
THE UNIVERSITY OF CALGARY

Monitoring Jobs

in Grid Computing Environments

by

Idowu Oluwafemi Adewale

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

December, 2007

© Idowu Oluwafemi Adewale 2007

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled "Monitoring Jobs in Grid

Computing Environments" submitted by Idowu Oluwafemi Adewale in partial

fulfillment of the requirements for the degree of Master of Science.

Supervisor, Dr. Rob Simmonds
Department of Computer Science

Department of Computer Science

Dr. Abraham Fapojuwo
Department of Electrical and
Computer Engineering

Date

11

Abstract

In order to improve the performance of jobs in a grid computing environment, it
is important to have a job monitoring system that could show users how their jobs
behaved during execution on a computer. Most of the existing job monitoring tools
report on the status of scheduled jobs, but not on the behaviour. Recent tools that
report on behavioural aspects of jobs have done so in cumbersome manners.

This thesis develops a technique, known as the Wrapper method, for monitoring
jobs in grid computing environments. We developed a monitoring tool to implement
the Wrapper technique; the tool monitors jobs on a computer and collects monitoring
data about the jobs. We also implement a graphing tool for converting monitoring

data into meaningful monitoring information.
We report on series of experiments to validate the job monitoring capabilities of

the Wrapper method. The results show that memory, local disk I/O, network, and
shared file system can be bottlenecks to the performance of a job. We suggest a
number of ways to improve the performance of jobs affected by these bottlenecks.

111

Acknowledgements

First and foremost, I thank God for giving me the opportunity, patience, grace, and
strength to complete this research work.
I am greatly indebted to my supervisor, Dr. Rob Simmonds, for giving me the

opportunity to do my Masters thesis under his supervision. Your guidance, expertise,
and feedback have helped in bringing this thesis to completion.

Thank you to my examiners - Dr. Denilson Barbosa (Internal) and Dr. Abraham
Fapojuwo (External) for reading through my thesis and providing valuable feedback.

The Grid Research Centre group at the University of Calgary has been a large
source of help during the course of my program. In particular, I would like to thank
Cameron Kiddie, Roger Curry, Abhishek Gaurav, and Mark Fox for their help during
the course of this research.
A special thanks to my lovely wife, Opeyemi, for all her support. The story of

my life would not be complete without you. Your love, prayers, and encouragement
makes my living worthwhile. My special gratitude is due to my mum and brother,
just as I equally appreciate the support of my sisters and their families. I feel a deep
sense of gratitude to my late father who laid the foundation for my education and
supported me with all the materials to enable me succeed academically.
I am grateful to my wonderful friend - Omolade Saliu. You have been a source

of advice, motivation, and encouragement during my Masters programme; you have
touched my life in various ways. I am tempted to mention all the friends that
have encouraged me along the way; the list would be endless and I am afraid I
might leave someone out. I am using this opportunity to simply say "Thank you"
to you all. However, I wish to thank Bashiru Ikharia, Ohi Imoukhuede, Joseph
Amuah, Kenny Oladosu, Gbenga Adeyanju, Tosin Alao, Femi Ogunsuyi, Sunday
Fagbemiro, Emmanuel Ibidokun, Yinka Odebade, Olumide Adeoye, Nina Ejezie,
and Laide Olorunleke for their encouragement.

My gratitude goes to Paul and Nancy Starling, Abiodun and Abisoye Fatokun,
the Ajalas, the Omotayos, the Adeyanjus, and the lovely people at UChurch for all
their encouragement during my Masters programme.
I would always be grateful to Remi Okeyinka for being my motivator during my

undergraduate programme at Ladoke Akintola University of Technology, Ogbomoso,
Nigeria. Your motivation have brought me this far.

The generous support from the Department of Computer Science and the Grid
Research Centre at the University of Calgary is greatly appreciated.

iv

Table of Contents

Approval Page ii

Abstract iii

Acknowledgements iv

Table of Contents v

1 Introduction 1

1.1 Grid Monitoring 2

1.2 Problem Statement 3

1.3 Motivation 4

1.4 Thesis Objectives 4

1.5 Thesis Overview 5

2 Background 7

2.1 Brief History of Grid Computing 7

2.2 Types of Grid 9

2.2.1 Compute Grid 10

2.2.1.1 Desktop Grids 11

2.2.1.2 Server Grids 11

2.2.1.3 Cluster Grids 12

2.2.2 Data Grids 12

2.2.3 Utility Grids 13

2.3 Grid Architecture 13

v

2.3.1 Grid Architecture Description 14

2.3.1.1 Fabric Layer 15

2.3.1.2 Connectivity Layer 15

2.3.1.3 Resource Layer 16

2.3.1.4 Collective Layer 16

2.3.1.5 Applications Layer 16

2.4 Globus Toolkit 17

2.5 Grid components 18

2.5.1 Security 19

2.5.2 Resource Discovery 20

2.5.3 Scheduler 21

2.5.4 Data Management 21

2.5.5 Job and Resource Management 22

2.6 Summary 23

3 Related Work 24

3.1 Grid Monitoring Architecture (GMA) 24

3.1.1 OMA Requirements for Grid Monitoring Systems 25

3.1.2 Terminology and Architecture 26

3.1.3 Directory Service Interaction 27

3.1.4 Producer/Consumer Interactions 27

3.1.5 Sources of Event Data 28

3.2 Grid Monitoring Tools 29

3.2.1 Hawkeye 30

3.2.2 Netlogger 31

vi

3.2.3 Network Weather Service 31

3.2.4 Ganglia 32

3.2.5 Autopilot 33

3.2.6 Monalisa 33

3.3 Grid Monitoring Systems 34

3.3.1 Monitoring Jobs Using Mobile Agents 34

3.3.2 Monitoring Jobs Using Globus Toolkit 36

3.3.3 Job Monitoring on Legion 37

3.3.4 Job Monitoring in Interactive Grid Analysis Environment 38

3.3.5 Job Monitoring in GridLab 39

3.3.6 Monitoring Grid Applications 40

3.3.7 Monitoring using Asynchronous Middleware - DREAM . 42

3.3.8 Job Centric Cluster Monitoring System 42

3.4 Summary 43

4 Job Monitoring 45

4.1 Proposed Methodology - Wrapper Method 45

4.2 Job Monitoring Data 50

4.2.1 CPU Utilization 51

4.2.2 Memory 51

4.2.3 Page Faults 53

4.2.4 Network 55

4.2.5 Disk Input/Output Activity 56

4.2.6 File Systems 57

4.2.7 State of a Job 58

vii

4.3 Sources of Monitoring Data 58

4.3.1 Process Information Pseudo-Filesystem 59

4.3.2 Process Status Utility 61

4.3.3 System Tools 63

4.4 Collecting Monitoring Data 64

4.5 Presenting Monitoring Information 66

4.6 The Implementation of Wrapper Method 67

4.7 Implementation Issues 68

4.8 Wrapper Method Implementation with Globus 69

4.9 Summary 71

5 Experiments and Results 74

5.1 Purpose of Experiments 74

5.2 Experimental Methodology 75

5.2.1 Experimental Design 75

5.2.2 Workload Description 76

5.2.2.1 Memory Workload 77

5.2.2.2 File I/O Workload 79

5.2.3 Experimental Testbed 81

5.3 Experimental Results 81

5.3.1 Experiment 1: Baseline Experiment 82

5.3.2 Experiment 2: Memory-Intensive Job not Competing for Sys-

tem Resources 86

5.3.3 Experiment 3: File I/O-Intensive Job (between Remote Vol-

umes) 91

vii'

5.3.4 Experiment 4: A File I/O Job Competing for Resources with

Memory-Intensive Task 94

5.3.5 Experiment 5: File I/O-Intensive Job (between Local Volumes) 98

5.3.6 Experiment 6: File I/O-Intensive Job (from Remote Volume

to Local Volume) 101

5.3.7 Experiment 7: File I/O-Intensive Job (from Local Volume to

Remote Volume) 104

5.3.8 Experiment 8: A Job Competing with a Memory-Intensive Task105

5.4 Validation 111

5.5 Summary 112

6 Conclusion 114

6.1 Thesis Summary 114

6.2 Contributions 117

6.3 Future Work 118

Bibliography

A Glossary

B Monitoring Data Statistics

121

136

138

B.1 CPU Utilization Statistics 138

B.2 Network Statistics 138

B.3 Memory Statistics 139

B.4 Disk Space Usage Statistics 140

C The Life Cycle of a UNIX Process 141

ix

D UNIX System Tools 144

List of Figures

2.1 The layered Grid Architecture and its relationship to the Internet

Protocol (Source [58]) 15

2.2 Key Grid Components 20

3.1 Grid Monitoring Architecture Components 26

3.2 Sources of Event Data 29

4.1 Wrapper Methodology 47

4.2 Logging Monitoring Data through Netlogger 65

4.3 Execution of Jobs in Globus-managed Grid Computing Environment 72

5.1 Description of Memory Workload 78

5.2 Description of File Input/Output Workload 80

5.3 Job not using System Resources 83

5.4 Job not using System Resources 84

5.5 Source to Destination Network Analysis 85

5.6 Memory-Intensive Job not Competing for System Resources 87

5.7 Memory-Intensive Job not Competing for System Resources 88

5.8 File I/O Job between Remote Volumes 92

5.9 File I/O Job between Remote Volumes 93

5.10 A File I/O Job Competing with Memory-Intensive Task 96

5.11 A File I/O Job Competing with Memory-Intensive Task 97

5.12 File I/O Job between Local Volumes 99

5.13 File I/O Job between Local Volumes 100

xi

5.14 File I/O Job (Remote Volume to Local Volume) 102

5.15 File I/O Job (Remote Volume to Local Volume) 103

5.16 File I/O Job (Local Volume to Remote Volume) 106

5.17 File I/O Job (Local Volume to Remote Volume) 107

5.18 A Memory Workload Job Competing with Memory-Intensive Task . 109

5.19 A Memory Workload Job Competing with Memory-Intensive Task . 110

C.! Process Transition Diagram (Source [15]) 142

xii

Chapter 1

Introduction

Grid computing allows users to access and share powerful computers, databases, com-

puting storage facilities, high-speed fibre optic links, network resources, and experi-

mental facilities across different geographic areas or administrative domains or both.

The sharing of resources in grid computing environments happens transparently with

the user not necessarily knowing where those facilities are located. The sharing is

concerned with direct access to computers, software, data, and other resources, as re-

quired by a range of collaborative problem-solving and resource-brokering strategies

emerging in industry, science, and engineering [58].

Grid computing is used to solve research and business problems that require a

large amount of computational resources. Some of these problems are so complex and

data-intensive that a large amount of computational power (which may include pow-

erful computer, large amounts of memory, and high data transfer speed) is needed

to solve such problems. Grid computing is helping organizations to leverage exist-

ing hardware investment and resources, reduce operational cost, accelerate product

development, and increase productivity [5]. Grid computing has commercial appli-

cations in different industries including aircraft engine design, crash test simulation

[38, 48], telecommunication network planning and management [72], financial mod-

elling using Monte Carlo simulations [33, 46, 91], digital rendering and animations

in the entertainment industry, computational fluid dynamics in the manufacturing

industry, and 3D seismic processing in the oil and gas industry [6]. The impor-

1

1.1 Grid Monitoring 2

tance of grid computing in the research community is immense. Grid computing is

useful in many scientific problems which require a massive amount of computation

[48, 77, 82]. In addition, it is helping researchers and scientists to interact and share

data, instruments, and visualization tools irrespective of their geographical location.

1.1 Grid Monitoring

Monitoring in grid environments is the act of collecting information concerning the

characteristics and status of resources of interest [93]. In [56], grid monitoring is

defined as, "the measurement and publication of the state of a grid component

at a particular point in time." The discovery, characterization, and monitoring of

resources, services, and computations can be challenging due to the considerable

diversity, large numbers, dynamic behaviour, and geographical distribution of the

entities in which a user might be interested [56]. Monitoring is required for a number

of purposes, including status checking, troubleshooting, performance analysis and

tuning, debugging, auditing, and intrusion detection [13, 32].

A job is defined as, a unit of work defined by a user; it may include a set of

computer programs, files, and control statements to the computer operating system

[14]. A job requests required resources and gets the resources when they are available.

A batch job is often defined using a shell script. The batch script once created for a

job can be reused or modified to start the job as many times as possible.

A job is classified as sequential or parallel depending on whether the job is to be

processed on a sequential computer or on a parallel computer with several nodes.

Parallel jobs consist of multiple processes that run concurrently on a set of processors

[55]. In all cases there is a need for the programs in a parallel job to interact with each

1.2 Problem Statement 3

other by exchanging data through Inter Process Communication (IPC). In addition,

the processors executing a parallel job may be on the same computer or on different

computers. Sequential jobs are scheduled to execute on a sequential computer.

1.2 Problem Statement

When a job is submitted for execution in a grid computing environment, monitoring

becomes essential so that a user can see that the job was completed in an expected

way within the expected time frame. It is also necessary that the user should be able

to detect any problem that occurs while the job is running. In a grid environment,

a user loses direct control over the job after it has been submitted, that is the user

does not know what is happening to the job on the computer on which the job is

being executed [7].

One of the challenges in grid computing is how to measure the performance of

grid infrastructure and grid applications. There is no widely accepted and deployed

technique that can solve all aspects of the problem [40]. In order to answer the

question of grid performance, numerous approaches to performance monitoring and

evaluation have resulted in several different tools. The popular grid monitoring tools

used in the industry and academia are Monalisa [54], Ganglia [31], and Netlogger

[51]. These tools give accurate information on basic system configuration, mem-

ory statistics, and CPU usage statistics, but they do not give information about

individual jobs.

Monalisa reports the number of running and queued jobs on a computer, but

does not give any information on the node(s) on which the jobs are being executed.

Also, the JINI server in California Institute of Technology must be up and running

1.3 Motivation 4

before a user can monitor any computer running Monalisa. Ganglia reports the

basic information about the state of a computer on a web page, and uses RRDtoo1

(a round robin database) [31] for data storage 'and visualization. The round-robin

database does not keep a long history; hence, a user can only view reports of the

last 24 hours, 1 day, 1 week, 1 month and 1 year. It does not report any information

about the jobs running on a computer. In addition to reporting memory and CPU

usage statistics, Netlogger could be used to instrument other applications like Grid

File Transfer Protocol (GridFTP) [75] to monitor file transfers, but it does not report

information about individual jobs on a computer.

1.3 Motivation

Most of the existing job monitoring tools report on the status of scheduled jobs, but

not on the behavioural aspects. Recent tools that report on behavioural aspects of

jobs have done so in cumbersome manners. When users submit jobs in a computing

environment, in most cases they would like to know how their jobs are performing

on a computer. For example, is their job getting enough processing time, is their

job getting enough memory, is their job doing a large amount of disk Input/Output

operations, is their job using a large amount of shared resources like network band-

width and shared file system, and is their job experiencing competition from other

activities on the same computer. There are users that are interested in how jobs

perform on computers, so they could know where to submit their jobs in the future.

1.4 Thesis Objectives

The following are the main objectives of this research work:

1.5 Thesis Overview 5

- To perform a survey of the existing grid monitoring tools and approaches, and

analyze them from job monitoring perspective. This will help to clearly identify

their short comings, thereby opening directions for improvement.

- To design a technique for monitoring jobs in grid computing environment; the

technique would be simple and easy to implement.

- To develop a monitoring tool to implement the job monitoring technique de-

signed in this thesis.

- To assist users in understanding the performance of their jobs in a grid com-

puting environment, by providing meaningful monitoring information. The

monitoring information would show the bottleneck(s) to the performance of a

job and suggest a number of ways to improve the performance of jobs in the

future.

1.5 Thesis Overview

The rest of the thesis is organized as follows. Chapter 2 highlights relevant back-

ground information on grid computing including a brief history of grid computing,

types of grid, grid architecture, and grid components. Chapter 3 discusses some

related work and existing grid monitoring tools. The related work discussed includes

the Grid Monitoring Architecture (GMA) [12] and some grid monitoring tools in-

cluding Ganglia, Monalisa, and Netlogger. The chapter discusses the related work

from job monitoring perspective in the context of this thesis work.

Chapter 4 focuses on job monitoring in grid computing environments. This chap-

ter describes a technique for monitoring jobs called Wrapper method. The design and

1.5 Thesis Overview 6

implementation of the Wrapper method are described in detail. The chapter also dis-

cusses job monitoring information, sources of job monitoring information, and how

the monitoring information is transferred and presented to users. The design issues

with the Wrapper method and how it is implemented in a grid computing environ-

ment are highlighted. In Chapter 5, the results of eight experiments are presented and

discussed. The purpose of the experiments is to identify the bottlenecks to the per-

formance of jobs on a computer under different scenarios. The experimental design,

the workload, and the environmental setup for the experiments are also described

in this chapter. Chapter 6 concludes the thesis by summarizing the contributions of

this research work, and suggesting future research directions.

Chapter 2

Background

This chapter presents a brief overview of grid computing and grid computing tech-

nologies relevant to this thesis. It starts with a brief history of grid computing

in Section 2.1 and discusses the different types of grid computing environments in

Section 2.2. The type of environment under which this thesis is performed is high-

lighted in this section. Section 2.3 provides an overview of grid architecture while

the Globus Toolkit [35, 43] is presented in Section 2.4. Section 2.5 describes the key

grid computing components. Finally, the chapter is summarized in Section 2.6.

2.1 Brief History of Grid Computing

In 1969, the US Defense Department's Advanced Research Projects Agency (ARPA)

created the Advanced Research Projects Agency Networks (ARPANET). ARPANET

was designed to be a system of data communications for scientific and military op-

erations that could withstand nuclear attack. ARPANET's founders designed it

so that authority was distributed over a large number of geographically dispersed

computers [80]. ARPANET served as a testbed for new networking technologies,

linking many universities and research centres. The first two nodes that formed the

ARPANET were University of California and the Stanford Research Institute, fol-

lowed shortly thereafter by the University of Utah. ARPANET was used by a few

computer scientists and the Department of Defense (DoD) community [96].

Various production and research networks evolved from ARPANET including

7

2.1 Brief History of Grid Computing 8

NSFNET (National Science Foundation Network) which was created in 1986 with

a 56 kilobit/sec backbone bandwidth that tied together five NSF (National Science

Foundation) supercomputer centres. In 1995, the NSF transferred NSFNET to the

commercial sector, which later evolved into today's Internet [96]. Today the Inter-

net is a global network connecting millions of computers which enables people to

exchange data, news, and opinions. The NSF created NSFNET, in order to give

scientific researchers easy access to its new supercomputer centres.

In the early-to-mid 1990s, a number of research projects in the academic and

research community focused on distributed computing. Distributed computing is the

process of aggregating the power of computing entities to collaboratively run a single

computational task in a coherent way, so that they appear as a single, centralized

system [106]. Some research focus is on methods of dividing computational jobs into

smaller pieces for multiple machines. One key area of research focused on developing

tools that would allow distributed high performance computing systems to act like

one large computer.

At the 1995 supercomputing conference sponsored by the Institute of Electrical

and Electronics Engineers and the Association for Computing Machinery (IEEE/ACM),

11 high speed networks were used to connect 17 sites with high-end computing re-

sources for a demonstration to create one super "metacomputer." This demonstra-

tion was called I-Way. Sixty different applications, spanning various faculties of

science and engineering were developed and run over the demonstration network.

Many of the early grid computing concepts were explored in the demonstration as

the team created various software programs to make all computing resources work

together [5].

2.2 Types of Grid 9

The demonstration of the I-Way was successful and people were convinced that

grid computing had great potential. In October 1996, the U.S. Defense Advanced

Research Projects Agency (DARPA) funded a project to create foundation tools

for distributed computing. The research project was led by Ian Foster of Argonne

National Laboratory (ANL) and Carl Kesselman of University of Southern California.

At the 1997 supercomputer conference, Foster and Kesselman demonstrated a grid

with some 80 sites worldwide running Globus Toolkit [43] middleware. At that point,

Foster and Kesselman had started calling it "grid computing," playing on the analogy

to the electrical grid [105].

2.2 Types of Grid

Grid computing vendors have adopted various nomenclatures to explain and define

the different types of grids. Some define grids based on the structure of the organi

zation (virtual or otherwise) that is served by a grid, while others define it by the

principle resources used in a grid [5].

Considering the structure or size of a computing grid, the three main types of

grids are Departmental, Enterprise, and Global grids.

Departmental Grids are deployed to solve problems for a particular group of peo-

ple within an organization. The resources are not shared by other groups within

the organization.

Enterprise Grids have resources spread across an organization and provides ser-

vice to all the groups and users within the organization. The resources in an

Enterprise grid span multiple departments or projects. Enterprise grids enable

2.2 Types of Grid 10

multiple projects or departments to share resources within an enterprise or

campus, and don't necessarily have to address the security and global policy

management issues associated with global grids [23].

Global Grids are organizations over the public Internet. They are established to

facilitate business or collaboration between ihe organizations. The services

could be purchased in part or in whole from service providers [5]. Global grids

are collections of enterprise and cluster grids as well as other geographically

distributed resources, all of which have agreed upon global usage policies and

protocols to enable resource sharing [23].

This thesis is implemented on Grid Research Centre cluster (grc cluster) in Grid

Research Centre at the University of Calgary. In terms of size, GRC Cluster can be

classified as a Departmental grid. It serves as a testbed for developing and testing

grid computing and High Performance Computing (HPC) applications.

Grid computing can be used in a variety of ways to address various kinds of

application requirements. Often, grids are categorized by the type of solutions they

best address [59]. There are no hard boundaries between these grid types and often

a grid may be a combination of two or more other types of grid [68]. Using this

criterion, the three primary types of grids are described as follows.

2.2.1 Compute Grid

A compute grid environment consists of one or more hardware- and software-enabled

environments that provide dependable, consistent, pervasive, and inexpensive access

to high end computational capabilities. A compute grid sets aside resources specif-

ically for computing power. It denotes a hardware and software infrastructure that

2.2 Types of Grid 11

enables coordinated resource sharing within dynamic organizations consisting of in-

dividuals, institutions, and resources [83].

In [5], compute grids are classified further by the type of computational hardware

used in the grid computing environment. The different types of computational grids

include Desktop grids, Server grids, and High-Performance grids. The three primary

types of compute grids are described in the next sections.

2.2.1.1 Desktop Grids

The ad hoc collections of work-based and home-based PCs from around the world

are an example of PC-based distributed computing and serve as the forerunners of

today's Desktop grids [67]. The aggregation of PC processing power became known

in the last few years, through one of the many "cause computing" projects.

A Desktop grid is also known as a Scavenging grid in [66]. The machines in

Desktop grids are scavenged for available CPU cycles and other resources. Owners

of the desktop machines are usually given control over when their resources are

available to participate in a grid.

The examples of a Desktop grid include SETlOhome [94] - a scientific experiment

that uses Internet-connected computers in Search for Extraterrestrial Intelligence

(SETI), Greater Internet Mersenne Prime Search (GIMPS) [45] - searching for ex-

tremely large prime numbers, and ClimatePrediction. net [16] - for predicting climate

on a global scale in the 21st century.

