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Abstract 

In order to improve the performance of jobs in a grid computing environment, it 
is important to have a job monitoring system that could show users how their jobs 
behaved during execution on a computer. Most of the existing job monitoring tools 
report on the status of scheduled jobs, but not on the behaviour. Recent tools that 
report on behavioural aspects of jobs have done so in cumbersome manners. 

This thesis develops a technique, known as the Wrapper method, for monitoring 
jobs in grid computing environments. We developed a monitoring tool to implement 
the Wrapper technique; the tool monitors jobs on a computer and collects monitoring 
data about the jobs. We also implement a graphing tool for converting monitoring 

data into meaningful monitoring information. 
We report on series of experiments to validate the job monitoring capabilities of 

the Wrapper method. The results show that memory, local disk I/O, network, and 
shared file system can be bottlenecks to the performance of a job. We suggest a 
number of ways to improve the performance of jobs affected by these bottlenecks. 
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Chapter 1 

Introduction 

Grid computing allows users to access and share powerful computers, databases, com-

puting storage facilities, high-speed fibre optic links, network resources, and experi-

mental facilities across different geographic areas or administrative domains or both. 

The sharing of resources in grid computing environments happens transparently with 

the user not necessarily knowing where those facilities are located. The sharing is 

concerned with direct access to computers, software, data, and other resources, as re-

quired by a range of collaborative problem-solving and resource-brokering strategies 

emerging in industry, science, and engineering [58]. 

Grid computing is used to solve research and business problems that require a 

large amount of computational resources. Some of these problems are so complex and 

data-intensive that a large amount of computational power (which may include pow-

erful computer, large amounts of memory, and high data transfer speed) is needed 

to solve such problems. Grid computing is helping organizations to leverage exist-

ing hardware investment and resources, reduce operational cost, accelerate product 

development, and increase productivity [5]. Grid computing has commercial appli-

cations in different industries including aircraft engine design, crash test simulation 

[38, 48], telecommunication network planning and management [72], financial mod-

elling using Monte Carlo simulations [33, 46, 91], digital rendering and animations 

in the entertainment industry, computational fluid dynamics in the manufacturing 

industry, and 3D seismic processing in the oil and gas industry [6]. The impor-

1 



1.1 Grid Monitoring 2 

tance of grid computing in the research community is immense. Grid computing is 

useful in many scientific problems which require a massive amount of computation 

[48, 77, 82]. In addition, it is helping researchers and scientists to interact and share 

data, instruments, and visualization tools irrespective of their geographical location. 

1.1 Grid Monitoring 

Monitoring in grid environments is the act of collecting information concerning the 

characteristics and status of resources of interest [93]. In [56], grid monitoring is 

defined as, "the measurement and publication of the state of a grid component 

at a particular point in time." The discovery, characterization, and monitoring of 

resources, services, and computations can be challenging due to the considerable 

diversity, large numbers, dynamic behaviour, and geographical distribution of the 

entities in which a user might be interested [56]. Monitoring is required for a number 

of purposes, including status checking, troubleshooting, performance analysis and 

tuning, debugging, auditing, and intrusion detection [13, 32]. 

A job is defined as, a unit of work defined by a user; it may include a set of 

computer programs, files, and control statements to the computer operating system 

[14]. A job requests required resources and gets the resources when they are available. 

A batch job is often defined using a shell script. The batch script once created for a 

job can be reused or modified to start the job as many times as possible. 

A job is classified as sequential or parallel depending on whether the job is to be 

processed on a sequential computer or on a parallel computer with several nodes. 

Parallel jobs consist of multiple processes that run concurrently on a set of processors 

[55]. In all cases there is a need for the programs in a parallel job to interact with each 
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other by exchanging data through Inter Process Communication (IPC). In addition, 

the processors executing a parallel job may be on the same computer or on different 

computers. Sequential jobs are scheduled to execute on a sequential computer. 

1.2 Problem Statement 

When a job is submitted for execution in a grid computing environment, monitoring 

becomes essential so that a user can see that the job was completed in an expected 

way within the expected time frame. It is also necessary that the user should be able 

to detect any problem that occurs while the job is running. In a grid environment, 

a user loses direct control over the job after it has been submitted, that is the user 

does not know what is happening to the job on the computer on which the job is 

being executed [7]. 

One of the challenges in grid computing is how to measure the performance of 

grid infrastructure and grid applications. There is no widely accepted and deployed 

technique that can solve all aspects of the problem [40]. In order to answer the 

question of grid performance, numerous approaches to performance monitoring and 

evaluation have resulted in several different tools. The popular grid monitoring tools 

used in the industry and academia are Monalisa [54], Ganglia [31], and Netlogger 

[51]. These tools give accurate information on basic system configuration, mem-

ory statistics, and CPU usage statistics, but they do not give information about 

individual jobs. 

Monalisa reports the number of running and queued jobs on a computer, but 

does not give any information on the node(s) on which the jobs are being executed. 

Also, the JINI server in California Institute of Technology must be up and running 
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before a user can monitor any computer running Monalisa. Ganglia reports the 

basic information about the state of a computer on a web page, and uses RRDtoo1 

(a round robin database) [31] for data storage 'and visualization. The round-robin 

database does not keep a long history; hence, a user can only view reports of the 

last 24 hours, 1 day, 1 week, 1 month and 1 year. It does not report any information 

about the jobs running on a computer. In addition to reporting memory and CPU 

usage statistics, Netlogger could be used to instrument other applications like Grid 

File Transfer Protocol (GridFTP) [75] to monitor file transfers, but it does not report 

information about individual jobs on a computer. 

1.3 Motivation 

Most of the existing job monitoring tools report on the status of scheduled jobs, but 

not on the behavioural aspects. Recent tools that report on behavioural aspects of 

jobs have done so in cumbersome manners. When users submit jobs in a computing 

environment, in most cases they would like to know how their jobs are performing 

on a computer. For example, is their job getting enough processing time, is their 

job getting enough memory, is their job doing a large amount of disk Input/Output 

operations, is their job using a large amount of shared resources like network band-

width and shared file system, and is their job experiencing competition from other 

activities on the same computer. There are users that are interested in how jobs 

perform on computers, so they could know where to submit their jobs in the future. 

1.4 Thesis Objectives 

The following are the main objectives of this research work: 
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- To perform a survey of the existing grid monitoring tools and approaches, and 

analyze them from job monitoring perspective. This will help to clearly identify 

their short comings, thereby opening directions for improvement. 

- To design a technique for monitoring jobs in grid computing environment; the 

technique would be simple and easy to implement. 

- To develop a monitoring tool to implement the job monitoring technique de-

signed in this thesis. 

- To assist users in understanding the performance of their jobs in a grid com-

puting environment, by providing meaningful monitoring information. The 

monitoring information would show the bottleneck(s) to the performance of a 

job and suggest a number of ways to improve the performance of jobs in the 

future. 

1.5 Thesis Overview 

The rest of the thesis is organized as follows. Chapter 2 highlights relevant back-

ground information on grid computing including a brief history of grid computing, 

types of grid, grid architecture, and grid components. Chapter 3 discusses some 

related work and existing grid monitoring tools. The related work discussed includes 

the Grid Monitoring Architecture (GMA) [12] and some grid monitoring tools in-

cluding Ganglia, Monalisa, and Netlogger. The chapter discusses the related work 

from job monitoring perspective in the context of this thesis work. 

Chapter 4 focuses on job monitoring in grid computing environments. This chap-

ter describes a technique for monitoring jobs called Wrapper method. The design and 
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implementation of the Wrapper method are described in detail. The chapter also dis-

cusses job monitoring information, sources of job monitoring information, and how 

the monitoring information is transferred and presented to users. The design issues 

with the Wrapper method and how it is implemented in a grid computing environ-

ment are highlighted. In Chapter 5, the results of eight experiments are presented and 

discussed. The purpose of the experiments is to identify the bottlenecks to the per-

formance of jobs on a computer under different scenarios. The experimental design, 

the workload, and the environmental setup for the experiments are also described 

in this chapter. Chapter 6 concludes the thesis by summarizing the contributions of 

this research work, and suggesting future research directions. 



Chapter 2 

Background 

This chapter presents a brief overview of grid computing and grid computing tech-

nologies relevant to this thesis. It starts with a brief history of grid computing 

in Section 2.1 and discusses the different types of grid computing environments in 

Section 2.2. The type of environment under which this thesis is performed is high-

lighted in this section. Section 2.3 provides an overview of grid architecture while 

the Globus Toolkit [35, 43] is presented in Section 2.4. Section 2.5 describes the key 

grid computing components. Finally, the chapter is summarized in Section 2.6. 

2.1 Brief History of Grid Computing 

In 1969, the US Defense Department's Advanced Research Projects Agency (ARPA) 

created the Advanced Research Projects Agency Networks (ARPANET). ARPANET 

was designed to be a system of data communications for scientific and military op-

erations that could withstand nuclear attack. ARPANET's founders designed it 

so that authority was distributed over a large number of geographically dispersed 

computers [80]. ARPANET served as a testbed for new networking technologies, 

linking many universities and research centres. The first two nodes that formed the 

ARPANET were University of California and the Stanford Research Institute, fol-

lowed shortly thereafter by the University of Utah. ARPANET was used by a few 

computer scientists and the Department of Defense (DoD) community [96]. 

Various production and research networks evolved from ARPANET including 

7 
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NSFNET (National Science Foundation Network) which was created in 1986 with 

a 56 kilobit/sec backbone bandwidth that tied together five NSF (National Science 

Foundation) supercomputer centres. In 1995, the NSF transferred NSFNET to the 

commercial sector, which later evolved into today's Internet [96]. Today the Inter-

net is a global network connecting millions of computers which enables people to 

exchange data, news, and opinions. The NSF created NSFNET, in order to give 

scientific researchers easy access to its new supercomputer centres. 

In the early-to-mid 1990s, a number of research projects in the academic and 

research community focused on distributed computing. Distributed computing is the 

process of aggregating the power of computing entities to collaboratively run a single 

computational task in a coherent way, so that they appear as a single, centralized 

system [106]. Some research focus is on methods of dividing computational jobs into 

smaller pieces for multiple machines. One key area of research focused on developing 

tools that would allow distributed high performance computing systems to act like 

one large computer. 

At the 1995 supercomputing conference sponsored by the Institute of Electrical 

and Electronics Engineers and the Association for Computing Machinery (IEEE/ACM), 

11 high speed networks were used to connect 17 sites with high-end computing re-

sources for a demonstration to create one super "metacomputer." This demonstra-

tion was called I-Way. Sixty different applications, spanning various faculties of 

science and engineering were developed and run over the demonstration network. 

Many of the early grid computing concepts were explored in the demonstration as 

the team created various software programs to make all computing resources work 

together [5]. 
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The demonstration of the I-Way was successful and people were convinced that 

grid computing had great potential. In October 1996, the U.S. Defense Advanced 

Research Projects Agency (DARPA) funded a project to create foundation tools 

for distributed computing. The research project was led by Ian Foster of Argonne 

National Laboratory (ANL) and Carl Kesselman of University of Southern California. 

At the 1997 supercomputer conference, Foster and Kesselman demonstrated a grid 

with some 80 sites worldwide running Globus Toolkit [43] middleware. At that point, 

Foster and Kesselman had started calling it "grid computing," playing on the analogy 

to the electrical grid [105]. 

2.2 Types of Grid 

Grid computing vendors have adopted various nomenclatures to explain and define 

the different types of grids. Some define grids based on the structure of the organi 

zation (virtual or otherwise) that is served by a grid, while others define it by the 

principle resources used in a grid [5]. 

Considering the structure or size of a computing grid, the three main types of 

grids are Departmental, Enterprise, and Global grids. 

Departmental Grids are deployed to solve problems for a particular group of peo-

ple within an organization. The resources are not shared by other groups within 

the organization. 

Enterprise Grids have resources spread across an organization and provides ser-

vice to all the groups and users within the organization. The resources in an 

Enterprise grid span multiple departments or projects. Enterprise grids enable 
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multiple projects or departments to share resources within an enterprise or 

campus, and don't necessarily have to address the security and global policy 

management issues associated with global grids [23]. 

Global Grids are organizations over the public Internet. They are established to 

facilitate business or collaboration between ihe organizations. The services 

could be purchased in part or in whole from service providers [5]. Global grids 

are collections of enterprise and cluster grids as well as other geographically 

distributed resources, all of which have agreed upon global usage policies and 

protocols to enable resource sharing [23]. 

This thesis is implemented on Grid Research Centre cluster (grc cluster) in Grid 

Research Centre at the University of Calgary. In terms of size, GRC Cluster can be 

classified as a Departmental grid. It serves as a testbed for developing and testing 

grid computing and High Performance Computing (HPC) applications. 

Grid computing can be used in a variety of ways to address various kinds of 

application requirements. Often, grids are categorized by the type of solutions they 

best address [59]. There are no hard boundaries between these grid types and often 

a grid may be a combination of two or more other types of grid [68]. Using this 

criterion, the three primary types of grids are described as follows. 

2.2.1 Compute Grid 

A compute grid environment consists of one or more hardware- and software-enabled 

environments that provide dependable, consistent, pervasive, and inexpensive access 

to high end computational capabilities. A compute grid sets aside resources specif-

ically for computing power. It denotes a hardware and software infrastructure that 
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enables coordinated resource sharing within dynamic organizations consisting of in-

dividuals, institutions, and resources [83]. 

In [5], compute grids are classified further by the type of computational hardware 

used in the grid computing environment. The different types of computational grids 

include Desktop grids, Server grids, and High-Performance grids. The three primary 

types of compute grids are described in the next sections. 

2.2.1.1 Desktop Grids 

The ad hoc collections of work-based and home-based PCs from around the world 

are an example of PC-based distributed computing and serve as the forerunners of 

today's Desktop grids [67]. The aggregation of PC processing power became known 

in the last few years, through one of the many "cause computing" projects. 

A Desktop grid is also known as a Scavenging grid in [66]. The machines in 

Desktop grids are scavenged for available CPU cycles and other resources. Owners 

of the desktop machines are usually given control over when their resources are 

available to participate in a grid. 

The examples of a Desktop grid include SETlOhome [94] - a scientific experiment 

that uses Internet-connected computers in Search for Extraterrestrial Intelligence 

(SETI), Greater Internet Mersenne Prime Search (GIMPS) [45] - searching for ex-

tremely large prime numbers, and ClimatePrediction. net [16] - for predicting climate 

on a global scale in the 21st century. 

2.2.1.2 Server Grids 

In some organizations, special servers are bought solely for the purpose of creating 

an internal "utility grid" with resources made available to various departments. No 

desktops are included in server grids. These servers usually run some flavor of the 
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UNIX/Linux operating system [5]. 

2.2.1.3 Cluster Grids 

Cluster grid is a term used by Sun Microsystems and consists of one or more systems 

working together to provide a single point of access to users [73]. In [86], Gregory 

Pfister defines a cluster as "a type of parallel or distributed system that consists 

of a collection of interconnected whole computers, and is used as a single, unified 

computing resource." A cluster grid is a superset of other technical compute re-

sources such as Linux clusters, throughput clusters, midrange compute servers, and 

high-end shared-memory systems. Therefore, the cluster grid can operate within a 

heterogeneous environment with mixed server types, mixed operating environments, 

and mixed workloads [23]. 

2.2.2 Data Grids 

A data grid is responsible for housing and providing access to data across multiple 

organizations. Users are not concerned with where data is located as long as they 

have access to the data. For example, two universities doing life science research 

may each have their own unique data. A data grid would allow them to share their 

data, manage the data, and manage security issues such as who has access to what 

data [68]. 

Data grids provide transparent, secure, and high-performance access to federated 

data sets across administrative domains and organizations. Users (both people and 

applications) may be unaware that they are using a data grid [6]. The remote data 

may be flat-file data, relational data, or streaming data [50]. 
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2.2.3 Utility Grids 

In [5], utility grids are defined as commercial compute resources that are maintained 

and managed by a service provider. Customers that have the need to augment 

their existing, internal computational resources may purchase "cycles" from a utility 

grid. Customers may choose to use utility grids for business continuity and disaster 

recovery purposes in addition to overflow applications. 

This thesis work is carried out on a cluster grid known as grc cluster. It provides 

resources for developing and running scientific computing applications. It has 11 

nodes connected together to form a powerful computer. 

