
UNIVERSITY OF CALGARY
 

RMR-Efficient Randomized Abortable Mutual Exclusion 

by 

Abhijeet Pareek 

A THESIS
 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
 

DEGREE OF MASTER OF SCIENCE
 

DEPARTMENT OF COMPUTER SCIENCE
 

CALGARY, ALBERTA
 

January, 2012
 

©c Abhijeet Pareek 2012
 



 
 
 

 

 

 

 

  
 

The author of this thesis has granted the University of Calgary a non-exclusive 
license to reproduce and distribute copies of this thesis to users of the University 
of Calgary Archives. 

Copyright remains with the author.  

Theses and dissertations available in the University of Calgary Institutional 
Repository are solely for the purpose of private study and research. They may 
not be copied or reproduced, except as permitted by copyright laws, without 
written authority of the copyright owner. Any commercial use or re-publication is 
strictly prohibited. 

The original Partial Copyright License attesting to these terms and signed by the 
author of this thesis may be found in the original print version of the thesis, held 
by the University of Calgary Archives. 

Please contact the University of Calgary Archives for further information: 
E-mail: uarc@ucalgary.ca 
Telephone: (403) 220-7271  
Website: http://archives.ucalgary.ca 

http:http://archives.ucalgary.ca
mailto:uarc@ucalgary.ca


Abstract
 

Mutual exclusion [1], also known as locking, is a fundamental and well studied problem 

in distributed computing. In this problem, N processes synchronize among themselves 

to access a Critical Section such that no two processes access the Critical Section at 

the same time. Recent research on mutual exclusion locks for the asynchronous shared-

memory model has focused on local spin algorithms that use the remote memory refer­

ences (RMRs) metric. 

There exists a Ω(log N) lower bound by Attiya, Hendler and Woelfel [2] on the number 

of RMRs incurred by processes as they enter and exit the Critical Section, which matches 

an upper bound by Yang and Anderson [3]. The lower bound applies for deterministic 

algorithms that only use read and write operations, and there exists a randomized algo­

rithm by Hendler and Woelfel [4], that only uses read and write operations, and achieves 

sub-logarithmic expected RMR complexity, against an adaptive adversary [5]. 

Local spin mutual exclusion locks do not meet a critical demand of many systems 

[6]. Specifically, the locks employed in database systems and in real time systems must 

support a “timeout” capability, that is, it must be possible for a process that waits “too 

long” to abort its attempt to acquire the lock. In real time systems, the abort capability 

can be used to avoid overshooting a deadline. Locks that allow a process to abort its 

attempt to acquire the lock are called abortable mutual exclusion locks. Jayanti presented 

an efficient deterministic abortable mutual exclusion lock [7] with worst-case O(log N) 

RMR complexity. 

The problem of designing a randomized abortable mutual exclusion algorithm with 

sublogarithmic expected RMRs has remained open. In this thesis, we solve this open 

problem by presenting a randomized abortable mutual exclusion with O(log N/ log log N) 

expected RMRs, against a weak adversary [5]. 

ii
 



Acknowledgements
 

First and foremost I would like to thank my supervisor, Dr. Philipp Woelfel, for being 

Superman. Specifically I would like to thank him for his insight, supervision, patience 

and the constant guidance that he provided during the writing of my thesis. He reviewed 

my work tirelessly and provided a constructive and critical perspective that enabled me 

to write my thesis. His guidance served to be a tremendous learning experience for me, 

and I realized that solving a problem is only the first step, and writing up one’s work 

unambiguously and precisely is as difficult and important a problem. Philipp taught me 

innumerable things during the course of my Masters and I will cherish my interactions 

with him for a long time to come. 

I would like to thank my other committee members, Dr. Lisa Higham and Dr. Bill 

Sands for their time and their valuable feedback on my work that has helped shape this 

thesis into its current form. 

I would like to thank my wonderful family, specially my dad, for their endless sup­

port and encouragement. Finally I would like to thank my partner in crime Shambhavi 

Srinivasa for going through the process of graduate school with me, for sharing every 

little success and failure of the process, and for always being there for me. Finishing my 

Masters without her love and support would have been a gazillion times harder. 

iii
 



iv 

Table of Contents 

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
 
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
 
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
 
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
 
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
 
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
 
2.1 Asynchronous Shared Memory Model . . . . . . . . . . . . . . . . . . . . 4
 
2.2 Shared Memory System Architectures . . . . . . . . . . . . . . . . . . . . 8
 
2.3 Primitive Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
 
2.4 Adversary Models for Randomized Distributed Algorithms . . . . . . . . 11
 
2.5 Atomicity Versus Linearizability . . . . . . . . . . . . . . . . . . . . . . . 13
 
2.6 The Mutual Exclusion Problem . . . . . . . . . . . . . . . . . . . . . . . 14
 

2.6.1 The Type Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
 
2.7 Abortable Mutual Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . 18
 

2.7.1 The Type AbortableLock . . . . . . . . . . . . . . . . . . . . . . . 18
 
3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
 
3.1 Mutual Exclusion Algorithms using only Read-Write Registers . . . . . . 21
 

3.1.1 Yang & Anderson’s Lock . . . . . . . . . . . . . . . . . . . . . . . 21
 
3.2 Variants of the Mutual Exclusion Problem . . . . . . . . . . . . . . . . . 28
 

3.2.1 Fast Mutual Exclusion . . . . . . . . . . . . . . . . . . . . . . . . 28
 
3.2.2 Adaptive Mutual Exclusion . . . . . . . . . . . . . . . . . . . . . 28
 
3.2.3 Abortable Mutual Exclusion - Jayanti’s Abortable Lock . . . . . . 29
 

3.3 Randomized Mutual Exclusion . . . . . . . . . . . . . . . . . . . . . . . . 35
 
3.3.1 Hendler and Woelfel’s Randomized Lock . . . . . . . . . . . . . . 35
 
3.3.2 Adaptive Randomized Mutual Exclusion Lock . . . . . . . . . . . 41
 

4 Randomized Abortable Mutual Exclusion . . . . . . . . . . . . . . . . . . 43
 
4.1 A Randomized Bounded CAS Counter Object . . . . . . . . . . . . . . . 45
 

4.1.1 Type CAScounterk and its Sequential Specification . . . . . . . . . 45
 
4.1.2 Randomized Linearizable Implementation of Type CAScounterk . 46
 
4.1.3 Analysis and Properties of Object RCAScounterk . . . . . . . . . 47
 

4.2 Single-Fast-Multi-Slow Universal Construction . . . . . . . . . . . . . . . 53
 
4.2.1 Analysis and Proofs of Correctness . . . . . . . . . . . . . . . . . 58
 

4.3 AbortableProArrayk: An Abortable Promotion Array Type . . . . . . . . 68
 
4.4 Array based Randomized Abortable Lock . . . . . . . . . . . . . . . . . . 71
 

4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
 
4.4.2 High Level Description . . . . . . . . . . . . . . . . . . . . . . . . 73
 
4.4.3 Implementation / Low Level Description . . . . . . . . . . . . . . 83
 
4.4.4 Analysis and Proofs of Correctness . . . . . . . . . . . . . . . . . 89
 

4.5 Tree based Randomized Abortable Lock . . . . . . . . . . . . . . . . . . 143
 
4.5.1 High Level Description . . . . . . . . . . . . . . . . . . . . . . . . 143
 
4.5.2 Implementation / Low Level Description . . . . . . . . . . . . . . 147
 



4.5.3 Analysis and Proofs of Correctness . . . . . . . . . . . . . . . . . 149 
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 
A Remaining proofs of RandALockArray . . . . . . . . . . . . . . . . . . . . 157 
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 

v
 



List of Figures 

2.1 Type Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
 
2.2 An algorithm illustrating the usage of Lock. . . . . . . . . . . . . . . . . 15
 
2.3 Type AbortableLock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
 
2.4 An algorithm illustrating the usage of AbortableLock . . . . . . . . . . . . 20
 

3.1 YA2Lockn: Yang and Anderson’s 2 Process Mutual Exclusion Lock . . . . 23
 
3.2 YALock: Yang and Anderson’s N Process Mutual Exclusion Lock . . . . 26
 
3.3	 JayantiALock: Jayanti’s Abortable Mutual Exclusion Lock . . . . . . . . 31
 
3.4	 HWLock: Hendler and Woelfel’s Randomized Mutual Exclusion Lock . . 36
 
3.5	 HWLock: Hendler and Woelfel’s Randomized Mutual Exclusion Lock (con­

tinued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
 

4.1	 Sequential Specification of Type CAScounterk . . . . . . . . . . . . . . . . 46
 
4.2	 Implementation of Object RCAScounterk . . . . . . . . . . . . . . . . . . 48
 
4.3	 Implementation of Object SFMSUnivConstWeak(T). . . . . . . . . . . . . 56
 
4.4	 Sequential Specification of Type AbortableProArrayk . . . . . . . . . . . . 69
 
4.5	 Implementation of Object RandALockArray . . . . . . . . . . . . . . . . . 74
 
4.6	 Implementation of Object RandALockArray (continued) . . . . . . . . . . 75
 
4.7	 Legend for Figures 4.8 to 4.16 . . . . . . . . . . . . . . . . . . . . . . . . 94
 
4.8	 K’s call to lockK() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
 
4.9	 K’s call to releaseK(j ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
 
4.10	 Q’s call to lockQ() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
 
4.11	 Q’s call to releaseQ() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
 
4.12	 A’s call to helpReleaseA() . . . . . . . . . . . . . . . . . . . . . . . . . 115
 
4.13	 B’s call to helpReleaseB() . . . . . . . . . . . . . . . . . . . . . . . . . 116
 
4.14	 B’s call to doPromoteB() . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
 
4.15	 Pi’s call to lockPi () . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
 
4.16	 Pi’s call to releasePi () . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
 
4.17 Implementation of Object RandALockTree . . . . . . . . . . . . . . . . . 145
 

vi
 



1 

Chapter 1 

Introduction 

Multiprocessor systems are inherently asynchronous : processor activities can be paused 

or delayed without warning by system events such as interrupts, preemptions, cache 

misses, failures, etc. These delays are unpredictable, and can vary significantly in dura­

tion. In multiprocessor programming a fundamental and well studied problem is that of 

coordinating access to shared resources, while taking the asynchrony of the system into 

consideration. The most popular approach in practice for allowing multiple processes 

to access a shared resource safely is mutual exclusion [1], also known as locking. An 

algorithm for this problem implements a mutual exclusion lock, an object designed to be 

used by at most N processes at any time, and with the property that at most one process 

“owns” it at any time. A process is said to own a lock if it participates in a “capture” 

protocol designed for the object, and completes it. The owner of the lock can access the 

shared resource, while all other processes wait in their capture protocol for the owner to 

“release” the lock. The owner releases the lock by executing a release protocol designed 

for the object. The algorithm is required to satisfy some additional properties called 

progress properties, which assure that some participating process makes some progress 

towards capturing the lock. The weakest of the progress properties is deadlock free­

dom. Deadlock freedom assures that if all participating processes continue to take steps, 

then some process will capture the lock. Mutual exclusion locks are used extensively in 

operating systems and in asynchronous parallel applications to implement shared data 

structures. 

Early mutual exclusion locks were designed for uniprocessor systems that supported 

multitasking and time-sharing. A comprehensive survey of these locking algorithms is 



2 

presented in [8]. One of the biggest shortcomings of these early locking algorithms is 

that they did not take into account an important hardware technology trend – the 

steadily growing gap between high processor speeds and the low speed/bandwidth of 

the processor-memory interconnect [9]. A memory access that traverses the processor­

to-memory interconnect, called a remote memory reference, takes much more time than 

a local memory access. 

Not surprisingly, recent research [10, 11, 12, 13, 14, 2, 15, 7, 16] on locking algorithms 

is focused on minimizing the number of remote memory references (RMR). The maximum 

number of RMRs that any process requires to capture and release a lock is called the 

RMR complexity of the lock. RMR complexity is the metric used to analyze the efficiency 

of mutual exclusion algorithms, as opposed to the traditional metric of counting steps 

taken by a process (step complexity). Step complexity is problematic, since for mutual 

exclusion algorithms, a process may perform an unbounded number of memory accesses 

(each considered a step) while busy-waiting for another process to release the lock [17]. 

Algorithms that perform all busy-waiting by repeatedly reading locally accessible 

shared variables, achieve bounded RMR complexity and have practical performance ben­

efits [18]. Such algorithms are termed local spin algorithms. A comprehensive survey of 

these algorithms is presented in [19]. Yang and Anderson presented the first O(log N) 

RMRs mutual exclusion algorithm [3] using only reads and writes. Anderson and Kim 

[12] conjectured that this was optimal, and the conjecture was proved by Attiya, Hendler, 

and Woelfel [2]. 

Local spin mutual exclusion locks do not meet a critical demand of many systems 

[6]. Specifically, the locks employed in database systems and in real time systems must 

support a “timeout” capability. That is, it must be possible for a process that waits 

“too long” to abort its attempt to acquire the lock. The ability of a thread to abort its 

lock attempt is crucial in data base systems; for instance in Oracle’s Parallel Server and 



3 

IBM’s DB2, this ability serves the dual purpose of recovering from transaction deadlock 

and tolerating preemption of the thread that holds the lock [6]. In real time systems, 

the abort capability can be used to avoid overshooting a deadline. Locks that allow a 

process to abort its attempt to acquire the lock are called abortable mutual exclusion 

locks. Jayanti presented an efficient deterministic abortable mutual exclusion lock [7] 

with worst-case O(log N) RMR complexity, where N is the number of processes that can 

access the lock concurrently. 

Due to the inherent asynchrony in the system, the RMRs incurred by a process during 

a lock capture and release depend on how the steps of all the processes in the system were 

scheduled one after the other. Therefore, the maximum RMRs incurred by any process 

during any lock attempt are determined by the “worst” schedule that makes some process 

incur a large number of RMRs. To analyze the RMR complexity of lock algorithms, we 

define an adversarial scheduler called the adversary. The lower bound of Ω(log N) in [2] 

for mutual exclusion algorithms that use only reads and writes holds for deterministic 

algorithms where the adversary knows all processes’ future steps. The lower bound 

does not hold for randomized algorithms where processes flip coins to determine their 

next steps. Randomized algorithms limit the power of an adversary since the adversary 

cannot know the result of future coin flips. In literature, adversaries of varying powers 

are considered, namely the oblivious, weak, and adaptive adversary [5]. The adaptive 

adversary models the strongest adversary with reasonable powers. Hendler, and Woelfel 

[4] presented the first randomized mutual exclusion algorithm with O(log N/ log log N) 

expected RMR complexity, against the adaptive adversary, showing that randomization 

breaks the logarithmic barrier of [2]. 

In this thesis, we present a randomized abortable mutual exclusion lock, with 

O(log N/ log log N) expected RMR complexity against the weak adversary. 



4 

Chapter 2 

Preliminaries 

2.1 Asynchronous Shared Memory Model 

Our model of computation, the asynchronous shared-memory model, is based on Herlihy 

and Wing’s [20]. The asynchronous shared-memory system has a fixed set P of N 

processes which communicate via a set of globally shared objects. Every process executes 

its program by taking steps, and does not fail. A step is defined to be the execution of 

all local computations followed by an operation on a shared object. Every process takes 

steps until it has no more steps to take, at which point it is said to terminate. A process 

is active if is has not terminated. 

A process accesses shared objects by applying operations on them. An operation 

is either atomic or non-atomic. An atomic operation happens instantaneously, and is 

modeled as a single step. A non-atomic operation is not instantaneous, and is modeled 

using separate invocation and response steps, which are executed in that order. We say 

that a response step matches an invocation step if the two steps are applied by the same 

process to the same shared object using a non-atomic operation. 

Histories. A sequence of steps executed by processes is called a history. Sometimes a 

history is also referred to as an execution. A history is generated by recording every step 

executed by all processes on all base objects and all implemented objects. A completed 

operation is one whose invocation step and response step is present in a history, whereas 

a pending operation is one whose response step is absent from a history. We say that 

an operation op happens before opt in history H, if the response of op occurs before the 

tinvocation of opt in H. We say that op and op are concurrent in H if neither happens 



5 

before the other in H. A history H is said to be sequential if it only contains only atomic 

steps, or if no two operations in H are concurrent. 

Objects, Object Types and Validity. An object J has a type T = (S, s0, δ, O, R) 

where S is a set of states, s0 ∈ S is the initial state, O is a set of operations, R is the set 

of responses, and δ : S × O → S ×R is a many-to-one mapping. The mapping δ defines 

how operations are applied on object J . Specifically, if a process applies operation op ∈ O 

to an object J of type T that is in state s, then J returns to the process a response r 

and changes the state of J to st if and only if δ(s, op) = (st, r). An object subhistory H|x 

of a history H is the subsequence of all steps in H executed on object x. A sequential 

specification of an object is the set of all possible sequential histories for that object. A 

sequential history S is valid, if for each object x, S|x is in the sequential specification of 

x. 

Implementations of shared objects. Given a set J of base objects of specified 

types, we can implement an object of a target type T . An implementation defines how 

to simulate an object of type T , using base objects J . Formally, an implementation of an 

object of type T is denoted by the tuple I = (P , J , H, T ) where P is the set of processes, 

J is the set of base objects, H is the set of histories, T is the target object type. The 

set H consists of histories generated by recording an invocation or response step on the 

target object whenever a process begins or finishes executing a method (respectively), 

and an atomic step for each access to a base object in J . 

In this thesis, we specify an implementation using pseudo-code to define a method 

for each operation type ot of the target type. The pseudo-code establishes how process 

p applies operations on the base objects, in order to apply an operation of type ot to the 

target object. 



6 

Linearizability. The gold standard in correctness conditions of an implemented shared 

object in concurrent systems is linearizability [20]. Informally, linearizability states that 

each operation executed on the target object appears to take effect instantaneously at 

some point between the operation’s invocation and response (or possibly not at all if the 

operation execution is pending). 

Definition 2.1.1. Let H be a history and S a sequential history. We say that S is a 

linearization of H, if 

(a)	 S contains all completed operations of H, and possibly some uncompleted operations 

with responses appended with arbitrary return values, 

(b)	 S is valid, and 

(c) if operation op happens before opt in H then opt does not occur before op in S. 

History H is linearizable, if it has a linearization. An implementation I = 

(T , P , J , H) is linearizable, if every history H ∈ H can be linearized to a sequential 

history in the sequential specification of T . 

Point Contention. We first establish a notion of time for an execution E, by saying 

that the i-th step in E occurs at time i. The execution interval of an operation op is 

the interval that begins at the time of op’s invocation step and ends at the time of op’s 

response step. Let O be the object on which the operation op is being applied. The point 

contention of op is the maximum number of operations on O that are pending at any 

point during op’s execution interval. 

Wait-freedom, Bounded Wait-freedom and Lock-freedom. A section of code is 

said to be wait-free if a process can complete it in a finite number of its own steps. A 

section of code is said to be bounded if there is a bound on the number of steps required to 

completely execute the section of code. An object implementation is said to be wait-free 



7 

if all its operations are wait-free. An object implementation is lock-free, if in any infinite 

history H where processes continue to take steps, and H contains only operations on 

that object, some operation finishes. 



8 

2.2 Shared Memory System Architectures 

In this thesis, we consider two asynchronous shared memory computation models based 

on the cache-coherent (CC) and the distributed shared memory (DSM) multiprocessor 

architectures. In each architecture, a memory location is either local or remote. 

CC Model. In the CC model, each processor has a private cache in which it maintains 

local copies of shared objects that it accesses. The private cache is logically situated 

“closer” to the processor than the shared memory, and is considered local to the processor. 

The shared memory is an external memory accessible to all processors, and is considered 

remote to all processors. We assume that a hardware protocol ensures cache consistency 

(i.e., that all copies of the same object in different caches are valid and consistent). 

DSM Model. In the DSM model, each processor has its own memory module which 

is available locally and can be accessed without traversing the processor-to-memory in­

terconnect. The memory module of a processor is considered local to the processor, and 

remote to all other processors. The shared memory is the disjoint union of all memory 

modules of all the processors in the system. 

Remote Memory Reference (RMR). A memory access to a shared object that 

requires access to remote memory is called a remote memory reference. The RMR com­

plexity of a shared memory algorithm is the maximum number of RMRs that a process 

can incur during any execution of the algorithm. 



9 

2.3 Primitive Objects 

In this section we describe the three primitive objects of the asynchronous shared mem­

ory model, namely read-write registers, CAS objects and LL/SC objects. Most imple­

mentations of more sophisticated objects use these objects as the base objects in their 

implementations, since most modern architectures support either CAS and read-write reg­

isters (e.g., UltraSPARC [21] and Itanium [22]) or LL/SC and read-write registers (e.g., 

POWER [23] , MIPS [24] and Alpha [25]). 

Read-Write Register. The simplest shared object in our model is a read-write reg­

ister. A read-write register R stores a value from some set and supports two atomic 

operations R.Read() and R.Write(). Operation R.Read() returns the value of the reg­

ister and leaves its content unchanged, and operation R.Write(v) writes the value v into 

the register and returns nothing. If the set of values that can be stored in the register is 

unbounded then the register is unbounded ; otherwise the register is bounded. 

LL/SC Object. An LL/SC object O stores a value from some set and supports two 

atomic operations O.LL() and O.SC(). Operation O.LL() returns the value stored in 

O. Operation O.SC(v) by a process p must follow the execution of an O.LL() operation 

by p, and the operation may succeed or fail. A successful O.SC(v) changes the value of 

O to v and returns true, otherwise the value of O is unchanged and false is returned. 

Operation O.SC(v) is successful, if and only if no process has performed a successful 

SC() operation on O since the execution of p’s preceding LL() operation on O. 

CAS Object. A CAS object O stores a value from some set and supports two atomic 

operations O.CAS() and O.Read(). Operation O.Read() returns the value stored in 

O. Operation O.CAS(exp, new) takes two arguments exp and new and attempts to 

change the value of O from exp to new. If the value of O equals exp then the operation 



10 

O.CAS(exp, new) succeeds, and the value of O is changed from exp to new, and true 

is returned. Otherwise, the operation fails, and the value of O remains unchanged and 

false is returned. 

Equivalence of LL/SC, CAS and Read-Write Registers for Deterministic Al­

gorithms. It turns out that an LL/SC object has an efficient implementation (constant 

RMR and constant space per process) from CAS objects and vice-versa [26]. Golab, 

Hadzilacos, Hendler, and Woelfel [27] (see also [28]) presented an O(1)-RMRs implemen­

tation of a CAS object using only read-write registers. Moreover, they proved that one 

can simulate any deterministic shared memory algorithm that uses reads, writes, and 

conditional operations (such as CAS operations), with a deterministic algorithm that uses 

only reads and writes, with only a constant increase in the RMR complexity. 



11 

2.4 Adversary Models for Randomized Distributed Algorithms 

A randomized algorithm is an algorithm where processes, at times, randomly choose the 

next step of the algorithm. The randomness in the algorithm is modeled by coin flips. 

Processes can perform independent random experiments by executing flip() operations 

(with no arguments) on a single shared coin object. Flip operations on a coin object are 

assumed to be atomic, and return a value from an arbitrary countable set Ω, called the 

coin flip domain. A vector cc = (c1, c2, . . .) ∈ Ω∞ is called a coin flip vector. A history 

H is said to observe the coin flip vector cc = (c1, c2, . . .), if the i-th flip operation in H 

returns value ci. 

A schedule is the order in which steps of processes interleave, represented by a 

sequence (possibly infinite) of process IDs. A history H is said to observe schedule 

ρ = (ρ1, ρ2, . . .), if process ρi executes the i-th step in H. A step executed as a result of a 

coin flip can change the system state in such a way that certain schedules become impos­

sible, which would have been possible otherwise. Therefore, a coin flip can potentially 

influence a schedule. 

To model the worst-case possible way that the system can be influenced by the algo­

rithm’s random choices, schedules are assumed to be generated by an adversarial sched­

uler, called the adversary. Typically, adversaries take the past execution into account to 

schedule the next process. In this thesis, we are mainly concerned with the adaptive and 

weak adversary. Informally, a weak adversary cannot use the result of the most recent 

coin flip of each process in its scheduling decisions. An adaptive adversary on the other 

hand, can use the results of any coin flip from the past in its scheduling decisions. We 

now provide a formal definition of these adversaries as given in [29]. 

Definition 2.4.1. An adversary is a mapping A : Ω∞ → P∞ . 

Given an algorithm M, an adversary A, and a coin flip vector cc = (c1, c2, . . .) ∈ Ω∞ , 



12 

a history HM,A,cc is generated, such that all processes perform steps as dictated by M, 

and HM,A,cc observes the coin flip vector cc and the schedule A(cc). 

For a history H that contains k flip operations, let H[k] denote the subsequence of 

H that contains all steps up to the k-th invocation step of a flip operation; if fewer than 

k flips occur during H, then let H[k] denote H. 

Definition 2.4.2. Adversary A is adaptive for algorithm M if, for any two coin flip 

cvectors cc and d that have a common prefix of length k, HM,A,cc[k + 1] = H c[k + 1].M,A,d

(An adaptive adversary cannot use future coin flips to make current scheduling decisions.) 

Definition 2.4.3. Adversary A is weak for algorithm M if it is adaptive for algorithm 

M and is additionally constrained so that, in HM,A,cc , every flip by process p is followed 

immediately by the invocation of some operation by p. (A weak adversary cannot use 

future coin flips or the “current” coin flip to make the next scheduling decision.) 



13 

2.5 Atomicity Versus Linearizability 

Recently in [29], Golab, Higham and Woelfel demonstrated that using linearizable imple­

mented objects in place of atomic objects in randomized algorithms allows the adversary 

to change the probability distribution of results. Therefore, in order to safely use im­

plemented objects in place of atomic ones in randomized algorithms, it is not enough to 

simply show that the implemented objects are linearizable. 

Also in [29], it is demonstrated that the weak adversary can gain additional power 

depending on the linearizable implementation of the object. In this thesis, we present 

randomized algorithms, designed for the weak adversary, that use CAS and read-write reg­

isters. This means that the expected RMR complexity of our algorithms is not necessarily 

preserved if we replace CAS with an arbitrary linearizable implementation of CAS. 

As already mentioned, there exists a linearizable CAS implementation with O(1) 

RMR complexity[27]. This implementation was shown to be strongly linearizable in [29]. 

A strongly linearizable object is one where an adaptive adversary gains no additional 

power when an atomic object is replaced with its linearizable implementation. Unfortu­

nately, there exists no general correctness condition for the weak adversary. Therefore, 

in this thesis we assume that CAS operations are atomic. 



14 

2.6 The Mutual Exclusion Problem 

We specify the mutual exclusion problem in terms of a type Lock, and the properties 

that an implementation of type Lock must satisfy. 

2.6.1 The Type Lock 

The type Lock (see Figure 2.1) provides methods lock() and release(). A process 

attempts to capture the lock by executing method lock(), and the process releases the 

lock by executing method release(). A process is said to own the lock if it has completed 

a lock() call but has not called method release() after that. One of the correctness 

properties of the object is to ensure that at any point in time there is at most one process 

that owns the lock. 

Type Lock
 

methods:
 
lock()
 
release()
 

Figure 2.1: Type Lock 

We define a process’s Entry Section to be its execution during a lock() method 

call, and a process’s Exit Section to be its execution during a call to release(). Code 

executed by a process after a lock() method call has terminated and before a following 

release() invocation is defined to be its Critical Section. Code executed by a process 

outside of its Entry, Exit, and Critical Sections is defined to be its Remainder Section. 

An attempt is an execution of the Entry Section, and a passage is an execution of the 

Entry, Critical and Exit Section, in that order. A process is allowed to terminate only in 

its Remainder Section, at which point it takes no more steps. 



15 

An algorithm that accesses an instance of an object of type Lock must satisfy the 

following:
 

Condition 2.6.1. A process calls method release() if and only if its last call on the
 

lock object was a completed lock() call.
 

Algorithm 2 in Figure 2.2 is an example of a safe algorithm. 

Algorithm 2: Mutual Exclusion Algorithm Template for Process p 

// shared: L: An instance of an object of type Lock 
1 while true do 

<Remainder Section> 
2 L.lock() // Entry Section 

<Critical Section> 
3 L.release() // Exit Section 
4 end 

Figure 2.2: An algorithm illustrating the usage of Lock. 

Specification 2.6.1. An execution of an algorithm that accesses an instance of an object 

of type Lock where Condition 2.6.1 is satisfied, has the following properties: 

Mutual Exclusion: At any time there is at most one process in the Critical Section. 

Deadlock Freedom: If all processes in the system take enough steps, then at least one 

of them will return from its lock() call. 

The mutual exclusion property ensures that a shared resource accessed in the Critical 

Section is accessed safely, i.e., accessed by at most one process at a time, and therefore 

the mutual exclusion property is referred to as a safety property. The deadlock freedom 

property assures that some process makes progress (captures the lock, in this case), if all 

processes in the system continue to take steps, and is therefore referred to as a progress 

property. There are other properties that are often desirable, such as starvation freedom 

and bounded exit, which are described below. 



16 

Starvation Freedom: If all processes in a system take enough steps, then every process 

will return from its lock() call. 

Bounded Exit: The release() method is bounded wait-free (i.e., processes execute 

method release() in a bounded number of their own steps). 

Starvation freedom is strictly stronger than deadlock freedom, but we may still have 

a situation where a process p wins the lock arbitrarily many times before some other 

process q that is attempting to capture the lock, wins the lock. The first-come-first­

served (FCFS) property [30] is a stronger property, sometimes called a fairness property, 

which prevents exactly such situations. Intuitively the FCFS property requires that 

processes win the lock in the order in which they execute a certain section of their Entry 

Section. To make this notion precise, we divide the Entry Section into exactly two parts: 

the doorway followed by the waiting room. The doorway is required to be a section of 

code that is wait-free. We can now define the FCFS property as follows: 

First-Come-First-Served (FCFS): For any two attempts A and B by processes p and 

q, if p finishes the doorway in attempt A before q begins the doorway in attempt B, 

then p enters the Critical Section in attempt A before q enters the Critical Section 

in attempt B. 

If we restrict a process to execute at most k passages, then the problem gets easier 

to solve, and the problem is referred to as k-shot mutual exclusion. 

Local Spin Algorithms. In mutual exclusion algorithms, we encounter busy-waiting 

which consists of read-only loops in which one or more “spin variables” are repeatedly 

tested. e.g. await(X = true) for some shared variable X. Mutual exclusion algorithms 

in which all busy-waiting incurs a bounded number of RMRs, are termed local spin 

mutual exclusion algorithms. 



17 

RMR complexity of Mutual Exclusion Algorithms. Traditionally efficiency of 

algorithms is measured in terms of step complexity, where we count the number of steps 

a process takes to execute the algorithm. For mutual exclusion algorithms, the number 

of steps executed while busy-waiting can be unbounded as a process might remain in 

the Critical Section for an arbitrarily long time, and hence it makes little sense to count 

these steps. In the case of local-spin mutual exclusion algorithms, processes do not incur 

an RMR while busy-waiting on the spin variable as long as the value of the spin variable 

does not change, hence the cost of busy-waiting is much less. Therefore, for local-spin 

mutual exclusion algorithms the metric used for time complexity is RMR complexity. 

The RMR complexity of a mutual exclusion algorithm is the maximum number of RMRs 

that a process can incur while performing a passage. 



18 

2.7 Abortable Mutual Exclusion 

To formulate the requirement of allowing processes to abort their attempts to acquire 

a mutual exclusion lock, we specify abortable mutual exclusion in terms of a type 

AbortableLock, and the properties that an implementation of type AbortableLock must 

satisfy. 

2.7.1 The Type AbortableLock 

The type AbortableLock (see Figure 3) provides methods lock() and release(). The 

model assumes that a process may receive a signal to abort at any time during its lock() 

call. If that happens, and only then, the process may fail to capture the lock. Method 

lock() returns a non-⊥ value if the process calling lock() successfully captures the 

lock, otherwise method lock() returns the special value ⊥. Method lock() returns a 

⊥ value only if the process calling lock() receives a signal to abort during lock(). A 

lock() call is said to be successful if the call returns a non-⊥ value, and is said to have 

failed otherwise. A lock() call may succeed even if the process receives a signal to abort 

during a lock() call. 

Type AbortableLock
 

methods:
 
lock() /* returns ⊥ only if a process receives a signal */ 

/* to abort during the lock attempt */ 
release() 

Figure 2.3: Type AbortableLock 

As was defined for type Lock, we define a process’ Entry Section to be its execution 

during a lock() method call, and a process’ Exit Section to be its execution during a 

call to release(). Code executed by a process after a successful lock() method call 



19 

and before a following release() invocation is defined to be its Critical Section. Code 

executed by a process outside of its Entry, Critical and Exit Section is defined to be its 

Remainder Section. If a process executes an unsuccessful lock() call, it does not execute 

the Critical Section or Exit Section, but returns to the Remainder Section. In the context 

of type AbortableLock, we redefine a passage. If a process’ lock() call returns ⊥, then 

the process’s passage is defined to be its Entry Section. If a process’ lock() call returns 

a non-⊥ value, then the process’s passage is defined to be its Entry, Critical and Exit 

Section, in that order. 

Recall that our model assumes that a process may receive a signal to abort at any 

time during its lock() call. We define an abort-way to be the steps taken by a process 

during a passage that begins when the process receives a signal to abort and ends when 

the process returns to its Remainder Section. Since it makes little sense to have an abort 

capability where processes have to wait for other processes, we require the abort-way to 

be wait-free. This property is formally defined as bounded abort, and is stated as follows: 

Bounded Abort: The abort-way is bounded wait-free (i.e., processes execute the abort-

way in a bounded number of their own steps). 

An algorithm that accesses an instance of an object of type AbortableLock must satisfy 

the following: 

Condition 2.7.1. A process calls method release() if and only if its last call on the 

lock object was a successful lock() call. 

Algorithm 4 in Figure 2.4 is an example of a safe algorithm. 

Specification 2.7.1. An execution of an algorithm that accesses an instance of an object 

of type AbortableLock where Condition 2.7.1 is satisfied, has the following properties: 

mutual exclusion, deadlock freedom, bounded exit and bounded abort. 



20 

Algorithm 4: Mutual Exclusion Algorithm template for Process p 

// shared: L: An instance of an object of type AbortableLock 
5 while true do 

<Remainder Section> 
6 if L.lock()  = ⊥ then // Entry Section 

<Critical Section> 
7 L.release() // Exit Section 
8 end 
9 end 

Figure 2.4: An algorithm illustrating the usage of AbortableLock 

Starvation freedom and FCFS are desired progress properties. The FCFS property is 

modified appropriately to suit the context of abortable locks, and is stated as follows: 

First-Come-First-Served (FCFS): For any two attempts A and B by processes p and 

q, if p finished the doorway in attempt A before q begins the doorway in attempt 

B, and if neither attempt aborted, then p enters the Critical Section in attempt A 

before q enters the Critical Section in attempt B. 



21 

Chapter 3 

Related Work 

3.1 Mutual Exclusion Algorithms using only Read-Write Registers 

Some of the first local-spin mutual exclusion algorithms [10, 11] used objects called 

read-modify-write primitives which are strictly stronger objects than read-write registers. 

This raised the question whether objects stronger than read-write registers were in fact 

necessary for local-spin locks. Anderson [31] answered the question in the negative by 

presenting such an algorithm that uses only read-write registers, and has Θ(N) RMR 

complexity. In subsequent work, Yang and Anderson [3] presented a more efficient mutual 

exclusion algorithm using only read-write registers that has O(log N) RMR complexity. 

Recent work on lower bounds [2] established the following theorem. 

Theorem 3.1.1 ([2]). For any N-process mutual exclusion algorithm using only read-

write registers, there exists a history in which some process performs Ω(log N) remote 

memory references in the CC and DSM models to enter and exit its Critical Section. 

Therefore the RMR complexity of Yang and Anderson’s algorithm is optimal for 

deterministic algorithms that use only read-write registers. We now give an overview of 

Yang and Anderson’s N -process mutual exclusion lock. 

3.1.1 Yang & Anderson’s Lock 

Peterson and Fischer [32] first proposed implementing an N -process mutual exclusion 

lock by using instances of a two-process lock in a binary arbitration tree. Initially, all 

processes are “located” at a unique leaf of the tree. To enter its Critical Section, a process 

is required to traverse a path from its leaf up to the root, capturing locks at each node on 



 

22 

this path up the tree. Upon capturing the lock of the root node, the process can enter its 

Critical Section, and then the process traverses the path in reverse, this time releasing 

all captured locks on its path from the root to the leaf node. At each node the two 

processes that ascend to the node, attempt to capture a two process mutual exclusion 

lock associated with that node. 

