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Abstract

Congestion is an underlying reason for performance degradation in computer networks. Cur-

rent TCP congestion control has no information about the network. Hence, it increases the

sending window to overflow the bottleneck link buffer, and backs off when packet drops are

detected. Software-Defined Networking (SDN ) is a new paradigm, which provides informa-

tion about the network. In this thesis, we propose a novel centralized congestion control

scheme for SDN. Our solution exploits the information provided by the SDN controller to

prevent formation of persistent queues in bottleneck links. Also, we introduce an SDN Sim-

ulation Tool developed in Java, which facilitates simulation experiments. We used our tool

to evaluate the proposed solution. The preliminary results shows the potential scalability

and flexibility of the protocol.
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Chapter 1

Introduction

1.1 Historical Context and Motivation

The history of computer networks dates back to the early 1970s, when proprietary local

computer networks were deployed in different institutions around the world [2, 30]. As

the number of these local networks grew, the idea of inter-connecting them resulted in the

creation of the first version of the Transmission Control Protocol (TCP) [12]. This version

of TCP had both end-to-end reliable data delivery and forwarding functions. Later, the

forwarding functionality was separated from TCP, and the first layered architecture of the

Internet we know today was formed. This layered architecture has enabled the introduction

of new protocols, and the modification of existing ones without the need to change the whole

architecture of the network. Hence, the layered architecture of the network has not changed

since.

The early versions of TCP did not consider the state of the network links and buffers for

adjusting the sending window. On the other hand, the number of networks connecting to

the Internet grew quickly. As a result, a major collapse of the Internet happened in the late

1980s due to congestion. The TCP congestion control mechanism was designed as a result

of this incident.
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By that time, it was already shown that the optimal sending rate for the sender can

be determined by the physical properties of the bottleneck link [32]. However, TCP was

defined in the transport layer, and did not have any information about the network layer

(i.e., the physical link properties and buffer state). Hence, the first TCP congestion control

mechanism [25] was designed based on this fact. The basic idea of the algorithm was a

control loop, which increases the sending rate until packet losses happen then reduces the

sending rate and starts to increase it again. This algorithm became a standard feature of

TCP [5]. However, as the Internet kept growing, the performance issues of TCP congestion

control became a popular topic in the research community.

The prior research to resolve the performance issues of TCP congestion control can be

divided into the following categories:

• Delay-based Approaches: These solutions use variations in Round-Trip Time (RTT)

to detect congestion sooner than loss-based solutions [9, 23, 52, 55].

• Rate-Based Approaches: These approaches reduce the queuing delay generated due to

the burstiness of TCP traffic, using pacing methods [15, 19, 56]. This approach has

solid foundations in queuing theory, since reducing the variability of the packet arrival

process reduces the average queuing delay.

• Network-specific Solutions: These solutions modify the congestion control mechanism

to make it suitable for a specific type of network, such as wireless [38, 51, 54], high-speed

networks [10, 22, 35, 58], and data-center networks [4, 49, 57].

Most of these solutions try to make up for the fact that TCP’s congestion control mech-

anism operates with no explicit information about the network.

2



1.2 Software-Defined Networks

Software-Defined Networking (SDN) is a rather new paradigm, which redefines the network

layer by separating control and forwarding planes from each other [39]. In a legacy net-

work layer, both control and forwarding functionalities are implemented in the router. The

forwarding plane is responsible for forwarding network packets according to the rules deter-

mined by the control plane. The control plane is defined by introducing a new entity called

the SDN Controller. The controller is in charge of controlling the forwarding plane by setting

rules.

An important feature of the controller is having a central view of the network. It can

determine all the physical properties of network links and switches. Also, it can actively

update its knowledge of the traffic traversing the network by monitoring switches.

Since the introduction of SDN, the research community has tried to exploit its features

to improve TCP congestion control. Most of the proposed solutions try to improve the

performance with minimal change in the TCP congestion control algorithm. They use the

controller to detect congestion, and notify the TCP agents to reduce their sending rates.

TCP congestion control was designed at a time that there was no entity in the network

possessing information, and the transport agents were completely agnostic about the network

layer information. To exploit the full potential of SDN, the congestion control mechanism

should be re-designed in a centralized manner.

1.3 Research Objectives

The first research objective in this thesis is to design a centralized congestion control mecha-

nism for SDN. To this end, we define new congestion control parameters and provide analytic

models for them. In our protocol, the controller is in charge of determining the value of con-

gestion control parameters. Also, we enable the controller to communicate with transport

agents throughout the network, to provide them with congestion control parameters. The
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transport agents are responsible for operating based on the congestion control parameters

provided by the controller.

The proposed protocol tries to eliminate two main reasons for formation of queues in

network buffers. The first reason is the mismatch between the transport agent sending rate

and the bottleneck rate. The second one is the arrival of packets from multiple inbound links

at the same time, which share the same outbound link.

The second research objective is to evaluate the performance of the proposed solution.

To this end, we need a fully controlled environment to be able to perform the evaluation

according to our assumptions. Hence, we use simulation experiments as our evaluation

methodology.

The third research objective of this thesis is to develop an SDN simulator that models

transport and network layers. Also, we aim to develop an integrative framework for our

simulator, which facilitates multi-factor simulation experiments. Our framework provides a

traffic and topology generator, and provides the experiment results in spreadsheet files with

tables and graph based on pre-defined metrics.

1.4 Thesis Outline

The remainder of this thesis is organized as follows.

Chapter 2 presents the background knowledge and related work for the thesis. It provides

an overview of the network protocol stack. Then it introduces TCP along with its reliable

data transfer and congestion control mechanisms, and discusses some performance issues.

Also, it overviews SDN architecture, and discusses some of the challenges and opportunities.

Moreover, it provides a description of related work.

Chapter 3 presents the SDN Simulation Tool developed and used for evaluation of the

proposed solution. Specifically, it discusses the architecture of the simulator and verification

tests.
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In Chapter 4, the centralized congestion control scheme designed for SDN is introduced

in concept and examples. The analytical and simulation models along with the verification

tests are described in detail.

Chapter 5 presents the simulation evaluation of the proposed solution. It describes the

experimental design, including the performance metrics, and provides the simulation exper-

iments along with their results and analysis.

Finally, Chapter 6 provides the conclusion of the thesis and suggests possible future

directions for further research.
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Chapter 2

Background and Related Work

This chapter presents the background knowledge and related work for the thesis. Section 2.1

explains the network protocol stack and how the Internet works. Section 2.2 describes

TCP and its features. Section 2.3 reviews the SDN architecture along with its benefits and

challenges. Section 2.4 introduces work done by other researchers related to the solution

presented in the thesis. Section 2.5 provides a summary of research contributions of the

proposed solution in comparison with the related work. Finally, Section 2.5 summarizes the

chapter.

2.1 Network Protocol Stack

Computer networks are designed using a modular layered architecture to facilitate updating

protocols and system components without changing other parts. Each protocol is designed

specifically for a single layer to provide services to an upper layer. However, there are some

potential drawbacks to this design such as service duplication and the need for information

from other layers. Figure 2.1 illustrates the five layers of the Internet protocol stack [34].

All network applications1 and their application-layer protocols are defined in the applica-

tion layer. Application-layer protocols enable an application in one end system to exchange

1An application that uses networking features.
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packets of information with the application in another one. The packet of information in

the application layer is called a message. HyperText Transfer Protocol (HTTP) [8], File

Transfer Protocol (FTP) [48], and Simple Mail Transfer Protocol (SMTP) [45] are examples

of application-layer protocols providing services to the end system applications.

