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ABSTRACT 

The purpose of this study was to determine the 

allometric relationship between the capacity for storage of 

elastic strain energy in the distal limb tendons and body 

mass, and the size dependent mechanism(s) (material and/or 

structural properties) that determine this relationship. 

The amount of strain energy stored and released by a tendon 

depends upon its material properties (elastic modulus and 

hysteresis) and the extension that occurs when it is loaded 

by an external force or its muscle. Thus the tendon 

material properties and cross-sectional area, as well as 

muscle dimensions (muscle force) in relation to body mass 

were analyzed in terms of their potential contribution to 

the elastic energy storage capabilities of tendon. 

The material properties (i.e., elastic modulus and 

hysteresis) of the digital flexor, ankle extensor and 

digital extensor tendons from 23 quadrupedal mammals, 

ranging in body mass from 0.5 to 545 kg were determined via 

tensile tests. These functionally different tendons showed 

no significant differences in their material properties over 

the entire size range. Not only are they materially similar 

to one another, their material properties scale independent 

of body mass. 

Morphometric analysis of the digital flexor, ankle 

extensor and digital extensor muscle-tendon units from 35 
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quadrupedal mammals ranging in body mass from 0.05 to 545 kg 

was carried out. 

energy was found 

scaling exponent 

The capacity for storage of elastic strain 

to scale with positive allometry, i.e., the 

is greater than one, for the spring-like 

tendons (digital flexors and ankle extensors), but scaled 

isometrically for the digital extensor tendons, indicating 

that the spring-like tendons of large mammals potentially 

can store more elastic strain energy than can these same 

tendons of smaller mammals. Muscle fibre cross-sectional 

area scales with positive allometry (and consequently muscle 

force), and tendon cross-sectional area scales 

isometrically. Thus the amount of stress a 

expected to experience, as indicated by the 

area ratio, scales with positive allometry, 

tendon can be 

muscle/tendon 

(i.e., tendon 

stress increases with body mass). Thus the greater capacity 

for storage of elastic strain energy in large mammals is due 

primarily to their relatively stonger muscles, which can 

impose higher stresses and consequently strains on their 

tendons than can the same muscles of smaller mammals. 
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CHAPTER 1 

GENERAL INTRODUCTION 

Tendons situated in the distal limb of mammals are 

generally thought to function as stiff biological springs, 

alternately being stretched and recoiling with each stride 

(Alexander, 1984). When a tendon is stretched, work is done 

on it, and elastic strain energy stored in it. This is a 

form of potential energy (the capacity to do work) 

(Alexander, 1983). The amount of strain energy stored 

depends upon the amount of extension, which is largely 

determined by the elastic properties of the tendon and the 

amount of force exerted upon it. Composed primarily of 

collagen, which provides their mechanical properties, 

tendons of the distal limb generally have both high tensile 

strength and elastic modulus (stiffness), can be stretched 

reversibly up to 6% of their resting length, and are very 

resilient, allowing them to absorb and release energy 

(Butler et al., 1978; Ker, 1981; Woo, 1982; Bennett et al., 

1986; Shadwick, 1990). These properties potentially allow 

for large amounts of elastic strain energy to be stored in 

tendons which experience high stresses, such as those 

incurred during the support phase in fast locomotion 

(Alexander, 1984). At each step (during the support phase), 

animals with erect limb posture (mammals and birds) lose and 

then regain kinetic and gravitational potential energy. 
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Part of this energy is degraded as heat by the muscles being 

stretched and is later replaced by muscles contracting. 

Most is stored, however, as elastic strain energy in the 

tendons and then released in elastic recoil, requiring no 

expenditure of metabolic (muscular) energy (Alexander, 1980, 

1983 & 1984; Alexander and Vernon, 1975; Cavagna et al., 

1977). 

A systematic decrease in the net cost of transport (the 

metabolic energy required in excess of resting rates for a 

unit mass to travel a unit distance) for mammals and birds 

as body mass increases has been well documented (Tucker, 

1970; Taylor et al., 1970; Taylor, .1977; Taylor et al., 

1982; Strang and Steudel, 1990). This means that larger 

species are capable of moving each kilogram of their body 

mass through a distance of 1 meter at a lower metabolic cost 

than the smaller ones. One possible mechanism that may 

explain this pattern is a size-dependent variation in the 

extent to which elastic strain energy in tendons of the 

distal segments of the limb can be used to reduce the amount 

of energy input required from muscle contraction to maintain 

steady state locomotion (Biewener et al., 1981; Strang and 

Steudel, 1990). For validation of this proposed energy 

saving mechanism, however, there is a need to show that 

storage of elastic strain energy in these tendons does 

indeed scale with body size at a rate greater than one. In 

other words, that limb tendons of larger mammals (and/or 

birds) have a higher capacity for storage and subsequent 
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release of elastic strain energy than do those of smaller 

mammals. 

The primary objectives of this study were to 

investigate the allometric relationship between body mass 

and the capacity of the distal hind limb tendons to store 

elastic strain energy, and to determine the size-dependent 

mechanical and/or structural properties that cause this 

relationship in mammals. The first part of this study 

investigates the possiblilty of a size-dependent 

relationship between the tendon material properties and body 

mass. The premise for this is that the distal limb tendons 

of larger mammals have different material properties that 

endow them with a greater capacity to store elastic strain 

energy compared to the same (homologous) tendons of small 

mammals. The second part of this study consists of a 

morphometric analysis of the muscles and tendons of the 

distal segments of the hind.linth. The premise for this is 

that there is a difference in the structural design of the 

muscle and/or tendon unit in larger mammals that allows for 

greater amounts of elastic strain energy to be stored in the 

tendons than is possible in the homologous tendons of 

smaller mammals. If it can be shown that the capacity for 

storage and release of elastic strain energy increases at a 

rate greater than body mass increase, then it can be 

surmised that this mechanism is, at least in part, 

responsible for the lower transportation costs of large 

mammals. 
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CHAPTER 2 

BACKGROUND 

2.1 storage of Elastic Strain Enerqy 

With each stride, a running mammal loses and then 

subsequently regains kinetic and gravitational potential 

energy as a result of its changing relationships with the 

ground and the mechanical properties of its limbs. As the 

foot lands on the ground the body is decelerated forward and 

downward (Heglund, 1980), the ground reaction forces 

increase, the angles of the lower limb joints (ankle, wrist, 

metatarso- or metacarpo-phalangeal) increase, lengthening 

the muscles and tendons on the caudal side of these joints 

(Alexander, 1974; Alexander and Vernon, 1975; Biewener et 

al., 1981; Goslow et al., 1981; Alexander, et al., 1982). 

In other words, these muscle-tendon units are stretched by 

the impact forces. During this phase of the stride, both 

kinetic and gravitational potential energy decrease 

(Alexander and Vernon, 1975; Cavagna et al., 1977). Some of 

the kinetic and gravitational potential energy is lost as 

heat by the muscles stretching, being compelled to do 

negative work. As well, some of this energy is briefly 

stored as elastic strain energy in the muscles and tendons 

that are stretched by the impact forces (Alexander, 1980, 

1983 & 1984; Cavagna et al., 1977). In the latter half of 
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contact with the ground, as the limb pushes off, the body 

must be accelerated forward and upward (Heglund, 1980), the 

forces on the muscles and tendons decrease, the muscles and 

tendons shorten and the angles of the joints decrease 

(Alexander, 1974; Alexander and Vernon, 1975; Biewener et 

al., 1981; Goslow et al., 1981; Alexander, et al., 1982). 

Both kinetic and gravitational potential energy increase 

during this latter half of contact with the ground 

(Alexander and Vernon, 1975; Cavagna et al., 1977). 

Evidence in favor of the idea of elastic energy storage 

first came from a studies where the mechanical (kinetic and 

gravitational potential) energy changes that occur during 

fast locomotion were compared with 02 consumption (metabolic 

energy consumption). It was shown that the metabolic 

machinery supplies a fraction of the power required to lift 

and reaccelerate the centre of mass (Dawson and Taylor, 

1973; Cavagna et al., 1977). Thus the rest of the energy 

required to lift and reaccelerate the centre of mass had to 

be accounted for by some mechanism other than aerobic 

muscular metabolism. Elastic energy must be stored 

transiently in stretched tendons and muscles during hopping 

or running, similar to the way energy is stored in the 

spring of a pogo stick or bouncing ball (Alexander and 

Vernon, 1975; Cavagna et al., 1977; Alexander, 1984). 

A muscle exerting isometric stress is capable of 

stretching elastically by 2 - 3% of its fibre length (Rack 

and Westbury, 1974; Alexander and Bennett, 1977). Since 
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these distal limb muscles generally have short fibres and 

long tendons this elastic extension of the muscle is so 

small compared to the extension of the tendons which exert 

the same force, that the elastic strain energy stored in the 

muscle fibres is trivial (Alexander and Bennett-Clark, 1977; 

Alexander, 1984). Most of the elastic extension is in the 

tendon, therefore it follows that this is where most of the 

elastic strain energy is stored, and any elastic energy 

storage in the muscle can be effectively ignored. Thus, as 

the animal runs the distal limb tendons operate as passive 

biological springs, alternately stretching and recoiling 

with each step, storing and releasing elastic strain energy 

(Alexander, 1980, 1983 & 1984). 

Figure 2.1 illustrates how energetic savings are made 

by exchange between kinetic and gravitational energy (A) on 

one hand and elastic strain energy (B) on the other. The 

kinetic and gravitational energy lost in the first half of 

contact with the ground is replaced in two ways; 1) by 

muscles contracting, doing positive work and 2) by elastic 

recoil of the tendons. This elastic recoil converts most of 

the stored strain energy back into gravitational potential 

and kinetic energy before the foot leaves the ground. If 

there were no elastic elements the contractile elements of 

the muscles would have to do negative work (-A) followed by 

positive work (A) equivalent to the amount of kinetic and 

gravitational potential energy fluctuations in each step. 
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Because the tendons (elastic elements) store and release 

elastic strain energy, only negative work amounting to 

-(A-B) and positive work amounting to (A-B) have to be done. 

Both categories of work are reduced by a fraction B/A 

(Biewener et al., 1981). 

It appears, however, that only large mammals benefit 

significantly from energy savings via storage and subsequent 

release of elastic strain energy (the dog, Alexander, 1974; 

KE+ PE 

EE 

  Foot falls 

Figure 2.1. Elastic energy savings. The total kinetic 
energy (K.E.) and gravitational potential energy (P.E.) fall 
by an amount A in the first half of the step, and rise by A 
in the second half. The amount of elastic strain energy 
(E.E.) stored and released from the tendons is equivalent to 
an amount B. Thus, due to an exchange between these types 
of energy, the amount of negative and positive work the 
muscles have to do is reduced by a fraction, B/A. The 
points when the foot is on the ground are also shown 
(adapted from Biewener et al., 1981 and Alexander, 1983). 
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kangaroo and wallaby, Alexander and Vernon, 1975; donkey, 

Diluery and Alexander, 1985; camel, Alexander et al., 1982; 

and deer Diniery et al., 1986) only one small species, the 

kangaroo rat, has been tested with respect to energy savings 

by way of elastic energy storage (Biewener et al., 1981; 

Biewener and Blickhan, 1988). Here it was found that 

relatively little energy savings was obtained from the 

return of stored strain energy. Biewener et al., (1981) 

proposed that the kangaroo rat is unable to store large 

amounts of strain energy because its disproportionately 

thicker tendons do not develop strains as large as those 

seen in the wallaby or kangaroo. No similar investigations 

have been made for other small mammals. This conclusion 

(only large mammals can benefit from elastic strain energy 

storage) was also reached by derivation from allometric 

equations based on anatomical measurements of the digital 

flexors and ankle extensors (Alexander 1977; Alexander et 

al., 1981; Peterson et al., 1984). However, such 

conclusions could be altered if there has been an incorrect 

assumption regarding the uniformity of tendon stiffness 

(elastic modulus). Clearly, the size dependency of storage 

and release of elastic strain energy needs more study 

(Heglund et al., 1982b; Strang and Steudel, 1990). 

This discrepancy between the apparent capability of 

large versus small mammals to store elastic strain energy 

suggests that scaling is involved. However, before dealing 

with the principles of scaling, the structural and 
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biomechanical properties of tendon that allow for storage of 

elastic strain energy will be discussed. 

2.2 Structural and Material Properties of Tendons  

When an elastic material is stretched, work is done on 

it, and strain energy stored by it. Figure 2.2 illustrates 

a visco-elastic material stretched by a force (F), deformed 

by ab amount represented by 1. The triangular area under 

the rising line represents the work done stretching the 

material. The amount, F 1/2, closely approximates the 

amount of strain energy stored. This is a form of potential 

energy (the capacity to do work). The area under the 

descending line gives the work recovered in elastic recoil 

when the imposing force is removed, and the area between the 

two lines represents the amount of energy lost, due to 

viscous processes (hysteresis). From figure 2.2, the amount 

of strain energy stored depends on the the amount of force 

applied to the material, and the stiffness of the material. 