Yang and Anderson’s lock is based on the arbitration-tree approach of Peterson and 

Fisher. For this approach to work in the DSM model, where all busy-waiting is by local 

spinning, the two-process lock at every node must provide a mechanism that allows a 

process to deduce the process (if any) with which it must compete. This is necessary 

since we desire that processes spin on registers located in their own local memory module, 

and therefore a process must determine the other process’ ID in order to locate the other 

process’ register that it must write to, in order for the other process to break out of its 

spin loop. Yang and Anderson’s two-process lock provides such a mechanism, and we 

present a slightly simplified version of it as object YA2Lock (see Figure 3.1). We first 

describe object YA2Lock and later show how the same idea as that of YA2Lock is used in 

an arbitration tree to implement the N -process lock YALock (see Figure 3.2). 

Complete Description of YA2Lock. In Figure 3.1, the two processes are denoted by 

their IDs p and q, which are assumed to be distinct, nonnegative integer values, one odd 

and the other even. Without loss of generality let p’s ID be even. Processes are not 

aware of the ID of the other process at the beginning of their lock() calls. The lock 

employs five shared registers, Want[0], Want[1], Victim, Spin[p], and Spin[q]. Note that 

process p can access Spin[q] only after determining the ID of process q (and vice versa). 

Register Want[i], for i ∈ {0, 1}, ranges over values in {p, q, ⊥}, and is used by a process 

to inform the other of its intent to capture the lock. Observe that Want[0] = p = ⊥ holds 

while process p is at lines 2-14, and Want[p] = ⊥ holds otherwise. Similarly for Want[1]. 



 

 

23 

Class YA2Lockn 

shared: 
Want[0], Want[1]: int init ⊥ 
Spin[p], Spin[q]: int init ⊥ 
Victim: int init ⊥ 

local: 
rival: int init ⊥ 
side: int init ⊥ 

Method lock() 

1 side ← p mod 2 
2 Want[side] ← p 
3 Victim ← p 
4 Spin[p] ← 0 
5 rival := Want[1 − side] 
6 if rival = ⊥ ∧ Victim = p then 
7 if Spin[rival] = 0 then 
8 Spin[rival] ← 1 
9 end 

10 await Spin[p] ≥ 1 
11 if Victim = p then 
12 await Spin[p] = 2 
13 end 
14 end 

Method release() 

15 Want[side] ← ⊥ 
16 rival ← Victim[node] 
17 if rival = p then 
18 Spin[rival] ← 2 
19 end 

Figure 3.1: YA2Lockn: Yang and Anderson’s 2 Process Mutual Exclusion Lock 



 

24 

Register Want[q] is used similarly. Register Victim ranges over values in {p, q} and is 

used as a tie-breaker when there is contention between p and q. The order in which the 

register Victim is written to in line 3, determines the order in which p and q capture the 

lock, in case of contention. Register Spin[i], for i ∈ {p, q}, ranges over {0, 1, 2} and is 

used by process i for spinning. So we can statically allocate this spin-variable to process 

i. Similar argument holds for process q. 

We now describe a lock capture attempt by process p (an analogous description holds 

for q by symmetry). Process p first writes its ID to Want[0] (in line 2) to inform q of its 

desire to capture the lock, as well as to provide q the opportunity to determine p’s ID. 

Next, process p writes its ID to the tie-breaker register Victim (in line 3), and initializes 

its spin location Spin[p] to initial value 0 (in line 4). Then p reads Want[1] to determine 

q’s ID in case q is contending for the lock too (q writes its ID to Want[1] in line 2). If 

p determines that q is not contending for the lock, i.e., if Want[1] = ⊥ holds when p 

executes line 5, then process p’s if-condition in line 6 fails, and p proceeds to return from 

its lock() call, thus capturing the lock. Otherwise, p reads the tie-breaker variable Victim 

in line 6. If Victim = p, which implies that Victim = q, then p can proceed to capture 

the lock, since p wrote to Victim first. The algorithm will prohibit q from capturing the 

lock by the same path as long as Want[0] = p ∧ Victim = q holds (p resets Want[0] only 

in line 15). If Victim = p holds, then either process q has executed line 2 but not line 

3, or process q executed line 3 before process p. In the first case, p should be able to 

capture the lock, otherwise p should wait until q captures and then releases the lock. To 

determine the actual scenario p executes lines 7-12, where it waits for q to update the 

tie breaker so that it can check Victim again, or for q to release the lock (q notifies p by 

writing 2 to Spin[p] in line 17). 

In lines 7-8, process p writes to the spin variable of q in order to notify q that p has 

indeed written to Victim, in case q is busy waiting in line 10, waiting for p to update the 



25 

tie-breaker. Process p then busy-waits on Spin[p] in line 10, waiting for a notification 

from q. to indicate that q has indeed written to Victim. When p reads Spin[p] ≥ 1, it 

implies that q has either executed line 8 (and therefore updated the tie-breaker in line 

3), or has executed line 12 (and therefore released the lock). Process p then reads Victim 

in line 11 to determine who wrote to Victim last. In case p wrote to Victim last, p busy-

waits on Spin[p] in line 12, awaiting a notification from q that would indicate that q has 

released the lock. 

During the release() method call, process p first resets Want[0] to its initial value 

(line 15), and checks for the existence of a contending process in line 16. If there exist a 

process q contending for the lock, then p writes value 2 to the contending process’ spin 

variable to notify it that the lock has been released. 

High level Description of YALock. The N -process lock YALock is shown in Figure 3.2, 

where the processes are assumed to have unique IDs in the set {0, . . . , N − 1}. Object 

YALock organizes the N processes in a binary arbitration tree of height log N . We assume 

w.l.o.g that the number of processes N = 2L, and thus the height of the tree is log N = L. 

The leaves of the tree represent the N processes in the system. The nodes of the tree 

are labeled 1 through 2 · N − 1 in a breadth first manner starting from the root of the 

tree. Each node of the tree simulates code equivalent to that of YA2Lock in principle. 

Each node of the tree simulates a two-process lock that provides processes a mechanism 

to determine the other process’ ID, in order to locate the other process’ register that has 

to be written to. More specifically, when competing at a node, a process can determine 

its rival for that node by reading the Want variable associated with the node. 

Method lock() consists of iterating over the levels 1 through L, and winning the lock 

for the node at each level. When the lock for level L node (root node) is captured, the 

process returns from its lock() call, and therefore can enter its Critical Section. Method 



 

 

26 

Class YALock
 

shared: 
L: height of the root node. 
Want[1 . . . N − 1][0 . . . 1]: int init ⊥ 
Victim[1 . . . N − 1]: int init ⊥ 
Spin[1 . . . L][0 . . . N − 1]: int init ⊥ 

local: 
rival, h, node, side: int init 0 

Method lock() 

20 for h ← 1 to L do 
21 node ← l(N + p)/2hj 
22 side ← l(N + p)/2h−1j mod 2 
23 Want[node][side] ← p 
24 Victim[node] ← p 
25 Spin[h][p] ← 0 
26 rival ← Want[node][1 − side] 
27 if rival = ⊥ ∧ Victim[node] = p then 
28 if Spin[h][rival] = 0 then 
29 Spin[h][rival] ← 1 
30 end 
31 await Spin[h][p] ≥ 1 
32 if Victim[node] = p then 
33 await Spin[h][p] = 2 
34 end 
35 end 
36 end 

Method release() 

37 for h ← L downto 1 do 
38 node ← l(N + p)/2hj 
39 side ← l(N + p)/2h−1j mod 2 
40 Want[node][side] ← ⊥ 
41 rival ← Victim[node] 
42 if rival = p then 
43 Spin[h][rival] ← 2 
44 end 
45 end 

Figure 3.2: YALock: Yang and Anderson’s N Process Mutual Exclusion Lock
 



27 

release() consists of iterates over the levels L down to 1 and releasing captured locks 

at each level. 

Theorem 3.1.2 ([3]). The mutual exclusion problem can be solved with O(log N) RMR 

complexity using only reads and writes under either the CC or the DSM model. 



28 

3.2 Variants of the Mutual Exclusion Problem 

3.2.1 Fast Mutual Exclusion 

Lamport [33] devised a novel mutual exclusion algorithm that needs only seven memory 

accesses in the absence of contention. Algorithms where processes execute a constant-

time “fast path” when there is no contention, are referred to as fast mutual exclusion 

algorithms. Note that all memory references are counted, local and remote, when deter­

mining the time complexity of fast mutual exclusion algorithms only for the “fast path”. 

Initial fast mutual exclusion algorithms were not local spin, and thus had unbounded 

RMR complexity under contention. 

Theorem 3.2.1 ([33]). The mutual exclusion problem can be solved by an algorithm that 

requires only seven memory references in the absence of contention. 

In later work, Anderson and Kim [34] presented an improved fast mutual exclusion 

algorithms with O(1) time complexity in the absence of contention and Θ(log N) RMR 

complexity under contention, when used in conjunction with lock YALock. 

Theorem 3.2.2 ([34]). The mutual exclusion problem can be solved with Θ(log N) RMR 

complexity under contention and O(1) time complexity in the absence of contention using 

only reads and writes under either the CC or the DSM model. 

3.2.2 Adaptive Mutual Exclusion 

In many fast algorithms, there is a sudden jump in time complexity when contention is 

present. Over the years, work on fast mutual exclusion algorithms evolved into a broader 

study of adaptive algorithms. In an adaptive algorithm, the rise in time complexity as 

contention increases is gradual. Formally, a mutual exclusion algorithm is adaptive if it 

satisfies the adaptivity property which is stated as follows:
 



29 

Adaptivity: The RMR complexity of an attempt depends only on point contention and 

not on the maximum number of processes that can access the lock concurrently. 

Anderson and Kim [35] presented a local-spin adaptive algorithm with 

O(min(k, log N)) RMR time complexity, where k is the point contention. 

Theorem 3.2.3 ([35]). The mutual exclusion problem can be solved with 

O(min(k, log N)) RMR complexity using only reads and writes under either the CC or 

the DSM model, where k is point contention. 

Recently Danek and Golab [36] presented a FCFS adaptive mutual exclusion algo­

rithm that uses only reads and writes and has O(min(k, log N)) RMR complexity. Apart 

from being adaptive, the algorithm also closed the complexity gap between the FCFS 

mutual exclusion problem and mutual exclusion problem. Their result is summarized in 

the following theorem. 

Theorem 3.2.4 ([36]). The FCFS mutual exclusion problem can be solved with 

O(min(k, log N)) RMR complexity using only reads and writes under either the CC or 

the DSM model, where k is point contention. 

3.2.3 Abortable Mutual Exclusion - Jayanti’s Abortable Lock 

Jayanti [7] presented an efficient abortable mutual exclusion lock, JayantiALock, which is 

also adaptive and first-come-first-served. The result of this work is summarized by the 

following theorem. 

Theorem 3.2.5 ([7]). Object JayantiALock is a starvation free, FCFS, abortable mutual 

exclusion lock for the CC and the DSM model. The remote reference complexity of an 

attempt is O(min(k, log N)), where k is the point contention during the attempt and N 

is the maximum number of processes that can execute the algorithm concurrently. The 

algorithm requires O(N) memory words that support LL, SC, Read and Write operations. 



30 

We now provide a high-level description of object JayantiALock (see Figure 3.4). Ob­

ject JayantiALock makes use of shared registers that support LL, SC, Read and Write 

operations. Such a construction is equivalent to a construction that uses only CAS, Read 

and Write operations, since CAS can be implemented using LL/SC in a wait-free manner 

in O(1) steps with O(1) space, and vice versa [26]. To recall the specification of the 

LL/SC operations refer to Section 2.3. 

Instance Ctr is an instance of a linearizable counter object [37] that provides methods 

Read() and inc(), where Read returns the value of Ctr and inc(d) increments the value 

of Ctr by d. Instance Q is an instance of a a linearizable priority process-queue object 

[37] that provides methods insert(), findmin() and delete(), with two restrictions. 

The first restriction is that an element can be deleted only by the process that inserted it, 

and secondly, a process must delete its previously inserted element before inserting a new 

one. The counter and the priority process-queue objects are implemented using f-array 

objects [37], which are in turn implemented using shared LL/SC objects. The following 

two theorems formally state the properties of the counter and the process priority-queue 

objects, and therefore it is not essential to present their implementations. 

Theorem 3.2.6 ([37]). A linearizable, wait-free implementation of a counter, shared by 

N processes, is possible from LL/ SC and read-write registers. The time complexity of 

Read() is O(1) and the time complexity of inc(d) is O(min(k, log N)), where k is the 

point-contention during the increment operation. The space complexity is O(N). 

Theorem 3.2.7 ([37]). A linearizable, wait-free implementation of a priority process-

queue, shared by N processes, is possible from LL/ SC and read-write registers. The 

time complexity of findmin() is O(1) and of a matching pair of operations - insert() 

followed by delete() – is O(min(k, log N)), where k is point-contention during the ex­

ecution of insert(). The space complexity is O(N). 



 

 

 

31 

Class JayantiALock
 

shared: 
Ctr is a counter, initially 0; supports inc() and Read() operations. 
Q is a priority process-queue, initially empty; supports insert(), 

findmin() and delete() operations. 
CSowner takes on a value from {⊥, 0, 1, . . . , N − 1}, initially ⊥; supports 

LL, SC, Read and Write operations. 
Wait is an array [0 . . . N − 1] of boolean initially ⊥; supports LL, SC, 

Read and Write operations. 
local: 

t, tt, q: int init ⊥, 
// If i satisfies the loop condition in line 7, and i has received 

a signal to abort, then i calls aborti() 

Method locki( ) 

1 Wait[i] ← true 
2 Ctr.inc(1 ) 
3 t ← Ctr.Read() 
4 Q.insert((i, t)) 
5 promote() 
6 promote() 
7 await (¬Wait[i]) 
8 return i 

Method aborti( ) 

12 Q.delete((i, t)) 
13 promote() 
14 if CSowner = i then 
15 CSowner ← ⊥ 
16 promote() 
17 end 
18 return ⊥ 

Method releasei() 

9 Q.delete((i, t)) 
10 CSowner ← ⊥ 
11 promote() 

Method promote() 

19 if CSowner.LL() = ⊥ then return 
20 (j, tt) ← Q.findmin() 
21 if j = ⊥ then Wait[j].LL() 
22 if CSowner.SC(j ) then 
23 if j = ⊥ then Wait[j].SC(false) 
24 end 

Figure 3.3: JayantiALock: Jayanti’s Abortable Mutual Exclusion Lock
 



32 

Shared Data and their role. We describe the role of each individual object in the 

algorithm. A boolean flag array Wait is used by processes to announce their desire to 

enter the Critical Section, and to spin (busy-wait) on, and to be notified of their turn to 

enter the Critical Section. Each process is assigned a unique slot in Wait indexed by its 

ID, which can be in the process’ memory module. This allows the algorithm to be local-

spin. Process p sets Wait[p] to true at the start of lock(), and when the owner of the 

lock makes p the owner, it releases p from its busy-wait loop by writing false to Wait[p]. 

An LL/SC register CSowner holds the name of the process that owns JayantiALock If no 

process currently owns JayantiALock then CSowner = ⊥. 

Object Ctr is used by processes to receive a token number and this helps in achieving 

the FCFS property. Specifically, processes first increase Ctr by 1, and then read Ctr to 

receive their token numbers. This constitutes a part of the doorway, and thus if a process 

q finishes its doorway before a process q begins its doorway, then p receives a smaller 

token number than q. 

Object Q is used by processes to insert a pair containing their token and process ID. 

The pairs of token and process ID, provides a lexicographical total order on the elements 

of the queue, where (p, t) < (q, tt) if t < tt or ((t = tt) ∧ (p < q)). 

In the lock() method, right after receiving its token t, a process p inserts (p, t) into 

Q using the insert() method. Method findmin() returns the element with smallest 

value in the queue (element with smallest token), or if the queue is empty, a special value. 

Description of the lock() method. First, process p announces its desire to own the 

lock by setting its flag Wait[p] to true (line 1). In lines 2 and 3, p increases the counter 

Ctr by 1, and then reads Ctr to obtain a token t. Operations on Ctr are wait-free and p 

executes O(min(k, log N)) steps during Ctr.inc(1) and O(1) during Ctr.Read(), where 

k is the point contention. The Ctr object is implemented using a tree structure, with the 



33 

root storing the Ctr value, where O(min(k, log N)) steps is necessary to climb up the tree 

to update the root value. Process p then inserts the pair (p, t) into the process priority 

queue Q to enqueue itself in line 4 using a Q.insert((p, t)) operation, and lines 1-4 

constitute the bounded doorway. The insert operation on Q also takes O(min(k, log N)) 

steps, since Q is internally represented with a similar tree structure, where the root 

holds the pair with the lowest lexicographical value, and it takes O(min(k, log N)) steps 

to propagate the inserted value all the way up to the root. After the doorway, p executes 

the promote procedure in line 5, where the task is to capture the lock for the longest 

waiting process q in Q and inform q that it is the owner. In line 6, p calls the promote 

procedure one more time, to fix a subtle issue in the algorithm, where a process may 

get missed during the previous promote procedure. In line 7, p spins on its slot Wait[p] 

waiting to be notified of its turn to own the lock. 

Description of the release() method. Once p is informed that it is the owner of 

the lock (by setting Wait[p] = false), p returns from its lock() call in line 8 with a 

non-⊥ value, and enters its Critical Section, and eventually calls release(). During 

release(), p removes its pair (p, t) from the queue Q in line 9 with a Q.delete((p, t)) 

operation, and resets CSowner to ⊥ in line 10 to indicate that the lock is available once 

again. It then executes the promote procedure in line 11 to make the longest waiting 

process (if any) in Q the next owner of the lock. 

Description of the abort() method. While busy-waiting in line 7, process p calls 

abort() if p receives a signal to abort. During abort(), p removes its pair (p, t) from 

the queue Q in line 12 with a Q.delete((p, t)) operation, and then executes the promote 

procedure in line 13 to make the longest waiting process (if any) in Q the next owner 

of the lock. It may happen that some process promoted p by executing the promote() 

procedure before p deletes its entry from Q in line 12. In this case p is made the owner of 



 

34 

lock. In line 14, p determines if this is indeed the case by checking if CSowner = p, and 

if so it resets CSowner to ⊥ in line 15 to indicate that the lock is available once again. It 

then executes the promote procedure once more in line 16 to make the longest waiting 

process (if any) in Q the next owner of the lock. In line 18 p returns with a ⊥ value to 

indicate that it aborted during its lock() call. 

Description of the promote() method. The promote() method advances the longest 

waiting process in Q to become the owner of the lock, if the lock does not already have 

an owner. A process p executing promote() first checks if some process already owns 

the lock in line 19, and if so, p simply returns. Otherwise, p determines the ID q of the 

process in Q with the smallest lexicographical pair, i.e., the longest waiting process using 

the Q.findmin() operation in line 20. If the queue is not empty, findmin() returns a 

process ID q, otherwise it returns q = ⊥. First suppose that q = ⊥. Then, p load-links 

the value of Wait[q] in line 21. Then it attempts to write q into CSowner using an SC 

operation CSowner.SC(q) in line 22, and if successful it changes Wait[q] to false using 

Wait[q].SC(false) in line 23. The intuitive reason for using LL/SC operations as opposed 

to read/writes is that processes may be executing the promote() procedure concurrently, 

and could possibly be trying to promote the same process q to become the CSowner at 

different points in time. Then, using LL/SC operations ensures that only the first such 

promote() method succeeds and all others fail. 

In the case that findmin() returns ⊥, p attempts to write ⊥ into CSowner using 

a SC operation CSowner.SC(q) in line 22. It seems counter intuitive to write ⊥ into 

CSowner, but this feature is necessary to ensure the crucial claim that a process is not 

made the owner of the lock after it has aborted. A discussion of this subtle feature only 

distracts from the main ideas of the work and therefore we refer you to [7] for a complete 

description.
 



35 

3.3 Randomized Mutual Exclusion 

3.3.1 Hendler and Woelfel’s Randomized Lock 

As mentioned in the introduction, Hendler and Woelfel [38] used randomization to break 

the logarithmic barrier of [2], and presented the first randomized mutual exclusion al­

gorithm using CAS and read-write registers with a sub-logarithmic expected RMR com­

plexity for the CC and DSM models, against the adaptive-adversary. 

We now provide a high-level description of Hendler and Woelfel’s randomized mutual 

exclusion algorithm for N processes that works for the CC model, and it is presented 

in Figure 3.4 as object HWLock. The N processes are assumed to have unique IDs in 

{0, 1, . . . , N − 1}, and for convenience we assume without loss of generality that N = 

ΔΔ−1 for some positive integer Δ. Then it follows that Δ = Θ(log N/ log log N). 

Data Structure - The Arbitration Tree. Similarly to many mutual exclusion algo­

rithms ([32, 39, 3]), HWLock uses an arbitration tree, that processes climb up in order to 

enter the Critical Section. A key difference here is that the arbitration tree of HWLock, 

denoted T , is a complete Δ-ary tree of height Δ with N leaves, as opposed to a binary 

tree. A node is said to be at level i if its height is i, where the height of the root node, 

root, is Δ and the height of the leaves is 0. Each process p in the system is associated 

with a unique leaf leafp in the tree T , from which it begins its ascent to the root node 

root. The path from leafp up to the root, root, is denoted pathp, and hu denotes the height 

of a node u. Each internal node of the arbitration tree T is represented by a structure of 

type Node that consists of a CAS object Lock and some other objects which we describe 

shortly. To capture the lock of a node u, a process p needs to write its ID into the Lock 

variable of the node. 

A process p starts at a leaf leafp of the arbitration tree T and moves up the tree to 

the root, capturing locks of nodes on its path pathp. Once a process captures the lock of 



 

  

 

36 

Class HWLock
 

define Node: struct {
Lock: int init ⊥, 
MX: Starvation free Δ-process mutual exclusion object 
apply: array [0 . . . Δ − 1] of int init ⊥, 
token: int init 0, 

}
shared: 

root: Node /* root of the arbitration tree */ 
leaf: array [0 . . . N − 1] of type Node /* leaf[i] is the i-th leaf */ 

/* in the arbitration tree */ 
promQ: Queue init ∅ 
notify: array [0 . . . N − 1] of type boolean init false 

local: 
v: Node
 
i, j, j t, q, tok, ctr: int
 

Method lock() 

1 notify[p] := false 
2 v := leaf[p] 
3 repeat 
4 Let i be the integer such that v is the (i + 1)-th child of parent(v) 
5 v :=parent(v) 
6 v.apply[i].CAS(⊥, p) 
7 ctr := 0 
8 repeat 
9 ctr := ctr + 1 

10 if ctr > ,log Δl then 
11 if v.apply[i].CAS(p, ⊥) then 
12 v.MX.GetLocki() 
13 v.apply[i].CAS(⊥, p) 
14 await (v.Lock = ⊥ ∨ v.apply[i] = p) 
15 end 
16 end 
17 if ¬ v.Lock.CAS(⊥, p) then 
18 tok := v.token 
19 await (v.token = tok ∨ v.apply[i] = p ∨ v.Lock = ⊥) 
20 end 
21 if v.MX.LockOwner = i then v.MX.RelLocki() 
22 until v.apply[i] = p ∨ v.Lock = p 
23 if ¬ v.apply[i].CAS(p, ⊥) then 
24 await (notify[p] = true) 
25 end 
26 until notify[p] ∨ v = root 

Figure 3.4: HWLock: Hendler and Woelfel’s Randomized Mutual Exclusion Lock
 



 

 

37 

Method release() 

27 foreach node v on the path from leaf[p] to the root, where v.Lock = p do 
28 tok := v.token 
29 i := v.MX.LockOwner 
30 Pick jt uniformly at random from {0, . . . , Δ − 1}
31 for j ∈ {jt, tok, i} − {⊥} do 
32 q := v.apply[j] 
33 if q = ⊥ ∧ v.apply[j].CAS(q, ⊥) then 
34 promQ.enq(q) 
35 end 
36 end 
37 v.token := (tok + 1) mod Δ 
38 if v = root then v.Lock.CAS(p, ⊥) 
39 end 
40 if promQ = ∅ then 
41 root.Lock.CAS(p, ⊥) 
42 else 
43 q := promQ.deq() 
44 root.Lock.CAS(p, q) 
45 notify[q] := true 
46 end 

Figure 3.5: HWLock: Hendler and Woelfel’s Randomized Mutual Exclusion Lock (con­
tinued) 



38 

root, it can enter the Critical Section. Since processes at a node concurrently attempt to 

capture the node, a CAS operation (i.e. Lock.CAS(⊥, ID)) is used to ensure that only one 

succeeds, while all others fail. If p fails to capture the lock of node v then it starts to spin 

(busy-wait) on v.Lock, waiting for v.Lock to be released. On seeing a release (i.e. reading 

v.Lock = ⊥) process p repeats its attempt to capture the lock, and so on. On capturing 

the lock of node v at height i process p attempts to do the same at height i +1 and so on, 

all the way up to height Δ. Once process p has captured the root lock, it can safely enter 

the Critical Section. Note that if there is no contention then an attempt to capture the 

lock of a node costs only a constant number of RMRs, and thus the total RMRs during 

a call to lock() is O(Δ). In its Exit Section, p releases all the locks acquired on its path 

pathp in the reverse order. 

Randomized Promotion. Since processes may continuously fail to capture a lock of 

a node, the authors provide a randomized mechanism that gives a process a 1/Δ chance 

to be promoted for every C failed attempts at capturing a lock, where C is a sufficiently 

large constant. 

The randomized promotion mechanism is as follows. Before a process p attempts 

to capture the lock at node v, it registers itself at the node, by writing its ID to a 

unique position in array apply[0 . . . Δ − 1]. The unique position is the index of the 

child node of v from which p ascended to v. The process that owns the lock v.Lock, 

say q, eventually releases it during its Exit Section, and before doing so, it conducts 

a randomized promotion event at the node. Process q first randomly chooses an index 

i ∈ {0, Δ − 1}, and checks the array position v.apply[i] for a registered process. If q finds 

some process registered at v.apply[i], say pt , q then attempts to promote pt by executing 

a v.apply[i].CAS(pt , ⊥) operation. The operation may fail, but if it does not then pt is 

said to be promoted, and q subsequently enqueues pt into a promotion queue promQ. 



39 

Thus, every registered process has a 1/Δ chance to be promoted, during a randomized 

promotion event at the node. 

Promoted processes enqueued into promQ, simply spin on a local variable, waiting 

to be notified to enter the Critical Section, thus incurring only a constant number of 

additional RMRs in the process. 

A randomized promotion is performed by an exiting process q before it releases the 

root lock. Also, before q finishes its Exit Section, q notifies the head of the promQ (if 

any), to enter the Critical Section. With this mechanism, all processes enqueued in the 

queue promQ are guaranteed to be notified to enter the Critical Section, and all enqueue 

and dequeue operations on promQ are done in mutual exclusion, so a sequential queue 

implementation suffices. 

Expected RMR Complexity of lock(). As mentioned, the randomized promotion 

mechanism ensures that a process participates in one randomized promotion event for 

every C = O(1) failed attempts to capture a lock, where the chance of a promotion is 

1/Δ. Then, the total number of lock capture attempts is geometrically distributed, and 

has an expectation of O(Δ). Since the height of the arbitration tree is Δ, a process 

has to capture at most Δ locks on its path, and it then follows that the expected RMR 

complexity of the lock() method call is O(Δ). 

Deterministic Promotion and Starvation Freedom. In a strong (worst-case) sense 

it is possible that a process is not promoted at any randomized promotion event it par­

ticipates in, and also fails to capture a lock at a node at every lock attempt. Then, the 

algorithm described so far is not starvation-free, and has an unbounded worst-case RMR 

complexity. To fix the above issue the algorithm implements a deterministic promotion 

mechanism. At every node v in the arbitration tree, a sequential modulo-Δ counter 

v.token is maintained, and is increased only by the exiting process (and thus, in mu­



40 

tual exclusion). When an exiting process, say q, releases the lock of node v during its 

Exit Section, it performs a deterministic promotion event in addition to the random­

ized promotion event. Process q performs deterministic promotion by first reading the 

index j = v.token, and then attempting to promote the process (if any) at v.apply[j], 

as described before. Process q then increments v.token (modulo Δ). Such a mechanism 

guarantees that if Δ promotion events occur at node v while a process is busy-waiting 

on v.Lock, then the process is guaranteed to be promoted. Thus, a process might incur 

in the worst-case, Ω(Δ) RMRs at every level of the arbitration tree, and therefore the 

worst-case RMR complexity of the algorithm described so far is Ω(Δ2). 

Bounding the worst-case RMR complexity. To bound the worst-case RMR com­

plexity of the algorithm to O(Δ) (to match the lower bound of deterministic mutual 

exclusion algorithms), HWLock makes use of a starvation free Δ-process determinis­

tic mutual exclusion object v.MX at every node v of the arbitration tree. The object 

v.MX provides methods lock() and release(), which can be called with unique IDs in 

{0, . . . , Δ − 1}, and has worst-case RMR complexity O(log Δ) (lock YALock of [3] can 

be used as an implementation of MX). The algorithm assumes the presence of another 

method LockOwner() that returns the ID of the current owner of v.MX. 

To bound the total number of RMRs a process incurs at each node in the worst-case, 

a process is allowed to change its tactic to win a lock of a node, if it has already made 

too many attempts. A process keeps track of the number of attempts by counting RMRs 

that it incurs, the mechanism of which we explain in just a bit. If the process determines 

that it has incurred more than O(log Δ) RMRs, then it calls v.MX.locki(), where i is 

the rank of the unique child from which the process ascended to v. Once the process 

has captured the lock v.MX, it makes only two more attempts to capture v.lock. The 

exiting process that releases the lock of node v, in addition to performing deterministic 



41 

and randomized promotions at the node, also promotes the owner of v.MX. To find out 

the owner of v.MX it uses the method v.MX.LockOwner(). 

This mechanism guarantees that if p captures the lock v.MX, it will either capture 

v.Lock within the next two attempts, or it will be promoted. Hence, the worst-case RMR 

complexity incurred by a process is bounded by Δ · O(logΔ + logΔ) = O(Δ · logΔ) = 

O(log n) for a call to lock() and release(). Thus the algorithm is starvation free and 

has a worst-case RMR complexity of O(log N). 

RMR Counting Mechanism. To count the number of RMRs a process p incurs at 

a node v, p monitors v.token for change, while also spinning on v.Lock. This works, 

because in a time interval during which v.Lock changes sufficiently many times (at most 

thrice), at least one deterministic promotion is performed, and thus v.token is changed 

every time v.Lock is released and then re-captured. 

The result of this work is summarized by the following theorem. 

Theorem 3.3.1 ([4]). Object HWLock is a starvation-free, randomized mutual exclusion 

lock for the CC model. The RMR complexity of an attempt is O(log N/ log log N), in 

expectation and O(log n) in the worst-case, against the adaptive adversary. The algorithm 

requires O(N) CAS objects and read-write registers. 

Hendler and Woelfel also present a modification of the lock HWLock in [4], such that 

the same properties hold for the DSM model. 

3.3.2 Adaptive Randomized Mutual Exclusion Lock 

In more recent work, Hendler and Woelfel in [38] extend the techniques of [4] to present 

an adaptive mutual exclusion in sublogarithmic expected amortized RMR complexity 

for the CC and DSM models using read-write registers and CAS objects. If point-

contention is k, then against a weak adversary each process incurs an expected number 



42 

of O(log k/ log log k) RMRs per passage through the Critical Section. Against an adap­

tive adversary the expected amortized RMR complexity is also O(log k/ log log k) RMRs. 

The worst-case RMR-complexity of the algorithm is O(min(k log k, log N)). The result 

of this work is summarized by the following theorem. 

Theorem 3.3.2 ([38]). The mutual exclusion problem can be solved with an expected 

amortized RMR complexity of O(log k/ log log k) and worst-case RMR complexity of 

O(min(k log k, log N)) for the CC and DSM models using only read-write registers and 

CAS objects, against the adaptive adversary, where k is the point contention. 



43 

Chapter 4 

Randomized Abortable Mutual Exclusion 

The most efficient deterministic abortable lock, JayantiALock, has O(log N) worst-case 

RMR complexity per passage, which is optimal for deterministic algorithms. We have 

also seen a randomized lock, HWLock with O(log N/ log log N) expected RMR complex­

ity per passage, against the adaptive adversary. We wish to achieve a sub-logarithmic 

expected RMR complexity for a randomized abortable lock. Unfortunately we find that 

the adaptive adversary proves to be too strong, and thus in this thesis we implement a 

randomized abortable lock that works against the weak adversary. The goal of this chap­

ter is to implement an object of type AbortableLock, with O(log N/ log log N) expected 

RMR complexity per passage for the CC model, against the weak adversary. 

Road Map. In Sections 4.1-4.4 we present some building blocks needed to construct our 

main randomized abortable lock. Specifically, in Section 4.1 we implement a randomized 

wait-free CAS Counter object. In Section 4.2 we implement a universal construction 

object with the specialized property that it executes some operations in O(1) steps. 

In Section 4.3 we present the type of an object we call Abortable Promotion Array, 

which is another building block needed for our main construction. In Section 4.4 we 

implement a randomized abortable mutual exclusion lock, RandALockArray of a type 

with stronger safety conditions than type AbortableLock. Object RandALockArray uses 

the CAS Counter object, objects of type Abortable Promotion Array, and the universal 

construction object in its construction. Finally in Section 4.5, we use RandALockArray 

objects to implement our main randomized abortable lock RandALockTree, an object 

of type AbortableLock, with O(log N/ log log N) expected RMR complexity per passage, 



44 

against the weak adversary. 



45 

4.1 A Randomized Bounded CAS Counter Object 

We wish to implement a randomized linearizable wait-free CAS counter object where the 

value of the object can range in {0, . . . , k}, where k is some integer constant. A CAS 

counter object complements a CAS object by supporting an additional inc() operation 

(apart from CAS() and Read() operations) that increments the object’s value. We wish 

to use such an object to assign roles (up to k + 1 of them) to processes in an arbitration 

tree. Among the roles would be that of an “owner”, a “second in command”, and so 

on. We also desire an O(1) step complexity from the operations, which seems to be 

difficult to achieve with a deterministic implementation of the object. Then we present a 

randomized implementation of the CAS counter object with O(1) step complexity of all 

its methods, where the inc() method is allowed to fail. We require that the probability 

of a failure be bounded to a constant value (k/(k+1) in our case). We begin by specifying 

the type of a CAS counter object as follows: 

4.1.1 Type CAScounterk and its Sequential Specification 

We specify the type CAScounterk by providing its sequential specification (see Figure 4.1). 

Let C be an object of type CAScounterk. Object C stores an integer with values in 

{0, . . . , k}, where k ∈ Z+ and k ≥ 2. The value of object C is initially 0. 

Object C supports the operations inc(), CAS() and Read(). Operation inc() takes 

no arguments, and if the value of the object is in {0, . . . , k − 1}, then the operation 

increments the value and returns the previous value. Otherwise, the value of the object 

is unchanged and the integer k is returned. Operation CAS(old, new) takes as argument 

the integers old and new. If the value of the object is equal to old, then the operation 

changes the value of the object to new and returns true. Otherwise, the object is 

unchanged and false is returned. Operation Read() simply returns the value of the 

object. 



 

46 

Class Atomic CAScounterk 

shared: 
x: int init 0 

Operation inc( ) 

1 if x = k then return x 
2 x ← x + 1 
3 return x − 1 

Operation CAS(old, new) 

4 if x = old ∨ new /∈ {0, 1, . . . , k} then 
5 x ← new 
6 return true 

return false 

Operation Read( ) 

7 return x 

Figure 4.1: Sequential Specification of Type CAScounterk 

4.1.2 Randomized Linearizable Implementation of Type CAScounterk 

We now implement object RCAScounterk which is a randomized linearizable implemen­

tation of type CAScounterk. The implementation of object RCAScounterk is given in 

Figure 4.2. 

A shared CAS object Count is used to store the value of the counter object, and is 

initialized to 0. The object provides methods inc(), CAS() and Read(). Since the object 

is a randomized implementation, we extend the specification of the object. Specifically, 

the inc() method is allowed to fail, in which case the operation does not change the 

object state, and returns ⊥ to indicate the failure. 

During the inc() method, a process p first makes a guess at the counter’s current 

value by rolling a (k +1)-sided dice (in line 8) that returns a value in {0, . . . , k} uniformly 

at random, and stores the value in local variable β. If β = k, then p performs a Read() 



47 

on Count(in line 10) to verify the correctness of its guess. If p’s guess is correct, then 

it returns k, otherwise it returns ⊥ (in line 14) to indicate a failed inc() method call. 

