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Abstract

Modeling tumour control for prostate treatments can be challenging. Models used to

predict tumour control are typically based on the well known linear-quadratic (LQ) model

for cell survival. The LQ model accurately predicts cell killing for a given radiation dose

in most cases, however in some cases the LQ model falls short and LQ model predictions

differ from what has been observed experimentally. Cell survival following low radiation

doses (∼ <1Gy) and radiation induced bystander effects are two examples where the LQ

model potentially falls short at modelling cell survival following an absorbed radiation

dose.

Using mathematical models that account for radiation induced bystander and low

dose hypersensitivity effects, we look at how these effects potentially change predicted

outcomes of tumour control when compared to standard LQ predictions. We start by

investigating how the basic LQ model predicts tumour control under large geometric

miss errors under intensity modulated radiation therapy (IMRT) and volume modulated

arc therapy (VMAT) modalities. Next, we look at the geometric miss scenario again,

but rather than compare two different delivery techniques we investigate how radiation

induced bystander effects potentially change predicted tumour control under geometric

miss cases. We then expand on this idea and study how radiation induced bystander

effects potentially influence predicted outcome under heterogeneous dose distributions.

Finally, we compare the relative biological effectiveness (RBE) of bystander effects with

low dose hypersensitivity effects and spectral effects for out-of-field radiation doses.

The majority of this work focused on how radiation induced bystander effect changed

biological modeling of tumour control in external beam radiotherapy for prostate cancer.

This work ultimately demonstrates that bystander effects can modify predicted outcomes

of tumour control. We have shown that bystander effects potentially improve TCP under

ii



geometric miss and that bystander effects may relax the common planning constraint of

aiming for dose homogeneity within a target volume.
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Chapter 1

Introduction

1.1 Cancer in Society

In 2014 were was an estimated 191,300 new cases of cancer diagnosed and 76,600 cancer

related deaths in Canada [3]. According to the Canadian Cancer Society the lifetime

probability of developing cancer in Canada is 45 % for men and 42 % for women. Within

Alberta there were an estimated 16,500 new cases of cancer diagnosed in 2014 [3]. Cancer

currently is the leading cause of death within Canada with 29.9 % of all deaths being

cancer related. Cancer is caused when cells within the body begin to proliferate in

an uncontrolled manner when regular control mechanisms fail. These abnormal cells

can invade other healthy tissues and/or metastasize to other parts of the body. There

are many different types of cancer and generally speaking the specific type of cancer

is named after the specific organ of issue in which the cancerous cells originated. For

example, prostate cancer is so named because the abnormal cells originated from the

prostate gland even though they may have metastasized to other organs within the body.

Prostate and breast cancer are the most frequently diagnosed cancers for males and

females respectively, followed by lung and colorectal cancers [3].

In addition to being personally costly, cancer has major economic ramifications on

society at large. In 2000, cancer was the fourth most costly disease in Canada, accounting

for $17.4 billion. These costs include $2.6 billion in direct healthcare costs, which included

physician and hospital expenses, and $14.8 billion in indirect costs from lost productivity

and premature death [4].
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1.1.1 Prostate Cancer

Among men, prostate cancer is the most diagnosed form of cancer accounting for almost

25% of new cancer cases. The lifetime probability of developing prostate cancer in Canada

is 13.1% whereas the lifetime probability of dying from prostate cancer is 3.6% [3]. The

vast majority of new prostate cancer cases occur in men over the age of 50. Prostate

cancer in Canada is the third most common cause of cancer deaths in men, preceded by

lung and colorectal in terms of cancer-related deaths.

Typically the main treatment options for prostate cancer include surgery, chemother-

apy, radiation, hormone therapy, and watchful waiting [5]. Treatment methods are de-

termined once the cancer has been staged and the risk to the patient has been assessed.

Staging is generally based on three main categories known as T, N, and M categories. T

Categories assess the size, extent, and involvement of the tumour, N categories look at

the lymph node involvement, and M categories consider if the cancer has metastasized

outside the primary site. Often a combination of methods is used in the treatment of

prostate cancer such as surgery followed by radiation, particularly if the surrounding

lymph nodes have been compromised.

1.1.2 Surgery

If the cancer is confined to the prostate gland a common procedure to control the disease

is by removing the prostate gland through a radical prostatectomy. Radical prostatec-

tomys involve removing the prostate, seminal vesicles, and surrounding tissues. Patients

undergoing this type of procedure are typically in relatively good health.

1.1.3 Chemotherapy

Chemotherapy refers to chemical drugs which are administered by intravenous injection

or by pills taken orally and these drugs often target the deoxyribonucleic acid (DNA).
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Docetaxel (Taxotere), Cyclophosphamide (Cytoxan), and Doxorubicin (Adriamycin) are

common chemotherapy drugs. In prostate cancer, chemotherapy may be given if the

prostate cancer cells have metastasized outside the prostate gland and the cancer is not

responding to hormonal therapy. Chemotherapy drugs typically target rapidly diving

cells cancer as well as rapidly dividing normal cells such as hair follicles and cells inside

the lining of the stomach and intestine. For this reason patients undergoing chemotherapy

often lose hair and can experience nausea and diarrhea.

1.1.4 Radiation Therapy for Prostate Cancer

Roughly 50% of all incident cases of cancer require radiation treatment at some point

during the management of the disease [6]. There are two main types of radiation therapy

for the treatment of prostate cancer: external beam radiation (teletherapy) and internal

radiation therapy (brachytherapy). In external beam radiation therapy (EBRT) the ra-

diation source is outside the patient and the radiation is typically delivered through use

of a linear accelerator known as a LINAC (see figure 1.1), It can be delivered externally

by way of a radioactive source such as Cobalt 60, however this is less common. When a

patient receives EBRT to treat prostate cancer, the prostate receives a prescribed radia-

tion dose which is delivered over a number of fixed fractions. For example, intermediate

risk prostate cancer patients at our centre typically receive a total dose of 78 Gy which

is delivered over 39 fractions of 2 Gy/fraction.

Another option for the treatment of prostate cancer, other than EBRT, is the use

of brachytherapy. In prostate brachytherapy, the radiation is delivered internally using

implanted radioactive seeds (about the size of a grain of rice), which are surgically im-

planted inside the prostate gland. Iodine125 and Palladium103 are common radioactive

materials used in prostate brachytherapy. This treatment method exposes the prostate

cells to a continuous radiation dose rate that diminishes with time due to the radioactive
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Figure 1.1: Varian Trilogy Linear Accelerator. Image courtesy of Varian Medical Systems,
Inc. All rights reserved.
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decay of the seeds. In this work however we have not touched on prostate brachytherapy

treatments, but focused on EBRT of intermediate risk prostate treatments receiving a

prescribed dose of 78 Gy delivered over 39 fractions. Prostate can also be treated using

high dose rate brachytherapy.

1.1.5 Watchful Waiting

Prostate cancer is considered a relatively slow growing cancer. As a result, an elderly

person or someone with major health complications might decide that instead of actively

treating the cancer they will just monitor the slow progression of the cancer. In some

cases, healthy patients might choose watchful waiting as well. This approach gives pa-

tients the option to avoid the negative side effects often associated with treatment with

the understanding that other factors like age or other health circumstances will likely

cause a person’s death. If the cancer starts to spread more rapidly or aggressively then

the patient still has the choice to take a more active treatment approach.

1.2 Current trends in Radiotherapy for Prostate Cancer

1.2.1 Intensity Modulated Radiation Therapy

For the treatment of prostate cancer, Intensity Modulated Radiation Therapy (IMRT)

is a very common treatment approach in EBRT [7]. IMRT is an advanced form of

3D conformal radiation where the intensity of the radiation beam is modulated using

mulitleaf collimators (MLC). IMRT has become a very common treatment for prostate

cancer because by modifying both the shape and intensity of the incoming radiation

one can achieve a highly conformal dose to the prostate gland, while at the same time

limit dose to the surrounding normal tissues, such as bladder and rectum, which are

particularly sensitive to radiation. In fact, IMRT radiation treatment for early stage
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prostate cancer has been shown to be as effective as surgery [8].

1.2.2 Volumetric Modulated Radiation Therapy

Currently many IMRT prostate plans are delivered as the gantry moves around the

patient in arc while the MLC modulates the beam intensity. This type of treatment

approach is commonly refered to as volumetric modulated arc therapy (VMAT). Typically

VMAT can deliver a slightly more conformal radiation dose compared with static gantry

IMRT, while adequately sparing the surrounding normal tissues. There is some evidence

to suggest that VMAT results in a lower normal tissue complication probability (NTCP)

without compromising tumour control compared with IMRT [9, 10, 11]. VMAT plans

typically take less time to deliver then conventional radiotherapy which is beneficial to

a busy clinic with long wait times. One potentially negative side effect of VMAT is

that there may be increased amounts of low dose radiation to the rest of the body [12].

The increased amount of low radiation dose received by the body is not without concern

particularly because of the potential of increased induction of secondary malignancies

especially for young people [13, 14]. Hall and Wuu even predicted a 1-1.75 % increase in

radiation-induced secondary malignancies for patients living 10 years [15].

1.2.3 Image-Guided Radiotherapy Therapy

One of the major improvements in the treatment of prostate cancer has been through

better use of imaging techniques. Many modern LINAC’s are equipped with cone beam

computed tomography (CBCT) scanners. CBCT gives the radiation therapist the ability

to quickly acquire an image of the patient’s internal anatomy including bony landmarks

and soft tissues prior to treatment and adjust the position of the patient if necessary to

conform to the planned geometry. This ensures that the radiation fields hit the target

volume while at the same time minimize radiation dose to surrounding normal tissues
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such as the bladder and rectum.

Often a combination of imaging techniques such as magnetic resonance imaging (MRI)

and positron emission tomography (PET) are used in combination with CT images to

help better identify the cancerous tumour during the diagnostic phase, as well as track the

progression of the tumour during the treatment. As better imaging techniques are used

throughout the course of treatment, there is potential to adapt the treatment accordingly

on a patient-by-patient basis. This is known as adaptive radiotherapy and will likely play

a large role in radiation treatments in the future.

Another major advantage of using image-guided radiation therapy (IGRT) is that

it helps mitigate potential geometric errors. Geometic miss errors may occur because

the cancerous volume has been misidentified and it extends beyond the planning target

volume (PTV), an error of initial target definition [16]. In other cases, the target volume

may be appropriately identified, but the miss stems from an extreme in the combination

of random and systematic positioning errors. Protocols have been established to add

appropriate treatment margins to account for these types of error [17, 18, 16, 19].

1.2.4 Stereotactic Body Radiotherapy

Currently there is an increasing trend to use stereotactic radiosurgery (SRS) as well

as stereotactic body radiation therapy (SBRT) protocols in the management of human

cancer [20, 21]. Historically, the different radiosensitivities of tumors and normal tissues

allows one to maximize the therapeutic ratio by delivering a small dose (∼1.8 - 2.0 Gy)

over n fractions. This has been the standard of care for radiotherapy treatments over the

past 90 years [21]. However, in recent years with the advent of newer technologies and

better imaging capabilities like IMRT and IGRT, we are able to accurately deliver highly

conformal treatments with a steep dose gradient outside the target. This has allowed

for much higher dose per fractions to be delivered while maintaining reasonable sparing
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of normal tissues. The ability to deliver high dose/fraction treatments is shifting the

paradigm in radiotherapy treatment.

It is generally accepted that prostate cancer has a relatively low α
β

ratio [22, 23, 24].

The α
β

ratio is a parameter comprised of both the linear (α) and quadratic (β) parts of the

Linear Quadratic model (see section 1.5.2). SBRT is an attractive option for treatment

and is gaining the interest of many scientific investigators and there is potential that

SBRT will become the standard of care in the management of prostate cancer [1, 20]. For

prostate cancer, SBRT potentially offers improved outcomes while minimizing toxicity to

normal tissues compared to other modalities like IMRT. Meier looked a different toxicity

studies for stage l-ll prostate cancer and found the rates of late GU toxicity are similar

to those seen with IMRT, and rates of late rectal toxicity may be less than with IMRT

and low-dose rate brachytherapy (see figure 1.2) [1].

1.3 Errors in Radiotherapy

Errors in radiation therapy can never be completely eliminated and one of the major roles

of the medical physicist is to establish proper quality assurance (QA) and quality control

(QC) protocols to reduce the frequency and severity of errors [25]. In this work, one error

we looked at was that of geometric miss. A geometric miss error might occur because

the cancerous volume has been misidentified when first diagnosed [16] or it might occur

if there is an extreme in the combination of positioning uncertainties and motion that

results in a misalignment of the clinical target volume (CTV) with the radiation fields

[26, 27, 28, 29, 30, 31, 32]. A major advantage of IGRT is that it helps mitigate potential

geometric miss errors. A large part of this work investigated the impact geometric miss

errors have on predicted outcome under different biological models.

Poisson-based tumour control probability (TCP) models are typically very sensitive
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Figure 1.2: Late urinary (A) and GI (B) toxicity rates following SBRT, external beam
radiotherapy, and brachytherapy. SBRT, stereotacticbody radiotherapy Source: Robert
Meier: Dose-escalated robotic sbrt for stage l - ll prostate cancer -[1] used with permission.
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to geometric miss. In order for the tumour to be controlled, all cells within the tumour

must be exposed to a sufficiently high radiation dose otherwise some clonogenic cells will

likely survive. For example, if a geometric miss results in even 1 % of the tumour cells

not receiving the prescribed dose, then the TCP prediction will likely be extremely low

[33].

Errors in radiotherapy are generally rare, however in some cases radiotherapy errors

cause extreme harm to the patient and can even be fatal especially if the error results

in the misadministration of the intended dose [34]. Errors can occur at any stage of

the radiotherapy process from the initial planning stages to the administration of the

radiation dose.

1.4 Biological Response to Radiation

Biological damage occurs when energy from ionizing radiation is absorbed in biological

material. There is compelling experimental evidence that DNA is the most sensitive

component of a cell [35]. The amount of energy absorbed per unit mass is termed the

radiation dose and has units of Gy, where 1 Gy = 1 J
kg

. If the absorbed energy is sufficient

to cause a break in or otherwise alter a DNA strand, damage may occur. Two mechanisms

for breaking DNA strands exist: (1) direct, in which ionizing radiation interacts directly

with atoms of the DNA and (2) indirect, in which ionizing radiation interacts with atoms

in the cell producing free radicals which then can diffuse to the DNA and cause biological

damage. A diagram of these two mechanisms is shown in figure 1.3. Damage from ionizing

radiation my cause a single strand of the DNA to break (SSB) or may cause a double

strand break (i.e. both strands of the DNA to break in close proximity to each). Single

strand breaks in the DNA are almost always efficiently repaired. Many double strand

breaks are also efficiently repaired. Ionizing radiation induces many more SSBs in the
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Figure 1.3: Direct and indirect action of gamma rays and X-rays on the DNA (source:
T. Lawrence, Slideshow is from the University of Michigan Medical, open source;
http://www.slideshare.net/ openmichigan/ 010709tlawrenceintroradoncologypreclin).

DNA compared with with DSB’s, however it is the number of DSB’s which is closely

related to the probability the cell survival. For example, 1 Gy of radiation will induce

about 1000 single-strand breaks in the DNA and only about 20-40 double-strand breaks

[36]. To put this into perspective, 1 Gy of radiation will kill ∼ 30% of cells [36]. Radiation

damages both cancer cells as well as healthy normal cells and therefore an important goal

of treatment is to deliver a lethal dose to the treatment site while minimizing the dose

to surrounding normal tissue. When considering the time-dependent repair of DSB as it

relates to the temporal delivery of the radiation beam as well as the intrinsic DSB repair

kinetics of the cell the terms of sublethal and potentially-lethal damage are used. This

can be modeled quite well in the LQ model using the Lea-Catcheside dose protraction

factor G [54].
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1.4.1 The four R’s of Radiobiology

The goal of radiation therapy is to deliver a lethal radiation dose to the tumour while

at the same to time minimizing the dose to surrounding normal tissues. In EBRT, this

is accomplished by breaking up the radiation dose into multiple fractions. Delivering

multiple fractions of radiation helps maximize the therapeutic ratio by taking advantage

of some basic radiobiology properties. These basic radiobiology properties are known as

the four R’s of radiobiology and were first proposed by Withers [37]. Steel et al., have

suggest there is a fifth R to account for the intrinsic property of cell radiosensitivity [38].

More details of the four main R’s of radiobiology are provided below.

Repair of sublethal damage

Damage from ionizing radiation my cause a SSB or may cause a DSB. Single strand

breaks in the DNA are almost always efficiently repaired. Many double strand breaks

are also efficiently repaired. Ionizing radiation induces many more SSBs in the DNA

compared with with DSB’s, however it is the number of DSB’s which is closely related to

the probability the cell survival. Normal tissues are typically more efficient than cancer

cells at recognizing and repairing damage caused by radiation. Delivering fractionated

radiotherapy improves the thereputic ratio by killing more cancer cells compared with

normal tissue cells because of the more efficient repair mechanism in the normal cells.

Cell cycle progression is controlled by molecular checkpoint genes. When radiation has

dammaged a cell, these molecular checkpoint genes might prevent the cell from progress

through the mitotic cycle. P53 is an important gene in this process. P53 can activate

DNA repair proteins when damage has occurred, can arrest as cell at the G1/S phase

of the mitotic cycle, and can initiate apoptosis. Ataxia telangiectasia mutated (ATM)

protein also plays an important role in repairof DNA damage. Patients with autosomal

recessive syndrome ataxia telagiectasia have a increased risk of developing caner and are
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highly radiosensitive [36].

Reoxygenation effect

The presence of oxygen plays an important role in radiotherapy. Cells that are hypoxic

are much more radioresistant to radiation damage than non-hypoxic cells [39, 40, 41, 42].

The presence of oxygen is an essential component in creating reactive oxygen species

as well as free radicals which are key elements in the biological damage process from

ionizing radiation. Damage produced by free radicals in DNA may be repaired under

hypoxic conditions but may be “fixed” (made permanent and irreparable) if molecular

oxygen is available [43]. Delivering multiple fractions of radiotherapy, gives time for

previously hypoxic cells to become reoxygenated and therefore more radio sensitive.

Repopulation

Fractionated radiotherapy reduces the total number of clonogenic cells in the tumour

following each radiation fraction. However, any surviving clonogenic cells have the po-

tential to reproduce and therefore repopulate the tumour. Because tumour cells can

continue to repopulate during treatment a higher dose of radiation than that required to

kill “N” initial clonogens may be needed to achieve local control to successfully eradicate

the remaining clonogenic cells.

In some cases it has been shown that some tumours experience accelerated repopula-

tion. Accelerated repopulation is a phenomenon where cells proliferate faster following,

or during, radiation treatment than they did prior to receiving treatment. Wither al el.,

looked at head and neck cancers and found that they experience accelerated repopulation

about 28 days after the start of the 1st fraction of radiation [44]. To compensate for the

accelerated repopulation, an additional dose of 0.6 Gy per day is required [43].
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Reasortment within the cell cycle

Cells progress through different phases of their mitotic cell cycle. The mitotic cycle con-

sists of mitosis (M), gap phase one (G1), DNA synthetic phase (S), and gap phase two

(G2). The radiosensitivity of cells depends on what stage the cell is at in its mitotic

cycle. Cells in the G2 phase or very close to the M phase are most radiosensitive whereas

cells in the latter part of the S phase of the cycle are more radio resistant [36]. Frac-

tioned radiotherapy can take advantage of this effect by allowing time for cells who were

previously in a radioresistant phase in the mitotic cycle to progress and be in a more

radio sensitive part of the mitotic cycle for the next fraction of radiotherapy.

1.4.2 Repair pathways

Double-strand break repair

When ionizing radiation damages both strands of the DNA in close proximity to each

other, this is considered a double strand break (DSB). Many DSB are efficiently repaired

using two main repair mechanisms known as homologous recombination repair (HRR)

and nonhomologous end joining (NHEJ). HRR uses an undamaged DNA strand as a

template to repair the DSB. HRR is essentially an error free process but takes 6 or more

hours to complete. HRR will likely happen when the damaged cell is in the late S/G2

phase of the cell cycle. NHEJ is a much faster process than HRR but there is much

higher probability that errors will occur making NHEJ less accurate than HRR [43].

NHEJ typically will be the repair mechanism for DBS if the cell it is the G1 phase of its

cycle but can happen at any phase of the cell cycle.

