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Abstract 

Giardia is the most common intestinal parasite worldwide, causing malabsorptive 

diarrhea. Malabsorptive diarrhea is seen in several infectious and non-infectious diseases 

such as yersiniosis, rotaviral infections, Crohn's disease and Celiac's disease. The 

mechanisms of epithelial injury in giardiasis remain unknown. This study examines the 

effects of G. lamblia on electrical resistance and the cytoskeletai proteins: filamentous 

and globular actin, villin, ezrin and a-actinin of human intestinal and colonic epithelial 

monolayers. G. lamblia significantly . . decreased electrical resistance of cell rnonolayers. 

Exposure to Giardia lysates or trophozoite spent medium induced localized condensation 

of F-actin in the terminal web region while G-actin remained unchanged, and a 

reorganization of the cytoskeletal proteins a-actinin, ezrin and villin. Rearrangement of 

F-actin, villin and ePin were not affected by verapamil or cytochalasin D. G. Zamblia 

reduces electrical resistance of human intestinal epithelial monolayers, at least in part via 

unidentified trophozoite products as sonicated trophozoites produced similar results. The 

epithelial injury is associated with F-actin and a-actinin rearrangements in the terminal 

web, reorganization of villin and concurrent disorganization of evin by mechanisms 

independent of extracellular ca2' or actin polymerization. 
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1. INTRODUCTION 

1.1. The Small Intestine 

1.1.1. Small Intestinal Architecture 

The small intestine is unique in its capacity to absorb nutrients, electrolytes and 

water and is remarkably well adapted for its primary role in absorption. The absorptive 

epithelium of the human intestine receives a luminal load averaging 9L per day, and as 

much as 8.8 L are absorbed, resulting in less than 200glday of stool output (67). The 

efficient ability of the small intestine to absorb 98% of the fluid load is partly due to the 

unique architecture of the small intestine. The structural specialization of the human 

small intestine begins with folds of submucosa termed plica circularis or valvuli 

conaventes which are approximately lcm in height and 5cm in length (241). The plica 

circularis amplifies the intestinal area by up to 3-fold. In addition to the plica circularis, 

numerous mucosal villi extend into the lumen like "fingers" throughout the small 

intestine, fkther increasing the absorptive area by some 7- to 14- fold (402). The shape 

of the villus varies between species, and in humans are leaf or k g e r  shape, ranging 

between 0.5 to 0.8mrn in height (372). Finally, the specialization of the small intestine 

architecture in absorption is amplified by closely packed microvilli lining the apical 

surface of absorptive cells, which overlay the villus and crypt of the intestine. Each 

epithelial cell has as many as 3,000 to 6,000 microvilli visible only under electron 

microscopy (339). The microvilli are responsible for amplification of surface area by 14- 

to 40- fold (48, 410). Cumulatively, the specialized architectural structures within the 

small intestine, increase the absorptive surface area of the 3m long gut by 600 fold or to 

greater than 200m2 (1 64). 



1.1.2. Absorption and Secretion of Water in the Small Intestine 

Water transport in the small intestine is closely coupled with solute and 

electrolyte movement. In the epithelium water transport occurs through the paracellular 

pathway (116) and not via transcellular water flow or by glucose transporters (390). 

Most water absorption depends on the active ~ a i / K + - ~ ~ ~ a s e  pump located at the 

basolateral membrane which exchanges 3 ~ a +  out of the cell for 2 K+ into the paracellular 

spaces thus creating an electrogenic potential difference which is favourable for more 

~ a ' ,  and also powers transpo-rt . . of all other electrolytes coupled to sodium entry. An 

environment of high osmotic pressure fiom the active absorption of electrolytes and 

solutes, induces water fiom the lumen to flow to the paracellular region therefore 

reducing osmotic pressure by raising the hydrostatic or fluid pressure. The increased 

hydrostatic pressure drives water through the basement membrane into the interstitial 

compartment and finally to the capillaries. 

1.2. The Mucosal Cell Population 

Apart fiom the capacity of the smdl intestine to absorb water and nutrients, the 

small intestine is also a highly differentiated structure whose constituent cells exhibit 

complex, morphological specializations that facilitate their diverse functions. The 

mucosa of the small intestine is made of the epithelium, the lamina propria and the 

muscularis mucosa. This chapter will focus on the intestinal epithelium and the 

predominant five cell populations that constitute an intact epithelium. 

1.2.1. The Intestinal Epithelium 

The epithelium acts as an efficient physical barrier that allows exchanges between 

the lumen and interstitial compartment comprised of blood aud lymph vessels, while 



protecting the host fiom environmental pathogens (219). The epithelial cells in the 

digestive tract have three main functions: i) to digest food and absorb nutrients, ii) to 

protect against pathogens and iii) to maintain continuous homeostatic cell renewal and 

cell death. The five cell populations in the intestine responsible for achieving and 

maintaining intestinal h c t i o n  include goblet cells, entero-endocrine cells, Paneth cells, 

M cells and absorptive cells. All five populations are derived fiom undifferentiated or 

stem cells located in the shallow invaginations between villi known as the crypts of 

Lieberkiihn (Fig. 1). Each crypt in the small intestine is monoclonal and derived fiom a 

single stem cell (307). There are 4-16 anchored stem cells in the base of crypts and these 

serve as precursors for other intestinal epithelial cells including undifferentiated crypt 

cells (78). Crypt cells are vital in the secretion of C1' and water into the lumen. The 

morphology of crypt cells including short microvilli, a less developed glycocalyx where 

oligosaccharidases and peptidases are normally found, as well as a disordered terminal 

web, sparse endoplasmic reticulum and abundant unattached ribosomes and polysomes, 

all indirectly indicating the secretory role of crypt cells (373). Furthermore, prominent 

within the cytoplasm of crypt cells are secretory granules as well as granules rich in 

glycoprotein (373, 374). As the crypt cells mature and differentiate, they migrate fiom 

the crypt to villus where their k c t i o n  changes to absorption (1 16). Per day, 1,200-1,400 

epithelial cells migrate into each villus of the mouse intestine, matched by a similar rate 

of apoptosis or programmed cell death, at the tip of the villus to maintain homeostasis 

within the tissue (15 1). Cell turnover fiom the time of cell formation to apoptosis and 

sloughing off at villus tip takes 3-5 days (151). Spontaneous apoptosis also occurs in the 



Figure 1: Schematic diagram of two sectioned villi and a crypt, illustrating the histologic 

organization of the mucosa of the small intestine. Adapted from Madara and Trier, 

Physiology of the Gastrointestinal Tract, 1 994 
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proliferative region of each crypt allowing an escape route for cells with genetic 

alterations (264). 

A. Goblet Cells 

Goblet cells are polarized mucus secreting cells present throughout the 

epithelium, and increases in numbers in the proximal jejunum to distal ileum (268). 

Goblet cells are responsible for producing mucus which serve to cross-link much  

glycoproteins in the stabilization of mucin gels (29). Mucin in conjunction with the 

negatively charged glycoproteins, acts as a barrier in protecting the epithelium from 
. . 

noxious intraluminal substances and binding organisms, as well as provides a protective 

coat during mucosal restitution (397). Mucus release is achieved by exocytosis where 

mucus granules fuse together and are released at the apical membrane via microtubular 

h c t i o n s  (181, 289). The goblet cell is aptly named, as the cell has an appearance of a 

wine goblet due to the distension of the apical two-thirds of the cell by clear mucin. As 

goblet cells are involved in the secretion of mucus, they have sparse microvilli and a 

poorly developed terminal web and glycocalyx (236). 

B. Entero-endocrine Cells 

The entero-endocrine cells are narrow, columnar cells with a slender apex found 

throughout the small intestine. Entero-endocrine cells are classsed by shape and content 

of their secretory granules which regulate secretory or excretory functions and include 

such substances as serotonin, secretin, substance P and many others that are able to exert 

paracrine or endocrine effects (346). These granules are found to be subnuclear, 

membrane bound secretory granules and are able to contain more than one peptide or 

amine product. The granules are released upon stimulation of cells by external or internal 



factors via exocytosis. As the entero-endocrine cells are also involved in secretion of 

granules, cells have sparse microvilli and by electron microscopy their cytoplasm appear 

non-electron dense (236). 

C. Paneth Cells 

Paneth ceIls are found throughout the small intestine but are increased in numbers 

in the duodenum and ileum. The cells resemble truncated pyramids, being widest at the 

basal area where nucIei are located, and have rudimentary microvilli and undeveloped 

terminal web concurrent with their secretory nature (236). Prominent eosinophilic 

granules are also seen in the-apical compartment of the cell (236). The renewal rate of 

paneth cells can be as extensive as 18-22 days in mice (79). 

Paneth cells secrete several bactericidal substances, including lactofenin which 

chelates iron required for bacterial growth, peroxidase which produces free radicds able 

to attack microorganisms (2 19), lysozyme able to digests the lipopolysaccharide coat of 

Gram-negative enterobacteria (255), and cryptidin which are defensins capable of 

fonning pores in bacterial and parasite membrane leading to lysis (334). In addition, 

paneth cells have been demonstrated to contain immunogIobulins and cytoplasmic 

trypsin- like material as well as a,-anti trypsin mRNA (34,2 1 8 ,3  19). 

D. M Cells 

Mucosal lymphoid follicles are found through out the intestine. When found in 

isolated follicles or aggregates they are termed Peyer's patches. The Peyer's patch 

appears as a rounded mound or 'dome' that is devoid of villi. The overlying epithelium 

consist of specialized absorptive cells. These specialized cells are known as M cells, or 

follicle-associated epithelial cells as they are only found associated with lymphoid 



follicles (294). By electron microscopy, M ceUs have shorter but more abundant 

microvilli (294). The terminal web of M cells is incomplete and allows organelles such 

as ribosomes and mitochondria to approach the apical membrane (241). As the lumen is 

continuously exposed to foreign materials which have the potential to be dangerous, M 

cells serve to sample antigens fiom the lumen. Several pathogens, including Shigeffa, 

Yersinia enterocolitca and SalmoneNa utilize M cells as portals of entry into the host 

circulating system. A lpm to 5 p  bridge of cytoplasm serves as the only barrier 

between the antigen and microflora in the intestinal luminal contents and the underlying 
. . 

immunocompetant cells (24 1). Lymphocytes, macrophages and plasma cells are located 

in the intercellular spaces between the M cells and neighbouring cells. With the capacity 

to transport via transcytosis, M cells pass macro-molecular antigens and microorganisms 

to underlying macrophages which stimulate the adjacent lymphocytes and plasma cells. 

Microorganisms such as reovirus, poliovirus type 1 and cholera vibrios have been 

observes to be transported in vesicular structures by M cells (241). Less clear is the 

ability of M cells to process and present antigens to immunocompetant cells. Currently, 

M cells are known to contain acidic endosomal and acid-phosphatase containing 

prelysosornal and lysosomal compartments, express class I1 major histocompatibility 

complex and are able to secrete L-1 (6,296). 

1.3. Absorptive Enterocyte 

As the absorptive enterocyte comprises the topic of this research, it will be 

covered as a chapter by itself. The absorptive enterocytes of the gut are highly polarized 

columnar cells capable of vectorial tramport of nutrients and electrolytes. The apical 

pole of absorptive cells are charactiiized by closely packed microvilli, approximately 



0.5-1.5 pn in height (236). Due to the special nature of absorptive enterocytes in 

vectorial transport of nutrients, the apical plasma membrane is very distinct fiom the 

basolated membrane. 

1.3.1. Enterocyte Membranes 

A. Apical Microvillus Membrane 

The apical membrane of the enterocyte has a width that is greater than most 

eukaryotic plasma membrane, in addition, there is a high protein to lipid ratio (1 76). The 

apical membrane also has a high cholesterol to phospholipid ratio and an increased 

content of glycosphingolipids (386). Together the higher protein to lipid ratio, in 

addition to the different lipids present, contributes to a more rigid apical membrane. This 

has functional implications as a more rigid, or less fluid membrane implies a lower 

passive membrane permeability and an increased mechanical stability (1 79). 

Overlying the apical membrane is the carbohydrate rich glycocalyx. The 

glycocalyx is formed in part by an array of digestive enzymes such as disaccharidases 

and peptidases (Table 1) which play a crucial role in terminal digestion of carbohydrates 

and peptides prior to absorption. The digestive enzymes are predominantly glycoproteins 

that are anchored to the lipid bilayer of the apical membrane by a hydrophillic N-terminal 

sequence at the cytoplasmic s d a c e  of the membrane or by a C-terminal amino acid 

attached to a phosphatidylinositol glycan (232). Concurrent with the digestion of 

nutrients, the apical membrane also contain transport proteins required for the transport 

of glucose (via SGLT-I), fructose (via GLUT S), amino acids, bile acids, di- and tri- 



Table 1: Brush border enzymes of the apical microvillus membrane. 

Adapfedfiom Holmes and Lobley, 1989 

Function 

Glycosidase 

Peptidase 

Phosphatase 

Protein 

Mdtase-glucoamylase 
Sucrase-isomdtase 
Lactase-phlorizin hydrolase 
Trehalase 
Aminopeptidase A, N, W 
Carboxypeptidase P 

- Dipeptidyl aminopeptidase IV 
Peptidyl dipeptidase 
Pteroyl polyglutarnate hydrolase 
Enteropeptidase 
Enteropeptidase-24.11 
Enteropeptidase-2 
y-Glutarnyl transferase 
Alkaline phosphatase 
Phosphodiesterase-I 



peptides, the regulatory proteins guanylate cyclase as well as receptor proteins that 

selectively bind calcium and cobalamine complexed to intrinsic factor vital for the 

absorption of vitamin B 12 (86, 24 1). The asymmetric distribution of ion motive pumps, 

channels and transporters on the apical membrane surface allows for the vectorial 

transport fiom the lumen to the interstitial compartment. 

B. Basement and Basolateral Membranes 

The basolateral membrane overlays a basement membrane that is a continuous 

sheet of fine fibrillar material with fenestrations to allow the migration of chylomicrons 
. * 

and lymphocytes into the intercellular spaces (377). The major component of the 

basement membrane extracellular matrix includes type N collagen, laminin, entactin, 

heparan sulfate proteoglycan and interstitial matrix components (221). It has been 

reported that direct ceil contacts with the extraceliular matrix via integrin-dependent 

signals are vital in providing swival  signals to the enterocyte, thus delaying apoptosis 

(127,3 11). 

The basolateral membrane contains several pumps and transporter or carriers 

including the transferrin receptor for transport of iron, basolateral amino acid and di- and 

tri-peptide carriers, glucose and fiuctose carriers, a c ~ ' + - A T P ~ s ~  pump for active 

transport of calcium during low ca2+ conditions as well as a ~ a + ,  K+-ATP~s~ pump 

which is an energy requiring pump that transports ~ a +  into the intercellular space and 

maintain electrochemical gradients favouring ~ a +  absorption and ~ a +  coupled transport 

of nutrients by the resident transporters of the microvillus membrane. Also located at the 

basolateral membranes are adenylate cyclase and giycosyltransferases (2 12). 



