THE UNIVERSITY OF CALGARY

Adaptive Wavelet-Based

Noise Filtering Techniques

by

Farshad Faghih

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF

ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

November, 1998

© Farshad Faghih 1998



i~

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothéque nationale
du Canada

Acquisitions et )
services bibliographiques
395, rue Wellington

Ottawa ON K1A ON4
Canada

Your Ae Voire reference

Our fla Notre relerence

The author has granted a non- L’auteur a accordé€ une licence non
exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distnibuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership cf the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it  Ni la thése m des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-38627-9



Abstract

The purpose of this thesis is to investigate new and existing methods for filtering
noise without blurring images. Several existing techniques are investigated and a number
of new approaches introduced.

The LLMMSE (Locally Linear Minimum Mean-Squared Error) filters use the local
statistics of the image in a neighbourhood around each pixel to estimate the original pixel
value. Some modifications are proposed to improve the accuracy of estimating the local
image statistics.

We propose a new class of wavelet-based noise filters which process the image in
both spatial and scale-space domains. As part of this approach, a new probabilistic
method for detecting the edges in the presence of noise is also proposed. The approaches
are theoretically and experimentally compared to a number of existing wavelet-based
filtering algorithms.

Finally we present a systematic approach for compensating the noise estimation bias

during noise filtering, which is normally overlooked in the literature.
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Chapter 1

Introduction

1.1 Introduction and Purpose of the Thesis

Noise filtering is an important step in many image processing applications. The
existence of noise in an image can be the consequence of poor input sampling or
interference from other sources [Bracewell95]. Although in some applications the signal-
to-noise ratio of the scanned images can be improved by using more advanced
equipment, this does not always hold. In aerial imaging for instance, noise in the visible
channel due to clouds and fog can only be suppressed by post-processing techniques
[Malfait97].

The key function of noise filtering techniques is to improve the image in ways that
increase the chances for success of subsequent processing steps {Gonzalez92]. By
fltering the noise, we can facilitate extracting information from the image. A good noise
filtering technique also allows us to spend less on the imager hardware and still have
images with acceptable quality.

The purpose of this thesis is to examine ways to enhance the quality of noisy images.
Noise smoothing and edge enhancement are inherently conflicting processes. Smoothing
a region might destroy edges, which carry much of the image information. However,
sharpening edges might lead to increased noise. In this thesis we will examine different

methods for preserving edges while suppressing the noise.
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Noise filtering techniques can process the image either in the spatial or other domains.
The spatial domain refers to the image plane itself, and approaches in this category are
based on direct manipulation of the pixels in the image. The other techniques are based on
modifying the coefficients in a transform of the image.

One of the simplest and yet effective methods for removing the noise is image
averaging [Papoulis65, Gonzalez92]. In many applications, noise is often removed by
averaging over many identical image acquisitions. For example in magnetic resonance
imaging (MRI), averaging the images can remove breathing artefacts [Wood86]. The
feasibility of the averaging method, which is considered a spatial domain technique.
depends on the image acquisition time and cost.

Early techniques in noise filtering concentrated mostly on procedures that were carried
out computationally in the frequency domain. In these approaches, the images are assumed
to be stationary, which means all pixels in an image have similar statistics. Almost all
practical images violate the basic assumption of data stationary required by these
techniques. [mages are typically only quasi-stationary. Moreover, the intensity of a pixel is
somewhat correlated with the value of pixels in a small neighbourhood around it [Chan85.
Paranjape94a]. Methods that do not take this characteristic into account cannot effectively
adjust themselves to the local features of an image. As a result, such methods generally
smooth the edges and other structured features of the mmage [Mahesh90].

The least mean squares (Wiener) filter. as a frequency domain technique, assumes that
good statistical models of the image and noise are available [Gonzalez92]. The noise
spectrum can often be estimated from a signal free region of the image or in a high-

frequency band. However, there is often a severe difficulty in obtaining a good estimate of



the image power spectrum from the degraded data. In particular, the high-frequency
components of the spectrum are often lost or inaccurately estimated. Moreover, the noise
spectrum obtained from a signal free region of the image may be distorted [Henkleman86,
McGibney93].

At very low signal-to-noise ratios (SNR), the Wiener filter tends to reject almost all
high-frequency components including those from important edge features, and hence the
restored image is fairly smooth. While this smoothness leads to good improvement in
objective metrics, such as improvement in the mean squared error (MSE), it does not
necessarily produce the best restoration from a perceptual viewpoimnt.

Early examples of spatial domain techniques are the median filter and its variants,
averaging filter. sigma filter, and box filter [Yung96]. These filters are mostly designed for
removing a specific type of noise distribution. For instance, the median filter is designed to
remove impulsive noise, while the sigma filter is designed to suppress Gaussian noise. A
common characteristic of these methods is that they process all pixels in a similar manner,
ignoring all local characteristics [Yung96]. Although this characteristic has been proven
effective in removing additive random noise, it can blur the image. Such distortion may be
unacceptable as it can reduce the sharpness of lines and edges. Obviously, to keep the
image sharp, we need to distinguish noisy pixels from edge pixels and process each group
differently.

Due to this feature-preserving requirement, another class of filter algorithms emerges,
with the aim of preserving the image features while possessing an effective noise removal
capability. These filters are based on some techniques tc identify and preserve the edge

pixels during the noise smoothening process.



In this thesis, two different classes of spatially-selective filters are discussed. The filters
are sensitive to the local features of an image: they can detect edges and pass the
associated high-frequency data. The first group of filters discussed in this thesis is the class
of adaptive neighbourhood filters [Lee81, Paranjape94, Das97, Rangayyan98b]. In these
techniques, the local behaviour of the signal and noise in a neighbourhood of each pixel is
used to estimate the original pixel value. In adaptive neighbourhood techniques, unlike
fixed neighbourhood methods, the shape (and size) of the selected neighbourhood is
adapted to the local features of the image. We will discuss an extension to Das’s work to
include a more realistic definition of neighbourhoods [Rangayyan98b]. New work
extending these concepts to low SNR images is also presented.

The second group of filters discussed in this thesis is wavelet-based filters. Wavelet
transforms provide multi-resolution representation of signals and mmages: thev decompose
signals and images into multi-scale details. The basis functions used n wavelet transforms
are locally supported: they are non-zero only over a part of the domain represented. Sharp
transitions in images are preserved and depicted extremely well in wavelet expansions
[Mallat89a]. This special treatment of edges by wavelet transforms is very attractive in
image filtering.

A number of wavelet-based denoising techniques have been developed during recent
years [Weaver91, Mallat92, Xu94. Malfait97]. A typical noise-filtering algorithm is
composed of three steps: computing the wavelet transform of the signal, manipulating the
wavelet coefficients, and finally reconstructing the filtered signal from the modified

coefficients. The difference between various denoising methods is mainly in the second



step, in the way they modify the wavelet coefficients. Several wavelet-based filtering
techniques are discussed in this thesis.

We shall discuss a new wavelet-based algorithm to suppress the noise without blurring
edges. The proposed method uses a matched filter determined from edge information
obtained by a combination of spatial and wavelet domain information. The wavelet domamn

analysis uses a new compression technique to highlight weak edges.

1.2 A Possible Problem with the Existing Evaluation of Noise Filters

In the following chapters, some commonly-used noise-filtering techmques are
discussed and re-implemented. The results are compared to those of the proposed noise-
filtering algorithm.

A key feature of all algorithms in the study is the determination of the noise level. The
approach to determining the noise level is not well defined in the literature. Explanations
are vague in term of: “In MR images there are almost aiways lines at the edge of the image
that contain no signal. only noise. We use these lines to characterise the noise in the
image.” [Weaver91] or “In digital image processing, one can often use the background
noise at the dark (signal-free) regions near the boundaries of an image as the reference
noise” [Xu94].

From the work of Henkelman [Henkelman86] and McGibney ez al. [McGibney93] it is
clear that determination of the noise level from the signal-free regions of the image is not
straightforward which indicates a possible bias in the results reported by other researchers.

In the first part of this thesis we will use a theoretical approach to avoid the bias in



estimating the noise. This approach allows us to concentrate on the algorithms. Later, we

will consider the problems associated with estimating the noise in more detail.

1.3 Overview of the Thesis

The organisation of this thesis is as follows. In Chapter 2, we review spatial domain
adaptive noise-filtering techniques. This group of filters adapts to local changes in image
statistics. A new adaptive approach (published as [Rangayyan98b]) will be explained. In
the last section of Chapter 2, a further extension of this work to filter noise from low-SNR
images is proposed.

In Chapter 3, we briefly review some aspects of wavelet theory that is necessary to
understand the methods discussed in the rest of this thesis. A brief explanation of the
wavelet transform along with a standard filter-bank implementation of the transform are
given.

[n Chapter 4, some commonly-used wavelet-based noise filtering techniques are
discussed. We used both quantitative and qualitative measures to compare the
performances of the methods. In Chapter 5. a new method for suppressing noise from
images is proposed where both spatial and wavelet domain techniques are exploited. In the
last part of this chapter, the performance of the new method is compared with that of
other methods discussed m the thesis.

In Chapter 6. we discuss some practical applications, which are:

e Approprate techniques to determine the noise level.

o Effect of tnage amplitude quantization on algorithm stability.



e The special case of MR imaging where processing can also be performed in the
complex image domain with characteristics different from those of images
normally processed.

The conclusions drawn from the research carried out in this thesis as well as

suggestions for future work are presented in Chapter 7.



Chapter 2

Spatial Domain Noise Filtering Techniques

2.1 Introduction

In this chapter, we will review a class of spatial domain filters that make use oflocal
statistics of the image to adapt to the non-stationary characteristics of the image. All the
noise-smoothing algorithms discussed in this chapter are based on locally linear, minimum
mean-squared error (LLMMSE) estimation of signals [Kuan82]. The LLMMSE estimator
has the property that noise in flat regions of the image are smoothed while observations
are left unchanged in the vicinity of edges [Jiang86].

To remove the noise more effectively from edge areas, several modifications to the
basic LLMMSE method have been proposed by other authors [Lee80, Lee81, Rajala8l,
Kuan85, Jiang86, Paranjape94, Das97. Rangayyan98b]. We will review and simulate some
of these techniques in this chapter. We will then propose a new filtering algorithm that is a
modification of a recently published work by Rangayyan, Ciuc, and Faghih
[Rangayyan98b]. The procedure used to evaluate the performance of the different noise

filtering methods will also be explaned.

2.2 Evaluation of the Methods

To evaluate the performance of filtering methods, we apply them to noisy images and

examine the results. One approach to assessing the quality of the filtered mmages is to



compare them with the original, clean images. Using naturally-degraded images to test a
method has the drawback that the original, clean images are not accessible. Therefore, to
generate a noisy image, we usually start with a clean test image and add synthetic
Gaussian white noise to it.

As we will see in Chapter 6, the measured noise level of a2 magnitude image is a
function of the background intensity level [Henkelman86, McGibney93]. This bias in
estimating the noise appears to be either ignored or to be compensated for in an ad hoc
manner in the literature [Lee80, Lee81, Rajala81, Kuan85, Jiang86, Weaver91, Xu94].
The bias can be removed by estimating the noise from a medium-intensity, uniform region
artificially added to a corner of the image, thereby allowing us to concentrate on the
problems associated with the algorithms themselves. In Chapter 6, we shall explain how to
properly estimate the noise level in practical situations. The sensitivity of the algorithm to
inaccurate estimation of the noise will also be examined at that time.

In Chapter 6. we also consider the effect of amplitude quantization on the stability of
our algorithm. However. for the initial chapters of the thesis, we ignore problems
associated with a limited number of mage grey levels.

Both quantitative measures and qualitative comparisons are used to evaluate the
quality of the restored images. The visual effect associated with sharpness of edges and
the amount of noise remaining in the output image are used to compare the quality of the
mages.

As quantitative global measures of objective improvement of the results, we refer to

both the mean squared error (MSE) given by:
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MSE == S [/ (m.m) - f(mn)]

and the improvement in the SNR which is defined by Banham ez a/. [Banham96] and

Malfait er al. [Malfait97] as:

ISNR = SNR SNR =10 1 })mpul-nazse
- ouput 2 e — Ogm P_'— .
output-noue

or:

ISNR=10 log,,

> lglmn)~ f(m,n))
Y fmn-fmn] |

where f(m,n) is the intensity of the original undegraded image at location (m.n),
and g(m.n) and f(m,n) are the intensities of the degraded and filtered images at (m.,n),
respectively.

In practice. we generate several versions of each noisy image to improve the accuracy
of the quantitative measures. For this purpose, we run our noise generator with different
seed values. The result will be test images with the same noise power but different noise
patterns. After filtering the noise from each test mnage, the quantitative measures are
calculated for all the resulting images. The average and the standard deviation of the
quantitative measures are presented as more accurate measures for evaluating the
performance of different methods.

The quantitative measures reflect the global effects of the filter. However they cannot
take mto account all aspects of image quality for which the human eye is sensitive.
Therefore, quantitative measures should always be used in conjunction with qualitative

measures.
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2.3 Locally Linear, Minimum Mean Squared Error (LLMMSE) Filters
2.3.1 Definition

A noisy image can be represented by:

g(i, ) = f{i,))+n(i,)) i=01,..N-1 j=01,..M-I

where f(i,/) is the original, clean image (unknown) and g(i, ) is the known noisy
image. n(i, j) is the additive noise component which is assumed to be a zero-mean,
Gaussian function of variance &> . Moreover, the noise is assumed to be uncorrelated with
the original pixel value, f(i, ). To restore the image, we need to find an estimate of

f(i.j) based on the given noisy image and some statistical parameters of the noise. The
LLMMSE estimate, f,, (i, j). of the undegraded image, f(i, ). is defined as
[Kuan85]:

o (i, j)
o (i. j)+0, 3, j)

Frzawse (= ) = ELFGL )]+ {gG, /) Elgi. )}, 2.1)

where E[f(i, /)]. Elg(i. )], 03(. /), and &} (i, ) are the ensemble mean and ensemble
variance of f(i,) and g(i, /), respectively. Usually, the ensemble statistics associated
with the original image, f (i, /). are not available a priori and must be estimated from the
noisy image. For additive zero-mean Gaussian noise, we can write [Lee80]:
ELfG.N]1= Elg(i. )] (2.2a)
c: i, )=0,(,)-0,()).  (22b)
To calculate the ensemble statistics of the degraded image, we need several images of

the same scene (an ensemble) which is not usually available. In most practical cases, we



12

can find a small neighbourhood around each pixel in which pixels have the same statistical
parameters. Therefore we can estimate the ensemble mean and ensemble variance of a
pixel from the local mean and local variance of all pixels in a proper neighbourhood
around it. Using local statistics instead of ensemble statistics, we can rewrite Eqns. 2.2(a)
and 2.2(b) as:

m ) =mG,))  (23a)

v (i,))=v (i,)) =0, /),  (23b)
where m, (i, j). m (i, /). v, (i.j) . and v (i, ) are the local mean and local variance of
the original and noisy images. If we substitute the ensemble statistics by local statistics of
the original clean image in Eqn. 2.1, the result is:

. o o vf‘(irj)
Fiuse U7y =m (i, )+ v, (i, ))+0.(,]

)(g(i,j)-mg(i,j))-

After substituting the unknown original image statistics with those known from the

degraded image we obtain the final form of the LLMMSE estimator [Kuan85]:

-~

Vg(i,j) "Gn (l’.])
v (i,))

-/}LL%\JSE (i’j)=mg(i’j)+ (g(i7j)—mg(i?j))- (2.4)

2.3.2 Physical Interpretation of the LLMMSE Estimator

Human vision is generally assumed to be more sensitive to noise i flat areas than m
edge areas [Lee81]. Therefore, removing the noise from flat areas and leaving the edge
areas unchanged will improve the subjective quality of the image without blurring the

edges.
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We can show that this noise removal property is associated with the LLMMSE
estimator. For this purpose, we rewrite the estimated value for each pixel (Eqn. 2.4) as a

sum which weights the contribution from the corrupted pixel value, g(i, ), and the

average pixel values in a neighbourhood around it, m (i, j):

Foranase G ) =W (G, DU, )+ A=W (@, ))Imy (i) 2.5)
where
v i,)=0,G,)) v, (i, )
W(i,j)=-% = — : 2.6
PTG v aNte ) 20

In flat image regions, the local variance of the original image will be close to zero
(v.(i,j) = 0) so that the contribution from a single noisy pixel is reduced, i.e.,
W(i.j)=0. As a result the LLMMSE estimator (Eqn. 2.5) replaces the noisy pixel with
the average of pixels in its neighbourhood:

Franss (1) =my @)
In the vicinity of edges, the local variance of the original image is much larger than the
variance of the noise (v {i, j) >> &, (i, ) ) and the weighting factor becomes closer to
unity, #(i,j) = 1. As a result, the LLMMSE estimator leaves the pixels unchanged:
Fraunse ) = 8GJ)
In other parts of the image, the filter’s behaviour is between these two extreme cases.

In the LLMMSE method, the quality of the restored image strongly depends on the

shape and size of the neighbourhood defined around each pixel. For the LLMMSE method
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to be accurate, local statistics should be a good approximation to ensemble statistics. Later
in this chapter we shall discuss methods to choose the neighbourhood appropriately.

Several methods have been proposed in the literature to implement the LLMMSE

estimator. The techniques can be classified in two main groups:
The fixed neighbourhood filter implementations include:

e Lee’s method in which the local parameters are calculated within a fixed
rectangular window around each pixel [Lee80].

e Kuan’s method in which the local rectangular window is not uniformly weighted,
pixels that are closer to the pixel under consideration have heavier weightings
[Kuan85].

The advanced neighbourhood implementations inchude:

e Lee’s refined method in which the most suitable neighbourhood is selected among
a finite set of (fixed-size) pre-defined neighbourhoods [Lee81].

e The adaptive neighbourhood method in which both the shape and the size of the
neighbourhood are adapted to the local features of the image [Paranjape94. Das97.
Rangayvan98b].

In the rest of this chapter, we will review the above-listed techniques in more detail and
discuss our modification to the adaptive neighbourhood method of Rangayyan ez al.

[Rangayvan98b].



15

2.4 Fixed Neighbourhood LLMMSE Filters
2.4.1 Lee’s Method
Lee used a fixed-size rectangular window to calculate the local statistics of the image

[Lee80]. For a window of size (2n+1)x(2m+1), centred at (i, /), the local mean is:

i=n jem

m, (i,]) = Y, D glkh) (2.7)

(7’1 + 1)(7’" + 1) k=t=ni=j-m

with the local variance given by:

(~n  j+m

v (i) = Y S letkn-mGnl 2.8)

(7 + 1)(7”1 + 1) k=i-ni=j~-m

After calculating the local mean and variance, Lee used the LLMMSE estimator (Eqn.
2.4) to restore the noisy image. The quality of the restored image strongly depends on the
size of the fixed rectangular window. Using small windows will reduce the noise
smoothing effect of the filter, while using large windows will blur edges. Lee [Lee80] used

7x7 windows (i.e. m = n = 3) to calculate the local statistics.

Implementation and Results

To compare the performance of Lee’s filter with the other techniques discussed m this
thesis, we implemented the algorithm using 7x7 fixed-size windows to calculate the local

statistics.

As discussed earlier, we avoid the bias in estimating the noise by using a uniform
region added to the image prior to introduction of the noise. The results obtained from this
simulation of Lee's work are shown in Figs. 2.1 and 2.2 (or equivalently i Fig. 2.3, which

gives a magnified version of the images shown in Fig. 2.2). Fig. 2.1(a) shows the origmnal



(¢c)- Lee’s Method (d)- Kuan’s Method

(e)- Lee’s Refined Method (f)- Adaptive Neighbourhood

Figure 2.1 Applving the LLMMSE-based filtering methods to a synthetic test image.
(a) Original. svnthetic 128x128 image with maximum grey level of 253.

(b) After adding non-quantized Gaussian noise with variance 400 (grev level).
Results of> (c) Lee’s method. (d) Kuan's method. (e) Lees refined filtering method.
(f) Adaptive neighbourhood method.
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(b)- Noisy

(¢)- Lee’s Method (d)- Kuan’s Method

(e)- Lee’s Refined Method (f)- Adaptive Neighbourhood

Figure 2.2 Applving the LLMMSE-based filtering methods to a natural test image.
fa) Original 256x256 image with maximum grey level of 2355.

tb) After adding non-quantized Guussian noise with variance 400 (grey level)-.
Results of>  (c) Lee’s method. (d) Kuans method. (e¢) Lees refined filtering method.
() Adaptive neighbourhood method.
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(b)- Noisy

(¢)- Lee’s Method (d)- Kuan’s Method

(e)- Lee’s Refined Method (f)- Adaptive Neighbourhood

Figure 2.3 (Magnified Version of Fig. 2.2) Comparing LLMMSE-based noise
filtering methods. (a) Original image. (b) After adding Guussian noise.
Results of> (c) Lee’s method. (d) Kuans method. (e) Lees refined filtering
method. (f} Adaptive neighbourhood method.
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test image, which is a 128x128 synthetic image. Fig. 2.1(b) shows the result of adding a

significant amount of Gaussian noise with variance 400 (grey level)’ to the test image. The
RMS (Root Mean Squared) difference between the original image and the noisy image is
19.82.

The result of applying Lee’s method to the test image is shown in Fig. 2.1(c). Noise is
removed effectively from the smooth areas, but the image remains noisy in the vicinity of
edges. To evaluate the restored image quantitatively, the MSE between the original and
the restored image and ISNR were calculated. We compare these quantitative measures

from Lee’s method with those of the other approaches in Table 2.1.

Figure | Description MSE i ISNR
(Grey level) (dB)
2.1(b) | Additive noise, o~ =400 (grey level)® 393.0+1.7 0.00 +0.00
2.1(c) | Lee’s method 105.2 £0.6 5.73 £0.03
2.1(d) | Kuan’s method 107.0£0.5 5.66 £0.03
2.1(e) | Lee’s refined method 77.3+0.7 7.06 £0.04
2.1(f) | Adaptive neighbourhood method 74.7+£04 7.21 £0.02

Table 2.1 Quantitative measures (MSE and ISNR) for the results obtained by applying
the LLMMSE filtering methods to the noisy synthetic image (Fig. 2.1(b)).