If β ∈ {0, . . . , k − 1}, then p performs a Count.CAS(β, β + 1) operation (in line 10) in 

order to verify the correctness of its guess and to increment Count in one atomic step. If 

p’s guess is correct, then the CAS operation succeeds and the inc() method returns the 

previous value. Otherwise the inc() method returns ⊥ (in line 14) to indicate a failed 

inc() method call. 

Method Read() simply reads the current value of Count using a Count.Read() oper­

ation (line 17) and returns the result of the operation. Method CAS() takes two integer 

parameters old, new, and in line 15 performs a safety check, where it checks whether the 

value of new is in {0, . . . , k}. If the safety check fails, then the method simply returns 

false. Otherwise, it attempts to change the value of Count from old to new using the 

Count.CAS(old, new) operation (in line 16) and returns the result of the operation. 

4.1.3 Analysis and Properties of Object RCAScounterk 

Consider an instance of the RCAScounterk object. Let H be an arbitrary history that 

consists of all method calls on the instance, except failed inc() calls and pending calls 

that are yet to execute line 10 (Read operation), line 12 (CAS operation), line 16 (CAS 

operation) or line 17 (Read operation). If a failed inc() is in the history, it can be 

linearized at an arbitrary point between its invocation and response, as it does not affect 

the validity of any other operations. Therefore, it suffices to prove that the history 

without failed inc() operations is linearizable, and then linearizability of the original 

history follows. The same argument applies to omitting the selected pending method 

calls. Since the selected pending method calls do not change any shared object, they 

cannot affect the validity of any other operations. 

We define a point pt(u) for every method u in H. Let I(u) be the interval between u’s 



48 

Class RCAScounterk 

shared: 
Count: int init 0 

local: 
β: int init 0 

Method inc( ) 

8 β ← random(0, 1, . . . , k) 
9 if (β = k) then 

10 if (Count.Read() = k) then return k 
11 else 
12 if Count.CAS(β, β + 1) then return β 
13 end 
14 return ⊥ 

Method CAS(old, new) 

15 if new /∈ {0, 1, . . . , k} then return false 
16 return Count.CAS(old, new) 

Method Read( ) 

17 return Count.Read() 

Figure 4.2: Implementation of Object RCAScounterk 



49 

invocation and response. Let S be the sequential history obtained by ordering the method 

calls in H according to the points pt(u). To show that RCAScounterk is a randomized 

linearizable implementation of the type CAScounterk, we need to show that the sequential 

history S is valid, i.e., S lies in the specification of type CAScounterk object, and that 

pt(u) lies in I(u). Let C be an object of type CAScounterk, and let Sv be the sequential 

history obtained when the operations of S are executed sequentially on object C in the 

order as given in S. Clearly, Sv is a valid sequential history in the specification of type 

CAScounterk by construction. Then to show that S is valid, we show that S = Sv. 

Lemma 4.1.1. Object RCAScounterk is a randomized linearizable implementation of type 

CAScounterk. 

Proof. Let A be an instance of the RCAScounterk object. Consider an arbitrary history 

H that consists of all completed method calls on A, except failed inc() calls, and all 

pending method calls on A that have executed a successful CAS operation. We now define 

point pt(u) for every method u in H. 

If u is a Read() method call then define pt(u) to be the point in time when the Read 

operation in line 17 is executed. 

If u is an inc() method call that returns from line 10 then pt(u) is the point in time 

of the Read operation in line 10, and if u’s CAS operation in line 12 succeeds then pt(u) 

is the point in time of the CAS operation in line 12. By construction, a Read or CAS 

operation has been executed during every inc() call in H, and no failed inc() calls are 

in H. Then it follows that we have defined pt(u) for every inc() call u in H. 

If u is a CAS() method call that returns from line 15 then pt(u) is any arbitrary point 

during I(u), and if u returns from line 16 then pt(u) is the point in time of the CAS 

operation in line 16. 

Clearly pt(u) ∈ I(u) for every method u in H. 



 

 

 

50 

Let ui be the i-th operation in S and vi be the i-th operation in Sv. Let Count(ui)
+ 

denote the value of object Count immediately after pt(ui), and let C(vi)+ denote the 

value of object C after operation vi in Sv. We assume that u0 is a method call that does 

not change the state of any shared object of instance A (such as a Read() method) and 

returns the initial value of the object. This assumption can be made without loss of 

generality, because the removal of a method call that does not change the state of the 

object from a linearizable history always leaves a history that is also linearizable. The 

purpose of the assumption is to simplify the base case of our induction hypothesis. 

We now prove by induction on integer i, that Count(ui)
+ = C(vi)+, and that the 

return value of ui matches the value returned by vi, thereby proving S = Sv. 

Basis (i = 0) Since initially the value of object Count and the value of the atomic 

CAScounterk object is 0, it follows from the definition of the method call u0, that 

Count(u0)
+ = C(v0)+ = 0, and the return value of u0 matches that of v0. 

Induction Step (i > 0) From the induction hypothesis, Count(ui−1)
+ = C(vi−1)

+ . 

Case a - ui is an inc() method call that executes a successful CAS() operation 

in line 12. Then pt(ui) is when object Count is incremented from β to β + 1 by a 

successful Count.CAS(β, β + 1) operation in line 12, and thus Count(ui−1)
+ = β holds. 

Also, ui returns β = Count(ui−1)
+ . Since ui fails the if-condition of line 9, β = k and 

therefore Count(ui−1)
+ = β = k holds. Now consider operation vi in Sv. Since C(vi−1)

+ = 

Count(ui−1)
+ = k, the if-condition of line 1 fails, and the value of the atomic CAScounterk 

is incremented in line 2 and C(vi−1)
+ returned in line 3. Hence Count(ui)

+ = C(vi)+ and 

the return values match. 

Case b - ui is an inc() method call that returns from line 10. Then pt(ui) is 

when the Read() operation on the object Count is executed in line 10. Clearly, the value 

returned by the Read() operation on the object Count at pt(ui) is Count(ui−1)
+ . Since 

the if-condition of line 10 is satisfied, Count(ui−1)
+ = k and ui returns integer k without 



 

51 

changing object Count. Now consider operation vi in Sv. Since C(vi−1)
+ = Count(ui−1)

+ 

and Count(ui−1)
+ = k, the if-condition of line 1 is satisfied and integer k is returned 

without changing the atomic CAScounterk object. Hence Count(ui)
+ = C(vi)+ and the 

return values match. 

Case c - ui is a CAS() method call that returns from line 15. Then the if-condition 

of line 15 is satisfied and thus new /∈ {0, 1, . . . , k} and ui returns false without changing 

Count. Now consider operation vi in Sv. Since new ∈ {0, 1, . . . , k}, the if-condition of /

line 4 will be satisfied and the Boolean value false is returned without changing the value 

of object C. Hence Count(ui)
+ = C(vi)+ and the return values match. 

Case d - ui is a CAS() method call that returns from line 16. Then pt(ui) is when 

the CAS operation on the object Count is executed in line 16, and ui returns the result of 

this CAS operation. The CAS operation attempts to change the value of Count from old to 

new, therefore if Count(ui−1)
+ = old then Count(ui)

+ = new and ui returns true, or else 

Count remains unchanged and ui returns false. Now consider operation vi in Sv. From 

the code structure, if C(vi−1)
+ = old then C(vi)+ = new and the Boolean value true 

is returned. And if C(vi−1)
+ = old then the value of object C remains unchanged and 

the Boolean value false is returned. Hence Count(ui)
+ = C(vi)+ and the return values 

match. 

Lemma 4.1.2. The probability that an inc() method call returns ⊥ is k/(k + 1) against 

the weak adversary. 

Proof. Let the process calling the inc() method call (say u) be p and let the value of 

the object Count immediately before p executes line 8 be z. Since the adversary is weak, 

no other process executes a shared memory operation after p chooses β in line 8 and 

before p finishes executing its next shared memory operation. From the code structure, 



 

 

52 

p returns ⊥ during u (in line 14) if and only if z = β. Since
 

1 k 
Prob(z = β) = 1 − Prob(z = β) = 1 − = ,

k + 1 k + 1

the claim follows. 

The following claim follows immediately from an inspection of the code. 

Lemma 4.1.3. Each of the methods of RCAScounterk has step complexity O(1), and is 

wait-free. 

The following theorem follows from Lemmas 4.1.1-4.1.3. 

Theorem 4.1.1. Object RCAScounterk is a randomized wait-free linearizable implemen­

ktation of type CAScounterk, where the probability that an inc() method call fails is 
k+1 

against the weak adversary. Each of the methods of RCAScounterk has step complexity 

O(1). 



53 

4.2 Single-Fast-Multi-Slow Universal Construction 

We wish to implement a wait-free universal construction object for n processes that 

ensures some operations are performed in O(1) steps and no operation takes more than 

O(n) steps. A universal construction object provides a linearizable concurrent implemen­

tation of any object with a sequential specification that can be given by deterministic 

code. In our abortable lock, we use an arbitration tree, and at every node of that arbi­

tration tree we wish to use a concurrent implementation of an object that supports some 

operations executable in O(1) steps and some other operations executable in O(n) steps, 

where n is the maximum number of processes that can access the object concurrently. 

We now establish the properties of our universal construction object SFMSUnivConst(T) 

that implements an object O of type T. 

Object SFMSUnivConst(T) provides two methods, performFast(op) and 

performSlow(op), to perform any operation on object O, where op is the com­

plete description of the operation to be performed. Method call performFast(op) is 

called a fast operation, while method call performSlow(op) is called a slow operation. 

Object SFMSUnivConst(T) is restricted in its usage in that no two processes are 

allowed to execute fast operations concurrently. Method performFast() has O(1) step 

complexity and method performSlow() has O(n) step complexity. 

In this section, rather than implementing object SFMSUnivConst(T), we implement 

a lock-free universal construction object SFMSUnivConstWeak(T), with slightly weaker 

properties than SFMSUnivConst(T). An object implementation is lock-free, if in any 

infinite history H where processes continue to take steps, and H contains only operations 

on that object, some operation finishes. Object SFMSUnivConstWeak(T) has the same 

properties as object SFMSUnivConst(T) except method performFast() is lock-free with 

unbounded step-complexity. 



54 

There is a standard technique called operation combining [40] that can be applied to 

transform our lock-free object SFMSUnivConstWeak(T) to the wait-free object SFMSUni­

vConst(T) with O(n) step complexity for method performFast(). 

Operation Combining Technique. In principle the technique works as follows: Pro­

cesses maintain an n-element array, say announce, where process i “owns” slot i, and 

processes store in their respective slots the operation that they want to apply. When a 

process p wants to apply an operation it first “announces” its operation by writing the 

operation to the p-th element of the array. Then p attempts to help the “next” operation 

in the announce array by attempting to apply that operation if it has not been applied, 

yet. An index to the “next” operation to be applied is maintained in the same register 

that stores the state of the concurrent object. Every time an announced operation is 

applied, the index is also incremented modulo n in one atomic step. The response of 

applied operations is stored in another n-element array, say response, which can some­

times be combined with the announce array. Sequence numbers are used to ensure that 

an announced operation is not applied more than once. Since the index of the “next” 

operation cycles the announce array, a process needs to help announced operations O(n) 

times before its own announced operation is applied, at which point it can stop. 

Herlihy [40] introduced this technique as a general methodology to transform lock-

free universal constructions to wait-free ones. Herlihy presents another example [41] 

that employs the technique of operation combining to transform a lock-free universal 

construction to a wait-free one, where the step complexity of the method that performs 

the operation is bounded to O(n). 

By applying the technique of operation combining we can transform our lock-free uni­

versal construction SFMSUnivConstWeak(T) into our wait-free object SFMSUnivConst(T). 

We however do not provide a proof of its properties. Doing so would be repeating the 



55 

same “standard” proof ideas from [40], and would result in increasing the size of the the­

sis without contributing to the main ideas of this thesis. We do provide proofs (in this 

section) for our lock-free universal construction SFMSUnivConstWeak(T), and the proofs 

illustrate the main idea from this section, i.e., how to achieve a linearizable concurrent 

implementation with support for a performFast() method of O(1) step complexity. We 

now present the implementation of object SFMSUnivConstWeak(T) (see Figure 4.3). 

Shared Data. A shared register mReg stores a 4-tuple (m0,m1,m2,m3). We use the 

notation mReg[i] to refer to the (i + 1)-th tuple element, mi, stored in register mReg. 

Element mReg[0] stores the state of object O. Element mReg[1] stores the result of the 

most recent fast operation performed. Elements mReg[2] and mReg[3] store counts of the 

number of fast and slow operations performed respectively. Initially mReg[0] stores the 

initial state of O, mReg[1] has value ⊥ and (mReg[2],mReg[3]) is (0, 0). 

A shared register fastOp is used to announce a fast operation to be performed in a 

pair (s0, s1). Element fastOp[0] stores the complete description of a fast operation to 

be performed. Element fastOp[1] stores a sequence number indicating the number of 

fast operations that have been announced in the past. This sequence number is used 

by processes to determine whether an announced fast operation is pending execution. 

Initially fastOp is (⊥, 0). The methods performFast() and performSlow() make use of 

two private methods helpFast() and f() (see Figure 4.3). 

Description of the f() method. Method f() is implemented using the specification 

provided by type T. The method takes two arguments state1 and op, where state1 is 

a state of object O and op is the complete description of an operation to be applied 

on object O. The method computes the new state state2 and the result result, when 

operation op is applied on object O with state state1. The method then returns the pair 

(state2, result). Since no shared memory operations are executed during the method, 



56 

Class SFMSUnivConstWeak(T) 

shared:
 
mReg: int init (s0, ⊥, 0, 0)
 
fastOp: int init (⊥, 0)
 

local: 
state, res, fc, sc, s1, s1, r1, r2, seq: int init 0 

Method performFast(op) 

1 (state, res, fc, sc) ← mReg.Read() 
2 fastOp ← (op, fc + 1) 
3 if ¬helpFast() then helpFast() 
4 (state, res, fc, sc) ← mReg.Read() 
5 return res 

Method f(state1, op) 

6 state2 ← state generated when op is applied to object O with state state1 

7 res ← result when op is applied to object O with state state1 

8 return (state2, res) 

Method helpFast() 

9 (s1, r1, fc, sc) ← mReg.Read() 
10 (op, seq) ← fastOp.Read() 
11 if fc ≥ seq then return true 
12 (s2, r2) ← f(s1, op) 
13 return mReg.CAS((s1, r1, fc, sc), (s2, r2, seq, sc)) 

Method performSlow(op) 

14 repeat 
15 (s1, r1, fc, sc) ← mReg.Read() 
16 (s2, r2) ← f(s1, op) 
17 if s2 = s1 then return r2 
18 helpFast() 
19 until mReg.CAS((s1, r1, fc, sc), (s2, r1, fc, sc + 1)) 
20 return r2 

Figure 4.3: Implementation of Object SFMSUnivConstWeak(T).
 



57 

the method has 0 step complexity.
 

Description of the performFast() method. Let p be a process that executes 

performFast(op). In line 1, process p first copies the 4-tuple read from register mReg 

to its local variables state, res, fc and sc. Then p announces the operation op by writing 

the pair (op, fc + 1) to register fastOp in line 2. After announcing the operation, process 

p helps perform the announced operation by calling the private method helpFast() in 

line 3. If the call to helpFast() returns false, then p concludes that the announced oper­

ation may not have been performed yet. In this case p makes another call to helpFast() 

in line 3 to be sure that the announced operation is performed (we prove later that at 

most two calls to helpFast() are required to perform an announced operation). Process 

p then reads and returns the result of the performed operation stored in mReg[1] in line 4 

and 5, respectively. Since method performFast() is not executed concurrently (by as­

sumption), the result of p’s operation stored in register mReg is not overwritten before 

the end of p’s performFast(op) call. 

Description of the helpFast() method. Let q be a process that calls and executes 

helpFast(). In line 9, process q first copies the 4-tuple read from register mReg into 

its local variables s1, r1, fc and sc. The value read from mReg[0] constitutes the state 

of object O, to which q will attempt to apply the announced operation if required. The 

value read from mReg[1] is the result of the last fast operation performed on object O. 

The value read from mReg[2] and mReg[3] is the count of the number of fast and slow 

operations performed respectively. Process q then reads fastOp in line 10 to find out 

the announced operation op and the announced sequence number seq. Process q then 

determines whether the announced operation has already been performed, by checking 

whether seq is less than or equal to fc in line 11. If so, q concludes that operation op has 

been performed and returns true, otherwise it attempts to perform op in lines 12 and 13. 



58 

In line 12 process q calls the private method f() to compute the new state s2 and the 

result r2 when operation op is applied to object O with state s1. In line 13, process p 

attempts to perform op by swapping the 4-tuple (s1, r1, fc, sc) with (s2, r2, fc + 1, sc) 

using a CAS operation on mReg. If the CAS is unsuccessful then no changes are made to 

mReg. This can happen only if some other process performs an announced fast operation 

in line 13 or a slow operation in line 19. The result of the CAS operation of line 13 is 

returned in either case. 

Description of the performSlow() method. Let p be a process that calls and ex­

ecutes performSlow(op). During the method, p repeats the while-loop of lines 15-19 

until p is able to successfully apply its operation op. In line 15, process p first copies 

the 4-tuple read from register mReg to its local variables s1, r1, fc and sc. In line 16 

process q calls the private method f() to compute the new state s2 and the result r2 

when operation op is applied to object O with state s1. In the case that operation op 

does not cause a state change in object O, i.e., s1 = s2, then p returns result r2 in 

line 17. Otherwise p attempts to apply operation op in line 19 by swapping the 4-tuple 

(s1, r1, fc, sc) with (s2, r2, fc, sc + 1) using a CAS operation on register mReg. Before 

attempting to apply its own operation in line 19 p makes a call to helpFast() in line 18 

to help perform an announced fast operation (if any). On completing the while-loop, 

p would have successfully applied its operation op, and thus p returns the result of the 

applied operation in line 20. 

4.2.1 Analysis and Proofs of Correctness 

Let a helpFast() method call that returns true in line 13 (on executing a successful 

CAS operation) be called a successful helpFast(). 

Claim 4.2.1. (a) The value of fastOp[1] changes only in line 2. 



59 

(b) The value of mReg[3] increases by one with every successful CAS operation in line 19 

and no other operation changes mReg[3]. 

(c) The value of mReg[2] increases with every successful CAS operation in line 13 (during 

a successful helpFast()), and no other operation changes mReg[2]. 

Proof. Part (a) follows immediately from an inspection of the code. Register mReg 

is changed only when a process executes a successful CAS operation in lines 13 or 19. 

Furthermore, in line 13 mReg[3] is not changed and in line 19 mReg[2] is not changed. 

Since, in line 19 mReg[3] is incremented Part (b) follows immediately. Now, for a process 

to execute line 13, the if-condition of line 11 must fail, hence mReg[2] is increased from 

its previous value and Part (c) follows. 

Consider an arbitrary history H where processes access an SFMSUnivConstWeak(T) 

object but no two performFast() method calls are executed concurrently. Since the 

fast operations are executed sequentially the happens before order on all performFast() 

method calls in H is a total order. 

Claim 4.2.2. Let ut be the t-th performFast() method call in history H being executed 

by process pt. For t ≥ 1 let αt be the point in time when pt executes line 2 during ut 

and γt be the point when pt is poised to execute line 4. Let ut’s helpers be the processes 

that call helpFast() such that the value read by the processes in line 10 is the value 

written to register fastOp at αt. Let βt be the the first point in time when a helper’s call 

to helpFast() succeeds after αt. Let α0, β0, γ0 be the start of execution H. Then the 

following claims hold for all t ≥ 0: 

(S1) βt exists and βt is in (αt, γt) 

(S2) Throughout (αt, βt) : fastOp[1] = mReg[2] + 1 = t 

(S3) Throughout (βt, αt+1) : fastOp[1] = mReg[2] = t 



60 

Proof. We prove claims (S1), (S2) and (S3) by induction over t. 

Basis: For t = 0, (S1) and (S2) are trivially true. By assumption the initial value 

of fastOp[1] and mReg[2] is 0. Consider the interval (β0, α1). From Claim 4.2.1(a) it 

follows that fastOp is written for the first time at α1. The first point when one of the 

invariants (S3) is destroyed is if a process (say p) executes a successful CAS operation in 

line 13 during (β0, α1). Then p read the value 0 from register fastOp[1] in line 10, since 

the initial value of fastOp[1] is 0 and fastOp[1] is written to for the first time at α1. Since 

mReg[2] is never decremented (from Claim 4.2.1(c)) and mReg[2] initially has value 0, 

p satisfies the if-condition of line 11 and p’s helpFast() call returns true in line 11. 

Therefore, p does not execute line 13, which is a contradiction. 

Induction Step: For t ≥ 1: 

Proof of (S1): Consider the interval (αt, γt). To show that (S1) holds for t, we need 

to show that mReg[2] is changed during (αt, γt). Consider pt’s first call to helpFast() 

in line 3 during ut. From induction hypothesis (S3) for t − 1, it follows that fastOp[1] = 

mReg[2] = t − 1 during (βt−1, αt). Then pt reads value t − 1 from mReg[2] in line 1 and 

writes value t to fastOp[1] in line 2. Since fastOp[1] is changed only at αt+1 after αt, it 

follows that pt reads t from register fastOp[1] in line 10. 

Case a - pt returns from line 11: Then pt read a value from mReg[2] in line 9 that 

is at least t. Since mReg[2] = t − 1 holds immediately before αt some process changed 

mReg[2] in line 13 during (αt, γt). Hence, (S1) for t holds. 

Case b - pt returns true from line 13: Then pt has changed mReg[2] and hence (S1) 

holds for t. 

Case c - pt returns false from line 13: Then some process q changed register mReg 

after pt read mReg in line 9. Now, register mReg is written to only in line 13 or line 19 

(from an inspection of the code). 

Subcase c1 - q changed mReg by executing line 13: Then q has changed mReg[2]
 



61 

and hence (S1) holds for t. 

Subcase c2 - q changed mReg by executing line 19: Then pt executes a second call 

to helpFast() in line 3. Let m be the value of mReg[3] read by pt in line 9. If pt’s second 

helpFast() call satisfies case (a) or (b) then we get that (S1) holds for t. 

If pt’s second helpFast() call returns false from line 13, then some process changed 

mReg after pt read mReg in line 9. If some process changed mReg by executing line 13 

then we get that (S1) holds for t. Then some process changed mReg by executing line 19 

after pt read mReg in line 9 and let r be the first process to do so. Therefore, r changes 

the value of mReg[3] from m to m+1 in line 19. Then r executed line 15 after q executed 

a successful CAS operation in line 19. Then r completed a call to helpFast() in line 18 

after αt. Since r reads mReg after αt, r satisfied the if-condition of line 11 and executed 

line 13. If r successfully executes the CAS operation in line 13 then we get that (S1) holds 

for t. Then some process s must have changed mReg after r read mReg in line 9. Since 

the value of mReg[3] is only incremented (by Claim 4.2.1(b)) and r changes the value of 

mReg[3] from m to m + 1, it follows that s changed mReg in line 13 and hence (S1) holds 

for t. 

Proof of (S2) and (S3): From (S1) for t it follows that βt exists and αt < βt < γt < 

αt+1. From the induction hypothesis invariants (S2) and (S3) are true until αt. Now, one 

of the invariants (S2) or (S3) can be destroyed only if some process executes a successful 

CAS operation in line 13 and changes mReg[2]. By definition of βt, mReg[2] is unchanged 

during (αt, βt). Then invariants (S2) and (S3) continue to hold until βt. Therefore, claim 

(S2) holds for t. It still remains to be shown that claim (S3) holds for t. 

Let p be the process that executes a successful CAS operation in line 13 and changes 

mReg[2] at βt. Since mReg[2] = t − 1 immediately before βt and p executes a successful 

CAS operation in line 13 at βt, p.fc = t−1. Then p executed lines 9 and 10 during (αt, βt) 

and p.seq = t. Therefore, invariant (S3) is true immediately after βt. 



62 

Now, assume another process (say q) destroys one of the invariants (S3) or S4 by 

executing a successful CAS operation in line 13 during (βt, αt+1). Then q must have read 

register mReg[2] and fastOp[1] after βt, and therefore q must read the value t from both 

of them. Then q must have satisfied the if-condition of line 11 and returned true. Hence, 

q does not execute line 13, which is a contradiction. Therefore, invariant (S3) is true up 

to αt+1, and thus claim (S3) holds for t. 

Let H t be a history that consists of all completed method calls in H and all pending 

method calls that executed line 2 (Write operation on register fastOp), or which executed 

a successful CAS operation in line 13 or line 19. We omit all other pending method calls, 

since during those method calls no operations are executed that changes the state of any 

shared object, and hence those pending method calls cannot affect the validity of any 

other operation. Therefore, to prove that history H is linearizable it suffices to prove 

that history H t is linearizable. 

For each method call u in H t, we define a point pt(u) and an interval I(u). Let I(u) 

denote the interval between u’s invocation and response. If u is a performSlow() method 

call that returns from line 17 then pt(u) is the point in time of the Read operation in 

line 15, otherwise, pt(u) is the point in time of the CAS operation in line 19. If u is a 

performFast() method call, let v be a successful helpFast() method call such that v’s 

line 13 is executed after u’s line 2 and before u returns. We define pt(u) to be the point 

of the successful CAS operation in v’s line 13. 

Claim 4.2.3. For every method call u in H, pt(u) exists and lies in I(u). 

Proof. There are two types of method calls in H, performFast() and performSlow(). 

Case a - u is a performFast() method call. 

From Claim 4.2.2 it follows that exactly one of u’s helpers (see Claim 4.2.2 for def­

inition) succeeds and the helper performs a successful CAS operation in line 13 at some
 



63 

point in I(u). Therefore, point pt(u) exists and lies in I(u). 

Case b - u is a performSlow() method call. By definition pt(u) is assigned to a 

line of u’s code, therefore pt(u) exists and lies in I(u). 

Let S be the sequential history obtained by ordering all method calls u in H t according 

to the points pt(u). To show that SFMSUnivConstWeak(T) is a linearizable implemen­

tation of an object O of type T, we need to show that the sequential history S is valid, 

i.e., S lies in the specification of type T, and that pt(u) lies in I(u) (already shown in 

Claim 4.2.3). Let Sv be the sequential history obtained when the operations of S are 

executed sequentially on object O, as per their order in S. Clearly, Sv is a valid sequential 

history in the specification of type T by construction. Then to show that S is valid, we 

show that S = Sv. 

Let vt be the t-th operation in Sv and let ut be the t-th method call in S. tLet UC− 

and UC+ 
t denote the value of mReg[0] immediately before and after pt(ut), respectively. 

Let O− 
t tand O+ denote the state of object O immediately before and after operation vt, 

respectively. Let αt and βt denote the value returned by ut and vt, respectively. Define 

UC+
0 1 0 = O− Define α0 = ⊥.= UC− and O+

1 . = β0 

Claim 4.2.4. Suppose a process calls method f(x1, op) and the method returns the value 

= O− = O+pair (x2, y). If x1 t then x2 t and y = βt. 

Proof. By definition, a call to method f(x1, op) returns the value pair (x2, y) such that 

x2 is the state of O when operation op is applied to O while at state x1 and y is the result 

= O− = O+of the operation. Then if x1 t then x2 t and y = βt. 

Claim 4.2.5. For all t ≥ 1. 

= O− and UC+ = t+1(S1) O
+ 
t t+1 t UC− 

O−(S2) UC
− 
t = t 



 

64 

(S3) UC
+ = O+ and αt−1 = βt−1t−1 t−1 

Proof. Proof of (S1): Since operations in Sv are executed sequentially, it follows that 

O+ = O− We now show that UC+ = UC− Assume UC+ = UC− Then some process t t+1. t t+1. t t+1. 

p changed the value of mReg[0] by executing a successful CAS operation in line 13 or 

line 19 at some point during the interval (pt(ut), pt(ut+1)). By definition, p’s successful 

CAS operation in line 13 or line 19 is pt(uc) for some method call uc where uc is the f-th 

method call in H t . Thus, f is an integer and t < f < t + 1 holds, which is a contradiction. 

Proof of (S2) and (S3): We prove (S2) and (S3) by induction over t. 

Basis (t = 1) - By assumption, initially, mReg[0] is the initial state of O, hence, 

UC− 
1 = O− 

1 . Hence, (S2) is true. (S3) is true trivially. 

Induction Step - We assume (S2) and (S3) for t are true and prove that (S2) and 

(S3) for t + 1 are true. From (S1) we have, O
+ 

t+1 and UC+ = UC− From (S3) for = O− 
t t t+1. 

t we have UC+ = O+ . Therefore, it follows that UC− = O− and thus (S2) for t + 1 is t t t+1 t+1 

true. 

To show (S3) for t + 1 is true, we need to show UC+ 
t = O+ 

t and αt = βt. By Claim 

(S2) for t, UC
− 
t = O− 

t holds. Let pt be the process executing ut. 

Case a - ut is a performSlow(op) method call: Let x1 be the most recent value 

read by pt from mReg[0] in line 15 and let (x2, y) be the value returned when pt executes 

line 16. From the code structure, αt = y. 

Subcase (a1) - pt returns from line 17: Then pt(ut) is the point when pt executes 

a successful Read operation on register mReg in line 15. Since p satisfies the if-condition 

of line 17, x2 = x1. Thus, UC
− 
t = UC+ 

t = x1. 

Subcase (a2) - pt returns from line 20: Then pt(ut) is the point when pt executes 

a successful CAS operation on register mReg in line 19. From the definition of a CAS 

operation, it follows that UC− 
t = x1 and UC+ 

t = x2. 

O−For both subcases (a1) and (a2), x1 = UCt 
− = t holds. Then from Claim 4.2.4 it 



65 

follows that x2 = O+ and y = βt. Since x2 = UC+ and y = αt, O
+ = UC+ and αt = βt.t t t t 

Case b - ut is a performFast(op) method call: Then pt(ut) is the point when a 

successful CAS operation on register mReg is executed in line 13 of method call w where 

w is the first successful helpFast() method call that begins after ut’s line 2 is executed. 

Let q be the process executing w. Let x1 be the value read by q from mReg[0] in line 9 

and let (x2, y) be the value returned when q executes line 12. From the definition of a 

CAS operation, it follows that UC− = x1 and UC+ = x2. Since x1 = UC− = O−, from t t t t 

O+Claim 4.2.4 it follows that x2 = t and y = βut . Since x2 = UCt 
+ , it follows that 

O+ = UC+ .t t 

From Claim 4.2.2 if follows that mReg[1] is changed exactly once during ut, specifically 

at pt(ut), where q writes the value y to it. Thus, p reads the value y from mReg[1] 

in line 4 since p executes line 4 after pt(ut) (Claim 4.2.2). Therefore, it follows that 

αut = y = βut . 

Lemma 4.2.1. History H t has a linearization in the specification of T. 

Proof. By Claim 4.2.3, for each method call u in H t , pt(u) exists and lies in I(u). Thus, 

to show that H t is linearizable we only need to show that S lies in the specification of 

type T. Thus, we need to show that for all t ≥ 1, the value returned by vt matches that 

value returned by ut. From Claim 4.2.5 (S3) it follows that for all t ≥ 1, αt = βt. 

Lemma 4.2.2. Object SFMSUnivConstWeak(T) is wait-free. 

Proof. Suppose not. I.e., there exists an infinite history H during which processes take 

steps but no method call finishes. It is clear from an inspection of method performFast() 

and private method helpFast(), that both methods are wait-free. Then if H con­

tains steps executed by a process that executes a call to performFast() then the 

performFast() method call finishes since processes continue to take steps in history 

H – a contradiction. Now consider the only other case, where history H contains steps 



66 

executed by processes only on performFast() method calls. Consider a process p that 

takes steps in history H and fails to complete its performSlow() method call. Then 

during p’s execution p reads register mReg in line 15 and fails its CAS operation in line 19 

during an iteration of the loop of lines 14-19. Now p’s CAS operation can fail only if some 

process executes a successful CAS operation in line 13 or line 19 between p’s Read() and 

CAS operation. 

Case a - Some process q executes a successful CAS operation in line 19. Then q 

breaks out of the loop of lines 14-19. Since processes continue to take steps in our infinite 

history H, q eventually returns from its performSlow() method call – a contradiction. 

Case b - Some process q executes a successful CAS operation in line 13. Then q 

has performed a successful helpFast() method call and incremented mReg[2]. Let the 

value of mReg[2] after the increment be z. Now consider the next iteration of the loop 

by process p, where p’s CAS operation in line 19 fails again. Since Case a leads to a 

contradiction, some process r executed a successful CAS operation in line 13. Then r read 

incremented mReg[2] to some value greater than z in line 13. From the code structure 

of the helpFast() method, r failed the if-condition of line 11, and therefore r read 

seq = fastOp[1] > z in line 10. Since fastOp[1] is incremented only in line 2 during a 

performFast() method call, it follows that a performFast() method was called after 

q incremented mReg[2] to z in line 13. This is a contradiction to the assumption that 

processes take steps executing only method performSlow() during our history H. 

The following theorem follows from Lemma 4.2.1 and 4.2.2. 

Theorem 4.2.1. Object SFMSUnivConstWeak(T) is a lock-free universal construction 

object that implements an object O of type T, for n processes, where n is the maxi­

mum number of processes that can access object SFMSUnivConstWeak(T) concurrently 

and operations on object O are performed using either method performFast() or 



67 

performSlow(), and no two processes execute method performFast() concurrently.
 

Method performFast() has O(1) step complexity. 

On applying the standard technique of operation combining [40] to object SFMSUniv­

ConstWeak(T) we obtain object SFMSUnivConst(T). The following theorem summarizes 

the properties of object SFMSUnivConst(T). 

Theorem 4.2.2. Object SFMSUnivConst(T) is a wait-free universal construction object 

that implements an object O of type T, for n processes, where n is the maximum number 

of processes that can access object SFMSUnivConst(T) concurrently and operations on 

object O are performed using either method performFast() or performSlow(), and no 

two processes execute method performFast() concurrently. Method performFast() has 

O(1) step complexity and method performSlow() has O(n) step complexity. 



 

 

68 

4.3 AbortableProArrayk: An Abortable Promotion Array Type 

We now present the type of an object we call Abortable Promotion Array, which is a key 

part of the construction of our abortable lock in Section 4.4. The universal construction 

object SFMSUnivConst() is used to get a concurrent wait-free linearizable implementation 

of such an object. An object O of type AbortableProArrayk stores a vector of k integer 

pairs. Initially the value of O is ((0, ⊥), . . . , (0, ⊥)). Let the (i + 1)-th value of O be 

denoted by O[i]. In the context of our abortable lock, the i-th element of the array stores 

the current state of process with ID i, and a sequence number associated with the state. 

The type AbortableProArrayk supports operations collect(), abort(), promote(), 

remove() and reset() (see Figure 4.4). Operation collect(X) takes as argument an 

array X[0 . . . k−1] with values in {⊥}∪Z. For all i in {0, . . . , k − 1}, if O[i] = (ABORT, s) 

and X[i] = ⊥ then the operation changes O[i] to value (REG, X[i]), for some s ∈ Z, where 

REG and ABORT are constants set to value 1 and 3 respectively. Otherwise the value 

of O[i] is unchanged. In the context of our abortable lock, operation collect() is used 

to “register” processes in the array. Process i is said to be registered in the array if a 

collect() operation changes O[i] to value (REG, s), for some s ∈ Z. Then at most k 

processes can be registered with a collect() operation. The object also allows individual 

processes to “abort” themselves from the array using the operation abort(). Operation 

abort(i, s) takes as argument the integers i and seq, where i ∈ {0, . . . , k − 1} and s ∈ Z. 

