
THE UNIVERSITY OF CALGARY

Scan-Conversion of Important Graphics Primitives

by

Cbengfu Yao

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

MAY, 1996

© Chengfu Yao 1996

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled "SCAN-CONVERSION OF IM-

PORTANT GRAPHICS PRIMITIVES" submitted by CHENGFU YAO in partial

fulfillment of the requirements for the Doctor of Philosophy Degree.

Supersor, Dr. J. Rokne

Computer Science

Date

11

Dr. B. Wyvill
Computer Science

K•A

Dr. R. Cleve
Compute

Dr. E. Enns
Mathematics and Statistics

xternal Reader
Dr. J. Bresenham

Computer Science
Winthrop University

Abstract

In this thesis new methods and new algorithms for the scan-conversion of important

graphics primitives are presented. The fast computation of linear interpolation in

discrete context is first investigated since it is widely used in digitization of graphical

objects in computer graphics. Three types of integral linear interpolation are defined,

and new algorithms for the fast computation of these three types of integral linear

interpolation are presented. The applications of integral linear interpolation in scan-

conversion of lines is further discussed which provides a unified framework for the

design of various incremental line scan-conversion algorithms. It is also illustrated in

the thesis how the fast computation of a specific type of integral linear interpolation

can be incorporated into the scan-line algorithm for filled polygons. The run-length

slice methodology in scan-conversion is another main topic of this thesis. To apply

this approach to the scan-conversion of ellipses and circles, the run-length properties

of digitized elliptical and circular arcs are studied, and the use of adaptive forward

differencing for the run-length computation is explored. These investigations result

in new and faster run-length slice ellipse and circle algorithms. Indications for further

research is given in the conclusion part.

In

Acknowledgements

Sincerest thanks to my supervisor Dr. Jon Rolcne for his support and encourage-

ment throughout the course of this research. My thesis work started with his deep-

insighted encouragement on my initial idea of unifying the derivation of various line

scan-conversion algorithms by integral linear interpolation. He has generously pro-

vided me with his library of literatures relating to my research. He has read and

commented a number of my research papers which have been incorporated into this

thesis. His careful and prompt editorial feedback in the final months of my PhD

greatly improved the final thesis.

Thanks also go to the staff, students and faculty with whom I have worked during

my PhD.

I owe much to my wife and my daughter. Without their love and support the

completion of this thesis would have been impossible.

iv

Contents

Approval Page

Abstract

Acknowledgements

List of Figures

List of Tables

11

111

iv

vi'

viii

1 Introduction 1
1.1 Motivation 1
1.2 The Starting Point for the Research 3
1.3 Thesis Organization 4

2 Scan-Conversion Basics 6
2.1 Choosing Pixels Optimally 7
2.2 Speeding Up Scan-Conversion 9
2.3 The Run-Length Slice Method for Scan-Conversion 10
2.4 Summary 16

3 Integral Linear Interpolation 17
3.1 Three Types of Integral Linear Interpolation 17
3.2 Notational Conventions 19
3.3 Fast Computation of Integral Linear Interpolation 22

3.3.1 Single-Step Algorithms 23
3.3.2 Double-Step Algorithms 29
3.3.3 Bi-Directional Interpolation 33
3.3.4 Complexity Analysis and Numerical Results 42

3.4 Summary 46

4 Integral Linear Interpolation Approach to the Design of Incremen-
tal Line Algorithms 47

4.1 Introduction 47
4.2 Bresenham Line Algorithm and Integral Linear Interpolation 51
4.3 Double-Step Line Algorithm and Integral Linear Interpolation 55

4.3.1 Double-Step Line Algorithm 55

V

4.3.2 Designing Double-Step Line Algorithm Using Double-Step In-
tegral Linear Interpolation 57

4.4 Run-Length Slice Line Algorithms And Integral Linear Interpolation 59
4.4.1 Horizontal Run-length Slice Line Algorithms 59
4.4.2 Diagonal Run-Length Slice Line Algorithm 75

4.5 Summary 77

5 Applying Integral Linear Interpolation to the Scan-Conversion of
Filled Polygons 79

5.1 Introduction 79
5.2 Scan-Line Algorithm for Filled Polygons 81
5.3 An Integral Linear Interpolation Scan-Line Algorithm 86
5.4 Summary 89

6 Run-Length Slice Algorithms for the Scan-Conversion of Ellipses 90
6.1 Introduction 90
6.2 Basics of Scan-Converting Canonical Ellipses 91
6.3 Run-Length Slice Ellipse Algorithm 94

6.3.1 Run-Length Calculation 94
6.3.2 Pixel Configurations at Octant Transition 100
6.3.3 Condition of Octant Change 104
6.3.4 Run-Length Slice Algorithm 107

6.4 Further Improvement 111
6.5 Complexity Analysis and Numerical Results 121
6.6 Summary 133

7 Hybrid Scan-Conversion of Circles 136
7.1 Introduction 136
7.2 Run-Length Properties of 45° Circular Arc 139
7.3 Run-Length Slice Circle Algorithm 144
7.4 Hybrid Scan-Conversion of Circles 148
7.5 Complexity Analysis and Numerical Results 154
7.6 Summary 158

8 Final Remarks 159

Bibliography 161

vi

List of Figures

2.1 Digitized image of an x-dominant, monotonically increasing curve seg-
ment 11

2.2 Digitized image of an x-dominant, monotonically decreasing curve seg-
ment 11

2.3 Digitized image of a y-dominant, monotonically increasing curve seg-
ment 12

2.4 Digitized image of a y-dominant, monotonically decreasing curve seg-
ment 12

2.5 Dividing an x-dominant segment of a curve into unit segments . . . 14

4.1 Choosing a pixel that is closer to the true line 52
4.2 The four double-step patterns 57
4.3 Horizontal pixel runs in a digitized line segment 61
4.4 A line with equal error cases 61
4.5 Lines and their complementary lines 76

5.1 Filling the spans inside the polygon for one scan-line 81
5.2 Data structures for active edges 82
5.3 A filled polygon 84

6.1 Subdividing the first quadrant of an ellipse 92
6.2 Three situations that cause a transition point 94
6.3 Transition configurations with a transition point 101
6.4 Impossible transition configurations 103
6.5 Transition configurations without a transition point 103
6.6 "Tails" in a digitized ellipse 105
6.7 Counting arithmetic operations for algorithm RLS-Ellipse2 and the

midpoint ellipse algorithm 122
6.8 Ratios of running time for algorithm RLS-Ellipse2 to running times

for the midpoint ellipse algorithm 134

7.1 Subdividing a 45° circular arc into segments 140
7.2 Transition from C21 to C22 149
7.3 Pixel selection in the midpoint circle algorithm 150
7.4 Counting arithmetic operations for algorithm Hybrid-Circle 154

vu

List of Tables

3.1 Runtime comparison of four integral linear interpolation algorithms. . 45

6.1 Operation counts for RLS-Ellipse2 and Midpoint algorithms 131
6.2 Runtime comparison of three ellipse algorithms for a = 800. 133
6.3 Runtime comparison of three ellipse algorithms for a = 200. 134

7.1 Runtime comparison of four circle algorithms for small radii 158
7.2 Runtime comparison of four circle algorithms for large radii. 158

viii

Chapter 1

Introduction

1.1 Motivation

Scan-conversion of continuous images is a fundamental operation in any graphics

display [Foley 90]. It is required since a raster display consists of a rectangular grid

with pixels centered at grid points. Scan-conversion then means the approximation

of a continuous image by pixels. Although images to be displayed may be very

complex, they can usually be decomposed into or approximated by relatively simple

components. By graphics primitives is meant the components which are simple and

most commonly used, such as line segments, polygons, circles, ellipses, and spline

curves and surfaces. Correct and efficient scan-conversion of graphics primitives is

therefore of fundamental importance in computer graphics.

Scan-conversion of graphics primitives has a long history in the field of computer

graphics. A variety of papers have been generated and many solutions have been

suggested for the scan-conversion of various primitives. The first important paper

dealing with the subject was due to Bresenham. He proposed a very simple method

for scan-converting line segments with integral endpoints [Bresenham 65]. Following

his fundamental paper, a number of other papers proposed a variety of algorithms for

scan-converting line segments and other primitives. Some of the early papers were

[Mcllroy 83, Mcllroy 84, Reggiori 72]. These papers often pursued different paths

and used different methods for developing their ideas. New ideas did appear: for

1

example, the idea of double-step scan-conversion of lines was proposed in a paper by

Wu and Rokne [Wu 87]. Following this paper, a number of algorithms were proposed

for multiple-step scan-conversion of lines [Bao 89, Gill 94, Graham 93, Rokne 90].

Other ideas were those of the run-length algorithms discussed mainly for the scan-

conversion of line segments, where the so-called run-lengths of a line segment were

computed so that a variable number of pixels forming a run could be generated in

each iterative step [Bresenham 85, Fung 92].

Similar developments could be seen for circle algorithms [Bresenham 77, Horn 76,

Hsu 93, Mcllroy 83, Wu 87], for ellipse algorithms [Kappel 85, Van Aken 84, Wu 89],

and for scan-conversion of higher-order algebraic curves {S-L. Chang 89, Hobby 90].

Since the grid points on a raster display can be labelled by pairs of integers, we

call it an integer-grid. The work relating to approximating lines on an integer-grid

is closely related to number theory. Research into scan-conversion based on number

theory was done by Dorst [Dorst 85] and by Mcllroy [Mcllroy 84], who developed

properties relating to lines on an integer-grid [Dorst 85, Mcllroy 84]. By employing

the number theoretic methods, Mcllroy also studied the properties of circles and

ellipse on an integer-grid [Mcllroy 83, Mcllroy 92]

In this thesis, we focus on further development of some of the ideas presented in

previous papers on scan-conversion of lines, circles and ellipses. Three of these ideas

are:

1. Applying linear interpolation in the discrete context to the establishment of a

unified framework for the design of incremental line algorithms.

2. Applying linear interpolation in the discrete context to the scan-conversion

2

filled polygons.

3. Using the run-length properties of digitized circular and elliptic arcs to design

more efficient algorithms for scan-converting circles and ellipses.

1.2 The Starting Point for the Research

The efficient computation of integral linear interpolation was first discussed by Field

in [Field 85]. Rokne and the author of this thesis then presented a double-step

integral linear interpolation algorithm [Rokne 92]. Graham and Iyengar developed a

double- and triple-step algorithm based on the double-step algorithm [Graham 94].

The scan-conversion of line segments has been discussed by many researchers since

Bresenham's fundamental work in this area [Bresenham 65]. Most of the algorithms

are of incremental type, and are derived based on the geometry of a continuous

line segment with integer endpoints on an integer-grid. In the field of digital image

analysis, a complementary problem to the scan-conversion of line segments is to

determine if a set of grid points is the digitization of a straight line segment. This

work was done by Rosenfeld [Rosenfeld 74] and others.

The scan-line method for the scan-conversion of filled polygons is presented in

common computer graphics text books such as [Newman 79, Foley 90]. Relating this

method to the method of linear interpolation has been done in [Narayanswam 95].

The scan-conversion of circles and ellipses has also been a popular subject for

investigation since the introduction of raster devices. Most of the existing algo-

rithms for scan-conversion of circles and ellipses are pixel-based in the sense that

they choose individual pixels in incremental steps. Run-length slice method for the

3

scan-conversion of circles was first discussed by Hsu, Chow and Liu [Hsu 93]. No

run-length slice algorithm for the scan-conversion ellipses has previously been re-

ported.

1.3 Thesis Organization

The remainder of this thesis is organized as follows.

In chapter 2 the basic concepts in scan-conversion of graphics primitives are

introduced, especially the criteria of minimizing the error in scan-converting a con-

tinuous curve to a digitized curve which is of fundamental importance to the design

of scan-conversion algorithms. Terminology and notational conventions needed for

the subsequent chapters are also presented.

In chapter 3 the concept of linear interpolation in discrete setting is discussed

which leads to three types of integral linear interpolation. The implications of differ-

ent types of integral linear interpolation in the context of scan-conversion of graphics

primitives will be illustrated in chapters 4 and 5. New algorithms for fast integral

linear interpolation are developed in chapter 3.

Chapter 4 demonstrates how the unified approach, i.e., the linear interpolation

approach can derive all the incremental line algorithms published so far. To illustrate

the power of the new approach, a double-step, hi-directional, run-length slice line

algorithm is derived. The derivation would have been much more complicated if

conventional methods such as methods based on analytic geometry were used.

The application of integral linear interpolation to polygon filling is discussed

in chapter 5 where the theme is how the extrema of spans on a scan-line can be

4

assured to lie within the polygon by using rounding-up and rounding down linear

interpolation, the new concepts developed in chapter 3.

Chapter 6 and 7 deals with the scan-conversion of more general curves. We apply

the run-length slice method to ellipses and circles and discuss how to compute run-

lengths efficiently by exploring the run-length properties of digitized elliptical and

circular arcs and by using adaptive forward differencing. For the scan-conversion of

circles, we also suggest a hybrid method that combines the run-length slice method

and the midpoint method.

Some concluding remarks are made in Chapter 8 including some suggestions for

further research.

5

Chapter 2

Scan-Conversion Basics

Computer graphics is the discipline dealing with the generation of images by means

of computers. These images are most often displayed using raster displays. A raster

display can be abstracted by a regular rectangular array of grid points with integer

coordinates which are at the intersections of horizontal and vertical grid lines and

thus is called an integer-grid as noted earlier. The integer-grid is denoted by Z2. Pixel

centers are located at the grid points. We will use pixel and grid point interchangeably

in this thesis depending on the context. The images displayed on a raster display

are digital images composed of pixels. Each pixel has an integer or an integer vector

associated with it to represent its intensity or color. The objects to be displayed

are generally in R3 or R2, hence scan-conversion is a mapping from R3 or R2 to

Z2. In this thesis we will concern ourselves with the mapping from R2 to Z2, i.e.,

we constrain our discussion to the scan-conversion of 2-D graphics objects. We

also restrict the discussion to the scan-conversion of a set of simple objects which

are some of the so-called graphics primitives. The result of a mapping into Z2 is

called a digitized image. We therefore use the terms scan-conversion and digitization

interchangeably in the sequel.

6

2.1 Choosing Pixels Optimally

The essence of scan-conversion of a 2-D primitive is to choose a set of pixels that

best approximate the original continuous object. The scan-conversion of a 2-D curve

amounts to selecting a set of pixels to approximate the curve so that the resulting

pixel representation is as close as possible to the original continuous curve, i.e., the

error of digitization is minimized. There are generally three minimization criteria

summarized in [Foley 90]:

1. minimizing the distance from a pixel to the curve along a grid line which is

referred to as displacement in [Mcllroy 83], linear error in [Van Aken 84], and

grid-distance in [Mcllroy 83];

2. minimizing the perpendicular distance from a pixel to the curve;

3. minimizing the magnitude of the residual at a pixel center if the implicit equa-

tion of the curve is given.

The three criteria correspond to three norms employed to measure the error of dig-

itization. It turns out that the three criteria agree for straight line segments and

circles with integer centers and radii [Bresenham 77, Mcllroy 83], but do not nec-

essarily agree for ellipses [Van Aken 84, Mcllroy 83] and general curves. The mid-

point method of Van Aken [Van Aken 84] is equivalent to applying the minimum

grid-distance criterion and it is suggested in [Foley 90] as a possible choice for scan-

conversion of general curves.

There may be situations where two vertically or horizontally adjacent pixels are

equally close to the curve when the error is measured using a specific norm. This

7

situation is called an equal-error situation. When an equal-error situation happens,

any one of the two pixels can be chosen. A consistent scheme to solve the tie is

preferable, however, since certain symmetry properties would otherwise be violated.

In this thesis we will always choose the pixel with larger x coordinate if the two can-

didate pixels are horizontally adjacent, and choose the pixel with larger y coordinate

if the two candidate pixels are vertically adjacent. This tie solving policy is in fact

a common practice in most known scan-conversion algorithms.

The minimum displacement criterion is an application of Freeman's grid-intersection

quantization scheme for general line drawings [Freeman 74], where a curve to be dig-

itized is intersected with the grid lines, and the digitized curve becomes the set of

grid points that are closest to the intersection points. Mcllroy [Mcllroy 92] therefore

uses the term Freeman approximation to denote a minimum-displacement approxi-

mation where all grid lines are considered and an approximation point is classified as

a minimum-horizontal-displacement point or a minimum-vertical-displacement point

according to the direction in which the minimized displacement is measured. In this

thesis we will also use the grid-intersection scheme, i.e., the minimum displacement

criterion, in discussing the scan-conversion of 2-D graphics primitives; and we will use

short-hand abbreviations MHD and MVD for minimum-horizontal-displacement and

minimum-vertical-displacement respectively. As has been indicated in [Mcllroy 92],

the MilD and MVD are not mutually exclusive.

8

2.2 Speeding Up Scan-Conversion

High efficiency has been a major aim pursued by the designers of scan-conversion al-

gorithms for graphics primitives since they are used frequently in the scan-conversion

of an image. One technique applied in accelerating the scan-conversion of lines and

curves is to use integer arithmetic. The reason for this is that integer computation

is much faster than floating point computation in current computer hardware. Bre-

senham [Bresenham 65, Bresenham 77] was one of the first authors presenting algo-

rithms to scan-convert lines and circles using integer arithmetic. Sproull [Sproull 82]

showed how a floating point line generation algorithm could be converted by pro-

gramming transformation to a line generation algorithm using integer arithmetic

only. Integer arithmetic generally allows fast software implementation and easy

hardware implementation.

Most existing scan-conversion algorithms for lines and curves generate pixels in

iterative loops. Generating multiple pixels in one iteration with as few computations

as possible is also done in another attempt to speed up scan-conversion. Double-

step algorithms which generate two pixels in each iteration step have been developed

for lines, circles [Wu 87], and ellipses [Wu 89]. Double- and triple-step [Graham 93],

quadruple-step [Bao 89], N-step [Gill 94] algorithms for scan-conversion of lines have

also been discussed. All these multi-step algorithms are based on the analysis of

possible patterns of multiple pixels on an n x n mesh where n is the step size so

that a fixed number of pixels can be generated in each iteration. Another approach

to generating multiple pixels in each iteration step is the rum-length slice method.

Unlike n-step algorithms which generate a fixed number of pixels in each incremental

9

iteration, run-length slice algorithms decompose the digitized images of continuous

curves into pixel runs (i.e., pixels with the same ordinate or abscissa) and generate

a run of pixels per iteration. The run-length slice method has been employed to the

scan-conversion of line segments [Bresenham 85, Fung 92]. The use of this method

in scan-conversion of curves is one of the main themes in this thesis, and we therefore

first devote the next section to a discussion' of the run-length slice method in general.

2.3 The Run-Length Slice Method for Scan-Conversion

We define a horizontal (vertical) run of pixels to be a set of contiguous pixels with

the same ordinate (abscissa), a diagonal run of pixels to be a set of continguous

pixels along a path with either 45° slope or 135° slope.

When investigating general digitized curves it is noticed that if a segment of

curve is nearly horizontal, then long horizontal pixel runs tend to be present in its

digitized image; if it is nearly vertical, then long vertical pixel runs tend to appear;

and if it is close to 45°(135°) diagonal, then long diagonal pixels runs tend to appear.

Line segments that are nearly horizontal, vertical, or 45°(135°) diagonal exhibit this

property most noticably. This leads to an investigation of the run-length properties

of digitized line segments, which further leads to run-length slice algorithms for the

scan-conversion of line segments.

A run-length slice line algorithm generates a run of pixels in each iteration step.

For a line segment which is nearly horizontal, the horizontal run-length slice algo-

rithm can scan-convert the line segment with significantly fewer incremental steps

than, for example, the original Bresenham line algorithm. Writing a horizontal run

10

h-i-i

h

h-i

(a) (b)

h-i-i

h

h-i

Figure 2.1: Digitized image of an x-dominant, monotonically increasing curve seg-
ment on a horizontal grid line.

h-i-i

h

h-i

(a) (b)

h-i-i

h

h-i

Figure 2.2: Digitized image of an x-dominant, monotonically decreasing curve seg-
ment on a horizontal grid line.

of pixels is generally more efficient than writing pixels one at a time. The basic

reason for this is that bits have to be set in a word in order to write the pixels to

the display medium and setting individual bits in a word is almost as expensive as

setting all the bits in the word at one time. Although pixels have to be set one at

a time for the hardware structure of the conventional frame buffer for a vertical run

of pixels, we can take advantage of the coherence of pixels addresses in the frame

buffer to speed up the pixel address computation and therefore speed up the process

of pixel writing in this case as well. We can expect further gain in speed for writing

a run of pixels if the display hardware supports the writing of horizontal or vertical

runs of pixels. In practice, pixel writing is still the bottleneck in the scan-conversion

of common graphics primitives such as line segments, circles and ellipses.

We now discuss the application of run-length slice method to the scan-conversion

of a general curve. Let C : y = f(x) be a 2-D curve having a continuous first

11

s-i s s+i

(a)

s-i s s+J..
(b)

Figure 2.3: Digitized image of a y-dominant, monotonically increasing curve segment
on a vertical grid line.

s-i S s+i

(a)

s-i s s+i

(b)

Figure 2.4: Digitized image of a y-dominant, monotonically decreasing curve segment
on a vertical grid line.

12

derivative. C is said to be x—dominant if f'(x)I < 1 or y—dominant if f'(x)I ≥ 1.

Let us consider the following four situations:

1. Curve y = f(x) is x—dominant and monotonically increasing. Referring to

Figure 2.1 (a), the curve intersects with two horizontal lines y = h - 0.5

and y = h + 0.5 at (x1, h - 0.5) and (x2, h + 0.5), where h is an integer and

X1 < x2. Because of the monotonicity of the curve, we have h - 0.5 < y =

f() < h + 0.5 for x1 < 6 < x2. According to the grid-intersection scheme

for curve digitization and the forementioned policy to handle equal error cases,

the digitized image of the curve on grid line y = h is a horizontal run of pixels

having ordinate h and abscissas going from i = [x11, no matter whether x1 is

integral or non-integral, to a = x2j if x2 is non-integral. In the case that x2

is integral (see Figure 2.1 (b)) i6 = X2 - 1. Both cases (x2 is integral or non-

integral) can be unified by letting i, = [x2] - 1. Using the similar argument

we have the results for the rest three situations.

2. Referring to Figure 2.2 (a) and (b) if the curve is x—dominant and mono-

tonically decreasing, the digitized image of the curve on grid line y = h is a

horizontal run of pixels having ordinate h and abscissas going from = [xil,

if x1 is non-integral, or th8 = Lxii + 1 if x1 is integral, to the = Lx2i no mat-

ter whether x2 is integral or non-integral. Again both cases (x1 is integral or

non-integral) can be unified by letting th. = [xij + 1.