The amount of energy recovered in elastic recoil depends on 

the mechanical hysteresis of the material (Wainwright et 

al., 1976; Alexander, 1983). However, the situation will be 

different if the same force is applied to two bodies of 

different size. For example, the slope of the force-

extension curve also depends on the cross-sectional area of 

the material under tensile load. By increasing the cross-
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0 
$4 
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1- - 

Extension 

Figure 2.2. Schematic graphs of force against extension for 
a visco-elastic material that is stretched (a), then allowed 
to shorten (b) producing a hysteresis loop (C). (re-drawn 
from Alexander, 1983). 

sectional area more material is available to carry the load, 

and it is thus able to withstand larger forces. However, 

for equivalent forces, the thinner material is stretched 

more and thus can store more elastic strain energy. To 

avoid problems due to changing dimensions, the force-

extension curves are often adjusted (normalized) by dividing 

force by the material cross-sectional area, resulting in a 

tensile stress term, and by dividing extension by the 

initial unloaded length of the material, resulting in a 

strain term. The resulting stress-strain curve provides 
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mechanical (material) parameters that are independent of 

material dimensions (Butler et al., 1978). 

The most common material parameters taken from the 

stress-strain curve are elastic modulus or stiffness (slope 

of the linear portion of the loading curve), mechanical 

hysteresis and amount of elastic strain energy stored and 

released per extension (Butler et al., 1978; Alexander, 

1983) 

By definition, tendons are the rope-like collagenous 

structures that connect muscle directly to skeletal 

elements. Tendons transmit tensile forces during muscle 

contraction. Thus, the muscle force applied to the proximal 

end of the tendon is a measure of the tensile force imposed 

on the tendon. The mechanical (material) properties of 

tendons are usually determined via tensile tests. When 

tendons are stretched in a tensile testing machine they 

produce similar force-extension curves to that shown in 

Figure 2.2. Composed of collagen (30% wet weight; 70-80% 

dry weight), which provides its mechanical properties, these 

visco-elastic structures generally have both high tensile 

strength (approx. 100 MPa) and elastic modulus (stiffness) 

(ranging from approx. 1.0 - 2.0 GPa), can be stretched 

reversibly up to 6% of their resting length, and are very 

resilient (i.e., they have a high capacity to absorb and 

release energy) (Butler et al., 1978; Ker, 1981; Woo, 1982; 

Bennett et al., 1986, Shadwick, 1990). This indicates that 

large amounts of elastic strain energy can be stored in 
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tendons that experience high stresses, such as occurs during 

the support phase in fast locomotion (Alexander, 1984). 

From the above discussion it is evident that .the 

quantity of strain energy stored and released by a tendon 

depends on its elastic modulus (stiffness), hysteresis 

(energy lost in viscous processes) and the extension that 

occurs when it is loaded by an external force or by the 

muscle to which it attaches. Thus, differences in tendon 

mechanical properties and cross-sectional area, as well as 

muscle dimensions (muscle force), may all contribute to 

differences in the elastic energy storage capability of 

tendon with increasing body size. 

2.3 Principles of Scalinq 

Body size is one of the most important factors that 

affects the structure and function of organisms, and scaling 

deals with the structural and functional consequences of 

changes in body size among otherwise similar organisms 

(Schmidt-Nielsen, 1984). If two organisms are considered 

geometrically similar (isometric), any corresponding linear 

dimensions are in the same constant proportion (Li a L2). 

As well, their areas and volumes will be in ratios related 

to their linear dimensions to the second and third power, 

respectively (A cc L2 V cc L3 ). Usually mass is an adequate 

measure of volume, for nearly all animals have densities 
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close to 1.0. Therefore the essentials of isometric 

geometry can be written as: L a M°33 and 

A oc M°67 (Schmidt-Nielsen, 1984; Alexander, 1985). 

Real organisms usually are not isometric, even when 

organized on similar patterns. In biology, such non-

isometric scaling is often referred to as allometric 

scaling. An amazing number of morphological and 

physiological variables have been found to scale, relative 

to body mass, according to the allometric equation of the 

form: 

Y = a xb (2.1) 

where Y is the variable in question, and X is the body mass. 

The proportionality coefficient, a, is the intercept at 

unity (1 kg) and the scaling exponent, b, is the slope of 

the regression line (Schmidt-Nielsen 1984). Variations in 

the arithmetic rate of change of Y at different values of X, 

however, make arithmetic plots of body size relationships 

hard to draw and interpret. More commonly, for allometric 

relations the variables 

logarithms, producing a 

analysis applied to the 

analysis is to find the 

describes the available 

fit). The line that is 

X and Y are transformed to 

straight line, and regression 

data set. The aim of regression 

straight line that, on average, 

data with the smallest errors (best 

actually fitted is not z = a xb but: 
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logY = loga + b logX (2.2) 

(Peters,1983). 

These allometric equations reflect generalizations, 

indicating how a variable is related to body size. The 

slope of the line (b) can take on different values and can 

be either positive or negative, depending on the variable 

being considered. If the variable Y, increases 

proportionately with body mass this reflects a simple 

proportionality and the slope of the regression line will be 

1.0. If the variable in question increases out of 

proportion to the increase in body mass the regression line 

will then have a slope greater than 1.0. If the dependent 

variable increases at a slower rate than would be indicated 

by simple proportionality the regression line will have a 

slope less than 1.0. If we consider a quantity that does 

not change with body size, the slope will be zero. Finally, 

there are functions that decrease with increasing body size, 

and which yield regression lines with negative slopes 

(Schmidt-Nielsen 1984). 

2.4 Rationale for Present Study 

As mentioned above, previous comparative investigations 

of scaling of mechanical properties of tendons have been 

based on allometric equations derived from anatomical data 

(Alexander, 1977; Alexander et al., 1981; Peterson et al., 



15 

1984). Scaling relationships of tendon mechanical 

properties have been derived assuming a constant (mass and 

species independent) elastic modulus, which has been 

critical to the formulation of ideas about elastic energy 

storage. Depending on whether tendon stress and strain have 

been considered to be independent of or dependent on body 

mass, the capacity to store elastic strain energy has been 

regarded as being either in proportion to body mass (b=l), 

or scaled somewhat higher (b>'l). If the capacity to store 

elastic strain energy remains in proportion to body mass, 

this implies that there is no difference in the ability of 

small versus, large mammals to store elastic strain energy. 

Conversely, if the capacity to store elastic strain energy 

scales somewhat higher (b>1), this implies that the tendons 

of large mammals have a greater capacity to store elastic 

strain energy than the homologous tendons of small mammals. 

There are basically two parts to this study. The first 

deals with the material properties of tendons and their 

relationship with body mass. The second deals with the 

relationship between body mass and maximum capacity for 

storage of elastic strain energy in these same tendons. 

The first question addressed in this study is: do the 

distal limb tendons of larger mammals have different 

material properties that result in a greater capacity to 

store elastic strain energy when compared to the same 

(homologous) tendons of small mammals? There have not been 

any studies in which direct measurements of elastic modulus 
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or hysteresis of mammalian tendons have been made with the 

purpose of comparing animals of different size. Stress, 

strain and elastic storage of strain energy have only been 

derived from allometric equations based on morphometric 

analysis of the digital flexors and ankle extensors. As 

well, elastic modulus has been assumed to be constant, 

independent of species and body size (Alexander, 1977; 

Alexander et al., 1981; Peterson et al., 1984). 

Measurements of these properties from tendons over a large 

body size range must be made to determine whether elastic 

modulus or hysteresis scale with body mass. 

There also appears to be some disagreement in the 

literature regarding the mechanical properties of tendons 

which do not experience loading during the support phase of 

the stride. One such muscle-tendon unit is the digital 

extensor, which is presumably active during the swing phase 

of the stride as opposed to the support phase (Ker et al., 

1988; Shadwick, 1990) (however, electromyographic studies of 

this muscle-tendon unit during quadrupedal locomotion are 

needed to confirm this). Woo (1982) and Shadwick (1990), 

have shown that the digital flexors of mature pigs have a 

much higher elastic modulus (stiffer) than the digital 

extensors at equivalent strains. However, Ker et al., 

(1988) showed that there were no differences between the 

elastic modulus of the digital extensor of the cow and any 

of the other highly stressed tendons (including digital 

flexors) tested by Bennett et al., (1986). As there is a 
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considerable lack of consistency in the evidence regarding 

the stiffness of the digital extensors, the present study 

also includes investigations of the mechanical properties of 

these tendons from many quadrupeds over a large body size 

range. 

As tendons are attached in series with their muscles, 

the tensile forces that they transmit, and the amount of 

strain they undergo is determined by the amount of force 

their muscles can exert. The maximum amount of force the 

muscles are capable of exerting will be determined via 

morphometric analysis of the muscle dimensions. Combined 

with information regarding tendon diameter, the maximum 

amount of stress the tendons could experience is also 

estimated. Finally by compiling information regarding 

tendon material properties and muscle-tendon dimensions over 

a large range of body sizes the scaling relationship of the 

capacity for storage of elastic strain energy is determined. 

This allows an answer to the question of whether the 

capacity for elastic storage of strain energy scales 

proportionally to body mass (b=l) (as predicted if tendon 

stress and strain are independent of body mass) or whether 

its importance increases with greater body mass (b>l). 
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CHAPTER 3 

MATERIALS AND METHODS 

3.1 Study Specimens 

Twenty seven species were examined in this study. 

These taxa were represented by 35 specimens, all of which 

were considered mature. Those species represented by more 

than one specimen are designated by a dagger Ct). This 

selection of specimens covers the range of mammalian 

cursorial limb postures, from plantigrade through digitgrade 

to unguligrade species. The body mass range for each 

posture shows almost complete overlap with the others. At 

the lower end of the total body mass range are more 

generalized ambulatory mammals that show no specific 

cursorial modifications, (as defined by Jenkins, 1971 and 

Hildebrand, 1982) but may become behaviorally cursorial as a 

result of faculative changes in limb posture and cadence. 

With the exception of the domestic species, all animals were 

either zoo specimens or road kills. No laboratory specimens 

were used. 

Cursors  

-Plantigrade 

t White-tailed jack-rabbit (Lepus townsendii) (2.2kg*, 3kg*) 
Grizzly bear (t3rsu5 horribilis) (338kg*) 
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-Digitgrade 

t 

t 

Domestic cat (Fells  
Snow leopard (Uncia 
Domestic dog (Canis  
Lion (Panthera leo) 

-Ungul igrade 

t 

t 

t 

catus) (5.2kg, 6.9kg*) 
uncla) (34kg*) 
fainillaris) (28kg, 36kg*) 
(200kg*) 

Kirk's dik-dik (Madoqua kirkli) (3.9kg*) 
Indian hog deer (Cervus porcinus) (12.9kg) 
Muntjac (Muntiàcus nLuntjak) (ll.lkg*, 11.4kg, 13.3kg) 
Pronghorn Antelope (Antilocapra americana) (20.4kg*) 
South African springbok (Antidorcas Inarsupialis) (28kg) 
Russian Saiga (Saiga tartarica) (28.5kg*) 
Mule deer (Odocoileus hemlonus) (97.36kg*) 
White tail deer (Odocoileus virqinianus) (28.2kg, 
76.64kg*, 97.68kg*) 
Scimitar-horned oryx (Orvx ) (109.5kg) 
Eastern white-bearded gnu (Connochaetes taurinus) 
(204.5kg) 
Elk (Cervus canadensis) (159.5*, 205kg*) 
Persian onager (Equus hemionus) (224kg) 
Cow (Bos taurus) (454kg*) 
Camel (Cainulus dromedarius) (545kg*) 

Ambulatory 

Gerbil (Meriones unguiculatus) (0.04kg) 
Wood rat (Neotoina .) (0.22kg) 
Guinea pig (Cavia porcellus) (0.35kg) 
Richardson's ground squirrel (Spermophilus richardsonhi) 
(0.47kg*) 
Ferret (Mustela nigripes) (0.485kg*) 
Grey squirrel (Sciurus carolinensis) (0.55kg*) 
Muskrat (Ondatra zibethicus) (0.6kg) 

*, asterisk indicates specimens which were employed in 
tensile tests. 

The carcasses were obtained after the animals died or 

had been sacrificed for other purposes. All specimens and 

tissues were considered fresh at the time of collection, and 

were stored at -20°C until required for dissection or 

mechanical testing. Muscles and tendons from hind limbs 

only were used (with the exception of the Kirk's dik-dik, 

only one forelimb was made available for this specimen). 
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While only those specimens identified with an asterisk, 

in the above list, were subjected to the tensile testing, 

all (with the exception of the Kirk's dik-dik) were included 

in the limb inorphometric analysis. Additionally, anatomical 

data for the following species were included in the limb 

morphometric analysis; these data were derived from 

literature sources. 

Kangaroo rat (Dipodomys spectabilis) (0.08kg, 0.09kg, 
0.10kg, 0.12kg) (Biewener et al., 1981) 
Wallaby (Proteinnodon rufogrisea) (10.2kg) (Alexander and 
Vernon, 1975) 
Red Kangaroo (Macropus rufus) (40kg) (Alexander and Vernon, 
1975) 
Camel (Camelus dromedarius) (402kg) (Alexander et al.,1982) 

The red kangaroo, wallaby and kangaroo rat are not 

considered to be strictly cursorial, but are rather 

designated as bipedal hoppers exhibiting, ricochetal 

locomotion. Morphometric data from these specimens (bipedal 

hoppers) were included in Figures 4.4 through 4.11, but were 

not used in calculations for allometric constants. 

