greater than Cmax,n,t
with different p values, h = 1.0, Cmax,n,t = 12

heavier load with the increase in the value of p even though the load increases over the entire

planning horizon. Conducting such detailed analysis for all resource allocation intervals with

different values of p can help cloud SPs to derive insights on such seemingly counter-intuitive

situations.

It can also be noticed in Figure 5.2 that the cloud runs the highest risk of being under-

provisioned and hence causing SLO violations in resource allocation interval 3. In this

resource allocation interval the probability of exceeding 12 web server instances is 1 for all

p values considered. Similar risks can also be visualized for resource allocation intervals 1,

4 and 8 for certain values of p. As a result, the cloud SP should focus carefully on these

critical resource allocation intervals to ensure adequate resource instances are available.

Figure 5.3 shows the impact of relaxing the capacity constraint. The results shown in this

figure are obtained by setting p to 0.1 and h to 1.0. The figure shows that increasing the web

server instance capacity reduces the risk of SLO violations due to under-provisioning. A pool
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Figure 5.3: Sensitivity analysis of Cmax,n,t web server instances, p = 0.1 and h = 1.0

of 13 web server instances seems to be adequate to reduce the risk of under-provisioning to

below 0.1 over all intervals. These types of sensitivity analyses can help cloud SPs quantify

the risks of workload uncertainty.

Figure 5.4 shows the sensitivity of the Monte Carlo simulation technique when h changes

from 1.0 to 0.9 for a p value of 0.1. To ensure statistical confidence in the results shown

in the figure, 32 statistically identical Monte Carlo simulations are conducted for h=0.9

using different random seeds. In each simulation, a number of combinations of workload

scenarios are generated such that their cumulative probability of occurrence is at least equal

to h. For each resource allocation interval in the planning horizon, the average probability

of exceeding Cmax,n,t = 11 web server instances is calculated over the 32 simulations. These

average probability values are compared with their corresponding probability values obtained

when h=1.0. Finally, for each probability value obtained in each resource resource allocation

interval, a 90% confidence interval is calculated. However, the values of the upper and lower

limits of each confidence interval are not shown in the figure due to their high proximity to

137



 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8

P
r(

w
e
b
 s

e
rv

e
rs

 >
 C

m
a
x,

n
,t
)

time (hours)

h=1.0

h=0.9

h = 1.0

h = 0.9

Figure 5.4: Sensitivity of the uncertainty module to h, p = 0.1, Cmax,n,t = 11

each other.

Considering the five applications listed in Table 5.1 with two workload scenarios per

application, exhaustive elaboration involves invoking the framework for a total of 25 = 32

different combinations of workload scenarios. This was the approach used in the analyses

embodied by Figure 5.2 and Figure 5.3. In contrast, over the 32 simulations conducted for

h= 0.9, the uncertainty module identified an average of only 9 combinations that need to be

evaluated representing an average reduction of 72% in the number of combinations. These

9 combinations result in an average cumulative probability of occurrence of 0.94. Figure

5.4 shows that the results obtained from the uncertainty module in conjunction with RAP

and WAM-QNM for h=1.0 and h=0.9 are very close to each other thereby motivating the

need for the uncertainty module. It should be noted that this significant reduction occurs

since not all the combinations in the exhaustive list of 32 have a very high likelihood of

occurrence. However, such dramatic benefits might not occur if there is extremely high

levels of uncertainty, e.g., when all alternative workload scenarios for an application are
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equally likely to occur. Another set of 32 statistically identical simulations is conducted

in which p is increased to 0.5 while keeping h=0.9. The number of combinations obtained

form this set of simulations to represent the above five applications is on average 29 with an

average cumulative probability of occurrence of 0.91; leading to only 9% average reduction

in the number of combinations. A detailed analysis of the relation between the values of h

and p will be discussed in the next experiment.

A sensitivity analysis is conducted to study the effect of selecting different values for p

and h on the percentage of reduction in the number of combinations of workload scenarios

analyzed for SLP. An experiment is conducted where ten applications are considered for

SLP. Each application has two alternative workload scenarios where one workload scenario

represents normal load while the other one represents higher load as described previously.

This results in a 210 = 1024 different combinations of workload scenarios. Figure 5.5 shows

the percentage of reduction achieved in the number of combinations of workload scenarios for

different values of p and h. As described previously, if the value of h is equal to 1.0, then all

combinations of workload scenarios are analyzed, therefor, no reduction occurs in the number

of combinations analyzed for SLP. This is shown in Figure 5.5 by the solid line directly on

the x-axis which represents h = 1.0. As the h decreases, the percentage of reduction in

the combinations analyzed decreases. This is expected because the h value dictates a lower

bound on the cumulative probability of occurrence of the combinations analyzed. If this lower

bound is relaxed, less number of combinations are required to be analyzed. For example,

if the value of h = 0.9, the combinations required to be analyzed should have a minimum

cumulative probability of occurrence of 0.9. The number of combinations analyzed in this

case will be less than the number of combinations analyzed when h = 0.7.

Figure 5.5 also shows the effect of changing the value of p, i.e., the probability of en-

countering the heavy workload scenario for each application, on the percentage of reduction

in the combinations analyzed. For a given value of h, the figure shows that the number of
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Figure 5.5: Relation between p and h and its effect on the number of workload scenario
combinations analyzed for SLP

combinations analyzed increases as the alternative workload scenarios for a given applica-

tion are equally likely to occur. This happens when the value of p is close to the middle

of the x-axis in Figure 5.5, e.g., 0.4, 0.5 and 0.6. As a result, many of the combinations

in the exhaustive list of 1024 analyzed in this experiment will have an equal likelihood of

occurrence. Therefore, a large number of combinations will be analyzed to achieve a given

value of h. However, if the value of p is close to any of the two edges of Figure 5.5, e.g., 0.1,

0.2, 0.8 and 0.9, then one of the two alternative workload scenarios will occur more likely

than the other one. As a result, some combinations in the exhaustive list of 1024 will have

much higher likelihood of occurrence than other combinations. The combinations with the

higher likelihood of occurrence can be sufficient to achieve a given value of h.

The effect of selecting selecting different values for p and h on the number of iterations

of the Monte Carol simulation algorithm is now explored for the same experiment shown in

Figure 5.5. This number of iterations affects the selection of the Runlength parameter of

the algorithm which is described previously in Section 5.1. Figure 5.6 shows the number of

iterations required by the algorithm to achieve different given values of h for various values
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Figure 5.6: Number of iterations of the Monte Carol simulation algorithm for different values
of p and h

of p. The figure gives some guidelines on how to set the Runlength value for given values of

h and p. As shown in the figure, increasing the value of h requires running the algorithm

for greater number of iterations. This is expected because more distinct combinations of

workload scenarios should be explored to achieve a higher value of h. It can also be noticed

from the figure that, for a given value of h, the number of iterations required increases as

the value of p is close to the middle of the x-axis. This is because more combinations are

analyzed for these range of values of p as described previously, thereby, more iterations are

required. On the other hand, less iterations are required when the value of p is close to

any of the two edges of the x-axis in the figure. This is also because less combinations are

analyzed for these range of values of p as described previously. In summary, the selected

values of h and p can give general guidelines on the computation time of the algorithm.