3. Referring to Figure 2.3 (a) and (b) if curve y = f(x) is y—dominant and

monotonically increasing, the curve intersects with two vertical lines x = s —0.5

and x = s+0.5 at (s-0.5,yi) and (s+O.5,y2) where is an integer and yj < Y2.

13

Figure 2.5: Dividing an x-dominant segment of a curve into unit segments by im-
posing a set of horizontal mid-lines.

The digitized image of the curve on the grid line x = s is a vertical run of pixels

having abscissa .s and ordinates going from j3 = fyil, no matter whether yi is

integral or non-integral, to ie = LY2J if Y2 is non-integral, or FY21 - 1 no matter

whether Y2 is integral &r not.

4. Referring to Figure 2.4 (a) and (b) if the curve is y—dominant and monoton-

ically decreasing, the digitized image of the curve on the grid line x = s is a

vertical run of pixels having abscissa .s and ordinates going from j8 = [yj no

matter whether yi is integral or non-integral, and to 1e = Ly2] + 1 no matter

whether Y2 is integral or not.

The above discussion suggests a way to find the horizontal and vertical pixel runs

of the digitized image of the curve y = f(x): Divide the curve into segments where

each segment is either x-dominant or y-dominant, either monotonically increasing

or monotonically decreasing. We call these segments monotonic segments. For each

14

monotonic segment a set of horizontal mid-lines is imposed if it is x-dominant, or a set

of vertical mid-lines if it is y-dominant. Each of the mid-lines lies midway between

two adjacent horizontal/vertical grid lines and intersects with the curve segment.

The mid-lines therefore subdivide a monotonic segment into subsegment where each

subsegment is sandwiched by two adjacent mid-lines. We call these subsegments unit

segments. The digitized image of a unit segment is therefore a run of pixels on a

grid line lying between two adjacent mid-lines. Knowing the two endpoints of a unit

segment, a run of pixels can be obtained without further computation. Generally, the

two endpoints of a monotonic segment do not lie on two mid-lines which causes two

subsegments at two ends of a monotonic segment not to be unit segments. Referring

to Figure 2.5, C1, C2 and C3 are three monotonic segments of curve C divided by

points P1 and P2, where C2 is x-dominant while C1 and C3 are y-dominant. A set

of horizontal mid-lines is imposed to subdivide C2 into unit segments S, S2, and S3

whose digitized images are three horizontal pixel runs. Two end subsegments, one

from P1 to A and the other fron B to P2 are not unit segments, and the digitization of

these two subsegments should be treated in connection with monotonic segment C1

for subsegment PIA, and with monotonic segment C3 for subsegment BP2. We will

give a detailed treatment of the handling of the end subsegments when discussing

the run-length slice method for scan-conversion of specific curves, i.e., circles and

ellipses.

15

2.4 Summary

In this chapter we discussed some general properties of scan-conversion with emphasis

on correctness and efficiency. The correctness of a scan-conversion algorithm relates

to the criterion chosen to minimize the error in digitization. The policy to handle

the particular case of the equal-error situation is discussed and a policy is proposed.

This policy will be applied throughout the thesis. Two major approaches discussed

which increase the efficiency of scan-conversion are integerizing the computation and

generating multiple pixels in each iteration step.

We will focus on scan-conversion of 2-D graphics primitives. The scheme of digi-

tization that will be used is the Freeman's grid-intersection scheme. This minimizes

the grid distance of the chosen pixels to grid points for digitized curves. The run-

length methodology was furthermore introduced. It will be of central importance as

we develop the run-length slice method for the scan-conversion of circles and ellipses.

16

Chapter 3

Integral Linear Interpolation

Linear interpolation is widely used in computer graphics algorithms. One application

is the scan-conversion of line segments which is a special case of linear interpolation

where, given two endpoints of a line segment, the x and y coordinates of a set of

pixels to approximate the true line are actually linear interpolations of two inter-

vals representing the s-extent and y-extent of the line segment. Other applications

of linear interpolation in computer graphics can be seen in the synthesis of realis-

tic imagery [Gouraud 71, Phong 75], and in the scan-conversion of filled polygons

[Foley 90]. Speeding up the process of linear interpolation will speed up the relevant

graphics algorithms. The fast computation of linear interpolation is also a research

topic in its own right.

3.1 Three Types of Integral Linear Interpolation

The problem of linear interpolation is posed in a discrete setting because of the

discrete nature of raster graphics: Given an interval [a, b] with integral a and b, find

n +1 integers which are approximations to n +1 equidistant points xi = a +

0,1,. . . In on [a, b] including a and b. The integer points are usually obtained by

rounding the real interpolation points to the nearest integers so that the error is

minimized. When an interpolation point is exactly halfway between two consecutive

integers (the equal error case) then a choice has to be made whether to round it up

17

or to round it down to the nearest integer. In this case either of the two integers

can be chosen. The choice made must be, however, consistent. It is a common

practice to always choose the larger one. This gives the following representation of

the interpolation points:

b— a.
= [a+ z+O.5]

= Lx+O.5i i=O,1,...,n. (3.1)

Since the resulting interpolation points should be integral, we use the term integral

linear interpolation to distinguish it from the usual continuous linear interpolation

as was noted in chapter 1 . Furthermore, because the interpolation points defined by

Eq. (3.1) minimizes the error, we call this type of integral linear interpolation least

error integral linear interpolation.

If, instead of defining the integral interpolation points using Eq. (3.1), we round

up each interpolation point xi to the smallest integer which is greater than or equal

to x, i.e., we define

th=1x1=fa+ b (3.2)

then we obtain rounding-up integral linear interpolation. Analogously, we define

rounding-down integral linear interpolation by the following equation:

b — a.
ij, (3.3)

i.e., we use the largest integer which is less than or equal to xi to approximate x.

Note that for all three types of integral linear interpolation we use the same

18

symbol:ii to denote an interpolation point. The type of integral linear interpolation

it represents can be determined by context.

Fast computation of least-error integral linear interpolation has been discussed by

several authors [Field 85, Graham 94, Rokne 92], while rounding-up integral linear

interpolation and rounding-down integral linear interpolation have not been defined

and discussed by other authors. The motivation for defining and discussing these

two additional types of integral linear interpolation is also based on their relation to

some of the graphics algorithms which will be illustrated in chapters 4 and 5.

In the remainder of this chapter we will first give notational conventions which

will be used in this chapter as well as in chapter 4 and chapter 5. We then derive

algorithms for the fast computation of integral linear interpolation. The deriva-

tions will follow the pattern that was used for the double-step integral linear inter-

polation in [Rokne 92]. The idea is further developed using symmetry to yield a

bi-directional integral linear interpolation algorithm. We finally compare a double-

step, bi-directional integral linear interpolation algorithm with our previously devel-

oped double-step algorithm and one of Field's integral linear interpolation algorithm

[Field 85].

3.2 Notational Conventions

In this section we first give notational conventions for some quantities which will

be used to develop the interpolation algorithms. Efficient computation of these

quantities, which relates to the development of efficient interpolation algorithms, is

then discussed.

19

Let m > 0 and n > 0 be two integers. We then let c and r denote the quotient

and remainder when the first integer is divided by the second integer as follows:

r = m mod n.

We use C and R to denote the quotient and the remainder of twice the first integer

divided by the second integer:

C=Lj'

R = 2m mod n.

Furthermore we use 6 and to denote the quotient and the remainder of the first

integer divided by twice the second integer:

= m mod 2n,

and is defined as

Most modern computers provide a "divide with remainder" instruction. This means

that c and r can be calculated by one CPU instruction when m and n are given.

Even though the other two pairs C, R and 6, can also be calculated by "divide

with remainder" instruction, their values can be derived with less computational cost

20

given c and r as seen below. Since

m — nc+r, O≤r<m,

we have the following derivations:

- = j 2c+ L] LJ 2nc + 2r 2r f 2c if 2r < n
- = 2c+ 1 if 2r ≥

R=2rn mod n = (2cn + 2r) mod n=2r mod n=

C
In cn+r
Li = L 2n
C r
L+]

L%1+ 72-n ̀J - - L]
c>> 1,

{ 2r if
2r— n if 2r≥n,

if c is even

if c is odd

where >> denotes a binary right shift. We also have:

= m mod 2n = (cn + r) mod 2n

r mod 2n = r if c is even

n+r mod 2n=n+'r if c is odd,

21

1m 1

'2n'
e+1

if = O

if > 0.

In some special cases the values of c and r can be obtained in a straightforward

manner without performing a division operation. For example, if m < n then c = 0

and r = m; if n < m < 2n then c = 1 and r = m - n. These situations occur

when we transform integral linear interpolation algorithms to line scan-conversion

algorithm. The meanings of c, r, C, R, , and will remain unchanged although m

and n may be substituted by specific integers.

3.3 Fast Computation of Integral Linear Interpolation

The computation of the three types of integral linear interpolation can be performed

in a straightforward manner using floating point arithmetic according to their defini-

tions in Eq. (3.1), (3.2) and (3.3). Floating point computation is usually expensive,

so the aim is to replace floating point computation by integer computation. In our

derivations of the algorithms for the computation of three types of integral linear

interpolation we follow the following methodology: The integral interpolation points

are calculated incrementally based on recurrence formulas which are derived from the

equations which define the corresponding types of integral linear interpolation while

eliminating floating point calculations in the recurrence formulas so that the compu-

tation of integral linear interpolation uses integer arithmetic only. The incremental

algorithms can thus be derived from recurrence formulas. Algorithms that produce

one interpolation point in each iteration step are called single-step algorithms, and

algorithms that generate two interpolation points in each iteration step are called

22

double-step algorithms. The approach used to derive recurrence formulas for integral

linear interpolation was used in our previous work on double-step least-error integral

linear interpolation [Rokue 92]. In this thesis we will follow this approach for all

three types of integral linear interpolation. We will first deal with single-step algo-

rithms for illustrative purposes, and then we continue with double-step algorithms,

and finally we discuss double-step bi-directional algorithms using symmetry. For

least-error integral linear interpolation an interesting property was revealed by our

previous work [Rokne 92] that when advancing from one interpolation point to the

next, the step size is confined to two consecutive integers; this is also true for the

double-step advance, i.e., the size of a double-step is also confined to two consecutive

integers. This allows the use of a variable called discriminator whose sign determines

the step size, either single or double. We will see that this property is shared by

rounding-up and rounding-down integral linear interpolation as well.

3.3.1 Single-Step Algorithms

Least-Error Integral Linear Interplation

The recurrence formulas for the single-step least-error integral linear interpolation

can be derived as follows. Let m = b - a. Since a, the lower bound of the interval,

and b, the upper bound of the interval are both integers, m is a positive integer. The

integral interpolation points are given by

aj= [x+O.5J, i=O,1,...,n.

23

We therefore have

xi —0.5< ii ≤ x + 0.5,

x+i - 0.5 < j+1 ≤ x+1 + 0.5,

m m
a+i--0.5<th≤a+i—+0.5,

n n
(3.4)

a+(i+1)-0.5 < th +1 < a+(i+1)+0.5. (3.5)
n n

Subtracting Eq (3.4) from Eq. (3.5) yields

M . M
--1<th +1—x<—+1.
72 72

Using our notational convention we can easily see that the value of th - thj is either c

or c+ 1 where c = L] i.e., the difference of two consecutive interpolation points can

only assume the values of two consecutive integers. Letting ej = - ii - (c+ 0.5),

we have

I
xi+1

I x+cF

It follows from n > 0 that Di = 2nei retains the sign of ej. Since Di turns out to

be a conveniently calculated quantity, we choose it to be the discriminator. We thus

have

D<0
±i+1 = (3.6)

i+c+1 D•≥0.

24

Noting that

= x+1 —th—(c+O.5)

a+(i+1)• b — a , (c+O.5),
n

it follows that

Di = 2na + 2(i + 1)(b - a) - 2nñ - n(2c + 1).

Subtracting Di from D 1 yields

- = 2(b - a) - 2n(th +1 - ii).

Hence,

D+2(b—a)-2nc D<O
=

D+2(b—a)-2n(c+1) .D≥O.

The initial value for ij is

(3.7)

(3.8)

th0 = a. (3.9)

Evaluating Eq. (3.7) for i = 0 determines the initial value of the discriminator

D0 = 2(b - a) - n(2c + 1). (3.10)

25

Noting that b - a = nc + r, it follows that Eq. (3.8) and (3.10) can be simplified to

=

and

D+2r D,<0

.D+2(r—n) D≥0,

(3.11)

D0=2r—n. (3.12)

An integerized algorithm for least error integral linear interpolation can be imple-

mented according to the initial values given by Eq. (3.9), (3.12) and the recurrence

formulas Eq. (3.6), (3.11).

Rounding-up and Rounding-down Integral Linear Interpolation

We first consider single-step rounding-up integral linear interpolation. According to

the definition we have

x+i ≤ th 1 < x+1 + 1.

Subtracting Eq. (3.13) from Eq. (3.14) yields

Again we have

xi+1 - xi - 1 <+i - thi < xF - X + 1.

M . . M
--1<xi+'—xi<—+l,
n n

26

(3.13)

(3.14)

which implies that the value of x 1 - ij is either c or c + 1 depending on how far

away x 1 is from i:

c

xi+1 -

c+1 x+i—i—c>O.

Based on a similar argument as in the least-error case the discriminator is defined

to be

Di = n(x+i - ii - c) = na+(i+1)(b—a)—nth—nc.

Subtracting Di from D11 yields

- Di = (b—a)—n(th1i —ii)

b — a — nc D<O

b—a—n(c+1) D>O,

and we finally have the recurrence formulas

and =

D2≤O
i+1 = (3.15)

i+c+1 D>O,

D+b — a — nc D<O

D+b—a—n(c+1) D>O,

27

(3.16)

The initial values of the interpolation point and the discriminator are

= a (3.17)

and

D0 = b - a - nc (3.18)

respectively. Using the equality b—a = nc+r, Eq. (3.16) and (3.18) can be simplified

to

D+1 =

and

D+r D0

D+r—n D>0.

(3.19)

Do = r. (3.20)

Similarly, we have the following formulas for the the single-step rounding-down

integral linear interpolation:

and

and

D<0

i+c+1 D1≥0,

I D+r D<0
D+1 =
I D,+r—n Di > 0,

= a,

(3.21)

(3.22)

(3.23)

D0 = r - n. (3.24)

28

Again, the integerized single-step algorithms for rounding-up and rounding-down

integral linear interpolation can be implemented in a very straightforward manner

from the respective recurrence formulas.

3.3.2 Double-Step Algorithms

Double-step algorithms generate two interpolation points in each iteration. Suppos-

ing we only need to calculate the interpolation points with even number indices,

we can derive the recurrence formulas in the same manner as we did for the single-

step algorithms, and the length of each double-step is confined to two consecutive

integers. To produce the intermediate interpolation point after each double-step

advance, further computation is needed. Since the length of a single-step is also

confined to two consecutive integers, the intermediate point can be decided by a

two-state logic. The derivation of recurrence formulas for double-step calculation of

all three types of integral linear interpolation follows the same line of thought as

that of single-step interpolation. We thus give a brief derivation of the recurrence

formulas for the double-step least-error integral linear interpolation here. This was

published in our previous paper [Rokne 92] and will be presented here in a manner

complying with our notational convention for this thesis. We will leave the deriva-

tion of recurrence formulas for double-step rounding-up and rounding-down integral

linear interpolation to chapter 4 where we illustrate how they can be used for the

derivation of run-length line scan-conversion algorithms. Again we use m to denote

b — a. Let

Xi = x2 =a+2z-
72.

29

11
a+z. 2m . n

= —,

and

= LX+O.5i

Using the same method as we used for the single-step case, we have

2m

17

This results in the conclusion that the value of ±jj - ±j is either C or C + 1 where

C = [J according to our notation. The double-step size from ±j to X 1 can be

determined by testing the sign of

X1——(C+O.5) =a+2(i+l)b

We therefore define the discriminator to be

Di = 2an + 4(i + 1)(b — a) —2nX —n(2C+1),

and we have the recurrence formula

I+c D<O
xi+1=

1Xi+C+ 1 D≥O.

30

- (C + 0.5).

(3.25)

Using the same technique as we used for the single-step case we have the following

recurrence formula for the discriminator:

=
D+4(b—a)-2nC D<0

D+4(b—a)-2n(C+1) D2≥0.
(3.26)

Since the the single-step size can be either c or c+ 1, the interpolation point between

Xi and X 1, i.e., th2+i can be determined by testing the sign of

- (c+ 0.5) = a+ (2i+ 1) a k - (c+0.5).

This amounts to the testing of sign of

di = 2na+2(2i+ 1)(b— a)-2n.X —n(2c+1)

We therefore have

= D-2(b—a)+2n(C—c).

D<2(b—a)-2n(C—c)

I ±+c+1 D≥2(b—a)-2n(C—c).

The initial values of Xj and Di are

(3.27)

= a, (3.28)

31

and

Noting the equalities

and

Do = 4(b—a)—ri(2C-j-1).

b - a = nc + r,

2(b—a)=nC+R,

the recurrence formula for Di can be simplified to

D+1 =
D-i-2R D<0

D+2(R—n) D≥0,

and the recurrence formula for x2+1 can be simplified to

The initial value of Di is

D<2(R—r)
=

X+c+1 D≥2(R — r).

(3.29)

(3.30)

(3.31)

Do = 2R - n. (3.32)

A double-step least-error integral linear interpolation algorithm can be imple-

mented in a straightforward manner based on Eq. (3.28), (3.32), (3.25), (3.30), (3.31).

One single-step advance after the last double-step advance is needed if n is odd. One

implementation is given in [Rokne 92], where the point th21 is obtained by adding

half that length to ki without comparing Di with 2(R - r) to further improve the

efficiency when the length of a double-step from ±j to Xj 1 (C or C + 1) is even.

32

The reason is that one double-step equals the sum of two consecutive single-steps,

so if the length of the double-step is even, the lengths of the two single-steps must

be equal.

3.3.3 Bi-Directional Interpolation

Integral linear interpolation can be further sped up by utilizing symmetry, i.e., the

computation is performed from both direction simultaneously. Similar situation ex-

ists in line scan-conversion where symmetry is utilized for bi-directional line drawing.

This was first mentioned by Gardner [Gardner 92]. Here we note that it will reduce

the number of iterations to 1/4 of that needed by single-step algorithms when com-

bined with the double-step technique. The forementioned algorithms for the compu-

tation of integral linear interpolation are all performed from a to b, and we thus call

them forward incremental algorithms. To show how interpolation can be performed

bi-directionally, we first illustrate how it can be performed in the reversed direction.

Again, we use least-error integral linear interpolation as example. Define

b — a.

n

and

L+O.5], i=O,1, ... ,n,

then x = Xr..j, th = We further define

? 2o i=O,1,...,Lj,

33

X=LX+O.5j, i=O,l, ... ,[j.

Using similar derivations as used for the forward double-step incremental algorithm

we have the following recurrence formulas:

yl
-

Xi/ —c-1

-

D≤O

D+2R D ≤ O

D+2(R—n) D>O,

X— e D≤2(R — r)
=

±i' —c-1 D>2(R—r).

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

Based on Eq. (3.33)-(3.37) we can present the backward version of double-step least-

error integral linear interpolation algorithm which will generate exactly the same set

of points as its forward counterpart except that the order of the points generated is

reversed. Compare two sets of formulas for the forward and the backward double-step

least error integral linear interpolation, we find that

1. The initial values of the discriminators are the same, i.e., D0 = D.

2. The recurrence formulas for obtaining and X1 from ki and X respec-

tively (Eq. (3.24) and (3.35)) are basically symmetric except for the difference

34

in the equality case for updating the formulas: incrementing ki by C or C + 1

to yield Xi+j according to the sign of D, and decrementing X by C or C + 1

to yield X41 according to the sign of D. A similar situation exists for the

formulas to calculate 2j+1 and•' j+j (Eq. (3.31) and (3.37)).

3. After X +1 and k4, are obtained from Xi and X respectively, the formulas to

update Di and D to D 1 and D 1 (Eq. (3.30) and (3.36)) are again essentially

the same except for the equality case for updating the formulas.

The similarity between the two sets of formulas suggests that only one discriminator

is necessary in order to perform the bi-directional calculation if the asymmetric

portions of the two sets of formulas can be handled properly. If Di is never zero,

then D = Di for all i. Therefore starting from X0 = a and X = b we only test the

sign of Di to increment ±j and to decrement X by the same amount (C or C + 1)

to yield and and.update Di to D+i. If, for some i, Di = = 0, then

Di is updated by adding 2(R - m) and D is updated by adding 2R, which means

that D+1 and D+1 assume different values. The use of only D as discriminator to

perform bi-directional interpolation computation fails in this scenario. The following

lemma provides a remedy for the asymmetry should it happen.

Lemma 1 If Di = = 0 for some i, and therefore D+1 0 D then equality

of Dj and D is restored for j = i + 2, i.e., D+2 = D+2, hence symmetry of the

interpolation points is restored at i + 2 if D 2 0 0.

Proof: If ft = 0, then D0 = = —n according to Eq. (3.32) and (3.34). Therefore

= = —n for all i , and D = 0 will never happen. The above discussion indicates

35

that if Di = 0 for some i then the inequality R> 0 must hold, which implies 2R> 0.

Meanwhile, inequality 2(R - n) <0 always holds. Suppose Di = = 0 for some i,

then

D +1 =2(R—n)< 0,

D 1=2R>0.

Adding 2R to D 1 and 2(R - n) to D +1 yields

D1+2 = = 4R - 2n.

0

Combining the forward and backward double-step algorithms yields a bi-directional

interpolation algorithm in an obvious manner. The bi-directional interpolation al-

gorithm first outputs the first point Xo = a and the last point X = b, then the

interpolation computation is performed bi-directionally with N = [1j iteration

steps. If Di 54 0 the algorithm simply increments 1ki and decrements X symmetri-

cally to yield and X. The point th21 between ±j and X 1 and the point

a4 between X? and X 1 can be obtained by Eq. (3.31) and (3.37). If the number

to increment (decrement) from ±j is even, then th2+1 (±+) can be obtained

by incrementing (decrementing) X (Xfl by half that amount. If Dj = D in one of

the iteration steps, the algorithm increments ±i by C + 1 and decrements X by C

to yield X +1 and ± 41 and then sets the discriminator D 2 to be 4R - 2n. The

iteration count should be decreased by one in this case since we actually skip one

iteration to update the formulas. After the iteration stops, the number of leftover

36

points is .s = (n - 1) mod 4 = 0, 1, 2, 3. If .s = 0, all the interpolation points have

been generated, otherwise the leftover points are generated in the following manner:

• If s = 1, move forward one single step. This can be done by comparing D and

2(R - r) to determine the step length (c or c + 1).