1.3.2. The Enterocyte Cytoakeleton 

The microvillus membrane is supported by an underlying cytoskeleton, that not 

only serves as a supporting structure to maintain the architecture of the entire apical pole 

to the enterocyte, but also plays a role in the uptake of some nutrients into the cell and in 

the contr~l  of paracellular permeability (1 80). The cytoskeleton is primarily composed of 

axial bundles of 20-30 actin filaments and associated proteins and extend down into a 

transverse fibrillar mesh work known as the terminal web (14, 272) (Fig. 2). The 

microvillar core bundle and the terminal web regions consist of different actin associated 
. . 

proteins which are unique to each region. 

Most microfilament associated proteins are known to be substrates of 

serine/threonine and tyrosine protein kinases whose activities in viiro are effected by 

phosphorylation, and include Ras and Rho proteins which belong to the G-protein family 

distributed apically in the enterocyte membrane (43). Rho GTPases have been known to 

regulate the organization of the cytoskeleton (150, 15 1, 287). Rho has been shown to 

regulate filamentous actin organization at the apical pole of polarized intestinal epithelial 

cells thus influencing permeability of the associated tight junction (287). Exactly how 

rho functions in regulating cell cytoskeleton assembly and function is beyond the scope 

of this introduction, suffice to say that rho acts as a molecular switch to control signal 

transduction pathways that link membrane receptors to the cytoskeleton (149). In the 

microvilli of the enterocyte, F-actin core bundles are hexagonally arranged by bridging 

filaments known as actin bundling proteins, and include villin, finbrin, a 1 10-kD protein 

calmodulin complex (30, 99), and a family of ERM (ezrin-radixin- moesin) proteins (14, 

328,329). The actin core bundles extend into the terminal web, where other proteins 



Figure 2: Schematic diagram of the structural features of the apical plasma membrane, 

the apical cytoskeletal proteins of the absorptive enterocyte, and the tight junctional 

complex of intestinal absorptive cells. Adapted from Hardin and Gall, Annals of the New 

Yark Academy of Sciences, 1992. 





such as myosin, and a nonerythroid isoform of spectrin known as fodrin form a dense 

meshwork (14, 99, 180). Also located within the terminal web region is a set of filaments 

that extend along the cytoplasmic aspect of the zonula adherens, below the zonula 

occludens, to fiom a contractile circumferential filament band (56) that is composed of 

actin filaments and contains a-actinin, tropomyosin and myosin (46, 13 0, 172, 173). The 

circumferential filament band is known as the perij unctional actomyosin/actin-myosin 

ring and is important in regulating tight junction permeability and paracellular flow 

across both native and cultured intestinal epitheIia (239, 240). Within crhe terminal web, 

microtubules may extend from below to fbrther associate with the cytoskeletal proteins. 

This chapter will focus on the major cytoskeletal proteins in this study. 

A. Actin 

Actin based cytoskeleton appears to be ubiquitous among eukaryotes and its 

appearance is said to be a key step in the earliest history of eukaryotic lineage (366). In 

eukaryotes, actin is found in two forms: monomeric actin, also known as globular actin 

(G-actin), and filamentous actin (F-actin) which are polymerized forms of G-actin. Actin 

monomers polymerize in a head to tail fashion to form long helical filaments whose two 

ends are structurally and dynamically distinct (366). Core actin filaments point 

unidirectionary away fiom the membrane allowing them to pull the plasma membrane 

inward when needed (276). It is known that changes in actin concentration within an 

enterocyte corresponds to changes in microvillus length (275, 353). Mooseker et. al. 

(1982) demonstrated that addition of excess actin monomers to isolated membrated brush 

border causes an acute increase in microvillus length (275). 



G-actin forms a pool that is distributed diffusely throughout the cell cytoplasm 

whereas F-actin is found at distinct sites such as i) the terminal web and the microvilli 

core, ii) in association with cadherins at the zonula adherens forming the actin-myosin 

ring, iii) along the lateral cell surface including tight junctions and iv) in large bundles at 

the base of the cytoplasm in association with integrins at focal adhesion sites (400). F- 

actin cores have binding 'hot spots' where certain bundling proteins are more likely to 

bind than others (262). Villin and other bridging filaments attach laterally in a regular 

array, spread every 33nm down the length of the core (44). Many proteins are found to 

be associated with the microvillus actin core, including an 80kD epidermal growth factor 

(EGF) receptor protein tyrosine kinase substrate termed p81 (141, 385). EGF addition to 

rabbit jejunum is able to increase microvilli height within five minutes indicating the 

rapidity of cytoskeleton in responding to cellular signals (80, 156). In addition, focal 

adhesions where actin attaches to the substrates through the plasma membrane are known 

to be enriched in tyrosin-phosphorylated proteins such as vinculin, talin, paxillin, tyrosine 

60v-src kinase pp and pp125FAK (33 1). These proteins serve as sites for actin regulation and 

function, which are extremely rapid. 

F-actin plays a critical role in the enterocyte cytoskeleton. Abnormal intracellular 

expression of actin has been implicated in cell transformation, metastatic potential, 

motility, fibrotic diseases, familial amyloid polyneuropathy and scar formation (1 9 I). In 

fact, the internalization of many bacteria, including Salmonella typhimurium, Proreus 

mirabilis and Escherichia coli depend on F-actin (1 1 7). F-actin is a common target for 

many pathogens and intestinal pathogens, such as shiga toxin-producing E. coli 

(STEC)9Shigella, Listeria, Yersinia, and Closrridm d@ciZe which cause diseases 



associated with the rearrangement of F-actin in intestinal cell cultures (28, 161, 162, 

188). 

B. Villin 

Villin is a 95kD polypeptide with a 'core' domain made up of six repeats and a 

unique thermostable COOH-terminal headpiece required for F-actin bundling activity 

(126, 274). Villin saturates actin filaments at 2 or 3 molecules of villin to one molecule 

of actin, and decorates the M l  length of actin filaments, even in the rootlet, to cross link 

actin (47, 256). In the enterocyte, actin is bundled into hexagonal arrays by bundling 

proteins such as villin, fimbrin and a recently discovered lOOkD protein known as epsin 

(22). Of these, villin has been implicated to have a critical regulatory role in the 

organization of epithelial brush border rnicrofilaments. During embryonic development, 

villin is the fust cytoskeletal protein to be apically localized (84). Similarly, in the course 

of enterocyte migration and differentiation fiom the crypt towards villus, the amount of 

villin increases dramatically and is concurrent with the appearance of brush border 

microvilli (35). Villin is also important during the restitution process where it is found at 

the leading edges of migrating cells in vivo and in v i m  (239). There is also a temporal 

decrease in cortical F-actin and an increase in cytoplasmic villin which parallel the 

phenotypic changes in cell shape throughout the restitution process (5). 

The importance of villin to the cytoskeleton architecture was W e r  demonstrated 

in an elegant experiment by Franck and his colleagues (1990) using cultured cells that do 

not normally express villin but do contain actin. When villin was microinjected into 

these cells, there was a rapid and long lasting change in cell morphology, including 

reorganization of myosin, tropomyosin, a-actinin, and fimbrin normally associated with 



stress fibers, as well as the reorganization of actin into cortical structures such as 

microspikes and large surface microvilli (122). In separate experiments, Friederich et. al. 

(1989) demonstrated that microinjection of villin into fibroblast also led to the formation 

of microvillar-like structures (125). Additionally, the use of villin anti-sense rnRNA in 

Caco2 cells blocks the formation of microvilli, and the localization of enzymes sucrase- 

isornaltase to the apical plasma membrane (84). Evidence also exists for the redundancy 

of villin as a bridging protein. The targeted disruption of the villin gene in mice indicated 

no impairment to the morphogenesis of microvilli (304). This was expected as the 
. . 

developing intestinal cells in vivo were likely able to respond to, and compensate for the 

loss of villin by other actin bundling proteins such as fmbrin or epsin (304). In addition, 

another actin bundling protein, advillin, which is also a member of the gelsolin family 

that villin belongs to, has been implicated to play a compensatory role which may explain 

the near normal phenotype observed in villin deficient mice (252). 

Villin has dual properties in response to ca2+ binding and has been described as a 

schizophrenic protein in regulating the integrity of the cytoskeleton (256). At 

intracellular ca2+ concentrations less than lOnm villin cross-links actin filaments into 

bundles, however at concentrations greater than lpm villin binds to and caps the barbed 

fast assembly end of the filament (101,256). By capping the barbed ends of actin, villin 

fragments actin, and also plays a role in regdating actin turnover. 

A pool of villin is associated with the plasma membrane, capable of tyrosine 

phosphorylation and association with phospholipase C-yl, which is involved in early 

aspects of cell signalling via the signal transduction pathway. In addition, villin in 

response to stimuli has been shown to associate with polyphosphoinositides, especially 



phosphoinnositol l,4,5-bisphosphate (PIP2) (2 I 1). In vitro studies have demonstrated 

that the major effect of PIP2 on villin is to inhibit its ability to sever actin filaments (192). 

Unequivocally, the differential activation of severing and nucleating activities in response 

to changes in calcium and polyphosphoinositides which are often the immediate 

consequence of cell stimulation, place villin directly in the pathway between receptor 

activation and cytoskeletal remodelling, and as indicated by ca2+-dependence, villin- 

mediated actin cytoskeletal disruptions during pathophysiological states. 

C. Ezrin 
. . 

EPin is a cytoskeletal. protein which belongs to the ERM (ezrin-radixin-moesin) 

family and crosslinks actin core bundles to the overlying plasma membrane via specific 

groups of integral membrane proteins such as CD44, CD43 and ICAM2 (215). These 

integral membrane proteins are involved in cell-cell adhesion. For example, CD44 is a 

transmembrane receptor for hyaluronate which is involved in the homing and binding of 

proinflammatory cells (160). ERM proteins are found at the cytoplasmic surface at 

crucial locations between the plasma membrane and the underlying cytoskeleton (328, 

329). At these locations, ERM proteins are able to participate in reorganization of the 

cortical actin cytoskeleton, signal transduction and growth control (254). Only about half 

of the ERM proteins are located just beneath the plasma membrane where they function 

as membrane-actin cross-linkers; the other half assumes a soluble form in the cytoplasm 

and do not tightly associate with actin filaments (171,329). 

Ezrin was fist identified as a constituent of microvilli and in intestinal epithelial 

cells only ezrin and moesin are expressed (42, 375). The suppression of ERM proteins 

by anti-sense oligonucleotides causes a complete loss of microvillar structure from the 



cell surface indicating that these proteins play a key role in microvillar formation in 

general (362). Ezrin which is initially found in an inactive folded state is activated by 

tyrosine phosphory lation, serine/threonine p hosphorylation or p hosphoinositides (244). 

Researchers have yet to determine the exact mechanism of ezrin activation as ezrin is a 

phosphoprotein with multiple phosphorylation sites (45). In vivo and in v im,  ezrin has 

been shown to be phosphorylated by various tyrosine b a s e s ,  even by the EGF receptor 

(45). To complicate matters further, the GTPase protein, rho, has also been implicated in 

the activation of ezrin for actin core binding, and may be involved upstream of the 

regulator from the ezrin-CD44 association (171). As rho reportedly regulates 

phosphatidylinositol turnover, control of actin based cellular events by phosphoinositides 

may in fact involve ePin (97). There is also a good correlation between phosphorylation 

of tyrosine or serine/threonine and the formation of microvilli and membrane ruffles that 

contain abundant ezrin (369). 

Interestingly, the correlation between epithelial physiology and ERM proteins was 

further strengthened by an experiment conducted by Kondo et. a/. (1997) who showed 

via immunofluorescence microscopy and biochemical analysis, that in the early phase of 

Fas ligand-induced apoptosis in cells expressing the Fas ligand, ERM proteins, including 

ezrh, translocate from the plasma membrane of microvilli to the cytoplasm concomitant 

with dephosphorylation of ERM proteins. Interleukin 1 p-converting enzyme (ICE) 

protease inhibitors were able to suppress the dephosphorylation as well as the 

cytoplasmic translocation of ERM proteins (215). The disappearance of microvilli has 

long been recognized as one of the common early events of apoptosis. In this study the 

researchers were able to indicate that during apoptosis, microvilla. disappearance is 



directly due to the cytoplasmic translocation of ERM proteins, particularly ezrin in 

intestinal epithelial which reflects changes that occur in the enterocyte cytoskeleton due 

to physiological processes. Recently, ezrin was found to be redistributed to the cell 

membrane and phosphorylated in epithelial cells infected with enteropathogenic 

Escherichia coli (106). The authours speculated that the phosphorylation of the 

redistributed ezrin is involved in transducing signals in the host cell (106). 

D. a-Actinin 

a-Actinin is ubiquitous in cells with F-actin, which a-actinin binds, cross-links 

and stabilizes (57). When bo&d with phosphatidylinositol 4,5-bisphosphate, a-actinin is 

activated and responds via an actin-gelating activity (129). The cytoskeletal protein a- 

actinin, is found closely associated with the zonula adherens, which is the junctional 

complex at the lateral margins of the cells (100). Specifically, a-actinin is found 

associated with the actin-myosin perijunctional ring where it may participate in anchoring 

the F-actin-containing ring to the membrane at this site (100). By cross linking the actin 

filaments in arrays of opposing polarities, a-actinin plays a pivotal role in the 

contractility of the actin-myosin ring (99). At the plasma membrane, a-actinin interacts 

with diacylgelycerol or palmitic acid (154). a-Actinin can also be found in microvillar 

core rootlets within the terminal web (99). However, in endothelial cells, a-actinin also 

mediates linkages between the plasma membrane and cytoskeleton via association with 

IC AM- 1, L-selectin, P 1- and P2- integrins in the intracellular focal contact-associated 

protein talin, vinculin and zyxin (163). 

Due to its close proximity to the plasma membrane, a-actinin can be utilized as a 

candidate protein in defining cytoskeletal responses underneath the plasma membrane. 



Experiments conducted utilizing attaching and effacing E. coli (EPEC) which causes 

lesions characterized by the destruction of the microvillus membrane and intimate contact 

between bacteria and host plasma membrane, resulted in an aggregation of host a-actinin 

into the cytoplasm of epithelial cells (189). In EPEC infected cells, the rearrangement of 

a-actinin occurred in conjunction with rearrangement of cytoskeletal F-actin and is likely 

indicative of the pathogenic affects of the bacteria (1 89). 

1.3.3. Enterocyte Tight Junctions 

The enterocyte tight juqction is responsible for maintaining the bamer firnction 

and polarity of the epitheliuni Tight junctions are located at the apex of epithelial cells 

where they join their neighbours and measure approximately 1-2 pm in depth (243). 

Tight junctions are relative, not absolute seals to passive permeation through the 

paracellular space, thus representing the rate limiting bamer to passive permeation. The 

tight junction are actually a series of barriers of 'kisses' where neighbouring cells join 

and lie adjacent to the perijunctional actin-myosin ring. Solute permeation is restricted 

based on size and charge. As a consequence all epithelia with tight junctions have a 

measurable resistance and this resistance across the tight junction provides the easiest 

way to assess junctional ion permeability. The value of the transepithelial resistance 

depends on the true area of the epithelium, as such to correct for macroscopic or 

microscopic foldings which increase the area of the epithelium, the transelectrical 

resistance is expressed relative to the capacitance (81, 227). Monolayers of epithelial 

cells develop transepithelial electrical resistance as their tight junctions become 

assembled and sealed. 