The operation changes O[i] to value (ABORT, s) and returns true, only if O[i] is not 

equal to (PRO, s), for some s ∈ Z, where PRO is a constant set to value 2. Otherwise 

the operation returns false. In the context of our abortable lock, operation abort(i, s) 

is executed only by process i, in order to “abort” itself from the array. Process i is said 

to abort from the array if it executes an abort(i, s) operation that returns true. A 

registered process in the array that has not aborted is “promoted” using the promote() 



  

69 

Class Atomic AbortableProArrayk 

shared: 
A: array of int pairs init (⊥, ⊥)

REG, PRO, ABORT: const int 1, 2, 3 respectively
 

Operation 
Operation reset() abort(int i, int seq) 

1 for i ← 0 to k − 1 do 4 (v, s) ← A[i] 
2 A[i] ← (0, ⊥) 5 if v = PRO then return false 
3 end 6 A[i] ← (ABORT, seq)

7 return true 

Operation promote() 
Operation collect(int[] X) 

14 for i ← 0 to k − 1 do 
8 

9 

10 

11 

12 

for i ← 0 to k − 1 do 
(v, s) ← A[i] 
if v = ABORT ∧ X[i] = ⊥ then 

A[i] ← (REG, X[i])
end 

15 

16 

17 

18 

19 

(v, s) ← A[i] 
if v = REG then 

A[i] ← (PRO, s)
return (i, s)

end 
13 end 20 end 

21 return (⊥, ⊥) 

Operation remove(int i) 

22 

23 

(v, s) ← A[i] 
A[i] ← (ABORT, s) 

Figure 4.4: Sequential Specification of Type AbortableProArrayk 



70 

operation. Operation promote() takes no arguments, and changes the value of the first 

element (from left to right) in O with value (REG, s), for some s ∈ Z, to value (PRO, s), 

and returns (i, s), where i is the index of that element. If there exists no element in 

O with value (REG, s), for some s ∈ Z, then O is unchanged and the value (⊥, ⊥) is 

returned. In the context of our abortable lock, operation promote() is executed by some 

process, in order to “promote” some process registered in the array. Process i is said to 

be promoted if a promote() operation returns (i, s), for some s ∈ Z. 

Note that an aborted process in the array, cannot be registered into the array or 

promoted. The abort mechanism is used by processes as an exit strategy out of the 

array. If a process tries to abort itself from the array but finds that it has already been 

promoted, then the process is not allowed to abort. This ensures that a promoted process 

takes responsibility for some activity that other processes expect of it. The entire array 

can be reset to its initial state using a reset() operation. 

In our abortable lock of Section 4.5, we need a concurrent wait-free linearizable im­

plementation of type AbortableProArrayΔ, where Δ is the maximum number of processes 

that can access the object concurrently. We achieve this using the object SFMSUniv­

Const(AbortableProArrayΔ), and therefore an operation of type AbortableProArrayΔ exe­

cuted using the performFast() method has step complexity O(1), while an operation 

executed using the performSlow() method has step complexity O(Δ). 



71 

4.4 Array based Randomized Abortable Lock 

4.4.1 Introduction 

In this section we specify, implement, and prove properties of an object RandALockArray, 

which is an array based randomized implementation of type TransferableAbortableLock. 

Type TransferableAbortableLock provides methods lock() and release() that can be 

accessed by at most n + 1 processes concurrently, while N is the maximum number of 

processes in the system. 

In our abortable lock (that we present in Section 4.5), we use an arbitration tree, and 

at every node of that arbitration tree we desire a lock object that is abortable. If Δ is 

the branching factor of the tree, then we wish to design an abortable lock where Δ + 1 

is the maximum number of processes that can access the lock of a node concurrently. 

(The upper bound of Δ + 1 as opposed to Δ is due to a subtlety, and we postpone its 

discussion to Section 4.5.) We now specify type TransferableAbortableLock. 

Method lock() takes a single argument, pseudo-ID, with value in {0, . . . , n − 1}. 

We denote a lock() method call with argument i as locki(), but refer to locki() as 

lock() whenever the context of the discussion is not concerned with the value of i. 

Method lock() returns a non-⊥ value if a process captures the lock, otherwise it returns 

a ⊥ value to indicate a failed lock() call. A lock() call can fail only if the process 

executing it aborted during the call. Method release() is called to release the lock, 

and it takes two arguments, a pseudo-ID with value in {0, . . . , n − 1} and an integer j. 

Method release(j ) returns true if and only if there exists a concurrent call to lock() 

that eventually returns j. Otherwise method release(j ) returns false. In the context of 

the abortable lock in 4.5, the information contained in the integer argument j is used to 

transfer the responsibility of releasing additional lock objects of type AbortableLock, but 

in the context of this section, the value passed in argument j is irrelevant. We pass process 



72 

pseudo-IDs as arguments to the methods, since we want to allow the ability for a process 

to “transfer” the responsibility of releasing the lock to other processes. Specifically, we 

desire that if a process p executes a successful locki() call and becomes the owner of the 

lock, then p does not have to release the lock itself, if it can find some process q to call 

releasei() on its behalf. Such a “lock transfer” behavior is not permitted by objects of 

type AbortableLock (see Specification 2.7.1). An algorithm that accesses an instance of 

an object of type TransferableAbortableLock must satisfy the following: 

Condition 4.4.1. (a) No two locki() calls are executed concurrently for the same i, 

where i ∈ {0, . . . , n − 1}. 

(b) If	 a process p executes a successful locki() call, then some process q eventually 

executes a releasei() call where the invocation of releasei() happens after the 

response of locki() (assuming the scheduler is such that q continues to make progress 

until its releasei() call happens). 

(c) For every	 releasei() call, there must exist a unique successful locki() call that 

completed before the invocation of the releasei() call. 

Algorithm 38 is an example algorithm that illustrates a safe usage of object 

RandALockArray for process p ∈ {0, . . . , n − 1}. 

In the rest of the section we implement object RandALockArray of type 

TransferableAbortableLock, and prove all properties of the object. We first establish the 

properties that we desire from object RandALockArray. An execution of an algorithm 

that accesses an instance of an object RandALockArray and ensures that Condition 4.4.1 

is satisfied, has the following properties: 

(a) Mutual exclusion, starvation freedom, bounded exit, and bounded abort hold. 

(b) The abort-way has O(n) RMR complexity. 



 

73 

Algorithm 38: An algorithm illustrating the usage of RandALockArray for process 
p 

// shared: L: An instance of RandALockArray 
// local: int j init 0 

24 while true do 
<Remainder Section> 

25 if L.lockp() = ⊥ then // Entry Section 
<Critical Section> 

26 j ← arbitrary integer 
27 L.releasep(j ) // Exit Section 
28 end 
29 end 

(c) If	 a process does not abort during a lock() call, then it incurs O(1) RMRs in 

expectation during the call, otherwise it incurs O(n) RMRs in expectation during 

the call. 

(d) If a process’ call to release(j ) returns false, then it incurs O(1) RMRs during the 

call, otherwise it incurs O(n) RMRs during the call. 

4.4.2 High Level Description 

Shared Data. Object RandALockArray is shown in Figure 4.5. The object uses an 

instance of object RCAScounter2 called Ctr, an instance of type AbortableProArrayn called 

PawnSet, an integer array apply of n CAS objects and an integer array Role of n read-write 

registers, and two CAS objects Sync1 and Sync2. 

Let L be an instance of object RandALockArray. The array apply of n CAS objects is 

used by processes to “register” and “deregister” themselves from lock L, and to notify 

each other of certain events at lock L. Using CAS operations, processes can perform these 

actions in one atomic step, and the rest of the processes can then determine the action 

performed by reading the CAS object. 

The CAS objects Sync1 and Sync2 are used by the “releasers” of lock L to synchronize 



 

 

74 

Class RandALockArray
 

shared: 
Ctr: RCAScounter2 init 0 
PawnSet: Object of type AbortableProArrayn init ∅ 
apply: array [0 . . . n − 1] of int init ⊥ 
Role: array [0 . . . n − 1] of int init ⊥ 
Sync1, Sync2: int init ⊥, 
KING, QUEEN, PAWN, PAWN P: const int 0, 1, 2, 3 respectively 
REG, PRO: const int 4, 5 respectively 

local: 
s, val, seq, dummy: int init ⊥, 
flag, r: boolean init false, 
A: array [0 . . . n − 1] of int init ⊥ 

Method locki( ) 

// If i satisfies the loop condition in line 2, 7, or 14, and i 
has received a signal to abort, then i calls aborti() 

1 s ← getSequenceNo() 
2 await (apply[i].CAS((⊥, ⊥), (REG, s))) 
3 flag ← true 
4 repeat 
5 Role[i] ← Ctr.inc() 
6 if (Role[i] = PAWN) then 
7 await (apply[i] = (PRO, s) ∨ Ctr.Read() = 2) 
8 if (apply[i] = (PRO, s)) then 
9 Role[i] ← PAWN P 

10 end 
11 end 
12 until (Role[i] ∈ {KING, QUEEN, PAWN P}) 
13 if (Role[i] = QUEEN) then 
14 await (Sync1 = ⊥) 
15 end 
16 apply[i].CAS((REG, s), (PRO, s)) 
17 if Role[i] = QUEEN then return Sync1 else return ∞ 

Figure 4.5: Implementation of Object RandALockArray
 



75 

Method aborti( ) 

18 if ¬flag then return ⊥ 
19 apply[i].CAS((REG, s), (PRO, s)) 
20 if Role[i] = PAWN then 
21 if ¬PawnSet.abort(i, s) then 
22 Role[i] ← PAWN P 
23 return ∞ 
24 end 
25 else 
26 if ¬Sync1.CAS(⊥, ∞) then 
27 return Sync1 
28 end 
29 doCollecti() 
30 helpReleasei() 
31 end 
32 apply[i].CAS((PRO, s), (⊥, ⊥)) 
33 return ⊥ 

Method doCollecti() 

Method releasei(int j) 

34 r ← false 
35 if Role[i] = KING then 
36 if ¬Ctr.CAS(1, 0) then 
37 r ← Sync1.CAS(⊥, j) 
38
 if r then doCollecti()
 
39 helpReleasei() 
40 end 
41 end 
42 if Role[i] = QUEEN then 
43 helpReleasei() 
44 end 
45 if Role[i] = PAWN P then 
46 doPromotei() 
47 end 
48 (dummy, s) ← apply[i] 
49 apply[i].CAS((PRO, s), (⊥, ⊥)) 
50 return r 

51 for k ← 0 to n − 1 do 
52 (val, seq) ← apply[k] 
53 if val = REG then A[k] ← seq else A[k] ← ⊥ 
54 end 
55 PawnSet.collect(A) 

Method helpReleasei() Method doPromotei() 

56 

57 

58 

59 

60 

61 

62 

63 

if ¬Sync2.CAS(⊥, i) then 
j ← Sync1.Read() 
Sync1.CAS(j, ⊥) 
j ← Sync2.Read() 
Sync2.CAS(j, ⊥) 
PawnSet.remove(j) 
doPromotei() 

end 

64 

65 

66 

67 

68 

69 

70 

71 

PawnSet.remove(i) 
(j, seq) ← PawnSet.promote() 
if j = ⊥ then 

PawnSet.reset() 
Ctr.CAS(2, 0) 

else 
apply[j].CAS((REG, seq), (PRO, seq)) 

end 

Figure 4.6: Implementation of Object RandALockArray (continued)
 



76 

among themselves. The releasers are processes responsible for releasing lock L. The array 

Role of n read-write registers is used by processes to keep track of their “role” at lock 

L. We now provide a high level description of the methods calls, describe terminologies, 

and discuss the use of each of the internal objects as and when we require them. 

Registering at lock L. At the beginning of their lock() call processes register them­

selves in the apply array by swapping the value REG atomically into their designated slots 

(apply[i] for process with pseudo-ID i). 

Role assumption at lock L. Object RandALockArray is not an arbitration tree based 

lock, but later on in Section 4.5 we use object RandALockArray as a lock object at ev­

ery node of an arbitration tree. As is common in arbitration tree locks, we desire that 

processes compete to become the owner of a node by capturing a lock associated with a 

node. A simple CAS object lock at every node does not suffice due to the following rea­

sons. If a process p captures locks of several nodes on its path up to the root and aborts 

before capturing the root lock, then it must release all captured locks. Such lock releases 

potentially incurs RMRs to processes busy-waiting for the node locks without guaran­

teeing any progress to those processes towards capturing the main lock. The promotion 

mechanism of [4] doesn’t work in the case of an abortable lock, since p does not own 

the root lock, and thus p cannot promote waiting processes into a sequential promotion 

queue. To ensure that waiting processes make progress towards capturing the root lock, 

we desire that p “collects” busy-waiting processes (if any) at a node into an instance of 

an object of type AbortableProArrayn, PawnSet, using the operation collect(). Once 

the busy-waiting processes are collected into PawnSet, p can identify a busy-waiting pro­

cess, if present, using the PawnSet.promote() operation, while busy-waiting processes 

themselves can abort using the PawnSet.abort() operation. However to identify a busy-

waiting process, p may have to read O(Δ) registers just to find a busy-waiting process 



77 

at a node, where Δ is the branching factor of the arbitration tree. This is problematic 

since our goal is to bound the number of steps during a passage to O(Δ) steps, and thus 

a process cannot collect at more than one node. For this reason we desire that p transfer 

all unreleased locks that it owns to the first busy-waiting process it can find. And if 

there are no busy-waiting processes at a node, then p should somehow be able to release 

the lock in O(1) steps. This is to ensure that p can continue to release captured locks 

of nodes where there are no busy-waiting processes, since p may have captured at most 

Δ − 1 nodes on its path. To achieve this we use an instance of RCAScounter2, Ctr, to 

help decide if there are any busy-waiting processes at the node. Initially, Ctr is 0, and 

processes attempt to increase Ctr using the Ctr.inc() operation after having registered 

in the apply array. Process p attempts to release the lock of a node by first executing 

a Ctr.CAS(1, 0) operation. If the operation fails then some process q must have further 

increased Ctr from 1 to 2, and thus p can transfer all unreleased locks to q, if q has not 

aborted itself. If q has aborted, then q can perform the collect at the node for p, since 

q can afford to incur O(Δ) additional steps apart from the O(Δ) steps that q itself will 

incur in order to release all locks of nodes that it owns. If q has not aborted then p 

can transfer all its unreleased locks to q, thus making sure some process makes progress 

towards capturing the root lock. Therefore we have distinct roles that define the protocol 

a process follows during an execution of its passage at lock L. 

There are four roles that processes can assume at lock L during their passage, namely 

king, queen, pawn and promoted pawn. We motivated the roles of king, queen and pawn 

in the form of p, q and busy-waiting processes in our discussion above. We describe the 

protocol associated with each of the roles in more detail shortly. We ensure that at 

any point in time during the execution, the number of processes that have assumed the 

role of a king, queen and promoted pawn at lock L, respectively, is at most one, and 

thus we refer to them as kingL, queenL and ppawnL, respectively. As mentioned earlier, a 



78 

RCAScounter2 instance Ctr is used by processes to determine their role at lock L. Recall 

that RCAScounter2 is a bounded counter, and returns values in {0, 1, 2} (see Section 4.1). 

Each of these values corresponds to a role at lock L. 

During an execution of the algorithm, Ctr can cycle from its initial value 0 to non-0 

values and then back to 0, multiple times. We refer to the duration in which Ctr increases 

from 0 to 1, and is later reset to 0 as a Ctr-cycle. Initially, Ctr is 0, and processes attempt 

to increase Ctr in one atomic step after having registered in the apply array. The process 

that increases Ctr from 0 to 1 assumes the role of the king process of lock L, and thus 

becomes kingL. The process that increases Ctr from 1 to 2 assumes the role of the queen 

process of lock L, and thus becomes queenL. By specification of object RCAScounter2, the 

value of Ctr cannot be increased beyond 2, and all processes that attempt to increase 

Ctr any further, are returned value 2, and thus they assume the role of a pawn process. 

Pawn processes then busy-wait until they get promoted at lock L (a process is said to be 

promoted at lock L if it is promoted in PawnSet), or until they see the Ctr value decrease, 

so that they can attempt to increase Ctr again. We ensure that a process repeats an 

attempt to increase Ctr at most once, before getting promoted. 

Busy-waiting in lock L. The king process, kingL, becomes the first owner of lock 

Lduring the current Ctr-cycle, and can proceed to enter its Critical Section, and thus it 

does not busy-wait during lock(). The queen process, queenL, must wait for kingL to 

finish its Critical Section, and only then can it enter its Critical Section. Then queenL 

spins on the shared register Sync1, waiting for kingL to write some integer value into 

Sync1. Process kingL attempts to write an integer j into Sync1 only during its call to 

release(j ), after it has executed its Critical Section. As already mentioned before, the 

pawn processes wait on their individual slots of the apply array for a notification of their 

promotion. 



79 

A collect action at lock L. A collect action is defined as the sequence of steps executed 

by a process during a call to doCollect(). During a call to doCollect(), the collecting 

process (say q) iterates over the array apply reading every slot, and then creates a local 

array A from the values read and stores the contents of A in the PawnSet object in using 

the operation PawnSet.collect(A). 

The key point to note here is that if some other process has aborted itself from 

the PawnSet object (by writing the special value ABORT = 3 into its slot in PawnSet), 

then the operation PawnSet.collect(A) does not overwrite the aborted process’s value 

in PawnSet. A collect action is conducted at lock L by either kingL during a call to 

release(), or by queenL during a call to abort(). 

A promote action at lock L. A promote action is defined as the sequence of steps 

executed by a process while executing operation PawnSet.promote(), during a call to 

method doPromote(). The operation returns the pseudo-ID of a process that was col­

lected during a collect action, and has not yet aborted from PawnSet(by executing the 

operation PawnSet.abort(i), where i is the process’s pseudo-ID). A promote action is 

conducted at lock L either by kingL, queenL or ppawnL. 

Lock handover from kingL to queenL. As mentioned, the queen process, queenL, 

waits for kingL to finish its Critical Section and then call release(j ). During kingL’s 

release(j ) call, kingL attempts to swap integer j into register Sync1, that only kingL and 

queenL access. If queenL has not “aborted”, then kingL successfully swaps j into Sync1, 

and this serves as a notification to queenL that kingL has completed its Critical Section, 

and that queenL may now proceed to enter its Critical Section. 

Aborting an attempt at lock L by queenL. Processes are allowed to abort their 

attempt to capture lock L, if they have received a signal to abort, and they happen to 

busy-wait in lock L. They do so by abandoning their lock() call and executing a call
 



80 

to abort() instead. To abort, queenL first changes the value of its slot in the apply 

array from REG to PRO, to prevent itself from getting collected in future collects. Since 

kingL and queenL are the first two processes at L, kingL will eventually try to handover 

L to queenL. To prevent kingL from handing over lock L to queenL, queenL attempts to 

swap a special value ∞ into Sync1 in one atomic step. If queenL fails then this implies 

that kingL has already handed over L to queenL, and thus queenL returns from its call 

to abort() with the value written to Sync1 by kingL, and becomes the owner of L. If 

queenL succeeds then queenL is said to have successfully aborted, and thus kingL will 

eventually fail to hand over lock L. Since queenL has aborted, queenL now takes on the 

responsibility of collecting all registered processes in lock L, and storing them into the 

PawnSet object. After performing a collect, queenL then synchronizes with kingL again, to 

perform a promote, where one of the collected processes is promoted. After that, queenL 

deregisters from the apply array by resetting its slot to the initial value (⊥, ⊥). 

Aborting an attempt at lock L by a pawn process. Processes are allowed to 

abort their attempt to capture lock L, if they have received a signal to abort and are 

busy-waiting in lock L. They do so by abandoning their lock() call and executing a 

call to abort() instead. To abort, the pawn process (say p) first changes the value of 

its slot in the apply array from REG to PRO, to prevent itself from getting collected 

in future collects. It then attempts to abort itself from the PawnSet object by writing 

the special value ABORT = 3 into its slot in PawnSet atomically using the operation 

PawnSet.abort(p). If p’s attempt is unsuccessful then it implies that p has already been 

promoted, and thus p can assume the role of a promoted pawn, and thus become the 

owner of L. In this case, p returns from its call to abort() with value ∞ and becomes 

the owner of L. If p’s attempt is successful then p cannot be collected or promoted in 

future collects and promotion events. In this case, p deregisters from the apply array by 



81 

resetting its slot to the initial value (⊥, ⊥), and returns ⊥ from its call to abort(). 

Releasing lock L. Releasing lock L can be thought of as a group effort between the 

kingL, queenL (if present at all), and the promoted pawns (if present at all). To completely 

release lock L, the owner of L needs to reset Ctr back to 0 for the next Ctr-cycle to begin. 

However, the owner also has an obligation to hand over lock L to the next process waiting 

in line for lock L. We now discuss the individual strategies of releasing lock L, by kingL, 

queenL and the promoted processes. To release lock L, the owner of L executes a call to 

release(j ), for some integer j. 

Synchronizing the release of lock L by kingL and queenL. Process kingL first at­

tempts to decrease Ctr from 1 to 0 using a CAS operation. If it is successful, then kingL 

was able to end the Ctr-cycle before any process could increase Ctr from 1 to 2. Thus, 

there was no queenL process or pawn processes waiting for their turn to own lock L, 

during that Ctr-cycle. Then kingL is said to have released lock L. 

If kingL’s attempt to decrease Ctr from 1 to 0 fails, then kingL knows that there exists a 

queenL process that increased Ctr from 1 to 2. Since queenL is allowed to abort, releasing 

lock Lis not as straight forward as raising a flag to be read by queenL. Therefore, kingL 

attempts to synchronize with queenL by swapping the integer j into the object Sync1 using 

a Sync1.CAS(⊥, j) operation. Recall that queenL also attempts to swap a special value 

∞ into object Sync1 using a Sync1.CAS(⊥, j) operation, in order to abort its attempt. 

Clearly only one of them can succeed. If kingL succeeds, then kingL is said to have 

successfully handed over lock L to queenL. If kingL fails, then kingL knows that queenL 

has aborted and thus kingL then tries to hand over its lock to one of the waiting pawn 

processes. The procedure to hand over lock Lto one of the waiting pawn processes is to 

execute a collect action followed by a promote action. 

The collect action needs to be executed only once during a Ctr-cycle, and thus we let 



82 

the process (among kingL or queenL) that successfully swaps a value into Sync1, execute 

the collect action. 

If kingL successfully handed over L to queenL, it collects the waiting pawn processes, 

so that eventually when queenL is ready to release lock L, queenL can simply execute 

a promote action. Since there is no guarantee that kingL will finish collecting before 

queenL desires to execute a promote action, the processes synchronize among themselves 

again, to execute the first promote action of the current Ctr-cycle. They both attempt 

to swap their pseudo-IDs into an empty CAS object Sync2, and therefore only one can 

succeed. The process that is unsuccessful, is the second among them, and therefore by 

that point the collection of the waiting pawn process must be complete. Then the process 

that is unsuccessful, resets Sync1 and Sync2 to their initial value ⊥, and then executes 

the promote action, where a waiting pawn process is promoted and handed over lock L. 

If no process were collected during the Ctr-cycle, or all collected pawn processes have 

successfully aborted before the promote action, then the promote action fails, and thus 

the owner process resets the PawnSet object, and then resets Ctr from 2 to 0 in one atomic 

step, thus releasing lock L, and resetting the Ctr-cycle. 

The release of lock L by ppawnL. If a process was promoted by kingL or queenL as 

described above, then the promoted process is said to be handed over the ownership of 

L, and becomes the first promoted pawn of the Ctr-cycle. Since a collect for this Ctr­

cycle has already been executed, process ppawnL does not execute any more collects, but 

simply attempts to hand over lock L to the next collected process by executing a promote 

action. This sort of promotion and handing over of lock L continues until there are no 

more collected processed to promote, at which point the last promoted pawn resets the 

PawnSet object, and then resets Ctr from 2 to 0 in one atomic step, thus releasing lock 

L, and resetting the Ctr-cycle. 



83 

All owner processes also deregister themselves from lock L, by resetting their slot in 

the apply array to the initial value (⊥, ⊥). This step is the last step of their release(j ) 

calls, and processes return a boolean to indicate whether they successfully wrote integer 

j into Sync1 during their release(j ) call. Note that only kingL could possibly return 

true since it is the only process that attempts to do so, during its release(j ) calls. 

4.4.3 Implementation / Low Level Description
 

We now describe the implementation of our algorithm in detail. (See Figure 4.5 and 4.6).
 

We now describe the method calls in detail and illustrate the use of each of the internal 

objects as and when we require them. 

The lock() method. Suppose p executes a call to locki(). Process p first receives a 

sequence number using a call to getSequenceNo() in line 1 and stores it in its local vari­

able s. Method getSequenceNo() returns integer k on being called for the k-th time from 

a call to locki(). Since calls to locki() are executed sequentially, a sequential shared 

counter suffices to implement method getSequenceNo(). Method getSequenceNo() is 

used to return unique sequence number which helps solve the classic ABA problem. The 

ABA problem is as follows: If a process reads an object twice and reads the value of the 

object to be ’A’ both times, then it is unable to differentiate this scenario from a scenario 

where the object was changed to value ’B’ in between the two reads of the object. Process 

p then spins on apply[i] in line 2 until p registers itself by swapping the value (REG, s) 

into apply[i] using a CAS operation. Processes write the value REG in the apply array to 

announce their presence at lock L. 

Process p then executes the role-loop, lines 4-12, until p either increases the value of 

Ctr to 1 or 2, or until p is notified of its promotion. Process p begins an iteration of the 

role-loop by calling the Ctr.inc() operation in line 5 and stores the returned value into 

Role[i]. The returned value determines p’s current role at lock L. The shared array Role is 



84 

used by process p to store its role in slot Role[i], which can later be read to determine the 

actions to perform at lock L. This is important because we want to allow the behavior of 

transferring locks. Specifically, to enable a process q to call releasei() on behalf of p, q 

needs to determine p’s role at lock L, which is possible by reading Role[i]. 

If the Ctr.inc() operation in line 5 fails, i.e., it returns ⊥, then p repeats the role-

loop. Such repeats can happen only a constant number of times in expectation (by 

Claim 4.1.2). If the value returned in line 5 is 0 or 1, then p has incremented the value 

of Ctr (from the semantics of a RCAScounter2 object), and it becomes kingL or queenL, 

respectively, and breaks out of the role-loop in line 12. 

If p becomes kingL in line 5, then p fails the if-condition of line 13 and proceeds to 

execute lines 16-17. In line 16, p changes apply[i] to the value (PRO, s), to prevent itself 

from getting promoted in future promote actions. In line 17, p returns from its lock() 

call by returning the special value ∞ (a non-⊥ value indicating a successful lock() call), 

since p is kingL. 

If p becomes queenL in line 5, then p knows that there exists a king process at lock L, 

and thus queenL proceeds to spin on Sync1 in line 14 awaiting a notification from kingL. 

Recall that kingL notifies queenL of queenL’s turn to own lock L by writing the integer j 

into Sync1 during a release(j ) call. Once p receives kingL’s notification (by reading a 

non-⊥ value in Sync1 in line 14), p breaks out of the spin loop of line 14, and proceeds to 

execute lines 16-17. In line 16, p changes apply[i] to the value (PRO, s), to prevent itself 

from getting promoted in future promote actions. In line 17, p returns from its lock() 

call by returning the integer value stored in Sync1 (a non-⊥ value indicating a successful 

lock() call). 

If the value returned in line 5 is 2, then p does not become kingL or queenL, and thus p 

assumes the role of a pawn. Process p then waits for a notification of its own promotion, 

or, for the Ctr value to decrease from 2, by spinning on apply[i] and Ctr in line 7. When p 



85 

breaks out of this spin lock, it determines in line 8 whether it was promoted by checking 

whether the value of apply[i] was changed to (PRO, s). A process is promoted only by 

a kingL, queenL or a ppawnL during their release() call. If p finds that it was not 

promoted, then p is said to have been missed during a Ctr-cycle, and thus p repeats the 

role-loop. We later show that a process gets missed during at most one Ctr-cycle. 

If p was promoted, then it writes a constant value PAWN P = 3 into Role[i] in line 9 

and becomes ppawnL. Since p has been promoted, p knows that both kingL and queenL 

are no longer executing their entry or Critical Section, and thus p owns lock L now. Then 

p goes on to break out of the role-loop in line 12, and proceeds to return from its lock() 

call by returning the special value ∞ (a non-⊥ value indicating a successful lock() call), 

since p is ppawnL. 

The release() method. Suppose p executes a call to releasei(j ) with an integer 

argument j. We restrict the execution such that a process calls a releasei(j ) method 

only after a call to a successful locki() has been completed. 

In line 34, p initializes the local variable r to the boolean value false. Local variable 

r is returned later in line 50 to indicate whether the integer j was successfully written to 

Sync1 during the release method call. In lines 35, 42 and 45 process p determines its role 

at the node and the action to perform. In line 49, process p deregisters itself from lock 

L by swapping (⊥, ⊥) into apply[i]. At the end of the method call a boolean is returned 

in line 50, indicating whether the integer j was written to Sync1. 

If p determines that it is kingL, then it attempts to decrease Ctr from 1 to 0 in line 36. 

This decrement operation will only fail if there exists a queen process at lock L which 

increased the Ctr to 2 during its lock() call. If the decrement operation fails then p 

has determined that there exists a queen process at lock L and it now synchronizes with 

queenL to perform the collect action. Recall that CAS object Sync1 is used by kingL and 



86 

queenL to determine which process performs a collect. In line 37, p attempts to swap 

integer j into Sync1 by executing a Sync1.CAS(⊥, j) operation and stores the result of 

the operation in local variable r. If p is successful then it performs the collect action by 

executing a call to doCollecti() in line 38. If p is unsuccessful then it knows that queenL 

will perform a collect. In line 39 p calls the helpReleasei() method to synchronize the 

release of lock L with queenL. We describe the method helpRelease() shortly. 

If p determines that it is queenL, then it calls the helpReleasei() method call in 

line 43 to synchronize the release of lock L with kingL. 

If p determines that it is a promoted pawn, then it attempts to promote a waiting 

pawn by making a call to doPromote() in line 46. 

The doCollect() method. Suppose a process p executing a doCollecti() method 

call. The collect action consists of reading the apply array (left to right), and creating a 

vector A of n values, where the k-th element is either ⊥ (to indicate that the process with 

pseudo-ID k is not a candidate for promotion) or an integer sequence number (to indicate 

that the process with pseudo-ID k is a candidate for promotion). The vector A is stored 

in the AbortableProArrayn instance PawnSet in line 55 using a PawnSet.collect(A) op­

eration. The PawnSet.collect(A) operation ensures that if the k-th element of PawnSet 

has value 3 = ABORT (written during a PawnSet.abort(k, ·) operation), then the k-th 

element is not overwritten during the PawnSet.collect(A) operation. This is required 

to ensure that processes that have expressed a desire to abort are not collected and 

subsequently promoted. 

The helpRelease() method. Suppose kingL calls helpReleasei() and queenL calls 

helpReleasek(). During the course of these method calls, kingL and queenL synchronize 

with each other in order to reset CAS objects Sync1 and Sync2, remove themselves from 

PawnSet, promote a collected process and notify the promoted process. If no process is 



87 

found in PawnSet that can be promoted, then the PawnSet object is reset to its initial 

state and Ctr reset to 0. Recall that CAS object Sync2 is used as a synchronization 

primitive by kingL and queenL to determine which process exits last among them, and 

thus performs all pending release work. In line 56, the process which swaps value i or k 

into Sync2 by executing a successful CAS operation, exits, and the other process performs 

the pending release work in lines 57 - 63. Let us now refer to this other process as the 

releasing process. In lines 57 - 58, the releasing process resets Sync1 to its initial value 

⊥. In line 59, the releasing process reads the pseudo-ID written to Sync2 by the exited 

process (process that executed a successful CAS operation on Sync1). The pseudo-ID 

written to Sync2 is required to remove the exited process from getting promoted in a 

future promote in case it was collected in PawnSet. In line 61, the releasing process 

removes the exited process from PawnSet. CAS object Sync2 is reset to its initial value 

⊥ in line 60. In line 62, the releasing process calls doPromote() to promote a collected 

process. 

The doPromote() method. Suppose p executes a call to doPromotei(). In line 64, 

p removes itself from PawnSet by executing a PawnSet.remove(i) operation. It does 

so to prevent itself from getting promoted in case it was collected earlier. In line 65, p 

performs a promote action by executing a PawnSet.promote() operation. If a process was 

collected and the process has not aborted then its corresponding element (k-th element 

for a process with pseudo-ID k) in PawnSet will have the value (REG, ·). If a process has 

aborted then its corresponding element in PawnSet will have the value (PRO, ·). 

If a successful promote() operation is executed then an element in PawnSet is changed 

from (REG, s) to (PRO, s), where s ∈ N, and the pair (k, s) is returned, where k is the 

index of that element in PawnSet. In this case we say that process with pseudo-ID k 

was promoted. If an unsuccessful promote() operation is executed, then no element 



88 

in PawnSet has the value (REG, s), where s ∈ N, and thus the special value (⊥, ⊥) is 

returned. We then say that no process was promoted. The returned pair is stored in 

local variables (j, seq) in line 65. 

If no process was promoted, then p resets PawnSet to its initial value in line 67 using 

the reset() operation, and decreases Ctr from 2 to 0 in line 68. If a process was found 

and promoted in PawnSet, then that process is notified of its promotion, by swapping 

its corresponding apply array element’s value from REG to PRO using a CAS operation in 

line 70. 

Recall that, while executing a lock() method call a process may receive a signal to 

abort. Suppose a process p receives a signal to abort while executing a locki() method 

call. If process p is busy-waiting in lines 2, 7 or 14, then p stops executing locki(), and 

instead executes a call to aborti(). If p is poised to execute any line 16 or 17 then it 

completes its call to locki(). If p is poised to execute any other line then it continues 

executing locki() until it begins to busy-wait in lines 2, 7 or 14, at which point it stops 

and calls aborti(). If p does not begin to busy-wait in lines 2, 7 or 14 then it completes 

its locki() call. 

The abort() method. Suppose p executes a call to aborti(). Process p first deter­

mines whether it quit locki() while busy-waiting on apply[i] in line 2, and if so, p returns 

⊥ in line 18. If not, then p changes apply[i] to the value PRO in line 19, to prevent itself 

from getting collected in future collect actions. In line 20, process p determines whether 

it quit locki() while busy-waiting on apply[i] in line 7 or 14, or while busy-waiting on 

Sync1 in line 14. If p quit while busy-waiting on apply[i] then clearly it is a pawn process, 

and if it quit while busy-waiting on Sync1 then it is a queen process. 

If process p determines that it is a pawn then it attempts to remove itself from PawnSet 

by executing a PawnSet.abort(i, s) operation in line 21, where s was the sequence number 



89 

returned in line 1. If p has not been promoted yet, then the operation succeeds and p’s 

corresponding element in PawnSet is changed to a value (ABORT, s), thus making sure 

that p can not be collected or promoted anymore. If p has already been promoted then 

the operation fails and p now knows that it is has been promoted, and assumes the role 

of a promoted pawn, and in line 22, p writes PAWN P into Role[i] and returns the special 

value ∞ in line 23. 

If process p determines that it is queenL then it first attempts to swap a special value 

∞ into Sync1 in line 26 by executing a Sync1.CAS(⊥, ∞) operation to indicate its desire 

to abort. If p is successful then p has determined that it is the first (among kingL and 

itself) to exit, and therefore p performs the collect action by calling doCollecti() in 

line 29. Process p then makes a call to helpReleasei() in line 30 to help release lock L 

by synchronizing with kingL. 

If p was unsuccessful at swapping value ∞ into Sync1 then it knows the kingL is 

executing release(), and kingL will eventually perform the collect action. Then p has 

determined that it is the current owner of lock L, and returns the integer value stored in 

Sync1 in line 27. 

Process p executes line 32 only if p successfully aborted earlier in its abort() call, 

and thus it deregisters itself from lock L by swapping (⊥, ⊥) into apply[i]. Finally, in 

line 33, p returns ⊥ to indicate a successful abort (i.e., a failed lock() call). 

4.4.4 Analysis and Proofs of Correctness 

Let H be an arbitrary history of an algorithm that accesses an instance, L, of object 

RandALockArray, where Conditions 4.4.1 holds. Then the following claims hold for history 

H. 

Lemma 4.4.1. Methods releasei(j ), aborti(), helpReleasei(), doCollecti(), 

doPromotei() are wait-free. 



 

 

90 

Proof. Follows from an inspection of these methods.
 

Claim 4.4.1. No two releasei() calls where a shared memory step is pending, are 

executed concurrently for the same i, where i ∈ {0, . . . , n − 1}. 

Proof. Assume for the purpose of a contradiction that two processes are executing a call 

to releasei() concurrently for the first time at time t. Then from Condition 4.4.1(b)­

(c), it follows that two successful calls to locki() were executed before t. From condi­

tion 4.4.1(a) it follows that the two successful locki() calls did not overlap. Consider the 

first successful locki() call executed by some process p. Since the locki() call returned 

a non-⊥ value, the method did not return from line 18. Then p did not abort while 

busy-waiting in line 2, and thus apply[i] was set to a non-(⊥, ⊥) value in line 2 during 

the first locki() call. Let tt be the point in time when apply[i] was set to a non-(⊥, ⊥) 

value in line 2. We now show that the apply[i] = (⊥, ⊥) in the duration between [tt, t]. 

Suppose not, i.e., some process resets apply[i] to (⊥, ⊥) during [tt, t]. Now, apply[i] is 

reset to a (⊥, ⊥) value only in line 32 during aborti() or in line 49 during releasei(). 