2.3 Grid Architecture 

A computing grid architecture identifies fundamental system components, specifies 

the purpose and function of these components, and indicates how these components 

interact with one another. Ian Foster et al. proposed grid architecture in [58]; they 

defined grid architecture from the perspective that sharing relationships need to 

be established among potential participants, for an organization to function effec-

tively. The grid architecture is a protocol architecture with protocols defining the 

basic mechanisms by which Virtual Organization (VO) users and resources negoti-

ate, establish, manage, and exploit sharing relationships. The standard-based open 

architecture facilitates extensibility, interoperability, portability, and code sharing. 

The standard protocols also make it easy to define standard services that provide 

enhanced capabilities. 

Interoperability is key in order to ensure that sharing relationships can be initi-

ated among arbitrary parties, accommodating new participants dynamically, across 
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different platforms, languages, and programming environments. Mechanisms are 

implemented so as to have interoperability across organizational boundaries, opera-

tional policies, and resource types. The grid architecture components are organized 

into layers as shown in Figure 2.1. 

2.3.1 Grid Architecture Description 

The description of grid architecture does not provide a complete list of all required 

protocols (and services, APIs, and SDKs) but rather to identify requirements for 

general classes of components [58]. The principles of the "hourglass model" [19] are 

used in specifying the various layers of the grid architecture. In the proposed archi-

tecture, the neck of the hourglass consists of Resource and Connectivity protocols, 

which facilitate the sharing of individual resources. The Resource and Connectivity 

protocols are designed so that they can be implemented on top of a diverse range 

of resource types defined at the Fabric layer. They can also be used to construct 

a wide range of global services and application-specific behaviours at the Collective 

layer. The Collective layer involves the coordinated ("collective") use of multiple 

resources. 

The grid architecture shown in Figure 2.1 has been closely aligned with the 

Internet protocol architecture as defined by the Open Systems Interconnect (OSI) 

Internet stack [5]. Protocols, services, and APIs occur at each level of the grid 

architecture model. The components within each layer share common characteristics 

but can build on capabilities and behaviours provided by any lower layer component. 

The grid architecture components are discussed in subsequent sections. 
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Figure 2.1: The layered Grid Architecture and its relationship to the Internet Pro-
tocol (Source [58]) 

2.3.1.1 Fabric Layer 

The grid architecture Fabric layer includes the protocols and interfaces that provide 

access to the resources that are being shared. Examples of shared resources are com-

putational resources, storage systems, code repositories, catalogs, network resources, 

and sensors. 

2.3.1.2 Connectivity Layer 

The connectivity layer defines core communication and authentication protocols re-

quired for grid-specific network transactions. The communication protocols enable 

the exchange of data between Fabric layer resources. 



2.3 Grid Architecture 16 

2.3.1.3 Resource Layer 

The Resource layer is built on the communication and authentication protocols of the 

Connectivity layer. This layer defines protocols for the secure negotiation, initiation, 

monitoring, control, accounting, and payment of sharing operations, on individual 

local resources. The protocols defined at this layer include 

Grid Resource Allocation Management (GRAM) - used for remote alloca-

tion, reservation, monitoring, and control of computational resources. 

Grid File Transfer Protocol (GridFTP) - for high performance data access and 

transport. 

Grid Resource Information Service (GRIS) - grants access to structure and 

state information. 

2.3.1.4 Collective Layer 

In contrast to the Resource layer that focus on interactions with a single resource, 

the Collective layer contains protocols and services that are global in nature, and 

capture interactions across collections of resources. 

2.3.1.5 Applications Layer 

This layer defines protocols and services that are targeted toward a specific appli-

cation or a class of applications. This layer comprises the user applications that 

operate within a VO environment. 

The Wrapper method described in Chapter 4 of this thesis belongs to the Resource 

layer of the grid architecture and falls in the Application layer of the Internet Protocol 

architecture. It is important to know the position of the Wrapper method in the grid 

architecture, for the purpose of interoperability. 
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2.4 Globus Toolkit 

Globus [42] is a community of users and developers who collaborate on the use and 

development of open source software, and associated documentation, for distributed 

computing and resource federation. The Globus Toolkit [35] is a middleware available 

under an open-source license from the Globus Alliance consortium [44]. 

The Globus Toolkit is a fundamental enabling technology for the "Grid," letting 

people share computing power, databases, and other tools securely online across 

corporate, institutional, and geographic boundaries without sacrificing local auton-

omy. The toolkit includes software services and libraries for security, information 

infrastructure, file management, resource management, data management, commu-

nication, fault detection, and portability [41]. The toolkit is a central part of science 

and engineering grid computing projects, and an underlying layer on which leading 

IT companies are building significant commercial grid products. 

The Globus Toolkit was conceived to remove obstacles that prevent seamless 

collaboration. Its core services, interfaces, and protocols allow users to access remote 

resources as if they were located within their own machine room while simultaneously 

preserving local control over who can use resources and when they can access the 

resources [37]. 

The Globus Toolkit has evolved rapidly from version 1.0 in 1998 to the 2.0 release 

in 2002 and now the latest version 4.0. The latest version of Globus Toolkit known as 

GT4 is based on new open-standard grid services. The Globus Toolkit is the de facto 

standard for open source grid computing infrastructure. Globus Toolkit provides a 

variety of components and capabilities, including the following: 

. A set of service implementations focused on infrastructure management. 
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• Tools for building new Web services, in Java, C, and Python. 

• A powerful standards-based security infrastructure. 

• Client APIs (in different languages) and command line programs for accessing 

various services and capabilities. 

• Detailed documentation on the various Globus Toolkit components including 

their interfaces, and how they can be used to build applications. 

The description of Globus Toolkit in this section focuses on the Web services-

based GT4. GT4 makes extensive use of Web Services mechanisms to define its 

interfaces and structure its components. Web services provide flexible, extensible, 

and widely adopted XML-based mechanisms for describing, discovering, and invoking 

network services; in addition, its document-oriented protocols are well suited to the 

loosely coupled interactions preferable for robust distributed systems [34]. 

Since the Globus toolkit is the de facto standard for grid computing, it is impor-

tant to have a basic overview of Globus toolkit. How jobs are monitored in a grid 

computing environment with Globus middleware using Globus Toolkit is described 

in Section 4.8 of Chapter 4. 

2.5 Grid components 

This section highlights the key components that make up a grid environment. The 

most common description of a computing grid includes an analogy to a power grid. 

When an electrical power consumer plugs an electrical appliance into a receptacle, 

he/she expects power to be available at the correct voltage. The user does not know 

the actual source of the power. The local utility company provides the interface 
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into a complex network of generators and power sources and provides consumers 

with the correct power based on their energy demands. Rather than each house 

or neighbourhood having to obtain and maintain its own generator of electricity, 

the power grid infrastructure provides a virtual generator. The generator is highly 

reliable and adapts to the power needs of the consumers based on their demand [66]. 

The vision of grid computing is similar in the sense that once the proper kind 

of infrastructure is in place, a user will have access to the computing infrastructure 

that is reliable and adaptable to the user's needs. A computing grid consist of many 

diverse computing resources, but these individual resources will not be visible to the 

user, just as the consumer of electric power is unaware of how his electricity is being 

generated. Depending on the design of a grid and its expected use, some of the 

components may or may not be required, and in some cases they may be combined 

to form a hybrid component [65]. Figure 2.2 shows some of the key components that 

make up a typical grid and the components are discussed in the subsequent sections. 

2.5.1 Security 

In any grid computing environment there must be mechanisms to provide security, 

including authentication, authorization, and data encryption. The computing re-

sources in grid computing environments are hosted in different security domains and 

heterogeneous platforms. Hence, the grid middleware must address local security in-

tegration, secure identity mapping, secure access/authentication, secure federation, 

and trust management [68]. The Grid Security Infrastructure (GSI) component of 

the Globus Toolkit provides robust security mechanisms. It provides a single sign-on 

mechanism so that once a user is authenticated, a proxy certificate is created and 

used to reduce the number of times a user must enter his/her pass phrase when 
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Figure 2.2: Key Grid Components 

performing mutual authentication within a grid computing environment [66]. 

2.5.2 Resource Discovery 

After a user is authenticated, there is need to identify the available and appropriate 

resources to utilize within a grid for the user's job. This task is handled by Monitor-

ing and Discovery Service (MDS). The Globus Resource Allocation and Management 

(GRAM) processes the requests for resources for remote application execution, allo-

cates the required resources, and manages the active jobs. It also returns updated 

information regarding the capabilities and availability of the computing resources to 

the MDS [101]. 

A standardized GRAM interface gives access to a variety of local resource man-

agement tools that a site might have in place, such as Load Sharing Facility (LSF), 

Network Queuing Environment (NQE), LoadLeveler, Portable Batch System (PBS), 
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and Condor. MDS provides tools to enable the discovery and querying of system 

components [37]. The service provides information about the available resources 

within a grid and their status. 

2.5.3 Scheduler 

When the available and appropriate resources have been identified, the next step is 

to schedule the individual jobs to run on the resources. This step is handled by the 

schedulers. Schedulers are types of applications responsible for the management of 

jobs, such as allocating resources needed for any specific job, partitioning of jobs 

to schedule parallel execution of tasks, data management, event correlation, and 

service-level management capabilities [68]. 

There could be different levels of schedulers within a grid environment. For exam-

ple a cluster within a grid environment could be represented as a single resource. The 

cluster may have its own scheduler to help manage the nodes it contains. A higher 

level scheduler (known as meta-scheduler) might be used within a grid environment 

to schedule work to be done on a particular cluster, while the cluster's scheduler 

would handle the actual scheduling of work on the cluster's individual nodes. 

2.5.4 Data Management 

Data in a grid computing environment may be an input into a resource and/or 

the results from the resource after a specific task is completed. The data needed 

by a job may be close to or far from the computation site where it is to be used. 

Data movement in any grid computing environment requires secure and reliable data 

transfers, between different computing sites. 

The Globus Toolkit contains data management components that provide such 
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services. Some of the data management components are Grid File ' ftansfer Proto-

col (GridFTP), Reliable File 'ftansfer (RFT), and Replica Location Service (RLS). 

GridFTP is built on top of the standard FTP protocol, but optimized for high-

bandwidth wide-area networks. It utilizes the GSI for user authentication and au-

thorization. Hence, once a user has an authenticated proxy certificate, he can use the 

GridFTP facility to move files without having to go through a login process to every 

node involved. This facility provides third-party file transfer so that one node can 

initiate a file transfer between two other computing sites [66]. The standard FTP 

protocol has been extended while preserving interoperability with existing servers 

to develop GridFTP. The extensions provide for parallel data channels, partial files, 

automatic and manual TOP buffer size settings, progress monitoring, and extended 

restart functionality [5]. 

The RFT service provides the reliable management of multiple GridFTP trans-

fers. The RLS is a scalable system for maintaining and providing access to informa-

tion about the location of replicated files and datasets. 

2.5.5 Job and Resource Management 

The large number and the heterogeneous nature of grid computing resources makes 

resource management a great challenge in grid computing environments. Resource 

management scenarios often include resource discovery, resource inventories, fault 

isolation, resource provisioning, resource monitoring, a variety of autonomic capa-

bilities, and service-level management activities [68]. 

The key grid components used in the implementation of the Wrapper method are 

resource manager and scheduler. Portable Batch System (PBS) is used for job and 

resource management; it is chosen over other batch systems because it is the most 
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popular of all batch systems. And MAUI [18] cluster scheduler is used because it is 

an open source scheduler for clusters and supercomputers. The experimental testbed 

is a cluster of computing nodes, so PBS and MAUI are suitable for such environment. 

2.6 Summary 

This chapter presented a brief overview of grid computing and grid computing tech-

nologies relevant to this thesis. Grid computing environments were grouped into 

Departmental, Enterprise, and Global grids considering their structure or size. The 

types of grids were also categorized into Compute, Data, and Utility grids based on 

the type of solutions they provide. The Compute grid category is further divided 

into Desktop, Server, and Cluster grids based on the type of computational hardware 

deployed in the grid environment. 

The grid architecture that identifies the key fundamental system components 

of a computing grid was described. It specifies the purpose and function of the 

components and describes how these components interact with one another. A brief 

overview of grid computing middleware - The Globus toolkit is presented. The key 

grid components that make up a grid computing environment were also described in 

this chapter. 



Chapter 3 

Related Work 

This chapter presents the related work to this thesis. The background information 

on Grid Monitoring Architecture (GMA) and its relevance to this work is discussed 

in Section 3.1. A number of existing grid monitoring tools including Hawkeye, Net-

logger, Network Weather Service, Ganglia, Autopilot, and Monalisa are discussed in 

Section 3.2. Section 3.3 provides some existing and on-going research related to this 

work. Finally, Section 3.4 provides a brief summary of this chapter. 

3.1 Grid Monitoring Architecture (GMA) 

The Grid Monitoring Architecture (GMA) is developed by Grid Monitoring Archi-

tecture Working Group (GMA-WG) [47] of the Global Grid Forum (GGF). The 

GMA-WG was focused on producing a high-level architecture statement of the com-

ponents and interfaces needed to promote interoperability between heterogeneous 

monitoring systems in grid computing environments [47]. 

The GMA is an abstract description of the components needed to build a scalable 

monitoring system. The goal of the architecture is to provide a minimal specification 

that will support required functionality and allow interoperability. A grid monitoring 

system is different from a general monitoring system in the sense that it must be 

scalable across wide-area networks and encompass a large number of heterogeneous 

resources. 

24 
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3.1.1 GMA Requirements for Grid Monitoring Systems 

With the potential for thousands of resources at geographically distant sites and tens-

of-thousands of simultaneous grid users, it is critical that data collection and distri-

bution mechanisms scale in grid monitoring systems [12]. Performance-monitoring 

information produced by grid monitoring systems has these properties; fixed, often 

short lifetime of utility, frequent updates, and stochastic (i.e., it is frequently impos-

sible to characterize the performance of a resource or an application component by 

using a single value). 

Since grid monitoring systems are expected to collect and distribute performance 

information, they must meet the following requirements: 

Low latency: The performance data must be transmitted from where it is measured 

to where it is needed with low latency. 

High data rate: The monitoring system should be able to handle performance data 

that is being generated at high data rates. 

Minimal measurement overhead: The measurement must not be intrusive if 

measurements are taken often. 

Secure: The owners of the monitoring sensors may place access restrictions on the 

data gathered by the system. In addition, the monitoring system must en-

sure its own integrity and preserve the access control policies imposed by the 

ultimate owners of the data. 

Scalable: Because there are potentially thousands of resources, services, and ap-

plications to monitor, and thousands of potential entities that would like to 
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Figure 3.1: Grid Monitoring Architecture Components 

receive the monitoring information, it is important that a performance moni-

toring system provide scalable measurement, transmission of information, and 

security. 

In order to meet these requirements, a monitoring system must have control of 

the overhead and latency associated with gathering and delivering the data. 

3.1.2 Terminology and Architecture 

In the GMA, the basic unit of monitoring is called an event. An event is a structure 

containing one or more items of data that relate to one or more resources [12]. 

The data may relate to one or more resources such as memory or network usage or 

application-specific information [56]. 

The Grid Monitoring Architecture shown in Figure 3.1 consists of the following 

components: 
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Directory Service: Publishes what performance data are available and which pro-

ducer to contact in order to request it. 

Producer Makes the performance data available (i.e., performance event source). 

Consumer: Requests or accepts performance data (i.e., performance event sink). 

The GMA components are discussed in detail in the following sections. 

3.1.3 Directory Service Interaction 

Producers and consumers publish their existence in directory service entries. Con-

sumers can use the directory service to discover producers of interest, and producers 

can use the directory service to discover consumers that are of interest to them. 

A producer or a consumer may initiate the interaction with a discovered peer. 

In either case, communication of control messages and transfer of performance data 

occur directly between each consumer/producer pair without further involvement of 

the directory service [12]. 

3.1.4 Producer/ Consumer Interactions 

The GMA architecture supports three interactions for transferring data between 

producers and consumers: publish/subscribe, query/response, and notification. The 

GMA publish/subscribe interaction has three stages. In the first stage, the initia-

tor of the interaction (i.e., a producer or consumer) contacts the "server" (i.e., the 

corresponding consumer or producer respectively). The purpose is to indicate inter-

est in some set of events or data. The additional parameters needed to control the 

data transfer are also negotiated in this stage. These may include where to send the 

events, how to encode or encrypt the events, how often to send the events, buffer 
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sizes, and timeouts. At this stage both the producer and consumer assumes a sub-

scription state. In the next stage, the producer (i.e., the server for this interaction) 

sends one or more events to the consumer. In the third and final stage, either the 

producer or consumer terminates the subscription, possibly with additional control 

messages. 