• Ifs = 2, move forward a double-step to fill in two points.

• If .s = 3, move forward a double-step in the forward algorithm and move

backward one single step to fill in three points in the backward algorithm.

In this chapter the mathematical and logical foundations were given for a num-

ber of algorithms. The complete algorithms were, however, not developed. As a

conclusion to this chapter we therefore present a complete algorithm using a C like

pseudo-code for a double-step, bi-directional least-error integral linear interpolation

algorithm.

ALGORITHM 3.1: Double-step, hi-directional least-error integral linear interpolation

c=(b—a)/n; r=(b—a)%rt;

C=c<<1; R=r<<1;

if(R>=n){

C=C+1; R=R— n;

}

Inc1=R<<1; Inc2=(R—rt)<<1;

D = md -

N=(n-1)>>2; LeftOver=n-1---(N<<2);

37

X1=a; X2=b;

output2(X1, X2);

if (C is even) {

Ch=C>>1;

for (i = 1; i <= N; i + +) {

if(D<O){

xl=X1+Ch; x2=X2—Ch;

X1=X1+C; X2=X2—C;

output4(xl, Xl, x2, X2);

D = D+Imcl;

}

else if (D > 0) {

if (D < V) {

xl=X1+c; x2=X2—c;

}

else if (D > V) {

xl = Xl+c+ 1;

}

else {

xl=Xl+c+l;

x2 = X2 - c —. 1;

x2 = X2 - C;

};

Xl=Xl+C+l; X2=X2—C—l;

38

output4(xl, XI, x2, X2);

D=D+Inc2;

}
else{ /* D=O*/

if(D<V)xl=X1+c;

else xl=X1+ c+ 1;

X1=X1+C+1;

x2=X2—Ch; X2=X2—C;

output4(xl, X1, x2, X2);

i=i+1;

if(i>N) {

D = Ind; goto L;

}

xl=X1+Ch;

if (md> V) x2 = X2 - c - 1;

else x2 = X2 -

X1=X1+C; X2=X2—C-1;

output4(xl, X1, x2, X2);

D=Inc1+Inc2;

}

}

}

else { / * C + 1 is even

39

Ch (C+1) >> 1;

for (i = 1; i <= N; i+ +) {

if (D > 0) {

xl = X1 + Ch; x2 = X2 - Ch;

X1=X1+C+1; X2=X2—C-1;

output4(xl, Xl, x2, X2);

D=D+Inc2;

}

else if (D < 0) {

if (D < V) {

a1=X1+c; x2=X2—c;

}

else if (D > V) {

xl=X1+c+1;

}

else {

}

x2 = X2 - c - 1;

xl=X1+c+1; x2=X2—c;

X1=X1+C; X2=X2—C;

output4(xl, X1, x2, X2);

D=D+Ind;

}

else{

40

1=X1+Ch; X1=X1+C+1;

if(D>V)x2=X2—c-1;

else x2 = X2 - C;

X2=X2—C;

output4(xl, Xl, x2, X2);

i=i+l;

if(i>N) {

D = Imc2; goto L;

}
if (Ind < V) xl=Xi+c;

else xl= Xl+c+ 1;

Xl=Xl+C;

x2=X2—Ch; X2=X2—C—l;

output4(xl, X1, x2, X2);

D = mc]. + Inc2;

}

}

}

if (LeftOver == 0) return;

if (LeftOver> 1) {

if (D < V) x1 = Xl+c;

else xl= Xl+c+ 1;

41

if (D < 0) {

X1=Xl+C; D=D+Imcl;

}

else {

X1=X1+C+1; D=D+Inc2;

}

output2(xl, Xl);

if (LeftOver == 2) return;

}
if (D < V)xl=Xl+c;

else xl= X1+c+ 1;

outputl(xl);

}

3.3.4 Complexity Analysis and Numerical Results

In this section we perform a complexity analysis for the double-step, hi-directional

least-error integral interpolation algorithm so that we can compare the time effi-

ciency of three least-error integral linear interpolation algorithms: Field's single-step

algorithm, the double-step algorithm, and the double-step, bi-directional algorithm.

Since the complexity of the algorithm is dominated by the repetitive loops that

perform the iterations, we count the operations in the loops. Referring to the pseudo

code of the double-step, bi-directional interpolation algorithm, the algorithm has

different for loops for C being even and odd, and we need choose only one case

to analyze since the code segments for C being even and odd actually involve the

42

same amount of computation. Let us choose the case of C being even. In each

iteration, the sign of the discriminator D is tested. Unlike the single-step and the

double-step algorithms where we only need to test if D ≥ 0 or D < 0, we have to

discriminate between the cases of D < 0, D > 0 and D = 0. The algorithm first

tests if D < 0. If this test is not passed, then it tests if D > 0. An average case

analysis of the number of tests of D is difficult to accomplish. If we assume, however,

that the D > 0 comparison is performed in half of the loop iterations, then we get

a rough estimation of 2 comparisons of D in each iteration. If D < 0 then there

are 4 additions to obtain four new interpolation points, and 1 addition to update

D. If D > 0 we have to compare D with V. Again a three-state logic is required

to discriminate between the cases of D < V, D > V, and D = V. We therefore

estimate the number of comparisons of D with V to be 2 if D > 0. As with the

case of D < 0 there are 4 additions to obtain 4 new interpolation points, and 1

addition to update D. The case of D = 0 is more complex. It actually performs two

iterations and produces 8 new interpolation points, but updates D only once. There

are two comparisons. One comparison of D with V and one comparison of Inc2 with

V. If we approximate the cost of two comparisons to one addition, then there are a

total of 5 additions in each iteration when D = 0 as in the case of D < 0. Finally

we estimate the operations in each iteration by considering all the possible cases.

As has been indicated, there are always 5 additions to produce 4 new interpolation

points and to update D, and there are comparisons for discriminating between the

cases of D < 0, D > 0, and D = 0. There are additionally 2 comparisons if D > 0.

Assume that the case of D > 0 occurs in half of the total loop iterations, then the

estimated number of comparisons in each iteration is + = . Considering

43

that there are a total of 11 iterations and that loop control for each iteration requires

one comparison, the number of operations in repetitive loops are additions and

a = comparisons.
16 4 16

Complexity analyses for Field's single-step algorithm and for the double-step al-

gorithm were previously perfornied in [Rokne 92]. We therefore refer to the previous

results: The single-step algorithm requires 2n comparisons and 2n additions, and

the double-step algorithm requires n comparisons and n additions. The ratios

of operations between the double-step, bi-directional algorithm and the single-step

algorithm are therefore 0.41 for comparisons and 0.63 for additions, and the ratios

of operations between the double-step, bi-directional algorithm with the double-step

algorithm are 0.65 for comparisons and 0.83 for additions.

We implemented and tested a number of algorithms using the programming lan-

guage C. The algorithms were Field's single-step linear interpolation algorithm B5

(abbreviated as SS) in [Field 85], our previously presented double-step linear in-

terpolation algorithm (abbreviated as DS) in [Rokne 92], and the double-step bi-

directional linear interpolation algorithm (abbreviated as SYMDS) which was just

discussed, as well as Graham and Iyengar's double- and triple-step linear interpola-

tion algorithm (abbreviated as DTS) in [Graham 94]. These algorithms all perform

least-error integral linear interpolation. The output was not implemented for each

of the above algorithms so that only the arithmetic operations were counted. The

algorithms were tested on an SGI INDIGO2 workstation. Timing measurements

were made by using the UNIX command time. The comparison of the efficiencies

was based on the accumulated running times in seconds. The interval over which the

linear interpolation was performed was [0, 500], i.e., a = 0, b = 500. When we tested

44

SS DS SYMDS DTS SYMDS/SS SYMDS/DS

50-53 0.440 0.303 0.244 0.330 0.56 0.81

100 103 0.823 0.485 0.374 0.572 0.45 0.77

200 - 203 1.576 1.042 0.851 1.208 0.54 0.82

400-403 3.073 1.831 1.382 2.181 0.45 0.78

800 - 803 6.164 3.803 2.957 3.915 0.48 0.79

1600 - 1603 12.129 7.259 5.638 7.557 0.47 0.78

3200 -' 3203 24.087 13.713 10.165 15.930 0.42 0.74

Table 3.1: Runtime comparison of four integral linear interpolation algorithms.

an algorithm, we used four consecutive values for n, i.e, the algorithm first ran with

n = Ic, then n = Ic + 1, Ic + 2 and finally with Ic + 3. This process was repeated 5000

times to get the accumulated running time. These empirical results are tabulated in

Table 3.1. The table also lists the ratios of rulining times of SYMDS over SS and

SYMDS over DS for different n's. Noting that from the table the average ratio of

the running time of SYMDS over the running time of SS is 0.48, and the average

ratio of the running time of SYMDS over the running time of DS is 0.78, the re-

sults of theoretical complexity analysis therefore convincingly indicates the efficiency

improvement by applying double-step, bi-directional interpolation.

In our test the double- and triple-step algorithm cannot beat the double-step

algorithm. We believe that this is due to: 1) the increased overhead because of

computing the value of incr3 which involves multiplication; 2) the use of counting

variable i introduces one more addition in each iteration.

45

3.4 Summary

In this chapter three types of integral linear interpolation were defined. It was

then shown how to derive recurrence formulas for three interpolation types based

on incremental computation of integral linear interpolation which can be performed

using integer arithmetic. Double-step algorithms reduce the number of iteration

steps by half compared to single-step algorithms, and double-step, bi-directional

algorithms reduce the number of iteration steps to 1/4 of the number of iteration

steps of single-step algorithms. Because of increased overhead and code complexity

in the iteration loop, double-step algorithms cannot double the speed, nor can the

double-step, bi-directional algorithms quadruple the speed.

46

Chapter 4

Integral Linear Interpolation Approach to the

Design of Incremental Line Algorithms

4.1 Introduction

Scan-conversion of line segments (called lines in the sequel) is an important basic

graphics primitive. This is evidenced by the fact that graphics hardware tends to be

benchmarked by the speed by which it can generate lines. Considerable interest has

therefore been shown in designing efficient line scan-conversion algorithms. These

algorithms select the pixels nearest to the line based on the geometry of a line

relative to a coordinate grid as discussed in section 2.1. Most of the algorithms

are incremental algorithms [Bao 89, Bresenham 65, Bresenham 82, Bresenham 85,

Fung 92, Graham 93, Rokne 90, Wu 87]. Incremental algorithms are distinguished

by the fact that they generate the digitized image of a line from one endpoint of a

line to the other by selecting one or multiple pixels in each incremental step along

a certain axis (x-axis for lines with slope between 0 and 1). The choice of which

pixel(s) to set is made by testing the sign of a function called the discriminator. The

discriminator obeys a simple recurrence formula which may be evaluated using only

integer arithmetic. The first such algorithm was due to Bresenham [Bresenham 65]

as mentioned earlier. His algorithm was easy to implement and it effectively set a

standard for subsequent line scan conversion algorithms.

47

The number of pixels generated in each incremental step may be either fixed or

variable. The algorithms which generate a fixed number of pixels in each incremental

step are usually named according to the length of the incremental step along a

chosen axis. We thus have single-step line algorithms which are represented by the

first incremental line algorithm due to Bresenham; the double-step line algorithm

of Wu and Rokne [Wu 87] and the quadruple-step line algorithm of Bao and Rokne

[Bao 89]. The double-step algorithm [Wu 87] is similar to Bresenham's algorithm

but it takes advantage of special double-step pixel patterns and therefore reduces

the number of incremental steps by one half. The quadruple-step algorithm [Bao 89]

generates four pixels in each incremental step at the cost of one to three decision tests,

with the average being slightly less than two. More recently, Graham and Iyengar

[Graham 94] presented a double- and triple-step incremental line algorithm with the

main feature being a double-step line generator but setting a third pixel in some

of the loop iterations. Gill [Gill 94] suggested N-step incremental line algorithms

based on Bresenham's line algorithm. In Bresenham's algorithm, the sign of the

discriminator predicts the pixel to be chosen at any step. In the N-step move, the

changes to the discriminator for each step in the scan-conversion steps gives a set of

equations that must be satisfied. These equations form a test set that predicts the

N-step move in advance.

The incremental line algorithms which generate a variable number of pixels in

each incremental step are based on the observation that the digitized image of a line

with slope between 0 and 1 can be divided into slices of horizontal pixel runs. A

run of pixels is generated in each incremental step. Line algorithms of this type are

usually referred to as run-length slice algorithms [Bresenham 85, Fung 92]. A two-

48

state discriminator can be used to determine the length of the next run due to the

property that the lengths of the runs are confined to two successive integers. This

results in a scheme similar to the one used in algorithms generating a fixed number

of pixels in each step.

The run-length properties of digitized lines were first investigated by Reggiori

[Reggiori 72] who also obtained some theoretical results. Rosenfeld derived them

from the chord property of a straight digital arc, the digitization of a straight line

segment [Rosenfeld 74]. In the horizontal run-length slice line algorithm, the incre-

mental direction is along the y-axis for calculating the horizontal runs of the line

with slope between 0 and 1 since two consecutive horizontal runs have an increment

of one in their ordinates. In [Bresenham 85] Bresenham used the property of the

so-called complementary line of a line to calculate the diagonal runs of lines with

slope between 0.5 and 1. The run-length slice algorithms in [Bresenham 85] can be

viewed as a single-step algorithm in the sense that the incremental step is one in the

direction of y-axis. Fung, Nicholl and Dewdney presented a double-step version of

the run-length slice algorithm in [Fung 92] to further increase the efficiency of the

line generation.

The structural approach is another major approach for digitized line generation

discussed in the literature. These algorithms construct a string representing a digi-

tized line on a grid in Freeman's coding scheme [Freeman 61]. The runs are derived

from a structural orientation in these algorithms due to the interesting structural

properties of the chain code representation of lines. Brons [Brons 74] and Cederberg

[Cederberg 79] presented recursive algorithms to produce the chain code representa-

tions of digitized lines. Castle and Pitteway [Castle 87] presented another structural

49

line algorithm based on the palindromic symmetry in the chain code representation

of a discrete line. Their algorithm uses Euclid's algorithm to control two symmetric

production rules which construct the "best-fit" line.

This chapter discusses a new approach to the design of line algorithms of incre-

mental type called the integral linear interpolation approach As has been mentioned

above, the core of the existing incremental line algorithms consists of choosing a pixel

or a group of pixels in each iteration step. The analyses leading to the algorithms

are based on the geometry of digitized lines on the raster grid. Pixel patterns are

studied individually for the derivation of single-step, double-step, and quadruple-

step algorithms. From the view point of numerical computation, selecting pixels to

approximate a continuous line amounts to a problem of linear interpolation. Because

the pixels have integer coordinates, the integral linear interpolation is the natural

computation model. In the simplest case, we first discuss the relationship between

Bresenham's line algorithm and the least-error integral linear interpolation. We

then illustrate how the variations of the original Bresenham's line algorithm such as

double-step and quadruple-step incremental line algorithms can be derived by using

double-step and quadruple-step least-error integral linear interpolation. This method

also applies to the derivation of the incremental run-length slice line algorithms where

rounding-up or rounding-down integral linear interpolations are used.

The topics in this chapter are well-known from other investigations, however,

the approach is different from other relevant work. This results in a new treatment

that unifies a considerable body of literature on incremental line drawing. In the

remainder of this chapter we will therefore illustrate how existing incremental line

algorithms can be derived by means of integral linear interpolation. To demonstrate

50

the power of this method, we will present a double-step, hi-directional run-length

slice line algorithm by using double-step, hi-directional rounding-up integral linear

interpolation.

The discussion of the line scan-conversion problem in this chapter is constrained

to lines with slopes between 0 and 1 whose endpoint coordinates are integers. More

specifically, we denote the two endpoints of the line by (x3, Ys) and (x,, y,) and

we assume that Xe ≥ x3 and Ye ≥ y,. Other lines with integer endpoints can be

transformed to meet this condition via sign changes and/or coordinate exchanges.

The slope of the line is denoted by k = Ay/Ax where / x = x, - x and /. y = y - y8.

4.2 Bresenham Line Algorithm and Integral Linear Interpo-

lation

Starting from X = Xs, y = Ys, Bresenham's algorithm generates the digitizeded image

of a line by incrementing the integer abscissa by one in each iteration, then deciding

which of the two neighboring pixels, (x + 1, y) and (x + 1, y + 1) is closer to the true

line and then moving to that position (see Figure 4.1). A discriminator is derived

from the geometry of the.true line and the two candidate pixels, which allows the

algorithm to choose one of the two candidate pixels in each iteration step according to

the sign of the discriminator. The decision made effectively rounds the real ordinate

value of the point on the real line with integer abscissa x + 1 to the nearest integer.

If an equal error instance occurs, Bresenham's algorithm will round the real ordinate

value up, i.e., choose the integer ordinate to be y + 1. The discriminator is updated

according to a simple recurrence formula. The following code constitutes the core of

51

Figure 4.1: Choosing a pixel that is closer to the true line from two candidate pixels
Q and R.

Bresenham's line algorithm for generating the lines with slopes between 0 and 1.

D=2y—Ax;

for (i=0;i<=x;i=i+1) {

plot (x, y);

if(D>=O) {

Y = y + 1;

D=D-2Lx;

}
X = X+ 1;

D=D+2ty;

}

In the above code D is the discriminator.

Let us now view the line generation problem from a different perspective. Denote

the ordered set of abscissas of the pixels on the line from x to x by X and the ordered

52

set of ordinates of the pixels from y to y, by Y. There is a one to one correspondence

between the elements of these two sets. Since Lx ≥ Ay, x is increased by one each

time a pixel is determined. Hence

X = {x3, X + 1,. .. Xe}.

The elements in Y are the result of the least-error integral linear interpolation per-

formed on the interval [ye, y,]:

Y = fy., = ?o, .. 4. = Ye},

where n = Ax = Xe - x3. Since Ay = Ye - ai < n there exist at least one i, i =

0,1,. . . , n - 1, such that 'j = yj. Replacing a, b by y, y, and n by Ax in the

least-error integral linear interpolation formulas in chapter 3, we get the following

recurrence relations:

(4.1)

'++' D≥0,

D+1 =
D+2r

D+2(r—Ax) D≥0.

The initial value of the discriminator becomes

(4.2)

Do = 2r - x. (4.3)

53

The relationship between Eq. (4.1),(4.2) and (4.3) and Bresenham line algorithm is

revealed by examining the values of c and r, which can be trivially determined:

c=
0 0<k<1 (Ay < Ax)

1 k=1 (AX Ly),

J Ly

10 c=1.

In the case of c = 0 Eq. (4.1) and (4.2) can be simplified to

D<0
Yi+1 =

i+l, D≥O,

(4.4)

(4.5)

(4.6)

D+2L.y D<0
D 1 = (4.7)

D + 2(Ly - z), D ≥ 0.

The initial value of the discriminator becomes

D0 = - Ax. (4.8)

These recurrence relations are identical to those employed in Bresenham's algorithm.

In the case of c = 1, i.e., / x Ay, the line forms a 45 degree angle with respect to

the positive x-direction, the recurrence formulas become

'+' D<0
Yi+i =

+2 D≥0,

54

(4.9)

D+1 = { D
D-2zx D≥0,

and the initial value of the discriminator becomes

(4.10)

D0 = —ax. (4.11)

These formulas are different from the formulas used in Bresenham's algorithm. But

since the initial value of the discriminator is negative, and according to Eq. (4.10)

will never change in the process of iteration, therefore, the value of j will increase by

one in each iteration to form a 45 degree move according to Eq. (4.9). In a practical

implementation of line scan-conversion, however, the case of Lx = Ay is typically

excluded from the code for arbitrary slope lines and is treated as an exceptional

instance for even faster pixel selections. We therefore conclude that performing

the least-error integral linear interpolation over the interval [ye, y,] results in a line

algorithm which is equivalent to Bresenham's line algorithm.

4.3 Double-Step Line Algorithm and Integral Linear Inter-

polation

4.3.1 Double-Step Line Algorithm

The double-step line algorithm [Wu 87], which improves the efficiency of Bresenham's

algorithm, is based on the observation that if a point (xi, y) at the lower left corner

of a 2 x 2 mesh representing an already plotted pixel in the line with slope between

0 and 1 is given, then only four pixel patterns shown in Figure 4.2 can be formed in

55

a double-step increment in the x-direction under the conditions on the line given in

section 4.1. The double-step algorithm therefore proceeds as follows. Starting from

(x8, y.), the x coordinate is incremented by two raster units. If the pixel at the right-

lower (the right-upper) corner of the 2 x 2 mesh is selected, then it is clear that pattern

1 (4) occurs. This means that in both cases the middle pixel can be plotted with no

extra computation. If pattern 2 or 3 occurs (abbreviated pattern 2 (3) in the sequel),

then some extra work has to be done in order to distinguish which of the two patterns

have to be plotted. It was conjectured by Freeman [Freeman 61, Freeman 70] and

proved by Reggiori [Reggiori 72] (see also [Rokne 90, Wu 87]) that only two pattern

types may occur simultaneously: either 1 and 2 (3) or 2 (3) and 4. From these results

the double-step strategy is given by

1. If0≤k<0.5,then

=

2. If0.5≤k≤1,then

Do=4y—Ax,

D + 4Ly Di < 0 (pattern 1)

D + 4iy - 2Jx D ≥ 0 (pattern 2 or 3).

Do = 4Ly - 3Lx,

D + 4y - 2Lx Di < 0 (pattern 2 or 3)
D+1 -

D + 4(Ly - x) Di ≥ 0 (pattern 4).

56

(4.12)

(4.13)

(4.14)

(4.15)

Patterni

(Xi' Yi I I (x1,ii)I I I (Xi , Yi)
Pattern2 Pattern3 Pattern4

Figure 4.2: The four double-step patterns.

To distinguish between pattern 2 and 3 requires the test

J2y if

2(y - &) if 0.5 ≤ k ≤ 1

resulting in pattern 2 if the test is passed, pattern 3 if not.

4.3.2 Designing Double-Step Line Algorithm Using Double-Step Integral

Linear Interpolation

(4.16)

Wu and Rokne's double-step line algorithm can easily be derived by means of double-

step least-error integral linear interpolation since what we really need to calculate is

the set of y-coordinates of the pixels on the digitized line, and it is readily understood

that this can be achieved by performing double-step linear interpolation over the

interval [ys, ye]. If a, b are replaced by ys, y, X, th by Y, ', and n by Lx in the

formulas for double-step least-error integral linear interpolation given in chapter 3

then the following recurrence formulas for calculating y-coordinates of the pixels are

obtained.