In the example in Fig. 2.2 (or equivalently Fig. 2.3), we use a natural test image (Fig.
2.2(a)) to evaluate Lee’s method. Fig. 2.2(b) shows the result of adding Gaussian noise
with variance 400 (grey level)® to the test image. The RMS difference between the original
image and the noisy image is 19.60. The result of applying Lee’s method to the mmage is
shown in Fig. 2.2(c). Again. the presence of noise in the vicinity of edges is noticeable.
Table 2.2 compares the quantitative measures from Lee’s method with those of the other

approaches.



Figure | Description MSE ISNR
(Grey level)’ (dB)
2.2(b) | Additive noise, 6~ = 400 (grey level)’ 384.0+ 1.7 0.00 £ 0.00
2.2(c) | Lee’s method 112.2+£0.5 5.34 £0.02
2.2(d) | Kuan’s method 105.3+£0.4 5.62 £0.02
2.2(e) | Lee’s refined method 99.6 £0.4 5.86 £0.02
2.2(f) | Adaptive neighbourhood method 79.4 +£0.3 6.85 +0.03

Table 2.2 Quantitative measures (MSE and ISNR) for the results obtained by applying
the LLMMSE filtering methods to the noisy natural image (Fig. 2.2(b)).

2.4.2 Kuan’s Method

Kuan er al. also used a fixed-sized rectangular window to compute local statistics
[Kuan85]. The local mean is calculated using Lee’s approach. Kuan’s definition for local
variance is different as a multiplicative factor is used to put more weight on the pixels that

are closer to the pixel under consideration:

1 tem =N

i—k. i=Dfe N- k. 2 -
(2m+1)(2n+1) k;,,,[:Jz_,,C(l »J )[o(k7 ) mg( l)] 3 (2 9)

v, (i, )=

where c(i, j) is a weighting function which has its highest value at the centre of the
window (i.e. at (k./) =(0,0)). In addition to introducing the weighting function, Kuan er
al. allowed the local mean to vary within the window for calculation of the local varance.
The above definition of local variance is claimed [Kuan82] to be more robust and less

sensitive to noise than Lee’s definition.



Implementation and Results

In our implementation of Kuan’s work, we used 7x7 fixed-size windows to calculate
the local statistics. The weighting function, c¢(Z, j), was given the Gaussian shape
proposed by Kuan er a!..

Fig. 2.1(d) shows the result obtained by applying the Kuan filter to the synthetic noisy
image of Fig. 2.1(b). By comparison to the result of Lee’s method (Fig. 2.1(c)), Kuan’s
method has removed the noise more effectively from the vicinity of edges. However, the
presence of noise in the neighbourhood of edges is still noticeable, as is some edge
blurring. Table 2.1 compares the quantitative measures from Kuan’s method with those of
the other approaches.

Fig. 2.2(d) shows the result obtained by applying Kuan’s method to the natural test
image in Fig. 2.2(a). A quantitative comparison of the results with other methods is given
in Table 2.2. The results obtained using Kuan's method are slightly better than those
obtained using Lee's method (both quantitatively and qualitatively). In particular, the noise
is removed more effectively from the neighbourhood of edges. However, it is still

desirable to reduce noise in edge areas without blurring the image.

2.5 Advanced Neighbourhood LLMMSE Filters

The fixed-neighbourhood methods discussed so far have a common drawback. They
do not remove the noise from the vicinity of edges. Although the human vision is more
sensitive 1o the noise in the flat areas, it is stll desirable to remove the noise from the

edges; however, this must be achieved without blurring the edges.



As we saw in Section 2.3.2, the LLMMSE estimation is a weighted average of the
local mean and the image itself. If the local variance of the pixels in a neighbourhood is
small, the LLMMSE algorithm puts more weight on the average of the pixels and hence
smoothes the noise. In other words, the LLMMSE filter is effective only if the local
neighbourhood is homogeneous. Near the edges, a fixed rectangular neighbourhood, such
as those used in Lee’s or Kuan's methods, can easily include pixels from different regions
(i.e.. regions on the two sides of an edge) and hence cause edge blurring. By using more
sophisticated neighbourhoods, we can limit the neighbourhood to more homogeneous

regions.

2.5.1 Lee’s Refined Filtering Method

The algorithm discussed in this section is an extension made by Lee [Lee81] to his
former method [Lee80]. This approach uses Lee’s original definition of neighbourhoods in
flat regions. However, neighbourhood definitions are adapted in the edge areas to take
into account edge orientation.

To detect the edge areas, a threshold is set up for the local variance and only those
pixels with local variance exceeding this threshold are processed with the refined

algorithm. The local mean and variance are first calculated in a 7x7 neighbourhood. If the

local variance is greater than the established threshold, the pixel is assumed to be near an
edge. Since Lee did not state [Lee81] how to calculate the threshold we assumed that the
threshold of the local image variance, T, was given by:

T =ko>,

n



where ¢ is the unbiased variance of noise determined from a known flat region. When
the local image variance was below this level, we applied Lee’s original approach and
replaced the pixel by the standard LLMMSE estimates.

The refined method is applied to the pixels recognised as belonging to an edge. The
algorithm uses directional gradient operators to implicitly generate two areas in
the 7x7 neighbourhood: A homogeneous area whose amplitude is similar to the pixel
under consideration and another area (the “other side of the edge”) whose amplitude is
dissimilar to the considered pixel.

An attempt is made to generate a reduced neighbourhood associated with the
homogeneous area with amplitude similar to the considered pixel. Fig. 2.4 shows the eight
possible reduced neighbourhoods (subsets) associated with a 7x7 window centred about

the considered pixel.
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Figure 2.4. Possible refined neighbourhoods associated with a 7x7 window (white areas).
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Since a refined neighbourhood consists of pixels from the same side of the prospective
edge the calculated local statistics should be better estimates of the ensemble statistics.

This should lead to a better restoration of the intensity of the pixel under consideration.

Implementation and Results

Figs. 2.1(e) and 2.2(e) show the results of applying the refined filtering method to the
noisy synthetic image (Fig. 2.1(b)) and natural image (Fig. 2.2(b)) respectively. In
comparison to the fixed neighbourhood methods. noise is removed effectively from the
vicinity of most edges. However, in some regions (for example Lenna’s face in Fig. 2.2(e)
or equivalently in Fig. 2.3(e)) the noise is completely left unchanged. These are areas in
which none of Lee’s refined neighbourhoods (Fig. 2.4) would be recognised as a valid
homogeneous region. Moreover, Lee’s refined method may lead to false contours. The
quantitative measures (Table 2.1 and 2.2) also show a considerable improvement over the

fixed-neighbourhood methods.

2.5.2 Adaptive Neighbourhood (AN) Filters

The original LLMMSE estimator assumes that the ensemble mean and variance of a
pixel are equal to the local mean and variance of all pixels n a neighbourhood around that
pixel. This assumption is valid only if the pixels used to calculate the local statistics belong
to the same ensemble (i.e., region) as the pixel under consideration. The fixed
neighbourhood methods are based on the a priori assumption that all pixels in the applied

window belong to the same region.
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Although the orientation of edges is taken into account in Lee’ refined neighbourhood
method, the fixed window size is still the main criterion for selecting the neighbourhood.
Selection of a refined neighbourhood remains limited to only a few possible choices (Fig.
2.4). In most practical cases, changing the neighbourhood to one of the predefined subsets
cannot completely exclude pixels of other regions from the neighbourhood. This is
especially true for the pixels that belong to small objects or textured regions. By contrast,
the adaptive neighbourhood method will take similarity of pixels into account without an a
priori assumption about neighbourhood sizes or shapes.

The adaptive neighbourhood (AN) filtering method was first introduced by Paranjape
et al. [Paranjape94a. Paranjape94b] to remove signal-independent noise. The AN method
was extended by Das and Rangayyan [Das97] and Rangayyan and Das [Rangayyan98a] to
remove multiplicative noise. Recently Rangayvan, Ciuc, and Faghih [Rangayyan98b]
improved the criteria for selecting the neighbourhood and applied the method to other
types of signal-dependent noise (Poisson. film-grain, and speckle).

In the adaptive neighbourhood method. a pixel aggregation algorithm is used to grow
a neighbourhood around each pixel. The pixel aggregation algorithm starts by checking
the grey levels of pixels that are connected to the pixel under consideration (seed-pixel).
The criterion used to include a pixel in the neighbourhood is that the absolute difference
between the grey level of that pixel, f(m,n), and the grey level of the seed, f(i,/), is
less than a threshold 7, ie.:

|f(m.n)- fG, N <T, (2.10)
where the pixel at location (m,n) is directly connected (8-connected [Gonzalez92]) to the

seed.



26

For every pixel which is included in the initial neighbourhood, the algorithm continues
by checking its 8-connected pixels for possible inclusion in the region. The algorithm
continues until the region stops growing because all the pixels with properties similar to
the seed are included in the region. Alternatively, a limit on neighbourhood size can be
adopted.

In a noisy image, the original intensity of a seed pixel could be completely corrupted
by the noise. Using a highly corrupted seed will lead to including a biased set of pixels in
the neighbourhood grown. As a result, the local mean and variance of the pixels in the
neighbourhood would not be a good estimate of the ensemble mean and variance of the
original seed value.

To solve this problem, Rangayyan et al. [Rangayyan98b] used a modified version of

the similarity measure (Eqn. 2 10) to grow the neighbourhood region:
f@N=-Fi)|<T (2.11)

where f(i.j) is an initial estimate of the undegraded seed value. An estimate of the seed

intensity was obtained using the a-trimmed mean value, f,.,, (i. /). calculated within a

3x3 window [Pitas92, Rangayyan98bl]; this estimate was used to grow the neighbourhood.
The shape and size of the neighbourhood grown and hence the performance of the
filter strongly depends on the threshold value 7. A small threshold would lead to very
small regions over which the noise statistics cannot be reliably estimated. A large threshold
would lead to regions that may grow over edges with the result that homogeneity in such

region is no longer guaranteed.
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The threshold 7 must be a function of the noise parameters. For images with higher
levels of noise we should increase the threshold value; otherwise the regions will not grow
in the degraded image. The threshold value used by Rangayyan et al. [Rangayyan98b] is
the standard deviation of the noise:

T=0,. (2.12)

n

Therefore, in order to grow the regions, we first need to estimate the noise parameters. In
most practical images, a uniform region can typically be found near the boundaries of the
image. We can use such uniform regions to estimate the noise parameters. However, as

will be shown in Chapter 6, it is easy to introduce biases into the noise measurement.

Implementation and Resuits

Figs. 2.1(f) and 2.2(f) show the result of applying the AN filtering method to the noisy
synthetic and natural images of Fig. 2.1(b) and 2.2(b) respectively. When compared to the
methods discussed earlier, the AN method has been more successful in filtering the noise
from the test images. Lee’s refined method is almost as successful as the adaptive
neighbourhood method in filtering the noise from the synthetic test image (Fig. 2.1(b)).
This is mainly because Lee’s refined neighbourhoods (Fig. 2.4) are in close match with the
structure of the synthetic image. However, in the natural test image (Fig. 2.2(b)) there are
many locations where none of Lee’s reduced windows (Fig. 2.4) result in a homogeneous
neighbourhood. As a result, Lee's refined method could not remove the noise from such
locations (for example, compare Lenna’s face in Figs. 2.2(e) and (f) or equivalently n
Figs. 2.3(e) and (f)). Table 2.1 and 2.2 give a comparison of the quantitative measures for

the filtered images using the various methods.
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2.5.3 Adjusting the AN Algorithm for Low-Contrast and Low-SNR Images

The adaptive neighbourhood algorithm relies on the assumption that a grown region
does not cross the edges and grows only in the area that contains the seed. However, this
assumption is not valid if the difference between the intensities of adjacent regions is small
(low-contrast images) or when the chosen threshold, T in Eqn. 2.11, is too big, or
equivalently (Eqn. 2.12) when the image is very noisy (low-SNR images).

To adjust the adaptive neighbourhood method to low-contrast or low-SNR images,
we need to decrease the value of the threshold. However, as we saw in Section 2.5.2,
small threshold values usually lead to large biases in accepting the pixels into the region
and hence large errors in estimating the pixel ensemble parameters.

In this section. we will propose a new method, which is a modification of the method
that was explained in the previous section [Rangayyan98b]. These modifications will allow
us to use smailer threshold values but still retain reasonably small estimation errors.

In the original adaptive neighbourhood method. after degrading an image with zero
mean Gaussian noise. the intensity of each pixel would treated as a random variable whose
density function has a Gaussian form. The ensemble mean of this random variable is equal
to the undegraded pixel value (because the noise is zero-mean) and its variance is equal to

the variance of noise. If we represent the ensemble mean of a noisy pixel by M, our
initial rough estimation of this average value using the a-trimmed method [Pitas92,
Rangayyan98b]) would be M, +&, where £ is our estimation error. Now if we use the

criterion given in Eqn. 2.11 to grow the region, only pixels with mtensities between

M,+€-T and M, +€+ T would be allowed i the grown region.



29

As we mentioned before, the density function associated with the grey level of each
pixel has a Gaussian shape. As a result, for € > 0., the number of pixels in the grown

region whose grey levels are between M, +&€-T and M, +€ would be larger than the
number of pixels with intensities between M, + € and M, + €+ T . Therefore, the
difference between the average grey level of the pixels in the grown region and ensemble

mean, M, would be less than €. This implies an improvement in the estimation of M,,.

Similarly, for € <0 we can improve our estimation of the ensemble mean by
calculating the local average of the pixels in the region. By considering the Gaussian
distribution of grey levels, it can be seen that to improve poor initial estimates of the

ensemble mean (i.e., big estimation errors, €) we need larger threshold values, whereas to

compensate small estimation errors we can use smaller threshold values. Therefore, if we
want to use a small threshold value to ensure not crossing the borders between low-
contrast regions, we must ensure that we do not have poor mitial estimation of the mean.

[n the former method (Section 2.5.2), we used the a-trimmed method [Pitas92,

Rangayvan98b] to find an initial estimation for each pixel. Here we propose a more
complicated method that leads to better initial estimations. For high-contrast or high-SNR
images, the results obtained from both the modified and the original methods are almost
the same, but the computation time is slightly longer for the modified method. For low-
contrast or very-low-SNR images, the extra processing time required by the new method

is justified by its superior performance.
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Improving the Accuracy of the Initial Ensemble Mean Estimation

We use an improved version of Lee’s refined algorithm (Section 2.4.1 and [Lee81]) to
make a quick estimation of the ensemble mean of each pixel.

As we saw in Section 2.4.1, Lee’s refined filtering algorithm is not successful in
removing the noise from all regions. There are many locations in an image where none of
Lee’s refined windows (Fig. 2.4) could result in an appropriate (homogeneous)
neighbourhood. In fact, in Lee’s refined neighbourhood method, there is an implicit a
priori assumption about the neighbourhood of the considered pixel. which is not always
valid. First, Lee assumes the pixel is located on a smooth region comparable in size with a
7x7 rectangular window. Moreover, if there are some edges or sharp features inside the
7x7 neighbourhood of the seed pixel, they ail must be located on one side of the seed
pixel. Therefore, the method is not successtul if the pixel under consideration belongs to a
small region (compared to the 7x7 window) or if the sharp features are not concentrated
on one side of the seed pixel. The new method suggested here does not make such a
priori assumptions about the pixels and hence can successiuily estimate the ensembie
mean for a much broader set of pixels.

The new method starts with the same procedure as Lee's refined filtering algorithm.
First we look at a 7x7 neighbourhood around the pixel and try to figure out if there is any
edge or sharp feature in the neighbourhood. For this purpose, we compare the local
variance of the pixels in this neighbourhood with the variance of the noise. The difference
between the noise variance and calculated local variance is due to the local variance of the

original image in the neighbourhood. If this difference is small (compared to a threshold
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chosen as a function of the noise variance) we assume that there is no edge or sharp
feature in the neighbourhood. In this case, we can use the local mean of the pixels in the
7x7 window as the initial estimate of the ensemble mean. If the difference between the
local variance and variance of noise is large, we should use a refined window as the
neighbourhood (see Fig. 2.4).

As in Lee’s refined algorithm, we assume that a high local variance calculated in a 7x7
window is due to the presence of a major edge in one side of the neighbourhood. But
unlike Lee’s method, we check the result to see if our assumption is valid using the
following approach.

We initially assurne that the high variance in the 7x7 window is due to the presence of
a major edge in the window. If this assumption is true, after excluding the edge from the
neighbourhood using one of the new neighbourhoods (see Fig. 2.4), the local variance
should be dramatically decreased; in fact, the local variance must be very close to the noise
variance. We can compare the local standard deviation with a threshold value, 7, which is
a tunction of the noise standard deviation (I’ = 1.20,). Having a local standard deviation
larger than the threshold 7 means that our model for the neighbourhood is too simple, and
we need to use a more complicated model.

In the next step we change the neighbourhood to a 5x5 window and assume that the
sharp features are concentrated mostly on one side of this neighbourhood. Based on this

assumption, we repeat all the steps we took for the 7x7 neighbourhood. Finally, we
modify the 5x5 rectangular neighbourhood to a refined 5x5 region (similar to the refined

7x7 regions i Fig. 2.4).
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After modifying the neighbourhood, we again have to test the validity of our initial

assumption about the presence of edges on only one side of the 5x5 neighbourhood.
Again, we compare the local standard deviation with a threshold (T =1.26 ). A large

standard deviation means that the distribution of sharp features in the neighbourhood is
more complicated than what we initially assumed. To make this distribution easier to

model, we refine the neighbourhood to a smaller window (3x3). To estimate the ensemble

mean of the seed pixel we use a weighted average of the all pixels in this small

neighbourhood:

~1 -l

mi.j)= 2.2 Dw,v) f(i +u,j+v)  (2.13)

n=—1 va=|
where the D’s are non-negative weights that sum to 1 and indicate the degree to which
each neighbour of the seed-pixel should be allowed to contribute to the estiration of the
seed’ grey level. We use the weight matrix method suggested by Lev ez al. [Lev77] to

compute the weighting coefficients.

Implementation and Results

For high-contrast or high-SNR images, the performance of the new method is
essentially the same as that of the former adaptive neighbourhood method. In this section
we will compare the performances of these methods in removing the noise from a low-
SNR image.

The image in Fig. 2.5(b) (or equivalently Fig. 2.6(b)) was derived from that in Fig.
2.5(a) by adding a non-quantized Gaussian zero-mean noise with variance 2025 (5 times

more noise power than in the earlier images).  Fig. 2.5(c) gives the result obtained by



(b)- Noisy

(¢)- Lee’s Refined Method (d)- AN with T =g,

(e)- AN with T = 0.50, (f)- Modified AN

Figure 2.5 Removing noise from a low-SNR natural test image.
(a) Original 236X256 image with maximum grey level of 255.

(b) After adding non-quantized Gaussian noise with variance 2025 (grev level)’.

Results of:  (c) Lees refined filtering method.

(d) Original adaptive neighbourhood (AN} method with T = 1.00, .
te) Original adaptive neighbourhood method with T = 0.50, .

() Modified adaptive neighbourhood method.
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(¢)- Lee’s Refined method (d)- AN withT=0,

(e)- AN with T=0.56, (f)- Modified AN

Figure 2.6 (Magnified Version of Fig. 2.5) Removing noise from a low-SNR natural image.
(a) Original image. (b) After udding Gaussian white noise.

Results of:  (c) Lee’s refined filtering method. (d) Adaptive neighbourhood (AN) method
with T = 1.06,. (¢) AN method with T = 0.50,, . (f) Modified AN method.



35

using the refined Lee method. Fig. 2.5(d) shows the result obtained by applying the
original adaptive neighbourhood method to the noisy image of Fig. 2.5(b). The threshoid
used to grow the neighbourhoods (T in Eqn.
2.11) is the same as the standard deviation of the noise estimated from the flat regions of
the image. Most edges and other sharp features of the image are blurred in the filtered
image. This is mainly because the regions grown have passed through edges and extended
into other areas.

To limit the regions grown to homogeneous areas, we should decrease the value of T

in Eqn. 2.11. Fig. 2.5(e) shows the result obtained for T = 0.50, . The noise has still not

been removed effectively in this image. This is because the seed values (our first
estimations of the ensemble means) were not accurate and the regions grown are not large
enough to correct the estimates through averaging.

Fig. 2.5(f) gives the result obtained using the new method. In comparison to the
images in Figs. 2.5(d) and 2.5(e), the noise is removed more effectively in this mmage.

Table 2.3 provides the quantitative measures for the filtered images.

Figure | Description MSE ISNR
(Grey level)’ (dB)
2.4(b) | Additive noise , 6~ = 2025 1997.4 £8.4 0.00 £ 0.00
2.4(c) | Lee’s refined method 283.6x1.4 8.48 £0.03
2.4(d) | AN method, T=0, 281.4+22 8.51 £0.04
2.4(e) | AN method, T =0.5¢, 307.2+2.4 8.13+£0.04
2.4(f) | Modified AN method. 248.2+1.0 9.06 £0.02

Table 2.3 Quantitative measures (MSE and SNR Improvement) for the results obtained
by applying the LLMMSE filtering methods to the significantly degraded natural image

(Fig. 2.5(b)).
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2.6 Conclusion

In this chapter. several spatial domain noise-filtering techniques have been discussed.
All the methods discussed in this chapter are based on the LLMMSE estimator. As we
saw in this chapter the LLMMSE estimator has the property that it smoothes noise in flat
regions of the image while leaving the observation unchanged in the vicinity of edges.

To remove the noise more effectively from edge areas, several modifications to the
basic LLMMSE method have been proposed in recent years. We reviewed some of these
techniques and compared their performances in this chapter.

The LLMMSE filters can be classified in two main groups: fixed and advanced
neighbourhood methods. The fixed neighbourhood techniques such as Lee’s and Kuan’s
methods are not very successful in removing the noise from edge areas. As examples of
the second group (advanced neighbourhood methods), Lee’s refined neighbourhood
method [Lee81] as well as the adaptive neighbourhood method [Rangayyan98b] were
discussed in this chapter. In comparison to fixed neighbourhood methods, the advanced
neighbourhood methods were more successful in removing the noise from the vicinity of
edges.

Finally, we have presented a new method for filtering the noise from low-contrast
or low-SNR images. The proposed method is a2 modification of the adaptive
neighbourhood method [Rangayyan98b]. We have compared our approach with the other
methods discussed in this Chapter, by applying them to some low-SNR images. The

results of the new method have proven to be better in terms of visual quality and MSE.



In the rest of this thesis, we will concentrate on wavelet-based denoising techniques.
As with the methods discussed in this chapter, the wavelet domain methods can adapt

themselves to the local features of the given image.
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Chapter 3

Wavelet Analysis

3.1 Introduction

This chapter provides the background necessary to understand wavelet-based image
enhancement techniques that will be discussed in the next two chapters.