The transport layer provides the application layer with a service for transporting messages

between end systems. The packet in the transport layer is called a segment. Transmission

Control Protocol (TCP) [47] and User Datagram Protocol (UDP) [44] are the dominant

transport layer protocols in current network systems. TCP offers a connection-oriented

service with guaranteed end-to-end delivery, while UDP is connectionless with no reliability.

This thesis focuses on TCP performance issues.

The network layer takes a segment from the transport-layer protocol in the source host

and transforms it into a datagram. Then, it transfers the datagram between network nodes

and delivers it to the transport-layer protocol in the receiver end host. On the Internet,

the Internet Protocol (IP) [46] is the single network-layer protocol, which works alongside

multiple routing protocols. All hosts and routers implement IP and the routing protocols to

be able to communicate with each other.

The link layer obtains a datagram from the network layer in the sender node, transfers

it to the next node, and gives it to the network layer of that node. Link-layer protocols

may provide different delivery services in terms of reliability. Ethernet and WiFi are two

well-known link-layer protocols. The packet of information in the link layer is called a frame.

The physical layer is responsible for delivering individual bits of a link-layer frame via the

transmission medium. A physical-layer protocol determines the way that bits are transferred

across the transmission medium. Hence, the protocols are defined based on the type of the

actual transmission medium.

7
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Figure 2.1: Five-layer Internet protocol stack.
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2.2 TCP

TCP is an end-to-end transport-layer protocol, responsible for transferring information from

a source host to the destination. This protocol was initially introduced in 1973 as a part of

the US Advanced Research Project Agency (ARPA) network system. Alongside the expansion

of the Internet, new mechanisms and functionalities have been added to TCP. One recent

version of TCP is called NewReno. Reliable data transfer and congestion control are two

main concepts that are implemented in it.

2.2.1 Reliable Data Transfer

TCP operates on top of an unreliable network layer. In fact, all the layers beneath TCP can

be modeled as an unreliable point-to-point channel. TCP provides end-to-end reliability on

top of this channel by implementing multiple mechanisms.

Sequence Number and Acknowledgment

To make sure that every segment sent is received by the end host, TCP implements an

acknowledgment mechanism. When a data segment is delivered to the receiver TCP agent,

it sends back an acknowledgment segment to the sender TCP agent. In addition, to guarantee

that all the segments are delivered in the correct order, the sender assigns a sequence number

to each data segment it sends. Also, this mechanism helps TCP avoid duplicate data delivery

at the receiver. The sequence number and acknowledgment mechanism enables TCP to

determine whether a data segment has been delivered to the receiver or not.

Timer and Retransmission

TCP uses a timer and retransmission mechanism for identification and recovery of lost seg-

ments. The sender TCP agent sets a timer when it sends a segment to the network. If

the timer expires and the acknowledgment for the data segment has not been received, the

9



sender retransmits the data segment. The value of the timer is determined by the estimation

of the round trip time for the end-to-end path.

Flow Control

TCP has a pipelined sending mechanism to improve utilization of the network links. There

is a sending window parameter at the sender TCP agent that determines the number of

in-flight segments allowed for a TCP connection. However, if there is no constraint on the

value of the sending window, the receiver’s buffer may overflow. To avoid this issue, TCP

uses a flow control mechanism that sets the value of the sending window according to the

value advertised by the receiver.

2.2.2 Congestion Control

A congestion control algorithm was added to TCP in 1988 [25], as a result of a major collapse

of the Internet. This mechanism ensures that the network does not stay in a congested state

by introducing another constraint, called the congestion window, on the sending window.

The algorithm uses a finite state machine that uses three states for the TCP sender agent.

The initial state is called Slow Start. This state increases the value of the congestion

window every time a new data segment is acknowledged, until it reaches a specific threshold.

After reaching the threshold, the algorithm transitions to the Congestion Avoidance state.

The Congestion Avoidance state keeps increasing the congestion window more slowly,

until it receives a loss indication, such as three duplicate acknowledgments from the receiver.

The algorithm considers this segment drop as a sign of congestion. Hence, it reduces the

threshold for the congestion window and updates its value accordingly. Then, it retransmits

the missing data segment, and transitions to the Fast Recovery state.

The Fast Recovery state keeps sending missing segments while increasing the congestion

window. As soon as the sender receives a new acknowledgment, it goes back to Congestion

Avoidance until the next segment loss happens.

10



This algorithm is called a loss-based congestion control mechanism. TCP is a transport-

layer protocol, which means it does not possess any information about the network infrastruc-

ture proprieties, such as bottleneck link bandwidth. Hence, to determine the proper sending

rate, the algorithm keeps increasing the sending window until the bottleneck buffer overflows

and a segment is dropped. This approach is the underlying cause of many performance issues

of TCP [21, 41, 42, 43, 53].

2.3 SDN

SDN introduces a new architecture for the network layer. Figure 2.2 illustrates the logical

view of the SDN architecture [34]. Decoupling the data and control planes is the main

characteristic of SDN.

This architecture enables SDN to introduce flow-based forwarding, which forwards the

packets based on any combination of transport-layer, network-layer, and link-layer header

fields. It also re-defines the network functions (e.g., routing) as software that operates

separately from the forwarding devices.

2.3.1 Control Plane

The control plane’s responsibility is to control the packet forwarding by configuration and

management of the forwarding plane devices. An SDN controller, which can be considered as

a network operating system, and SDN network-control applications are two main components

of this layer.

An SDN controller provides an interface, which is called the southbound interface, for

communication with data plane devices. OpenFlow is the dominant protocol to standardize

the southbound interface. The SDN controller uses the OpenFlow [39] protocol to configure

the SDN-enabled switches, and get network-state information from them. The controller

uses the information received from the data plane devices to maintain a central view of the

11
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network and the traffic. Also, it provides another interface, called the northbound interface,

to pass the network-state information to different network-control applications. There is no

single standard northbound API defined for controllers. However, most of the existing SDN

controllers implement a RESTful API as the northbound interface [7, 16, 40, 50].

A network-state application is a network functionality, such as routing, implemented

as software. These applications obtain network information, and apply their functionality

to the data plane via the northbound interface. Common network functionalities, such as

routing, can be implemented as actual controller modules with direct access to the network

information.

2.3.2 Data Plane

The data plane contains SDN-enabled network devices operating with the OpenFlow proto-

col. An SDN-enabled switch has a flow table that is maintained by the control plane.

The flow table is defined by the OpenFlow protocol, and operates based on match-action

logic [34]. Each entry in the table is called an OpenFlow rule. The rules are defined based

on any combination of the packet header information. For instance, “IP Src = 10.1. ∗ .∗”

will match any packet that comes from a source with an IP address starting with “10.1.”.

When a packet arrives to the switch and one of the flow table entries matches it, the

switch performs the action corresponding to the rule. Some of the actions that the switch

can perform are forwarding, dropping, and modify-field.

2.3.3 Challenges and Opportunities

The separation of the control plane from the data plane in SDN adds programmability to

the network, which creates a vast opportunity for re-imagining the network management

and operation. The SDN control plane offers a multi-layer central view of the network and

the traffic, which can be exploited to improve the performance of network protocols such as

TCP.
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Scalability is the most important challenge for SDN [18, 27]. In SDN, the controller

maintains active communication with all the switches in the data plane. Hence, increasing

the size of the network adds more complexity to this task.

Also, there are concerns about the integration of SDN into the Internet [27]. Replacing all

legacy forwarding devices with SDN-enabled hardware is a challenging requirement. Another

challenge is designing a fault-tolerant and efficient control plane for SDN.

2.4 Related Work

The design of an ideal transport-layer protocol has been one of the most popular research

areas since the advent of the Internet. There are many research works concentrating on

performance improvement of congestion control mechanisms for TCP. Figure 2.3 illustrates

the classification for congestion control solutions.