In freeze-frafture replicas, tight junctions appears as a network of anastornosing 

strands parallel to the free surface of the epithelium, a pattern suggesting that each strand 

constitutes a barrier to the passage of ions and molecules through the paracellular 

pathway (174). There is evidence that actin is involved in the functional regulation of the 

tight junction. Drugs such as phalloidin and cytochalasins B and D which disrupts actin 

organization within the cell have been shown to cause concomitant perturbations of 

paracelIular resistance and in junction fieeze-fracture fibril organization (41, 237). In 

addition, the apical membrane ~a+-coupled transporter of glucose and amino acids into 

the enterocyte, triggers via an unknown mechanism, a contraction of the actin-myosin 

cytoskeleton associated with junctional complexes which then causes an increase in tight 

junction permeability in the presence of glucose (239). It is likely that tight junction 

association to the cytoskeleton of enterocytes occur within the terminal web and at sites 

where cells adjoin, known as kiss sites, with microvillus actin rootlets. In fact an intact 

apical submembranous cytoskeleton is a prerequisite for proper functioning of the tight 

junction. More specifically, microfilaments, rather than microtubules are involved since 

colchicine does not affect assembly of tight junctions in vitro (41). The microfilaments 

are thought to attach to the tight junction from the terminal web below it and as 

microfilaments contract or relax, junctional permeability is altered (238). 

There are several proteins associated with tight junctions. These include zonula 

occludens-1 (20-I), cingulin, and BG91 (9). Of these, 20-1 is the best described. 20-1 

is the first protein shown to be a unique component of tight junctions and is distributed 

exclusively along the margins of cell-cell contact in a continuous network (10). During 

replating of in vitro cultures, junction reassembly involves an upregulation in 20-1 



mRNA and protein levels (1 0). In situ hybridization of 20- 1 performed in mouse small 

intestine indicate that 20-1 mRNA expressions occur predominantly over the crypt zone 

in readiness for ZO-1 assembly into tight junctions as cells mature and migrate up the 

villus (242). 

In addition to creating barriers to the diffusion of membrane proteins and lipids, 

tight junctions also serve as an indicator of membrane integrity. Altered assembly and 

functional properties of tight junctions have been documented in a wide range of 

pathologic states including cancer, Crohn's disease and intestinal food anaphylaxis (9). 

Many researchers have also utilized the transepithelial electrical resistance created by 

tight junctions as reliable markers of epithelial permeability during disease states (1 17, 

118, 161, 162, 301,302,310). 

1.3.3. Epithelial Cell Cultures 

A. Human Colonic Adenocarcinoma (Caco2) 

The colonic adenocarcinoma czll line Caco2 is a cell line that is abIe to 

spontaneously differentiate in culture, and provides a reliable tool with which to study 

brush border assembly and intestinal cell functions (121, 300, 305, 412). As an in vitro 

model, Caco2 cells are useful as they form polarized monolayers and express well 

developed microvilli (1 0, 143, 184). Although colonic, Caco2 also express several 

markers characteristic of normal small intestinal cells, such as microvillar hydrolases and 

polarity (305). Currently, Caco2 cells are used widely in research including 

investigations in drug absorption, transport properties, interleukin production, microbial 

pathogenesis and many others. 



B. Small Intestinal Cells (SCBN) 

This cell line is the first non-tumorigenic human small intestinal epithelial cell 

line to be isolated and grown in tight monolayers (295). SCBN was originally obtained 

from a duodenal biopsy of a male patient (B.N.) with .diarrhea of unknown aetiology. 

SCBN has been shown to form polarized monolayers, to express junctional complexes 

and disaccharidase activities as well as to have well developed microvilli (295). In 

addition, SCBN express cytokeratins, rnucin antigen, mRNA for EGF, interleukin-6 and 

vascular cell adhesion molecule-1 (295). Recently, SCBN has been shown to express a 
. . 

functional interleukin-:! receptor where IL-2 was able to modulate ion transport and 

cellular proliferation (290). Without doubt, SCBN is a novel, non-transformed epithelial 

cell line that has great potential within the research arena. 

1.4. Intestinal Disease States - Diarrhea 

It has often been noted that the gut is capable of colonization by a variety of 

pathogenic organisms, but is limited in its means of expressing an injured state. Dianhea 

is a common manifestation in intestinal injury. In some instances, such as the response to 

noxious and injurious agents, diarrhea is appropriate as it may act to flush out pathogens 

and toxins. Vibrio cholera produces an enterotoxin capable of binding to enterocyte GMI 

gangliosides located on the apical membrane (224). Once bound, the enterotoxin enters 

the host system to ADP-ribosylate the Gs subunit of the G-protein, which normally 

regulates host cell adenylate cylase in a hormone dependent manner. GDP-ribosylation 

renders adenylate cyclase inactive thus increasing cyclic AMP such that Cl* is actively 

secreted into the lumen and ~ a +  passively follows (224, 278). Physiologically, this 



simulates a high N~+CL- secretory condition within the lumen culminating in the secretion 

of water and the formation of secretory diarrhea. 

Malabsorptive diarrhea, on the other hand, are consequences of any disorder that 

intempts one or more of the states of digestion and absorption which include hydrolysis, 

membrane transports, cellular processing and substrate transport into the bloodstream or 

lymph system (38). The lack of nutrient or electrolyte absorption can be due to i) 

mucosal morphotogy abnormalities, ii) abnormalities in intestinal contractility and transit 

or iii) a lack of intestinal digestive enzymes or nutrient transporters due to genetic 

abnormalities in expression, 'increase in immature enterocyte n-unbers £iom abnormal 

epithelial cell turnover, or in response to disease states. In addition to decreased water 

absorption, the surplus of nutrients or electrolytes in the lumen can create an osmotic 

imbalance such that via osmosis, water will flow from the basoJateraI regions into the 

lumen of the intestine, enhancing the diarrhea associated with malabsorption. 

Furthermore, undigested nutrients can be fermented by luminal flora which also act to 

increase intralumind osmotic loads and by its acidity decrease transit times of bowel 

contents, further exacerbating malabsorptive diarrhea (38). The focus of this chapter is to 

present differing conditions of both non-infectious, and infectious malabsorptive 

diarrhea, involving some of the morphological and physiological conditions described 

above. 

1.4.1 Noninfectious Malabsorptive Diarrhea 

A. Crohn's Disease 

Crohn's disease (CD) is the major form of chronic inflammatory bowel disease in 

developed countries. Crohn's disease occur in young adults with an estimated prevalence 



of more than one per thousand inhabitants (59). To date, researchers remain uncertain as 

to how CD develops. However with an incidence in the United States increasing fiom 1 

per 100,000 to as high as 10 per 100,000 over the past 30 years, CD remains a cause of 

concern for industrialized countries where it occurs in vastly higher numbers than in 

developing countries (214). Despite this, CD is not considered communicable but it is 

recognized to occur in rates that are higher in Caucasians than people of Afican descent, 

Hispanics, Asians and American Indians (214, 258). in either case, both sexes are 

affected equally with the majority diagnosed before age 30 (214). There is a familial 
, . 

tendency in CD with a concordance of about 50% in genetically identical twins and to a 

lesser degree with non identical twins and more remote relationships (376). So far the 

loci that appear to be associated with the condition is an area on chromosome 16 and on 

chromosome 3, 7 and 12 (185). The genes in these areas were found to include genes 

controlling growth factors and responses to growth factors as well as those regulating the 

structure of mucin glycoprotein adhesion molecules and cytokine receptors. Other 

factors associated with an increased incidence of developing CD include nutritional or 

dietary factors such as breastfeeding, sugar and food additive intake as well as 

environmental factors such as cigarette smoking, oral contraceptives, hygiene, 

environment, climate, pollution and stress (1 19,226, 349). 

The symptoms associated with CD includes abdominaI distention, flatulence, 

cramps and bouts of malabsorptive diarrhea associated with abdominal pain, fever and 

weight loss (65, 214). Also associated with CD is an increase in intestinal permeability 

(279, 3 12, 364, 380). CD can occur anywhere in the gastrointestinal tract and has a 

predilection for the temi.mil ileum and ascending colon, but affected patients often 



demonstrate well demarcated segments of diseased bowel separated by healthy (skip) 

zones (202, 356). In the diseased regions, a combination of longitudinal and transverse 

fissures/ulcers with intervening rnucosal edema produces the characteristic cobblestone 

appearance which aid in the diagnosis of CD (33). Other complications of CD include 

recurrent, symptomatic bowel obstruction, toxic megacolon, sepsis associated with 

persistent abscesses or fistulas and medication failures (214). Unfortunately more than 

half of all CD patients require at least one surgical procedure involving the removal of 

intestinal sections riddled with lesions or fistulas (2 14). 

How CD is initiated .or persists remain unknown. However, researchers have 

suggested a role for pathogenic organisms. It was found that isolated bacterid cell wall 

products injected into the wall of the intestine, thus bypassing the barrier function of the 

epithelium, was able to cause a chronic relapsing inflammatory condition which 

superficially resembles CD (407). In addition, 'knockout' mice that lack the genes for 

interleukin-10 are also prone to developing chronic inflammation of the bowel, but what 

is most interesting is that this inflammatory condition can be prevented if the animals 

were reared in a bacterial fiee environment (220, 326, 355). This lead researchers to 

conclude that there may be a single exogenous agent, such as Mycobacterium 

paratuberculosis or a combination of antigens in the gut, perhaps bacteria derived, which 

could initiate an inflammatory response, enhancing mucosal permeability and permitting 

greater antigen ingression and the fiuther stimulation of the inflammatory process (1 75, 

320). 

That the inflammatory host response plays a critical role in the disease progress is 

clearly illustrated by research that shows i) an increase in T cells (321), ii) increase in 



plasma cells expressing IgG and IgM in the lamina propria (37), iii) a denser population 

of macrophages (352) and iv) an increase in the number of acute inflammatory cells, 

predominantly polymorphonuclear leukocytes (330). In parallel there is also an increase 

in the number of proinflammatory molecuIes present within the cells, in interstitial fluid 

and in the lumen of adjacent gut (1 75). Abnormal numbers of activated B lymphocytes 

have also been detected in the peripheral blood of CD patients (406). Activated 

inflammatory cells within the mucosa can firrther initiate or perpetuate inflammation by 

direct cell-mediated processes, including cytotoxicity for other cell types via the release 

of immune mediators such aj IL-I, IL-2, IL-6, IL-8, TNF-a, activated oxygen radicals, 

and reactive nitrogen metabolites which have been shown to induce oxidation and 

inhibition of essential epithelial cell functions as well as disrupting actin cytoskeleton and 

tight junctions (36,40, 128, 147,259, 263,327). Undoubtedly, the immune function of 

the patient plays a large part in prolonging as well as perpetuating the disease state. 

However apart from the immune mediators involved in directly initiating diarrhea, 

malabsorptive diarrhea associated with Crohn's Disease is largely due to immune 

mediated villus atrophy and crypt epithelial cell destruction (356) as well as a diffuse 

shortening of enterocyte microvilli with the latter seen in models of Crohn's disease 

(103). It is well established that Crohn's patients can suffer from a reduction in brush 

border enzyme activities (15, 148). The loss of physiologic function of the intestine due 

to these morphological abnormalities and loss of enzyme activities, dramatically reduces 

the potential for nutrient and water absorption. 

To date, corticosteroids remain the mainstay treatment of active CD, effectively 

dampening the host immune response, and results in a rapid initial reduction of symptoms 



in 70% of patients. However, focus is now being turned to cytokine therapy including the 

use of anti-cytokines such as anti-TNF-a or by using modified cytokines such as 

recombinant IL- 10 which act to inhibit pro-inflammatory cytokines (356,358,387). 

B. Celiac Disease 

Celiac disease also called gluten enteropathy is an intolerance in genetically 

susceptible individuals to certain storage proteins found in cereals including wheat, 

barley and rye (21, 134). A change in diet with the complete avoidance of gluten intake 

can result in a rapid response within one to two weeks, with disaccharidase deficiencies 

resolving upon epithelial regeneration. In a multicenter study involving 36 centers from 

22 European countries, celiac disease was demonstrated in an average of about 1 in 100 

live births with a range of one in 250, to one in 4,000 in the participating countries (144). 

In Asia and Africa, celiac disease is rare, but in all populations celiac disease in females 

out number males two to one (2 1). 

The storage proteins in gluten associated cereds are found in the alcohol soluble 

fraction as gliadins (wheat), secalin (rye) and horden (barley) (134, 249). Collectively 

they are known as prolamines, and are thought to be the most responsible for triggering 

or exacerbating celiac disease. Gluten is found in bread, cereals, pasta, biscuits and even 

as a binder in some medications (177). Oats which have 5-10% of prolamines, versus 

50% with wheat, are considered to be either less toxic or not toxic at all (340). More 

distantly related grains such as maize, rice and millet show no evidence of toxicity (134). 

The intolerance in celiac disease is genetically predisposed with the prevalence of 

celiac among first degree relatives being approximately lo%, with as many as 75% of 

monozygotic twins found to be concordant with the disease (16,306). Researchers have 



since found a strong association of celiac disease with HLA class II molecules, in 

particular HLA-DQ2 and -DQ8 where more than 90% of celiac patients have the D Q 2  

heterodimer encoded by A1*0501, B1*0201 (347). Yet, celiac disease is not limited to 

HLA susceptibility. In a study involving the predisposition of siblings to celiac it was 

found that the theoretical relative risk calculated from the known carrier frequency for 

HLA-DQAl*050 1, 8 1 *020 1 is approximately 1 in 20, however, the actual risk of celiac 

in siblings is as high as 1 in 4, thus indicating that celiac disease is a polygenic disorder 

requiring both HLA and non-HLA susceptibility genes (183). This observation is 

supported by the fact that 20% of the general population who do not suffer fiom celiac 

disease also carry the risk alleles encoding the HLA-DQ, further indicating that other 

genes outside the HLA region are involved in susceptibility of celiac disease (249). 