The GMA query/response interaction has two stages and the initiator must be 

a consumer. The first stage of this interaction is similar to the first stage of pub-

lish/subscribe interaction. The only difference is that the producer transfers all the 

performance events to the consumer in a single response after the event transfer. 

The GMA notification interaction is a one-stage interaction, and the initiator 

must be a producer. In this interaction, the producer transfers all the performance 

events to a consumer in a single notification. 

3.1.5 Sources of Event Data 

The data used to construct events can be gathered from various sources. The sources 

could be hardware or software sensors that sample performance metrics in real time. 

Another source of event data is a database with a query interface, which can provide 

historical data. Also, an entire monitoring system such as the Network Weather 

Service [92] can serve as a source of events. Additionally, application timings from 

tools such as Autopilot [76] or NetLogger [25] can provide events related to a specific 

application. 

Figure 3.2 shows one possible configuration of sources of event data. The GMA 

is flexible, hence it allows the performance system developers to choose any config-

uration that best suits their scalability and reliability needs. More information on 

Grid Monitoring Architecture (GMA) can be found in [12]. 
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Figure 3.2: Sources of Event Data 

The key components described in this thesis work are the Monitoring tool (i.e., 

the producer which makes the monitoring data available) and the Wrapper tool (i.e., 

the consumer which executes the monitoring tool). 

3.2 Grid Monitoring Tools 

One of the challenges in grid computing is how the quality or performance of grid in-

frastructure and grid applications can be measured. There is no widely accepted and 

deployed technique that can solve all aspects of the problem. In order to measure the 

performance of computing grids, numerous approaches to performance monitoring 

and evaluation yield different tools. Some of the tools are fully grid enabled, some 

are called grid monitoring tools but do not provide monitoring information related 

to jobs, some try to give a whole solution, and some just focus on solving a particular 
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monitoring problem [76]. 

Monitoring systems, in the broadest sense, are tools that report some set of 

measurements to higher-level services. All monitoring systems have three major 

components: information collectors (sensors or probes), support services (collection, 

archiving, management), and interfaces (GUIs or APIs) [64]. There are tools for 

monitoring performance in grid computing environments; the following section de-

scribes some selected grid monitoring tools. 

3.2.1 Hawkeye 

Hawkeye [22] is a monitoring and management tool for clusters of computers [93]. It 

utilizes the technologies already present in Condor [28]. It provides rich mechanisms 

for collecting, storing, and using information about computers. ClassAds (Classified 

Advertisements) [21] are used for describing jobs, workstations, and other resources. 

They are exchanged by Condor processes to schedule jobs and logged to files for 

statistical and debugging purposes [27]. 

Hawkeye is based on Condor, hence the configuration of Hawkeye is extremely 

flexible. Hawkeye works by configuring Condor such that it periodically executes 

specified program(s) (typically scripts). The program produces output in the form 

of ClassAd attribute/value pairs, which are then added (using defined naming con-

ventions) to the machine ClassAd. A Hawkeye system can be used to monitor various 

attributes of a collection of systems. The monitoring mechanism may also be used 

to further the management of systems but can not be used to monitor jobs in a grid 

computing environment. 
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3.2.2 Netlogger 

The Network Application Logger Toolkit (NetLogger) monitors, under realistic oper-

ating conditions, the behaviour of all the elements of the application-to-application 

communication path in order to determine exactly what is happening within a com-

plex system [25]. The NetLogger Toolkit has the following four features: NetLogger 

message format, NetLogger client library, NetLogger visualization tools, and Net-

Logger host and network monitoring tools. Also, NetLogger uses an additional com-

ponent for synchronizing the clocks of all hosts in the distributed system. NTP 

(Network Time Protocol) [26] or a GPS host clock is used in the synchronization. 

NetLogger also includes wrappers for several system monitoring utilities, such as 

vmstat, iostat, and netstat [11] but it does not monitor jobs on a computing system. 

3.2.3 Network Weather Service 

Network Weather Service (NWS) is a distributed, generalized system for producing 

short-term performance forecasts based on historical performance measurements. 

The system dynamically characterizes and forecasts the performance deliverable at 

the application level from a set of network and computational resources [92]. NWS 

operates a distributed set of performance sensors (like CPU monitors and network 

monitors) from which it gathers readings of instantaneous conditions and then uses 

numerical models (mean-based, median based, and autoregressive methods) to gen-

erate forecasts of what the conditions will be for a given time frame [110]. 

The NWS uses four component processes: 

Persistent State process (memory): stores and retrieves measurements from per-

sistent storage. 
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Name Server process: used in binding process and data names with low-level 

contact information for example, TCP/IP port number. 

Sensor process: gathers performance measurements from a specified resource. 

Forecaster process: produces a predicted value of deliverable performance during 

a specified time frame for a specified resource. 

In spite the fact that NWS is a good monitoring tool, it does not provide any 

useful information about jobs on a computer. 

3.2.4 Ganglia 

Ganglia [31] is a scalable distributed monitoring system for high-performance com-

puting systems such as clusters. Ganglia has a hierarchical design targeted at feder-

ations of clusters. It relies on a multicast-based listen/announce protocol to monitor 

the state within clusters and uses a tree of point-to-point connections among repre-

sentative cluster nodes to federate clusters and aggregate their states [78]. In Ganglia, 

data is represented in XML using XDR (External Data Representation Standard) 

[98]. 

Ganglia is comprised of two components, the Gmon (i.e., local-area monitoring 

system) and the Gmeta (i.e., wide-area monitoring system). Gmeta processes and 

presents the monitoring information gathered from one or more clusters running the 

Gmon local-area monitor. Ganglia gives monitoring information about computing 

systems but does not provide information that can help users to understand the 

behaviour of their jobs. 



3.2 Grid Monitoring Tools 33 

3.2.5 Autopilot 

Autopilot [90] is a distributed performance monitoring, resource control, and tuning 

system that is based on the Pablo performance toolkit [84]. Autopilot is comple-

mented by Virtue [95] - an environment that accepts real-time data from Autopilot 

and allows users to change software behaviour and resource policies [110]. Autopilot 

and Virtue allow application developers and performance analyst to capture, analyze, 

and steer distributed applications [104]. 

Autopilot is used in Grid Application Development Software (GrADS) project 

[30] to monitor performance contracts via application level autopilot sensors. A 

real-time monitor compares an application progress against the requirements of its 

contract and triggers corrective actions in case of violations. 

The Autopilot library contains distributed performance sensors, software actu-

ators, behavioural classification tools, Self-Defining Data Format (SDDF), decision 

procedures, distributed name servers, and sensor and activator clients [110]. Autopi-

lot provides performance daemons to capture network and operating system data 

on distributed hosts but does not capture information about the jobs on distributed 

hosts in a grid computing environment. 

3.2.6 Monalisa 

MonaLISA (Monitoring Agents in A Large Integrated Services Architecture) system 

provides a distributed service for monitoring, control, and global optimization of 

complex systems. MonALISA is based on a scalable Dynamic Distributed Services 

Architecture (DDSA) implemented using Java/JINI and Web Services technologies. 

MonALISA is an ensemble of autonomous multi-threaded, self-describing agent-
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based subsystems which are registered as dynamic services. The services are able to 

collaborate and cooperate in performing a wide range of monitoring tasks in large 

scale distributed applications; they can be discovered and used by other services or 

clients that require such information. MonALISA is designed to easily integrate ex-

isting monitoring tools and procedures, and to provide this information in a dynamic 

and self-describing way to any other services or clients [54]. 

The only information that MonALISA provides about jobs on a computer is the 

number of queued and running jobs. It does not provide additional information on 

the behaviour of jobs on the computer. 

3.3 Grid Monitoring Systems 

This section describes some of the existing grid monitoring systems with emphasis 

on job monitoring. 

3.3.1 Monitoring Jobs Using Mobile Agents 

The proposed systems in [10, 81] use agent based technology to do monitoring in 

grid environments. A mobile agent is a software module that is able to migrate 

among the hosts of a network, in order to carry on a specific task [70]. The agent 

is not linked to the system where it starts its execution. After being created in an 

execution environment, an agent can carry its state and code to another execution 

environment in another host of the network, where the execution can be restarted 

or continued [81]. 

In [10], a collection of software agents [39] is used as an event management system 

designed for grid environments. An automated agent-based architecture called Java 
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Agents for Monitoring and Management (JAMM) is also developed in [10]. The 

implementation of the agents is based on Java and Java Remote Method Invoca-

tion (RMI). The agents can be used to launch a wide range of system and network 

monitoring tools, and then extract, summarize, and publish the results. The JAMM 

system is designed to facilitate the execution of monitoring programs, such as netstat, 

iostat, and vmstat, by triggering or adapting their execution based on actual client 

usage. JAMM is often used to collect monitoring events for use with the NetLogger 

Toolkit. In JAMM architecture, monitoring data is collected at both the client and 

server host, and at all network routers between them. Then, all event data is sent 

to a real-time monitor consumer for real-time visualization and NetLogger analysis. 

The server and router data is also sent to the archive. 

In a mobile agent approach, the agent moves close to the data to be processed, 

thus eliminating the network traffic due to messages (excluding the initial migration), 

and allowing the execution of operations dynamically defined by the user [81]. In 

[81], it is assumed that the mobility of some code modules can contribute to the 

development of a more effective and flexible architecture. The advantages of using a 

mobile agent includes reduction of the network load, filtering of monitoring data at 

several abstraction levels, asynchronous and independent execution of tasks defined 

by a user, integration of heterogeneous resources monitoring tools, and on-demand 

enabling of the required services. The mobile agent system known as MAP (i.e., 

Mobile Agent Platform) [3] was developed at the University of Catania; it was used 

in [81]. 

The problem with the agent based approach is that it is assumed that the mobile 

agent can migrate to. any system or cluster and run there. This is not always the 
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case in grid environments where the resources in a grid are owned by different orga-

nizations. In a production grid it may not be possible to assign a monitoring task 

to an agent because a user may not have the permission to run programs on some 

clusters or machines. 

The data collected through JAMM does not give any information about jobs and 

their behaviour in a grid computing environment. 

3.3.2 Monitoring Jobs Using Globus Toolkit 

The core services, interfaces, and protocols of Globus Toolkit allow users to access 

remote resources as if these resources were located within the users own machine 

room, while simultaneously preserving local control over who can access resources 

and when [37]. 

Kejing et al. [52] presents the architecture and implementation of a Grid Monitor-

ing System based on Globus Toolkit, although the architecture and implementation 

has important practical value for the monitoring of the China Education and Re-

search Grid (CERG). The start-up of the monitor and collection of data from remote 

sites are more complex and difficult than in a single cluster [10]. 

Globus Toolkit version 3.0, which includes a set of core services such as security, 

communication, managing distributed applications, and information, is responsible 

for the security problem brought by spanning clusters, aggregating host information 

from clusters and indexing host information for quick querying [52]. To get the 

aggregate information, one Monitoring Service runs on each organization or resource 

site. A large organization that consists of multiple large sites will run its own Index 

Service that will index the various resources available at that site. 

Since the work is based on Globus Toolkit version 3.0, then there may be need 
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to modify a grid monitoring service whenever a newer version of Globus toolkit is 

released. Also, the approach does not discuss how jobs can be monitored in grid 

environments using the Globus toolkit. 

Globus only provide information on the status of a job - PENDING, ACTIVE, 

DONE, or FAILED. It does not provide information that can help users to under-

stand the behaviour of their jobs. For example, the reason(s) their job failed or is in 

"pending" state. 

3.3.3 Job Monitoring on Legion 

Legion [4] is a middleware; it connects networks, workstations, supercomputers, and 

other computing resources into a system that can encompass different architectures, 

operating systems, and physical locations. A small set of attributes about jobs 

that are of interest to users are presented in [2]. The attributes discussed include 

status of a job, name of the machine on which a job is running, working directory 

of a job, list of files in the working directory of a job, and permissions, timestamp, 

and size of any file in the working directory of a job. Some grid systems already 

provide mechanisms for retrieving some of these attributes, whereas others do not. 

In [2], Legion was used as the implementation platform for demonstrating how job 

attributes could be retrieved. 

Each system and application component in Legion is an object. The running 

jobs (or instances of programs) are known as objects in Legion. Legion has tools for 

starting a legion r'unnable object on some machine and tools for finding out the status 

of a running job. The work in [2] uses the inbuilt tools in Legion to monitor the status 

of running jobs, but only a few computing grids run Legion operating system. Most 

of the existing computing grids are running Globus Toolkit middleware, therefore 
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Legion middleware is not common. 

Although, Legion provides the status of jobs on a computer, it does not provide 

information that could help users to understand the behaviour of their jobs on the 

computer. 

3.3.4 Job Monitoring in Interactive Grid Analysis Environment 

The design of a Job Monitoring Service is presented in [1]. The Job Monitoring Ser-

vice is a web service that will provide interactive remote job monitoring by allowing 

users to access different attributes of a job once it has been submitted to the inter-

active Grid Analysis Environment (GAE) [61]. The set of interacting web services 

in interactive GAE include Data Collection service, Monitoring service, Execution 

service, and Replica Management service. 

The GAE focuses on the construction of an infrastructure that allows scientists to 

interactively perform analysis and submit small jobs in quick succession, depending 

on the output of previous jobs, instead of submitting one large batch job [1]. A job 

monitoring service which is designed for use in a Grid Analysis Environment is being 

developed. The Job Monitoring Service will continuously monitor the jobs that have 

been submitted and whenever the state of a job changes the Job Monitoring Service 

will update the repository and MonALISA. The Job Monitoring Service provides an 

API that allow the clients to access the job monitoring information of their jobs. 

One of the disadvantages of this method is that it cannot be used elsewhere except 

in GAE. 

The job monitoring service developed in GAE uses an API to provide job monitor-

ing information such as job status, elapsed time, estimated run time, queue position, 

completion time, and CPU time used; but it does not provide information that could 
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help users to understand the behaviour of their jobs on a computer. 

3.3.5 Job Monitoring in GridLab 

A flexible and efficient monitoring system was designed and implemented as part 

of GridLab project [49]. The architecture of the monitoring system is based on the 

GMA and exploits its distributed design, compound producer-consumer entities, and 

generality. This monitoring system also support advanced functions like actuators 

and guaranteed data delivery. Actuators are analogous to sensors, but instead of 

taking measurements of metrics, they implement controls that represent interactions 

with either the monitored entities or the monitoring system itself. 

The monitoring system is not responsible for the permanent storage of monitoring 

data; hence, if a consumer needs to preserve monitoring data, the monitoring system 

must either save the data itself or supply a contact point for a storage service and 

appropriate credentials for authentication. The monitoring system consists of a Local 

Monitor (LM) service running on each node and collecting information processes (P) 

running on the node. The collected information is sent to, a Main Monitor (MM) 

service. The MM is a central access point for local users (i.e., site administrators 

and non-grid users). Grid users can access information via the Monitoring Service 

(MS) which is also a client of MM [13]. The Local Resource Management System 

(LRMS) controls jobs running on hosts belonging to a grid resource. It allocates 

hosts to jobs, starts and stops jobs on user request, and possibly restart jobs in case 

of an error. This approach requires processes to register and identify themselves to 

the monitoring system at startup. 

The monitoring system relies on the application to honestly register all its pro-

cesses; hence, a faulty application would prevent correct monitoring because it will 
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generate incorrect data [13]. The proposed solution is to submit jobs via the jobman-

ager (e.g., Globus GRAM [69]). The problem with this system is that it is assumed 

that Globus is running on all the computers in a grid environment but this may not 

be true. In addition, only few users do submit their jobs via Globus; many users 

still prefer to submit their jobs directly to the batch scheduler. Therefore, jobs not 

submitted via Globus cannot be monitored because the monitoring system relies on 

Globus GRAM. 

The monitoring system in GridLab collect information about applications but 

this information is not useful in understanding the behaviour of jobs on a computer. 

3.3.6 Monitoring Grid Applications 

Grid applications access distributed and often shared computing resources. One 

consequence of this resource sharing is that measured application performance can 

vary widely in unexpected ways [29]. Determining the causes of poor performance 

due to either anomalous application behaviour or contention for shared resource 

use, and adapting to changing circumstances are critical to creation of robust grid 

applications. 

An infrastructure for grid application contract development and monitoring is 

described in [29]. This infrastructure is based on the Autopilot toolkit, and provides 

flexible and scalable tools to assess both application and system behaviour. Perfor-

mance contracts and real-time adaptive control were the mechanisms used to realize 

soft performance guarantees in grid environments. Performance contracts formalize 

the relationship between application performance needs and resource capabilities. 