There are many solutions that try to improve the congestion control mechanism of TCP,

regardless of the network layer architecture. Hence, we only mention the most influential

solutions in this category. These works are classified based on the congestion control ap-

proach. Also, with the advent of SDN, various research works have tried to exploit its

potential benefits to improve the congestion control mechanism of TCP.

2.4.1 Generic Network Solutions

The first version of TCP [12] was introduced in 1974. The Internet was different back

then. It was essentially a small network of small networks. There was no congestion control

mechanism in TCP’s design. As a result of a major congestion collapse in the Internet in

1986, Jacobson [25] introduced the first congestion control mechanism for TCP, called Tahoe.

After the basic problem was solved by the Tahoe congestion control mechanism, subse-

quent research focused on the performance and efficiency of TCP.

Jacobson [26] modified Tahoe to Reno in 1990. The main differences between Tahoe
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and Reno are as follows. Upon receiving three duplicate ACKs, Tahoe retransmits the lost

segment. Then, it sets the slow start threshold to half of the congestion window, and reduces

the congestion window to 1 MSS before transitioning to the Slow Start state [34]. On the

other hand, Reno resends the lost segment, updates the congestion window to half, and sets

the slow start threshold to the congestion window. Then, it transitions to the Fast Recovery

state. In this way, Reno needs less time to reestablish a proper congestion window size.

Floyd [17] introduced NewReno to improve upon the Fast Recovery mechanism of Reno.

NewReno keeps the sending window full during retransmission in the Fast Recovery state

by sending additional new segments using an expanded congestion window. This results in

better link utilization after segment losses happen. NewReno is the most recent standard

TCP variant [17].

The solutions in this category try to improve NewReno performance for specific types

of networks, such as high-speed networks, data centers, and wireless networks. The main

challenge for these solutions is estimating the state of the network links and buffers to either

prevent or alleviate congestion in the network.

Reactive (Loss-Based)

These solutions are designed based on NewReno, and consider segment loss as an indication

of congestion in the network. Each solution tries to introduce a congestion control scheme

suitable for a specific type of network. In particular, there are several research works that

improve bandwidth utilization in high speed networks with high latency.

Binary Increase Congestion Control (BIC) [58] improves the bandwidth utilization in

wide area networks with high link bandwidths. It introduces an adaptive scheme that varies

the congestion window growth rate depending on network conditions. Based on different

conditions, it determines the congestion window size using either binary search, additive

increase, or slow start approaches.

CUBIC [22] is a derivative of BIC, which determines the window size with a cubic function
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of time since the last congestion event. CUBIC is the default TCP implementation in

Windows 10 and Linux kernels.

Although these solutions successfully improve TCP performance in specific types of net-

works, all of them use a reactive congestion control approach. The lack of information about

the network properties (e.g., bottleneck bandwidth) forces these solutions to rely upon esti-

mation mechanisms. These mechanisms gradually saturate the bottleneck links and buffer

until a segment drop happens. The segment drop is considered as an indication of congestion

in the network, and used to update the estimation of network properties. These algorithms

always reach an operating point in which the bottleneck buffer fills to overflowing, which is

sub-optimal according to Kleinrock [32].

Proactive (Delay-Based)

These solutions implement a proactive approach to network congestion. They utilize the

Round Trip Time (RTT) values of the segments to detect network congestion before losses

happen.

TCP Vegas [9] calculates the maximum connection throughput based on the RTT samples

of the segments. Then it determines the difference between expected and actual throughputs,

and adjusts this value by specifying the congestion window size.

FAST TCP [28] is a delay-based solution for high-speed long-latency networks. It main-

tains a queuing delay estimate for the segments, and utilizes it to prevent congestion in the

network. Both Vegas and FAST try to maintain a constant number of packets queued in the

buffers of network links.

BBR [11] is Google’s proactive congestion control mechanism. It utilizes segment RTT

samples to estimate the bottleneck bandwidth (BB) and round-trip (R) propagation time.

Unlike Vegas and FAST, BBR tries to prevent accumulation of segments in the network

buffers. The authors claim that BBR converges with high probability to Kleinrock’s optimal

operating point [11].
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These solutions have the advantage of preventing congestion, compared to loss-based

approaches. However, their performance is highly dependent on the accuracy of their esti-

mation of the network properties. Also, the fact that these solutions detect congestion and

reduce their sending window size earlier than loss-based approaches could be detrimental

when both types of solutions exist in the same network.

2.4.2 SDN-Based Solutions

SDN provides a central view of the network information, which can be used to enhance

TCP’s congestion control mechanism. Data center networks can exploit SDN features for

better operation. Hence, most of the research works in this category try to use SDN to

improve the performance of TCP in data centers.

Ghobadi et al. [20] introduced OpenTCP for SDN. The controller monitors the utilization

of core links, and notifies the congestion control agents at end hosts to tune TCP congestion

control parameters accordingly. Also, the hosts can switch to different TCP variants imple-

mented in the operating system kernel. The solution does not introduce a new congestion

control mechanism, and the computational overhead of monitoring link utilization can be

high.

Hwang et al. [24] used SDN to introduce a congestion control protocol for data centers.

The solution uses OpenFlow functionalities to change the advertised window of ACK seg-

ments to control the sending rate of senders based on bottleneck bandwidth. It uses a fixed

variable, determined by the network administrator, to calculate the BDP of the network

path. The fact that this value is static results in either under-utilization or congestion of

the bottleneck, depending on the actual RTT of each flow. Our solution does not rely on a

static value to calculate the BDP of the path. The other problem with SCCP [24] is that it

requires large switch buffers in order to eliminate packet losses. Our solution requires only

minimal buffering in the switches.

Lu et al. [36, 37] introduced another SDN-based TCP congestion control for data center
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networks, called SDTCP. The OpenFlow switch sends a congestion notification message to

the controller as soon as the occupancy of its buffer is higher than a pre-defined threshold.

The controller chooses the oldest flow and reduces the advertised window of the next ACK

for it. Hence, the mechanism prevents segment losses at the buffer. The solution is only

for the scenario that all the flows share the same path and have equal RTTs. The criteria

of choosing the flow to punish is not necessarily fair. The control loop could potentially

become large if the chosen flow is not suitable for reducing the sending rate (e.g., it leaves

the network soon).

Jouet et al. [29] used SDN’s central view to give precise values to congestion control

parameters of TCP. The controller collects information about the network and traffic prop-

erties, and calculates congestion control parameters such as retransmission timers, RTOmin,

RTOmax, and congestion window bounds. The controller sends the calculated values to the

sender host using JSON/REST northbound interface, upon arrival of the flow in the host.

Although the solution reduces flow completion time and packet loss rate, compared to regular

TCP, it heavily relies on enough switch buffers. Also, the operation of the protocol requires

direct connection between hosts and the controller, which is not necessarily practical in all

scenarios. The main problem with OTCP is that it cannot dynamically control the flows.

Abdelmoniem et al. [1] designed an SDN-based solution to mitigate the TCP in-cast

problem in data centers. The controller monitors the switch buffers in pre-defined intervals.

When the occupancy of a buffer reaches a pre-defined threshold, the controller transitions to

in-cast-On state and notifies the hosts (through their hyper-visors) to reduce their sending

window. The system stays in in-cast-On state until the occupancy of the buffer reduces

to another pre-defined threshold. The solution reduces the segment drops related to TCP

in-cast problem. However, it does not prevent congestion completely, and it heavily relies

on the pre-defined value of the monitoring intervals.

Bao et al. [6] introduced ECTCP, which actively controls the sending rate of flows to

ensure the link is fully utilized with low latency. The controller updates bottleneck bandwidth
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allocation and ACK sending rates of the flows when it receives a notification of SYN or FIN

arrival to a switch. Although the solution reduces flow completion time and segment drops

compared to TCP, it still relies on buffers in the switches.