3.2 Measuring Tensile Properties of Tendons 

The mechanical properties of excised tendons are 

normally determined in vitro by tensile tests. The excised 

tissue is elongated at a prescribed rate while the changes 

in force and extension are simultaneously recorded. For 

this purpose a tensile testing machine (Monsanto Tensoineter 

10) was used. Tendons of the (1) digital flexor muscles 
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(plantaris, deep digital flexors [flexor hallucis and flexor 

digitorum longus]), (2) ankle extensor muscles 

(gastrocnemius and soleus [if present]), and (3) common 

digital extensor muscles were utilized. Measured segments 

of these tendons were clamped in various ways, the mode of 

clamping depending on tendon size. Two types of small 

aluminum clamps (2.5 x 3.5 cm) were used for the smallest 

tendons. One had either an emery paper or rubber gripping 

surface while the other had rounded serrated clamping 

surfaces. Larger stainless steel clamps (5 x 5 cm) with 

serrated gripping surfaces were used for the slightly larger 

tendons. For the largest tendons a cryo-jaw clamp was used, 

as described by Rieinersa and Schainhardt (1982). This clamp 

rsists slippage of tissue within the clamp for forces up to 

13,800 N (sufficient force to break horse tendons). It also 

prevents tissue damage at the clamp site. Parallel marker 

lines were applied to the surface of the tendon. During 

testing the tendon was kept moist by dripping a 0.9% NaCl 

solution over the specimen. For the very thin tendons, 

however, the entire specimen was immersed in a chamber 

containing the saline solution in order to prevent drying 

out during testing. 

The cross-head of the tensometer moved cyclically, 

alternately stretching the tendon and then allowing it to 

recoil, at a rate of 3-5 mm/min up to 5-6% strain, which is 

the range of strain to which most tendons can be extended 

reversibly without damage (Wainwright et al., 1976; Butler 
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et al., 1978). Ker (1981) and Shadwick (1990) have shown 

that at cycle frequencies ranging from 0.05 - 11 Hz, tendon 

material properties have virtually no frequency dependence, 

i.e., stiffness does not increase with strain rate. The 

load cell recorded the tensile force, while simultaneously 

the amount of tendon extension between the parallel marker 

lines was recorded using a video dimension analyzer (VDA) 

system. Measurements of length change were made in the 

central body of the tendon sample, well away from the clamps 

where slippage, tissue distortion and stress concentrations 

may occur (Ker 1981; Woo et al., 1980; Woo, 1982). From the 

video camera, information was sent, through the VDA and 

viewed on a television monitor, in order to determine 

tensile extension of the tendon. As the distance between 

the two parallel marker lines increases during tensile 

loading, the output voltage of the VDA (extension signal) 

increased proportionally. However, at low strain levels, 

the strain computed by the VDA is sensitive to camera 

placement and orientation as well as the media through which 

the object'is observed. At higher strain levels, the 

sensitivity of the system is reduced, and the strain 

computed by the VDA system approached the real strain (error 

decreases) (Lam et al., 1991). Such VDA errors were reduced 

in this study, by calibrating the voltage output of the VDA 

with each test, and by maximizing the image size on the 

television monitor screen. 
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Both the force and extension signals were sent to, and 

digitized at 10 - 50 Hz by either a 80386 Pc or a MINC 11/23 

lab computer, and stored on a disk. The extremely large 

data sets obtained from each test were reduced by removing 

every tenth, fifth or third point (depending on size of data 

set), producing manageable data sets for each cycle. These 

data were then used to calculate stress, strain, elastic 

modulus and hysteresis. 

In all tests tensile stress was calculated as: 

a = f/At (3.1) 

force (in Newtons) divided by specimen cross-sectional area 

(in mm2 ), and expressed in Megapascals (1 MPa = 10 6 N/rn2 ). 

Tendon cross-sectional areas were calculated as: 

At = m5/15. Pt (3.2) 

by dividing the wet mass of a tendon sample by its length 

and density (approximated at 1.12 g/cm3 ; Ker, 1981; 

Shadwick, 1990). Strain was calculated as: 

e = il/l (3.3) 

the change in length divided by intial length, as measured 

between the surface markers in tests with the video system. 

A stress-strain curve is obtained when stress is 
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plotted on the Y axis against strain on the X axis. The 

slope of the linear portion of the loading curve is the 

ratio between the change in tensile stress and strain 

E = (3.4) 

and is called the modulus of elasticity (Fig. 4.1). Elastic 

modulus is a measure of the elastic stiffness of the tendon. 

It is conventionally given the symbol E, and in this study 

is expressed in GigaPascals (GPa). The loading and 

unloading curves produce a loop because some of the work 

done stretching the tendons is lost viscously (degraded to 

heat) instead of being recovered in elastic recoil. 

Mechanical hysteresis (H) represents the mechanical energy 

lost (converted to heat) and may be calculated as the ratio 

of the area within the stress-strain loop (strain energy 

dissipated) to the area beneath the loading curve (total 

strain energy input), (A/A+B) (Fig. 4.1). Resilience (R), 

the energy recovered due to release of elastic strain energy 

(elastic recoil), (B/A+B), is the converse of hysteresis. 

Allometric equations were obtained by least squares 

regression after transformation of the X and Y variables to 

logarithms. Body mass (X) was treated as the independent 

variable. The allometric equations are reported in the form 

= a.Xb . Untransformed data were plotted on log-log scaled 

graphs (Schmidt-Nielsen, 1984; Peters, 1983). A Student's t 

test and the standard error of the slope were used to assign 
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95% confidence limits to the allometric exponent, b (Zar, 

1984). The correlation coefficient (r) for each equation 

was also determined. Analysis of co-variance (Zar, 1984), 

was applied to the data to determine whether the slopes 

(allometric exponents, b) and the elevations 

(proportionality coefficients, a) of the allometric 

equations for each tendon were similar. 

3.3 Morphometric Analysis 

3.3.1 Anatomical Measurements  

The following muscles and tendons were dissected from 

the hind limbs of all 35 specimens listed above; digital 

flexors (plantaris, deep digital flexors [flexor hallucis 

and flexor digitoruta longus]), ankle extensors 

(gastrocnemius and soleus [if present]), and common digital 

extensors. As there were no appreciable differences between 

left and right hind limbs in any of the specimens, the data 

from both hind limbs were pooled and averaged to represent 

one data point for each figure. In cases where only one 

hind limb was available, data points represent measurements 

from only that limb. 

The effective length of the tendon can be difficult to 

determine as muscle and tendon shape and orientation differ 

from muscle to muscle and from species to species. In order 

to simplify this measurement the definition originally given 



26 

by Alexander (1974) was adopted (see figure 3.1). The 

effective length of the tendon on this basis is 

Lt=(DLm ) (3.5) 

where D is the overall length from origin to insertion and 

Lm is the length of the muscle fibres when the muscle belly 

is straight but under no tension. 

The tendons were dissected from their muscle bellies, 

wrapped in plastic film and stored at -20°C until needed for 

mechanical testing. The mass of each muscle (Mm) was 

determined immediately after removal of the tendon. The 

muscles were fixed in a 20% formalin solution for 24 hours 

or more and then rinsed in water. Sections of muscle were 

cut in the plane of the fibres and fibre length measured 

with calipers. This procedure was used because several of 

the muscles are pennate, with short fibres, making it 

difficult to measure fibre length accurately in fresh 

material. Without establishing the sarcomere length of each 

fibre, this method has a possible uncertainty of up to 25% 

(due to the range of lengths over which muscle fibres 

operate) (Ker et al., 1988; Shadwick, 1990). From the 

muscle mass and fibre length data the muscle fibre cross-

sectional area was calculated as 

Am = MM/Lm -pm (3.6) 
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Tendon of origin 

Aponeurosis over 
muscle belly 

0 

j3 

Motor tendon 

Figure 3.1. A diagrammatic view of a uni-pennate muscle 
tendon combination. The effective length of the tendon is 

where D is the overall length from origin to insertion 
and L. is the length of the muscle fibres. This assumes the 
numeric value of cos to be very close to one, where 8 is 
the angle of pirination. 1 represents length of selected 
portion of tendon for tensile tests (re-drawn from Ker et 
al., 1988). 

This approximates the density of muscle as 1.06 g/cm3 

(Mendez and Keyes, 1960),. Muscle fibre cross-sectional area 

calculations are prone to the same possible uncertainty as 

mentioned above for the fibre lengths (Ker et al., 1988; 

Shadwick, 1990). 

The deep digital flexor and gastrocnemius are each made 

up of more than one muscle belly, so the mass (Mm) and 

cross-sectional area (Am) given for each of these is the sum 

of the masses and fibre areas of the constituent muscle 

bellies for that particular muscle. This follows the 
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procedure outlined by Alexander et al.,(1981). For a 

compound (multi-bellied) muscle of which the jth member has 

mass m and fibres of length i, the cross-sectional area of 

the muscle fibres (a) was calculated as follows: 

a=m/i. (3.7) 

This gives the cross-sectional area of the muscle fibres for 

each constituent belly of the compound'xnuscle. As well, each 

belly of the gastrocnemius and deep digital flexors may have 

very different fibre lengths, so in determining the muscle 

fibre length, L, for a compound muscle, the weighted 

harmonic mean fibre length was determined as 

Lm = Em/E(m/i) (3.8) 

Immediately following biomechanical testing, measured 

lengths, is' were cut from tendons and their mass, m5, 

determined. In a fashion similar to the method of 

determination of muscle fibre cross-sectional area, tendon 

cross-sectional area was determined by dividing the wet 

weight of a tendon sample by its length and density 

(equation 3.2). 

3.3.2 Mechanical Parameters  

As the peak isometric stress (force/cross-sectional 

area) of striated muscle appears to be relatively constant 
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among vertebrates (Wells, 1965; Close, 1972), at cr 0.3 

MPa, maximum muscle force can be estimated from.the cross-

sectional area of the muscle fibres [multiplied by the 

cosine of the angle of pinnation]. The angle of pinnation, 

0, (Fig. 3.1) was never found to be greater than 300 and 

ranged more commonly from 10° to 25°, thus making 

cos 0 almost equal to l.(cos 00 = 1: cos 30° = 0.87). Thus, 

the factor cos 0 was eliminated from the fibre area 

calculations, and hence muscle force estimation. 

Since tendons are in series with their muscles, the 

maximum tension in a tendon cannot exceed the peak load 

(Fm = Cm Am) developed by the muscle. Therefore the maximal 

in vivo tendon stress (at) is proportional to the ratio of 

the muscle and tendon cross-sectional areas, Am/At and the 

maximal muscle stress (Ker et al., 1988), and is calculated 

as: 

at = 0.3 MPa(Am/At) (3.9) 

The factor of safety of a structure or component is the 

ratio of the load which would cause it to fail (ultimate 

strength), to the maximum load it is required to withstand 

(maximum tendon stress) (Alexander, 1981). Safety factors 

for the tendons were estimated by dividing the value for 

ultimate tendon strength (100 MPa (Bennett et al., 1986)) by 

the calculated values for maximum tendon stress. 
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The calculation of the following two parameters, length 

factor and elastic strain energy, employs the data obtained 

from both the mechanical tests and morphometric analysis. 

Since material properties for all tendons tested appear to 

be similar and independent of body mass, a typical stress-

strain curve (Fig 4.1) was used to determine the maximal 

vivo strain (t) which corresponds to the maximal in vivo  

tendon stress (Lt). Tendon extension (iLt) at maximal 

stress will be proportional to tendon strain and length as: 

iLt = t Lt (3.10) 

The dimensionless fibre length factor, L, is defined as 

the ratio of muscle fibre length to the extension of the 

tendon when the muscle is maximally contracted (fm 0.3 

MPa) and expresses the relative importance of muscle and 

tendon length changes under these conditions (Ker et al., 

1988) This parameter can be used to determine whether a 

muscle-tendon unit favors elastic energy storage (L<2) or 

control of joint displacement and minimal total mass (L>4) 

(Ker et al., 1988; Shadwick, 1990). 

When an elastic material deforms reversibly, the 

product of stress and strain gives energy, U. In this case 

(cyclic tensile testing) strain energy can be approximated 

as the area under the linear portion of the stress strain 

curve. Strain energy is calculated as, U = 1/2 t li, per 

unit volume of material, having units of Joules/m3 
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(Wainwright et al., 1976). In an intact animal, however, 

the storage capacity of elastic strain energy depends upon 

the level of in vivo tendon stress and strain. Again, 

combined with data from morphometric analysis and tensile 

tests, an estimate of the maximal in vivo stress and strain 

was used to calculate the corresponding maximum capacity for 

storage of elastic strain energy, as follows: 

U = [l/ 2 (at.et)] [Lt -At] (3.11) 

having units of Joules. 

Allometric equations for each variable listed in Tables 

4.2 - 4.4 were obtained by least squares regression after 

transformation of the variables X and Y to logarithms. Body 

mass (X) was treated as the independent variable. The 

allometric equations are reported in the form Y = a xb. 