141



5.3 Summary

This chapter provides a detailed description of the workload uncertainty module. Firstly,

it presents a detailed description of the Monte Carlo simulation technique employed by

the uncertainty module. Secondly, results which illustrate the utility and sensitivity of

the Monte Carlo simulation technique to various parameters are shown. The results show

that the Monte Carlo simulation technique allows cloud SPs to accurately estimate the

impact of workload uncertainty in their SLP exercises without exhaustively traversing all

combinations of application workload scenarios. Furthermore, the results illustrate the utility

of the uncertainty module using different probability values of encountering the heavy load

workload scenario. The results also show the impact of relaxing the constraints on the

resources available for allocation to applications on the results obtained by the the Monte

Carlo simulation technique.

An analysis is also conducted to show the sensitivity of the Monte Carlo simulation

technique to the value of the certainty threshold when this value changes from 1.0 to 0.9.

This analysis shows that the results obtained with both values are very close. Finally, a

sensitivity analysis is conducted to study the effect of selecting different values of h and p

on the number of combinations of workload scenarios analyzed for SLP and on the number

of iterations of the Monte Carlo algorithm. The results show that more combinations are

analyzed and consequently, more iterations need to run for higher values of h. Furthermore,

for a given value of h, more combinations are analyzed and more iterations are required for

values of p that make the combinations equally likely to occur.
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Chapter 6

Burstiness-Aware Workload Clustering Technique

This chapter provides a detailed description of the burstiness-aware workload clustering tech-

nique described briefly in Section 1.3.3. Section 6.1 gives an overview of the two steps of the

clustering technique namely, cluster generation and clustered workload scenarios generation.

Section 6.2 describes the cluster generation step while Section 6.3 describes the clustered

workload scenarios generation step. Finally, Section 6.4 shows results which evaluate the

clustering technique.

6.1 Overview

As described previously in Section 5.1, The workload uncertainty module generates combi-

nations of workload scenarios where each combination has exactly one probable workload

scenario for each application. Recall from Section 3.3 that the the time taken to arrive

at a resource allocation plan for a workload scenario combination using each RAP variant

depends on the number of times WAM-QNM has to be invoked. Specifically, as shown pre-

viously in Table 3.1, the number of invocations of WAM-QNM made by each RAP variant is

a function of one or more of the following parameters depending on the RAP variant used:

• the number of applications A hosted on the cloud,

• the number of resource allocation intervals T in the planning horizon

• and the capacity limits Cmax,n,t of resource instances for any given tier n over

any given resource allocation interval t. This parameter determines the maxi-

mum number of decision stages as described previously in Section 4.4.
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Furthermore, if more than one flavour of resource instance is supported at the bottleneck

tier of a given application, then WAM-QNM has to be invoked for each flavour at this tier.

This increases the computation time required by each RAP variant.

The processing time can hence be prohibitively high while conducting SLP exercises for

large scale clouds, e.g., those that host several hundreds of applications. As mentioned pre-

viously in Section 1.3.3, to address this scalability problem a workload clustering technique

is developed. The objective of this technique is to group application workload scenarios with

similar workload characteristics together. In particular, this technique considers similarity

with respect to application resource usage and request arrival patterns. This grouping tends

to compact the number of workload scenarios in a single combination from the number of

applications, A, to a smaller number of clusters denoted by E.

The clustering technique performs two main steps namely, cluster generation and clus-

tered workload scenarios generation. It is well-known that a large number of workload

attributes makes it difficult to detect clusters. Consequently, a hierarchical approach [50,73]

is applied in the cluster generation step. Each level of the hierarchy uses the k -means clus-

tering technique [50, 70] described previously in Section 2.5 to assess similarity based on a

single workload characteristic. As described previously, in each level of clustering, the ratio

between inter-cluster and intra-cluster distances reported by k -means clustering is used to

automatically determine the optimal number of clusters [76]. Clustering at any given level

is applied on the clusters obtained from the previous level. In the clustered workload sce-

narios generation step, workload scenarios, i.e., cluster traces, are generated to represent the

clusters generated in the cluster generation step. Both steps are described in more detail in

the following sections.
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6.2 Generating Clusters

The cluster generation step starts by assessing similarity of the resource traces followed by

similarity of the arrival traces. Figure 6.1 shows the inputs, outputs and attributes used

to generate a hierarchy of clusters in this step. The reader can refer to Section 4.1 for

information on the parameters used in the figure. As shown in the Figure 6.1, the cluster

generation step takes as input a combination of workload scenarios m ∈ M generated from

the workload uncertainty module as described previously in Section 5.1. This combination

contains one probable workload scenario Wa,k for each application a. The workload scenarios

in the combination m are first clustered with respect to the per application tier n resource

usage, i.e., mean demand [Da,k,1,Da,k,2 ,...Da,k,n] where n ∈ {1,2,...Na}. For each of the

clusters obtained from above, a clustering is done next in a number of levels with respect to

the session trace as follows:

• mean number of requests per session, i.e., mean of the empirical session length

distribution Fa,k,

• mean think time between session requests, i.e., the mean of the empirical think

time distribution Za,k,

• mean request arrival rate λa,k, i.e., workload intensity, over the planning hori-

zon,

• and arrival burstiness represented by the computed index of dispersion Ia,k of

session inter-arrival times for application a.

The final level of clustering attempts to group workload scenarios based on fine timescale

session arrival patterns. Specifically, a vector of T elements is generated for each workload

scenario Wa,k. Each element λa,k,t in this vector is the mean session arrival rate at a resource

allocation interval t ∈ {1,2,...T} for this workload scenario. Workload scenarios are grouped

together based on similarities with respect to this vector.
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Figure 6.1: Hierarchy of clusters generated by the cluster generation step
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The outcomes of this hierarchical clustering approach are the number of clusters E gen-

erated and a lookup table denoted by A E MAP to map each cluster number e ∈ {1,2,...E}

to an application number a ∈ {1,2,...A}. It has been found that clustering based on these

attributes is effective for grouping similar application workloads together. Furthermore, it

has been noticed that the accuracy of SLP exercises improved with such a hierarchical ap-

proach when compared to simpler approaches as will be shown later in Section 6.4. It has

also been noticed that this hierarchical clustering approach can use any other order of work-

load attributes provided that each level of clustering generate the number of clusters that

minimizes the inter-cluster to intra-cluster distances ratio reported by k -means clustering,

as described previously in Section 2.5.

6.3 Generating Workload Scenarios for Clusters

In the clustered workload scenarios generation step, a clustered workload scenario is gen-

erated to represent each cluster e. Figure 6.2 shows the pseudo-code of the algorithm to

generate a clustered workload scenario. The algorithm takes as input a combination of

workload scenarios m ∈ M under consideration, the number of clusters E, and the lookup

table, A E MAP, generated from the cluster generation step. The algorithm generates a

workload scenario, We ∈ Wclustered, to represent each cluster e ∈ {1,2,...E}. Wclustered is the

set of all clustered workload scenarios to represent all E clusters. Each We is characterized

by a service process model denoted by SMe and an arrival process model denoted by AMe.