=
D2<0

+C+1 D≥0,

57

(4.17)

D+1 =
D+2R D<0

D+2(R—Lx) D≥0

where Y = 2j and where C is interpreted as [2Ly/Lxj = L2ki so that

Di < 2(R - r)

Di ≥ 2(R— r).

The initial value of the discriminator becomes

(4.18)

(4.19)

Do = 2R - y. (4.20)

Noting that the values of c and r are determined according to Eq. (4.4) and (4.5)

the values of C and R can be determined by the the following equations:

0 0≤k<0.5

1 0.5k<1

2

(4.21)

2Ly C=0

- x C = 1 (4.22)

2(/y— Ax) C=2.

We can now easily see that the above recurrence formulas for double-step integral

linear interpolation over the interval [Ys Ye] are identical to the recurrence formulas

used for double-step line algorithm in [Wu 87] for the case of 0 ≤ Ic < 1, and they are

correct in the case of k = 1 though the resulting formulas are different from those of

58

double-step line algorithm. We omit the derivation here since it is quite easy.

The advantage of using linear interpolation technique in designing a double-step

line algorithm is obvious. The discussion on double-step pixel patterns and the

differentiation of the two cases according to whether the slope of a line is greater

or less than 0.5 is no longer needed. Only one set of recurrence formulas is derived

which corresponds to different sets of formulas derived in [Wu 87] depending on the

value of Ic = . In an analogous manner we can design a quadruple-step leastAX

error integral linear interpolation algorithm, and it is readily understood that the

quadruple-step line generation [Bao 89] is just an application of the quadruple-step

least error integral linear interpolation.

4.4 Run-Length Slice Line Algorithms And Integral Linear

Interpolation

4.4.1 Horizontal Run-length Slice Line Algorithms

We have shown that the problem of line generation can be reduced to the problem

of least-error integral linear interpolation over the interval [Ys, Ye] with n = Ax.

This results in the conventional incremental line algorithms such as Bresenham's

line algorithm and the double-step line algorithm. We now show that the run-

length slice line algorithms can also be derived from integral linear interpolation.

Referring to Figure 4.3, the digitized image of a line segment can be broken down

into Ay + 1 = y,
- Ys + 1 horizontal runs of pixels with the ordinates Ys, y, + 1.. .. ,Ye.

A set of midlines y = y. + i - 0.5,i = 0,1,.. ., y + 1 is imposed on the grid

coordinate. Denoting by xi the x-coordinate of the intersection of the line passing

59

through (xe, ys) and (Xe, y) with line y = Ys + i - 0.5, we observe that except for

the 0-th run which starts from x5, the i-th run, i = 1, 2,. . . , Ay, starts from [x1,

which is a rounding-up integral linear interpolation point on the interval [x0, x,+,].

This is also true for the case of xi being integral, which happens if the line passes the

midpoint of two vertically adjacent grid points (see Figure 4.4). Thus the calculation

of horizontal pixel runs for the line segment from (x5, y) to (Xe, ye) can be done by

performing the rounding-up integral linear interpolation over the interval [x0, x.1.1]

where x0 = x, - Ax and X y 4 = Xe + . A single-step interpolation scheme

2Aywill result in a single-step run-length slice line algorithm where a run of pixels is

generated in each iteration step such as the algorithm given in [Bresenham 85], and

a double-step scheme will result in a double-step run-length slice line algorithm

which generates two runs of pixels in each iteration such as the algorithm presented

in [Fung 92]. Furthermore, by incorporating a hi-directional interpolation technique,

we can derive a double-step, bi-directional run-length slice line algorithm. This

algorithm, which has not been presented previously in the literature, will now be

developed in detail as a case study. The derivation is similar to what we have done

in chapter 3 for the derivation of double-step, hi-directional, least-error integral linear

interpolation algorithm. We first derive the recurrence formulas for the double-step

forward and backward rounding-up integral linear interpolations for this particular

problem, and we then combine these to obtain a double-step, hi-directional run-

length line scan-conversion algorithm.

Note that the distance between xi and Xj1 is

(Xe + AX X5 + Lx—)/(zy + 1) = Ax/Ay =
2Ly

60

xo Xj. X2 X3 X10

Figure 4.3: Horizontal pixel runs in a digitized line segment. Dashed lines are
mid-.lines passing midway between vertically adjacent grid points.

W D-02 F4

Figure 4.4: A line with equal error cases.

which means that xi can be represented by

AX Ax Lx
xi=xo+ — i=xs +'i—.

Ly 2Ly Ay

Since both Lx and Ay are integral, we use the notation defined in chapter 3:

[j = tic], Ay

r = Ax mod Ay,

2L.x 1
L A J

1-xy

R=2Lx mod Ay,

61

- Lx

Ax mod 2ty,

Ax
1].

Letting Xi = X2j and ki = rXil, we have

x 1 .k+1 <x 1 + i,

Subtracting Eq. (4.23) from Eq. (4.24) yields

2k—i < ±i+, —.ki < 2k+i,

which implies that

or C+1.

A similar derivation establishes

or c+i.

We therefore have

+c x1+1 -5c— c≤o

i+c+1 x +1 —c—c>o.

62

Defining the discriminator to be

Di = 2Ly(X1 - -ki - C) (4.25)

we have

X+C DZ≤O

±+C+1 D>O.

Substituting X 1 by x - + 2(,' + 1) in Eq. (4.25) we obtain
2Ay AY

Di = 2Ly(X 1—X—C)

Ax Ax
= 2Ly(x8 2Ly +2(i+1) AY -- X—C)

= 2yx3 - x + 4(i + 1)& - 2yX - 2yC.

can be represented in terms of D:

D+1 = 2Lyx8 - Ax + 4(i + 2)& - 2z.yX +1 - 2LyC

= D + 4Lx - 2Ly(X 1 - .k)

D+4zx-2LyC

D+4/x-2Ly(C+1) D>O

D+2R D≤O

D+2R-2y D2>O.

(4.26)

(4.27)

The point between X and Xj.4, i.e., th2+1 can be calculated according to the fol-

63

lowing equation:

- - C 0

- - C> 0-

Noting that

Ax Lx
2Jy(x21 - c) = 2Ly(xs + (2i + 1) Ay — - Xi - c)

= 2Lyx3 - Ax + 2(2i + 1)x - 2/y± - 2L\yc

= D-2&+2L.yC+2Lyc

= D-2/+2(2Ix—R)-2(zx—r)

= .D- 2(R-- r)

it follows that Di can also be used to decide the value of x2+1:

X+c Dj<2(R—r)
x2i+1 =

X+c+1 D>2(R—'r).

If X 1 - -ki = 2a, where a is integral, we simply have

= X + a.

To start the iteration, the initial values of X1 and Di are:

±0 = Fxs— Lx 1 —xs-

64

and

Do =

= 2L.y(x8—Xo)-2yC+3L.x

= 2Ly-2zyC+3zx

= Zx—'F-2(2/.x—R)+3.x

2R - . (4.30)

The recurrence formulas for the double-step backward interpolation can be de-

rived in a similar manner. Here we define x / Ax = Xe+, X = x0—z A , and X, =

The interpolation points are th = fx for i = 0, 1'.. . , y + 1. To interpolate in

a double-step manner we define X = x' j and .k,' = fXfl. The formulas are listed

below:

Ax Ax
= 1Xe+1ae+11

= xe+

{ e+3

6+1 > 0 ,

2R-2Ly =0

2R—

X— C D<0

X— C-1 D≥0,

65

(4.31)

(4.32)

(4.33)

D+2R D'<O
D'

i+1 -

D+2R-2Ay D ≥ O,

D<2(R—r)
= (4.35)

c—i D≥2(R—r).

To explore the possibility of bi-directional computing, we compare the corre-

sponding formulas for the two sets of equations, Eq. (4.26)-(4.30) and Eq. (4.31)-

(4.35). Again the recurrence formulas in the two sets of equations are similar except

for equality cases. The initial values of the discriminator D and D' may be different

or same the depending on the value of . Further investigation reveals that

(4.34)

1. If R = 0 and = 0 then D0 = 0 and therefore Di = 0 for all i. Also

= —2A.y < 0 and therefore D = —2Ly < 0 for all i. Hence

)41 = + C,

To calculate th2+1 and we only need to compare 2(R - r) with 0 and

with —2Ly according to Eq. (4.28) and Eq. (4.35).

2. If > 0 then D0 = = 2R - , hence we can use D as the discriminator

to perform bi-directional interpolation. Special considerations are necessary

when D=D=O.

3. If=0 and R>0 then Do=2R>0 and D=2R-2zy<0. But after a first

66

double-step advance in both directions, the equality of D and D' is restored:

D1 = 2R + 2R - 2/y = 4R - 2Ly,

D=2R-2ty+2R=4R-2Ly=Di.

Therefore bi-directional interpolation can be executed using only one discrim-

inator.

In the same manner as for the bi-directional least-error integral linear interpo-

lation discussed in chapter 3, the only problem with the bi-directional rounding-up

integral linear interpolation using only one discriminator is that if Di = = 0

for some i then D+1 and D+1 assume different values (D +1 = 2R > 0 and

D 1 = 2R - 2y < 0). But again the equality of D and D' is restored for

D 2 = D 2 = 2R - 2Ly. The double-step and bi-directional calculation for all

the th's for this case is quite similar to that of the least-error integral linear inter-

polation given in chapter 3 with special treatment for the case of D0 54 D, which,

however, does not significantly complicate the algorithm. If we keep track of the

ordinates of runs in both directions in the algorithm and write pixel runs instead of

output th's, we obtain a double-step, bi-directional run-length line scan-conversion

algorithm.

We have shown that integral linear interpolation can be used as a unified frame-

work for the derivation of incremental line algorithms. As a rather complicated

example, we now present the complete algorithm using a C like pseudo-code for

double-step, bi-directional run-length slice line generation based on the mathemati-

67

cal and logical foundations established so far.

ALGORITHM 4.1: Double-step, bi-directional run-length line generation

dx = xe - xs;

dy = ye - ys;

c=dx/dy; r=dx%dy;

C=c<<1; R=r<<1;

if(R>=dy) {

C=C+1; R=R — dy;

}
c=c>> 1;

if (c is odd) f = dy + r;

else f =

mc]. = R << 1;

Iric2 = md - (dy << 1);

D = mc]. -

V= (R — r) << 1;

N = (dy + 1) >> 2;

LeftOver = dy + 1 - (N << 2);

X1 = xs -

if(==O) X2=xe+;

else X2 = xe+6+1;

if (N == 0) goto L;

68

if(R==O&&I==O){

if (V >= 0) ci = C;

else ci = c + 1;

if (—(dy << 1) < V) c2 = C;

else c2 = c + 1;

for (i = 0;i < N;i = i + 1) {

xi=Xi+ci; x2=X2—c2;

Xi=X1+C; X2=X2—C;

DrawTwoRuns(ys,xs,xl,Xi — 1);

DrawTwoRuns(ye - 1, X2, x2, xe);

ys=ys+2; ye=ye-2;

xs=X1; xe=X2—i;

}

D=0;

goto L;

}

==

if (Ind <= V) xi = Xi + C;

else xi= X1 +c+ 1;

if (mci + Ind < V) x2 = X2 - C;

else x2 = X2— c— 1;

Xi=X1+C+i; X2=X2—C;

DrawTwoRuns(ys,x.s,xi,Xi — 1);

69

DrawTwoRuns(ye - 1,X2,x2,xe);

x.s=X1; xe=X2-1;

ys=ys+2; ye=ye-2;

D = Ind + Inc2;

N=N- 1;

}

if (C is even) {

Ch=C>>1;

for (i = 0;i < N;i = i+ 1) {

if (D< 0) {

xl=X1+Ch; x2=X2—Ch;

X1=X1+C; X2=X2—C;

DrawTwoRuns(ys,xs,xl,X1 — 1);

DrawTwoRiins(ye - 1, X2, x2, xe);

xs=X1; xe=X2-1;

ys=ys+2; ye=ye-2;

D=D+Ind;

}

else if (D > 0) {

if(D<V) {

xl = X1 + C;

}
else if (D > V) {

x2 = X2 - C;

70

xl=X1+c+1; x2=X2—c-1;

}

else {

xl = XI + C;

}

x2 = X2 - c - 1;

Xl=Xl+C+l; X2=X2.—C—l;

DrawTwoRuns(ys,xs,xl,Xl - 1);

Dra.wTwoRuns(ye - l,X2,x2,xe);

xs=Xl; xe=X2-1;

y3=ys+2; ye=ye-2;

D=D+Ind;

}

else { / D = 0 *1

xl = Xl + Ch; Xl = Xl + C;

if (D < V) x2 = X2 -

else x2 = X2 - c- 1;

X2=X2—C—l;

DrawTwoRuns(y.s,xs,xl,Xl — 1);

DrawTwoRuns(ye - l,X2,x2,xe);

xs=XI; xC=X2-1;

ys=ys+2; ye=ye-2;

i=i+1;

if(i==N) {

71

D = Ind; break;

}
if(Iric1<=V)xl=X1+c; /* D=Inc1 after D=O*/

else xl= X1+c+ 1;

X1=X1+C+1;

x2=X2—Ch; X2=X2—C;

DrawTwoRuns(ys,x.s,xl,X1 — 1);

DrawTwoRuns(ye - 1, X2, x2, xc);

X3=X1; xe=X2-1;

y3=ys+2; ye=ye-2;

D = md + Inc2;

}

}
else { / C+1 is even

Ch=(C+1) >> 1;

for (i = O;i < N;i = i + 1 {

if (D > 0) {

xl=X1+Ch; x2=X2—Ch;

X1=X1+C+1; X2=X2—C-1;

DrawTwoRuns(ys,x.s,xl,X1 — 1);

DrawTwoRuns(ye - 1,X2,x2,xe);

xs=X1; xe=X2-1;

ys=ys+2; ye=ye-2;

72

D=D-Flnc2;

}

else if (D <0) {

if (D< V) {

xl = X1 + c; x2 = X2 - C;

}

else if (D > V) {

xl=X1+c+1;

}

else {

xl=X1+c;

}

x2=X2—c-1;

x2 = X2 - c - 1;

X1=X1+C; X2=X2—C;

DrawTwoRuns(ys,xs,xl,X1 — 1);

DrawTwoRuns(ye - 1,X2,x2,xe);

xs=X1; xe=X2-1;

ys=is+2; ye=y2-2;

D=D+Ind;

}

else{ /* D=0*/

if (D <= V) xl = XI + C;

else xl = Xl+c+ 1;

X1=Xl+C;

73

x2=X2—Ch; X2=X2—C--1;

DrawTwoRuns(ys,xs,xl,X1 — 1);

DrawTwoRuns(ye - 1,X2,x2,xe);

x.s=X1; xe=X2-1;

ys=ys+2; ye=ie-2;

z=z+1;

if(i==N) {

D = Irtc1; break;

}

xl=X1+Ch; X1=X1+C+1;

if (Inc2 < V) a2 = X2 - c; / * = Incl after D' = 0 * /

else x2 = X2 - c- 1;

X2=X2—C;

DrawTwoRuns(ys,xs,xl,X1 - 1);

DrawTwoRuns(ye - 1,X2,x2,xe);

xs=X1; xe=X2-1;

ys=ys+2; ye=ye-2;

D = md + Inc2;

}

}

}
L: / Handling of leftover runs

switch (LeftOver) {

74

case 3:

case 2:

if(D<=V)xl=X1+c;

else xl=X1+c+ 1;

if (D <= 0) X1 = X1 + C;

elseXl=X1+C+1;

DrawTwoRuns(y.s,xs,xl,X1 — 1);

if (LeftOver == 2) break;

ys = ys + 2;

case 1:

DrawRun(ys, X1, X2 - 1);

}

In the above code procedure DrawTwoRuns(y, xl, x2, x3) draws two horizontal pixel

runs, one from xi. to x2— 1 with ordinate y, and another from a2 to x3 with ordinate

y+l.

4.4.2 Diagonal Run-Length Slice Line Algorithm

We have shown that if the slope of a line is between 0 and 1, its digitized image

can be divided into slices of horizontal runs so that multiple pixels can be rendered

in each iteration, as shown above. When the slope of the line is greater than 0.5,

however, the length of each horizontal run reduces to 1 or 2 since e = [ix/i.yj = 1.

In this case, the advantage of horizontal run-length algorithms is greatly reduced.

75

(a)

7'

.7,

(b)

Figure 4.5: Lines (bottom) and their complementary lines (top). Diagonal runs in
lines are obtained by calculating horizontal runs of the complementary lines. Empty
circles in (b) denote the pixels which should be generated by Bresenham line al-
gorithm. This suggests that we use rounding-down integral linear interpolation to
calculate the end positions of horizontal runs of the complementary line. The hatched
circles denote this adjustment.

In the extreme case of the slope being 1, the length of each run reduces to 1 and

we actually obtain a single-step algorithm. We can, however, divide the line into

diagonal runs since the starting of a new horizontal run is equivalent to a diagonal

move of the pixel and each horizontal move of a pixel can be viewed as the starting

of a new diagonal run.

The diagonal runs of a line can be obtained by calculating the horizontal runs for

its complementary line [Bresenham 85]. For a line with Ay > O.5L.x, i.e., the slope

of the line is greater than 0.5, we compute the horizontal runs of its complementary

76

) where line ystarting from (xe, y,) and ending at (Xe, y = Lx - Ye, and change the

role of horizontal steps to diagonal steps to obtain the complementary incremental

step sequence of the line to be drawn (see Figure 4.5(a)). Interchanging the role of

horizontal steps and diagonal steps also interchanges the step choice for equal error

instances. So if we use a horizontal run-length slice algorithm to compute the diag-

onal runs of a line with slope > 0.5, the equal error default is a horizontal move (see

Figure 4.5(b)), resulting in a discrepancy between lines generated by Bresenham line

algorithm and lines generated in this manner. This discrepancy can be eliminated

by obtaining the horizontal runs by calculating the end positions of the horizontal

runs of its complementary line using rounding-down integral linear interpolation and

then changing horizontal runs to diagonal runs. Thus th...1 = LXi_iJ is the end of

the i-th run, and we simply obtain a diagonal run which ends at abscissa th. In the

case of drawing a line with slope less than or equal to 0.5, we still use rounding-up

integral linear interpolation to calculate the horizontal runs of the line since a dig-

itized line generated in this manner is identical to the digitized line generated by

Bresenham's algorithm even if there exist equal error instances. We will not detail

the derivation of recurrence formulas for diagonal run-length calculation by means of

rounding-down integral linear interpolation since it is quite similar to the calculation

horizontal runs by means of rounding-up integral linear interpolation.

4.5 Summary

We have presented a new approach to the design of incremental line algorithms in

this chapter which reduces the problem of designing incremental line algorithms to

77

the problem of integral linear interpolation over the y extent or the x extent of a

line. This new treatment unifies a considerable body of, literature on incremental

line drawing and it has the advantage of simplifying derivations. The variations of

the original Bresenham line algorithm become natural extensions of the algorithm in

this framework, and the properties of digitized lines upon which the double-step and

the run-length slice line algorithms are based are the direct results of the integral

linear interpolation. As a complex case study we derived a double-step, bi-directional

run-length slice line algorithm.

A double-step run-length line scan-conversion algorithm was presented previously

by Fung et al [Fung 92]. Bi-directional double-step generation of runs is also sug-

gested in their paper without giving the technical details. We also note that the

run-lengths are, in general, not symmetric, and thus copying two runs generated in

one direction to another direction usually results in incorrect digitization. This is

evidenced by Figure 4.3. The recurrence formulas for both forward and backward

interpolation, and the discussions of their relations in this chapter result in the cor-

rect generations of runs in both direction simultaneously. Note that our approach is

completely different from that of Fung. The integral linear interpolation approach

adopted in this chapter avoids the tedious derivation of the run-lengths.

78

Chapter 5

Applying Integral Linear Interpolation to the

Scan-Conversion of Filled Polygons

5.1 Introduction

The application of integral linear interpolation to the design of line scan-conversion

algorithms was discussed in chapter 4. In particular, we showed that rounding-up and

rounding-down integral linear interpolation can be employed to design run-length

slice line scan-conversion algorithms. In this chapter we will apply rounding-up

integral linear interpolation to the scan-conversion of yet another important graphics

primitive: a filled polygon.

Algorithms for drawing filled polygons have been devised by a number of au-

thors [Gay 85, Gourret 87, Knott 79, Lane 83, Pavlidis 79, Rankin 87, Richards 87].

They can be categorized as either region-filling algorithms or scan-line algorithms.

Region-filling algorithms work by first drawing the boundary of the polygon and

then setting the pixels inside the polygon. Scan-line algorithms operate by comput-

ing spans on scan lines of the raster disply that lie between left and right edges of

a polygon using an odd-parity rule, then filling the spans. The span extrema are

calculated by an incremental algorithm which takes advantage of edge coherence.

The pixels along the polygon edges can be calculated based on incremental linear

interpolation with a rounding procedure that does not satisfy the least-error crite-

79

non. The reason is that the boundary pixels, i.e., the pixels at both ends of spans

should be chosen so that they lie inside the polygon and when two polygons share

an edge, no pixels of one polygon will intrude into another polygon. This effectively

rounds the fractional intersections to integer grid points by means of rounding-up

or rounding-down integral linear interpolation as will be explained in more detail

in the next section. The problem of ensuring that the centers of pixels to be set

to lie inside the polygon should also be considered when designing polygon filling

algorithms using region-filling methods. It is, however, often the case that this is

neglected, as we can see in [Gourret 87] where the polygon boundaries are drawn us-

ing a line scan-conversion algorithm such as Bresenham's algorithm [Bresenham 65]

or symmetrical DDA [Newman 79]. In both cases the problem of polygon overlap is

ignored.

The calculation of intersections of scan-lines with polygon edges and the directed

rounding of fractional intersections to integral grid coordinates present a significant

portion of the computations in scan-line algorithms. It is therefore of interest to

explore the possibility of speeding up these computations by means of rounding-

up or rounding-down integral linear interpolation. It turns out that this is quite

straightforward since the fast computation of integral linear interpolation which was

discussed in chapter 2 can be used here. Our discussion will be based on the scan-line

algorithm for polygon filling described in [Foley 90]. We will show how this scan-

line algorithm can be sped up by incorporating the fast computation of rounding-up

integral linear interpolation. In the remainder of this chapter we will first give a brief

introduction to the scan-line algorithm for filled polygons in [Foley 90], and then we

elaborate on the incorporation of rounding-up integral linear interpolation into the

80

Figure 5.1: Filling the spans inside the polygon for one scan-line.

this algorithm.