In a large variety of image-processing techniques, the image is transformed from the
spatial domain to a different space for processing. The extra effort required to transform
the image to a different domain is often justified by the fact that some tmage features
become more apparent and distinguishable in a non-spatial domain. As an example, there
may be a better separation between the signal and noise power in the frequency domain,
and hence a simple filter in the frequency domain can be used to improve the SNR of a
noisy image. Unfortunately, frequency domain techniques have a main drawback. They
process an image in a giobal sense, so that they cannot be easily adjusted to the local
features of the image. As a result, reducing noise in an image using frequency domain
techniques involves a trade-off between reducing the spatial resolution in the image
(blurring) and noise reduction.

In contrast to applying the discrete Fourier transform to an image, and losing all the
spatial information of the signal, applying the short-time Fourier transform (STFT) or
wavelet transform provides a compromise between the spatial and frequency domain
information. These transforms map the signal to a spatial-frequency space in which there is

simultaneous access to both spatial and frequency domain information.
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Fourier analysis and the STFT [Allen77] are reviewed in the first part of this chapter.
Then, the basics of wavelet analysis (both continuous and discrete) and of the subband
coding technique are explained [Mallat89a, Rioul91, Daubechies92, Mallat98]. Finally, a
fast wavelet transform (FWT) algorithm is presented which is based on the subband
coding technique [Mallat89a, Mallat98]. The FWT algorithm is used frequently in the

techniques discussed in this thesis.

3.2 Fourier Analysis

The Fourier transform provides an alternative representation of a spatial domain
signal. x(t), as a sum of sinusoids of different frequencies. In other words, it is a
mathematical technique for mapping a signal to the frequency domain. The Fourier
transform is an invertible transform. This means that the frequency domain representation
can be converted back to the original domain by using the inverse Fourier transform.

For a discrete signal x[n], where x(n] = x(t + nAt), n = 0.1,2,...,N-1, the discrete

Fourier transform (DFT) is defined as:
V-l .
Xul= 2 {nle” > ¥,
n=0

where u= 0,1,2,....N-1 and both signals, x{n] and X[u], are assumed to be periodic with

period V. The inverse DFT is then given by:
N=i

fnl=— Y Xlule "

-V n=0
The discrete Fourier coefficients, X[u], are computed as the mner product of the

original signal and sinusoids of finite duration. The coefficients can be considered as a
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measure of the similarity between the signal and the sinusoids. The measure is computed
over the whole range of the signal, and therefore is meaningful only for stationary signals
that have similar properties along their whole length. Any abrupt change in signal
behaviour is spread out over the coefficients of the whole range of frequencies, making the
DFT an inappropriate tool for analysis. Therefore, more powerful techniques are required
to analyse non-stationary signals.

Figs. 3.1(a) through (d) show two simple sinusoids and their associated DFTs. Fig.
3.1(e) shows a signal that is a simple sum of the two sinusoids across the full window; the
DFT of this signal (Fig. 3.1(f)) describes the signal in terms of its global similarity to
different sinusoids, which is quite meaningful for this stationary signal. Fig. 3.1(g) shows
the combination of the same sinusoids in a different manner to create a non-stationary
signal. Again the Fourier transform (Fig. 3.1(h)) is a measure of the global similarity of the
signal to different sinusoids. However. this global measure is not suitable for analysing the
non-stationary signals. The non-stationary signal in Fig. 3.1(g) has different behaviours in
different regions of the space domain. which is completely neglected in its DFT.

There are two main approaches for analysing non-stationary signals: STFT and

wavelet analysis. These techniques are discussed in the following sections.

3.3 Short-Time Fourier Transform

In an effort to adapt Fourier analysis to non-stationary signals, the STFT was
mtroduced by Dennis Gabor [Gabor46]. In this approach, the Fourier transform is used to

analyse a small section of the signal at a time. The frequency content of a non-stationary
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Figure 3.1 Frequency domain signal analysis. The signais on the right are the

discrete Fourier transforms of the signals on the left.
(a) A low-frequency sinusoid, sin(3m/100) and (b) its DFT.

(c) A high-frequency sinusoid, sin(19mn/100) and (d) its DFT.
(e) vi(n) = 0.3x[sin(3mn/100)+sin(197m/100)] and (f) its DFT.
(g) vi(n) is equal to sin(32m/100) for n=0,...,127 and sin(19an/100) for

n=128,....255 and (h) its DFT.
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signal is different for each section. Therefore the STFT is a function of the spatial location
of the selected section.
Consider a signal x(¢), and assume it to be stationary when seen through a window g(r)

of limited extent, centred at location 7. The STFT of this signal is defined as the Fourier

transform of the windowed signals x(¢)g (¢t —7):
STFT(t, f) = j x(t)g' (t—=T)e ™ dr,

where g’(¢) is the complex conjugate of g(¢). This transform maps the signal to a two-
dimensional function of position and frequency. In the spatial domain we can detect the
location of an event quite accurately, but we have no information about the frequency
content of that event. Similarly, in the frequency domain we can study the frequency
behaviour of an event, but we have no spatial information about the event. The STFT
provides some information about both the frequency content and the location of an event.
To determine the position of an event more accurately, we have to use smaller windows,
which leads to less accuracy in the frequency domain. In order to discriminate two pulses
in the spatial domain (spatial resolution) they must be more than Ar apart. Similarly, two
sinusoids will be discriminated in the frequency domain (frequency resolution) only if they
are more than Af apart. Resolution in position and frequency cannot be arbitrary small; m

fact their product is lower bounded [Rioul91]:
AIAf 2 1
2 -

This implies that to improve the spatial resolution we have to give up frequency resolution

and vice versa. This is a variant of the uncertainty principle or the Heisenberg inequality.
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The main drawback of the STFT is that once we choose a particular size for the spatial
window. the window is the same for all frequencies. This means that the position and
frequency resolutions are the same for the entire spatial-frequency plane. High-frequency
components are always associated with rapid changes in the spatial domain and hence a
better spatial resolution is needed for the higher frequencies in the spatial-frequency plane.
Therefore, we need a more flexible approach where the STFT window size is allowed to
change in the spatial-frequency plane. This will allow us to selectively improve either
spatial or frequency resolution at the cost of decreasing the resolution in the other domain

[Rioul91].

3.4 Wavelet Analysis

Fourier analysis consists of breaking up a signal into sine waves of various frequencies.
Similarly, wavelet analysis is the breaking up of a signal into a particular basis of functions,
called wavelets.

In Fourier analysis the basis functions are sinusoids which are very poorly localised in
the spatial domain, but perfectly localised in the frequency domain. The wavelets make a
compromise between spatial and frequency supports. They have finite support i both

domains.

3.4.1 Continuous Wavelet Analysis
The continuous wavelet transform of a signal is a set of coefficients which shows the

similarity between the signal and a set of scaled, shifted versions of an original wavelet



function. To measure this similarity, we calculate the correlation between the original

signal and the shifted and scaled wavelet [Grossman84, Matlab96]:
Cla,b) = jf( )J— 0, (1)

where W((x — b) / a) is obtained from the original wavelet, ‘¥(x), by first scaling it by a

factor of @ and then shifting it by 4. The factor ( l/ Ja)is used to normalise the power of

the scaled wavelet.

The original or mother wavelet ¥(x) is concentrated around x = 0, oscillates around
the x-axis and averages to zero. The scaled and shifted wavelet, ¥((x-b)/a), is

concentrated around the point 5 and its region of support is a times larger than the region
of support of the original wavelet.

The size of the revealed details in the signal f(x) is proportional to the size of the
domain in which the scaled wavelet is not too close to zero. Therefore, for small scales
(i.e., small a’s), local features of a signal mainly affect the wavelet coefficients. while for
larger scales the coarser features in the signal affect the wavelet coefficients. Local
features of a signal are associated with its high-frequency components while global
features are associated with the low-frequency components.

If the wavelet transform of a function, f(x), has a non-zero coefficient C(a.b), it
means that the function has a contribution in the frequency band associated with the scale
a. The second parameter 5 indicates the spatial location of the signal f{x) which has this
frequency content. Therefore, in addition to representing the frequency content of a signal,

wavelet coefficients can provide information about the location of the components.
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To synthesise the signal from its continuous wavelet coefficients we multiply each

coefficient with a properly shifted and scaled wavelet and add the results [Matlab96]:

1 1 x—b_dadb
f(x)—EiRIC(a,b)J;\P( —) =

where K, is a constant which depends on the selected wavelet. Fig. 3.2 shows the

continuous wavelet transforms of a stationary and a non-stationary signal. These test
signals are exactly the same as the signals given in Fig. 3.1. In Fig. 3.2(b), the x-axis
represents position. the y-axis represents scale, and the intensity at each x-y point
represents the magnitude of the corresponding wavelet coefficient. Both the frequency and

spatial behaviour of the signals are apparent from the wavelet coefficients.

3.4.2 Discretization of the Time-Scale Parameters
Calculating the wavelet coefficients at all possible scales is very expensive in terms of
computation time. [t also generates a huge number of coefficients, which are not easy to
handle. However. if we choose scales and positions based on powers of two (dyadic scales
and positions) then our analysis will be much more efficient but just as accurate
[Matlab96]. By choosing the scales and shifts based on powers of two:
a=2, b=ka=k2’, (j.k)e Z*,

a shifted and scaled wavelet can be written in the following simple form:
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(b) A non-stationary signal and its continuous wavelet transform.

Figure 3.2. Wavelet domain signal analysis.
(a) A stationary signal ( vi(n)=0.5 x[sin(3mm/100)+sin(197n/] 00)]) and its continuous wavelet
transform (b) A non-stationary signal ( y,(n) = sin(3:m/100) for n=0,...,127 and
ya(n) = sin(197n/100) for n=128, ..., 253) and its continuous wavelet ransform.
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L\P("‘b) =272 W2 x—k).

Ja = a

If we define:
Y, (x)=27"2¥(Q2 x—k), U,k)e Z*,
the wavelet coefficients become [Matlab96]:

Clk) = [ fOF,, (x)dx (j.keZ®.
R,

To reconstruct the original signal from the wavelet coefficients, C(/,4), we weight

each coefficient with a properly shifted and scaled wavelet and add the resuits:

f@) =3 CUKY, (). 3.2)

eZkeZ
However, the accurate reconstruction is only possible for very special choices of the basic

wavelet ¥(x) [Daubechies90, Meyer90, Matlab96].

3.4.3 Calculating the Wavelet Coefficients

Although in Eqn. 3.1 the signal f(x) is assumed to be a continuous signal. in the real
world, when we use a computer to process a signal, all the computations must be
performed on a discrete signal.

To calculate the wavelet coefficients C(a,b) associated with the samples of the signal
f(x) we take the original wavelet and calculate its correlation with the signal. The result
is the first wavelet transform coefficient. Then we shift the wavelet one sample to the right
and calculate the next coefficient. We repeat this process until the whole length of the
sampled signal is covered. To compute the wavelet coefficients at the scale a, we scale the

wavelet and repeat the whole process [Matlab96].
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For a signal of length L and a wavelet of length W, the number of multiplications
required to compute the coefficients at level n is n/L. Therefore, the number of

multiplications needed to compute an N-level decomposition is:

N(l\;+l)WLE N'WL.

WL+2WL+..+ NWL =

In practice, however, we never use the above procedure to compute the wavelet transform
of a signal. As we will see later in this chapter, there is a more efficient algorithm for
computing the wavelet coefficients. This algorithm, introduced by Mallat [Mallat89a], is

based on subband coding theory of signals [Croisier76, Matlab96].

3.5 An Alternative Viewpoint: Subband Coding

Wavelet theory provides a unified framework for a number of techniques, which had
been developed independently for various signal-processing applications. For example, the
wavelet series expansion developed in applied mathematics and subband coding developed
for speech and image compression, are different views of a single theory [Portnoff80,
Rioul91]. In this section we briefly discuss the subband coding technique, which is the

basis for a fast wavelet transform algorithm introduced by Mallat [Mallat89a, Mallat98].

3.5.1 Approximation and Details of a Signal

For many signals, the low-frequency content is the most important part. It is what
gives the signal its identity and can be used to approximate the signal. High-frequency
components, on the other hand, carry the information required to generate the details n

the signal [Matlab96].
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Using subband coding terminology, we call the low- and high-frequency components
of a signal "Approximation” and "Details" respectively. Fig. 3.3 represents the filtering
process required to generate the approximation and detail signals. By using two
complementary (high-pass and low-pass) filters we can decompose the original signal f{n)

to its approximation, cA(n), and detail coefficients, cD(n) [Matlab96].

cA(n)
— s ——
fn)
. ) cD(n)

Figure 3.3 Filtering process required to generate the approximation and detail coefficients of

an input signal. h(n) and g(n) are the high-pass and low-pass filters, respectively.

The filtering process effectively doubles the size of the data set to be manipulated. In fact
the number of the approximation and detail coefficients is slightly more than the length of
the original signal (as a result of convolving the input signal with the filter coefficients).
See Chapter 6 regarding the consequences of this convolution growth. To reduce the size
of the output data to the same level as the input data, we add a down-sampling step to the

filtering process (Fig. 3.4) [Matlab96].
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— g @

_# h(n) @ CD(H):

Figure 3.4 Reducing the number of output coefficients to half by down-sampling.

In general down-sampling causes aliasing. Therefore, it is not always possible to
reconstruct the original signal from the down-sampled coefficients. If g(n) and h(n) were
ideal half-band low-pass and high-pass filters (having a frequency pass-band equal to 1
over the normalised frequency range, and zero elsewhere) perfect reconstruction of the
original signal would be possible [Rioul91]. To reconstruct the original signal from its sub-
sampled coefficients. it is not necessary to use ideal, but impractical filters [Rioul91]. For
perfect reconstruction of the original signal, we need two specific reconstruction filters

g’(n) and A’(n)in Fig. 3.5). We shall discuss later the close relationship between these

specific reconstruction filters and the non-ideal decomposition filters (g(n) and h(n)).
After up-sampling the coefficients, by inserting zeros between the samples, we pass
them through the reconstruction filters to generate the approximation and detail signals

(A(n) and D(n)). Finally we add these two signals to generate the reconstructed signal

( f (n)in Fig. 3.5).
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g(n) —>@—C£I)—>@—-> g'(n) | A
L > A(n) >@ il )@—-H H(n) D)

Figure 3.5 Reconstructing the original signal from its approximation and detail coefficients

f(n) f(n)

by passing the up-sampled coefficients through the reconstruction filters.

Unless the decomposition and reconstruction filters meet some specific constraints, the
reconstructed signal, f” (n), is not equal to the original signal. Filters that meet these
constraints are said to have perfect reconstruction property [SmithM86. Rioul91]. The
easiest case to analyse appears when A(n) and g(n) are quadrature mirror filters, which
means that they are related by:

h(n) = (-1)"g(L~1-n) (3.3)
where L is the filter length, and the decomposition and reconstruction filters are identical
within time reversal. that is:

K'(n)=h(L —1-n)
g'n)=g(L-1-n).

(3.9)
Under these conditions, the reconstruction filters, 4’(n) and g’(n) are also quadrature
mirror filters which means Eqn. 3.3 holds for them [Matlab96].

The approximation sequence cA(n) from the first low-pass filter can itself be broken

down further using multiple level decomposition as is demonstrated in the next section.
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3.5.2 Muitiple Level Decomposition

In the previous section we used a specific bank of filters (decomposition filters) to
decompose a signal into two sub-sequences at half rate. This decomposition process can
be iterated on either or both sequences. In particular, to achieve finer frequency resolution
at lower frequencies, we iterate the scheme on the lower band only (see Fig. 3.6)

[Rioul91, Matlab96].

- . cAs(n)
- . cAAn) | 0
-0(n) . cAln) - . ¢Di(n)

fln)j =

0 cDxn)
- . CDI(II)

Figure 3.6 Iterating the decomposition process for the approximation coefficients.

If A(n) is a half-band high-pass filter then its quadrature mirror filter, g(n), is a half-
band low-pass filter. Therefore, in the first level of the decomposition (see Fig. 3.6), the
detail coefficients. cD, (n) . correspond to upper band and the approximation coefficients.
c4,(n), to the lower band of the frequency spectrum. We can continue this process for
several levels. In each iteration we divide the lower band generated n the previous level
into two new subbands.

Each further iteration halves the width of the low-band or increases the frequency

resolution by two, but due to down sampling halves the spatial resolution [Rioul92].

3.53 Subband Coding and Discrete Wavelet Analysis
We will now show the relationship between subband coding and wavelet analysis. As

mentioned in Section 3.4.2, to reconstruct a signal from its wavelet coefficients, we have
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to multiply each coefficient with a properly scaled and shifted wavelet and add the resuits.

fx)=YY CULRY, (%)

/€2 keZ

Here j determines the wavelet scale. All wavelet coefficients, C(/j,£), with the same index
of j correspond to the same band of frequencies. The detail signal at the /" levelofa

subband coder, D,(x), can be written as:

D,(x)= Y, CUj:k)¥, 4(x). (3.3)

keZ

Therefore, based on Eqn. 3.2, the original signal f{x) can be written as the sum of all its

details [Matlab96]:

f(x)=Y D(x).
€2

Next by considering level j = J as the reference level, we can write:

f(x)= 2, D,(x)= 2, D,(x)+ 2, D,(x).
j€Z

15J 1>J
The details associated with indices j > J correspond to the scales greater than 2. We
group these coarser details into one component, 4(x), that is called the approximation at

level J. Now we can write [Matlab96]:

f(x)=2,D;(x)+ 4,(x). (3.6)

<7
In other words, wavelet analysis decomposes a signal to detail signals at successive scales
plus a low-frequency (approximation) component. This is exactly what we get from a
subband coder. In fact wavelet analysis and subband coding are two views of the same
theory [Rioul91]. To calculate the wavelet coefficients more efficiently, Mallat

[Mallat89a] applied the subband coder shown in Fig. 3.6 to the signal.



For a signal of length L and analysis filters of length F, the number of multiplications

required to compute the coefficients at level n is 7%, FL . Therefore, the number of

multiplications needed to compute an N-level decomposition is:

1

o) N=2

FL<A4FL.

2FL+ FL +%FL...+

From the previous discussion in Section 3.4.3, we know that the number of multiplications

required to calculate an N-level wavelet decomposition directly is N(N + )WL /2, where

W is the length of the wavelet and L is the length of the signal. The shape of the wavelet
(and hence its length, /) is determined by its decomposition filters [Mallat 89a]. The
length of a wavelet, #, is always larger than the number of its corresponding filter
coefficients, F [Matlab96]. Therefore, using the FWT algorithm can dramatically decrease
the number of multiplications required to perform an N-level wavelet decomposition (from

N(N+DWL.2 to4FL).

3.6 The Two-Dimensional Fast Wavelet Transform

The subband coding approach was extended by Mallat [Mallat89a, Mallat98] to
compute the wavelet transform of two-dimensional signals.

In the analysis (decomposition) phase of the two-dimensional fast wavelet transform
(Fig. 3.7) each row of the image is separately filtered by the low-pass and high-pass
decomposition filters. The resulting pair of row-transformed images is similarly filtered in
the column direction. The result is a sort of four subband images at the first decomposition

level. The subband image obtained by low-pass filtering of the image in both directions
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(along rows and columns) is a low-pass filtered version of the original image. This image

(cd,., coefficients) is passed through to the next step for further subband decomposition.

The three detail images (cD#, , cD",

7., cD’., and eD?, coefficients) correspond to specific, non-
overlapping bands in the frequency domain. The cD ,iix coefficients, for example, are

formed by low-pass filtering the rows followed by high-pass filtering the columns, and is

therefore sensitive to horizontally-oriented features. In the same way ch.',, and

eD®

., coefficients are sensitive to vertical and diagonal features of the image.

Columns
R CA ,~l(nr'n-:)
ows —> g(n) ——’@-————V
g(n) ‘ :: : CD,Iil("fvn-,)

Y

Y

@
eD¥ (n,.n,)

sn) F—>(H——
cD ,‘L(nr.n..)
hn) —(——>

Figure 3.7 Two-dimensional decomposition process at a general level (level j).

cd . (n..n.)

y

z

a(n)

Yy

The approximation and detail images obtained from one level decomposition of a test
image are shown in Fig. 3.8. To generate these images, we did not down-sample the
wavelet coefficients, which makes it easier to compare the detail images with the origmal
image. Therefore, the detail and approximation images have the same size as the original
image (256x256). Each detail image has extracted the high frequency components (Le.,
edges) located in a specific direction (horizontal, vertical, or diagonal). The horizontal

edges, for instance, are highlighted in the horizontal image (Fig. 3.8(c)). The
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approximation image, on the other hand contains all the lower-frequency components (the
lower half-band of the spectrum) which remain after subtracting the details from the
original image. Now we can repeat the decomposition process for the approximation
image obtained in the first level. The result would be the second level approximation and
detail images (Fig. 3.9). The new detail images (Figs. 3.9(c) to 3.9(e)), represent the
frequency components in a lower band of the spectrum compared to the detail images of
the first level (Figs. 3.8(c) to 3.8(e)). The range of frequencies in the second-level
approximation image (Fig. 3.9(b)), is now limited to the lower quarter of the spectrum
while the first-level approximation image (Fig. 3.8(b)), includes all the components in the
lower half-band of the spectrum. By iterating this process for several levels, we can
completely classify the frequency components of an image into a series of detail images.
each of them containing the components in a specific range of frequencies. Therefore,
similar to the Fourier analysis, the wavelet transform gives us the power to analyse an
image based on its frequency content. In fact. the wavelet transform has much of the
frequency analysing power of the Fourier transform. but unlike the Fourier transform it
preserves the spatial information. The Fourier transform of the same test image is shown
in Fig. 3.10(b). All the spatial information, like edges, are lost in the frequency domain,

while they are preserved by the wavelet transform (Figs. 3.8 and 3.9).
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Figure 3.8 The two-dimensional discrete wavelet transform. The approximation
and detail images at the first decomposition level. (a) The original 256 x 256 image.
(b) The approximation coefficients. (c) The horizontal detail image.

(d) The vertical detail image. (e) The diagonal detail image.
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Figure 3.9 The two-dimensional discrete wavelet transform. The approximation
and detail images at the second decomposition level. (a) The original 256x 256
image with the range of grey levels between 0 to 255. (b) The approximation

coefficients. (c) The horizontal detail image. (d) The vertical detail image. (e) The
diagonal detail image.
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(a)- Original

Figure 3.10 The two-dimensional Discrete Fourier Transform.