Equivalent resource traces are generated first for a cluster. After experimentation, a

simple strategy of selecting resource traces of a random application in a cluster to represent

the entire cluster seemed to yield good results. More formally SMe is selected to be the

service process model SMa,fa of any application, a whose workload scenario fa is mapped to

cluster e. A similar approach is applied to generate session lengths and think times for the

clustered workload scenario.
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Input: m M, E, A_E_MAP 

Output: Wclustered 

Wclustered = { } 

For e = 1 to E   

     For a = 1 to A 

            If a maps to e  

       # set the service process model SMe of cluster e to be  

      # the service process model of any application in the cluster 

             SMe = SMa,fa 

                    # set the session length and think time distributions of cluster e 

             # to be the same like those for any application in the cluster  

             Fe = Fa,fa 

             Ze = Za,fa         

   Break; 

           End If 

     End For 

     # AW is the total number of arrival windows  

     For aw = 1 to AW 

            # generate an empirical PDF of all session arrivals in cluster e 

            #  at arrival window aw like the example shown in Fig. 7 

           PerIntervalPDF[aw] = GenerateEmpiricalPDF()  

           # Use the generated PDF to add arrival samples to the arrival process model AMe of cluster e

 AMe = AddArrivalSamples(PerIntervalPDF[aw])   
      End For 

     # add session length and think time distributions to the arrival process model AMe of cluster e  

     AMe = { AMe, Fe, Ze} 

#generate a workload scenario for cluster e       

    We= {AMe, SMe} 

    Add We to Wclustered  

End For 

Return Wclustered 

Figure 6.2: Clustered workload scenario generation algorithm
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 Figure 6.3: Generation of a cluster session arrival trace
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However, experiments indicated that this random selection strategy was successful since

burstiness in service demands as well as session lengths and think times are not considered

in this study. Very poor results are obtained when such a strategy is applied to the session

arrivals which are characterized by burstiness. Therefore an algorithm is devised to overcome

this problem as illustrated in Figure 6.3.

As described previously, the combination of workload scenarios m under consideration

contains the un-clustered workload scenarios of all applications. The group of workload

scenarios in combination m that belongs to a certain cluster e are identified first. The

session arrival traces of the workload scenarios that map to this cluster are then used to

generate AMe. Every arrival trace that maps to this cluster is divided into very small time

intervals called arrival windows. To preserve fine-grained burstiness characteristics present

in the original traces, each arrival window is selected to be an order of minutes, e.g., 1 min.

Every session trace that maps to the cluster is divided into AW arrival windows and a list of

session arrivals is maintained for each arrival window aw ∈ {1,2,...AW }. This information is

used to construct an empirical PDF of session arrivals for that trace for each arrival window.

Specifically, a histogram of session arrivals is constructed for each arrival window in which

the histogram bins are selected to be in the order of hundreds of milliseconds. Tuning the size

of the arrival window and the histogram bin is left for future work. Figure 6.3 shows a simple

example of this histogram generation for a cluster of two applications. The empirical PDF of

each arrival window is referred to in the pseudo code of Figure 6.2 as PerIntervalPDF[aw].

This empirical PDF is then used to generate random samples of session arrivals for each

arrival window.

The resource usage and session arrival traces constructed in this manner for the clusters

are used by RAP as described previously in Section 3.3.3. Experiments that evaluate the

effectiveness of the clustering approach are presented in the next section.
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6.4 Evaluation Results

This section discusses evaluation results of the clustering technique. An experiment is con-

duced where a combination of 100 application workload scenarios is used. For this combi-

nation, the resource allocation estimates obtained using RAP with and without clustering

are compared. All 100 applications have similar mean demands at the two application tiers;

20 and 10 ms, respectively. The arrival processes for these applications are generated so

as to get coverage of various mean session arrival rates and index of dispersion of session

inter-arrival times. Although the workload scenarios are synthetically generated, the cluster-

ing technique does not assume any prior knowledge of their characteristics. All parameters

characterizing each workload scenario such as arrival rate, SCV and index of dispersion of

session inter-arrival times are calculated by analyzing the traces involved. While the calcu-

lation of mean arrival rate and SCV of session inter-arrival times is quite straightforward

the calculation of the index of dispersion of session inter-arrival times is a challenging task

because of the infinite summation that needs to be computed as described previously in

Section 2.2. The algorithm shown previously in Figure 2.1 is used to compute the index of

dispersion of session inter-arrival times.

Since the mean demands of all applications is assumed to be the same, the first level

of clustering shown previously in Figure 6.1 starts directly with similarities in mean session

arrival rate (Level 1 ) followed by a second level (Level 2 ) of clustering based on index of

dispersion of session inter-arrival time and finally the third level (Level 3 ) of clustering

based on a vector of mean session arrival rates for eight 1-hour intervals where the eight

hours represents the planning horizon.

Specifically, three different ways of performing the clustering are evaluated. Level 1

ignores burstiness and clusters only with respect to the mean session arrival rate. The (Level

1 + Level 2 ) approach hierarchically clusters based on Level 1 (arrival rate) followed by

Level 2 (index of dispersion). Finally, (Level 1+Level 2+Level 3 ) represents hierarchical
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clustering as described in the previous paragraph.

The 100 application workload scenarios are clustered using these three approaches. For

each method, traces corresponding to the clustered workload scenarios are obtained using the

algorithm shown in Figure 6.2. In each level of clustering the clustered workload scenarios

generated are input to the RAP algorithm shown previously in Figure 3.1 to obtain an esti-

mate of the number of web server instances and database instance cores allocated per 1-hour

interval. Let the numbers of web server instances and database instance cores estimated by

a clustering method for interval t be denoted by WebEstt,clustering and DBEstt,clustering, re-

spectively. These values are compared with the corresponding estimates obtained from RAP

when the original un-clustered application traces are input to the method. These correspond-

ing estimates are denoted by WebEstt,no clustering and DBEstt,no clustering, respectively. The

absolute differences between the resource estimates obtained with and without clustering

normalized by the resource estimate obtained without clustering are used to compute an

error measure as shown in the following equations:

WebClustErr =
|WebEstt,no clustering −WebEstt,clustering|

WebEstt,no clustering
∗ 100% (6.1)

DBClustErr =
|DBEstt,no clustering −DBEstt,clustering|

DBEstt,no clustering
∗ 100% (6.2)

Figure 6.4 shows the resource allocation error percentiles of per-interval clustering errors

for the three different methods of clustering. The figure shows the resource allocation error

percentiles for the web server instances and database instance cores. As shown in Figure

6.4, hierarchical clustering using all three levels yields lower errors. Specifically, Level 1

approach yields errors in the range of 25% to 35% and 35% to 40% for the web server

instances and database instance cores, respectively. (Level 1+Level 2 ) approach reduces

errors significantly. (Level 1+Level 2+ Level 3 ) clustering gives slightly better errors than

(Level 1+Level 2 ) clustering. In summary, these results demonstrate that the proposed

clustering technique that preserves complex burstiness characteristics present in application
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traces is more accurate than burstiness-agnostic clustering approaches.

Figure 6.5 compares the number of clusters generated and the number of WAM-QNM

invocations made by RAP in each level of clustering with the the number of clusters and

number of WAM-QNM invocations without clustering for the experiment described above.

The left y-axis of the figure shows the number of clusters or applications analyzed for SLP

while the right y-axis shows the number of WAM-QNM invocations made by RAP. As

shown in the figure, if no clustering is applied at all, 100 application workload scenarios are

analyzed with 1405 WAM-QNM invocations made by RAP. This is reduced significantly by

using clustering. Specifically, the number of clusters analyzed by using Level 1 clustering

is only 4 clusters which consequently reduces the number of WAM-QNM invocations to

44. However, as shown previously in Figure 6.4, Level 1 clustering gives poor resource

allocation accuracy. On the contrary, both (Level 1+Level 2 ) and (Level 1+Level 2+ Level

3 ) clustering approaches give better resource allocation accuracies than Level 1 clustering but

they increase the number of clusters analyzed and the number of WAM-QNM invocations.

However, both (Level 1+Level 2 ) and (Level 1+Level 2+ Level 3 ) clustering approaches can

still provide much lower number of clusters and number of WAM-QNM invocations when

compared with the case where no clustering is used at all.