During execution, contract monitors use performance data to verify that expecta-

tions are met. When the contracted specifications are not satisfied, the system can 
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choose to either adapt the application to available resources or reschedule the appli-

cation on a new set of resources that can satisfy the original contract specifications. 

The application monitoring infrastructure described in [9] is developed within the 

CrossGrid project [24]. The monitoring environment is composed of a distributed 

monitoring system, the OCM-G [8], and a performance analysis tool, G-PM (Grid-

oriented Performance Measurement). The purpose of the environment is to collect 

data about running applications and enable the user to observe their perform&nce 

in on-line mode, so the user can dynamically change measurements to support and 

solve performance problems [9]. 

SCALEA-G is implemented based on the Open Grid Services Architecture (OGSA). 

It provides an infrastructure for conducting online monitoring and performance anal-

ysis of a variety of grid services including computational and network resources, and 

grid applications [53]. Source code and dynamic instrumentation are implemented 

to perform profiling and monitoring in SCALEA-G. 

The work in [79] combines GRM [111] application monitoring tool, and the Mer-

cury resource and job monitoring infrastructure to provide an on-line grid perfor-

mance monitoring tool-set for monitoring message-passing parallel applications exe-

cuted on a grid. 

Grid monitoring systems discussed in this section focus on monitoring grid appli-

cations for tuning and debugging. They do not have the capability to monitor jobs on 

a computer. Also, they do not provide information that could help in understanding 

the behaviour of jobs. 
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3.3.7 Monitoring using Asynchronous Middleware - DREAM 

DREAM (Dynamic REflective Asynchronous Middleware) is introduced in [102]. 

DREAM is a Java component-based message oriented middleware. Asynchronous 

communications are used to achieve the scalability and flexibility objectives, whereas 

the reflective component technology provides the complementary configurability and 

adaptability features. DREAM provides a JMS (Java Message Service) [99] imple-

mentation, thus making monitored data accessible to J2EE application servers. The 

monitoring service is integrated with the Open Grid Software Architecture (OGSA 

[57]). DREAM has similarities with JAMM [10] architecture; JAMM is an agent-

based system that automates the execution of monitoring sensors and the collection 

of data events. 

Globus Toolkit is the de facto middleware for grid computing; it is difficult to 

convince organizations to use DREAM middleware in order to monitor grid resources. 

This approach is based on J2EE application servers which may not be available on 

some computers. The shortcoming of this system is that the monitoring service in 

DREAM does not monitor jobs on a computer. 

3.3.8 Job Centric Cluster Monitoring System 

The Job Centric Monitoring system is designed to monitor jobs across a cluster in 

grid environments. This approach is being developed in Grid Research Centre at the 

University of Calgary. Sequential jobs and parallel jobs can be monitored using this 

methodology [74, 87]. 

In this approach, a job monitoring tool is deployed on all the computers in the 

computing environment and an application monitoring tool is deployed on a corn-
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puter that could pull information from other computers. The job monitoring tools 

on the individual computers are started whenever the application monitoring tool 

is executed. The application monitoring tool returns a large amount of monitoring 

data which includes user ID, process ID, node name, and other information about 

the processes on a particular computer. 

The username of a user could also be used as criteria for extracting the pro-

cesses that are currently running on a computer and belongs to the user. The job 

monitoring tool on each computer forwards the monitoring data of all the processes 

that are currently running on the computer to the application monitoring tool. The 

application monitoring tool receives the monitoring data from several computers and 

filters the received data. The useful monitoring information is kept while others are 

discarded. 

This approach makes it possible to track and monitor parallel jobs. This method 

of monitoring jobs is suitable for monitoring jobs on a large scale. For example, 

all the jobs on all the nodes of a cluster computer. This system is cumbersome 

for monitoring a single job, because the system requires a number of tools to be 

installed on the grid cluster. The method developed in this thesis uses a simple 

script to monitor an individual job on a computer. 

3.4 Summary 

The Grid Monitoring Architecture which describes the components and interfaces 

needed to promote interoperability between heterogeneous monitoring systems in 

grid computing environments was presented. Most of the existing grid monitoring 

tools that are relevant to this thesis work were described in this Chapter. Some of 



3.4 Summary 44 

the selected monitoring tools include Hawkeye, Netlogger, Network Weather Service, 

Ganglia, and Monalisa. 

Some existing work related to this thesis are described in this Chapter. The 

reasons why there is need for a monitoring system that can monitor individual jobs 

were identified. 



Chapter 4 

Job Monitoring 

This chapter focuses on the design and the implementation of a technique for moni-

toring jobs in grid computing environments called the Wrapper method. This tech-

nique would help users to understand the reason(s) their jobs behaved in a certain 

way on a computer. 

How the Wrapper method works is described in detail in Section 4.1. Section 

4.2 highlights the important information that users would like to know about their 

jobs. The sources of job monitoring data are described in Section 4.3. Section 

4.4 describes how the monitoring information is moved to a. location accessible by 

users. The method by which the monitoring information is presented to the users is 

described in Section 4.5. 

How the Wrapper method is implemented in this thesis work is described in Sec-

tion 4.6. Section 4.7 discusses the issues with the specific design of the Wrapper 

method in this thesis. How the Wrapper method is used in a grid computing envi-

ronment with Globus middleware is described in Section 4.8. Finally, this chapter is 

summarized in Section 4.9. 

4.1 Proposed Methodology - Wrapper Method 

This section describes a proposed technique for monitoring jobs in grid computing 

environments. The technique described in this section is named the Wrapper method 

because a script known as the Wrapper script is used in the process of monitoring a 

45 
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job. The word Wrapper is used because the script is used to wrap a job; therefore, 

the script is submitted in place of the job. The Wrapper script starts and monitors 

a job on whatever computer the job is scheduled to run. Figure 4.1 shows how the 

Wrapper method works. 

In this method, the Wrapper script is submitted to the batch system and the 

batch system executes the Wrapper script. When the Wrapper script is started on a 

computer, the job is executed and a monitoring tool is started on the same computer 

to monitor the job. 

When the Wrapper script is executed, it forks a new process as shown in Fig-

ure 4.1. The newly created process is the child process and the existing process (i.e., 

the Wrapper script process) that created the new process is the parent process. The 

child process is used to execute the job while the parent process is used to monitor 

the job. When the fork system call is made, the process ID of the child process is 

returned in the parent and a value of 0 is returned in the child process. Monitoring 

the job in the parent process makes it possible for the parent process to wait for all 

its children before it exits. In other words, job monitoring is carried out in the parent 

process because the monitoring process will not exit until the monitored process no 

longer exists. 

The job is started using the exec system call within the child process. A successful 

exec system call does not return any value because the calling process is replaced by 

the new process. That is, when the job is executed in the child process, the child 

process is completely replaced by the job. The monitoring process is not intrusive; 

it does not affect the performance of the job. 

The job monitoring is initiated within the parent process and continues until 
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Figure 4.1: Wrapper Methodology 
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the job is completed. In order to monitor the job that is being executed in the 

child process, the waitpid function is used to suspend the execution of the current 

process until the child process or the children processes have exited, or until a signal is 

delivered whose action is to terminate the current process or to call a signal handling 

function [97]. 

Within the parent process, the waitpid function takes in two arguments; the 

arguments specify the process(es) the parent process should wait for, when and 

the condition under which waitpid should return. The use of constant values of 

WNOHANG and -1 in the waitpid function causes the parent (monitoring) process 

to wait for the child process and any of its children. These options make it possible 

for the monitoring tool to track all the processes that are associated with a job. In 

addition, these options allow the monitoring to be carried out uninterrupted while the 

job is being executed in the child process. It is important to monitor the behaviour 

of processes that are forked within a job because they are associated with the job 

and are part of the job. 

The return value from waitpid is checked each time it is called. A return value of 

-1 indicates that the child process being monitored is no longer available. Hence, the 

parent is terminated using the exit system call. The exit call terminates the parent 

process and returns an exit status code to the calling environment. An exit status 

code of 0 indicates a successful operation and any other value indicates a problem. 

An exit status code of any value other than -1 from the waitpid indicates that 

the job is still running. If the job is still running, the monitoring system retrieves 

monitoring data that is related to the job using the process ID of the job. These 

steps are carried out over and over again until the job is completed and waitpid 
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returns a value of - 1. A delay is introduced by calling the sleep function with a value 

of k seconds within the parent process; the value of k determines how often the job 

is monitored. 

The monitoring stage of the Wrapper method involves retrieving performance 

statistics related to a job from a computer where the job is running. The process 

ID of the job is used in retrieving information that is specific to a particular job. 

The monitoring information include page fault, CPU, and memory statistics related 

to the job. The first step in the monitoring stage is to check whether the job has 

other processes (i.e., children processes) related to it. The monitoring information 

for the job and its children are retrieved from the computer, processed, and stored 

in computer data files. In addition, the monitoring system logs information that is 

related to shared resources activity on the computer. The shared resources considered 

are file system, disk Input/Output (I/O), and network. 

During this stage, the monitoring system logs the memory usage statistics of other 

processes that are not related to the job on the computer. This information helps 

in detecting competition for system resources between the job and other unrelated 

tasks on the same computer. The time at which the job was monitored is logged 

alongside the monitoring data. The memory usage statistics of the host computer is 

collected whenever the job is monitored. 

This method can be used to monitor sequential jobs and shared-memory parallel 

jobs on a single computer. The problem with this method is that it cannot be used 

to monitor a distributed-memory parallel job. This problem is due to the fact that 

a scheduler usually does not know how a parallel job is started. Therefore, the 

monitoring tool will lose track of some processes that belong to the job since it does 
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not know how to relate the processes to the job. It is possible to know the hosts 

on which the processes associated with a parallel job are being executed, but it is 

difficult to know exactly what processes belong to the parallel job in a situation 

where the user has other processes running on the same computer at the same time. 

This will be considered as future work and it is discussed further in Chapter 6. 

4.2 Job Monitoring Data 

This section discusses the monitoring information that is collected by the job moni-

toring tool developed in this thesis. The information in the logs of batch schedulers 

does not give details of the resources used by a job. The accuracy of the data in the 

logs of batch schedulers is not guaranteed. In order to understand the behaviour of 

a job on a computer, there is need to consider the usage statistics of the resources 

used by the job. 

The monitoring statistics collected about a job on a computer by the monitor-

ing tool in the Wrapper method includes CPU utilization, memory usage, network 

bandwidth utilization, file system activity, and disk I/O activity. Some existing tools 

provide some of this information but not in time-series format. The monitoring tool 

developed in this thesis work provides time-series information about resources used 

by a job. 

The importance of monitoring statistics is highlighted in the following sections. 

The monitoring information considered in this work is described with respect to 

Linux operating system, although the description of the monitoring data is related 

to other operating systems. 
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4.2.1 CPU Utilization 

CPU time is the amount of time used in processing a computer program on a CPU; 

and CPU utilization is the program's share of the total CPU time. CPU utilization 

is expressed as a percentage of the total CPU time used by a process in a single pro-

cessor environment, although some operating systems represent CPU utilization in a 

different way. System load is the amount of work that a computer is doing. System 

load is usually the first factor that is considered when a job is not performing well on 

a computer. Some common CPU utilization statistics are described in Appendix B. 

Some compute-intensive jobs (i.e., jobs, that uses large amount of computing 

resources) have high CPU utilization. Hence, a compute-intensive job with low CPU 

utilization may indicate that there are processes on the system competing with the 

job. If there are no processes competing with the job, then this may indicate some 

bug or some failure in the application. 

A job that is expected to use a large amount of CPU time may get less CPU 

time even when there is no competition from the other processes on the system. 

This situation may not be due to a competition for CPU time, but could be due to 

competition for shared resources with other jobs on the computer. Therefore, the 

job would not be using the CPU most of the time but waiting for I/O. 

4.2.2 Memory 

The computer memory is the place where the computer holds current programs and 

data that is in use. The physical memory is used as storage for both data and 

programs while a program is running on a computer. An address space refers to a 

range of virtual addresses accessible to or reserved for a process. Without virtual 
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memory the amount of available physical memory has to be equal to or greater than 

the address space of the application to be run; otherwise, the application would fail 

with an "out of memory" error [88]. The operating system keeps track of which parts 

of memory are in use and which parts are not in use, in order to allocate memory to 

processes ,when they need it and de-allocate it when they are done. 

The idea behind virtual memory is that the combined size of a program, its data, 

and stack may exceed the amount of physical memory available for it. The operating 

system keeps some part of a program currently in use in main memory and the rest on 

disk. The virtual address space is divided into units called pages; transfers between 

RAM and disk are in units of a page. 

Virtual memory increases the available memory on a computer by using some 

additional space on the hard disk. The lack of enough memory resources may have 

a significant effect on the overall performance of a computer [36]. Appendix B lists 

the commonly found memory management statistics. 

The resident set size is the size of the memory-resident pages in the address space 

of a process. The resident set size of a job may indicate that there is competition 

for physical memory if its resident set size is smaller than its virtual memory and all 

the physical memory on the computer has been used. The resident set size of a job 

may also indicate shortage of physical memory on a computer. 

The difference between the virtual memory and resident set size used by a job 

would help in understanding the shortage of memory. That is, the relationship be-

tween the virtual memory and the physical memory used would help in understanding 

the behaviour of a job on a computer. 

A program manages its virtual memory in such a way that any memory released 
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by the program is not given back to the operating system but kept and re-used by 

the program. The released memory pages are added to a list of free memory pages 

for later use. Therefore, when additional memory is needed by a program it would 

check its memory pool to see if there is enough memory to handle the request, else 

it would request for more memory from the operating system. 

4.2.3 Page Faults 

A virtual address space is a non-contiguous memory that is presented to a process 

as a contiguous memory. Virtual memory describes the total number of uniquely-

addressable memory locations available to a program, and not the amount of physical 

memory that must be dedicated to the program at any given time [88]. 

In order to implement virtual memory, the Memory Management Unit (MMU) 

manages the virtual address space and each virtual memory address goes through 

a translation step prior to each memory access. In order to reduce the overhead 

of individually tracking the virtual to physical memory address translation, RAM 

is divided into pages (i.e., contiguous sections of memory of a set size that are 

handled by the MMU as single entities). A page fault occurs when the MMU has 

no translation in cache for a memory address requested by the CPU. Therefore, the 

MMU interrupts the CPU and causes the page fault handler in the operating system 

to-be executed. The page fault handler then determines what needs to be done to 

resolve the page fault. The operating system will resolve the problem by using free 

or reusable pages. In some cases, the operating system will page out existing pages 

that are not in use and write them to disk. 

Page faulting may not be an issue if it does not occur in excess. Paging makes 

virtual memory possible by allowing the memory requirements of a process to exceed 
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the actual amount of physical memory. On many modern systems, a program execu-

tion always starts with a page fault as the operating system tries to use the kernel's 

virtual memory management facility to read enough of the executable image to get 

it started [36]. Virtual memory makes it possible for computers to handle larger and 

complex programs. 

A large amount of page faults and swapping activity may indicate lack of physical 

memory on a computer. This may lead to low CPU utilization (because the CPU 

cycles would be used for supporting memory management and setting up the neces-

sary disk I/O operations) and/or high network activity if the disk volume is shared 

across a network. Low physical memory, heavy page faulting activity, and a system 

running near its limit in terms of CPU or disk I/O may lead to thrashing which 

decreases system performance rapidly. Thrashing is a situation where a computer is 

spending more time doing paging instead of actual work. 

There are two types of page faults - major and minor page faults. Based on 

the definitions of major and minor page faults in the man page for the /proc file 

system on Linux systems [89], a minor page fault indicates that the fault does not 

require loading a memory page from disk. This occurs when an attempt is made to 

access a virtual memory location that resides within a segment and the page is in the 

physical memory; but no current MMU translation is established from the physical 

page to the address space that caused the fault [109]. In this case, the physical page 

of memory is already present but the process needs to establish a mapping to the 

existing physical page. 

A major page fault requires loading a paged out memory page from disk into the 

physical memory. That is, the page is not loaded in memory at the time the fault 
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is generated. Hence, major page faults are more expensive than minor page faults 

because it adds disk latency to the execution of the interrupted program [108]. 

4.2.4 Network 

In the context of this thesis, a network is the connection between two computers. 

A number of network performance metrics determines the "speed" of a network. 

The common network performance metrics are bandwidth, latency/delay, jitter, and 

reliability. Network bandwidth is the amount of data that can be sent over a network 

connection or interface in a given period of time. Bandwidth is usually stated in bits 

per second (bps), kilobits per second (kbps), or megabits per second (mbps). 