Untransformed data were plotted on log-log scaled graphs 

(Schmidt-Nielsen, 1984; peters, 1983). A Student's t test 

and standard error calculation of the slope were used to 

assign 95% confidence limits to the allometric exponent, b 

(Zar, 1984). The correlation coefficient (r) for each 

equation was also calculated. The last step in the 

statistical analysis of the data involved applying analysis 

of co-variance tests (Zar, 1984), to determine whether the 

slopes (allometric exponents, b) or elevations 

(proportionality coefficients, a) of the allometric 

equations of each muscle and/or tendon unit were similar. 
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CHAPTER 4 

RESULTS 

4.1 Material Properties of Tendons 

4.1.1 Stress-Strain curves  

A typical cyclic stress strain curve is shown in figure 

4.1. All tendons tested, whether they functioned primarily 

as ankle extensors, digital flexors or extensors, yielded 

similar J-shaped curves. Continued elongation resulted in a 

stiffening of the tissue, eventually resulting in a linear 

curve, beginning at approximately 20 - 35 MPa for most 

tendons. The elastic modulus was calculated as the slope of 

the linear portion of the loading curve. As long as the 

tendon was not extended beyond the linear region of the 

stress-strain curve, cyclic loading produced an elastic 

response, i.e., unloading restored the tendon to its 

original length. Hysteresis is represented by the area (A) 

enclosed by the loop. After a few conditioning cycles, the 

curves became quite stable. The average elastic modulus and 

mechanical hysteresis (from 2 - 8 cycles) was then 

determined for each tendon. These averaged values of 

elastic modulus and hysteresis for each tendon were used in 

the alloinetric equation calculations. 
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1-11 

0.01 0.02 0.03 0.04. 0.05 0.06 0.07 0.08 
strain 

Figure 4.1. A typical stress strain curve for a mammalian 
tendon. Arrows on the curve indicate the direction of 
loading. Elastic modulus is calculated as the slope 
(ii/e) of the linear portion of the loading curve. 
Hysteresis (represented by area A) is 5.1% of the total 
strain energy input (area A+B). 
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4.1.2 Elastic Modulus and Hysteresis  

The data show that in adult mammals, tendons associated 

with functionally different muscles, such as the ankle 

extensor, digital flexors and digital extensors are 

materially similar, and their material properties appear to 

be independent of body mass. Table 4.1 and Figs. 4.2 and 

4.3 show that for each of the tendon types, both elastic 

modulus (Et) and hystersis (Ht) are neither body size nor 

species dependent. Modulus of elasticity ranged from 

approximately 0.9 to 1.8 GPa, with an average value of 1.24 

(± 0.23) GPa for all tendon types. Hysteresis typically 

ranged from 3 to 20%, with an average value of 9.3 (± 5.0)% 

for all tendon types. Using Student's t test it was found 

that for all tendon types the scaling exponent, b, for both 

elastic modulus and hystersis was not significantly 

different from zero (P > 0.05), indicating no dependence 

between these variables and body size. However, it should 

be noted that the hysteresis for the plantaris tendon 

appears to follow a decreasing trend with greater body mass 

(Fig 4.3), although this is not statistically significant. 

Analysis of covariance applied to the elastic modulus 

data yields a common allometric exponent (be) of 0.00 and a 

common proportionality coefficient (a) of 1.22 for all 

tendon types tested, illustrated by the solid line in figure 

4.2. Similarly, analysis of covariance applied.to the 

hysteresis data yields a common scaling exponent (bc) of 

-0.03 and a common proportionality coefficient (ac) of 8.89 
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for all tendon types, illustrated by the solid line in 

figure 4.3. Further correlation coefficients (r), such as 

those in Table 4.1 (approaching zero), denote that there is 

no linear association between the magnitudes of the X and Y 

variables; that is, a change in magnitude in one does not 

imply a change in magnitude of the other (Zar, 1984) 

4.2 Morphometric Analysis  

4.2.1 Muscle Dimensions  

The relationships of the muscle parameters (mass, fibre 

length and fibre cross-sectional area) to body mass are 

shown in figures 4.4 - 4.6. The corresponding allometric 

constants for non-hoppers only are listed in Table 4.2. 

The allometric exponent, b, for muscle mass for all the 

muscles, (plantaris, deep digital flexors, gastrocnemius and 

common digital extensors) is not significantly different 

from a value of 1 (P > 0.05), indicating a simple 

proportionality, as expected for geometric scaling. 

Further, the correlation coefficients for each tendon are 

all greater than 0.97, indicating that the data from each 

category fall on a straight line and that there is a very 

strong positive linear association between the two variables 

(muscle mass and body mass). Analysis of co-variance 

applied to these four groups of data yields a common 

allometric exponent (bc) of 0.98. The proportionality 

coefficients (a) for the four equations are, however, 
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Figure 4.2. Semi-log plot of the relationship between 
tendon elastic modulus (Et) in GigaPascals and body mass 
(Mb) in kilograms, for all tendons tested. The points for 
each tendon are represented by symbols and the dashed 
regression lines are labelled by letters, as follows: • P, 
plantaris; M D, deep digital flexors; A G, gastrocnemius; 0 
C, common digital extensor. The common regression line is 
represented by the solid line. Allometric equations for 
each tendon are listed in the upper left hand corner. 
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Figure 4.3. Log-log plot of the relationship between tendon 
mechanical hysteresis (Ht) and body mass (Mb) in kilograms 
for all tendons tested. The points for each tendon are 
represented by symbols and the dashed regression lines are 
labelled by letters, as follows: U P, plantaris; 0 D, deep 
digital flexors; A G, gastrocnemius; 0 C, common digital 
extensor. The common regression line is represented by the 
solid line. Allometric equations for each tendon are listed 
in the upper left hand corner. 
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Table 4.1. Analysis of mechanical data for non-hoppers 
only. Values of allometric parameters for y=axb, where Y is 
the dependent variable listed and X is body mass (Mb) in kg. 
The equations were determined by least squares regression 
after logarithmic transformation. N refers to the number of 
specimens (body weights) used in each category. 95% 
confidence intervals (CI) of the allometric exponent (b), 
and the correlation coefficients (r) are also included. 
Analysis of co-variance revealed common regression (bc) and 
proportionality coefficients (ac). Therefore, the entire 
data set for each variable, Y ,can be represented by the 
common allometric equation listed. 

TENDON N a b 95% CI r 

ELASTIC MODULUS (GPa) 

PLA 19 1.32 -0.01 0.04 -0.09 

DDF 21 1.18 0.01 0.04 0.09 

GAS 10 1.16 0.00 0.06 0.00 

CDE 17 1.25 -0.01 0.06 -0.11 

COMMON ALLOMETRIC EQUATION Y = 1.22 

HYSTERESIS (%) 

PLA 18 9.08 -0.10 0.14 -0.36 

DDF 21 9.44 0.01 0.08 0.03 

GAS 10 8.00 0.05 0.34 0.11 

CDE 17 8.24 -0.01 0.13 -0.06 

COMMON ALLOMETRIC EQUATION Y = 8.89 X°°3 
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significantly different from one another. When the 

numerical value of the exponents (b) in the allometric 

equations are the same, the proportionality coefficients (a) 

can be used directly to compare the magnitude of the 

variable in question (Schmidt-Nielsen, 1984). These 

proportionality coefficients show that for mammals in 

general (excluding bipedal hoppers) the muscle mass of the 

gastrocnemius is a little more than two and one half times 

that of each of the plantaris and deep digital flexors, and 

about seven and one half times that of the common digital 

extensors. 

Close inspection of figure 4.4 reveals that the muscle 

masses for the plantaris and gastrocnemius of the kangaroo 

rats and the plantaris of the wallaby greatly exceed what 

would be predicted for their respective body masses based 

upon allometric equations derived from the non-hoppers. 

The allometric exponent, b, for fibre length of each 

muscle (plantaris, deep digital flexor, gastrocnemius and 

common digital extensor) is significantly different from 

that predicted by geometric scaling, i. e., b = 0.33 (P < 

0.001). As well, fibre lengths unlike muscle mass, do not 

show the same trend for all muscle types. The-scaling 

exponent, b, for the deep digital flexors, gastrocnemius and 

common digital extensors ranges from 0.18 - 0.24, with a 

common exponent (be) of 0.21. The scaling exponent is, 

however, much lower for the plantaris (b=0.05), as well as 

being not significantly different from zero (P > 0.05). 
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This is, in part, due to the very short plantaris muscle 

fibres of some ungulates. There is a very low correlation 

coefficient (0.23), again indicating very little association 

between the magnitudes of X (body mass) and Y (plantaris 

fibre length). 

The scaling exponents of the calculated total muscle 

fibre cross-sectional areas for plantaris and deep digital 

flexors are statistically similar (P > 0.05). Analysis of 

covariance yields a common scaling exponent (bc) of 0.88 and 

a common proportionality coefficient (ac) of 129.4, 

indicating that there is no significant difference between 

plantaris and deep digital muscle fibre cross-sectional 

areas. All the allometric exponents for fibre area, with 

the exception of that for the digital extensors, are 

significantly greater (P < 0.001) than that predicted by 

geometric scaling. The higher scaling exponent for the 

digital flexors and ankle extensors compared to the digital 

extensors is due to the relatively shorter fibres found in 

the plantaris, deep digital flexor and gastrocnemius 

muscles. The correlation coefficients are again very large, 

indicating a strong positive correlation between body mass 

and each of the muscle fibre areas. Assuming maximum muscle 

force per unit area (stress) is constant, the plantaris, 

deep digital flexors and gastrocneiuius muscles, due to their 

greater fibre cross-sectional areas, are able to exert much 

greater forces than the muscles of the common digital 

extensors for any body mass. 
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Figure 4.4. Log-log plot of the relationship between muscle 
mass (Mm) in grams and body mass (Mb) in kilograms for four 
muscles. Muscle mass increases in airect proportion to body 
mass for all muscles studied. The points for each muscle 
are represented by symbols and the regression lines are 
labelled by letters, as follows: R P, plantaris; Z D, deep 
digital flexors; A G, gastrocnemius; 0 C, common digital 
extensors. Allometric equations for each muscle are listed 
in the upper left hand corner. 
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Figure 4.5. Log-log plot of the relationship between muscle 
fibre length (L) in millimeters and body mass (Mb) in 
kilograms for four muscles. Note that the extremely short 
fibered plantaris in some ungulates markedly affects the 
slope of the regression line for this muscle. The points 
for each muscle are represented by symbols and the 
regression lines are labelled by letters, as follows: UP, 
plantaris; 0 D, deep digital flexors; A G, gastrocnemius;D 
C, 'common digital extensors. The allometric equations for 
each muscle are listed in the upper left hand corner. 
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Figure 4.6. Log-log plot of the relaionship between muscle 
fiber cross-sectional area (Am) in mm and body mass (Mb) in 
kilograms for four muscles. Since the maximum isometric 
stress (force/area) that can be produced by striated muscle 
(0.3 NPa) is standard for vertebrates (Wells, 1965; Close, 
1972), the muscle force can be estimated from the total 
cross-sectional area of the muscle fibers. The points for 
each muscle are represented by symbols and the regression 
lines are labelled by letters, as follows: UP, plantaris; 
D, deep digital flexors; A G, gastrocnemius; 0 C, common 
digital extensors. The alloinetric equations for each muscle 
are listed in the upper left hand corner. 
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Table 4.2. Morphoinetric analysis of muscle anatomical data 
for non-hoppers only. Values of allometric parameters for 
Y=aX', where Y is the dependent variable listed and X is 
body mass (Mb) in kg. The equations were determined by 
least squares regression after logarithmic transformation. 
N refers to the number of specimens (body weights) used in 
each category. 95% confidence intervals (CI) of b, and 
correlation coefficients (r) are also included. 

MUSCLE N a b 95% CI r 

MUSCLE MASS (g) 

PTA 33 1.23 0.97 0.06 0.98 

DDF 35 1.28 1.03 0.05 0.99 

GAS 35 3.52 0.97 0.06 0.99 

CDE 34 0.46 0.93 0.08 0.97 

MUSCLE FIBER LENGTH (mm) 

PTA 33 8.67 0.05 0.08 0.23 

DDF 35 9.63 0.18 0.04 0.86 

GAS 35 10.91 0.21 0.04 0.87 

CDE 34 15.30 0.24 0.05 0.87 

MUSCLE FIBER CROSS-SECTIONAL AREA (2) 

PTA 33 134.10 0.91 0.08 0.97 

DDF 35 125.28 0.85 0.06 0.98 

GAS 35 304.17 0.77 0.04 0.99 

CDE 34 28.09 0.69 0.08 0.96 
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Similar to the trend for muscle mass, the muscle fibre 

area for the plantaris and gastrocnemius of the kangaroo 

rats and plantaris of the wallaby are larger than would be 

predicted for their respective body masses based on 

allometric equations derived from non-hoppers. 

4.2.2 Tendon Dimensions  

The relationships between the tendon parameters (cross-

sectional area and length) and body mass are illustrated in 

figures 4.7 and 4.8. The corresponding allometric constants 

for non-hoppers only are listed in Table 4.3. 

The scaling exponent, b, for the tendon cross-sectional 

area of the plantaris, deep digital flexors and 

gastrocnemius, are statistically similar as well as being 

not significantly different from that predicted by geometric 

scaling (P > 0.05). Analysis of co-variance yields a common 

allometric exponent, b, of 0.67. The differing 

proportionality coefficients indicate that for mammals in 

general (excluding bipedal hoppers) the combined tendon area 

of the deep digital flexors is almost twice that of the 

plantaris. The allometric exponent for the common digital 

extensor tendon area, however, is significantly lower at 

0.56 (P < 0.005). 

Figure 4.7 reveals that the tendon cross-sectional area 

of the kangaroo rats' plantaris and gastrocnemius and the 

wallaby's plantaris are considerably larger than would have 

been predicted for their respective body masses based on 
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allometric equations derived from non-hoppers. 

The allometric exponents for tendon length are both 

statistically similar to one another and not significantly 

different than that predicted by geometric scaling (P > 

0.05). The common scaling exponent, bc, is 0.35 for all 

tendons considered. The proportionality coefficients, a, 

indicate the relative length of each tendon. The allometric 

exponents for both the tendon cross-sectional area and 

tendon length are considered reliable, since the correlation 

coefficients for each equation are very high. 