In summary, Figures 6.4 and 6.5 show a trade-off between the accuracy of resource

allocation and the compactness of clusters. Given the workload scenarios considered in this

experiment, (Level 1+Level 2 ) clustering provides a good compromise between the number

of clusters analyzed and, hence, the number of WAM-QNM invocations required on one side

and the accuracy of resource allocation on the other side. Specifically, (Level 1+Level 2 )

clustering gives close to 8% reduction in the number of WAM-QNM invocations relative to

the case where no clustering is used at all while providing a maximum resource allocation

error of only 10%. It should be noted that this dramatic reduction in the number of clusters

and WAM-QNM invocations while still preserving very low resource allocation errors is highly
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(a) web server instances

 

(b) database instance cores

Figure 6.4: Accuracy of resource allocation for three different methods of clustering
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Figure 6.5: Comparing number of clusters and number of WAM-QNM invocations with and
without clustering

dependent on the degree of similarity between the characteristics of the workload scenarios

under study. This will be analyzed in more detail in the following experiment.

The next experiment demonstrates how workload similarity across applications impacts

clustering effectiveness and hence the scalability of the framework. Specifically, three dif-

ferent combinations of workload scenarios are explored. The first combination contains 100

workload scenarios having three different mean session inter-arrival time alternatives and

six different index of dispersion of session inter-arrival time alternatives. As a result, this

combination has 18 different alternatives with respect to these arrival process attributes.

The second combination of workload scenarios consists of the same number of applications,

i.e., 100 workload scenarios, but has only 10 different alternatives of session arrival processes.

The third combination of workload scenarios contains 5 times the number of applications,

i.e., 500 workload scenarios, but has the same session arrival process alternatives as the

second combination of workload scenarios.

Figure 6.6 shows the number of clusters generated from the clustering module for the
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Figure 6.6: Impact of clustering on SLP framework scalability

three methods of clustering for each of the three combinations of workload scenarios described

in the previous paragraph. It can be observed from the figure that the number of clusters

generated depends only on the diversity of workload scenarios and not on the number of

workload scenarios themselves. For example, both the 100WorkloadScenarios-10alternatives

combination and 500WorkloadScenarios-10alternatives combination reduce to approximately

the same number of clusters for any given clustering method. In contrast, the more diverse

100WorkloadScenarios-18alternatives combination results in more number of clusters than

the 500WorkloadScenarios-10alternatives combination. This suggests that the SLP frame-

work described briefly in Section 1.3.4 can scale well to a large number of applications if

there are natural groupings of applications with similar workload patterns. Chen et al. [45]

characterized CPU and memory utilization traces for 1173 applications covering 8 days of

activity at a real enterprise system. The authors found that many of these applications have

similar resource utilization patterns. This suggests that the proposed clustering technique

can be effective in ensuring the scalability of the SLP framework.
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6.5 Summary

This chapter provides a detailed description of the burstiness-aware clustering technique

proposed in the thesis. Two main steps of the clustering technique are described namely,

cluster generation and clustered workload scenario generation. Results which evaluate the

accuracy of the clustering technique are shown. The results show that the accuracy of re-

source allocation is increased by increasing the levels of clustering and the number clustering

attributes considered. Furthermore, the results show the need to implement automatized

workload scenario generation algorithms to reconstruct a workload scenario for each cluster

to obtain accurate resource allocation plans. Finally, the results show that the proposed

workload clustering technique reduces the number of computations needed to support SLP

exercises without significantly impacting accuracy. The degree of reduction in the number

of computations depends on the degree of similarity between the workload scenarios of the

applications considered for SLP.
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Chapter 7

Trace-Based SLP Framework

This chapter provides more details on the SLP framework introduced previously in Section

1.3.4. Section 7.1 describes the modifications made for the RAP method to be integrated

in the SLP framework. The modifications allow RAP to perform SLP for a given set of

application clusters rather than for a given set of applications as described previously in

Section 3.3.3. Section 7.2 discusses the computational complexity of the SLP framework by

presenting some statistics about the end-to-end case study introduced previously in Section

1.3.5.

7.1 Modifying RAP to Account for Clusters of Applications

This section describes some assumptions and modifications made on RAP to account for

clusters of applications in SLP. The RAP algorithm described previously in Section3.3.3 gen-

erates a resource allocation plan for a given set of applications characterized by application

workload scenarios. To integrate RAP with the clustering technique described previously in

Chapter 6, RAP is modified to accept workload scenarios for clusters of applications and

thus resources are allocated at the level of clusters instead of applications. The necessary

assumptions and modifications to RAP are described in the ensuing paragraphs.

The SLO of a cluster, e, is denoted by SLOe. For ease of explanation, all applications

in the same cluster are assumed to have the same SLO. Therefore SLOe is assumed to be

the same as the SLOa of any application, a, that belongs to cluster e. This assumption can

be relaxed by adding a top most level to the hierarchical clustering algorithm described in

Section 6.2. This level will cluster applications by their SLO requirements before clustering

based on the lower clustering levels.
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It is also assumed that all applications in the same cluster have the same number of

application tiers. Therefore the number of tiers for cluster e, denoted by Ne, is set to be the

same as the number of tiers, Na, of any application, a, that belongs to cluster e.

The pseudo-code of the modified RAP algorithm is shown Figure 7.1. The inputs to the

algorithm are as follows:

• the set, Wclustered, of clustered workload scenarios generated by the clustering

technique as described previously in Section 6.3,

• the SLO for each application a, SLOa, over the planning horizon,

• the maximum number of resources, Cmax,n,t, available for allocation to all

applications at tier n in each interval t,

• the number of clusters, E, and the lookup table, A E MAP by the clustering

technique.

Initially each clustered workload scenario representing a cluster, e, is allocated a number

of resources equaling the number of applications in the cluster at each tier, n, and for each

resource allocation interval, t. WAM-QNM is then invoked to predict the mean response

time, Re, of cluster e over the planning horizon and the mean response time, Re,t, of cluster

e over each resource allocation interval t. After this step the violation percentage, Ve, is

calculated for each cluster, e.

The RAP algorithm then enters a loop. In each iteration of this loop, the cluster emax

with the top most SLO violation percentage, i.e., maximum Ve, is selected first. For the

selected cluster, emax, the resource allocation interval, tmax, with maximum Re,t over all T

resource allocation intervals is selected. The bottleneck application tier nbottleneck is then

determined for e=emax and t=tmax. Finally additional resources are allocated to cluster emax

in tier nbottleneck at resource allocation interval tmax. To take into account the impact of

clustering many applications together, the number of resources allocated for tmax is equal to
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Input: Wclustered ,SLOa a {1,2,…, A}, Cmax,n,t  n {1,2,…, Na}, t {1,2,…, T}, E, A_E_MAP 

Output: Ce,n,t  e {1,2,…, E}, n {1,2,…, Ne}, t {1,2,…, T}, Ve  e {1,2,…, E} 

For e = 1 to E 

# since all applications in same cluster have same SLO set cluster SLOe to SLOa   

SLOe = SLOa  for any a→e 

# since all applications in same cluster have same number of application tiers   

Ne = Na for any a→e 

# in each cluster e allocate initial resources to each tier n in each interval t 

# the number of resources allocated to each tier n in each interval t   

# equals the number of applications in the cluster 

Ce,n,t = GetNumberOfAppsPerCluster(e, A_E_MAP)  n {1,2,…, Ne}, t {1,2,…, T} 

# invoke the performance model for each clustered workload scenario We Wclustered , e {1,2,…,E} 

[Re,t , Re] = WAM-QNM (We, Ce,n,t n {1,2,…, Ne})  t {1,2,…, T} 

Ve = CalculateClusterViolationPercentage(Re, SLOe)  