Single-strand break repair (SSBR) and Base excision repair (BER)

Theses repair mechanisms are very efficient and damages to bases or single strands on

the DNA often happen as a normal metabolic process in the body. It is estimated that

100,000 such damages occur each day in every cell in the body [36].
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Base damage can be repaired using various enzymes. When damage to a base has

happened, glycosylases proteins will remove the damaged base from the DNA without

breaking the DNA structure and then endonuclease enzymes will come and cut the DNA

backbone creating a clean SSB in the DNA. These clean SSB are then efficiently repaired

using the complementary strand of the DNA using short or long patch process. Short

patch process replaces only the damaged base whereas long patch process involves re-

moving and replacing up to 10 bases. Short patch repairs involve ligation by ligase3 and

long patch repair involves ligation by ligase1. SSBR is similar to BER but involves an

extra step. In SSBR the SSB was caused by ionizing radiation rather than a cellular

repair mechanism itself and as a result the SSB are often dirty so an extra step is needed

to clean the ends of the damaged DNA strands before the SSB is fully repaired.

1.5 Biological Modeling of Cancer Outcomes in Treatment Plan-

ing

Alfred North Whitehead commented that “There is no more common error than to

assume that, because prolonged and accurate mathematical calculations have been made,

the application of the result to some fact of nature is absolutely certain.”[45]. This

quote highlights one of the major challenges with biological modeling. Historically, the

quality of a radiation treatment plan has been judged by physical quantities, i.e., dose

and dose-volume (DV) parameters, thought to correlate with biological response rather

than by estimates of the biological outcome itself. It is widely recognized that the DV

criteria, which are merely surrogadouble strand break repair te measures of biological

responses, should be replaced by biological indices in order for the treatment process to

more closely reflect clinical goals of RT [46, 47]. Like any model, biological modeling

outcomes are highly dependent on parameters that often are difficult to quantify or differ
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significantly among different investigators. This makes the modelling of any biological

process difficult. This makes the absolute predicted outcome from biological models less

robust. Some have used biological models to help determine the effectiveness of different

treatment plans [48, 49], while others have cautioned against this approach [50].

In 1961, Munro and Gilbert proposed that the number of surviving cells after irradi-

ation would follow a Poission distribution [51]. This concept has been incorporated into

the majority of TCP models used today [46]. Common dose response models would in-

clude linear quadratic (LQ) models, TCP models, NTCP models, and equivalent uniform

dose (EUD) models. Specific details of these models are provided below.

1.5.1 Monte Carlo Method

In much of this work, we were interested in how a population of patients would respond

in cases of geometric miss or increasing dose heterogeneity scenarios. To account for

the variability of biological parameters which might be found across a population of

patients we used the Monte Carlo methodology. We assumed that the various biological

parameters used in this work would follow a Gaussian distribution characterized by a

mean and standard deviation (SD). The population of patients response can be accounted

for by randomly drawing biological parameters from a probability distribution function

(PDF) that corresponds to each biological parameter.

For example, if we wanted to determine the surviving fraction (SF) following a 2

Gy radiation dose, for a population of patients, and are given the mean and SD values

for each biological parameter, we could look at 200 different intermediate risk prostate

patients but for each individual patient the biological parameters would be generated

by randomly selecting from the defined PDF function corresponding the the mean and

SD of each parameter. Once the response for all 200 patients has been determined,

the population response can be determined by aggregating the results of the individual
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Figure 1.4: Surviving Fraction vs. Dose using the LQ model.

responses.

1.5.2 Linear Quadratic Model

The LQ has emerged as the most popular model to describe the relationship between total

isoeffective dose and dose per fraction in fractionated radiotherapy [36, 52, 53, 54]. It

has the advantage of being a relatively simple model described by only two parameters α

and β, yet still generally works well in describing the response for both experimental and

clinical radiobiology for both in vitro as well as in vivo scenarios. The α and β parameters

represent the proportionality coefficients for the linear and quadratic components of a

plot of SF vs. Dose when the SF axis is plotted using a log scale (see figure 1.4). In our

context, SF refers to the fraction of surviving clonogenic cells following radiation. The α
β

ratio is a radiosensitivitiy parameter and represents the curviness of the LQ curve [55].

There has been much debate however as to whether the LQ model can be applied
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at the higher dose per fraction (∼8 - 30 Gy) often seen in SBRT or SRS treatments

[56, 57, 58, 59, 60, 61, 62, 63, 21, 64]. Guerrero and Li proposed a modified LQ model

(MLQ) to account for larger dose per fraction [65], Park et al. proposed a Universal

Survival Curve (USC) for determining surviving fractions [66], and more recently Wang

et al. proposed a generalized LQ (gLQ) for a wide range of doses including higher dose

per fraction associated with SBRT [67]. However, Brenner et al. and others have argued

that the LQ model is an appropriate model for high dose per fraction treatments up to

18 Gy per fraction [58, 68, 21].

According to the LQ model the SF following ’n’ fractions is given by equation 1.1.

Here D is the total dose.

SF = exp

(
−αD − βD2

n

)
(1.1)

1.5.3 Tumour Control Probability

The probability that radiation will control the tumour relates to the probability that

no surviving clonogenic cells remain at the end of treatment. If the initial number of

clonogenic cells is ’N’ and the surviving fraction of clonogenic cells following radiation

is ’SF’, then the probability that the radiation treatment approach has controlled the

tumour is represented by equation 1.2.

TCP = exp (−SF ∗N) (1.2)

If the α and β parameters are known or can be reasonably estimated, then the SF

can be found using the LQ equation (see equation 1.1). Often information regarding the

N, and other biological parameters are not known specifically and in these cases TCP

can be approximated using empirical methods. TCP curves typically follow a sigmoidal

shape, which can mathematically be defined by two basic parameters, D50 and γ50. D50

18



is the dose for 50% control, γ is the slope of the dose response curve at D50. In practice

a tumour volume is comprised of different volume elements and so TCP is generally

formulated as the product over the structure’s voxels weighted probability functions:

TCP =
M∏
i=1

P (Di)
vi (1.3)

1.5.4 Equivalent Uniform Dose

The concept of EUD, was first proposed in 1997 by Niemierko [69] (see equation 1.4). The

basic idea of EUD is to describe what uniform dose would result in the same biological

effect as the heterogeneous dose distribution of interest. Often when different treatment

plans are compared with each other, the dosimetric advantage of one plan over the

other is not clearly discernible. For example, a complicated 3D dose distribution can be

represented by a 2D dose volume histogram where in some regions of the dose volume

histogram (DVH) plot of one plan might have a dosimetric advantage over another, but

in a different region that plan might have a dosimeric disadvantage [70]. In this respect,

EUD has an advantage in that the two different plans with different dose distributions

can be represented by a single number, making comparisons between treatment plans

from an EUD perspective relatively straight forward.

EUD = Dref
ln[
∑N

i=1 νi × SFi]
ln (SF2)

(1.4)

1.5.5 Treatment Margins

Generally, clinicians follow guidelines from the International Commission on Radiation

Units and Measurements (ICRU) Report 62 for defining targets [71]. The gross tumour

volume (GTV) is defined as tumour that is visible by any imaging modality or palpable to

touch. In order to properly treat possible microscopic disease not visible during imaging,

19



a margin of a few millimeters is added around the GTV, creating the clinical target

volume (CTV).

Once the CTV is defined an additional margin known as an internal margin (IM) is

added to the CTV to account for motion and tumour motion throughout the course of

treatment. The CTV, with the addition of the IM, is known as the internal target volume

(ITV). Finally, a set-up margin is added to the ITV to account for different random or

systematic uncertainty. The final volume after adding the different treatment margins

is defined as the planning target volume (PTV) [71]. In many cases a single margin is

added to the CTV to create the PTV and this is know as the PTV margin. Van Herk

et al., have developed margin recipes to determine the appropriate CTV-PTV treatment

margin to cover the CTV for 90 % of patients with 95 % isodose (see equation 1.5 [18].

PTV margin = 2.5Σ + 0.7σ (1.5)

Here Σ is the quadratic sum of the SD of all preparation (systematic) errors, and σ

is the quadratic sum of the SD of all execution (random) errors

1.6 Low Dose Hypersensitivity

It is generally well accepted that radiation doses above 1 Gy are well described by the LQ

model [36]. However, over the past three decades investigators have discovered different

cell lines are more radiosensitive to radiation doses below 1 Gy compared to what would

be expected by extrapolating back from the high dose region using the LQ model [72, 73].

It has been shown that over fifty different cells lines exhibit this increased radiosensitivity

to these low doses[74, 75]. The induced repair model accurately predicts the SF at both

low and high radiation doses. This model has a similar functional form to the LQ model,

however in the induced repair model, α is a function of dose α (D), whereas in the LQ
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Figure 1.5: Surviving Fraction vs. Dose. The red line was modelled using the basic LQ
model and the blue line was modelled using the Induced Repair Model. Parameters used
in the figure are those for normal tissue prostate cells RWEP1 [2].

model α is a constant parameter that does not change with dose (see equation 1.7).

α(D) = αr − (αr − αs) e
D
Dc (1.6)

Phenomenologically, this model suggests that at low doses cells experience a hyper

radio-sensitivity (HRS) and as the dose increases they experience an increased radio-

resistance (IRR) [36]. On a cell survival curve, this initial increase in radio-sensitivity at

very low doses is manifest as a steeper initial slope on the survival curve (αs) compared

with what would be extracted from extrapolating back from higher dose regions using the

LQ model which have more gradual slope (αr). The more radiosensitive phase happens

for dose up to around 10 cGy. As doses begin to increase the cells become more radio

resistant. The point where the transition from αs to αr is 63% complete is defined by Dc.
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The transition from the more sensitive to more resistance biological response typically

happens between approximately (20 cGy - 80 cGy) [36]. The SF according to the induced

repair model is therefore:

SF = e
−
(
αr−(αr−αs)e

D
Dc

)
D−βD2

(1.7)

1.7 Radiation Induced Bystander Effects

An inherent assumption of the LQ model is that radiation damage is caused solely from

the absorbed radiation dose that disrupts the DNA of cells. DNA damage can also

occur due to respiration and other metabolic processes. However, starting in the 1990’s

researchers began to find that in some cases cells outside the direct radiation beam could

have adverse effects (i.e. chromosomal aberrations, reduced SF) if they were in proximity

to cells which had been directly exposed to radiation. This has become know as Radiation

Induced Bystander Effects. In simple terms, a radiation induced bystander effect, is an

effect where “a cell that responds to the fact that its neighbours have been irradiated”

[76]. Radiation induced bystander effects have been extensively reviewed in the literature

[77, 78, 79, 80, 76, 81, 82, 83].

In 1992 Nagasawa and Little published a paper showing that when less than 1 % of

the cells had been exposed to a low dose of α-particles, up to 30% of the cells showed

chromosomal damage [84]. Other evidence of bystander effects have come from media

transfer experiments. Mothersill and Seymour did media transfer experiments where the

medium of irradiated human epithelial cells was transfered to unirradiated cells [85]. In

their experiment, it was shown that the medium from the irradiated cells had a toxic

effect on the unirradiated cells, suggesting that some signal had been secreted from the

irradiated cells into their surrounding medium, which the unirradiated cells responded
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to. More recently Butterworth et al.,[86] did modulated field exposures. In their work

part of the cells were shielded from direct radiation exposure while the remainder of the

cells were directly exposed. In the modulated field exposures, it was shown that the

overall surviving fraction of cells in the shielded portion was much lower than what could

be accounted for using the LQ model. Like before, it was assumed that some bystander

signal had been released from the directly irradiated cells and that the released bystander

signal had a toxic effect on the adjacent cells shielded from the primary radiation beam.

Numerous groups have proposed various mathematical modeling approaches to inves-

tigate the bystander response [87, 88, 89, 90, 81, 91, 92, 93]. Recently, McMahon et al.,

have developed a computational model of cellular response that accurately predicts cell

survival for modulated fields for both cells in and out of the primary treatment field [94].

In a follow up to the original bystander model proposed by McMahon et al., [94], they

published a more general mechanistic model of bystander response which can be applied

generally to a variety of different in vitro or in vivo experiments and models [93]. The

general bystander model proposed by McMahon et al., served as a starting foundation

for much of the work presented in this thesis.

1.8 Overview of the Thesis

In addition to the introductory and concluding chapters, this work is comprised of four

core chapters (chapters 2-5). Two of the core chapters have already been submitted and

accepted into peer reviewed journals, the 3rd is in review and we strongly suspect will

be accepted shortly as we recieved positive comments from the reviewers at the initial

review. The fifth chapter is under review with Physics in Medicine and Biology.
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1.8.1 Chapter one

This chapter provides the reader some basic background information which is necessary

to build a proper foundation to understand the results presented herein and gives context

as to where this work fits into current modalities for the treatment of prostate cancer.

This thesis work primarily looks at how radiation induced bystander effects mod-

ify predicted outcome in EBRT for prostate cancer compared with commonly used LQ

based models such at TCP models. We also look at other effects such as low dose hyper-

sensitivity and spectral effects and quantify the magnitude of these effects compared to

bystander and LQ model predictions.

1.8.2 Chapter two

Geometric miss errors have the potential to influence out-of-field doses, particularly doses

on the periphery of the target volume and this was the focus of chapter 2. Chapter 2

looked specifically at how geometric misses changed tumour control under common dose

delivery techniques, namely IMRT and VMAT.

1.8.3 Chapter three

LQ models of tumour control are inherently sensitive to geometric miss errors such as

those presented in chapter 2. Radiation-induced bystander effects have potential to in-

fluence cell survival particularly on the periphery of the primary radiation field. Chapter

3 investigate how radiation-induced bystander effects potentially change tumour control

when portions of the target volume are missed because of a geometric miss error.

1.8.4 Chapter four

In addition to geometric misses, bystander effects may play an important role when con-

sidering dose heterogeneity throughout the target volume. This final core chapter looks
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at how bystander effects changed tumour control under increasing dose heterogeneity

cases.

1.8.5 Chapter five

Our results have shown that radiation-induced bystander effects have the potential to

change current biological models of tumour control. This chapter looked at how the

relative biological effectiveness (RBE) of radiation-induced bystander effects compare

with other out-of-field effects such as low dose hypersensitivity and spectral effects.

1.8.6 Chapter six

This chapter summarizes the results present in this thesis and provides guidance on

potential next steps necessary to validate our bystander model.
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Chapter 2

Under conditions of large geometric miss, tumour

control probability can be higher for static gantry

IMRT compared to VMAT for prostate cancer

2.1 General Introduction to Chapter 2

The work presented in this chapter investigated potential biological consequences of com-

mon perturbations to an ideal dose distribution for cases of geometric miss. A linear

quadratic-based model for tumour control probability (TCP) was constructed which sim-

ulated consequences on patient outcome of various perturbations when considering both

intensity modulated radiation therapy (IMRT) as well as volume modulated arc therapy

(VMAT). In this work, we focused on modeling typical intermediate risk prostate treat-

ments treated receiving 78 Gy in 39 fractions. Both systematic and random geometric

shifts were considered. The goal was to investigate these two modalities (IMRT and

VMAT) under geometric miss scenarios to determine whether one was more robust than

the other in terms of TCP.

This work has been submitted to the peer reviewed journal Medical Dosimetry. The

review came back with positive feedback with some suggested minor changes. We antici-

pate this paper will be accepted shortly. I was the first author of this work and prepared

the main manuscript. The other contributing authors were Dr. Charles Kirkby, Dr.

Derek Brown, and Patricia Johnson. I developed the main algorithm for modelling the

consequences of geometric miss and generated all the results under the supervision of Dr.

Charles Kirkby. Patricia Johnson was a summer student working at the TBCC under
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the supervision of Dr. Derek Brown, Dr. Charles Kirkby, and myself. She performed

some of the initial modelling work. I collaborated with Dr. Charles Kirkby, Dr. Derek

Brown, as well as Patricia Johnson on the design and implementation of our biological

modeling study. All authors contributed to the review of the results and development of

the final manuscript.
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2.2.1 Abstract

The purpose of this work was to compare static gantry intensity modulated radiation

therapy (IMRT) with volume modulated arc therapy (VMAT) in terms of tumour control

probability (TCP) under scenarios involving large geometric misses, i.e. those beyond

what are accounted for in the clinical target volume (CTV) to planning target volume

(PTV) when margin expansion. Using a planning approach typical for these treatments, a

linear quadratic-based model for tumour control probability (TCP) was used to compare

mean TCP values for a population of patients that experiences a geometric miss (i.e.

systematic and random shifts of the clinical target volume (CTV) within the planning

target dose distribution). A Monte Carlo approach was used to account for the different

biological sensitivities of a population of patients. Interestingly, for errors consisting of

coplanar systematic target volume offsets and three dimensional random offsets, static

gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are
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tolerated for the same mean TCP. For example, under the conditions simulated, erroneous

systematic shifts of 15 mm directly between or directly toward a static gantry IMRT fields

result in mean TCP values between 96% and 98%, whereas the same errors on VMAT

plans result in mean TCP values between 45% and 74%. Random geometric shifts of the

target volume were characterized using normal distributions in each Cartesian dimension.

When the standard deviations were doubled from those values assumed in the derivation

of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry

IMRT plans but a 20% drop in TCP for the VMAT plans. While adding a margin for

error to a clinical target volume is perhaps the best approach to account for expected

geometric misses, this work suggests that static gantry IMRT may offer a treatment that

is more tolerant to geometric miss errors than VMAT.

Key words: Monte Carlo; Prostate Cancer; Modelling; Tumour Control Probability

(TCP)

2.3 Introduction

When radiation therapy fails to control a cancer, one of the potential reasons is that

the target, the volume of cancerous stem cells, has not received the intended radiation

dose because a portion of that volume ended up outside the directly irradiated volume.

In some cases such errors occur because the cancerous volume is misidentified and it

extends beyond the planning target volume (PTV) an error of initial target definition

[16]. In other cases, the target volume is appropriately identified, but the miss stems

from an extreme in the combination of positioning uncertainties and motion that results

in a misalignment of the clinical target volume (CTV) with the radiation fields [26, 27,

28, 29, 30, 31, 32], despite any robust analysis of setup uncertainty and motion used in

deriving the expansion to the PTV from the CTV [18, 17, 16, 19]. In other words, the
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target was accurately identified, but a portion of it was missed because it moved well

beyond the expected range of uncertainty in position.

Both conventional intensity modulated radiotherapy (IMRT) where the gantry main-

tains a static position during field delivery, and volumetric modulated arc therapy (VMAT),

where the gantry changes position during field delivery, offer highly conformal dose distri-

butions. In both cases, the radiation dose falls off quickly outside the directly irradiated

volume in order to reduce toxicities to surrounding healthy tissues. This work considers

whether one of these delivery approaches offers an advantage over the other when por-

tions of the tumour have been under-dosed resulting from a geometric miss error (i.e.

where a portion of the tumour has moved outside the radiation field or the radiation

beam has been misaligned). Tumour control probability (TCP) calculations were used

as an endpoint to compare IMRT and VMAT delivery techniques.

Our methodology was straight forward and follows the general approach used for the

derivation of CTV to PTV expansion margins under consideration of setup and motion

uncertainties [27, 28, 32, 17, 18, 16]. First, treatment plans using each approach were

generated for a model case of a spherical target inside a cylinder. Second, dose distri-

butions were calculated under conditions of rigid translation of the target volume where

the translations derived from assumptions of setup uncertainty and motion. Third, using

the resulting dose distributions within the target volume, a tumour control probability

(TCP) was calculated. A Monte Carlo approach was used to average the results over a

robust set of parameters. Our results are broken into cases of systematic errors, random

errors, and combined errors. Each set of results considers static gantry IMRT deliveries

using 5, 7 or 9 fields as well as VMAT deliveries using one or two arcs.
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2.4 Materials and Methods

2.4.1 Establishing Dose Distributions: Geometric Miss

We consider the consequences of geometric shifts of the CTV within a dose distribution

optimized to deliver at least 95 % of a prescribed dose to the PTV. Shifts of this nature

(see figure 2.1) would potentially result from incorrect setup, organ motion, bias in image

guidance systems, and biases in various geometric parameters such as MLC leaf position,

jaw position, couch position, or even from incorrect delineation of the cancerous volume.