Case a - apply[i] reset to (⊥, ⊥) in line 49 during releasei(). Then the last shared 

memory step of the releasei() has been executed, and the call has ended for the purposes 

of the claim. Then the two releasei() calls are not concurrent at t, a contradiction. 

Case b - apply[i] reset to (⊥, ⊥) in line 32 during aborti(). Since the two locki() 

calls are not concurrent it follows that apply[i] = (⊥, ⊥) at the end of the first locki() 

call, and thus apply[i] is reset to (⊥, ⊥) in line 32 during the second successful locki() 

call. Now consider the second successful locki() call executed by some process q. Then 

q would repeatedly fail the apply[i].CAS((⊥, ⊥), ·) operation of line 2, and the only way 

q’s locki() call could finish, is if q aborts the busy-wait loop of line 2. In which case q 

executes aborti(), and satisfies the if-condition of line 18 and return ⊥ in line 18. Then 

the second locki() does not reset apply[i] in line 32 during aborti() – a contradiction. 



 

91 

Since apply[i] = (⊥, ⊥) throughout [tt, t], it then follows from the same argument of 

Case b, that the second locki() call is unsuccessful, and thus a contradiction. 

From Claim 4.4.1 and Condition 4.4.1(a) it follows that no two calls to lockp() or 

releasep() are executed concurrently for the same p, where p ∈ {0, . . . , n − 1}. Then 

we can label the process executing a lockp() or releasep() call, simply p, without loss 

of generality. We do so to make the rest of the proofs easier to follow. 

Helpful claims based on variable usage. 

Claim 4.4.2. (a) Role[p] is changed by process q, only if q = p. 

(b)	 Role[p] is unchanged during releasep(). 

(c)	 Role[p] can be set to value KING, QUEEN or PAWN only when p executes line 5 during 

lockp(). 

(d)	 Role[p] is set to value PAWN P only when p executes line 9 during lockp() or when 

p executes line 22 during abortp(). 

Proof. All claims follow from an inspection of the code. 

Claim 4.4.3. (a) The only operations on PawnSet are collect(A), promote(), 

remove(i), remove(j), abort(k, s) and reset() (in lines 55, 65, 64, 61, 21 and 67, 

respectively) where A is a vector with values in {⊥}∪N, and i, j, k ∈ {0, 1, . . . , n − 1}, 

and s ∈ N. 

(b) The i-th entry of PawnSet can be changed to (REG, s) = (1, s), where s ∈ N, only 

when a process executes a PawnSet.collect(A) operation in line 55 where A[i] = s. 

(c) The i-th entry of PawnSet can be changed to (PRO, s) = (2, s), where s ∈ N, only 

when a process executes a PawnSet.promote() operation in line 65. 



92 

(d) The	 i-th entry of PawnSet can be changed to (ABORT, s) = (3, s), where s ∈ 

N, only when a process executes a PawnSet.remove(i), PawnSet.remove(j) or 

PawnSet.abort(k, s) operation in lines 64, 61 or 21, respectively. 

Proof. Part (a) follows from an inspection of the code. Parts (b), (c) and (d) follow from 

Part (a) and the semantics of type AbortableProArrayn. 

Claim 4.4.4. Let s ∈ N. 

(a)	 apply[p] is changed from (⊥, ⊥) to a non-(⊥, s) value only when process p executes a 

successful apply[p].CAS((⊥, ⊥), (REG, s)) operation in line 2. 

(b)	 apply[p] is changed to value (REG, s) only when process p executes a successful ap­

ply[p].CAS((⊥, ⊥), (REG, s)) operation in line 2. 

(c)	 apply[p] is changed to a (⊥, ⊥) value only when p executes a successful ap-

ply[p].CAS((PRO, s), (⊥, ⊥)) operation either in line 32 or line 49. 

Proof. Parts (a), (b) and (c) follow from an inspection of the code. 

Helpful Notations and Definitions. We now establish a notion of time for our 

history H. Let the i-th step in H occur at time i. Then every point in time during H is 

in N. 

Let tip denote the point in time immediately after process p has finished executing 

line i, and no process has taken a step since p has executed the last operation of line i 

(This operation can be the response of a method call made in line i). Since some private 

methods are invoked from more than one place in the code, the point in time tip, where 

i is a line in the method, does not refer to a unique point in time in history H. In those 

cases we make sure that it is clear from the context of the discussion, which point tip 

refers to. Let tip 
− denote the point in time when p is poised to execute line i, and no 

other process takes steps before p executes line i.
 



93 

Let p be an arbitrary process and s be an arbitrary integer. We say process p registers, 

when it executes a successful apply[p].CAS((⊥, ⊥), (REG, s)) operation in line 16. Process 

p captures and wins lock L when it returns from lockp() with a non-⊥ value. Process 

p is said to promote another process q if p executes a PawnSet.promote() operation in 

line 65 that returns a value (q, s), where s ∈ N. A process p is said to be promoted at lock 

L, if some process q executes a PawnSet.promote() operation that returns value (p, s), 

where s ∈ N. 

Process p is said to hand over lock L to process q if it executes a successful CAS opera­

tion L.Sync1.CAS(⊥, j) in line 37, where q is the process that last increased Ctr from 1 to 

2. Process p is said to have released lock L by executing a successful Ctr.CAS(1, 0) opera­

tion in line 36, or by executing a successful Ctr.CAS(2, 0) operation in line 68. Process p 

either hands over, promotes a process, or releases lock L during a call to L.releasep(j ) 

where j is an arbitrary integer. A process ceases to own a lock either by releasing lock 

L or by promoting another process, or by handing over lock L to some other process. 

Process p is deregistered when p executes a successful apply[p].CAS((PRO, s), (⊥, ⊥)) op­

eration in line 32 or 49. A process p is said to be not registered in PawnSet if the p-th 

entry of PawnSet is not value (REG, s), where s ∈ N. The repeat-until loop starting at 

line 4 and ending at line 12 is called role-loop. 

In some of the proofs we use represent an execution using diagrams, and the legend 

for the symbols used in the diagrams is given in Figure 4.7. 



94 

Figure 4.7: Legend for Figures 4.8 to 4.16
 



95 

Releasers of lock and Cease-release events. A process p becomes a releaser of lock 

L at time t when 

(R1)	 p increases Ctr to 1 (i.e., Ctr.inc() returns 0 = KING) or 2 (i.e., Ctr.inc() returns 

1 = QUEEN), or when 

(R2)	 p is promoted at lock L by some process q . 

Claim 4.4.5. (a) p executes a Ctr.CAS(1, 0) operation only in line 36 during 

releasep(j ). 

(b)	 p executes a Sync2.CAS(⊥, p) operation only in line 56 during p’s call to 

helpReleasep(). 

(c)	 p executes a PawnSet.promote() operation only in line 65 during p’s call to 

doPromotep(). 

(d)	 p executes a Ctr.CAS(2, 0) operation only in line 68 during p’s call to doPromotep(). 

Proof.	 All claims follows from an inspection of the code. 

We now define the following cease-release events with respect to p : 

: p executes a successful Ctr.CAS(1, 0) (at t36 during releasep(j )).φp p 

τp: p executes a successful Sync2.CAS(⊥, p) (at tp 
56 during helpReleasep()). 

πp: p promotes some process q (at tp 
65 during doPromotep()). 

θp: p executes an operation Ctr.CAS(2, 0) (at t68 
p during doPromotep()). 

Process p ceases to be a releaser of lock L when one of p’s cease-release events occurs. 

We say process p is a releaser of lock L at any point after it becomes a releaser and before 

it ceases to be a releaser. 



96 

Claim 4.4.6. (a) Method doCollectp() is called only by process p in lines 29 and 38. 

(b) Method helpReleasep() is called only by process p in lines 39, 43 and 30. 

(c) Method	 doPromotep() is called only by process p in line 46 and in line 62 (during 

helpReleasep()). 

(d) If cease-release event φp occurs then p is executing releasep(j ). 

(e) If cease-release event τp occurs then p is executing helpReleasep(). 

(f) If	 cease-release event πp or θp occurs then p is executing helpReleasep() or 

doPromotep(). 

Proof. Parts (a), (b) and (c) follow from an inspection of the code. By definition, cease-

release event φp occurs when p executes a successful Ctr.CAS(1, 0) operation in line 36 

during releasep(j ), and thus (d) follows immediately. By definition, cease-release event 

τp occurs when p executes a successful Sync2.CAS(⊥, p) in line 56 during helpReleasep(), 

and thus (e) follows immediately. By definition, cease-release event πp occurs only when p 

executes a PawnSet.promote() operation that returns a non-(⊥, ⊥) value in line 65, and 

cease-release event θp occurs only when p executes a Ctr.CAS(2, 0) operation in line 68. 

Then if cease-release event πp or θp occurs then p is executing doPromotep(). From (c), p 

could also call doPromotep() from line 62 during helpReleasep(). Then if cease-release 

event πp or θp occurs then p is executing doPromotep() or helpReleasep(). Thus, (f) 

holds. 

Claim 4.4.7. Consider p’s k-th passage, where k ∈ N. Note that s = k. If Role[p] = 

PAWN P at some point in time t during p’s call to lockp(), then some process q promoted 

p at t65 
q and p became releaser of L by condition (R2) at t65 

q < t. 

Proof. From Claim 4.4.2(d), p changes Role[p] to PAWN P only in line 9 or line 22. 



 

97 

Case a - p changed Role[p] to PAWN P in line 22: Then p’s call to
 

PawnSet.abort(p, s) returned false in line 21. From the semantics of the 

AbortableProArrayn object, it follows that the p-th entry of PawnSet was set to value 

(PRO, s) = (2, s). From Claim 4.4.3(c), the p-th entry of PawnSet is set to value (PRO, s) 

only when a PawnSet.promote() operation returns (p, s) in line 65. Then some process 

q promoted p at t65 
q and p became a releaser of L by condition (R2) at t65 

q < t. 

Case b - p changed Role[p] to PAWN P in line 9: Then p broke out of the spin loop 

of line 2, and thus apply[p] = (REG, s) = (PRO, s) at t2 . Since p satisfied the if-condition p

of line 8, it follows that apply[p] = (PRO, s) at t8 . Since p does not change apply[p]p

to value (PRO, s) during [t2 
p, tp

8] it follows that some other process changed apply[p] to 

value (PRO, s). Now, apply[p] is changed to value (PRO, s) by some other process (say q) 

only in line 70 and thus, from the code structure, q also executed a PawnSet.promote() 

operation that returned (p, s) in line 65. Then q promoted p at t65 and p became a q 

releaser of L by condition (R2) at t65 
q < t. 

Claim 4.4.8. Consider p’s k-th passage, where k ∈ N. If t ∈ { [t18−, t33], [t37−, t39],p p p p 

[t43p 
−, t43], [t46p 

− 
p ] }, then cease-release event φp does not occur before time t.p , t46 

Proof. By definition, cease-release event φp occurs when p executes a successful 

Ctr.CAS(1, 0) operation in line 36. From Claim 4.4.6(d) cease-release event φp occurs 

only during releasep(j ). 

t ∈ [t18−Case a - p , t33 
p ]: Then p is executing abortp() and has not yet executed 

a call to releasep(). Since cease-release event φp can occur only during releasep(), 

cease-release event φp did not occur before time t. 

t ∈ [t37−Case b - p , t39 
p ]: Then p must have failed the if-condition of line 36, and thus 

p executed an unsuccessful Ctr.CAS(1, 0) operation in line 36, and cease-release event φp 

did not occur before time t. 



 

98 

Case c - t ∈ { [t43−, t43], [t46−, t46] }: From Claim 4.4.9, Role[p] ∈ {QUEEN, PAWN P}p p p p 

at t. Since Role[p] is unchanged during releasep() (Claim 4.4.2(b)), it follows that 

Role[p] = p Then p fails the if-condition of line 35, and does not execute KING at t35− . 

line 36 and thus cease-release event φp did not occur before time t. 

The proof of the following claim has been moved to Appendix A since the proof is 

long and straight forward. 

Claim 4.4.9. The value of Role[p] at various points in time during p’s k-th passage, 

where k ∈ N, is as follows. 

Time Value of Role[p] 

t5 
p {⊥, KING, QUEEN, PAWN} 

[t7 
p, t

8 
p] PAWN 

t9 
p PAWN P 

t13− 
p {KING, QUEEN, PAWN P} 

t14 
p QUEEN 

[t16 
p , t

17 
p ] 

[t19 
p , t

20
p 

−] 

{KING, QUEEN, PAWN P} 

{QUEEN, PAWN} 

t21 
p PAWN 

[t22 
p p, t23] PAWN P 

[t26− 
p p, t30] QUEEN 

Time Value of Role[p] 

[t34− 
p , t35p 

−] 

[t36− 
p p, t39] 

{KING, QUEEN, PAWN P} 

KING 

t43− 
p QUEEN 

t46− 
p PAWN P 

[t49− 
p , t50 

p ] 

[t51− 
p , t55 

p ] 

{KING, QUEEN, PAWN P} 

{KING, QUEEN} 

[t56− 
p p, t63] {KING, QUEEN} 

[t65− 
p p, t71] {KING, QUEEN, PAWN P} 

Claim 4.4.10. Consider p’s k-th passage, where k ∈ N. 

(a) If process p calls helpReleasep() or doPromotep() during abortp() then it does not 

call releasep(j ). 

(b) Process p calls helpReleasep() at most once. 

(c) Process p calls doPromotep() at most once. 



99 

Proof. Proof of (a): The following observations follow from an inspection of the 

code. If p executes doPromotep() during abortp(), then it does so during a call to 

helpReleasep() in line 62. If p executes helpReleasep() during abortp(), then it does 

so by executing line 30. Then p calls helpReleasep() or doPromotep() during abortp() 

in line 30 and goes on to return value ⊥ in line 33. Then p’s call to lockp() returns 

value ⊥ and p does not call releasep() (follows from conditions b and c). 

Proof of (b): From Part (a), if helpReleasep() is executed during abortp() 

then releasep(j ) is not executed. Then to prove our claim we need to show that 

helpReleasep() is called at most once during abortp() and releasep(j ), respectively. 

From Claim 4.4.6(b), method helpReleasep() is called by p only in lines 39, 43 and 30. 

Since helpReleasep() is called only once during abortp() (specifically in line 30), it 

follows immediately that p executes helpReleasep() at most once during abortp(). 

From Claim 4.4.9, Role[p] ∈ {KING, QUEEN, PAWN P} at t34− . Since Role[p] is unchanged p 

during releasep() (Claim 4.4.2(b)), it follows that p satisfies exactly one of the if-

conditions of lines 35, 42 and 45, and thus p does not execute both lines 39 and 43. Then 

p executes helpReleasep() at most once during releasep(j ). 

Proof of (c): From Part (a), if doPromotep() is executed during abortp() 

then releasep(j ) is not executed. Then to prove our claim we need to show that 

doPromotep() is called at most once during abortp() and releasep(j ), respectively. 

From Claim 4.4.6(c), method doPromotep() is called by p only in line 46 and in line 62 

(during helpReleasep()). 

Case a - p called doPromotep() in line 62 (during helpReleasep()). Then p is 

executing helpReleasep(). From Claim 4.4.6(b), method helpReleasep() is called by 

p only in lines 39, 43 and 30. Then p called helpReleasep() either in line 39, 43 or 30 

Case a(i) - p called helpReleasep() in line 39 or 43 (during releasep(j )). Then p 

is executing releasep(), and since p called helpReleasep() in lines 39 or 43, p satisfied 



100 

the if-conditions of lines 35 or 42, and thus Role[p] = KING at t35p 
− or Role[p] = QUEEN 

at t42p 
−, respectively. Since Role[p] is unchanged during releasep() (Claim 4.4.2(b)), it 

follows that Role[p] ∈ {KING, QUEEN} during releasep(). Then p fails the if-condition 

of line 45 and does not execute doPromotep() in line 46. Hence, p executes doPromotep() 

at most once during releasep(). 

Case a(ii) - p called helpReleasep() in line 30. Then p is executing abortp() 

and it goes on to return value ⊥ in line 33. Then p’s call to lockp() returns value ⊥ 

and p does not call releasep(j ) (follows from conditions b and c). Hence, p executes 

doPromotep() at most once during abortp(). 

Case b - p called doPromotep() in line 46. Then p is executing helpReleasep() and 

p satisfied the if-condition of lines 45, and thus Role[p] = PAWN P at t45p 
− . Since Role[p] 

is unchanged during releasep() (Claim 4.4.2(b)), it follows that Role[p] = PAWN P 

during releasep(). Then p failed the if-condition of lines 35 and 42 and p did not 

execute helpReleasep() in lines 39 and 43. Hence, p executes doPromotep() at most 

once during releasep(). 

Claim 4.4.11. Consider p’s k-th passage, where k ∈ N. Let t be a point in time at 

which either p is poised to execute releasep(j ), or t ∈ { [t26−, t29], [t37−, t38], [t51−, t55]p p p p p p 

, t56− ,[t57−, t62−], t65p 
− , [t67−, t68−] }. Thenp p p p p 

(a) none of p’s cease-release events have occurred before time t, and 

(b) p is a releaser of lock L at time t 

Proof. Proof of (a): First note that if t ∈ [t51p 
−, t55 

p ] then p is executing doCollect(). 

From Claim 4.4.6(a), p calls doCollect() only in lines 29 and 38. Then if t ∈ [t51p 
− 

p, t55] 

, t29] or t ∈ [t38−, t38]. Therefore, assume now t ∈ [t26−, t29] or t ∈ [t37−, t38].then t ∈ [t29p 
− 

p p p p p p p   
[t26− ], [t37−Case a - t ∈ p , tp 

29 
p , tp 

38] p , tp 
29: If t ∈ [t26− ] then from a code inspection, p 

is executing abortp() and p did not execute a call to doPromotep() or helpReleasep() 



101 

before time t. If t ∈ [tp 
37−, tp 

38] then p is executing releasep(j ) and then from a code 

inspection and Claim 4.4.10(a) it follows that p did not execute a call to doPromotep() 

or helpReleasep() before time t. Then from Claims 4.4.6(e) and 4.4.6(f) it follows that 

events τp, πp and θp did not occur before time t. Since t ∈ [t26−, t29] or t ∈ [t37−, t38], it p p p p 

follows from Claim 4.4.8 that cease-release event φp did not occur before time t. 

Case b - t ∈ { t56−, [t57−, t62−] }: Then p is executing helpRelease (). Thenp p p p

from Claim 4.4.6(b) it follows that p is executing a call to helpReleasep() in line 39, 43 

or 30. Then from Claim 4.4.8 it follows that cease-release event φp did not occur before 

time t. From Claim 4.4.10(b), it follows that this is p’s only call to helpReleasep(). 

From Claim 4.4.6(c), p calls doPromotep() only in line 46 and in line 62 (during 

helpReleasep()). Since p has not yet executed line 46 and this is the only call to 

helpReleasep(), p has not called doPromotep() before time t. Then from Claim 4.4.6(f) 

it follows that events πp and θp did not occur before time t. By definition, cease-release 

t56−event τp occurs when p executes a successful Sync2.CAS(⊥, p)	 in line 56. If t = p , 

If t ∈ [t57−then clearly cease-release event τp did not occur before time t. p , tp 
62−], then p 

satisfied the if-condition of line 56, and thus p executed an unsuccessful Sync2.CAS(⊥, p) 

operation in line 56, and thus cease-release event τp did not occur before time t. 

[t67−Case c - t ∈ { tp 
65− , p , tp 

68−] }: Then p is executing doPromotep(). From 

Claim 4.4.10(c), it follows that this is the only call to doPromotep(). By definition, 

cease-release event θp occurs only when p executes a Ctr.CAS(2, 0) operation in line 68 of 

doPromotep(). Event θp did not occur before time t since t < t68 
p and this is p’s only call 

to doPromotep(). By definition, cease-release event πp occurs only when p executes a 

PawnSet.promote() operation that returns a non-(⊥, ⊥) value in line 65 of doPromotep(). 

If t = t65−, then cease-release event πp did not occur before time t since t65− < t65 (andp	 p p 

since this is p’s only call to doPromotep()). If t ∈ [t67p 
−, t68p 

−], then p satisfied the if-

condition of line 65, and thus p’s PawnSet.promote() operation returned value (⊥, ⊥), 



102 

and thus cease-release event πp did not occur before time t. Since p calls doPromotep() 

only in line 46 and line 62 (during helpReleasep()), p is executing line 46, 39, 43 or 30. 

Then from Claim 4.4.8 it follows that cease-release event φp did not occur before time t. 

We now show that cease-release event τp did not occur before time t thus completing 

the proof. 

Subcase c(i) - p called doPromotep() during helpReleasep(): Then p satisfied the 

if-condition of line 56, and thus p executed an unsuccessful Sync2.CAS(⊥, p) operation in 

line 56, and cease-release event τp did not occur before time t. 

Subcase c(ii) - p called doPromotep() in line 46: From Claim 4.4.9, Role[p] ∈ 

PAWN P at t46p 
− . Since Role[p] is unchanged during releasep() (Claim 4.4.2(b)), it 

t35− t42−follows that Role[p] = PAWN P at p and p . Then p fails the if-conditions of 

lines 35 and 42, and does not execute a call to helpReleasep() before time t. Then 

from Claim 4.4.6(e) it follows that cease-release event τp did not occur before time t. 

Proof of (b): From Part (a), p does not cease to be releaser of L before t. Therefore, 

to prove our claim we need to show that p becomes a releaser of L at some point tt < t. 

We first show that Role[p] ∈ { KING, QUEEN, PAWN P } at time t. Let tt be the point 

when p is poised to execute releasep(j ). From the inspection of the various points in 

time chosen for t (including t34p 
−, but excluding tt) and the table in Claim 4.4.9, it follows 

that Role[p] ∈ { KING, QUEEN, PAWN P } at time t (including t34−, but excluding tt).p 

Clearly Role[p] is unchanged during [tt, t34p 
−]. Then the value of Role[p] at tt is the same 

as that at t34−, i.e., Role[p] ∈ { KING, QUEEN, PAWN P }.p 

Case a - Role[p] ∈ {KING, QUEEN} at time t: From Claim 4.4.2(c), Role[p] is set to 

KING or QUEEN only when p executes line 5. Then p changed Role[p] to KING or QUEEN 

at t5 
p, and thus p became a releaser of lock L by condition (R1) at t5 

p = tt < t. 

Case b - Role[p] = PAWN P at time t: From Claim 4.4.7, it follows that some process 

q promoted p at t65 
q and p became a releaser of L by condition (R2) at t65 

q = tt < t. 



103 

Claim 4.4.12. Consider p’s k-th passage, where k ∈ N. If any of process p’s cease-release 

events occurs at time t then p ceases to be the releaser of lock L at time t. 

Proof. To prove our claim we need to show that p is a releaser of L immediately be­

fore time t, since by definition p ceases to be a releaser of L when any of p’s cease-

release events occurs. By definition, cease-release event φp occurs when p executes a 

successful Ctr.CAS(1, 0) operation in line 36, cease-release event τp occurs when p exe­

cutes a successful Sync2.CAS(⊥, p) in line 56, cease-release event πp occurs only when 

p executes a PawnSet.promote() operation that returns a non-(⊥, ⊥) value in line 65, 

cease-release event θp occurs only when p executes a Ctr.CAS(2, 0) operation in line 68. 

, t56− , t65−From Claim 4.4.11(b), p is a releaser of L at t36p 
− 

p p . Hence, the claim p and t68− 

follows. 

We say a process has write-access to objects Sync1 and Sync2, respectively, if the pro­

cess can write a value to Sync1 and Sync2, respectively. We say a process has registration-

access to object PawnSet, if the process can execute an operation on PawnSet that can 

write values in {(a, b)|a ∈ {0, 1, 2} = {0, REG, PRO} , b ∈ N} to some entry of PawnSet. 

We say a process has deregistration-access to object PawnSet, if the process can execute 

an operation on PawnSet that can write value (ABORT, s) = (3, s), where s ∈ N, to some 

entry of PawnSet. Object PawnSet is said to be candidate-empty if no entry of PawnSet 

has value (REG, ·) or (PRO, ·). 

Claim 4.4.13. Only releasers of L have write-access to Sync1, Sync2 and registration-

access to PawnSet. 

Proof. The following observations follow from an inspection of the code. A value 

can be written to Sync1 only in lines 26, 37 and 58. A value can be written 

to Sync2 only in lines 56 and 60. From the semantics of the AbortableProArrayn 

object, only operations collect(), promote(), and reset() can write values in 



104 

{(a, b)|a ∈ {0, REG, PRO} = {0, 1, 2} , b ∈ N} to PawnSet. From Claim 4.4.3(a), the oper­

ations collect(), promote(), and reset() are executed on PawnSet only in lines 55, 65, 

and 67, respectively. 

Suppose an arbitrary process p writes a value to Sync1 or Sync2, or a value in 

{(a, b)|a ∈ {0, 1, 2} , b ∈ N} to an entry of PawnSet. From Claim 4.4.11(b), p is a re­

, t37− , t58− , t56− , t60− , t65− , t67−leaser of L at t26p 
− 

p p p p p . Hence, the claim follows. p p and t55− 

Claim 4.4.14. The i-entry of PawnSet can be changed only by process i or a releaser of 

L. 

Proof. The values that can be written to PawnSet are in {(a, b)|a ∈ {0, 1, 2, 3} , b ∈ N}. 

A process that can write values in {(a, b)|a ∈ {0, 1, 2} , b ∈ N} to any entry of PawnSet 

is said to have registration-access to PawnSet. From Claim 4.4.13 it follows that only a 

releaser of L has registration-access to PawnSet, therefore only a releaser of L can write 

values in {(a, b)|a ∈ {0, 1, 2} , b ∈ N} to the i-th entry of PawnSet. From Claim 4.4.3(d) 

the value (ABORT, s) = (3, s), where s ∈ N, can be written to the i-th entry of PawnSet 

only when a process executes a remove(i), remove(i) or PawnSet.abort(i, s) operation 

in line 64, 61 or 21, respectively. From Claim 4.4.11(b), it follows that a process executing 

lines 64 and 61 is a releaser of L. Since a PawnSet.abort(i, s) operation in line 21 is 

executed only by process i, our claim follows. 

Claim 4.4.15. Sync2 is changed to a non-⊥ value only by a releaser of L (say r) in 

line 56 which triggers the cease-release event τr. 

Proof. By definition, cease-release event τp occurs when p executes a successful 

Sync2.CAS(⊥, p) in line 56. From a code inspection, Sync2 is changed to a non-⊥ value 

only when some process (say r) executes a successful Sync2.CAS(⊥, r) operation in line 56. 

From Claim 4.4.13 it follows that Sync2 is changed only by a releaser of L. Then r is a 



105 

releaser of L when it changes Sync2 to a non-⊥ value in line 56 and doing so triggers the 

cease-release event τr. 

Claim 4.4.16. A PawnSet.promote() operation is executed only by a releaser of L (say 

r), and if the value returned is non-(⊥, ⊥) the cease-release event πr is triggered. 

Proof. By definition, cease-release event πp occurs only when p executes a 

PawnSet.promote() operation that returns a non-(⊥, ⊥) value in line 65. From a code 

inspection, a PawnSet.promote() operation is executed only when some process (say r) 

executes line 56. From Claim 4.4.13 it follows that PawnSet is changed only by a releaser 

of L. Then r is a releaser of L when it executes a PawnSet.promote() operation, and if 

the operation returns a non-(⊥, ⊥) value then the cease-release event πr is triggered. 

Claim 4.4.17. During an execution of doPromotep() exactly one of the events πp and 

θp occurs. 

Proof. By definition, cease-release event πp occurs when p executes a PawnSet.promote() 

operation in line 65 that returns a non-(⊥, ⊥) value, and cease-release event θp occurs 

when p executes a Ctr.CAS(2, 0) operation in line 68 during doPromotep(). 

Case a - the PawnSet.promote() operation in line 65 returns a non-(⊥, ⊥) value, 

and thus cease-release event πp occurs: Then p fails the if-condition of line 66 and line 68 

is not executed. Therefore, cease-release event θp does not occur. 

Case b - the PawnSet.promote() operation in line 65 returns (⊥, ⊥), and thus 

cease-release event πp does not occur: Then p satisfies the if-condition of line 66, and 

executes a Ctr.CAS(2, 0) operation in line 68. Hence, cease-release event θp occurs. 

Claim 4.4.18. During an execution of helpReleasep() exactly one of the events τp, πp 

and θp occurs. 



106 

Proof. By Claim 4.4.5, events πp and θp can only occur during p’s call to doPromotep(), 

and cease-release event τp occurs when p executes a successful Sync2.CAS(⊥, p) operation 

in line 56. 

Case a - p executes a successful Sync2.CAS(⊥, p) operation in line 56, and thus cease-

release event τp occurs: Then p fails the if-condition of line 56, and returns immediately 

from its call to helpReleasei(). Therefore, events πp and θp do not occur. 

Case b - p executes an unsuccessful Sync2.CAS(⊥, p) operation in line 56, and thus 

cease-release event τp does not occur. Then p satisfies the if-condition of line 56, and 

calls doPromotep() in line 62. From Claim 4.4.17, exactly one of the events πp and θp 

occurs during p’s call to doPromotep(). 

Claim 4.4.19. The value of Ctr can change only when a Ctr.inc(), Ctr.CAS(2, 0) or 

Ctr.CAS(1, 0) operation is executed in lines 5, 68 or 36. 

Proof. From the semantics of the RCAScounter2 object, if Ctr is increased to value i by 

a Ctr.inc() operation, then its value was i − 1 immediately before the operation was 

executed. Then all claims follow from an inspection of the code. 

Claim 4.4.20. If the value of Ctr changes, it either increases by 1 or decreases to 0. 

Moreover its values are in {0, 1, 2}. 

Proof. From the semantics of the RCAScounter2 object, a Ctr.inc() operation changes 

the value of Ctr from i to i + 1 only if i ∈ {0, 1}. From Claims 4.4.19, the value of Ctr 

can change only when a Ctr.inc(), Ctr.CAS(2, 0) or Ctr.CAS(1, 0) operation is executed 

(in lines 5, 68 or 36). Then it follows that the values of Ctr are in{0, 1, 2}. It also follows 

that the value of Ctr either changes from 0 to 1 and back to 0, or it changes from 0 to 1 

to 2 and back to 0. 

Ctr-Cycle Interval T . Let T = [ts, te) be a time interval where ts is a point when 

Ctr is 0 and te is the next point in time when Ctr is decreased to 0. For i ∈ {0, 1, 2} 



 

 

 

 

107 

let	 Ii = {t ∈ T |Ctr = i at t} and let time I− = min(Ii) and time I+ = max(Ii).i	 i 

From Claim 4.4.20, it follows immediately that during T the set Ii, i ∈ {0, 1, 2}, forms an 

interval [Ii 
−, Ii 

+], and I2 = ∅ if and only if Ctr is never increased to 2 during T . Moreover, 

ts = I0 
− and I0 is immediately followed by I1 (i.e., min(I1) = max(I0) + 1). If I2 = ∅ 

then I2 follows immediately after I1. The Ctr-cycle interval T ends either at time I1
+ if 

I2 = ∅, or at time I2
+ if I2 = ∅. 

Then it also follows that exactly one process changes Ctr from 0 to 1 during T , and 

it does so at time I1 
− . Let K be the process that increases Ctr to 1 at time I1 

− . And if 

I2 = ∅ then exactly one process changes Ctr from 1 to 2 during T , and it does so at time 

I− . If I2 = ∅ let Q be the process that increases Ctr to 2 at time I− . Let R(t) denote 2	 2 

the set of processes that are the releasers of lock L at time t ∈ T . 

Claim 4.4.21. If R(I0 
−) = ∅ and at I0 

− , Sync1 = Sync2 = ⊥ and PawnSet is candidate-

empty, then the following holds: 

(a)	 ∀t∈I0 : R(t) = ∅ and throughout I0, Sync1 = Sync2 = ⊥ and PawnSet is candidate-

empty. 

(b)	 R(I1 
−) = {K} and at time I1 

− , Sync1 = Sync2 = ⊥ and PawnSet is candidate-empty. 

(c)	 K executes lines of code of lockK() starting with line 2 as depicted in Figure 4.8. 

(A legend for the figure is given in Figure 4.7.) 

?

Figure 4.8: K’s call to lockK() 

(d) K’s call to lockK() returns ∞ and Role[K] = KING throughout [t5 
K ].K, t
17 



108 

(e)	 K executes a Ctr.CAS(1, 0) operation in line 36 during T , and K does not change 

Sync1, Sync2 or PawnSet throughout [I1 
−, t36].K 

(f)	 ∀t∈I1 : R(t) = {K}. 

(g) Throughout I1, Sync1 = Sync2 = ⊥ and PawnSet is candidate-empty. 

Proof. Proof of (a): Consider the claim R(t) = ∅ where t ∈ I0. Since R(I0 
−) = ∅ 

I−holds by assumption, the claim holds at t = 0 . For the purpose of a contradiction 

assume the claim fails to hold for the first time at some point tt during I0. Then some 

process p becomes a releaser of lock L at time tt . Process p cannot become a releaser of 

L by p increasing Ctr to 1 or 2 (condition (R1)) at time tt, since Ctr = 0 throughout I0. 

Therefore, assume it becomes a releaser of L when some process q promotes p (condition 

(R2)) at tt . By Claim 4.4.12, q ceases to be a releaser of lock L at tt . This is a contradiction 

to our assumption that p is the first process during I0 to become a releaser of L. 

By assumption the variables Sync1, Sync2 and PawnSet are at their initial value at 

I− 
0 . Since the values of these variables are only changed by a releaser of lock L (by 

Claim 4.4.13) and for all t ∈ I0, R(t) = ∅, it follows that the variables are unchanged 

throughout I0. 

Proof of (b): At time I1 
− Ctr is increased from 0 to 1, and thus the only operation 

executed is a Ctr.inc() operation by process K. Then K becomes a releaser of lock L 

at time I1 
− by condition (R1). Since for all t ∈ I0, R(t) = ∅ (Part (a)), it follows that 

R(I1 
−) = {K}. Since Sync1 = Sync2 = ⊥ and PawnSet is candidate-empty throughout I0 

(Part (a)), and the only operation at time I1 
− is the Ctr.inc() operation, it follows that 

Sync1 = Sync2 = ⊥ and PawnSet is candidate-empty at time I1 
− . 

Proof of (c) and (d): Since K is the process that increased Ctr from 0 to 1 at 

time I1 
−, and since K can increase Ctr only by executing a Ctr.inc() operation in line 5 

(by Claim 4.4.19) K set Role[K] = 0 = KING at t5 
K. Then from the code structure, K 



 

109 

does not execute lines 7-9, and does not repeat the role-loop, and does not busy-wait in 

the spin loop of line 14; instead K proceeds to execute lines 16 - 17 and returns value ∞ 

in line 17. Since K does not change Role[K] during [t5 
K ], Role[K] = KING throughoutK, t
17 

[t5 
K ].K, t
17 

Proof of (e): Since K is the process that increased Ctr from 0 to 1 at time I1 
− , 

and since K can increase Ctr only by executing a Ctr.inc() operation in line 5 (by 

Claim 4.4.19) K set Role[K] = 0 = KING at t5 From Part (d), K returns from lockK()K. 

with value ∞ in line 17, and thus K consequently calls releaseK(j ) (follows from con­

ditions (b) and (c)). Note that K has not executed any operations on Sync1, Sync2 and 

35−PawnSet in the process. Then Role[K] = KING at tK and thus p satisfies the if-condition 

of line 35 and executes the Ctr.CAS(1, 0) operation in line 36 during T without having 

executed any operations on Sync1, Sync2 and PawnSet in the process. Thus K did not 

change Sync1, Sync2 or PawnSet during [I1 
−, t36 

K ]. 

Proof of (f): Since R(I−) = {K} (Part (b)), to prove our claim we need to show 1 

that during I1 K does not cease to be a releaser and no process becomes a releaser. 

Suppose not, i.e., the claim R(t) = {K} fails to hold for the first time at some point tt in 

I1. 

Case a - Process K ceases to be a releaser of L at tt: By definition, cease-release 

event φK occurs when K executes a successful Ctr.CAS(1, 0) operation in line 36, From 

Part (e), K executes a Ctr.CAS(1, 0) operation in line 36. If K executes a successful 

Ctr.CAS(1, 0) operation in line 36 then, by definition, cease-release event φK occurs and 

= t36by Claim 4.4.12 K ceases to be the releaser of L. Thus, tt K and Ctr changes to value 

of 0 at tt . But since tt ∈ I1 and Ctr = 1 throughout I1, we have a contradiction. If K 

36−executes an unsuccessful Ctr.CAS(1, 0) operation in line 36, then Ctr = 1 at tK . Since p 

36− 36−did not cease to a releaser at tK , tK < tt . Since I1 
− = tK 

5 < t36 
K < tt < I1

+ and Ctr = 1 

36−throughout I1, Ctr = 1 at tK , and thus we have a contradiction. 