End For 

#calculate total number of remaining resources at tier n over all intervals 

# this is used to stop the algorithm once all remaining resources are allocated 

For n = 1 to Ne 

       RemainResourcesTier(n)  = Cmax,n,t * T  – (∑Ce,n,t  e {1,2,…, E}, t {1,2,…, T}) 

End For 

While (RemainResourcesTier(n) > 0  n {1,2,…, Ne}) 

           [emax ,MaxViolationPercentage, ] = GetClusterwithMaxViolationPerentage(Ve  e {1,2,…, E}) 

           # if all clustered workload scenarios satisfy their violation percentages 

           If MaxViolationPercentage, == 0 

Return  Ce,n,t e {1,2,…, E}, n {1,2,…, Ne}, t {1,2,…, T}, Ve   e {1,2,…, E} 

Where Ve = 0 e {1,2,…, E} 

           End If  

           tmax= GetFreeIntervalwithMaxRmean(emax, (Re,t  for e= emax ,  t {1,2,…, T}))  

 nbottleneck=GetBottleneckTier(emax, tmax) 

# allocate additional resources to tier n of cluster emax in interval tmax   

# the number of additional resources allocated to each tier n in each interval t  

# equals to the number of applications in the cluster emax 

Δ Ce,n,t = GetNumberOfAppsPerCluster(e, A_E_MAP) for e= emax , n= nbottleneck, t = tmax 

          Ce,n,t = Ce,n,t + Δ Ce,n,t  for e = emax , n= nbottleneck ,t = tmax 

RemainResourcesTier(nbottleneck)  = RemainResourcesTier(nbottleneck)  – Δ Ce,n,t        

#re-invoke performance model for the cluster emax only 

[Re,t, Re] = WAM-QNM (We, Ce,n,t n {1,2,…, Ne})  for e= emax , t {1,2,…, T},  

Ve = CalculateClusterViolationPercentage(Re, SLOe) for e= emax 

End While 

Return Ce,n,t  e {1,2,…, E}, n {1,2,…, Ne}, t {1,2,…, T}, Ve e {1,2,…, E} 

Figure 7.1: Modified RAP algorithm to account for clusters of applications
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Table 7.1: End-to-end case study statistics

no uncertainty
only

uncertainty
or

uncertainty
and

clustering clustering
workload scenario combinations 32 8 8
average scenarios per combination 100 100 10
number of WAM-QNM invocations 44,960 11,240 1,016

the number of applications in the cluster emax. As described previously in Section 3.3.3, the

algorithm terminates when either all the available resources are allocated in all intervals or

the maximum Ve is equal to zero.

It should be noted that exploring resource allocations at the level of clusters instead of

the level of applications as described previously in Section 3.3.3 can affect the optimality of

the solutions obtained by RAP if the resource allocation error introduced by the clustering

technique is high. However, as shown previously in Section 6.4 the proposed clustering

technique yields a maximum resource allocation error of only 5%.

7.2 End-to-End Case Study Statistics

This section presents results to show the computational complexity of the SLP framework.

Specifically, Table 7.1 shows some statistics about the end-to-end case study introduced

previously in Section 1.3.5. Recall from Section 1.3.5 that 100 applications are considered

in this case study with 95 applications have only one workload scenario, while the other 5

applications have an additional heavy workload scenario with a probability of occurrence p

= 0.1. A certainty threshold, h, value of 0.9 is used.

The combined use of the uncertainty and clustering modules decreases the number of

performance model invocations from 44,960 to 1,016 thereby significantly reducing analysis

time. The uncertainty module achieves a 75% reduction in the number of workload combi-

nations to be analyzed. The clustering module reduces the number of workload scenarios
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per combination by up to 90%. It should be noted that gains from the uncertainty and

clustering modules may not be always as dramatic as obtained in this case study. For ex-

ample, as described previously in Section 5.2 such dramatic reduction will not occur when

all alternative workload scenarios for an application are equally likely to occur, i.e, p=0.5.

Furthermore, as described previously in Section 6.4 the degree of reduction achieved by the

clustering module depends on the level of similarity between application traces.

From the statistics shown in Table 1.2, it is clear that the analysis time depends heavily

on the execution time of WAM-QNM. The computation of the analysis time can be obtained

given that a single WAM-QNM invocation takes about 3 minutes on a desktop computer with

a 3 GHz duel-core Intel Pentium processor and 2 GB RAM. Analysis time can benefit from

several optimizations. One can merely invoke MVA-QNM for workload scenarios that are

not characterized by burstiness. Each MVA-QNM invocation runs in an order of magnitude

of milliseconds which reduces the analysis time significantly. Furthermore, the performance

metrics predicted by WAM-QNM can be computed before running the SLP framework and

tabulated for various resource allocation plans for given combinations of application work-

load scenarios. Table lookups can then be used when a certain resource allocation plan is

encountered while executing RAP to fetch the corresponding performance metrics predicted

by WAM-QNM. Implementing these optimizations is left for future work.

7.3 Summary

This chapter describes the modifications made on the RAP method to be integrated with the

uncertainty module and the clustering technique in the SLP framework. RAP is modified to

perform SLP for clusters of applications. Results which show the computational complexity

of the SLP framework are shown. Ways to optimize the performance of the framework are

also proposed.
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Chapter 8

Conclusions and Future Work

This chapter summarizes the conclusions and findings obtained from the work in the thesis.

It also discusses the limitations of the SLP framework and outlines future work. Section

8.1 summarizes the conclusions. Section 8.2 discuses the limitations of the SLP framework.

Finally, Section 8.3 outlines future research directions.

8.1 Summary and Conclusions

Cloud SPs need tools that can help them optimize the allocation of their resources and

decide on service level agreements with customers. The thesis presents an SLP framework to

optimally allocate cloud resources to customer applications while satisfying their SLOs. The

framework addresses a number of challenges. Firstly, SLP tools need to take into account

the complex nature of enterprise application workloads such as burstiness inherent in such

systems. Specifically, the elastic nature of the cloud can be exploited to address workload

burstiness. However, in order to leverage this benefit of the cloud, SLP tools should be able

to accurately predict how many resources each application should get and how the number

of allocated resources should change over time to match workload patterns.

Secondly, cloud SPs need methods to assess the risks that arise due to workload un-

certainty. The workload experienced by many applications may deviate significantly from

the workload projections estimated by application owners. Such applications may encounter

many possible workload scenarios with each placing significantly different capacity require-

ments on the cloud. A systematic approach is required to accommodate workload uncertainty

in SLP exercises. This approach needs to evaluate how workload uncertainty will affect the

penalties which a cloud SP might incur due to SLO violations.

163



Finally, the need to consider a large number of customer applications typically deployed

on the cloud with each characterized by multiple workload scenarios due to workload uncer-

tainty. As described previously, SLP tools rely on performance models to search for optimal

resource allocation strategies. This can take a lot of time with large number of applications

and large number of workload scenarios per application. Furthermore, advanced performance

models such as WAM-QNM which accurately predict performance under workload burstiness

take relatively longer execution time than traditional performance modeling techniques such

as MVA-QNM. This can impact the performance of the SLP toolset. Therefore, SLP tools

should scale well to support a large number of applications and a large number of workload

scenarios per application.