(b)- Discrete Fourier Transform
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To reconstruct the image from its two-dimensional discrete wavelet coefficients, we

start from the approximation and detail images at the lowest level and combine them to

generate the approximation image at the next upper level. We continue this combining

process up to the highest level. Fig. 3.11 shows one step of the reconstruction process.
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Figure 3.11 Two-dimensional reconstruction process at a general level (level j).



3.7 Specialised Wavelets for Image Processing

3.7.1 Biorthogonal Wavelet Transform

In Section 3.5.1, when we introduced the subband coders, we said that the
decomposition and reconstruction filters are identical within time reversal (Eqn. 3.4).
However, this is not always true. There are some classes of wavelets for which the
corresponding decomposition and reconstruction filters are completely different
(biorthogonal wavelets). From the wavelet theory viewpoint, this is associated with using
two different wavelets, ¥(x)and ¥(x), to analyse and synthesise the signal
[Daubechies90].

For some of the algorithms that will be discussed later in this thesis, it is desirable to
make the wavelet coefficients more sensitive to the edges of the image. For this purpose,
the wavelet function we use to decompose the image must have a shape similar to the
difference of Gaussian functions [Canny85], which can only be achieved by using

biorthogonal wavelets.

3.7.2 The Redundant Wavelet Transform

In the original FWT we sub-sample the coefficients after each filtering step. As a
result, the number of coefficients is not the same at the different levels. Although this
reduction in the number of coefficients is critical in some applications (such as data
compression), it is not a key factor in image enhancement {Xu94, Malfait97]. In image
processing applications we normally prefer to have the same number of coefficients m all

levels, which makes it easier to compare and link the coefficients across the scales. This
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can be obtained by removing the down-sampling stage of the FWT. The resulting

transform is normally called the redundant FWT [Xu94, Malfait97, Strickland97].

3.8 Using the Wavelets

Choosing a proper wavelet is the first step in wavelet analysis. The selection ofa
wavelet depends mainly on the application. We will discuss about this topic in Chapters 4
and 5, when we explain real applications of wavelet analysis. After selecting the proper
wavelet, Mallat’s FWT algorithm can be used to analyse (and synthesise) the signal.

To implement Mallat’s FWT algorithm, the quadrature mirror filter coefficients
(Section 3.5.1) associated with the chosen wavelet are required. These filter coefficients
are usually given directly in the literature [Mallat98]. However, for some wavelets, they
are not given directly and should be derived from other coefficients.

As we mentioned before, there is a very close relationship between wavelet and
subband coding theory. In the subband coding scheme, the role of the wavelet is played by
the high-pass filter. 4(n). In wavelet theory. there is another function which has a close
relation to the low-pass filter, g(n). This function, ®(n), which is called the scaling
function or father wavelet, satisfies the fundamental relation (twin scale relation)

[Matlab96]
1
SO/ = éwnd)(x-n) , (3D

which explains the relation between the scaling functions at different scales. Given the

w, coefficients, the low-pass and high-pass filter coefficients can be derived.
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The sum and the norm of the w, sequence are | and 1/ V2 respectively. This

sequence can be considered as the coefficients of a low-pass filter #(n). The
decomposition filter coefficients can be obtained from the #(n) coefficients using the
following equations [Daubechies92, Matlab96]:

W{(n)
LAl

gn) =
h(n) = (=1)" g(L =1=n).
For orthogonal wavelets, the reconstruction filters are the same as the decomposition
filters within a time reversal (Eqn 3.4):

h'(n)y=h(L-1-n),
g'(n)y=g(L-1-n).

However for biorthogonal wavelets, the scaling function associated with the synthesis
phase of the transform, ®(x), is different from the analysis scaling function ®(x). This
generally leads to a different sequence of W, in the twin scale equation (Eqn. 3.7) and

hence different synthesis filters.

3.9 Summary

This chapter acts as a mathematical basis for the methods discussed in the next few
chapters. First, the Fourier and Short-Time Fourier Analysis were reviewed and the basics
of the wavelet analysis were presented. Next, the subband coding technique was described
and shown to be a different view of the wavelet theory. Finally, a fast wavelet transform

technique, based on the subband coding technique, was explained. This fast wavelet



transform algorithm is used extensively in the wavelet-based techniques discussed in

Chapters 4 and 5.
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Chapter 4

Wavelet-Based Denoising Filters

4.1 Introduction

During recent vears, various wavelet-based denoising filters have been proposed as
alternatives to Fourier domain filters [Weaver91, Mallat92, Xu94, Donoho95, Malfait97].
Since the wavelet transform retains both the spatial and frequency domain information, it
offers denoising opportunities that the Fourier transform does not.

A typical wavelet-based denoising algorithm is composed of three steps: computing
the wavelet transform of the signal, manipulating the coefficients, and finally
reconstructing the filtered signal from the new coefficients. The difference between the
various denoising methods is mainly in the second step; the way they modify the
coefficients.

In this chapter some of the proposed wavelet domain noise fiiters are discussed and
simulated. We use both qualitative and quantitative measures to compare the performance
of these metheds. In Chapter 5 we shall compare the results from these filters with the
results from some new wavelet denoising filters we have proposed.

As with Chapter 2, we shall use flat regions of the mmage to estimate the noise level

and leave the practical measurement of noise to Chapter 6.
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4.2 Basic Thresholding Method

4.2.1 Introduction

The basic thresholding method was first introduced by Weaver et al. [Weaver91] to
remove noise from images, As was shown in Chapter 3, the wavelet transform can split a
signal into different bands of frequency without losing the spatial domain information. This
important feature enables us to adjust the filter parameters to the local characteristics of
the image. However, the basic thresholding method did not involve this spatial information
in the noise filtering process. In this aspect, this method is very close to the frequency
domain techniques using the wavelet transform simply as a tool to identify the image
power at different frequency ranges.

The signal to noise ratio of the image can be improved by suppressing the wavelet
coefficients associated with the high frequency components. This method is similar to the
frequency domain high-pass filtering. However, it introduces less artefacts into the mmage
because the basis functions (wavelets) have local support in both time and frequency. As a
result, if by mistake we suppress a noise-iree coefficient or insufficiently suppress 2 noisy
coefficient, the introduced artefacts can not spread over the whole range of the restored
signal [Weaver91, Mallat92].

The basic thresholding method is similar to a frequency domain method called spectral
pruning or subtraction [Wahi87, Lim90]. In the spectral pruning method, first we estimate
the noise power from the high frequency parts of the spectrum. We restore the signal
spectrum by subtracting the noise power from the noisy image spectrum with the
assumption that the noise power is constant over the whole range of the frequencies. In

practice, the amount of spectral subtraction should not be the same as the estimated noise
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power with a multiplicative factor used to control the amount of spectral subtraction. A
large multiplicative factor (a large spectral subtraction) will lead to a better noise removal
but more blurring and ringing at edges [Wahl87].

Similarly, in the basic wavelet thresholding method, we can subtract the noise power
from the wavelet coefficients of the noisy image. However, first we need to estimate the
noise power in the wavelet domain.

The two-dimensional wavelet transform decomposes an image into a hierarchy of
approximation and detail images [Mallat89A]. Each detail image is associated with the
frequency components in a specific band of frequency (scale) and direction (Horizontal,
Vertical or Diagonal). To subtract the noise power from the detail images. we need to
estimate the noise power for each detail image separately.

In practical images, there are almost always signal-free regions near the boundaries of
the image [Weaver 91, Xu94]. We can use these regions to characterise the noise in the
image adjusted, as necessary, for the noise bias discussed in Chapter 6. The energy of each
pixel is spread over the whole Fourier coefficients in the frequency space. This is not the
case in the wavelet domain where the energy of each pixel is spread over only the few
wavelet coefficients located in a small neighbourhood around that pixel. Therefore, the
wavelet coefficients in a region close to the boundaries of a detail image can be used to
estimate the noise power in that detail image. To control the amount of noise power
subtraction, as with the spectral pruning method, we use a multiplicative factor that
controls the trade-off between noise reduction and image resolution. Although this method

of power subtraction in the wavelet domain does not blur the edges significantly, it can
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still affect the small structures in the image or cause some local artefacts around the edges
of any object in the image.

The subtraction of the noise power from the spectrum of the signal in the wavelet
domain can be implemented in two different ways -hard and soft thresholding which are

discussed in the next section.

4.2.2 Hard and Soft Thresholding Methods
To detect the noisy pixels in each detail image, we set a threshold value and treat all
pixels with a wavelet coefficient amplitude below that threshold as noisy. The threshold

for each detail image is a function of the noise power in the detail image. For the detail

image D?'® (where j is the decomposition level and D/R can be horizontal, vertical or

diagonal), the threshold value can be written as [Weaver91, Donoho95]:

T°® =k, P (noise) 4.1

mult * ;

where k_, is a multiplicative factor which controls the trade off between noise reduction
and image resolution. and P°* (noise) is the energy of noise (estimated over a uniform
region) for detail image D?*.

To implement the noise-filtering algorithm, the estimated threshold can be used m two
different ways. The resulting methods are called hard and soft-thresholding techniques

[Weaver91, Donoho95].
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In the hard-thresholding method, the wavelet coefficients below the given threshold

value are simply discarded, while all other coefficients remain unchanged. In other words,

the filtered coefficients, D%, for the detail image D" can be expressed as [Weaver91]:

DIR .
D" (n.,n.), if D?*(n,,n,)>T"
~DIR — . DIR DIR DIR
D (n,,n.) =40, if ~TI°" <D "(n,n,)<+T,
. DIR DIR
D (n,,n,), if D (nn,)<-T,

n=01..N, and n,=0I1..N;
where D?* is the detail image in direction DIR at level j and T”* is the estimated
threshold value for this detail mage (Eqn. 4.2).
In the soft-thresholding method, after removing all the wavelet coefficients whose
absolute values are less than the threshold. we subtract the threshold amplitude (a function

of the noise power) from the other wavelet coefficients. After soft thresholding, the

coefficients of the detail image DIR at level j are [Weaver91, Matlab96]:

DIR DIR .
(D% (n,,n,)=TP". if D (n_,n,)> TR
A DIR _ : DIR DIR DIR
D (n.,n.)=40. if =T <D™ (n.,n)<+T]
i pDIR DIR ; DIR _TDR
!ij (n_,n)+T 7. if D" (n,,n,)<-T,

The hard-thresholding method causes some discontinuities in the range of the modified

wavelet coefficients as the modified coefficients are not allowed to have a value m the

range — " and +T°* except for zero. The modified coefficients in the soft-thresholding

method, however, are spread over a continuous range {Weaver91, Donoho95]. As we will

see in the next section, the soft-thresholding method removes the noise more effectively.
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4.2.3 Implementation and Resuits

A typical wavelet based noise filtering method is composed of three steps:
Decomposing the image into multi-scale wavelet coefficients, Modifving the coefficients,
and Reconstructing the filtered image from the modified coefficients.

To decompose the image, we need a proper wavelet and also an algorithm to calculate
the coefficients. Weaver et al. [Weaver91] used a one-dimensional approach to
decompose the image into its wavelet coefficients. First they applied a one-dimensional
transform to the rows of the image and, after thresholding the rows, they repeated the
process for the columns. In our implementation, we directly calculated the two-
dimensional wavelet transform. For this purpose we used the Mallat fast wavelet
transform algorithm (see Section 3.6). A redundant transform (see Section 3.7.2) is used
to calculate the wavelet coefficients so that the detail images at different levels have the
same number of coefficients. Using a redundant transform makes it easier to relate the
signal-free region in the original image with the corresponding regions in the detail images.
Because of the simplicity of the method, there is almost no limitation on the choice of the
wavelet. Any wavelet with a local support can be used to decompose the image in this
method. However, smooth wavelets lead to better results, because the artefacts caused by
excessive suppression of the coefficients have a form similar to the wavelet waveform.
Weaver er al. [Weaver91] used a set of orthogonal wavelets first described by Lemarie ez
al. [Lemarie86]. In our implementation we used the Bior.3.3 wavelet [Cohen92] which

has a smoother reconstruction wavelet. To test the method, we used the 128%x128

synthetic image shown i Fig. 4.1(a) the range of grey levels for this



(b)- Noisy

(c)- Hard Thresholding (d)- Hard Thresholding
Tr.= 150, Tr.=2.50,

Figure 4.1 Applving the basic thresholding techniques to a noisy svnthetic image:

(a) Original synthetic 128xI28 image with the range of grey levels between 0 and
235. (b) After adding Gaussian white noise with 0',’: = 400 (grey level)” .

Results of> (c) Hard thresholding with Tr. = 1.5G,, ©,, is the estimated

value for 6, (d) with Tr.= 2.567,.
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(e)- Soft Thresholding (f)- Soft Thresholding
Tr.=1.00, Tr.= 150,

(g)- Soft Thresholding (h)- Soft Thresholding
Tr.=200, (Bior. 5.5 Wavelet)

Figure 4.1 (Continued) Results of: (e) Soft thresholding with Tr. = 1.0G",.
) Ir. =1.56.. (g Tr. =2.06",. (h) Ir. = 15067, using a different type of
wavelet for analvsis (Bior. 5.3 instead of Bior. 3.3 [Cohen92]).

71



72

picture was between 0 and 255. As discussed earlier we avoid the bias in estimating the
noise by using a uniform region added to the image prior to introduction of the noise.

A zero mean Gaussian noise with variance of 400 (grey levels)’ was added to the
image. The result is shown in Fig. 4.1(b).

Figs. 4.1(c) and 4.1(d) are obtained using the hard thresholding method. In Fig. 4.1(c)

the threshold is chosenas /.50 which means, any wavelet coefficient with an absolute

noue *

value less than /.50, is set to zero before reconstruction in the detail images. The

standard deviation of noise, ¢ is estimated for each detail image individually. The

filtered image (Fig. 4.1(c)) is still quite noisy and the SNR improvement is only 2.98 dB

(see Table 4.1). Fig. 4.1(d) shows the result of using a higher threshold (2.50__ ). The

noise is smoothed more effectively (SNR improvement is 5.45 dB). However in some
locations, such as the one marked on the image, some noisy pixels are almost left
unchanged. The strong difference between these noisy pixels and their neighbouring pixels
are caused by the discontinuity in the range of modified wavelet coefficients. Small
coefficients (smaller than the threshold) are mapped to zero but large coefficients
remained unchanged after filtering. Therefore this method will emphasise the difference
between the pixels with very strong noise (for which the wavelet coefficients remam
unchanged) and their cleaner neighbouring pixels (for which the coefficients are set to

zero). In the soft-thresholding method we shift the large coefficients toward zero to

resolve this problem.
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Figure Description MSE ISNR
(Grey level)’ | (dB)
4.1.b | Additive noise , ° = 400 (Grey level)’ 393.05+1.74 0.00 +0.00
4.1.c | Hard with Tr. = 1.5 6, Wavelet = Bior. 3.3 197.8 £1.28 2.98 £ 0.02
4.1d |HardwithTr.=25g0, 112.4£0.85 5.43 +0.04
4.le | Soft withTr.=1.00, 126.7 £0.41 4.92 +0.01
4.1.f | Soft withTr.= 1.5, 128.6 £0.57 4.85+0.02
4.1.g | Soft with Tr.=2.0 G, 166.3+1.12 3.74£0.02
4.1.Lh | Soft with Tr. = 1.0 6, Wavelet = Bior 5.5 130.6 £0.76 4.79 £0.02

Table 4.1 Quantitative measures (MSE and ISNR) for the results obtained by applying
the basic thresholding method to the noisy synthetic image shown in Figure 4.1(b).

The shifting of the coefficients in the soft thresholding approach is simply done by
subtracting the threshold value from the large coefficients. Figs. 4.1(e) and 4.1(f) give the
result of using the soft-thresholding method. In Fig. 4.1(e) the selected threshold value of

1.00,,, is not large enough. As a result the noise is not removed effectively from this
image. On the other hand, using large threshold values can blur the image (2.00,,,, for

Fig. 4.1(g)). The threshold value used in Fig. 4.1(f) 1s /.50 which provides a better

trade off between noise smoothing and edge sharpness (see Table 4.1). Again, 0, the
standard deviation of noise, is estimated for each detail image individually.

In both hard and soft-thresholded images (Figs. 4.1(d) and 4.1(f)), the major edges are
not degraded significantly. However, by comparing the figures it can be seen that, unlike
the hard-thresholding method, the soft-thresholding method is more successful in
removing the noise from the strongly corrupted pixels.

In Fig. 4.1(h) we used a different type of wavelet (Bior.5.5 [Daubechies92, Cohen92])

to decompose the image. The result looks very similar to the result obtained using the



74

Bior.3.3 wavelet (Fig. 4.1(f)). This similarity is also confirmed by almost equal MSE
measures associated with these two images (see Table 4.1).

In Fig. 4.2, both thresholding methods are applied to a natural test image. The results
obtained for this test image are consistent with the previous results obtained for a
synthetic image (see Table 4.2).

The MSE and ISNR for the images shown in Figs. 4.1 and 4.2 are represented in Table
4.1 and 4.2. The quantitative measures are slightly better for the hard thresholded images
than the soft thresholded ones. However, it is not sufficient to rely on quantitative
measures since they can not take into account all aspects of the image quality for which
the human eye is sensitive. Although the soft thresholded images are more blurred than
their hard thresholded counterparts. they show a better trade-off between noise filtering

and image blurring (Figs. 4.1 and 4.2).

Figure Description MSE . | ISNR
(Grev level)” | (dB)
42b Additive noise , &~ = 400 384.03 £ 1.65 0.00 £0.00
42.¢ Hard with Tr. = 2.5 6. Wavelet = Bior. 3.3 101.6 £0.83 5.77 £0.04
42d Soft with Tr. = 1.3 6. Wavelet = Bior. 3.3 105.5+0.77 5.61 £0.03

Table 4.2 Quantitative measures (MSE and ISNR) for the results obtained by applving
the basic thresholding method to the noisy natural image shown in Figure 4.2(b).

The basic thresholding methods have serious drawbacks. First of all, there is no
automatic mechanism for detecting the optimum threshold level. The threshold is set by
trial and error. The threshold must be large enough to remove the noise effectively, but

not so large as to blur the image. Since most noise power is confined to the small-scale



(a)- Original (b)- Noisy

(c)- Hard Thresholding (d)- Soft Thresholding

Figure 4.2 Applving the basic thresholding techniques to a noisy natural image:

fa) Original 256x256 image with the range of grey levels between 0 and 253.

tb) After adding Gaussian white noise with G ; = 400 (grey level)” .

Results of> (c) Hard thresholding with Tr. = 2.5, where G/, is the estimated
value for G . (d) Soft thresholding with Tr. = [.5G,.
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detail images reducing the coefficients in these images will reduce the noise preferentially.
However to keep the image sharp, the small scale information is required. Therefore, any
attempt to remove the noise can affect the sharp features in this filtering method.

The basic thresholding method is a crude approach similar to the frequency domain
techniques in which we reduce the noise preferentially by suppressing the high frequency
components. The finite support of the basis functions in the wavelet domain gives us the
opportunity to process the image in a different way where the filter behaviour is adapted
to the local features of the image. In the rest of this chapter, we look at some more
advanced wavelet domain techniques that adapt the filter to the spatial content of the

mnage.

4.3 Spatially Selective Wavelet Domain Filters

4.3.1 Introduction

The basic goal in a noise filtering technique is to suppress the noise without blurring
the image. [n an advanced noise removal technique, edges and other sharp teatures should
be recognised as different from the noise and retained. As we saw in Chapter 3. Fourier
analysis has a serious drawback. In transforming to the frequency domain, spatial
information is lost. One major advantage afforded by the wavelet transform, not exploited
in the Fourier method, is the ability to treat different regions of an image, i.e. edges,
smooth areas and so on, differently.

In wavelet analysis, the signal power at small scales corresponds to high frequency
components and is required to keep edges sharp in an image. By removing the high

frequency components from the smooth regions and retaining them around identified
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edges, noise is reduced without blurring any identified edges. The key to this technique is
to identify edges and other sharp features in a noisy image.

The idea of using the scale-space correlation of a signal to filter the noise was first
introduced by Witkin [Witkin83]. He developed an algorithm to distinguish major edges
from noise in finer scales. Several more advanced noise filtering techniques, based on the
wavelet and sub-band decomposition techniques, have been proposed in recent years
[Mallat92, Xu94. Malfait97]. In the following sections, we briefly explain some of the

recent advanced wavelet-based filtering methods.

4.3.2 Mallat’s Method

The most important information of an image is often carried by its discontinuities and
irregular structures. Edges, for instance, are among the most important features of an
image for recognition purposes. In a noisy image, noise adds some new irregular
structures to the image, in addition to the inherent rregularities.

For most practical images. the built-in irregularities have different characteristics from
those introduced by the noise. Mallat er a/. [Mallat92] used these differences to distinguish
and remove the noise. The local regularity of a signal is often measured by Lipschitz
exponents. In the rest of this section, after a brief review of this regularity measure and

definition of the modulus maxima, Mallat’s denoising algorithm [Mallat 92] is explained.
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The Regularity Measures

The local regularity of a function is usually measured with Lipschitz exponents

[Mallat92, Malfait97]. A function has an order of smoothness (or Lipschitz exponent) of o
(0 < o < l)at point x,, if and only if there exist two constants 4 and 4, (0<h, <1), such

that for any A < h,:

|f(x0) = fxo + )| < A"
The Lipschitz regularity can be extended to o values greater than unity (or less than

zero). When extending the definition of the Lipschitz exponents, we examine the

behaviour of the derivative (or integral) of the signal in a neighbourhood of x, [Mallat92].
In general, a larger Lipschitz exponent, @, at a point x, is associated with smoother

behaviour of the signal in a neighbourhood of this point. For example a step signal has a

Lipschitz exponent of zero at x, = 0. while a ramp signal has a Lipschitz exponent equal
to unity. For signals with smoother behaviours, the Lipschitz exponent is larger. For
example, v = x" has a smoothness of degree 2 (o =2 ) at x, =0. For the signals with a

more irregular behaviour than a step function, the Lipschitz exponent is less than zero. As

an example, the delta function has an order of smoothness of -1 at x, =0.