Network bandwidth and latency both determine the "speed" of a network per-

ceived by a user. Latency refers to delay in processing network data. Another factor 

that affects network bandwidth is jitter. Jitter is the variation in the time between 

packets arriving. It may be caused by network congestion or network route change. 

Some of the more common bandwidth-related statistics are listed in Appendix B. 

Good network performance always depends on network devices working properly 

and efficiently. Network statistics like bandwidth, latency, transmit error rate, and 

receive error rate may indicate failing or misconfigured hardware. For example, a 

misconfigured network interface would cause a high transmit/receive error rates and 

high latency. Network adapters, routers, switches, and devices may fail and produce 

high error rates or degrading performance over time or both [36]. 

Poor network performance may be the result of too many requests to computers 

on a network. Overloading may be caused by too much traffic on the server network 

interface and/or incorrect configuration. Insufficient network bandwidth for the re-

sources and applications on the network can also lead to poor network performance. 
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In turn, poor network performance would affect the performance of a job that de-

pends on network resources; a remote I/O job for example, depends on the network 

for moving data from a source to a destination. 

4.2.5 Disk Input/Output Activity 

The UNIX operating system supports disk/system-based I/O operations in which a 

process interacts with a physical device using an intermediary kernel buffer. This 

intermediary buffer is transparent to the user's calls like readO, wrieQ, and iseekQ, 

as if they are accessing a physical file directly [71]. 

In disk I/O, the process interacts with a physical device directly, without the 

kernel's intervention. An example of disk I/O is in data-critical applications, where 

the user wants to ensure that the data is written to a disk immediately so that it is 

not lost in the event of a system failure. 

Disk I/O can have an effect on the performance of a computer or the behaviour 

of a job. In order to understand disk I/O performance statistics, it is important to 

understand the disk [/0 activities performed by the applications or typical workload 

on a computer. A large disk I/O operation can generate many pending disk I/O 

requests, and users needing disk volume access can be forced to wait for them to 

complete. A large disk I/O operation can degrade the performance of interactive 

activities on the same computer. For example, an appreciable waiting time would 

be noticed when is command is issued at the commandline when a job is performing 

a large number of disk I/O operations on the same computer. 

In order to understand some disk I/O issues, there may be a need to look at the 

amount of data transferred (read or written) to a local or remote disk volume during 

the measured interval and the amount of transfers per second. 
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4.2.6 File Systems 

A file system is a structure that is used for storing and organizing computer files 

and the data they contain to make it easy to find and access them. A file system 

is used by a job running on a computer for reading and writing data from and to 

storage devices. It may use a secondary storage device such as hard disk or tape. It 

maintains the physical location of the files which may be virtual and exist only as 

an access method for virtual data or for data over a network (e.g., NFS) [107]. 

A disk file system is a file system designed for the storage of files on a data storage 

device, most commonly a disk drive, which might be directly or indirectly connected 

to the computer. Examples of disk file systems include FAT, NTFS, HFS, ext2, and 

ext3. Network File System (NFS) (i.e., a distributed file system developed by Sun 

Microsystems) is used in the experimental environment of this thesis work. NFS 

allows a computer to access files over a network as if they were on the local disk of 

the computer. 

NFS-specific traffic and performance are monitored using the nfsstat command. 

This command displays statistical information about the NFS and the RPC (Remote 

Procedure Call) interface to the kernel for NFS clients and servers. The statistics 

on the types of NFS operations performed, along with error information and perfor-

mance indicators would help in identifying potential bottlenecks. 

Higher latency would be observed when writing or reading a large file on a remote 

computer through NFS than performing the same activity on a local disk. An NFS 

configuration problem may make the accessing, writing, or reading of a file slow. In 

some cases, NFS may be affected by the state of the network traffic since it has to 

work through the network. 
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Since NFS is a shared resource, the performance that is seen on a single computer 

locally may not be enough to understand the behaviour of a file system. This is due to 

the fact that the file system may be in use by other jobs running on other computers 

sharing the file system. 

4.2.7 State of a Job 

A process is an instance of a computer program running on a computer. A job or 

task on UNIX systems, may be composed of one or more processes working together 

to perform a specific task [36]. The life cycle of a UNIX process is described in 

Appendix C. A process can be in any of the following 3 common states: 

Running: if the process is executing on a processor. 

Ready: if the process could execute on a processor if one were available. 

Blocked: if the process is waiting for some event to happen (for example, disk I/O 

completion event) before it can proceed. 

The process states of a job may show why a job behaved in a certain way. For 

example, a job that spent much time in the blocked state indicates that the job may 

be doing lots of I/O; this in turn may help in understanding why a job used more or 

less CPU and memory resources. 

4.3 Sources of Monitoring Data 

This section describes the sources of the monitoring data discussed in the previous 

section. The description of the sources of the monitoring data in this thesis work is 

based on Linux operating system. 
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There are two main flavours of UNIX; Berkeley Software Distribution (BSD) and 

SysV (System V). System V was originally developed by AT&T and first released 

in 1983. BSD is the UNIX derivative distributed by the University of California, 

Berkeley starting in the 1970s. Linux has a combination of both BSD and System V 

flavours of UNIX. The following sections highlight the sources of monitoring data. 

4.3.1 Process Information Pseudo-Filesystem 

The UNIX Process Information Pseudo-Filesystem is also known as proc. The proc 

file system is used as an interface to kernel data structures. The files in the /proc 

directory correspond to active processes (entries in the kernel process table). Most 

of the files in this directory are read-only, but some files allow kernel variables to be 

changed [103]. 

The proc directory contains information on all the processes that are currently 

running on the computer. The proc file system grants access to information about 

processes and other operating system features. In Linux, the monitoring information 

belonging to a process is stored in /proc/[number] where number is the process ID 

of the process. The description of /proc directory in this section is based on the 

information in Linux Programmer's Manual. The Linux operating system contains 

the following pseudo-fields and directories: 

/pro c/ [number] /cmdline: This holds the complete command line for the process, 

unless the whole process has been swapped out, or unless the process is a 

zombie. In either of these later cases, there is nothing in this file. 

/pro c/ [number] /cwd: This is a link to the current working directory of the pro-

cess. 
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/proc/ [number] /exe: Under Linux 2.2 and 2.4, exe is a symbolic link containing 

the actual path name of the executed command. The exe symbolic link can be 

dereferenced normally - attempting to open exe will open the executable. 

/pro c/ [number] /fd: This is a subdirectory containing one entry for each file which 

the process has opened, named by its file descriptor which is a symbolic link 

to the actual file. 

/pro c/ [number] /maps: A file containing the currently mapped memory regions 

and their access permissions. 

/proc/ [number] /mem: The pages of a process's memory can be accessed via the 

mem file. 

/proc/ [number] /root: UNIX and Linux support the idea of a per-process root of 

the filesystem. This file is a symbolic link that points to the process's root 

directory, and behaves like exe. 

/pro c/ [number] /stat: Gives the status information about the process. This is 

used by the ps tool described in the next section. The information found in 

this file includes process ID, file name of the executable, state of the process, 

and virtual memory size in bytes. 

/proc/ [number] /statm: Provides information about memory status in pages. 

/proc/ [number] /status: Provides much of the information in /proc/ [number] /stat 

and /proc/ [number] /statm in a format that is easier for humans to parse. 

The advantage that proc has over other sources of monitoring information is that 

it contains detailed information about the process that is being monitored. One of 
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the problems with proc is that it is not portable, in the sense that the structure of 

proc directory and the layout of data in some files are different from one variant of 

UNIX to another. Therefore, there would be need to have different implementations 

of the job monitoring tool for different variants of UNIX. 

4.3.2 Process Status Utility 

ps stands for Process Status. ps gives a snapshot of the current processes running 

on a system. The utility produces a report summarizing execution statistics for 

current processes. The command's options control which processes are listed and 

what information is displayed about each process. The format of the commands 

differs considerably between the BSD and System V forms. The output of the ps 

command contains the following information: 

User: Name of the owner of the process. 

Process ID: The process ID of the process that is currently executing. 

CPU Percentage: This shows the CPU time or real time percentage. It is the 

process' share of the CPU time expressed as a percentage of the total CPU 

time per processor. 

Size: The total size of the process in virtual memory, including all mapped files and 

devices, in kilobyte units. 

Virtual Memory: The total virtual memory size in bytes. 

TTY: The terminal associated with the process. 



4.3 Sources of Monitoring Data 62 

Start: The starting time of the process, given in hours, minutes, and seconds. The 

start time for a process that began more than 24 hours before the ps inquiry 

is executed is given in months and days. 

Time: CPU time used by the process since it started. 

Command: The simple name of the executable. 

Resident set size: Real memory (resident set) size of the process, in kilobyte units. 

Memory Utilization: The ratio of the process resident set size to the physical 

memory on the machine, expressed as a percentage. 

Process State: This indicates the current state of the process. The process may 

be in any of the following states: 

• D - Uninterruptible sleep (usually I/O) 

• Ft - Running or runnable (on run queue) 

• S - Interruptible sleep (waiting for an event to complete) 

• T - Stopped, either by a job control signal or because it is being traced 

• W - Paging (not valid since the 2.6.xx kernel) 

• X - Dead (should never be seen) 

• Z - Defunct ("zombie") process, terminated but not terminated by its 

parent 

For BSD formats and when the stat keyword is used, additional characters may 

be displayed: 

• <- High-priority (not nice to other users) 
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• N - Low-priority (nice to other users) 

• L - Has pages locked into memory (for real-time and custom 10) 

• s - Is a session leader 

• 1 - Is multi-threaded 

• + - Is in the foreground process group 

The advantage of using ps is that its output is formatted, so it makes it easy to 

extract the statistics about a particular process. The monitoring information from ps 

is displayed as output (at commandline or written to a file) when it is executed. In 

addition, the output contains information about all the processes that are currently 

running on the computer. Hence, it makes it possible to know and distinguish the 

processes that may be competing with another process. All the variants of UNIX 

operating system have ps utility and their outputs are similar for most variants of 

UNIX. 

4.3.3 System Tools 

Job monitoring data could be retrieved from a system using various UNIX tools. 

UNIX system monitoring tools and commands can be grouped into the following 

categories: 

• CPU Utilization: top display information that is related to process(es) associ-

ated with a job including CPU utilization. The other CPU activity monitoring 

tools are uptime and sar. 

9 Memory: vmstat, free, and .sar could be used to gather memory usage statistics. 
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• Network examination: netstat, ping, traceroute, ntop, and tcpdump can be used 

to monitor impact of jobs on the network traffic. 

• System Devices: iostat, vmstat, and sar 

• Input/Output operations: lsof 

• Network File System activities: nfsstat 

The information derived from the use of the afore-mentioned system monitoring 

tools is listed in Appendix D. These monitoring tools are powerful, but none of these 

tools produces all the needed monitoring information. Most of the monitoring data 

collected in this thesis work, is retrieved from the computer using the pa tool. 

4.4 Collecting Monitoring Data 

The monitoring data in its raw form contains values of monitoring statistics retrieved 

from the host computer where the job was executed. The monitoring data is moved 

from the host computer to a location where it is processed further into meaningful 

monitoring information. 

There are several ways of moving monitoring data from the execution host to 

another location. Some users may prefer to leave the data at the location where 

the job was submitted; others may prefer to transfer the monitoring data to another 

location. In the second case, a user can use any remote file transfer utility like Secure 

Copy independently or through the batch system. When a batch system is used, the 

monitoring data is moved together with the output of the user's job. The process 

of moving a file or files off the execution host after the job completes execution is 

known as stage-out. 
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Figure 4,2: Logging Monitoring Data through Netlogger 

The monitoring data could also be collected through Netlogger instrumentation. 

The Netlogger toolkit makes it possible for distributed applications to log interesting 

events at various points in the applications. Netlogger has been used for developing 

tools for host and network monitoring. In this approach, the monitoring tool is 

instrumented with Netlogger so that the monitoring information is transferred via 

an open system port from the system on which the job is running to a computer that 

is running Netlogger. 

In order to use Netlogger to log monitoring data, all the monitoring events must 

use a common logging format, common set of attributes, and a globally synchronized 

timestamp. When the job is monitored at a given point in time, all the monitoring 
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data are logged and collected at a central location. 

The advantage of using Netlogger is that the monitoring data is not stored on 

the local system but transferred to the central location during monitoring. Hence, 

the monitoring data can be accessed while the job is running instead of waiting until 

the job is completed before accessing the data. It also makes it possible to monitor 

jobs in real time since the user can have access to the monitoring information on the 

head node or a remote computer while the job is still running. 

There are several ways of returning monitoring data to users. Some of the meth-

ods are simple while others are complicated. The objective of the Wrapper method 

is to use an approach that is as simple as possible. 

4.5 Presenting Monitoring Information 

In order to make sense out of the monitoring data, there is need to transform the 

monitoring data into meaningful information that can be easily understood by users. 

The monitoring data is transformed into graphical format. The monitoring informa-

tion graphs include CPU utilization, memory usage, page faults, network traffic, file 

system, and disk I/O operations. 

The monitoring information is presented in time-series format in order to show 

the complete life cycle of a job. The monitoring information can be presented to 

users via a job portal. The job portal will display the monitoring information that is 

specific to a user's job. In this method, the user can connect to the job portal from 

any system and the user would have access to the monitoring information related 

to his/her job. All the user need in order to access the monitoring information is a 

Web browser and an Internet connection. 



4.6 The Implementation of Wrapper Method 67 

A Web server that is accessible by users can be setup on a computer to host the 

job portal. The address of the Web server and the port number (if it's different from 

the default http port) are given to the users, so they could connect to the job portal 

from anywhere at anytime. The advantage of using a job portal is that the user 

can connect to the job portal using any standard browser, hence there is no need 

to write, build, install, and/or configure another application in order to monitor the 

progress of jobs in post-mortem. 

4.6 The Implementation of Wrapper Method 

How the Wrapper method is implemented in this thesis work is described in this 

section. This section describes how the job monitoring is carried out, how the mon-

itoring data is collected, transformed, and presented to users. 

The Wrapper script used in the Wrapper method is written in Pen (Practical 

Extraction Report Language) in Linux environment. Perl is used because it has easy 

but powerful text manipulation features. The Wrapper script starts the job and 

continues to monitor the job until it is completed as described in Section 1 of this 

chapter. 

Whenever the job is monitored in the parent process, the monitoring tool checks 

the status of the child process using waitpid to see if the lead process (i.e., the job) 

or any of its children are still running. If any of them was running, the job and its 

children are monitored by starting the monitoring tool with the process ID of the 

job. The monitoring tool executes the pstree command with the process ID of the 

job in order to retrieve all the processes that are associated with the job. This is 

important because the job's lead process and its children are all part of the job that 
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is being monitored. Hence, the monitoring information about the lead process and 

its children would help in understanding the behaviour of the job. 

During the monitoring activity, ps aux is executed on the host computer. The 

output of ps aux is passed as input to the regular expression parser (egrep) for the 

lead process and its children. The egrep command extracts the output associated 

with each process from the initial output. The information retrieved includes CPU 

utilization and memory usage statistics. In addition, disk Input/Output, file sys-

tem, and network statistics are collected on the host computer. The significance of 

monitoring data was discussed in Section 4.2. 

The monitoring information collected about a job is recorded in files using the 

current system time as timestamp. The use of system monitoring time helps in 

understanding why a job behaved in a certain way during its life cycle. 

In this thesis, the monitoring data collected is written to files in a location speci-

fied in the job submission script. If the user does not specify a location, the monitor-

ing data is stored in the user's working directory (i.e., where the job was submitted). 

Then, the monitoring data is processed by a graphing tool developed using Pen 

and Gnuplot. The graphing tool generates monitoring information graphs from the 

monitoring data. 

4.7 Implementation Issues 

The time when users could have access to the monitoring information about their 

jobs may be a concern for some users. Some users may prefer to see the way their 

job is performing in real time, so they could notify the system administrator if their 

job is not doing well on a computer. 
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A "post-mortem" approach is used in presenting the monitoring information to 

users in this implementation. As the name implies, the monitoring information is 

transferred to a location specified by the user, after the job is completed. Here, 

the user only has the opportunity to know what happened to his/her job after it 

is completed. In this implementation, a user cannot have access to the monitoring 

information until the job is finished. An assumption is made that most users would 

like to know what happened to their jobs after they are completed. 