The SLP framework addresses the above issues simultaneously. The framework imple-

ments a novel RAP method to identify a time varying allocation of resources to applications

that ensures adequate resources are available to an application to satisfy its bursts. A Monte

Carlo simulation technique is proposed to accommodate workload uncertainty in the SLP

process. A new burstiness-aware workload clustering technique is proposed to increase the

scalability of the SLP exercises relying on the SLP framework while preserving complex

workload characteristics observed in application workload scenarios.

The thesis presents detailed simulation results to characterize the behaviour of individual

components of the SLP framework as well as its end-to-end behaviour. Firstly, the results

confirmed previous findings in [64] that the WAM-QNM which is employed in this work can

more accurately predict SLO violations under workload burstiness than other traditional

performance modeling techniques such as MVA-QNM.

Secondly, three variants of the RAP method are proposed. A detailed analysis of the

computational complexity and the optimality of the three variants is also studied. The results

show that the three RAP variants can provide a cloud SP with optimal and close to optimal

resource allocation plans over a given planning horizon without exhaustively generating all
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possible resource allocation plans. Specifically, RAP-DP can identify a plan that minimizes

SLO violations for a given cloud resource capacity. It is also shown that RAP-AllApps which

is a more computationally efficient version of RAP-DP is able to identify optimal solutions

when bottlenecks do not switch across tiers over the planning horizon. Furthermore, the

results show that under both bursty and non-bursty workload scenarios, RAP-OneApp is

able to identify near optimal solutions while reducing computational complexity significantly

when compared to the optimal RAP-DP variant. Therefore, RAP-OneApp can be used in

SLP exercise involving a large number of applications without significantly affecting the

optimality of the solutions obtained.

Thirdly, the results show that the proposed RAP methodology can permit cloud SPs to

more accurately determine the capacity required for delivering specified SLOs compared to

other competing techniques that ignore burstiness. Moreover, the results show that allocating

resources over smaller sized intervals than the planning horizon reduces resource allocation

costs for bursty workload scenarios.

Fourthly, the results establish the superiority of RAP to the prevalent practice of con-

sidering SLO targets based on resource utilization thresholds over the planning horizon. As

opposed to the utilization-based approaches the results show that RAP can accurately adapt

resource allocation plans to observed burstiness characteristics of application workloads.

Fifthly, simulation experiments are conducted to show the flexibility of RAP to accommo-

date different techniques for defining application SLOs. The results show that under both

bursty and non bursty workload scenarios, defining SLO targets over a planning horizon

formed of smaller sized resource allocation intervals reduces resource allocation costs when

compared with defining SLOs over individual resource allocation intervals.

Finally, an approach to improve the performance of RAP-DP and RAPAllApps by ex-

ploiting parallelism is shown. Specifically, multi-threaded versions of both RAP variants are

implemented to reduce their computation times for large number of applications. A machine
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with 12 processor cores is used to compare the computation times of the single-threaded

and the multi-threaded versions of the two RAP variants. The results show a performance

improvement of the multi-threaded versions over the corresponding single-threaded versions

by a factor of 9.

Detailed simulation experiments are conducted to characterize the behaviour, utility and

accuracy of the proposed Monte Carlo simulation technique. The results demonstrate that

the Monte Carlo simulation technique enables cloud SPs to accurately estimate the impact

of workload uncertainty in their SLP exercises without the need to exhaustively analyze all

combinations of application workload scenarios.

Detailed simulation experiments are also conducted to evaluate the accuracy of the pro-

posed burstiness-aware workload clustering technique. Firstly, the results show that the

workload clustering technique is effective in grouping applications with similar burstiness

characteristics together. Specifically, the results show the need to consider workload char-

acteristics over entire planning horizon as well as over each resource allocation interval for

the clustering approach to be effective under burstiness. The workload characteristics con-

sidered for clustering over the planning horizon include mean session arrival rate and index

of dispersion of session inter-arrival time. Mean session arrival patterns over each resource

allocation interval are also considered in the clustering technique.

Secondly, the results show that the accuracy of resource allocation is increased by in-

creasing the levels of clustering and the number clustering attributes considered. Thirdly,

the results show the ability of the proposed workload scenario generation algorithm which is

used to reconstruct a workload scenario for each cluster to obtain accurate resource allocation

plans. Finally, the results show that the proposed workload clustering technique reduces the

number of computations needed to support SLP exercises without significantly impacting

accuracy. Therefore the SLP framework can scale well to large number of applications and

large number of workload scenarios per application.
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8.2 Limitations

In this section the limitations of the SLP framework are discussed while future work required

to overcome these limitations is outlined in Section 8.3. Firstly, the SLP framework gives

cloud SPs a general guide on the amount of resources required to satisfy applications’ SLOs.

However it does not give detailed information on the number and type of resource instances

to be assigned at each application tier and the number of physical servers to be purchased.

Secondly, as described previously in Section 5.1, the Monte Carlo simulation algorithm

employed by the uncertainty module generates a subset of the workload combinations with a

total probability of occurrence above the certainty threshold, h. The generated combinations

of workloads will occur most of the time, however, they might not be the most heavily loaded

combinations. This may introduce some risk of violating SLOs by cloud SPs when the heavily

loaded combinations which are not covered in the analysis are encountered in production.

Thirdly, recall from Section 3.1 that the RAP tries to optimize two conflicting cost objec-

tives which are the cost of resource allocation and the cost incurred due to SLO violation. The

work in the thesis explicitly addresses only the SLO objective component. Minimizing re-

source costs is achieved indirectly by exploring only incremental allocations of a unit resource

to each application. Fourthly, this work ignores practical constraints such as minimizing the

number of resource instance migrations across applications, and supporting multiple flavours

of resources for a given tier.

Fifthly, the simulation model employed in the thesis only takes into account the pro-

cessing power of each resource instance without considering memory, storage or I/O issues.

Furthermore, the simulation setup does not use real traces. It is extremely difficult to obtain

real traces since cloud SPs consider them to be confidential. This limitation is overcome by

generating synthetic workloads with characteristics observed in a real enterprise system as

described previously in Section 4.2. A systematic and comprehensive sensitivity analysis is

performed by varying properties such as session arrival variability and burstiness.
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Finally, this work ignores burstiness in service demands. This is motivated by the lack of

robust performance models that can reflect the impact of service demand burstiness. While

new methodologies for such systems are emerging [41], they are still not robust enough to

handle many common modeling scenarios. When such models do become more prevalent,

they can be integrated in a straightforward manner into the SLP framework.

8.3 Future Work

This section discuses directions for future work. Future work will focus on implementing the

optimizations described previously in Section 7.2 to reduce RAP execution time. Specifically,

a meta-algorithm can be implemented to guide the selection of the performance model and

the RAP variant which are more appropriate for a given trace in order to reduce RAP

computation time without affecting the accuracy and optimality of the solution obtained.

Firstly, to select the appropriate performance model for a given workload trace, the

meta-algorithm can evaluate the degree of burstiness observed in this trace. The degree of

burstiness of the trace can be determined by estimating its index of dispersion as described

previously in Section 2.2. MVA-QNM can then be invoked for non-bursty workloads to

reduce RAP computation time while WAM-QNM can be invoked for bursty workloads. As

shown previously in Section 4.3, WAM-QNM obtains more accurate performance predictions

for bursty workloads than MVA-QNM while MVA-QNM can still accurately predict the

performance of applications characterized by non-bursty workloads.