The definition of Lipschitz exponents for two-dimensional signals is a simple extension

of one-dimensional case [Mallat92]. A function f(x,y) has an order of smoothness (or
Lipschitz exponent) of ¢ (0 << 1) at point (x,,y,) . if and only if there exist two
constants k, >0 and &, >0, for 4 >0, such that for any & < k,and & <k, [Mallat92]:

| f (g +hoyy +H) =[xy, 30) I ACRT +£5)7%.
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In a noiseless image, the worst singularities are often discontinuities (edges) for which
the local order of smoothness is equal to zero. Hence, the Lipschitz regularity is almost
always non-negative for a noiseless image. On the other hand, noise generated singularities
will have Lipschitz exponents that are almost always negative [Mallat92]. By computing
the local regularity of the image, we can detect the noisy pixels. It is usually easier to
calculate the local regularity of the signal in the scale space than the spatial domain
[Mallat92, Daubechies92]. In fact, it can be proved that the local Lipschitz exponent of a
function can be calculated from the behaviour of its wavelet coefficients across the

successive scales [Mallat92].

Wavelet Transform Modulus Maxima

For one-dimensional signals, a local wavelet modulus maximum is a wavelet
coefficient at scale s whose modulus (absolute value) is greater than all other coefficients
in its neighbourhood. Mallat er a/. [Mallat91] proved that almost all the information in a
signal is carried by its local modulus maxima. Although the modulus maxima can not
uniquely characterise the original signal, they can be used to reconstruct a close
approximation of the signal.

The modulus maxima carry all the information about the singularities of a function. In
the vicinity of a singularity, there are always some local maxima at the fine scales of the
wavelet transform and possibly even present in the coefficients in some coarser scales
[Mallat92]. A maxima line is a line that connects the corresponding maxima at different
scales. All singularities of a signal can be located by following the maxima line from the

coarser scales to the finest scale. To compute the order of smoothness of a smgularity, we
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measure the decay rate of the modulus maxima along a maxima line. The Lipschitz
exponent is derived by fitting an exponential function, A.s%, to the curve which shows the
decay of modulus maxima across scales [Mallat91, Mallat92].

For two-dimensional signals the definition of the modulus maxima is slightly different:
Modulus(j,n_,n.)= (D (n,n,)P+D/ (n,n))"*.  (42)

However. to detect the singularities of the signal and to measure their regularity, the same

maxima linkage approach can be used [Mallat91, Mallat92].

One-Dimensional Signal Denoising

Wavelet transform maxima carry almost all the information of a signal [Mallat91,
Mallat92]. To process a signal we can modify its wavelet transform maxima and
reconstruct the processed signal from the new maxima.

Noise generates singularities with negative Lipschitz exponents, while the worst
singularities in practical signals are steps for which the Lipschitz exponent is zero. This
property is used by Mallat et a/. [Mallat92] to discriminate the noise from the signal. In
Mallat’s method, we examine the evolution of the wavelet maxima across the scales. A
negative Lipschitz exponent is characterised with a strong increase in the amplitude of
maxima when scale decreases. Such maxima are associated with noise and must be
removed from the signal. However, the presence of noise can change the overall regularity
to a negative number in the locations where the signal has positive Lipschitz exponents.
To detect the noise from the signal we must examine the maxima at larger scales since the

influence of noise decreases with increasing the scale. However, the presence of maxima at
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larger scales is associated with the presence of a discontinuity in the original signal and
therefore the maxima chain must be preserved.

[n order to be able to examine the behaviour of the maxima across scales, we need to
detect the maxima lines. A maxima line is a line in the scale space domain that connects all
the maxima associated with the same singularity. Increasing the scale decreases the
number of maxima. To generate the maxima lines, we have to decide which maxima
propagate to a larger scale and which ones do not. For this purpose, one can compute the
wavelet transform on a larger number of scales, instead of using the dyadic scales. To save
computations however, Mallat er al. [Mallat92] used an ad hoc algorithm: "A maximum is
considered to propagate from scale 2/ to a coarser scale 27! if it has a large amplitude
and it is close to a maximum at the scale2’~' having the same sign".

Mallat’s denoising algorithm removes all maxima whose amplitude increases on
average when the scale decreases, or which do not propagate to larger scales. The wavelet
coefficients in the finest scale, 2', are mostly dominated by the noise and hence Mallat
preferred to ignore them completely. Removing all the maxima in the finest level will
greatly reduce the noise effect but the resultant signal will be completely blurred. Mallat er
al. suggested that we should create a maximum at the scale 2! at every location where
there exists a maximum at the scale 2°. To compute the amplitude of these maxima, we
calculate the decay rate of the maxima at the corresponding location for the scales larger
than 2°. The size of maxima at level 2' is chosen to be consistent with this decay rate.

After selecting the proper maximurn, the denoised signal is reconstructed from the new

set of maximum using the alternative projection algorithm [Mallat91, Mallat92].
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Two-Dimensional Signal (Image) Denoising

Mallat er al. discriminated 2D noise singularities from the image singularities
[Mallat92] using a similar approach as the one-dimensional case. The modulus maxima
(Eqn. 4.2) at corresponding positions in different scales have to be linked in so-called
maxima lines. To relate the modulus maxima across the scales Mallat [Mallat 92] used a
similar ad hoc approach as in one-dimensional case. “A modulus maximum is considered
to propagate to a coarser scale, only if there is another modulus maximum close to its
position in the coarser scale which has a similar angle”. The angle of a modulus maximum
is defined as:

Angle(j,n,,n,)=Arctan(D¥ (n_,n,)/ D] (n,,n,)).

The decay rates of maxima along these maxima lines are used to discriminate noise
from the image singularities. The worst non-noise related singularities are discontinuities
with Lipschitz regularity of zero in the regions where the image does not have irregular
textures (see “Regularity Measures” in section 4.3.2). The regularity for the noise
singularities is almost everywhere negative. Therefore, it is possible to discriminate the
noise singularities from those singularities inherent in the image by examining the
evolution of the maxima along scales.

As with the one-dimensional case, the two-dimensional denoising algorithm removes
all modulus maxima that do not propagate to coarser scales, or have a negative Lipschitz
regularity. Unlike the one-dimensional case, the geometrical properties of the image are
used to remove all the remaining maxima that can not be linked in a chain [Mallat92]. A
threshold can be selected for the length of the chains and any chain with a length smaller

than this threshold is deleted. Again this algorithm replaces the strongly corrupted maxima
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in the finest level with a new set of maxima. As with the one-dimensional case, we put a
new maximum at any location where there is a maximum at the second finest scale. The
magnitude of this new maximum is estimated from the decay rate of the corresponding

maxima line.

4.3.3 Xu’s Method

Although Mallat’s method [Mallat92] is quite effective in improving the visual quality
and signal to noise ratio of noisy images, it is computationally expensive. To avoid this
expense Xu ez a/. [Xu94] proposed a faster technique, which is reviewed i this section.

To keep the edges sharp, a noise filtering technique must be able to discriminate the
edges from noise. In the noise filtering technique suggested by Xu er a/. [Xu94], a method
similar to the Rosenfeld technique [Rosenfeld70, Rosenfeld71] is used to detect the major
edges. This algorithm is based on the observation that the correlation between the
coefficients at different scales is much larger for the coefficients that are associated with
major edges. Xu ez al. [Xu94] used the direct multiplication of the coefficients at adjacent
scales to locate the location of edges. Although this method is not as accurate as the
method used by Mallat [Mallat92], it is quite straightforward and much easier to
implement. After finding the edges, the small-scale coefficients are retained in the vicmity
of the identified edges and suppressed in other regions. The small-scale coefficients
correspond to the high frequency data in the Fourier transform domain, and hence this
filter acts as a spatially selective low-pass filter. High frequency data are mostly

suppressed, except where a highly correlated feature (an edge) is detected. This locally
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adaptive filter is capable of removing the noise from the smooth regions without blurring

the edges.

Implementation and the Results

To implement Xu’s noise filtering method [Xu94], we need to first decompose the
image into its multi-scale wavelet coeflicients. The selected wavelet should behave as a
good edge detector, because it is appropriate to have large responses (coefficients) in the
vicinity of the edges in each scale. An optimal edge detector for step edges has a shape
very close to the first derivative of a Gaussian function [Canny86]. To implement their
algorithm, Xu ez al. [Xu94] used the biorthogonal quadratic-spline wavelets first
introduced by Mallat and Zhong [Mallat89]. These wavelets have a shape very close to the
derivative of a Gaussian function and hence behave like an optimum edge detector. In our
implementation, we used the same wavelet as that used by Xu ez al.. To examine the
sensitivity of the method to the type of wavelet we also have checked the results for the
Bior.3.3 wavelets first introduced by Cohen and Daubechies {Cohen92].

To compute the wavelet coefficients we used Mallat’s fast wavelet transform algorithm
(Section 3.6 and [Mallat89A]). A redundant transform (Section 3.7.2) is used to calculate
the wavelet coefficients so that the detail images at different levels have the same number
of coefficients. This equality makes it easier to calculate the correlation between scales
through direct multiplication of the coefficients.

After decomposing the image into a hierarchy of horizontal, vertical and diagonal

detail images, we compute the direct spatial correlation, Corr,”® on each group of detail

images to locate the edges and other important features.
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|

CorrlDIR(m’nx’nAv) =I—[Drsif(nx’nv)7 (4°3)
=0
I<n <N, Isn, <N, O<m<M-I+1

where / is the number of adjacent scales involved in computing the correlation and m is the
finest scale involved in this computation. D”* is the detail image at direction DIR
(Horizontal, Vertical or Diagonal) at level j (Section 3.6).

Xu er al. suggests that at most three scales should be involved in the edge detection
process (/ < 3) for the best filtering results. To generate the results given in the paper,
[Xu94], they calculated the correlation only over two scales. Therefore in our simulation

of Xu ez al. work, we also detect the location of edges by directly multiplying each detail
image by a detail image in the next coarser scale. That is, if D?*(n_, n,) is a detail image
in level j we calculate:
Corr?®(j.n,,n )=D""(n .n,).D2}(n..n,).
Sharp edges generate large coefficients over many wavelet scales, but the noise
coefficient dies out swiftly with increasing scale. The direct multiplication of coefficients

enhances major edges while suppressing noise and small features. Therefore by comparing

the coefficients in the detail image, D°*(n_,n,) , with the correlation image,
Corr?® (j,n_,n,) it is possible to find which detail coefficients belong to the edges. To

make the comparison of the detail images with the correlation images meaningful [Xu94],

first we need to re-scale the power of the correlation function, Corry’*(j,n,,n,), to that

of D?®(n,,n_) thatis:
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Comom(j," 2N ) = CO’T"DIR(j7n o ) X ’__11/0,‘;___,
- 4 ¥ - x ¥ \ PCorr:DIR (j)

where:

PD?* =% N [D*(n,,n,)} and PCorr"(j)= > Y [PCorr* (j,n,.n,)T .

II' n -

After rescaling the power of the correlation image, the major edges are identified by

comparing the absolute values of Corr”*(j,n,,n,) and D?*(n,n,). An edge is

identified at any position (n,,n, )at which | Corr”®(j,n,n.)| is greater than

| D?®(n,,n,)|. All the detail coefficients at these positions are passed through the filter.

To extract less important edges, the whole process should be repeated on the
remaining coefficients. First we extract the coefficients located on identified edges from
both detail and correlation images by resetting the values of these coefficients to 0% at the
positions identified. Then we re-scale the power of the modified correlation image to that
of the modified detail image and compare their absolute values to identify and extract the
second most significant edges. This procedure of power normalisation, data vaiue
comparison, and edge information extraction can be iterated many times until the power of

the unextracted data points in D?*(n_,n,) is nearly equal to the estimated noise power at

the detail mage.

After filtering, the wavelet coefficients in the vicinity of the edges will be preserved
while they are completely suppressed in the smooth regions of each detail image. This
spatially selective low-pass filter removes most of the noise power without blurring the

edges.
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The above filtering process must be repeated for all detail images in all scales. After
modifying all detail images, we use the inverse wavelet transform to reconstruct the
filtered image.

Fig. 4.3(a) represents a 128 x 128 synthetic test image with a maximum grey level of
255. The image in Fig. 4.3(b) was derived from this test image by adding a zero-mean
Gaussian noise with variance 400 (grey level)® . Mallat’s fast wavelet transform was used
to decompose the unage.

Fig. 4.3(c) shows the result obtained using Xu's noise filtering method. For this
purpose, a six-level wavelet decomposition is calculated and the coefficients in the first
five scales are filtered. To estimate the location of the major edges, only two adjacent
levels are involved in calculating the direct spatial correlation.

Compared to the basic thresholding method (Figs. 4.1(c) and 4.1(f)), Xu’s method is
more successful in preserving the edges of this test image. The average SNR is improved
by 5.15 dB (see Table 4.3). Although most parts of the image are restored successfully,
some small features are not well recovered. These small. low-contrast features do not have
a strong spatial correlation across scales and hence Xu’s method cannot discriminate them
from the noise. In the neighbourhood of edges. where there is a high correlation between

scales, a great amount of noise is passed through the filter.



(¢)- Xu's Method (d)- Xu’s Method
Rejected Power = Noise Power Rejected Power = 1 .2xNoise Power

(e)- Xu's Method (f)- Xu’s Method
Rejected Power = 0.9xNoise Power 3 layer correlation

Figure 4.3 Applving Xu's noise filtering method to noisy synthetic image:

(a) Original synthetic 128128 image with grey levels between 0 and 253.

(b) After udding Gaussian white noise with variance 400 (grev level)”

Results of> (c) Xu's method. Rejected Power=Noise Power . 2 laver Correlation.
td) Xu's method. Rejected Power=1.2xNoise Power, 2 laver Correlation.

te) Xus method. Rejecred Power=0.9xNoise Power, 2 laver Correlation.

(f) Xu'’s method. Rejected Power=Noise Power, 3 laver Correlation.
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Figure Description MSE ISNR
(Grey level)' | (dB)

43b | Additive noise, o* = 400. 393.05+1.74 0.00 +0.00

43.c Xu’s method, rejected power = noise power, 120.6 £0.67 5.13+£0.03
2 layer correlation.

4.3.f Xu’s method, rejected power=1.2xnoise 121.0+£0.64 5.11 £0.03
power, 2 layer correlation.

43.g Xu’s method, rejected power=0.9xngise 136.8 £0.73 4.59+0.02

ower, 2 layer correlation.

43h Xu’s method, rejected power = noise power, 122.6 £0.58 5.06 £0.02

3 laver correlation.

Table 4.3 Quantitative measures (MSE and ISNR) for the results obtained by applying
Xu's noise filtering method to the noisy synthetic image shown in Figure 4.3(b).

In each iteration of the filtering process Xu’s method passes more wavelet coefficients
through the filter until the energy of the remaining wavelet coefficients is almost equal to
the estimated noise energy. In practice, the ratio of the energy of the remaining
coefficients to the estimated energy of noise does not need to be unity. This ratio can be
used as a parameter in the filtering process to control the trade-off between the noise
removal and the image resolution. The effect of this parameter on the filtered image is
shown in Figs. 4.3(d) and 4.3(e). [n Fig. 4.3(d) this parameter was chosen to be 1.2 so
that few coefficients are passed through the filter. Although the noise is better smoothed in
this image, the edges are not as sharp as in Fig. 4.3(c). For the image shown in Fig. 4.3(e)
the parameter was set to 0.9. Although the edges are quite sharp in this image, noise is not
removed as effectively as in Fig. 4.3(c) or 4.3(d) (see Table 4.3). Therefore by controlling
the energy of the suppressed coefficients we can obtain any desired trade-off between

image sharpness and noise smoothenmg.
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To generate the previous images (Figs. 4.3(c) to 4.3(¢)), only two adjacent scales were
used to detect the location of edges. In Fig. 4.3(f), three levels are involved in the edge
detection process. The result does not show any improvement over the images obtained
using only two levels, which is consistent with the result recorded by Xu ez al. [Xu94]. In
the next chapter, we consider possible improvements to Xu method, and introduce
methods that allow us to involve more scales in the edge detection process.

Fig. 4.4(c) represents the result of applying Xu’s method to the noisy natural test
image shown in Fig. 4.4(b). In comparison to the basic thresholding method, Xu’s
technique was more successful in removing the noise from the test image. To implement
Xu’s method the correlation between the detail images was calculated over two adjacent
scales. Again, as we can see in Fig. 4.4(d), involving more scales in Xu’s correlation

operation does not improve the quality of the final result (see Table 4.4).

Figure Description MSE ISNR
(Grev level)® | (dB)
4.4.b Additive Noise , 6~ =400 384.03£1.65 0.00 £0.00
44c¢ Xu method, Rejected Power = Noise Power, 97.2£0.48 5.97 £0.02
2 layer Correlation.
44d Xu method. Rejected Power = Noise Power, 103.4£0.73 5.70 £0.03
3 layer Correlation.

Table 4.4 Quantitative measures (MSE and ISNR) for the results obtained by applying

Xu s noise filtering method to the noisy natural image shown in Figure 4.4(b).

4.4 Summary

The wavelet transform allows exploitation of both frequency and spatial domain

information in the noise filtering process. Several wavelet based noise-filtering



(a)- Original (b)- Noisy

(¢)- Xu’s method (d)- Xu’s method
2 layer correlation 3 layer correlation

Figure 4.4 Applving Xu's noise filtering method to noisy natural image:

(a) Original 256x256 image with the range of grev levels between 0 and 235.
(b) After adding Gaussian white noise with O’i = 400 (grev level) .

Results of>  (¢) Xus method with 2 laver Correlation. (d) Xu's method with
3 laver Correlation.
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techniques

were discussed in this chapter. The performances of the simulated filters in removing the
noise from test images were compared using both quantitative and qualitative measures.

Except for the basic thresholding technique, which is a crude filtering method, the

general idea behind all the proposed methods is to identify the edges and other sharp
features from the noise, and preserve them during low-pass filtering. As a result, the
wavelet filters are very effective in preserving the edges. Mallat [Mallat92] used the local
regularity measures to detect the edges while Xu er al. [Xu94] exploited the correlation
between scales for this purpose. In the next chapter, some possible improvements to the
above methods are suggested. A new method is proposed which is based on muiti-domain

processing of images.
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Chapter 5

A New Noise Filtering Technique

5.1 Introduction

In this chapter, a new method for removing noise from images together with some new
methods for detecting edges are proposed. Preliminary results are given to compare this
approach with other methods discussed in this thesis in terms of preserving mage
sharpness during noise filtering.

The suggested method is basically a wavelet domain technique. However, there are
some major differences between the proposed method and other wavelet-based noise
filtering techniques. The new method processes the image in both scale-space and spatial
domains. Moreover, the new method does not classify the wavelet coefficients into noisy
and clean coefficients but considers each to be partially noisy. A major step in the
proposed method is to determine to what extent each coefficient has been affected by
noise.

The block diagram of the proposed noise filtering technique is shown in Fig. 5.1. The
suggested method is composed of two main modules: a module for detecting the edges
and another module for filtering the noise. In the noise-filtering module, the image is
transformed to the scale-space domain and a bank of adaptive filters is used to suppress
the noisy coefficients. The information obtained about the location of edges (the output of

the edge detection module) is used to adjust the parameters of the adaptive filters in the



Edge Detection Block

Noisy
Image

Figure 5.1 The Block diagram of the proposed noise filtering technique.
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noise filtering module. As we will see in this chapter, involving the edge information in the

noise filtering process will lead to a spatially selective low-pass filter which suppresses the

high frequency components of the image except from the vicinity of edges. To mmplement

the edge detection module, a new technique for detecting edges in the presence of noise is

propsed.

In sections 5.2 and 5.3 we discuss spatial and wavelet domain techniques to process

the image and locate its edges. In section 5.4, a probabilistic formulation is used to

combine the spatial and scale-space domain results to make a final decision about the

edges. In section 5.5, the information about the edges is used to remove the noise from the

image without affecting the edges. In section 5.6 we will compare the experimental resuits
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obtained using the new technique with the results obtained from other methods. Finally a

short summary concludes this chapter.

5.2 Detecting the Edges in the Spatial Domain

5.2.1 Derivative operators

Edge detection is a basic step in many image processing techniques. In most
applications, a great portion of the useful information in an image is often carried by its
edges. To extract this information, several edge detection techniques have been proposed
which process the image either directly in the spatial domain [Prewitt70, Fram75, Marr8&0.
Levine83, Clark89] or after transforming it to a different domain [Canny86, Mallat92].

The idea underlying most spatial-domain edge detection techniques is the computation
of a local derivative operator. Both the first and second derivatives of the image can be
used for this purpose. However first derivative operators are less sensitive to noise
[Gonzalez92]. The gradient of an image at location (x, ¥), Vf . can be defined in terms of

G. and G, which represent the partial derivatives of the image mtensity function f(x,}):

ve<|

G, | [offox]
LC: {

/o)
The magnitude of the gradient vector. Vf , represents the rate of change of image
mntensity at (x, v).
Vf =modulus(Vf)=(G; + G;)"*
Usually this quantity is approximated by a sum of magnitudes {Gonzalez92]:

Vf=1G,i+1G,|
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The magnitude of the gradient, V', has a local maximum at the position of edges. This
property can be used to detect the edges. The local direction of an edge is perpendicular
to the angle of the gradient vector, a(x,y), at (x, v):

a(x,y) =drctan (G, / G,)

and hence, the angle of the gradient vector can be used to detect the direction of edges.
To compute the gradient of a digital image, we need to compute the partial derivatives
df /ox and df /dv at location(x, y) . The digital form of these derivatives can be
implemented in several ways. In our application, the derivative operators would be applied
to noisy images and hence any noise enhancement effect associated with the derivatives
can easily degrade the results. Among several implementations of these derivatives, the
Sobel operators have the advantage of providing simultaneous differencing and smoothing
effects. The smoothing effect of the Sobel operators reduces the effect of noise and hence

makes them a good choice for our application. The 3x3 Sobel gradient masks are given in

Fig. 5.2 [Levine85].

-1 -2 -1l -2 -1 0] -1 0 1 To 1 2
s= 0 0 0 S=-1 0 1 S={-2 0 2 s‘=i—1 o 1
SR S Lo o1 2] -1 0 1 -2 -1 0]
T2 1'1 2 o’! }' 1 -1” !' 0 -1 -2]
s=1 0 0 of s=[ 1 0o - s=[2 —2| 5= 1 o -1
-1 -2 -1 L0 -1 -2 L1 0 -1 2 1 o]

Figure 5.2 Sobel gradient masks used to detect edges in all possible directions
associated with a 33 neighbourhood .



97

To detect the edges, we convolve the noisy image with each of the eight directional
masks. Each mask detects edges having a specific direction. The absolute values of the
filtered images are compared at each location (x, y), and the strongest response, e(x, y)
is chosen as the value of the gradient image at (x,y).

e(x,v) =max(f(x,y)* S,) Sfor i=1..8
x=1,2,..N and y=12..N,
where S; is the i ™ directional gradient mask given in Fig. 5.2.