4.8 Wrapper Method Implementation with Globus 

Since most grid computing sites use Globus middleware, it is important to show 

that the Wrapper method can work with Globus. That is, jobs submitted via Globus 

can be monitored using the Wrapper method. The Globus Toolkit includes tools 

for authentication, scheduling, file transfer, and resource description. In addition, 

it provides the opportunity for users to submit their jobs remotely from their local 

computer. The implementation of Wrapper method in this thesis was carried out in 

a cluster environment with one scheduler and a batch system. 

In order for users to submit their jobs in a grid computing environment running 

Globus Toolkit, there is need for authentication. The Grid Security Infrastructure 

(GSI) provides the authentication and authorization mechanisms to verify a user-

supplied "Grid credential". To sign-on once to a grid, a user needs to create a 

temporary credential called a proxy certificate. The proxy certificate confirms that 

the user is authorized by a trusted authority to access the grid resources. It confirms 

the user with the passphrase he/she used in creating his/her, X.509 certificate and 

key. Once a proxy has been created using grid-proxy-mit command, the user can 
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submit his/her job. 

The Globus Grid Resource Allocation Manager (GRAM) framework provides 

services for submitting, monitoring, and cancelling jobs on grid computing resources. 

The framework does so through the use of the Resource Specification Language 

(RSL), which provides a simple set of directives for specifying typical computational 

parameters, such as the number of nodes and processors required, the length of time 

the job should run, and the executable that should be launched [60]. 

With Globus middleware, the Wrapper script is submitted to a computing grid 

using specific Globus commands: globus-job-submit, gb bus-job-run, or gbobusrun. A 

user would submit a RSL description of his/her compute task to GRAM running on 

a given resource. GRAM is a root-level process which handles all globus job requests 

at a remote site. When a job is submitted, the request is sent to the Gatekeeper of 

the remote computer. The Gatekeeper handles the allocation request and creates a 

Job Manager for the job. The Job Manager starts and monitors the remote program, 

communicating state changes back to the user on the local machine [101]. 

After the authentication, the Globus GateKeeper starts the requested service, in 

this case the Job Manager. The Job Manager process translates the generic RSL 

parameters into a job script matching the local resource manager and submits the 

job script. The Job Manager keeps track of and manages grid I/O for jobs running 

on the local batch system. There is a specific Job Manager for each type of batch 

system supported by Globus (examples are Condor, LSF, LoadLeveler, and PBS) 

[62] [63]. 

A local job scheduler is required in order to manage the resources of the compute 

element. GRAM has the ability to spawn simple time-sharing jobs using standard 
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UNIX fork methods, but most large-scale compute elements will be under the control 

of a scheduler such as PBS, LSF, Condor, NQE, or Loadleveler [100]. The description 

of remote execution of jobs on Globus-managed grid computing environment is shown 

in Figure 4.3. 

When the Wrapper script is executed on a local host, the job embedded within 

the Wrapper script is executed and monitored using the Wrapper method described 

in Section 4.1. The monitoring process in a grid computing environment with Globus 

middleware is the same as in a cluster environment. 

The difference with the Globus implementation is that, the job can be executed 

on any grid resource that meets the requirements of the job specified in the job 

script using RSL. Hence, the job is not limited to a particular computer or cluster 

of computers. 

4.9 Summary 

The Wrapper method for monitoring jobs in grid computing environment is described 

in detail in this chapter. The method would help users to understand how their 

jobs behaved on a particular computer by considering the monitoring information 

generated during the monitoring process. 

The importance of monitoring information like CPU utilization, network activity, 

memory usage, disk space, disk I/O operations, shared file system activity, and 

process status statistics were discussed. The various sources of monitoring data were 

described; the advantages and disadvantages of getting monitoring data from those 

sources were also discussed. 

The method by which the monitoring data is transferred to locations accessible 
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by users was described. In addition, the method of presenting the monitoring infor-

mation to users was highlighted. This chapter further described how the Wrapper 

method is implemented in this thesis. The issues with how the Wrapper method is 

implemented in this thesis were also highlighted. Finally, how the Wrapper method 

would be used in a grid computing environment with Globus middleware was de-

scribed. 



Chapter 5 

Experiments and Results 

The purpose of the experiments described in this chapter is to confirm that the 

monitoring information shows the activity that takes place during the life cycle of a 

job on a computer. The monitoring information would help users in understanding 

the behaviour of their jobs when their jobs are sharing computing resources with 

other jobs in a computing environment. The experimental design, workload, and 

testbed used in this thesis are also described in this chapter. 

Section 5.1 states the purpose of the experiments. Section 5.2 describes the 

methodology used in conducting the experiments. The description includes the ex-

perimental design, the workload design, and the environment under which various 

experiments were carried out. The experiments were carried out on a cluster of com-

puters and the corresponding results are presented in Section 5.3. The importance of 

monitoring information is highlighted in each experiment. In addition, bottlenecks 

are identified and suggestions are made on how to improve the performance of jobs 

in different circumstances. The validation of the Wrapper method based monitoring 

tool is discussed in Section 5.4. Finally, the chapter is summarized in Section 5.5. 

5.1 Purpose of Experiments 

The experiments are designed to confirm the importance of the monitoring informa-

tion generated using the Wrapper method. The emphasis of the experiments is on 

understanding what happened to a job on a particular computer and how the mon-

74 



5.2 Experimental Methodology 75 

itoring information could help in understanding why the job behaved in a certain 

way. In this thesis, eight experiments were carried out under different conditions and 

the monitoring information collected in those experiments was examined. 

The experiments were designed in such a way that they show how the monitoring 

system and results would help users to understand the behaviour of their jobs on a 

computer. Attempts are made to answer the following questions in the experiments: 

• Did a job get the expected amount of system resources? 

• Is a job affected by other resource-consuming tasks or processes? 

• What happened to a job during its life cycle on a computer? 

• Why did a job behave in a certain way on a computer at a particular time? 

• What are the bottlenecks to the performance of a job on a computer? 

• How will the monitoring information help a user to improve the performance 

of his/her job? 

5.2 Experimental Methodology 

The design and implementation of Wrapper method for monitoring jobs in grid com-

puting environments are described in Chapter 4. The experimental design, workload, 

and experimental testbed used in this thesis work are described in this section. 

5.2.1 Experimental Design 

The experiments conducted in this thesis work are designed in such a way that 

monitoring data is collected when a job is running on a computer. The monitoring 
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data is transformed into meaningful monitoring information. 

In these experiments, the Wrapper script is submitted to a batch scheduler, and it 

starts the job on a computer. The Wrapper script also starts the tool that monitors 

the job on the computer. The monitoring tool retrieves monitoring data about a job 

from the computer where the job is being executed. When the job is complete, the 

collected monitoring data is transformed into meaningful monitoring information by 

a graphing tool described in Chapter 4. 

In some experiments, a computing task that uses a large amount of system re-

sources is started on the same computer where the job is running in order to introduce 

competition for system resources. In order to understand the monitoring information 

generated using the Wrapper method, eight different experiments were designed in 

this thesis work. 

Several runs of each experiment were carried out on the testbed. The results 

from each run was consistent with others in each experiment, so only the result of a 

single run is reported for each experiment. 

5.2.2 Workload Description 

Two computing tasks were used as workloads in the experiments conducted in this 

thesis. The tasks are computer programs running on a computer. The first program 

uses large amount of memory resources. The second program does file I/O using 

local disk, network, and shared file system resources. The first program is called 

memory workload and the second program is called file I/O workload. 
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5.2.2.1 Memory Workload 

The pseudo code in Figure 5.1 describes the program in the first experimental work-

load. The purpose of the memory workload is to help in understanding how jobs 

use memory resources on a computer. In order to keep this workload simple, a large 

amount of memory is allocated to an array of integers. In the first phase of the pro-

gram, random numbers are generated and stored in the array. Some elements of the 

array are read and modified in the second phase of the program. The storing of data 

in the array, reading and modifying elements in the array make sure the workload 

uses the memory resources on a computer. 

The operating system allocates 2.4 Gigabytes of memory to an array of integers 

in the first phase of the memory workload. The total amount of physical memory 

on the host computer that will be used for running experiments in this thesis is 2 

Gigabytes. 2.4 Gigabytes of memory is allocated to the array of integers so that 

the program would use more memory than the physical amount of memory on the 

computer. In this workload malloc function is used to allocate memory space to 

hold the array of integers. malloc is one of the library functions used by a program 

to manage the memory resources on a computer. The malloc library function calls 

sbrk when a process runs out of memory. malloc will fail when .sbrk does not return 

memory to it. 

If malloc succeeds in allocating 2.4 Gigabytes of virtual memory to the array, 

Number of Elements random numbers are generated and stored in the array. Number 

of Elements is the number of integers that would fit into 2.4 Gigabytes of memory 

and this value depends on the architecture of the processor - 32b1ts or 64bits. The 

architecture of the processor determines the amount of memory needed to process 
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Allocate 2.4 Gigabytes of Memory to Array of Integers by calling malloc() function 

First Phase 
FOR (counter = 1 TO Number of Elements) DO 

{ 
Generate a random number by calling rand() function 

Store random number in Array of Integer location [counter-1] 

Calculate the sum of generated random numbers 

} 

Second Phase 
FOR (page = i TO Number of Memory Pages) DO 

{ 
Access an Element in the Memory Page 

Generate a random number by calling rand() function 

Update the Value of the Element by adding the generated random number to it 

Calculate the sum of Updated Elements 

} 

Print the sum of random numbers generated in Phase 1 

Print the sum of Updated Elements computed in Phase 2 

Figure 5.1: Description of Memory Workload 

and store an integer on a computer. 

Random numbers are generated by using rand function. The generated random 

numbers are stored in the array of integers, and the sum of the generated random 

numbers is computed. The sum of the generated random numbers is kept until the 

end of the program when it is printed out. The reason for keeping the sum of the 

random numbers is to prevent the random number generation code segment from 

being removed by the compiler during optimization. 
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In the second phase of the program, the Number of Memory pages is the number 

of memory pages that would fill 2.4 Gigabytes of memory. This value depends on 

the memory page size which in turn depends on the architecture of the processor on 

a computer. The following steps are taken for each memory page that belongs to 

the job. The program retrieves an element in the memory page; generates a random 

number using rand() function as in the first phase of the workload; updates the value 

of the retrieved element by adding the random number to it; computes the sum of 

the updated elements. The sum of the updated elements is printed out at the end 

of the program. 

In this thesis, the memory workload is implemented on Linux-based computer; 

and 600,000,000 random numbers are generated and stored in the array of integers. 

The program was implemented on a Linux computer with a 64-bit AMD Opteron 

processor. The size of an integer on the 64-bit AMD Opteron processor is 4 bytes. 

In addition, the physical memory on the computer is divided into 4 Kilobytes of 

memory pages. Therefore, about 1,000 integer values can be stored in 1 page of 

memory with the memory header preceding the first page of the memory block. 

5.2.2.2 File I/O Workload 

The second experimental workload consists of a file Input/Output program. The 

program transfers the contents of an existing file in chunks to a new file. The data 

transfer is carried out using a buffer of fixed size k bytes. The data is transferred in 

chunks until all the content of the existing file is transferred into a new file on the 

same or different file systems. This workload program uses low-level file I/O functions 

including open, read, and write. The pseudo code in Figure 5.2 describes the workload 

used for the experiments that demonstrates job file system Input/Output activity. 
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{ 

} 

Create a buffer of k bytes 

Open an Existing File for reading 

Create and Open a New File for writing 

While not End of File 

{ 

Read next k bytes of Existing File into buffer 

Transfer the contents from the buffer into the New File 

I 
Close New File 

Close Existing File 

Figure 5.2: Description of File Input/Output Workload 

In this thesis a file containing 8.4 Gigabytes of data is copied from a source to a 

destination. The source and destination could be local disk volume or remote disk 

volume through a shared file system. Data is transferred from the source to the 

destination using a 10-Megabyte buffer. 

Each workload has a program known as the job and the other known as the 

competing task. The wrapper script starts the job; the user starts the competing 

task on the computer where the job is running. The job and the competing task 

will use the same computer program, so that neither the job nor the competing task 

would have an undue advantage over each other. 
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5.2.3 Experimental Testbed 

All the experiments in this thesis work were carried out on a computer cluster. The 

computer cluster has 11 computers; each computer in the cluster runs the Linux 

operating system. The version 3 of Sun Microsystems' shared file system known as 

Network File System (NFS) is installed on the cluster. The NFS has a server and a 

client side, and the primary function of the NFS is to export or mount directories to 

other computers. NFS enables the file system volume that is physically residing on 

one of the computers to be visible and accessible from any other computer within 

the cluster. 

Each computer in the cluster has 2.2 GHz AMD Opteron processor, 2 Gigabytes 

(GB) of physical memory, and 2 GB of swap space. The swap space is specially 

designated areas of disk used for paging. UNIX systems have a dedicated partition 

called the swap partition used for holding pages written out from memory. 

PBS [85] resource manager is used as the batch system and MAUI [17] is used as 

the batch system scheduler in this environment. The Wrapper script is submitted 

to PBS, and MAUI decides where to execute the job on the cluster, except the user 

specifies a computer to use. 

5.3 Experimental Results 

Eight experiments were carried out under various circumstances, in order to see if 

the monitoring information collected about jobs would help in understanding the 

behaviour of jobs on a computer. 
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5.3.1 Experiment 1: Baseline Experiment 

The aim of this experiment is to see if the monitoring information would show the 

state of the resources on a computer when it is not running any job. The results 

from this experiment will be used as a baseline when investigating the behaviour of 

jobs on the same computer. 

In this experiment, the job was designed to sleep (i.e., do nothing) for 240 seconds. 

The job did not use system resources during this period of time. The result in Figures 

5.3 and 5.4 show the state of the computer used in this thesis when a user's job is 

not using system resources. 

Figure 5.3(a) shows that the job did not use any CPU time. Hence, the job's 

CPU utilization is 0% and the CPU idle time is about 100%. It is shown in Figure 

5.3(b) that the job used very little memory on the computer. Figure 5.3(c) shows 

that 1 minor page fault occurred per second, and no major page fault occurred. This 

suggests that very little memory was used by the job, or else there would have been 

a significant number of minor page faults. 

Figure 5.4(a) shows that an average of 300 kB of data was written from the 

physical memory to the local disk volume per second, but no data was read from the 

local disk into the physical memory. The disk I/O information shows all the local 

disk I/O activity on the host computer. The cause of disk I/O activity is not known 

in this experiment. The network activity result inFigure 5.4(b) shows that 0.1 byte 

of data is written and read from the network interface per second. This is the overall 

network activity on network interface ethO of the computer. About 24 bytes of data 

was written by the shared file system client per second, and no data was read by the 

shared file system client as shown in Figure 5.4(c). 
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A network analysis is carried out in order to understand the disk I/O, network, 

and shared file system information in this baseline experiment. The tcpdump utility 

is used for monitoring the computer network traffic during another run of the baseline 

experiment. Eight hundred packets were collected and analyzed; the result indicating 

the number of packets transferred from a particular source to a unique destination 

is shown in Figure 5.5. 
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Figure 5.5: Source to Destination Network Analysis 

The network analysis result shows that more than 140 packets were transferred 

from grcO to grcL and about 120 packets vice-versa. grc2O is the host computer 

where this baseline experiment was executed, and grcl4 is the computer running the 

NFS server. A significant number of packets were also transferred from some com-

puters on the grc cluster to IF address 239.2.11.71. The Ganglia monitoring daemon 

(also known as grnond) provides monitoring on a single cluster by sending and re-
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ceiving data on the multicast channel 239.2.11.71. This information suggests that 

the network activity seen in the baseline experiment is caused by other applications 

not related to the job. 

Since the purpose of this experiment is to show the state of the host computer 

when it is not running any job, therefore the result in Figures 5.3 and 5.4 would 

serve as a reference point when describing the experimental results in this thesis. 

5.3.2 Experiment 2: Memory-Intensive Job not Competing for System 

Resources 

The aim of this experiment is to see if the monitoring information gathered about 

a job that uses memory resources on a computer could show that the job is not 

experiencing competition from other tasks on the same computer. 

In this experiment, the job was executed on a computer with about 2 Gigabytes 

of unused physical memory space. The memory workload which demonstrates the 

use of memory resources on a computer is used in this experiment. 

Figures 5.6 and 5.7 show the monitoring information of the job on the computer 

where it was executed. The monitoring information in Figure 5.6(a) shows that the 

job received about 95-100% CPU processing time between 00:20:45 and 00:21:20. 

After 00:21:20, the CPU utilization decreased suddenly to about 65% at 00:21:35. 