In celiac disezse the mucosal folds are greatly diminished and thickened in the 

small intestine (371). Other small intestinal abnormalities seen in celiac disease include 

i) partial to total villus atrophy, ii) elongated crypts, iii) increased mitotic index in the 

crypts, iv) increased intraepithelial lymphocytes, v) infiltration of plasma cells, 

lymphocytes, mast cells, eosinophils and basophils in the lamina propria, vi) loss of 

nuclear polarity with pseudostratification of epithelial cells, vii) loss of brush border and 

viii) abnormalities in epithelial cell shape, which becomes flattened and cuboidal (39, 

371). Undoubtedly, these abnormalities are associated with immune mediated intestinal 

injury. It is thought that the prolamines in gluten-containing cereals bind to extracellular 

transglutaminase which catalyzes the transfer of an acyl group fiom gliadin, the glycine 

donor, to a nonspecific lysine acceptor, resulting in protein crosslinking. Here, 

antiendomysial antibody is directed to the transglutaminase and the T-cell epitopes of 



gliadin (95). In this way the transglutaminase acts as an autoantigen. Antigen presenting 

cells with the specific HLA-DQ2 class 11 molecules on their surface present the 

autoantigen to T cells thereby activating an auto-reactive T-cell population (196, 233, 

248). Activation of the immune response leads to upregulation of IL-2 receptor 

expression and the production of proidammatory cytokines IFN-y, TNF-a and IL-6 

which may W e r  stimulate the release of injurious inflammatory mediators (2 16, 2 17, 

357). In other studies, gliadin was found to have an early and immediate effect on 

cultured mucosal biopsies. This included an upregulation of ICAM-1 and HLA-DR 
. . 

expression on enterocytes a d  adjacent macrophages (247). The direct toxicity of 

gliadins is said to aid in precipitating the chain of events that activate T cells in the 

lamina propria which orchestrate the damage leading to enteropathy. Whether it is by a 

direct effect or immune mediated, the damage to the intestine of ceIiac patients includes 

the loss of normal intestinal mucosal architecture. In celiac patients the architecture of 

the small intestine is closer to that found in the colon, where villi is not as tall and crypts 

are much deeper. In addition the increased crypt mitotic activity indicates premature 

epithelial cell turnover, where the majority of cells are immature and lack disaccharidase 

enzyme expression. More importantly, there is a dramatic loss of absorptive surface area 

due to the loss of enterocyte brush border (89). The intestinal permeability in celiac 

untreated patients is typically higher, and is found to correlate with histological changes 

caused by celiac disease (3 93, 3 94). Cumulatively, these physiological abnormalities 

result in the perpetuation of malabsorptive diarrhea. 



1.4.2. Infectious Malabsorptive Diarrhea 

A. Yersinia enterocolificu 

Yersinia enterocolitica is recognized as a major cause of bacteria1 enteritis in the 

pediatric population and has been recovered from humans, animals, especially pigs and 

environmental sources such as infected water and in food including tofb, cow, and goat 

milk (251, 332, 337). The infection cycle involves the fecal-oral route fiom animal to 

man, person-to-person or from contaminated food or water (291). Once ingested, 

Yersinia enterocolitica colonizes and enters epithelial cells, reaches the lamina propria 
. . 

and muscularis mucosa, proliferates in reticuloendothelial cells, particularly in peyer's 

patches and causes ulceration (155). Invasion by Yersinia enterocditica is also 

dependent on F-actin, where the use of cytochalasin D will block the entry of Yersinia 

enterocolitica into the cell (409). 

The replication of Yersinia enterocolitica in host lymphoid tissue is dependent on 

the presence of a 70kb virulence plasmid that encodes a set of secreted proteins termed 

Yop's or Yersinin outer proteins which are responsible for mediating resistance to the 

host defense mechanism (309, 354). Yop E is capable of disrupting the actin 

microfilament structure which induces cell rounding and detachment from the 

extracellular matrix (324). Yop H on the other hand dephosphorylate host cell proteins 

thus subverting normal signal transduction processes of the eukaryotic cell (1 1, 3 1). 

Together, Yop E and H are largely responsible for the inhibition of phagocytosis and 

suppression of the oxidative burst of phagocytes (325). Yersinia enterocoIitica has been 

found to produce an enterotoxin, but this is not essential for disease production as strains 

without the enterotoxin is still capable of causing intestinal damage (332). 



Yersinia enterocolitica is characterized by weight loss and malabsorptive diarrhea 

with marked histologic and biochemical changes in intestinal mucosa which include i) 

extensive mucosal abscess formation and occasional ulcer formation in the absorptive 

epithelium, ii) crypt hyperplasia, iii) villus atrophy (291, 292), iv) loss of enterocyte 

brush border (55) and v) decrease disaccharidase enzyme activity (55, 292). The severe 

and diffuse loss of small intestinal brush border was found throughout the small intestine. 

Brush border height and surface area, determined by electron microscopy, were markedly 

decreased in infected animals even in areas where there were no surrounding abscesses 
. . 

(55). In addition, the increase in crypt proliferation indicated that there was no delay in 

cell maturation determined by N~%+ATP~S~  and thymidine kinase activity which are 

markers of mature enterocytes (291, 292). Furthermore, decrease in disaccharidase 

activity was out of proportion to the degree of mucosal injury, indicating that the loss of 

villi done cannot account for the degree of disaccharidase impairment (55, 291, 292). 

Cumulatively, this suggests that the malabsorptive diarrhea associated with Yersinia 

enterocolitica cannot be accounted for by morphological alteration to the mucosa or to 

increased epithelial cell turnover with an increase in immature enterocyte numbers. 

Instead the pivotal cause of malabsorptive diarrhea in Yersinia enterocolitica infection 

appears to be due to a d i f k e  loss of brush border, directly decreasing available 

absorptive surface area resulting in maldigestion. The mechanism of disease injury is 

suggested to be due to the direct effect of the organism, to the production of cytotoxins or 

proteases, or as a result of the inflammatory response fiom proteolytic inflammatory 

agents (291). It is attractive to W e r  speculate that the damage and decrease in 

microvilli likely involves enterocyte regulation of its architectural cytoskeletal proteins, 



especially in light of the fact that Yersinia enterocolitica is known to affect cellular actin 

(3 24). 

B. Rotavirus 

Rotavirus belongs to the Reoviridae family and is the most common pathogen 

responsible for hospitalization due to diarrhea (297). In the United States alone this 

amounts to more than 26,000 people a year (297). Viral gastroenteritis is the leading 

cause of infant mortality in developing countries, where globally, rotavirus is the most 

common cause of malabsorptive diarrhea in children under two (91). Like most 

infectious agents of the gastrointestinal tract, rotavirus is spread via the fecal-oral route 

where virus particles shed in large quantities in stool for up to eight days and is able to 

survive for weeks on environmental surfaces including those found in hospitals and 

institutions (9 1). 

Rotaviral enteritis is characterized by fever and vomiting with a duration of one to 

three days, which usually precedes the onset of malabsorptive diarrhea capable of lasting 

four to seven days (178). In children, diarrhea of this duration is capable of causing 

severe dehydration, as such treatment usually involves the use of oral rehydration 

therapy. 

Rotaviruses have limited tissue tropism. The virus infects mostly mature 

enterocytes located towards the apical area lining the villi of the small intestine (145). 

The infection is associated both in vivo and in vitro with a series of subcellular 

pathological alterations. In vitro, cytopathic process by rotaviruses include features 

coincidental with apoptosis, such as plasma membrane blebbing, peripheral condensation 

of chromatin and nuclear fragmentation (359). Physiologically, cytopathic processes in 



rotaviral infection causes a flattening of epithelial cells, villus atrophy, crypt hyperplasia, 

microvilli aberrations and an increase in inflammatory cells in the lamina propria (145, 

199, 271). The host inflammatory response is likely to perpetuate diarrhea as rotaviral 

infection is able to induce increased secretion of IL-8 and RANTES (regulated upon 

activation normal T cell expressed and secreted in vitro) (64). Incidentally, IL-8 and 

RANTES are the most potent chemoattractant for intraepithelial lymphocytes able to 

release more inflammatory mediators as well as toxic metabolites. The initial serum 

antibody response to rotaviral infection is the IgM class, but the local IgA immune 
. . 

response remains the critical factor in generating protective immunity after natural 

infection (91, 1 12). 

The malabsorptive diarrhea associated with rotaviral infection was initially 

thought to be due solely to an increased number of immature enterocytes (92, 145, 271). 

Rotaviral infection in piglets, suggests that malabsorptive diarrhea occurs due to cells that 

fail to differentiate and mature as they migrated at an accelerated rate up fiom the crypts 

to replace shed cells (92). Concordant with these findings, it has also been shown that 

activities of sucrase-isomaltase, lactase and maltase-glucoamylase are fkequently 

decreased during and after infection (83, 92). Interestingly, the low disaccharidase 

enzyme activity occurs without significant enterocyte destruction at the apical portion of 

villi (20). In light of this, efforts have been made to identify the mechanisms involved in 

malabsorptive diarrhea during rotavirus infection. In a study conducted on Caco2 cells, 

researchers showed that rotavirus infection specifically and selectively decreased the 

activity and expression of apical sucrase-isomaltase without altering the activity and 

apical expression of other brush border hydrolases including y-GlutamyI-traflspeptidase, 



alkaline phosphatase, amino phosphatass and dipeptidyl peptidase IV (198). The 

selectivity of rotavirus in decreasing sucrase-isomaltase activity stems fiom the fact that 

sucrase-isornaltase, unlike the other brush border hydrolases, is directly targeted fiom the 

transgolgi network to the apical membrane thus circumventing delivery to the basolateral 

membrane and subsequent delivery to the apical membrane via transcytosis (257). The 

authours suggest that rotaviral infection perturbs the transport of sucrase-isomaltase from 

the transgofgi network to the brush border membrane. Concurrent with sucrase- 

isomaltase decrease in activity and expression, rotavirus was able to disrupt apical F-actin 
. . 

and villin, where villin staining in infected cells had irregular subcortical staining (198). 

Past research conducted in cultured cells have also indicated rotaviral-induced F-actin 

and villin rearrangement, where rearrangement was due to an indirect change in the 

organization of the cytoskeleton via biochemical events involving the increase of 

intracellular calcium which is known to modulate microvilli alterations (266,274,370). 

Taken together, the research on rotaviral infections indicate that malabsorptive 

diarrhea is multifactorial, involving an increase in immature enterocyte number, host 

immune response, a decrease in absorptive surface area via microvilli disruption and the 

selective decrease in sucrase-isomaltase expression and activity, with the latter factors 

likely due to cytoskeletd remangement in the apical portion of the enterocyte. As 

rotaviral infection is also able to cause cytopathic responses in enterocytes emulating 

apoptosis, it is tempting to speculate that the cytoskeletal rearrangement associated with 

infection is indirectly due to increased intracellular calcium release initiated by rotaviral 

induced cell apoptosis. 



C. Cryptosporidium 

Cryptosporidiurn panrum is an apicornplexan parasite first reported in humans in 

1976 (87). The parasite is able to cause self limiting diarrhea in imrnunocompetent 

persons, but severe life threatening disease in immunocompromised individuals (69, 

2 10). The prevalence of cryptosporidiosis is highest among young children and Acquired 

Immune Deficiency Syndrome (AIDS) patients (87, 231, 285). Infection in Europe and 

North America is between 1% and 3% but is much higher in underdeveloped countries, 

ranging fiom 5% in Asia to 10% in Afi.ica (88). Transmission occurs by the fecal-oral 

route with the ingestion of the thick walled oocysts which are highly resistant to the 

environment (136). Oocyst can be found in as many as 87% of raw water samples and 

27% of drinking water samples, as oocyst are resistant to chlorination (222, 223). 

Consequently, outbreaks involving swimming pool as well as chlorinated drinking water, 

such as the outbreak of cryptosporidiosis in Milwaukee (1993) where 400,000 people 

were infected, can occur (253,260,350). 

Once ingested, oocyst are able to excyst and release sporozoites which penetrate 

enterocytes to develop into trophozoites beneath the host cell membrane while remaining 

extracytoplasmic. In this location the parasite can derive nutrients while minimizing 

immunologic detection (88). The sporozoites are also able to travel up the biliary tract of 

AIDS patients to infect epithelial cells lining the gall bladder and bile ducts to cause 

injury (231). Cryptosporidium has also been detected in the pharynx, esophagus, 

stomach, duodenum, jejunum, ileum, appendix, coIon, rectum, and respiratory tract of 

humans (90). As such it is not difficult to understand the potential for resulting in Life 

threatening disease in AIDS patients or other immunocompromised patients, not solely 



fiom malabsorptive diarrhea, but also due to other complications. Apart fiom diarrhea, 

clinical symptoms of cryptosporidiosis include anorexia, vomiting, fever, abdominal 

pain, loss of weight and mild to moderate degree of dehydration with the severity of 

symptoms dependent on intensity of oocyst shedding (90,3 15). Malabsorption of fat and 

carbohydrates is commonly seen in cryptosporidiosis (378). 

T cells have been shown to have a protective role in the clearance of the parasite 

(76). Athymic mice develop a persistent cryptosporidiai infection; specificaIly, selective 

depletion of C D ~ +  lymphocytes in mice causes chronic infection whereas mice depleted 

of CD~' lymphocytes or I3 lymphocytes were not susceptible to infection (261, 360,381). 

Additionally, elevated anti-cryptosporidium IgM, IgG and IgA antibodies have been 

demonstrated in the sera of infected patients (60). 

The pathogenesis of rnalabsorptive diarrhea in cryptosporidiosis is postulated to 

be due to several factors including villus atrophy and crypt hyperplasia as well as a defect 

in microvilli and to the release of metabolites of inflammatory nature, including TNF-a 

and prostaglandin E2 which may promote intestinal secretion associated with 

malabsorption (12, 13, 137, 146). In Caco2 monolayers, Cryptosporidium was able to 

induce injury to the brush border as well as increase transmonolayer permeability with a 

significant fall in electrical resistance 24h and 48h post infection (146). Incidentally, 

Cryptosporidilrm in human biliary epithelial cells were found to induce apoptosis (77). 

Whether this indicates a potential mechanism for epithelial injury affecting permeability 

as well as defects in the microvilli which plays a pivotal role in malabsorption of fats and 

carbohydrates, has yet to be determined. 



Giardia was first identified in 1681 by Anton van Leewenhoek in his own 

diarrheal stool using one of his home made lenses (98). Currently we classify Giardia as 

belonging to the phylum zoomastigophora and it is thought to be the most primitive 

eukaryotic organism by molecular classification with the small rRNA subunit (345). The 

quadrinucleated cyst which is the infective stage, can be oval or round and is 

approximately 10 pn (293). Upon ingestion of cysts, excystation is triggered in the 

duodenum by exposure to acidic gastric pH and pancreatic enzymes trypsin and 

chymotrypsin (123). Each binucleated trophozoite can divide by binary fusion, causes 

mucosaI damage and, in the ileum, encysts via mechanism initiated by limited cholesterol 

availability in the latter regions of the intestine (403). The pear shape trophozoite is 

dorsally convex with a ventral sucking disk that is aided by the beating of its four pairs of 

flagella in creating a negative pressure to attach to mucosal staxfaces (107, 403). The 

motile trophozoites are capable of erratic tumbling and colonize the whole length of the 

small intestine to be encysted at the latter regions and excreted in the feces of 

asymptomatic and symptomatic Giardia-infected individuals. 

1.5.1. Epidemiology 

Giardiasis is the most common protozoal infection of the human intestine 

worIdwide with a prevalence of the parasite infecting the upper intestine of some 200 

million people worldwide (1,398). The parasite is most commonly found in infants and 

young children, and in developing countries where prevalence is a high as 20% - 30%, 
nearly 100% of children acquire G. Zamblia infections during the first two years of life 

(108, 165). Reinfection with different strains of G. Zomblia can occur, compounding the 



high infection rates with cycles of infection, clearance and reinfection with a 

corresponding nutrition insufficiency which acts as an additional risk factor in 

susceptibility to G. larnblia infection. In developed countries, infections are sporadic in 

campers and hikers who ingest contaminated water. Direct transmission is most common 

in infants and children in day care centers, schools and other institutions, as well as in 

public swimming pools or other circumstances where there is a breakdown in personal 

hygiene procedures (1, 293,308, 333, 365,403). The current prevalence in industrialized 

countries is 2% - 5% but a study in the United States indicates that this number is 

increasing (206). 