4.3 Muscle-Tendon Parameters 

The relationships for the muscle-tendon parameters 

(area ratio, length factor and capacity for storage of 

elastic strain energy) are illustrated in figures 4.9 - 

4.11. The corresponding allometric constants for non-

hoppers only are listed in Table 4.4. 

The allometric exponents for muscle/tendon area ratio 

of the plantaris, deep digital flexors, gastrocnemius and 

common digital extensor are all significantly larger than 

that predicted by geometric scaling (P < 0.05). The scaling 

exponents of the muscle/tendon area ratio (Am/At) for the 

deep digital flexors and plantaris are considerably larger 

(0.21 - 0.24) than those of the gastrocnemius and common 

digital extensors (0.08 - 0.13). The corresponding common 

scaling exponents are bc=O.22 and b=0.10, respectively. 
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Figure 4.7. Log-log plot of th relationship between tendon 
cross-sectional area (At) in mm and body mass (Mb) in 
kilograms for four tendons. The points for each €endon are 
represented by symbols and the regression lines are labelled 
by letters, as follows: u P, plantaris; H D, deep digital 
flexors; A G, gastrocnemius; 0 C, common digital extensors. 
Arrows point out the tendon cross-sectional areas of the 
kangaroo rats' plantaris and gastrocnemjus and the wallaby's 
plantaris. The allometric equations for each tendon are 
listed in the upper left hand corner. 



48 

10 

Lt = 130.6 Mb 0.35 

Lt = 106.5 Mb 0-38 

Lt = 63.7 NO .34 

Lt 106.9 NO .35 

I 1111111 I I 1111111 

0.01 0.1 1 10 
body mass (kg) 

Ii 

100 
I I I I I 

1000 

Figure 4.8. Log-log plot of the relationship between tendon 
length (Li..) in millimeters and body mass (Mb) in kilograms 
for four Eendons. The points for each tendon are 
represented by symbols and the regression lines are labelled 
by letters, as follows: a P, plantaris; D, deep digital 
flexors; A G, gastrocnemius; 0 C, common digital extensors. 
The allometric equations for each tendon are listed in the 
upper left hand corner. 
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Table 4.3. Morphometric analysis of tendon anatomical data 
for eon-hoppers only. Values of allontetric parameters for 
Y=aX, where Y is the dependent variable listed and X is 
body mass (Mb) in kg. The equations were determined by 
least squares regression after logarithmic transformation. 
N refers to the number of specimens (body weights) used in 
each category. 95% confidence intervals (CI) of b, and 
correlation coefficients (r) are also included. 

TENDON N a b 95% CI r 

TENDON CROSS-SECTIONAL AREA (nun2 ) 

PLA 35 1.36 0.68 0.04 0.98 

DFF 35 2.51 0.64 0.04 0.98 

GAS 34 2.97 0.68 0.07 0.97 

CDE 33 0.74 0.56 0.07 0.95 

TENDON LENGTH (trim) 

PLA 35 130.56 0.35 0.03 0.97 

DDF 35 106.54 0.38 0.04 0.96 

GAS 35 63.72 0.34 0.03 0.97 

CDE 34 106.87 0.35 0.04 0.95 
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From equation 3.9, if the area ratio values are multiplied 

by the constant maximum muscle stress, 0.3 MPa, this would 

produce resultant maximal in vivo tendon stresses with 

scaling exponents following the same trends as the area 

ratios seen in Fig. 4.9 and Table 4.4. The proportionality 

coefficient (a) for the plantaris area ratio is twice as 

large as that of the deep digital flexors, therefore, the 

plantaris tendon would experience twice the maximum in vivo 

stress as that of the deep digital flexors. Despite the 

fact that the gastrocnemius muscle is capable of exerting 

much greater forces than the common digital extensor, due to 

the robustness of their respective tendons, the tendon of 

the gastrocnemius experiences only two and one half times 

the maximum in vivo stress of that of the common digital 

extensors. 

Of the bipedal hoppers only the area ratio of the 

wallaby's gastrocnemius muscle-tendon unit is greatly 

different (being more than twice as large) from what would 

have been predicted based on the allometric constants in 

Table 4.4. 

The length factor (L) is proportional to the ratio of 

muscle fibre length and tendon extension at maximum muscle 

stress (0.3 MPa). The length factors for the plantaris and 

deep digital flexors decrease with increasing body size at a 

greater rate than those of the gastrocnemius and common 

digital extensors. This is indicated by the scaling 

exponents of the digital flexors being more negative than 
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those of the ankle and digital extensors. The scaling 

exponents for the length factors of the gastrocnemius and 

digital extensors are statistically similar (P > 0.05). 

However, as indicated by their respective proportionality 

coefficients, the gastrocnemius is designed for a lower 

value of L than are the digital extensors for all body 

sizes. 

Again, of the bipedal hoppers, only the length factor 

for the wallaby's gastrocnemius muscle-tendon unit is 

different (being much lower) from what would have been 

predicted for its body mass based on allometric constants in 

Table 4.4. 

The scaling exponents of the capacity for elastic 

strain energy storage for all the tendons is greater than 

one. Supported by very high (>0.95) correlation 

coefficients, this indicates that the capacity for storage 

of elastic strain energy increases at a greater rate than 

increases in body mass. Thus, larger mammals have a greater 

capacity for storage of elastic strain energy than do 

smaller mammals. Even though the exponents are all greater 

than one, the exponent for the common digital extensors is 

not significantly different from one (P > 0.05). Thus the 

capacity for storage of elastic strain energy increases more 

rapidly with increasing body mass in those tendons that 

experience greater stresses (digital flexors and ankle 

extensors), when compared to tendons that do not experience 

such large stresses (digital extensors). 
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As far as the tendons of the bipedal hoppers are 

concerned, they are capable of storing as much elastic 

strain energy as would be predicted for their respective 

body masses, with the exception of the kangaroo rats' 

plantaris and the wallaby's gastrocnemius tendons, which are 

capable of storing much more energy than would have been 

predicted from the allometric constants in Table 4.4. 



53 

m
u
s
c
l
e
/
t
e
n
d
o
n
 
a
r
e
a
 
ra
t
io
 

1111fit I 

1 10 100 1000 
body moss (kg) 

Figure 4.9. Log-log plot of the relationship between the 
muscle/tendon area ratio (Am/At) and body mass (Mu) in 
kilograms for four muscle-tendon combinations. Since 
tendons are in series with their muscles, the maximum tendon 
tension cannot exceed the load developed by its muscle. 
Therefore the maximum tendon stress (at) is proportional to 
the ratio of muscle and tendon cross-sectional areas. The 
points for each muscle-tendon unit are represented by 
symbols and regression lines are labelled, as follows: 
plantaris; M D, deep digital flexors; AG, gastrocnemius;o 
C, common digital extensors. The arrow points out the 
wallaby's gastrocnemius muscle/tendon area ratio. The 
allometric equations for each muscle-tendon unit are listed 
in the upper left hand corner. 
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Figure 4.10. Log-log plot of the relationship between the 
length factor (L) and body mass (Mb) in kilograms for four 
muscle-tendon combinations. The area between values of 
L < 4, but > 2 demarcates a transition zone between a design 
for elastic energy storage (L < 2) versus control for joint 
displacement (L > 4). Due to their low values for L the 
plantaris, deep digital flexor and gastrocnemius. muscle-
tendon unit of large mammals appears to be more suited for 
elastic energy storage. The points for each muscle-tendon 
unit are represented by symbols and regression lines are 
labelled by letters, as follows: U P, plantaris; H D, deep 
digital flexors; A G, gastrocnemius; a C, common digital 
extensors. The arrow points out the length factor for the 
wallaby's gastrocnemius. The allometric equations for each 
muscle-tendon unit are listed in the lower left hand corner. 
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Figure 4.11. Log-log plot of the relationship between the 
maximum capacity for elastic strain energy storage (U) in 
Joules and body mass (Mb) in kilograms for four tendons. 
Since U scales with an exponent greater than one, the 
capacity for elastic strain energy is greater in large 
mammals, especially in tendons that experience larger 
stresses. The points for each tendon are represented by 
symbols and regression lines are labelled by letters, as 
follows: RP, plantaris; R D, deep digital flexors, AG, 
gastrocnemius; o C, common digital extensors. The 
allometric equations for each tendon are listed in the upper 
left hand corner. 
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Table 4.4. Morphometric analysis of muscle/tendon 
anatomical data for non-hoppers only. Values of alloluetric 
parameters for y=axb , where Y is the dependent variable 
listed and X is body mass (Mb) in kg. The equations were 
determined by least squares regression after logarithmic 
transformation. N refers to the number of specimens (body 
weights) used in each category. 95% confidence intervals 
(CI) of b, and correlation coefficients (r) are also 
included. 

MUSCLE/TENDON N a b 95% CI r 

MUSCLE/TENDON AREA RATIO 

PLA 33 97.94 0.24 0.06 0.82 

DDF 35 49.98 0.23. 0.05 0.83 

GAS 34 102.30 0.08 0.07 0.37 

•CDE 33 39.15 0.13 0.07 0.53 

LENGTH FACTOR 

PLA 

DDF 

GAS 

CDE 

33 

35 

34 

33 

1.40 

2.73 

3.52 

4.61 

-0.43 

-0.29 

-0.16 

-0.17 

0.13 

0.07 

0.08 

0.10 

-0.78 

-0.82 

-0.59 

-0.52 

ELASTIC STRAIN ENERGY (Joules) 

PLA 

DDF 

GAS 

CDE 

32 

35 

34 

33 

0.14 

0.07 

0.14 

0.01 

0.97 

0.97 

0.97 

0.96 
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CHAPTER 5 

DISCUSSION 

5.1 Material Properties of Tendons 

5.1.1 Stress-Strain Curves  

The J-shaped stress-strain curves obtained in this 

study, whether they were from tendons of ankle extensors, 

digtal extensors or digital flexors are typical of those 

previously reported for mammalian tendons. The initial 

concave portion of the curve is believed to be the result of 

a structural change in fibril organization from a crimped, 

wavy pattern to a more parallel arrangement (Butler et.al., 

1978; Viidik, 1980). With continued elongation (increased 

stresses) the slope of the stress-strain curve (i.e., 

elastic modulus) does not significantly change and the curve 

becomes linear (Fig 4.1). Elastic modulus in this region of 

the curve represents the elastic stiffness of the 

straightened collagen fibre bundles (Viidik, 1980). 

Previous studies show uniformity in tendon stiffness is 

typically attained at stresses beginning at 17 to 30 MPa 

(Ker, 1981; Dimery and Alexander, 1985; Bennett et al., 

1986). Similar to previous studies, the results of the 

tensile tests in this study show that the stress-strain 

curve becomes linear as stresses approach 20 to 35 MPa. One 

must ask, however, whether these levels of tendon stresses 
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are realistically attained during mammalian locomotion. The 

answer is yes; the in vivo stresses ankle extensor and 

digital flexor tendons typically experience during moderate 

to fast running and jumping, (Table 5.1) are sufficient to 

stretch the tendon so that it enters the linear region of 

its stress-strain curve. 

5.1.2 Elastic Modulus and Hysteresis  

Two new major findings have resulted from the tensile 

tests carried out in this study. Firstly the digital flexor 

and ankle extensor tendons (those likely to act as springs 

during the support phase of locomotion) have been 

demonstrated to have the same material properties (ie., 

elastic modulus and hysteresis) as the digital extensors 

(those not likely to function as springs). Secondly, the 

material properties of these functionally different tendons 

are neither species or body size dependent (Figs 4.2 & 4.3; 

Table 4.1). For all tendon types tested, the mean elastic 

modulus value is 1.24 (± 0.23) GPa, and the mean hysteresis 

value is 93 (± 5.0)%. 

These results are in agreement with those of Bennett et 

al., (1986), who found no consistent differences in material 

properties (elastic modulus, percent energy dissipation 

(hysteresis) and ultimate strength) for tendons from 

different anatomical sites and different species. Elastic 

modulus averaged 1.5 GPa (at stresses above 30 MPa), 

hysteresis ranged from 6 to 11% and ultimate strength ranged 
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Table 5.1. Peak in vivo stresses calculated for ankle 
extensor or digital flexor tendons during moderate to fast 
locomotion. Asterisk (*) indicates corrected stress values; 
original published values are slighty higher, as an 
incorrect value for tendon density was used (see Ker et al., 
1986) 

Tendon Stress Literature 
MPa Source 

Wallaby hopping 

Kangaroo hopping 

Dog jumping 

Camel pacing 

Deer galloping 

Donkey trotting 

Antelope galloping 

Buffalo galloping 

Kangaroo rat 
hopping & jumping 

39 - 78 

84 

18 

28 - 74 

28 - 37 

27 - 51 

13 - 48 

10 - 36 

15 - 41 *Alexander & Vernon 1975; 
Ker et al., 1986 

*Alexander & Vernon 1975 

*Alexander, 1974 

Alexander et al., 1982 

Dimery et al., 1986 

Dimery & Alexander, 1985 

*Alexander, 1977 

*Alexander, et al., 1979 

Biewener & Blickhan, 1988 
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from 80 - 100 MPa. However, tendons tested in their study 

represented only those thought to function as elastic energy 

stores during locomotion (e.g. ankle extensors and digital 

flexors of terrestrial mammals and the sarcocaudalis of 

aquatic mammals). They suggested that other tendons 

associated with muscles of different functions may have 

different properties. 