 

 

110 

Case b - Some process q becomes a releaser of L at tt: Since Ctr is not increased 

during I1, it follows from conditions (R1) and (R2) that some process r promoted q at 

time tt . Then by definition, event πr occurs at tt, and thus from Claim 4.4.12 it follows 

that r is a releaser of L immediately before tt . Since K is the only releaser immediately 

before tt , r = K. Then cease-release event πK occurred at tt and K ceases to be a releaser 

at tt . As was shown in Case a, this leads to a contradiction. 

Proof of (g): At time I1 
− the claim Sync1 = Sync2 = ⊥ and PawnSet is candidate-

empty holds by Part (b). Suppose some process p changes Sync2 or Sync1 or PawnSet for 

the first time at some point tt during I1. From Claim 4.4.13 it follows that p is a releaser 

of lock L at time tt . Since for all t ∈ I1, R(t) = {K} (Part (f)), it follows that p = K. 

From Part (e), K does not change any of the variables before the point when it executes a 

36−Ctr.CAS(1, 0) operation in line 36, i.e., tK < tt . If K executes a successful Ctr.CAS(1, 0) 

operation in line 36 then the interval I1 ends and clearly tt ∈/ I1, hence a contradiction. If 

36−K executes an unsuccessful Ctr.CAS(1, 0) operation in line 36 then Ctr = 1 at tK . Since 

I− 5− 36− = t < t < tt < I+ and Ctr = 1 throughout I1, we have a contradiction. 1 K K 1 

Claim 4.4.22. If I2 = ∅ and R(I0 
−) = ∅ and at I0 

− , Sync1 = Sync2 = ⊥ and PawnSet 

is candidate-empty, then the following claims hold: 

(a)	 R(I2 
−) = {K, Q} and at time I2 

− , Sync1 = Sync2 = ⊥ and PawnSet is candidate-

empty. 

(b)	 K and Q are the first two releasers of L. 

(c) During (I2 
−, I2

+] a process can become a releaser of L only if it gets promoted by a 

releaser of L. 

(d) If K takes enough steps, K executes lines of code of releaseK() starting with line 34 

as depicted in Figure 4.9. 



111 

(e)	 K executes an unsuccessful Ctr.CAS(1, 0) operation in line 36, and calls 

36− 39−helpReleaseK() in line 39 such that I− < t < t .2 K K 

(f) If K and Q take enough steps, Q finishes lockQ() during T . 

(g) If	 K and Q take enough steps, Q executes lines of code of lockQ() starting with 

line 2 as depicted in Figure 4.10. 

(h) If Q calls releaseQ(), it executes lines of code of releaseQ() starting with line 34 

as depicted in Figure 4.11. 

(i)	 Q calls helpReleaseQ() either in line 30 or in line 43, after time I− .2 

Figure 4.9: K’s call to releaseK(j ) 

Figure 4.10: Q’s call to lockQ() 



 

112 

Figure 4.11: Q’s call to releaseQ() 

Proof. Proof of (a) and (b): Since Q is the process that increases Ctr from 1 to 

2 at time I− 
2 , and since Q can increase Ctr only by executing a Ctr.inc() operation in
 

2 

2

line 5 (by Claim 4.4.19) Q becomes a releaser of lock L by condition (R1) at I− 

Since for all t ∈ I1, R(t) {K} (Claim 4.4.21(f)), it follows that R(I− 

= t
5 
Q. 

) = {K, Q}. By
=
 

claim 4.4.21(g), throughout I1, Sync1 = Sync2 = ⊥ and PawnSet is candidate-empty, and 

22since the only operation executed at time I− is Ctr.inc(), it follows that at time I− 

Sync1 = Sync2 = ⊥ and PawnSet is candidate-empty. Hence Part (b) holds. Clearly K 

and Q are the first two releasers of L, hence Part (b) holds. 

Proof of (c): From conditions (R1) and (R2), a process can become a releaser of L 

either by increasing Ctr to 1 or 2 or by getting promoted. Since Ctr is not increased during 

,
 

2(I− ], it follows that during (I− 

promoted. By definition, a process can be promoted only when a PawnSet.promote() 

operation is executed in line 65 and from Claim 4.4.16 only a releaser of L can execute 

2
+
2

+
2, I
 , I
 ] a process becomes a releaser of L only if it gets
 

2Then during (I− 

promoted by a releaser of L. 

Proof of (d) and (e): From Claim 4.4.21(e), K executes the Ctr.CAS(1, 0) operation 

in line 36 during T . If K’s Ctr.CAS(1, 0) operation is successful then the value of Ctr 

decreases from 1 to 0 and the Ctr-cycle interval T ends and thus I2 = ∅, which is 

a contradiction to our assumption that I2 = ∅. Then K’s Ctr.CAS(1, 0) operation is 

unsuccessful. 

Since K executes an unsuccessful Ctr.CAS(1, 0) operation in line 36, K satisfies the 

if-condition of line 36, executes lines 37-38 and calls helpReleaseK() in line 39, and then 

+
2this operation.
 , I
 ] a process becomes a releaser of L only if it gets
 



113 

executes lines 49-50. 

Since K executes an unsuccessful Ctr.CAS(1, 0) operation in line 36, it follows that Ctr 

was changed from 1 to 2 at time I− (by definition), and thus I− < t36 
K . Since t

36 < t39 
2 2 K K , 

it follows that I− < t36 
K .2 K < t39 

Proof of (f), (g) and (h): Since Q is the process that increases Ctr from 1 to 

2 at time I2 
−, and since Q can increase Ctr only by executing a Ctr.inc() operation in 

line 5 (by Claim 4.4.19) Q set Role[K] = 1 = QUEEN at t5 = I− . Then from the code Q 2 

structure, Q does not execute lines 7-9, and does not repeat the role-loop, instead, it 

proceeds to line 13 and then proceeds to busy-wait in the spin loop of line 14. Then 

Q does not finish lockQ() only if it spins indefinitely in line 14 and does not receive a 

signal to abort. 

For the purpose of a contradiction assume that Q does not finish lockQ(). Then 

Q reads the value ⊥ from Sync1 in line 14 indefinitely. From Part (e) it follows that 

K executes a Sync1.CAS(⊥, j) operation in line 37 during (I2 
−, I2

+]. Since Sync1 = ⊥ 

at time I− (Part (a)), and only a releaser can change Sync1 (Claim 4.4.13), and Q is2 

busy-waiting in line 14, it follows that the only other releaser, K, executed a successful 

Sync1.CAS(⊥, j) operation in line 37 during (I2 
−, I2

+] and changed Sync1 to a non-⊥ value. 

Then for Q to read ⊥ from Sync1 in line 14 indefinitely, some process must reset Sync1 

to ⊥ before Q reads Sync1 again. 

Case a - K resets Sync1 in line 58 before Q reads Sync1 again: For K to reset Sync1 in 

line 58, K must satisfy the if-condition of line 56 and thus K must execute an unsuccessful 

Sync2.CAS(⊥, K) operation in line 56. Since Sync2 = ⊥ at time I2 
− (Part (a)), and only 

a releaser can change Sync2 (Claim 4.4.13), and Q is busy-waiting in line 14, it follows 

56−that Sync2 = ⊥ at tK . Thus K’s Sync2.CAS(⊥, K) operation in line 56 is successful and 

we get a contradiction. 

Case b - some other process becomes a releaser and resets Sync1 before Q reads 



 

114 

Sync1 again: From Part (c) it follows that during (I2 
−, I2

+] a process can become a releaser 

of L only if it is promoted (by condition (R2)). Since a process is promoted only by a 

releaser of L and K is the only other releaser of L apart from Q, it follows that K 

promotes some process before Q reads Sync1 again. As argued in Case a, K executes a 

successful Sync2.CAS(⊥, K) operation in line 56. Then from the code structure, K does 

not call doPromoteK() in line 62, and thus K does not promote any process. Hence, we 

have a contradiction. 

Proof of (i): Since Q is the process that increases Ctr from 1 to 2 at time I2 
− , 

and since Q can increase Ctr only by executing a Ctr.inc() operation in line 5 (by 

Claim 4.4.19) Q set Role[K] = 1 = QUEEN at t5 Then from the code structure, Q does Q. 

not execute lines 7-9, and does not repeat the role-loopp; instead, it proceeds to line 13 

and then proceeds to busy-wait in the spin loop of line 14. 

Case a - Q does not receive a signal to abort while busy-waiting in line 14: From 

Part (f), Q does not busy-wait indefinitely in line 14 and eventually breaks out. Since Q 

breaks out of the spin loop of line 14 it reads non-⊥ from Sync1 and then from the code 

structure it follows that Q goes on to return that non-⊥ value in line 17. Consequently Q 

calls releaseQ(j ) (follows from conditions b and c). Consider Q’s call to releaseQ(j ). 

34−Since Q last changed Role[Q] only in line 5, Role[Q] = QUEEN at tQ . Since Role[Q] 

is unchanged during releaseQ() (Claim 4.4.2(b)), it follows that Role[Q] = QUEEN 

throughout releaseQ(). Then from the code structure it follows that Q executes only 

lines 34-35, 42-45 and 49-50. Then Q calls helpReleaseQ() only in line 43, and since 

I− = t5 , our claim holds. Q < t43 
2 Q 

Case b - Q receives a signal to abort while busy-waiting in line 14: Then Q calls 

abortQ(), and from the code structure Q executes lines 18-20, and then line 26. If Q fails 

the Sync1.CAS(⊥, ∞) operation of line 26, then Sync1 = ⊥ at t26− . From Claim 4.4.13, Q 

only a releasers of L can change Sync1 to a non-⊥ value, and since K and Q are the 



 

115 

only releasers of L, it follows that K changed Sync1 to a non-⊥ value. Then Q satisfies 

the if-condition of line 26 and returns the non-⊥ value written by K to Sync1 in line 27. 

Consequently Q calls releaseQ(j ) (follows from conditions b and c), and as argued in 

Case a, Q executes only lines 34-35, 42-45 and 49-50, and Q calls helpReleaseQ() only 

in line 43. Since I− = t5 , our claim holds. Q < t43 
2 Q 

If Q’s Sync1.CAS(⊥, ∞) operation is successful, then Q goes on to call doCollectQ() 

in line 29, calls helpReleaseQ() in line 30, then executes lines 32-33, and finally returns 

⊥ in line 33. Since I2 
− = t5 

Q , our claim holds. Q < t30 

Define λ to be the first point in time when Sync2 is changed to a non-⊥ value, and if 

Sync2 is never changed to non-⊥ then λ = ∞. Define γ to be the first point in time when 

a PawnSet.promote() operation is executed, and if a PawnSet.promote() operation is 

never executed then γ = ∞. From Claims 4.4.22(e) and 4.4.22(i), both K and Q execute 

helpReleaseK() and helpReleaseQ(), respectively, after time I− . Let A ∈ {K, Q} be 2 

the first process among them to execute line 56, and let B ∈ {K, Q} − {A} be the other 

process, i.e., t56 < t56 
B .A 

Claim 4.4.23. If I2 = ∅ and R(I0 
−) = ∅ and at I0 

− , Sync1 = Sync2 = ⊥ and PawnSet 

is candidate-empty, then the following claims hold: 

(a)	 I− < λ = t56 and for all t ∈ [I2 
−, λ), R(t) = {K, Q} and Sync2 = ⊥ throughout 2 A 

[I2 
−, λ), and cease-release event τA occurs at λ. 

(b) If	 K and Q take enough steps, then A executes lines of code of helpReleaseA() 

starting with line 56 as depicted in Figure 4.12. 

Figure 4.12: A’s call to helpReleaseA() 



116 

(c) If K and Q take enough steps, then B executes lines of code of helpReleaseB() and 

doPromoteB() as depicted in Figures 4.13 and 4.14, respectively. 

Figure 4.13: B’s call to helpReleaseB() 

?

Figure 4.14: B’s call to doPromoteB() 

= t65(d)	 λ < γ B . 

(e)	 ∀t∈[λ,γ), R(t) = {B}. 

(f) At time γ, Sync1 = Sync2 = ⊥. 

(g) No promotion event occurs at lock L during [I2 
−, γ). 

(h) The	 PawnSet.promote() operation at time γ does not return a value in 

{(a, b)|a ∈ {K, Q} , b ∈ N}. 

(i) If the	 PawnSet.promote() operation at time γ returns a non-(⊥, ⊥) value then B’s 

cease-release event πB occurs at time γ. 

(j) If the PawnSet.promote() operation at time γ returns value (⊥, ⊥) then B’s cease­

= t68release event θB occurs at tt B ≥ γ, and throughout [γ, tt] no process is promoted, 

and ∀t∈[γ,t'), R(t) = {B}. 



117 

(k) Either K or Q calls doCollect(), specifically during [I2 
−, γ]. 

Proof. Proof of (a): We first show that for all t ∈ [I2 
−, t56−], R(t) = {K, Q} andA 

then show that λ = t56 From Claims 4.4.22(e) K calls helpReleaseK() in line 39 after A . 

time I2 
− . From Claim 4.4.22(a), K is a releaser of L at time I2 

− . From an inspection of 

39−Figures 4.8 and 4.9, throughout [I1, tK ] K does not execute a call to helpReleaseK() 

or doPromoteK(). Also from an inspection, K fails to decrease Ctr from 1 to 0 at t36 
K , 

thus K’s cease-release event φK does not occur. Since K’s cease-release events τK, πK and 

θK only occur during helpReleaseK() or doPromoteK() (Claims 4.4.5(e) and 4.4.5(f)), 

56−it follows that K is a releaser of L throughout [I1 
−, tK ]. 

From Claim 4.4.22(i), Q calls helpReleaseQ(), respectively either in line 30 or 

line 43, after time I− . From Claim 4.4.22(a), Q is a releaser of L at time I− . From 2 2 

an inspection of Figures 4.10 and 4.11, throughout [I2, t
56−] Q does not execute a call Q 

to helpReleaseQ() or doPromoteQ(). Also from an inspection, Q does not execute 

a Ctr.CAS(1, 0) operation in line 36, and thus Q’s cease release event φQ does not oc­

cur. Since Q’s cease-release events τQ, πQ and θQ only occur during helpReleaseQ() or 

doPromoteQ() (Claims 4.4.5(e) and 4.4.5(f)), it follows that Q is a releaser of L through­

out [I2 
−, t56−].Q 

56− 56− 56− 56−Then for all t ∈ [I2 
−, t ], {K, Q} ⊆ R(t) since I− < I− and t = min(t , t ).A 1 2 A K Q 

From Claim 4.4.22(c), it follows that a process can become a releaser during I2 only if it 

is promoted by a releaser of L. Then to show that for all t ∈ [I2 
−, t56−], R(t) = {K, Q},A 

we need to show that no process is promoted by K or Q during [I2 
−, t56−]. If a process A 

was promoted by K or Q during [I2 
−, t56−] then by definition cease-release events πK orA 

πQ would have occurred during [I2 
−, t56−], but as shown above this does not happen. A 

From Claim 4.4.22(a), Sync2 = ⊥ at time I2 
− . From a code inspection, Sync2 is 

changed to a non-⊥ value only in line 56 (during helpRelease()), moreover only by 

a releaser of L (from Claim 4.4.13). Since for all t ∈ [I2 
−, t56−], R(t) = {K, Q} andA 



 

 

118 

56− 56− 56− 56−t = min(t , t ), it follows then that Sync2 = ⊥ throughout [I2 
−, t ] and AA K Q A 

executes a successful Sync2.CAS(⊥, A) operation in line 56. Thus A’s cease-release event 

τA occurs at t56 
A . 

Since Sync2 = ⊥ throughout [I0 
−, I1

+] (Claims 4.4.21(a) and 4.4.21(g)) and throughout 

[I− 56− 
2 , tA ], it follows that Sync2 was changed to a non-⊥ value for the first time at t56 

A , thus 

t56λ = A . Then it follows for all t ∈ [I2 
−, λ), R(t) = {K, Q}, and Sync2 = ⊥ throughout 

[I2 
−, λ) 

t56Proof of (b): From Part (a), A’s cease-release event τA occurs at λ = A , and 

thus A’s Sync2.CAS(⊥, A) operation in line 56 succeeds. Then from the code structure A 

does not satisfy the if-condition on line 56 and returns from its call to helpReleaseA(). 

Thus, Figure 4.12 follows. 

t56Proof of (c), (d), (e), (f), (g), (h), (i) and (j): From Part (a), λ = A and 

for all t ∈ [I2 
−, λ), R(t) = {K, Q} and Sync2 = ⊥ throughout [I2 

−, λ) and cease-release 

event τA occurs at λ. Then A ceases to be a releaser of L at λ, and thus R(λ) = {B} 

and Sync2 = A = ⊥ at λ. From Claim 4.4.22(c) it follows that B will continue to be 

the only releaser of L until the point when B ceases to be a releaser of L or promotes 

another process. Let t > λ be the point in time when B ceases to be a releaser of L. 

Since B ceases to be a releaser of L if it promotes another process (by definition of cease-

release event πB), it follows that B is the only releaser of L throughout [λ, t). Then from 

Claim 4.4.13 it follows that B has exclusive write-access to Sync1, Sync2 and exclusive 

registration-access to PawnSet throughout [λ, t). 

t56Now consider B’s helpReleaseB() call. Since λ = A < tB 
56 and Sync2 = ⊥ at λ 

and B has exclusive write-access to Sync2 throughout [λ, t), B fails the Sync2.CAS(⊥, B) 

operation at t56 
B , and thus satisfies the if-condition of line 56. It then executes lines 57 

- 62, and calls doPromoteB() in line 62. Then Figures 4.13 and 4.14 and Part (c) follows 

immediately. 



119 

t65 t56We now show that γ = ≤ t. Since λ = and t56 < t56 < t65 
B , it would follow B A A B 

that λ < γ, and hence we would have proved Part (d). And since B is the only releaser 

of L throughout [λ, t), we would have proved Part (e) as well, i.e., B is the only releaser 

throughout [λ, γ). 

During doPromoteB(), B executes a PawnSet.promote() operation in line 65. Since 

K and Q are the first two releasers of L during T (Claim 4.4.22(b)), and only a releaser 

executes a PawnSet.promote() operation (Claim 4.4.16), and A ceased to be a releaser 

t65at t56 < B , it follows that B’s PawnSet.promote() operation in line 65 is the first A 

t65PawnSet.promote() operation, and thus γ = B . Since none of B’s cease-release events 
65−], t ≥ t65occur during [t56 

B , tB B . 

During [t56 
B , t

65 
B ], B resets Sync1 and Sync2 in lines 58 and 60, respectively, and since 

t65B has exclusive write-access to Sync1 and Sync2 throughout [t56 
B , tB 

65], at time γ = B , 

Sync1 = Sync2 = ⊥. Thus, Part (f) follows. 

By definition γ is the point in time when the first PawnSet.promote() operation oc­

curs. Since a promotion event occurs only when a PawnSet.promote() operation returns 

a non-(⊥, ⊥) value, it follows that no promotion event occurs during [I0 
−, γ). Hence, 

Part (g) follows. 

Since B has exclusive write-access to Sync2 throughout [λ, t65 
B ], and Sync2 = A at λ > 

t56 
B , B reads the value A from Sync2 in line 59 and executes a PawnSet.remove(A) opera­

tion in line 61. Since B executes PawnSet.remove(A) and PawnSet.remove(B) in lines 61 

and 64 during [λ, γ) and B has exclusive registration-access to PawnSet during [λ, γ), it fol­

lows from the semantics of the AbortableProArrayn object that B’s PawnSet.promote() op­

eration at time γ does not return values in {(a, b)|a ∈ {A, B} = {K, Q} , b ∈ N}. Hence, 

Part (h) follows. 

Case a - B’s PawnSet.promote() operation returns a non-(⊥, ⊥) value: Then B’s 

cease-release event πB occurs at t65 
B = γ (Claim 4.4.16), and thus Part (i) holds. 



120 

Case b - B’s PawnSet.promote() operation in line 65 returns (⊥, ⊥). Then B did 

not find any process to promote, and thus cease-release event πB did not occur. From the 

code structure B goes on to execute a Ctr.CAS(2, 0) operation in line 68. Since Ctr = 2 

throughout I2, it follows that B’s Ctr.CAS(2, 0) operation succeeds, and thus B’s cease­

= t68release event θB occurs at t68 
B B Band the intervals I2 and T end. Therefore tt > t65 = γ. 

Clearly, B does not promote any process in [t65 
B , t

68 
B ] = [γ, tt], and thus Part (j) holds. 

Proof of (k): From an inspection of Figure 4.9, K executes a Sync1.CAS(⊥, K) 

operation in line 37. Since I− < t36 < t37 < t56 < γ (from Parts (a) and (d)), it follows 2 K K K 

that t37 ∈ [I2 
−, γ]. From an inspection of Figures 4.10 and 4.10, Q may or may not execute K 

a Sync1.CAS(⊥, ∞) operation in line 26. If Q executes a Sync1.CAS(⊥, ∞) operation in 

line 26, since I− < t26 
Q < γ, it follows that t26 , γ].2 Q < t56 

Q ∈ [I2 
− 

Since for all t ∈ [I2 
−, γ], R(t) ⊆ {K, Q} (from Parts (a) and (e)), and only releasers 

of L have write-access to Sync1 (Claim 4.4.13), and Sync1 = ⊥ at I2 
− (Claim 4.4.22(a)), 

it follows that either K or Q executes a successful CAS() operation on Sync1. Then from 

the code structure it follows that either K or Q executed a call to doCollect() in lines 38 

39− 56− 56− 
K < γ and t29or 29, respectively. Since t38 

K < t = tK Q < tQ < γ, K or Q executed a 

call to doCollect() during [I2 
−, γ]. 

Claim 4.4.24. If a process p is promoted at time tt ∈ T and a PawnSet.reset() has 

not been executed during [I0 
−, tt], then p did not execute a PawnSet.abort(p, s) operation 

during [I0 
−, tt], where s ∈ N. 

Proof. Suppose not, i.e., p executed a PawnSet.abort(p, s) operation at time t < tt . Since 

p has not been promoted before tt > t it follows that a PawnSet.promote() operation 

that returns (p, ·) has not been executed before t. Then from Claim 4.4.3(a) and the 

semantics of PawnSet, it follows that the p-th entry of PawnSet is not at value (PRO, s) 

= (2, s) throughout [I0 
−, t]. Then p’s PawnSet.abort(p, s) operation at t succeeds, and 

thus p writes value (ABORT, s) = (3, s) to the p-entry of PawnSet. Then for p to be 



 

 

 

121 

promoted at tt > t, it follows from the semantics of PawnSet and Claim 4.4.3(a), that 

during [t, tt) a PawnSet.reset() operation and then a PawnSet.collect(A) operation 

where A[p] = s, must be executed, followed by a PawnSet.promote() at tt that returns 

(p, s). This is a contradiction to the assumption that a PawnSet.reset() is not executed 

during [I0, tt]. 

Let f be the number of times a promotion occurs during T . For all i ∈ {1, . . . , f}, 

define Ωi to be the i-th interval [Ω− 
i ] that begins when the i-th promotion occurs i , Ω
+ 

during T and ends when the promoted process ceases to be a releaser of L. Let Pi be the 

process promoted at Ω− 
i . 

Claim 4.4.25. If I2 = ∅ and R(I0 
−) = ∅ and at time I0 

− , Sync1 = Sync2 = ⊥ and 

PawnSet is candidate-empty, then the following claims hold for all i ∈ {1, . . . , f}: 

(a) If f ≥ 1, then γ = Ω− 
1 and R(Ω− = {P1}, and Sync1 = Sync2 = 1 , and no 1 ) ⊥ at Ω−
 

PawnSet.reset() operation has been executed during [I0 
− , Ω− 

1 ].
 

(b) If R(Ω−) = {Pi}, then for all t ∈ [Ωi 
− , Ω+), R(t) = {Pi}. (i.e., Pi is the only releaser i i
 

throughout Ωi)
 

Ω−
(c) If i = i ) = i = i+1 i+1) = (i.e., Pi+1f and R(Ω− {Pi}, then Ω+ and R(Ω− {Pi+1}. is 

the only releaser at Ω− 
i+1) 

(d) If i = f, then Ω+ 
i i+1 i+1) = {Pi+1}.= Ω− and R(Ω− 

(e) For all t ∈ [Ω− 
i , Ω

+), R(t) = {Pi}. (i.e., Pi is the only releaser throughout Ωi)i 

Proof. Proof of (a): If the PawnSet.promote() operation at time γ returns value 

(⊥, ⊥), then from Claims 4.4.23(g) and 4.4.23(j) it follows that no promotion occurs 

during T , which is a contradiction to f ≥ 1. Thus, the PawnSet.promote() opera­

tion at time γ returns a non-(⊥, ⊥) value. By definition γ is the point when the first 



 

122 

PawnSet.promote() operation occurs, and Ω− 
1 is the point when the first promotion oc­

curs and P1 is the process promoted at Ω− 
1 . Then γ = Ω− 

1 , and P1 is the first promoted 

process. From Claim 4.4.23(e), B is the only releaser of L at the point in time immediately 

before time γ. Then from Claim 4.4.23(i) it follows that B promotes P1 at time γ = Ω− 
1 , 

and B ceases to be a releaser of L at γ, therefore R(γ) = {P1}. From Claim 4.4.23(f) it 

follows that Sync1 = Sync2 = ⊥ at Ω− 
1 . 

From an inspection of the code, a PawnSet.reset() is executed only in line 67, and 

it can be executed only after a PawnSet.promote() is executed in line 65. Since γ is the 

first point when a PawnSet.promote() is executed, it follows that no PawnSet.reset() 

operation was executed during [I0 
−, γ]. 

Proof of (b): Since R(Ω− 
i ) = {Pi}, and Ω+ is the point when Pi ceases to be i 

i , Ω
+ 

i , Ω
+a releaser of L, for all t ∈ [Ω− 

i ), {Pi} ⊆ R(t). To show that for all t ∈ [Ω− ),i 

R(t) = {Pi}, we need to show that no other process becomes a releaser of L, during 

[Ω− 
i ). Suppose some process q = Pi becomes a releaser of L some time during that i , Ω
+ 

interval. Since Ωi 
− 

1 = γ > I2 
−, from Claim 4.4.22(c) it follows that Pi promotes> Ω− 

q during [Ω− 
i ). Then from Claim 4.4.16, Pi’s cease-release event πPi occurs during i , Ω
+ 

i , Ω
+ 

i , Ω
+[Ω− 

i ), and thus Pi ceases to be a releaser of L during [Ω− 
i ). Hence a contradiction. 

Proof of (c): Since i < f, it follows that there exists a process Pi+1 that becomes 

a releaser of L during T . By definition, Pi and Pi+1 are the i-th and (i + 1)-th promoted 

processes during T , respectively. Since Ω− 
i+1 > Ωi 

− 
1 = γ > I2 

−, from Claim 4.4.22(c) > Ω− 

it follows that no other process becomes a releaser after Pi became a releaser and be­

fore Pi+1 becomes a releaser, i.e., during [Ω− 
i+1]. Moreover, since R(Ω−) = {Pi},i , Ω
− 

i 

it follows that the next process to be promoted, i.e., Pi+1, is promoted by the only re­

leaser of L, Pi. Then from Claim 4.4.16, it follows that Pi promotes Pi+1 by executing 

a PawnSet.promote() in line 65 that returns (Pi+1, s), where s ∈ N, and event πPi oc­

t65curs at t65 . Then Pi ceases to be a releaser of L at t65 and thus Ω+ = . i+1i Since Ω− 
Pi Pi Pi 



 

123 

is the point when Pi+1 becomes a releaser of L, it follows that Ω+ = Ω− , and thus i i+1

R(Ω− ) = {Pi+1}.i+1

Proof of (d): We prove by induction that for all k < f, R(Ω− ) = {Pk+1} andk+1

Ω+ = Ω− 
k k+1. 

Basis (k = 1) From Part (a), P1 is the only releaser of L at Ω− 
1 , and clearly f > k = 1. 

Then from Part (c), Ω+ = Ω− 
2 ) = {P2}.1 2 and R(Ω− 

Induction step (k > 1) By definition Pk is the promoted process at Ω− 
k , and since 

|R(Ω+ )| = 1 and Ω+ = Ω− (by the induction hypothesis), it follows that Pk is the k−1 k−1 k 

only releaser of L at Ωk 
− . Then from Part (c), Ω+ = Ω− and R(Ω− ) = {Pk+1}.k k+1 k+1

Proof of (e): From Part (a), R(Ω− 
1 ) = {P1}, and thus from Part (b), for all 

t ∈ [Ω− 
1 , Ω

+), R(t) = {P1}. From Part (d), for all i > 1, R(Ω−) = {Pi}, and thus from 1	 i 

Part (b), for all t ∈ [Ω− 
i , Ω

+), R(t) = {Pi}. Hence, our claim follows. i 

Claim 4.4.26. If I2 = ∅ and R(I0 
−) = ∅ and at time I0 

− , Sync1 = Sync2 = ⊥ and 

PawnSet is candidate-empty, then the following claims hold for all i ∈ {1, . . . , f}: 

0 , Ω
−(a) A PawnSet.reset() operation is not executed during [I− 
i ]. 

(b)	 Pi executes lines of code of lockPi () starting with line 2 as depicted in Figure 4.15. 

(c)	 Pi’s call to lockPi () returns ∞, and Pi finishes lockPi () during T , and Role[Pi] = 

PAWN P when Pi’s call to lockPi () returns. 

(d) Exactly	 one cease-release event among πPi and θPi occurs during Pi’s call to 

doPromotePi (). 

(e)	 Pi executes lines of code of releasePi () starting with line 34 as depicted in Fig­

ure 4.16. 

i , Ω
+
 

< Ω− 34− ≤ I+
 

(f)	 Pi does not write to Sync1 or Sync2 during [Ω− 
i ]. 

(g)	 t2 
Pi i < tPi 

< Ω+ < t49 and Ω+
2i	 Pi i . 



 

124 

? ?

Figure 4.15: Pi’s call to lockPi () 

Figure 4.16: Pi’s call to releasePi () 

(h) If i = f, then a PawnSet.reset() operation is not executed during [I0 
− , Ω+ 

i ]. 

(i) Throughout [γ, Ω+ 
c ], Sync1 = Sync2 = ⊥. 

= t68(j) If f > 1, I2
+ = Ω+ 

c P� 
. 

(k) For all t ∈ [γ, I+), |R(t)| = 1.2 

(l) R(I2
+) = ∅ and at I2

+ , Sync1 = Sync2 = ⊥ and PawnSet is candidate-empty. 

Proof. Proof of (a)-(h): We prove Parts (a)-(h) by induction on i. First, we prove 

Part (a) for i = 1. Second, we show that if Part (a) is true for a fixed i, then Parts (b)-(h) 

are true for i. Finally, we show that if Parts (a)-(h) are true for i, then Part (a) is true 

for i + 1, thus completing the proof. 

From Claim 4.4.25(a), no PawnSet.reset() operation has been executed during 

[I0 
− , Ω− 

1 ]. Hence, Part (a) for i = 1 holds. 

Now we show that if Part (a) is true for a fixed i, then Parts (b)-(h) follow for i. 



125 

Proof of Parts (b) and (c) if Part (a) for i is true: Let q be the process 

that promotes Pi at Ω
− 
i . Then q’s PawnSet.promote() operation in line 65 returned 

value (Pi, s), where s ∈ N, and Ω− = t65 . Then from the semantics of the PawnSet i q 

object it follows that the Pi-th entry of PawnSet was (REG, s) = (1, s) immediately 

before Ω− 
i . Then from Claim 4.4.3(b) it follows that some process (say r) executed 

a PawnSet.collect(A) operation in line 55 where A[Pi] = s. Then from the code 

structure, r read apply[Pi] = (REG, s) in line 52. By Claim 4.4.4(a) apply[Pi] is set to value 

(REG, s) only by process Pi when it executes a successful apply[Pi].CAS((⊥, ⊥), (REG, s)), 

therefore Pi executed the same and broke out of the spin loop of line 2. Note that 

= t65t2 < t52 < Ω− .Pi r i q 

Since Ctr = 0 throughout I0, Ctr = 1 throughout I1 and Ctr = 2 throughout I2, 

it follows that Ctr is increased only at points I− and I− during T . Since K and Q1 2 

are the first two releasers of L and they increased Ctr to 1 and 2, respectively, at I1 
− 

and I−, respectively, it follows that no other process apart from K and Q increases the 2 

value of Ctr during T . Since Ω− ≥ Ω− = γ > I− (by Claims 4.4.23(a) and 4.4.23(d) i 1 2 

and 4.4.25(a)), Pi becomes a releaser of L only after I− (the point at which Q became a 2 

releaser of L). Thus, Pi is not among the first two releasers of L, thus Pi / Then∈ {K, Q}. 

it follows that Pi does not increase Ctr. Therefore Pi’s Ctr.inc() operation in line 5 

returns value 2 = PAWN, and thus Pi sets Role[Pi] to 2 = PAWN in line 5. Then from 

the code structure Pi satisfies the if-condition of line 6 and proceeds to spin in line 7. 

Case a - Pi receives a signal to abort while busy-waiting in line 7: Then Pi 

stops spinning in line 7 and executes abortPi (). Since Pi last set Role[Pi] to PAWN in 

line 5, it then follows from the code structure that Pi proceeds to execute lines 18-20, and 

satisfies the if-condition of line 20, and then executes a PawnSet.abort(Pi, s) operation 

in line 21. 

Since a PawnSet.reset() operation has not been executed during [I0 
− , Ω− 

i ], from 



126 

Claim 4.4.24, it follows that Pi did not execute a PawnSet.abort(Pi, s) operation in 

line 21 during [I0 
− , Ω−], thus t21 > Ω− . Since Pi has exclusive-registration access toi Pi i 

PawnSet during [Ω− 
i , Ω

+ 
i ], and p has not executed any of its cease-release events or reset 

PawnSet during [t2 , t21 ], and t2 < Ω−, it then follows that PawnSet was not reset during Pi Pi Pi i 

[Ω− 
i , t

21 ]. Then since the Pi-th entry of PawnSet was last changed to (PRO, s) = (2, s) atPi 

Ω−, it remains (PRO, s) throughout [Ωi 
−, t21 ]. Then Pi’s PawnSet.abort(Pi, s) operation i Pi 

in line 21 returns false by the semantics of the PawnSet object. Then p satisfies the 

if-condition of line 21, proceeds to set Role[Pi] to PAWN P in line 22, and then returns 

∞ from its call to abortPi () and lockPi (). 

Case b - Pi does not receive a signal to abort while busy-waiting in line 7: 

Recall that process q promotes Pi at Ω
− 
i by executing a PawnSet.promote() operation 

in line 65 that returns value (Pi, s), where s ∈ N. Since processes in the system continue 

to take steps, process q sets its local variable j to value Pi in line 65, and proceeds to 

fail the if-condition of line 66, and then executes line 70 where (j, seq) = (Pi, s). Then q 

executes a apply[Pi].CAS((REG, s), (PRO, s)) operation in line 70. 

Recall that process r read value apply[Pi] = (REG, s) in line 52 and t2 < t52 < Ω− = Pi r i 

t65 . From an inspection of the code, apply[Pi] can change from value (REG, s) only to value q 

(PRO, s) and from value (PRO, s) only to value (⊥, ⊥). Also, apply[Pi] can be changed 

from (PRO, s) to (⊥, ⊥), only if p executes line 32 or 49. Since p is spinning in line 7 it 

follows that a apply[Pi].CAS((PRO, s), (⊥, ⊥)) operation is not executed during (Ω− 
i , t

70),q 

and thus apply[Pi] = i , t
70 
q(REG, s) throughout (Ω− ). Therefore, q executes a successful 

apply[Pi].CAS((REG, s), (PRO, s)) operation in line 70, and thus apply[Pi] = (PRO, s) at 

t70 .q 

Since Pi is busy-waiting in line 7 for apply[Pi] to change to (PRO, s), it then follows 

that Pi busy-waits throughout (Ω
− 
i , t

70), and reads apply[Pi] = (PRO, s) when it executes q 

line 7 for the first time after t70 
q . Then Pi breaks out of the spin loop, and then from 



127 

the code structure, Pi proceeds to set Role[Pi] to PAWN P in line 9, breaks out of the 

role-loop in line 12, executes line 13 and fails the if-condition of line 13, and executes 

lines 16-17, and returns from lockPi () in line 17 with value ∞. Note that Ω− < t9 .i Pi 

Proof of Parts (d), (e) and (f) if Part (a) for i is true: Since Pi is the only 

releaser of L throughout [Ω− 
i i,Ω+) (Claim 4.4.25(e)), it follows from Claim 4.4.13 that Pi 

has exclusive write-access to objects Sync1 and Sync2 and exclusive registration-access 

to PawnSet throughout [Ω− 
i ,Ω

+ 
i ). 