Secondly, the meta-algorithm can leverage the results of the sensitivity analysis shown

previously in Section 4.5 to select the appropriate RAP variant for a given trace. The selec-

tion can be done based on analyzing the service demands of the trace at different application

tiers. If the service demands of application tiers are different by a specified factor, then the

bottleneck tier is likely to be the same in all resource allocation intervals. Consequently,

RAP-AllApps can be invoked on this trace to reduce the computation time without sacri-
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ficing the optimality of the solution significantly. On the other hand, if the service demands

of application tiers are quite close, then the bottleneck tier most likely tends to change over

the planning horizon which makes the optimal RAP-DP better for the trace under study.

Future work will also address the limitations identified previously in Section 8.2. Firstly,

the SLP framework should be used in conjunction with benchmark results for various types of

resource instances on specific hardware platforms to support to multiple flavours of resources

for a given application tier. Benchmarks can be used to evaluate various characteristics of

resource instances including processing power, memory, storage and I/O issues. This will

give cloud SPs detailed information on the resource instances required by their customers’

applications which can be directly interpreted into monetary costs.

Secondly, the certainty threshold h can be exploited to to address the risk of not including

heavily loaded combinations in SLP analysis. Recall from Section 5.1 that the higher the

value of h the more combinations of workload scenarios are covered in the SLP analysis,

thereby decreasing this risk. Furthermore, for a given application, an analysis of all of its

alternative workload scenarios can be done before invoking the framework. The objective of

this analysis is to determine the most heavily loaded workload scenarios to include them in

the SLP analysis irrespective of their probability of occurrence.

Finally, RAP can also be modified to accommodate other SLOs. For example RAP

can explicitly minimize the number of applications which violate their SLOs. Other than

performance-based QoS, RAP can also address other QoS objectives such as the availability

issues of resource instances. Furthermore, future work will integrate both SLO and resource

allocation costs objectives explicitly in a single objective. Cloud SPs can exploit this feature

to reflect the prioritization of one component over the other.

As described previously in Section 1.3.4, the performance model employed by the SLP

framework may predict SLO violations that are different from those observed under deploy-

ment. To address these discrepancies the model needs to be calibrated to offer better SLO
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predictions. Future work can overcome this limitation by implementing a feedback control

loop which continuously modifies the performance model with performance data observed

during the operation of workloads on the cloud. Examples of such data for a given applica-

tion include updated traces of session arrivals to the application system and updated traces

of service demands at different application tiers.

Another direction for future work is related to the implementation of the multi-threaded

version of RAP-DP described previously in Section 4.9. The multi-threaded versions of

RAP-DP and RAP-AllApps can be implemented on clusters of machines using parallel pro-

gramming models such as Message-Passing Interface (MPI) [59] to leverage the very large

scale parallelism supported by such clusters.

Future research directions can also investigate ways to extend the SLP framework to

support energy-aware SLP strategies [25, 34, 98] in green clouds. Energy-aware SLP tools

should implement resource allocation methods that improve the energy efficiency of data

centers by reducing their carbon emissions while still not violating applications’ SLOs with

minimal resource costs. This means that a resource instance should be allocated to an

application tier of a given application on the physical server that results in the lowest possible

emission of carbon dioxide, thereby reducing environmental footprint. Consequently, the

global SLO and resource allocation optimization problem described previously in Section 3.1

should be reformulated to address a third objective which is the carbon emissions of resource

instances in addition to SLO violations and resource costs.

Finally, the SLP framework can be extended to combine resource instances from multiple

clouds with different energy sources. Specifically, resource instances can be provisioned

from cloud systems that rely on renewable energy sources such as wind power and solar

energy in addition to clouds systems that rely on traditional energy sources. In this way the

SLP framework can satisfy the QoS required by cloud applications while providing energy-

aware resource management. Future work will investigate this extension and its associated
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challenges and solutions.
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Appendix A

List of Notations

Table A.1: List of Notations

Notation Definition

Workload Scenario Notations

A number of applications

La number of probable workload scenarios for application a∈{1,2,. . . A}

Na number of application tiers for application a

T number of resource allocation intervals of the planning horizon

Sa,k
number of representative sessions for application a

with workload scenario k∈{1,2,. . . La}

Fa,k
distribution of number of requests per session for application a

with workload scenario k

Za,k
distribution of think time between session requests in application a

with workload scenario k

λa,k mean session arrival rate for application a with workload scenario k

SCVa,k SCV of session inter-arrival time for application a with workload scenario k

Ia,k
index of dispersion of session inter-arrival time for application a

with workload scenario k

AMa,k

arrival process model for application a with workload scenario k

{Sa,k, Fa,k , Za,k, λa,k, SCVa,k, Ia,k}

Da,k,n

mean service demand of application a

with workload scenario k at tier n∈{1,2,. . . , Na}

172



SCVa,k,n SCV of service demand of application a with workload scenario k at tier n

Ia,k,n
index of dispersion of the service demand of application a

with workload scenario k at tier n

SMa,k

service process model for application a with workload scenario k

{Da,k,1, Da,k,2,. . . Da,k,n |n ∈{1,2,. . . Na}}

Wa,k probable workload scenario k for application a {AMa,k, SMa,k}

Pa,k probability of occurrence of workload scenario Wa,k

Uncertainty Module Notations

Wa

set of possible workload scenarios for application a

{Wa,1,Wa,2, ,. . . , Wa,k |k ∈ {1,2,. . . La}}

Pa

set of probabilities of workload scenarios for application a

{Pa,1, Pa,2,. . . , Pa,,k) |k ∈{1,2,. . . La},
∑La

k=1 Pa,k = 1}

h the certainty threshold of the workload uncertainty module

M
set of workload scenario combinations whose probability of occurrences

cumulatively sum up to a value h

m ∈ M

a combination of workload scenarios

{W1,f1,W2,f2,,. . . ,Wa,fa|a∈{1,2,. . . , A},

f1∈{1,2,. . . L1}, f2∈{1,2,. . . L2},. . . fa ∈{1,2,. . . La}}

Probm probability of occurrence of a combination of workload scenarios m∈M

ProbM
set of probabilities of occurrence of all combinations of workload scenarios

in M {Probm |∀m∈M }

Clustering Module Notations

λa,k,t
mean session arrival rate for application a with workload scenario k

in interval t ∈ {1,2,. . . T}

E number of workload clusters computed by the clustering module
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Wclustered

set of workload scenarios to represent E clusters

{(W1, W2, . . . We. . . WE) |e ∈{1,2,. . . E}}

AMe arrival process model of cluster e

SMe service process model of cluster e

A E MAP look-up table to map each cluster number e to application number a

RAP and Performance Model Notations

Ne number of application tiers for cluster e

MSe,t mean number of concurrent sessions for cluster e per interval t

Cmax,n,t

maximum number of resource instances that can be allocated to

all applications at tier n at interval t

Ca,n,t number of resource instances allocated to tier n of application a at interval t

Ce,n,t number of resource instances allocated to tier n of cluster e at interval t

∆Ce,n,t

increment to the number of resource instances allocated to tier n

of cluster e at interval t

Ra,t

mean request response time of application a over interval t

predicted by the performance model

Re,t

mean request response time of cluster e over interval t

predicted by the performance model

Ra

mean request response time of application a overall T intervals

predicted by the performance model

Re

mean response time of cluster e overall T intervals

predicted by the performance model

Va SLO violation percentage of application a

Ve SLO violation percentage of cluster e

SLOa SLO of application a
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SLOe SLO of cluster e
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Appendix B

Dynamic Programming Formulation of RAP-DP

This appendix presents a formulation for RAP-DP using the dynamic programming concepts

[49] described previously in Section 2.6. Specifically, the appendix defines the three dynamic

programming terminologies namely, the optimal value function, the recurrence relation and

the boundary condition which are used to solve the global SLO and resource allocation

optimization problem described previously in Section 3.1 using RAP-DP.