In all cases, reservoirs of Giardia include infected humans, contaminated surface 

water supplies and many wild and domestic animals are able to carry Giardia sp. 

indistinguishable morphologically, phenotypically and genotypically (5 1, 368, 404, 405). 

The prevalence of Ginrdia, apart fkom the many reservoirs and the ease of transmission, 

is also due to the environmentally resistant cysts which remain viable for at least two to 

three months in cold water and are relatively resistant to killing by iodine, ultraviolet 

light, and concentrations of chlorine used in water processing plants (165, 197). 

1.5.2. Clinical Manifestations 

The majority of individuals who acquire Giardia lamblia are asymptomatic but 

capable of shedding cysts (379). In most symptomatic patients, symptoms begin within 3 

- 20 (mean of 7) days and is self limiting within a two week period (107). 

Ixnmunodeficiency syndromes such as with AIDS, hypogarnrnaglobulinemia or 

agammaglobulinemia, and nutritional deficiencies are major contributors to the 

development of chronic infection (7,107,230,344,399). In acute and chronic giardiasis, 



symptoms include malabsorptive diarrhea with foul smelling, greasy stool, weight loss, 

flatulence and abdominal cramps, malaise, nausea and anorexia (107, 108, 170, 403). 

Giardiu Iczmblia is also known to increase gastrointestinal transit and smooth muscle 

contractility, which is a likely cause of cramping and decreased food intake (93). 

Uncommonly, extraintestinal manifestations such as reactive arthritis and biliary &act 

disease may occur (82, 135, 336). 

Malabsorption due to Giardia infection has been widely reported as early as 1926 

and can lead to malabsorptive diarrhea (8, 53, 58, 66, 102, 132, 133, 267, 269,277, 36 1, - .  
363, 391). In chronic giardiasis, steatorrhea, vitamin A and Bl2 as well as protein and 

carbohydrate malabsorption may also occur (7, 19, 61, 85, 245, 348). Even when 

infection is asymptomatic, malabsorption of fats, carbohydrate sugars and vitamins may 

occur with reduced intestinal disaccharidase activities persisting even after parasite 

eradication (1 70). 

1.5.3. Immunology 

Host factors, especially immunologic factors, are important in determining the 

severity of the response to parasites (344, 399, 41 1). The regulation of Giardia lamblia 

infection by the host immune response has been suggested based on these observations: i) 

development of severe symptoms in hypogammaglobulinemia patients (389), ii) 

acquisition of partial resistance to reinfection by experimental animals or spontaneous 

clearance of infection (190, 203, 282, 317, 396), iii) inability of experimental hosts 

immunosuppressed by prior treatment with corticosteroids, irradiation or antilymphocytic 

serum to eradicate the infection (3, 4, 25, 193), and finally iv) by passive transfer of 

immunity via immune cells (392). 



Partial resistance to reinfection in giardiasis is primarily due to anti-Gimdin 

antibodies including IgG, IgA and IgM in human sera, with the latter two also actively 

secreted (1 42, 167, 1 87, 194, 284). The theoretical protective effects of anti-Giardiu 

antibodies is in the potential inhibition of trophozoite attachment or in aiding the 

opsonization of trophozoites by complement (3 13,322). This suggestion is supported by 

research indicating that serum titers of IgG and IgA were higher in asymptomatic carriers 

indicating an increased ability to mount a specific response (299). Furthermore, it has 

been shown that patients who suffer fiom chronic giardiasis fail to develop significant 
. . 

levels of antibodies to surface associated trophozoite antigens (388). Research conducted 

using G. muris infections in rats and mice found IgA and IgG were able to coat the 

trophozoite flageIla and adhesive disc, thus reducing parasite motility and adhesion to the 

epithelium (109,205,229). The coating of G. muris by the immunoglobulins also aided 

opsonization by phagocytes and macrophages of the Peyer's patches (23, 166,313, 367). 

The immunoglobulins in these rodents, arise fiom plasma cells that originate from 

Peyer's patches B lymphocytes (62). In experimental giardiasis, B cell-deficient 

transgenic mice were unable to produce anti-Giardia IgA and could not resolve the 

infection (351). Other experiments using G. murk infected rodents further indicated a 

vital role for T-lymphocytes in the clearance of the parasite (166, 168, 204). Heyworth 

et. al. (1987) determined the population of T-lymphocytes most critical for clearance of 

the parasite is the C D ~ +  lymphocytes, as selective depletion of this population resulted in 

a chronic infection with excretion of large numbers of cysts (168). Corresponding 

research has also established that nude mice, in which Giardia infection is chronic, have 

a more profound deficiency of C D ~ +  lymphocytes than C D ~ +  Lymphocytes (63, 235, 



3 18). Other research has also supported these findings, postulating that the activation of 

C D ~ +  lymphocytes may be responsible for the induction of local antibody dependent 

effector responses since there is a corresponding increase in induction of C D ~ +  cells 

during the decline phase or latter phase of giardiasis (209, 392). Our current knowledge 

of a Giardia-induced immunological response has lead to the production of a vaccine 

@rs. M.E. Olson, D.W. Morck, H. Ceri, University of Calgary, AB, Canada). 

Despite the ability of M cells to ingest trophozoites, Giardia is too large a parasite 

to be ingested by macrophages and killed intracellularly via toxic reactive oxygen 
, , 

metabolites. The host immune system compensates by producing an easily diffusible 

chemical such as nitric oxide (NO) (1). Apart from producing NO, activated 

macrophages also produce TNF-a, 1L-1 and reactive oxygen metabolites which are 

potent chernoattractors capable of also causing mucosal damage (270,283). NO has been 

shown to be responsible for killing Giurdia trophozoites (1 15). 

The clearance and reinfection of Giardia is further complicated by the ability of 

the trophozoite to express variant specific surface proteins (VSP) (2, 13 1, 282). VSPYs 

can spontaneously change, are resistant to trypsin and chymotrypsin, and are also shed 

into the environment (280). Antigenic variation in Giardia is known to occur during 

human infections, where the loss of VSPYs occur at the time of humoral responses, hence 

enabling the trophozoite to escape host immune response (28 1,282). 

1.5.4. Pathology 

Mucosal biopsies and histological study of the small intestinal mucosa has 

revealed a complete spectrum of mcosal changes, fiom mild partial villus atrophy to 

sub-total villus atrophy which occurs in about 10% of patients with giardiasis (107). 



Crypt hyperplasia has been observed concurrently with the reduction of villus height (52, 

54, 66, 102, 132, 3 17). In addition, Giurdia affects mucosal morphology differently in 

various intestinal regions as well at different time points of infection. For example, 

during the acute phase of infection, it has been shown that elongation of the villi in the 

distal small intestine is seen simultaneously with villus atrophy in the upper gut (52, 54, 

1 13). Conversely, jejunal villus hypertrophy maybe accompanied by villus atrophy in the 

ileurn later in the course of rnurine giardiasis (133). Apart from demonstrating the 

amazing, compensatory abilities of the gut for alterations in other regions, these 
. .  

observations also suggest that-villus atrophy and the subsequent loss of mature absorptive 

epitheIial surface, may contribute to malabsorptive diarrhea in giardiasis. Yet, clinical 

manifestations, especially malabsorptive diarrhea have been seen in giardiasis in the 

absence of villus atrophy (54, 113, 182). Researchers postulated that Giardia might 

induce an increase in epithelial cell turnover, resulting in an immature epithelium 

incapable of expressing intestinal enzymes. This could result in the malabsorptive 

diarrhea similar to mechanisms of malabsorption seen in viral gastroenteritis (338). 

Undoubtedly, Giardia is capable of causing damage to epithelial cells. In vitro studies 

have indicated that Giardia causes: i) large lipid droplets in the cytoplasm of MDCK 

cells (70), ii) a reduction in alkaline phosphatase and disaccharidase activities of cultured 

epithelial cells (1 ll), and iii) changes in cytoplasmic granulation, vacuolation and 

pyknotic nuclei in epithelial (HeLa) and fibroblastic (Vero) cells (201, 3 14). In addition, 

Radulescu et. al. (1980) was able to illustrate cellular injury using only cell free filaates 

of Giardia trophozoites (314). However, using in vivo models of giardiasis, increased 

numbers of immature enterocytes were found only in the duodenum, but not in the 



jejunum or ileum, where there was a marked decrease in disaccharidase deficiencies. This 

indicates that delayed maturation of enterocytes may contribute to diarrhea but is unlikely 

to be the sole basis for rnalabsorptive diarrhea in giardiasis (54). 

It is widely accepted that Giardia is able to impair both mucosal and luminal 

intestinal enzyme activities, including rnucosal maltase, sucrase, lactase, saccharase, 

trehalase and alkaline phosphatase (8, 52, 54,66, 102, 1 1 1, 133, 195,341). Brush border 

and luminal enzyme deficiencies were shown to occur in vivo and in vitro, and can be 

induced by live parasites as well as soluble trophozoite extracts (24, 11 1, 207, 269, 335). 

Luminal enzymes such as trypsin and chymotrypsin, lipase and amylase are also impaired 

in giardiasis and are partly responsible for fat malabsorption (68,73,207,288,335). 

The controversy over whether Giardia is capable o f  causing secretory diarrhea 

continues today. Research on G. rnuris infected mice have reported Cl- secretion and lack 

of ~ a '  absorption in association with increased ca2' uptake and elevated calmodulin 

activity (138, 139). However, Giardia infected mice also experience a sifl~cant 

reduction in food intake during the acute stage of infection (52, 54). Starvation is able to 

sensitize the intestine to cholinergic agents or other secretagogues capable of increasing 

C1' and fluid secretion (408). Additionally, malnutrition alters the host parasite 

relationship to the detriment of the host (114). As such, in pair fed studies using G. 

Zamblia infected gerbils, no secretory functions were found to be significantly effected 

(50,54,343). 

Initially, the abnormal microvilli ultrastructure seen in Giardia infected animals, 

were thought to be due to trophozoite adherence. The ventral adhesive disk in contact 

with the microvilli was postulated to have caused a focal shortening and bending of 



microvilli. Once the trophozoite releases its hold on the rnicrovilli, 'footprints' of the 

area of attachment were visible. Giardia trophozoites directly adhering were thought to 

cause a depletion of microvilli with a concurrent reduction in mucosal disaccharidase 

enzyme activity and loss of absorptive sul-face area (71, 72, 265). However, it is not 

likely that these limited changes can account for the extensive, persistent and dif i se  

nature of enzyme deficiencies seen in this disease. In addition, the enterocyte is capable 

of rapid increase in microvilli height during EGF treatment indicating that the limited 

focaI distortions created by the suction disk of trophozoites can be easily and rapidly 

recovered in vivo (80, 156). Buret et. al. (1990;1991; 1992) have since shown by 

comparing transmission electron micrographs of the small gut of Giardirc-infected 

rodents at the same magnification, that Giardia causes a diffuse shortening of brush 

border of enterocytes along the entire small intestine, at sites of trophozoite attachment as 

well as in other sites. Most importantly, the reduction in microvilli height can be 

observed in the absence of any change in the height of mucosal villi. Moreover, 

persistent parasitic colonization of rodent duodenum conelates with persistent reduction 

of the brush border surface area and disaccharidase deficiencies, and as trophozoite 

colonization declines in the jejunum, recovery of the disaccharidase activities is 

paralleled by a simultaneous recovery of brush border alteration. This indicates that the 

pivotal limiting factor for small intestinal malabsorption and maldigestion is due to the 

diffuse Ioss of microvillus surface area. 

1.5.5. Pathogenesis 



There are many factors indicated in the pathogenesis of Giardia induced epithelial 

injury and associated diarrhea. The next section will cover some of the factors 

considered to be involved in the disease process. 

A. Colonization Factors 

Giardia has a surface mannose-binding lectin which may potentially contribute to 

epithelial damage (1 86, 208, 225). Experiments have indicated that dietary lectins are 

able to cause direct damage to microvillus membrane similar to those in giardiasis (107). 

Another colonization factor initially postulated in past research is that large trophozoite 
. - 

numbers bound to the intestinal absorptive epithelium created a mechanical barrier to the 

diffusion and digestion of nutrients (19, 265, 277, 391). Currently, malabsorption by 

mechanical obstruction is no longer considered pertinent as studies utilizing soluble 

trophozoite extracts were able to impair intestinal enzyme activities in rodents, as well as 

damage epithelial cells in vitro (24,201,207,269,3 14,335). 

B. Host Response 

Histological analysis of biopsies conducted in symptomatic patients indicate 

infiltration of the lamina propria by plasma cells, lymphocytes and polyrnorphonuclear 

lymphocytes, indicating the importance of host factors (403). The activation of the host 

immune response has the potential to affect mucosal architecture and morphology. The 

release of cytokines and other inflammatory metabolites can certainly cause similar 

physiological changes within the small intestine in giardiasis reflective of the 

morphological alterations seen in other inflammatory small intestinal diseases. Currently 

we know that IL-2 and IFN-y by themselves are unable to induce change in mucosal 

architecture but it is not known what role, if any, these cytokines as well as others 



released during acute infection may have in the pathogenesis of diarrhea during giardiasis 

(27,2 13). 

C. Bile Salts 

Giardia trophozoites are able to take up bile salts, which play an important role in 

the Giardia life cycle ( 1  10, 152, 153). The uptake of bile salts by trophozoites may 

reduce intraluminal bile salt concentrations, therefore decreasing pancreatic lipase and 

micellar solubilization of fat, thus contributing to fat malabsorption. An early study 

conducted in humans found an association between Giardia induced steatorrhea and free 

bile salts in their intestinal lumens (363). The investigation suggested that G. lamblia 

could deconjugate bile salts. However, unequivocal evidence has now illustrated in 

humans as well as in vitro that Giardia is unable to deconjugate bile salts (152,342). 

D. Giardia Secretory/Excretory Products 

Lysosome-like vacuoles line the plasma membrane of trophozoites. These 

vacuoles release hydrolases, including a thiol dependent proteinase similar to a cytotoxin 

found in Entamoeba histolytica (124, 228, 234, 298). Other secretory/excretory 

trophozoite products include two cysteine proteases found in trophozoite homogenates 

(401). A separate research group found that Giardia trophozoites produced a cysteine- 

rich protein which carries multiple repeats of a sarafotoxin-like motif at a telorneric 

position (74,75,384). In an in vivo experiment conducted utilizing oral administration of 

an avian strain of live Giardia trophozoites in adult mice, there was weight loss in the 

absence of an established infection in the mice (382, 383). The researchers concluded 

that this is consistent with either a toxin secreted/excreted by the parasite or a toxic 

response caused by the degradation of the parasite. Their former conclusion is justified 



by experiments conducted in vivo as well as in vim which utilized soluble trophozoite 

extracts or lysed trophozoites, and successfully induced damage in the absence of whole 

trophozoites (24, 70, 71, 201, 269, 3 14). Despite evidence for a secretory/excretory 

product, experiments indicate that Giardia Zamblia does not produce an enterotaxin 

which resembles the cholera toxin or E. coli heat-labile classes of toxins (343). However, 

Giardia secretory/excretory products may act by promoting clinical manifestations via 

damage to the protective mucus layer of the intestine, by interfering with host enteric 

defense mechanisms (50) or by disrupting host regulation of normal enterocyte kinetics, 
. , 

cytoskeletal architecture or cell cycling. 