2.2.1.2 Server Grids

In some organizations, special servers are bought solely for the purpose of creating

an internal "utility grid" with resources made available to various departments. No

desktops are included in server grids. These servers usually run some flavor of the

2.2 Types of Grid 12

UNIX/Linux operating system [5].

2.2.1.3 Cluster Grids

Cluster grid is a term used by Sun Microsystems and consists of one or more systems

working together to provide a single point of access to users [73]. In [86], Gregory

Pfister defines a cluster as "a type of parallel or distributed system that consists

of a collection of interconnected whole computers, and is used as a single, unified

computing resource." A cluster grid is a superset of other technical compute re-

sources such as Linux clusters, throughput clusters, midrange compute servers, and

high-end shared-memory systems. Therefore, the cluster grid can operate within a

heterogeneous environment with mixed server types, mixed operating environments,

and mixed workloads [23].

2.2.2 Data Grids

A data grid is responsible for housing and providing access to data across multiple

organizations. Users are not concerned with where data is located as long as they

have access to the data. For example, two universities doing life science research

may each have their own unique data. A data grid would allow them to share their

data, manage the data, and manage security issues such as who has access to what

data [68].

Data grids provide transparent, secure, and high-performance access to federated

data sets across administrative domains and organizations. Users (both people and

applications) may be unaware that they are using a data grid [6]. The remote data

may be flat-file data, relational data, or streaming data [50].

2.3 Grid Architecture 13

2.2.3 Utility Grids

In [5], utility grids are defined as commercial compute resources that are maintained

and managed by a service provider. Customers that have the need to augment

their existing, internal computational resources may purchase "cycles" from a utility

grid. Customers may choose to use utility grids for business continuity and disaster

recovery purposes in addition to overflow applications.

This thesis work is carried out on a cluster grid known as grc cluster. It provides

resources for developing and running scientific computing applications. It has 11

nodes connected together to form a powerful computer.

2.3 Grid Architecture

A computing grid architecture identifies fundamental system components, specifies

the purpose and function of these components, and indicates how these components

interact with one another. Ian Foster et al. proposed grid architecture in [58]; they

defined grid architecture from the perspective that sharing relationships need to

be established among potential participants, for an organization to function effec-

tively. The grid architecture is a protocol architecture with protocols defining the

basic mechanisms by which Virtual Organization (VO) users and resources negoti-

ate, establish, manage, and exploit sharing relationships. The standard-based open

architecture facilitates extensibility, interoperability, portability, and code sharing.

The standard protocols also make it easy to define standard services that provide

enhanced capabilities.

Interoperability is key in order to ensure that sharing relationships can be initi-

ated among arbitrary parties, accommodating new participants dynamically, across

2.3 Grid Architecture 14

different platforms, languages, and programming environments. Mechanisms are

implemented so as to have interoperability across organizational boundaries, opera-

tional policies, and resource types. The grid architecture components are organized

into layers as shown in Figure 2.1.

2.3.1 Grid Architecture Description

The description of grid architecture does not provide a complete list of all required

protocols (and services, APIs, and SDKs) but rather to identify requirements for

general classes of components [58]. The principles of the "hourglass model" [19] are

used in specifying the various layers of the grid architecture. In the proposed archi-

tecture, the neck of the hourglass consists of Resource and Connectivity protocols,

which facilitate the sharing of individual resources. The Resource and Connectivity

protocols are designed so that they can be implemented on top of a diverse range

of resource types defined at the Fabric layer. They can also be used to construct

a wide range of global services and application-specific behaviours at the Collective

layer. The Collective layer involves the coordinated ("collective") use of multiple

resources.

The grid architecture shown in Figure 2.1 has been closely aligned with the

Internet protocol architecture as defined by the Open Systems Interconnect (OSI)

Internet stack [5]. Protocols, services, and APIs occur at each level of the grid

architecture model. The components within each layer share common characteristics

but can build on capabilities and behaviours provided by any lower layer component.

The grid architecture components are discussed in subsequent sections.

2.3 Grid Architecture 15

Gr
id
 P
ro

to
co

l
Ar
ch
it
ec
tu
re

Application

Collective

Resource

Connectivity

Fabric

Application

Transport

Internet

Link

In
te
rn
et
 P
ro

to
co

l
Ar
ch
it
ec
tu
re

Figure 2.1: The layered Grid Architecture and its relationship to the Internet Pro-
tocol (Source [58])

2.3.1.1 Fabric Layer

The grid architecture Fabric layer includes the protocols and interfaces that provide

access to the resources that are being shared. Examples of shared resources are com-

putational resources, storage systems, code repositories, catalogs, network resources,

and sensors.

2.3.1.2 Connectivity Layer

The connectivity layer defines core communication and authentication protocols re-

quired for grid-specific network transactions. The communication protocols enable

the exchange of data between Fabric layer resources.

2.3 Grid Architecture 16

2.3.1.3 Resource Layer

The Resource layer is built on the communication and authentication protocols of the

Connectivity layer. This layer defines protocols for the secure negotiation, initiation,

monitoring, control, accounting, and payment of sharing operations, on individual

local resources. The protocols defined at this layer include

Grid Resource Allocation Management (GRAM) - used for remote alloca-

tion, reservation, monitoring, and control of computational resources.

Grid File Transfer Protocol (GridFTP) - for high performance data access and

transport.

Grid Resource Information Service (GRIS) - grants access to structure and

state information.

2.3.1.4 Collective Layer

In contrast to the Resource layer that focus on interactions with a single resource,

the Collective layer contains protocols and services that are global in nature, and

capture interactions across collections of resources.

2.3.1.5 Applications Layer

This layer defines protocols and services that are targeted toward a specific appli-

cation or a class of applications. This layer comprises the user applications that

operate within a VO environment.

The Wrapper method described in Chapter 4 of this thesis belongs to the Resource

layer of the grid architecture and falls in the Application layer of the Internet Protocol

architecture. It is important to know the position of the Wrapper method in the grid

architecture, for the purpose of interoperability.

2.4 Globus Toolkit 17

2.4 Globus Toolkit

Globus [42] is a community of users and developers who collaborate on the use and

development of open source software, and associated documentation, for distributed

computing and resource federation. The Globus Toolkit [35] is a middleware available

under an open-source license from the Globus Alliance consortium [44].

The Globus Toolkit is a fundamental enabling technology for the "Grid," letting

people share computing power, databases, and other tools securely online across

corporate, institutional, and geographic boundaries without sacrificing local auton-

omy. The toolkit includes software services and libraries for security, information

infrastructure, file management, resource management, data management, commu-

nication, fault detection, and portability [41]. The toolkit is a central part of science

and engineering grid computing projects, and an underlying layer on which leading

IT companies are building significant commercial grid products.

The Globus Toolkit was conceived to remove obstacles that prevent seamless

collaboration. Its core services, interfaces, and protocols allow users to access remote

resources as if they were located within their own machine room while simultaneously

preserving local control over who can use resources and when they can access the

resources [37].

The Globus Toolkit has evolved rapidly from version 1.0 in 1998 to the 2.0 release

in 2002 and now the latest version 4.0. The latest version of Globus Toolkit known as

GT4 is based on new open-standard grid services. The Globus Toolkit is the de facto

standard for open source grid computing infrastructure. Globus Toolkit provides a

variety of components and capabilities, including the following:

. A set of service implementations focused on infrastructure management.

2.5 Grid components 18

• Tools for building new Web services, in Java, C, and Python.

• A powerful standards-based security infrastructure.

• Client APIs (in different languages) and command line programs for accessing

various services and capabilities.

• Detailed documentation on the various Globus Toolkit components including

their interfaces, and how they can be used to build applications.

The description of Globus Toolkit in this section focuses on the Web services-

based GT4. GT4 makes extensive use of Web Services mechanisms to define its

interfaces and structure its components. Web services provide flexible, extensible,

and widely adopted XML-based mechanisms for describing, discovering, and invoking

network services; in addition, its document-oriented protocols are well suited to the

loosely coupled interactions preferable for robust distributed systems [34].

Since the Globus toolkit is the de facto standard for grid computing, it is impor-

tant to have a basic overview of Globus toolkit. How jobs are monitored in a grid

computing environment with Globus middleware using Globus Toolkit is described

in Section 4.8 of Chapter 4.

2.5 Grid components

This section highlights the key components that make up a grid environment. The

most common description of a computing grid includes an analogy to a power grid.

When an electrical power consumer plugs an electrical appliance into a receptacle,

he/she expects power to be available at the correct voltage. The user does not know

the actual source of the power. The local utility company provides the interface

2.5 Grid components 19

into a complex network of generators and power sources and provides consumers

with the correct power based on their energy demands. Rather than each house

or neighbourhood having to obtain and maintain its own generator of electricity,

the power grid infrastructure provides a virtual generator. The generator is highly

reliable and adapts to the power needs of the consumers based on their demand [66].

The vision of grid computing is similar in the sense that once the proper kind

of infrastructure is in place, a user will have access to the computing infrastructure

that is reliable and adaptable to the user's needs. A computing grid consist of many

diverse computing resources, but these individual resources will not be visible to the

user, just as the consumer of electric power is unaware of how his electricity is being

generated. Depending on the design of a grid and its expected use, some of the

components may or may not be required, and in some cases they may be combined

to form a hybrid component [65]. Figure 2.2 shows some of the key components that

make up a typical grid and the components are discussed in the subsequent sections.

2.5.1 Security

In any grid computing environment there must be mechanisms to provide security,

including authentication, authorization, and data encryption. The computing re-

sources in grid computing environments are hosted in different security domains and

heterogeneous platforms. Hence, the grid middleware must address local security in-

tegration, secure identity mapping, secure access/authentication, secure federation,

and trust management [68]. The Grid Security Infrastructure (GSI) component of

the Globus Toolkit provides robust security mechanisms. It provides a single sign-on

mechanism so that once a user is authenticated, a proxy certificate is created and

used to reduce the number of times a user must enter his/her pass phrase when

2.5 Grid components 20

Portal

Os'

Broker

Scheduler

N
GASS Data Mgmt

GRAM Job Mgmt 4

- —

MDS
Directory Service

Execute job
get statusfresults

Figure 2.2: Key Grid Components

performing mutual authentication within a grid computing environment [66].

2.5.2 Resource Discovery

After a user is authenticated, there is need to identify the available and appropriate

resources to utilize within a grid for the user's job. This task is handled by Monitor-

ing and Discovery Service (MDS). The Globus Resource Allocation and Management

(GRAM) processes the requests for resources for remote application execution, allo-

cates the required resources, and manages the active jobs. It also returns updated

information regarding the capabilities and availability of the computing resources to

the MDS [101].

A standardized GRAM interface gives access to a variety of local resource man-

agement tools that a site might have in place, such as Load Sharing Facility (LSF),

Network Queuing Environment (NQE), LoadLeveler, Portable Batch System (PBS),

2.5 Grid components 21

and Condor. MDS provides tools to enable the discovery and querying of system

components [37]. The service provides information about the available resources

within a grid and their status.

2.5.3 Scheduler

When the available and appropriate resources have been identified, the next step is

to schedule the individual jobs to run on the resources. This step is handled by the

schedulers. Schedulers are types of applications responsible for the management of

jobs, such as allocating resources needed for any specific job, partitioning of jobs

to schedule parallel execution of tasks, data management, event correlation, and

service-level management capabilities [68].

There could be different levels of schedulers within a grid environment. For exam-

ple a cluster within a grid environment could be represented as a single resource. The

cluster may have its own scheduler to help manage the nodes it contains. A higher

level scheduler (known as meta-scheduler) might be used within a grid environment

to schedule work to be done on a particular cluster, while the cluster's scheduler

would handle the actual scheduling of work on the cluster's individual nodes.

2.5.4 Data Management

Data in a grid computing environment may be an input into a resource and/or

the results from the resource after a specific task is completed. The data needed

by a job may be close to or far from the computation site where it is to be used.

Data movement in any grid computing environment requires secure and reliable data

transfers, between different computing sites.

The Globus Toolkit contains data management components that provide such

2.5 Grid components 22

services. Some of the data management components are Grid File ' ftansfer Proto-

col (GridFTP), Reliable File 'ftansfer (RFT), and Replica Location Service (RLS).

GridFTP is built on top of the standard FTP protocol, but optimized for high-

bandwidth wide-area networks. It utilizes the GSI for user authentication and au-

thorization. Hence, once a user has an authenticated proxy certificate, he can use the

GridFTP facility to move files without having to go through a login process to every

node involved. This facility provides third-party file transfer so that one node can

initiate a file transfer between two other computing sites [66]. The standard FTP

protocol has been extended while preserving interoperability with existing servers

to develop GridFTP. The extensions provide for parallel data channels, partial files,

automatic and manual TOP buffer size settings, progress monitoring, and extended

restart functionality [5].

The RFT service provides the reliable management of multiple GridFTP trans-

fers. The RLS is a scalable system for maintaining and providing access to informa-

tion about the location of replicated files and datasets.

2.5.5 Job and Resource Management

The large number and the heterogeneous nature of grid computing resources makes

resource management a great challenge in grid computing environments. Resource

management scenarios often include resource discovery, resource inventories, fault

isolation, resource provisioning, resource monitoring, a variety of autonomic capa-

bilities, and service-level management activities [68].

The key grid components used in the implementation of the Wrapper method are

resource manager and scheduler. Portable Batch System (PBS) is used for job and

resource management; it is chosen over other batch systems because it is the most

2.6 Summary 23

popular of all batch systems. And MAUI [18] cluster scheduler is used because it is

an open source scheduler for clusters and supercomputers. The experimental testbed

is a cluster of computing nodes, so PBS and MAUI are suitable for such environment.

2.6 Summary

This chapter presented a brief overview of grid computing and grid computing tech-

nologies relevant to this thesis. Grid computing environments were grouped into

Departmental, Enterprise, and Global grids considering their structure or size. The

types of grids were also categorized into Compute, Data, and Utility grids based on

the type of solutions they provide. The Compute grid category is further divided

into Desktop, Server, and Cluster grids based on the type of computational hardware

deployed in the grid environment.

The grid architecture that identifies the key fundamental system components

of a computing grid was described. It specifies the purpose and function of the

components and describes how these components interact with one another. A brief

overview of grid computing middleware - The Globus toolkit is presented. The key

grid components that make up a grid computing environment were also described in

this chapter.

Chapter 3

Related Work

This chapter presents the related work to this thesis. The background information

on Grid Monitoring Architecture (GMA) and its relevance to this work is discussed

in Section 3.1. A number of existing grid monitoring tools including Hawkeye, Net-

logger, Network Weather Service, Ganglia, Autopilot, and Monalisa are discussed in

Section 3.2. Section 3.3 provides some existing and on-going research related to this

work. Finally, Section 3.4 provides a brief summary of this chapter.

3.1 Grid Monitoring Architecture (GMA)

The Grid Monitoring Architecture (GMA) is developed by Grid Monitoring Archi-

tecture Working Group (GMA-WG) [47] of the Global Grid Forum (GGF). The

GMA-WG was focused on producing a high-level architecture statement of the com-

ponents and interfaces needed to promote interoperability between heterogeneous

monitoring systems in grid computing environments [47].

The GMA is an abstract description of the components needed to build a scalable

monitoring system. The goal of the architecture is to provide a minimal specification

that will support required functionality and allow interoperability. A grid monitoring

system is different from a general monitoring system in the sense that it must be

scalable across wide-area networks and encompass a large number of heterogeneous

resources.

24

3.1 Grid' Monitoring Architecture (GMA) 25

3.1.1 GMA Requirements for Grid Monitoring Systems

With the potential for thousands of resources at geographically distant sites and tens-

of-thousands of simultaneous grid users, it is critical that data collection and distri-

bution mechanisms scale in grid monitoring systems [12]. Performance-monitoring

information produced by grid monitoring systems has these properties; fixed, often

short lifetime of utility, frequent updates, and stochastic (i.e., it is frequently impos-

sible to characterize the performance of a resource or an application component by

using a single value).

Since grid monitoring systems are expected to collect and distribute performance

information, they must meet the following requirements:

Low latency: The performance data must be transmitted from where it is measured

to where it is needed with low latency.

High data rate: The monitoring system should be able to handle performance data

that is being generated at high data rates.

Minimal measurement overhead: The measurement must not be intrusive if

measurements are taken often.

Secure: The owners of the monitoring sensors may place access restrictions on the

data gathered by the system. In addition, the monitoring system must en-

sure its own integrity and preserve the access control policies imposed by the

ultimate owners of the data.

Scalable: Because there are potentially thousands of resources, services, and ap-

plications to monitor, and thousands of potential entities that would like to

Producer

3.1 Grid Monitoring Architecture (GMA) 26

event

-publication
information

event
••- publication

information

Directory

Service

Figure 3.1: Grid Monitoring Architecture Components

receive the monitoring information, it is important that a performance moni-

toring system provide scalable measurement, transmission of information, and

security.

In order to meet these requirements, a monitoring system must have control of

the overhead and latency associated with gathering and delivering the data.

3.1.2 Terminology and Architecture

In the GMA, the basic unit of monitoring is called an event. An event is a structure

containing one or more items of data that relate to one or more resources [12].

The data may relate to one or more resources such as memory or network usage or

application-specific information [56].

The Grid Monitoring Architecture shown in Figure 3.1 consists of the following

components:

3.1 Grid Monitoring Architecture (GMA) 27

Directory Service: Publishes what performance data are available and which pro-

ducer to contact in order to request it.

Producer Makes the performance data available (i.e., performance event source).

Consumer: Requests or accepts performance data (i.e., performance event sink).

The GMA components are discussed in detail in the following sections.

3.1.3 Directory Service Interaction

Producers and consumers publish their existence in directory service entries. Con-

sumers can use the directory service to discover producers of interest, and producers

can use the directory service to discover consumers that are of interest to them.

A producer or a consumer may initiate the interaction with a discovered peer.

In either case, communication of control messages and transfer of performance data

occur directly between each consumer/producer pair without further involvement of

the directory service [12].

3.1.4 Producer/ Consumer Interactions

The GMA architecture supports three interactions for transferring data between

producers and consumers: publish/subscribe, query/response, and notification. The

GMA publish/subscribe interaction has three stages. In the first stage, the initia-

tor of the interaction (i.e., a producer or consumer) contacts the "server" (i.e., the

corresponding consumer or producer respectively). The purpose is to indicate inter-

est in some set of events or data. The additional parameters needed to control the

data transfer are also negotiated in this stage. These may include where to send the

events, how to encode or encrypt the events, how often to send the events, buffer

3.1 Grid Monitoring Architecture (GMA) 28

sizes, and timeouts. At this stage both the producer and consumer assumes a sub-

scription state. In the next stage, the producer (i.e., the server for this interaction)

sends one or more events to the consumer. In the third and final stage, either the

producer or consumer terminates the subscription, possibly with additional control

messages.

The GMA query/response interaction has two stages and the initiator must be

a consumer. The first stage of this interaction is similar to the first stage of pub-

lish/subscribe interaction. The only difference is that the producer transfers all the

performance events to the consumer in a single response after the event transfer.

The GMA notification interaction is a one-stage interaction, and the initiator

must be a producer. In this interaction, the producer transfers all the performance

events to a consumer in a single notification.

3.1.5 Sources of Event Data

The data used to construct events can be gathered from various sources. The sources

could be hardware or software sensors that sample performance metrics in real time.

Another source of event data is a database with a query interface, which can provide

historical data. Also, an entire monitoring system such as the Network Weather

Service [92] can serve as a source of events. Additionally, application timings from

tools such as Autopilot [76] or NetLogger [25] can provide events related to a specific

application.

Figure 3.2 shows one possible configuration of sources of event data. The GMA

is flexible, hence it allows the performance system developers to choose any config-

uration that best suits their scalability and reliability needs. More information on

Grid Monitoring Architecture (GMA) can be found in [12].

Producer

3.2 Grid Monitoring Tools 29

event
-publication

information

sensor application

event
publication
information

Directory
Service

monitoring
system database

Figure 3.2: Sources of Event Data

The key components described in this thesis work are the Monitoring tool (i.e.,

the producer which makes the monitoring data available) and the Wrapper tool (i.e.,

the consumer which executes the monitoring tool).

3.2 Grid Monitoring Tools

One of the challenges in grid computing is how the quality or performance of grid in-

frastructure and grid applications can be measured. There is no widely accepted and

deployed technique that can solve all aspects of the problem. In order to measure the

performance of computing grids, numerous approaches to performance monitoring

and evaluation yield different tools. Some of the tools are fully grid enabled, some

are called grid monitoring tools but do not provide monitoring information related

to jobs, some try to give a whole solution, and some just focus on solving a particular

3.2 Grid Monitoring Tools 30

monitoring problem [76].

Monitoring systems, in the broadest sense, are tools that report some set of

measurements to higher-level services. All monitoring systems have three major

components: information collectors (sensors or probes), support services (collection,

archiving, management), and interfaces (GUIs or APIs) [64]. There are tools for

monitoring performance in grid computing environments; the following section de-

scribes some selected grid monitoring tools.

3.2.1 Hawkeye

Hawkeye [22] is a monitoring and management tool for clusters of computers [93]. It

utilizes the technologies already present in Condor [28]. It provides rich mechanisms

for collecting, storing, and using information about computers. ClassAds (Classified

Advertisements) [21] are used for describing jobs, workstations, and other resources.

They are exchanged by Condor processes to schedule jobs and logged to files for

statistical and debugging purposes [27].

Hawkeye is based on Condor, hence the configuration of Hawkeye is extremely

flexible. Hawkeye works by configuring Condor such that it periodically executes

specified program(s) (typically scripts). The program produces output in the form

of ClassAd attribute/value pairs, which are then added (using defined naming con-

ventions) to the machine ClassAd. A Hawkeye system can be used to monitor various

attributes of a collection of systems. The monitoring mechanism may also be used

to further the management of systems but can not be used to monitor jobs in a grid

computing environment.

3.2 Grid Monitoring Tools 31

3.2.2 Netlogger

The Network Application Logger Toolkit (NetLogger) monitors, under realistic oper-

ating conditions, the behaviour of all the elements of the application-to-application

communication path in order to determine exactly what is happening within a com-

plex system [25]. The NetLogger Toolkit has the following four features: NetLogger

message format, NetLogger client library, NetLogger visualization tools, and Net-

Logger host and network monitoring tools. Also, NetLogger uses an additional com-

ponent for synchronizing the clocks of all hosts in the distributed system. NTP

(Network Time Protocol) [26] or a GPS host clock is used in the synchronization.

NetLogger also includes wrappers for several system monitoring utilities, such as

vmstat, iostat, and netstat [11] but it does not monitor jobs on a computing system.

3.2.3 Network Weather Service

Network Weather Service (NWS) is a distributed, generalized system for producing

short-term performance forecasts based on historical performance measurements.

The system dynamically characterizes and forecasts the performance deliverable at

the application level from a set of network and computational resources [92]. NWS

operates a distributed set of performance sensors (like CPU monitors and network

monitors) from which it gathers readings of instantaneous conditions and then uses

numerical models (mean-based, median based, and autoregressive methods) to gen-

erate forecasts of what the conditions will be for a given time frame [110].

The NWS uses four component processes:

Persistent State process (memory): stores and retrieves measurements from per-

sistent storage.