This study expands the sample set to include the 

digital extensor tendons, whose muscles are thought to be 

active during the swing phase of locomotion as opposed to 

the support phase, and can therefore be expected to 

experience less stress. The material properties of the 

digital extensors are no different from those of the digital 

flexors and ankle extensor tendons. Over a range of body 

mass from 0.5 to 545 kg, elastic modulus and hysteresis of 

functionally different tendons are constant, being 

independent of body mass. 

These findings are in marked contrast to studies by Woo 

(1982) and Shadwick (1990). Results from both these studies 

show the digital flexor tendons of mature pigs to have 

higher elastic modulus (stiffer) and higher breaking 

stresses (stronger) than do digital extensor tendons at 

equivalent strains. This corresponds to a much higher 

capacity for storage of elastic strain energy in the tendons 

of the digital flexors. Shadwick (1990) postulated that the 

differences in material properties between these 

functionally distinct tendons are correlated with their 
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physiological functions: the highly stressed flexors, by 

being much stiffer, are much better suited to act as 

effective biological springs than are the extensors. 

However, in a long term exercise study with similar 

pigs, Woo et al., (1980) showed that the tendons of digital 

extensors significantly increased in stiffness. In 

contrast, Woo et al. (1982) found that both short and long 

term exercise had no effect on the stress-strain curves 

(material properties) of the tendons of the digital flexors. 

The stress-strain curves generated from the tendons of the 

digital extensors and the digital flexors of pigs, after 

twelve months of exercise, are virtually the same (Woo et 

al., 1982). If the exercised pigs are taken to be 

equivalent to the adult wild animals in this study then 

there is no discrepancy in the results. The present study, 

with its large sample size, composed almost entirely of non-

domesticated animals, clearly shows that the material 

properties of tendons associated with functionally distinct 

muscles are all the same in adult mammals. It appears that 

tendon is mechanically a highly conservative tissue, 

retaining constant material properties regardless of its 

function, anatomical location or the size of the organism. 

However, as the next section will show, digital flexors and 

ankle extensors are still more suited as biological springs, 

not because their tendons are stiffer than those of digital 

extensors, but because their muscles are able to exert 
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greater forces, thus stretching the tendons to a greater 

degree. 

5.2 Morphometric Analysis  

5.2.1 Muscle Dimensions  

The general findings of the allometric analysis of 

muscle mass, fibre length and cross-sectional area (Figs. 

4.4 - 4.6; Table 4.2), at least for the digital flexors and 

ankle extensors, are in accord with observations made by 

Alexander et al., (1981). To my knowledge, no previous 

studies have investigated the allometric relationships of 

these parameters for the digital extensors. The plantaris, 

deep digital flexor, gastrocnemius and common digital 

extensors of non-hoppers all have muscle masses directly 

proportional to body mass (Mm a Mb°98) (Table 4.1). For no 

muscle is the scaling exponent for muscle mass significantly 

different from 1, exhibiting what is predicted by geometric 

or isometric scaling (Appendix A). 

Alexander et al., (1981) also noted that the muscle 

masses of bipedal hoppers are generally larger than 

homologous muscles found in non-hopping mammals of similar 

size. This might be expected, since the hind limbs of these 

mammals seem to have been enlarged at the expense of the 

forelegs. 

Muscle fibre length for each muscle type scales with 

negative allometry; in other words, the allometric exponents 
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for Lm (Table 4.2) are less than those predicted by 

geometric scaling (Lm a Mb°33 ). This means that as body 

size increases the fibre lengths do not increase as much as 

if L scaled geometrically. The allometric exponent for 

plantaris muscle fibre length is very low (b=O.05), 

confirming the apparent independence of plantaris fibre 

length and body mass seen in figure 4.5. This is, in part, 

due to the extremely short muscle fibres (4-7mm) found in 

some of the larger ungulates. 

The calculated muscle fibre cross-sectional areas for 

the digital flexors and ankle extensors (Table 4.2) scale in 

a positive allonietric fashion, (i.e., the scaling exponent 

in each case is greater than that predicted by isometry, 

because muscle fibre length scales with negative allometry 

and muscle mass scales isometrically (Appendix A)). 

However, the muscle fibre cross-sectional area of the 

digital extensors scales isometrically and the alloinetric 

exponent is not significantly different from 0.67. 

5.2.2 Muscle Force  

As muscle fibres can develop constant peak stresses, the 

maximal forces they exert are therefore proportional to 

fibre cross-sectional area. At any body size, muscles with 

large cross-sectional areas, such as the digital flexors and 

ankle extensors, are consequently capable of exerting 

greater forces than muscles of the digital extensor group. 

The scaling exponents from muscle cross-sectional area 
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(Table 4.2) also predict that large mammals will have 

stronger digital flexor and ankle extensor muscles than if 

they were geometrically similar to small mammals. This is 

especially evident for some of the larger ungulates, whose 

extra muscle strength is due to unusually short fibres in 

muscles of normal mass. 

The bipedal hoppers also have stronger plantaris and 

gastrocnemius muscles than would have been predicted for 

non-hoppers of equivalent mass. This, however, is due to 

them having unusally massive muscles of normal fibre length. 

It seems reasonable to ask if mammals can attain muscle 

stresses, while running, as high as those attained during 

peak isometric contraction (0.3 MPa). Larger stresses than 

those attained during isometric contraction can be developed 

when a fully activated muscle is being forcibly stretched 

(Flintney and Hirst, 1978; Cavagna et al., 1981), doing 

negative work. When the foot first contacts the ground, 

while running, the active digital flexors and ankle 

extensors are elongated before subsequently shortening 

(Alexander and Vernon, 1975; Biewener et al., 1981; Goslow 

et al., 1981; and Alexander et al., 1982), and thus could 

conceivably attain stresses that meet or exceed levels 

reached at peak isometric contraction. Jayes and Alexander, 

(1982) calculated that while galloping, the distal limb 

muscles of greyhounds met and exceeded stresses of 0.3 MPa, 

confirming that these high stress values are realistically 

attainable during fast locomotion. However, what we do know 
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is that the stresses reached during isometric contraction 

for a variety of vertebrates is constant, and for this 

reason this value is used in determining the maximum force a 

muscle is capable of exerting, and consequently the 

potential maximum tendon stress. 

5.2.3 Tendon Dimensions  

The allometric analysis of tendon length and cross-

sectional area, for non-hoppers, shows that tendons 

generally have dimensions predicted by geometric scaling 

(Figs. 4.7 -4.8; Table 4.3), i.e., Lt a Mb°33 and At 

Mb °67 . This is in accord with observations made by 

Alexander et al., (1981) and Peterson et al., (1984). The 

only exception being the total cross-sectional area of the 

common digital extensors, which exhibit negative allometry, 

meaning that they have thinner tendons than would be 

predicted by geometric scaling. 

On the other hand, the tendons of the gastrocnemius and 

plantaris of the kangaroo rats and the plantaris of the 

wallaby are thicker than would have been predicted for non-

hoppers of similar size. Biewener et al., (1981) state that 

the tendons of kangaroo rats are thicker than would be 

expected if they were geometrically similar to those of the 

wallaby, and for this reason they can not be stretched to 

the same degree as homologous tendons in the wallaby. 

However, what is interesting is that it is only the 
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gastrocnemius tendon of the wallaby that is as thin as 

predicted for non-hoppers of similar size. 

5.3 Tendon Stress  

Tendons are in series with muscles, therefore the 

maximum tension developed in a tendon cannot exceed the 

maximum tension (force) developed by its muscle. From 

equation 3.9 it follows that tendon stress is proportional 

to the ratio of the cross-sectional areas of the muscle 

fibres and tendon (/At). Geometric scaling would predict 

the area ratio and thus the maximum stresses tendons 

experience to be independent of body mass (Appendix A). 

However, empirically this is not the case. Even though 

tendon cross-sectional area for digital flexors and ankle 

extensors scales geometrically, their muscle fibre cross-

sectional areas do not, but instead scale with positive 

allometry. Therefore these muscles of larger mammals are 

able to exert greater forces than if they were geometrically 

similar to those of smaller mammals, and the equivalent 

tendons of larger mammals experience potentially greater 

stresses than do tendons of smaller mammals. The tendon 

stresses for the digital extensors also scale with positive 

allometry, but for different reasons. Even though muscle 

fibre cross-sectional area scales isometrically, the tendon 

cross-sectional area scales with negative allometry, 

resulting in the area ratio and, therefore, the maximum 
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stresses the tendons of the common digital extensor can 

experience, increasing with body mass. This does not, 

however, occur to the same degree as it does with the 

digital flexors. 

Both the muscle fibre and the tendon cross-sectional 

areas are large for bipedal hoppers, but the ratio of the 

two dimensions falls within the range predicted by the 

allometric constants for non-hoppers. Of the bipedal 

hoppers, only the gastrocnemius tendon of the wallaby 

suffers high stresses (Table 5.2), due to the relative 

thinness of this tendon compared to the force that its 

muscle is capable of exerting. 

The allometric constants of the muscle/tendon area 

ratio predict that the common digital extensor tendon, even 

in a 545 kg specimen, cannot be broken in tension in vivo  

because the stresses that the tendon experiences (Table 5.2) 

do not exceed its ultimate strength, since its muscle cannot 

exert anywhere near sufficient stress. This results in a 

factor of safety that is quite high (Table 5.3). Ker et 

al., (1988) proposed that this is the case for all tendons 

which experience low stresses, (at < 50 MPa), and data from 

Tables 5.2 and 5.3 support this. Yet the allometric 

constants of the muscle/tendon area ratio predict that the 

highly stressed tendons of the plantaris, deep digital 

flexors and gastrocnemius of some of the larger mammals in 

this study are at risk. These tendons have high tendon 

stresses and safety factors that are two or less (Tables 5.2 



68 

and 5.3). If these allometric trends continued in very 

large animals (over 500 kg in body mass), a point would be 

reached at which the plantaris muscle was strong enough to 

break its own tendon. Alexander (1985) similarly noted this 

problem (based on the ankle extensor data of Alexander et 

al., 1981). Another factor that would lead to safety 

factors being reduced below those calculated in Table 5.3 

would be if the muscles were loaded while they were forcibly 

stretched, resulting in muscle stresses larger than 0.3 MPa 

(Flitney and Hirst, 1978; Cavagna et al., 1981; Biewener et 

al., 1988; Ker et al., 1988). This could conceivably occur 

when an animal is landing from a fall (Alexander, 1981), or 

when it is startled (Biewener et al., 1988). 

Why then, is it not common that the tendons of the 

digital flexors and ankle extensors in larger mammals 

rupture during locomotion? There are four possible reasons 

for this. 1) Perhaps the estimated maximum muscle stress of 

0.3 MPa for an isometric contraction is too high. Biewener 

et al., (1988) and Perry et al., (1988) suggest a value of 

0.2 MPa, which would effectively decrease the maximum tendon 

stress values in Table 5.2 by 33%. This however, would 

still not be enough to remove the plantaris tendon of the 

larger mammals from risk. 2) Perhaps the maximum tendon 

strength is greater than 100 MPa. Bennett et al., (1986) 

suggest that if tendon stress concentrations at clamps 

during tensile testing could be eliminated, higher values of 

tendon strength would become evident. However, even if 
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Table 5.2. Estimated maximum in vivo stresses (at) in 
mammalian limb tendons, based on area ratios (Am/At) in 
Figure 4.9 and assuming the maximum muscle stress is 0.3 
MPa. The symbol, -, indicates that no stress value was 
calculated due to absence of muscle tissue or literature 
values. 

Maximum tendon stress in MPa 

Mammal PLA DDF GAS CDE 

Camel (545kg) - 56 26 34 
Cow (454kg) 84 66 30 23 
*Camel (402kg) - 26 31 - 

Grizzly bear (338kg) 77 29 21 13 
Persian onager (224kg) 101 82 34 54 
Elk (160-205kg) 92-96 32-35 33-63 13-21 
Bearded gnu (205kg) 173 71 85 30 
Lion (200kg) 47 28 43 10 
Horned oryx (110kg) 93 34 36 20 
White-tail deer (28-98kg)52-lol 36-52 58-71 12-22 
Mule deer (97kg) 102 51 61 29 
Dog (28-36kg) 89-107 27-38 59-75 17-27 
Snow leopard (34kg) 43 24 42 9 
Russian saiga (29kg) 101 53 67 28 
Springbok (28kg) 97 32 80 27 
Antelope (20kg) 64 28 30 17 
Muntjac (11-13kg) 44-94 25-46 26-34 17-20 
Indian hog deer (13kg) 46 14 32 12 
*Wallaby (10kg) 61 - 85 - 

Cat (5-7kg) 33-36 21-24 49-57 9-14 
Jack-rabbit (2-3kg) 50-73 21-30 90-112 33-37 
Muskrat (0.6kg) 41 18 39 10 
Grey squirrel (0.6kg) 28 18 32 12 
Ferret (0.5kg) 20 11 16 4 
Ground squirrel (0.5kg) 28 10 27 7 
Guinea pig (0.4kg) 11 6 18 - 

Wood rat (0.2kg) 7 10 10 11 
*Kangaroo rat (0.1kg) 16-22 - 24-32 - 

Gerbil (0.04kg) 18 6 15 9 

* asterisk indicates tendon stresses based on literature 
values for Am/At (see Materials and Methods). 
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Table 5.3. Estimated factors of safety in mammalian limb 
tendons, based on tendon streses in Table 5.2 and assuming 
the ultimate tendon strength is 100 MPa. The symbol, -, 

indicates that no safety factor value was calculated. 