1.5.6. Summary 

In summary, the mucosal and epithelial injury witnessed in giardiasis and a 

number of other disorders cause malabsorptive diarrhea. The pathogenesis or 

mechanistic of malabsorptive diarrhea multifactorial, involving mucosal architectural 

abnormalities, parasite colonization factors, the host immune response, and potential 

secretory/excretory products. Of these, research has indicated that the pivotal cause 

malabsorptive diarrhea is a diffuse loss of brush border which effectively decreases the 

available absorptive s d a c e  area, as well as removes the sites required to insert both 

disaccharidases utilized in carbohydrate reduction, and sodium-nutrient co-transporters 

involved in sodium and carbohydrate uptake fiom the lumen. 



1.6.0. Objectives of This Study 

Using an in vitro model system, the overall objective of this study is to determine 

the mechanistics of Giardia-induced epithelial injury. As diffuse loss of enterocyte brush 

border plays a vital role in causing malabsorptive diarrhea, the role of enterocyte 

cytoskeletal proteins involved in Giardia-induced epithelial injury will be investigated. 

The specific aims of this study are: 

1. To determine the transepithelial electrical resistance of cell monolayers grown on 

Transwell" filters, pre- and. post- incubation with Giurdia Zamblia trophozoites 

2. To investigate the effect of Giardia Zamblia on G-actin, F-actin, viIlin, ezrin and a- 

actinin 

3. To investigate the effect of actin polymerization inhibitors and calcium channel 

blockers on Giardia lamblia-induced epithelial injury 

4. To determine if Giardiu lamblia produces a secretory/excretory product responsible 

for epithelial injury 



2. MATERIALS AND METHODS 

2.1. Tissue Culture 

2.1.1. Small Intestinal Cells 

A. Small Intestinal Cells of B.N 

The small intestinal cell line used in this study was previously isolated from an 

individual with diarrhea of unknown aetiology (initials B.N) in New Castle, Australia 

(295). The cell line was called SCBN, and cultures were set up at the University of 

Calgary. Cells were used between passages 15 and 30. 

B. Growth and Maintenance 

SCBN cells were grown in Dulbecco's Modified Eagle's Medium OMEM) 

(Sigma, St. Louis), supplemented with 5% (or 10%) fetal calf serum, 100 pg/ml 

streptomycin, 100 U/ml penicillin, 0.08 m@ tylosin and 200 mM L-glutamine (all from 

Sigma, St. Louis). With the above supplements the medium is known as complete 

DMEM. Cells were incubated at 37°C and 5% Cot in 96% humidity (NuaireTM US 

Autoflow, Plymouth, h.IN) and grown in tissue culture treated vessels appropriate for 

each experiment. The media was replenished every 2-3 days. Cell monolayers were 

confluent by 3 days at which time the cells can be passaged, frozen down or utilized in 

experiments. 

C. SCBN Passaging 

Cells were passaged fiom monolayers grown on 25 cm2 tissue culture treated 

flask (Falcon) that had reached coduency. The monolayer was initially rinsed with 

sterile PBS depleted of calcium and magnesium (Sigma) before addition of lx-Trypsin- 

Ethylenediamine Tetraacetic Acid (EDTA) (0.5 g porcine =sin and 0.2 g of EDTA 4 



Na per litre) in cation free PBS (Sigma). Monolayea were incubated with trypsin for 

approximately 30 minutes or until the monolayer had detached fiom its surface. 

Trypsinization was terminated utilizing 5% DMEM and the cells were diluted to a 

maximum passage ratio of 1 to 10 or a seeding cell count of 5 x 10' cells /ml. Cell 

numbers were obtained using a hemacytometer. 

D. Cell Freezing and Storage 

SCBN cells were maintained and passaged as described above in 75 cm2 flasks 

(Falcon 3 1 1 1). After cell detachment, individual cells were spun down at 30 x g (4OC) 

(LE.C Centra-7R, Refrigerated Centrifbge). Supernatant was aspirated off before cells 

were resuspended in 1.5 mi serum free DMEM supplemented with 10% tissue culture 

grade dimethyl sulfoxied (DMSO) (Sigma). Cell suspensions were aliquoted into sterile 

cryovials before step wise freezing, -20°C (2 h), -85OC (overnight), and finally transfered 

into liquid nitrogen. 

Recovery of fiozen cells involved the removal of the cryovial fiom liquid nitrogen 

and the immediate immersion of the vial into sterile 37OC water, while agitating the vial. 

Once thawed the cells were added drop by drop into a 25 cm2 flask which already 

contained 20% DMEM pre-warmed to 37°C. The cells were incubated as described 

previously. 

2.1.2. Colonic Cells 

A. Colonic Adenocarcinoma Cells 

Colonic adenocarcinoma cells (Caco-2) were obtained fiom the American Type 

Culture Collection (ATCC HTB-37). Passage number indicated was 30, and all 

experiments were performed fiom passage 30 to 50. 



B. Growth and Maintenance 

Caco-2 cells were grown and maintained using procedures described for SCBN. 

Caco-2 celis were fed every 2-3 days and achieved confluency approximately 5 days after 

initial seeding. At this time Caco-2 cells could be passaged, frozen down or were ready 

to be utilized in experiments at a separate time. 

C. Caco-2 Passaging 

Caco-2 monolayers were passaged ftom large flask in the manner similar to 

SCBN described above. Caco-2 cells were diluted to a maximum passage ratio of 1 to 5 

or a seeding cell count of 1.6 x 1 o6 cells Jml. 

D. CeIl Freezing and Storage 

Caco-2 cells were passaged from 75 cm2 flasks according to procedures described 

above with the exception of a shorther trypsinization time of 20 minutes. Recovery of 

Caco-2 cells from fiozen storage involved procedures previously described. 

2.2. Parasites 

2.2.1. Growth and Maintenance 

Two strains of Giardia were used in all experiments. The Giardia lamblia strain 

NF obtained during an epidemic outbreak of human giardiasis in Newfoundland (Canada) 

was kindly provided by Dr. M. Olson (University of Calgary, Calgary (AB)). The 

Giardiiu lam blia strain S2, was originally recovered from a sheep (5 1). 

Trophozoites were grown axenically at 37OC in Diamonds TYI-S-33 (94) 

supplemented with 2.5 m g l d  pipracila (Cyanamid Canada Inc. PQ), 100 pg/ml 

streptomycin, and 100 U/ml penicillin in glass tubes. To maintain the lines trophozoites 



were passaged every 2 to 3 days. Confluent trophozoite tubes were placed on ice or 'cold 

shocked' for 20 minutes before transfer of 5000 trophozoites to 7.5 ml new media. 

2.2.2. Harvesting of Trophozoites 

Trophozoites were harvested at log phase by cold shock on ice (20 min) and 

centrihgation (10 min, 500 x g, 4OC) (Beckman Centrifuge). The pellet was washed 

twice in 4°C sterile PBS then resuspended in 5% DMEM, enumerated with a 

hemocytometer, and diluted to a concentration of 1 x 1 0 ~  trophozoites/ml. Experiments 

with lysed trophozoites required sonication (550 Versonic Dismernbrator, Fischer 

Scientific) on ice for 3 bursts; maximum setting, at 1 minute each. Trophozoite lysis was 

confirmed with a light microscope. 

2.2.3. Growth of Trophozoites in Reduced Medium 

As TYI-S-33 is toxic to epithelial cells (personal communication, Dr. Ann 

McDonnell, Queensland Medical Research Institute) trophozoites were grown in serum 

fiee DMEM reduced with 5mM L-Cysteine (Sigma), supplemented with 10% CLEX 

(Dextran Products), 100 pg/d streptomycin, and 100 Ulml penicillin and allowed to 

reduce for at least 2 h before exposure to trophozoites. 

TYI-S-33 was decanted fiom glass tubes containing trophozoites grown to log 

phase and replaced with equal amounts of the reduced medium. Trophozoite tubes were 

left to incubate at 37OC on its sides to encourage adherence to the glass sides. Afler 15- 

18h the trophozoite spent medium is collected and swimming or dead trophozoites 

removed via centrifugation (10 min, 500 x g, 4°C). To verify sterility, spent medium as 

well as the reduced medium was plated on blood agar plates and incubated overnight at 

37°C. 



2.3. Effects of Giardia kamblia on Epithelium and the Cytoskeleton 

2.3.1 TranswellTM Experiments 

A. Caco-2 and SCBN TranswellTM Cultures 

Cells were g r o m  on Transwell" filter units (Costar, Cambridge MA) which contained a 

0.33 cm2 semi-permeable filter membrane ( 3 . 0 ~  pore size) (Fig. 3). The 

filter units were incubated in 24-well cluster plates (Costar). Trypsinized SCBN (200~1; 

1 . 5 ~  10' cells/ml) or Caco2 (200~1; 3x l ~~cells/ml) cell suspensions in culture medium 

containing 10% fetal calf senun were added apically to the filter units. Each unit was 

placed in 500~1  fresh 10% DMEM @asolateral) and incubated at 37"C, 5% C02 in 96% 

humidity (NuaireTM). 

B. Confluence Analysis via Electrical Resistance 

Baseline electrical resistance for SCBN and Caco2 monolayers was determined at 

intervals over 13 or 20 days respectively to determine optimal time of confluency. 

Transepithelial electrical resistance was measured using an STX-2 Electrode (World 

Precision Instruments, FL) and an Epithelial Voltohmmeter (World Precision 

Instruments, FL). Resistance for each well was measured 3 times at each entry poa for 

the STX-2 Electrode. Transepithelial resistance was expressed as net ncm2 after 

subtraction of baseline resistance for TranswellTM membranes (33.6 G!cm2). Experiments 

were carried out when confluent cell monolayers reached >I00 ncm2 resistance. 



Figure 3: Diagrammatic representation of the TranswellTM filter system and the STX-2 

Electrode used to measure transepithelial electrical resistance. Resistance was obtained 

at each of three portals of entry towards the basolateral region and represented as an 

average. 
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C. Co-incubation with Giardia lamblia and Electrical Resistance 

Monolayers that reached transepithelial resistance reflecting confluency were 

used in all experiments. Trophozoites were harvested as previously described and diluted 

to a fmal concentration of 1 x lo6 trophozoites/ml DMEM and 2 0 0 ~ 1  of whole 

trophozoites or trophozoite lysates which were diluted after enumeration to 1 x lo6 

trophozoites/ml, were added to the apical side of confluent monolayers grown on 

TranswellTM filters. Controls received 2 0 0 ~ 1  DMEM vehicle. Preparations were 

incubated for 24 h at 37'C, 5% COz. 

Prior to measuring transepithelial resistance of confluent experimental 

monolayers, adhering trophozoites were removed with five washes of cold (4"C), sterile 

PBS. Monolayers exposed to vehicle alone or trophozoite lysates were also washed. 

This procedure ensured that adhering trophozoites would not affect electrical resistance 

measurements. Monolayer resistance for each well was measured from 3 STX-2 

Electrode entry ports. 

2.3.2 Cytoskeletal Proteins Involved in G. lamblia Induced Injury 

To circumvent the difficulties associated with the autofluorescence of TranswellTM 

filter membranes (not shown), monolayers were grown on 96 well tissue culture treated 

microtiter plates (Becton Dickinson Labware, NJ), or on Lab-tek tissue culture treated 

chamber slides with removabIe chambers (Ndge Nunc International) for epifluorescence 

analysis. Experiments were performed 4 days after seeding for SCBN and 9 days for 

Caco2 time at which each cell line exhibited high electrical resistance when grown on 

TranswellTM filters. 



Similar cell suspensions of whole trophozoites, trophozoite lysates or trophozoite 

spent medium were added to 96 well tissue culture treated microtiter plates (200pl) and 

left to incubate for 24 h at 37OC, 5% CO2- Difquick staining (Baxter Health Care 

Corptoration, Miami FL) for visualization under brightfield was conducted on 

monolayers incubated with trophozoite spent medium. Monolayer fixation for fluorescent 

microscopy was performed after trophozoites were removed by cold shocking, or in 

experiments using lysed products or trophozoite spent medium, immediately after 

removal of the suspension. , 

Monolayers were fixed with 2% Paraformaldehyde in PBS for 60 min at 21°C, 

and washed three times in sterile PBS. Cells were permeabilized (0.5% Triton X, 10 min 

21 OC) and washed in sterile PBS before fluorescent staining. 

A. Filamentous Actin (F-actin) 

F-actin staining was performed using methods described for G-actin as below. 

Fluorescent stain specific for F-actin, BODIPY R6G Phalloidin (1 :40 in PBS) (Molecular 

Probes, OR) was added apically to monolayers and left to incubate in the dark for 75 min 

at 25OC, and washed with PBS before visualization. 

B. Globular Actin (G-actin) 

The fluorescent stain for G-actin, Oregon Green DNAse I (0.3pM in PBS) 

(Molecular Probes, OR) was added apically to the monolayers and allowed to incubate 

for 75 min at 25°C in the dark. Excess stain was washed off using sterile PBS before 

visualization on a Zeiss Axiovert 25 (Zeiss Canada) inverted microscope equipped with a 

FITC filter. Photomicrographs were obtained on Kodak Elite III Elctachrome 400 film 

(Eastman Kodak Co., NY). 



C. Villin 

As the visualization of villin involves indirect immunofluorescence whole fetal 

bovine serum (FBS) was used to block nonspecific binding (20 min, 37°C). Before the 

addition of the antibodies, the monolayers were rinsed three times in sterile PBS. 

Monoclonal mouse anti-human villin antibody (1 :50 in DMEM) (Chemicon International, 

CA) was allowed to incubate for 1 h at 37°C. Excess antibody was rinsed off three times 

with sterile PBS before addition of Cy-3 conjugated anti-mouse IgG polyclonal antibody 

(1:200 in DMEM) (Sigma, St. Louis) for 1 h at 37°C. Excess antibody was rinsed off 

three times in PBS with aspiration of the final rinse. Negative controls for the 

monoclonal antibodies in question as well as for the polyclonal antibody-Cy-3 conjugated 

was also conducted to negate the occurrence of nonspecific staining. 

The plastic divisions of the chamber slides were removed and the slides were 

mounted with cover slips using aqueous mounting media (Aqua Poly/Mount, 

Polysciences Inc., Warrington, PA), and allowed to set overnight in the dark before 

examination under fluorescence, 

D. Ezrin 

Indirect immunofluorescence and wash procedures for ezrb was conducted using 

similar methods as for villin. Non-specific antibody binding was blocked using FBS 

before anti-human ePin antibody (0.5 pg/rnl in DMEM) (Transduction Laboratories, KY) 

was added apically and allowed to incubate for 1 h at 37°C. Cy-3 conjugated anti-mouse 

IgG polyclonal antibody (1:200 in DMEM) (Sigma, St. Louis) (1 h at 37°C) was used to 

visualize the protein. 