Generally, such geometric misses are accounted for by adding a margin to the CTV based

on estimations of the magnitudes of such errors. However, in extreme circumstances the

shift can move the CTV beyond the PTV, resulting in under-irradiation of portions of

the CTV. We have focused on the treatment of prostate cancer because prostate cancer

is commonly treated with IMRT and VMAT techniques. We assumed a simplified model

of the problem with a spherical CTV with a 2.5 cm radius (r) representing the prostate,

which is centred inside a cylindrical phantom of 15 cm radius (see figure 2). The simplified

model should be sufficient to grossly determine the impact of a CTV shift on TCP under

the different techniques (see figure 2.2).

IMRT dose distributions were generated using the Eclipse treatment planning system

(AAA version 11.0.31). Five, seven, and nine field static gantry IMRT plans with equally

spaced beams, as well as single and dual arc VMAT plans were created all using 6 MV

fields on a Varian iX accelerator. To be consistent with the standards at our center, a

7mm CTV-PTV margin was applied. A prescription of 78 Gy in 39 fractions was assumed.

Optimization was performed to obtain a dose distribution as shown for the 7 field plan

in figure 2. The optimization objectives were set such that 0 % of the target volume

was to receive a dose higher than 81.9 Gy (105 % of the prescription dose) and 100 % of

target volume was to receive a dose of at least 78 Gy and each constraint was assigned a
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Figure 2.1: Geometric miss: CTV and irradiated volume off set.
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Figure 2.2: Dose distributions calculated in Eclipse. The left image is the 7 Field IMRT
plan and the on the right image is the dual arc VMAT plan.

priority of 100. As no organs at risk were specifically defined, a normal tissue objective

was applied allowing 105 % out to 1 cm from the target border, dropping down to 60 %

with a fall-off parameter of 0.05. This constraint priority was 150. Beamlet smoothing

priorities were set to 55 (X) and 45 (Y). Final dose distributions were normalized (prior

to any shift) such that the 78 Gy isodose covered 95 % of the PTV.

Systematic Positioning Errors

A MATLAB program (The Math Works, Natick, MA, USA) was created to model the

effect of systematic displacement of the CTV. The three dimensional dose distributions

calculated on the treatment planning system were imported into the MATLAB environ-

ment. Rigid body shifts, s, were applied in (i) a direction directly between two fields

(e.g. CTV would be shifted directly posterior as inset in figure 2.3), (ii) in a direction

directly toward one of the fields (e.g. CTV would be shifted directly anterior as inset

in figure 2.4), and (iii) perpendicular to the beam delivery plane, towards the superior.

Because arc plans do not have between two fields or toward one field orientations, when
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we shifted the dual and single arc plans, we did so in a manner consistent with shifts for

a 7 field IMRT plan. Values of s were varied in each direction from 0 to 30 mm in 1.0

mm increments. The range of 0 to 30 mm was necessary to fully characterize the drop in

TCP and allowed us to investigate the potential impact large geometric errors may have

on outcome. The maximum value of 30 mm is well outside of a normal clinical range

but could be possible in cases of wrong treatment sites or gross errors in image guidance.

For each shift, the MATLAB program interpolated a new dose distribution within the

shifted CTV and generated a new differential dose volume histogram (dDVH). A mean

TCP was then calculated from the modified CTV dDVH corresponding to each value of

the systematic shift error.

Random Positioning Errors

A similar program was developed to model the effect of random positioning errors in

all three dimensions. Many studies have investigated prostate set-up error and reported

mean systematic displacement values in the superior-inferior (SI), anterior-posterior (AP)

and left-right (LR) directions [27, 95, 96, 97, 30, 98, 99]. Byrnes review of prostate

motion from the literature included 6 studies that reported the standard deviation (SD)

of movement in the AP, LR, and SI directions. Based on the values reported in these

studies we assumed a model where the SDs of daily prostate movement in the AP, LR, and

SI directions were 3.12 mm, 2.21 mm, and 3.26 mm respectively. The program randomly

selected a shift in each direction from a set of Guassian probability density distributions

(centered at 0 with standard deviations derived from Byrnes work), which was applied

to each treatment fraction. The dDVH delivered to the CTV under each shift was tallied

into a cumulative overall treatment dDVH for each patient and subsequently used as

input into the TCP calculation. To simulate errors where random shifts exceeded these

typical expectations, we introduced a scaling factor to widen the random shift probability
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density functions, i.e. a scaling factor of 2 would double the standard deviation for each

function. The ratio of potential shift magnitudes remained constant, but the general

effects of allowing larger or smaller random position errors were reduced to dependence

on a single parameter. The scaling factor was varied from 0 to 10 in increments of 0.5.

A third MATLAB program was generated where random offsets with a scaling factor of

1.0 were also superimposed on the systematic offset cases.

TCP Model

TCP was calculated from the dDVHs extracted from each case of cumulative shifts. In

the presence of a heterogeneous dose distribution TCP is generally calculated as:

TCP =
M∏
i=1

P (Di)
vi (2.1)

where M is the number of volume elements, or voxels, and vi is the relative volume

of the voxel. We apply the linear quadratic formulation to the probability function. As

described by the AAPM report TG 166 [46], this is:

P (Di) = exp

(
−exp

(
eγ − αDi −

βD2
i

n

))
(2.2)

α =
eγ − ln (ln2)

D50

(
1 + 2

α
β

) (2.3)

β =
eγ − ln (ln2)

D50

(
2 + α

β

) (2.4)

D50 is the dose for 50% control, γ is the slope of the dose response curve at D50.

The ratio (α/β) of the linear (alpha) and quadratic (beta) terms is a tissue specific

radiosensitivity parameter and is a useful measure of the curviness of such dose effect

curves [55].
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Two recent studies aimed to quantify the dose response of prostate cancer by deter-

mining D50 and γ. Levegrun et al. acknowledge that the dose response parameters vary

by prognostic subgroup and they quote D50 and γ values for various risk groups. For

all prostate patients they determined D50 to be 70.5 Gy and γ to be 2.9 [100]. Cheung

et al. studied high risk patients only and determined D50 and γ to be 75.5 Gy and 1.7

respectively for this subgroup [101].

There has been much debate in recent years over the α
β

ratio for prostate tumours.

The α
β

parameter of a cell is a measure of its sensitivity to changes in fractionation [102].

Most tumour types have high α
β

ratios and are not very sensitive to alterations in fraction

size or dose-rate. Studies suggest that this is not the case for prostate tumours, and that

for prostate the α
β

ratio is comparable or even lower than that of late responding normal

tissue [103, 102, 22, 23, 104, 105, 106]. Oliveira et al. summarized the extensive debate

on the value of this parameter. They calculated an arithmetic mean of all the reported

values and obtain an α
β

value of 2.73 Gy with a standard deviation of 1.96 [102]. In this

work we used the self-consistent set of radiation response parameters provided by Pedicine

[24] for intermediate risk prostate cancer. According to Pedicine et al., intermediate risk

prostate cancer has a α
β

ratio of 3.12 Gy (95% CI 2.71-3.60 Gy), and a γ value of 5.29

(95% CI 4.85-5.65). From these numbers we are able to derive a D50 value of 59.9 Gy.

To account for the differences within a population for each radiobiological parameter a

Monte Carlo approach was used. For each case investigated, 200 sets of parameters were

generated by randomly sampling a normal distribution for each model parameter. The

standard deviations for α
β
, D50 , and γ were 0.22 Gy, 2.0 Gy, and 0.20 respectively and

were derived from the 95% confidence intervals reported in Pedicines work [24]. A TCP

was calculated for each of these parameter sets, resulting in a distribution of TCP values

for the population exposed under a given condition. For each condition examined, the

mean TCP was then plotted against changes in the condition.
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2.5 Results

2.5.1 Geometric Uncertainty

Systematic Positioning Errors

The plots in figures 2.3 and 2.4 plot the mean TCP vs. systematic positioning error

coplanar with the radiation field. In figure 3, shifts directly between two static gantry

IMRT fields are considered, and in figure 4, shifts directly toward one of the static gantry

IMRT fields are considered. As expected, the mean TCP for co-planar shifts remains close

to its theoretical maximum for small systematic shifts (those less than or equal to the

errors accounted in deriving the PTV margin). However, for larger systematic shifts,

around 12 mm for the IMRT cases and 10 mm for the VMAT cases, the mean TCP

begins to drop. A mean TCP of 50 % is calculated for systematic posterior shifts of 14.9

mm (single arc) and 16.6 mm (dual arc) for the VMAT cases. The 50 % mean TCP

occurs at 19.2 mm (5 field), 19.9 mm (7 field), and 20.2 mm (9 field) shifting posterior

between the fields. When shifting anterior, the VMAT cases result in 50 % mean TCP at

16.8 mm (dual arc) and 17.7 mm (single arc). The same anterior shifts towards the static

gantry IMRT fields result in 50 % mean TCP at 19.9 mm (9 field), 20.3 mm (7 field),

and 20.9 mm (5 field). Seen another way, a systematic shift of 15 mm directly between

static gantry IMRT fields results in a mean TCP of 96 %. A 15 mm shift directly into a

field results in a TCP of 98 %. The same 15 mm translation on VMAT plans drops the

mean TCP to 45 % (single arc) and 74 % (double arc).

The variation in the VMAT cases when comparing anterior and posterior shifting is

due to the non-uniformity in the optimization process. More important is that 50 %

TCP VMAT range of 14.9 mm 17.7 mm is consistently less than the static gantry IMRT

ranges 19.2 20.2 mm (between fields) and 19.9 20.9 mm (towards fields). This suggests

that the static gantry IMRT technique may be more forgiving of large systematic shift
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Figure 2.3: Mean TCP vs. systematic shift directly between two fields. Shifts for the
dual and single arc plans were consistent in direction with shifts between fields for a 7
field IMRT plan.

errors coplanar with the treatment fields.

Figure 2.5 shows the effect on mean TCP when the systematic shift occurs perpendic-

ular to the treatment field plane. In this situation the dose outside the PTV is to a much

larger extent characterized by the properties of the 6 MV photon beam (i.e. the dose

profile within the treatment planning system) than by the specific approach to the treat-

ment. Outside of the penumbra, dose differences between profiles taken along the centre

of the phantom vary by less than 0.5 % of the prescription dose. Within the penumbra

the profiles easily meet a 2 mm distance-to-agreement criteria (plots not shown). Hence

it is not surprising that the differences in mean TCP vary little between each other.
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Figure 2.4: TCP vs. systematic shift directly toward one of the fields. Shifts for the dual
and single arc plans were consistent with shifts toward fields for a 7 field IMRT plan.
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Figure 2.5: Mean TCP vs. shift in the SI dimension. Since the dose falloff outside of the
PTV is dictated by the physical properties of the beam interacting with the medium and
not the irradiation geometry, differences in mean TCP are minimal.

Random Positioning Errors

Figure 2.6 plots mean TCP as a function of the scaling factor for the standard deviation

of the probability density functions used to sample day-to-day rigid translation errors

in each of the three Cartesian dimensions. Here, the mean TCP remains close to its

theoretical maximum for standard deviation scaling factors up to approximately 1.5 and

then begins to decrease. In general, variation comparing the VMAT plans against each

other (single arc vs dual arc) or the static gantry IMRT plans against each other (5, 7 or

9 field) was minimal. However differences between VMAT and IMRT were more obvious.

When the SD for random motion was doubled our model showed that the mean TCP

decreases to 79 % and 92 % for the VMAT and IMRT cases respectively. For a mean

TCP of 50 %, the scaling factors were 2.3 for VMAT and 2.7 for the static gantry IMRT.

This suggests that the static gantry IMRT approach is more tolerant of random errors

that fall outside of expectation - at least in terms of predicted tumour control.
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Figure 2.6: TCP vs. standard deviation scaling factors for random setup errors using the
symmetric 7 field IMRT plan.

The effect of adding random positioning errors to the systematic positioning errors is

plotted in figure 2.7 for the 7 field IMRT and the VMAT cases. For all cases mean TCP

remains close to its theoretical maximum up to systematic shifts of 7 mm and then the

mean TCP drops beyond this point. This would be consistent with the 7 mm CTV - PTV

margin applied in the treatment plan. Both single and dual arc VMAT plans showed

greater sensitivity to combined random and systematic positioning errors compared to

the 7 field IMRT plans. Mean TCP drops to 80 % at systematic shifts between 13-15

mm for the 7 field IMRT case compared to 10-13 mm for the VMAT plans.

2.6 Discussion

Using a Monte Carlo approach to integrate the diversity in tumour response, we have

quantified mean TCP as a function of systematic and random errors in cases of static

gantry IMRT and VMAT. Because of uncertainty in target delineation, machine preci-
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Figure 2.7: Mean TCP as a function of systematic shifts when random daily shifts are
also incorporated for the 7 field IMRT, single and dual arc VMAT plans.
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sion, patient setup, and target motion, such errors are naturally incorporated into the

treatment planning process in the form of a margin that expands the targeted volume

from what is clinically identified. Typical CTV-PTV margins for prostate treatment are

on the order of 5-10 mm and therefore it is shifts beyond these limits that we are

concerned with in this study. Unfortunately not all errors are predictable and naturally

some are going to fall outside even the anticipated limits. With such cases in mind, it

is valuable to understand how different treatment approaches compare to one another.

This work has suggested a distinct difference in mean TCP between static gantry IMRT

and VMAT, when errors have occurred beyond what is accounted for in the CTV PTV

expansion margin. For example, Shah et al. [107] monitored prostate displacements us-

ing the Calypso RF tracking system and reported a maximum case where a displacement

of >10 mm was observed for 28 % of the treatment time, and on average displacements

of >10 mm occur about 0.2 - 0.3 % of the time. These large geometric shift errors are

rare but our study suggests that static gantry IMRT may be a more robust treatment to

use on a population that is at greater risk for large intrafraction motion compared with

VMAT

Current radiotherapy techniques typically use some form of image guided radiother-

apy (IGRT) as part of their treatment protocols. With this in mind, the large geometric

miss errors reported in this study would, already very unlikely, be even that much more

unlikely to occur clinically because such errors should be caught during the IGRT process.

However the focus of this work was not to investigate those errors which can be antici-

pated and therefore accounted for in the planning process, but looked at those extremely

rare errors which fall outside these anticipated limits.

It is important to note that this work has focused exclusively on TCP and has not

addressed normal tissue complication probabilities (NTCPs), the other factors that are

critical to designing optimal radiotherapy treatments. The problem with addressing this
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in a model study is that a translation of the target does not necessarily correlate with

an equal or even predictable translation of the nearby organs at risk. There is evidence

to suggest that, in general, VMAT results in lower NTCP for a given TCP in prostate

treatments compared with static gantry IMRT which allows for more sparing of normal

tissues while doses to the target volume doses are escalated [9, 10, 11]. Whether large

translation errors might change this remains an open ended question. Never-the-less,

the central concern in this work is addressing the notion that when treatments fail to

control the tumour, at least in some instances it is because the target is under-dosed due

to a geometric miss that went beyond what was accounted for in the planning process.

When considering between an IMRT or VMAT treatment approach, a full evaluation

of the pros and cons of each modality is warranted and we suspect that under normal

conditions VMAT would be a preferred treatment option in most situations. Retrospec-

tively speaking, this work is very useful in understanding the potential consequence a

large geometic miss will have on treatment outcome of prostate patients. In this respect,

this work would suggest that static gantry IMRT may actually result in less failures to

achieve tumour control.

Naturally, there are other errors to consider in the context of external beam radiation

therapy treatments for prostate cancer. The volume of the CTV can vary, the CTV can

rotate or otherwise deform, and other shifts in the anatomy resulting in changes of the

source-to-surface distance or heterogeneities in the beam path can alter the distribution

of dose deposited in the target. However, for the case of the prostate, which is deeply

embedded in the pelvis, in this study we treat these as higher order effects. Mutanga

et al., for example, found almost no noticeable difference in their dose-derived param-

eters when comparing both translations plus rotation correction with translation alone

corrections [28].

Biological parameters used in this model pertained specifically to intermediate risk

44



prostate treatment [24]. In order to investigate the sensitivity of our results to the chosen

values, we looked at how our results changed when values for low and high risk prostate

treatments were used [24]. Sensitivity was quantified by comparing the geometric shift

associated with a 50% drop in TCP. The reported trends did not change (i.e. IMRT

was more robust than VMAT for large shifts). The TCP curves shifted on the order of

around 2 mm. For example, using low risk parameters, a 50 % drop in TCP occurred at

shifts around 2 mm larger than that of the intermediate risk population and similarly,

using high risk parameters a 50 % drop in TCP occurred at shifts around 2 mm smaller

than that of the intermediate risk population.

In our modelling we have used a simple 3 parameter linear-quadratic TCP formulation.

More complicated formulations that account for factors such as cell re-population and

hypoxia have been developed and a similar analysis could be performed using these

models and respective model parameters - particularly if this work were to be extended

to other cancers. However, for the population under investigation here, we would not

expect the results to change dramatically since prostate cancer is not typically a fast-

growing cancer.

Finally we introduce a note about the interpretation of these results. Generally speak-

ing, VMAT offers advantages in terms of requiring shorter treatment times, delivering less

monitor units, and by allowing for more degrees of freedom in gantry angle it can achieve

the same target dose goals while delivering lower doses to organs at risk, compared to

static gantry IMRT. Under conditions of large geometric misses, both modalities quickly

drop to minimal probabilities of tumour control. This work shows that static gantry

IMRT can result in a couple extra mm of latitude for geometric misses compared with

VMAT, however all advantages and disadvantages of each modality need to be weighed

when deciding on the most appropriate modality to apply. We assume that as we add

more and more treatment fields, generally speaking the 95 % isodose lines essentially
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encompass smaller volumes, and therefore offer less room for the CTV to shift without

consequence, or when large shifts occur in error, a smaller volume of the CTV is directly

irradiated. As a result VMAT seems to be less robust than IMRT for large geometric

shifts.

2.7 Conclusions

Failure of radiation therapy to achieve tumour control is a serious concern, particularly

when it occurs in treatments for low or intermediate risk prostate cancer where the target

is relatively straight-forward to delineate and control rates are generally very high. This

work investigated cases where geometric miss errors went beyond the uncertainties typi-

cally accounted for in treatment planning and resulted in less than optimal tumour con-

trol for two common approaches to treatment: static gantry IMRT and VMAT. A Monte

Carlo-based model of biological response predicted mean TCP changes when systematic

and random geometric miss errors were introduced into a model test case. Directly com-

paring static gantry IMRT with VMAT treatment deliveries suggests that static gantry

IMRT can result in higher mean TCP values than VMAT for given large errors, or that

the static gantry IMRT approach offers an increased latitude for forgiveness, to the order

of 2 mm, over VMAT.
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2.8 General Conclusions to chapter 2

The work presented in this chapter demonstrated how TCP begins to degrade once

geometric shift are such that the CTV moves outside the PTV dose distribution. This

work also demonstrated that more conformal VMAT plans are slightly more sensitive to

geometric shifts compared to IMRT treatment plans when large systematic and random

shifts are considered. The results presented in this chapter pertain to commonly used

treatment methods (i.e. IMRT and VMAT) for controlling prostate cancer. Biological

outcomes were modeled using the standard LQ formalism. The results presented in this

chapter serve as a starting point for comparing other biological models such as those that

incorporate bystander effects (see chapters 3 and 4).
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Chapter 3

Potential implications on TCP for external beam

prostate cancer treatment when considering the

bystander effect in partial exposure scenarios

3.1 General introduction to chapter 3

The previous chapter looked at modelling potential consequences of geometric misses for

intermediate risk prostate cancer and was based on a Linear Quadratic (LQ) model in

determining bioeffect estimations following a course of radiotherapy. One of the main

assumptions used in the LQ model is that biological damage occurs solely as a function

of locally absorbed physical dose. However, the concept of radiation-induced bystander

effects has started to challenge the main assumption that cellular damage is a function of

only the locally absorbed dose. This current chapter looks at the potential consequence

of geometric miss but incorporates a bystander effect derived from in vitro experiments.

The work presented in this chapter has been peer-reviewed and published in the

International Journal of Radiation Biology (IJRB) [33]. I was the first author of this

work and the other contributing author was Dr. Charles Kirkby. I developed the models

used in this work and prepared the main manuscript for this work. I collaborated closely

with Dr. Charles Kirkby on the design and implementation of this bystander biological

modeling for geometric miss. Both Dr. Kirkby and I contributed to the review of the

results as well as the draft of the final manuscript.
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3.3 Abstract

Purpose : This work investigates the potential implications on tumour control probabil-

ity (TCP) for external beam prostate cancer treatment when considering the bystander

effect in partial exposure scenarios.