Factors of safety 

Mammal PLA DDF GAS CDE 

Camel (545kg) - 1.8 3.8 2.9 
Cow (454kg) 1.2 1.5 3.3 4.3 
*Camel (402kg) - 3.8 3.2 - 

Grizzly bear (338kg) 1.3 3.4 4.8 7.7 
Persian onager (224kg) 1 1.2 2.9 1.8 
Elk (160-205kg) 1 3.1-2.8 3-1.6 7.7-4.8 
Bearded gnu (205kg) 0.6 1.4 1.2 3.3 
Lion (200kg) 2.1 3.6 2.3 10 
Horned oryx (110kg) 1.1 3 2.8 5 
White-tail deer (28-98kg)2-1 2.8-1.9 1.7-1.4 8.3-4.5 
Mule deer (97kg) 1 2 1.6 3.4 
Dog (28-36kg) 1 3.7-2.6 1.7-1.3 5.9-3.7 
Snow leopard (34kg) 2.3 4.2 2.4 12. 
Russian saiga (29kg) 1 1.9 1.5 3.6 
Springbok (28kg) 1 3.1 1.25 3.7 
Antelope (20kg) 1.6 3.6 3.3 5.9 
Muntjac (11-13kg) 2.3-1.1 4-2.2 3.8-2.9 5.9-5 
Indian hog deer (13kg) 2.2 7.1 3.1 8.3 
*Wallaby (10kg) 1.6 - 1.2 - 

Cat (5-7kg) 3 4.8-4.2 2-1.75 11-7.1 
Jack-rabbit (2-3kg) 2-1.4 4.8-3.3 1.1-0.9 3-2.7 
Muskrat (0.6kg) 2.4 5.6 2.6 10 
Grey squirrel (0.6kg) 3.6 5.6 3.1 8.3 
Ferret (0.5kg) 5 9 6.25 25 
Ground squirrel (0.5kg) 3.6 10 3.7 14.2 
Guinea pig (0.4kg) 9.1 16.7 5.6 - 

Wood rat (0.2kg) 14.3 10 10 9 
*Kangaroo rat (0.1kg) 6.3-4.5 - 4.2-3.1 - 

Gerbil (0.04kg) 5.5 16.7 6.7 11 

* asterisk indicates tendon stresses based on literature 
values for Am/At (see Materials and Methods). 
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ultimate tendon strength was as high as 150 GPa, the 

plantaris tendon of a few of the larger ungulates would 

still be at risk (safety factor of two or less). 3) This 

suggests that the allometric relationships for tendon 

stress, described in this study, reach a size limit. 

Mammals of the largest sizes would have to scale with a 

decreased value for the scaling exponent of the area ratio 

(differential allometry) or else the plantaris tendons would 

break in tension. Close examination of Figure 4.9 reveals 

that for the very largest mammals (>200kg) the values for 

the area ratio of the plantaris and gastrocnemius fall below 

their respective regression lines, ie., maximum tendon 

stresses for these mammals are lower than would be predicted 

by extrapolation from smaller mammals. Similarly, the 

plantaris area ratio value for the buffalo and elephant in 

Alexander et al's., (1981 [see Fig 4]) study falls below its 

regression line. This indicates a possible trend toward 

reduced allometric exponents for tendon stress in the 

largest mammals. 4) A limb posture-based mechanism may be 

responsible for reducing ankle extensor and digital flexor 

tendon stresses in large mammals. Biewener (1989) noted 

that both muscle and bone have similar peak functional 

stresses, ensuring a uniform safety factor (2 - 4) in 

mammalian species. In other words, peak functional stresses 

for both muscle and bone are independent of body mass. Yet 

on the basis of the scaling of limb bone dimensions, peak 

skeletal stress is predicted to increase as Mb°28 
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(Biewener, 1982). How did he explain this discrepancy? It 

appears that similar peak bone stresses and muscle stresses 

in large and small mammals are achieved primarily by a size-

dependent change in locomotor limb posture: small animals 

run with crouched postures, whereas larger species run more 

upright (Figure 5.1). By adopting an upright posture, large 

mammals align their limb segments more closely with the 

ground reaction force (Fg ). This reduces the moment arm of 

the ground reaction force (R), and as a result the 

"effective mechanical advantage" (EMA = r/R) of the ankle 

extensors is increased, substantially reducing the forces 

that their muscles must exert (Fm) to support the animal 

while running (Biewener, 1989, 1990). As the force exerted 

by muscles constitutes the major fraction of force that must 

be resisted by limb bones during locomotion, the observed 

increase in muscle mechanical advantage accounts for 85% of 

the decrease in force required to maintain similar skeletal 

stresses in large and small animals (Biewener, 1989, 1990). 

As tendons 

functional 

the tendon 

are attached in series with their muscles, this 

decrease in muscle force would consequently cause 

stresses to be lower than those that would occur 

if the posture was unaltered in larger mammals. During 

locomotion, the tendons of the largest mammals generally do 

not experience dangerously high stresses (Table 5.1), 

allowing for more uniform factors of safety over a large 

body size range. 



73 

/ 

ground squirrel Fg horse 

Figure 5.1. A schematic representation of the hindlixnb of a 
ground squirrel (0.14kg) which adopts a crouched posture 
versus a horse (280kg) (drawn to equivalent scale) which is 
more upright, at corresponding stages of their strides. 
F is the ground reaction force, R is the moment arm of the 
gound reaction force, FTA  is the force exerted by the 
plantaris and gastrocnemius muscles, and r is the moment arm 
of these muscles. The effective mechanical advantage (EMA) 
for these muscles about the ankle joint is the ratio of r/R. 
The more crouched posture of the squirrel results in a 
greater value for R for its size, compared to the horse. 
The moment arm ratio about the ankle joint multiplied by the 
ground reaction force will give the muscle force as: 
(R/r)Fg = Fm . Thus a more upright posture aligns the limb 
closer to Fc, increasing the muscle's effective mechanical 
advantage a well as decreasing the force exerted by the 
muscles. Fm is a much smaller multiple of F( for the horse 
than the squirrel. Note the magnitudes of F are not drawn 
to scale (adapted from Alexander, 1988 and Biewener, 1983 & 
1990). 
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Biewener's (1989) limb posture and muscle mechanical 

advantage explanation for stress similarity only covers 

animals for which body masses range from 0.1 to 300 kg. 

Mammals that are much greater in body mass also have much 

more robust skeletons, where bone length scales to bone 

diameter°5 . Further adjustments in the alignment of limb 

posture may have limited utility and bone diameter has to 

increase to maintain stresses within an acceptable limit 

(Bertram and Biewener, 1990; Biewener, 1990). Economos 

(1983) showed that allometric equations relating body length 

to body mass for medium to large mammals (>20 kg) had 

smaller exponents (b=0.27) than for smaller mammals (< 20 

kg) (b=0.34). Above 20 kg, body length could not increase 

as fast as geometric similarity requires, or bending stress 

would be unsupportable. These again are examples of 

differential allometry; once an animal reaches a certain 

extreme body size, the rules for stress reduction change, as 

suggested above for tendon stresses (explanation #3). 

5.4 Length Factor 

The fibres of some muscles are too short to allow the 

muscle to stretch its , tendon fully. The muscle cannot 

provide the tendon's strain energy at high loads, let alone 

supply energy to the external system (Ker et al., 1988). 

The muscles of ungulates typically have extremely short 

fibres (Figure 4.5). The maximum tendon stress for the 
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plantaris tendon of a 98 kg white-tailed deer, for example 

(Table 5.2), is 101 MPa. From Figure 4.1, the corresponding 

strain is about 9.7%. The plantaris has fibre lengths of 

about 9.8 mm, and the length of the tendon is about 572 mm. 

Assuming tendon strain is the same throughout its length, 

the maximum extension of the tendon would be about 55.5 mm. 

The fractional range over which sarcomeres operate is 0.25 

(Ker et al., 1988), thus the plantaris muscle would only 

contract through about 2.5 mm, and thus be unable to stretch 

its tendon more than 0.5%. Therefore, most of the tendon's 

strain energy must come from the external system when the 

muscle-tendon unit is first loaded (stretched) as the foot 

contacts the ground. On the other hand, the muscle fibres 

of the common digital flexors for the same specimen (98 kg) 

are much longer, having lengths of approximately 38 mm and a 

tendon length of 482 mm. The maximum tendon stress is 22 

MPa with a corresponding strain of 3%, and maximum extension 

of 14.5 mm. The muscle of the common digital extensor would 

contract through 9.5 mm, taking up a large portion of the 

possible tendon extension. 

The dimensionless fibre length factor (L), defined as 

the ratio of the muscle fibre length to the extension of its 

tendon when the muscle is producing maximal force (0.3 MPa), 

is used to describe the relative importance of the muscle 

versus tendon length changes in determining displacement at 

the joint at full load, and therefore strain energy storage 

capabilities at maximal loads (Ker et al., 1988; Shadwick, 
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1990). According to Ker et. al's., (1988) theory for the 

optimization of tendon thickness, the muscle is less 

important than the tendon in joint displacement when L < 4, 

and even more so when L < 2. In these situations the 

dimensions of the muscle-tendon unit have been optimized for 

effective elastic energy storage. This is characteristic of 

tendons that are relatively long and thin, and whose 

corresponding short-f ibred muscles can impose high stresses 

(such as the plantaris). Such tendons are ideally suited to 

act as locomotory springs (Alexander, 1984). When a tendon 

acts as a spring the only necessary role for the muscle is 

to maintain tension. Short fibres are mechanically adequate 

to maintain this tension and bring the benefit of small mass 

(Ker et al., 1988), which is critical for larger cursors 

that typically have reduced muscle mass in the distal region 

of their limbs. 

Ker et al's., (1988) theory also states that the 

dimensions of the muscle-tendon unit have been designed for 

control of joint displacement and minimal total mass when 

L > 4. Figure 4.10 shows that for nearly all body sizes in 

this study the plantaris tendon, having values of L less 

than 4, is designed for elastic strain energy storage. As 

body size increases this capacity is substantially 

amplified, especially in the ungulates that have very short 

plantaris muscle fibres and long tendons. The muscle-tendon 

units of the deep digital flexors, gastrocnemius and to some 

degree the plantaris, from mammals with a body mass of 
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about 1 kg or less (specimens that generally exhibit an 

ambulatory style locomotion) are generally designed for 

joint displacement. While those specimens with a body mass 

above 1 kg (cursors) generally have these same muscle-tendon 

units designed for elastic strain energy storage (Figure 

4.10). 

The length factor of the digital extensors for all the 

less specialized cursorial and ambulatory mammals is 

generally greater than 4. This trend indicates that the 

muscle-tendon unit of the digital extensors for these 

specimens is designed primarily for the displacement of the 

metatarsal-phalangeal joint (Figure 4.10). In constrast, 

the muscle-tendon unit of the common digital extensor for 

ungulates and hares (highly specialized cursors) does not 

appear to be designed for joint displacment, having values 

of L < 3 and more commonly L < 2 over their entire size 

range (Figure 4.10). Ker et al., (1988) also found that the 

digital extensor of the horse (a large ungulate) does not 

have the high length factor typically associated with this 

tendon. However, it cannot be said that digital extensors 

act as springs as described by Alexander (1984) because they 

are not under load when the foot is on the ground. Ker et 

al., (1988) suggested that either the thinness of these 

tendons may simply reflect the great emphasis in design 

these highly specialized cursors place in minimizing mass in 

the distal parts of the limb, or they do somehow act as 

biological springs by a mechanism yet to be described. 
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Furthermore, Ker et al., (1988) proposed that tendons 

that are designed to store elastic strain energy and 

function as springs 

following features: 

short fibres, Am/At 

during locomotion should have the 

attachment to muscles with relatively 

> 75, maximum in vivo at > 25 MPa and 

L < 2. Figures 4.5, 4.9 and 4.10 and Table 52 indicate 

that the digital flexors and ankle extensor of mammals 

greater than 1kg in body mass generally fall into this 

category, whereas the digital extensors do not. The digital 

extensors in this study (with exception of those of some of 

the ungulates and the hares) generally have relatively long 

muscle fibres, Am/At < 50 MPa, maximum in vivo at < .15 MPa, 

and L > 4. According to Ker et al. (1988), digital extensor 

tendons, and others not involved in elastic energy storage 

(such as the digital flexors and ankle extensors of mammals 

less than 1 kg in body mass), ar optimized in thickness to 

provide a relatively inextensible link between muscle and 

bone, while at the same time minimizing the combined muscle-

tendon mass. These tendons (digital extensors and all 

tendons from animals less than 1 kg in body mass) have high 

safety factors (Table 5.3), and are relatively thick for the 

force-generating capabilities of their muscles, and 

consequently will not be stretched enough to store large 

quantities of strain energy. The digital flexors and ankle 

extensor tendons of mammals greater than 1 kg in body size, 

on the other hand, have low safety factors (Table 5.3) and 

relatively slender tendons when viewed in the light of the 
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force-generating capabilities of their muscles. 

Consequently these tendons will be stretched sufficiently to 

store large quantities of elastic strain energy. 

Biewener and Bertram (1991) show this trend also exists 

for bipedal hoppers. A trade-off exists in the design of 

the ankle extensor tendon for effective elastic energy 

storage in the large red kangaroo (relatively thin tendon) 

versus acceleration and effective motor control in the much 

smaller kangaroo rat (relatively thick tendon). 