3.2 Grid Monitoring Tools 32

Name Server process: used in binding process and data names with low-level

contact information for example, TCP/IP port number.

Sensor process: gathers performance measurements from a specified resource.

Forecaster process: produces a predicted value of deliverable performance during

a specified time frame for a specified resource.

In spite the fact that NWS is a good monitoring tool, it does not provide any

useful information about jobs on a computer.

3.2.4 Ganglia

Ganglia [31] is a scalable distributed monitoring system for high-performance com-

puting systems such as clusters. Ganglia has a hierarchical design targeted at feder-

ations of clusters. It relies on a multicast-based listen/announce protocol to monitor

the state within clusters and uses a tree of point-to-point connections among repre-

sentative cluster nodes to federate clusters and aggregate their states [78]. In Ganglia,

data is represented in XML using XDR (External Data Representation Standard)

[98].

Ganglia is comprised of two components, the Gmon (i.e., local-area monitoring

system) and the Gmeta (i.e., wide-area monitoring system). Gmeta processes and

presents the monitoring information gathered from one or more clusters running the

Gmon local-area monitor. Ganglia gives monitoring information about computing

systems but does not provide information that can help users to understand the

behaviour of their jobs.

3.2 Grid Monitoring Tools 33

3.2.5 Autopilot

Autopilot [90] is a distributed performance monitoring, resource control, and tuning

system that is based on the Pablo performance toolkit [84]. Autopilot is comple-

mented by Virtue [95] - an environment that accepts real-time data from Autopilot

and allows users to change software behaviour and resource policies [110]. Autopilot

and Virtue allow application developers and performance analyst to capture, analyze,

and steer distributed applications [104].

Autopilot is used in Grid Application Development Software (GrADS) project

[30] to monitor performance contracts via application level autopilot sensors. A

real-time monitor compares an application progress against the requirements of its

contract and triggers corrective actions in case of violations.

The Autopilot library contains distributed performance sensors, software actu-

ators, behavioural classification tools, Self-Defining Data Format (SDDF), decision

procedures, distributed name servers, and sensor and activator clients [110]. Autopi-

lot provides performance daemons to capture network and operating system data

on distributed hosts but does not capture information about the jobs on distributed

hosts in a grid computing environment.

3.2.6 Monalisa

MonaLISA (Monitoring Agents in A Large Integrated Services Architecture) system

provides a distributed service for monitoring, control, and global optimization of

complex systems. MonALISA is based on a scalable Dynamic Distributed Services

Architecture (DDSA) implemented using Java/JINI and Web Services technologies.

MonALISA is an ensemble of autonomous multi-threaded, self-describing agent-

3.3 Grid Monitoring Systems 34

based subsystems which are registered as dynamic services. The services are able to

collaborate and cooperate in performing a wide range of monitoring tasks in large

scale distributed applications; they can be discovered and used by other services or

clients that require such information. MonALISA is designed to easily integrate ex-

isting monitoring tools and procedures, and to provide this information in a dynamic

and self-describing way to any other services or clients [54].

The only information that MonALISA provides about jobs on a computer is the

number of queued and running jobs. It does not provide additional information on

the behaviour of jobs on the computer.

3.3 Grid Monitoring Systems

This section describes some of the existing grid monitoring systems with emphasis

on job monitoring.

3.3.1 Monitoring Jobs Using Mobile Agents

The proposed systems in [10, 81] use agent based technology to do monitoring in

grid environments. A mobile agent is a software module that is able to migrate

among the hosts of a network, in order to carry on a specific task [70]. The agent

is not linked to the system where it starts its execution. After being created in an

execution environment, an agent can carry its state and code to another execution

environment in another host of the network, where the execution can be restarted

or continued [81].

In [10], a collection of software agents [39] is used as an event management system

designed for grid environments. An automated agent-based architecture called Java

3.3 Grid Monitoring Systems 35

Agents for Monitoring and Management (JAMM) is also developed in [10]. The

implementation of the agents is based on Java and Java Remote Method Invoca-

tion (RMI). The agents can be used to launch a wide range of system and network

monitoring tools, and then extract, summarize, and publish the results. The JAMM

system is designed to facilitate the execution of monitoring programs, such as netstat,

iostat, and vmstat, by triggering or adapting their execution based on actual client

usage. JAMM is often used to collect monitoring events for use with the NetLogger

Toolkit. In JAMM architecture, monitoring data is collected at both the client and

server host, and at all network routers between them. Then, all event data is sent

to a real-time monitor consumer for real-time visualization and NetLogger analysis.

The server and router data is also sent to the archive.

In a mobile agent approach, the agent moves close to the data to be processed,

thus eliminating the network traffic due to messages (excluding the initial migration),

and allowing the execution of operations dynamically defined by the user [81]. In

[81], it is assumed that the mobility of some code modules can contribute to the

development of a more effective and flexible architecture. The advantages of using a

mobile agent includes reduction of the network load, filtering of monitoring data at

several abstraction levels, asynchronous and independent execution of tasks defined

by a user, integration of heterogeneous resources monitoring tools, and on-demand

enabling of the required services. The mobile agent system known as MAP (i.e.,

Mobile Agent Platform) [3] was developed at the University of Catania; it was used

in [81].

The problem with the agent based approach is that it is assumed that the mobile

agent can migrate to. any system or cluster and run there. This is not always the

3.3 Grid Monitoring Systems 36

case in grid environments where the resources in a grid are owned by different orga-

nizations. In a production grid it may not be possible to assign a monitoring task

to an agent because a user may not have the permission to run programs on some

clusters or machines.

The data collected through JAMM does not give any information about jobs and

their behaviour in a grid computing environment.

3.3.2 Monitoring Jobs Using Globus Toolkit

The core services, interfaces, and protocols of Globus Toolkit allow users to access

remote resources as if these resources were located within the users own machine

room, while simultaneously preserving local control over who can access resources

and when [37].

Kejing et al. [52] presents the architecture and implementation of a Grid Monitor-

ing System based on Globus Toolkit, although the architecture and implementation

has important practical value for the monitoring of the China Education and Re-

search Grid (CERG). The start-up of the monitor and collection of data from remote

sites are more complex and difficult than in a single cluster [10].

Globus Toolkit version 3.0, which includes a set of core services such as security,

communication, managing distributed applications, and information, is responsible

for the security problem brought by spanning clusters, aggregating host information

from clusters and indexing host information for quick querying [52]. To get the

aggregate information, one Monitoring Service runs on each organization or resource

site. A large organization that consists of multiple large sites will run its own Index

Service that will index the various resources available at that site.

Since the work is based on Globus Toolkit version 3.0, then there may be need

3.3 Grid Monitoring Systems 37

to modify a grid monitoring service whenever a newer version of Globus toolkit is

released. Also, the approach does not discuss how jobs can be monitored in grid

environments using the Globus toolkit.

Globus only provide information on the status of a job - PENDING, ACTIVE,

DONE, or FAILED. It does not provide information that can help users to under-

stand the behaviour of their jobs. For example, the reason(s) their job failed or is in

"pending" state.

3.3.3 Job Monitoring on Legion

Legion [4] is a middleware; it connects networks, workstations, supercomputers, and

other computing resources into a system that can encompass different architectures,

operating systems, and physical locations. A small set of attributes about jobs

that are of interest to users are presented in [2]. The attributes discussed include

status of a job, name of the machine on which a job is running, working directory

of a job, list of files in the working directory of a job, and permissions, timestamp,

and size of any file in the working directory of a job. Some grid systems already

provide mechanisms for retrieving some of these attributes, whereas others do not.

In [2], Legion was used as the implementation platform for demonstrating how job

attributes could be retrieved.

Each system and application component in Legion is an object. The running

jobs (or instances of programs) are known as objects in Legion. Legion has tools for

starting a legion r'unnable object on some machine and tools for finding out the status

of a running job. The work in [2] uses the inbuilt tools in Legion to monitor the status

of running jobs, but only a few computing grids run Legion operating system. Most

of the existing computing grids are running Globus Toolkit middleware, therefore

3.3 Grid Monitoring Systems 38

Legion middleware is not common.

Although, Legion provides the status of jobs on a computer, it does not provide

information that could help users to understand the behaviour of their jobs on the

computer.

3.3.4 Job Monitoring in Interactive Grid Analysis Environment

The design of a Job Monitoring Service is presented in [1]. The Job Monitoring Ser-

vice is a web service that will provide interactive remote job monitoring by allowing

users to access different attributes of a job once it has been submitted to the inter-

active Grid Analysis Environment (GAE) [61]. The set of interacting web services

in interactive GAE include Data Collection service, Monitoring service, Execution

service, and Replica Management service.

The GAE focuses on the construction of an infrastructure that allows scientists to

interactively perform analysis and submit small jobs in quick succession, depending

on the output of previous jobs, instead of submitting one large batch job [1]. A job

monitoring service which is designed for use in a Grid Analysis Environment is being

developed. The Job Monitoring Service will continuously monitor the jobs that have

been submitted and whenever the state of a job changes the Job Monitoring Service

will update the repository and MonALISA. The Job Monitoring Service provides an

API that allow the clients to access the job monitoring information of their jobs.

One of the disadvantages of this method is that it cannot be used elsewhere except

in GAE.

The job monitoring service developed in GAE uses an API to provide job monitor-

ing information such as job status, elapsed time, estimated run time, queue position,

completion time, and CPU time used; but it does not provide information that could

3.3 Grid Monitoring Systems 39

help users to understand the behaviour of their jobs on a computer.

3.3.5 Job Monitoring in GridLab

A flexible and efficient monitoring system was designed and implemented as part

of GridLab project [49]. The architecture of the monitoring system is based on the

GMA and exploits its distributed design, compound producer-consumer entities, and

generality. This monitoring system also support advanced functions like actuators

and guaranteed data delivery. Actuators are analogous to sensors, but instead of

taking measurements of metrics, they implement controls that represent interactions

with either the monitored entities or the monitoring system itself.

The monitoring system is not responsible for the permanent storage of monitoring

data; hence, if a consumer needs to preserve monitoring data, the monitoring system

must either save the data itself or supply a contact point for a storage service and

appropriate credentials for authentication. The monitoring system consists of a Local

Monitor (LM) service running on each node and collecting information processes (P)

running on the node. The collected information is sent to, a Main Monitor (MM)

service. The MM is a central access point for local users (i.e., site administrators

and non-grid users). Grid users can access information via the Monitoring Service

(MS) which is also a client of MM [13]. The Local Resource Management System

(LRMS) controls jobs running on hosts belonging to a grid resource. It allocates

hosts to jobs, starts and stops jobs on user request, and possibly restart jobs in case

of an error. This approach requires processes to register and identify themselves to

the monitoring system at startup.

The monitoring system relies on the application to honestly register all its pro-

cesses; hence, a faulty application would prevent correct monitoring because it will

3.3 Grid Monitoring Systems 40

generate incorrect data [13]. The proposed solution is to submit jobs via the jobman-

ager (e.g., Globus GRAM [69]). The problem with this system is that it is assumed

that Globus is running on all the computers in a grid environment but this may not

be true. In addition, only few users do submit their jobs via Globus; many users

still prefer to submit their jobs directly to the batch scheduler. Therefore, jobs not

submitted via Globus cannot be monitored because the monitoring system relies on

Globus GRAM.

The monitoring system in GridLab collect information about applications but

this information is not useful in understanding the behaviour of jobs on a computer.

3.3.6 Monitoring Grid Applications

Grid applications access distributed and often shared computing resources. One

consequence of this resource sharing is that measured application performance can

vary widely in unexpected ways [29]. Determining the causes of poor performance

due to either anomalous application behaviour or contention for shared resource

use, and adapting to changing circumstances are critical to creation of robust grid

applications.

An infrastructure for grid application contract development and monitoring is

described in [29]. This infrastructure is based on the Autopilot toolkit, and provides

flexible and scalable tools to assess both application and system behaviour. Perfor-

mance contracts and real-time adaptive control were the mechanisms used to realize

soft performance guarantees in grid environments. Performance contracts formalize

the relationship between application performance needs and resource capabilities.

During execution, contract monitors use performance data to verify that expecta-

tions are met. When the contracted specifications are not satisfied, the system can

3.3 Grid Monitoring Systems 41

choose to either adapt the application to available resources or reschedule the appli-

cation on a new set of resources that can satisfy the original contract specifications.

The application monitoring infrastructure described in [9] is developed within the

CrossGrid project [24]. The monitoring environment is composed of a distributed

monitoring system, the OCM-G [8], and a performance analysis tool, G-PM (Grid-

oriented Performance Measurement). The purpose of the environment is to collect

data about running applications and enable the user to observe their perform&nce

in on-line mode, so the user can dynamically change measurements to support and

solve performance problems [9].

SCALEA-G is implemented based on the Open Grid Services Architecture (OGSA).

It provides an infrastructure for conducting online monitoring and performance anal-

ysis of a variety of grid services including computational and network resources, and

grid applications [53]. Source code and dynamic instrumentation are implemented

to perform profiling and monitoring in SCALEA-G.

The work in [79] combines GRM [111] application monitoring tool, and the Mer-

cury resource and job monitoring infrastructure to provide an on-line grid perfor-

mance monitoring tool-set for monitoring message-passing parallel applications exe-

cuted on a grid.

Grid monitoring systems discussed in this section focus on monitoring grid appli-

cations for tuning and debugging. They do not have the capability to monitor jobs on

a computer. Also, they do not provide information that could help in understanding

the behaviour of jobs.

3.3 Grid Monitoring Systems 42

3.3.7 Monitoring using Asynchronous Middleware - DREAM

DREAM (Dynamic REflective Asynchronous Middleware) is introduced in [102].

DREAM is a Java component-based message oriented middleware. Asynchronous

communications are used to achieve the scalability and flexibility objectives, whereas

the reflective component technology provides the complementary configurability and

adaptability features. DREAM provides a JMS (Java Message Service) [99] imple-

mentation, thus making monitored data accessible to J2EE application servers. The

monitoring service is integrated with the Open Grid Software Architecture (OGSA

[57]). DREAM has similarities with JAMM [10] architecture; JAMM is an agent-

based system that automates the execution of monitoring sensors and the collection

of data events.

Globus Toolkit is the de facto middleware for grid computing; it is difficult to

convince organizations to use DREAM middleware in order to monitor grid resources.

This approach is based on J2EE application servers which may not be available on

some computers. The shortcoming of this system is that the monitoring service in

DREAM does not monitor jobs on a computer.

3.3.8 Job Centric Cluster Monitoring System

The Job Centric Monitoring system is designed to monitor jobs across a cluster in

grid environments. This approach is being developed in Grid Research Centre at the

University of Calgary. Sequential jobs and parallel jobs can be monitored using this

methodology [74, 87].

In this approach, a job monitoring tool is deployed on all the computers in the

computing environment and an application monitoring tool is deployed on a corn-

3.4 Summary 43

puter that could pull information from other computers. The job monitoring tools

on the individual computers are started whenever the application monitoring tool

is executed. The application monitoring tool returns a large amount of monitoring

data which includes user ID, process ID, node name, and other information about

the processes on a particular computer.

The username of a user could also be used as criteria for extracting the pro-

cesses that are currently running on a computer and belongs to the user. The job

monitoring tool on each computer forwards the monitoring data of all the processes

that are currently running on the computer to the application monitoring tool. The

application monitoring tool receives the monitoring data from several computers and

filters the received data. The useful monitoring information is kept while others are

discarded.

This approach makes it possible to track and monitor parallel jobs. This method

of monitoring jobs is suitable for monitoring jobs on a large scale. For example,

all the jobs on all the nodes of a cluster computer. This system is cumbersome

for monitoring a single job, because the system requires a number of tools to be

installed on the grid cluster. The method developed in this thesis uses a simple

script to monitor an individual job on a computer.

3.4 Summary

The Grid Monitoring Architecture which describes the components and interfaces

needed to promote interoperability between heterogeneous monitoring systems in

grid computing environments was presented. Most of the existing grid monitoring

tools that are relevant to this thesis work were described in this Chapter. Some of

3.4 Summary 44

the selected monitoring tools include Hawkeye, Netlogger, Network Weather Service,

Ganglia, and Monalisa.

Some existing work related to this thesis are described in this Chapter. The

reasons why there is need for a monitoring system that can monitor individual jobs

were identified.

Chapter 4

Job Monitoring

This chapter focuses on the design and the implementation of a technique for moni-

toring jobs in grid computing environments called the Wrapper method. This tech-

nique would help users to understand the reason(s) their jobs behaved in a certain

way on a computer.

How the Wrapper method works is described in detail in Section 4.1. Section

4.2 highlights the important information that users would like to know about their

jobs. The sources of job monitoring data are described in Section 4.3. Section

4.4 describes how the monitoring information is moved to a. location accessible by

users. The method by which the monitoring information is presented to the users is

described in Section 4.5.

How the Wrapper method is implemented in this thesis work is described in Sec-

tion 4.6. Section 4.7 discusses the issues with the specific design of the Wrapper

method in this thesis. How the Wrapper method is used in a grid computing envi-

ronment with Globus middleware is described in Section 4.8. Finally, this chapter is

summarized in Section 4.9.

4.1 Proposed Methodology - Wrapper Method

This section describes a proposed technique for monitoring jobs in grid computing

environments. The technique described in this section is named the Wrapper method

because a script known as the Wrapper script is used in the process of monitoring a

45

4.1 Proposed Methodology - Wrapper Method 46

job. The word Wrapper is used because the script is used to wrap a job; therefore,

the script is submitted in place of the job. The Wrapper script starts and monitors

a job on whatever computer the job is scheduled to run. Figure 4.1 shows how the

Wrapper method works.

In this method, the Wrapper script is submitted to the batch system and the

batch system executes the Wrapper script. When the Wrapper script is started on a

computer, the job is executed and a monitoring tool is started on the same computer

to monitor the job.

When the Wrapper script is executed, it forks a new process as shown in Fig-

ure 4.1. The newly created process is the child process and the existing process (i.e.,

the Wrapper script process) that created the new process is the parent process. The

child process is used to execute the job while the parent process is used to monitor

the job. When the fork system call is made, the process ID of the child process is

returned in the parent and a value of 0 is returned in the child process. Monitoring

the job in the parent process makes it possible for the parent process to wait for all

its children before it exits. In other words, job monitoring is carried out in the parent

process because the monitoring process will not exit until the monitored process no

longer exists.

The job is started using the exec system call within the child process. A successful

exec system call does not return any value because the calling process is replaced by

the new process. That is, when the job is executed in the child process, the child

process is completely replaced by the job. The monitoring process is not intrusive;

it does not affect the performance of the job.

The job monitoring is initiated within the parent process and continues until

4.1 Proposed Methodology - Wrapper Method 47

CHILD PROCESS

Submit
Wrapper Script

1
Execute

Wrapper Script
-I

Job Monitoring
Complete

NO

status Code = waitpid(-1, &WNOHANG)

PARENT PROCESS

Figure 4.1: Wrapper Methodology

4.1 Proposed Methodology - Wrapper Method 48

the job is completed. In order to monitor the job that is being executed in the

child process, the waitpid function is used to suspend the execution of the current

process until the child process or the children processes have exited, or until a signal is

delivered whose action is to terminate the current process or to call a signal handling

function [97].

Within the parent process, the waitpid function takes in two arguments; the

arguments specify the process(es) the parent process should wait for, when and

the condition under which waitpid should return. The use of constant values of

WNOHANG and -1 in the waitpid function causes the parent (monitoring) process

to wait for the child process and any of its children. These options make it possible

for the monitoring tool to track all the processes that are associated with a job. In

addition, these options allow the monitoring to be carried out uninterrupted while the

job is being executed in the child process. It is important to monitor the behaviour

of processes that are forked within a job because they are associated with the job

and are part of the job.

The return value from waitpid is checked each time it is called. A return value of

-1 indicates that the child process being monitored is no longer available. Hence, the

parent is terminated using the exit system call. The exit call terminates the parent

process and returns an exit status code to the calling environment. An exit status

code of 0 indicates a successful operation and any other value indicates a problem.

An exit status code of any value other than -1 from the waitpid indicates that

the job is still running. If the job is still running, the monitoring system retrieves

monitoring data that is related to the job using the process ID of the job. These

steps are carried out over and over again until the job is completed and waitpid

4.1 Proposed Methodology - Wrapper Method 49

returns a value of - 1. A delay is introduced by calling the sleep function with a value

of k seconds within the parent process; the value of k determines how often the job

is monitored.

The monitoring stage of the Wrapper method involves retrieving performance

statistics related to a job from a computer where the job is running. The process

ID of the job is used in retrieving information that is specific to a particular job.

The monitoring information include page fault, CPU, and memory statistics related

to the job. The first step in the monitoring stage is to check whether the job has

other processes (i.e., children processes) related to it. The monitoring information

for the job and its children are retrieved from the computer, processed, and stored

in computer data files. In addition, the monitoring system logs information that is

related to shared resources activity on the computer. The shared resources considered

are file system, disk Input/Output (I/O), and network.

During this stage, the monitoring system logs the memory usage statistics of other

processes that are not related to the job on the computer. This information helps

in detecting competition for system resources between the job and other unrelated

tasks on the same computer. The time at which the job was monitored is logged

alongside the monitoring data. The memory usage statistics of the host computer is

collected whenever the job is monitored.

This method can be used to monitor sequential jobs and shared-memory parallel

jobs on a single computer. The problem with this method is that it cannot be used

to monitor a distributed-memory parallel job. This problem is due to the fact that

a scheduler usually does not know how a parallel job is started. Therefore, the

monitoring tool will lose track of some processes that belong to the job since it does

4.2 Job Monitoring Data 50

not know how to relate the processes to the job. It is possible to know the hosts

on which the processes associated with a parallel job are being executed, but it is

difficult to know exactly what processes belong to the parallel job in a situation

where the user has other processes running on the same computer at the same time.

This will be considered as future work and it is discussed further in Chapter 6.

4.2 Job Monitoring Data

This section discusses the monitoring information that is collected by the job moni-

toring tool developed in this thesis. The information in the logs of batch schedulers

does not give details of the resources used by a job. The accuracy of the data in the

logs of batch schedulers is not guaranteed. In order to understand the behaviour of

a job on a computer, there is need to consider the usage statistics of the resources

used by the job.

The monitoring statistics collected about a job on a computer by the monitor-

ing tool in the Wrapper method includes CPU utilization, memory usage, network

bandwidth utilization, file system activity, and disk I/O activity. Some existing tools

provide some of this information but not in time-series format. The monitoring tool

developed in this thesis work provides time-series information about resources used

by a job.

The importance of monitoring statistics is highlighted in the following sections.

The monitoring information considered in this work is described with respect to

Linux operating system, although the description of the monitoring data is related

to other operating systems.

4.2 Job Monitoring Data 51

4.2.1 CPU Utilization

CPU time is the amount of time used in processing a computer program on a CPU;

and CPU utilization is the program's share of the total CPU time. CPU utilization

is expressed as a percentage of the total CPU time used by a process in a single pro-

cessor environment, although some operating systems represent CPU utilization in a

different way. System load is the amount of work that a computer is doing. System

load is usually the first factor that is considered when a job is not performing well on

a computer. Some common CPU utilization statistics are described in Appendix B.