Materials and methods: The biological response of a prostate cancer target volume

under conditions where a sub-volume of the target volume was not directly irradiated was

49



modelled in terms of surviving fraction (SF) and Poisson-based TCP. A direct comparison

was made between the linear-quadratic (LQ) response model, and a response model that

incorporates bystander effects as derived from published in vitro data [94, 93]. Scenarios

of random and systematic misses were considered.

Results : Our results suggest the potential for the bystander effect to deviate from LQ

predictions when even very small (< 1%) sub-volumes of the target volume were directly

irradiated. Under conditions of random misses for each fraction, the bystander model

predicts a 3% and 1% improvement in tumour control compared to that predicted by a

LQ model when only 90% and 95% of the prostate cells randomly receive the intended

dose. Under conditions of systematic miss, if even a small portion of the target volume

is not directly exposed, the LQ model predicts a TCP approaching zero, whereas the

bystander model suggests TCP will improve starting at exposed volumes of around 85%.

Conclusions: The bystander model, when applied to clinically relevant scenarios,

demonstrates the potential to deviate from the TCP predictions of the common local LQ

model when sub-volumes of a target volume are randomly or systematically missed over

a course of fractionated radiation therapy.

3.4 Introduction

In radiation therapy it is generally accepted that the mechanism causing genetic damage

and subsequent cell death is strictly a function of the radiation dose delivered to cells

[43]. Based on this assumption, empirical models like the popular linear-quadratic (LQ)

models have been developed to explore the biological effects of the radiation dose on

cells. Endpoints like tumour control probabilities (TCP) are commonly calculated to
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predict the probability of tumour control after a tumour has been exposed to a specific

radiation dose. However, since the 1990’s there has been evidence that unexposed cells

can be affected by signals they receive from neighbouring cells that have been directly

exposed to radiation. This is commonly known as the bystander effect or radiation in-

duced bystander effect. This phenomenon has been extensively reviewed in the literature

[77, 76, 78, 79, 81, 80, 108, 82].

Some of the earliest evidence of a bystander response came from media transfer ex-

periments. Mothersill et al. [85] did medium transfer experiments where medium from

irradiated epithelial cells were transferred to unirradiated cells. They found that the

medium from the epithelial cells had a toxic effect on unirradiated cells. Little and col-

leagues showed that in some cases, where only 1 % of a cell population was irradiated,

30 % showed chromosomal changes [84]. Butterworth et al. looked at the cell survival

for human prostate cancer (DU-145), and normal human fibroblast (AG0-1522) cell lines

exposed to modulated fields. In their experiments, cells were grown in T25 or T80 culture

flasks and then exposed to radiation where a portion of the flask was shielded from direct

radiation exposure creating a non uniform radiation field. In their work, they found the

surviving fraction (SF) of cells in the out of field portion of the flask was much lower

than what would be predicted from a LQ model [86].

Numerous groups have proposed various mathematical modeling approaches to inves-

tigate the bystander response [89, 81, 92, 88, 94, 87, 109, 91, 90, 110]. Recently, McMahon

et al. have developed a computational model of cellular response that accurately predicts

cell survival for modulated fields for both cells in and out of the primary treatment field

[94]. Many bystander studies are limited in the sense they use empirical methodologies

to develop a relationship between exposed dose, bystander signal, and cellular response,

making comparisons with other models difficult and reducing the scope in which they
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might be applied. However, McMahon et al., in part to address theses limitations have

published a more general mechanistic model of a bystander response which can be applied

generally to a variety of different in vitro or in vivo experiments and models [93].

It is clearly of interest to consider what relevance the bystander effect might have

on current cancer therapy practice, especially at a clinical level [76]. Current models of

biological outcomes based solely on locally absorbed radiation dose might be inaccurate

if the bystander effect plays a significant role in vivo. Of particular interest are (i)

scenarios where portions of the target volume may be missed, either through systematic

and random physical errors or by errors in contouring, (ii) scenarios where portions of

the target volume may be selectively boosted, and (iii) predictions of response in normal

tissues that receive partial or no direct exposure including toxicity complications and the

induction of secondary cancers. Conceivably, one could imagine exploiting the bystander

effect, once well-understood, to reduce radiation dose to portions of a tumour in order to

spare normal tissues while maintaining an acceptable TCP or to boost TCP by selectively

boosting the dose to subvolumes of a given target. It is stressed however that even though

there is evidence of a radiation induced bystander effect, a lot more research and strong

clinical evidence would have to be available before altering any current clinical practices.

The goal of this work is to extrapolate an established in vitro model of the bystander

effect in in-vivo scenarios, particularly scenarios (i) and (ii) above, and estimate the

potential for the bystander effect to influence TCP. Particular emphasis has been placed

on modelling prostate cancer response. In this context we establish the magnitude of

effect this model predicts in vivo, and ultimately demonstrate that further research is

justified.
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3.5 Methods and Materials

3.5.1 Bystander model

Our bystander model was taken and adapted from the published mechanistic model

developed McMahon at el, [93]. In their work they provided a sample of their code written

in the python environment (Python Software Foundation, Beaverton, OR, USA) and that

was used as a starting point for our model which was written in a Matlab environment

(The MathWorks, Natick, MA, USA). In order to verify consistency between our code and

the code provided by McMahon at el. we verified that given the same initial conditions,

both models would predict similar outcomes. The model is then expanded so as to predict

potential consequences the bystander effect might have on patient outcome as measured

by TCP in scenarios where less than the full target volume is directly irradiated. Specific

details of the bystander effect model are given in McMahon at el. [93]. However, for

completeness and to demonstrate how the model was extrapolated a basic summary is

provided here.

3.5.2 Basic Assumptions

In the bystander model damage accumulates as an integer number of hits to a sensitive

target within the cell. The precise definition of a hit is purposefully left ambiguous as it is

simply a convenient quantity by which damage can accumulate, allowing for end-points to

be determined. The bystander effect model proceeds under four basic assumptions [93].

1) Cells exposed to radiation will both experience damage directly from the radiation and

generate a signal for an extended period of time which is proportional to the delivered

dose (D). This signal enters the medium in which the exposed cells are suspended and

freely moves to other cells. Diffusion of the signal is assumed to be efficient, such that an

equilibrium concentration is quickly obtained within a target volume. 2) The signal may
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induce a response in a cell exposed to the signal that manifests as biological damage. 3)

The degree of damage induced in a cell by the signal is proportional to the time the cell

is exposed to the signal above a threshold value. The response is binary, with responding

cells experiencing a characteristic level of damage and non-responding cells receiving no

damage. 4) Directly exposed and perfectly shielded cells both experience signal induced

damage, and this damage is added to the damage induced by direct exposure to radiation.

3.5.3 Signal Production

Following exposure to radiation, cells release a bystander signal for a period of time, ρ(t),

modeled by equation 5.5 [93]:

ρ(t) =
ρmax

1 + λV
νC

(
1− exp

(
−t
(
νC

V
+ λ

)))
+ ρ0 ∗ exp (−λt) (3.1)

Here, ρ(t) is the bystander signal concentration as function of time,ρmax is the local

bystander signal concentration equilibrium, λ is the signal decay constant, V is the vol-

ume, ν is substitution for η
ρmax

where η is the rate of local signal production when the

concentration is 0, C is the number of irradiated cells, and ρ0 is the signal concentration

at time t= 0.

Cells exposed to a signal above a threshold ρthresh = ρt
ρmax

will accumulate potentially

lethal damage. Here ρt is the absolute threshold and ρmax is the local concentration of

bystander signal, therefore ρthresh is the threshold value as it relates to the local bystander

signal concentration.

3.5.4 Accumulation of Radiation Induced Damage

As stated earlier, cellular response to the model’s signal is a binary event. Cells either

respond to the signal or they do not. The number of hits induced is a function how long

a cell has been exposed to a signal above the threshold. The probability that a cell will
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respond to a radiation induced signal (PB) is given by equation 5.6 [93]. Here τ is the

time the cell is exposed to a bystander signal above a threshold and κ is a cell specific

signal kinetic parameter.

PB = 1− exp (−κτ) (3.2)

Cellular damage is quantified in terms of hits that accumulate in a sensitive structure

within the cell. A hit could be interpreted as analogous to a potentially lethal DNA

double strand break. Hits accumulate both as a function of local absorbed dose and

exposure to signals from other irradiated cells that surpass their defined threshold. The

total number of hits is determined by adding the hits induced by the absorbed dose

with the hits induced by signals from other directly exposed cells. Signal-generated hits

are determined by sampling from a Poisson probability distribution function (Poisson

PDF) with an expectation value for bystander induced hits (HB) characteristic of the

cell type. Similarly, local dose-generated hits are found by sampling from a Poisson PDF

with an expectation value for radiation-induced hits (Hits/Gy) that is proportional to

the delivered dose. Rules to translate the number of hits into cellular outcomes were

developed by Partridge [109]. According to these rules cells that accumulate five or more

hits immediately die, cells with three or more hits receive moderate damage and will

become arrested in the G1 phase of the cell cycle, and any cell in the G2 phase of its

cycle will become arrested if it receives even one hit. Note that in respect to the cell

cycle in the delivery of multiple fractions, we assume that between delivery of subsequent

fractions, the cells will have fully reassorted themselves such that the surviving cells from

the previous fraction will be distributed according to the initial cell cycle distribution.

The SF is determined by subtracting the percent of dead or arrested cells from 100 %.
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Table 3.1: Initial input parameters for prostate cells (DU 145).

Parameter Value and Standard Deviation

Signal decay constant -λ 0.019 ±0.002
Signal threshold - ρt

ρmas
0.21±0.02

γ (min/Gy) 61±20
κ (min−1) 0.0028±0.001
ν (min−1) 0.00011±0.00004
Hits/Gy 0.78 ±0.006

HB 3.0±0.4
initial cells 4000

initial volume (ml) 17.5
Note λ, ρt

ρmax
, γ, κ, ν, γκ, hits/Gy, and HB are fitted parameters

taken from McMahon et al. (2013). HB corresponds to the number
of hits induced by the bystander effect in the responding cells and
γκ characterizes how rapidly the bystander signal builds up.

3.5.5 Verification of our model with the model of McMahon

To test that our Matlab model of the bystander effect was consistent with that provided

by McMahon et al., we looked at the results of both models when starting from the same

input parameters. The initial inputs used are listed in Table 3.1. Using the initial input

parameters listed in Table 3.1 we set up a scenario as depicted in Figure 3.1 whereby a

volume of prostate cells was partially exposed to a photon beam of ionizing radiation.

One part of the volume (right section of Figure 3.1) was directly exposed and received

100 % of a predetermined or prescribed dose. The other part of the volume (left section

of Figure 3.1) was assumed to be shielded and received only a scatter dose contribution

here modelled uniformly within the shielded volume as 3 % of the prescribed dose. The

directly exposed volume was varied from 0 - 100 % and in each scenario the SF of cells

was calculated. We looked at single doses of 8, 4 and 2 Gy radiation doses. We compared

our results for the 4 and 8 Gy radiation exposure to data provided by McMahon et al.
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Figure 3.1: Model set-up of a 50% tumour exposure.

3.5.6 Modelling of 39 fraction clinical treatment

Random miss scenario. A typical prescription at our center for an intermediate risk

prostate external beam radiation therapy treatment is 7800 cGy delivered in 39 fractions,

with the expectation that at least 95% of the planning target volume (PTV) receives this

dose. This is accomplished by delivering 2 Gy per fraction for a total of 39 fractions.

This served as a starting point for our clinical modeling process. As above, for each

fraction we assumed that a random portion of the tumour was shielded from the direct

radiation while the remaining portion received the full 2 Gy in-field dose (see Figure 3.1).

Again cells out-of-field received 3% of the dose delivered in-field as a result of scatter or

transmission.
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The models presented by [93, 86] assumed a step-function dose distribution. In a more

realistic scenario dose between in and out-of-field is generally subject to a spatial gradient

at the field edge. To account for this, we included an intermediate step to account for

the penumbra. For simplicity, it was assumed this penumbra region extended 0.5 cm

in the beams eye view between the directly exposed and shielded regions and that it

uniformly receives 50 % of the in-field dose (middle section of Figure 3.1). When the

exposed fraction is 0, no cells receive the in-field dose and the majority of cells receive

the out-of-field dose with a small portion of cells receiving the penumbra dose. When

the exposed fraction was 1, 100 % of cells receive the full in-field dose and no cells

receive either the penumbra dose or out-of-field dose. Despite the larger volume, it was

assumed that the signal emitted by the exposed cells traveled quickly through the entire

volume, distributing itself evenly between both the directly exposed and shielded cells.

We adjusted the hits/Gy response parameter of our model from 0.78 hits/Gy in the 4000

cells to 0.96 hits/Gy in the clinical scenario so that when all cells receive a uniform dose

of 2 Gy (i.e., the exposed fraction is 1) the bystander and LQ models predict similar

results.

Starting with an initial number of prostate tumour cells, for each exposed volume

scenario, we calculated in-field SF, out-of-field SF, as well as a total SF for the tumour

volume using both a LQ formalism (SFLQ) as well the bystander formalism developed

above for a 2 Gy dose and then propagated this through a 39 fraction scenario. The

total SF was calculated by dividing the total number of surviving cells after a radiation

treatment by the total number of cells prior to the radiation treatment. The LQSF

was calculated using Equation 3 and is a function of local absorbed dose only. Here,

α and β are the proportionality coefficients for the linear and quadratic components,

respectively. Parameters of α, β (α = 0.15 and β = 0.048), and initial number of tumour

cells (3.0×106) were taken from Pedicini‘s set of self-consistent radiobiological parameters
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for intermediate stage prostate cancer [24].

Using the SF, the number of remaining clonogenic cells was determined and this

became the new initial number of cells prior to another radiation treatment fraction.

This process was then repeated 39 times to simulate a 39 fraction treatment course

consistent with clinical practice at our center. The time cells are exposed to a bystander

signal above a specified threshold (tau) is different for each fraction because there is a

unique number of a bystander signalling cells for each treatment fraction. In all cases we

assumed a volume of 50 cm3 for the prostate volume. To calculate the relative volumes of

the in-field, out-of-field, and the penumbra portions of prostate we assumed a simple three

dimensional square. However, the geometry of the prostate used is not important for this

analysis, what is important is knowing the relative portions of the different volumes.

SFLQ = exp
(
−αD − βD2

)
(3.3)

3.5.7 Systematic miss scenario

In the methodology used above, cells were randomly exposed to the various in-field,

penumbra, and out-of-field doses, without regard for their specific geometric position

within the target volume. Alternatively, we considered a scenario where the in-field and

out-of-field volumes did not vary geometrically between fractions cells that were missed

on the first fraction were missed on the last fraction. This might be representative of a

systematic offset in setup or an incorrectly delineated target volume.

Cell survival within each region was based on a region specific dose as well as a general

bystander signal. The total number of surviving cells following the entire treatment

course was found by adding the number of surviving cells for each individual region of

the tumour.

59



3.5.8 TCP calculations

The TCP model assumed that the number of surviving clonogenic tumour cells follows

a Poisson distribution and that even a single surviving clonogenic cell has the potential

to grow into a viable tumour [51]. Therefore, the probability of tumour control is equal

to the probability that no clonogens survive following a course of radiation and is given

by Equation 4.10 [46].

TCP = exp (−SN) (3.4)

Here S is the surviving fraction and N is the initial number of clonogens. After

simulating 39 fractions radiotherapy treatment we calculated TCP using Equation 4.10

where for every fraction the in-field cells received the full 2 Gy dose, the out-of-field cells

received 3 % of the in-field dose (i.e., 0.06 Gy), and the cells with the penumbra received

50 % of the infield dose (i.e., 1 Gy). We simulated this for varying exposed fractions

ranging from 0 - 100 %. Total SF was used in the calculation of TCP.

3.6 Results

3.6.1 Surviving fraction vs. exposed fraction

Verification of our model with McMahon et al..

Figure 3.2 shows results for the SF of shielded or out-of-field cells vs. exposed fraction for

2, 4 and 8 Gy radiation doses (to the directly exposed volume). For 4 and 8 Gy radiation

doses, the SF remains constant up to an exposed fraction of 0.2 then sharply drops off

for larger exposed fractions. The bystander model shows that there is a threshold value

of signal needed before any effect on SF is observed. For example, in Figure 3.2, when

the exposed fraction is 0.15, the threshold signal has not been reached and the SF of

cells (those receiving 3 % of the treatment dose) is around 0.99, however at exposed
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Figure 3.2: Out-of-field surviving fraction (SF) vs. exposed fraction using parameters
from Table 3.1

fractions of 0.5 the threshold signal has been reached and the SF is drastically lower at

around 0.88, 0.78, and 0.65 for 2, 4 and 8 Gy treatment scenarios. The bystander model

shows the SF drops from 0.99 - 0.68 (33 %) and from 0.99 - 0.90 (9 %) between exposed

fractions of 0.20 and 0.21 for cells receiving 8 and 4 Gy, respectively. These results are

consistent with survival vs. exposed fraction of flask data published by McMahon et al.

[93].

Figure 3.3 shows results for the directly exposed or in-field SF vs. exposed fraction

for 2, 4 and 8 Gy radiation doses. Like the out-of-field results, cells exposed to 4 and

8 Gy radiation doses, the SF remains constant up to an exposed fraction of 0.2 then

sharply drops off. The bystander model shows the SF drop from 0.20 - 0.10 (50 %) and

from 0.65 - 0.56 (14 %) between exposed fractions of 0.20 and 0.21 for cells receiving 8

and 4 Gy, respectively. Cells receiving 2 Gy, have a drop in SF of around 6 % (0.90 -
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0.85) between exposed fractions of 0.22 and 0.26.

Surviving fraction vs. exposed fraction for single exposures using 3.0 × 106

cells

SF vs. exposed fraction for 3.0×106 cells is shown in Figure 3.4. This work relates to the

treatment of intermediate risk prostate treatment and the number of initial clonogenic

tumour cells (3.0 × 106) is consistent with Wang et al. and Pedicini et al. estimate of

initial number of clonogenic cells for intermediate risk prostate cancer [106, 24]. Unlike

the experimental conditions modelled above with 4.0 ×103 cells, 3.0× 106 cells are being

irradiated, the bystander effect comes into play almost immediately as can be seen in the

sharp initial drop in the bystander SF. At an exposed fraction of 1 % the SF given by

the bystander model predicts a 5 % drop in SF compared to the SF when no cells are

exposed to the in-field dose. As expected, when the exposed fraction of cells reaches 100

%, the total SF is consistent with that predicted by the in-field exposure model. When

100 % of the cells receive a dose of 2 Gy, the bystander and LQ models predict a SF

of around 61 %. Between exposed fractions of 0.01 and 0.03, we see a very small drop

in SF (around 1 %) then the SF remains relatively constant around 0.80 for out-of-field

region, and 0.69 for the in-field regions. When only 1 % of the cells are exposed to direct

radiation and 9 9% are shielded, our results showed that the total SF approach the SF

for the out-of-field regions.

3.6.2 TCP vs. exposed fraction

Random miss scenario

Figure 3.5 gives the results of the TCP vs. exposed fraction for prostate cancer after

delivering 7800 cGy to in-field portions of the tumour delivered over 39 fractions. The

bystander model predicts a TCP of 50 % at an exposed fraction of 0.54 whereas the

LQ model predicts that TCP 50 % occurs at an exposed fraction of 0.77. Similarly,
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Figure 3.3: In-field surviving fraction (SF) vs. exposed tumour fraction using parameters
from Table 3.1

the bystander model predicts that when the exposed fraction is 0.90, the TCP is 97 %

compared with a TCP of 94 % as predicted by the LQ model. At an exposed fraction of

0.95, the TCP is 98 % and 97 % for the bystander and LQ models, respectively. When

the exposed fraction is equal to 1, all cells are exposed to full radiation dose and both

the bystander and LQ models predict a TCP of 0.99.