E. a-Actinin 

Monolayers were exposed to whole fetal cairseium to block nonspecific binding, 

and incubated with a-actinin monoclonal antibody (1:50 in DMEM) (Chemicon 

International, CA) for 1 h at 37°C. Excess antibody was rinsed off with sterile PBS 

before addition of AlexaTM 350 conjugate Anti-Mouse IgG (Molecular Probes, OR) 

polyclonal antibody (1 : 100 in PBS) for I h at 37°C. In separate experiments, monolayers 

were double-stained with BODIPY R6G for F-actin and for a-actinin using the 

successive steps for individual staining procedures as described above. Excess antibody 

was rinsed OR three times in PBS before visualization, 

2.4. Molecular Mechanism of Cytoskeletal Injury 

2.4.1. Role of Extracellular Calcium 

Experimental monolayers were pre-treated with the ca2+ channel blocker 

Verapamil hydrochloride (Fluka Biochemicals, Switz.) at a concentration of 100pM in 

5% DMEM as previously indicated (159). Control monolayers were incubated with the 

vehicle alone. After incubation live or sonicated trophozoites, or trophozoite spent 

medium, or the vehicle were added and co-incubated with the monolayers for 24 hours. 

Monolayers were stained for F-actin, human villin and human ezrin. 

2.4.2. Role of Actin Polymerization 

Monolayers to be used in experiments were pre-treated with the actin 

polymerization inhibitor CytochaIasin D (Fluka Biochemicals, Switz.) at a concentration 

of 1pM in tissue culture media for 10 min (at 37°C). Control monolayers were pre- 

treated with the vehicle. Mer incubation with the inhibitor live or sonicated 

trophozoites, or trophozoite spent medium, or the vehicle were added and left for 24 



h o w .  Visualization of F-actin, human villin and human ePin were performed on these 

monolayers. 

2.5. Scanning Electron Microscopy 

SCBN cells (1 x loS cells/ml; 1 ml) were grown on sterile 18 mm round, glass 

coverslips in 10% DMEM. After 5 days, concentrated Giardia lamblia (9 x lo6 

trophozoites) in 5% DMEM harvested as per methods described previously were added 

and allowed to co-incubate for 2 4  h at 37°C in 5% CO2. Control monolayers were 

incubated in 5% DMEM done. After incubation, samples were fixed in 2% 

(weightlvolume) gluteraldehyde in PBS @H 7.3), rinsed in PBS and postfixed with 2% 

osmium tetraoxide at 25°C for 2 h. Samples were rinsed in PBS and dehydrated via 

stepwise dehydration in alcohol: once in 70% ethanol, once in 90% ethanol and three 

times in 100% ethanol for 15 mixi each time. Dehydration was completed in 100% fieon, 

and samples were left to air-dry, sputter coated with gold-palladium (3 min.), and 

mounted on aluminum stubs. Samples were examined with a Hitachi 450 Scanning 

Electron Microscope at an acceleration voltage of 20 kv. 

2.6. Confocal Laser Microscopy 

All micrographs for confocal laser microscopy were obtained at I p increments. 

A. F-actin 

Monolayers stained for F-actin were analyzed by confocal laser microscopy 

(Imaging Facility, University of Calgary Medical School) using a Zeiss Axioplan 2 

confocal microscope (Excitation = 529nm; Emission = 547nm). 



B, Villin and Ezrin 

Monolayers stained for villin or ePin were analyzed using a Biorad View Scan 

DVC-SO confocal laser microscope ( Excitation = 552n.m; Emission = 56Snm) with a 

Diagnostic Spot I1 digital camera courtesy of Dr. D Muench (Biological Sciences, 

University of Calgary). 

C. a-Actinin 

Monolayers stained for a;actinin were analyzed with UV filters on Zeiss Axiovert 

lOOM Inverted LSM 510 confocal microscope (Excitation = 347nm; Emission = 441n.m) 

courtesy of Dr. X. Sun (~ross'cancet Institute, University of Alberta). 

2.7. Statistical Analysis 

Results were expressed as mean f. Standard error (SE) and compared by one-way 

analysis of variance (ANOVA) followed by Student-Newman-Keuls test for multiple 

comparison where appropriate. Significance levels were established at PS0.01. 



3. RESULTS 

3.1. Tissue Culture 

SCBN and Caco-2 cells formed confluent monolayers (Fig. 4). SCBN reached 

confluency after 3 days whereas Caco-2 required 5 days after initial seeding. The typical 

'cobblestone' pattern was clearly seen when monolayers achieved confluency. 

3.2. Effects of Giardia Iamblia on the Epithelium 

3.2.1. Electrical Resistance ' 

A. Confluency via Transepithelial Resistance 

In order to determine the optimal period for experimentation of confluent 

rnonolayers, electrical resistance of SCBN and Caco2 was measured over several days. 

Confluent SCBN monolayers reached highest electrical resistance (1 06-1 23 S2cm2) 3 to 4 

days post seeding (Fig. 5). Highest resistance in Caco2 (1 19-135 !2cm2) was measured 6 

to 9 days after seeding (Fig. 6). Unlike SCBN, Caco2 maintained high electrical 

resistance (>77 i2crn2) for up to 20 days post seeding. All subsequent experiments used 

monolayers at the time of peak electrical resistance. 

B. Transepithelial Resistance after Co-incubation with G. Iamblia 

Transwell" filters with confluent monolayers at high transepithelial resistance 

(2100 ncm2) were co-incubated for 24 h with G. lamblia trophozoites. Exposure to 

whole G. lamblia trophozoites (S2 or NF) significantly reduced transepithelial electrical 

resistance of washed SCBN and Caco2 monolayers (Fig. 7 and 8). In separate 

experiments, as the washing procedures significantly reduced baseline electrical 

resistance, polarized Caco2 monolayers were incubated for 24 h and 48 h with sonicated 



Figure 4: Micrographs of SCBN (A) and Caco2 (B) enterocytes grown to confluency on 

flasks. The typical 'cobblestone' morphology is clearly seen LI both cell lines. Original 

magnification, 200X. 





Figure 5: Electrical resistance of SCBN as a measure of confluency. Highest electrical 

resistance was observed between days 3 and 4. Values are mean i SEM from at least 

four monolayers. 
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Figure 6: Electrical resistance of CacoZ. as a measure of confiuency. Highest electrical 

resistance was observed between days 6 and 9. Values are mean + SEM from at least 

three monolayers. 
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Figure 7: Electrical resistance of SCBN monolayers, exposed for 24 h to vehicle 

(control) or to whole G. lamblia S2 or NF trophozoites, after wash with cold PBS to 

remove adhering trophozoites. Values are mean * SEM from at least three monolayers. 

*P<O.OOl vs. control. 
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Figure 8: Electrical resistance of Caco:! monolayers, exposed for 24 h to vehicle 

(control) or to whole G. IurnbZiu S2 or NF trophozoites, after wash with cold PBS to 

remove adhering trophozoites. Values are mean * SEM fiom at least three monolayers. 

*P<0.00 1 vs. control. 
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samples of G. Iamblia strain S2 and NF without the washing steps. Again, exposure to 

parasite lysates significantly decreased the transepithelial electrical resistance of Caco', 

monolayers (Fig. 9). The loss of electrical resistance was similar in either cell line, 

whether exposed to the G. lamblia strain S2 or NF. 

3.2.2 The Role of Cytoskeletal Proteins 

A. Filamentous and Globular Actin 

In order to assess the effects of G. Zambliu on the epithelial cytoskeletal proteins 

F- and G-actin, confluent SCBN and Caco2 monolayers were exposed to whole or 

sonicated G. Zamblia and stained for G-actin. Exposure of monolayers to Giardia induced 

flocculation of F-actin in SCBN or Caco:! (Fig. 10 and 11). A similar pattern of F-actin 

reorganization was seen in SCBN or Caco2 monolayers exposed to sonicated G. larnhlin 

regardless of the strain used (Fig. 12). Staining patterns for G-actin were not different 

between control or experimental monolayers exposed to G. lamblia in either SCBN or 

Caco2 cells (Fig. 13). 

B. Villin and Ezrin 

Whole G. lamblia trophozoites, fysates as well as spent medium affected the 

arrangement of the cytoskeletal proteins epin and villin. Control monolayers stained for 

ezrin revealed a perijunctional IocaIization of ezrin with a clear central area with no 

staining (Fig. 14). In monolayers exposed to trophozoite lysates or products there is a 

disruption of ezrin staining towards a more dispersed pattern. In addition to the 

abrogation of the central clearing distinct in control monolayers, exposed monolayers 



Figure 9: Electrical resistance of Caco:! monolayers exposed for 24 h (A) or 48 h (B) to 

the vehicle (control) or to sonicated G. larnblia trophozoites. Values are mean of at least 

four monolayers * SEM. *P<0.002 vs. control. 
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Figure 10: Representative epifluorescence micrographs of SCBN monolayers stained for 

F-actin with rhodarnin-phalloidin. In control cells (A), F-actin appears as diffise 

filaments located throughout each cell, as well as in areas representing the penjunctional 

actin ring. The cellular distribution of F-actin appears flocculated in monolayers exposed 

for 24 h to whole trophozoites (B). Original magnification, 400X. 





Figure 11: Representative epifluorescence micrographs of Caco2 monolayers stained for 

F-actin with rhodamin-phalloidin. Control cells (A) have diffuse F-actin staining in the 

central region becoming more concentrated at the perijunctional actin ring. Monolayers 

exposed to whole trophozoites exhibit F-actin flocculation (B). Original magnification, 

400X. 





Figure 12: Representative epifluorescence micrographs of Caco2 (A) or SCBN 

monolayer (B) stained for F-actin with rhodamin-phalloidin after exposure to lysed G. 

lamblia trophozoites for 24 h. Flocculation of F-actin occun in both colonic as well as 

small intestinal cells in vitro. Original magnification, 400X. 





Figure 13: Representative epifluorescence micrographs of SCBN monolayers immuno- 

stained for G-actin. Staining patterns were similar for sham treated control monolayers 

(A), or monolayers exposed to whole G. Iamblia trophozoites (B). In all cases, G-actin 

appeared as a pervasive green fluorescence throughout the cytoplasm of epithelial cells. 

Similar results were obtained with Caco2 cells (not shown). Original magnification, 

400X. 





also had dense staining of the membrane areas (Fig. 14). Reorganization of ezrin was G. 

Iarnblia strain independent and occurred in monolayers exposed to live trophozoites as 

well as in monolayers co-incubated with trophozoite products (Fig. 14). 

Visualization of villin revealed a disruption from an organized penjunctional 

location to one that is disrupted and reorganized towards the nucleus (Fig.15). In 

monolayers exposed to Giardia and stained for villin there were areas of cell-cell 

junction disruption, Ioss of contact with neighbouring celI as well as loss of cell integrity 

(Fig. IS). The staining patterns of villin in experimental monolayers were consistent 

irrespective of the G. lamblia strain used, or whether exposed to live trophozoites or 

trophozoite products (Fig. 15). 

3.3. Difquick Staining 

Difquick staining of SCBN monolayers exposed to trophozoite spent medium for 

24 h showed a loss of cell-cell contact (Fig. 16). 

3.4. Molecular Mechanisms of G. lamblia Induced Injury 

Confluent monolayers pre-treated with either veraparnil or cytochdasin D and 

exposed to G. Iamblia for 24 h also to exhibited localized F-actin flocculation (Fig. 17) as 

well as reorganization of the cytoskeletal proteins villin and ezrin (Fig. 18). Similar 

cytoskeletal reorganization patterns were observed whether SCBN or Caco:! monolayers 

were exposed to whole G. lamblia trophozoites or to sonicated trophozoites alone. 

Exposure of monolayers to drugs alone had no effect (Fig. 17 and 18). 

3.5. Scanning Electron Microscopy 

Ultrastruchual analysis by scanning electron microscopy revealed a difference 

between control epithelial monolayers and monolayers co-incubated with Giardia 



Figure 14: Confocal laser micrographs of SCBN monolayea immuno-stained for the 

cytoskeletal protein ezrin. Control monolayers (A) exhibited penjunctional localization 

of ezrin with a clear central area. In monolayers exposed to trophozoite lysates (B) or 

spent medium (C), ePin is dispersed within the central region and highly concentrated at 

membrane areas. Original magnification, 600X. 
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Figure 15: Confocal laser micrographs of SCBN monolayers immuno-stained for the 

cytoskeletal protein villin. In control monolayers (A), villin is organized in a 

penjunctional location. Upon exposure for 24 h to lysed G. lamblia (B) or spent medium 

(C), villin is disrupted and reorganized towards the nucleus. Exposed monolayen stained 

for villin exhibit areas of cell-cell junction disruption, and loss of contact with 

neighbouring cells (arrow). Original magnification, 600X. 





Figure 16: Difquick staining of SCBN monolayers after 24 h exposure to G. lamblia 

trophozoite spent medium. Control monolayers (A) exhibit close junctional contact with 

neighbouring cells. In contrast, monolayers exposed to S2 (B) or NF (C) spent medium 

have a loss of cell-cell contact with surrounding cells. Original magnification, 400X. 





Figure 17: Representative confocal laser micrographs of SCBN monolayers pre-treated 

with veraparnil (A and B) or cytochalasin D (C and D) and stained for F-actin with 

rhodarnin-phalloidin. After 24 h exposure to lysed trophozoites (B and D), despite pre- 

treatment with inhibitors, F-actin flocculation is still observed. Inhibitors alone did not 

affect F-actin staining (A and C). Original magnification, 400X. 





Figure 18: Representative epifluorescence micrographs of SCBN monolayers stained for 

villin and ezrin pre-treated with 100 pM veraparnil or 1 pM cytochalasin D and exposed 

for 24 h to sonicated G. lamblia. Exposure to veraparnil (not shown) or cytochalasin D 

(CYTO) alone did not affect villin or ezrin. Addition of verapamil (C and D) or 

cytochalasin D (E and F) does not inhibit rearrangement of villin or ePin in experimental 

monolayers. 
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lambliu (Fig. 19). Trophozoites were successful in attaching to the epithelial cells in 

vino and were abundant on the epithelial surface but no '"footprints" or disc impressions 

were seen in rnonolayers exposed to epithelial cells as previously found (70-72). In 

exposed monolayers there was abberant cell architecture or 'blebbing' on the surface, 

which was not apparent in control monolayers (Fig. 19). In addition, the microvilli of 

exposed monolayers appeared blunted and were less distinct at the same magnification, in 

contrast to contrd epithelial cells which had clearly distinguishable microvilli (Fig 19). 

Trophozoites revealed the typical assymetrical spiral ridge of their suction disc as well as 

the phlange and four pairs of flagella used in motility (Fig. 20). 