Fig. 5.3(a) shows our 128x128 synthetic test image with the range of grey levels
between 0 and 255. Fig. 5.3(b) represents the result after adding Gaussian white noise
with variance of 400 to the test image. The result of applying the Sobel gradient masks is
given in Fig. 5.3(c). Similarly, Fig. 5.4(c) shows the result of applying the Sobel masks to

a natural test mnage.

5.2.2 Extraction of Edges

Although the smoothing effect of the Sobel masks reduces the effect of noise, the
amount of noise in the gradient image is still noticeable (Figs. 5.3(c) and 5.4(c)). To
obtain a better separation between signal and noise, the gradient image can be
thresholded.

In general the gradient of major edges is larger than the gradient of noisy pixels. By
setting all the pixels whose gradient is below a certain number (threshold) to zero, we can
suppress the noise and highlight the major edges. In practice, however, it is almost

impossible to find a proper threshold value. A small threshold value does not remove the
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(a)-Original (b)-Noisy

(d)-Single-thresholding with T;

(e)-Single-[hresholdjng with Ty (f)-Double-thresholding with 77 and T

Figure 5.3 Detecting the edges of a noisy synthetic image. (a) Original synthetic
128x128 image with the range of grey levels between 0 and 255. (b) After adding
Gaussian white noise with variance 400 (grey level)’ . Results of- (c) Applying the
Sobel masks. (d) Single-thresholding with a small threshold value T,.. (d) Single-
thresholding with a large threshold value, Ty. (d) Double-thresholding with lower
and higher thresholds equal to T; and Ty respectively.
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(c)-Sobel gradient (d)-Single-thresholding with 7;

(e)-Single-thresholding with Ty (£)-Double-thresholding with 7; and T

Figure 5.4 Detecting the edges of a noisy natural image. (a) Original 256x256
image with the range of grey levels between 0 and 255. (b) After adding Gaussian
white noise with variance 400 (grey level)’ . Results of: (c) Applying the Sobel
masks. (d) Single-thresholding with a small threshold value T;.. (d) Single-
thresholding with a large threshold value,T... (d) Double-thresholding with lower
and higher thresholds equal to T, and Ty respectively.
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noise effectively, while a high threshold eliminates some edge points and causes
discontinuities in the edge contours. To solve this problem, we used a double thresholding
method, which is a modification of Canny’s method [Canny86].

In the first stage of our double thresholding method, pixels with gradient values
greater than an upper threshold, T, are marked as “‘edge points”. We use the edge points
as starting points (seeds) for growing the edges. For this purpose, we mark all pixels in the
neighbourhood of a seed with a grey level greater than a lower threshold, 7, as “candidate
edge points”. The upper and lower threshold values are chosen based on the energy of
noise in the image, which can be estimated from the signal-free regions of the image (see
also discussion in Chapter 6). This edge growing process continues by checking the
neighbourhood of each “candidate edge point” to find new candidates. It stops when no
more pixels in the neighbourhood of the grown edge can be included in the region.

Using two different levels for thresholding greatly improves the connectivity of the
edges. For an edge to be disconnected with this approach, the edge pixels must fluctuate
above the upper threshold and below the lower threshold. In the simple thresholding
methods, on the other hand, the connectivity of edges can be achieved only through
reducing the threshold value, which increases the chance of choosing noisy pixels as false
edges.

In the double thresholding method, the probability of detecting false edge points is also
reduced. The noise strength at a noisy pixel must be quite high (above the higher
threshold) before it can be detected as a seed point. However in the vicinity of the edge
points it is still possible that some noisy points are marked as “‘candidate edge points”. The

results of applying single and double thresholding methods on the gradient image of Fig.
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5.3(c) are shown in Figs. 5.3(d) through 5.3(f). For the single thresholding method, we
either have false edges everywhere (using a low threshold) or edge discontinuities (using a
high threshold). For the double thresholding approach, although false edges are removed
from the smooth areas, some noisy pixels are wrongly marked as “candidate edge points”
in the neighbourhood of edges. The results of applying the single and double thresholding
methods to our natural test image in Fig. 5.4 show similar effects.

To reduce the effect of false candidate pixels on our final decisions, we assign a
probability factor to each candidate pixel. This probability factor can take any value
between zero and one and shows the chance of each candidate pixel of being on an edge.
We also assign a probability factor of 1.0 to all pixels that are marked as “edge pixels”
(pixels with gradients above T). To assign a probability factor to a candidate pixel, we
use the fact that in most practical images. there are some similarities between the pixels
that are located on an edge. Therefore in evaluating the candidate pixels, we can give a
higher chance to the pixels that share some common properties with the previously
accepted edge points (seeds). To quantise these similarities, the similarity between pixels
must be defined using a mathematical formulation. For this purpose, we use three different
similarity measures:

e Measure |- Similarity in the Amplitude of the Gradient.

e Measure 2- Similarity in the Phase of the Gradient.

e Measure 3- Connectivity of the Direction Field.

The definitions of these measures are provided in the following sections.
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Measure 1- Similarity in the Amplitude of the Gradient

In most practical images, the sharpness of an edge varies smoothly along its length.
Hence the response of the gradient operator should vary in a similar way. As a result, the
“candidate edge points” with the closest gradients to the gradient of an edge pixel must
have the highest chances of being selected as edge points.

To measure the similarity between the gradient of pixels, a mathematical definition for
the similarity of the gradients must be defined. Suppose the pixel at location (x’,y") hasa
chance of p,(x’. ¥") of being on an edge. We want to assign an “‘edge probability” factor
to the pixel at location(x, v) based on the similarity of its gradient amplitude to the
gradient amplitude of the pixel at (x, ¥") . This probability factor can be defined as:

p(x,y)=p,(x'.¥).S (% ¥, X ) (5.1)
where S, (x,v,x’,1") is our mathematical definition for the similarity between the
magnitude of gradients at (x, y)and (x’.»") which can be expressed as:
. IG(x, v)| < G(x, ¥)
(G ) =G (x5

S, (x.v.x. ¥y =<1 G ) =G G!(x:.v') <|G(x, ¥)| < Gy (x".¥)
[o Gy(x',3") <|G(x, y)|

{
f l
1
|
|

G(x,v) = (Vf (x,3) = Vf (x", ¥/ Vf(x.y),
where (x”,v") is the location of the reference pixel and G,(x’. y") represents the

maximum deviation in the gradient amplitude from that of the reference pixel that a pixel

can have and still be considered quite similar to the reference pixel. Similarly, G,(x’,y")

shows the minimum deviation that causes a pixel to be considered quite different from the
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reference pixel. Both these quantities are functions of the gradient of the reference pixel at
location(x’,y") .

Fig. 5.5 shows the fuzzy classifier used to assign an amplitude similarity measure to
each candidate pixel based on the similarity of its gradient amplitude to that of the
reference pixel.

To assign a probability factor, p,(x, ), to each candidate pixel, we start from the
candidate pixels that are inside the 8-connected neighbourhood of a seed pixel (first-layer
candidate pixels). For the first-layer candidate pixels, the seed pixels are used as reference
points. The seed pixels are the points that are already marked as edge points and hence we
assume p,(seed)=1.0. As a result, Eqn. 5.1 takes the following simple form for the first-
layer candidate pixels:

p(x,¥)=S8 (x,v,x".¥)

S, (x,v.x.¥7)
1.0

-GI('F’r.V’) G,(I'.,V’)

0 GG G(x,y)

0.0

- le (I',_lr")

Figure 5.5 The fuzzy classifier which is used to assign a similarity measure to each
candidate pixel based on the similarity of its gradient amplitude to the gradient

amplitude of the reference pixel at (x’, y’).
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It is possible that a candidate pixel is in the 8-connected neighbourhood of more than
one reference pixel. As a result several probability factors can be assigned to a candidate
pixel. To deal with this situation we will change the probability factor of a pixel, only if the
new factor assigned is greater than the current value assigned to that pixel.

After assigning a probability factor to all first-layer candidate pixels (candidate pixels
in the 8-connected neighbourhood of seed pixels), we continue this process for the second
layer candidate pixels (candidate pixels in the 8-connected neighbourhood of first layer
candidate pixels). For this purpose we use Eqn. 5.1 to assign a probability factor to the
second-layer candidate pixels. For the second layer candidate pixels the reference pixel at
location(x’, v") is no longer a seed pixel. In fact p,(x’,»") in Eqn. 5.1 is the probability
factor assigned to a first layer candidate pixel and can be different from unity. We continue

this process until we assign a probability factor to all candidate pixels.

Measure 2- Similarity in the Phase of the Gradient

In most practical images. the direction of an edge varies smoothly along its length. As
a result, we expect to encounter only small variations in the direction of the gradient
vector when we track an edge.

Similar to what we did for the amplitude of the gradient, a probability can be assigned
to each candidate pixel based on the direction of its gradient. Again pixels with higher
probabilities are more likely to be selected as edge points. The probability assigned to each
candidate pixel is defined as:

pB(x’ _V) = Pe(-"’,,V')-Sg(X’J”x',}")
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where (x’, v’) is the location of the reference pixel and S;(x, y,x’, y) is our mathematical
definition of the similarity between the phase of the gradient at(x, y)and (x’,»") . This
similarity can be expressed as:

1 laa(x, p)| < o,

(tAa(x, .V)l - )
(ao - ax)
0 o, < lAa(x, y)l

pal(x, 3, X, y)=41- a, <|Aa(x,y)| < a,

where Ao(x,y)=o(x,y)—a(x’,y")
where o, represents the maximum deviation in the gradient direction that a pixel can have
and still be considered quite similar to the reference pixel. Similarly, o, is the minimum

deviation that causes a pixel to be considered quite different from the reference pixel. Fig.
5.6 shows the fuzzy classifier used to assign an angle similarity measure to each candidate

pixel based on the similarity of its gradient phase to that of the reference pixel.

SB(Ie,v’vt,? ,vl)
1.0

0.0

-a, -oa, 0 a, a, Aa(x,y)

Figure 5.6 The fuzzv classifier which is used to assign a similarity measure to each
candidate pixel based on the similarity of its gradient phase to the gradient phase of the

reference pixel (x’, y ).
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Measure 3- Connectivity of the Direction Field

By assigning a direction to each pixel of the image, a direction field can be defined.

First we need to define a procedure for assigning directions to pixels. Fig. 5.7 shows a set

of twelve masks that are used for this purpose.

The non-zero elements of each mask are located on a line that passes through the

center of the mask. At every location (x, y) of the gradient image, the result of applying

each of these masks is computed. By comparing these results, the direction of the
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prospective edge that passes through (x, ) can be detected. The direction of the non-zero
line in the mask with the highest response is the best estimate for the edge direction at
location (x,y) . We define for each pixel a direction that is equal to the number of the
mask with the highest response. Fig. 5.8 shows some direction fields associated with our
test images that were obtained using this definition. In these direction fields, there is a high
correlation between the pixels that are located along the edges. In other parts of the field,
the image intensities are randomly distributed.

A probability can be assigned to each candidate pixel based on its direction as we did
for the amplitude and phase of the gradient. Again, pixels with higher probabilities are
more likely to be selected as edge points. The probability assigned to each candidate pixel
is defined as:

Po(x.v)=po(x . ¥).Sc(x, 3, X", ¥)
where the reference pixel is located at (x’.y") and S.(x, v,x".v")is our mathematical
definition for the similarity between the directions of pixels located at (x, y)and
(x’.y") which can be expressed as:

‘(1 if D(x,y)<D,

So(x,v, 1, y) = { |- Px2) = Di(x)) if D,<D(x,y)<D,
if D,<D(x,)

i DO(I,_V)—DI(.Y,_V)
0

and:

_ (ld(x,_v) —-d(:c',y’)| if id(x,_v) - d(x',y’)| <6

D(x,v)= . .
C N e ) —dy e -dee i) > 6
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(c)- The phase of gradient (d)- The phase of gradient
for the synthetic image for the natural image

(e)- The direction field (f)- The direction field
for the synthetic image for the natural image

Figure 5.8 Smooth change in the phase of the gradient and direction of pixels (as defined
in Section 3.2.2) along edges: (a) Synthetic 128x128 image and (b) 256x 256 natural
image after adding Gaussian white noise with o’i = 400 (grey level)’.

(c) and (d) the phase of the gradient for the test images.

(e) and (f) the direction fields for the test images.
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where the maximum deviation in the direction that a pixel can have and still be considered

quite similar to the reference pixel is defined by D, . Similarly, D, is the minimum

deviation that causes a pixel to be considered quite different from the reference pixel. Fig.
5.9 shows the fuzzy classifier used to assign a direction similarity measure to each

candidate pixel based on the similarity of its direction to that of the reference pixel.

Se(x.v.x"¥)
1.0

0.0

-p, -0, 0 p D D(x.y)
Figure 5.9 The fuzzy classifier which is used to assign a similarity measure to each
candidate pixel based on the similarity of its direction (as defined in the text) to the

direction of the reference pixel (x’, v’).

Combining the Amplitude. Phase and Direction Similarity Measures

In the previous sections, we assigned three different probability factors to each
candidate edge pixel. Each of these numbers shows the chance of a candidate pixel of
being on an edge based on a different criterion. In this section we use a probabilistic
formulation to combine these factors into a single number. To determine the overall
probability factor, both the union and intersection of the partial probability factors must be

taken into account:

P(x,v) = k| J{p. (5, ), s (x, 1), P e, )M by (P 4 (52 1), 25 (%, ), P (.00}
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where | j and (| represent union and intersection operators respectively and &/ and £2
must satisfy:
k +k, =1

By increasing the ratio £1/k2, the impact of individual similarity measures on the final
decision will be increased. Decreasing the ratio £1/k2 puts more emphasis on the
coincidence between the measures. Using the fuzzy logic definitions of union and
intersection operators [Zimmer80, VonAltrock95], we have:

P(x,y) = k[max(p,(x,¥), pg(x, 1), pc(x, )]+ ky [min(p , (x, ), 5 (%, ), P (%, V)]
Candidate pixels with the higher P(x, y) are more likely to belong to an edge.

Instead of setting a threshold and treating all the pixels with P(x,y) values above the
threshold as edge points, we decided to use a more adaptive approach. We enhance all the
pixels in the output of the edge detector. However, the level of the enhancement at each
location (x,v) . depends on the value of the final probability, P(x.y), at that point. The
edge-enhanced image can be represented by:

S (x.v)=(1+k.P(x,v)).S(x.y) (5.2)
where S(x,v) is the gradient image and £ is a multiplicative factor that is used to control
the level of edge enhancement, or equivalently the level of noise suppression.

Figs. 5.10 and 5.11 show the edge enhanced images obtained by applying the above
method to the synthetic and natural test images, respectively. In the vicinity of some
strongly corrupted pixels, short false edges are detected (for example, the false edges
detected on the Lenna’s face, in Fig. 5.11(e). These false edges can be removed by setting

a threshold for the minimum acceptable length of an edge. In the edge-growing
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(d)-Edge enhanced gradient image (e)-Edge enhanced gradient image
(k=15mEqn. 5.2) (k=3.0n Eqn. 5.2)

Figure 5.10 Enhancing the edges in the gradient image of the synthetic test image by using
the similaritv measures (Eqn. 3.2) (a) Original synthetic 128x 128 image with the range of
grev levels berween 0 and 233 (b) After adding Gaussian white noise with variance 400
tgrev level)- . (c) The Sobel gradient image (c) Using Eqn. 3.2 to enhance the edges. k = 1.5
td) k =3.0. The grev levels are re-scaled to the range 0 to 2535.



(b)-Noisy (c)-Sobel gradient

(d)-Edge enhanced gradient image  (e)-Edge enhanced gradient image
(k=151 Eqn. 5.2) (k=3.0in Eqn. 5.2)

Figure 5.11 Enhancing the edges in the gradient image by using the similaritv measures
(using Eqn. 3.4.) (a) Original 256x 256 Lenna image with the range of grev levels berween
0 and 255 (b) after adding Gaussian white noise with variance 400 (grev level).

Results of: (c) Sobel gradient. (c) Using Eqn. 5.2 to enhance the edges. k= 1.5.

(d) Using Eqn. 3.2 to enhance the edges, k = 3.0. The grey levels are re-scaled to the

range 0 to 25335.
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algorithm, all edges with a length shorter than the threshold can be extracted from the
image. In practice, however, this can filter out some small features from the image.

In the next section we will introduce another edge detection algorithm which
processes the image in the scale-space domain. Although the proposed wavelet-based
method is not as accurate as the spatial domain edge detector, it is less sensitive to noise.
Most of the false edges, which are wrongly marked by the spatial domain method, are not
present in the edge enhanced image obtained using the wavelet-based method. As we will
see later, by superimposing the outputs of these two methods, we can suppress the false

edges in the final result.

5.3 Detecting Edges in the Wavelet Domain

5.3.1 Introduction

The spatial domain edge detector, which was proposed in the previous section, can
detect even weak edges accurately. However, in the presence of strong, spike-like noise,
the response of the gradient operator at noisy pixeis couid be high. This may iead to
detection of wrong seed pixels and hence false edges. We shall now show that this is less
of a problem in the wavelet domain although other concerns appear.

It has been shown that the wavelet coefficients of noise have a much weaker
correlation between scales than the wavelet coefficients of edges [Mallat92, Xu94]. A
major edge can generate large wavelet coefficients at several scales, while a noisy pixel
can only generate large coefficients at the finest scales. Xu er al. used the direct
multiplication of coefficients across the scales to highlight edges and suppress noise

[Xu94]. Both fine and coarse scales have a crucial role in this direct multiplication
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process. The noiseless coarse scales are necessary to suppress noise, while fine scales are
essential to localise edges. In practice, however, Xu et al. noticed that involving more than

two scales in direct multiplication had a negative impact on the result [Xu94].

5.3.2 Involving more scales in the direct correlation process

The new wavelet-based edge detection algorithm discussed in this section is a modified
version of Xu’s approach. The changes we have made to Xu’s method allow us to involve
more scales in the edge detection process without facing the side effects Xu et al.
mentioned. As we will see in this section, involving more scales in the correlation process
will improve the performance of the method in recognising the edges from the noise.

Before we explain our method, it is important to note that the wavelet transform of an
image consists of three separate groups of coefficients at each scale. Each group of
coefficients. which is called a detail image, is sensitive to the features in a specific direction
(Horizontal, Vertical or Diagonal). To compute the correlation of coefficients across the
scales, we have to multiply the coefficients in each group of detail images separately.

To compute the wavelet coefficients we used the Biorthogonal quadratic-spline
wavelets first introduced by Mallat and Zhong [Mallat89b] to decompose the image.
These wavelets have a shape very close to the derivative of Gaussian and hence can act as
an optimal edge detector [Canny86].

To locate the edges, we compute the direct correlation of wavelet coefficients across

the scales. Figs. 5.12(a) and 5.12(b) show our original and noisy synthetic test images.
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(b)- Noisy (¢)- Correlation between 2
Scales

(d)- Correlation between 4 (e) After compressing the
Scales dynamic range of Fig. (d).

Figure 5.12 The direct spatial correlation across the scales for the synthetic noisy
image. (a) Svnthetic 128x 128 image with grey levels between () and 255 (b) After
adding Gaussian noise with variance 400 (greyv level)” . Results of> (c) The direct
spatial correlation between two scales. (d) The direct spatial correlation benveen four
scales. (e) The result obtained bv compressing the dvnamic range of coefficients in

Fig. d"
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The results of computing the direct correlation of the wavelet coefficients for this test
image are shown in Figs. 5.12(c) and 5.12(d). The number of scales involved in the direct
correlation process is 2 for Fig. 5.12(c) while in Fig. 5.12(d) this number is deliberately
chosen as too large, 4. To generate the correlation images, the correlation across the scales
are first calculated for each group of detail images separately. Then, for a better
visualisation of the edges, thethree correlation images in each level are added together. It
can be seen from the correlation images in Fig. 5.12 that involving more scales in the edge
detection process did not improve the result. Many edges that are successfully detected in
Fig. 5.12(c) are missed in Fig. 5.12(d). This is exactly consistent with the results obtained
by Xu er al. [Xu94].

To fix this problem, we must take into account the fact that involving a larger number
of scales in the direct multiplication increases the dynamic range of the resulting
correlation image. Strong edges generate large wavelet coefficients at all levels, while the
wavelet coefficients are much smaller for weak edges. As a resuit, multiplying the
coefficients across the scales enhances the large coefficients while it weakens the smaller
coefficients in the correlation image. We compress the dynamic range of the correlation
image. For this purpose. we perform the following transformation:

s(x,¥)=k.log(1l +1c(x,¥)|)
x=1,2,..N. and y=12.,N;
where c(x,y) is the pixel intensity at location (x,y) of the correlation mmage.

Fig. 5.12(e) shows the result obtained after compressing the dynamic range of the

correlation image shown in Fig. 5.12(d). Both strong and weak edges are well localised

and highlighted in this image. Moreover the noise is effectively suppressed in this mmage.
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In Fig. 5.13 the effects of compressing the dynamic range of coefficients for our natural

test image are presented.

5.3.3 Introducing a priori geometrical knowledge

Xu et al. used the correlation image directly to classify the pixels as either on the edge
or noisy. We can improve the quality of the result by using a priori geometrical
knowledge about the image. In most practical images, the edge pixels tend to be clustered.
Moreover, the strength and direction of edges vary smoothly along their length. Similar to
what we did in our spatial domain edge detection algorithm, we apply a double
thresholding method to the wavelet correlation coefficients.

The upper and lower threshold values are chosen as functions of the noise parameters,
which are estimated from the signal-free regions of the correlation image. Any pixel of the
correlation image with a value above the upper threshold is used as a starting point (seed)
for growing the edges. The edge will extend to all 8-connected neighbours of the seed that
have a correlation above the lower threshold (candidate edge pixels). Next we measure the

similarity between the candidate pixels and their neighbouring seed pixels to assign
aprobability factor to each candidate pixel. Finally we use the probability assigned to each
pixel to enhance its intensity. As a result, pixels with higher probabilities of being on an
edge get greater enhancement. The edge-enhanced image can be represented by:
5'(x,y) = (1+k.P(x,y)).5(x,y)
where P(x, v) is the probability assigned to each edge pixel. S(x,y) is the correlation
image obtained using the direct multiplication of scales and & is a multiplicative factor used

to control the level of edge enhancement.
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(a)-Original (b)- Noisy

(c)- Correlation between 4 (d)- After compressing the
Scales dynamic range of Fig. (c).