5.2 Scan-Line Algorithm for Filled Polygons

Scan-line methods to scan-convert filled polygons can be found in many text books

on computer graphics. We will therefore assume that the reader is familiar with such

algorithms and we will only outline the algorithm found in the text book [Foley 90]

so that we can refer to it in the development of the improved algorithm.

In the algorithm in [Foley 90] scan-lines are formed horizontally so that non-

horizontal edges of the polygon to be scan-converted form span boundaries for the

scan-lines. The core of the scan-line algorithm is then to compute the spans of scan-

lines that lie inside the polygon and to fill those spans. The following processing steps

are performed for each scan line that intersects the polygon to be scan-converted:

1. Find all intersections of the scan line with the polygon.

2. Sort the intersections by increasing x coordinate.

3. Fill in all pixels between pairs of intersections that lie in the interior of the

81

Yh x 1/k next

(a)

Yh X D c Incl Inc2 next

(b)

Figure 5.2: Data structures for active edges when calculating edge-scan-line inter-
sections: (a) commonly used data structure for the DDA method; (b) new data
structure for the rounding-up integral linear interpolation method.

polygon using the odd-parity rule.

Figure 5.1 shows the result for one scan-line.

Let us denote the lower endpoint of an edge by (xi, yl) and the higher endpoint

of the edge by (xh, Yh) (where low and high is relative to the vertical direction on the

raster screen). The intersections of scan lines with polygon edges can be performed

in an incremental manner. As we move from one scan line to the next which is

immediately above the current scan-line, we can compute the new x intersection of

an edge on the basis of the the old x intersection by applying.

xi+1 = x + 1/k,

where k = (Yh - yl)/(xh - XI) is the slope of the edge. The increasing order of x

intersections of the scan line with polygon edges is maintained by a data structure

called the active edge table, abbreviated AET. The AET is a linked list with a header

82

pointing to the first active edge in the list. The x intersection of an edge is initialized

to be xj when the edge is inserted into the list, which happens when the current scan

line begins to intersect this edge. The value of x is updated as the scan-line moves

upward until it reaches the higher endpoint of the edge. When this happens, the edge

is no longer active and it is therefore removed from the AET. The data structure

for an active edge in the AET is illustrated in Figure 5.2(a), where next is a pointer

to the next active edge. The intersections of the scan-line with polygon edges are•

found by taking the edge items pairwise from the AET. Before we can fill the spans

which lie inside the polygon the fractional x intersections must be rounded to integers

so that the extreme pixels lie inside the polygon. The rules for choosing extreme

pixels that guarantee the above requirement are described in [Foley 90] and they are

summarized here.

Referring to Figure 5.3, AB, BC, and DE are left edges, and DC, FE, and

AF are right edges. The following rules are suggested for obtaining the left/right

extreme pixels: 1) for the left edges of the polygon, each fractional x intersection is

rounded to the smallest integer which is greater than x; 2) for the right edges of the

polygon each fractional x intersection is rounded to the greatest integer which is less

than x; 3) for each integral x intersection on left edges the edge pixel is retained;

4) for each integral x intersection on right edges, the corresponding right extreme is

one pixel to the left of the intersection.

If these rules are followed then the result is the filled polygon in Figure 5.3

where the solid circles represent the left or right extrema of spans that lie inside the

polygon. The rules guarantee that there is no pixel overlap for two polygons sharing

an edge. A similar discussion is made in [Narayanswam 95] about the consistent

83

C

A

F

Figure 5.3: A filled polygon where extreme pixels of spans represented by solid circles
are chosen following some constrains to ensure that all pixels lie inside the polygon
and the the ownership of bouidary pixels of two polygons sharing an edge is mutually
exclusive.

rule for making ownership of boundary pixels mutually exclusive between adjacent

triangles when they are rendered.

The computation of extreme pixels can be performed in a variety of ways. In

the most inefficient scheme, the x intersections of an edge with the scan lines are

calculated incrementally using floating point arithmetic then rounding the result up

or down to integers to yield left or right extreme pixels. Fixed point arithmetic can

improve the efficiency in the calculation of the x intersections provided sufficient bits

of precision are maintained so that the error accumulation is negligible. An integer

algorithm for computing the extreme pixels for a left edge is given in [Foley 90]. The

84

algorithm is implemented by a procedure named LeftEdgeScan. The x intersection

is initialized to be xl, and the variables numerator and denominator are assigned

values xh - xi and yh - yj respectively before calculating the extreme pixels. The

algorithm uses the variable increment to keep track of successive additions of the

numerator until it "overflows" past the denominator; the variable increment is

then decremented by the denominator and x is incremented. This procedure can

only handle left edges whose slopes are greater then + 1. Right edges and other slopes

can be handled by similar, but somewhat trickier, arguments.

Let xi be the x intersection of a left edge with the i-th scan line which intersects

the edge. Then

and Xi should be rounded to

Xi=Xi+ Xh - Xl.

Yh - Yl

=

(5.1)

(5.2)

which is the abscissa of the left extreme pixel. The use of the ceiling function also

correctly obtains the left extreme if xi is itself integral. For a fractional x intersection

of a right edge x, the corresponding right extreme should be

If x is integral then the corresponding right extreme should be

= x — 1.

85

This means that the use of floor function to round intersections of scan lines with

right edges does not always yield correct abscissas of right extreme pixels. It is

obvious that left extreme pixels can be calculated by applying rounding-up integral

linear interpolation, and we will show that the computation of right extreme pixels

can also be transformed to rounding-up integral linear interpolation. This allows us

to develop a unified and efficient approach to the calculation of span extrema for the

scan-line algorithm for polygon filling.

5.3 An Integral Linear Interpolation Scan-Line Algorithm

We have seen that the abscissas of the left extreme pixels along a left edge of the

polygon are the results of rounding-up integral linear interpolation over the x-extent

of that left edge. Therefore, the recurrence formulas for single-step rounding-up inte-

gral linear interpolation in chapter 3 can be readily used to calculte the left extreme

pixels in the scan-line algorithm for filled polygons. Note that in the recurrence for-

mulas in chapter 3, we assume that a < b, and interpolation proceeds from a to b. If

we investigate the derivation of those recurrence formulas, we see that the formulas

are the same whether a < b or not. This means if a > b the formulas still work as

long as c and r are calculated correctly. For example, let a = 10, b = 0 and m = 3,

then c = L3 J —4, and r = —10 mod 3 = 2. Assume that the scan-line moves

upward one raster unit at a time, then the case of a> b in calculating left extreme

pixels happens if a left edge has a negative slope, i.e., a = xj > xh = b.

Let us now investigate the calculation of right extreme pixels. Let x be the x

intersection of an right edge with a scan-line. If x is fractional, then the x coordinate

86

of the right extreme pixel is

Lx] = 1x1- 1.

If x is integral the x coordinate of the right extreme pixel is similarly

x-1= 1x1 -1.

The right extreme pixels can therefore also be calculated using rounding-up integral

linear interpolation. After an integral x value for the scan-line intersection of 'a right

edge in the AET is obtained, it should be decremented by 1. It would seem that we

could subtract the x coordinate of the lower endpoint of a right edge by 1 when the

edge is inserted into the AET to save the subtraction each time the x value is taken

from the AET. But this will cause a right edge to be inserted in the wrong place

in the AET. The new data structure for an active edge is therefore illustrated by

Figure 5.2(b). Except for next which is a pointer to the next active edge, all fields

in the new data structure are integral. D is the discriminator whose sign determines

if x will be incremented by c or c + 1 to obtain the next x, and D itself will be

incremented by mel or Inc2 according to its current sign. When a new active edge

is inserted into the AET then c, D, Ind , and Ind are calculated. The following

calculations are first performed:

C = (xh - x) div (yh -

= (xh - x1) mod (yh -

87

The values of Incl and Inc2 are r and r - (yj). - Ui) according to Eq. (3.19), and the

initial value of D is r according to Eq. (3.20).

The following modifications in the inner loop of the scan-line algorithm are needed

to incorporate rounding-up integral linear interpolation into the algorithm:

1. When a new active edge is inserted into the AET, calculate c, D, Ind, and

Inc2 for this edge.

2. When pairs of x coordinates are taken from the the AET to fill the spans on

the scan-line y, the second x coordinate in each pair is decremented by one.

3. When y is incremented by one, update x for each edge in the AET by first test-

ing the sign of D: if D ≤ 0, x is incremented by c, and D is then incremented

by md; otherwise, x is incremented by c + 1, and D is then incremented by

Inc2.

Note that the lower endpoint of an edge is considered an intersection of the edge

with a scan-line in the scan-line algorithm. The rule of always decrementing the

integral right x intersection by one to yield a right extreme pixel causes a problem

when a right edge share its lower endpoint with a left edge and the corresponding

vertex of the polygon is convex. Referring to Figure 5.3, the left edge AB and the

right edge AF share the lower endpoint A. For the scan-line passing through A, the

left and right x intersections are both integral with the same value. This causes the

x coordinate of the right extreme pixel to be 1 less than the x coordinate of the left

extreme pixel by rule 4), which may cause the problem of no pixel being painted for

that span or one extra pixel to the left of vertex A being painted depending on how

88

a span is drawn. To avoid this problem we should check if the right extreme is to the

left of the left extreme for each span after we get them from the AET. This is not a

problem introduced by using the suggested new method of the rounding-up integral

linear interpolation however. The original scan-line algorithm would also have to

handle this special case. If two right edges share a vertex of the polygon, the pixel

centered at that vertex will not be painted because of rule 4), as is the case of vertex

F in Figure 5.3.

5.4 Summary

Incorporating rounding-up integral linear interpolation into scan-line algorithms for

the scan-conversion of filled polygons is suggested. Two advantages of the new

method to calculate the left and right extreme pixels of each span that lie inside the

polygon are obvious: 1) It uses integer arithmetic, and except for the integer division

operations needed for calculating the discriminator D and incremental amount c for

each edge when it is inserted into the AET, all the remaining operations are addition

and sign testing. 2) Unlike the method presented in [Foley 90], the new method

unifies the treatment of left edges and right edges of the polygon in the incremental

computation of left and right extreme pixels, i.e., we use rounding-up integral linear

interpolation for both left and right edges. A gain in speed can be expected since

the calculation of extreme pixels presents a significant portion of the computations

required in scan-line algorithms for filled polygons.

89

Chapter 6

Run-Length Slice Algorithms for the

Scan-Conversion of Ellipses

6.1 Introduction

The ellipse is an important computer graphics primitive. Fast and accurate gen-

eration of ellipses on raster displays has therefore received considerable research

attention. Several authors have proposed algorithms for the scan-conversion of

ellipses [Danielsson 70, Feilner 93, Foley 90, Kappel 85, Mcllroy 92, Pitteway 67,

Van Aken 84, Van Aken 85, Wu 89]. Most of the algorithms have been designed

for ellipses centered at integer coordinates with integer major and minor axes par-

allel to the coordinate axes since they are the more commonly required ellipses

in most graphics systems. Such ellipses are called canonical ellipses in this chap-

ter as opposed to ellipses in general position.. Most of the published algorithms

handle canonical ellipses in a manner similar to that used by Bresenham to scan-

convert circles [Bresenham 77], i.e., they are all based on the choice of individual

pixels in incremental steps. For example, the midpoint ellipse algorithm proposed in

[Van Aken 84] produces one pixel in each incremental step. The double-step ellipse

algorithm proposed in [Wu 89] generates two pixels in each incremental step. No

other techniques to speed up the scan-conversion of canonical ellipses seem to have

been reported. Algorithms to scan-convert ellipses in general position can be found

90

in [Feliner 93, Foley 90, Pitteway 67].

In this chapter we will investigate the application of the run-length slice method-

ology to the scan-conversion of canonical ellipses. This is not an essential restriction

since the methodology could also be used for general ellipses, however, it would re-

suit in a much lengthier and less transparent development. As has been pointed out

by Mcllroy [Mcllroy 92] many published ellipse algorithms have a flaw for certain

degenerate ellipses. We will therefore give careful treatment for the degenerate cases.

We will first formulate the problem and then delve into the design of run-length slice

algorithms for the scan-conversion of canonical ellipses. Complexity analyses are

then performed and numerical results are presented.

6.2 Basics of Scan-Converting Canonical Ellipses

We are concerned in this chpter with the scan-conversion of an ellipse in the stan-
t.

dard position described by the equation

2

(6.1)

where a, b are positive integers. The ellipse described in this equation is centered

at the origin with its major and minor axes coinciding with the coordinate axes.

Because of the four-way symmetry of a canonical ellipse, only the scan-conversion

of the first quadrant of the ellipse needs to be calculated. A canonical ellipse that

is not centered at the origin (but with axes parallel to the coordinate axes) can be

drawn by a simple coordinate transformation.

In the sequel we use the term move to denote the step from one pixel to the

91

(0, b)

Ci

(0 0) (a 0)

• Figure 6.1: The first quadrant of an ellipse is divided into two octants C1 and C2.
The black dot denotes the juncture of the two octants where the slope of the ellipse
is - 1. Stippled lines are mid-lines which partition the second octant ellipse arc into
segments. The last segment Sk contains the juncture. This segment also forms part
of the C1 octant and it is called the transition segment.

next. We also sometimes use compass directions to denote the direction of a move.

In those cases the positive y-axis is north and the positive x-axis is east.

As has been stated in chapter 2, there are generally three different schemes for

choosing pixels optimally for the scan-conversion of a 2-D curve. In this thesis we

choose the grid-intersection method, which, we will see, is suitable for the design of

run-length slice algorithms for the scan-conversion of ellipses.

Most published algorithms for drawing canonical ellipses split the arc in the first

quadrant into two octants (Figure. 6.1). The juncture of the octants is defined to be

the point where the slope of the ellipse is — 1. The slope of the ellipse is bounded to

92

the range [—oo, -1] in the first octant C1 and to [- 1, Olin the second octant C2

The choice of approximating grid points can be simplified because of the slope

bounds of the octants and the monotonicity of the ellipse in these two octants.

The following facts are obvious: If C1 intersects with a horizontal grid line and

then a vertical grid line, the horizontal displacement is always less than the vertical

displacement with respect to the intersection of the two grid lines, and vice versa.

If C2 intersects with a vertical grid line and then a horizontal grid line, the vertical

displacement is always less than the horizontal displacement with respect to the

intersection of the two grid lines, and vice versa. Recall that in chapter 2 we used

the abbreviations MUD and MVD to denote minimum-horizontal-displacement and

minimum-vertical-displacement respectively. The above observations allow us to

only consider MVD points for C2 and only MHD points for C1 except that a special

treatment has to be performed near the juncture. If, starting from (0, b) and moving

along C2 in a clockwise direction, the last grid line crossed by C2 is a horizontal grid

line, and this crossing causes the selection of an MHD point (Figure 6.2 (a)), then

this grid point lies to the northeast of the juncture and is called an outside point in

[Mcllroy 92]. We will call it a transition point here. Similarly, starting from (a, 0)

and moving along C1 in a counter-clockwise direction, a transition point may be an

MVD point caused by the last intersection of C1 with a vertical grid line (Figure 6.2

(b)). There may be situations where a transition point is both a MVD point and

a MHD point (Figure 6.2 (c)). The transition point does not necessarily exist in a

digitized ellipse, and there is only one transition point in the first quadrant if it does

exist. The following fact is stated in [Mcllroy 92] as a lemma: Any MHD point for

the second octant is also an MVD point for that octant, unless the approximating

93

(a) (b) (c)

Figure 6.2: Three situations that cause a transition point (denoted by a hatched
circle). The slope of the ellipse is —1 at the black dot.

point is a transition (outside) point. A similar statement, with the roles of horizontal

and vertical interchanged, holds for the first octant.

6.3 Run-Length Slice Ellipse Algorithm

The run-length slice ellipse algorithm calculates horizontal pixel runs in the second

octant and- vertical pixel runs in the first octant. If there exists a transition point, it

will be caught either as a pixel in a horizontal run, or as a pixel in a vertical run, as

will be illustrated in the design of the algorithm. We will first discuss the calculation

of horizontal pixel runs and vertical pixel runs, then we discuss the joint of the two

octants.

6.3.1 Run-Length Calculation

The run-length calculations for the two octants of the elliptical arc in the first quad-

rant is based on the discussion on the scan-conversion of a monotonic, x-dominant

or y-dominant 2-D curve segment in chapter 2. A set of mid-lines i: y = b—i+O.5,

i = 1,2, . , k are imposed on the graph of the ellipse midway between the horizontal

94

grid lines. The i-th mid-line intersects with the second octant ellipse arc at (xi, yi)

where Yi = b - i + 0.5 (see Figure 1.1). Let (x0, yo) = (0, b). The mid-lines subdivide

the ellipse arc into a series of arc segments, S, S2, , Sk, where segment Sistarts

from (Xi_i,yi_i) and ends at (Xi,yi). The segments 52,"•, Sk-I are unit segments

according to the discussion in chapter 2. Although Si is not a unit segment because

one of its endpoints is not the intersection of the elliptical arc with a midline, its

digitized image is obviously a horizontal run of pixels with ordinate b. The juncture

of the first and the second octant falls in the last segment Sk. This segment is called

the transition segment. Because S2 through 5k1 are unit segments where the ellipse

is x-dominant and monotonically decreasing, their digitized images are horizontal

pixel runs with abscissa starting from Lx_ii + 1 to [xi], i = 2, , k - 1, according

to the discussion in chapter 2. The digitized image of Si is also a horizontal run

of pixels with abscissa starting from 0 to Lxii. We will delay the discussion of the

transition segment until the joint of the two octants is discussed.

Letting thi = Lxj and 'i = b - i + 1, it follows that the i-tb horizontal run

starts from (th_ + 1, iii) and ends at (ii, i). The length of the i-tb horizontal run

is therefore d - th. 1 for i > 1. We show that the calculation of (i > 1) can be

performed in an incremental manner.

From Eq. (1.1) we have

and

b2x=a2b2—a2(b—i+0.5)2,

b2x 1 = a2b2 - a 2(b - i - 0.5)2.

95

(1.2)

(1.3)

Subtracting (6.2) from (6.3) and rearranging yields

b2x 1 = b2x + 2a 2b - 2a2i. (6.4)

From Eq. (6.2) we have b2x = a2b - -. Let X = b2x, it follows from Eq. (6.4)

that

AXj = - Xi = 2ab - 2a 2i.

We therefore have the recurrence formulas

X1 (6.5)

Xj. 1 = X + AXj = X + 2a2b - 2a 2i. (6.6)

Hence, instead of calculating x directly, we calculate Xi in the iterations. To obtain

ii without invoking the square root function, forward differencing is employed. Sup-

pose that ii-' = L\/Xi_l/b2] has been evaluated, and the variables x and X hold

the value of and b2 _1 respectively. Noting the equation

b2(x + 1)2 - b2x2 = 2b2x + b2,

we obtain thj by repeating the iteration

X=X+2b2x+b2

x=x+1

96

until X ≥ X. In the case of X = X, the value of x is th, otherwise we decrease x

by one to obtain th. The process of searching for rij can be improved further. Let

the value of variables D and x be X - b2th_1 and th 1 respectively before entering

the repetitive loop, then after performing the following iterations, the value of x will

reach j. We use the pseudo code to describe the algorithm segment and obtain:

while (D >= 2b 2X+ b2) {

D = D - 2b2x - b2;

x = x + 1;

Setting Deltal = 20th,_, + b2 before entering the loop, we can further speed up the

above process by using the following code segment:

while (D >= Deltal) {

D = D - Deltal;

Deltal = Deltal + 2b2;

x = x + 1;

}

Noting that th0 = 0, we have the following initial values:

Deltal =

D = X1 = a 2 b -

97

DeltaX = /X1 = 2a2 - 2a2.

Since we always test if D is greater than or equal to a positive integer, it can be

truncated without affecting the result. We therefore assign the initial value of D to

D = a 2 b - a2/4,

where the operator / represents integer division which operates on two integers and

gives the integer part of the quotient as result. This is, for example, an operation used

in the C programming language for integers. We name the process for calculating all

the horizontal runs the H-Pass. The condition for terminating the H-Pass process

will be discussed in the sequel. The pseudo code below implements the H-Pass

leaving the termination condition unspecified.

ALGORITHM 6.1: H-Pass

y =

X = XO = 0;

D = a * a * b- a * a/4;

Deltal= b* b;

DeltaX-2*a*a*b-2*a*a;

repeat {

while (D >= Deltal) {

D = D - Deltal;

Deltal = Deltal + 2 * b *

X = a; + 1;

98

}

HorizontalRun(xO, x, y);

Y = Y— 1;

}

xO = x + 1;

D = D + DeltaX;

DeltaX = DeltaX - 2 * a * a;

until (terminating condition is true);

Symmetrically, we use a set of vertical mid-lines l: x = a—i+O.5, i = 1, , k'

to intersect the first quadrant of the ellipse to yield segments S, , Sj, such that

the juncture lies in segment Si,. The calculation of the vertical pixel runs of C1 can

be done in a similar manner: exchange the role of a and b, as well as x and y in

Algorithm H-Pass. We call this process the V-Pass. The pseudo code is again given

without a termination condition.

ALGORITHM 6.2: V-Pass

x = a;

Y = yO = 0;

D=b*b*a—b*b/4;

Deltal = b * b;

DeltaY = 2* b* b*a — 2* b* b;

repeat {

while (D >= Deltal) {

D = D - Deltal;

99

Delia1 = Deltal + 2 * a * a;

Y = Y+ 1;

}

VerticalRun(yO, y,

}

X = X— 1;

YO = y + 1;

D = D + DeltaY;

DeltaY = DeltaY - 2 * b *

until (terminating condition is true);

The next step is to determine the termination conditions for both the H-Pass

and the V-Pass and to make sure that the two octants are connected correctly. If we

begin with the H-Pass, then its termination condition determines when we switch to

the V-Pass. The termination condition of the V-Pass determines when the algorithm

ends. To make the correct connection between the two parts of the algorithm, we

first discuss the possible pixel configurations at the transition of two octants.

6.3.2 Pixel Configurations at Octant Transition

The first quadrant is traversed in a counter-clockwise direction starting from point

(0, b) of the second octant C2. Let P be the last MVD point of C2, T be the transition

point, and Q be the first MUD point of C1 immediately following T. Using subscripts

100

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Figure 6.3: Configurations for F, T, and Q. (a), (d), (g), (h), and (i) are impossible.

x and y to denote the x and y coordinates of a point respectively, we have

PX≤T≤Q,

FY≥TY≥QV-

According to these inequalities, there are nine possible configurations for F, T, and

Q as illustrated in Figure 6.3 (a) through (i). Not all the configurations in Figure 6.3

are possible for digitized ellipses. We first prove the following lemmas.