Systematic miss scenario

Figure 3.6 gives the results of TCP vs. exposed fraction for prostate cancer following

systematic delivery of 7800 cGy to cells within the in-field portions of the tumour, 234

cGy to the outof- field portions, and 3900 cGy to cells with the penumbra region. The LQ

model predicts a TCP of essential zero until the exposed reaches 1.0. This is consistent

with a Poission based TCP model showing that if any portion of a tumour is consistently

missed, the TCP is dramatically affected. However, our bystander-based model shows
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Figure 3.4: Surviving fraction (SF) vs. exposed tumour for in-field cells, out-of-field
cells, and total cells for 3.0 × 106 initial tumour cells exposed to an in-field radiation
dose of 2 Gy. The results for the linear-quadratic (LQ) in-field and Bystander in-field
are overlapping except at the very lowest values of Exposed fraction.
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Figure 3.5: Tumour control probability (TCP) vs. exposed fraction for 39 fraction treat-
ment radiotherapy course when considering random errors. On the left is the full TCP
vs. exposed fraction graph showing how TCP changes when the exposed fraction ranges
from 0 % and 100 %. On the right is a zoomed in portion of the graph showing how
TCP changes for exposed fraction between 90 % and 100 %. Lq, linear-quadratic

that at an exposed fraction of 0.85, the TCP begins to deviate from the LQ-based model.

The bystander model predicts a TCP of about 0.58 at an exposed fraction of 0.98 and

a TCP of 0.76 at an exposed fraction of 0.99 whereas the LQ model predicts a TCP of

essentially 0 for exposed fractions of both 0.98 and 0.99

3.7 Discussion

In this work we have investigated the consequences of a radiotherapy treatment course

for prostate cancer across scenarios where portions of the tumour volume have not been

directly exposed. Though tremendous efforts go into avoiding partial-irradiation scenarios

in practice, they may at times be unavoidable. The tumour response has been modelled
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Figure 3.6: Tumour control probability (TCP) vs. exposed fraction for 39 fraction treat-
ment radiotherapy course when considering systematic or geometric shifts. On the left
is the full TCP vs. exposed fraction graph showing how TCP changes when the ex-
posed fraction ranges from 0 % and 100 %. On the right is a zoomed in portion of the
graph showing how TCP changes for exposed fraction between 90 % and 100 %. Lq,
linear-quadratic.
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in two ways, (i) by using model adapted from McMahon et al. [93] that incorporates a

bystander signal and response that has proved valid in modelling in vitro experiments,

and (ii) by using a more popular LQ model that relies completely on local absorbed dose.

These outcomes have been translated into an overall TCP.

In this work we have limited our analysis to treatments of intermediate risk prostate

cancer patients. We have considered in our analysis treatment plans consistent with the

standard of care at our institutions, where a prostate radiotherapy patient would receive

a treatment with a prescription dose of 78 Gy to be delivered in 39 fractions.

This work could be generalized to other cancers as well. So long as the basic assump-

tions in the model hold, we would expect to see generally increased TCP predictions

compared to conventional LQ-based predictions under scenarios were small volumes are

randomly or systematically missed. The degree of increase would depend on the specific

details of the cancer in question. Generally speaking, it is required that the model be

consistent with the data derived from experiments under uniform irradiation conditions

from which the LQ models have been derived. The adjustable parameters in the by-

stander model allow for such tuning. The work here has focused on prostate cancer,

which generally is considered a slow-growing cancer. In extending this work to other,

faster growing cancers, re-population effects would need to be considered. Further, we

have not considered heterogeneity of tumour response as would be induced by hypoxic

subvolumes, for example, which could also play a strong role in predicting TCP under

scenarios of geometric miss.

The bystander model predicts that there is a threshold bystander signal, which must

be reached before the signal will have any effect on SF of clonogenic cells. In the in

vitro (4000 cells) scenario, there is insufficient bystander signal to generate additional

hits in the model until the exposed fraction reaches around 0.20 for doses of 8 Gy and

4 Gy and 0.22 for doses of 2 Gy. However, for greater exposed fractions, the bystander
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signal reaches the threshold value triggers a drastic change to cell survival as can be seen

in Figure 3.2 (the drop in survival of unexposed cells due signals from exposed cells)

and Figure 3.3 (the self-induced drop in survival of exposed cells). When we model a

more realistic clinical in vivo scenario with 3× 106 cells, the cell density and number of

cells are such that the threshold value for the bystander signal is reached for very small

directly exposed volumes. When even only 1 % of the cells are exposed to the in-field

dose, this still represents 30,000 cells, which is a factor of 7.5 times that of the entire

in vitro case. As a result, the bystander model shows almost an immediate effect on

SF regardless of the exposed fraction, as seen in Figure 3.4. Thus, this model implies

that only a very small relative volume needs to be irradiated in a clinical scenario to

induce a bystander effect. When modeling TCP for the 39 treatment course one of our

assumptions was that at the start of each treatment fraction, the only effect from prior

treatments is that of reduced number of tumour cells. We assume therefore that there

are no residual bystander signals remaining from prior treatments. This assumption is,

self-defensible within the model as the predicted effects depend on time above a threshold

and the timescales over which the signal rises and drops are in the order of minutes to

hours and much less than the 24-hour period assumed between fractions.

The bystander response model presented here explicitly incorporates an increased

sensitivity of the cells in the G2 phase of the cell cycle. Cells in G2 will die with even one

hit. This implies a sensitivity of the model to the assumptions (a) of the initial fraction

of cells in G2 and (b) that that same fraction will be returned to between subsequent

fractions. The results presented assumed that 5 % of the cells are in the G2 phase of the

cell cycle for each fraction. The work of Scott et al. [111] suggests that the percentage

of prostate cancer cells in the G2 and M phase combined is generally between 10 and 20

% and similar percentages are observed 24 h after irradiation, suggesting that the choice

of 5 % explicitly in the G2 phase, and that this value is returned to between fractions, is
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reasonable.

One of the challenges of going from in vitro to in vivo scenarios, is that we have

assumed the biokinetics remain relatively similar. In practice, the assumption that a

signal generated by directly exposed cells will efficiently spread through the entire tumour

volume and reach an equilibrium concentration, though applicable to in vitro models, may

not hold as the prostate gland is supported by a vascular framework. There are two points

that support our assumption. First, the biological half-life of many substances introduced

into the prostate is in the order of several hours to a few days [112, 113, 114]. The model

applied here assumes that signal times above threshold are only maintained for a couple

of hours at maximum because the signal is quickly metabolized. This timescale appears

to be shorter than common biological half-life times. Secondly, if the signal released

by the directly irradiated cells is subject to some degree of compartmentalization, the

predictions of the model will be less accurate for the smaller exposed fractions, with

increasing accuracy towards the larger exposed fractions and it is the latter scenarios

(i.e., where 90 % or greater of the target volume is directly exposed) that are of greatest

clinical relevance.

Another point of interest when considering bystander effects in an in vivo environ-

ment is recognition that because of the vascular framework with an in vivo scenario, it

is possible that portions of the bystander signals will move outside the treatment vol-

ume and affect other normal tissues or lymphatic nodes down stream of the treatment

volume. Indeed, other groups have reported bystander effects in distal organs in animal

experiments [115]. The effect that bystander signals have outside the treatment volume,

particularly on surrounding normal tissues, has not been looked at in this work but this

is an important point to consider for future work. Another consideration when moving

from in vitro to in vivo scenarios is that in an in vivo scenario, both normal tissue cells

as well as cancer cells will be exposed to radiation and perhaps both cell types (normal
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and cancerous) might send out a bystander signal compared to an in vitro environment

where only specific cell lines have been grown in a medium. Heterogeneity of bystander

signaling remains an open question.

Within the context of the model, Equation 5.5 incorporates a volume term. In Equa-

tion 5.5 , the volume term affects the maximum signal concentration (appears in the

signal coefficient) as well as the rate at which the signal builds up.

However, McMahon et al. [93] has also shown that fixing the signal build-up rate to

the decay coefficient l is a good approximation to the realistic kinetics of actual treatment

volumes. The work shown assumed a target volume diameter of 5 cm. To test how

sensitive our model was to the assumed volume, we looked at two extreme volumes: a 2

cm diameter prostate, and a 10 cm diameter prostate. We found the TCP changed by

less than 1 % between these two extreme cases. Comparing our bystander model with

a LQ model we found that to achieve probability of 50 % tumour control (TCP50) can

be achieved with our bystander model when 23 % more cells are shielded from direct

exposure compared to the LQ model. For our specific modelling case, the maximum

difference between the bystander model and the LQ model occurs at an exposed fraction

of 0.70 where there is a huge difference in TCP prediction between the models. However,

from a clinical perspective it would be very unlikely for 30 % of the tumour to be missed

or underexposed. A more realistic case might be when say 90 - 95 % of the tumour gets

the full infield dose and the rest is partially irradiated in a penumbra. The bystander

model suggests a 3 % improvement in tumour control compared to that predicted by

a LQ model when 90 % of the tumour receives the intended dose. When 95 % of the

tumour is exposed to the in-field dose our bystander model shows a 1 % improvement in

tumour control compared to a LQ model predication as shown in Figure 3.5. Generally,

this model suggests that small segments of missed or partially exposed tumour may in

fact not result in the loss of TCP that may be predicted by the LQ model.

70



3.8 Conclusions

Our modeling process uses a very simple model with some basic assumptions. We have

taken a bystander model provided by McMahon et al. [93] which accurately reproduced

SF for prostate cells consistent with experimental studies of Butterworth et al. [86]

and have adapted the model to calculate TCP for a typical treatment course, including

a penumbra region, for intermediate risk prostate cancer under conditions where sub-

volumes of the target volume have been randomly or systematically missed. The results

suggest that in clinical scenarios a bystander signal strong enough to modify LQ-based

predictions may be induced even when very small relative volumes are directly irradiated.

It also suggests the potential for a mitigated effect on TCP in scenarios where a small

portion of the PTV may be missed or only partially irradiated. At a minimum, this model

suggests that further study into bystander effects in clinical scenarios is warranted.
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3.11 General conclusion to chapter 3

This chapter looked at how bystander effects can potentially modify biological outcome

compared to the LQ model commonly employed in radiation biology when we consider

systematic and random geometric shifts. This work demonstrates that the incorpora-

tion of bystander effects into models of treatment response potentially increases TCP

under geometric miss scenarios. The bystander model was adapted from the published

mechanistic model provided by McMahon et al. [93]. Dr. McMahon provide us with

his original computer code written in the Python computer code environment. The by-

stander model we developed for this work was developed in the Matlab environment and

was independently developed by myself under the supervision of Dr. Charles Kirkby.

Our bystander model developed for this chapter was the starting point for looking at

other potential bystander influenced outcomes in radiation therapy such as the effect of

dose heterogeneity on biological outcomes. Dose heterogeneity and bystander effects will

be the subject of the next chapter (chapter 4) in this work.
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Chapter 4

Potential implications of the bystander effect on

TCP and EUD when considering target volume dose

heterogeneity

4.1 General introduction to chapter 4

The previous chapter looked at modelling potential consequences of geometric misses

for intermediate risk prostate cancer assuming that bystander effects played a role in

vivo. The results presented in chapter 3 demonstrated that bystander effects potentially

improve TCP outcomes under geometric miss. This chapter expands upon the previous

chapter and looks at the potential effect radiation induced bystander effects have under

increasing dose heterogeneity scenarios. Typically radiation plans attempt to deliver a

homogeneous dose to the target volume. This chapter investigates to what extent dose

homogeneity constraints can be relaxed because of bystander effects.

The work presented in this chapter has been peer reviewed and published in the In-

ternational Journal of Radiation Biology (IJRB)[116]. I was the first author of this work

and the other contribution author was Dr. Charles Kirkby. I developed the models used

in this work and prepared the main manuscript for this work. I collaborated closely with

Dr. Charles Kirkby on the design and implementation of this bystander biological mod-

eling under increasing dose heterogeneity scenarios. Both Dr. Kirkby and I contributed

to the review of the results as well as the draft of the final manuscript.
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4.2 Potential implications of the bystander effect on TCP and

EUD when considering target volume dose heterogeneity
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4.3 Abstract

Purpose: In light of in vitro evidence suggesting that radiation induced bystander effects

may enhance non-local cell killing, there is potential for impact on radiotherapy treatment

planning paradigms such as the goal of delivering a uniform dose throughout the clinical

target volume (CTV). This work applies a bystander effect model to calculate equivalent

uniform dose (EUD) and tumour control probability (TCP) for external beam prostate

treatment and compares the results with a more common model where local response

is dictated exclusively by local absorbed dose. The broad assumptions applied in the

bystander effect model are intended to place an upper limit on the extent of the results

in a clinical context.

Materials and methods: EUD and TCP of a prostate cancer target volume under

conditions of increasing dose heterogeneity were calculated using two models: one in-

corporating bystander effects derived from previously published in vitro bystander data

[93, 94]; and one using a common linear-quadratic (LQ) response that relies exclusively

on local absorbed dose. Dose through the CTV was modelled as a normal distribution,

where the degree of heterogeneity was then dictated by changing the standard deviation

(SD). Also, a representative clinical dose distribution was examined as cold (low dose)

sub-volumes were systematically introduced.
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Results : The bystander model suggests a moderate degree of dose heterogeneity

throughout a target volume will yield as good or better outcome compared to a uniform

dose in terms of EUD and TCP. For a typical intermediate risk prostate prescription

of 78 Gy over 39 fractions maxima in EUD and TCP as a function of increasing SD

occurred at SD 5 Gy. The plots only dropped below the uniform dose values for SD

10 Gy, almost 13% of the prescribed dose. Small, but potentially significant differences

in the outcome metrics between the models were identified in the clinically-derived dose

distribution as cold sub-volumes were introduced.

Conclusions: In terms of EUD and TCP, the bystander model demonstrates the

potential to deviate from the common local LQ model predictions as dose heterogeneity

through a prostate CTV varies. The results suggest, at least in a limiting sense, the

potential for allowing some degree of dose heterogeneity within a CTV, although further

investigation of the assumptions of the bystander model are warranted.

Key words: Bystander Effect; Prostate Cancer; Modelling; Tumour Control Proba-

bility (TCP), Equivalent Uniform Dose (EUD).

4.4 Introduction

The general goal of radiation therapy is to kill clonogenic tumour cells while at the same

time minimizing radiation dose to healthy normal tissues. This is typically done by

delivering a homogenous prescription dose to the tumour. Dose heterogeneity within the

tumour volume is discouraged because, under the assumption that cell killing is only

a function of locally absorbed dose, more heterogeneous dose distributions will likely

result in lower clonogenic cell kill. Under the above assumption, it has been proven

that a uniform dose distribution produces the highest tumour control probability (TCP)

[117, 118]. Under the assumptions of Uniform Dose Theory there have been numerous
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studies that look at what effect heterogeneous dose distributions have on outcome [119,

117, 120, 118, 121, 122]. Generally speaking, unless the dose heterogeneity of a model can

be positively correlated to the tumour response heterogeneity (i.e. the more resistant cells

within a target volume get a higher dose), the planning goal should be a homogeneous

dose distribution.

In the current era of radiation therapy, there is increasing awareness that factors other

than locally absorbed dose play a role in the overall survival of biological cells exposed to

radiation. Most mathematical and biological models are developed under the assumption

that cell survival is based solely on the locally absorbed dose [43]. One of the other factors

that influences cell killing, other than the locally absorbed dose, is commonly referred

to the radiation induced bystander effect or just the bystander effect, where cell survival

and other biological consequences are influenced by signals from other irradiated cells.

Generally speaking, the bystander effect may actually be a set of effects where directly

damaged cells communicate with undamaged cells via factors transmitted through the

extracellular matrix or via more direct gap junction intercellular signalling (GJIC) [123].

Other long-range abscopal effects have been reported [124, 76, 125]. Current models of

biological outcomes based solely on locally absorbed radiation dose might be inaccurate

if the bystander effect plays a significant role in vivo [33, 126].

The radiation-induced bystander effect has been extensively studied since the 1990s

and there is growing interest in better understanding this effect [127, 77, 76, 78, 81, 84,

80, 82, 86]. Most investigations into the radiation induced bystander effect are based on

in vitro studies as well as various proposed mathematical models [89, 81, 92, 88, 94, 87,

109, 90, 110]. To our knowledge, there is a limited amount of information regarding how

the bystander effect plays a role in an in vivo environment [108, 115].

Our group recently published a model describing the potential implication that the

bystander effect might have on TCP in an in vivo environment under the conditions of a
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partial geometric miss [33]. The model applied was adapted from the work of McMahon

et al. [93]. In this work, we expand our study of the potential implications of this

bystander model, under the assumption it behaves in vivo similarly to the conditions

under which it was originally proposed in vitro and consider the specific problem of dose

heterogeneity within a target volume. Dose heterogeneity, both in planning and delivery,

naturally arises from a number of factors. These include: the transport of radiation

through radiologically heterogeneous media and tissues, the competing goals of hitting a

target and avoiding or limiting doses to critical organs, inter- and intra-fraction variation

in patient anatomy, as well as physical constraints in the production and shaping of each

radiation field. An in-house assessment of 15 different intermediate risk prostate patients

treated at our centre found a range of standard deviations (SD) between 48 cGy and

113 cGy with an average SD of 67 cGy about an intended dose of 7800 cGy. The SD

was found by fitting the differential dose volume histogram (dDVH) data to a normal

distribution. The dDVH had been exported from our treatment planning system, Eclipse,

(Varian, Palo Alto, CA, USA) using sub volumes with dimensions of 2.5 x 2.5 x 2.5 mm.

In a clinical radiotherapy context radiation-induced bystander effects illicit some nat-

ural speculation. If within a target volume, a smaller sub-volume receives a hot dose

(above the mean to the whole target volume), the cells in that sub-volume may emit

a signal that influences the response of other cells that received lower doses. Therefore

when a heterogeneous dose is delivered, to some degree the hot sub-volumes may compen-

sate for the low sub-volumes. The extent to which this occurs is difficult to predict, but

certainly warrants investigation because of the potential to impact on radiation therapy

treatment delivery. Expansion in the allowable dose heterogeneity in a target volume

may permit more avoidance of sensitive critical structures, for example. We propose in

this work, that the in vitro model of bystander effects represents an upper limit to the in

vivo case. Influences of vasculature, and in vivo metabolism will quite likely mitigate or
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dilute the signalling observed in vitro. Therefore, if the calculated biological responses

suggest no clinical relevance based on an in vitro -derived model, there is unlikely to

be any. But results to the contrary would suggest further investigation is warranted.

Specifically this study considers how current TCP and equivalent uniform dose (EUD)

might be influenced under conditions of increasing dose heterogeneity under competing

models of response.

4.5 Methods and Materials

4.5.1 Bystander model

Our bystander model was taken and adapted from the published mechanistic model

developed by McMahon at el, [93]. An overview of the model and its assumptions is

given below. More specific details are available elsewhere [33, 93, 94]. We explore, via this

model, the potential role bystander effects could play under situations of heterogeneous

dose distributions.

Bystander Signal Production

Following exposure to a radiation, cells release a bystander signal for a period of time,

ρ(t), modeled by equation 4.1 [93]:

ρ(t) =
ρmax

1 + λV
νC

(
1− exp

(
−t
(
νC

V
+ λ

)))
+ ρ0 ∗ exp (−λt) (4.1)

Here, ρ(t) is the bystander signal concentration as function of time, ρmax is the local

bystander signal concentration equilibrium, λ is the signal decay constant, V is the vol-

ume, ν is substitution for η
ρmax

where η is the rate of local signal production when the

concentration is 0, C is the number of irradiated cells, and ρ0 is the signal concentration

at time t= 0.
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According to the model proposed by McMahon et al. [93] irradiated cells emit a

signal for a fixed amount of time after exposure. Cells exposed to this signal will accu-

mulate biological damage (additional to any induced by direct irradiation) in a quantity

proportional to the time the cells experience the signal above a defined threshold. The

probability that a cell will respond to a radiation induced signal (PB) is given by equation

4.2 [93]. Here τ is the time the cell is exposed to a bystander signal above a threshold

and κ is a cell specific signal kinetic parameter.

PB = 1− exp (−κτ) (4.2)

Cells experience damage from radiation dose as well as bystander signal that translate

into a various number of hits on sensitive structures of the cell. Rules to translate the

number of hits were developed by Patridge [109]. Signal-generated hits are determined

by sampling from a Poisson probability distribution function (Poisson PDF) with an ex-

pectation value for bystander induced hits (HB) characteristic of the cell type. Similarly,

local dose-generated hits are found by sampling from a Poisson PDF with an expecta-

tion value for radiation-induced hits (Hits/Gy) that is proportional to the delivered dose.