Some compute-intensive jobs (i.e., jobs, that uses large amount of computing

resources) have high CPU utilization. Hence, a compute-intensive job with low CPU

utilization may indicate that there are processes on the system competing with the

job. If there are no processes competing with the job, then this may indicate some

bug or some failure in the application.

A job that is expected to use a large amount of CPU time may get less CPU

time even when there is no competition from the other processes on the system.

This situation may not be due to a competition for CPU time, but could be due to

competition for shared resources with other jobs on the computer. Therefore, the

job would not be using the CPU most of the time but waiting for I/O.

4.2.2 Memory

The computer memory is the place where the computer holds current programs and

data that is in use. The physical memory is used as storage for both data and

programs while a program is running on a computer. An address space refers to a

range of virtual addresses accessible to or reserved for a process. Without virtual

4.2 Job Monitoring Data 52

memory the amount of available physical memory has to be equal to or greater than

the address space of the application to be run; otherwise, the application would fail

with an "out of memory" error [88]. The operating system keeps track of which parts

of memory are in use and which parts are not in use, in order to allocate memory to

processes ,when they need it and de-allocate it when they are done.

The idea behind virtual memory is that the combined size of a program, its data,

and stack may exceed the amount of physical memory available for it. The operating

system keeps some part of a program currently in use in main memory and the rest on

disk. The virtual address space is divided into units called pages; transfers between

RAM and disk are in units of a page.

Virtual memory increases the available memory on a computer by using some

additional space on the hard disk. The lack of enough memory resources may have

a significant effect on the overall performance of a computer [36]. Appendix B lists

the commonly found memory management statistics.

The resident set size is the size of the memory-resident pages in the address space

of a process. The resident set size of a job may indicate that there is competition

for physical memory if its resident set size is smaller than its virtual memory and all

the physical memory on the computer has been used. The resident set size of a job

may also indicate shortage of physical memory on a computer.

The difference between the virtual memory and resident set size used by a job

would help in understanding the shortage of memory. That is, the relationship be-

tween the virtual memory and the physical memory used would help in understanding

the behaviour of a job on a computer.

A program manages its virtual memory in such a way that any memory released

4.2 Job Monitoring Data 53

by the program is not given back to the operating system but kept and re-used by

the program. The released memory pages are added to a list of free memory pages

for later use. Therefore, when additional memory is needed by a program it would

check its memory pool to see if there is enough memory to handle the request, else

it would request for more memory from the operating system.

4.2.3 Page Faults

A virtual address space is a non-contiguous memory that is presented to a process

as a contiguous memory. Virtual memory describes the total number of uniquely-

addressable memory locations available to a program, and not the amount of physical

memory that must be dedicated to the program at any given time [88].

In order to implement virtual memory, the Memory Management Unit (MMU)

manages the virtual address space and each virtual memory address goes through

a translation step prior to each memory access. In order to reduce the overhead

of individually tracking the virtual to physical memory address translation, RAM

is divided into pages (i.e., contiguous sections of memory of a set size that are

handled by the MMU as single entities). A page fault occurs when the MMU has

no translation in cache for a memory address requested by the CPU. Therefore, the

MMU interrupts the CPU and causes the page fault handler in the operating system

to-be executed. The page fault handler then determines what needs to be done to

resolve the page fault. The operating system will resolve the problem by using free

or reusable pages. In some cases, the operating system will page out existing pages

that are not in use and write them to disk.

Page faulting may not be an issue if it does not occur in excess. Paging makes

virtual memory possible by allowing the memory requirements of a process to exceed

4.2 Job Monitoring Data 54

the actual amount of physical memory. On many modern systems, a program execu-

tion always starts with a page fault as the operating system tries to use the kernel's

virtual memory management facility to read enough of the executable image to get

it started [36]. Virtual memory makes it possible for computers to handle larger and

complex programs.

A large amount of page faults and swapping activity may indicate lack of physical

memory on a computer. This may lead to low CPU utilization (because the CPU

cycles would be used for supporting memory management and setting up the neces-

sary disk I/O operations) and/or high network activity if the disk volume is shared

across a network. Low physical memory, heavy page faulting activity, and a system

running near its limit in terms of CPU or disk I/O may lead to thrashing which

decreases system performance rapidly. Thrashing is a situation where a computer is

spending more time doing paging instead of actual work.

There are two types of page faults - major and minor page faults. Based on

the definitions of major and minor page faults in the man page for the /proc file

system on Linux systems [89], a minor page fault indicates that the fault does not

require loading a memory page from disk. This occurs when an attempt is made to

access a virtual memory location that resides within a segment and the page is in the

physical memory; but no current MMU translation is established from the physical

page to the address space that caused the fault [109]. In this case, the physical page

of memory is already present but the process needs to establish a mapping to the

existing physical page.

A major page fault requires loading a paged out memory page from disk into the

physical memory. That is, the page is not loaded in memory at the time the fault

4.2 Job Monitoring Data 55

is generated. Hence, major page faults are more expensive than minor page faults

because it adds disk latency to the execution of the interrupted program [108].

4.2.4 Network

In the context of this thesis, a network is the connection between two computers.

A number of network performance metrics determines the "speed" of a network.

The common network performance metrics are bandwidth, latency/delay, jitter, and

reliability. Network bandwidth is the amount of data that can be sent over a network

connection or interface in a given period of time. Bandwidth is usually stated in bits

per second (bps), kilobits per second (kbps), or megabits per second (mbps).

Network bandwidth and latency both determine the "speed" of a network per-

ceived by a user. Latency refers to delay in processing network data. Another factor

that affects network bandwidth is jitter. Jitter is the variation in the time between

packets arriving. It may be caused by network congestion or network route change.

Some of the more common bandwidth-related statistics are listed in Appendix B.

Good network performance always depends on network devices working properly

and efficiently. Network statistics like bandwidth, latency, transmit error rate, and

receive error rate may indicate failing or misconfigured hardware. For example, a

misconfigured network interface would cause a high transmit/receive error rates and

high latency. Network adapters, routers, switches, and devices may fail and produce

high error rates or degrading performance over time or both [36].

Poor network performance may be the result of too many requests to computers

on a network. Overloading may be caused by too much traffic on the server network

interface and/or incorrect configuration. Insufficient network bandwidth for the re-

sources and applications on the network can also lead to poor network performance.

4.2 Job Monitoring Data 56

In turn, poor network performance would affect the performance of a job that de-

pends on network resources; a remote I/O job for example, depends on the network

for moving data from a source to a destination.

4.2.5 Disk Input/Output Activity

The UNIX operating system supports disk/system-based I/O operations in which a

process interacts with a physical device using an intermediary kernel buffer. This

intermediary buffer is transparent to the user's calls like readO, wrieQ, and iseekQ,

as if they are accessing a physical file directly [71].

In disk I/O, the process interacts with a physical device directly, without the

kernel's intervention. An example of disk I/O is in data-critical applications, where

the user wants to ensure that the data is written to a disk immediately so that it is

not lost in the event of a system failure.

Disk I/O can have an effect on the performance of a computer or the behaviour

of a job. In order to understand disk I/O performance statistics, it is important to

understand the disk [/0 activities performed by the applications or typical workload

on a computer. A large disk I/O operation can generate many pending disk I/O

requests, and users needing disk volume access can be forced to wait for them to

complete. A large disk I/O operation can degrade the performance of interactive

activities on the same computer. For example, an appreciable waiting time would

be noticed when is command is issued at the commandline when a job is performing

a large number of disk I/O operations on the same computer.

In order to understand some disk I/O issues, there may be a need to look at the

amount of data transferred (read or written) to a local or remote disk volume during

the measured interval and the amount of transfers per second.

4.2 Job Monitoring Data 57

4.2.6 File Systems

A file system is a structure that is used for storing and organizing computer files

and the data they contain to make it easy to find and access them. A file system

is used by a job running on a computer for reading and writing data from and to

storage devices. It may use a secondary storage device such as hard disk or tape. It

maintains the physical location of the files which may be virtual and exist only as

an access method for virtual data or for data over a network (e.g., NFS) [107].

A disk file system is a file system designed for the storage of files on a data storage

device, most commonly a disk drive, which might be directly or indirectly connected

to the computer. Examples of disk file systems include FAT, NTFS, HFS, ext2, and

ext3. Network File System (NFS) (i.e., a distributed file system developed by Sun

Microsystems) is used in the experimental environment of this thesis work. NFS

allows a computer to access files over a network as if they were on the local disk of

the computer.

NFS-specific traffic and performance are monitored using the nfsstat command.

This command displays statistical information about the NFS and the RPC (Remote

Procedure Call) interface to the kernel for NFS clients and servers. The statistics

on the types of NFS operations performed, along with error information and perfor-

mance indicators would help in identifying potential bottlenecks.

Higher latency would be observed when writing or reading a large file on a remote

computer through NFS than performing the same activity on a local disk. An NFS

configuration problem may make the accessing, writing, or reading of a file slow. In

some cases, NFS may be affected by the state of the network traffic since it has to

work through the network.

4.3 Sources of Monitoring Data 58

Since NFS is a shared resource, the performance that is seen on a single computer

locally may not be enough to understand the behaviour of a file system. This is due to

the fact that the file system may be in use by other jobs running on other computers

sharing the file system.

4.2.7 State of a Job

A process is an instance of a computer program running on a computer. A job or

task on UNIX systems, may be composed of one or more processes working together

to perform a specific task [36]. The life cycle of a UNIX process is described in

Appendix C. A process can be in any of the following 3 common states:

Running: if the process is executing on a processor.

Ready: if the process could execute on a processor if one were available.

Blocked: if the process is waiting for some event to happen (for example, disk I/O

completion event) before it can proceed.

The process states of a job may show why a job behaved in a certain way. For

example, a job that spent much time in the blocked state indicates that the job may

be doing lots of I/O; this in turn may help in understanding why a job used more or

less CPU and memory resources.

4.3 Sources of Monitoring Data

This section describes the sources of the monitoring data discussed in the previous

section. The description of the sources of the monitoring data in this thesis work is

based on Linux operating system.

4.3 Sources of Monitoring Data 59

There are two main flavours of UNIX; Berkeley Software Distribution (BSD) and

SysV (System V). System V was originally developed by AT&T and first released

in 1983. BSD is the UNIX derivative distributed by the University of California,

Berkeley starting in the 1970s. Linux has a combination of both BSD and System V

flavours of UNIX. The following sections highlight the sources of monitoring data.

4.3.1 Process Information Pseudo-Filesystem

The UNIX Process Information Pseudo-Filesystem is also known as proc. The proc

file system is used as an interface to kernel data structures. The files in the /proc

directory correspond to active processes (entries in the kernel process table). Most

of the files in this directory are read-only, but some files allow kernel variables to be

changed [103].

The proc directory contains information on all the processes that are currently

running on the computer. The proc file system grants access to information about

processes and other operating system features. In Linux, the monitoring information

belonging to a process is stored in /proc/[number] where number is the process ID

of the process. The description of /proc directory in this section is based on the

information in Linux Programmer's Manual. The Linux operating system contains

the following pseudo-fields and directories:

/pro c/ [number] /cmdline: This holds the complete command line for the process,

unless the whole process has been swapped out, or unless the process is a

zombie. In either of these later cases, there is nothing in this file.

/pro c/ [number] /cwd: This is a link to the current working directory of the pro-

cess.

4.3 Sources of Monitoring Data 60

/proc/ [number] /exe: Under Linux 2.2 and 2.4, exe is a symbolic link containing

the actual path name of the executed command. The exe symbolic link can be

dereferenced normally - attempting to open exe will open the executable.

/pro c/ [number] /fd: This is a subdirectory containing one entry for each file which

the process has opened, named by its file descriptor which is a symbolic link

to the actual file.

/pro c/ [number] /maps: A file containing the currently mapped memory regions

and their access permissions.

/proc/ [number] /mem: The pages of a process's memory can be accessed via the

mem file.

/proc/ [number] /root: UNIX and Linux support the idea of a per-process root of

the filesystem. This file is a symbolic link that points to the process's root

directory, and behaves like exe.

/pro c/ [number] /stat: Gives the status information about the process. This is

used by the ps tool described in the next section. The information found in

this file includes process ID, file name of the executable, state of the process,

and virtual memory size in bytes.

/proc/ [number] /statm: Provides information about memory status in pages.

/proc/ [number] /status: Provides much of the information in /proc/ [number] /stat

and /proc/ [number] /statm in a format that is easier for humans to parse.

The advantage that proc has over other sources of monitoring information is that

it contains detailed information about the process that is being monitored. One of

4.3 Sources of Monitoring Data 61

the problems with proc is that it is not portable, in the sense that the structure of

proc directory and the layout of data in some files are different from one variant of

UNIX to another. Therefore, there would be need to have different implementations

of the job monitoring tool for different variants of UNIX.

4.3.2 Process Status Utility

ps stands for Process Status. ps gives a snapshot of the current processes running

on a system. The utility produces a report summarizing execution statistics for

current processes. The command's options control which processes are listed and

what information is displayed about each process. The format of the commands

differs considerably between the BSD and System V forms. The output of the ps

command contains the following information:

User: Name of the owner of the process.

Process ID: The process ID of the process that is currently executing.

CPU Percentage: This shows the CPU time or real time percentage. It is the

process' share of the CPU time expressed as a percentage of the total CPU

time per processor.

Size: The total size of the process in virtual memory, including all mapped files and

devices, in kilobyte units.

Virtual Memory: The total virtual memory size in bytes.

TTY: The terminal associated with the process.

4.3 Sources of Monitoring Data 62

Start: The starting time of the process, given in hours, minutes, and seconds. The

start time for a process that began more than 24 hours before the ps inquiry

is executed is given in months and days.

Time: CPU time used by the process since it started.

Command: The simple name of the executable.

Resident set size: Real memory (resident set) size of the process, in kilobyte units.

Memory Utilization: The ratio of the process resident set size to the physical

memory on the machine, expressed as a percentage.

Process State: This indicates the current state of the process. The process may

be in any of the following states:

• D - Uninterruptible sleep (usually I/O)

• Ft - Running or runnable (on run queue)

• S - Interruptible sleep (waiting for an event to complete)

• T - Stopped, either by a job control signal or because it is being traced

• W - Paging (not valid since the 2.6.xx kernel)

• X - Dead (should never be seen)

• Z - Defunct ("zombie") process, terminated but not terminated by its

parent

For BSD formats and when the stat keyword is used, additional characters may

be displayed:

• <- High-priority (not nice to other users)

4.3 Sources of Monitoring Data 63

• N - Low-priority (nice to other users)

• L - Has pages locked into memory (for real-time and custom 10)

• s - Is a session leader

• 1 - Is multi-threaded

• + - Is in the foreground process group

The advantage of using ps is that its output is formatted, so it makes it easy to

extract the statistics about a particular process. The monitoring information from ps

is displayed as output (at commandline or written to a file) when it is executed. In

addition, the output contains information about all the processes that are currently

running on the computer. Hence, it makes it possible to know and distinguish the

processes that may be competing with another process. All the variants of UNIX

operating system have ps utility and their outputs are similar for most variants of

UNIX.

4.3.3 System Tools

Job monitoring data could be retrieved from a system using various UNIX tools.

UNIX system monitoring tools and commands can be grouped into the following

categories:

• CPU Utilization: top display information that is related to process(es) associ-

ated with a job including CPU utilization. The other CPU activity monitoring

tools are uptime and sar.

9 Memory: vmstat, free, and .sar could be used to gather memory usage statistics.

4.4 Collecting Monitoring Data 64

• Network examination: netstat, ping, traceroute, ntop, and tcpdump can be used

to monitor impact of jobs on the network traffic.

• System Devices: iostat, vmstat, and sar

• Input/Output operations: lsof

• Network File System activities: nfsstat

The information derived from the use of the afore-mentioned system monitoring

tools is listed in Appendix D. These monitoring tools are powerful, but none of these

tools produces all the needed monitoring information. Most of the monitoring data

collected in this thesis work, is retrieved from the computer using the pa tool.

4.4 Collecting Monitoring Data

The monitoring data in its raw form contains values of monitoring statistics retrieved

from the host computer where the job was executed. The monitoring data is moved

from the host computer to a location where it is processed further into meaningful

monitoring information.

There are several ways of moving monitoring data from the execution host to

another location. Some users may prefer to leave the data at the location where

the job was submitted; others may prefer to transfer the monitoring data to another

location. In the second case, a user can use any remote file transfer utility like Secure

Copy independently or through the batch system. When a batch system is used, the

monitoring data is moved together with the output of the user's job. The process

of moving a file or files off the execution host after the job completes execution is

known as stage-out.

4.4 Collecting Monitoring Data 65

Job

Job submission

7 '\
User

Returning Monitoring
Information to User

Node

1

Node

5

Node

2

Node

6

Head Node

(Job Portal)

Node

3

Node

4

Node

N

Cluster Running Jobs

Reporting Monitoring
Information to Netlogger

Node

1

Node

2

Head Node

Netlogger

Node

N

Cluster Hosting Netlogger

Figure 4,2: Logging Monitoring Data through Netlogger

The monitoring data could also be collected through Netlogger instrumentation.

The Netlogger toolkit makes it possible for distributed applications to log interesting

events at various points in the applications. Netlogger has been used for developing

tools for host and network monitoring. In this approach, the monitoring tool is

instrumented with Netlogger so that the monitoring information is transferred via

an open system port from the system on which the job is running to a computer that

is running Netlogger.

In order to use Netlogger to log monitoring data, all the monitoring events must

use a common logging format, common set of attributes, and a globally synchronized

timestamp. When the job is monitored at a given point in time, all the monitoring

4.5 Presenting Monitoring Information 66

data are logged and collected at a central location.

The advantage of using Netlogger is that the monitoring data is not stored on

the local system but transferred to the central location during monitoring. Hence,

the monitoring data can be accessed while the job is running instead of waiting until

the job is completed before accessing the data. It also makes it possible to monitor

jobs in real time since the user can have access to the monitoring information on the

head node or a remote computer while the job is still running.

There are several ways of returning monitoring data to users. Some of the meth-

ods are simple while others are complicated. The objective of the Wrapper method

is to use an approach that is as simple as possible.

4.5 Presenting Monitoring Information

In order to make sense out of the monitoring data, there is need to transform the

monitoring data into meaningful information that can be easily understood by users.

The monitoring data is transformed into graphical format. The monitoring informa-

tion graphs include CPU utilization, memory usage, page faults, network traffic, file

system, and disk I/O operations.

The monitoring information is presented in time-series format in order to show

the complete life cycle of a job. The monitoring information can be presented to

users via a job portal. The job portal will display the monitoring information that is

specific to a user's job. In this method, the user can connect to the job portal from

any system and the user would have access to the monitoring information related

to his/her job. All the user need in order to access the monitoring information is a

Web browser and an Internet connection.

4.6 The Implementation of Wrapper Method 67

A Web server that is accessible by users can be setup on a computer to host the

job portal. The address of the Web server and the port number (if it's different from

the default http port) are given to the users, so they could connect to the job portal

from anywhere at anytime. The advantage of using a job portal is that the user

can connect to the job portal using any standard browser, hence there is no need

to write, build, install, and/or configure another application in order to monitor the

progress of jobs in post-mortem.

4.6 The Implementation of Wrapper Method

How the Wrapper method is implemented in this thesis work is described in this

section. This section describes how the job monitoring is carried out, how the mon-

itoring data is collected, transformed, and presented to users.

The Wrapper script used in the Wrapper method is written in Pen (Practical

Extraction Report Language) in Linux environment. Perl is used because it has easy

but powerful text manipulation features. The Wrapper script starts the job and

continues to monitor the job until it is completed as described in Section 1 of this

chapter.

Whenever the job is monitored in the parent process, the monitoring tool checks

the status of the child process using waitpid to see if the lead process (i.e., the job)

or any of its children are still running. If any of them was running, the job and its

children are monitored by starting the monitoring tool with the process ID of the

job. The monitoring tool executes the pstree command with the process ID of the

job in order to retrieve all the processes that are associated with the job. This is

important because the job's lead process and its children are all part of the job that

4.7 Implementation Issues 68

is being monitored. Hence, the monitoring information about the lead process and

its children would help in understanding the behaviour of the job.

During the monitoring activity, ps aux is executed on the host computer. The

output of ps aux is passed as input to the regular expression parser (egrep) for the

lead process and its children. The egrep command extracts the output associated

with each process from the initial output. The information retrieved includes CPU

utilization and memory usage statistics. In addition, disk Input/Output, file sys-

tem, and network statistics are collected on the host computer. The significance of

monitoring data was discussed in Section 4.2.

The monitoring information collected about a job is recorded in files using the

current system time as timestamp. The use of system monitoring time helps in

understanding why a job behaved in a certain way during its life cycle.

In this thesis, the monitoring data collected is written to files in a location speci-

fied in the job submission script. If the user does not specify a location, the monitor-

ing data is stored in the user's working directory (i.e., where the job was submitted).

Then, the monitoring data is processed by a graphing tool developed using Pen

and Gnuplot. The graphing tool generates monitoring information graphs from the

monitoring data.

4.7 Implementation Issues

The time when users could have access to the monitoring information about their

jobs may be a concern for some users. Some users may prefer to see the way their

job is performing in real time, so they could notify the system administrator if their

job is not doing well on a computer.

4.8 Wrapper Method Implementation with Globus 69

A "post-mortem" approach is used in presenting the monitoring information to

users in this implementation. As the name implies, the monitoring information is

transferred to a location specified by the user, after the job is completed. Here,

the user only has the opportunity to know what happened to his/her job after it

is completed. In this implementation, a user cannot have access to the monitoring

information until the job is finished. An assumption is made that most users would

like to know what happened to their jobs after they are completed.

4.8 Wrapper Method Implementation with Globus

Since most grid computing sites use Globus middleware, it is important to show

that the Wrapper method can work with Globus. That is, jobs submitted via Globus

can be monitored using the Wrapper method. The Globus Toolkit includes tools

for authentication, scheduling, file transfer, and resource description. In addition,

it provides the opportunity for users to submit their jobs remotely from their local

computer. The implementation of Wrapper method in this thesis was carried out in

a cluster environment with one scheduler and a batch system.

In order for users to submit their jobs in a grid computing environment running

Globus Toolkit, there is need for authentication. The Grid Security Infrastructure

(GSI) provides the authentication and authorization mechanisms to verify a user-

supplied "Grid credential". To sign-on once to a grid, a user needs to create a

temporary credential called a proxy certificate. The proxy certificate confirms that

the user is authorized by a trusted authority to access the grid resources. It confirms

the user with the passphrase he/she used in creating his/her, X.509 certificate and

key. Once a proxy has been created using grid-proxy-mit command, the user can

4.8 Wrapper Method Implementation with Globus 70

submit his/her job.

The Globus Grid Resource Allocation Manager (GRAM) framework provides

services for submitting, monitoring, and cancelling jobs on grid computing resources.

The framework does so through the use of the Resource Specification Language

(RSL), which provides a simple set of directives for specifying typical computational

parameters, such as the number of nodes and processors required, the length of time

the job should run, and the executable that should be launched [60].