2.5 Research Contributions

The main challenge for generic network solutions is the lack of information about the network.

The loss-based solutions gradually saturate the bottleneck links and buffers to create packet

drops and detect congestion. Although the delay-based solutions prevent congestion in earlier

stages, compared to loss-based approaches, their estimation of the states of the network may

be incorrect. One contribution the proposed solution is to use the information provided by

the SDN controller to make congestion control decisions more efficiently.

The SDN-based solutions enhance the transport-layer protocol performance by either

tuning the congestion control mechanisms or improving the congestion detection. However,

none of these remove the main impacts of congestion, which is queue build-up in the switch

buffers. The proposed solution exploits SDN’s view of the network to avoid queue build-ups,

hence preventing the congestion.

2.6 Summary

This chapter presented background knowledge and related work for the research done in

this thesis. It reviewed the network protocol stack and the operation of the Internet. In

particular, it explained TCP and its features. Also, it described the SDN architecture as

well as its benefits and challenges. In addition, it explained prior research work related to

the proposed solution in the thesis. The next chapter presents the SDN simulation tool

developed for evaluating the proposed solution.
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Chapter 3

SDN Simulation Tool

This chapter discusses the SDN simulation tool that I developed. Section 3.1 presents an

overview of the system. Section 3.2 focuses on the design and implementation of the network

simulator module. Section 3.3 presents the verification test setup and results. Finally,

Section 3.4 summarizes the chapter.

3.1 System Architecture

The SDN simulation tool is an object-oriented application developed in Java. It performs

simulation studies with up to two factors and outputs the results in a spreadsheet file with

table and graph formats (see Appendix A).

Figure 3.1 illustrates the logical architecture of the simulator. Each experiment, defined

in a Scenario Handler, uses Traffic and Topology Generators to determine the Network

Simulator properties. The Scenario Handler uses nested loops defined via study factors and

keeps the results of the simulation for each combination. After running the simulation for all

levels of the factors studied, the Scenario Handler passes the results to the Output Handler,

which generates the output as tables and graphs in a spreadsheet file. Table 3.1 represents

the list of available study factors for experiments. Each of the numerical factors are defined

by distribution type, mean, and standard deviation.
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Table 3.1: List of the available factors for simulation studies.
Traffic Factors Topology Factors

Number of Flows Network Type (Dumbbell, Data Center, Parking Lot)
Flow Sizes Access-Link Propagation Delay

Flow Inter-Arrival Times Network-Link Delay Type (LAN, WAN)

3.1.1 Topology Generator

The user can use the Topology Generator to specify the desired network topology for the

experiment. This module provides the user with the choice among different topology types.

For each type of topology, the user can choose the link delay category. The access link

propagation delay is the only random variable in the topology generator, and the user can

use the Random Variate Generator (RVG) module to generate the access link delays with

the desired distribution for the hosts.

The current version of the simulator implements Dumbbell, Parking-Lot, and Data-

Center topologies. For each of them, the user can choose the network delay category between

Local and Wide Area. The former sets the propagation delay of network links in the range

of 1− 10 µs while the latter sets them in the range of 1− 10 ms.

3.1.2 Traffic Generator

This module generates the network traffic specified by the user for the simulation experiment.

The traffic is characterized by Number of Flows, Size of Flows, and Flow Inter-Arrival

Times. The user can use the RVG module to generate the value for each of these parameters

randomly with the desired distribution. The RVG module takes distribution type, mean, and

standard deviation as input parameters, and provides a randomly generated value as output.

The current version can generate random variables with Constant, Uniform, Exponential,

Gaussian, and Log-Normal distributions. It also has a seed control mechanism to enable

reproducible random values.
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3.2 Network Simulator

The Network Simulator class is the core module of the SDN simulation tool. It is a Discrete-

Event Simulator (DES) that models the transport and network layers of an SDN. This

class provides the user with entity creation methods alongside a method named run, which

implements the generic DES loop represented in Figure 3.2.

start

get the most imminent 

Event from EventList

return Statistics created 

based on Network

information

Yes

No

more Events? 

call run() method for the 

fetched Event and give 

the Network reference as 

input

Figure 3.2: Network Simulator workflow.

Figure 3.3 shows a simplified class diagram of the Network Simulator module. The Sim-

ulator class contains a Network object that holds the network entities and the EventList. In

each loop, the most imminent event is fetched from the EventList and its execute method
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is called, which triggers the call-sequence for updating the packet and network states and

creating possible future events. The Segment and Packet classes model the transport and

network layer, respectively. All the network entities are defined as abstract classes to facili-

tate developing new versions of them without the need to change the interfaces.

3.2.1 Events

The abstract class Event represents spontaneous occurrences that change the state of the

Network Simulator. The Event class has an abstract method named execute, which must be

implemented by any type of event inherited from it. The execute method gets the Network

object reference as input and triggers a sequence of method calls to update its state. Also,

the Event has a single attribute named eventTime, which determines the time at which it

must be executed.

As Figure 3.4 illustrates, the abstract class PacketEvent extends the Event class and

represents any event in the network related to a single packet. Hence, it has an attribute

with the type Packet to represent the packet associated with it. ArrivalToNode and Depar-

tureFromNode, both extending PacketEvent, are the only event types implemented in the

current version of the simulator.

The ArrivalToNode class models the behavior of a network node when a packet arrives.

The nodeID is an attribute in this class, and gets its value when the event is constructed.

This class implements the execute method by determining the node type and calling the

recvPacket method of the corresponding node from the Network.

The DepartureFromNode class models the behavior of a node when a packet is sent. The

departure of a packet is considered to be the same as the start of transmission of the packet

by the egress link. For this reason, linkID is defined as an attribute to this type of event.

The DepartureFromNode class implements the execute method by calling the trasmitPacket

method for the link corresponding to the linkID in the Network.
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Event
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Abstract Class

Concrete Class

Inheritance

ArrivalToNode DepartureFromNode

Figure 3.4: The type hierarchy of simulator events.

3.2.2 Entities

Figure 3.5 illustrates the type hierarchy of the entities in the Network Simulator. All network

entities extend the abstract class Entity, which has a single attribute called ID. In the current

design of the simulator, Node, Link, and Buffer are abstract types extending Entity. The

abstract type Node itself has three abstract sub-classes named Controller, Switch, and Host.

The remainder of this section describes each of these types separately.

Controller

The abstract class Controller models the generic properties and functionalities of an SDN

controller. It contains a Router module that is in charge of finding the best path for the flows

in the network. This class models the SDN southbound communication via implementation

of a method named sendPacketToSwitch.

The concrete class DefaultController extends the abstract class Controller. It can send

two types of SDN control messages (encapsulated in Packets) to a specific SDNSwitch in the

network. The Router module in DefaultController uses Dijkstra’s algorithm for finding the

shortest path for each flow in the network.
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The DefaultController implements the recvPacket method based on the flow-chart de-

picted in Figure 3.6. Upon arrival of a packet, the controller checks the segmentType. If it is

a SYN segment, the controller obtains the shortest path from the Router module. Then it

sends the pathSetup control messages to the corresponding switches in the flow path. Once

the flow path is established, it sends the SYN segment back to the switch that it originally

came from. If the segment is a FIN, the controller updates its network information and

sends the FIN segment back to the switch that it came from. Then, it sends a pathRemoval

control message to all the switches associated with the flow.

packet arrives

Update Net info

Send the FIN back to the 

SDNSwitch

Check segmentType

Send back the SYN to 

the SDNSwitch

Yes

Yes

No

is FIN

is SYN

Send pathRemoval 

message to associated 

SDNSwitches

Update Net info

Get the path from 

Router module

Send pathSetup 

message to associated 

SDNSwitches

Report Error

No

Figure 3.6: The recvPacket flow-chart in DefaultController.
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SDNSwitch

The abstract class SDNSwitch extends the abstract type Node. It represents the general

properties and functionalities of an OpenFlow switch. It contains a flowTable that holds the

egress linkID for each flowID. It models the forwarding functionality of the OpenFlow switch

by implementing forwardToHost, forwardToSwitch and forwardToController methods.