5.5 Capacity for Storage of Elastic Strain Energy 

The scaling exponents of the maximum capacity for 

elastic strain energy storage for all the tendons examined 

in this study is greater than one (Table 4.4 and Figure 

4.11). This indicates that larger mammals have a greater 

capacity for storage of elastic strain energy than do 

smaller ones. This is especially evident in the digital 

flexors and ankle extensor tendons, which experience, high 

stresses and therefore high strains. For example, the 

maximum stress of the plantaris tendon of a 454 kg cow is 

about 84 MPa (Table 5.2). From Figure 4.1 the corresponding 

maximum strain is approximately 8.6%. Tendon volume, 

calculated as length (Lt) by cross-sectional area (At), is 

about 88254 1tim3 . From equation 3.11 the plantaris tendon of 

a 454 kg cow can store up to 320 Joules of elastic strain 

energy. The average hysteresis, a measure of the amount of 
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input energy lost per tendon extension, as calculated in 

this study is 9.3%. As tendon material properties are 

independent of body mass (Table 4.1), the amount of elastic 

strain energy released from the plantaris tendon in recoil 

is about 290 Joules in each stride. 

Conversely the homologous tendon from a much smaller 

mammal, such as a 0.47 kg ground squirrel, will not 

experience as much stress, because its muscle, due to its 

relatively diminutive size compared to its tendon, can not 

exert forces large enough to stretch the tendon a great 

deal. This is similar to observations made by Biewener et 

al., (1981), concerning tendon strain in an equally small 

mammal, the kangaroo rat. Maximum plantaris tendon stress 

in the ground squirrel is about 28 MPa (Table 5.2) and the 

corresponding maximum strain is 4.5% (Figure 4.1). Tendon 

volume is about 32 mm3. From equation 3.11 the maximum 

elastic strain energy that the plantaris tendon of a 0.47 kg 

ground squirrel can store is 0.02 Joules. Normalized for 

body mass (on a mass-specific basis), a ground squirrel can 

only store 0.04 J/kg of elastic strain energy in its 

plantaris tendon, whereas a cow (1000 fold larger) can store 

up to 0.70 3/kg in the same tendon. Clearly, large mammals 

have a greater capacity, per unit of animal mass, to store 

elastic strain energy in their tendons (especially in the 

highly stressed digital flexors and ankle extensors) than do 

smaller mammals. However, there does not appear to be a 

difference between the capacity of large and small mammals 
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to store elastic strain energy in the digital extensor 

tendons, as the scaling exponent for these tendons is not 

significantly different from one. This is to be expected 

since the digital extensor muscle-tendon unit is not loaded 

(and consequently strained) when the foot is on the ground. 

Rather, any elastic strain energy stored in these tendons is 

due solely to the muscle's ability to stretch the tendon 

(via muscle contraction) during the swing phase of a stride. 

5.6 Elastic Strain Enerqy as an Enerciy Saving Mechanism 

Highly stressed tendons, such as those of the digital 

flexors and ankle extensors of large mammals, potentially 

have an important energy saving role in locomotion. They 

are stretched in each step as the foot impacts the ground, 

briefly storing elastic strain energy. This will be 

released again as the tendons subsequently recoil 

elastically before the foot leaves the ground. These 

tendons of the distal limb act as passive biological springs 

(Alexander, 1984), and result in the expenditure of smaller 

amounts of metabolic energy than would otherwise be 

necessary if the muscles alone were responsible for 

supplying all the energy for the positive and negative work 

of each stride. For the cow, the negative work required of 

the muscles in each stride is reduced by up to 0.7 J/kg and 

the positive work by O.7(Rt) 3/kg (where Rt is the 

resilience of the tendon [Alexander, 1980]). 
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These values, of course, represent the maximum amounts 

of strain energy that can be stored and released. To 

illustrate the substantial energy saving capabilities of 

storage and release of elastic strain energy in large 

mammals, such as the cow, it is necessary to know the amount 

of energy each limb typically expends per stride during fast 

locomotion. The present study, however, did not include an 

investigation of the energetics of fast locomotion, nor are 

there any data for the actual muscle and tendon stresses the 

cow experiences during fast locomotion, but only estimations 

of the maximum possible stresses. Estimations of the 

stresses in these elements, however, can be determined if we 

know the forces exerted by the feet on the ground (as in 

Figure 5.1) while a specimen is running. Alexander et al., 

(1979) estimated the forces on the hind and forelimbs of an 

African buffalo (500kg), based on analysis of films of an 

individual running at full speed. Assuming the duty factors 

for a 454 kg cow running similarly are the same as those for 

the buffalo in Alexander et al's., (1979) study, and 

following the methods outlined by those authors, the 

estimated force at the midpoint of the period of contact of 

each hindlimb with the ground (Fg) is about 4000 N. The 

gastrocneiuius and plantaris tendon and muscle dimensions for 

the buffalo (Alexander et al., 1979) are very similar to 

those observed for the 454 kg cow in this study. Assuming 

the plantaris and gastrocnemius muscles of the cow have a 

similar moment arm (r) of 0.085 m about the ankle joint, and 
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a moment arm of the ground reaction force (R) of 0.22 m, 

then the force exerted together by the plantaris and 

gastrocnemius (as in Figure 5.1. Fm = Fg R/r) is about 

10,500 N. The stress in these muscles would be about 0.18 

MPa (somewhat lower than that expected from a maximum 

isometric contraction). The fibre areas for the plantaris 

and gastrocnemius muscles in the cow are 26400 and 30700 

mm2 , respectively. If the same stress acted in both 

muscles, the plantaris would contribute 4860 N and the 

gastrocnemius 5640 N. The cross-sectional area of the 

plantaris tendon is 95 mm2 , so tendon stress would be about 

51 MPa. Similarly, tendon area for the gastrocnemius is 

about 5640 mm2 , so tendon stress would be 18 MPa. Note that 

the stresses that would be incurred in the cow while 

running, would be lower than the calculated maximum tendon 

stresses in Table 5.2. Based on equation 3.11 and Figure 

4.1 the plantaris and gastrocnemius tendons would store, 

respectively, about 140 and 37 Joules of elastic strain 

energy per stride. Note that these values are lower than 

those predicted to be the maximum storage capacity, since 

the calculated tendon stresses of the running individual are 

lower than the maximum stresses possible. 

Following a method used by Dimery et al., (1986), the 

amount of positive and negative work each hindlimb of the 

cow would do in each stride is calculated as follows. 

Running mammals lose and regain kinetic and gravitational 

potential energy, amounting on average to 0.7 J/kg of body 
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mass, for every meter travelled (Heglund et al., 1982). The 

forelegs of most quadrupedal mammals each support about 30% 

of body weight and the hind legs each support 20%, while the 

animal is moving (Jayes & Alexander, 1978; Alexander & 

Jayes, 1983). The work done by the legs is presumably 

divided between them in approximately the same proportion, 

thus, each hindlimb does about 0.14 J/kg of negative and 

positive work, for each meter travelled. In a separate 

study Alexander, et al., (1977) calculated stride lengths of 

3.5 meters for the African buffalo (500 kg) running at full 

speed (7 m/s). Assuming simIlar stride lengths for the cow, 

in such a stride each hind limb would do about 0.14 J/kg in x 

454 kg x 3.5 in = 222 J of negative and positive work. The 

total strain energies for the plantaris and gastrocnemius 

alone (140 and 37 J) represent large fractions of this work. 

Presumably the tendons of the deep digital flexors would 

also contribute to energy savings. Thus most of the 

negative and positive work can apparently be performed 

passively by these tendons in large mammals leaving only a 

minor part to be performed by the muscle at metabolic cost 

(Alexander, 1974; Alexander and Vernon, 1975; Alexander et 

al., 1982; Dimery and Alexander, 1985; Dimery et al., 1986). 

Large mammals which are capable of storing large quantities 

of elastic strain energy, such as the cow in this study, 

will therefore use considerably less metabolic energy in 

each stride, resulting in lower transport costs per kilogram 

of body mass. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

Two new major findings have resulted from the tensile 

tests carried out in this study. 

1) The tendons of the digital flexors and ankle extensors 

(those most likely to act as springs during locomotion), 

have the same material properties (i.e., elastic modulus and 

hysteresis), as the tendons of the digital extensors (those 

not likely to function as springs during locomotion). 

2) The material properties of these functionally different 

tendons are both species and body mass independent 

(0c Mb 0.00-0.03 

The morphometrics portion of this study also revealed 

some interesting findings regarding the mechanical potential 

of both muscle and tendon in determining the capacity for 

storage of elastic strain energy with increasing body size 

3) The muscle fibre cross-sectional area, an approximation 

of muscle force, of the digital flexors and ankle extensors 

scales with positive alloluetry (cc Mb°77°91 ), but scales 

isometrically (cx Mb°69) in the digital extensors. 

4) The cross-sectional area of the spring-like tendons 

scales isometrically (cc Mb°64°68 ), while the digital 

extensor tendon area scales with negative alloinetry 

(cc Mb 0.56). The tendon length for all tendon types scales 

isometrically (cc Mb°34°38). 
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5) Therefore the muscle/tendon area ratio scales with 

positive allometry in all cases (cc Mb 0.08-0.24). Assuming 

the maximum isometric stress developed by a muscle is 

constant, then this ratio is proportional to the maximum 

stress the muscle can exert on its tendon. 

6) The dimensionless length factor suggests that the 

muscle-tendon unit of the digital flexors and ankle 

extensors in larger cursorial mammals is designed for 

elastic energy storage (L < 2), while in smaller ambulatory 

mammals these muscle-tendon units (excluding the plantaris) 

may play a greater role in joint displacement. The digital 

extensors in the more generalized quadrupedal mammals, not 

being highly stressed, are designed for joint displacement. 

7) The maximum amount of elastic strain energy stored in 

the tendons is proportional to stress x strain x volume. 

The capacity for storage of elastic strain energy scales 

with positive allometry for tendons of the digital flexors 

and the ankle extensors (cc Mb' 14 ' 38 ), but scales almost 

isometrically for the tendons of the digital extensors 

(cc Mb 1.08). Thus the highly stressed, spring-like tendons, 

are capable of storing more elastic strain energy in larger 

mammals than in smaller ones. While the potential for 

storage of elastic strain energy in the tendons of the 

digital extensors keeps in proportion to increases in body 

mass. 

The results of this study demonstrate that the 

plantaris, deep digital flexors and gastrocnemius are 
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designed to play a potentially more important role in 

elastic energy storage with increasing body size, while the 

digital extensors, which do not act as springs anyway, are 

not. This is not because of any difference in material 

properties of the tendons (as suggested by Woo, 1982 and 

Shadwick, 1990), or disproportionate scaling in their 

dimensions with size (as suggested by Biewener et al., 

1981). Rather, it is because of muscle force capability 

increasing with positive allometry, i.e., these muscles in 

larger mammals are capable of exerting greater stresses on 

their tendons than they are in smaller mammals. 

It has been shown that storage and release of elastic 

strain energy can act as an energy saving mechanism during 

fast locomotion. As the highly stressed digital flexors and 

ankle extensors have the potential to store large amounts of 

strain energy as body size increases, it follows that the 

role of these tendons in energy savings also increases with 

body size. This results in lower transportation costs per 

kilogram of body mass for larger mammals. 
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APPENDIX A 

Allometric Allometric relationships 
relationships based on empirical data 
predicted by for each muscle and/or 
geometric tendon unit 
scaling 

PLA DDP GAS CDE 

Volume and mass can be equated as equal as most animals have 
a density of one, therefore geometric scaling would predict 
that muscle mass would scale to body mass with an exponent 
of one. Empirical data for muscle mass scales 
geometrically. 

Mm oC Mb 
1.00 0.97 1.03 0.97 0.93 

0C Mb 0C M b OCMb ocMb 

Geometric scaling predicts all lengths to scale to the one 
third power of body mass, however the empirical data for 
muscle fibre length scales with negative allometry in each 
case. 

Lm OC Mb 0.33 0.05 0.18 0.22. 0.24 
cc Mb 0C Mb 0C Mb Mb 

Am = My/IP 

Geometric scaling predicts all areas to scale to the two 
thirds power of body mass, however the empirical data for 
muscle fibre cross-sectional area (with the exception of the 
digital extensors ) scales with positive allometry. 

Am Oc Mb 0.67 0.91 0.85 0.77 0.69 OC Mb Cc Mb oCMb cc Mb 
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Tendon length scales geometrically 

0.33 0.35 0.38 0.34 0.35 
LtocMb ocMb cMb 

Tendon cross-sectional area scales geometrically, with the 
exception of the digital extensors which scales with 
negative allometry. 

At oc Mb 0.67 Oc Mb 0.68 OC Mb 0.64 0.68 0.56 
OC Mb cc Mb 

AM/At oc at 

Geometric scaling predicts that tendon stress is independent 
of body mass, however the empirical data for all tendons 
shows that tendon stress scales with positive allometry. 

0.00 
atocMb OC Mb 

0.24 0.22. 0.08 0.13 
0C Mb 0c Mb cc Mb 

U = (2./2 at -e t) (Lt -At) 

Based on anatomical data alone and assuming a linear stress-
strain curve with elastic modulus independent of body mass, 
geometric scaling would predict that the maximum capacity 
for storage of elastic strain energy would scale with an 
exponent of one (proportional to tendon volume). However 
the empirical data shows that the maximum capacity for 
storage of elastic strain energy scales with positive 
allometry, as neither stress nor strain scale independent of 
body mass. 

1.00 1.38 1.32 1.13 1.08 
UocMb 0( Mb 0c Mb 0C Mb (Mb 