Parameter values used in our model are found in table 4.1

Basic Assumptions

In the bystander model damage accumulates as an integer number of hits to a sensitive

target within the cell. The precise definition of a hit is purposefully left ambiguous as it is

simply a convenient quantity by which damage can accumulate, allowing for end-points to

be determined. 1) Cells exposed to radiation will both experience damage directly from

the radiation and generate a signal for an extended period of time which is proportional

to the delivered dose (D). The amount of time the cells signal (Tsig) is governed by the

following relationship.
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Table 4.1: Initial input parameters for prostate cells (DU 145).

Parameter Value and Standard Deviation []

Signal decay constant -λ 0.019 ±0.002
Signal threshold - ρt

ρmas
0.21±0.02

γ (min/Gy) 61±20
κ (min−1) 0.0028±0.001
ν (min−1) 0.00011±0.00004
ν (min−1) 0.00011±0.00004
Hits/Gy 0.96 ±0.006

HB 3.0±0.4
Number of cells 3× 106

initial volume (ml) 50
Initial input parameters used in our model for prostate cells (DU
145). Note λ, ρt

ρmax
, γ, κ, ν, γκ, hits/Gy, and HB are fitted param-

eters taken from McMahon et al. (2013). HB corresponds to the
number of hits induced by the bystander effect in the responding
cells and Hits

Gy
corresponds to the hits induced from direct radiation,

and γκ characterizes how rapidly the bystander signal builds up.

Tsig = γD (4.3)

Here γ is a cell line specific parameter. This signal enters the medium in which

the exposed cells are suspended and freely moves to other cells. Diffusion of the signal

is assumed to be efficient, such that an equilibrium concentration is quickly obtained

within the target volume. 2) The bystander signal above a threshold value may induce a

response in a cell exposed to the signal that manifests as biological damage. 3) The degree

of damage is proportional to the time the cells are exposed to a signal above a threshold

value. The response is binary, with responding cells experiencing a characteristic level of

damage and non-responding cells receiving no damage. 4) This damage is added to the

damage induced by direct exposure to radiation.

80



4.5.2 Equivalent Uniform Dose (EUD) calculations

EUD calculations for increasing dose heterogeneity

Niemierko [69] developed the concept of EUD as a way to analyze and compare different

heterogeneous dose distributions. The full details of the derivation of EUD can be found

elsewhere [69]. The basic idea of the EUD is to determine what uniform dose would have

the same surviving fraction (SF) as some heterogeneous dose distributions of interest

(Di).

SF (EUD) = SF ({Di}) (4.4)

Here, SF ({Di}) is the overall SF from a heterogeneous dose distribution. If there is

a heterogeneous dose distribution where N portions of the tumour volume each receive

a homogeneous dose, characterized by the dDVH, the overall SF is the weighted average

of all SF‘s for the various subvolumes (vi) and is given by equation 4.5,

SF ({Di}) =
N∑
i=1

νi × SF (Di) (4.5)

SF are calculated one of two ways: 1) using standard methods that assume the SF is

a function of dose alone and 2) using our numerical bystander model. The SF for uniform

doses is given by equation 4.6.

SF (D) = (SF2)
D

Dref (4.6)

Here, SF2 is the SF following a uniform 2 Gy radiation dose (Dref ). In the spirit

of EUD, after the SF for the heterogeneous dose distribution has been determined, the

question we consider is “What EUD would give the same overall SF” If the SF has been

determined by our bystander model or has been calculated using linear quadratic (LQ)
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models, the EUD approach at this point would be the same. Using equation 4.4, 4.5,

and 4.6 we have:

(SF2)
EUD
Dref =

N∑
i=1

νi × SF (Di) (4.7)

which can be easily arranged to determine EUD;

EUD = Dref
ln[
∑N

i=1 νi × SFi]
ln (SF2)

(4.8)

We come up with a new form of EUD that we have defined as EUDbyst (see equation

4.9). EUDbyst represents what uniform radiation dose would have the same biological

effect when we consider that the overall SF is a function of both locally absorbed dose

as well as a bystander component as determined by our bystander model. Therefore,

EUDbyst is a function of both dose as well a bystander signal.

EUDbyst (D, byst) = Dref
ln[
∑N

i=1 νi × SFbyst]
ln (SF2)

(4.9)

It is important to note that under conditions of uniform dose, the predictions of

the bystander model with respect to surviving fraction reduce to those predicted by the

common linear quadratic model. Hence, an actual uniform dose means the same whether

the bystander model is invoked or not. We looked at how the EUD as well as our EUDbyst

change when the dose heterogeneity increases as measured by systematically increasing

the SD of our dose distributions.

EUD calculations for increasing cold spot volume within CTV

In some prostate plans, there is an overlap between the clinical tumour volume (CTV)

and the volumes associated with the normal tissues like the rectum or bladder. For

example, if the PTV region overlaps with planning rectal volume (PRV) then the overlap

region can be problematic for the optimization of the plan during the planning stages.
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The problem occurs because one objective during the optimization is trying to put dose

in that region to satisfy the CTV dose requirements, while at the same time another

constraint is attempting to reduce the dose to the same region to satisfy the PRV dose

constraints. This often results in a portion of the CTV getting a lower prescription dose

which we call a cold spot. We investigate how the standard EUD as well as EUDbyst

change as the cold spot volume increases for cold spots receiving only 95%, 90%, 85%,

and 80% of mean (prescription) dose of 78 Gy delivered over 39 fractions. For the cold

spot cases, we fixed the SD of the dose heterogeneity at 0.67 Gy, but then change the

volume of the CTV that receives the particular cold spot dose.

4.5.3 TCP calculations

The TCP model assumes that even a single surviving clonogen will have the potential of

growing into a viable tumour and that the cells will follow a Poisson type distribution

[51]. Therefore, the probability of tumour control is equal to the probability that no

clonogens survive following a course of radiation and is given by equation 10 [46].

TCP = exp (−SF ×N) (4.10)

Here SF is the surviving fraction and N is the initial number of clonogens. After

simulating a fractionated radiotherapy treatment for each different dose heterogeneity

scenario, we calculate the total number of expected surviving cells and then using equa-

tion 10 calculate a final TCP for each dose heterogeneity scenario. We ignore any re-

population effects. We assumed an initial number of clonogenic prostate cells of 3× 106

with alpha ( α = 0.15Gy−1) and beta ( β = 0.048Gy−2 ) values. Our initial number of

prostate clonogenic cells as well as alpha and beta parameters were consistent with that

of others for intermediate risk prostate cancer [106, 24].

Using equation 4.10, we calculate the TCP under the assumption that the surviving
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fraction is a function of dose alone as well as under the assumption the surviving fraction

is a function of both the absorbed dose as well as some bystander signal. We investigated

how TCP changes with increasing dose heterogeneity for both TCP calculation methods

mentioned above.

4.6 Results

4.6.1 Bystander adjusted EUD

Prescription of 60 Gy in 30 fractions

The work originally presented by Niemierko was used as a test case [69]. Niemierko

presented the results of EUD for a test case where the prescription dose of 60 Gy was

delivered over 30 equal fractions. Niemierko simulated dose heterogeneity by increasing

the SD of the normal density function from 0 Gy to 18 Gy. In all cases, the mean of the

normal density function remained at the prescription dose of 60 Gy.

In our work, the test case scenario described by Niemierko was reproduced and a

bystander adjusted EUD was calculated and compared with the standard calculation

of EUD as presented by Niemierko [69]. To be consistent with Niemierkos results, we

adjusted the parameters of our bystander model such that a uniform dose of 2 Gy would

represent an overall SF of 0.5.

Figure 4.1, shows the results of both the EUD as well as the EUDbyst vs. increasing

dose heterogeneity as measured by the SD. When a bystander component to cell kill is

considered, the EUDbyst shows a 1% increase as the SD increases from 0 to 2 Gy and

then EUDbyst drops slowly as the SD increases from 2 Gy to 18 Gy. According to our

results, the maximum EUDbyst occurs at a SD of around 2 Gy, and at a SD of 4 Gy

the EUDbyst drops back down to the starting value at a SD of 0 Gy. By contrast, the

normal EUD has a maximum value at a SD of 0 Gy and then slowly decreases as the
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Figure 4.1: EUD and EUDbyst vs. SD for a prescription dose of 60 Gy delivered over 30
fractions.

SD increases. As expected, at a SD of 0 Gy the EUD would equal the prescription dose

of 60 Gy and then drop as the dose heterogeneity increases which is consistent with the

uniform dose idea.

Prescription of 78 Gy in 39 fractions

The standard of care for intermediate risk prostate cancer at our institution is a prescrip-

tion dose of 78 Gy delivered over 39 fractions. Dose heterogeneity for the intermediate

risk prostate cancer case was simulated as before by taking dose values from a normal

density function with a mean value of 78 cGy while increasing the SD from 0 Gy up to

18 Gy (see figure 4.2).

Figure 4.3 shows the results of EUD vs. SD for the intermediate risk prostate sce-

nario. As with the test case presented by earlier, a homogeneous dose distribution is

equal to the prescription dose, which is 78 Gy for our intermediate risk prostate case.
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Figure 4.2: The differential dose volume histograms for different heterogeneous dose
distributions. All distributions have a mean value of 78 Gy but with different SD.

The EUDbyst slightly increases reaching a maximum value of 80.58 Gy for a dose het-

erogeneity associated with a SD of 5 Gy and then the EUDbyst slowly drops as the SD

increases beyond 5 Gy. Interestingly the SD can increase to as much as 12.5 Gy before

the EUDbyst drops below the uniform dose (SD = 0) prediction. When the bystander

effect is not considered, EUD starts at the prescription dose of 78 Gy at a SD of 0 then

immediately begins to decrease as the dose heterogeneity increases. At a SD of 18 Gy

the EUD has dropped to 55 Gy which is a 30% drop in EUD for a perfectly homogeneous

dose distribution. For the bystander model, the EUDbyst at a SD of 18 Gy has dropped

by around 6% from the 0 SD case to an EUDbyst of 73 Gy.

Increasing cold spot volume scenario

Figure 4.4 shows the results of EUD vs. percent of CTV volume receiving the cold spot

dose. As expected both the EUD as well as the EUDbyst drop as the cold spot volume
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Figure 4.3: EUD and EUDbyst vs. SD for a prescription dose of 78 Gy delivered over 39
fractions for our intermediate risk prostate scenario.

increases. However, for the same percent of cold spot volume, our results show that the

EUDbyst value drops less than the EUD value. For example, if a CTV cold volume of

20% receives 80% of the mean dose, the EUDbyst is about 2% greater then EUD and for

a cold volume dose that is 95% of the mean dose, our results show that the EUDbyst is

only about 0.5% higher than the EUD.

4.6.2 Bystander adjusted TCP when considering increasing dose heterogene-

ity.

TCP vs. SD is shown in figures 4.5 and 4.6. Under the assumption of the LQ models of

cell killing, the maximum TCP occurs when a perfectly homogeneous dose distribution

(SD is 0) is delivered to the tumour volume. According to the LQ model the TCP value

begins to drop in a sigmoid type fashion as the dose heterogeneity increases. For example,
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Figure 4.4: EUD vs Percent of CTV volume receiving coldspot dose. The dashed lines
represent the standard EUD formulism and the solid lines represent the bystander influ-
enced (EUDbyst)
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Figure 4.5: TCP vs. SD for a typical intermediate risk prostate prescription of delivering
78 Gy over 39 fractions.

at a SD of 0 cGy the LQ model predicts a high TCP value of 99% and slowly drops to

a TCP value of 97% at a SD of 4 Gy and then the TCP drops more rapidly dropping to

a value of .75 at a SD of 8 Gy. At a SD of 12 Gy, the LQ model predicts essentially a

TCP of around 0.

By comparison, when a bystander effect is considered the results are quite different.

Unlike the LQ model, TCP actually shows a slight increase as the dose heterogeneity

begins to increase. According to our bystander model, the maximum TCP occurs at a

dose heterogeneity of SD = 5 Gy and then slowly begins to drop as the dose heterogeneity

increases further. Under the assumptions of our bystander model, our results show

that the TCP will remain as good as or even better than a perfectly homogeneous dose

distribution up to a heterogeneous dose distribution of around 10 Gy.

89



Figure 4.6: A zoomed in figure of TCP vs. SD for a typical intermediate risk prostate
prescription of delivering 78 Gy over 39 fractions.

4.7 Discussion

In this work, we have investigated the potential consequences of a radiation-induced by-

stander effect on the biological outcomes of EUD as well as TCP across scenarios of

increasing dose heterogeneity as well as increasing cold spot volumes within an other-

wise clinically realistic CTV. The current radiation therapy planning paradigm includes

minimizing dose heterogeneities over a target volume, but because of normal tissue con-

straints, radiologically heterogeneous media and mechanical limitations of equipment,

there tends to be some dose heterogeneity across the target volume. In this work TCP

and EUD have been calculated in two ways, (i) by using model adapted from McMahon

et al. [93] that incorporates a bystander signal and response, and (ii) by using more pop-

ular LQ and EUD models that assume cell killing is a function only of locally absorbed

dose.

The results generated using the bystander model herein demonstrate that some degree
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of dose heterogeneity may yield acceptable outcomes (as good or better) compared to

perfectly homogeneous dose distributions. The model shows acceptable outcomes of

TCP to an upper limit of around SD of 10 Gy about a mean dose of 78 Gy. In the test

case presented by Niemierko [69], the maximum EUDbyst occurs at a dose heterogeneity

corresponding to a SD of 2 Gy. Under the intermediate risk prostate scenario, the highest

EUDbyst occurs at a SD of 5 Gy. The slight increases (∼1% and 3% respectively) are

not large enough to warrant attempts at heterogeneity optimization.

The explanation for this behavior is reasonably intuitive in terms of the model. In

a heterogeneous dose distribution through a particular volume, those cells exposed to

higher doses will generate stronger bystander signals. These signals will then influence

the response of the cells receiving less dose. However, as the dose heterogeneity continues

to increase, the effects from bystander signals on the cells that received lower doses

eventually become insufficient to compensate for the lack of damage due to the lower

dose. As a result, a turning point is reached. The overall cell survival goes up as the

dose heterogeneity continues to increase.

For the cases considered in this work, the highest EUDbyst values are 60.57 Gy and

80.58 Gy for the 60 Gy prescriptions and the 78 Gy dose prescriptions respectively. For

the 60 Gy prescription, the maximum EUDbyst is about 1% higher than the maximum

EUD. Similarly, for the 78 Gy scenario, our results show that the maximum EUDbyst is

about 3% higher than the maximum EUD. It is interesting to note that under the inter-

mediate risk prostate case, if the dose heterogeneity is such as to maximize EUDbyst, our

bystander model suggest it would have a similar biological effect as one might expect if

an extra 2 Gy fraction were delivered. Further, in the 78 Gy case, it was shown that a

SD of ∼ 16% of the prescribed dose resulted in as good or better EUD values. In context,

typical plans (created with the goal of a uniform dose distribution) have an SD on the or-

der of 1%. For the case of the cold volume within the CTV, the EUDbyst was consistently
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higher than the EUD. The model of the bystander effect therefore suggests the potential

for mitigating decreases in treatment outcome when cold spots are unavoidable.

Based on the results of our bystander model, the bystander effect might play a more

significant role at higher mean doses, assuming the dose heterogeneity is normally dis-

tributed around the mean value. As a result, the bystander effect increased the EUD

by 1% for a 60 Gy prescription and by 3% for the 78 Gy prescriptions. The bystander

model assumes that cells generate a bystander signal proportional to the absorbed dose.

Therefore, higher dose prescriptions will results in cells exposed to higher radiation doses,

which in turn translate into higher bystander signals.

One assumption made in this work is that the bystander signal above a specific

threshold will have a negative impact on cell survival. Bystander signals do not always

have a negative impact on cell survival and there have been studies where proliferative

[128] and other beneficial effects have been reported [129]. In this study, we focused on

potential bystander effects within the target volume of a confined gland. Our approach

was first to model potential damage from bystander effects and then second model the

potential consequence of that damage within a target volume. Looking at bystander

effects on normal tissues was beyond the scope of this work. However, a much deeper

understanding of bystander effects on clonogenic as well as normal tissues is needed before

any current clinical practice would be modified because of bystander effects.

It is important to underscore the fact that the results presented here are based on the

assumption that the cells in an in vivo, three dimensional (3D), vascular tumour volume

will behave in a manner consistent with the in vitro conditions under which the form of

this model was derived. As mentioned, this work is expected to define a maximum extent

a bystander effect might play in terms of outcome for clinical scenarios because, as the

assumptions of the bystander model break down, we are likely to see a diminished effect

on cell response. For example, we assumed that the bystander signal is highly efficient
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such that a signal released by one cell will have influence on all cells within the CTV

regardless of location. We looked at the sensitivity of the results to initial parameter

values in the bystander model by analyzing how a 10% increase and 10% decrease would

affect our results. According to our model, the results were most sensitive to the response

parameters hits per Gy (HPG) as well as (HB). When there is little dose heterogeneity

(ie. SD is close to 0) the results were most sensitive to the HPG parameter. However,

as the dose heterogeneity increased, the HB parameter became more influential. For

example, in the case of the EUD results, a 10% change in HPG would cause about a 9%

change in our results at SD of 0 and only a 4% change in our results at a SD of 18 Gy.

A 10% change in HB would results in a 5% change at SD of 0, and a 8% change at a SD

of 18 Gy.

The assumption that the bystander signal instantly equilibrates throughout the entire

target volume is not unreasonable in vitro, but in a 3D vascular tissue, factors released

into the extracellular matrix may be transported out of the tissue or tumour completely

and diluted through the rest of the body, and hence diminish any effect on cell response.

For example, work by Belyakov [130] showed that in a 3D artificial human skin for both

the highly differentiated model of the human epidermis (EPI−200) and full thickness skin

model (EFT−300) bystander effects were only observed up to ∼1mm away from directly

irradiated cells. However, signal transport is still a very open-ended question and is

likely to depend on the specific properties of the tissue or organ involved. Regardless,

the predictions of model herein establish an upper bound on bystander effects in vivo. In

our intermediate risk prostate scenario, all cells within the PTV receive some radiation

dose. If a spatial limit to bystander signal diffusion were to be applied, this would localize

the predicted responses such that more highly modulated spatial dose distributions would

behave more consistently with this model, but less modulated doses (i.e. a large dose

gradient across the target volume) would experience less overall damage as there would be
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larger distances between the longest- and shortest-time signalling cells. Ultimately even

if the results presented hold only in a qualitative context, they may relax the planning

constraint of aiming for a uniform dose distribution and potentially open up new planning

approaches such as introducing small, hot volumes to compensate for cold ones. At a

minimum, our results suggest that further research into this area is warranted.

4.8 Conclusion

Our modeling process uses a very simple model with some basic assumptions. We have

expanded on a recently published in vivo bystander model [33] that was originally adapted

from the in vitro bystander provided model by McMahon et al.[93]. The results demon-

strate the potential to deviate from both EUD and TCP predictions of the common local

LQ model and standard EUD models when considering dose heterogeneity in the treat-

ment volume of a prostate radiotherapy treatment. The bystander model suggests that a

large amount of dosimetric heterogeneity through a treatment volume may be acceptable

in a treatment plan and that a moderate amount may even be optimal. At a mini-

mum, this model suggests that further study into bystander effects in clinical scenarios

is warranted especially when considering different heterogeneous dose distributions.

94



4.9 General conclusion to chapter 4

This chapter looked TCP and EUD models to determine to what extent dose homo-

geneity planning constraints may be relaxed because of bystander effects. This work

demonstrates that the incorporation of bystander effects into models of treatment re-

sponse can potentially relax homogeneity constraints. Chapter 3 and this chapter have

shown that bystander effects potentially have important implications when it come to

radiotherapy treatment. Bystander effects have been known to play an important role in

low dose regions such as those which may be found out-of-field of the primary treatment

site [131, 132]. The objective of the next chapter was to relatively compare to what

extent bystander effects play in low dose out-of-field regions compared to other known

low dose effects such as low dose hypersensitivity effects, and this was the focus of the

chapter 5.
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Chapter 5

The Relative Biological Effectiveness of Out-of-Field

Dose

5.1 General introduction to chapter 5

The work presented in this chapter investigated the relative biological effectiveness differ-

ent low dose phenomena have on out-of-field radiation dose. A simple single arc treatment

was used to simulate a typical prostate VMAT treatment where the physical out-of-field

dose was compared with an equivalent out-of-field dose, assuming that low dose hypersen-

sitivity effects, bystander effects, spectral effects, play a role in the biological effectiveness

out-of-field. RBE are then compared for the different out-of-field effects.