The concrete class DefaultSDNSwitch extends the abstract class SDNSwitch. It imple-

ments recvPacket based on the flow-chart presented in Figure 3.7. When a packet arrives, it

checks the packetType. If it is a CtrlPacket coming from the controller, the switch updates

its flowTable based on it. When the type is a FlwPacket, if the destination host is connected

to the switch, the packet is forwarded to the host. Otherwise, if the flowTable has an entry

for the flowID, it forwards the packet to the next switch via the egress link. In the case

that the flowTable does not have an entry for the flowID, the packet is forwarded to the

controller.

Host

The abstract class Host extends the class Node and models a physical host capable of send-

ing and receiving packets. It contains an attribute called transportAgent from the type

Agent to model the transport protocol. The class provides the sendSegment method, which

encapsulates a Segment into a Packet and sends it to the network via the access link.

In the current version of the simulator, DefaultHost is the concrete class that extends the

abstract class Host. The recvPacket method gets the packet from the network, decapsulates

the segment from it, and passes the segment to the transportAgent.

Agent

The abstract class Agent models the transport layer agent in a host. The sourceHostID and

destinationHostID are the attributes of this abstract class. It also contains a Flow object

that holds the flow information such as flow size, arrival time, and statistical counters.
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Figure 3.7: The recvPacket flow-chart in DefaultSDNSwitch.
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DefaultSender and DefaultReceiver, both extending abstract type Agent, are the concrete

classes implementing the default transport protocol implemented in the current version of

the simulator. This protocol has a client-server and connection-oriented design, and uses

sliding window and sequence number mechanisms without any congestion control algorithm.

Link

The abstract type Link represents the transmission medium of a network. This class models

the physical link properties with bandwidth, propagationDelay, and lossProbability. It

also contains the sourceNodeID and destinationNodeID representing the end nodes of the

link. The buffer is modeled as an attribute of the Link with the type Buffer. This class

models the functionality of the actual network link with bufferPacket and transmitPacket

methods.

The concrete class DefaultLink extends the abstract type Link, and models a simple wired

link with zero loss. It implements the bufferPacket method by getting the bufferTime,

from its Buffer attribute, for each arriving packet and creating the DepartureFromNode

event based on it. The transmitPacket method, which is called during the execution of

DepartureFromNode event, updates the buffer occupancy, then calculates the transmission

and propagation delays based on the properties of the link, and creates the ArrivalToNode

event for the packet.

Buffer

The abstract class Buffer is the model for a network buffer. It models the properties of the

buffer with capacity and occupancy (both in number of packets) and the bufferingPolicy.

This class has an abstract method named getBufferTime, which is called in the Link object.

The concrete class DefaultBuffer extends the abstract type Buffer. It uses FIFO as the

default buffering policy in the current version of the simulator. The implementation of the

getBufferTime method follows the flow-chart depicted in Figure 3.8. When the Link object
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calls getBufferTime, the method checks the occupany. If the buffer is full, it will return

Minus Infinity to signify packet drop. Otherwise, the bufferTime is calculated based on

the departure time of the previous packet buffered. Before returning the bufferTime, the

method updates the departure time of the most recent packet and increases the occupancy.

3.3 Verification

This section describes the verification test scenario for the network simulator module and

reports the results. The test scenario objectives focus on:

• Default transport protocol implemented by DefaultSender and DefaultReceiver ;

• Routing module and flow setup mechanisms of the controller; and

• Forwarding plane functionalities and link-level delay calculations.

Figure 3.9 shows the network topology for the verification test. There is a single pair of

hosts in the network. One of them contains a DefaultSender agent and the other one has a

DefaultReceiver. The Sending Window (Swnd) is set to five. The only traffic flow in this

scenario arrives at time zero and has 10 data segments to send. There are four SDNSwitches

in the network providing two possible paths from the sender to the receiver. However, based

on the link properties in Table 3.2, the shortest path is: Sw0 → Sw1 → Sw3

Table 3.2: Link properties of the topology.
Name Bandwidth(Gb/s) Propagation Delay(µs)
SL0 8 1
RL0 8 1
CL0 8 1
NL0 8 1
NL1 8 1
NL2 4 1
NL3 4 1
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Figure 3.8: Buffering algorithm implemented in DefaultBuffer.
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Figure 3.9: Network setup for verification test.

The first metric is FlowSetupDelay, defined as the amount of time between sending the

SYN segment and receiving the SYNACK at the sender transport agent. The expected

value for this metric is 10.44 µs, based on the propagation and transmission delays of a SYN

segment of size 40 Bytes traversing the path:

S0 → Sw0 → Controller → Sw0 → Sw1 → Sw3 → R0 → Sw3 → Sw1 → Sw0 → S0

The second metric is rtt, defined as the amount of time between sending a Data segment

and receiving its ACK at the sender transport agent. The expected value for this metric

is 12.16 µs, based on the propagation and transmission delays of Data and ACK segments,

with the size 1000 and 40 Bytes respectively, traversing the path:

S0 → Sw0 → Sw1 → Sw3 → R0 → Sw3 → Sw1 → Sw0 → S0

Figure 3.10 illustrates the simulation results for the single flow scenario in form of trans-

port agent sequence number plot. The values for FlowSetupDelay and rtt are 10.44 µs and

12.16 µs, respectively which validates:

• Transport protocol 3-way-handshake mechanism;

• Controller routing and flow setup mechanisms; and

• Forwarding plane functionality and link-level delay model.
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Figure 3.10: verification test result for single flow scenario.

The number of in-flight Data segments is equal to the pre-defined value of Swnd = 5.

Also, upon receiving the ACK for the Data segment with the lowest sequence number, the

sender agent slides the sending window and sends the next Data segment. These observations

validate the sliding-window and sequence number mechanisms of the transport agent.

3.4 Summary

This chapter discussed the architecture of the developed SDN simulation tool. In particular,

it described the design and implementation of the network simulator module. In addition,

the verification test setup and results were presented. The next chapter discusses the SDN

congestion control solution proposed in this thesis.
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Chapter 4

Proposed Solution

This chapter describes the proposed solution. Section 4.1 gives an overview of the solution.

Section 4.2 focuses on the analytical model for the proposed solution. Section 4.3 represents

the simulation model implemented from the analytical model. Section 4.4 describes the

verification test scenarios and results. Finally, Section 4.5 summarizes the chapter.

4.1 Solution Overview

Persistent queues are one of the manifestations of network congestion. There are two main

scenarios that result in the formation of queues in network buffers.

The first scenario is when the inbound arrival rate of segments exceeds the outbound

departure rate. This situation happens because the transport agents send bursts of data

segments and do not have any information about the bottleneck bandwidth along the path.

Hence, the segment arrival rate to the bottleneck link is determined by the access link

bandwidth of the sender host. As Figure 4.1 depicts, if AccessLinkBw > btlBw, a queue

of segments forms in the bottleneck link buffer. This queue is usually transient. However,

other flows in the network that share that bottleneck link might send bursts of segments too,

which can result in a persistent queue, and eventually packet drops.