With Globus middleware, the Wrapper script is submitted to a computing grid

using specific Globus commands: globus-job-submit, gb bus-job-run, or gbobusrun. A

user would submit a RSL description of his/her compute task to GRAM running on

a given resource. GRAM is a root-level process which handles all globus job requests

at a remote site. When a job is submitted, the request is sent to the Gatekeeper of

the remote computer. The Gatekeeper handles the allocation request and creates a

Job Manager for the job. The Job Manager starts and monitors the remote program,

communicating state changes back to the user on the local machine [101].

After the authentication, the Globus GateKeeper starts the requested service, in

this case the Job Manager. The Job Manager process translates the generic RSL

parameters into a job script matching the local resource manager and submits the

job script. The Job Manager keeps track of and manages grid I/O for jobs running

on the local batch system. There is a specific Job Manager for each type of batch

system supported by Globus (examples are Condor, LSF, LoadLeveler, and PBS)

[62] [63].

A local job scheduler is required in order to manage the resources of the compute

element. GRAM has the ability to spawn simple time-sharing jobs using standard

4.9 Summary 71

UNIX fork methods, but most large-scale compute elements will be under the control

of a scheduler such as PBS, LSF, Condor, NQE, or Loadleveler [100]. The description

of remote execution of jobs on Globus-managed grid computing environment is shown

in Figure 4.3.

When the Wrapper script is executed on a local host, the job embedded within

the Wrapper script is executed and monitored using the Wrapper method described

in Section 4.1. The monitoring process in a grid computing environment with Globus

middleware is the same as in a cluster environment.

The difference with the Globus implementation is that, the job can be executed

on any grid resource that meets the requirements of the job specified in the job

script using RSL. Hence, the job is not limited to a particular computer or cluster

of computers.

4.9 Summary

The Wrapper method for monitoring jobs in grid computing environment is described

in detail in this chapter. The method would help users to understand how their

jobs behaved on a particular computer by considering the monitoring information

generated during the monitoring process.

The importance of monitoring information like CPU utilization, network activity,

memory usage, disk space, disk I/O operations, shared file system activity, and

process status statistics were discussed. The various sources of monitoring data were

described; the advantages and disadvantages of getting monitoring data from those

sources were also discussed.

The method by which the monitoring data is transferred to locations accessible

4.9 Summary 72

Globus GateKeeper

Globus Manager

Meta Scheduler

Resource Manager

R R

Resource Manager

Globus Manager

V

Local
Scheduler

Resource Manager

Note: The Local or Meta Scheduler could be PBS, Condor—G, LSF, LoadLeveler, NQE, etc.

R

Figure 4.3: Execution of Jobs in Globus-managed Grid Computing Environment

4.9 Summary 73

by users was described. In addition, the method of presenting the monitoring infor-

mation to users was highlighted. This chapter further described how the Wrapper

method is implemented in this thesis. The issues with how the Wrapper method is

implemented in this thesis were also highlighted. Finally, how the Wrapper method

would be used in a grid computing environment with Globus middleware was de-

scribed.

Chapter 5

Experiments and Results

The purpose of the experiments described in this chapter is to confirm that the

monitoring information shows the activity that takes place during the life cycle of a

job on a computer. The monitoring information would help users in understanding

the behaviour of their jobs when their jobs are sharing computing resources with

other jobs in a computing environment. The experimental design, workload, and

testbed used in this thesis are also described in this chapter.

Section 5.1 states the purpose of the experiments. Section 5.2 describes the

methodology used in conducting the experiments. The description includes the ex-

perimental design, the workload design, and the environment under which various

experiments were carried out. The experiments were carried out on a cluster of com-

puters and the corresponding results are presented in Section 5.3. The importance of

monitoring information is highlighted in each experiment. In addition, bottlenecks

are identified and suggestions are made on how to improve the performance of jobs

in different circumstances. The validation of the Wrapper method based monitoring

tool is discussed in Section 5.4. Finally, the chapter is summarized in Section 5.5.

5.1 Purpose of Experiments

The experiments are designed to confirm the importance of the monitoring informa-

tion generated using the Wrapper method. The emphasis of the experiments is on

understanding what happened to a job on a particular computer and how the mon-

74

5.2 Experimental Methodology 75

itoring information could help in understanding why the job behaved in a certain

way. In this thesis, eight experiments were carried out under different conditions and

the monitoring information collected in those experiments was examined.

The experiments were designed in such a way that they show how the monitoring

system and results would help users to understand the behaviour of their jobs on a

computer. Attempts are made to answer the following questions in the experiments:

• Did a job get the expected amount of system resources?

• Is a job affected by other resource-consuming tasks or processes?

• What happened to a job during its life cycle on a computer?

• Why did a job behave in a certain way on a computer at a particular time?

• What are the bottlenecks to the performance of a job on a computer?

• How will the monitoring information help a user to improve the performance

of his/her job?

5.2 Experimental Methodology

The design and implementation of Wrapper method for monitoring jobs in grid com-

puting environments are described in Chapter 4. The experimental design, workload,

and experimental testbed used in this thesis work are described in this section.

5.2.1 Experimental Design

The experiments conducted in this thesis work are designed in such a way that

monitoring data is collected when a job is running on a computer. The monitoring

5.2 Experimental Methodology 76

data is transformed into meaningful monitoring information.

In these experiments, the Wrapper script is submitted to a batch scheduler, and it

starts the job on a computer. The Wrapper script also starts the tool that monitors

the job on the computer. The monitoring tool retrieves monitoring data about a job

from the computer where the job is being executed. When the job is complete, the

collected monitoring data is transformed into meaningful monitoring information by

a graphing tool described in Chapter 4.

In some experiments, a computing task that uses a large amount of system re-

sources is started on the same computer where the job is running in order to introduce

competition for system resources. In order to understand the monitoring information

generated using the Wrapper method, eight different experiments were designed in

this thesis work.

Several runs of each experiment were carried out on the testbed. The results

from each run was consistent with others in each experiment, so only the result of a

single run is reported for each experiment.

5.2.2 Workload Description

Two computing tasks were used as workloads in the experiments conducted in this

thesis. The tasks are computer programs running on a computer. The first program

uses large amount of memory resources. The second program does file I/O using

local disk, network, and shared file system resources. The first program is called

memory workload and the second program is called file I/O workload.

5.2 Experimental Methodology 77

5.2.2.1 Memory Workload

The pseudo code in Figure 5.1 describes the program in the first experimental work-

load. The purpose of the memory workload is to help in understanding how jobs

use memory resources on a computer. In order to keep this workload simple, a large

amount of memory is allocated to an array of integers. In the first phase of the pro-

gram, random numbers are generated and stored in the array. Some elements of the

array are read and modified in the second phase of the program. The storing of data

in the array, reading and modifying elements in the array make sure the workload

uses the memory resources on a computer.

The operating system allocates 2.4 Gigabytes of memory to an array of integers

in the first phase of the memory workload. The total amount of physical memory

on the host computer that will be used for running experiments in this thesis is 2

Gigabytes. 2.4 Gigabytes of memory is allocated to the array of integers so that

the program would use more memory than the physical amount of memory on the

computer. In this workload malloc function is used to allocate memory space to

hold the array of integers. malloc is one of the library functions used by a program

to manage the memory resources on a computer. The malloc library function calls

sbrk when a process runs out of memory. malloc will fail when .sbrk does not return

memory to it.

If malloc succeeds in allocating 2.4 Gigabytes of virtual memory to the array,

Number of Elements random numbers are generated and stored in the array. Number

of Elements is the number of integers that would fit into 2.4 Gigabytes of memory

and this value depends on the architecture of the processor - 32b1ts or 64bits. The

architecture of the processor determines the amount of memory needed to process

5.2 Experimental Methodology 78

Allocate 2.4 Gigabytes of Memory to Array of Integers by calling malloc() function

First Phase
FOR (counter = 1 TO Number of Elements) DO

{
Generate a random number by calling rand() function

Store random number in Array of Integer location [counter-1]

Calculate the sum of generated random numbers

}

Second Phase
FOR (page = i TO Number of Memory Pages) DO

{
Access an Element in the Memory Page

Generate a random number by calling rand() function

Update the Value of the Element by adding the generated random number to it

Calculate the sum of Updated Elements

}

Print the sum of random numbers generated in Phase 1

Print the sum of Updated Elements computed in Phase 2

Figure 5.1: Description of Memory Workload

and store an integer on a computer.

Random numbers are generated by using rand function. The generated random

numbers are stored in the array of integers, and the sum of the generated random

numbers is computed. The sum of the generated random numbers is kept until the

end of the program when it is printed out. The reason for keeping the sum of the

random numbers is to prevent the random number generation code segment from

being removed by the compiler during optimization.

5.2 Experimental Methodology 79

In the second phase of the program, the Number of Memory pages is the number

of memory pages that would fill 2.4 Gigabytes of memory. This value depends on

the memory page size which in turn depends on the architecture of the processor on

a computer. The following steps are taken for each memory page that belongs to

the job. The program retrieves an element in the memory page; generates a random

number using rand() function as in the first phase of the workload; updates the value

of the retrieved element by adding the random number to it; computes the sum of

the updated elements. The sum of the updated elements is printed out at the end

of the program.

In this thesis, the memory workload is implemented on Linux-based computer;

and 600,000,000 random numbers are generated and stored in the array of integers.

The program was implemented on a Linux computer with a 64-bit AMD Opteron

processor. The size of an integer on the 64-bit AMD Opteron processor is 4 bytes.

In addition, the physical memory on the computer is divided into 4 Kilobytes of

memory pages. Therefore, about 1,000 integer values can be stored in 1 page of

memory with the memory header preceding the first page of the memory block.

5.2.2.2 File I/O Workload

The second experimental workload consists of a file Input/Output program. The

program transfers the contents of an existing file in chunks to a new file. The data

transfer is carried out using a buffer of fixed size k bytes. The data is transferred in

chunks until all the content of the existing file is transferred into a new file on the

same or different file systems. This workload program uses low-level file I/O functions

including open, read, and write. The pseudo code in Figure 5.2 describes the workload

used for the experiments that demonstrates job file system Input/Output activity.

5.2 Experimental Methodology 80

{

}

Create a buffer of k bytes

Open an Existing File for reading

Create and Open a New File for writing

While not End of File

{

Read next k bytes of Existing File into buffer

Transfer the contents from the buffer into the New File

I
Close New File

Close Existing File

Figure 5.2: Description of File Input/Output Workload

In this thesis a file containing 8.4 Gigabytes of data is copied from a source to a

destination. The source and destination could be local disk volume or remote disk

volume through a shared file system. Data is transferred from the source to the

destination using a 10-Megabyte buffer.

Each workload has a program known as the job and the other known as the

competing task. The wrapper script starts the job; the user starts the competing

task on the computer where the job is running. The job and the competing task

will use the same computer program, so that neither the job nor the competing task

would have an undue advantage over each other.

5.3 Experimental Results 81

5.2.3 Experimental Testbed

All the experiments in this thesis work were carried out on a computer cluster. The

computer cluster has 11 computers; each computer in the cluster runs the Linux

operating system. The version 3 of Sun Microsystems' shared file system known as

Network File System (NFS) is installed on the cluster. The NFS has a server and a

client side, and the primary function of the NFS is to export or mount directories to

other computers. NFS enables the file system volume that is physically residing on

one of the computers to be visible and accessible from any other computer within

the cluster.

Each computer in the cluster has 2.2 GHz AMD Opteron processor, 2 Gigabytes

(GB) of physical memory, and 2 GB of swap space. The swap space is specially

designated areas of disk used for paging. UNIX systems have a dedicated partition

called the swap partition used for holding pages written out from memory.

PBS [85] resource manager is used as the batch system and MAUI [17] is used as

the batch system scheduler in this environment. The Wrapper script is submitted

to PBS, and MAUI decides where to execute the job on the cluster, except the user

specifies a computer to use.

5.3 Experimental Results

Eight experiments were carried out under various circumstances, in order to see if

the monitoring information collected about jobs would help in understanding the

behaviour of jobs on a computer.

5.3 Experimental Results 82

5.3.1 Experiment 1: Baseline Experiment

The aim of this experiment is to see if the monitoring information would show the

state of the resources on a computer when it is not running any job. The results

from this experiment will be used as a baseline when investigating the behaviour of

jobs on the same computer.

In this experiment, the job was designed to sleep (i.e., do nothing) for 240 seconds.

The job did not use system resources during this period of time. The result in Figures

5.3 and 5.4 show the state of the computer used in this thesis when a user's job is

not using system resources.

Figure 5.3(a) shows that the job did not use any CPU time. Hence, the job's

CPU utilization is 0% and the CPU idle time is about 100%. It is shown in Figure

5.3(b) that the job used very little memory on the computer. Figure 5.3(c) shows

that 1 minor page fault occurred per second, and no major page fault occurred. This

suggests that very little memory was used by the job, or else there would have been

a significant number of minor page faults.

Figure 5.4(a) shows that an average of 300 kB of data was written from the

physical memory to the local disk volume per second, but no data was read from the

local disk into the physical memory. The disk I/O information shows all the local

disk I/O activity on the host computer. The cause of disk I/O activity is not known

in this experiment. The network activity result inFigure 5.4(b) shows that 0.1 byte

of data is written and read from the network interface per second. This is the overall

network activity on network interface ethO of the computer. About 24 bytes of data

was written by the shared file system client per second, and no data was read by the

shared file system client as shown in Figure 5.4(c).

5.3 Experimental Results 83

Ra
te

 of
 Un

or
Fa
at
ts
(f
au
ft
s!
s

100

80

20

0 ------------------ -
03:50:30 03:61:00 03:51:30 03:52:00 03:62:30 03:53:00 03:63:30 03:54:00 03:64:30 03:05:00

Systom Local Tirtlo [hh.mmss

1610 Stato --'.4--
Walt State4--

jobWrappOr.pl(7055) to

800000

700000

600000

600000

400000

800000

200000

100000

0.0

0.0

0.4

0.2

(a) CPU Utilization

10bdt
Physical Monlory Linod by Othors//Con.potlng

Virtual Momory Usod by lobwroppor.lt
Physloal Montary Uo0d by)obwroppar.pl(7055) 0

0i.50:30 03:61:00 03:81:30 0832:00 03:62:80 03:53:00 03:53:00 03:84:00 03:64:30 03:68:00
Sy6tom Local Tlmo [hh.mmns]

(b) Memory,

• Minor FoUts -I-
Major Faults

0 **u*.**t.* :4o,MlW'.t#**Pt*:W# '' 4*I I0h.'r*u0..*45*Sttw 0
03:50:30 03:61:00 03:51:30 03:52:00 03:62:30 03:53:00 03:53:30 03:04 :00 03:54:30 03:55:00

0.8

0.0

0.4

0.2

Syotom Local Tirno [hh.rrtmoo]

(c) Page Faulting

Figure 5.3: Job not using System Resources

Ra
te
 o
fM
ao
r F
a
b
 (f

aul
ts!

s

5.3 Experimental Results 84

I/O Activity (hds Dick Voieemo)

- 000

500

I

400

300

200

100

0 J, vii.;sII t r,li
03:00,30 03:51:00 03:51:30 03:52:00 03:32:30 03:53:00 03:53:30 03,04:00 03:54:30 03:55:00

System Local Time [hh.mn'mej

350

300

250

200

(a) Disk Input/Output Activity

Noiwo,k Activity (oihoi0lhotnot) ipto,loco)

0
08:50,30 03:51:00 03:51:30 03:52:00 03:52:30 03:53:00 03:53:30

System i.000ll'lmo thh.n,nlsoj

(b) Network Activity

NFS Client Activity

Pockets Tronomittod --.m--
Data Received ...-.

Date Trananhittod •".. O.....

0.12

0.1

0.00

0.00

0.04

0.02

0
03:54:00 03:54:30 03:50:00

'' u. - 5,._.._.__. _..._i_4;__...

120

100

00

00

40

20

25

20

15

10

5

0 ls WI s'lWIi k t WI ' 0'tnA. A'WI 0
03:50:30 03:51 :00 03:5t30 03:52:00 03:02:30 03:03:00 03:53:30 03:04:00 03:54:30 03:55:00

System Loosi Time 1011mm,.,.]

(c) Shared File System Activity

Figure 5.4: Job not using System Resources

5.3 Experimental Results 85

A network analysis is carried out in order to understand the disk I/O, network,

and shared file system information in this baseline experiment. The tcpdump utility

is used for monitoring the computer network traffic during another run of the baseline

experiment. Eight hundred packets were collected and analyzed; the result indicating

the number of packets transferred from a particular source to a unique destination

is shown in Figure 5.5.

N
u
m
b
e
r
 o
f
Pa

ck
et

s

140 -

120 -

100 -

80 -

60 -

40 -

20 -

0—

a - N I F N

c Cl ej c.i cJ
o

CM t 0 0) 0) 0) 0) 0) 0 C)
c'J c oi

a
000 C) 0

0C 0, 0) 0) 0)

Source to Destination

0
0)

0
0

0

Figure 5.5: Source to Destination Network Analysis

The network analysis result shows that more than 140 packets were transferred

from grcO to grcL and about 120 packets vice-versa. grc2O is the host computer

where this baseline experiment was executed, and grcl4 is the computer running the

NFS server. A significant number of packets were also transferred from some com-

puters on the grc cluster to IF address 239.2.11.71. The Ganglia monitoring daemon

(also known as grnond) provides monitoring on a single cluster by sending and re-

5.3 Experimental Results 86

ceiving data on the multicast channel 239.2.11.71. This information suggests that

the network activity seen in the baseline experiment is caused by other applications

not related to the job.

Since the purpose of this experiment is to show the state of the host computer

when it is not running any job, therefore the result in Figures 5.3 and 5.4 would

serve as a reference point when describing the experimental results in this thesis.

5.3.2 Experiment 2: Memory-Intensive Job not Competing for System

Resources

The aim of this experiment is to see if the monitoring information gathered about

a job that uses memory resources on a computer could show that the job is not

experiencing competition from other tasks on the same computer.

In this experiment, the job was executed on a computer with about 2 Gigabytes

of unused physical memory space. The memory workload which demonstrates the

use of memory resources on a computer is used in this experiment.

Figures 5.6 and 5.7 show the monitoring information of the job on the computer

where it was executed. The monitoring information in Figure 5.6(a) shows that the

job received about 95-100% CPU processing time between 00:20:45 and 00:21:20.

After 00:21:20, the CPU utilization decreased suddenly to about 65% at 00:21:35.

Then, the CPU utilization decreased gradually to about 25% towards the completion

time of the job. Figure 5.6(b) shows that the physical memory used by the job

increased until 00:21:20, then it remained constant until the job was completed. The

figure also shows that the virtual memory used by the job was constant throughout

the life cycle of the job.

A huge number of minor and major page faults occurred during the execution

5.3 Experimental Results 87

34
Ra

te
 of

 hi
mr

 Fa
tt
s
(fa

ult
s!s

100

00

00

40

20

0
00:20,45 00:21:00 00,21:15 00:21:30 00:21:45 00:22:00 00:22:15 00:22:30 00:22:45 00:23,00 00:23:15

Systom Local Timo (hh.mmooj

2.00 00

20*00

000000

(a) CPU Utilization

Vlhuol MonlOy Unod by ,ho,ofIConpotI a r k —..--

Phy000 Monlory Unod by . 0orMomoryJob(21955) 2

0020:45 00:21:00 00:21:15 00:21:30 00:21:45 00:22:00 00:22:15 00:22:30 00:22:42 00:23:00 00:23:15

Systom Local Timo (h)1.mmssj

(b) Memory Usage

140000

120000

100000

00000

00000

40000

20000

0 ,k- .1 o
00:20:45 00:21:00 00:21:10 00:21:30 00:21:45 00:22,00 00:22:15 00:22:30

Systom Local ThIlo thh.n1n001
00:22:45

(c) Page Faulting

4000

3500

3000

2500

2000

1500

1000

500

0
00:23:00 00:23:15

Ra
te

 of
 Ma

jo
r F

aii
ts

(fa
ult

s/s

Figure 5.6: Memory-Intensive Job not Competing for System Resources

5.3 Experimental Results 88

I/O ActMty (hdo Disk Volomo)

300000

250000

200000

150000

100000

50000

300

250

200

180

100

5

0
00:20:45 00:21:00 00:21:15 00:21:30 00:21:45 00:22:00 00:22:10 00:22:30 00:22:45 00:23:00 00:23:15

System Local Time (hh.mrnss]

(a) Disk Input/Output Activity

Network Activity (otho)Ethornst) tntnrtses)

. :

/ I
0 . iii ' it &1 0

00:20:45 00:21:00 00:21:10 00:21:30 00:21:45 00:22:00 00:22:10

Syston, Lossi TIme (hh.mntosl

Poskois Reel
Packets Transmitted --+4--

Dots Received ... t*.-
Data Trenamittod a

0.12

0.1

0.06

0.06

0.04

0.02

140

120

100

.3 00

so

40

20

(b) Network Activity

NFS Client Activity

00:22:80 00:22:40 00:23:00 00:23:15

25

20

S

0 ..L.edIa"4
00:20:45 00:21:00 00:21:15 00:21:30 00:21:40 00:22:00 00:22:10 00:22:30 00:22:45 00:23:00 00:23:10

System Local Time (hh.mmso]

(c) Shared File System Activity

Figure 5.7: Memory-Intensive Job not Competing for System Resources

5.3 Experimental Results 89

of the job as shown in Figure 5.6(c). Minor page faults occurred at a higher rate

from 00:20:45 to 00:21:35 because the virtual memory pages are not mapped in the

physical memory. No major page fault occurred during this time since no page is

being copied from disk to the physical memory. The rate at which minor page faults

occurred decreased after 00:21:35 until the job was completed. This marks the end

of the first phase of the workload where random numbers are stored in an array of

integers. The second phase of the workload starts at about 00:21:35 with major page

faults.

Major page faults started at 00:21:35; it continued until the job was completed.

From 00:21:35 onwards, memory pages are being read and written to in the second

phase of the program starting with the first memory page. All the memory pages

that belong to the job can not be stored in the physical memory at the same time.

Therefore, stale memory pages are copied from the physical memory to disk, while the

memory pages needed by the job are brought into the physical memory. Therefore,

when the program makes an attempt to access the first page, the first page would

not be found in the physical memory, so it would be fetched from disk. This results

in a major page fault since the local disk is accessed when the fault occurred.

Figure 5.7(a) indicates that the local disk was not accessed at the beginning of

the first phase of the program i.e., from 00:20:45 to 00:21:20. The operating system

started writing memory pages to disk and reading memory pages from disk between

00:21:20 and 00:21:25. At this point, the physical memory is exhausted and memory

pages are being written to disk in order to create space for new memory pages.

Between 00:21:25 and 00:21:45 less data is being written but more data is being

read from disk per second. From 00:21:45 until the job was completed, about the

5.3 Experimental Results 90

same amount of data is being read and written to disk. This behaviour depicts the

second phase of the program where memory pages are being read and updated. In

the second phase, an old memory page is copied to disk in order to bring in the

needed memory page from disk into the physical memory.

Data was transmitted across the computer network through network interface

ethO. Figure 5.7(b) shows that the same amount of data is being transmitted and

received through the network interface. Similarly, about the same number of packets

is transmitted and received over the network interface. This behaviour is similar

to that observed in Figure 5.4(b) in the Baseline experiment. Therefore, this result

indicates that the job did not use network resources.