Lemma 2 Q and T cannot lie on the same horizontal grid line.

101

Proof: We prove this by contradiction. Assume that Q and T lie on the same

horizontal grid line, then

1. T cannot be a MHD point, because the first quadrant ellipse can only intersect

a horizontal grid line once and therefore there is only one MHD point on each

horizontal grid line.

2. T cannot be a MVD point either. If it is, then it is the map of the intersection

point of C1 with a vertical grid line, and thus the intersection point lies no

farther than 0.5 above grid point T (Figure 6.4). This implies from the mean

value theorem that there exists a point on C1 such that the slope of the ellipse

at this point is greater than — 1.

Since T is a transition point, it must be either a MVD point, or a MHD point, or

both. The resulting contradiction eliminates the possibility of Q and T lying on the

same horizontal grid line. 0

Lemma 3 P and T cannot lie on the same vertical grid line.

Proof: If P and T lie on the same vertical grid line, then by rotating the ellipse

90 degrees around the origin we get an ellipse such that Q and T lie on the same

horizontal grid line, a contradiction to lemma 2. 0

Lemma 2 and 3 lead directly to the following theorem:

Theorem 1 The transition pixel configurations (a), (d), (g), (h), and (i) are im-

possible.

102

Figure 6.4: Impossible configurations for Q and T. The small dot on the curve stands
for the juncture of C1 and C2.

(a) (b) (c)

Figure 6.5: Configurations for P and Q without the transition point T.

The four transition configurations (b), (c), (e), and (f) are exemplified in the

inventory of configurations at the juncture given by Mcllroy [Mcllroy 92]. Configura-

tion (b) corresponds to configuration 5 in the inventory; configuration (c) corresponds

to configuration 7, 6, and 10; configuration (e) corresponds to configuration 1; and

configuration (f) corresponds to configuration 2.

If there is no transition point T, the point P of C2 and the point Q of C1 can

have three configurations as illustrated in Figure 6.5.

103

6.3.3 Condition of Octant Change

The slope of an ellipse at a point (x, y) in the first quadrant is given by

dy b2x

dx a2y

In the first octant the slope is less than - 1, and therefore b2x > a2y; in the second

octant the slope is greater than - 1, and therefore b2x < a2y. The slope can be

approximated by calculating b2x and a2y at the grid points approximating the ellipse

as was suggested by Kappel [Kappel 85]. Suppose we first do the H-Pass. If at a

tentative beginning of a new horizontal run the condition b2x < a2y is false, then

we assume that the H-Pass is completed. A problem will occur if b2x > a2y at a

MVD point. This may happen when the y coordinate of the intersection point of C2

with a vertical grid line is rounded down to the nearest integer, i.e., there may be an

integral x > 0 and a real y> 0 satisfying the following conditions simultaneously:

= a262,

b 2 < a2y,

> a2y+0.5j.

If this happens then the H-Pass will be terminated prematurely. A similar problem

may occur in the V-Pass such that the V-Pass, and hence the whole algorithm, is

terminated prematurely. Let £ be the line from the origin to the juncture of C1 and

C2. If the first pixel in a horizontal run, which we call the horizontal leading pixel,

lies below £, then the whole run will be lost, as will the subsequent horizontal runs

104

Figure 6.6: "Tails" in a digitized ellipse.

if there are any. One situation that evidently causes the loss of a horizontal run is

that the y coordinate of a leading pixel is zero. In this scenario, all pixels in this

horizontal run lie below line C. These pixels, plus one pixel at (b, 0), forms a "tail"

in the digitized first quadrant ellipse (Figure 6.6). Mcllroy has proved that the tail

happens if and only if a > 80 [Mcllroy 92]. Symmetrically, we term the first pixel

in a vertical run (the pixel with the least ordinate in the vertical run) in the first

octant the vertical leading pixel. If a vertical leading pixel lies above £, the whole

run will be lost, and so do the subsequent vertical runs if there are any. One can

easily see that a tail appears on the y-axis if and only if b ≥ 8a2 by symmetry.

It is obvious that if there is neither a horizontal leading pixel lying below £, nor

a vertical leading pixel lying above £, then the H-Pass will capture all the horizontal

runs of C2 and the V-Pass will capture all the vertical runs of C1. We will prove

that if there is a transition point, then it will be captured by either the H-Pass or

the V-Pass, or by both. In the following theorem, F, T, and Q refer to the pixels in

Figure 6.3 (b), (c), (e) and (f).

Theorem 2 If pixels P and Q are captured by the H-Pass and V-Pass respectively,

then the transition point T will also be captured by either the H-Pass, or the V-Pass,

or both.

Proof: We prove that for each of the four possible transition configurations with

105

transition point T, the transition point will be captured.

1. In Figure 6.3 (b), T must be a MVD point of C1, otherwise there will be a

point on C1 such that the slope of the ellipse at that point is greater than — 1.

Therefore T will be captured by the H-Pass as the last pixel in the digitized

image of Sk.

2. In Figure 6.3 (c), T must be either a MVD point of C1, or a MHD point of C2,

or both. If T is a MVD point of C1, then it will be captured by the H-Pass as

the last pixel in the digitized image of Sk. If T is a MHD point of C2, then it

can be captured by the V-Pass as the last pixel in the digitized image of Si,.

3. In Figure 6.3 (e), T must be both a MVD point of C1 and a MHD point of C2.

If T is a MVD point of C1, then C1 must cross the grid line x = T below T,

otherwise C1 crosses the grid line y = T before grid line x = T, which makes

T a MHD point of C1, implying that T is not a transition point. Therefore C2

must cross the grid line y = T to the left of T and no farther than 0.5 from T,

otherwise there exists a point on C2 such that the slope of the ellipse at that

point is less than — 1. The above argument establishes that T is also a MHD

point of C2. Similarly we can prove that if T is a MHD point of C2, it is also a

MVD point of C1. Therefore T must be both a MVD point of C1 and a MHD

point of C2. Since T lies in a different row from P and in a different column

from Q, it will be captured by either the H-Pass or the V-pass depending on

which side of £ it lies.

4. In Figure 6.3 (f), T must be a MHD point of C2, otherwise there exists a point

106

on C2 such that the slope of the ellipse at that point is less than — 1. Therefore

T will be captured by the V-Pass as the last pixel in the digitized image of Si,.

If there is no transition point, then P will be captured by the H-Pass and Q will

be captured by the V-Pass. Referring to Figure 6.5, Q may also be captured by the

H-Pass in Figure 6.5 (b) if C1 crosses the vertical grid line x = Q less than 0.5 away

from Q; and P may also be captured by the V-Pass in Figure 6.5(c) if C2 crosses the

horizontal grid line y = P. less than 0.5 away from P. We will present the method

for avoiding setting pixels P or Q twice in the sequel. 0

6.3.4 Run-Length Slice Algorithm

The run-length slice ellipse algorithm combines the H-Pass and the V-Pass. Suppose

that the H-Pass is performed first. The H-Pass keeps track of the values of b 2

and a2y, and compares them at each tentative horizontal leading pixel to determine

if the H-Pass should terminate. The values of b 2 x and a2y can be calculated in an

incremental manner. At the leading pixel of the first horizontal run, we have b 2 = 0,

and a2y = a2b. To obtain the values of b 2 x and a2y at the subsequent horizontal

leading pixels in the H-Pass, the value of b 2 is initialized to be b2 and incremented

by b2 with each horizontal move to the next pixel so that when a horizontal run ends

which causes y to be decremented by 1 and a2y to be decremented by a2, the new

x, y values are the coordinates of the 'next horizontal leading pixel, and the values of

b 2 x and a2y can be used to test if the H-Pass should continue. Let x' be the abscissa

of the last pixel in the last horizontal run. Then we can calculate vertical runs from

b to x'+ 1. The termination condition for the V-Pass is therefore that the abscissa

of a vertical run reaches x' + 1. This saves time in the V-Pass for keeping track

107

of the values of b 2 x and a2y, and it also avoids a pixel being drawn twice. One or

more pixels will be missing if there is a pixel or pixels immediately below the last

pixel of the last horizontal run. This may for example happen in configuration (c)

in Figure 6.3, where pixel T is captured by the H-Pass as the last horizontal pixel

in the last horizontal run. Pixel Q, immediately below T, will be missing. Another

scenario that causes missing pixels is the existence of a vertical "tail". In this case,

if the tail is m pixels long, then n - 1 pixels will be missing. To avoid missing pixels,

we can check the last pixel of the last horizontal run and the last pixel of the last

vertical run. If the difference of the ordinates of the two pixels is greater than one,

we insert one or more pixels to fill the gap.

As has been pointed out, the H-Pass will terminate prematurely if a horizontal

leading pixel lies below C, i.e., if b 2 ≥ a 2 y at that point. We know that one condition

for this to happen is that tails exist, i.e., a > 8b2. If this is the case, one horizontal

leading pixel will lie on the x-axis, which can be easily detected, and the algorithm

can then switch to draw the tails. It is not known if there are other conditions under

which the inequality b2x > a2y holds at a horizontal leading pixel. But according to

our extensive test with a and b varying from 1 to 1024, no such situation happens

except when a > 80.

Caution must also be given to test if a vertical "tail" exists. In that case x' must

be 0.

The following is a complete run-length slice ellipse algorithm combining the H-

Pass and the V-pass and giving the termination conditions for both the H-Pass and

the V-Pass. The H-Pass is performed first. The operators << and >> used in

the algorithm represents binary left and right shift respectively to implement the

108

multiplication and the division by a power of two for the purpose of efficiency.

ALGORITHM 6.3: Run-length slice ellipse algorithm 1 (RLS-Ellipsel)

y =

x = xO = 0;

aa=a*a; bb=b*b; aab = aa*b;

aa2 = (aa << 1); bb2 = (bb << 1);

ci = bb; c2 = aab;

D = aab - aa >> 2;

Deltal = bb;

DeltaX = (aab - aa) << 1;

repeat {

while (D >= Deltal) {

D = D - Deltal;

Deltal = Deltal + bb2;

a; = a; + 1;

ci = ci + bb;

}

HorizontalRun(x0, a;,

Y = Y— 1;

c2 = c2 - aa;

xO = a; + 1;

D=D+DeltaX;

DeltaX = DeltaX - aa2;

109

} until (ci >= c2);

if (y == 0) {

HorizoritalRun(xO, a, 0);

return;

}

yl = 11; / Saves the ordinate of the last pixel in the last horizontal run

x = a;

y = yO = 0;

D=bba—bb>>2;

Deltal = aa;

DeUaY = (bba - bb) << 1;

while (x >= xO) {

while (D >= Deltal) {

D = D - Deltal;

Deltal = Deltal + aa2;

y = y + 1;

}

VerticalRun(yO, y, x);

X = x —1;

yO = y + 1;

D = D + DltaY;

110

DeltaY = DeltaY - bb2;

}

if (yO < yl) VerticalRun(yO,yi -

if (x == 0) VerticalRun(y0, b - 1, 0);

6.4 Further Improvement

The run-length slice ellipse algorithm given in section 3 can be improved by speeding

up the calculation of pixel runs. Consider an ellipse represented by Eq. (6.1). If a> b,

then it has longer horizontal pixel runs than vertical pixel runs. This becomes more

apparent as the ratio of a to b increases. In the extreme case, "tails" appear on the

x-axis as in Figure 6.6, and there is only one vertical run of length one obtained in

the V-Pass. Since we use forward differencing to calculate the run-lengths, it follows

that longer incremental step can be used for those long runs. To avoid complicating

the algorithm too much, a simple scheme can be adopted to calculate horizontal runs

in the H-Pass: use double-step forward differencing for the the part where the run

lengths are at least two and then switch to single-step forward differencing for the

part where the run lengths are at most two. Let the point P(cc, Y) on C2 satisfy

2b 2X= a2y.

Point P partitions C2 into two segments C21 and C22. Each point (x, y) on C21 ,

satisfies

2b 2X<a2y,

ill

and each point (x, y) on C22 satisfies

2b2x > ay.

The following theorems give the hint of how to switch from double-step forward

differencing to single-step forward differencing in the H-Pass.

Theorem 3 If the segment Si lies entirely in C21 then the digitized image of Si is a

horizontal run of pixels of length at least two.

Proof: The explicit form of the equation for the first quadrant ellipse is

y = f(x) = /a2 - x2.

The segment S, i = 1,.. , k - 1 begins at (x..1, yi..i) and ends at (xi, y). For

1 the length of the i-th run is 'yj = Lxd - [x 1]. The length of the first run

15 'y1 = Lxii + 1 > Lxi] - Lxo] since x0 = 0. If segment Si lies entirely in C21 then

according to the mean value theorem, there exists , x_1 < 6 < xi such that

Yi - Yi-i = f'()(x -

where If'(e)I < 1/2. Noting that jyj - y-i I = 1, we have

Xi - x..i = Ix - x_iI = jyj
- y-iI/If'()J > 21y - = 2.

112

that

It follows from the inequalities

[x_11 ≤ xi-1,

xj - 1 < Lxd

LxJ - Lx_iJ > x - 1 - > 1.

[xJ - x_j ≥ 2.

Therefore yj ≥ 2 for i = 1,.. , k - 1. 0

i.e.,

Theorem 4 If the segment Si lies entirely in C22 then it follows that the digitized

image of Siis a horizontal run of pixels of length at most two.

Proof: The proof is similar to the proof of Theorem 3. In this case we have

that

Lxd - Lx-ii < x - x_1 + 1 < 3,

- [xi] - [xj j <2. 0

Recall that in ALGORITHM 6.3 H-Pass keeps track of the values of b2x and

a2y at each pixel, and compares them at each tentative horizontal leading pixel to

determine if the H-Pass should terminate. We can divide the H-Pass into two phases.

In the first phase, we calculate the run lengths using double-step forward differencing.

We check if 2b 2X> a2y at each horizontal leading pixel. If the run length is odd,

we must advance one single step after we have made enough double-step advances.

If the condition 2b 2X> a2y is true at a horizontal leading pixel, we switch to the

second phase to calculate the run lengths using single-step forward differencing while

checking if b2x < a2y. If this condition is true we terminate the H-Pass and switch to

the V-Pass. In ALGORITHM 6.3 D is decremented by Deltal in the inner loop if it

is still greater than or equal to Deltal, and Deltal is then incremented by 20. For

double-step forward differencing, we use the variable Delta2. D is decremented by

Delta2 in the inner loop if it is still greater than or equal to Delta2, and Delta2 is

then incremented by 8b2. The initial value of Delta2 is V. When we switch to the

second phase, D is decremented by Deltal in the inner loop as it is in ALGORITHM

6.3. The value of Deltal before entering the second phase can be easily obtained by

investigating the value of variable ci which holds the value of b2x for each leading

pixel generated so far. On entering the second phase, the value of ci is Vthi where

thi is the x-coordinate of the leading pixel of the next horizontal run. Note that the

114

value of Deltal on entering the second phase is 2b2 _1 + b2 where j_i = - 1.

The value of Deltal on entering the second phase is therefore 2c1 - b2. The value

of Deltal is also required in the first phase after enough double-step advances have

been made when we want to determine if an extra single-step advance is necessary

to form a run of odd length. Below is the adaptive forward differencing version of

the H-Pass.

ALGORITHM 6.4: H-Pass2

Y =

X = xO = 0;

cl=b*b; c2=a*a*b;

D = a * a * b- a * a/4;

Delta2 = 4*b*b;

.DeltaX=2*a*a*b-2*a*a;

repeat {

while (D >= Delta2) {

D = D - Delta2;

Delta2 = Delta2 + 8 * b *

x = x + 2;

ci = ci + 2 * b *

}

Deltal = 2 * ci - b *

if (D >= Deltal) {

D = D - Deltal;

115

Dlta2 = Delta2 + 4 * b *

x = x + 1;

ci = ci + b *

}

}

HorizontalRun(xO, x, y);

y = y — 1;

xO=x+1;

c2 = c2 - a * a;

D = D + DeltaX;

DeltaX = DeltaX - 2 * a * a;

until (2*cl >= c2);

Deltai = 2 * ci - b *

repeat {

while (D >= Deltai) {

D = D - Deltai;

Deltai = Deltai + 2 * b * b;

x = a + 1;

ci = ci + b *

}

HorizontalRun(xO, x, y);

y = y — 1;

116

}

c2 = c2 - a * a;

D=D+DeltaX;

DeltaX = DeltaX - 2 * a * a;

until (el >= c2);

Because of the symmetry of the H-Pass and the V-Pass, the derivation of the

adaptive forward differencing version of the V-Pass is quite straightforward. This

results a new run-length slice ellipse scan-conversion algorithm. The new algorithm is

the the result of combining the the H-Pass2 and the V-Pass2 with minor modifications

in the V-Pass regarding the termination condition.

ALGORITHM 6.5: Run-length slice ellipse algorithm 2 (RLS-Ellipse2)

y =

x = xO = 0;

aa=a*a; bb=b*b; aab =aa*b; bba=bb*a

aa2=aa<<1; aa4=aa2<<1; aa8=aa4<<1;

bb2 = bb << 1; bb4 = bb2 << 1; bb8 = bb4 << 1;

cl = bb; c2 = aab;

D = aab —aa4;

Delta2 = bb4;

DeltaX = (aab - aa) << 1;

L1: repeat {

while (D >= Delta2) {

117

L2:

£3:

}

D = D - Delta2;

Delta2 = Delta2 + bb8;

x = x + 2;

ci = ci + bb2;

}

Deltal = (Cl << 1) - bb;

if (D >= Deltal) {

D = D - Deltal;

Delta2 = Delta2 + bb4;

x = x + 1;

ci = ci + bb;

}
HorizontalRun(xO, x, y);

y = y — 1;

xO = x + 1;

= c2 - aa;

D=D+DeliaX;

DelaX = DeliaX - aa2;

until ((ci << 1) < c2);

Deltal = (ci << i) - bb;

£4: repeat {

while (D >= Deltal) {

118

L.5:

}

D = D - Deltai;

Deltai = Deltai + bb2;

x = a; + 1;

ci = Cl + bb;

}

HorizontalRun(xO, a;,

y = y — 1;

sO = a; + 1;

c2 = c2 - aa;

D=D+DeltaX;

DeltaX = DeltaX - aa2;

until (ci >= c2);

if (y==O) {

fforizontalRuri(xO, a, 0);

return;

}

yi = y;

y=yO=O; x=a;

ci = bba; c2 = aa;

D = bba — bb4;

Delta2 = aa4;

DeltaY = (bba - bb) << i;

119

L6: repeat

£7:

£3:

}

{
while (D >= Delta2) {

D = D - Delta2;

Delta2 = Delta2 + aa8;

y = y + 2;

c2 = c2 + aa2;

}

Deltal = (c2 << 1) - aa;

if (D >= Deltal) {

D = D - dlta1;

Delta2 = Delta2 + aa4;

y = y + 1;

c2 = c2 + aa;

}

VericalRun(yO, y,

x = x — 1;

yO = y + 1;

ci = ci - bb;

D = D+DeltaY;

DeltaY = DeltaY - bb2;

until ((c2 << 1) >= ci);

Deltal = (c2 << 1) - aa;

120

Lg: while (a; >= x0) {

while (D >= Deltal) {

= D - Deltal;

Deltal Deltal + aa2;

Y = y + 1;

}

VerticalRun(y0, y, a;);

X = a; — 1;

vU = Y+ 1;

D=D+DeltaY;

DeltaY = De1taY - bb2;

}

if (yl > i0) VerticalRun(yO, y - 1, a;);

if (a; == 0) VerticalRun(y0, b - 1,0);

6.5 Complexity Analysis and Numerical Results

In this section we perform complexity analyses for ALGORITHM 6.5 (RLS-Ellipse2)

and the well-known midpoint ellipse algorithm of Van Aken [Van Aken 84] because of

its simplicity. Another comparison choice could have been the algorithm by Mcllroy

[Mcllroy 92] which works in all cases, but is much more complicated. The result of

the theoretical analyses will then be tested by comparing the actual running times

121

(a)

H1

Wi

112

(b)
W2

Figure 6.7: Counting arithmetic operations for algorithm RLS-Ellipse2 and the mid-
point ellipse algorithm.

of the algorithms.

Referring to ALGORITHM 6.5, we count only those operations in the iteration

loops which form the main body of the algorithm, i.e., the repeat loop labeled L1,

L4 which draws the second octant with horizontal runs, the repeat loop labeled

L6 and the while loop labeled L9 which draw the first octant with vertical runs.

Referring to Figure 6.7(a), T is the juncture of the first and the second octant, T1

is on the first octant elliptical arc whose coordinates satisfy b2x = 2a2y, and 2'2 is

on the second octant elliptical arc whose coordinates satisfy 2b2x = a2y. A trivial

geometric computation gives the coordinates of T, T1 and T2 as follows:

T: a=
a2

a2+b2' Y Va2+b2'

2a2

4a2 + b2' = 4a2 + b2'

122

T2:

We thus have in Figure 6.7(a):

hi = b

Wi =

h2 =

W2 =

h3 =

=

= a

a2 2b2

a2+4b2' Y= a+4b

2b2

\/a2 + 4b2'

a2

/a2 +4b2'

2b2 b2

\/a2 + 4b2 V/a2 + b2

a2 a2

\/a2 + b2

b2

/a2 + b2

2a2

/4a2 + b2

b2

\/4a2 + b2'

2a2

V'a2 + 4b2'

/4a2 + b2'

a2
,\/a2+ b2'

/4a2 + b2

The number of arithmetic operations in loops labeled L, L4, L6 and L9 respectively

can be approximated in terms of hi and w, i = 1,2,3,4. Letting Naj, Nj and

i = 1,4, 6,9, denote the number of additions, shifts and comparisons in Li loop,

i = 17 4) 6, 9, respectively, we can derive formulas to approximate them as follows:

1. The repeat loop labeled L1 is executed about h times. It contains six addi-

tions, two shifts and two comparisons excluding operations in the conditionally

executed bodies of statements labeled L2 and L3. The number of times that

the body of the nested while loop labeled L2 is executed varies each time this

123

statement is executed, however, after the outmost repeat loop (L1 loop) is

finished, the total number of times this while loop (L2 loop) is executed is ap-

proximately (w1 - h1/2)/2, assuming that the numbers of runs of even length

and odd length are on the average equal. There are four additions and one

comparison in this loop. The compound statement in the if statement labeled

L3 in the body of L1 loop involves four additions. These operations are exe-

cuted when the length of a run is odd. Again, these operations are executed

h1/2 times assuming that on the average half of the runs have odd lengths. We

therefore have

Nai = 6h1 + 4(w1 - h1) + 4 7h1 + 2w1,

N31 = 2h1,

N 1 = 2h1 + - = + w1

2. The repeat loop labeled L4 is executed about h2 times. It contains five addi-

tions and one comparison excluding operations in the conditionally executed

bodies of statements labeled L5. The number of times that the body of the

nested while loop labeled L5 is executed varies each time this statement is ex-

ecuted, however, after the outmost repeat loop (L4 loop) is finished, the total

number of times this while loop (L5 loop) is executed is approximately w2.