Then, the CPU utilization decreased gradually to about 25% towards the completion 

time of the job. Figure 5.6(b) shows that the physical memory used by the job 

increased until 00:21:20, then it remained constant until the job was completed. The 

figure also shows that the virtual memory used by the job was constant throughout 

the life cycle of the job. 

A huge number of minor and major page faults occurred during the execution 
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Figure 5.6: Memory-Intensive Job not Competing for System Resources 
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of the job as shown in Figure 5.6(c). Minor page faults occurred at a higher rate 

from 00:20:45 to 00:21:35 because the virtual memory pages are not mapped in the 

physical memory. No major page fault occurred during this time since no page is 

being copied from disk to the physical memory. The rate at which minor page faults 

occurred decreased after 00:21:35 until the job was completed. This marks the end 

of the first phase of the workload where random numbers are stored in an array of 

integers. The second phase of the workload starts at about 00:21:35 with major page 

faults. 

Major page faults started at 00:21:35; it continued until the job was completed. 

From 00:21:35 onwards, memory pages are being read and written to in the second 

phase of the program starting with the first memory page. All the memory pages 

that belong to the job can not be stored in the physical memory at the same time. 

Therefore, stale memory pages are copied from the physical memory to disk, while the 

memory pages needed by the job are brought into the physical memory. Therefore, 

when the program makes an attempt to access the first page, the first page would 

not be found in the physical memory, so it would be fetched from disk. This results 

in a major page fault since the local disk is accessed when the fault occurred. 

Figure 5.7(a) indicates that the local disk was not accessed at the beginning of 

the first phase of the program i.e., from 00:20:45 to 00:21:20. The operating system 

started writing memory pages to disk and reading memory pages from disk between 

00:21:20 and 00:21:25. At this point, the physical memory is exhausted and memory 

pages are being written to disk in order to create space for new memory pages. 

Between 00:21:25 and 00:21:45 less data is being written but more data is being 

read from disk per second. From 00:21:45 until the job was completed, about the 
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same amount of data is being read and written to disk. This behaviour depicts the 

second phase of the program where memory pages are being read and updated. In 

the second phase, an old memory page is copied to disk in order to bring in the 

needed memory page from disk into the physical memory. 

Data was transmitted across the computer network through network interface 

ethO. Figure 5.7(b) shows that the same amount of data is being transmitted and 

received through the network interface. Similarly, about the same number of packets 

is transmitted and received over the network interface. This behaviour is similar 

to that observed in Figure 5.4(b) in the Baseline experiment. Therefore, this result 

indicates that the job did not use network resources. 

The result in Figure 5.7(c) shows there were a number of calls from the NFS 

client on the host computer to the NFS server; about 24 bytes of data was written 

by the NFS client per second. The amount of data written was constant, and the 

number of client calls did not change much throughout the life cycle of the job. 

The overall results show that the job received about 95% CPU time before the 

physical memory was exhausted. The CPU utilization started to decrease after 

the physical memory was exhausted at 00:21:20. The CPU utilization of the job 

decreased because CPU time is being used to move memory pages to disk and vice-

versa. Hence, the job was spending more time in the blocked state while the memory 

pages are being written to local disk volume. 

The results in Figures 5.6 and 5.7 show that the job did not experience com-

petition for CPU, memory, and file system resources from other processes on the 

computer. In addition, the monitoring information shows that the bottleneck for the 

job is the physical memory. The computer has a physical memory of 2 Gigabytes 
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and the job used about 1.9 Gigabytes of the physical memory. The decrease in CPU 

processing time and the occurrence of major page faults when the physical memory 

was exhausted confirms physical memory as the bottleneck. 

Using this monitoring information, the user can submit his/her job to another 

computer with more physical memory next time. The monitoring information ob-

tained for this experiment shows that there was little contention for computing re-

sources between the job and other tasks on the computer, but the physical memory 

was a bottleneck. 

5.3.3 Experiment 3: File I/O-Intensive Job (between Remote Volumes) 

The objective of this experiment is to see if the monitoring information would reveal 

that a job is performing file I/O operations on a remote volume through a shared 

file system on a cluster of computers. 

The workload used in this experiment is designed to make a copy of an existing 

file into a new one on a shared file-system volume. The workload is described in detail 

in Section 5.2.2. The job is submitted to a cluster of computers and the monitoring 

information is considered in order to understand how the job behaved. 

Figures 5.8 and 5.9 show the monitoring information of the job on the computer 

where it was executed. The monitoring information in Figure 5.8(a) shows that the 

job used about 10% CPU processing time when it was running on the computer. 

The job used very little memory as shown in Figure 5.8(b). The page fault informa-

tion in Figure 5.8(c) shows a similar behaviour to the one observed in the baseline 

experiment. 

The disk I/O result in Figure 5.9(a) shows that a small amount of data was read 

and written to disk throughout the lifetime of the job. Figure 5.9(b) shows that 
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the network interface ethO was busy sending and receiving packets. Figure 5.9(c) 

shows the information from the client side of the shared file system; it shows that a 

huge amount of data was read and written to the shared file system volume. The 

information in Figures 5.9(a), 5.9(b), and 5.9(c) show that data is being read 

and written to the shared file system volume as the experiment progresses. Other 

activities on the computer not related to the user's job is likely to have caused the 

spikes in the disk I/O activity 

The combined monitoring information gathered in this experiment indicates that 

the job is likely to have caused the file I/O. It also shows that the file I/O occurred 

on a remote volume through the network. The monitoring information from this ex-

periment shows that the shared file system could be a bottleneck in this experiment. 

Hence, if the job is not completed at the expected time, the user can submit the job 

to another computer with faster shared file system some other time. A busy shared 

file system may cause the job not to be completed on time. In this case, the user 

may choose to submit his/her job to the same computer at a later time when the 

shared file system is less busy. 

5.3.4 Experiment 4: A File I/O Job Competing for Resources with 

Memory-Intensive Task 

The goal of this experiment is to determine if the monitoring information would 

show the user that his/her job is competing for resources with other tasks on the 

same computer. Also, to see if the monitoring information could show what re-

sources are being competed for, when the competition happened, and the effect of 

the competition on the user's job. 

In this experiment the user's job is the file I/O workload and the competing task 
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is the memory workload described in Section 5.2.2. The file I/O activity took place 

on a remote volume through the NFS. The job was executed on one of the computers 

in the grc cluster and allowed to run for about 2 minutes before the competing task 

was started on the same computer. Figures 5.10 and 5.11 show the results obtained 

in this experiment. 

The CPU information in Figure 5.10(a) is similar to the one obtained for Experi-

ment 3. The information indicates that the job is not CPU-intensive. Figure 5.10(b) 

shows that the physical memory and the virtual memory used by the job were con-

stant throughout the life cycle of the job. But the virtual and physical memory 

used by other tasks on the computer increased between 01:51:00 and 01:54:00. The 

monitoring information shows that there were some tasks (external to the user's job) 

that caused the increase in virtual and physical memory. At that point there is com-

petition for memory on the computer where the job was executed. The page fault 

information in Figure 5.10(c) shows that minor and major page faults occurred at 

about the time when the job started and finished. This information is related to the 

user's job and not the competing task(s). The disk volume I/O activity information 

in Figure 5.11(a), the network activity information in Figure 5.11(b), and the shared 

file system information in Figure 5.11(c) shows that there was increase in activity 

on the computer between 01:51:00 and 01:54:00. 

The monitoring information generated from this experiment shows that the job 

experienced competition for system resources including memory, disk I/O, network 

bandwidth, and shared file system volume. The monitoring information also showed 

when the competition occurred on the host computer. Using this information, the 

user may choose to submit his/her job to this computer some other time depending 
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Figure 5.10: A File I/O Job Competing with Memory-Intensive Task 
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Figure 5.11: A File I/O Job Competing with Memory-Intensive Task 
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on the effect of the competition on the user's job. 

5.3.5 Experiment 5: File I/O-Intensive Job (between Local Volumes) 

The aim of this experiment is to see if the monitoring information would reveal that 

the file I/O operations performed by a job are happening on a local disk volume, 

and not through a shared file system. 

The workload used in this experiment is the same as the one used in Experiment 

3. The only difference between this experiment and Experiment 3 is that the file 

I/O activity took place on the local disk volume in this experiment. 

Figures 5.12 and 5.13 show the monitoring information collected about the job 

using the Wrapper method. The CPU utilization, memory usage, and page fault 

information in Figures 5.12(a), 5.12(b), and 5.12(c) respectively are similar to the 

ones in Experiment 3. 

The disk I/O result in Figure 5.13(a) shows that about the same amount of data 

was read from disk and written to the local disk volume per second in this experiment. 

The pattern of file I/O activity observed in this experiment indicates that the file 

I/O activity happened on the local disk volume. That is, a certain amount of data 

is read from disk during a read operation, and the same amount of data is written 

to disk during the next write operation. 

Figure 5.13(b) and Figure 5.4(b) (in the baseline experiment) look similar on the 

same scale; this indicates that the job used very little network resources on the host 

computer. Figure 5.13(c) is also similar to Figure 5.4(c) (in the baseline experiment); 

this is an indication that the job did not use the shared file system. Very little data 

is written to the shared file system compared to the result in Figure 5.9(c). This 

suggests that the little amount of data written to the shared file system may be 
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caused by other tasks on the host computer. 

The information in Figures 5.13(a), 5.13(b), and 5.13(c) suggests that the job 

is likely to be responsible for the file I/O activity on the computer. It also shows 

that the file I/O happened on a local disk volume. In addition, the information 

in Figures 5.12(a), 5.12(b), and 5.12(c) indicate that the job in this experiment 

is likely to be a file I/O job. The combined monitoring information highlights the 

bottleneck of the job on the computer to be the local disk I/O. This job used the 

same workload as in Experiment 3, but the file I/O happened on a remote volume. 

With this information, the user may modify his job to use a remote volume next 

time because disk I/O is faster on the remote volume than the local disk volume on 

this cluster of computers. 

5.3.6 Experiment 6: File I/O-Intensive Job (from Remote Volume to 

Local Volume) 

The aim of this experiment is to see if the monitoring information would show the 

user that the file I/O activity performed by a job occurred between a remote disk 

volume and a local disk volume. 

The workload used in this experiment is the same as the one used in Experiments 

3 and 5. The difference between this experiment, Experiment 3, and Experiment 8 

is that the file I/O activity took place between NFS and a local disk volume in this 

experiment. 

The monitoring information collected in this experiment is shown in Figures 5.14 

and 5.15. The CPU utilization, memory usage, and page fault information in Fig-

ures 5.14(a), 5.14(b), and 5.14(c) respectively are similar to the results in Experi-

ments 3 and 5. 
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The disk I/O activity in Figure 5.15(a) shows that an average of 125 MBytes of 

data was written to the local disk volume per second, but very little data is read 

from the local disk volume. Figure 5.15(b) shows that the network interface ethO on 

the host computer was busy throughout the experiment. About 140 bytes of data 

is received on the network interface, but very little data is sent through the same 

interface. The shared file system activity in Figure 5.15(c) shows that data was read 

through the file system, but no data was written through it. The information from 

Figures 5.15(a), 5.15(b), and 5.15(c) confirms that both the local disk volume and 

the shared file system are involved in the file I/O activity. 

The monitoring information considered in this experiment shows that the job 

is likely to be the cause of the file I/O activity. It also shows that the file I/O 

activity occurred between a shared file system volume and a local disk volume. The 

information further shows that the file I/O activity involves reading data from a 

shared file system volume and writing data to a local disk volume. 

The monitoring information indicates the NFS and the local disk as bottlenecks 

for this job. If the user is not satisfied with the performance of the job, the user may 

modify his/her job to use a shared file system for the file I/O activity. 

5.3.7 Experiment 7: File I/O-Intensive Job (from Local Volume to Re-

mote Volume) 

The purpose of this experiment is to determine whether the monitoring information 

would detect file I/O activity between NFS and a local disk volume. Also, to see if 

the monitoring information would show the source and the destination of the data. 

The workload used in this experiment is the same as the one used in Experiment 

6. The only difference is that data is read from a local disk volume and written to 
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a shared file system volume in this experiment. 

The monitoring information collected in this experiment is shown in Figures 5.16 

and 5.17. The CPU utilization, memory usage, and page fault information in 

Figures 5.16(a), 5.16(b), and 5.16(c) respectively are similar to the results observed 

in Experiments 3, 5, and 6. 

The disk I/O result in Figure 5.17(a) shows that data is read from the local disk, 

but very little data is written to the local disk. This result is the opposite of that 

observed in Figure 5.15(a) in Experiment 6. This result suggests that the local disk 

volume is used in this experiment. Figure 5.17(b) shows that the network was busy 

throughout the experiment; this is an indication that the shared file system may be 

involved in this file I/O activity like in Experiment 6. The result in Figure 5.17(c) 

shows that a significant amount of data is written to the shared file system but very 

little data is read from it. 

The plots in Figures 5.17(a), 5.17(b), and 5.17(c) are similar. The combined 

results indicate that data is read from the local disk volume and written to the shared 

file system. The monitoring information shows that the job is likely to be responsible 

for the file I/O activity, which involves reading data from a local disk volume and 

writing the data to a remote disk volume through the shared file system. 

This result shows that the bottlenecks for the job are the shared file system and 

the local disk. In order to improve the performance of the job, the user may modify 

his job do the file I/O on a remote volume through a shared file system. 

5.3.8 Experiment 8: A Job Competing with a Memory-Intensive Task 

The goal of this experiment is to determine if the monitoring information can show a 

user that his/her job experienced competition for computing resources with another 
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task on the same computer. Also, to identify the bottlenecks for the job, and how 

the performance of the job can be improved. 

The design of this experiment is similar to that of Experiment 4; the difference 

is that here the competing task starts ahead of the job, and the competing task is a 

memory workload program. The competing task is started on the computer where 

the job was scheduled to run. The job is submitted at the point when the competing 

task has run long enough to use more than 50% of the available physical memory on 

the computer. Figures 5.18 and 5.19 show the results obtained in this experiment. 

Figure 5.18(a) shows that the job received less than 50% CPU processing time at 

the beginning of the experiment. Comparing Figure 5.18(a) with Figure 5.6(a) (in 

Experiment 2) shows that the job in this experiment received 50% CPU processing 

time compared to the same job in Experiment 2. This result indicates that there 

is strong competition for CPU processing time between this job and some other 

competing tasks on the computer. 

It can be observed in Figure 5.18(b) that the amount of physical memory used 

by both the job and the competing task increased between 23:00:00 and 23:00:20. 

Then, the physical memory used by the competing task decreased, while the physical 

memory used by the job increased until 23:00:40. At about 23:00:45, both the job 

and the competing task were using about the same amount of physical memory. 

This trend continued until 23:01:25 when the competing task disappeared. A close 

observation shows that the disappearance was due to the termination of the job and 

the competing task by the operating system. 

The page fault information in Figure 5.18(c) shows that the job started with 

some minor page faults then some major page faults at a point where the job and 
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competing task were using the same amount of physical memory. The result shows 

that the number of faults per second is about half of what was observed in Experiment 

2. This information indicates that there are tasks competing with the job on the 

computer. As a result, there is a strong competition for the physical memory on the 

computer. 

Figure 5.19(a) shows that more data is written to disk and less data is read from 

disk compared to Figure 5.7(a) (in Experiment 2). There is no much difference in 

the network activity in this Experiment compared to that observed in Experiment 2 

except the pattern; the same applies to the shared file system activity. 

In this experiment, the monitoring information shows that there was an existing 

task competing with the job on the same computer. The monitoring information 

shows the competition and indicates that the job was not getting enough physical 

memory. It also showed that the job did not finish successfully. 

The monitoring information generated from this experiment shows that the bot-

tleneck for the job is physical memory. Identifying this bottleneck would help the 

user to make a decision on improving the performance of this job. In this situation, 

the user can submit the job to the same computer at a later time or submit the 

job to another computer with more physical memory resources. If these options do 

not help, the user may discuss the issue with the system administrator based on the 

monitoring information. 

5.4 Validation 

Most of the monitoring information reported in this thesis are retrieved from the 

ps (process status) utility tool except the page faults information. The page fault 
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information is retrieved from proc (Process Information Pseudo-Filesystem) on UNIX 

operating system. The ps tool gets its results from proc; hence, all the information 

reported in this thesis are indirectly from proc. 

UNIX tools like vmstat, free, top, and sar (a UNIX tool for collecting, reporting, 

and saving system activity information) could be used for validating the information 

reported by the monitoring tool developed in this thesis. The afore-mentioned tools 

also get their information from proc on a Linux system. In tests, the information 

reported using these tools is the same as that collected with the Wrapper based 

monitoring tool. 