The result in Figure 5.7(c) shows there were a number of calls from the NFS

client on the host computer to the NFS server; about 24 bytes of data was written

by the NFS client per second. The amount of data written was constant, and the

number of client calls did not change much throughout the life cycle of the job.

The overall results show that the job received about 95% CPU time before the

physical memory was exhausted. The CPU utilization started to decrease after

the physical memory was exhausted at 00:21:20. The CPU utilization of the job

decreased because CPU time is being used to move memory pages to disk and vice-

versa. Hence, the job was spending more time in the blocked state while the memory

pages are being written to local disk volume.

The results in Figures 5.6 and 5.7 show that the job did not experience com-

petition for CPU, memory, and file system resources from other processes on the

computer. In addition, the monitoring information shows that the bottleneck for the

job is the physical memory. The computer has a physical memory of 2 Gigabytes

5.3 Experimental Results 91

and the job used about 1.9 Gigabytes of the physical memory. The decrease in CPU

processing time and the occurrence of major page faults when the physical memory

was exhausted confirms physical memory as the bottleneck.

Using this monitoring information, the user can submit his/her job to another

computer with more physical memory next time. The monitoring information ob-

tained for this experiment shows that there was little contention for computing re-

sources between the job and other tasks on the computer, but the physical memory

was a bottleneck.

5.3.3 Experiment 3: File I/O-Intensive Job (between Remote Volumes)

The objective of this experiment is to see if the monitoring information would reveal

that a job is performing file I/O operations on a remote volume through a shared

file system on a cluster of computers.

The workload used in this experiment is designed to make a copy of an existing

file into a new one on a shared file-system volume. The workload is described in detail

in Section 5.2.2. The job is submitted to a cluster of computers and the monitoring

information is considered in order to understand how the job behaved.

Figures 5.8 and 5.9 show the monitoring information of the job on the computer

where it was executed. The monitoring information in Figure 5.8(a) shows that the

job used about 10% CPU processing time when it was running on the computer.

The job used very little memory as shown in Figure 5.8(b). The page fault informa-

tion in Figure 5.8(c) shows a similar behaviour to the one observed in the baseline

experiment.

The disk I/O result in Figure 5.9(a) shows that a small amount of data was read

and written to disk throughout the lifetime of the job. Figure 5.9(b) shows that

5.3 Experimental Results 92

100

00

CO

40

20

0
00:10:00 00:17:00 00:10100 00:18:00 0020:00 00:21:00 00:22:00 00:23:00 00:24:00 00:25:00 00:26:00 00:27:00

System Local Tltsao (hh.mmas

Idle Sato --.5*--
Walt Stats

laJ0b(28472) 5*

=0tae0000wcnajcno=.a=.. 000\

r." .5*'9 0*. r-'- - v- 'q'n'Wr-'wv'yo'tv 'ws.k ø"-- Y -

000000

000000

700000

000000

5. 000000

R
a
e
o
f
I
r
 F
at

s
(fa

utt
s!s

400000

300000

200000

100000

3

2.

0.

0
00:16:00 00:17:00 00:10:00 00:19:00 00:20:00 00:21:00 00:22:00 00:23:00 00:24:00 00:25:00 00:20:00 00:27:00

System Local limo (hh.mmss]

(a) CPU Utilization

Virtual M0,aary LaOd by OIIora/ICotopo8ng T.tl,k
Phyatsat Motaary Uaad by Olhorsl/Con1potlng r0sk --.5*--

* Vlrteal Malsaty USod by IaJab(8472 --.5*--
/1 Phyaloal Mon1oryU84dbyloJ,b(28472.......

(b) Memory Usage

M1,OrFallts
Major Faults

1.5

.5 .5

00:10:00 00:17:00 00:18:00 00:10:00 00:20:00 00:21:00 00122100 00:23:00 00:24100 00:25:00 00:26:00 00:27:00

Syotom Local Time [hh.mrtsoo]

(c) Page Faulting

Figure 5.8: File I/O Job between Remote Volumes

Ra
eo
fM
*r
Fa
ts
(f
au
It
s!
s

5.3 Experimental Results 93

I/O Activity (hda 010k Votomo)

0000

4000

4000

3000

3000

2000

2003

1500

1000

500
- r4R4

0
00:10:00 00:17:00 00:10:00

350000

300000

200000

200000

150000

100000

00000

R -

00:10:00 00:20:00 0021:00 00:22:00 00:23:00 00:24:00 00:25:00 00:20:00 00:27:00

Syotom L080l limo (ish.mmooj

(a) Disk Input/Output Activity

Notwork Activity (otholEthornot] Interlace)

0 - tb
00:10:00 00:17:00 00:123:00 00:10:00 00:20:00 00:21:00 00:2500 00:23:00 00:24:00 00:25:00 00:20:00 00:27:00

Syatom Local 'limo lhh.n,meal

Packots Macloved t____
Packets Transmitted --4.--

Data Received --

Data Transmitted 0....-

3.,0

300

250

200 at

150

100

00000

80000

70000

00000

00000

'8 40000

30000

20000

10000

(b) Network Activity

NFS Client Activity

0 ...L 1 Ii.... I 1 r i tt I,t.; l l... I • ! I•
00:10:00 00:17:00 00:10:00 00:10:00 00:20:00 00:21:00 00:22:00 00:23:00 00:24:00 00:20:00 00:20:00 00:27:00

SyOtattt Least 'limo thh.mm.si

ContC&is —t—
Retransmitted Calls ---t*--

File A5000a •'-m'-
Data Road ci

Data Written

00000

50000

40000

30000

It

20000

10000

(c) Shared File System Activity

Figure 5.9: File I/O Job between Remote Volumes

5.3 Experimental Results 94

the network interface ethO was busy sending and receiving packets. Figure 5.9(c)

shows the information from the client side of the shared file system; it shows that a

huge amount of data was read and written to the shared file system volume. The

information in Figures 5.9(a), 5.9(b), and 5.9(c) show that data is being read

and written to the shared file system volume as the experiment progresses. Other

activities on the computer not related to the user's job is likely to have caused the

spikes in the disk I/O activity

The combined monitoring information gathered in this experiment indicates that

the job is likely to have caused the file I/O. It also shows that the file I/O occurred

on a remote volume through the network. The monitoring information from this ex-

periment shows that the shared file system could be a bottleneck in this experiment.

Hence, if the job is not completed at the expected time, the user can submit the job

to another computer with faster shared file system some other time. A busy shared

file system may cause the job not to be completed on time. In this case, the user

may choose to submit his/her job to the same computer at a later time when the

shared file system is less busy.

5.3.4 Experiment 4: A File I/O Job Competing for Resources with

Memory-Intensive Task

The goal of this experiment is to determine if the monitoring information would

show the user that his/her job is competing for resources with other tasks on the

same computer. Also, to see if the monitoring information could show what re-

sources are being competed for, when the competition happened, and the effect of

the competition on the user's job.

In this experiment the user's job is the file I/O workload and the competing task

5.3 Experimental Results 95

is the memory workload described in Section 5.2.2. The file I/O activity took place

on a remote volume through the NFS. The job was executed on one of the computers

in the grc cluster and allowed to run for about 2 minutes before the competing task

was started on the same computer. Figures 5.10 and 5.11 show the results obtained

in this experiment.

The CPU information in Figure 5.10(a) is similar to the one obtained for Experi-

ment 3. The information indicates that the job is not CPU-intensive. Figure 5.10(b)

shows that the physical memory and the virtual memory used by the job were con-

stant throughout the life cycle of the job. But the virtual and physical memory

used by other tasks on the computer increased between 01:51:00 and 01:54:00. The

monitoring information shows that there were some tasks (external to the user's job)

that caused the increase in virtual and physical memory. At that point there is com-

petition for memory on the computer where the job was executed. The page fault

information in Figure 5.10(c) shows that minor and major page faults occurred at

about the time when the job started and finished. This information is related to the

user's job and not the competing task(s). The disk volume I/O activity information

in Figure 5.11(a), the network activity information in Figure 5.11(b), and the shared

file system information in Figure 5.11(c) shows that there was increase in activity

on the computer between 01:51:00 and 01:54:00.

The monitoring information generated from this experiment shows that the job

experienced competition for system resources including memory, disk I/O, network

bandwidth, and shared file system volume. The monitoring information also showed

when the competition occurred on the host computer. Using this information, the

user may choose to submit his/her job to this computer some other time depending

5.3 Experimental Results 96

Ra
ie

 of
 c

no
rF

at
il

s(
fa

us
/s

100

50

60

40

20

0

Watt Stats ---ta--
lOJOb(763) to

0....0....0

V
01:40:00

30+00

2,00*00

20*00

1.00*06

10+06

000000

45

40

35

30

25

20

15

10

5

0
01:40:00

0150:00 01:51:00 01:52:00 01:53:00 01:54:00

Syatom Local Tints [hhrnmso]

(a) CPU Utilization

01:55:00 01:50:00 01:57:00

Vltuut Motoory ö50d by Othor,//Coopotlng 1:..k — t---
ivmu -Momo,v Usod by Othora/IOompotlfl Took --45--

I Virtual Mot60ry U0Od by lojobl?83 ... Momory Usod by lojob(703

0 ------------- ----- ----------------"--
01:40:00 01:50:00 01:01:00 01:52:00 01:53:00 01 :5 01:55:00 4:00 01:55:00 01:57:00

Systom Local TIme (hh.mmssl

(b) Memory Usage

T

01:50:00 01:51:00 01:55:00 01:56:00 01:52:00 01:53:00 01:54:00

System Local Tlnoo [hh.mmsn]

(c) Page Faulting

Minor Fulto t..
Molar Faults --.04--

12

10

2

0
01:57:00

Ra
te

 of
 Ma

jo
r F

aat
ts

((a
ult

als

Figure 5.10: A File I/O Job Competing with Memory-Intensive Task

5.3 Experimental Results 97

1/0 Activity (kid, Dick Vol—)

250000

200000

150000

16
a

100000

R
e
o
P
a
e
t
s
(
p
c

50000

0 0' '4' 4' ''M'V -- l— I '' ' 0 '

01:40:00 01:00:00 01:51:00 01:52:00 01:53:00 01:54:00 01:05:00 01:50:00 01:07:00

Syetom Local Timo Lhh.mnlecl

000000

000000

400000

300000

200000

100000

(a) Disk Input/Output Activity

Network Activity (etho(Etbornot) Interface)

Phekote Real ed 4.
Packets TransmUted P*..

Data Received Data

Tntttstltitted m -

000

450

400

360

300

250

200

150

100

- 00

0 ' ' 4 I 4 ' 4 ' ', - ' t ' 0
01:40:00 01:60:00 01:51:00 01:52:00 01:03:00 01:04:00 01:66:00 01:50:00 01:57:00

6yetettt Lead 11516 lhh,tnmssl

(b) Network Activity

NFS Client Activity

120000

100000

00000

60000

40000

20000

Client Coos —'4--
Rotrancmlitcd Ccitt --94--

Fiio A00000
Data Road

Data Written ------ :

60000

70000

00000

50000 '46'

40000

30000

20000

10000

0 c .-n.A,-,1...ta II I. 04)*tfl: ,";- l. ott ,j4494'(pt.,54 0
01:40:00 01:50:00 01:51:00 01:62:00 01:53:00 01:54:00 01:55:00 01:00:00 01:07:00

Syctcttt 1.6001 Tima (hh,mmca]

(c) Shared File System Activity

Figure 5.11: A File I/O Job Competing with Memory-Intensive Task

5.3 Experimental Results 98

on the effect of the competition on the user's job.

5.3.5 Experiment 5: File I/O-Intensive Job (between Local Volumes)

The aim of this experiment is to see if the monitoring information would reveal that

the file I/O operations performed by a job are happening on a local disk volume,

and not through a shared file system.

The workload used in this experiment is the same as the one used in Experiment

3. The only difference between this experiment and Experiment 3 is that the file

I/O activity took place on the local disk volume in this experiment.

Figures 5.12 and 5.13 show the monitoring information collected about the job

using the Wrapper method. The CPU utilization, memory usage, and page fault

information in Figures 5.12(a), 5.12(b), and 5.12(c) respectively are similar to the

ones in Experiment 3.

The disk I/O result in Figure 5.13(a) shows that about the same amount of data

was read from disk and written to the local disk volume per second in this experiment.

The pattern of file I/O activity observed in this experiment indicates that the file

I/O activity happened on the local disk volume. That is, a certain amount of data

is read from disk during a read operation, and the same amount of data is written

to disk during the next write operation.

Figure 5.13(b) and Figure 5.4(b) (in the baseline experiment) look similar on the

same scale; this indicates that the job used very little network resources on the host

computer. Figure 5.13(c) is also similar to Figure 5.4(c) (in the baseline experiment);

this is an indication that the job did not use the shared file system. Very little data

is written to the shared file system compared to the result in Figure 5.9(c). This

suggests that the little amount of data written to the shared file system may be

5.3 Experimental Results 99

100

80

80

$

40

20

0
11:02:00 11:03:00 11:04:00 11:05:00 11:00:00 11:07:00 11:08:00 11:09:00 11:10:00 11:11:00 11,12:00

Systorri Local Time [hh.mmss]

000000

900000

700000

000000

000000

400000

800000

200000

100000

0.8

1 0.0

2

0.4

13

0.2

(a) CPU Utilization

- 1111111 III ill

• Virtual Moo1oy Ucod by biho,sIICotipotlng Tosil — I--
Physical Mar80 lr Uood byrnorOt yhors/UsodfCoo, n

Vt.ml Mo by I b 8208 • r8-.
P. Ph 01851 Moms: Us.. b I 88 Cl

lllrrllrllrrirui-,_l:14-l:ll:ll:llullll:r:lllil ri trill::

102:00 11:03:00 11:04:00 11:03:00 11:00:00 11:07:00 11:00:00 11:09:00 11:10:00 11:11:00 11:12:00
System Local limo [hh.mmss]

(b) Memory Usage

Minor Fouit. — I—
Major F nulls . 9+

0 .. - r- t.r 0
11:02:00 11:03:00 11:04:00 11:05:00 11:00:00 11:07:00 11:00:00 11:09:00 11:10:00 lllll:00 11:12:00

Systom Local Ttn,o [hh.mmss]

0.8

0.0

0.4

0.2

(c) Page Faulting

Figure 5.12: File I/O Job between Local Volumes

Ra
le

of
Ma

io
rF

at
s(

fa
uT

ts
!s

5.3 Experimental Results 100

I/O Activity (hda Dick Volume)

250000

200000

100000

100000

50000

300

300

200

200

160

100

00

\
0

11:02:00 11:03:00 11:04:00 11:05:00 11:00:00 11:07:00 11:00:00 11:00:00 11:10:00

System Local Time Lhh.mmcs

(a) Disk Input/Output Activity

Network Activity (oth0(Etharnot) Interface)

Road — t--
Writtofl --9+--

11:11:00 11:12:00

pactto6 flaoio a —t--
Packoto Transmitted --44--

Data R000vo
Data Tranatcitto. 0....

tb
0.12

0.1

0.06

0.00

0.04

0.02

0 . mmmrm 0
11:02:00 11:02:00 11:04:00 11:05:00 11:00:00 11:07:00 11:00:00 11:09:00 11:10:00 11 11:00 11:12:00

System Laeai limo (hh.01m5a)

lao

100

140

120

100

00

00

40

20

(b) Network Activity

NFS ciioflt Activity

Data Road
Data Wri0an

25

20

5

0 .__..v 50 Q5S? 0..I/.2 4.≥ccc4O..._..__.._ 0

11:02:00 11:03:00 11:04:00 11:05:00 11:00:00 11:07:00 11:00:00 11:00:00 11:10:00 11:11:00 11:12:00

System Local Timo (0t1.mmss)

(c) Shared File System Activity

Figure 5.13: File I/O Job between Local Volumes

19

5.3 Experimental Results 101

caused by other tasks on the host computer.

The information in Figures 5.13(a), 5.13(b), and 5.13(c) suggests that the job

is likely to be responsible for the file I/O activity on the computer. It also shows

that the file I/O happened on a local disk volume. In addition, the information

in Figures 5.12(a), 5.12(b), and 5.12(c) indicate that the job in this experiment

is likely to be a file I/O job. The combined monitoring information highlights the

bottleneck of the job on the computer to be the local disk I/O. This job used the

same workload as in Experiment 3, but the file I/O happened on a remote volume.

With this information, the user may modify his job to use a remote volume next

time because disk I/O is faster on the remote volume than the local disk volume on

this cluster of computers.

5.3.6 Experiment 6: File I/O-Intensive Job (from Remote Volume to

Local Volume)

The aim of this experiment is to see if the monitoring information would show the

user that the file I/O activity performed by a job occurred between a remote disk

volume and a local disk volume.

The workload used in this experiment is the same as the one used in Experiments

3 and 5. The difference between this experiment, Experiment 3, and Experiment 8

is that the file I/O activity took place between NFS and a local disk volume in this

experiment.

The monitoring information collected in this experiment is shown in Figures 5.14

and 5.15. The CPU utilization, memory usage, and page fault information in Fig-

ures 5.14(a), 5.14(b), and 5.14(c) respectively are similar to the results in Experi-

ments 3 and 5.

5.3 Experimental Results 102

100

1db State --+0--
Walt State --- to-'.

IoJob(10100) D

80

60

40

20

dOE 0Ol

0
11:24:00 11:20:00 11:28,00 11:27:00 11:20:00 11:29:00 1150:00 11:31:00 11:3'4:00 11:33:00

Syotom Local Time (hh.n1m00]

(a) CPU Utilization

Ra
te

or
Fa
is
(f
au
s/
s

000000

000000

700000

000000

000000

400000

300000

200000

100000

Vlrfltal F1amory Uaadby Ô:horo//dontpo:bn Taak .—t—
Phyaboab Momary Uoad by Olhora//Compotin Teak --40--

Virtoal Memory Uaod by lajob(T0100) . ta...
Phyalcal Mommy U.adbylo,tab(iO100) - Q-..- -

11:24:00 11:20:00 11:20:00 11:27:00 11:20:00 11:29:00 11:30:00 11:31:00 11:32:00 11:89:00
Syotom Local Time (hh.mmss]

(b) Memory Usage

Mbno Fe It
Major F-11.

0.0

0.0

0.4

0.2

0 it 't t.'c.Jr a 1, 46 t o.a-',00'-.* a? - 0
11:24:00 11:25:00 11:20:00 11:27:00 11:20:00 11:20:00 11:30:00 11:31:00 11:32:00 11:33:00

Syolom Local Timo (hh.tomao]

(c) Page Faulting

Figure 5.14: File I/O Job (Remote Volume to Local Volume)

Ra
te
 oM

ao
rF

at
1t

s(
fa

uI
ts

!s

5.3 Experimental Results 103

I/O Activity (Ode Dick Volemo)

250000

200000

150000

100000

00000

11:24:00 11:25:00 11:20:00 11:27:00 11:26:00 11:20:00 11:30:00 11:31:00 11:32:00 11:33:00

Syoton1 Local Tirco (hh.mrnes

140000

120000

100000

80000

00000

40000

20000

(a) Disk Input/Output Activity

Network Activity (otho[Ethcrnot] interlace)

1IN

Reciovjd — I--
Packets Transmitted --9+--

Data Received • 0;..'
Data Transmitted o.... : 180

- 100

200

2 140

- 120

100

- 00

0 60

- 40

- 20

 0
11:24:00 1125:00 11120:00 11127100 11:28:00 1129100 11:30:00 11:31:00 11:32:00 11:33:00

System L000i Time [hh.mmccj

25000

(b) Network Activity

NIZS Client Activity

11:24:00 11:25:00 11:20:00 11:27:00 11:26:00 11:20:00 11:30:00

Syntntn Local Timo lhh.mmeel

Cilont Celia -.---
Retransmitted Caiis - 4*-

File Access •..ne..
Data Road .0

beta Written -.---.-

(c) Shared File System Activity

25000

20000

10000

I
10000

0000

Figure 5.15: File I/O Job (Remote Volume to Local Volume)

5.3 Experimental Results 104

The disk I/O activity in Figure 5.15(a) shows that an average of 125 MBytes of

data was written to the local disk volume per second, but very little data is read

from the local disk volume. Figure 5.15(b) shows that the network interface ethO on

the host computer was busy throughout the experiment. About 140 bytes of data

is received on the network interface, but very little data is sent through the same

interface. The shared file system activity in Figure 5.15(c) shows that data was read

through the file system, but no data was written through it. The information from

Figures 5.15(a), 5.15(b), and 5.15(c) confirms that both the local disk volume and

the shared file system are involved in the file I/O activity.

The monitoring information considered in this experiment shows that the job

is likely to be the cause of the file I/O activity. It also shows that the file I/O

activity occurred between a shared file system volume and a local disk volume. The

information further shows that the file I/O activity involves reading data from a

shared file system volume and writing data to a local disk volume.

The monitoring information indicates the NFS and the local disk as bottlenecks

for this job. If the user is not satisfied with the performance of the job, the user may

modify his/her job to use a shared file system for the file I/O activity.

5.3.7 Experiment 7: File I/O-Intensive Job (from Local Volume to Re-

mote Volume)

The purpose of this experiment is to determine whether the monitoring information

would detect file I/O activity between NFS and a local disk volume. Also, to see if

the monitoring information would show the source and the destination of the data.

The workload used in this experiment is the same as the one used in Experiment

6. The only difference is that data is read from a local disk volume and written to

5.3 Experimental Results 105

a shared file system volume in this experiment.

The monitoring information collected in this experiment is shown in Figures 5.16

and 5.17. The CPU utilization, memory usage, and page fault information in

Figures 5.16(a), 5.16(b), and 5.16(c) respectively are similar to the results observed

in Experiments 3, 5, and 6.

The disk I/O result in Figure 5.17(a) shows that data is read from the local disk,

but very little data is written to the local disk. This result is the opposite of that

observed in Figure 5.15(a) in Experiment 6. This result suggests that the local disk

volume is used in this experiment. Figure 5.17(b) shows that the network was busy

throughout the experiment; this is an indication that the shared file system may be

involved in this file I/O activity like in Experiment 6. The result in Figure 5.17(c)

shows that a significant amount of data is written to the shared file system but very

little data is read from it.

The plots in Figures 5.17(a), 5.17(b), and 5.17(c) are similar. The combined

results indicate that data is read from the local disk volume and written to the shared

file system. The monitoring information shows that the job is likely to be responsible

for the file I/O activity, which involves reading data from a local disk volume and

writing the data to a remote disk volume through the shared file system.

This result shows that the bottlenecks for the job are the shared file system and

the local disk. In order to improve the performance of the job, the user may modify

his job do the file I/O on a remote volume through a shared file system.