Figure 5.13 Computing the direct spatial correlation across the scales for the
natural noisv image. (a) 256x256 test image with grey levels between 0 and 255

(b) After adding Gaussian white noise with variance 400 (grev level)” . Results of
(c) The direct spatial correlation berween four scales. (d) Compressing the dvnamic
range of coefficients in Fig. ‘c".
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5.4 Combining the Results

In the previous two sections, we used the spatial and scale-space domain techniques
independently to detect the position of edges in a noisy image. The final result in each
domain was an image in which the edges are highlighted. Each of these two images has
some information about the location and strength of edges in the original noisy mage. In
this section we mix the information to derive a single edge-enhanced image that shows the
position and strength of edges more accurately.

To combine the spatial and wavelet domain edge-enhanced images, we need to re-
scale them to the same range of intensities (zero to one). In the following context. the re-
scaled spatial and scale-space domain images are represented by £(x,y) and E, (x,y)
respectively. The intensity of each pixel in these images shows the chance of that pixel of
being selected as an edge point in the final image. Therefore, two different probabilities
have been assigned to each pixel that should be mixed into a single probability which
shows the overall chance of that pixel of being on an edge.

To derive the final image, the local intensities of each image, as well as their

correlation must be taken into account. The final image has the following general form:
Es g (%)= k[ MEs (x. ), Ey (x. ) }+ o\ JHEs (%, 1), Er (x, )} (5.2)
k,+k, =1
The first component is a function of the correlation between two images, while the second
component can be affected by each image separately. By choosing a largek, / &, ratio, we

can put more emphasis on the agreement between our spatial and wavelet domamn edge
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detectors in locating the edges. Using the fuzzy logic definitions for intersection and union
operators [Zimmer80, VonAltrock95], we can re-write Eqn. 5.2 as:

Es_y(x,y) =k, [min{E(x, ), E, (x,)} 1+ k, [max{E(x,), Ey (%, ¥)}]
The probability image £ ;_,, (x,y) is our final basis for detection of edges. For simplicity in
the rest of this paper we will call the above image the “Edge Probability” image.

The “Edge Probability” images associated with our synthetic and natural test images
are shown in Fig. 5.14 and 5.15 respectively (£, =09, and £, =0.1). As we can see in
these figures, even in the presence of strong noise, the new method is quite successful in

detecting the edges.

5.5 Filtering the Noise

In this section we use our probabilistic knowledge about edges to preserve them
during noise filtering. As with all wavelet-based noise filtering techniques, our proposed
method consists of three steps: Decomposing the image into its wavelet coefficients,
Modifving the wavelet coefficients. and Reconstructing the cleaned image from the
modified coefficients. To decompose the image into its multi-scale wavelet representation,
we need to choose a proper wavelet. As we will see later, the proposed method is
insensitive to the selected wavelet’s shape. However, the wavelet function is preferably be
smooth to
minimise the visual distortion from incorrect noise suppression.

After decomposing the image into its wavelet coefficients, we need to preserve the fine

scale (high frequency) wavelet coefficients associated with edges while removing the



(b)-Noisy (¢)-Using the spatial domain
edge detection method

(c)-Using the scale-space domain (e)- Combining the information
Edge detection method in Figs. (c) and (d)

Figure 5.14 Deltecting the edges of the noisy synthetic image (a) Synthetic 128x128
test image with grey levels berween () and 255 (b) After adding Gaussian noise with
variance 400 (grev level)” . Results of> (c) The spatial domain edge detector.

(d) Wavelet based edge detector. (e) Using a probabilistic formulation to combine the
previous two images.



(a)-Original

(b)-Noisy (c)-Using the Spatial domain
Edge detection method

(d)-Using the Scale-space (e)- Combining the mformation
domain Edge detection method m Figs. (c¢) and (d)

Figure 5.15 Detecting the edges of a noisy natural image (a) Natural 256256 test
image with grev levels between 0 to 255 (b) After adding Gaussian noise with
veriance 400 (grev level)” . Results of> (c) The spatial domain edge detector.

(d) Waveler-based edge detector. (e) Using a probabilistic formulation to combine
the previous nwo images.
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high frequency components from other areas. For this purpose, we define a
neighbourhood around each edge and keep the wavelet coefficients in this neighbourhood
while suppressing the coefficients from the rest of the image. The shape and size of these
neighbourhoods must be defined separately for each detail image. In general the energy of
edges is spread over a broader area for detail images from coarser scales. To preserve the
energy of edges at coarser scales, we need a larger neighbourhood around each edge.

The proper neighbourhoods for preserving the energy of edges are selected
automatically in the proposed method. For this purpose we decompose the “Edge
Probability” image (the result obtained in the edge detection stage of the algorithm) into a
hierarchy of detail images (see Fig. 5.16). By using the same wavelet to decompose both
the original and “Edge Probability” images, the energy of edges of both these images will
spread in the same way among their detail images. As a result, the wavelet coefficients
associated with the edges of the “Edge Probability” image can be used to detect the
wavelet coefficients associated with edges of the original noisy image. Each “Edge
Probability” detail image is used as a mask to filter the corresponding component (detail
image) of the noisy image.

After removing the noisy coefficients from the detail images, we reconstruct the

filtered image from the clean coefficients.

5.6 Results

We applied our method to both synthesised and natural noisy images. The sharpness of

edges and the amount of noise remaming in the output were among the qualitative
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Figure 5.16 Using the Edge information across the scales to preserve the edges during
noise filtering.
criteria used to compare the images. As global measures for quantitative improvement of
the resuits were MSE and ISNR (section 2.1).

As an initial presentation of the performance of our algorithm we applied it to the
synthesised image. In Fig. 5.17(a) the original 128x128 synthetic image is presented. In
Fig. 5.17(b) white Gaussian noise with variance 400 has been added to the image. The
result of filtering the noisy image with the new method is shown i Fig. 5.17(c). Image

features are well retained while the noise is removed quite effectively from this image.



(e)- Soft thresholding (f)- Xu’s method

Figure 5.17 Comparing the performance of some noise filtering methods in removing
the noise from a svnthetic test image. (a) Synthetic 256Xx256 image with greyv levels
berween 0 and 255 (b) After adding Gaussian noise with variance 400 (grey level)” .
The result obtained using: (c) The propsed wavelet-based method. (d) Wiener filtering
fe) Soft Thresholding technique. (f)Xu's method.
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The sharpness of most edges is also preserved. However some noisy spots are left around
the sharp edges. For comparison, the results of applying the Wiener, soft thresholding and
Xu’s methods to the same noisy image are shown in Figs. 5.17(d), (e) and (f) respectively.
Table 5.1 gives the quantitative measures for the filtered images. A comparison of
quantitative and qualitative results for these filtered images demonstrates the improved

performance of the new method.

Figure Description MSE _ | ISNR
(Grey level)” | (dB)

5.17(b) | Additive noise, ° = 400 (Grey level)’ 393.0% 1.7

5.17(c) | The proposed method 71.5+03 7.40 £0.02
2.1(0 Adaptive neighbourhood method 74.7+0.4 7.21£0.02
2.1(e) Lee’s refined method 77.3£0.7 7.06 £0.04
3.17(d) | Wiener filter 945+0.7 6.19+0.02
2.1(c) | Lee’s method 105.2 0.6 5.73£0.03
2.1(d) | Kuan's method 107.0+0.5 5.66 £0.03
4.1(d) | Hard thresholding method 1124+0.9 543 +£0.04
5.17(f) | Xu’s method 120.6 £0.7 5.13+0.03
5.17(e) | Soft thresholding method 128.6 £0.57 4.85+0.02

Table 5.1 Quantitative measures (MSE and ISNR) for the results obtained by applving
different noise filtering techniques 1o the noisv synthetic image shown in Fig. 5.17(b).

Fig. 5.18 presents results of application of the filters to the natural image. The result of
filtering the noisy image in Fig. 5.18(b) with the new method as well as the Wiener, soft
thresholding and Xu’s methods are shown in Fig. 5.18(c) through 5.18(f). Table 5.2 gives
the quantitative measures for the filtered images. Again, from a visual inspection of the
filtered images, the superior performance of the new method in removing the noise

without blurring the edges is evident.



(a)-Original (b)-Noisy

(e)- Soft thresholding (e)- Xu’s method

Figure 5.18 Comparing the performance of some noise filtering methods in removing
the noise from a natural test image. (a) 256X256 test image with grey levels berween 0
and 255. (b) After adding Gaussian noise with variance 400 (grev level)” . The result
obtained using: (c) The propsed wavelet-based method (d) Wiener filiering.

fe) Soft thresholding technique. (f) Xu's method.



Figure Description MSE ISNR
(Grey level)’ | (dB)
5.18(b) | Additive noise, 6~ = 400 (Grey level)’ 384.0x1.7| 0.00+0.00
5.18(c) | The proposed method 77.6 £0.4 6.94 £0.02
2.2(9) Adaptive neighbourhood method 79.4+£0.3 6.85 £0.03
5.18(f) | Xu’s method 97.2+0.5 5.97+£0.02
5.18(d) | Wiener filter 98.3%0.6 5.92 £0.03
2.2(e) Lee’s refined method 99.6 £ 0.4 5.86 £0.02
4.2(¢) Hard thresholding method 101.6 £0.8 5.77 £0.04
2.2(d) | Kuan’s method 105.3£0.4 5.62 £0.02
5.18(e) | Soft thresholding method 105.5+0.8 5.61 £0.03
2.2(c) Lee’s method 1122£0.5 5.34 £0.02

Table 5.2 Quantitative measures (MSE and ISNR) for the results obtained by applving

different noise filtering techniques to the noisy natural image shown in Fig. 5.18(b).

5.7 Discussion and Conclusions

As we saw in the previous section, the Wiener filter was not very successful in filtering
the noise from our low-SNR test images. Wiener filtering, as a frequency domain
technique, is based on a stationary model for images. In other words, the Wiener filter
assumes all pixels in an image to have similar statistics. Almost all practical images violate
this basic assumption of data stationarity [Chan85]. As a result the Wiener filter can not
effectively adjust itself to the local features of an image and generally smoothes the mmage.

In the soft thresholding method [Weaver91] we process the image in a global sense
using the wavelet transform to decompose the signal into a hierarchy of detail images.
Each detail image corresponds to a specific, non-overlapping frequency band. Based on
the energy of noise in each frequency band a threshold is set for each detail image and
used to modify the wavelet coefficients in that detail image. In Weaver’s method

[Weaver91], no attempt was made to adapt the filter to the local features of the image. As
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a result, as with the Wiener filter, this method also tends to blur the edges. However,
because of the small support of wavelets (in comparison to sinusoids) the artifacts caused
by wrong modification of coefficients are less noticeable.

In Xu’s method [Xu94], the wavelet transform is used to perform a local analysis on
the signal. The resulting algorithm is a modified low-pass filter. The high frequency
components are mostly suppressed except where an edge is detected. The criterion to
detect an edge is the observation that edges have a larger correlation across the scales than
the noise. In practice however, Xu noticed that involving more than three scales in
calculating the correlation has poor results.

In our noise-filtering aigorithm we introduced several major modifications to Xu’s
method. First of all, we process the image in both the spatial and wavelet domains to
detect edges more accurately. We proposed some modifications to Xu’s method which
allowed us to calculate the correlation across more scales. As we saw in Section 5.3.2, this
leads to a better distinction of edges from noise. In addition we used our a priort
knowledge about edges to distinguish noise. Moreover, unlike Xu’s method which
considers the pixels as either noisy or clean (a binary decision), we took a more flexible
approach in which all pixels can be noisy to some extent (fuzzy classification). As we saw

in the previous section, these modifications lead to better noise filtering results.
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Chapter 6

Practical Considerations

6.1 Introduction

In a large variety of image-processing techniques, the image is transformed from the
spatial domain to a different space for processing. The extra effort required to transform
the image to a different domain is often justified by the fact that some of the image
features become more apparent and distinguishable in a non-spatial domain. As an
example, there may be a better separation between the signal and noise power in the
frequency domain, and hence a simple filter in the frequency domain can be used to
improve the SNR of a noisy image. However, frequency domain techniques process an
image in a global sense and hence they can not be easily adjusted to the local features of
the image. As a result, reducing noise in an image using the frequency domain techniques
involves a trade off between reducing the spatial resolution in the image (blurring) and
noise reduction.

In contrast to applying direct frequency domain transforms to an image and losing the
spatial information of the signal, application of the wavelet transform provides an
interesting compromise between the spatial and frequency domain information. This
transform maps the signal to a spatial-frequency space in which there is simultaneous
access to both spatial and frequency domain information.

Many of the wavelet-based algorithms demonstrated in the literature require

estimation of the image noise power prior to performing noise filtering. In this chapter we
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shall show the effect of noise estimation bias on the performance of a number of wavelet-
based noise filtering algorithms. This bias is typically ignored in the literature
[Weaver91, Malfait97] or compensated for in an ad hoc manner [Xu94]. We shall
demonstrate a straightforward approach to avoid the noise estimation bias. The technique
is based on compensation methods that are used to generate unbiased SNR in MRI
[Henkelman85, McGibney93]. We will also demonstrate how an adaptive technique may
be used to compensate for the effect of noise biases on the filtering of noise from low-
intensity regions of the image. Although noise bias effects are demonstrated in this
chapter in the context of wavelet-based noise filtering, they are present in all image
modalities.

In addition to the noise estimation bias, we will show how other problems associated
with noise can affect the stability and validity of wavelet-based noise filtering algorithms.
We present results showing the effect of amplitude quantisation on the performance of
these algorithms. Finally, we examine a noise bias that can be introduced through the

application of the FWT itself.

6.2 Demonstrating the presence of noise bias in the performance of

wavelet algorithms
In Fig. 6.1(a) we show a test image with object intensities ranging from 0 to 255 grey
levels. Superimposed in the four corners are uniform intensity areas. Areas of intensity 0
and 15 represent typical background or low-intensity image areas commonly used for
noise power estimation. The other blocks of intensities 30 and 60 are meant to represent

uniform, moderate-intensity regions that might be present in an image.



(60) (30)

(15) i (0)
(¢)- Xu’s method (Intensity 0) (d)- Xu’s method (Intensity 60)
(e)- New method (Intensity 0) (f)- New method (Intensity 60)

Figure 6.1 Estimating the noise parameters from uniform regions with different intensities.
(a) The original image with maximum grey-level of 235 after adding smooth regions of various
intensities (60-30-15-0) to each corner of it. (b) After adding Gaussian noise with variance
400 (grey-scale)’. Using the Xu's method to filter the image when noise parameters are
estimated from: (c) a zero-intensity region (d) a moderate-intensity (with grey level 60) region.
Using the new method to filter the image when noise parameters are estimated from:

(e) a zero-intensity region (f) a moderate intensity (with grey level 60) region.
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Fig. 6.1(b) shows a typical noisy image generated by adding zero-mean white
Gaussian noise of variance 400 to the original image prior to processing. Figs. 6.1(c) and
6.1(d) have been filtered with Xu’s wavelet approach [Xu94] using two different noise
estimation approaches. The noise level associated with Fig. 6.1(c) was estimated from the
zero-intensity region as suggested by Xu er al. but without using their ad hoc
compensation factor. This image shows less noise smoothing but sharper edges than that
in Fig. 6.1(d), where the noise was estimated from a moderate-intensity, uniform region
(amplitude 60).

In Chapter 5, we introduced a new wavelet-based algorithm that uses matched edge
filters generated from both spatial and wavelet domain information. One advantage of
this new approach over that suggested by Xu ez al. [Xu94] is more successful
preservation of the edges against blurring during noise filtering. The performance of this
new method can also be modified by changing the image region used to determine noise
power. However, the resulting changes are different than those for Xu’s approach.

Fig. 6.1(e) and 6.1(f) show the filtered images with noise estimated from background
(zero-intensity) and moderate-intensity (60) regions respectively. As with Xu’s method,
estimating the noise from the low-intensity region again produced less noise smoothing
(Fig. 6.1(e)) than when estimating the noise from the moderate-intensity region.
However, unlike Xu’s approach, estimating the noise from the moderate-intensity region
produced a noise-reduced image without edge blurring (Fig. 6.1(f)).

The previous discussion indicates that wavelet algorithms are sensitive to the manner

by which the noise level is determined. We shall now show that this sensitivity is
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associated with introducing a noise level bias. A technique for correcting this bias is

illustrated using the wavelet-based algorithms discussed earlier.

6.3 How is the noise bias introduced

MRI is an interesting imaging modality. Its major advantages are associated with the
ease of changing image view and image contrast by manipulation of the intensity and
timing of the applied RF (Radio Frequency) pulses. MRI experimenters have been long
aware of the effect of noise biases, especially when attempting to optimize imaging of
low-intensity or low-contrast objects [Henkeiman85, McGibney93].

The presence of the noise bias can be simply demonstrated by measuring the noise
variance at different locations across the image. For this purpose, a synthetic image with
uniform regions of various intensities (zero to 255) was generated and degraded by
Gaussian noise. Next the noise variance and the apparent signal intensity at different
locations were calculated. In Fig. 6.2(a) the apparent standard deviation of noise is shown
as a function of the apparent signal intensity. It can be seen that measuring the noise upon
a uniform, low-intensity region leads to incorrect noise parameters including under-
estimation of the noise variance. The reason for this change in the noise lies directly in
the image gathering procedures. If the zero-mean Gaussian noise present in the original
scene was passed through to the display, the final image would contain both positive and
negative pixel values. With few exceptions, such values are not found as most imaging
modalities involve an implicit magnitude operation. The image gathering procedure
modifies the noise characteristics especially in the low-intensity regions of the image. For

example, the background noise is no longer zero-mean nor is it Gaussian.
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The inaccurate estimation of the noise power has been discussed in the MRI context
by Henkelman [Henkelman85] and McGibney and Smith [McGibney93]. This effect

have also been mentioned by Xu er a/. and compensated for in an ad Aoc manner in their

noise-filtering algorithm [Xu94].

20.0

rue Noise Level

frresssseTETOORTTRES

U T T T T

i

I'm'
2
D e e e e m e T e e e e e e e e e et et e am e, e~ ———-
8
- it oS
n |
O T Tttt Tsssosscsesssssemsmmmmmms 13.1 --
.2 . CESNEES NN NSISUNSARRCNAROENENEORNNTIACNENEAESRREAAEREREEESNN:
Z |

15 25 35 45 S5 65 75 85

Apparent [ntensity (max 255)

Fig. 6.2 Apparent standard deviation of noise as a function of apparent image intensity.
The original image had a maximum grey level of 253 and noise variance was 400 (grey-

level)-.

In Fig. 6.3, we represent the apparent noise variance as a function of the apparent
signal to noise ratio, SNR ,,,, in order to make the graph independent of the specific
maximum intensity of a particular image. The apparent SNR is defined by:

SNR ., = (Apparent Signal Average) / (Apparent Standard Deviation of Noise)
Note that because of the noise rectification that occurs in image regions of low intensity,

it is not possible to have an SNR ., below 1.3 measured directly from the standard

(magnitude) image.
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Fig. 6.3 Apparent standard deviation of the noise as a function of apparent SNR

From figures 6.2 and 6.3 it can be seen that computing the standard deviation of noise

in a signal-free or background region, as suggested for many wavelet-based algorithms,

provides an estimate that is approximately N2 —7/2 times less than the actual standard
deviation of the noise. This factor explains the necessity for Xu ez al. to compensate noise
measurements obtained using a background region. Xu er al. used an ad hoc “adjusting
multiplicative factor” of 1.3 to compensate the noise bias. The true compensation factor
should be equal to 1/(«/2——;1'/—2) (= 1.53) from Fig. 6.3. However, Xu ez al. needed to
deliberately under-compensate the effect of the noise bias in order to reduce edge
blurring. The necessity of this trade off between noise filtering and edge blurring was
demonstrated in Fig. 6.1.

In many images a suitable background area cannot be found and the noise power must
be determined from an area of non-zero uniform intensity. Applying Xu’s fixed, ad hoc,
compensating factor to such an image will result in an over-estimation of the noise and
increased blurring. In the next section we shall introduce a systematic approach to

determine the noise level correction factor for any uniform image area.
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6.4 Systematic Correction of Noise Bias

When the signal level in a uniform region is much larger than the standard deviation
of noise, the noise statistics remain Gaussian and hence the standard deviation of noise
estimated in this region is not biased. In most practical cases, however, it is usuaily
impossible to find a uniform high-intensity region in the irage. As the intensity of the
signal in the uniform region approaches the magnitude of the noise, the noise will be
changed to a Rayleigh distribution [Henkelman85]. The partial rectification of noise will
lead to an under-estimation of true noise power. In the extreme case when the intensity of

the uniform region is zero, before adding the noise, a correction factor of 1.53
=1/ J2-7/2 ), can be used to convert the apparent noise level to the true noise level. If
such a zero-intensity region is not available, the noise level can be obtained from any
uniform region using the relationship:

Orave =K-0 ipp
where the correction factor, £, is determined from Fig. 6.4 using the apparent SNR of the

uniform region.

e WU2=Zi2) ..
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Fig. 6.4 The noise correction factor as a function of apparent SNR
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The correction factor is only valid if both the apparent signal and the apparent noise
level are measured in a uniform region where the signal intensity deviation is
significantly smaller than the noise level. If there is no such uniform region in the image,
the noise level will always be over-estimated, especially when the apparent SNR is small.

In wavelet-based methods we must adjust the estimated noise power for all detail
images. The apparent noise associated with the background regions in each detail image
will have lower levels than the noise in other regions. Therefore, using the lower biased
noise level determined from a background area will not introduce sufficient noise
smoothing for the remainder of the image.

In Fig. 6.5 we have compensated for the noise bias for both Xu’s and our new wavelet
denoising algorithms. The results are compared with non-compensated filtered images.
As we can see from these figures, noise has been removed more effectively from the
images after adjusting the noise level (with a factor of 1.53). However, adjusting for the
true noise level has led to some edge blurring in Xu’s method (Fig. 6.5(d)). This is
mainly because there is a strong trade-off between noise filtering and edge blurring in
Xu’s method. To keep the edges sharp we must allow more noise in the output images.
The sensitivity of edge blurring to the choice of noise power is not as evident for our

algorithm (Fig. 6.5(f)).