Since Pi returns from its call to lockPi () with value ∞ (by Part (c)), Pi executes a 

call to releasePi () (follows from conditions b and c). 

Since Role[Pi] = PAWN P when Pi’s call to lockPi () returns (by Part (c)), 

34− 49−Role[Pi] = PAWN P at t . Since Role[Pi] is unchanged during [t34 , t ] (follows from Pi Pi Pi 

Claim 4.4.2(b)), it follows from the code structure that during Pi’s call to releasePi (j ), 

Pi only executes lines 34-35, 42 and 45-50. Then Figure 4.16 follows. 

From an inspection of Figures 4.15 and 4.16, Pi does not execute a call to 

helpReleasePi 
() or execute a Ctr.CAS(1, 0) operation in line 36 during releasePi (). 

Then from Claims 4.4.5(a) and 4.4.5(b) Pi’s cease-release events φPi and τPi do not 

occur. Since Pi executes a call to doPromotePi () only in line 46, it follows from 

Claim 4.4.17 that exactly one cease-release event among πPi and θPi occurs during Pi’s 

call to doPromotePi (). Hence, Part (d) follows. Then Ω+ 
i is the point when cease-release 

event πPi or θPi occurs. From an inspection of Figures 4.15 and 4.16 and the code, 

it is clear that Pi does not change Sync1 or Sync2 during lockPi () and releasePi (.) 

Therefore, Pi does not change Sync1 or Sync2 during [Ω− 
i , Ω

+ 
i ]. 

Proof of Part (g) if Part (a) for i is true: As argued in Part (b) and (c), 

t5 < Ω−, and Ω− < t9 or Ω− < t21 . Since t9 < t34 and t21 < t34 , it then follows that Pi i i Pi i Pi Pi Pi Pi Pi 

t5 < Ω− < t34 .Pi i Pi 

From Part (d), exactly one cease-release event among πPi and θPi occurs during Pi’s 



  

 

128 

call to doPromotePi (). If cease-release event θPi occurs then Ω+ 
i is the point when Pi’s 

= t68cease-release event θPi occurs,i.e, Ω
+ 
i Pi 

. Then Pi changes Ctr to 0 and the Ctr-cycle 

= t68interval T ends at Ω+ = I+ .i Pi 2 

If cease-release event πPi occurs then Ω+ 
i is the point when Pi’s cease-release event 

= t65occurs,i.e, Ω+ < I+ .πPi i Pi 2 

Since Pi calls doPromotePi () only in line 46 (by inspection of Figure 4.16), it then 

t65follows that Ω+ ∈ , t68 < t49 . Thus, Part (g) holds. i Pi Pi Pi 

Proof of Part (h) if Part (a) for i is true: As argued in Part (f), exactly one 

cease-release event among πPi and θPi occurs during Pi’s call to doPromotePi (). If cease-

release event θPi occurs then Ωi 
+ is the point when Pi’s cease-release event θPi occurs,i.e, 

Ω+ = t68 = t68 
i Pi 

. Then Pi i , and changes Ctr to 0 and the Ctr-cycle interval T ends at Ω+ 
Pi 

thus f = i. This is a contradiction to the assumption i = f, hence Pi’s cease-release 

event πPi occurs during Pi’s call to doPromotePi (). Then Ω+ 
i is the point when Pi’s 

= t65cease-release event πPi occurs,i.e, Ωi 
+ 

Pi 
. From an inspection of Figures 4.15 and 4.16 

and the code, it follows that Pi does not execute a PawnSet.reset() operation during 

[t2 46− = t65 
Pi 
, tPi 

], and Pi calls doPromotePi () only in line 46. Since Ωi 
+ 

Pi 
, from an inspection 

of the code of doPromotePi (), Pi does not execute a PawnSet.reset() operation during 

65− 68−[tPi 
, tPi 

]. Then Pi does not execute a PawnSet.reset() operation during [Ω− 
ii , Ω
+]. 

Since Pi is the only releaser of i i it fol-L throughout [Ω−,Ω+) (Claim 4.4.25(e)), 

lows from Claim 4.4.13 that Pi has exclusive registration-access to PawnSet throughout 

,Ω+). Then since no PawnSet.reset() operation was executed during [I−[Ω− 
i i 0 , Ωi 

−], and 

Pi does not execute a PawnSet.reset() operation during [Ω− 
ii , Ω
+], it follows that no 

PawnSet.reset() operation is executed during [I0 
− , Ω+ 

i ]. Hence, Part (h) holds. 

Finally, we show that if Parts (a)-(h) are true for i, then Part (a) is true for i + 1, 

thus completing the proof. From Part (h) for i, no PawnSet.reset() operation has been 

Ω−executed during [I0 
− , Ω+ 

i ]. From Claim 4.4.25(d), Ω+ 
i = i+1. Then Part (a) for i + 1 



�

� � �

�

� �

� �

� �

129 

holds.
 

Proof of (i): From Claim 4.4.25(a), Sync1 = Sync2 = ⊥ at Ω− 
1 = γ. From
 

Ω− < Ω+ Ω− < Ω+ Ω−Claims 4.4.25(a) and 4.4.25(d), it follows that γ = = = . . . < 1 1 2 2 3 

Ω+ = Ω− < Ω+ . c−1 c c 

From Claim 4.4.25(e), for all t ∈ [Ω− 
i , Ω

+), R(t) ∈ {Pi}. Then Pi has exclusive i 

write-access to Sync1 and Sync2 throughout [Ω− 
i , Ω

+ 
i ). Since Pi does not change Sync1 

or Sync2 during [Ω− 
i , Ω

+ 
i ] (Part (f)), it then follows that Sync1 = Sync2 = ⊥ throughout 

[Ω− 
1 , Ω

+ 
c ] = [γ, Ω+ 

c ]. 

Proof of (j): As argued in Part (f), exactly one cease-release event among πP 

and θP occurs during Pc’s call to doPromoteP (). If cease-release event πP occurs then 

Pc promotes some process, and thus the number of processes that get promoted during 

T is larger than f, which contradicts the definition of f. Hence, cease-release event θP 

occurs during doPromoteP () and Ω+ 
c is the point when cease-release event θP occurs,i.e, 

Ω+ = t65 
c P . Since Ctr is changed from 2 to 0 when θP occurs, the Ctr-cycle interval T ends 

= t68 = t68at Ω+ 
P , and thus I+ = Ω+ . c 2 c P 

Proof of (k) and (l): 

Case a - f = 0 : Consider the first PawnSet.promote() operation at γ. Since f = 0, 

the PawnSet.promote() operation at γ returns value (⊥, ⊥). Then from Claim 4.4.23(j), 

= t68it follows that B’s cease-release event θB occurs at tt B ≥ γ, and throughout [γ, tt] no 

process is promoted, and for all t ∈ [γ, tt), R(t) = {B}. Since Ctr is changed from 2 to 0 

t68 t68 ttwhen θB occurs, the Ctr-cycle interval T ends at tt = B , and thus I2
+ = B = . Then 

for all t ∈ [γ, tt) = [γ, I+), |R(t)| = 1. 2 

From an inspection of Figure 4.14 and the code, it follows that B executed a 

PawnSet.reset() operation in line 67 during [γ, tt], and thus PawnSet is candidate-empty 

immediately after. Since for all t ∈ [γ, tt), R(t) = {B}, B has exclusive registration-access 

to PawnSet throughout [γ, tt) (follows from Claim 4.4.13). Then it follows that PawnSet 



�

�

� � � �

� �

130 

is candidate-empty at tt = I2
+ . 

Since for all t ∈ [γ, tt), R(t) = {B}, B has exclusive write-access to Sync1 and 

Sync2 throughout [γ, tt) (follows from Claim 4.4.13). Since Sync1 = Sync2 = ⊥ at γ 

(Claim 4.4.23(f)), and B does not write to Sync1 and Sync2 during [γ, tt], it follows that 

Sync1 = Sync2 = ⊥ throughout [γ, tt] = [γ, I2
+]. 

t68Case b - f ≥ 1 : From Part (j), I+ = Ω+ = . Then from Part (i), it follows 2 c P 

that Sync1 = Sync2 = ⊥ throughout [γ, I2
+], and from Claim 4.4.25(e), it follows that 

for all t ∈ [Ω− 
1 , Ω

+] = [γ, I+), |R(t)| = 1. Since Pc ceases to be a releaser of L at Ω+ ,c 2 c 

R(I2
+) = ∅. 

t68Since Ω+ 
c = P , Pi executed line 68 and before that line 67. Hence, Pc executed a 

< Ω+ 34− 34− > Ω−PawnSet.reset() operation at t67 
P c . Since t

67 > t and t cP P P (by Part (g)), 

it follows that t67 > Ω− . Hence, Pc executed a PawnSet.reset() operation at t67 ∈P c P 

[Ω− , Ω+]. Since Pc is the only releaser of L throughout [Ω−,Ω+) (Claim 4.4.25(e)), it c c c c 

follows from Claim 4.4.13 that Pc has exclusive registration-access to PawnSet throughout 

[Ω−,Ω+). Then it follows that PawnSet is candidate-empty at Ω− = I2
+ . c c c 

Claim 4.4.27. R(I0 
−) = ∅ and at I0 

− , Sync1 = Sync2 = ⊥ and PawnSet is candidate-

empty for any Ctr-cycle interval T during history H. 

Proof. Let T k denote the k-th Ctr-cycle interval T during history H. We give a proof by 

induction over the integer k. Basis - At I0 
− for T 1, the claim holds trivially since all 

variables are at their initial values (Sync1 = Sync2 = ⊥ and PawnSet is candidate-empty). 

Induction Step - By the induction hypothesis, at I0 
− for T k−1 , R(I0 

−) = ∅, and 

Sync1 = Sync2 = ⊥ and PawnSet is candidate-empty. Since T k begins immediately 

after T k−1 ends, to prove our claim we need to show that, when T k−1 ends, there are 

no releasers of L and Sync1 = Sync2 = ⊥ and PawnSet is candidate-empty. The time 

interval T k−1 ends either at time I1
+ or time I2

+ . 



 

131 

Case a - T k−1 ends at time I1
+: Then I2 = ∅. From Claim 4.4.21(f) it follows that 

K is the only releaser of L during I1. Since I2 = ∅, it then follows from Claim 4.4.21(e), 

that K’s Ctr.CAS(1, 0) operation in line 36 is successful, and the interval I1 as well as 

T k−1 ends at time t36 Then K’s cease-release event φK occurs at t36 = I1
+, and thus there K . K 

are no releasers of L immediately after T k−1 ends. And from Claim 4.4.21(g), it follows 

that Sync1 = Sync2 = ⊥ and PawnSet is candidate-empty when T k−1 ends. 

T k−1Case b - ends at time I2
+: Then I2 = ∅. Then our proof obligation follows 

immediately from Claim 4.4.26(l). 

Note that in the following claims, notations I0, I1, I2, λ, γ, Ωi, K, Q and Pi are 

defined relative to a Ctr-cycle interval, as was defined previously in pages 106, 115 and 

121. The exact Ctr-cycle interval is clear from the context of the discussion. 

Lemma 4.4.2. The mutual exclusion property holds during history H. 

Proof. For the purpose of a contradiction assume that at time t, two processes (say p 

and q) are poised to execute a call to L.release(). From Claim 4.4.11(b), it follows that 

both p and q are releasers of L at t. Consider the Ctr-cycle interval T such that t ∈ T . 

From Claim 4.4.27 it follows that at I0 
− , Sync1 = Sync2 = ⊥ and PawnSet is candidate-

empty, and R(I0 
−) = ∅. Then from Claims 4.4.21(a), 4.4.21(f), 4.4.23(a), 4.4.23(e) 

and 4.4.23(k), it follows that during T , lock L has two releasers only during [I2 
−, λ). Then 

t ∈ [I−, λ). Also from Claim 4.4.23(a), for all t ∈ [I−, λ), R(t) = {K, Q}. Then {p, q} = 2 2 

{K, Q}. Let p = K and q = Q without loss of generality. 

Recall that I− is the point in time when Q increases Ctr from 1 to 2 and sets Role[Q]2 

to QUEEN in line 5. Since q’s call to lock() returned a non-⊥ value, it follows from an 

inspection of Figure 4.10, that Q returned either in line 17 or line 27. Then Q either 

read a non-⊥ value from Sync1 in line 14 or Q failed the Sync1.CAS(⊥, ∞) operation 

in line 26. Since Sync1 = ⊥ at I− (by Claim 4.4.22(a)), and I− = tQ
5 , it then follows 2 2 



�

132 

that Sync1 is changed to a non-⊥ value during [I2 
−, t]. Clearly, Q does not change Sync1 

during [I2 
−, t]. 

Recall that I1 
− is the point in time when K increases Ctr from 0 to 1 and sets Role[K] 

to KING in line 5. It follows from an inspection of Figure 4.8, that K does not change 

Sync1 during lockK(), and thus during [I1 
−, t]. Since Sync1 is changed to a non-⊥ only 

by a releaser of L (by Claim 4.4.13) and Sync1 = ⊥ at I2 
−, and the only releasers of L 

during [I2 
−, t] do not change Sync1, it then follows that Sync1 = ⊥ throughout [I2 

−, t]. 

Hence, a contradiction. 

Claim 4.4.28. Consider an arbitrary Ctr-cycle interval T . 

(a) If p is collected during T and p does not abort, then p is promoted and notified during 

T . 

(b) If	 apply[p] = (REG, s) at I0 
− , where s ∈ N , and p does not abort and p does not 

increase Ctr, then p is notified during T . 

Proof. Proof of (a): From Claim 4.4.27 it follows that at I0 
− , Sync1 = Sync2 = ⊥ and 

PawnSet is candidate-empty, and R(I0 
−) = ∅. Then from Claim 4.4.23(k), it follows that 

exactly one call to doCollect() is executed during T by a process q ∈ {K, Q}. Since 

processes are collected only during a call to doCollect(), q ∈ {K, Q} collects p during 

doCollectq() during T . And q does so by executing a PawnSet.collect(A) operation 

in line 55, where A[p] = s ∈ N, and sets the p-th entry of PawnSet to (REG, s). Since a 

PawnSet.promote() that returns (⊥, ⊥) is executed at t65 during T , it then follows from P 

the semantics of the PawnSet object that p was promoted during T . Then p = Pi, for 

some i ≤ f. Note that T does not end during [Ω− 
ii , Ω
+). 

We now show that p is also notified of its promotion during T . The process (say r) 

that promoted p by executing a PawnSet.promote() operation in line 65, also goes on 

to notify p of its promotion by executing a apply[p].CAS((REG, s),(PRO, s)) operation in 



133 

line 70. Since p does not abort, it follows from an inspection of Figure 4.15 and the
 

code, that p spins on apply[p] in line 7 until its notification. Then p executes line 9 at
 

t9 > t70 > t65 
p r r =
 Ω
− 

i . Since t
9 < Ω+ and T does not end before Ω+ 
p i i , it follows that p is
 

notified during T . 

Proof of (b): Since p does not increase Ctr it follows that p reads Ctr = 2 every 

p busy-waits in the spin loop of line 7 until the end of T , or if it reads value (PRO, s), for 

Ctr Role PAWN time it executes a operation in line 5, and sets [ ] = in line 5. Then inc() p.

apply Ctrsatisfies the if-condition of line 6 and spins on variables [ ] and in line 7. Sincep p

5 +Ctr Ctris only changed to 0 at the end of T , it follows that = 2 throughout [ , I ). Then t 2p

N∈ ( )apply apply PRO, from [ ] in line 7 during T Now, [ ] is changed to value some s p p , s. 

by some process other than , only if that process notifies , i.e., executes a successful p p

( ) ( )apply REG PRO[ ]. operation in line 70. We now show that is notified CAS( )p , s , s p,

− ⊥Sync1 Sync2 PawnSet and is candidate-= =,0 

during T . 

From Claim 4.4.27 it follows that at I


empty, and R(I
−)0 =
 ∅.
 Then from Claim 4.4.23(k), it follows that exactly one call to
 

doCollect() is executed during T by a process q ∈ {K, Q}. Consider the point when
 

q reads apply[p] in line 52. If q reads a value different from (REG, s), then some process
 

must have notified p during [t2 
p, t

52 
q ], and since I
− 

0 < t2 
p and t52 

q ∈ T , our claim holds. 

If q reads the value (REG, s) from apply[p], then q collects p during T by executing a 

PawnSet.collect(A) operation, where A[p] = s, in line 55 during T . Thus, our claim 

follows from Part (a). 

Claim 4.4.29. If p registered itself in line 2, and incurred O(1) RMRs in the process, 

and p does not abort, and all processes in the system continue to take steps, then 

(a) p finishes its call to lockp() and returns a non-⊥ value. 

(b) p incurs O(1) RMRs in expectation during its call to lockp(). 



134 

Proof. Proof of (a) and (b): From an inspection of the code of lockp(), p incurs 

a constant number of RMRs while executing all other lines of lockp() except while 

busy-waiting in lines 2, 7 and 14. 

Consider p’s call to lockp(). By assumption of the claim, p registered itself in 

line 2 by executing a successful apply[p].CAS((⊥, ⊥),(REG, s)) operation in line 2, and 

incurred O(1) RMRs in the process. Then p proceeds to execute a Ctr.inc() operation 

in line 5, and stores the returned value in Role[p]. A Ctr.inc() operation returns values in 

{KING, QUEEN, PAWN, ⊥}. If it returns ⊥, p repeats the role-loop, and executes another 

Ctr.inc() operation in line 5. From Claim 4.1.2, it follows that p repeats the role-loop 

only a constant number of times before its Ctr.inc() operation returns a non-⊥ value. 

Case a - p executes a Ctr.inc() operation in line 5 that returns KING. Then p 

sets Role[p] = KING in line 5. Then from the code structure p does not busy-wait on 

any variables, and proceeds to return ∞ in line 17, and thus incurs only O(1) RMRs. 

Hence, (a) and (b) hold. 

Case b - p executes a Ctr.inc() operation in line 5 that returns QUEEN. Then p 

increments Ctr from 1 to 2 in line 5 and sets Role[p] = QUEEN in line 5. Then from 

the code structure p proceeds to busy-wait on Sync1 in line 14. Since p increased Ctr 

− 
2from 1 to 2, t14 

p 

− 
0 , Sync1 

= I
 for some Ctr-cycle interval T .
 From Claim 4.4.27 it follows that at
 

− 
0 )
 =
 ∅.
 Then from
 I
 Sync2
 ⊥ and PawnSet is candidate-empty, and R(I
=
 =
 

Claim 4.4.22(g) it follows that p does not starve in line 14. Since p does not abort, it 

follows from an inspection of Figure 4.10 and the code, that p returns a non-⊥ value in 

line 17, and p does not change Sync1. Hence, we have shown that Part (a) holds. Apart 

from p, the only releasers of L during T are {K, P1, . . . , Pc}, where f is the number of 

promotions during T . From an inspection of Figures 4.8, 4.9, 4.15, 4.16 and the code, 

it follows that only K possibly writes a non-⊥ value to Sync1 during T in line 37. Since 

Sync1 is written to only be a releaser of L, and t14 
p ∈ T , it then follows that Sync1 is 



 

135 

changed to a non-⊥ value at most once during T . Then p incurs at most one RMR while 

busy-waiting on Sync1. Hence, we have shown that Part (b) holds. 

Case c - p executes a Ctr.inc() operation in line 5 that returns PAWN. Then p found 

Ctr to be 2 in line 5 and set Role[p] = PAWN in line 5. Then from the code structure p 

proceeds to busy-wait on apply[p] and Ctr in line 7. 

We now show that p does not starve while busy-waiting in line 7. Since Ctr = 2 at 

5, it follows that t
5 
p ∈ T for some Ctr-cycle interval T .
t
p

(REG, s) at I− 
0

Claim 4.4.28(b), is notified during T Since is notified during T and does not abort, p p p. 

( )apply PRO applyonly by , it then follows that [ ] remains when reads [ ] for the first p p , s p p

applytime after was notified. Then incurs one RMR when it reads [ ] in line 7 afterp p p

it follows that p does not change apply[p], and thus apply[p] is changed from (REG, s) to 

(PRO, s) when p is notified. Since apply[p] is changed from (PRO, s) to some other value 

its notification, breaks out of the spin loop of line 7, proceeds to satisfy the if-condition 

of line 8, and sets Role[p] = PAWN P in line 9, and proceeds to return ∞ in line 17. Then 

we have shown Parts (a) and (b) hold. 

during T , for some s ∈ N.
Subcase (i) - apply[p]
 Then from
 =
 

0(REG, s) at I− 

only call to doCollect() during T by q ∈ {K, Q}. If p registered itself (i.e., executed its 

apply[p].CAS((⊥, ⊥),(REG, s)) operation in line 2) before q reads apply[p] in line 52 during 

doCollectq()), then q collects p during T . Then from Claim 4.4.28(a), p is collected 

and promoted during T , and eventually notified. Then Parts (a) and (b) hold as argued 

in Subcase (i). 

If p registers itself after q attempts to acknowledge p during T , then no process changes 

apply[p] during T . Then p continues to busy-wait in line 7, until the Ctr-cycle interval T 

ends and Ctr is reset to 0. 

If Ctr is increased to 2 before p reads Ctr again in line 7, then let T t be the Ctr-cycle 

during T , for some s ∈ N.
Subcase (ii) - apply[p]
 Consider the
 =
 



 

136 

interval that starts when Ctr was reset to 0 at the end of T . Since apply[p] was changed 

to a non-(REG, s) value before the start of T t, it follows that apply[p] = (REG, s) at the 

start of T t . Then from Claim 4.4.28(b), p is acknowledged, collected, promoted during 

T t, and eventually notified. Then Parts (a) and (b) hold as argued in Subcase (i). 

If Ctr = 2 when p reads Ctr again in line 7, then p incurs one RMR in line 7, breaks out 

of the spin loop, and proceeds to execute line 8. If p satisfies the if-condition of line 8, then 

p has been acknowledged during some Ctr-cycle interval T tt . Then from Claim 4.4.28(a), 

p is collected, promoted during T tt , and eventually notified. Then Parts (a) and (b) 

hold as argued in Subcase (i). If p fails the if-condition of line 8, then p proceeds to 

repeat the role-loop. Consider p’s second iteration of the role-loop. If p sets Role[p] = 

{KING, QUEEN} in line 5, then Parts (a) and (b) hold as argued in Case a and Case 

b. If p sets Role[p] = PAWN in line 5, then it follows that tp 
5 ∈ T ttt, for some Ctr-cycle 

interval T ttt, such that apply[p] = (REG, s) at I− for T ttt . Parts (a) and (b) hold as argued 0 

in Case c(i). 

Lemma 4.4.3. If all processes in the system continue to take steps and p does not abort, 

then 

(a) p finishes its call to lockp() and returns a non-⊥ value. 

(b) p incurs O(1) RMRs in expectation during its call to lockp(). 

Proof. From an inspection of lockp(), p incurs a constant number of RMRs while exe­

cuting all other lines of lockp() except while busy-waiting in lines 2, 7 and 14. 

Consider p’s call to lockp(). Process p first attempts to register itself in line 2, 

by attempting to execute an apply[p].CAS((⊥, ⊥),(REG, s)) operation. Now, apply[p] is 

changed from (⊥, ⊥) to a non-(⊥, ⊥) value only by p (Claim 4.4.4(a)). If apply[p] = (⊥, ⊥) 

at t2− , then p executes a successful apply[p].CAS((⊥, ⊥), (REG, s)) operation in line 2 p 



 

 

 

137 

and incurs only one RMR. Then our claims follow immediately from Claims 4.4.29(a)
 

and 4.4.29(b). 

If apply[p] = (⊥, ⊥) at t2−, it follows that some process pt executed a successful ap­p 

ply[p].CAS((⊥, ⊥), (REG, st)) in line 2 during lockp(), and apply[p] = (⊥, ⊥) throughout 

[t2 t 
p ' , t

2
p 
−]. Since calls to lockp() are not executed concurrently, it follows that p has 

completed its call to lockp() during [t2 
p ' , t

2
p 
−]. 

Case 1 - pt’s call to lockp() returned ⊥. Then it follows from the code struc­

ture that pt executed a call to abortp() and returned from line 18 or 33. Since p ex­

ecuted a successful apply[p].CAS((⊥, ⊥), (REG, st)) in line 2, pt could not have aborted 

while busy-waiting on line 2, and thus pt aborted while busy-waiting in line 7 or 14. 

Then pt executed line 3, and set its local variable pt.f lag to true, and thus p could 

not have returned ⊥ from line 18 during abortp(). Then pt returned ⊥ in line 33, 

and thus pt executed operations apply[p].CAS((REG, st),(PRO, st)) (in line 19), and ap­

ply[p].CAS((PRO, st),(⊥, ⊥)) (in line 32). Since, apply[p] can be changed from (REG, st) 

only to (PRO, st), and from (PRO, st) only to (⊥, ⊥), it then follows that pt executes a 

successful apply[p].CAS((PRO, st),(⊥, ⊥)) (in line 32). Then pt eventually resets apply[p] 

during its lockp() call. Since apply[p] = (⊥, ⊥) throughout [t2 
' , t2−] and pt completed its p p 

call to lockp() during [t2 
p ' , t

2
p 
−], we have a contradiction. 

Case 2 - pt’s call to lockp() returned a non-⊥ value. Then from the code structure 

pt executed operations apply[p].CAS((REG, st),(PRO, st)) (in line 16 or line 19) before 

returning from its call to lockp(). Since apply[p] can be changed from (REG, st) only 

to (PRO, st), and from (PRO, st) only to (⊥, ⊥) and only by a process with pseudo-

ID p, it then follows that apply[p] = (PRO, st) when pt’s lockp() returns. Then it 

also follows that apply[p] = (PRO, st) until a process with pseudo-ID p executes an ap­

ply[p].CAS((PRO, st),(⊥, ⊥)) operation. 

Since pt won the lock L, it follows that some process, say r, eventually executes 



138 

a call to releasep(j ), for some integer j. Since a call to releasep(j ) is wait-free 

and all processes continue to take steps, it follows that eventually r executes lines 48 

and 49 where it reads value (PRO, st) from apply[p] in line 48 and resets apply[p] with a 

apply[p].CAS((PRO, st),(⊥, ⊥)) operation in line 49. Since p does not abort, and no other 

process calls lockp() concurrently, it then follows that eventually p executes a successful 

apply[p].CAS((⊥, ⊥),(REG, s)) operation in line 2. Since apply[p] changed only once from 

(PRO, st) to (⊥, ⊥) while p busy-waited in line 2, it follows that p incurs O(1) RMRs 

during the entire process. Then our claims follow immediately from Claims 4.4.29(a) 

and 4.4.29(b). 

Lemma 4.4.4. The abort-way is wait- free. 

Proof. The abort-way is defined to be all steps taken by a process (say p) after it receives 

a signal to abort and breaks out of one of the busy-wait cycles of lines 2, 7 or 14. After p 

breaks out of one of the busy-wait cycles of lines 2, 7 or 14 p executes a call to abortp(). 

If p’s call to abortp() returns ⊥, then p’s passage ends, or else p’s lockp() returns 

non-⊥ value and p calls releasep() and p’s passage ends when the releasep() method 

returns. Since abortp() and releasep() are both wait-free (by Lemma 4.4.1), our claim 

follows. 

Lemma 4.4.5. The starvation freedom property holds during history H. 

Proof. Consider a process p that begins to execute its passage. From Lemma 4.4.3(a), it 

follows that if p does not abort during lockp() and all processes continue to take steps 

then p eventually returns from lockp() with a non-⊥ value. Then p eventually calls 

releasep(), and since releasep() is wait-free, p eventually completes its passage. If 

p receives a signal to abort during lockp(), then p executes its abort-way. Since the 

abort-way is wait-free (by Lemma 4.4.4), p eventually completes its passage. 



139 

Lemma 4.4.6. If a call to releasep(j ) returns true, then there exists a concurrent call 

to lock() that eventually returns j. 

Proof. The only operations that write a value to Sync1 are Sync1.CAS(⊥, ∞) in 

line 26, and Sync1.CAS(⊥, j) in line 37. From Claim 4.4.13, Sync1 is written 

to only by a releaser of L. From Claim 4.4.27 it follows that at I0 
− , Sync1 = 

Sync2 = ⊥ and PawnSet is candidate-empty, and R(I0 
−) = ∅. Then from 

Claims 4.4.21(a), 4.4.21(f), 4.4.23(a), 4.4.23(e), 4.4.26(k), and 4.4.26(l), the only releasers 

of L during a Ctr-cycle interval T , are {K, Q, P1, . . . , Pc}. Then from an inspection of 

Figures 4.8, 4.8, 4.10, 4.11, 4.15 and 4.16, it follows that only K and Q can write to Sync1 

during Ctr-cycle interval T . 

Since p returns true, it then follows from an inspection of the code that p executed 

a successful Sync1.CAS(⊥, j) operation in line 37, and thus failed the Ctr.CAS(1, 0) op­

eration in line 36 and Role[p] = p . Then p = K for some Ctr-cycle interval KING at t36 

T . Since K failed the Ctr.CAS(1, 0) operation in line 36, it then follows that Ctr was 

increased to 1 by process Q during T , and I2 
− = tQ 

5 < t36 
K . Since I1 

− = tK 
5 and I− < I2 

− ,1 

it then follows that Q’s lockQ() call is concurrent to K’s releaseK(j ) call. 

From Claim 4.4.27 it follows that at I0 
− , Sync1 = Sync2 = ⊥ and PawnSet is candidate-

empty, and R(I0 
−) = ∅. Then from Claim 4.4.23(a), Sync1 = ⊥ at I2 

−, and K and Q are 

the only two releasers of L during [I2 
−, λ), where λ is the first point in time when T is 

K ,t
56changed to a non-⊥ value, and λ = min(t56 
Q ). 

Now, Sync1 is reset only in line 58, and since t58 > t56 ≥ λ and t58 > t56 ≥ λ, it K K Q Q 

then follows that K and Q do not reset Sync1 during [I−, λ]. Since K and Q are the only 2 

processes with write-access to Sync1, Sync1 is not reset during [I2 
−, λ]. 

Consider Q’s lock() call (see Figure 4.10). Since K executed a successful 

Sync1.CAS(⊥, j) operation and Sync1 is not reset during [I2 
−, λ], it then follows that 

if Q executes the Sync1.CAS(⊥, ∞) operation in line 26, then the operation fails. From 



140 

an inspection of Figure 4.10, Q either returns from its lock() call in line 17 or line 27. In 

both these lines, Q returns the non-⊥ value stored in Sync1. Since K is the only process 

apart from Q that can write to Sync1 Q returns the value j that K wrote during its 

releaseK(j ) call. 

The following theorem follows from Lemmas 4.4.1-4.4.6. 

Theorem 4.4.1. Object RandALockArray is an implementation of type 

TransferableAbortableLock and satisfies mutual exclusion, starvation freedom, bounded 

exit, and bounded abort properties against the weak adversary. The object requires O(n) 

CAS objects and read-write registers. 

Now consider an implementation of object RandALockArray, where instance PawnSet 

is implemented using object SFMSUnivConst(AbortableProArray ), and the operations in n

lines 55, 61, 65, 64, and 67 are executed using the performFast() method, while the 

operation in line 21 is executed using the performSlow(). 

Claim 4.4.30. Lines 64,65, 67 of doPromote(), all lines of doCollect(), and lines 57­

62 are not executed concurrently. 

Proof. From Claim 4.4.11(b), it follows that only a releaser of L can exe­

cute any of these lines. From Claim 4.4.27 it follows that at I0 
− , Sync1 = 

Sync2 = ⊥ and PawnSet is candidate-empty, and R(I0 
−) = ∅. Then from 

Claims 4.4.21(a), 4.4.21(f), 4.4.23(a), 4.4.23(e), 4.4.26(k), and 4.4.26(l) it follows that L 

has more than one releaser only during [I2 
−, λ) for some Ctr-cycle interval T . More specifi­

cally, there are two releasers of L only during [I2 
−, λ), and the releasers are K and Q. From 

Claim 4.4.23(k) it follows that a doCollect() is executed only by K or Q but not both. 

Then it follows immediately that lines of doCollect() are not executed concurrently. 

K , t
56Since λ = min(t56 
Q ), it follows from an inspection of Figures 4.8, 4.9, 4.10, 4.11 and 



141 

the code, that processes K and Q have not executed a call to doPromote() or lines 57-62 

of helpRelease(), before t56 and t56 respectively. Then none of the lines chosen in the K Q 

claim are executed concurrently, and thus our claim holds. 

Lemma 4.4.7. (a) helpReleasep() and doPromotep() have an RMR complexity of 

O(1). 

(b)	 doCollectp() has an RMR complexity of O(n). 

(c)	 abortp() has an RMR complexity of O(n). 

(d) If	 a call to releasep(j ) returns true, then p incurs O(n) RMRs during 

releasep(j ). 

(e) If	 a call to releasep(j ) returns false, then p incurs O(1) RMRs during 

releasep(j ). 

Proof. Proof of (a) and (b): As per the properties of object SFM­

SUnivConst(AbortableProArray ) (Theorem 4.2.2), an operation performed using then

performFast() method has O(1) RMR complexity, as long as it is not executed concur­

rently with another performFast() method call. Since PawnSet is an instance of object 

SFMSUnivConst(AbortableProArray ), where operations in lines 55, 61, 65, 64, and 67 n

are executed using the performFast() method, and each of these operations are not 

executed concurrently (by Claim (4.4.30)), it then follows that all of these operations 

have O(1) RMR complexity. Then Part (a) follows immediately from an inspection of 

methods helpRelease() and doPromote(). Since method doCollect() has a loop of 

size n that incurs a constant number of RMRs in each iteration, Part (b) follows. 

Proof of (c), (d) and (e): As per the properties of object SFM­

SUnivConst(AbortableProArray ) (Theorem 4.2.2), an operation performed using then

performSlow() method has O(n) RMR complexity, where n is the maximum number 

of processes that can access the object concurrently. Since the operation in line 21 is 



142 

executed using the performSlow() method, the operation has O(n) RMR complexity. 

Since helpRelease() and doPromote() have an RMR complexity of O(1) (by Part (a)), 

and doCollect() has an RMR complexity of O(n) (by Part (b)), it then follows from 

an inspection of abort(), that a call to abort() has an RMR complexity of O(n). Thus 

Part (b) follows. 

If a call to releasep(j ) returns true, then p does execute a call to doCollectp() 

in line 38, else it does not. Then from an inspection of releasep(j ), Parts (d) and (e) 

follow immediately. 

The following theorem follows from Theorem 4.4.1 and Lemma 4.4.7. 

Theorem 4.4.2. Object RandALockArray, where instance PawnSet is implemented 

using object SFMSUnivConst(AbortableProArray ), is an implementation of type n

TransferableAbortableLock and satisfies the following properties against the weak adver­

sary for the CC model: 

(a) Mutual exclusion, starvation freedom, bounded exit, and bounded abort. 

(b) The abort-way has O(n) RMR complexity. 

(c) If a process does not abort during a lock() call, then it incurs O(1) RMRs in ex­

pectation during the call, otherwise it incurs O(n) RMRs in expectation during the 

call. 

(d) If a process’ call to release(j ) returns false, then it incurs O(1) RMRs during the 

call, otherwise it incurs O(n) RMRs during the call. 

The object requires O(n) CAS objects and read-write registers. 



143 

4.5 Tree based Randomized Abortable Lock 

In this section we specify, implement, and prove properties of our N process abortable 

lock object RandALockTree, where N is the maximum number of processes that can access 

the lock concurrently. Object RandALockTree is a tree based randomized implementation 

of type AbortableLock. An algorithm that accesses an instance of object RandALockTree 

must satisfy the following: 

Condition 4.5.1. (a) A process calls method release() if and only if its last access of 

the lock object was a successful lock() call. 

(b) Methods	 lockp() and releasep() are called only by process p, where p ∈ 

{0, . . . , N − 1}. 

Since we have N processes, for convenience we assume (w.l.o.g.) that N = ΔΔ−1 for 

some positive integer Δ. Then it follows that Δ = Θ(log N/ log log N). An execution of 

an algorithm that accesses an instance of an object RandALockTree where Condition 4.5.1 

is satisfied, has the following properties: 

(a) Mutual exclusion, starvation freedom, bounded abort and bounded exit hold. 