This work has been submitted to the peer-reviewed journal Physics in Medicine and

Biology. I was the first author of this work and prepared the main manuscript. The

other contributing authors were Brandon Koger and Dr. Charles Kirkby. I developed

the main algorithm for modeling the consequences of low dose hypersensitivity and by-

stander effects, and Dr. Charles Kirkby developed the main algorithm for modeling the

consequences for spectral effects. Brandon Koger provided the source code modifications

used in the Monte Carlo dosimetry simulations. All authors contributed to the review of

the results and development of the final manuscript.
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5.3 Abstract

Purpose : Using simulations and models derived from existing literature, this work inves-

tigates the relative biological effectiveness (RBE) for out-of-field radiation and attempts

to quantify the relative magnitudes of different contributing phenomena (spectral, by-

stander, and low dose hypersensitivity effects) . Specific attention is paid to external

beam radiotherapy treatments for prostate cancer.

Materials and methods: Using different biological models that account for spectral,

bystander, and low dose hypersensitivity effects, we calculate the RBE for different points
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moving radially out from isocentre for a typical single arc VMAT prostate case. The RBE

was found by taking the ratio of the equivalent dose to the physical dose. Equivalent

doses were calculated by determining what physical dose would be necessary to produce

the same overall biological effect as that predicted using the different biological models.

Results : Spectral effects changed the RBE out-of-field less than 2 %, whereas low

dose hypersensitivity and bystander effects had much more profound changes of the RBE

for out-of-field doses. The bystander effect had the largest RBE for points located just

outside edge of the primary radiation beam in the cranial caudal (z-direction) compared

to low dose hypersensitivity and spectral effects. In the coplanar direction, bystander ef-

fect played the largest role in enhancing the RBE for points up to 8.75 cm from isocentre.

Conclusions: Spectral, bystander, and low dose hypersensitivity effects can all in-

crease the RBE for out-of-field radiation doses. In most cases, bystander effects seem

to play the largest role followed by the low dose hypersensitivity. Spectral effects were

unlikely to be of any clinical significance. Bystander, low dose hypersensitivity, and

spectral effect increased the RBE much more in the cranial caudal direction (z-direction)

compared with the coplanar directions.

5.4 Introduction

In recent years there have been many advances in radiotherapy techniques such as Inten-

sity Modulated Radiotherapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT).

These techniques offer significant improvement in delivering highly conformal radiation

doses to the target. In order to accurately predict the responses of tumours or normal
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tissues to external beam radiation therapy, it is important to understand the survival

response of cells to a given absorbed dose, not only in the volume where the highest

doses of radiation accumulate (which generally corresponds to the target volume of the

therapy plus a surrounding margin), but also outside of this volume where dose arises

due to the combination of entry and exit dose, scatter, and leakage. entry and exit dose,

scatter, and leakage. We define out-of-field dose as any dose that arises in the patient

that arises outside of the collimated treatment field. Generally, organs-at-risk “those

organs particularly sensitive to radiation” and other healthy tissues that surround the

directly irradiated volume will receive this out-of-field dose. On rare occasions, even with

properly defined margins, the clinical target volume (CTV the gross tumour volume plus

the microscopic extension of the disease) can be located outside of the directly irradiated

volume (which could for example be defined as the volume confined by the delivered

95% iso-surface), a situation commonly referred to as a partial geometric miss. Partial

geometric misses can occur due to an accumulation of extreme errors in setup, motion,

and/or errors in accurately delineating the CTV, and can have tremendous impact on

the intended outcome of a treatment. Additionally an accurate understanding of how

tissues respond to out-of-field dose is important for predicting and understanding the risk

of radiation-induced secondary malignancies. In this work, we examine several factors

that have been identified as having a role in modifying the common linear quadratic

(LQ) survival response to absorbed dose in out-of-field scenarios. These include spec-

tral effects [133, 134], low dose hypersensitivity effects[72, 135], and bystander effects

[136, 137, 86, 93]. Others have suggested that these low dose phenomena work in concert

with each other and are not mutually exclusive [131, 138, 139, 140].

The purpose of this work is to examine common models for predicting these effects

in an external beam radiotherapy treatment scenario (we place specific emphasis on the

treatment of prostate cancer), and compare their relative magnitudes in terms of relative
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biological effectiveness or RBE. This will offer insight into their relative magnitudes and

suggest on which effect(s) emphasis should be placed in future research.

From the outset it is important to recognize that some groups have suggested that

these low dose phenomena work in concert with each other and may not be not mutually

exclusive [131, 138, 139, 140]. For the purpose of this study, we have assumed that these

low dose effects are independent of each other.

5.4.1 Spectral Effects

At the physical level, the radiation outside the primary radiation field results primarily

from scatter. As a result the mean energy outside the primary field is less than that

within. Small differences in biological effectiveness are observed when comparing the

effects of kilovoltage radiation to megavoltage radiation or Co-60 gamma rays [141]. As

mean electron energy decreases, the track structure changes resulting in increased in

lineal energy, which in turn increases the biological damage induced per unit absorbed

dose. There is some evidence to suggest that a similar, yet scaled down, phenomenon may

occur on the periphery of megavoltage photon beam [134, 142, 133]. Using a previously

developed simulation technique that translates a Monte Carlo generated spectrum into

an estimate of DNA double strand breaks,[143, 144] we quantify the relative magnitude

of this effect.

Low Dose Hypersensitivity

It is generally well accepted that radiation doses above 2 Gy are well described by the

LQ model. However, over the past three decades or so different scientific investigators

have noticed many cell lines have shown an increased radiosensitivity to radiation doses

below 1 Gy compared with what would be predicted from the backward extrapolation of

LQ response derived for high doses [72, 73]. It has been shown that over fifty different

cells lines exhibit this increased radiation sensitivity at low doses [74, 75].
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Surviving fractions (SF, the fraction of clonogens remaining after receiving an ab-

sorbed dose) at very low doses are much better fit using a modification to the LQ model

called the induced-repair mode [36], see equation 5.4. In the LQ model, α is a constant,

parameterizing the linear component of the survival response. Similarly a constant β

parameterizes the quadratic component of the curve, both in response to an absorbed

dose, D, such that the surviving fraction is given by e(−αD−βD2). In the induced repair

model, α becomes a function of dose as shown in equation 5.3.

According to this empirical model, at low doses (at approximately 10 cGy and below)

cells experience a hyper-radiosensitivity (HRS) and as the dose increases they begin to

experience an increased radio-resistance (IRR) [36]. On a cell survival curve the increase

in radiosensitivity at low doses is manifest as a steeper initial slope on the survival curve

(αs) compared with what would be extracted from extrapolating back from higher dose

regions using the LQ model, which have more gradual slope (αr). The more radiosensitive

phase happens for doses up to around 10 cGy. As the dose increases the cells become

more radio resistant. The point where the transition from αs to αr is 63% complete is

defined by a parameter Dc. The transition from the more sensitive to more resistant

biological response typically happens between approximately 20 cGy - 80 cGy [36]. At

high doses (> 100 cGy) the induced repair model and the LQ model predict the same

overall cell killing.

5.4.2 Bystander Effects

Radiation-induced bystander effects cause cells to respond to the fact that neighboring

cells have been irradiated [76] and therefore do not necessarily respond to radiation dose in

isolation [33, 116]. Bystander effects are assumed to result from cell to cell communication

through gap junction intercellular communication (GJIC) or through signals released into

the surrounding medium [145, 146]. Bystander effects potentially play an important role
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in low doses regions (< 0.2 Gy)[131, 132] and have the potential to influence the width

of the margins used in radiotherapy, but much more work in needed to understand how

bystander effects actually work in vivo [147].

Bystander effects have been shown in the many different experiments ([84, 86, 76, 92,

33, 116]. Bystander effects seem to attack the fundamental assumption of the prevalent

LQ model (i.e. SF is a function of absorbed dose alone) and there is increasing interest

to better understand the implications these effects have on radiotherapy treatment [147].

5.5 Methods and Materials

Irradiation Geometry

For this work we considered an irradiation geometry for a simplified VMAT treatmentas

depicted in figure ??. A planning target volume (PTV) of radius 2.5 cm was assumed

to be centred inside a cylinder of radius 15.0 cm and length 70.0 cm. All materials

were assumed to be radiologically equivalent to water. A 6 MV photon source was used

to deliver a circular field of radius 3.0 cm (PTV radius + 0.5 cm) at isocenter. The

source was delivered in an arc-therapy context with uniform fluence at all gantry angles.

Attenuation from a patient support device was assumed negligible. Our model assumed

a Varian iX linear accelerator with a 100 cm source to axis distance. The z-axis was

defined as representative of a cranial-caudal direction along the length of the cylinder

and is perpendicular to the plane of beam delivery. The radial or r-axis was defined as

any direction away from isocentre within the plane of beam delivery.

Dose profiles used for the low dose hypersensitivity and bystander effect models were

generated in this geometry using the Eclipse treatment planning system (version 11.01)

with the Acuros XB (AXB) radiation transport and dose calculation algorithm applied

(Varian Medical Systems, Palo Alto, CA, USA). Details of the Monte Carlo model used

102



Figure 5.1: Dose map on an axial slice through isocentre as planned on the Eclipse TPS.
The extracted dose profile in the r-dimension (indicated by the white arrow) starts at the
origin of our target then moves outward in the radial direction. The z-dimension points in
toward the page. The 6 MV photon beam was collimated to deliver a uniform fluence to
the target volume. Because this was an arc-therapy geometry the source rotates though
360 degrees (gantry angles of 180E through 180 on a Varian scale).

to examine the spectral fluences are given below.

5.5.1 Spectral Effects

To quantify the approximate magnitude of spectral variation effects on a 6 MV photon

beam in the geometry specified above, we used a technique for the coupled simulation

of radiation transport on a macroscopic level and then simulated the induction of ge-

netic damage on a microscopic level. Following the methods specified in earlier work

[143, 144, 149] the Penetration and Energy Loss (PENELOPE) Monte Carlo package

(version 2011) [150] was used to model radiation transport through the geometry de-

picted in figure 5.1. The source model used was a modified form of the penEasy “source-

boxisotropicgaussspectrum” source sourceBoxIsotropicGaussSpectrum source which as-
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sumed a point source that uniformly emitted photons within a pre-defined aperture angle.

This angle was set to define a 3.0 cm circle at isocentre. The code was modified to ran-

domly shift the position and angle of the source according to gantry angle, with each

gantry angle having a uniform probability of occurring. Effectively, this simulated an

arc delivery with uniform fluence at all angles. The photon spectrum was that derived

by Sheikh-Bagheri and Rogers [148], which we note was scored for the central axis (r ≤

2.25 cm) for a Varian Clinac linear accelerator with a 10 by10 cm2 field. Effects such

as scatter from the jaws, MLC leakage, or contaminant electrons were considered higher

order and not incorporated into the model. Simulation parameters were set as followes.

The parameters C1 and C2, which establish the mean free path between hard elastic

events and the maximum average fractional energy loss in a single step, respectively were

both set to values of 0.1 as per the penEasy default. Photon absorption energies were

set to 100 eV, while electron absorption energies were set to 100 keV (for the first stage

simulations). Particles below these thresholds are considered locally absorbed. Threshold

energies for radiative events, Wcr, and the separation of hard and soft elastic collisions,

Wcc, tracked with the absorption energies.

This source and geometry reproduced the treatment planning system dose profiles as

shown in figure 5.1. As shown, the MC dose profiles are sharper than those produced by

the treatment planning system, an effect that is due to the simplified source model. The

treatment planning system incorporates the collimator jaws, multileaf collimator leaves,

etc. to produce a more realistic penumbra. Distance to agreement in the penumbra is

generally within 3 mm and for the purposes of this work the differences in photon spectra

as a function of position at 10 mm intervals are not likely to have a strong dependence

on these details.

In the first set of simulations, the PENELOPE code scored photon fluence, differential

in energy. In the z = 0 plane the fluence was symmetric for all gantry angles, thus it was
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Figure 5.2: A comparison of the dose profiles in the radial (r) and longitudinal or
cranial-caudal (z) dose profiles between the treatment planning system (AXB) and the
simplified MC model. At the field edge, the MC results show a slightly sharper fall-off
due to the source aperture defining the edge rather than a beam-shaping device (MLC).
This difference should not significantly affect the results.
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scored in radially concentric annular volumes with 4r = 3 mm, 4z = 4 mm in the axial

plane at 10 mm intervals. Llongitudinally in 2 mm radius, 4z = 4 mm cylinders at 10

mm intervals. Energy bins were 20 keV wide.

The scored photon fluence was then used as input into a second set of simulations that

used a unique tally written to estimate the expected value of genetic damage induced at

a given site in response to the calculated photon fluence, differential in energy. The tally

relies on a set of tabulated data taken directly from the Monte Carlo Damage Simulation

(MCDS) software [144, 151, 152] (version 3.1) for a series of monoenergetic electrons.

The MCDS is not a radiation transport code. For a particle characterized by its charge

and kinetic energy, the code randomly distributes lesions along a DNA segment and then

groups those lesions together estimating the number of double strand breaks (DSBs) as

well as other forms of genetic damage (single strand breaks and base pair damages) and

damage complexity.

In the second set of simulations the PENELOPE-scored photon fluence was used as a

source incident on a (3.3 µm) cube of water, representative of a cell nucleus. As photons

pass through and interact with the small volume, electrons are generated. These electrons

are tracked by the tally. The MC simulation parameters were set to run with absorption

energies of 100 eV (photons and electrons), C1 = C2 =0 (detailed simulation) and Wcc

and Wcr tracked with absorption energy. We introduced a modification to the code

where electrons were translocated immediately on escaping the volume, and set, without

any modification to the direction vector to the opposite side of the cube. (Informally

this is referred to as an electron “Pac-Man Universe” after the popular 1980s video

game). Note that photons freely escape the volume. In this way, the code simulates an

environment under charged particle equilibrium in response to a given photon spectrum

in a computationally efficient manner. Each time a new electron is either (i) created, or

(ii) translated, its incident energy is recorded. The electron and its progeny are tracked
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until they are either absorbed or the escape the volume. The tally looks up the MCDS

estimate of genetic damage based on the electron‘s energy at incidence and this value is

incorporated into an average, weighted by the dose deposited by the electron track. The

dose weighting is necessary to properly account for the low energy electrons with ranges

much less than the scoring volume. This general approach successfully predicts genetic

damage induced over a variety of energies and radiation types. Benchmarking has been

reported elsewhere [143].

The code yields an estimate of the mean number of double-strand breaks (DSBs)

induced per Gy per gigabase pair (Gbp) for a given photon spectrum. Elsewhere in this

paper we derive RBE as a ratio of doses required to generate the same surviving fraction

as an end point. For this particular effect, for convenience, we limit the RBE end point

to the estimated number DSBs induced

RBE =
D0

Dr,z

=
DSBr,z

DSB0

(5.1)

where D0 and Dr,z are the doses required to induce the same number of DSBs under

the different photon spectra at point r,z compared to the origin at 0. This different end

point opens up some uncertainty for a relative comparison. The repair or misrepair of

induced DSBs into cell survival is complex and may need to account for such details

as the complexity of the induced DSBs, the fraction of the breaks that are repairable,

or pairwise interactions of the DSBs [153]]. That said, the complexity of the induced

damage is generally a more significant factor when dealing with larger particles such as

protons, alpha particles, or heavy ions, and not expected to vary to a great extent for

differences in photon spectra. Further differences in repair kinetics should not be so great

as to change the result by an order of magnitude.
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Figure 5.3: Surviving fraction vs. Dose using both the Linear-Quadratic model as well
as the Induced Repair model for doses between 0 and 3 Gy. Parameters used in the figure
are those for normal tissue prostate cells RWEP1 [2].

5.5.2 Low Dose Hypersensitivity

To investigate the effects of low dose hyper-sensitivity, SF were calculated using the

induced repair model for low dose hypersensitivity cases using equation 5.4. To begin, a

correlation map that relates SF and dose for doses between 0 Gy and 3 Gy was developed

(see figure 5.3).

In this analysis we looked at dose profiles for both the radial and longitudinal di-

rections). Dose profiles were extracted from the treatment planning system, with each

line profile starting at the isocentre and then moved out toward the phantom edges (see

the white arrow in figure 5.1 for the radial profile). For each point along our line profile

we convert the physical dose to an equivalent dose assuming the presence of low dose

hypersensitivity. The RBE is determined by taking the ratio of the equivalent does Deq

to the physical dose Dphy. Dphy is the physical dose absorbed in the tissue and Deq is
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Cell Line (Prostate) αs [Gy−1] αr [Gy−1] β [Gy−2] Dc [Gy] Source

Prostate Cancer (DU145) 0.930 0.173 0.023 0.137 [73]
Prostate Cancer (PC3) 0.77 0.12 0.03 0.18 [2]

Prostate Normal (RWPE1) 2.10 0.06 0.07 0.16 [2]

Table 5.1: Cell specific parameters used in the low dose hypersensitivity analysis.

the equivalent physical dose that would be necessary to produce the same effect when

spectral, low dose hypersensitity, and bystander effects are considered.

RBE =
Deq

Dphy

(5.2)

.

α(D) = αr − (αr − αs) e
D
Dc (5.3)

SF = e

(
αr−(αr−αs)e

D
Dc D−βD2

)
(5.4)

Low dose hypersensitivity effects are cell-line specific. Parameters used for cell-line

specific parameters came from published results and are listed in table 5.1.

5.5.3 Bystander Effects

Our bystander model was adapted from the bystander model developed originally by

McMahon et al. [93, 126, 33, 116]. The original bystander model proposed by McMahon

et al., was developed from in vitro experiments for prostate (DU 145), lung (H460),

human fibroblast (AGO-1522), and malignant melanoma (MM576) cells [93, 126, 86, 85].

Specific details on the bystander development are available elsewhere [126, 93, 116, 33].

In overview the basic premise and assumptions used in the bystander model are:

1. Cells exposed to radiation will release a bystander signal into the surround-

ing medium.
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2. Cells will release a bystander signal for a specific period of time which is

proportional to the absorbed dose.

3. The overall bystander signal concentration ρ(t) increases while cells are

actively signaling and then decays after the cells cease signaling. The

overall bystander signal concentration is governed by equation 5.5.

ρ(t) =
ρmax

1 + λV
νC

(
1− exp

(
−t
(
νC

V
+ λ

)))
+ ρ0 ∗ exp (−λt) (5.5)

Here, ρ(t) is the bystander signal concentration as function of time, ρmaxis

the local bystander signal concentration equilibrium, λ is the signal decay

constant, V is the volume, ν is substitution for η
ρmax

where η is the rate

of local signal production when the concentration is 0, C is the number of

irradiated cells, and ρ0 is the signal concentration at time t= 0.

4. If cells get exposed to a bystander signal above a defined threshold, there

is a probability that these cells will receive additional biological damage in

addition to any damage induced directly by the absorbed dose. Note that

damage in this model does not necessarily imply DSBs as in the spectral

effect model, although it could. Instead damage is scored as a set of arbi-

trary hits to a given cell, described below. The probability that a cell will

experiences this additional biological damage is proportional to the length

of time the cell has been exposed to a bystander signal concentration above

the threshold τ .

PB = 1− exp (−κτ) (5.6)
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Here PB is the probability of a cell receiving biological damage, τ is the

time the cell is exposed to a bystander signal above a threshold and κ is a

cell specific signal kinetic parameter.

5. Biological damage is manifest as an integer number of “hits” on the cell.

A ”hit” can be induced by absorbed radiation and from exposure to a by-

stander signal above the threshold. The total amount of “hits” is found by

adding “hits” induced by radiation with the “hits” induced from bystander

effects.

6. Finally, the total number of “hits” induced on a cell is translated to SF

using specific rules published by Patridge et al. [109].