5.3.8 Experiment 8: A Job Competing with a Memory-Intensive Task

The goal of this experiment is to determine if the monitoring information can show a

user that his/her job experienced competition for computing resources with another

5.3 Experimental Results 106

20

ff

I

Ra
te
 cO

rr
Fa
ti
ts
(f
au
It
s!
s)

100

80

a

v.--..o ---- -4'-.-----------0 ---------------- ---
tto —+-.--

1010 Stato -t*
Walt Stats .- 0...

IoJob(11052) 0

0............0............ 0 0 0 0 o.........0

.4 4'. .4 • _'v'4' 1' '4'' .4' 'v

 0•-

.4' .4'' •.4'
11:30:30 11:40:00 11:40:30 11:41:00 11:41:30 11:42:00 11:42:30 11:43:00 11:43:30 11:44:00

Systom Local Time [hh.mmss]

000000

000000

700000

000000

500000

400000

000000

200000

100000

0.6

0.0

0.4

0.2

0
11,38:00 11:40:00 11:40:00 11141:00 11:41:30 11:42:00 11,42:00 11:43:00 11:43:30 11144:00

System Local Time (hh.mmssj

(a) CPU Utilization

Vlrt2ai tjiornory Uoodby Othora//doopotlng Taok
PhysIcal M000ry Usod by Olhors//coapotlng Tack -- to--

Vlrteat Mantory Used by IcJdM.11552> ----'

- PhysIcal Mon cry Us04.by1bJ0bCM52) a

 .,44't,osc,,. no+H44' -44.- .. 4......'44.4f. f..,...,44' 4'f....•_. .44.-.. ..$4. a is

(b) Memory Usage

Mm FUt
Major Faults--to--

0.8

0.0

0.4

0.2

0 ' I4t ..t ' 4 - • 181..* a 4 0'' '4 04' 0' 44' 44 0
11:00:30 11:40:00 11:40:30 11:4100 11:41:30 11:42:00 11:42:30 11:43:00 11:43:30 11:44:00

System Local Time [hh.mmso]

()
c gae
P

gFautl
in

5.3 Experimental Results 107

I/O Activity (hdc Diet. Voluc.o)

1.4O-08

1.20*00

10*00

800000

18
a

600000

400000

200000

e
o
P
a
t
k
e
1
s
s
)

0
11:30:30 11:40:00 11:40:30 11:41:00 11:41:30 11:42:00 11:42:30 11:43:00 11:43:30 11:44:00

Syotom Local Titelo [hh.mmss]

(a) Disk Input/Output Activity

Notwork Activity (otholEthornotj Interface)

10*00

000000

000000

700000

800000

000000

400000

300000

200000

100000

11:43:00 11:43:30 1'39:30 11:40:00 11:40:30 11:41:00 11:41:30 11:42:00 11:42:30

System Local Tints Lhh.n,mesl

(b) Network Activity

NI'S Ciiont Activity

180000

160000

140000

120000

100000

80000

80000

40000

20000

1400

1200

1000

800

800

400

200

180000

160000

140000

120000

100000

80000

60000

40000

20000

0 N *' • N * d.N SI N •N N N N 0
11:30:30 11:40:00 11:40:30 11:41:00 11:41:30 11:42:00 11:42:30 11:43:00 11:43:30 1144:00

Systom Leach TInts (hh.m,eccl

(c) Shared File System Activity

Figure 5.17: File I/O Job (Local Volume to Remote Volume)

5.3 Experimental Results 108

task on the same computer. Also, to identify the bottlenecks for the job, and how

the performance of the job can be improved.

The design of this experiment is similar to that of Experiment 4; the difference

is that here the competing task starts ahead of the job, and the competing task is a

memory workload program. The competing task is started on the computer where

the job was scheduled to run. The job is submitted at the point when the competing

task has run long enough to use more than 50% of the available physical memory on

the computer. Figures 5.18 and 5.19 show the results obtained in this experiment.

Figure 5.18(a) shows that the job received less than 50% CPU processing time at

the beginning of the experiment. Comparing Figure 5.18(a) with Figure 5.6(a) (in

Experiment 2) shows that the job in this experiment received 50% CPU processing

time compared to the same job in Experiment 2. This result indicates that there

is strong competition for CPU processing time between this job and some other

competing tasks on the computer.

It can be observed in Figure 5.18(b) that the amount of physical memory used

by both the job and the competing task increased between 23:00:00 and 23:00:20.

Then, the physical memory used by the competing task decreased, while the physical

memory used by the job increased until 23:00:40. At about 23:00:45, both the job

and the competing task were using about the same amount of physical memory.

This trend continued until 23:01:25 when the competing task disappeared. A close

observation shows that the disappearance was due to the termination of the job and

the competing task by the operating system.

The page fault information in Figure 5.18(c) shows that the job started with

some minor page faults then some major page faults at a point where the job and

5.3 Experimental Results 109

20

Ra
te
 o
rF
at
s(
la
u1
s!
s

100

00

0
23:00:00 23:00:10 23:00:20 23:00:3023:00:40 23:00:00 23:01:00 23:01:1023:01:2023:01:3023:01:4023:01:5023:02:0023:02:10

Syotom Local Timo (hh.nlnlso]

w.
Walt Stoto --- to-.

UoerMomoryJob(30037) C

3.50+00

30*00

2.00+06

20+06

1.00+06

10*06

500000

70000

00000

50000

40000

30000

20000

10000

(a) CPU Utilization

v12301Mooloryuood byOlh tith a,p ii aT 0
Fl. ... l U...,U by Olhont//Compotlfl Took 4+

lrtual Memory Ultotby aoorMotooryjob(30037) ..
PhyolOol Memory Uoodly 000rMomory.Job(30637)0

Syotom Local limo (hh.mmooj

(b) Memory Usage

9

2

o k ,.•,. A. . 0
23:00:0023:•O:•'023:'000:20'23:00:3023:00:4•3:00:W 3:01:0023:01:1023:01:2023:01:3023:01:4023:01:5023:02:0023:02:10

Syotom Local Time thh.nlnloo]

(c) Page Faulting

Figure 5.18: A Memory Workload Job Competing with Memory-Intensive Task

5.3 Experimental Results 110

I/O Activity (hdo Disk Voleoto)
450000

400000

350000

300000

250000

200000

150000

100000

50000

300

250

20

150

100

00

- j ' S. -

0 5
23:00:0023:00:1023:00:2023:00:3023:00:4023:00:0023:01:0023:01 :1023:01:2023:01:3023:01:4023:01:0023:02:0023:02:10

Syston1 Local Tinlo [hh.mmsc]

Rood — I---

Wrltton --4+--

(a) Disk Input/Output Activity

Notwo,k Activity (otho)Ethornot) intorlco)

• Pe)tkots Ro'ciovod .— t----

Pack..Tr. _,".cl --++-
Data - . . cod " 5--

Data T ... i"ad C

0.12

0.1

- 0.06

- 0.06

- 0.04

- 0.02

0 . . - - - . .. 0
23:00:0023:00:1023:00:2023:00:3023:00:4023:00:502 :01:0023:01:1023:01:2C23:01:3023:01:4023:01:8023:02:0023:02:10

8y616n1 Local flr50 lhh.nto,soj

(b) Network Activity

NI'S Ciiont Activity
100

160

140

120

100

00

00

40

20

25

20

15

10

5

0 -_ ot -- +''I •-'o.-U - ----a- - --- - --oi-'-- -s- ------------- - 0
23:00:0023:00:1023:co:2023:00:3023:00:4023:00:5023:01 :0023:01:1023:01:2023:01:3023:01:4023:010023:02:0023:02:10

Systonl Local riots (hh.,ttmsol

(c) Shared File System Activity

Figure 5.19: A Memory Workload Job Competing with Memory-Intensive Task

5.4 Validation 111

competing task were using the same amount of physical memory. The result shows

that the number of faults per second is about half of what was observed in Experiment

2. This information indicates that there are tasks competing with the job on the

computer. As a result, there is a strong competition for the physical memory on the

computer.

Figure 5.19(a) shows that more data is written to disk and less data is read from

disk compared to Figure 5.7(a) (in Experiment 2). There is no much difference in

the network activity in this Experiment compared to that observed in Experiment 2

except the pattern; the same applies to the shared file system activity.

In this experiment, the monitoring information shows that there was an existing

task competing with the job on the same computer. The monitoring information

shows the competition and indicates that the job was not getting enough physical

memory. It also showed that the job did not finish successfully.

The monitoring information generated from this experiment shows that the bot-

tleneck for the job is physical memory. Identifying this bottleneck would help the

user to make a decision on improving the performance of this job. In this situation,

the user can submit the job to the same computer at a later time or submit the

job to another computer with more physical memory resources. If these options do

not help, the user may discuss the issue with the system administrator based on the

monitoring information.

5.4 Validation

Most of the monitoring information reported in this thesis are retrieved from the

ps (process status) utility tool except the page faults information. The page fault

5.5 Summary 112

information is retrieved from proc (Process Information Pseudo-Filesystem) on UNIX

operating system. The ps tool gets its results from proc; hence, all the information

reported in this thesis are indirectly from proc.

UNIX tools like vmstat, free, top, and sar (a UNIX tool for collecting, reporting,

and saving system activity information) could be used for validating the information

reported by the monitoring tool developed in this thesis. The afore-mentioned tools

also get their information from proc on a Linux system. In tests, the information

reported using these tools is the same as that collected with the Wrapper based

monitoring tool.

5.5 Summary

In this chapter, eight experiments were carried out to show how the monitoring

information generated using the Wrapper method can help users to identify the bot-

tlenecks to their jobs in grid computing environment.

The experiments were designed to show different aspects of a system including

CPU utilization, memory usage, disk I/O, shared file system, and network. The

monitoring tool was able to provide information about how the submitted jobs in-

teracted with other processes on the system. The monitoring information from the

experiments also showed how the use of one shared system resource is related to

others. This was demonstrated in the network traffic and file system results.

The monitoring information shows if a job experienced competition for system

resources, when the competition occurred, and how the competition affected the

behaviour of the job. The monitoring information shows if a job is file I/O or

memory-intensive. For file I/O intensive jobs, it shows the disk volume(s) where the

5.5 Summary 113

data is read from and written onto.

In addition, the monitoring information showed that memory, local disk I/O, and

shared file system can be bottlenecks to the performance of a job. Suggestions were

made on how to improve the performance of jobs affected by these bottlenecks.

Chapter 6

Conclusion

This chapter summarizes the research work done for this thesis. The contributions

of this thesis work are highlighted. It also provides suggestions of future research

directions building upon this thesis work.

6.1 Thesis Summary

In a grid environment, a user does not know what is happening to a job when it is

running on a computer. Monitoring jobs become essential so that users can see if

their jobs have bottlenecks, and make decisions on how to improve the performance

of their jobs.

There are various tools for monitoring the performance of grid infrastructure and

grid applications. The tools give accurate information on basic system configuration,

memory, and CPU usage statistics; but they do not give information about individ-

ual jobs. Recent tools that report on behavioural aspects of jobs have done so in

cumbersome manners.

In this thesis, a technique for monitoring jobs in grid computing environment

known as Wrapper method is designed, and a tool that implements the Wrapper

method is also developed. The technique is called Wrapper method because a script

called Wrapper script is used to monitor jobs. The Wrapper script monitors a job

on whatever computer the job is scheduled to run. How the Wrapper method works

is described in detail in Chapter 4.

114

6.1 Thesis Summary 115

The Wrapper method was implemented by developing a monitoring tool. The

monitoring tool monitors a job on a computer and generates monitoring data on the

performance of the job. A graphing tool is also developed to convert monitoring

data into meaningful monitoring information. The monitoring information includes

CPU utilization, memory usage, disk Input/Output, shared file system, and network

information. The monitoring information is presented in time-series format in order

to show the complete life cycle of a job. Chapter 4 describes how the Wrapper method

is implemented in this thesis.

Eight experiments were conducted in this thesis to validate the job monitoring

capabilities of the Wrapper method. The experiments were designed in such a way

that they show how information from the monitoring system would help users to

understand the behaviour of their jobs on a computer. In addition, suggestions were

made on how to improve the performance of a job in each scenario.

In each experiment the Wrapper script is submitted, and it starts the user's job

on a computer. The Wrapper script also starts the tool that monitors the job on

the computer. The monitoring tool retrieves monitoring data about the job from

the computer where the job is running. When the job is completed, the monitoring

data is transformed into meaningful monitoring information by the graphing tool.

Two computing tasks were used as workloads in the experiments conducted in

this thesis work. The tasks are computer programs that are designed to run on a

computer. The first program uses a large amount of physical memory on a computer.

The second program does file I/O using local disk, network, and shared file system

resources. The first program is called memory workload and the second program is

called file I/O workload. The workloads are described in detail in Chapter 5 of this

6.1 Thesis Summary 116

thesis.

Each workload has two programs: the job and the competing task. The Wrapper

script starts the job, and the competing task is started on the computer by the

user. The job and the competing task used the same computer program, so neither

the job nor the competing task had an undue advantage over each other. In some

experiments, a computing task that uses a large amount of system resources is started

on the same computer where the job is running in order to introduce competition

for system resources.

The experiments were designed to show different aspects of a system including

CPU utilization, memory usage, disk I/O, file system, and network. The monitoring

tool provided information on how the submitted jobs interacted with other tasks on

the computer. The monitoring information helped in understanding what happened

to jobs on a computer under different scenarios. Users would be able to answer some

questions about their jobs by looking at the monitoring information. For example,

did their job get an expected amount of CPU utilization, did their job get enough

memory resources, did their job use disk I/O effectively, did a task or tasks compete

with their job for shared resources like network bandwidth and shared disk volume;

if there is competition for resources, when did it happen and what is the impact on

the user's job.

The monitoring information would help users to identify the bottlenecks to their

job on a particular computer; this in turn would help them in making a decision on

how to improve the performance of their job. For example, if physical memory is the

bottleneck for a particular job, the user may choose to submit the job to another

computer with more physical memory resources; or the user may submit his/her job

6.2 Contributions 117

to the same computer at a later time if the memory shortage was due to a competing

task on the computer. In a situation where a job did not complete on time due to

lots of disk I/O activity, the user may modify his/her job to use another shared file

system. In a case where a shared file system is slow, the user may submit his/her job

at a later time when the shared file system is less busy, or submit the job to another

system with a faster shared file system.

The monitoring information can also help users to know what modification to

make to their jobs so they can get a better performance on a particular computer

in the future. The user might ask the grid computing site administrator what was

happening on a particular system at a particular time.

6.2 Contributions

The following are the contributions of this thesis work:

- This thesis work provides a survey of the existing grid monitoring tools and

methodologies; it analyzes them from job monitoring perspective. The survey

identified their short comings and paved way for this research.

- Designed Wrapper method technique, for monitoring jobs in grid computing

environments; this technique uses a simple script to monitor individual jobs in

a shared-memory computing environment.

- Implemented the Wrapper method by developing a monitoring tool; the mon-

itoring tool monitors a job on a computer and collects monitoring data about

the job. A graphing tool is also implemented as part of this thesis work; the

6.3 Future Work 118

graphing tool converts monitoring data into meaningful monitoring informa-

tion.

- Series of experiments were carried out in this thesis to validate the job mon-

itoring capabilities of the Wrapper method. The results show that memory,

local disk I/O, network, and shared file system can be bottlenecks to the per-

formance of a job. Suggestions were made on how to improve the performance

of jobs affected by these bottlenecks.

6.3 Future Work

Several directions remain open for further research in the area of monitoring jobs in

grid computing environments. This thesis focused on monitoring jobs on a computer

in a shared-memory environment. It would be useful to improve on the Wrapper

method so it could monitor jobs running on parallel computers in a distributed-

memory environment.

A distributed-memory environment refers to a multi-processor computer envi-

ronment where an individual processor can only address part of the total address

space. The processes in such an environment coordinate their computations and

share data by sending/receiving messages over the network. Jobs that are designed

to take advantage of parallelism can execute faster than their sequential counter-

parts. Although, there are two sources of overhead: it takes time to construct and

send a message from one processor to another, and a receiving processor must be

interrupted in order to deal with messages from other processors [20].

The challenge of monitoring a distributed-memory parallel job using the Wrapper

method is due to the fact that a scheduler does not know how a parallel job is started.

6.3 Future Work 119

Therefore, the monitoring tool will lose track of some processes that belong to the

job since it does not know how to relate the processes to the job. It is possible

to know the hosts on which the processes associated with a parallel job are being

executed, but it is difficult to know exactly what processes belong to the parallel

job in a situation where the user has other processes running on the same computer

at the same time. Considering the benefits of parallel jobs in distributed-memory

environment, it would be beneficial to extend the Wrapper method to monitor such

jobs.

A "post-mortem" approach is used in presenting the monitoring information to

users in this thesis. In this implementation, a user would know what happened to

his/her job after it is completed. That is, a user cannot have access to the monitoring

information until the job is finished. Some users may prefer to see the way their job

is performing in real time, so they could notify the system administrator if their

job is not doing well on a computer. Hence, it would be very helpful to extend the

current implementation to show the behaviour of jobs in real time.

The current implementation of the Wrapper method retrieves monitoring data

from the proc file system on Linux operating system. The proc file system is not

portable across all operating system platforms. In addition, the structure of proc

directory and the layout of data in some proc files are different from one variant of

UNIX to another. Therefore, the future work would be to make the Wrapper method

portable.

Finally, research should be carried out on automated analysis of monitoring data.

This could detect when a problem has been encountered and inform the user. It

could also make the monitoring information more accessible to non-expert users. In

6.3 Future Work 120

addition, the results of the automated analysis could be used for performance tuning

and analysis.

Bibliography

[1] A. Au, A. Anjum, J. Bunn, R. Cavanaugh, F. Van Lingen, R. Mcclatchey, H.

Newman, W. Rehman, C. Steenberg, M. Thomas, and I. Willers. Job Monitor-

ing in an Interactive Grid Analysis Environment. In Proceedings of Computing

in High Energy and Nuclear Physics (CHEP O), Interlaken, Switzerland, Sep

2004.

[2] A. Natrajan and MY Walker. Monitoring Remote Jobs in a Grid System, Nov

2005. (Unpublished).

[3] A. Puliafito, 0. Tomarchio, and L. Vita. MAP: Design and Implementation

of a Mobile Agent Platform. Journal of System Architecture, 46(2):145-162,

2000.

[4] A. S Grimshaw and W. A Wulf. The Legion Vision of a Worldwide Virtual

Computer. Communications of the ACM, 40(1), Jan 1997.

[5] A. Abbas. Grid Computing Technology - An Overview. Charles River Media,

2003.

[6] A. Abbas. Grids in Telecommunications Sector. In D. Pallai, editor, Grid

Computing: A Practical Guide to Technology and Applications, chapter 19,

pages 365-372. Charles River Media, 2004.

[7] A. Ali, A. Anjum, J. Bunn, R. Cavanaugh, F. van Lingen, R. McClatchey,

H. Newman, W. Rehman, C. Steenberg, M. Thomas, and I. Willers. Job mon-

itoring in an interactive grid analysis environment. In Proceedings of Com-

121

122

puting in High Energy and Nuclear Physics (CHEF) conference, Interlaken,

Switzerland, 2004.

[8] B. Balis, M. Bubak, W. Funika, T. Szepieniec, R. Wismuller, and M. Radecki.

Monitoring Grid Applications with Grid-Enabled OMIS Monitor. In Proceed-

ings of the European Across Grids Conference, pages 230-239, Santiago de

Compostela, Spain, Feb 2004.

[9] B. Bartosz, M. Bubak, W Funika, R. Wismuller, M. Radecki, T. Szepieniec,

T. Arodz, and T. M. Kurdziel. Grid Environment for On-Line Application

Monitoring and Performance Analysis. Scientific Programming, 12(4):239-264,

2004.

[10] B. Tierney, B. Crowley, D. Gunter, M. Holding, J. Lee, and M. Thompson. A

Monitoring Sensor Management System for Grid Environments. In Proceedings

of the Ninth IEEE International Symposium on High Performance Distributed

Computing (HPDC'OO), pages 97-104, Pittsburgh, Pennsylvania, USA, Aug

2000.

[11] B. Tierney, D. Gunter, J. Becla, B. Jacobsen, and D. Quarrie. Using NetLogger

for Distributed Systems Performance Analysis of the BaBar Data Analysis

System. In Proceedings of Computers in High Energy Physics (CHEP OOO),

feb 2000.

[12] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, and R.

Wolski. A Grid Monitoring Architecture. Technical report, Global Grid Forum

GMA Working Group, Aug 2001. Revised 16-January-2002.

123

[13] Z. Balaton and G. Gombas. Resource and Job Monitoring in the Grid. In

Proceedings of the International Conference on Parallel and Distributed Com-

puting (Euro-Par OO8), pages 404-411, Klagenfurt, Austria, 2003.

[14] Bandwidth Market. Bandwidth and internet access catalogs, nov 2005. Avail-

able online at www.bandwidthmarket.com/resources/glossary/Jl.html.

[15] P. Burden. Processes, nov 2005. Available online at

http://www.scit.wlv.ac.uk/ jphb/spos/notes/processes.html.

[16] ClimatePrediction.net. Climateprediction.net, nov 2005. Available online at

http://www.climateprediction.net/index.php.

[17] Cluster Resources. Moab Workload Manager Administrator's Guide. Techni-

cal report, Cluster Resources, Inc., Jan 2006. version 4.5.0.

[18] Cluster Resources Incorporated. Maui Users

Manual, nov 2007. Available online at

http://www.clusterresources.com/products/maui/docs/mauiusers.shtml.

[19] N. Committee. Realizing the Information Future: The Internet and Beyond.

National Academy Press, 1994.

[20] Computational Science Education Project. Distributed Memory, aug 2007.

Available online at http://www.ipp.mpg.de/de/for/bereiche/stellarator/

Compsci/CompScience/csep/csepl.phy.ornl.gov/ca/node2l.html.

[21] Condor Project. Classified Advertisements, nov 2005. Available online at

http://www.cs.wisc.edu/condor/classad/.

124

[22] Condor Project. Hawkeye, nov 2005. Available online at

http://www.cs.wisc.edu/condor/hawkeye.

[23] J. Coomer and C. Chaubal. Introduction to the Cluster Grid - Part 1. Tech-

nical report, Sun Microsystems - Sun BluePrints OnLine, Aug 2002.

[24] CrossGrid. Developing new Grid components, Nov 2005. Available online at

http://www.eu_crossgrid.org.

[25] D. Gunter and B. Tierney Netlogger: A Toolkit for Distributed System Per-

formance Tuning and Debugging. In Proceedings of the 8th IFIP/IEEE Inter-

national Symposium on Integrated Network Management, (IM 2008), Colorado

Springs, CO, mar 2003.

[26] D. Mills. Simple Network Time Protocol (SNTP) RFC 1769. Tech-

nical report, University of Delaware, mar 1995. Available online at

http://www.eecis.udel.edu/ ntp/.

[27] D. Thain, T. Tannenbaum, and and M. Livny. Condor and the Grid. In F.

Berman and A. J.G. Hey and G. Fox, editor, Grid Computing: Making The

Global Infrastructure a Reality, chapter 11, pages 299-336. John Wiley, 2003.

[28] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in prac-

tice: the Condor experience. Concurrency and Computation - Practice and

Experience, 17(2), 2005.

[29] D.A. Reed and C.L.Mendes. Intelligent Monitoring for Adaptation in Grid

Applications. In Proceedings of the IEEE Special Issue onProgram Generation,

Optimization, and Platform Adaptation, Feb 2005.