To reduce the likelihood of persistent queues and segment drops, the arrival rate of
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Inbound link

Bin Gbps

Outbound link

Bout Gbps

Switch

Queue

Figure 4.1: Queue forms when Bin > Bout.

segments in a path should not exceed the transmission rate of the bottleneck link. This can

be done using inter-segment delays, as shown in Figure 4.2.

Inbound link

Bin Gbps

Outbound link

Bout Gbps

Switch

No Queue

inter-segment 

delay

Figure 4.2: Inter-segment delay eliminates the queue.

The second scenario that forms queues in the buffers is the coincident arrival of segments

on multiple inbound links that share the same outbound link. As Figure 4.3 shows, if

the bursts of segments on these inbound links arrive at the same time (or have significant

overlap), then a queue forms at the outbound link. One example of this scenario is the TCP

in-cast problem in data centers [4, 13], in which many segments from multiple flows arrive at

the access switches at the same time, due to parallel requests for data from multiple servers.

Figure 4.4 shows how the addition of inter-flow delays solves the problem. When the

bursts of segments from each host are phased to arrive in series, rather than parallel, there

will be no queue formed at the buffer of the shared outbound link.
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Figure 4.3: Multiple inbound links and single outbound link.
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Figure 4.4: Inter-flow delay eliminates the queue.

These scenarios that result in the formation of queues in the network are well-known to the

research community. Multiple research works have been done to resolve this issue [19, 31, 56].

However, the lack of information about the network, such as the bottleneck bandwidth for

each flow, prevented these solutions from resolving the issue effectively [3, 33].

In this thesis, we exploit the properties of SDN to propose a solution that implements

the inter-segment and inter-flow spacing ideas depicted in Figure 4.2 and Figure 4.4. We use

the simplified network model shown in Figure 4.5 for analytical modeling of the solution.

We make the following simplifying assumptions:
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• Each network switch has exactly one inbound and one outbound link.

• Data transfer always happens in a single direction, from senders to receivers.

• The processing delays for hosts, switches, and controller are negligible.

• The controller is capable of communicating with sender agents through the network.

Data Segments

Sender 

Access 

Switch

Sender0

Controller

...

Network 

Switch

...

Sendern

..
.

Receiver 

Access 

Switch

Receiver0

Receivern

..
.

ACK Segments

Figure 4.5: The network topology used for analysis.

4.2 Analytical Model

The proposed solution aims to prevent queues forming at bottleneck links. The SDN con-

troller plays a central control role, and provides sender agents with necessary information.

The protocol aims to eliminate queues forming at shared outbound links by adding inter-flow

delays to all the flows traversing the same access switch. Also, it ensures that each flow adds

inter-segment delays according to the bottleneck link of the path.
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To reach the above mentioned goals, five congestion control parameters are defined for the

protocol. The controller calculates these values based upon arrival of SYN or FIN segments

from an access switch, and notifies the sender agents connected to that access switch with

the updated values for the parameters.

The protocol defines a Sending Cycle (sCycle) for all flows connected to the same access

switch. The lifetime of a sCycle is determined based on the arrival of new flows or departures

of existing ones. Each sCycle consists of multiple Sending Intervals (sInterval). A sInterval

is a period of time that is partitioned and dedicated to the flows connected to the same

access switch. Each flow is allowed to send a specific number of segments with a specific

inter-segment delay in its share of an sInterval. Table 4.1 defines the parameters used in the

analytical model.

Table 4.1: Parameters and Definitions.
Parameter Name Definition
rtti(s) The round-trip time of a segment (with size s) for flow i
Fi The set of flows for sender access switch i
linkTotalDelay(s) The transmission and propagation delay of a link for a segment with size = s
btlBwi The lowest link bandwidth in the path of flow i
TransDelay The transmission delay
PropDelay The propagation delay
QDelay The queuing delay
CLi Control link corresponding to flow i
ALi Access link corresponding to flow i
NL Network link

4.2.1 DelayToNextCycle

DelayToNextCyclei is the wait time for starting the new sCycle for flow i after receiving a

CTRL segment from the controller. As Equation 4.1 represents, to calculateDelayToNextCyclei,

we need to determine the time to the start of the next sCycle (CycleStartDelay), and the

time needed for a CTRL segment to arrive to the sender agent of flow i (CTRLDelayi).

DelayToNextCyclei = CycleStartDelay − CTRLDelayi (4.1)
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Calculating CycleStartDelay

The calculation of CycleStartDelay varies depending upon the arrival of SYN or FIN seg-

ments. If a SYN segment arrives, the sCycle starts when the SYNACK segment of the

corresponding flow arrives to the sender agent. On the other hand, if the received segment is

a FIN, the new sCycle starts when all the CTRL segments are received by the sender agents.

If the segment arriving to the controller is a SYN segment, the controller calculates the

SYNACKDelay of flow j with:

SY NACKDelayj = rttj(SY N) + CLTotalDelayj(SY N) − ALTotalDelayj(SY N)

where:

CLTotalDelayj = CLQDelayj + CLTransDelayj + CLPropDelayj

ALTotalDelayj = ALQDelayj + ALTransDelayj + ALPropDelayj

ALTotalDelayi is deterministic, because we know ALQDelayj = 0, and transmission and

propagation delays can be calculated based on the physical properties of the link. However,

calculating rttj(SY N) and CLTotalDelayj requires information about the state of buffers

involved.

When the SYN segment arrives, the controller finds the best path and sends a flowSe-

tupMessage to the corresponding switches, including the sender access switch. Then, it

calculates the congestion control parameters and sends the CTRL segments to the sender

agents. Finally, it sends the SYN segment back to the sender’s access switch. Hence, the

CLQDelayj can be calculated by:

CLQDelayj = CLTransDelayj(flowSetupMessag) +N × CLTransDelayi(CTRL)

where N is the number of active flows at the sender’s access switch. However, if other SYN

or FIN segments have been received by the controller recently, the control link buffer may
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have non-zero occupancy before the start of the current control loop, and we need to bound

this value. The maximum number of SYN or FIN segments that can arrive to the controller

from the same access switch at any given time is less than or equal to the number of active

flows connected to that switch. Hence, we can use Equation 4.2 as an upper bound for

CLQDelayj.

CLQDelayj = N × (CLTransDelayj(flowSetupMessag) +N × CLTransDelayi(CTRL)) (4.2)

Calculating rttj(SY N) requires the analysis of the link buffers in the path of flow j. When

the SYN segment leaves the controller, it should traverse the links to the receiver host in

the Data direction. Figure 4.6 represents the scenario with the maximum queuing delay for

the SYN segment on its way to the receiver host. The maximum queuing delay happens

Data Segments

Access 

SwitchSender Receiver

Controller

...

Network 

Switch

...

SYN Segment

Bottleneck 

Link

Figure 4.6: The maximum queuing delay for SYN and SYNACK segments.

when the SYN segment and a Data segment from another flow arrive to the sender access

switch at the same time. In this case, the SYN segment is transmitted right after the Data

segment en route to the receiver access switch. The queuing delay for the SYN segment is
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equal to the transmission time of the Data segment:

DataSegSize

SharedBtlBwData

where sharedBtlBwData is the lowest bandwidth among the shared link on the Data stream

before the receiver access switch. With the same rationale, the maximum queuing delay for

the SYNACK segment is equal to:

ACKSegSize

sharedBtlBwACK

where sharedBtlBwACK is the lowest bandwidth among the shared links on the ACK stream

before the sender access switch. Hence, Equation 4.3 gives an upper bound for the non-

deterministic part of the rttj(SY N).

maxQDelay =
DataSegSize

SharedBtlBwData

+
ACKSegSize

sharedBtlBwACK

(4.3)

Equation 4.4 presents the final formula for the calculation of the SY NACKDelayj. Al-

though all the maximum values for the non-deterministic delays are taken into consideration,

we use the over-estimation factor β ≥ 1, to ensure that the SYNACK segment always arrives

no later than expected by the sender agents.