Considering that there are four additions and one comparison in this while

loop, the total numbers of arithmetic operations performed when the L4 loop

124

is executed are therefore

Na4 = 4w2+5h2,

N34 = 0,

N 4 = W2 + h2-

3. In a similar manner we have the following formulas giving the numbers arith-

metic operations when the loops labeled L6 and L9 are executed:

Na6 = 2h4+7 4,

N36 = 2w4,

N6 = I h4 + 7W4,

Na9 = 3h3+4w3,

N39 = 0,

N9 = h3+w3.

The total numbers of arithmetic operations when the above four loops are executed

are therefore

Na = 7h1 + 5h2+3h3+2h4+2w1+4w2+4w3+7w4,

N3 = 2h1+2w4,

125

Nr = hi+h2+h3+h4+ 1wi+w2+w3+w4.

To compare ALGORITHM 6.5 with the well-known midpoint ellipse algorithm

by Van Aken, we list the midpoint algorithm below. Since it was originally presented

in [Van Aken 85] using PASCAL-like pseudo code, we rewrote it using C-like pseudo

code.

ALGORITHM 6.6: Midpoint ellipse algorithm by Van Aken

x=a; y=O;

tl=a*a; t2=tl<<1; t3=t2<<1;

4=b*b; t5=t4<<1; t6=t5<<1;

7=a*t5; t8=17<<1; t9=O;

dl=t2—t7+t4;

d2=fl—t8+t5;

L1: while (d2 < 0) {

StPixel(x, y);

i=y+l;

t9 =t9+t3;

if (di <0) {

£2: dl=dl+t9+t2;

d2=d2+t9;

}

else {

126

L3:

}

x = X— 1;

18 = t8 - 16;

dl= dl— t8+19+12;

d2=d2-18+15+19;

}

£4: repeat {

Set .Pixel(x, y);

x = x — 1;

t8 = 18 - 16;

if (d2 < O){

t9 = 19+t3;

d2 = d2— t8+15+19;

£6:

}

}

else

d2 = d2+t5-t8;

until (x < 0);

We now count the arithmetic operations for the midpoint ellipse algorithm. Again

we count only those operations in the iteration loops which constitute the main body

of the algorithm, i.e., the while loop labeled L, which draws the first octant elliptical

arc, and the repeat loop labeled £4 which draws the second octant elliptical arc.

127

w1 =
\/a2 + b2'

b2

Referring to Figure 6.7(b), T is the juncture of the first and the second octant. We

have

91 = b \/a2+b2

a2

H2 =
\/a2 + b2'

a2
W2 = a

V'a2 + b2

Denote by N 1, Xti, i = 1, 4, the number of additions and the number of sign tests

when loops L1 and L4 are executed. We have the following derivations.

1. The while loop labeled L1 is executed about H2 times. It contains two ad-

ditions and two sign tests, excluding operations in the conditionally executed

if ... else statement. The compound statement labeled L2 is executed when

condition d1 < 0 is true, and the compound statement labeled L3 is executed

when condition d1 < 0 is false. Note that the digitized first octant elliptical

are consists of vertical pixel runs, and there are a total of H2 pixels in these

vertical runs. Condition d1 < 0 being false corresponds to a pixel move in

northwest direction, i.e., the beginning of a new vertical run. Since there are

approximately W2 vertical runs in the first octant, the compound statement

labeled L3, which involves eight additions, is therefore executed approximately

W2 times, and thus the compound statement labeled L2, which involves three

additions, is executed approximately H2 - W2 times. The total numbers of

128

arithmetic operations when L1 the loop is executed are therefore

N 1

N'1

= 2H2+3(112—W2)+8W2=5H2+5W2,

= 2112.

2. The repeat loop labeled L4 is executed about W1 times. It contains two

additions and two sign tests, excluding operations in the conditionally executed

compound statements in the if ... else statement. The compound statement

labeled L is executed when condition d2< 0 is true, and the statement labeled

L6 is executed when condition d2 < 0 is false. Note that the digitized second

octant elliptical arc consists of horizontal pixel runs, and there are a total of

W1 pixels in the horizontal runs. Condition d2< 0 being true corresponds to a

pixel move in northwest direction, i.e., the beginning of a new horizontal pixel

run. Since there are approximately H1 horizontal runs in the second octant,

the compound statement labeled L5, which involves five additions, is therefore

executed approximately H1 times. The statement labeled L6, which involves

two additions, is therefore executed approximately W1 - H1 times.

The total numbers of arithmetic operations when £4 loop is executed is therefore

a4 = 2W1+2(W1— HI) +5H1=4W1+3H1,

= 2H1+2W1.

We thus have the total numbers of arithmetic operations in the main body of the

129

midpoint ellipse algorithm as follows:

= 3H1 + 5H2 + 4W1 + 5W2,

N=2W1.

It is still not clear which algorithm has fewer arithmetic operations since it is

related to the values of a and b. Therefore in order to get some concrete results,

we let a = b, a = 2b, and a = lOb. In all these cases, the numbers of the various

arithmetic operations in the two algorithms can be represented in terms of b. For

a = 2b, we have

h1 = (1 -

h3=(1 1)b,

2

W1
= — b,

8 4
w3=(— —)b,

W1=b,

We therefore have

=

v11 7

w2=(3)b,
V5- V2-

= (2

H2 =

W2=(2—)b.

N 9.80b, N3 O.71b, N 2.44b,

and

N 12.11b, N' 4.47b.

Using the same method as above we calculate the number of arithmetic operations

130

Na N3 N N N'
a = b 6.77b O.42b 1.71b 8.71b 2.83b
a = 2b 9.80b O.71b 2.44b 12.11b 4.47b
a = lOb 26.78b 1.63b 6.68b 43.25b 20.lOb

Table 6.1: Operation counts for RLS-Ellipse2 and Midpoint algorithms.

for both algorithms for a = b and a = lOb. The results, together with the results for

a = 2b are tabulated in Table 6.1.

Table 6.1 shows that ALGORITHM 6.5 runs slightly faster than the midpoint

algorithm when a = b, but the gain in speed increases as the ratio of a over b

increases. When a = 2b the running time of algorithm RLS-Ellipse2 is about 3/4 of

the running time of the midpoint algorithm. It runs twice as fast as the midpoint

algorithm when a = lOb, when the ellipse is very flat. The theoretical results agree

with our intuitive guess that as an ellipse becomes elongated, there are more long runs

in the digitized ellipse, and the run-length slice method becomes more favorable. If

the ellipse is close to symmetric (a b) then the overhead in the run-length approach

in the ellipse case is too large to make the algorithms presented much more efficient

than previously published algorithms. For the case of the circle (a = b) specialized

run-length algorithms can again be made competitive as will be discussed in the next

chapter.

ALGORITHM 6.3 (RLS-Ellipsel), ALGORITHM 6.5 (RLS-Ellipse2), as well as

ALGORITHM 6.6 (Van Aken's midpoint ellipse algorithm) were implemented in C

and tested extensively on an SGI INDIGO2. We let the output functions SetPixelQ,

HorizontalRun() and VerticalRun() be dummy functions in our implementations,

131

i.e., the output is actually not implemented. The purpose is to compare only the

time used in arithmetic operation. Table 6.2 and Table 6.3 give the comparisons of

the efficiencies of the three algorithms based on the accumulated running times in

seconds. For a specific pair of a and b, each algorithm was run 3000 times. Column

MIDPOINT, RLS-Ellipsel and RLS-Ellipse2 in both tables list the running times

of the three algorithms for different pairs of a and b. The ratios of running time of

ALGORITHM 6.5 (RLS-Ellipse2) to the running time of ALGORITHM 6.6 (Van

Aken's midpoint ellipse algorithm) are graphed in Figure 6.8. The running times

were obtained by using UNIX command time. In Table 6.2, a is fixed to 800, and

b varies between 640 and 80 in steps of 80, i.e., we let b be a, a. In 10 10

Table 6.3, a is fixed to 200, and b varies from a to a in steps of 20. The pairs 10

of (800, 800), (800, 720) were not used in Table 6.2. This is because the midpoint

algorithm overflows for large a and b pair such as (800, 800) and (800, 720) in our

implementation where integers are four bytes signed integers. The reason for the

overflow can be explained as follows. Referring to the code of the midpoint ellipse

algorithm, once the algorithm enters the while loop labeled L1, the pixels in the

first vertical run in the first octant are set while the condition cli < 0 is true. Once

d1 ≥ 0, x is decreased by one, which means the drawing of the second vertical run

will begin. Note that d2 is also updated by the statement d2 = d2 —ts+ts+t9, which

is in effect equivalent to d2 = d2 - 4 * b * x * x + 2 * b * b + 4 * a * a * y. If there is no

overflow, d2 remains negative, and the algorithm begins to draw the second vertical

run. When a and b are very large and a b, overflow may occur since after the

first vertical run is drawn, x = a - 1 is far greater than y, and the absolute value

of d2 becomes very large after it is updated by executing the above statement. If d2

132

(a, b) MIDPOINT RLS-Ellipsel RLS-Ellipse2
(800, 640) 2.278 1.920 1.816
(800, 560) 2.133 1.816 1.716
(800, 480) 2.011 1.709 1.562
(800, 400) 1.893 1.594 1.429

(800, 320) 1.792 1.469 1.281
(800, 240) 1.679 1.336 1.120
(800, 160) 1.596 1.189 0.936
(800, 80) 1.520 1.032 0.730

Table 6.2: Runtime comparison of three ellipse algorithms for a = 800.

changes its sign to positive because of overflow, the while loop labeled L1 terminates

prematurely, and the repeat loop is entered incorrectly to draw the second octant.

The overflow problem therefore occurs much sooner for the midpoint algorithm then

the run-length slice algorithm.

6.6 Summary

We discussed the use of run-length slice methodology to the scan-conversion of canon-

ical ellipses. The first quadrant of an ellipse was partitioned into two octants. Hori-

zontal and vertical pixel runs were then calculated for the two octants using forward

differencing with integer arithmetic. The correct octant transition was investigated.

Two run-length slice ellipse algorithms, ALGORITHM 6.3 and ALGORITHM 6.5

were presented. The new algorithms involve fewer arithmetic operations as compared

with the well-known midpoint ellipse algorithm and thus yield higher efficiency, espe-

cially for ALGORITHM 6.5 which takes advantage of adaptive forward differencing

133

(a, b) MIDPOINT RLS-Ellipsel RLS-Ellipse2
(200, 200) 0.648 0.533 0.511
(200, 180) 0.615 0.511 0.486
(200, 160) 0.578 0.486 0.462
(200, 140) 0.544 0.461 0.431
(200, 120) 0.512 0.434 0.401
(200, 100) 0.479 0.405 0.367
(200, 80) 0.453 0.374 0.331
(200, 60) 0.427 0.340 0.288

(200, 40) 0.405 0.304 0.243
(200, 20) 0.387 0.262 0.191

Table 6.3: Runtime comparison of three ellipse algorithms for a = 200.

ratio ratio

1.0

0.8

0.6

0.4

0.2

 . b
80 160 240 320 400 480 560 640

(a)

1.0

0.8

0.6

0.4

0.2

20 40 60 80 100 120 140 160 180 200

(b)

Figure 6.8: Ratios of the running time of algorithm RLS-Ellipse2 to the running
times of the midpoint ellipse algorithm. In (a) a = 800, b varies from 80 to 640; in

(b) a = 200, b varies from 20 to 200.

134

in calculating the lengths of runs. A numerical comparison supports the theoretical

results.

135

Chapter 7

Hybrid Scan-Conversion of Circles

7.1 Introduction

This chapter is devoted to the application of the run-length slice methodology to

scan-conversion of circles. The run-length slice algorithms for canonical ellipses de-

veloped in chapter 6 can be used for the scan-conversion of circles since circles are

special ellipses where the lengths of major axis and minor axis are equal. It was,

however, pointed out in chapter 6 that the overhead in the run-length ellipse algo-

rithms is so large that the algorithms turns out to be less efficient than previously

published circle algorithms. Specialized run-length algorithms for circles can, how-

ever, be made competitive as will be shown in this chapter. It is assumed that the

circle has integer radius and is centered at the origin. The equation of the circle is

therefore

x2 + y2 = (7.1)

where r is an integer. Because of the 8-way symmetry of a scan-converted circle only

a 450 circular arc, usually in the first or second octant, has to be scan-converted.

The remainder of the circle can be obtained by symmetry. Other circles with integer

radii and centers can be obtained by translation.

Scan-conversion of circles has received considerable research attention since the

early 1960s [Bresenham 77, Foley 82, Foley 90, Horn 76, Hsu 93, Mcllroy 83, Wright 90,

136

Wu 87]. Conventional circle scan-conversion algorithms generate one pixel in each

iteration loop and we therefore call them pixel-based circle algorithms. One pixel is

chosen from two candidate pixels according to a specific optimization criterion (refer

to chapter 2 for the three optimization criteria normally used). This is implemented

logically by testing the sign of a discriminator in the algorithm. The discriminator is

then updated using simple arithmetic operations so that the algorithm can proceed

to select the next pixel. This simple logic allows simple implementation and rela-

tively fast speed of scan-conversion. Pixel-based circle algorithms are represented

by Bresenha.m's circle algorithm [Bresenham 77] and the midpoint circle algorithm

[Foley 90].

Methods for speeding up the scan-conversion of circles involve generating multiple

pixels in each iteration instead of scan converting one pixel at a time. Wu and

Rokne [Wu 87] for example developed an algorithm which draws two pixels in each

incremental step.

The use of run-length slice methodology for the scan-conversion of circles was

first proposed by Hsu, Chow and Liu [Hsu 93]. The algorithms presented in [Hsu 93]

are called short line segment incremental algorithms where a short line segment effec-

tively refers to a horizontal run of pixels. All of the horizontal runs that approximate

a 45° circular arc in the second octant are calculated incrementally with descending

y. The authors noted that their new algorithms are, on the average, at least 1.36

times faster than the other existing circle algorithms such as Bresenham's algorithm

and the midpoint algorithm.

In this chapter we will present new run-length slice circle algorithms that fur-

ther speed up the scan-conversion of circles. The improvements are due to the faster

137

calculation of run-lengths and the use of a hybrid approach that combines the advan-

tages of the run-length method and the pixel-based method for the scan-conversion

of circles. The hybrid approach is introduced based on the observation that while

there are long runs of pixels in a 45° circular circle, there are also short runs of

length one. For example, when the radius is 128, the sequence of run lengths are

12,8,6,4,4,4,3,3,2,3,2,3,2,2,2,2,1,2,2, 1,2,2,1,1,2,1,1, 2,1,1,1,2,1,1,1,1,1,1. The further

(maybe obvious) observation is that it costs more to calculate a run of length one

than to generate a single pixel according to the sign of a discriminator. Calling a

function to draw a pixel run of of length one also costs more than simply setting

a pixel at position (x, 1'). Our suggestion is therefore to switch to the pixel-based

approach when the lengths of the remaining runs are at most two (and most often

they are of length one).

The techniques used to speed up the run-length calculation have been used in

chapter 6 for the calculation of the run-lengths of elliptical arc. In this chapter we

will again use double-step forward differencing for the run-length calculation for the

portion of a 45° circular arc where the run-lengths are at least 2. The incremental

computation of run-lengths are based on the circle equation Eq. (7.1). For illus-

trative purpose we first introduce a new version of the run-length 45° circular arc

algorithm which contains some improvements on algorithm 1 of [Hsu 93] (abbrevi-

ated Algorithm HCL in the sequel). Single-step forward differencing is used in the

run-length calculation in this algorithm. The techniques mentioned above are then

used to devise further improved algorithms. Before we introduce new algorithms, it

is of interest to first investigate the run-length properties of a 45° circular arc in the

second octant.

138

7.2 Run-Length Properties of 45° Circular Arc

As we did for deriving the run-length slice ellipse algorithms, we impose a. set of

mid-lines y = r - i + 0.5, i = l,2,•••. The i-th mid-line intersects the second octant

circular arc at (xi, y) where Yi = r - i + 0.5(see Figure 7.1). Similar to subdividing

elliptical arc by a set of midlines we immediately have that the sequence of pixels in

the i-th (i > 1) horizontal run is

(Lx-1i + 1,r—i+1),.",([xi],r—i+1),

and the sequence of pixels in the first horizontal run is

(0,r),••• ,(Lxij,r),

where r is the radius of the circle. Letting i = Ld and jij = r - i + 1, it follows

that the i-th (i > 1) horizontal run starts from (th_1 + 1, j) and ends at (ii, j). The

length of the i-th horizontal run is therefore ± - th for i > 1.

Let i = be the length of the i-th horizontal pixel run.

Theorem 5 One of the following relations hold for 'yj and -yi+l for i ≥ 2:

1: •_fi > 7i+i,

2: -1i ='741)

3: 'Yi+''Yi+l.

139

(0, r)

C

Sc

C3.

(0 0) (r, 0)

Figure 7.1: A set of midlines (stippled) y = r - i + 0.5 divide a 45° circular arc into
segments.

140

Proof: According to the circle equation Eq. (7.1) we have for i ≥ 1 that

and

= r2 - (r - (i - O.5))2

x•1=r2—(r---(i+O.5))2.

Subtracting (7.2) from (7.3) and rearranging yields

+1 =+2(i), i≥1.

Let 1i = xj - x_1,i ≥ 2. It follows from Eq. (7.4) that

Hence,

- x_1 > - x.

(x - x_1)(x + x....1) > (x1 - x)(+1 + xi),

--. = xi - x_i > xi+i + Xi
> 1.

1i+1 - Xi X + X_1

(7.2)

(7.3)

(7.4)

We therefore have 1i > 41. The conclusion of the theorem becomes straightforward

by noting that

= Yd or Lld + 1,

'fi+i = [l+j or L+ii + 1,

141

and i> l implies

[lij ≥ Ll +ij. 0

Before we present the next theorem, we prove that the length of the first hori-

zontal run is [v'r - 1] + 1. We first prove a small lemma:

Lemma 4 Let .s ≥ 0 be an integer. Then

L/J= Ws +eJ, üe<i.

Proof. Suppose a2 < .s < (a + 1)2, where a > 0 is an integer. Then .s = a2 + b, where

b is an integer and where 0 ≤ b < 2a + 1.

It is obvious that

Therefore

We then have

which amounts to

b - -e <2a+1.

= a2 +b+ e < a2 +2a+ 1= (a+ 1)2.

a< L/i ≤ [/ T] = V'a2+r+e<a+1,

k/i = L\/8+E] = a.

This proves the lemma. 0

Let i = 1 in Eq. (7.2) we have X2 = r - 1/4. Therefore

= Lr-1/4i = [r- 1+3/4j = Lr-1i

142

using the above lemma. The length of the first horizontal run is thus Lv'r - 1] + 1.

In the next theorem we assume that there is more than one run.

Theorem 6 The length of the first horizontal run 'Yl is greater or equal to the length

of the second horizontal run Y2• Equality only holds for r = 4.

Proof: Note that if a 45° discrete circular arc has more than one horizontal run then

this implies that the radius of the circle is r ≥ 3. We already know that

71 = Lv'r - 1] + 1,

'Y2=x2 — l=L 3(r -1)J — L\/r — lj.

It is easy to verify that 'Yi > 'Y2 for r = 3, and 'Yi = = 2 for r = 4. To prove that

71 > 'y2 for r > 4, we first give the following inequality:

V/3(k2 + 2k) - k < k + 1 (7.5)

where k ≥ 2 is an integer. This inequality can be proved by noting that

(k— i)2 = k2-2k--i-1>O

for k ≥ 2. We thus have

3k2+6k < 4k2+4k+ 1.

Therefore

/3(k2 +2k) <2k+1,

143

or

/3(k2+2k)_k<k+1.

Now let [v'r - 1] = k, then r - 1 ≤ k2 + 2k. Since r> 4, we have k ≥ 2. Therefore

72 = LI3(r - 1)] - k/r —1]

: /3(k2 +2k)_k

<k+1

= Lv'r — li+l

0

Theorems 5 and 6 yield the following corollary directly. We omit the proof since

it is quite straightforward.

Corollary 1 The horizontal runs of a 45° discrete circular arc satisfy -/1 ≥ -yj for

7.3 Run-Length Slice Circle Algorithm

The techniques for calculating run-lengths of a 45° circular arc similar to those used

for calculating the run-lengths of the first quadrant elliptical arc in chapter 6. As was

stated in the last section, the i-th horizontal run starts from (i-1 + l,) and ends

at (th, j) with d0 = 0 and 1'o = r. The calculation of z1j (i> 1) can be performed in

an incremental manner based on Eq. (7.4).

144

Letting X1=x-3/4=r-1 and X1 1=X,+2(r—i) for i= 1,2,.•,wehave

ji = LV'xi = [\/Xjj.

Therefore, instead of calculating x, we calculate Xi in the iterations, which elimi-

nates floating point operations. Forward differencing is then employed as follows to

calculate ij without invoking the square root function. Suppose that thj =

has been evaluated, and the variables x and X hold the values of th and th re-

spectively. Noting that

(x + 1)2 - = 2x + 1

we obtain ij by repeating the iteration

X = X+2x+ 1

x = x + 1

until X > X. If X = Xj then the value of x is thj, otherwise we decrease x by

one to obtain x2. The value of j can be found more efficiently as follows. Let the

values of the vaiiables D and x be X - th and respectively before entering

the repetitive loop. After the following iterations, the value of x will reach th:

while (D >= 2x + 1) {

D=D- 2x-1;

x = x + 1;

}

145

Setting Deltal = 2x 1 + 1 before entering the loop, the efficiency of the above

code segment can be improved by incorporating second order differencing of the

square function:

while (D >= Deltal) {

D = D - Deltal;

Deltal = Deltal + 2;

X = x + 1;

}

We next discuss when to terminate the run-length calculation for the scan-

conversion of the 45° circular arc in the second octant. This problem relates to

the pixel configurations at the octant change for a digitized circular arc. It is readily

understood that because the digitized image of a circular arc in the first quadrant is

symmetric with respect to the line y = x, the pixel configuration at octant change

can only be configuration (c) or (e) in Figure 6.1 if there exists a transition point, or

configuration (a) in Figure 6.5 if there is not a transition point. Therefore once we

start a tentative horizontal run and find that x > y for the leading pixel of that run,

we know that the scan-conversion of the second octant circular arc has been finished

and we therefore stop the run-length calculation.