As described previously in Section 3.3.1 RAP-DP implements a process of multiple de-

cision stages to solve the global SLO and resource allocation optimization problem. The

optimization problem is first decomposed into simpler subproblems where an optimal solu-

tion for each of these subproblems is obtained at each decision stage. The optimal solutions

of the subproblems are then combined together to obtain to the optimal solution of the over-

all problem. Specifically, an optimal resource allocation plan is obtained at each decision

stage by allocating one more resource to the bottleneck tier of one of the applications consid-

ered for SLP in one resource allocation interval. In this way, the optimal resource allocation

plan obtained at any decision stage i aims to mitigate the effect of the worst bottleneck tier

among all applications over all resource allocation intervals on the SV value of the applica-

tions. Recall from Section 3.1 that the SV value is the sum of SLO violation percentages for

all A applications as defined previously by Equation (3.7). The optimal resource allocation

plan obtained at decision stage i is then used as a base for further exploration in subsequent

decision stages while other non-optimal resource allocation plans are not explored further.

The reason for this is that exploring any non-optimal resource allocation plan in subsequent

decision stages cannot result in a better reduction in the SV value of the applications when

compared to exploring the optimal resource allocation plan.
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Each decision stage i has an associated state statei which describes all the variables that

affect the problem solved at this decision stage. Specifically, for the optimization problem

solved by RAP-DP, statei is defined as the number of resource instances of appropriate types

that are available for allocation at decision stage i for each of the application tiers of each

application in each resource allocation interval. Given the information provided by statei at

decision stage i, a decision decisioni is selected from a set of feasible decisions Decisionsi to

obtain the optimal solution for the problem solved at this decision stage. Specifically, for the

optimization problem solved by RAP-DP, at each decision stage i the set Decisionsi specifies

the different ways of allocating exactly one extra resource instance of an appropriate type

to one tier n of an application a in a resource allocation interval t. The decision decisioni

alters the state statei to another state statei+1 which describes the state of the subproblem

solved at the next decision stage i+1.

Given the state statei at decision stage i, the optimal value function for the optimization

problem solved using RAP-DP is defined as:

ui(statei) = max[RSVi(statei, Decisionsi) +RSVi−1(statei−1, Decisionsi−1)

· · ·+RSV0(state0, Decisions0)]

(B.1)

where RSVi(statei,Decisionsi) is the reduction obtained in the SV value of the applications

achieved at decision stage i by selecting a decision decisioni from the set Decisionsi given

the state statei. Equation (B.1) states that the optimal solution for the problem solved

using RAP-DP can be obtained at any decision stage i by adding the maximum value of

RSVi(statei,Decisionsi) obtained at each prior decision stage starting from decision stage i

to 0. The solution obtained for ui(statei) at any decision stage i is guaranteed to be optimal

because the value RSVi(statei,Decisionsi) at any decision stage i is optimal with respect to

the state statei and is non-negative.

The optimal value function defined in Equation (B.1) is defined in terms of the optimal
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value function for a previous stage i-1 by the following recurrence relation:

ui(statei) = max
decisioni∈Decisionsi

[RSVi(statei, Decisionsi) + ui−1(statei−1)] (B.2)

The boundary condition is defined as follows:

u0(state0) = 0 (B.3)

This describes the value of the optimal value function at decision stage 0 which is simply

0 because initially no reduction is made in the SV value achieved at decision stage 0. At

stage 0 only one decision is available which is to allocate exactly one resource instance of an

appropriate type to each tier of each application in each resource allocation interval. This

is the least possible number of resources that can be allocated to each application at this

decision stage. It should be noted that the optimal SV value can be obtained at any decision

stage i by subtracting the value of the optimal value function at this decision stage from the

SV value obtained at decision stage 0.
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Appendix C

Detailed Analysis of RAP-DP

This appendix provides a more detailed analysis of the RAP-DP results shown previously

in Figure 4.5b. Recall that the figure compares the solutions obtained by RAP-DP with the

corresponding solutions obtained by exhaustively enumerating all possible solutions at each

decision stage. At each decision stage i, RAP-DP selects the resource allocation plan with

the highest RSVi value as described previously in Appendix B. Optimality is achieved by

using an optimal resource allocation plan selected at a decision stage i as a base to obtain the

optimal resource allocation plan in the next decision stage i+1. Other non-optimal resource

allocation plans obtained at decision stage i are not explored further in the decision stage

i+1. This is because when starting from a non-optimal resource allocation at decision stage

i to obtain an optimal resource allocation plan at decision stage i+1, the total RSV value,

i.e., the sum of RSVi and RSVi+1, achieved at these two decision stages will not exceed the

total RSV value achieved by the resource allocation plans at decision stages i and i+1 when

both plans are optimal. This will be illustrated in the following paragraph using the results

of Figure 4.5b.

Table C.1 show a detailed view of the resource allocation plans obtained at the first three

decision stages of Figure 4.5b. Recall that in this experiment four applications are considered

for SLP over a planning horizon of four resource allocation intervals denoted by t1, t2, t3

and t4. In each decision stage a resource allocation plan describes the number of web server

instances allocated to each application in each resource allocation interval. Each resource

allocation plan shown in Table C.1 has an identifier denoted as Px where x is a number

to identify each resource allocation plan. Finally, an RSV value is shown for each resource

allocation plan. In each decision stage only the three topmost optimal resource allocation

179



Table C.1: Detailed view of the results shown previously in Figure 4.5b

Plan # Application 1 Application 2 Application 3 Application 4 RSV
t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t3 t4

Plan obtained initially in decision stage 0
P1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Top 3 optimal plans obtained in decision stage 1 from plan P1
P2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 42.78%
P3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 39.06%
P4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 25.28%

Top 3 optimal plans obtained in decision stage 2 from plan P2
P5 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 39.06%
P6 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 24.96%
P7 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 20.10%

Top 3 optimal plans obtained in decision stage 2 from plan P3
P5 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 42.78%
P8 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 25.28%
P9 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 20.41%

Top 3 optimal plans obtained in decision stage 2 from plan P4
P6 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 42.46%
P8 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 39.06%
P10 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 20.35%

plans, i.e., with the highest RSV values, are shown. The plans are listed in descending order

in terms of their RSV values.

Figure C.1 shows a tree representation of the resource allocation plans listed in Table

C.1. This representation depicts the listed plans over the three decision stages. The gray

shaded resource allocation plans are those selected by RAP-DP to be the optimal plans in

the three decision stages. RAP-DP only evaluated plans P1 to P7 in the search. Other

plans that are the children of non optimal plans are ignored. In spite of not evaluating all

plans, RAP-DP is able to obtain the optimal plan with the highest total RSV value in each

decision stage. Specifically, plan P5 has the highest total RSV value of 81.84% which is the

sum of the individual RSV values achieved by plans P2 and P5 as listed in Table C.1. As

shown in the table, the non-optimal plans P3 and P4 obtained in decision stage 1 cannot

generate plans in subsequent decision stages with higher total RSV values than the optimal

plan P5. Specifically, plans P8, P9 and P10 which are not evaluated by RAP-DP achieve
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Figure C.1: Tree representation of the resource allocation plans shown in Table C.1

total RSV values of 64.34%, 59.47% and 45.63% which are all less than the total RSV value

achieved by the optimal plan P5. This is because these three plans are generated based on

non-optimal plans obtained in the previous decision stage, i.e, plans P3 and P4.
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