5.5 Summary 

In this chapter, eight experiments were carried out to show how the monitoring 

information generated using the Wrapper method can help users to identify the bot-

tlenecks to their jobs in grid computing environment. 

The experiments were designed to show different aspects of a system including 

CPU utilization, memory usage, disk I/O, shared file system, and network. The 

monitoring tool was able to provide information about how the submitted jobs in-

teracted with other processes on the system. The monitoring information from the 

experiments also showed how the use of one shared system resource is related to 

others. This was demonstrated in the network traffic and file system results. 

The monitoring information shows if a job experienced competition for system 

resources, when the competition occurred, and how the competition affected the 

behaviour of the job. The monitoring information shows if a job is file I/O or 

memory-intensive. For file I/O intensive jobs, it shows the disk volume(s) where the 
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data is read from and written onto. 

In addition, the monitoring information showed that memory, local disk I/O, and 

shared file system can be bottlenecks to the performance of a job. Suggestions were 

made on how to improve the performance of jobs affected by these bottlenecks. 



Chapter 6 

Conclusion 

This chapter summarizes the research work done for this thesis. The contributions 

of this thesis work are highlighted. It also provides suggestions of future research 

directions building upon this thesis work. 

6.1 Thesis Summary 

In a grid environment, a user does not know what is happening to a job when it is 

running on a computer. Monitoring jobs become essential so that users can see if 

their jobs have bottlenecks, and make decisions on how to improve the performance 

of their jobs. 

There are various tools for monitoring the performance of grid infrastructure and 

grid applications. The tools give accurate information on basic system configuration, 

memory, and CPU usage statistics; but they do not give information about individ-

ual jobs. Recent tools that report on behavioural aspects of jobs have done so in 

cumbersome manners. 

In this thesis, a technique for monitoring jobs in grid computing environment 

known as Wrapper method is designed, and a tool that implements the Wrapper 

method is also developed. The technique is called Wrapper method because a script 

called Wrapper script is used to monitor jobs. The Wrapper script monitors a job 

on whatever computer the job is scheduled to run. How the Wrapper method works 

is described in detail in Chapter 4. 

114 
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The Wrapper method was implemented by developing a monitoring tool. The 

monitoring tool monitors a job on a computer and generates monitoring data on the 

performance of the job. A graphing tool is also developed to convert monitoring 

data into meaningful monitoring information. The monitoring information includes 

CPU utilization, memory usage, disk Input/Output, shared file system, and network 

information. The monitoring information is presented in time-series format in order 

to show the complete life cycle of a job. Chapter 4 describes how the Wrapper method 

is implemented in this thesis. 

Eight experiments were conducted in this thesis to validate the job monitoring 

capabilities of the Wrapper method. The experiments were designed in such a way 

that they show how information from the monitoring system would help users to 

understand the behaviour of their jobs on a computer. In addition, suggestions were 

made on how to improve the performance of a job in each scenario. 

In each experiment the Wrapper script is submitted, and it starts the user's job 

on a computer. The Wrapper script also starts the tool that monitors the job on 

the computer. The monitoring tool retrieves monitoring data about the job from 

the computer where the job is running. When the job is completed, the monitoring 

data is transformed into meaningful monitoring information by the graphing tool. 

Two computing tasks were used as workloads in the experiments conducted in 

this thesis work. The tasks are computer programs that are designed to run on a 

computer. The first program uses a large amount of physical memory on a computer. 

The second program does file I/O using local disk, network, and shared file system 

resources. The first program is called memory workload and the second program is 

called file I/O workload. The workloads are described in detail in Chapter 5 of this 
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thesis. 

Each workload has two programs: the job and the competing task. The Wrapper 

script starts the job, and the competing task is started on the computer by the 

user. The job and the competing task used the same computer program, so neither 

the job nor the competing task had an undue advantage over each other. In some 

experiments, a computing task that uses a large amount of system resources is started 

on the same computer where the job is running in order to introduce competition 

for system resources. 

The experiments were designed to show different aspects of a system including 

CPU utilization, memory usage, disk I/O, file system, and network. The monitoring 

tool provided information on how the submitted jobs interacted with other tasks on 

the computer. The monitoring information helped in understanding what happened 

to jobs on a computer under different scenarios. Users would be able to answer some 

questions about their jobs by looking at the monitoring information. For example, 

did their job get an expected amount of CPU utilization, did their job get enough 

memory resources, did their job use disk I/O effectively, did a task or tasks compete 

with their job for shared resources like network bandwidth and shared disk volume; 

if there is competition for resources, when did it happen and what is the impact on 

the user's job. 

The monitoring information would help users to identify the bottlenecks to their 

job on a particular computer; this in turn would help them in making a decision on 

how to improve the performance of their job. For example, if physical memory is the 

bottleneck for a particular job, the user may choose to submit the job to another 

computer with more physical memory resources; or the user may submit his/her job 
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to the same computer at a later time if the memory shortage was due to a competing 

task on the computer. In a situation where a job did not complete on time due to 

lots of disk I/O activity, the user may modify his/her job to use another shared file 

system. In a case where a shared file system is slow, the user may submit his/her job 

at a later time when the shared file system is less busy, or submit the job to another 

system with a faster shared file system. 

The monitoring information can also help users to know what modification to 

make to their jobs so they can get a better performance on a particular computer 

in the future. The user might ask the grid computing site administrator what was 

happening on a particular system at a particular time. 

6.2 Contributions 

The following are the contributions of this thesis work: 

- This thesis work provides a survey of the existing grid monitoring tools and 

methodologies; it analyzes them from job monitoring perspective. The survey 

identified their short comings and paved way for this research. 

- Designed Wrapper method technique, for monitoring jobs in grid computing 

environments; this technique uses a simple script to monitor individual jobs in 

a shared-memory computing environment. 

- Implemented the Wrapper method by developing a monitoring tool; the mon-

itoring tool monitors a job on a computer and collects monitoring data about 

the job. A graphing tool is also implemented as part of this thesis work; the 
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graphing tool converts monitoring data into meaningful monitoring informa-

tion. 

- Series of experiments were carried out in this thesis to validate the job mon-

itoring capabilities of the Wrapper method. The results show that memory, 

local disk I/O, network, and shared file system can be bottlenecks to the per-

formance of a job. Suggestions were made on how to improve the performance 

of jobs affected by these bottlenecks. 

6.3 Future Work 

Several directions remain open for further research in the area of monitoring jobs in 

grid computing environments. This thesis focused on monitoring jobs on a computer 

in a shared-memory environment. It would be useful to improve on the Wrapper 

method so it could monitor jobs running on parallel computers in a distributed-

memory environment. 

A distributed-memory environment refers to a multi-processor computer envi-

ronment where an individual processor can only address part of the total address 

space. The processes in such an environment coordinate their computations and 

share data by sending/receiving messages over the network. Jobs that are designed 

to take advantage of parallelism can execute faster than their sequential counter-

parts. Although, there are two sources of overhead: it takes time to construct and 

send a message from one processor to another, and a receiving processor must be 

interrupted in order to deal with messages from other processors [20]. 

The challenge of monitoring a distributed-memory parallel job using the Wrapper 

method is due to the fact that a scheduler does not know how a parallel job is started. 
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Therefore, the monitoring tool will lose track of some processes that belong to the 

job since it does not know how to relate the processes to the job. It is possible 

to know the hosts on which the processes associated with a parallel job are being 

executed, but it is difficult to know exactly what processes belong to the parallel 

job in a situation where the user has other processes running on the same computer 

at the same time. Considering the benefits of parallel jobs in distributed-memory 

environment, it would be beneficial to extend the Wrapper method to monitor such 

jobs. 

A "post-mortem" approach is used in presenting the monitoring information to 

users in this thesis. In this implementation, a user would know what happened to 

his/her job after it is completed. That is, a user cannot have access to the monitoring 

information until the job is finished. Some users may prefer to see the way their job 

is performing in real time, so they could notify the system administrator if their 

job is not doing well on a computer. Hence, it would be very helpful to extend the 

current implementation to show the behaviour of jobs in real time. 

The current implementation of the Wrapper method retrieves monitoring data 

from the proc file system on Linux operating system. The proc file system is not 

portable across all operating system platforms. In addition, the structure of proc 

directory and the layout of data in some proc files are different from one variant of 

UNIX to another. Therefore, the future work would be to make the Wrapper method 

portable. 

Finally, research should be carried out on automated analysis of monitoring data. 

This could detect when a problem has been encountered and inform the user. It 

could also make the monitoring information more accessible to non-expert users. In 
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addition, the results of the automated analysis could be used for performance tuning 

and analysis. 
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Appendix A 

Glossary 

BSD (Berkeley Software Distribution) refer's to the particular version of the 

UNIX operating system that was developed at the University of California at 

Berkeley 

SysV (System V) was one of the versions of the UNIX computer operating system. 

It was originally developed by AT&T and first released in 1983. 

POSIX is an acronym for Portable Operating System Interface. It is a standard 

to allow applications to be source-code portable from one system to another. 

POSIX consist of several separate standards corresponding to different parts of 

a computer system. 

Process Wait Channel (WCHAN) is the address of an event on which a partic-

ular process is waiting. 

Physical Memory is the memory hardware (normally Random Access Memory) 

installed on a system. 

Logical memory as opposed to physical memory is the way memory is organized 

by the operating system. In order to use the physical memory of a computer, 

such as RAM chips or cache, the operating system organizes the memory into 

some logical manner, such as memory address. 

Thrashing is a problem as a result of paging when there is not enough memory on 

the system for all the processes currently running. Therefore, the same pages 
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are being loaded repeatedly due to a lack of enough physical memory to keep 

them in memory. 

Memory Page is the smallest unit of memory handled by the operating system; 

the size of a memory page is usually 4 or 16 kilobytes. 

Paging is a process by which memory pages are moved between a disk volume and 

the physical memory. The disk volume can be a local disk volume, a shared file 

system, or a swap device. Paging occurs in order to free up memory needed by 

a process. 

Swapping is similar to paging but swapping refers to writing an entire process to 

disk thereby freeing all of its memory. 

Swap Space is used to describe a disk space used by the operating system kernel 

as "virtual" RAM to hold pages of data that have not been recently used and 

which no longer fit into paging space. 

Virtual Memory is a memory management technique used by the operating sys-

tem, where the disk is used as an extension of RAM so that the effective size of 

usable memory grows correspondingly. The part of the hard disk that is used 

as virtual memory is called the swap space. 

Memory Resident Pages are pages that are permanently in the memory. 



Appendix B 

Monitoring Data Statistics 

B.1 CPU Utilization Statistics 

The first report generated by the iostat command is the CPU utilization report. For 

multiprocessor systems, the CPU values are global averages among all processors. 

The CPU utilization report has the following statistics: 

%user: the percentage of CPU utilization that occurred while executing at the user 

level (application). 

%nice: the percentage of CPU utilization that occurred while executing at the user 

level with nice priority. 

%system: the percentage of CPU utilization that occurred while executing at the 

system level (kernel). 

%iówait: the percentage of time that the CPU or CPUs were idle during which the 

system had an outstanding disk I/O request. 

%idle: the percentage of time that the CPU or CPUs were idle and the system did 

not have an outstanding disk I/O request. 

B.2 Network Statistics 

Bytes received/sent: These network interface statistics provides an indication of 

the bandwidth utilization of the network. 
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Interface counts and rates: These statistics can give indications of excessive col-

lisions, transmit, and receive errors. These statistics (particularly if the statis-

tics are available for more than one system on the network) helps in network 

troubleshooting. 

Transfers per Second: Normally collected for block I/O devices, such as disk 

and high-performance tape drives, this statistic is a good way of determin-

ing whether a particular device's bandwidth limit is being reached. Due to 

the electromechanical nature of disk and tape drives, their performance rapidly 

degrades as their I/O limits are reached. 

Packet Counts: The number of packets received and transmitted through a local or 

remote port gives an idea of the kind of network activity happening on a system. 

The packet counts shows if lots of communication is happening between the host 

system running a job and external systems or programs. 

B.3 Memory Statistics 

Page Ins/Page Outs: These statistics make it possible to gauge the flow of mem-

ory pages from the physical memory to the hard disk. High rates for both of 

these statistics can mean that the system is short of physical memory and is 

thrashing. 

Active/Inactive Pages: These statistics show how heavily memory resident pages 

are used. A lack of inactive pages can point toward a shortage of physical 

memory. 

Free, Shared, Buffered, and Cached Pages: These statistics provide additional 

detail over the active/inactive page statistics. By using these statistics, it is 
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possible to determine the overall memory utilization in detail. 

Swap Ins/Swap Outs: These statistics show the system's overall swapping be-

haviour. Excessive rates of these statistics can point to physical memory short-

ages. 

Virtual Memory: This indicates the total number of uniquely-addressable memory 

space required by a program. 

Resident Set Size: Resident set size is the aggregate size of the valid (that is, 

memory-resident) pages in the address space of a process. In a virtual memory 

system, a process' resident set is that part of a process' address space which is 

currently in the physical memory. 

B.4 Disk Space Usage Statistics 

Free Space: It is the amount of unused space on a system. 

Transfers per Second: These statistics determines whether a particular device's 

bandwidth limitations are being reached. 

Reads/Writes per Second: These statistics is a more detailed breakdown of the 

transfers per second statistics; it allows the system administrator to fully un-

derstand the nature of the I/O load on a storage device. 



Appendix C 

The Life Cycle of a UNIX Process 

UNIX executes most kernel services within a process' context, by implementing a 

mechanism which separates the two possible modes of execution of a process. Hence, 

the unique "Running" state must be split into a "User Running" state and a "Kernel 

Running" state [15]. 

From Figure 0.1, a process can be in any of the following distinct nine states: 

Created: This is the state of a freshly created process. Whether freshly created 

processes are entirely resident in memory depends on the details of the memory 

management system. This state may also include processes that have not yet 

been fully created. 

Ready to run, in memory: There is no reason why the process should not run 

apart from the fact that some other process is currently running. 

Running in kernel mode: The process is running in kernel mode. It may be 

handling a system call or an interrupt or some other process (also in kernel 

mode) may have scheduled it to run. The process may determine that it has 

finished (either normally via an exit() or via some kernel detected abnormal 

condition) or that it is blocked awaiting some event such as a time signal or 

peripheral activity. 

Running in user mode: This is the normal state of a process. 

Pre-empted: The process has been interrupted and is about to resume normal user 

mode operation. The kernel scheduler may move a process into this state. 
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Zombie (or defunct): The process will not run again, but information such as the 

exit code has not been collected by the parent process. 

Sleeping in memory: The process is blocked awaiting an event. All that can hap-

pen is that the process can be woken up (by changing its status to "ready to 

run") or swapped out. 

Sleeping, swapped out: The process is waiting for an event and has been swapped 

out. 

Ready to run, swapped out: Before running the process needs to be copied back 

into memory. 



Appendix D 

UNIX System Tools 

free gives a concise, simple overview of system memory and swap utilization. 

vmstat is similar to free, but shows more information in addition to memory uti-

lization statistics. It gives an overview of process, memory, swap, I/O, system, 

and CPU activity in one line of numbers. 

top displays CPU utilization, memory utilization, and process statistics. Unlike the 

free command, top's default behaviour is to run continuously. 

iostat displays an overview of CPU utilization, along with I/O statistics for one or 

more disk drives. 

mpstat displays more in-depth CPU statistics. 

sadc is known as the system activity data collector; sadc collects system resource 

utilization information and writes it to a file. 

sar produces reports from the files created by sadc. sar reports can be generated 

interactively or written to a file for more intensive analysis. 

isof lists all the files opened by processes on the system. An open file may be a 

regular file, directory, block special file, character special file, executing text 

reference, library, stream, or network file (i.e., Internet socket, NFS file, or 

UNIX domain socket). 

uptime gives a rough estimate of the system load; it reports the current time, the 

amount of time the system has been up, and three load averages; it reports the 
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load averages for the past 1, 5, and 15 minutes. 

df produces a report that describes all the filesystems, their total capacities, and 

the amount of free space available on each filesystem. 

du reports the amount of disk space used by all files and subdirectories underneath 

one or more specified directories, listed on a per-subdirectory basis. 

quot breaks down disk space usage within a single filesystem by user. 

netstat is used to monitor a system's TCP/IP network activity. It provides some 

basic data about how much and what kind of network activity is happening on 

a system. It lists all the active connections with the local host. The number 

of data transferred between two systems via each connection is also reported in 

packets. 

tcpdump allows the user to examine the headers of packets transmitted via TCP/IP. 