125

[30] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johns-

son, K. Kennedy, C. Kesselman, J. Mellor-Crummey, D. Reed, L. Torczon, and

R.Wolski. The GrADS Project: Software Support for High-Level Grid Appli-

cation Development. International Journal of High Performance Computing

Applications, 15(4) :327-344, Dec 2001.

[31] F. Sacerdoti, M. Katz, M. Massie and D. Culler. Wide Area Cluster Monitoring

with Ganglia. In Proceedings of IEEE International Conference on Cluser

Computing (Clusters 2005), Hong Kong, Dec 2003.

[32] D. J. Feldman. Managing grid environment. In D. Pallai, editor, Grid Com-

puting: A Practical Guide to Technology and Applications, chapter 15, pages

295-308. Charles River Media, 2004.

[33] G. S. Fishman. Monte Carlo Concepts, Algorithms and Applications. Springer-

Verlag, 1996.

[34] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. In

Proceedings of the International Conference on Network and Parallel Comput-

ing (IFIP), pages 2-13, Beijing, China, Nov 2005.

[35] I. Foster and C. Kesselman. The Globus Toolkit. Morgan Kaufmann, first

edition, 1999.

[36] E. Frisch. Essential System Administration. O'Reilly, second edition, 1995.

[37] T. Garritano. Globus: An Infrastructure for Resource Sharing. Clusterworid,

1(1), Dec 2003.

126

[38] J. Gartner. Supercomputers Speed Car Design, April 2004. Available online

at'http://www.wired.com/news/autotech/0,2554,63185,00.html.

[39] M. R. Genesereth and S. P. Ketchpel. Software Agents. Communications of

the ACM, 37(7), Jul 1994.

[40] M. Gerndt, R. Wismuller, Z. Balaton, G. Gombas, P. Kacsuk, Z. Nemeth,

N. Podhorski, H.-L. Truong, T. Fahringer, M. Bubak, E. Laure, and T. Mar-

galef. Performance Tools for the Grid: State of the Art and Future. APART

White Paper 3-8322-2413-0, University of Technology Munich, 2004.

[41] GGF. About the Globus Toolkit, nov 2005. Available online at

http://www.globus.org/toolkit/about.html.

[42] GGF. Globus, nov 2005. Available online at http://www.globus.org/.

[43] GGF. Globus Toolkit, nov 2005. Available online at

http://www.globus.org/toolkit/.

[44] GGF. The Globus Alliance, nov 2005. Available online at

http://www.globus.org/alliance/.

[45] GIMPS. Greater internet mersenne prime search, nov 2005. Available online

at http://www.mersenne.org/prime.htm.

[46] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer-

Verlag, 2003.

[47] Global Grid Forum GMA Working Group. Global Grid Forum GMA

Working Group - Home Page, nov 2005. Available online at http://www-

didc.lbl.gov/GGF-PERF/GMA-WG/.

127

[48] GRC. Background on Grid Computing, nov 2005. Available online at

http://grid.ucalgary.ca/resources.html.

[49] GridLab. GridLab: A Grid Application Toolkit and Testbed, Nov 2005. Avail-

able online at http://www.gridlab.org.

[50] A. Grimshaw. Data Grids. In D. Pallai, editor, Grid Computing: A Practical

Guide to Technology and Applications, chapter 8, pages -. Charles River Media,

2004.

[51] D. Gunter, B. Tierney, B. Crowley, M. Holding, and J. Lee. NetLogger: A

Toolkit for Distributed System Performance Analysis. In Proceedings of the

IEEE Mascots 2000 Conference (Mascots 2000), pages 267-273, San Francisco,

California, Aug 2000.

[52] H. Kejing, D. Shoubin, Z. Ling, and S. Binglin. Building Grid Monitoring

System Based on Globus Toolkit: Architecture and Implementation. Lecture

Notes in Computer Science, 3314:353-358, Jul 1994.

[53] H. Truong and T. Fahringer. SCALEA-G: A Unified Monitoring and Perfor-

mance Analysis System for the Grid. Scientific Programming, 12(4):225-237,

2004.

[54] H.B. Newman, I.C. Legrand, P. Galvez, R. Voicu, and C. Cirstoiu. Monalisa:

A distributed Monitoring Service Architecture. In Proceedings of Computing

in High Energy and Nuclear Physics (CHEPO3), La Jolla, California, March

2003.

128

[55] H.D. Karatza. Scheduling Parallel and Sequential Jobs in a Partitionable Par-

allel System. International Journal of Simulation: Systems, Science Technol-

ogy, UK Simulation Society, 4(1 & 2), 2003.

[56] J. Hollingsworth and B. Tierny. Instrumentation and Monitoring. Morgan

Kaufmann, second edition, 2004.

[57] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of

the Grid: An Open Grid Services Architecture for Distributed Systems

Integration. Globus Project,, 2002, Nov 2005. Available online at cite-

seer.ist.psu.edu/foster02physio1ogy.html.

[58] I. Foster, S. Tuecke, and C. Kesselman, The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. International Journal of Supercomputer Ap-

plications, 15(3), Jun 2001.

[59] IBM. Grid computing: What are the key components?, nov 2005.

Available online at http://www-128.ibm.com/developerworks/grid/library/gr-

overview/.

[60] IBM. Lessons learned from the TeraGrid, Part 3: Putting the pieces together,

june 2006. Available online at http://www-128.ibm.com/developerworks/

grid/library/gr-teragrid3/.

[61] J. Bunn, D. Bouriklov, R. Cavanaugh, I. Legrand, A. Muhammad, H. New-

man, S. Singh, C. Steenberg, M. Thomas, and F. Van Lingen. A Grid

Analysis Environment Service Architecture, Nov 2005. Available online at

http://ultralight.caltech. edu/gaeweb/gae_services.pdf (Unpublished).

129

[62] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-G: A

Computation Management Agent for Multi-Institutional Grids. In Proceed-

ings of the 10th International Symposium on High Performance Distributed

Computing (HPDC-10), San Francisco, USA, aug 2001.

[63] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-G: A

Computation Management Agent for Multi-Institutional Grids. Cluster Com-

puting, 5:237-246, 2002.

[64] J. M. Schoff and B. Clifford. Monitoring Clusters and Grids. Cluoterworid,

2(17), Aug 2004.

[65] B. Jacob. Grid computing: What are the key components?, nov 2005.

Available online at http: //www-128 .ibm.com/developerworks/grid/library/gr-

overview/index.html.

[66] B. Jacob, L. Ferreira, N. Bieberstein, C. Gilzean, J.-Y. Girard, R. Strachowski,

and S. S. Yu. Enabling Applications for Grid Computing with Globus. IBM

Press, first edition, 2003.

[67] D. Johnson. Desktop Grids. In D. Pallai, editor, Grid Computing: A Practical

Guide to Technology and Applications, chapter 5, pages -. Charles River Media,

2004.

[68] J. Joseph and C. Fellenstein. Grid Computing. IBM Press, first edition, 2003.

[69] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and

S. Tuecke. A Resource Management Architecture for Metacomputing Systems.

130

In Proceedings of IPPS/SPDP'98 Workshop on Job Scheduling Strategies for

Parallel Processing, Orlando, FL, Mar 1998.

[70] K. Rothermel and R.Popescu-Zeletin. Mobile Agents. In 1st Internation Work-

shop, MA '9'7, Berlin, Germany, Apr 1997.

[71] D. Kalev. LINUX TIPS AND TRICKS - Raw Disk I/O , may 2006. Available

online at http://www.itworld.com/nl/lnx-tip/10122001/.

[72] M. Laucelli and J. Masso. Grids in Telecommunications Sector. In D. Pallai,

editor, Grid Computing: A Practical Guide to Technology and Applications,

chapter 18, pages 351-364. Charles River Media, 2004.

[73] I. Lumb. Cluster Grids. In D. Pallai, editor, Grid Computing: A Practical

Guide to Technology and Applications, chapter 6, pages -. Charles River Media,

2004.

[74] M. Arlitt, E. Anderson, R. Curry, and R. Simmonds. Using DataSeries with a

Job Centric Monitoring Service. In Proceedings of the 13th annual HP Open

View University Association workshop, Sophia Antipolis, France, may 2006.

[75] M. Cannataro, C. Mastroianni, D. Talia, and P. Trunfi. Evaluating and En-

hancing the Use of the GridFTP Protocol for Efficient Data Transfer on the

Grid. In Proceedings of Parallel Virtual Machine and Message Passing Inter-

face (EuroPVM/MPI), Venice, Italy, Oct 2003.

[76] M. Gerndt R. Wismuller, Z. Balaton, G. Gombas, Z. Nemeth, N. Podhorski,

H.L. Truong, T. Fahringer, M. Bubak, E. Laure, and T. Margalef. Përfor-

mance Tools for the Grid: State of the Art and Future. Technical report,

131

Lehrstuhl fuer Rechnertechnik und Rechnerorganisation, Technische Universi-

taet Muenchen (LRR-TUM), Jan 2004.

[77] R. Martin. The God Particle and the Grid. Wired Magazine, April 2004.

[78] M. L. Massie, B. N. Chun, and D. E. Culler. The Ganglia Distributed Moni-

toring System: Design, Implementation, and Experience. Parallel Computing,

30(7):817-840, Jul 2004.

[79] N. Podhorszki, Z. Balaton, and G. Gombas. Monitoring Message-Passing Par-

allel Applications in the Grid with GRM and Mercury Monitor. Lecture Notes

in Computer Science, 3165:179-181, 2004.

[80] NETDICTIONARY. DARPANET, nov 2005. Available online at

http://www.netdictionary.com/a.html.

[81] 0. Tomarchio and L. Vita and and A. Puliafito. Active Monitoring in Grid

Environments using Mobile Agent Technology. In Proceedings of the 2nd Work-

shop on Active Middleware Services (AMS) at HPDC-9, Pittsburg, USA, Aug

2000.

[82] M. Oberdorfer and J. Gutowski. Grids in Life Sciences. In D. Pallai, editor,

Grid Computing: A Practical Guide to Technology and Applications, chap-

ter 17, pages 341-350. Charles River Media, 2004.

[83] T. F. of SuperComputing. Glossary and acronym list, nov 2005. Available

online at http://books.nap.edu/html/upto..speed/appD.html.

[84] Pablo Group. Scalable Performance Tools (Pablo Toolkit), nov

132

2005. Available online at http://vibes.cs.uiuc.edu/Project/Pablo/

ScalPerf]Ibols/Overview.htm.

[85] PBS Pro. PBS Pro 5.1 User Guide, nov 2005. Available Online at

http://www.raunvis.hi.is/ finnboo/bjolfur/pbs_userguide.pdf.

[86] G. Pfister. In Search of Clusters. Prentice Hall PTR, second edition, 1998.

[87] R. Curry and R. Simmonds. Job Centric Cluster Monitoring. In Proceed-

ings of the 12th International Conference on Parallel and Distributed Systems,

Minneapolis, USA, july 2006.

[88] Red Hat Inc. Red Hat Linux System Administration Primer. Red Hat Inc.,

2003.

[89] Rik van Riel. proc(5) - Linux man page, nov 2007. Available online at

http://linux.die.net/man/5/proc.

[90] R.L. Ribler, J.S. Vetter, H. Simitci, and D.A. Reed. Autopilot: adaptive con-

trol of distributed applications. In Proceedings of the Seventh IEEE Symposium

on High-Performance Distributed Computing, pages 172-179, Chicago, Illinois,

Jul 1998.

[91] R. Y. Rubinstein. Simulation and the Monte Carlo Method. Wiley, 1981.

[92] R.Wolski, N. Spring, and J. Hayes. The Network Weather Service: A Dis-

tributed Resource Performance Forecasting Service for Metacomputing. Jour-

nal of Future Generation Computer Systems, 15(5-6), 1999.

[93] S. Zanikolas and R. Sakellariou. A Taxonomy of Grid Monitoring Systems.

Future Generation Computer Systems, 21(1), 2005.

133

[94] SETI©home. SETI©home, nov 2005. Available online at

http://setiathome.ssl.berkeley.edu/.

[95] E. Shaffer, D. A. Reed, S. Whitmore, and B. Schaeffer. Virtue: Perfor-

mance Visualization of Parallel and Distributed Applications. IEEE Computer,

32(12):44-51, Dec 1999.

[96] L. Smarr. Grids in Context. In I. Foster and C. Kesselman, editors, The Grid:

Blueprint for a New Computing Infrastructure, chapter 1, pages 3-12. Morgan

Kaufmann, second edition, 2004.

[97] W. R. Stevens. Addison-Wesley, addison-wesley professional computing series

edition, 1993.

[98] Sun Microsystems. XDR: External Data Representation Standard. Tech-

nical Report IETF RFC 1014, , Jun 1987. Available online at

www.lpds.sztaki.hu/publications/reports/ 1pds-2-2000.pdf.

[99] T. Shaun. Enterprise JMS Programming. Wiley, New York, 2002.

[100] The Globus Alliance. GT 3.9.3 WS-GRAM Approach, june 2006.

Available online at http://www-unix.globus.org/toolkit/docs /develop-

ment/3.9.3/execution/wsgram/WS-GRAM-Approach.html.

[101] The Globus Alliance. Cluster Resources Incorporated, nov

2007. Available online at http://www.globus.org/api/c-globus-

2. 2/globus_gramdocumentation/html/index.html.

[102] V. Quma and R. Lachaize and E. Cecchet. An asynchronous middleware for

134

Grid resource monitoring. Concurrency and Computation - Practice and Ex-

perience, 16(5):523-534, 2004.

[103] R. van Riel. Manpage of PROC, nov 2005. Available online at

http://www.die.net/doc/1inux/man/man5/proc.5.htm1.

[104] J. Vetter and D. A. Reed. Real-time Performance Monitoring, Adaptive Con-

trol, and Interactive Steering of Computational Grids. Journal of High Per-

formance Computing Applications, 14(4) :357-366, 2000.

[105] M. M. Waldrop. Grid Computing, nov 2005. Available online at

http://www.techno1ogyreview.com/artic1es/02/05/waldrop0502. asp?p=1.

[106] WIKIPEDIA. Definition of Distributed Computing, nov 2005. Available online

at http://en.wikipedia.org/wiki/Distributed_computing.

[107] WIKIPEDIA. File system, jul 2006. Available online at

http://en.wikipedia.org/wiki/File_system.

[108] Wikipedia. Page fault, nov 2007. Available online at

http://en.wikipedia.org/wiki/Page_fault.

[109] Yuan Cangzhou. Chapter 3 Memory Management Virtual Mem-

ory System, nov 2007. www.opentech.com.cn/knowledge_center/ course-

ware/manageCourseware.php?action=downloadPresentation&id= 15.

[110] Z. Balaton, P. Kacsuk, N. Podhorszki, and F. Vajda. Comparison of Represen-

tative Grid Monitoring Tools. Technical Report LDS-2/2000, Computer and

Automation Research Institute of the Hungarian Academy of Sciences, 2000.

Available online at www.lpds.sztaki.hu/publications/reports/lpds-2-2000.pdf.

135

[111] Z. Balaton, P. Kacsuk, N. Podhorszki, and F. Vajda. From Cluster Monitoring

to Grid Monitoring based on GRM. In Proceedings of the EuroPar' 2001, pages

874-881, Manchester, UK, Aug 2001.

Appendix A

Glossary

BSD (Berkeley Software Distribution) refer's to the particular version of the

UNIX operating system that was developed at the University of California at

Berkeley

SysV (System V) was one of the versions of the UNIX computer operating system.

It was originally developed by AT&T and first released in 1983.

POSIX is an acronym for Portable Operating System Interface. It is a standard

to allow applications to be source-code portable from one system to another.

POSIX consist of several separate standards corresponding to different parts of

a computer system.

Process Wait Channel (WCHAN) is the address of an event on which a partic-

ular process is waiting.

Physical Memory is the memory hardware (normally Random Access Memory)

installed on a system.

Logical memory as opposed to physical memory is the way memory is organized

by the operating system. In order to use the physical memory of a computer,

such as RAM chips or cache, the operating system organizes the memory into

some logical manner, such as memory address.

Thrashing is a problem as a result of paging when there is not enough memory on

the system for all the processes currently running. Therefore, the same pages

136

137

are being loaded repeatedly due to a lack of enough physical memory to keep

them in memory.

Memory Page is the smallest unit of memory handled by the operating system;

the size of a memory page is usually 4 or 16 kilobytes.

Paging is a process by which memory pages are moved between a disk volume and

the physical memory. The disk volume can be a local disk volume, a shared file

system, or a swap device. Paging occurs in order to free up memory needed by

a process.

Swapping is similar to paging but swapping refers to writing an entire process to

disk thereby freeing all of its memory.

Swap Space is used to describe a disk space used by the operating system kernel

as "virtual" RAM to hold pages of data that have not been recently used and

which no longer fit into paging space.

Virtual Memory is a memory management technique used by the operating sys-

tem, where the disk is used as an extension of RAM so that the effective size of

usable memory grows correspondingly. The part of the hard disk that is used

as virtual memory is called the swap space.

Memory Resident Pages are pages that are permanently in the memory.

Appendix B

Monitoring Data Statistics

B.1 CPU Utilization Statistics

The first report generated by the iostat command is the CPU utilization report. For

multiprocessor systems, the CPU values are global averages among all processors.

The CPU utilization report has the following statistics:

%user: the percentage of CPU utilization that occurred while executing at the user

level (application).

%nice: the percentage of CPU utilization that occurred while executing at the user

level with nice priority.

%system: the percentage of CPU utilization that occurred while executing at the

system level (kernel).

%iówait: the percentage of time that the CPU or CPUs were idle during which the

system had an outstanding disk I/O request.

%idle: the percentage of time that the CPU or CPUs were idle and the system did

not have an outstanding disk I/O request.

B.2 Network Statistics

Bytes received/sent: These network interface statistics provides an indication of

the bandwidth utilization of the network.

138

B.3 Memory Statistics 139

Interface counts and rates: These statistics can give indications of excessive col-

lisions, transmit, and receive errors. These statistics (particularly if the statis-

tics are available for more than one system on the network) helps in network

troubleshooting.

Transfers per Second: Normally collected for block I/O devices, such as disk

and high-performance tape drives, this statistic is a good way of determin-

ing whether a particular device's bandwidth limit is being reached. Due to

the electromechanical nature of disk and tape drives, their performance rapidly

degrades as their I/O limits are reached.

Packet Counts: The number of packets received and transmitted through a local or

remote port gives an idea of the kind of network activity happening on a system.

The packet counts shows if lots of communication is happening between the host

system running a job and external systems or programs.

B.3 Memory Statistics

Page Ins/Page Outs: These statistics make it possible to gauge the flow of mem-

ory pages from the physical memory to the hard disk. High rates for both of

these statistics can mean that the system is short of physical memory and is

thrashing.

Active/Inactive Pages: These statistics show how heavily memory resident pages

are used. A lack of inactive pages can point toward a shortage of physical

memory.

Free, Shared, Buffered, and Cached Pages: These statistics provide additional

detail over the active/inactive page statistics. By using these statistics, it is

B.4 Disk Space Usage Statistics 140

possible to determine the overall memory utilization in detail.

Swap Ins/Swap Outs: These statistics show the system's overall swapping be-

haviour. Excessive rates of these statistics can point to physical memory short-

ages.

Virtual Memory: This indicates the total number of uniquely-addressable memory

space required by a program.

Resident Set Size: Resident set size is the aggregate size of the valid (that is,

memory-resident) pages in the address space of a process. In a virtual memory

system, a process' resident set is that part of a process' address space which is

currently in the physical memory.

B.4 Disk Space Usage Statistics

Free Space: It is the amount of unused space on a system.

Transfers per Second: These statistics determines whether a particular device's

bandwidth limitations are being reached.

Reads/Writes per Second: These statistics is a more detailed breakdown of the

transfers per second statistics; it allows the system administrator to fully un-

derstand the nature of the I/O load on a storage device.

Appendix C

The Life Cycle of a UNIX Process

UNIX executes most kernel services within a process' context, by implementing a

mechanism which separates the two possible modes of execution of a process. Hence,

the unique "Running" state must be split into a "User Running" state and a "Kernel

Running" state [15].

From Figure 0.1, a process can be in any of the following distinct nine states:

Created: This is the state of a freshly created process. Whether freshly created

processes are entirely resident in memory depends on the details of the memory

management system. This state may also include processes that have not yet

been fully created.

Ready to run, in memory: There is no reason why the process should not run

apart from the fact that some other process is currently running.

Running in kernel mode: The process is running in kernel mode. It may be

handling a system call or an interrupt or some other process (also in kernel

mode) may have scheduled it to run. The process may determine that it has

finished (either normally via an exit() or via some kernel detected abnormal

condition) or that it is blocked awaiting some event such as a time signal or

peripheral activity.

Running in user mode: This is the normal state of a process.

Pre-empted: The process has been interrupted and is about to resume normal user

mode operation. The kernel scheduler may move a process into this state.

141

142

User
Running

Zombie

Sleeping
in memory

Interrupt and
Interrupt
Return

.1

exit()

Sleep

Ready to run,
Swapped Out

Sleeping
Swapped Out

System Call or
Interrupt

Kernel Running

Re—schedule

Return to
User Mode

Pre—empted

Ready to run
in memory

Enough Memory

'freated

Not Enough Memory

Figure C.1: Process Transition Diagram (Source [15])

fork()

143

Zombie (or defunct): The process will not run again, but information such as the

exit code has not been collected by the parent process.

Sleeping in memory: The process is blocked awaiting an event. All that can hap-

pen is that the process can be woken up (by changing its status to "ready to

run") or swapped out.

Sleeping, swapped out: The process is waiting for an event and has been swapped

out.

Ready to run, swapped out: Before running the process needs to be copied back

into memory.

Appendix D

UNIX System Tools

free gives a concise, simple overview of system memory and swap utilization.

vmstat is similar to free, but shows more information in addition to memory uti-

lization statistics. It gives an overview of process, memory, swap, I/O, system,

and CPU activity in one line of numbers.

top displays CPU utilization, memory utilization, and process statistics. Unlike the

free command, top's default behaviour is to run continuously.

iostat displays an overview of CPU utilization, along with I/O statistics for one or

more disk drives.

mpstat displays more in-depth CPU statistics.

sadc is known as the system activity data collector; sadc collects system resource

utilization information and writes it to a file.

sar produces reports from the files created by sadc. sar reports can be generated

interactively or written to a file for more intensive analysis.

isof lists all the files opened by processes on the system. An open file may be a

regular file, directory, block special file, character special file, executing text

reference, library, stream, or network file (i.e., Internet socket, NFS file, or

UNIX domain socket).

uptime gives a rough estimate of the system load; it reports the current time, the

amount of time the system has been up, and three load averages; it reports the

144

145

load averages for the past 1, 5, and 15 minutes.

df produces a report that describes all the filesystems, their total capacities, and

the amount of free space available on each filesystem.

du reports the amount of disk space used by all files and subdirectories underneath

one or more specified directories, listed on a per-subdirectory basis.

quot breaks down disk space usage within a single filesystem by user.

netstat is used to monitor a system's TCP/IP network activity. It provides some

basic data about how much and what kind of network activity is happening on

a system. It lists all the active connections with the local host. The number

of data transferred between two systems via each connection is also reported in

packets.

tcpdump allows the user to examine the headers of packets transmitted via TCP/IP.