3.6. Confocal Laser Microscopy 

To help localize the intracellular site of F-actin rearrangement, monolayers were 

observed with confocal laser microscopy (Fig. 21). Despite varying cell heights within a 

monolayer, flocculated F-actin was consistently seen within the apical third quarter of 

enterocpes (Fig. 21). Confocal microscopy also revealed that staining of rearranged F- 

actin overlapped staining of terminal web-associated a-actinin over a 2 p  cell region 

immediately beneath the epithelial brush border (Fig. 22). Staining for either flocculated 

F-actin or a-actinin were not observed above or below this area of the cell (Fig. 22). 

Confocal microscopy also indicated that trophozoite lysates displaced peripheral a- 

actinin (Fig. 23). 



Figure 19: Scanning electron micrographs of SCBN control (A), and monolayers 

exposed to G. lamblia (B). Monolayers with Giardin exhibit membrane blebbing 

(arrows) and less distinct rnicrovilli. Bar = 5 pm. 





Figure 20: Scanning electron micrograph o f  SCBN monolayer exposed to Giardia 

larnblia strain S2 at a high magnification. The typical ventral adhesive disk (A), the 

phlange (B) and flagella (C) of a trophozoite are clearly visible. Bar = 5 p. 





Figure 21: Confocal laser micrographs of a SCBN monolayer exposed to lysed G. 

larnblia trophozoites and stained for F-actin. Highest density of flocculated F-actin 

within the enterocyte (arrow) is seen at a height of 6 pm and 7 pm. Total height of the 

cell was 9 p. Flocculated F-actin was not seen below 5 pn or above 8 pm in cell 

shown by arrow. Original magnification, 400X. 





Figure 22: Confocal laser micrographs of a SCBN monolayer exposed to lysed G. 

lamblia trophozoites and strained for both F-actin and a-actinin. In these cells (total 

height = 8 pm) terminal web a-actinin and flocculated F-actin colocalize within a 2 p 

region. Original mawcation,  400X. 





Figure 23: Confocal laser micrographs of SCBN monolayers exposed to vehicle 

(control) or Iysed G. lamblia trophozoites and stained for a-actinin. In control 

monolayers (A) a-actinin staining outlines the cell periphery. Monolayers exposed to G. 

Zamblia-sonicates (B) exhibit focal loss of peripheral a-actinin (arrows). Original 

magnification, 400X. 





4. DISCUSSION 

G. Zomblia injures human intestinal epithelial cells in vivo and in v i m .  Using the 

well studied colonic carcinonla Caco2 line as well as a novel human non-transformed 

epithelial duodenal cell line, this study demonstrates that Giardia reduces epithelial 

resistance and that the pathophysiology of this injury implicates the cytoskeleton of 

enterocytes. Results indicate that the loss of transepithelial electrical resistance induced 

by Giardia is associated with a remanpent  of F-actin in the epithelial terminal web and 

loss of peripheral a-actinin. In conjunction, there is a disarrangement of the regulatory 

cytoskeletal proteins, ePin zhd villin. These abnormalities could be observed when 

intestinal cells were exposed to the live parasites or to dead trophozoite products, as well 

as to trophozoite spent medium. The findings also suggest that the rearrangement of F- 

actin, euin and villin occurred via mechanisms independent of extracellular ca2' or actin 

polymerization. 

This study reports for the first time the effects of an enteric pathogen on 

transepithelial electrical resistance, cellular actin, a-actinin, ezrin and villin of a non- 

~morigenic human small intestinal cell monolayer. This cell line, called SCBN, was the 

first non-hunorigenic human small intestinal epithelial cell line to be grown to confluency 

in vitro (295). Originally isolated from a duodenal biopsy of a patient (B.N.) with 

diarrhea of unknown etiology, SCBN has been shown to form polarized monolayers, to 

express junctional complexes and disaccharidase activities as well as have well 

developed microvilli (295). In addition, SCBN also contains cytokeratins, much antigen, 

and messenger RNA for epidermal growth factor, IL-6 and vascular cell adhesion 

molecule-1 (295). This study compared the pathophysiological effects of G. Zamblia on 



SCBN, with its effects on the better characterized and more widely used colonic 

adenocarcinorna cell line, Caco2, (10, 143, 284). Results indicate that both in SCBN and 

in Caco2, Giardia induces a loss of transepithelial electrical resistance, in association 

with F-actin flocculation in the terminal web, loss of peripheral a-actinin and a 

rearrangement of the cytoskeletal proteins ezrin and villin. The similarities in these 

findings fiuther underscore thet SCBN represents a valuable tool for the characterization 

of cellular mechanisms implicated in intestinal pathophysiology. 

Previous studies have demonstrated that a number of intracellular bacterial or 

viral pathogens induce ac tin polymerization during cell invasion (1 69). Recently, 

epithelial injury caused by entropathogenic Escherichia coli (EPEC) or Clostridiurn 

dzflcile Toxin A and B was s h o w  to involve intracellular flocculation of F-actin via 

mechanisms independent of actin polymerization (1 6 1, 30 1, 3 16). This injury occurred 

independently fiom cellular invasion. Similarly, Giardia causes intestinal disease without 

invading the epithelium. This protozoan induces diffuse epithelial brush border 

shortening, an injury also observed in bacterial enteritis, chronic anaphylaxis, Crohn's, or 

Celiac's disease (52, 89, 103, 303). In giardiasis, this generaIized shortening of 

microvilli is observed along the entire epithelial lining, at sites of trophozoite attachment 

as well as in other areas (52-54). Such ultrastructural alterations are at least in part 

responsible for disaccharidase impairment and malabsorption of electrolytes, water, and 

nutrients (12, 52-54). Conversely, in response to lumind Epidermal Growth Factor, 

increased absorption is associated with diffuse lengthening of epithelial microvilli (1 56) 

via mechanisms that involve F-actin polymerization (80). Together, these observations 



clearly indicate that epithelial microvilli constitute a kinetic interface, and that they may 

alter their length in response to various luminal stimuli. 

This present study characterizes permeability and cytoskeletal changes associated 

with Giardia-induced epithelial alterations. Findings fiom previous experiments have 

shown that measurements of whole gut tissue permeability to [ S 1 ~ r ] ~ ~ ~ ~  were unable to 

detect alterations in intestinal permeability during giardiasis (157). However, the effect of 

Giardia in vivo, utilizing non-digestable disaccharides such as sucrulose and mannitol, on 

intestinal permeability has not been determined. In vifro experiments were warranted in 
. 

order to assess the effects of Giardia on the permeability of the epithelial lining alone. 

Observations fiom the present study unequivocally demonstrate that Giardiu 

Zamblia induces a significant loss of electrical resistance in pure epithelial monolayers, 

that this epithelial injury is associated with rearrangement of F-actin, emn, villin and a- 

actinin, and that flocculated F-actin co-localizes with terminal web a-actinin, while G- 

actin remain unaffected. Consistent with the F-actin changes seen in enterocytes exposed 

to EHEC, EPEC, SaImoneIIu, or Clostridium dzpcife Toxin A and By the Giardia- 

induced F-actin, ezrin and villin reorganization appears to be independent of extracellular 

ca2+. Previous observations have shown that the pathology due to giardiasis in mice 

requires the involvement of ca2' fiom intracellulm sources (1 40), and the apical 

membrane alterations induced by SalmoneNa and EPEC in epithelial cells are also 

associated with a marked increase in intracellular calcium (32). 

In addition, pretreatment of enterocytes with cytochalasin failed to inhibit F-actin 

reorganizaton in cells exposed to Giardia. Hence, this observation contrasts with the F- 

actin dependent membrane lesions seen in enterocytes exposed to SalmoneNa and EHEC, 



where actin polymerization inhibitors block bacterial entry (32, 49). Additionally, the 

pretreatment of enterocytes with cytochalasin D also failed to inhibit the relocalization of 

emn or villin. Taken together, these observations suggest that the epithelial injury 

associated with exposure to Giardia requires intracellular but not extracellular calcium, 

and that the cytoskeletal rearrangement seen in this process is independent of actin- 

polymerization. 

In keeping with the diffuse nature of microvillus shortening seen in giardiasis in 

vivo (52-54), the cytoskeletal protein rearrangements reported herein could be observed 
. . 

in the absence of live trophozoites, when enterocytes were exposed to sonicated parasite 

products or even to trophozoite spent medium alone. Intriguingly, experiments using 

MDCK cells co-cultured with Giardia lamblia have suggested that monolayers exposed 

to trophozoites may exhibit either no change or an increase in electrical resistance (70, 

72). Whether this discrepancy is due to the fact that, in these studies, monolayer 

confluency prior to exposure to trophozoites was confirmed solely by visualization, or, 

whether these observations reflect the existence of strain-dependent virulence factors, has 

yet to be clarified. Regardless, the fmdings presented here show that Giardia lamblia can 

increase epithelial permeability, which is associated with a rearrangement of F-actin in 

the terminal web, and that this disruption of epithelial integrity may result from exposure 

to parasite products alone. Moreover, in separate experiments, exposure of SCBN or 

Caco2 monolayers to live or sonicated Giardia trophozoites for only 2 h was sufficient to 

induce F-actin re-arrangement (not shown), further highlighting the rapidity of the 

epithelial response to these parasite products. 



Purified Toxin A or B 60m Closrridium dilficile increases epithelial permeability 

by condensing F-actin within the perijunctional ring (16 1, 162, 3 16). Recent reports have 

described that increased epithelial permeability during infection with a variety of 

bacterial species may be associated with formation of ruffles on the apical membrane, 

and that this alteration is accompanied by profound rearrangement of cytoskeletal 

proteins, including F-actin and a-actinin (32). Although Giardia is known to contain a 

variety of proteinases (158, 298), the possible pathogenic implications of excretory- 

secretory products released by the parasite remain subject of controversy (24,26, 74, 108, 

382, 384). Clostridium di f f i~e  Toxin A and B are known to target the GTP-binding rho 

protein in host cells (96, 200, 286). The loss of epithelial integrity in cells exposed to 

Clostridium drfficile toxin is postulated to be due to an apoptotic response via rho 

regulatory G proteins (120,246). It has been suggested that rho and other GTPases may 

regulate nuclear as well as cytoplasmic effects based on the observation that chronic 

activation of rho by deregulated exchange factors induces cell morphological changes 

(395). Within the enterocyte, GTP-binding proteins are responsible for stimulating the 

protein kinase cascade which is involved in the second messenger system and signal 

transduction cascade utilizing cat+. It has been shown that epithelial colonization with 

EPEC induces signal transduction responses, which involve elevated intracellular ~ 8 ,  

second messenger molecules and inositol 1,4,5-bisphosphate (1 8, 104), as well as 

phosphory lation of tyrosine and threonine-serine residues on cellular proteins (1 7, 250, 

323). Moreover, it has been suggested that other cytoskeletal proteins, including villin 

and fimbrin, when activated within the cell, may act as actin-severing components (273). 

In the context of the study reported here, rearrangement of villin, via elevated 



intracellular ca2' may in part contribute to the loss of F-actin scaffolding, which in turn 

could lead to the disruption of microvillus support thereby causing microvillus 

shortening. 

It is intriguing to note that ezrin, which can serve as a tyrosine kinase 

phosphorylation site, is also rearranged in response to Giardia (375). Emn is readily 

phosphorylated by the Epidermal Growth Factor receptor and mediates the regulatory 

hc t ions  of the cell in response to growth factors by its interaction with actin (45). 

Furthermore, the association of . . ezrin as a linker of F-actin core bundles to the overlying 

plasma membrane implicates phosphatidylinosito1 turnover and rho-dependent signalling 

pathways (171). Potentially, F-actin rearrangement could also involve ezrin 

disassociation from the overlying membrane via rho, intracellular ca2+ increase, and the 

signal transduction pathway. Kondo et. al. (1997) leads us one step further in 

understanding the response of F-actin to epin activation upon exposure of either the ezrin 

filament- or membrane- binding domains (215). Using mouse fibroblasts capable of 

expressing recombinant human Fas antigen receptor, Kondo et. al. showed that addition 

of the Fas antigen induced apoptosis within 1 h. Induction of apoptosis was associated 

with dephosphorylation of ezrin via rho pathways involving elevated levels of ca2+, 

which induced the translocation of ezrin fiom the plasma membrane to the cytoplasm and 

resulted in F-actin staining patterns similar to those seen in this study (2 15). The authours 

concluded that the cytoplasmic translocation of ERM proteins is responsible for the 

microvillar breakdown at an early phase of apoptosis (215). In addition, during EPEC 

infections, ezrin was found to be redistributed toward enterocyte membranes where it is 

likely to play a role in transducing signals to the cell (106). In both situations, ezrin is 



relocated within the cell. Giardia are known to have cysteine proteases, this is pertinent 

as apoptotic cell death is usually accompanied by the activation of interleukin-lp 

converting enqme (ICE) and other members of the cysteine protease family (105, 401). 

One of the characteristics of apoptosis is membrane blebbing. In light of the blebbing 

seen in monolayers observed under SEM, it is attractive to suggest that Giardia causes a 

diffuse shortening of brush border microvilli via trophozoite secretory/excretory products 

capable of inducing apoptosis, where upon induction, rho is deactivated and concurrently 

stimulates release of intracellul.~ ca2+ while affecting emn relocalization. The elevated 

~ a ' +  could indirectly affect ~Iactin by rearranging villin which can also sever and cap F- 

actin filaments. Once the F-actin enterocytic scaffolding is lost, other cytoskeletal 

proteins, including a-actinin respond by rearranging. Whether binding of Giardia 

excretory-secretory products to host enterocyte rho is implicated in the pathogenesis of 

giardiasis, andlor whether Giardia is capable of inducing apoptosis resulting in the loss of 

microvilli and increased epithelial permeability reported here has yet to be uncovered. 

In conclusion, the mechanistics or molecular m e c h ~ s m s  of Giardia-induced 

epithelial injury remain unknown. This study characterizes permeability and cytoskeletal 

changes in a human non-transformed small intestinal epithelial cell line and Caco2 

monolayers exposed to Giurdia lamblia. The findings demonstrate that loss of electrical 

resistance in epithelial monolayers exposed to this Protozoan is associated with 

flocculation of F-actin in the terminal web and loss of peripheral a-actinin. Giurdia 

iamblio also causes a rearrangement of a-actinin and of the important regulatory 

cytoskeletal proteins e P i n  and villin, which likely may act directly on F-actin to cause 

disarrangement. In this system, cytoskeletal protein rearrangement is independent of 



actin polymerization and of extracellular ca2+, and the cytoskeletal changes can be 

induced by exposure to parasite products alone, further supporting a role for a Giardia 

trophozoite secretory/excretory products in pathogenesis. Additional research using this 

model will not only help unravel the pathogenic basis of giardiasis, but will also improve 

our understanding of the mechanisms responsible for brush border injury and 

malabsorption in other small intestinal malabsorptive disorders, such as bacterial 

enteritis, Crohn's disease, and Celiac's disease. Finally, the in vitro model used in this 

study, including the TranswellTM filter system and fluorescent staining of important 

cytoskeletal proteins, can be Lilized as a novel model of small intestinal epithelial injury 

to study the effects of various pathogenic organisms. 
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