6.5 Filtering Noise from Low-Intensity Portions of the Image in the

Presence of the Noise Bias

As we saw in the previous sections, the noise statistics are distorted in the low-

intensity regions of a magnitude image. The standard deviation of the partially-rectified
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(a)- Original (b)- Noisy

(e)- New method (f)- New method (Compensated)

Figure 6.5 Compensating the noise bias in Xu's and the new method (a) The test
image with the range of grey-levels berween 0 and 255. (b) after adding a
Gaussian white noise with variance 400 (grey scale)’ to the test image.

Results of> (c) Xu's method (d) Xu's method with noise bias compensation.

(e) The new method. (f) The new method with noise bias compensation.
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noise in these regions is smaller than the standard deviation of the true undistorted
Gaussian noise. Moreover, the partial rectification of noise in low-intensity areas
increases the average intensity of the image in these regions.

In the previous section we have shown how to obtain an unbiased estimate of the true
noise level found in the high-intensity regions of the image. However, use of this or any
noise estimate for noise filtering can introduce image distortion in unexpected ways. For
instance, using the unbiased estimate of the noise implies that the noise power in the low-
intensity regions (where the noise is distorted) will be over-estimated, leading to over-
filtering and hence possible blurring of these regions.

We have shown that to avoid introducing systematic errors when performing noise-
filtering, the strength of the filter must be adapted to correspond to changes in signal
amplitude across the image. We have not yet developed an adaptive algorithm to
compensate for such changes. However, by referring to one of the characteristics
associated with MRI reconstruction, we can show that there will be practical advantages
to using such an algorithm.

The raw data set associated with an MR image is gathered directly in the frequency
domain (k-space) as complex data having both amplitude and phase. The k-space data are
transformed using a 2-D DFT [Liang92] or a constrained modeling algorithm [Smith86,
Liang92]. The resulting complex image is then displayed as a standard magnitude image.
Normally, wavelet denoising or other signal processing techniques will be applied to the
standard MR image with its associated noise bias. However, it is possible to process the
real component of the complex MR image prior to its display. Since the real component

image has pixels that can take both positive and negative values, it does not suffer from
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any noise bias effects. By comparing the results of wavelet denoising of real component
and standard images, it will be possible to determine the practical usefulness of an
adaptive denoising algorithm applied to standard images.

Fig. 6.6(a) shows an original synthetic test image, maximum intensity 140 grey
levels, which approximates the phantoms used by Xu et al. [Xu94] and Liang ez al.
[Liang92]. The circles in the object contain small inserts (detail) whose intensity
increases monotonically from the top of the image to the bottom. Fig. 6.6(b) shows a
zoomed view of one detail. Noise of variance 400 was added to the phantom to produce a
noisy standard image (Fig. 6.6(c)) and a noisy real component image (Fig. 6.6(d)).

There is no difference between Figs. 6.6(c) and 6.6(d) as the display operation
converts the real component image with its negative and positive pixel values, to a
standard image containing only positive pixel values. However, the denoised images do
show significant differences.

Denoising the magnitude image using the true noise power (Fig. 6.7(b)) suppresses
both the noise and the detail since this approach does not compensate for the over-
estimation of the noise power in the detail. Denoising the magnitude image using a local
noise estimate associated with the background zero intensity reduces the noise in the
background, reintroduces the detail, but leaves considerable noise in both the low- and
medium-intensity regions (Fig. 6.7(c)). By contrast, denoising the real component mmage
(Fig. 6.7(d)) shows reduction of noise in all portions and retains the detail present in the
original image (Fig. 6.7(2)). This simplistic test indicates that denoising should be
performed on either the real component image or in an adaptive fashion on magnitude

images taking into account the local SNR.
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(a)- Original (b)- Zoomed view

(c)- Noisy Standard (c)- Noisy “Real”

Figure 6.6 Filtering noise from “Real” and Standard (Magnitude) images.
(a) The synthetic test image with the range of grey levels between zero and 140.
(b) A zoomed view of the original image (second circle in the first column).
Adding Gaussian white noise with variance of 400 (grey level)’ to the image:
(c) Noisy Standard (Magnitude) image. (d) Noisy “Real” image.
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(a)- Original (b)- Filtering the standard image
using the true noise power

(c)- Filtering the standard image (d)- Filtering the “real” image
using a local noise estimate

Figure 6.7 Filtering noise from “‘real” and standard (magnitude) images.

(a) A zoomed view of the synthetic test image given in Fig. 6.6(a). (b) Filtering noise
from the noisy standard image (given in Fig. 6.6(c)) using the true noise power.

(c) Filtering noise from the noisy standard image using a local noise estimate
associated with the zero intensity region. (d) Filtering noise from the noisy “real”
image.
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Working with real component images, with their negative and positive pixel values
and increased contrast, is possible in a number of imaging modalities which reconstruct
the final image from an intermediate data set. However this approach is not always
practical. For example, complex MR images typically show data in both real and
imaginary components because of experimental phase “roll-off . This roll-off
complicates the detection of image edges. Various image phase correction algorithms
have been suggested. but are not always effective [Liang92]. The wavelet domain
analysis provides all the necessary tools to process the magnitude image, and adapt the
wavelet-based noise filter to the local behaviour of the noise, but yvet avoid the need for
image phase correction.

Measuring the local noise power for use in an adaptive wavelet denoising algorithm is
not straightforward, as the local neighbourhood pixel intensities may not be uniform. In
this situation, the best estimate of the local noise level is obtained by reducing the true
noise level by a factor. &’. determined by the local SNR:

6 socu =Ome/¥
When the local neighbourhood has uniform intensity then the factor & can be determined
from Fig. 6.4. However, a more general approach must be used in most situations. Fig.

6.5 shows the necessary correction factor &”as a function of an SNR, SNR 51452 »

defined to take account of both noise rectification and non-uniformity of the
neighbourhood intensities [McGibney93]:

Sp

N

SNRygusep =
Pawer

where:
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—Orae and N power = Orrue

where N, is the number of pixels in the region of measurement, R, M is the apparent
intensity of signal at point j€ R, and Gz, is the undistorted noise variance which is
estimated from a uniform region (background) of the image. This calculation approach to
determine an unbiased SNR value is more reliable than using a lookup table
[Henkelman85, Henkelmang86] for non-uniform intensity regions because no one point on
the lookup table is valid in a non-uniform region [McGibney93].

After estimating the SNR, ;,.ssp iD €ach neighbourhood, we use a curve similar to the
one shown in Fig. 6.5 to estimate the apparent noise level in that neighbourhood. Finally

we use this estimate of the apparent noise level to adapt the denoising filter to the local

characteristics of the noise.

6.6 The Effect of Grey-Level Quantisation

In general, image acquisition methods always lead to an image function f(x.y),
which is digitised both spatially and in amplitude. Digitisation of the spatial coordinates
(x,y) s called image sampling, and amplitude digitisation is called grey-level
quantisation.

Grey-level quantisation introduces some error in the intensity of pixels: The pixel
values will always be rounded up or down to the closest quantisation level. We usually
refer to this type of error as the quantisation error. The size of the quantisation error for
each pixel is between zero and AL/2 where AL is the difference between the mtensities

of adjacent quantisation levels. Therefore, to decrease the quantisation error, we should



146

decrease the difference between the intensities of adjacent levels or equivalently increase
the number of quantisation levels (grey levels).

Grey-level quantisation may also affect the performance of our noise filtering
technique. Because of the quantisation error, the distribution of noise that is originally
Gaussian would take a different shape. This is especially true in high-SNR images, where
the standard deviation of noise is small and comparable in size with the maximum
quantisation error.

In this section we will examine the effect of the quantisation error on the performance
of our noise filtering technique and extend the conclusions in a general fashion to the
wavelet algorithms. For this purpose we will quantise our test image using two different
numbers of quantisation levels, 256 and 1024. Then we will apply our method to both
images and compare the results. We will perform this test for both low and high noise
levels.

Figs. 6.8(a) shows the test image after adding a Gaussian white noise with a variance
of 25. We used two different number of grey-levels (256 and 1024) to quantise this test
image and then applied our noise filtering method to each quantised image separately.
Figs. 6.8(b) and 6.8(c) show the results after filtering the noise from the quantised test
images (for 256 and 1024 grey levels respectively). The visual quality of the filtered
images is almost the same. However, the MSE measure (Table 6.1) shows that the noise

is removed more effectively from the image with the larger number of grey-levels.
Next we degrade the test image by adding much stronger levels of noise (62 =400).

Again we use two different numbers of levels to quantise the results (256 and 1024

levels). Figs. 6.8(e) and 6.8(f) show the results after applying the new filter to the 256 and



147

(a)- High-SNR test image

(b)- Applying the new method to the (e)- Applying the new method to the
high-SNR image (256 quantisation leveis) low-SNR image (256 quantisation levels)

(c)- Applying the new method to the high-  (f)- Applying the new method to the low-
SNR image (1024 quantisation levels) SNR image (1024 quantisation levels)

Figure 6.8 The effect of quantisation error on high- and low-SNR test images (a) The high-
SNR test image with noise variance of 23 (grev level)’. (b) Filtering the high-SNR image
using 236 quantisation levels. (c) Filtering the high-SNR image using 1024 quantisation
levels. (d) The low-SNR test image with noise variance of 400 (grey level)’. (e) Fi iltering the
low-SNR image using 256 quantisation levels. (f) Filtering the low-SNR image using 1024
quantisation levels.
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Figure Description MSE ;

(Grey level)
6.8(a) | Additive noise, o~ = 25 (grey level)’ 243+0.4
6.8(b) | Filtering the noise from 6.8(a) with 256 quantisation levels 10.3+0.1
6.8(c) Filtering the noise from 6.8(a) with 1024 quantisation levels 10.1 £0.1
6.8(d) | Additive noise, o~ = 400 (grey level)’ 393.0£1.7
6.8(e) Filtering noise from 6.8(d) with 256 quantisation levels 71.5+£0.3
6.8(f) Filtering noise from 6.8(d) with 1024 quantisation levels 71.2+0.3

Table 6.1 The effect of grey-level quantisation in removing the noise from the noisy test
image.
1024 grey-level noisy images. Neither qualitative analysis nor quantitative measures
(Table 6.1) can show a major difference between these filtered images.

In summary, the quantisation error may have some effect on the quality of the filtered
image only if the standard deviation of noise is small and comparable to the size of the
quantisation step. In fact. for images corrupted by low levels of noise, changing the
number of quantisation levels can cause obvious changes in the quantitative measures of
the final filtered image. However. for the low-noise images, the visual quality of the
filtered images, regardless of how we quantise the noise, is quite acceptable for almost all
practical applications. Therefore, in general. changing the number of quantisation levels

does not have a noticeable impact on the quality of the filtered images.

6.7 Choosing the Size and Position of the Signal-Free Region

As we saw in the previous chapter, we use the signal-free regions near boundaries of
the image to estimate the noise parameters. This approach is based on the assumption that
we can always find dark regions near the corners of the image. In the following

paragraphs, we refer to this signal-free region as the “reference region”.
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Our method currently uses a fixed-size rectangular region near one of the image
corners as the reference region to determine the local noise level and then correct this
level for noise bias. However, it is possible to use more sophisticated techniques that
manually or automatically adapt the shape and size of this region to the characteristics of
the image under consideration.

To choose a proper size and shape for the reference region, we must consider several
parameters. First of all, to have a good estimation of the noise variance the size of the
region must be large. However, as we saw in Chapter 3, the computation of the wavelet
coefficients are based on successive convolution of the image with the impulse response
of the high-pass and low-pass filters associated with the wavelet. Because of these
successive convolutions, the discontinuities in the boundaries of the image can spread
into the reference region. This spreading will result in a biased estimation of the noise
parameters.

As we saw in Chapter 3, calculation of the wavelet coefficients at each level requires
application of a one-dimensional convolution to each row and each column of the image.
Each convolution will extend the size of a row (or column) by F-1, where F is the length
of the high-pass or low-pass filter associated with a wavelet. Therefore, by using small
support wavelets, which have small F values, we can limit the spread of the borders into
the reference region. Moreover, for an N-level decomposition of the signal, the reference

region must be Nx(F —1) pixels apart from the image boundaries. In practice, however,

we noticed that the reference region could be chosen closer to the image borders. In fact

most of the energy of noise is concentrated in low-scale detail images (the wavelet



150

coefficients in low levels of the decomposed signal). For the detail images the spread of
the borders into the image is much less than N x(F ~1).

In some special cases, such as when the background region is too small, we are forced
to estimate the noise from regions that are quite close to image boundaries. In these cases,
we can extend the image from each side to smooth the sharp transitions in the boundaries
of the image. For this purpose, we can either duplicate the border lines of the image or
estimate the average background intensity (by choosing some sample regions in the

background) and use this average intensity to extend the image.

6.8 Conclusion

In this chapter we have seen that measuring the noise from low-intensity regions of
the image would result in an under-estimation of the noise level. This under-estimation
has been ignored in the literature. The effect of noise estimation bias on the performance
of a number of wavelet-based noise filtering algorithms was investigated. Finally a
systematic approach for compensating the noise bias in the wavelet-based noise filtering
methods was presented. It was shown, using "Real" images from MRI, that an adaptive
filtering method based on local SNR would be useful.

We also have presented results showing the effect of amplitude quantisation on the
performance of the filter. It was shown that in general, changing the number of
quantisation levels does not have a noticeable impact on the quality of the filtered
images. We also examined the practical considerations that should be taken mto account

when we choose the size and the position of the noise estimation region because



151

successive convolutions involved in the FWT algorithm spread the discontinuities in the

boundaries of the image into the noise estimation region.
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Chapter 7

Conclusions and Future Considerations

7.1 Conclusions

The purpose of this thesis was to find a proper method for filtering the noise from
images without blurring their edges. Several existing techniques for removing the noise
were investigated and a number of new approaches introduced.

Noise filtering is an important step in many image-processing applications. The key
function of noise filtering techniques is to improve the itnage in ways that facilitate
extracting information from the image. We have shown that noise smoothing and edge-
enhancement are inherently conflicting processes. Smoothing a region may destroy edges
which carry much of the image information. However, sharpening edges might lead to
unnecessary noise being retained or enhanced.

In this research. we concentrated on spatial and scale-space domain noise filters. We
have shown that these classes of filters have characteristics that can be adapted to local
features of the given image. Such filters can be used to process edges and other sharp
features of the image in a different way than the rest of the image.

The spatial domain filters were the first group of filters to be mvestigated. We
concentrated on a specific group of spatial domain filters which was based on LLMMSE

estimation of signals. The LLMMSE estimator was shown to have the property that noise
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in flat regions of the image are smoothed while observations are left unchanged in the
vicinity of edges.

To remove the noise more effectively from the vicinity of edges, several modifications
to the basic LLMMSE method have been proposed in recent years [Lee80, Lee81,
Rajala81, Kuan85, Jiang86, Paranjape94, Das97, Rangayyan98b]. We classified these
LLMMSE based filters in two main groups: fixed and advanced neighbourhood filters.
Fixed neighbourhood techniques such as Lee’s and Kuan’s methods were demonstrated to
be not very successful in removing the noise from the edge areas. As examples of the
advanced neighbourhood method, Lee’s refined neighbourhood method [Lee81] and the
adaptive neighbourhood method [Rangayyan98b], were discussed. The advanced
neighbourhood methods were more successful in removing the noise from the vicinity of
edges in comparison to fixed neighbourhood methods.

We presented a new LLMMSE based method for filtering the noise from low-contrast
or low-SNR images. The proposed method is a modification of the adaptive
neighbourhood method of Rangayyan [Rangayyan98b]. The modification was to add a
pre-processing step to improve the accuracy of estimating the local statistics of the image.
We compared our approach with other LLMMSE methods, by applying them to some
low-SNR images. In the presence of strong noise, the results of the new method have
proven to be better in terms of visual quality and MSE measures.

The wavelet-based noise filters were the second group of filters that were discussed in
this thesis. As was shown in Chapter 4. wavelet analysis is a powerful tool that can
provide an interesting compromise between the spatial and frequency domain information

of signals. The wavelet transform maps the signal to a scale-space domam in which there is
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simultaneous access to both spatial and frequency domain information. The ability of the
wavelet transform to preserve the spatial domain information makes it a very attractive
tool for analysing non-stationary signals.

Several wavelet-based noise filtering techniques that have been proposed during
recent years [Weaver91, Mallat92, Xu94, Malfait97] were investigated and compared. A
brief review of wavelet theory was given to provide the required background for these
methods.

The general idea behind almost all the wavelet-based methods is to identify edges and
other sharp features from the noise and to preserve them during low-pass filtering. Two
different approaches for detecting the edges of an image from its wavelet coefficients were
discussed. The first technique is based on examining the behaviour of the modulus maxima
of the coefficients across the scales; a complicated and time-consuming approach
[Mallat92]. In the second technique. the correlation of the wavelet coefficients across the
scales was used to detect the edges [Xu94].

We proposed a new method for suppressing the noise in images. This new method has
some major differences from existing wavelet approaches. The new technique processes
the image in both scale-space and spatial domains. Moreover, it does not classify the
wavelet coefficients into noisy and noiseless coefficients but considers each coefficient to
be partially noisy. A major step in the proposed method is to determine to what extent
each coefficient has been affected by noise.

In the first phase of the new approach, the images are processed to locate their edges,
and next. the information about the edges is used to smooth out the noise without blurring

the image. A new edge detection method was introduced to detect the edges more
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effectively. The proposed method can detect most of the image edges successfully even m
the presence of strong noise as it employs spatial and scale-space domain techniques as
well as the a priori information about the geometrical features of the edges.

A new edge-growing algorithm was introduced to permit detection of edges in the
spatial domain. We applied a double thresholding method to the gradient of the image to
locate the seed pixels for growing the edges as well as all other pixels that have a chance
for being on an edge (candidate edge pixels). A new method was used to assign a
probability measure to each candidate pixel to show its chance for being on an edge. For
this purpose we measured the similarity berween each candidate pixel and the seed pixels,
introducing new measures for calculating the similarity of the pixels. To translate the
computed similarities into probabilities. fuzzy classifiers were introduced. Finally a
probabilistic formulation was used to assign an overall probability factor to each candidate
pixel. This multiple probability approach results in “Edge Probability” images in which the
intensity of each pixel represents the chance of that pixel of being on an edge. This is
different from more common approaches in which pixels are considered to be either on
edges or not (binary decision).

To detect the edges in the scale-space domain, we introduced some modifications
which led to a great improvement in the performance of Xu's method [Xu94]. First, to
highlight the weak edges, we compressed the dynamic range of the correlation images.
Moreover, we added post-processing steps to Xu's method in which a prior? knowledge
about the geometrical characteristics of the image was used to facilitate the recognition of

edges from the noise.
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It was shown that our spatial domain edge detector is more successful in detecting
weak edges than our wavelet-based edge detection method. However, the wavelet-based
edge detector is more sensitive to noise. To take benefit of the positive features of both
techniques, i.e. accuracy and insensitivity to noise, a probabilistic formulation was used to
mix the edge information obtained in the spatial and scale-space domains.

In our new noise filtering technique, we used the proposed edge detection algorithm as
a pre-processing step. After detecting the edges, we mapped it to the scale-space domain
using the same transform as the one that we used to map the noisy image itself. The result
was a hierarchy of detail images in which the distribution of the wavelet coefficients shows
how the energy of edges would spread in the scale-space domain. As a new approach, we
used these detail images as a bank of masks for filtering the corresponding components,
i.e. detail images. of the noisy image. The preliminary results were given to compare this
approach with other methods in terms of preserving image sharpness during noise filtering.

Finally the effect of noise estimation bias on the performance of a number of wavelet-
based noise filtering techniques was discussed. Many of the noise filtering algorithms
demonstrated in the literature require estimation of the image noise power prior to
performing noise filtering. We have shown that measuring the noise from low-mtensity
regions of the image would result in an under-estimation of the noise level which is usually
ignored in the literature. A systematic approach for compensating the noise bias in the
wavelet-based noise filtering methods was presented. The technique was based on
compensation methods that are used to generate unbiased SNR in MRI. An adaptive
filtering method based on local SNR was shown to be useful by modeling the effect of the

new adaptive algorithm on standard images by processing "Real” mmages from MRI
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We also have presented results showing the effect of amplitude quantization on the
performance of the filter. It was shown that in general, changing the number of
quantization levels does not have a noticeable impact on the quality of the filtered images.
We also examined the practical considerations that should be taken into account when we
choose the size and the position of the noise estimation region because successive
convolutions involved in the FWT algorithm spread the discontinuities in the boundaries of

the image into the noise estimation region.

7.2 Future Considerations

Throughout this thesis, several noise filtering methods were discussed. In almost all
these methods, we tried to remove the noise from images without blurring the edges. The
basic idea behind all these methods was to design spatially-selective, low-pass filters which
remove the high-frequency components from the smooth areas but leave them unchanged
in the vicinity of edges.

In practice however, it is often possible to find textured regions in images that cannot
be classified as either edge or smooth area. The methods discussed in this thesis cannot
distinguish texture from noise and hence have the tendency to smooth textured regions.

We need to extend our technique to make it sensitive to textured regions. One
approach might be to find a method to distinguish textured regions from noise-degraded
smooth areas. For this purpose, the wavelet coefficients associated with each region can
be examined. Without noise, smooth regions have strong components only in the low
frequencies (large scales). However, textured regions have substantial components in a

wide frequency (scale) spectrum. The high-frequency components associated with noise
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can be characterized by examining a signai-free region of the image. By comparing the
frequency (scale) spectrum of different regions with that of a signal-free region, we can
recognise textured regions. Moreover, if the texture does not have a random distribution,
for example if it has a dominant orientation, the high-frequency components would be
larger in a specific group of detail images. This characteristic can be used to distinguish a
textured region.

After locating textured regions, we have to examine the possible methods for
removing the noise from textured regions without smoothing them. The simplest solution
might be subtracting the noise spectrum from the spectrum of the textured region.

We see other possible improvements of the method proposed in this thesis. It was
shown that distortion of noise in the low-intensity regions of a magnitude image would
result in bias in the estimation of the noise level. We presented a systematic approach for
compensating this noise bias; however, the adjusted level of noise is not valid for low-
intensity regions of the image where the noise is distorted. To avoid introducing
svstematic errors when performing noise filtering. the strength of the filter must be
adapted to correspond to changes in signal amplitude across the image. In the next step,
we will try to develop an adaptive algorithm to compensate for such changes.

In general it can be said that the new wavelet-based method works well in removing
noise from images. The quality of the result, however, is ultimately based on our specific
image processing application. Only with an extensive study of many images which are
judged by specialists in each field, the true value of the suggested filtering technique can

be determined.
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