SY NACKDelayj = β × (rttj(SY N) + CLTotalDelayj(SY N))− ALTotalDelayj(SY N) (4.4)

When a FIN segment arrives, the controller calculates CTRLDelay for all the flows and

uses the maximum of these values as CycleStartDelay. The calculation of CTRLDelay for

each flow is discussed later in this section. In summary, Equation 4.5 represents the value of
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CycleStartDelay upon arrival of SYN or FIN segments to the controller.

CycleStartDelay =

SY NACKDelay SY N arrival

maxCTRLDelay FIN arrival
(4.5)

Calculating CTRLDelay

CTRLDelayi is calculated by:

CTRLDelayi = CLTotalDelayi + ALTotalDelayi

where:

CLTotalDelayi = CLQDelayi + CLTransDelayi + CLPropDelayi

ALTotalDelayi = ALQDelayi + ALTransDelayi + ALPropDelayi

Transmission and propagation delays are deterministic and can be calculated using physical

properties of the control and access links corresponding to flow i. However, the queuing

delays are non-deterministic. Hence we should determine bounds on these delays.

As Figure 4.7 represents, the maximum queuing delay happens when the CTRL segment

(coming from the controller) and an ACK segment (coming from the receiver of a flow)

arrive to the access switch at exactly the same time. In this case, the queuing delay for the

CTRL segment is equal to the transmission delay of the ACK segment on the access link.

Also, the minimum queuing delay for the CTRL segment is equal to zero, which happens

when its arrival does not overlap with the arrival of any ACK segment. Hence, we can claim

that the actual value of ALQDelayi has the following bounds:

0 ≤ ALQDelayi ≤ ALTransDelayi(ACK)

Equation 4.6 uses the upper bound to over-estimate the queuing delay.
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Figure 4.7: CTRL and ACK segments arrivals to the access switch.

ALQDelayi = ALTransDelayi(ACK) (4.6)

For some flows, depending on whether their ACK stream overlaps with the CTRL segment

or not, the CTRLDelay is over-estimated. Hence, those flows start their sCycle sooner than

they should with an error of ε. Considering the bounds on the ALQDelayi, Equation 4.7

represents the bounds for ε. This error is handled in the sWnd calculation.

0 ≤ ε ≤ ALTransDelayi(ACK) (4.7)

Similar to the calculation of CycleStartDelay, determining the bounds on CLQDelayi

varies depending upon the arrival of SYN or FIN segments to the controller. We need to

analyze the behavior of the controller in each control loop to determine the state of the

control link buffer.

When a SYN segment arrives, the controller finds the best path for the flow and sends a

flowSetupMessage to the corresponding switches, including the sender access switch. Then,

the controller prepares CTRL segments to send to the corresponding sender agents. Hence,
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the CLQDelayi can be calculated by:

CLQDelayi = CLTransDelayi(flowSetupMessage)

+ flowCounter × CLTransDelayi(CTRL) (4.8)

where flowCounter is the number of flows for which the CTRL segment is ready to send.

If the arriving segment is a FIN, the controller calculates the congestion control pa-

rameters, and sends the CTRL segments to the corresponding sender hosts. For this, the

CLQDelayi is calculated by:

CLQDelayi = flowCounter × CLTransDelayi(CTRL) (4.9)

where flowCounter is the number of flows for which the CTRL segment is ready to send.

4.2.2 sInterval

Equation 4.10 is used to calculate the value for sInterval in each sCycle. The factor γ ≥ 1 is

used for overestimating the maximum rtt among the flows to account for non-deterministic

buffering delays. Using this value ensures that each interval starts after the ACK segments

of the previous sInterval have arrived back at the senders.

sInterval = γ ×max(rtti),∀i ∈ F, γ ≥ 1 (4.10)

4.2.3 sWnd

Each sInterval is divided into equal periods of time dedicated to each flow:

sInterval

N
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The maximum number of segments that the bottleneck link of flow i can transmit in the

dedicated time period is equal to:

bsInterval × btlBwi

N ×DataSegSize
c

Equation 4.11 calculates the sWnd. We add an aggressiveness factor, 0 < α ≤ 1, to control

the utilization of the shared network link. To handle the error mentioned in Equation 4.7,

the calculated sWnd is reduced by one, so each sender agent can skip one segment at the

start of each sInterval. Finally, to ensure that all flows have the chance to send in each

sInterval, the minimum value for sWnd is one.

sWndi = max(1, bα× sInterval × btlBwi

N ×DataSegSize
c − 1) (4.11)

4.2.4 sInitialDelay

sInitialDelay is added at the start of each sCycle to create the interFlowDelay needed to make

sure the access switch outbound link buffer is not overloaded by segments. The controller

allocates an index to each flow connected to the same access switch, starting from zero.

Equation 4.12 ensures that there is no overlap between the arrival of segments of different

flows at the sender access switch.

sInitialDelayi = i× sInterval

N
+ (ALTotalDelay0 − ALTotalDelayi) (4.12)

4.2.5 sInterSegmentDelay

sInterSegmentDelay is added after the transmission of each segment in a single sInterval, to

ensure there is no need for buffering at the bottleneck link due to arrival and departure rate
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mismatch. Equation 4.13 represents the formula for this parameter.

sInterSegmentDelayi =
DataSegSize

btlBwi

(4.13)

4.3 Simulation Model

The simulation model is designed based on the analytical model presented in the previous

section. The protocol involves three entities in the network:

• Controller

• Sender agent

• Receiver agent

The controller is capable of communicating with the sender agent by sending a new type of

segment called CTRL. The remainder of this section describes the model implemented for

each entity in the SDN Simulation Tool.

4.3.1 Controller

The main role of the controller in the proposed solution is to update the Congestion Control

Parameters (CCParams) based on the analytical model, and initiate the next sCycle when

a flow arrives or departs. Figure 4.8 represents the behavior of the controller upon arrival of

a SYN or FIN segment.

When a SYN segment arrives, the controller updates the network information database.

After that, it finds the best path for the new flow, and sends the flow setup messages to the

corresponding switches. Then, it calculates the new CCParams, and generates the CTRL

segments for all the flows connected to the corresponding access switch. After sending the

CTRL segments to sender agents, the controller sends the SYN segment back to the access

switch.
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Figure 4.8: Controller flowchart for recvPacket method.

When a FIN segment arrives, the controller updates its information database about the

network. Then, it calculates the new CCParams, generates the CTRL segments for each

sender agent connected to the corresponding access switch, and sends them. Finally, it

sends the FIN segment back to the access switch.

4.3.2 Sender

The role of the sender agent is to send its Data segments to the network based on the

CCParams that it receives from the controller. To this end, the sender uses several types of
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timers. Table 4.2 represents the different types of timers used in the sender agent.

Table 4.2: Different types of timers in sender agent.
Timer Name Definition
NextCycleTimer Indicates the start of the new sCycle
InitialDelayTimer Indicates the start of the first sInterval
IntervalTimer Indicates the start of next sInterval
InterSegmentDelayTimer Indicates the sending time of the next segment

As Figure 4.9 depicts, the sender agent can receive three types of segments. When a

CTRL segment arrives from the controller, the sender stores the new CCParams without

changing the current ones, and initiates a NextCycleTimer. When the SYNACK segment

arrives, the connection is established, and the sender updates the information about ac-

knowledged sequence numbers. When an ACK segment arrives, the sender checks to see if

this acknowledgment is for the last Data segment of the flow. If true, it will send the FIN

segment. Otherwise, it updates the information about acknowledged sequence numbers.