(b) The abort-way has O(Δ) RMR complexity. 

(c) Process p incurs O(Δ) RMRs in expectation during lockp(). 

(d) Process p incurs O(Δ) RMRs during releasep(). 

4.5.1 High Level Description 

We now describe the implementation of object RandALockTree (see Figure 4.17). Simi­

larly to many mutual exclusion locks, our object uses an arbitration tree. Each process 

starts at a leaf of the arbitration tree and moves up the tree to the root, locking nodes 



144 

on its path. Once a process locks the root, it can enter the Critical Section. Each node 

of the arbitration tree contains a single instance of the abortable randomized lock object 

RandALockArray. An instance of object RandALockArray at every node serves as a lock 

object of the node, while also providing processes the ability to abort their attempt at 

any point in time during their ascent to the root node. 

Shared Data Structure - The Arbitration Tree. The data structure underlying 

the algorithm is a complete Δ-ary tree T of height Δ with N leaves, called the arbitration 

tree. The internal nodes of the arbitration tree T is a structure of type Node that consists 

of a single instance of a RandALockArray object, L (see Figure 4.17). The N processes in 

the system line up as N unique leaf nodes, such that each process p is associated with a 

unique leaf leafp in the tree. We say that a node is at level i if its height is i, where the 

root has height Δ and the leaves of the tree have height 0. 

Let pathp denote the path from leafp up to root, and hu denote the height of node u. 

We assume that the tree structure T provides a function nodeOnPath(), such that, for a 

leaf node leaf and integer f, the function nodeOnPath(leaf , f) returns a pair (u, i), where 

u is the f-th node on the path from leaf to the root node, and i is the index of the child 

node of u that lies on the path. 

Owning and Transferring a node. Consider a node u on pathp of some process p. 

Process p is said to capture lock u.L if its call to u.L.lock() returns a non-⊥ value. Process 

p is said to release lock u.L if p executes a call to u.L.release(). Process p is said to hand 

over all nodes from node v to u on pathp to a process q, if p executes a v.L.release(j ) 

call that returns true, where j = hu ≥ hv and q executes a concurrent v.L.lock() 

call that returns j. Process p hands over node u so that some other process can call 

u.L.release() on p’s behalf. Recall that method release() of object RandALockArray 

has O(1) RMR complexity if the method returns false, and O(Δ) RMR complexity if 



145 

Class RandALockTree
 

define Node: struct {
L: RandALockArray 

}
shared: 
T : complete Δ-ary tree of height Δ and node type Node 

local: 
v: Node init ⊥,
 
i, f, k: int init 0,
 
abort signal: boolean init false,
 

Method lockp() 

1 while f < T .height do 
2 (v, i) ← T .nodeOnPath(leafp, f + 1) 
3 val ← v.L.locki() 
4 if val = ∞ then f ← f + 1 
5 if val /∈ {⊥, ∞} then f ← val 
6 if abort signal = true then 
7 releasep() 
8 return ⊥ 
9 end 

10 end 
11 return ∞ 

Method releasep() 

12 while k ≤ f do 
13 (v, i) ← T .nodeOnPath(leafp, k) 
14 if v.L.releasei(f) then break 
15 k ← k + 1 
16 end 

Figure 4.17: Implementation of Object RandALockTree
 



146 

the method returns true. Handing over nodes helps bound the RMR complexity of the 

release() method of object RandALockTree to O(Δ) RMR complexity. Process p starts 

to own node u when p captures u.L or when p is handed over node u from the previous 

owner of node u. Suppose p owns all nodes on pathp up to node u. Process p ceases to 

own node u if p releases u.L or if p hands over node u to some other process. We prove 

that at any point in time there is at most one process that owns a node u, and thus we 

refer to that process by owneru. 

Lock capture protocol - lockp(). The lock capture protocol executed during 

lockp() is as follows. Process p climbs up the tree on its path starting from leaf node 

leafp to the root node of T , and attempts to capture every node that it does not own, as 

long as p has not received a signal to abort. Process p attempts to capture a node u by 

executing a call to u.L.lock(). If p’s u.L.lock() call returns ∞ then p is said to have 

captured u, and if the call returns an integer j, then p is said to have been handed over 

all nodes from u to v on pathp, where hv = j. We ensure that j ≥ hu. 

Process p can enter its Critical Section when it owns the root node of T . Process p 

may receive a signal to abort during a call to u.L.lock() as a result of which p’s call to 

u.L.lock() returns either ⊥ or a non-⊥ value. In either case, p then calls releasep() 

to release all locks of nodes that p has captured in its passage, and then returns from its 

lockp() call with value ⊥. 

Lock release protocol - releasep(). An exiting process p releases all nodes that 

it owns during releasep(). Process p is said to release node u if p releases u.L (by 

executing u.L.release() call), or if p hands over node u to some other process. Recall 

that p hands over node u if p executes a v.L.release(j ) call that returns true where 

hv ≤ hu ≤ j. 

Let s be the height of the highest node p owns. During releasep(), p climbs up 



 

147 

T and calls u.L.releasep(s) at every node u that it owns, until a call returns true. 

If a u.L.releasep(s) call returns false, then p is said to have released lock u.L (and 

therefore released node u), and thus p continues on its path. If a u.L.releasep(s) call 

returns true, then p has handed over all remaining nodes that it owns to some process 

that is executing a concurrent u.L.lock() call at node u, and thus p does not release any 

more node. 

Notice that our strategy to release node locks is to climb up the tree until all node 

locks are released or a hand over of remaining locks is made. Climbing up the tree is 

necessary (as opposed to climbing down) in order to hand over node locks to a process, 

say q, such that the handed over nodes lie on pathq. There is however a side effect of 

this strategy which is as follows: Suppose p owns nodes v and u on pathp such that 

(u, i) = nodeOnPath(leafp,hu) and v is the i-th child on node u. Now suppose p releases 

lock v.L at node v. Since the lock at node v is now released, some process r = p may now 

capture lock v.L and then proceed to call u.L.locki(). If process p has not yet released 

u.L by completing its call to u.L.releasei(), then we have a situation where a call to 

u.L.locki() is made before a call to u.L.releasei() is completed. Since there can be at 

most one owner of lock v.L there can be at most one such call to u.L.locki() concurrent 

to u.L.releasei(). This is precisely the reason why we designed object RandALockArray 

to be accessed by at most n + 1 processes concurrently. 

4.5.2 Implementation / Low Level Description
 

We now describe the implementation of object RandALockTree (see Figure 4.17).
 

Description of the lockp() method. Suppose process p executes a call to lockp(). 

With every iteration of the while-loop, process p captures at least one node on its path 

from leafp to T .root. Suppose p executes an iteration of while-loop (lines 1-10) and fp = k 

at line 1 for some arbitrary integer k. In line 2, process p determines the k-th node (say 



148 

u) on pathp and the index (say r) of u’s child node that lies on pathp, and stores them 

in local variables vp and ip. The variables vp and ip are unchanged during the rest of the 

iteration. In line 3, process p attempts to capture u.L, and thus node u by executing a 

call to u.L.lock() with pseudo-ID r. If p’s u.L.lockr() returns an integer value (say j) 

then p has been transferred all nodes on its path up to height j (we ensure j ≥ hu). If 

p’s u.L.lock() returns ∞ then p has captured lock u.L. In lines 4 and 5, p stores the 

height of the highest captured node in its local variable fp. In line 6, p checks whether it 

has received a signal to abort. In this case p releases all its captured nodes by executing 

a call to releasep() in line 7 and then returns from its call to lockp() in line 8 with 

value ⊥. Otherwise p continues its while-loop. On completing its while-loop, p owns the 

root node, and thus returns with value ∞ in line 11 to indicate a successful lock() call. 

Description of the releasep() method. Suppose process p executes a call to 

releasep(). Let s be the highest node p owns at the beginning of releasep(). We 

later prove that hs = fp. During an iteration of the while-loop (lines 12-16), process p 

either releases a node on its path from leafp to s, or p hands over all remaining nodes 

that it owns to some process. 

Consider the execution of an iteration of the while-loop where kp = t at line 12 for 

some integer t ≤ hs. In line 13, process p determines the t-th node (say u) on pathp and 

the index (say r) of u’s child node that lies on pathp, and stores them in local variables 

vp and ip. In line 14, process p releases u.L, and thus node u, by executing a call to 

u.L.release(hs) with pseudo-ID r. If p’s u.L.releaser(hs) returns false then p has 

successfully released lock u.L, and thus node u. If p’s u.L.releaser(hs) returns true 

then p has successfully handed over all nodes from u to s on pathp to some process that 

is executing a concurrent call to u.L.lock(). If p has handed over all its nodes, then p 

breaks out of the while-loop in line 14, and returns from its call to releasep(). If p has 



149 

not handed over all its nodes then p increases kp in line 15 and continues its while-loop. 

4.5.3 Analysis and Proofs of Correctness 

In this section, we formally prove all properties of RandALockTree as stated in Subsec­

tion 4.5, for the CC model. We start by defining some notation and terminology. 

Notations and Definitions. Let H be an arbitrary history of an algorithm that ac­

cesses an instance L of object RandALockTree where Condition 4.5.1 is satisfied. Consider 

an arbitrary node u on the tree T . Let hu denote the height of node u. 

A node u is said to be handed over from process p to process q, when p executes a 

v.L.release(j ) call that returns true, where j ≥ hu > hv and q executes a concurrent 

v.L.lock() call that returns j. Process p is said to start to own node u when p captures 

u.L or when it is handed over node u from the previous owner of node u. Process p ceases 

to own node u when p releases u.L, or when p hands over node u to some other process. 

Claim 4.5.1. Consider an arbitrary process p and some node u on pathp. 

(a) If p executes a u.L.lock() operation that returns value j /∈ {⊥, ∞}, then j ≥ hu. 

(b) The value of fp is increased every time p writes to it. 

(c) If fp = k, then process p owns all nodes on pathp up to height k. 

Proof. Proof of (a) : Then from the the properties of object RandALockArray (The­

orem 4.4.2), it follows that some process (say q) executed a concurrent u.L.release(j ) 

operation. Then from the code structure, q executed a u.L.release(j ) in line 14, where 

fq = j. Then q also executed a T .nodeOnPath(leafq, k) operation in line 13 that returned 

(u, i), for some i, such that hu = kq (from the semantics of the nodeOnPath() method). 

Since j = fq ≥ kq = hu, our claim follows. 

Proof of (b): Process p writes to its local variable fp only in lines 4 and 5. Clearly, 

p increases fp every time it executes line 4. Now, suppose p executes line 5 where it writes 



150 

the value of valp to fp, where vp = u, for some node u. Since p satisfies the if-condition 

of line 5 and the RandALockArray method lock() only returns a value in {⊥, ∞} ∪ N, 

it follows that p’s call to u.L.lock() returned a non-{⊥, ∞} value. Then from Part (a), 

valp ≥ hu. Since p also executed a T .nodeOnPath(leafp, b) operation in line 2, where 

b = fp + 1 that returned (u, i), for some i, such that hu = b (from the semantics of the 

nodeOnPath() method), it follows that valp ≥ hu = fp + 1. Then, p increases fp when p 

writes valp to fp in line 5. 

Proof of (c): Let ti be the point in time such that p writes to its local variable fp 

for the i-th time. We prove our claim by induction over i 

Basis (i = 0): Since the initial value of fp is 0 and fp is written to for the first time 

only at t1 > t0, the claim holds. 

Induction step (i > 0): Let the value of fp be j after the (i−1)-th write to it. Then 

from the induction hypothesis, p owns all nodes on pathp up to height j. Consider the 

iteration of the while-loop during which p writes to fp for the i-th time, and specifically 

the T .nodeOnPath(leafp, f + 1) operation in line 2. Since fp = j, at the beginning of 

this while-loop iteration, it follows from the semantics of the nodeOnPath() operation, 

that the operation returned the pair (u, i), for some i, where hu = j + 1. Now, process p 

writes to its local variable fp only in lines 4 and 5. 

Case a - p writes to fp in line 4. Then p increased fp from j to j + 1 in line 4. Then, 

to prove our claim we need to show that p owns the node with height j +1 on pathp. Since 

p satisfies the if-condition of line 4, it follows from the code structure that p’s u.L.lock() 

method in line 3 returned the special value ∞, where vp = u. Since hu = j + 1, and p 

successfully captured lock u.L, it follows that p owns the j + 1-th node on pathp. 

Case b - p writes to fp in line 5. Let valp = x when p writes to fp in line 5. 

From Part (b), it follows that fp is increased every time it is written to, and therefore 

valp = x > fp when p writes to fp in line 5. Thus, to prove our claim we need to show 



 

151 

that p owns all nodes on path with heights in the range {j, . . . , x}. Since p satisfies the p 

if-condition of line 5 and the RandALockArray method lock() only returns a value in 

{⊥, ∞} ∪ N, it follows that p’s call to u.L.lock() returned a non-{⊥, ∞} value. Thus, 

p has captured u.L and now owns node u. It also follows that p has been handed over 

all nodes on pathp with heights in the range {hu + 1, . . . , x}. Since hu = j, our claim 

follows. 

A process is said to attempt to capture node u if it executes a u.L.lock() method in 

line 3. 

Claim 4.5.2. (a) If two distinct processes p and q attempt to capture node v, then their 

local variables i have different values. 

(b) A node has at most one owner at any point in time. 

Proof. We prove our claims for all nodes of height at most h, by induction over integer 

h. 

Basis (h = 1) Consider an arbitrary node u of height 1, such that two distinct 

processes p and q attempt to capture node u. Then processes p and q executed a 

nodeOnPath((leafp, 1)) and nodeOnPath((leafq, 1)) in line 2, and received pairs (u, i) 

and (u, j), and set their local variables ip and iq to i and j respectively. Since p and q 

are distinct, leafp and leafq are distinct leaf nodes of tree T, and thus from the semantics 

of the nodeOnPath() method it follows that i = j, and thus Part (a) follows. 

Consider an arbitrary node u of height 1. From Part (a), it follows that no two 

processes execute a concurrent call to u.L.locki() for the same i, and thus it follows 

from the mutual exclusion property of object RandALockArray, that at most one process 

captures u.L. By definition, a process can become an owner of node u only if it captures 

u.L or if it is handed over node u from some other process q. If a node u is handed over 

from some other process q, then q also ceases to be the owner of node u at that point,
 



152 

and thus the number of owners of u does not increase upon a hand over. Thus it follows 

that node u has at most one owner at any point in time, and thus Part (b) follows. 

Induction Step (h > 1) Consider an arbitrary node u of height h, such that two 

distinct processes p and q attempt to capture node u. Then processes p and q executed 

a nodeOnPath((leafp, h)) and nodeOnPath((leafq, h)) in line 2, and received pairs (u, i) 

and (u, j), and set their local variables ip and iq to i and j, respectively. For the purpose 

of a contradiction, assume i = j. From the semantics of nodeOnPath() method, i = j 

only if the (h − 1)-th nodes on pathp and pathq are the same (say w). From the induction 

hypothesis of Part (b) for h − 1, w has at most one owner at any point in time. Since 

fp = fq = h − 1 when p and q attempt to capture node u, it follows from Claim 4.5.1(c), 

that p and q own all nodes up to height h − 1 on their individual paths pathp and pathq. 

Then p and q are both the owners of w – a contradiction. Thus, Part (a) follows. 

Since Part (a) holds for h, Part (b) holds for h, as argued in the Basis case. 

Lemma 4.5.1. The mutual exclusion property is satisfied during history H. 

Proof. Assume two processes p and q are in their Critical Section at the same time, i.e., 

both processes returned a non-⊥ value from their last lock() call. Then both processes 

executed line 11 and thus fp = fq = T .height holds. Then from Claim 4.5.1(c) it follows 

that both p and q own node T .root. But from Claim 4.5.2(b), at most one process may 

own T .root at any point in time – a contradiction. 

Claim 4.5.3. Process p repeats the while-loop in lock() at most Δ times. 

Proof. Consider an arbitrary process p that calls lock(). From the code structure of 

lock(), it follows that if p repeats an iteration of the while-loop then p either executed 

line 4 or line 5 in its previous iteration. Then it follows from Claim 4.5.1(b) that p 

increases fp every time it repeats an iteration of the while-loop. Since the height of the 

T is Δ, our claim follows. 



153 

Lemma 4.5.2. No process starves in history H. 

Proof. Since no two processes execute a concurrent call to u.L.locki() for the same 

i (from Claim 4.5.2 (a)), it follows from the starvation-freedom property of object 

RandALockArray, that a process does not starve during a call to u.L.lock() for some 

node u on its path. 

Consider an arbitrary process p that calls lock(). Since p repeats the while-loop 

in lock() at most Δ times before returning from line 11 (follows from Claim 4.5.3), it 

follows that p starves only if p starves during a call to u.L.lock() in line 3 for some node 

u. As already argued, this cannot happen, and thus our claim follows. 

Lemma 4.5.3. Process p incurs O(Δ) RMRs during releasep(). 

Proof. Consider p’s call to release(). Since fp ≤ T .height = Δ, it follows from an 

inspection of the code that during release(), p executes at most Δ calls to L.release() 

(in line 14), and at most one of the L.release() calls returns true. As per the properties 

of object RandALockArray (Theorem 4.4.2), a process incurs O(Δ) RMRs during a call 

to L.release(), if the call returns true, otherwise O(1) RMRs. Then our claim follows 

immediately. 

Lemma 4.5.4. Process p incurs O(Δ) RMRs in expectation during lockp(). 

Proof. A process may or may not receive a signal to abort during lockp(). 

Case a - p does not receive a signal to abort during lockp(). As per the properties 

of object RandALockArray (Theorem 4.4.2), if a process does not receive a signal to abort 

during a call to L.lock(), then the process incurs O(1) RMRs in expectation during the 

call. Since p repeats the while-loop in lock() at most Δ times (by Claim 4.5.3), and p 

does not receive a signal to abort during lockp(), it follows that p incurs O(Δ) RMRs 

in expectation during lockp(). 



154 

Case b - p receives a signal to abort during lockp(). As per the properties of 

object RandALockArray (Theorem 4.4.2), if a process aborts during a call to L.lock(), 

then the process incurs O(Δ) RMRs in expectation during the call. Since p repeats the 

while-loop in lock() at most Δ times (by Claim 4.5.3), and p executes at most one call 

to u.L.lock() after having received an abort signal, it follows that p incurs O(Δ) RMRs 

in expectation during lockp(). 

Lemma 4.5.5. Method release() is wait-free. 

Proof. As per the bounded exit of object RandALockArray, method release() of the 

object is wait-free. Then our claim follows immediately from an inspection of the code 

of release(). 

Lemma 4.5.6. The abort-way is wait-free and has O(Δ) RMR complexity. 

Proof. The abort-way of a process p consists of the steps executed by the process after re­

ceiving a signal to abort and before completing its passage. From Lemma 4.5.5 and 4.5.3, 

method releasep() is wait-free, and has O(Δ) RMR complexity. From Claim 4.5.3, a 

process repeats the while-loop in lockp() at most Δ times. Then from an inspection 

of the code it follows that a process executes all steps during its passage in a wait-free 

manner, except the call to u.L.lock() in line 3, and that a process incurs at most O(Δ) 

RMRs during all these steps. 

To complete our proof we now show that if a process has received a signal to abort 

and it executes a call to u.L.lock() in line 3, for some node u, then the process executes 

u.L.lock() in a wait-free manner and incurs O(Δ) RMR during the call, and does not 

call v.L.lock() for any other node v. 

Suppose that p has received a signal to abort, and p executes a call to u.L.lock() call 

in line 3. Since p has received a signal to abort, it follows that p executes the abort-way 

of the node lock u.L. As per the properties of object RandALockArray (Theorem 4.4.2), its 



155 

abort-way is wait-free and has O(Δ) RMR complexity. Then p executes the u.L.lock() 

call in line 3 in a wait-free manner and incurs O(Δ) RMR complexity. It then goes on to 

satisfy the if-condition of line 6, and executes a call to release() in line 7 and returns 

⊥ in line 8, thereby completing its abort-way. Thus, our claim holds. 

The following theorem follows from Lemmas 4.5.1-4.5.6. 

Theorem 4.5.1. Object RandALockTree is a starvation-free randomized abortable N pro­

cess mutual exclusion lock for the CC model, where the RMR complexity of a passage is 

O(log N/ log log N), in expectation against the weak adversary. The algorithm requires 

O(N) CAS objects and read-write registers. 



156 

Chapter 5 

Conclusion 

We presented a randomized abortable mutual exclusion algorithm with 

O(log N/ log log N) expected RMRs, against a weak adversary for the CC model. 

Although we achieved the goal of our thesis, there is scope for future work. First, 

object RandALockArray uses sequence numbers to solve the classic ABA problem, and 

therefore the registers of the apply array are unbounded. Our universal construction 

object SFMSUnivConst() also uses unbounded registers for the same reason. A fix to the 

above problem could be to modify our algorithms to use LL/SC objects instead, which 

are inherently free from the ABA problem. Secondly, our abortable lock works against 

the weak adversary but not the adaptive adversary. Since object RCAScounter2 is the 

only place where coin flips (random choices) are made, a replacement of this component 

with one that works against an adaptive adversary and is equally efficient would fix 

this problem, although we are not sure if such a component can be designed. Thirdly, 

our lock is not adaptive. We feel that our lock RandALockTree can be modified to be 

adaptive by using techniques similar to the one presented in [38], where lock HWLock is 

modified to be adaptive, because our lock uses the same arbitration tree structure as 

that of HWLock. Fourthly, in this thesis we presented proofs that our algorithm works 

for the CC model, and we believe that the same algorithm can be modified to work 

for the DSM model, using techniques from [38] where instances of wait-signal objects 

are used. Lastly, there is no lower bound for the randomized mutual exclusion problem 

against the weak adversary that uses only reads-write registers and CAS objects. If a 

lower bound of Ω(log N/ log log N) is established then our algorithm would be optimal 

against the weak adversary. 



157 

Appendix A
 

Remaining proofs of RandALockArray
 

Claim A.0.4. Suppose a process p executes a call to lockp() during a passage. The 

value of Role[p] at various times is as follows. 

Points in time Value of Role[p] 

t5 
p {∞, KING, QUEEN, PAWN} 

[t7 
p, t

8 
p] PAWN 

t9 
p PAWN P 

t13− 
p {KING, QUEEN, PAWN P} 

t14 
p QUEEN 

[t16 
p , t

17 
p ] {KING, QUEEN, PAWN P} 

Proof. Since the values returned by a Ctr.inc() operation are in {∞, 0, 1, 2} = 

{∞, KING, QUEEN, PAWN}, Role[p] is set to one of these values in line 5. Hence, 

Role[p] ∈ {∞, KING, QUEEN, PAWN} at t5 . If p satisfies the if-condition of line 6, then p

Role[p] = PAWN, and p changes Role[p] next only in line 9. Hence, Role[p] = PAWN during 

[t7 
p, t

8 
p]. In line 9 p changes Role[p] to PAWN P and does not change Role[p] thereafter. 

Hence, Role[p] = PAWN P at t9 
p. 

Process p does not change Role[p] after line 9. To break out of the getLock loop, 

Role[p] ∈ {KING, QUEEN, PAWN P} must be satisfied when p executes line 12. Hence, 

Role[p] = {KING, QUEEN, PAWN P} during [t16, t17]. Since p executes line 13 only after p p 

breaking out of the getLock loop, Role[p] ∈ {KING, QUEEN, PAWN P} at t13− . If p satisfiesp 

the if-condition of line 13, then Role[p] = QUEEN, and since p does not change Role[p] 

thereafter, Role[p] = QUEEN at t14 
p . 

Claim A.0.5. Suppose a process p executes a call to abortp(). The value of Role[p] at 



158 

various points in time is as follows. 

Points in time Value of Role[p] 

[t19 
p , t

20− 
p ] 

t21 
p 

{QUEEN, PAWN} 

PAWN 

[t22 
p , t

23 
p ] PAWN P 

[t26− 
p , t30 

p ] QUEEN 

Proof. Process p calls abortp() only if p has received a signal to abort and p is busy 

waiting in one of lines 2, 7, or 14. Then, the last line executed by p before calling 

abortp() is line 2, 7, or line 14. From Claim A.0.4, it follows that Role[p] = PAWN at t7 
p, 

and Role[p] = QUEEN at t14 
p . 

Now, p’s local variable flag is set to value true for the first time in line 3. If p fails 

the if-condition of line 18, then p must have executed line 3, and thus p broke out of the 

busy-wait loop of line 2. Then, p last executed line 7 or line 14 before calling abortp(). 

Hence, Role[p] ∈ {PAWN, QUEEN} in [t19, t20], since p changes Role[p] next only in line 22. p p 

If p satisfies the if-condition of line 20, then Role[p] = PAWN, and p changes Role[p] 

next only in line 22. Hence, Role[p] = PAWN at t21 
p . In line 22 p changes Role[p] to 

PAWN P and p does not change Role[p] after that. Hence, Role[p] = PAWN P during 

[t22, t23]. If p does not satisfy the if-condition of line 20, then Role[p] = QUEEN atp p 

[t26−, t30] follows. p p 

Claim A.0.6. Suppose a process p executes a call to releasep(j ) during a passage. The 

value of Role[p] at various points in time is as follows. 



159 

Points in time Value of Role[p] 

[t34− 
p , t35− 

p ] 

[t36− 
p , t39 

p ] 

{KING, QUEEN, PAWN P} 

KING 

t43− 
p QUEEN 

t46− 
p PAWN P 

[t49− 
p , t50 

p ] {KING, QUEEN, PAWN P} 

Proof. Suppose the point in time t34p 
− . Then, p is is executing a call to releasep(j ), 

and p last executed a call to lockp() that returned a non-⊥ value. Then, p’s call 

to lockp() either returned from line 17 in lockp() or from line 23 or line 27 in 

abortp(). From Claim A.0.4, Role[p] ∈ {KING, QUEEN, PAWN P} at time t17− andp 

from Claim A.0.5, Role[p] = PAWN P at t23p 
− and Role[p] = QUEEN at t27p 

− . Therefore, 

Role[p] ∈ {KING, QUEEN, PAWN P} at time t34− .p 

From Claim 4.4.2(b), Role[p] is unchanged during releasep(). Therefore, Role[p] ∈ 

{KING, QUEEN, PAWN P} during [t34−, t35−] and [t49−, t50]. Then, from the if-conditions p p p p 

of lines 35, 42 and 45, it follows immediately that Role[p] = KING during [t36p 
−, t39 

p ], and 

Role[p] = QUEEN at t43p 
−, and Role[p] = PAWN P at t46p 

− . 

Claim A.0.7. Suppose a process p executes a call to doCollectp(), helpReleasep() 

or doPromotep() during a passage. The value of Role[p] at various points in time is as 

follows. 

Points in time Value of Role[p] 

[t51− 
p , t55 

p ] {KING, QUEEN} 

[t56− 
p , t63 

p ] {KING, QUEEN} 

[t65− 
p , t71 

p ] {KING, QUEEN, PAWN P} 

Proof. From the code structure, p does not change Role[p] during doPromote(), 

doCollectp() and helpRelease(). 



160 

From a code inspection, doCollectp() is called by p only in lines 29, and 38. 

From Claim A.0.5, Role[p] = QUEEN at t29p 
− and from Claim A.0.6, Role[p] = KING 

t38−at p . Since Role[p] is unchanged during doCollectp(), it follows that Role[p] ∈ 

{KING, QUEEN} during [t51−, t55].p p 

Now, suppose p executes a call helpReleasep(). From a code inspection, 

helpReleasep() is called by p only in lines 30, 39 and 43. From Claim A.0.5, 

Role[p] = QUEEN at t30p 
− and from Claim A.0.6, Role[p] = KING at t39p 

− and Role[p] = 

QUEEN at t43p 
− . Since Role[p] is unchanged during helpRelease(), it follows that 

Role[p] ∈ {KING, QUEEN} during [t56−, t63].p p 

Now, suppose p executes a call doPromotep(). From a code inspection, doPromotep() 

is called by p only in lines 46 and 62. From Claim A.0.6, Role[p] = PAWN P at t46p 
− and 

from earlier in this claim, Role[p] ∈ {KING, QUEEN} at t62− . Since Role[p] is unchanged p 

during doPromote(), it follows that Role[p] ∈ {KING, QUEEN, PAWN P} during [t65−, t71].p p 



Bibliography
 

[1] E.W. Dijkstra. Solution of a problem in concurrent programming control.	 Commu­

nications of the ACM, 8, September 1965. 

[2] H. Attiya, D. Hendler, and P. Woelfel. Tight rmr lower bounds for mutual exclusion 

and other problems. In Proceedings of the 40th annual ACM symposium on Theory 

of computing, STOC ’08, New York, NY, USA, 2008. 

[3] J.H. Yang and J. H. Anderson.	 A fast, scalable mutual exclusion algorithm. Dis­

tributed Computing, 9, 1995. 10.1007/BF01784242. 

[4] D. Hendler and P.	 Woelfel. Randomized mutual exclusion with sub-logarithmic 

rmr-complexity. Distributed Computing, 24(1), 2011. 

[5] J. Aspnes. Randomized protocols for asynchronous consensus.	 Distributed Comput­

ing, 16(2-3), 2003. 

[6] M. L. Scott. Non-blocking timeout in scalable queue-based spin locks. In Proceedings 

of the twenty-first annual symposium on Principles of distributed computing. 

[7] P. Jayanti. Adaptive and efficient abortable mutual exclusion. In Proceedings of the 

twenty-second annual symposium on Principles of distributed computing, PODC ’03, 

New York, NY, USA, 2003. 

[8] M. Raynal. Algorithms for Mutual Exclusion. The MIT Press, 1986. 

[9] D.	 Culler, J.P. Singh, and A. Gupta. Parallel Computer Architecture: A Hard­

ware/Software Approach. Morgan Kaufmann, August 1998. 

[10] T. E. Anderson. The performance of spin lock alternatives for shared-memory mul­

tiprocessors. IEEE Transactions on Parallel Distributed Systems, 1, January 1990. 

161
 



162 

[11] J. Mellor-Crummey	 and M. L. Scott. Algorithms for scalable synchronization 

on shared-memory multiprocessors. ACM Transactions on Computer Systems, 9, 

February 1991. 

[12] J. H. Anderson and Y.J. Kim. Fast and scalable mutual exclusion. In Proceedings 

of the 13th International Symposium on Distributed Computing, 1999. 

[13] Y.J. Kim and J.H. Anderson. Adaptive mutual exclusion with local spinning.	 Dis­

tributed Computing, 19, January 2007. 

[14] J.H. Anderson and Y.J. Kim. An improved lower bound for the time complexity of 

mutual exclusion. Distributed Computing, 15, December 2002. 

[15] R. Danek and W. Golab.	 Closing the complexity gap between mutual exclusion 

and fcfs mutual exclusion. In Proceedings of the twenty-seventh ACM symposium on 

Principles of distributed computing, PODC ’08, New York, NY, USA, 2008. 

[16] Y.J. Kim and James H. Anderson.	 A time complexity bound for adaptive mutual 

exclusion. In Proceedings of the 15th International Conference on Distributed Com­

puting, DISC ’01, London, UK, UK, 2001. 

[17] R. Alur and G. Taubenfeld.	 Results about fast mutual exclusion. In IEEE Real-

Time Systems Symposium, 1992. 

[18] T. E. Anderson. The performance of spin lock alternatives for shared-memory mul­

tiprocessors. IEEE Transactions on Parallel Distributed Systems, 1, January 1990. 

[19] J.H. Anderson, Y.J. Kim, and T Herman. Shared-memory mutual exclusion: major 

research trends since 1986. Distributed Computing, 16, September 2003. 

[20] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent 

objects. ACM Transactions on Programming Languages and Systems, 12, July 1990.
 



163 

[21] Inc. SPARC International.	 The SPARC architecture manual (version 9). Prentice-

Hall, 1994. 

[22] Intel Corporation. Intel Itanium Architecture Software Developer’s Manual Volume 

1: Application Architecture Revision 2.1. October 2002. 

[23] H. Le, J. M. Tendler,	 S. Dodson, S. Fields, and B. Sinharoy. IBM e-server PO 

WER System Microarchitecture. IBM, October 2001. 

[24] MIPS Computer Systems.	 MIPS64 Architecture for Programmers, Volume H: The 

MIPS6 Instruction Set. August 2002. 

[25] R. Site.	 Alpha Architecture Reference Manual. Digital Equipment Corporation, 

1992. 

[26] P. Jayanti and S. Petrovic.	 Efficient and practical constructions of ll/sc variables. 

In Proceedings of the twenty-second annual symposium on Principles of distributed 

computing, PODC ’03, New York, NY, USA, 2003. 

[27] W. Golab, V. Hadzilacos, D. Hendler, and P. Woelfel.	 Constant-rmr implementa­

tions of cas and other synchronization primitives using read and write operations. 

In Proceedings of the twenty-sixth annual symposium on Principles of distributed 

computing. 

[28] W. Golab.	 Constant-RMR Implementations of CAS and Other Synchronization 

Primitives Using Read and Write Operations. PhD thesis, University of Toronto, 

2010. 

[29] W. Golab, L. Higham, and P. Woelfel. Linearizable implementations do not suffice 

for randomized distributed computation. CoRR, abs/1103.4690, 2011. 



164 

[30] L. Lamport.	 A new solution of dijkstra’s concurrent programming problem. Com­

munications of the ACM, 17, August 1974. 

[31] J. H. Anderson.	 A fine-grained solution to the mutual exclusion problem. Acta 

Informatica, 30(3), 1993. 

[32] G. Peterson and M. Fischer. Economical solutions for the critical section problem in 

a distributed system (extended abstract). In Proceedings of the ninth annual ACM 

symposium on Theory of computing, STOC ’77. ACM, 1977. 

[33] L. Lamport.	 A fast mutual exclusion algorithm. ACM Transactions on Computer 

Systems, 5(1), 1987. 

[34] J. H. Anderson and Y.J. Kim.	 A new fast-path mechanism for mutual exclusion. 

Distributed Computing, 14(1), 2001. 

[35] Y. J. Kim and J. H. Anderson.	 Adaptive mutual exclusion with local spinning. 

Distributed Computing, 19(3), 2007. 

[36] R. Danek and W. Golab. Closing the complexity gap between fcfs mutual exclusion 

and mutual exclusion. Distributed Computing, 23(2), 2010. 

[37] P. Jayanti. f-arrays: implementation and applications. In Proceedings of the twenty-

first annual symposium on Principles of distributed computing, PODC ’02, New 

York, NY, USA, 2002. 

[38] D.	 Hendler and P. Woelfel. Adaptive randomized mutual exclusion in sub-

logarithmic expected time. In Proceeding of the twenty-ninth annual symposium 

on Principles of distributed computing, PODC ’10, New York, NY, USA, 2010. 

[39] J. L. W. Kessels. Arbitration without common modifiable variables.	 Acta Informat­

ica, 17, 1982. 



165 

[40] M. Herlihy.	 A methodology for implementing highly concurrent objects. ACM 

Transactions on Programming Languages and Systems, 15(5), 1993. 

[41] M. Herlihy and N. Shavit.	 The Art of Multiprocessor Programming. Morgan Kauf­

mann, March 2008. 


	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Preliminaries
	Asynchronous Shared Memory Model
	Shared Memory System Architectures
	Primitive Objects
	Adversary Models for Randomized Distributed Algorithms
	Atomicity Versus Linearizability
	The Mutual Exclusion Problem
	The Type Lock

	Abortable Mutual Exclusion
	The Type AbortableLock


	Related Work
	Mutual Exclusion Algorithms using only Read-Write Registers
	Yang & Anderson's Lock

	Variants of the Mutual Exclusion Problem
	Fast Mutual Exclusion
	Adaptive Mutual Exclusion
	Abortable Mutual Exclusion - Jayanti's Abortable Lock

	Randomized Mutual Exclusion
	Hendler and Woelfel's Randomized Lock
	Adaptive Randomized Mutual Exclusion Lock


	Randomized Abortable Mutual Exclusion
	A Randomized Bounded CAS Counter Object
	Type CAScounterk and its Sequential Specification
	Randomized Linearizable Implementation of Type CAScounterk
	Analysis and Properties of Object RCAScounterk 

	Single-Fast-Multi-Slow Universal Construction
	Analysis and Proofs of Correctness

	AbortableProArrayk: An Abortable Promotion Array Type
	Array based Randomized Abortable Lock
	Introduction
	High Level Description
	Implementation / Low Level Description
	Analysis and Proofs of Correctness

	Tree based Randomized Abortable Lock
	High Level Description
	Implementation / Low Level Description
	Analysis and Proofs of Correctness


	Conclusion
	Remaining proofs of RandALockArray
	Bibliography