Below is the run-length slice algorithm for the scan-conversion of the second

octant circular arc. Note that we use single-step forward differencing in the run-

length calculation. Incorporation of double-step forward differencing, as we did for

146

the ellipse algorithm, can further speed up the computation. This will be done in

the next section where we also introduce the hybrid approach.

ALGORITHM: Run-Length Slice Circle Algorithm (RLS-Circle)

y =

X = xO = 0;

D=r- 1;

Deltal = 1;

DeltaX = 2 *

while (x0 < y) {

while (D >= Deltal) {

D = D - Deltal;

Deltal = Deltal + 2;

X = X+1;

}
DrawRun(a:0, a:,

Y = y — 1;

X0 = a: + 1;

D = D + DeltaX;

DeltaX = DeltaX - 2;

}

147

7.4 Hybrid Scan-Conversion of Circles

We now discuss how to improve the efficiency of the run-length slice circle algorithm

RLS- Circle.

Using the same notation as we did in Figure 6.1, we call the 45° circular arc in the

second octant C2. The point on C2 where the slope of the circle is - 1/2 furthermore

divides C2 into C21 and C22. Similar to what we have done for the calculation of

run-length for elliptical arcs the calculation of run-lengths of the 45° circular arc can

be further sped up by using double-step forward differencing in the portion of the

arc where the run-lengths are at least two. The point P(x, y) that divides the 45°

circular arc 02 into segments 021 and C22 satisfies 2v = y. So we start with double-

step forward differencing to calculate the run-lengths until we enter the segment

of 022. Then, instead of switching to single-step forward differencing to calculate

run-lengths, we switch to to a pixel-based method to scan-convert the remainder of

the arc. Since a pixel-based algorithm, such as the midpoint circle algorithm, uses a

discriminator to choose one of the two candidate pixels in each iteration, the problem

imposed on the hybrid method is to obtain the value of the discriminator with less

computational cost at the point where we start pixel-based method. It turns out

that this computation is relatively easy and cheap for the discriminator used in the

pixel-based circle algorithms. In our implementation we use the midpoint method.

The following theorem provides a condition for switching from the run-length

method to the pixel-based method.

Theorem 7 Let the last pixel of the (i - 1)-th run be If 2±_ >

then the segment Sistarts from a point in C22, i.e., Si is not in C21.

148

1-1

Si.

Figure 7.2: Transition from C21 to C22.

Proof Referring to Figure 7.2, segment Sistarts from

Q = (Q, Q,) =

It follows from 2 -i > li-1 that

2(_ + 1)> i-1+2,

2(x 1 + 1) > 2(i 1 + 1) > i-1 + 2,

> _j > - 0.5,

2Q> Q,,.

Hence the starting point of the segment Siis in C22. 0

Suppose that we switch to the midpoint algorithm to generate the remaining

149

Figure 7.3: Pixel selection in the midpoint circle algorithm.

pixels for the digitized 450 circular arc, and that before we switch to the midpoint

algorithm, the last pixel of the last run is (x', y') where 2x'> y'. Then the remaining

pixels start from x = x'+ 1, y = - 1. We need to initialize the discriminator at this

point so that we can choose subsequent pixels using the midpoint circle algorithm.

In the following we derive the formula to calculate the value of the discriminator at

that point.

The initial value of the discriminator in the midpoint circle algorithm is

d= 1— r.

Referring to Figure 7.3, suppose the previously selected pixel is P(x, yr), then the

algorithm selects the next pixel between E (corresponding to a horizontal move) and

SE (corresponding to a diagonal move) according to the sign of d and updates d

accordingly:

• If d< 0 then choose E, d = d + / E = d + 2x + 3.

• Ifd≥0then choose SE, d=d+LSE=d+2(x—y)+5.

150

Note that each diagonal move can be decomposed into a horizontal move and a

vertical move. The change of d when a diagonal move occurs can therefore be

represented as the sum of the change of d for a horizontal move and a vertical

move:

LSE = 2(x— y)+5 = (2x+3)+2(1— y)

where AS = 2(1 - yr). There are x horizontal moves and r - y vertical moves from

the initial pixel position (0, r) to (x, y). The value of d therefore changes to

d = 1—r+[2.0+3]+...+[2(x-1)+3]

+2(1 - r) + 2[1 - (r - 1)] + + 2[1 - (y + 1)]

= 1—r+2[l-l-2+...+(x—l)]+3x

+2(r—y)-2[r+(r—l)+"+(y+l)]

= 1—r+x(x-1)+3x+2(r—y)—(r+y+1)(r—y)

= 1—r+c2+2x—(r—y)(r+y-1).

Since we know how to calculate the value of d, we can switch to the midpoint circle

algorithm for the remaining pixels. Once a horizontal pixel move occurs, the net

pixel move must be a diagonal move since the maximum horizontal run length is

two. We can combine these two steps into one, i.e., move from (x, y) to (x + 2, y - 1)

adding the intermediary pixel (x + 1, y). The change of the discriminator d is

LE— ASE =2x+3+2(x+1)-2y+5=4x-2y+10.

151

Now, starting the run-length calculation using double-step forward differencing,

switching to the midpoint method once the switching condition is satisfied, we have

the following hybrid algorithm for the scan-conversion of 450 circular arc in the

second octant.

ALGORITHM: Hybrid Circle Algorithm (Hybrid-Circle)

y =

x = xO = 0;

D=r- 1;

Delta2 = 4;

DeltaX = 2 * r;

L1: while (2 * x < y) {

L2: while (D >= Delta2) { 1* double-step forward /

D = D - Delta2;

Delta2 = Delta2 + 8;

x = x + 2;

}

Deltal= 2*x+1;

£3: if (D >= Deltal) { / additional single-step forward /

D = D - Deltal;

Delta2 = Delta2 + 4;

x = x + 1; / one step adjustment *1

}

DrawRun(x0, x,

152

y = y— 1;

xO = x + 1;

D=D+DeltaX;

DeltaX = DeltaX - 2;

}

x = x + 1;

d=1—r+x*x+2*x—(r—y)*(r+y--1);

while(x <= y) {

SetPixel(x, ii);

if(d<0) {

d = d + 4 * x - 2 * y + 10;

x = x + 1;

SetPixel(x, y);

x=x+1; y=y — l;

}

else {

d=d+2*(x—y)+5;

x=x+1; y=y — l;

}

}

153

Figure 7.4: Counting arithmetic operations for algorithm Hybrid-Circle.

7.5 Complexity Analysis and Numerical Results

In this section we will analyze the complexity of Algorithm Hybrid-Circle to show

that it involves less arithmetic operations than conventional pixel based circle algo-

rithms. We then tabulate nimerica1 results for some tests of Algorithm RLS-Circle

and Hybrid-Circle as well as Algorithm HCL and Bresenham's circle algorithm that

supports the the conclusion based on the theoretical analysis.

The arithmetic operations involved in algorithm Hybrid-Circle are counted as

follows. We count only those operations in two iteration loops which constitute the

main body of the algorithm, i.e., the while loops labeled L1 which draws part of the

45° circular arc run by run, and the while loop labeled £4 which draws the remainder

of the circular arc pixel(s) by pixel(s). The multiplications by powers of 2 in the

algorithm are implemented by binary shifts. The quick ±1 operations are neglected

in our analysis. Referring to Figure 7.4, P is the point on the 45° circular arc in the

second octant whose coordinates satisfy 2x = y. A trivial geometric computation

154

gives the coordinates of P: x = * r, y = r. We thus have in Figure 7.4:

2
h1 = (1 - V15-

if (d < 0), which contains three additions and two shifts, is executed w2 - h2 times;

and the compound statement after else, which contains three additions and one shift,

is executed 2h2 - w2 times. Denoting by Na, N3, N, and N the number of additions,

shifts, sign tests, and comparisons respectively in Algorithm Hybrid-Circle, we have

Na

N3

N

W! h1
= 3h1 -I- 3(-- - --) + h + 3(w2 - h2) + 3(2h2 - w2)

13 3
=

1.58r,

= hi+2(w2—h2)+2h2—w2 = hi+w2

0.47r,

= h2 0.19r,

w1 h1 h1
=

5 Wi
=

O.54r.

(7.6)

These figures illustrate that Algorithm hybrid- Circle involves fewer arithmetic op-

erations than the pixel-based circle algorithms, among which an algorithm attributed

to Michener by [Foley 82], for example, has Na 1.71r, N3 = r,N = N0 0.71r.

Algorithm RLS-Circle, Hybrid-Circle as well as Algorithm HCL (Alg. 1 of

[Hsu 93]) and Bresenham's algorithm (from [Bresenham 77], abbreviated Bres in

Tables 7.1 and 7.2) were implemented in C and tested extensively on a PC-80486

running at 66MHz with a numeric coprocessor. The multiplications by powers of

156

two in the algorithms are implemented by binary shifts. Algorithm HCL invokes

the square root function once to calculate the first horizontal run. Actually only

the integer part of the square root is required in this particular problem. In our

implementation we just call the function .sqrt() in the math library since we do not

know if they call a specially designed square root function. We let the output func-

tions SetPixel() and DrawRun() be dummy functions in our implementations, i.e.,

the output is actually not implemented. The purpose is to compare only the time

used in arithmetic operations in these algorithms. It is not surprising that Algorithm

Hybrid-Circle runs much faster than Algorithm HCL since it involve fewer arithmetic

operations. This fact implies that Hybrid-Circle runs much faster than Bresenham's

circle algorithm and the midpoint circle algorithm.

Table 7.1 gives the comparisons of the efficiencies of four algorithms based on the

accumulated running times in machine clock ticks (55ms/tick). The testing is done

for small radius spans. For each radius span, the radius of the circular arc is changed

incrementally from the low end to the high end, and each execution of an algorithm

is repeated 3000 times. The ratios of running time of Algorithm HCL to Algorithm

RLS-Circle and Hybrid-Circle for each radius span are bracketed. In Table 7.2 the

same calculations are repeated for large radius spans. Here the calculations were

repeated 300 times.

The figures in the table show the consistent increasing of efficiency of Algorithm

RLS-Circle and Hybrid-Circle as compared with Algorithm HCL for the circles of

normal sizes. Note that the times listed in Table 1 does not reflect the real running

times since no pixels are written. If the the speedups in writing pixels to the frame

buffer are considered then the results of the comparisons of Algorithm RLS-Circle

157

Radius HCL RLS-Circle Hybrid-Circle Bres
1 to 32 24 13(1.85) 12(2.00) 15
33 to 64 57 32(1.78) 28(2.01) 40
65 to 128 212 124(1.71) 105(2.02) 155

Table 7.1: Runtime comparison of four circle algorithms for small radii.

Radius HCL RLS-Circle Hybrid-Circle Bres
129 to 256 83 49(1.69) 40(2.18) 62
257 to 384 136 80(1.70) 66(2.06) 101

385 to 512 191 113(1.69) 92(2.08) 142
512 to 1024 1313 767(1.71) 627(2.09) 852

Table 7.2: Runtime comparison of four circle algorithms for large radii.

and Hybrid-Circle with Bresenham's algorithm, should be even better.

7.6 Summary

The run-length properties of a 450 circular arc were discussed. A hybrid approach

for scan-conversion of circles was presented based on these properties. The new

algorithm Hybrid-Circle combines the run-length slice method and the pixel-based

method to yield higher efficiency than both the pixel-based algorithms and the run-

length slice algorithms for the scan-conversion of circles. A complexity analysis was

performed for the new algorithm Hybrid-Circle. A numerical comparison verifies the

theoretical results.

158

Chapter 8

Final Remarks

This research has focused on scan-conversion of important graphics primitives. This

is an area in computer graphics that has a long history and has received considerable

research efforts. Our emphasis has been on the further development of some of the

ideas presented in previous papers on scan-conversion of lines, circles, ellipses and

filled polygons. This research enables a deeper insight into the scan-conversion of

these important graphics primitives and results in new and faster scan-conversion

algorithms.

Linear interpolation is widely used in computer graphics algorithms. Linear in-

terpolation in a discrete context has been investigated by several researches including

the author of this thesis. Our new contributions to linear interpolation in this thesis

are the definition and the fast computation of three the types of integral linear in-

terpolation. Rounding-up and rounding down integral linear interpolation are new

concepts first investigated by the author of this thesis. The algorithms for the fast

computation of three types of integral linear interpolation include double-step, bi-

directional algorithms where the method of hi-directional interpolation is also first

investigated by the author of this thesis.

The application of the three types of integral linear interpolation to the scan-

conversion of lines gives new insight into the the problem of line scan-conversion.

The integral linear interpolation approach provides a unified framework to the design

of incremental line scan-conversion algorithms, including multi-step algorithms, run-

159

length slice algorithms, bi-directional algorithms and the combination of the above

algorithms. The application of rounding-up integral linear interpolation to the scan-

conversion of filled polygons suggests a new method to speed up the existing scan-line

algorithms for filled polygons.

The application of run-length slice methodology to the scan-conversion of ellipses

is first introduced in this thesis. Run-length slice circle scan-conversion algorithms

have been previously presented by other authors. We give a more in-depth inves-

tigation of the problem and suggest a hybrid approach which combines run-length

slice approach and midpoint approach to further speed up the scan-conversion of

circles. The run-length slice circle and ellipse scan-conversion algorithms prove to

run faster than previously published circle and ellipse algorithms even though their

code is more complex. This is due to the fast computation of run-lengths by using

adaptive forward differencing.

We foresee some further research that can be performed based on what we have

achieved in this thesis. One topic will be the incorporation of antialiasing to the run-

length slice algorithms for the scan-conversion of lines, circles, and ellipses. This will

result in fast algorithms for generating antialiased lines, circle, and ellipses. Another

possible problem to attack is based on the techniques of run-length computation for

digitized circular and elliptical arcs to scan-convert filled circles, ellipses, and rings.

The application of run-length slice methodology to the scan-conversion of general

curves imposes a more difficult problem. We are not optimistic that more efficient

algorithms can be obtained in this case although double-step and /or sophisticated

differencing strategies might possibly lead to improvements in the algorithms.

160

Bibliography

[Bao 89]

[Bresenham 65]

[Bresenham 77]

[Bresenham 82]

[Bresenham 85]

[Brons 74]

[Castle 87]

[Cederberg 79]

[Danielsson 70]

[Dorst 85]

[Feilner 93]

[Field 85]

P. Bao and J. Rokne. Quadruple-step line generation. Comput.
and Graph., 13(4):461-469, 1989.

J. E. Bresenham. Algorithm for computer control of digiter plot-
ter. IBM Syst. J., 4(1):25-30, 1965.

J. Bresenham. A linear algorithm for incremental digital display
of circular arcs. Communications of the ACM, 20(2):100-106,
1977.

J. E. Bresenham. Incremental line compaction. Comput. J.,
(25):116-120, January 1982.

J. E. Bresenham. Run length slice algorithms for incremental
lines. In R. A. Earnshaw, editor, Fundamental algorithms for
computer graphics, NATO Computer and Systems Series, Vol
17, pages 59-104, New York, 1985. Springer Verlag.

R. Brons. Linguistic methods for the discription of a straight line
on a grid. Comput. Graph. Image Process., 3(1):183-195, 1974.

C. M. A; Castle and M. L. V. Pitteway. An efficient struc-
tural technique for encoding 'best-fit' straight lines. Comput.
J., 30(2):168-175, 1987.

R. L. T. Cederberg. A new method for vector generation. Corn-
put. Graph. Image Process., 9(2):183-195, 1979.

P. E. Danielsson. Incremental curve generation. IEEE Trans.
Computers, 19(9):783-793, September 1970.

L. Dorst. The accuracy of the digital representation of a straight
line. In R. A. Earnshaw, editor, Fundamental algorithms for
computer graphics, NATO Computer and Systems Series, Vol
17, pages 141-152, New York, 1985. Springer Verlag.

D. W. Feliner. Robust rendering of general ellipses and elliptical
arcs. ACM Trans. on Graphics, 12(3):251-276, July 1993.

D. Field. Incremental linear interpolation. ACM Trans. on
Graph., 4:1-11, January 1985.

161

[Foley 82]

[Foley 90]

[Freeman 61]

[Freeman 70]

[Freeman 74]

[Fung 92]

[Gardner 92]

[Gay 85]

J. D. Foley and A. Van Dam. Fundamentals of interactive com-
puter graphics. Addison-Wesley, Reading, Mass., 1982.

J. D. Foley, A. Van Dam, S. K. Feiner, and J. F. Hughes. Com-
puter Graphics, Principles and Practice. Addison-Wesley, Read-
ing, Mass., 1990.

H. Freeman. On the encoding of arbitrary geometric configura-
tions. IRE Trans., (EC-102):260-268, 1961.

H. Freeman. Boundary encoding and processing. In B. S. Lipkin
and A. Rosenfeld, editors, Picture Processing and Psychopicto-
ries., pages 241-266, New York, 1970. Academic Press.

H. Freeman. Computer processing of line-drawing images. ACM
Comput. Surv., (6), 1974.

K. Y. Fung, T. M. Nicholl, and A. K. Dewdney. A run-length
slice line drawing algorithm without division operations. Corn-
put. Graph. Forum, (3):267-277, 1992.

P. L. Gardner. Modification of Bresenham's algorithm for dis-
plays. IBM Technical Disclosure Bulletin, pages 1595-1596, Oct.
1975.

A. C. Gay. Experience in practical implementation of boundary-
defined area fill. In R. A. Earnshaw, editor, Fundamental al-
gorithms for computer graphics, NATO Computer and Systems
Series, Vol 17, pages 153-160, New York, 1985. Springer Verlag.

[Gill 94] C. W. Gill. N-step incremental straight-linear algorithms. IEEE

Computer Graphics and Applications, pages 66-72, May 1994.

[Gouraud 71] H. Gouraud. Continuous shading of curved surfaces. IEEE
Trans. Comput., C-20(6):623-629, 1971.

[Gourret 87] J. P. Gourret and J. Paille. Irregular polygon fill using contour
encoding. Computer Graphics Forum, 6(4):317-325, 1987.

[Graham 93] P. Graham and S. Iyengar. Double-and triple-step incremental
generation of lines. In Proc. 1993 ACM Computer Science Conf.,
New York, 1993.

162

[Graham 94] P. Graham and S. Iyengar. Double- and triple-step incremental
linear interpolation. IEEE Computer Graphics and Applications,
pages 49-53, May 1994.

[Hobby 90] J. D. Hobby. Rasterization of nonparametric curves. ACM
Trans. on Graphics, 9(3):262-277, July 1990.

[Horn 76] B. K. P. Horn. Circle generator for display devices. Computer
Graphics and Image Processing, (5):280-288, 1976.

[Hsu 93] S. Y. Hsu, L. R. Chow, and C. H. Liu. A new approach for the
generation of circles. Computer Graphics Forum, 12(2):105-109,
1993.

[Kappel 85] M. R. Kappel. An ellipse-drawing algorithm for raster displays.
In R. A. Earnshaw, editor, Fundamental algorithms for computer
graphics, NATO Computer and Systems Series, Vol 17, pages
257-281, New York, 1985. Springer Verlag.

[Knott 79] G. D. Knott. Computing polygon fill-lines. Comput. ê.4 Graphics,
11(1):21-25, 1979.

[Lane 83] J. M. Lane. Note: an algorithm for filling regions on graphics
display devices. ACM Trans. on Graphics, 2(3):192-196, 1983.

[Mcllroy 83] M. D. Mcllroy. Best approximate circles on integer grids. ACM
Trans. on Graphics, 2(4):237-263, October 1983.

[Mcllroy 84] M. D. Mcllroy. A note on discrete representation of lines. ATê
T Technical Journal, 64(2):481-490, February 1984.

[Mcllroy 92] M. D. Mcllroy. Getting raster ellipse right. ACM Trans. on
Graphics, 11(3):259-275, July 1992.

[Narayanswam 95] C. Narayanswami. Efficient parallel Gouraud shading and lin-
ear interpolation over triangles. Computer Graphics Forum,
14(1):17-24, 1995.

[Newman 79] W. M. Newman and R. F. Sproull. Principles of Interactive Com-

puter Graphics. McGraw-Hill, New York, 1979.

[Pavlidis 79] T. Pavlidis. Filling algorithms for raster graphics. Computer
Graphics and Image Processing, 10:126-141, 1979.

163

[Phong 75]

[Pitteway 67]

B. T. Phong. Illuminating for computer generated pictures.
Commum. ACM, (18):311-317, June 1975.

M. L. V. Pitteway. Algorithm for drawing ellipse or hyperbolae
with a digital plotter. The Computer J., 10(3):282-289, Novem-
ber 1967.

[Rankin 87] J. R. Rankin. A note on multi-polygon area filling. Comput.
Graphics, 11(4):445-447, 1987.

[Reggiori 72] C. B. Reggiori. Digital computer transformations for irregular
line drawings. Technical Report 403-22, Department of Electrical
Engineering and Computer Science, New York Univ., April 1972.

[Richards 87] J. E. Richards. Filling complex polygons by region-fill methods
on raster graphics terminals. Computer Graphics Forum, 6:49-
54, 1987.

[Rokne 90] J. Rokne, B. Wyvill, and X. Wu. Fast line scan-conversion. ACM
Trans. on Graph., 9(4):376-388, October 1990.

[Rokne 92] J. Rokne and C. Yao. Double-step incremental linear interpola-
tion. ACM Trans. on Graph., 11(2):183-192, April 1992.

[Rosenfeld 74] A. Rosenfeld. Digital straight line segments. IEEE Trans. Corn-
put., C-23:1264-1269, 1974.

[S-L. Chang 89] M. Shantz S-L. Chang and R. Rocchetti. Rendering cubic curves
and surfaces with integer adaptive forward differencing. Com-
puter Graphics, 23(3):157-166, July 1989.

[Sproull 82] R. F. Sproull. Using program transformations to derive line draw-
ing algorithms. ACM TOG, 1(4):259.-273, October 1982.

[Van Aken 84] J. R. Van Aken. An efficient ellipse-drawing algorithm. CGA,
4(9):24-35, September 1984.

[Van Aken 85] J. R. Van Aken and M. Novak. Curve-drawing algorithms for
raster display. ACM Trans. Graphics, 4(2):147-169, April 1985.

[Wright 90] W. E. Wright. Parallelization on bresenham's line and circle
algorithms. IEEE Computer Graphics and Applications, pages
60-67, September 1990.

164

[Wu 87]

[Wu 89]

X. Wu and J Rokne. Double-step generation of lines and circles.
CVGIP, (37):331-344, 1987.

X. Wu and J. G. Rokne. Double-step generation of ellipse.
CGA, 9(5):376-388, May 1989.

165