In this work, we introduced a limiting radius to the bystander model such that a

bystander signal generated by one cell can affect the bystander signal concentration for

cells up to one cm away. Starting at the origin of our PTV, we calculate the bystander

signal concentration for all points along our profile for both coplanar as well as out of field

directions. The bystander model then calculates the overall surviving fraction for cells

at each point along the profile taking into account the absorbed radiation dose as well as

bystander signal concentration at each point. The overall bystander surviving fraction

can then be translated back to an equivalent dose using the LQ model by solving the

quadratic equation. The RBE then is found by taking the ratio of the equivalent dose to

the physical dose using equation 5.2.
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Figure 5.4: The relative biological effectiveness defined as a function of radial or longitu-
dinal position moving outward from the isocentre due to spectral effects. Moving radially
(coplanar with the primary field) there is very little change (∼ 0.1 %) in the relative num-
bers of DSBs induced. Moving longitudinally the RBE increases with increasing distance
once outside the target volume, but the difference is less than 2%. Error bars represent
statistical uncertainty (two standard deviations) in the simulation results.
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5.6 Results

5.6.1 Spectral Effects

The results of the RBE derived from the differences in DSB induction predicted for the

calculated photon spectra are summarized in figure 5.4. For reference, the mean photon

energy at isocentre was scored as 1.656 MeV and varied by less than 2% within the

target volume under the conditions simulated. The mean energy decreased to 1.481 MeV

and 1.188 MeV at r = 5 cm and r = 10 cm, respectively. Moving in the z-direction

however, mean photon energies were reduced to 455 keV and 266 keV at z = 5 cm and z

= 10 cm, respectively, and these values likely represent extreme (low end) cases of mean

energy reduction out-of-field because head scatter and leakage, which were not modelled,

are likely to have higher energies. However, despite what appear to be large differences

in mean photon energy, figure5.4 illustrates that the relative differences in the induced

number of DSBs was calculated to be very small.

The induced number of DSBs at the isocentre was approximately 8.4 DSBs/Gy/Gbp.

This value remained constant within approximately 0.1 % as a function of position in

the radial direction. This is because the photon spectra in the different radial positions

(and therefore the resulting electrons spectra) are dominated by the photons from the

incident field and so the mean energy remains above approximately 1.2 MeV. Dose in

this region is a function of entry and exit dose as well as scatter and leakage, and though

the lower energy scatter radiation may account for a significant portion of the delivered

dose, it does not appear to be enough of a change to affect the induced DSB yield beyond

a trivial level.

In the longitudinal direction the dose outside of 3 cm is delivered entirely by scatter

and leakage. As a result the photon spectrum shifts towards lower energies. Again, the

mean photon energy within the target volume (z = 0 cm) was 1.66 MeV, while at 10 cm
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Figure 5.5: The Equivalent Dose (Gy) vs. Relative Position (cm) moving in the cranial–
caudal direction (z direction). The red line is the physical dose reported from eclipse and
the blue lines represent the equivalent dose for different cell lines assuming the presence
of low dose hypersensitivity.

it was only 266 keV. Small changes in the DSB yield are consequently observed, increas-

ing with distance from the target volume. Differences, according to these simulations,

demonstrate that this change is less than 2 %. Even though a change was resolved it is

likely of little consequence when attempting to predict the biological responses of tissues

because this change is of a similar magnitude to common dosimetric uncertainties.

5.6.2 Low Dose Hypersensitivity

Figure 5.5 shows the biologically equivalent dose vs. relative position moving across the

target volume in the z direction. The low dose hypersensitivity curves for the different

cell lines remain consistence with each other to a relative position of 3.25 cm then the

curves begin to diverge. The relative position of 3.25 cm from isocentre represents a
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Figure 5.6: The Equivalent Dose (Gy) vs. Relative Position (cm) moving in the coplanar
direction. The red line is the physical dose reported from eclipse and the blue lines
represent the equivalent dose for different cell lines assuming the presence of low dose
hypersensitivity.

point 0.75 cm beyond the edge of the PTV and 0.25 cm beyond the edge of the 3.0 cm

circular field of radiation. The relative difference between the different cell lines in the

z-direction at 4 cm was 1.01 Gy, 0.5 Gy, and 0.38 Gy for RWPE1, PC3, and DU145 cells

respectively compared to a physical dose of 0.19 Gy. RWPE1 cells had the largest low

dose hypersensitivity effect and DU145 cells showed the least response to hypersensitivity

for low radiation doses. According to these results at 4 cm the RBE is 5.3, 2.6, and 2

times larger than the physical dose for RWPE1, PC3, and DU145 cells respectively (see

figure 5.9).

Figure 5.6 shows the biological equivalent dose vs. relative position moving across the

target coplanar with the radiation beam (radial direction). The low dose hypersensitivity

curves for the different cell lines remain consistent with each other to a relative position
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of 4.25 then the curves begin to diverge. In the coplanar direction the physical dose does

not drop off as rapidly as it does in the out of field z-direction. For example in the z -

direction the physical dose drops from 1 Gy to 0.5 Gy over a distance a few mm in the

out of field direction compared to 5 cm in the coplanar directions for the same drop in

dose. The total range of relative positions in low dose regions is much larger than the out

of field directions. This has the effect of lifting the tail of the dose drop off curve slightly

compared to the physical dose. At 10 cm from isocentre the physical dose is roughly 50

cGy where as biologically equivalent dose for RWPE1, PC3, and DU145 cells at 10 cm

are 79 cGy, 64 cGy, and 56 cGy respectively.

5.6.3 Bystander Effects

Figure 5.7 shows the results of the biologically equivalent dose vs. the relative position

from isocentre for the out of field direction. The biologically equivalent dose curve from

the bystander effect widens the shoulder of the physical dose curve. Looking at a 50%

drop in dose, the physical dose dropped to 1 Gy at a relative position of 3.2 cm from

isocentre whereas the bystander effect biologically equivalent dose curve dropped to 1 Gy

at around 4 cm from isocentre.

Figure 5.8 shows the results of biologically equivalent dose vs. relative position in the

coplanar direction for the bystander effect. The biologically equivalent bystander curve

drops to 1 Gy at relative positions of 6.5 cm compared to 5 cm for the physical dose.

According to our model, at 10 cm from isocentre the bystander effect increased the dose

by about 19 cGY compared to the physical dose (50 cGy to 69 cGy). In other words, at

10 cm from isocentre our results predict that the bystander effect is equivalent to about

a 38 % higher dose than what would be reported by the treatment planning system for

the out of field dose in the coplanar direction at 10 cm from isocentre. Similarly, at 5 cm

from isocentre the biologically equivalent bystander dose is 23 % higher than the physical
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Figure 5.7: The Equivalent Dose (Gy) vs. Relative Position (cm) moving in the cranial–
caudal direction (z direction). The red line is the physical dose reported from eclipse
and the blue lines represent the equivalent dose for DU145 cells assuming the presence
of bystander effects.
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Figure 5.8: The Equivalent Dose (Gy) vs. Relative Position (cm) moving coplaner to the
radiation beam (x or y direction). The red line is the physical dose reported from eclipse
and the blue lines represent the equivalent dose for DU145 cells assuming the presence
of bystander effects.
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dose.

5.7 Discussion

In aggregate the results demonstrate that spectral effects result in RBE changes of less

than 2 % outside of the primary target volume. Changes predicted by the low-dose hyper-

sensitivity model are cell-line dependent, but appear to be capable of inducing RBEs 20

times higher at 10 cm from isocentre and 5 times higher ∼ 1 cm from the edge of the

primary beam. Bystander effects, again, while expected to be cell-line dependent were

predicted to be on the order of 5 times higher out of the field. These relative magnitudes

are important. Earlier work experimentally demonstrated a difference in DSB induction

in out-of-field beams, and this was initially attributed to the out-of-field spectral changes

[133]. Other groups have pointed out that these results were more likely explained by

RIBEs [154]. While both effects are likely at play, these calculations demonstrate the

RIBEs are by far the more dominant effect.

As expected the low dose hypersensitivity did not have any effect on the equivalent

dose until the physical dose dropped below 1 Gy. Even when the physical doses dropped

below 1 Gy the results depended on the biological parameters used for different cell lines.

The physical dose predicted by eclipse dropped to 1 Gy at 7 mm beyond the edge of

the PTV for the out of field directions and 2.5 cm for the coplanar direction. Cells

located within 7 mm in the out of field direction and within 2.5 cm of the PTV in the

coplanar direction will not be sensitive to low dose hypersensitivity effects and only cells

beyond those limits will see an increased biologically equivalent dose. The bystander

effect however seems to effect the biologically equivalent dose of cells on the edge of the

PTV. In this model low dose hypersensitivity will not affect the biologically equivalent

dose for cell located up to about 7 mm beyond the edge of the PTV and only play a
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role for cells located more than 7 mm from the edge of the PTV. The bystander effect

however has an effect on cells located on the periphery of the PTV. In the out of field

direction, cells located 5 mm from the PTV edge will receive an absorbed dose of 1.67 Gy

but if bystander effects are considered they would receive a biologically equivalent dose

of 1.94 Gy. At 1 cm from the edge of the PTV cells will receive an adsorbed physical

dose of 0.38 Gy but an equivalent bystander adjusted dose of 1.65 Gy. In the coplanar

directions, the physical dose at 0.5 cm and 1 cm from the PTV edge are 1.88 Gy and

1.54 Gy respectively. Considering bystander effects, the biologically equivalent dose at

0.5 cm and 1 cm are 1.93 Gy and 1.71 Gy respectively which is about 3% and 11% higher

than physical doses at those locations.

The results for the low dose hypersensitivity seem to be strongly cell line dependent.

For example, Martin et al., [2] looked at clonogenic survival following irradiation for 3

prostate cancer cell lines (DU145, PC3, and 22RV1) and two prostate epithelial (PWR1E

and RWPE1) cell lines [2]. In their study only PC3 as well as RWPE1 cells showed

increased hypersensitivity at low doses and that DU145, 22RV1, and PWR1E cells did

not. However, Wouters and Skarsgard found that DU145 cells did however show a slight

increase in radiosensitiviy at low doses [73]. Currently, the only available prostate specific

response parameters for our bystander model were DU145 cell line parameters [93]. If

we compare DU 145 bystander effects with DU 145 low dose hypersensitivity effects, it

appears that bystander effects make a larger difference in RBE compared with low dose

hypersensitivity effects. For example at 4 cm from isocenter, the RBE for the bystander

effect in the coplanar direction was 1.17 compared with 1.0 for low dose hypersensitivity

effects. At 10 cm from isocentre the RBE for bystander effects was 4.8 compared with

2.0 for low dose hypersensitivity effects. In the z-direction, at 4 cm from isocentre the

RBE for bystander effects was 1.4 compared with 1.1 for low dose hypersensitivity. At 10

cm from isocenter the RBE for bystander effects and low dose hypersensitivity was much
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Figure 5.9: The RBE in a cranial-caudal direction (z direction) moving outward from
the isocentre due to low dose hypersensitivity, bystander, and spectral effects. LDH
(RWPE1), LDH (PC3), and LDH (DU 145) are the RBE for low dose hypersensitivity.
Bystander (DU 145) is the RBE for the bystander effect and “Spectral” represents the
RBE for spectral out-of-field effects when moving in the cranial-caudal (z direction).

closer but the bystander effect still had a higher RBE of 5.7 compared with an RBE of

5.5 for low dose hypersensitivity.

This study looked at the RBE for out-of-field doses as we move radially away from

isocentre. An important point to note is that in reality, moving radially from isocentre

we are likely traversing different cell types. For example, the RBE of prostate cancer DU

145 cells 10 cm from isocentre is an oversimplification as 10 cm from isocenter is beyond

the edges of the PTV and into the surrounding normal tissues. The focus of this work

was on prostate cancer and used prostate specific parameters. To get a full picture of

the RBE for out-of-field doses, a follow up study could look at the surrounding normal

tissues using biological parameters for both bladder and rectum.

In this work we introduced a limiting radius to the bystander signal of 1 cm. To test

the sensitivity of our results to the limiting radius of the bystander signal the results in
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Figure 5.10: The RBE in a coplanar direction moving outward from the isocentre due
to low dose hypersensitivity and the bystander effect. LDH (RWPE1), LDH (PC3), and
LDH (DU 145) are the RBE for low dose hypersensitivity. Bystander (DU 145) is the
RBE for the bystander effect and “Spectral” represents the RBE for spectral out-of-field
effects when moving in the coplanar direction.

the coplanar direction were repeated for limiting radius of 2 mm, 5 mm, 1 cm, 2 cm,

and 3 cm. The results of this sensitivity analysis are shown in figure 5.11. At a distance

of 10 cm from isocentre, the bystander effect resulted in a biologically equivalent dose

of 59 cGy for a bystander signal range limited to 2 mm compared to 79 cGy when the

bystander single range was limited to 3 cm which is a 33 % larger biologically equivalent

dose. General speaking, the bystander effect played a larger role in out of fields when

the signal range was largest.

5.8 Conclusion

Spectral, Bystander, and low dose hypersensitivity effects all increased the RBE outside

the primary target volume. Spectral effects seem to play a smaller role than bystander

and low dose hypersensitivity effects in changing the RBE. These results however are

dependent on cell-line as well as their location out-of-field. RWPE1 cells showed the
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Figure 5.11: A sensitivity analysis of the bystander range parameter. We looked at how
the results changed when we assumed the bystander signal range was 2 mm, 5 mm, 1 cm,
2 cm, and 3 cm. In this work we assumed a 1 cm signal range for the bystander effect.
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largest low dose hypersensitivity effects. For a single arc VMAT prostate treatments, the

RBE in the cranial-caudal direction (z direction) is about 3 to 4 times larger than the

RBE in the coplaner direction. If we look solely at prostate DU145 cells, our results show

that bystander effects enhances the RBE more than low dose hypersensitivity especially

for cells located just outside the edge of the PTV.
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5.9 General Conclusions to chapter 5

This work quantified the relative magnitude bystander effects and low dose hypersensitiv-

ity effects have on out-of-field radiation doses. Both bystander, low dose hypersensitivity,

and spectral effects increased the biologically equivalent out-of-field radiation doses. By-

stander effects seemed to play a large role on the periphery of the PTV. Periphery doses

would be inherently sensitive to geometric miss errors such as those presented in chapters

2 and 3.
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Chapter 6

Conclusion

6.1 Review of the thesis

This work looked at different modelling approaches for EBRT for prostate cancer. Ini-

tially, we were interested in understanding what effects large geometric misses would

have on TCP for common treatment modalities of IMRT and VMAT. Better imaging

techniques in recent years have lead to many investigations regarding how motion, geo-

metric uncertainty, and treatment margins have on patient outcome [30, 155, 156, 157].

The motivation of many of these studies was to determine the most reasonable treat-

ment margins to maximize tumour control while minimizing normal tissue complications

[32, 17, 18]. In our initial work, we assumed appropriate treatment margins, but wanted

to study cases where the geometric miss was much larger than what would be accounted

for in the treatment margins and specifically investigated if IMRT was more robust then

VMAT. This initial study used the standard LQ model to predict treatment outcomes in

terms of TCP. This initial investigation lead us to consider how other biological models,

specifically ones that accounted for bystander effects changed predicted outcomes under

geometric miss error (see chapter 3) as well as dose heterogeneity scenarios (see chap-

ter 4). Our final study was based on the fact we had shown in the work presented in

chapters 2 and 4 that bystander effects potentially played an important role in treatment

and should not be disregarded. The final chapter looked at the RBE of bystander ef-

fects in low dose out-of-field regions compared to other low dose effects such as low dose

hypersensitivity and the effects of changing photon energy spectrum.
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6.2 Summary of Results

The work presented in chapter 2 investigated cases where geometric miss errors went

beyond the uncertainties typically accounted for in treatment planning and resulted in

less than optimal tumour control for two common approaches to treatment of prostate

cancer: static gantry IMRT and VMAT. We used a Monte Carlo-based model of biological

response to predict how mean TCP changes when systematic and random geometric miss

errors were introduced into a model test case. Directly comparing static gantry IMRT

with VMAT treatment deliveries suggests that static gantry IMRT can result in higher

mean TCP values than VMAT for given large errors, or that the static gantry IMRT

approach offers an increased latitude for forgiveness, to the order of 2 mm, over VMAT.

Chapter 3 suggested that in clinical scenarios, a bystander signal strong enough to

modify LQ-based predictions may be induced even when small volumes of the target

have been directly irradiated. It also suggests the potential for a mitigated effect on

TCP where small portions of the PTV have been missed or only partially irradiated.

Under these conditions of geometric miss, bystander effects potentially increase TCP

predictions compared with the LQ model predictions.

The results presented in chapter 4 demonstrate that bystander effects potentially de-

viate from both EUD and TCP predictions of the common local LQ model and when

considering dose heterogeneity in the treatment volume of prostate radiotherapy treat-

ments. The bystander model suggests that a large amount of dosimetric heterogeneity

through a treatment volume may be acceptable in a treatment plan and that a moderate

amount may even be optimal. These results suggest that incorporation of bystander

effects into models of treatment response, can potentially relax dose homogeneity con-

straints.

The relative magnitude that bystander effects have on biological response in out-of-
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field regions has been quantified compared to other effects such as low dose hypersen-

sitivity effects, and spectral effects. Spectral, bystander, and low dose hypersensitivity

effects all increased the RBE outside the primary target volume. Spectral effects seem to

play a much smaller role than bystander and low dose hypersensitivity effects in changing

the RBE. These results however are dependent on cell-line as well as their location out-

of-field. RWPE1 cells showed the largest low dose hypersensitivity effects. For a single

arc VMAT prostate treatment, the RBE in the cranial-caudal direction (z direction) is

about 3 to 4 times larger than the RBE in the coplaner direction. If we look solely at

prostate DU145 cells, our results show that bystander effects enhances the RBE more

than low dose hypersensitivity especially for cells located just outside the edge of the

PTV. Spectral effects are largely expected to be independent of human cell type.

6.3 Future Work

6.3.1 Normal Tissue Complication Probability Studies

Radiotherapy treatments consider both dose to clonogenic cells as well as dose to sur-

rounding normal tissues. It is the interplay between these two aspects of radiotherapy

treatments which determines the most appropriate treatment approach. Dose optimiza-

tion schemes are applied to cover the tumour with a lethal treatment dose while mini-

mizing dose to surrounding normal tissues. This work focused on biological models of

tumour control, primarily TCP. The other important question is how would the simula-

tions presented in this work effect healthy normal tissues. Normal tissue complications

can be quantified using common normal tissue complication probabilities (NTCP) mod-

els. Common NTCP models would include Lyman-Kutcher-Burman (LKB) Model [158]

and the Relative Seriality Model [159]. In radiotherapy prostate treatment, the two main

organs at risk in EBRT are the rectum and bladder. At our centre for example, to min-
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imize radiation dose to these sensitive organs at risk, radiation treatments for prostate

cancer are delivered when patients have full bladders and empty rectums. An important

question to answer in future work would be how much do radiation induced bystander

effect increase NTCP particularly for the bladder and rectum.

6.3.2 Experimental Validation

Like any biological or mathematical model, the predicted outcomes of the biological model

need to be experimentally validated. In order for the results presented in this work to

be truly accepted, the results need to be experimentally validated for in vivo scenarios.

Much of this work dealt with biological modelling of radiation induced bystander effects.

Our bystander model was adapted from a bystander model that was based on in vitro

experimental evidence [94, 93, 126] and we have applied our model to in vivo prostate

treatment scenarios.

As a starting point for experimental validation of this model, prostate cancer cells

would have to be acquired to test our results. Our bystander model was developed us-

ing response and signal parameters derived from prostate carcinoma cells (DU-145)[93].

DU-145 and other cell lines such as A549 (lung carcinoma), MDA-MB-231 (breast ade-

nocarcinoma), A375 (melanoma), and T98G (glioblastoma multiform) are commonly

available from supplies such as Sigma-Aldrich (USA). Experimental validation of this

model in vivo is much more challenging than in vitro. However, a good starting point for

in vivo validation could be acquiring 3D tissue models from companies such as MatTek

(USA). At a minimum, similar simulations such as those modelled in this study would

need to be repeated experimentally with 3D tissue cultures and the results tallied and

quantified. For example, cells could be irradiated with different field sizes in a manner

that some cells are directly exposed to radiation while others are shielded. Similarly

you could keep a constant field size but shield the centre of the the cells using differ-
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ent diameters of circular shielding. Changing the diameter of the circular shielding will

change the the ratio of cells exposed the full 2 Gy radian with cells exposed to a much

lower shielded dose. Experiments such as this will in part validate the work presented

herein and justify further study into how radiation induced bystander effects play a role

in EBRT of prostate cancer.
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