When the NextCycleTimer times out, the sender stops all the active timers associated

with the current sCycle. Then, it uses the previously stored CCParams to update the current

parameters. Finally, it initiates the new sCycle by activating an InitialDelayTimer.

When the InitialDelayTimer times out, the sender starts the first sInterval, which sends

Data segments for the current sending window, using InterSegmentDelayTimer. It also starts

an IntervalTimer for the next sInterval right after sending the first Data segment. When

the IntervalTimer times out, the sender repeats the same routine as the InitialDelayTimer

timeout.
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Figure 4.9: Sender agent flowchart for recvPacket method.

4.3.3 Receiver

The receiver agent has a simple acknowledgment generation mechanism. When a SYN

segment arrives, it generates a SYNACK segment and sends it back into the network. When
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a Data segment arrives, it generates an ACK segment with the same sequence number and

sends it back to the sender agent.

4.4 Verification

To validate the implemented simulation model against the analytical model, two test sce-

narios have been designed. Both scenarios use a Dumbbell topology, and focus on the

functionality of the controller and sender agents in the proposed protocol. The three con-

gestion control parameters of the controller are α = 1, β = 1.5, and γ = 1.5. The simulation

results are shown in the form of sequence number graphs for each flow in the test.

4.4.1 Single Flow

The purpose of this test is to validate the functionality of the solution with a single flow in

the network. The flow size is 50 Data segments, each of them 1000 Bytes, and arrives to the

network at time zero. Figure 4.10 depicts the network topology used for this test scenario.

Table 4.3 presents the link properties of the topology used for the test. All link bandwidths

are set to 8(Gb/s). Hence, the transmission delays for Data (1000 Bytes) and ACK (40

Bytes) segments are 1(µs) and 0.04(µs) respectively.

S0 R0

Controller

Sw0 Sw2Sw1

NL0 NL1
SL0 RL0

Figure 4.10: Network setup for single flow verification test.
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Table 4.3: Link properties of the topology.
Name Bandwidth(Gb/s) Propagation Delay(µs)
SL0 8 1
RL0 8 1
CL0 8 1
NL0 8 1
NL1 8 1
NL2 8 1

Table 4.4 shows the calculated analytical values for the parameters, using equations in

Section 4.2.

Table 4.4: Analytical values.
Parameter Analytical Value
sInterval 18.24 (µs)

sInterSegmentDelay 1 (µs)
SY NACKDelay 14.68 (µs)
CTRLDelay 2.16 (µs)
sInitialDelay 0 (µs)

rtt 12.16 (µs)
sWnd 17 (segments)

Figure 4.11 depicts the simulation result in the form of a sequence number graph. The

simulation values for sInterval, sInterSegmentDelay, sInitialDelay, rtt, and sWnd match the

analytical values.

The simulation values of SY NACKDelay = 14.68 (µs) and CTRLDelay = 2.16 (µs) are

consistent with the analytical values that the controller calculates. However, the equations

for calculating them are over-estimations of the actual values. Based on the simulation results

from measurement on the sender agent, SY NACKDelay = 8.4 (µs) and CTRLDelay =

2.12 (µs), which shows that the analysis mentioned in Section 4.2 is correct.
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Figure 4.11: Verification test result for single flow scenario.

4.4.2 Multiple Flows

The purpose of this scenario is to test the functionality of the proposed solution when there

is more than one flow in the network. Figure 4.12 depicts the topology used for the test.

Table 4.5 presents the arrival time and the size for each flow in the test. Two cases of

homogeneous and heterogeneous access links are tested with this setup.

Table 4.5: Traffic properties of the verification test for multiple flows.
Name Arrival Time (µs) Size (Data segments)
flow0 0 150
flow1 30 80
flow2 100 20
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Figure 4.12: Network setup for multiple flow verification test.

Homogeneous Access Links

Table 4.6 presents the link properties of the homogeneous test. All link bandwidth are set

to 8(Gb/s), so the transmission delay for Data and ACK segments are equal to 1(µs) and

0.04(µs), respectively.

Table 4.6: Link properties of the topology.
Name Bandwidth(Gb/s) Propagation Delay(µs)
SL0 8 1
SL1 8 1
SL2 8 1
RL0 8 1
RL1 8 1
RL2 8 1
CL0 8 1
NL0 8 1
NL1 8 1

Figure 4.13 depicts the simulation result for flow0, in the form of a sequence number

graph. When flow0 arrives at time zero, it is the only flow in the network. Hence, the

controller updates the congestion control parameters and sCycle0 starts with flow0 utilizing

the network with sWnd = 17 (segments).
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Figure 4.13: Verification test result for multiple flows with homogeneous access links (flow0).

When the controller receives the SYN segment of flow1, it informs both flows about the

newly calculated congestion control parameters. sCycle1 starts at time = 49.16 (µs), with

sWnd = 8. flow0 starts the new cycle without any initial delay. As Figure 4.14 shows,

flow1 waits for sInitialDelay1 = 9.12 (µs), then sends segments.
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Figure 4.14: Verification test result for multiple flows with homogeneous access links (flow1).

When flow2 arrives, the controller notifies the flows, and sCycle2 starts at Time =

119.56(µs). The sWnd is reduced to 5 (segments), and all flows start to send data according

to their sInitialDelay, as seen in Figure 4.15.

Upon the departure of flow2, the controller triggers sCycle3, which starts at Time =

208.96 (µs). The sWnd is set back to 8 (segments), and both remaining flows start sending

data segments according to their sInitialDelay.
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Figure 4.15: Verification test result for multiple flows with homogeneous access links (flow2).

Finally, when flow1 departs, the controller notifies flow0, and sCycle4 starts at Time =

280 (µs). The sWnd for this cycle is set to 17 (segments), and flow0 sends its remaining

Data segments.

Heterogeneous Access Links

Table 4.7 presents the link properties of the heterogeneous test. In this case, the propagation

delays for the sender access links are heterogeneous.

Figure 4.16 depicts the simulation result for flow0, as a sequence number graph. The

order of flow arrival and departure events is similar to the homogeneous test case. There are

five sending cycles, and the sWnd and sInitialDelay for each flow is set by the controller in

each one of them.
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Table 4.7: Link properties of the topology.
Name Bandwidth(Gb/s) Propagation Delay(µs)
SL0 8 2
SL1 8 4
SL2 8 1
RL0 8 1
RL1 8 1
RL2 8 1
CL0 8 1
NL0 8 1
NL1 8 1
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Figure 4.16: Verification test result for multiple flows with heterogeneous access links

(flow0).
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4.5 Summary

This chapter discussed the proposed solution. Specifically, it provided an overview of the

basic idea of the solution and the problems that it solves. Also, it presented the analytical

and simulation models of the solution. Finally, it described the verification test scenarios,

and presented the results for them. The next chapter discusses the simulation evaluation of

the proposed solution.

61



Chapter 5

Simulation Evaluation

This chapter presents the simulation evaluation of the proposed solution. Section 5.1 gives

an overview of the performance metrics and network topology used for the evaluation. Sec-

tion 5.2 presents the simulation results and analysis of multiple experiments. Finally, Sec-

tion 5.3 summarizes the chapter.

5.1 Experimental Design

The proposed solution is evaluated by simulation studies, using the developed SDN Simula-

tion Tool. The purpose of the evaluation is to study the behavior of the proposed protocol

in multiple scenarios.

5.1.1 Performance Metrics

Several metrics are used in the simulation evaluation of the proposed solution. The perfor-

mance metrics are:
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Flow Setup Delay

Flow Setup Delay (FSD) is the elapsed time between the generation of the SYN segment,

and the time the first Data segment is sent.

Flow Completion Time

Flow Completion Time (FCT) is the elapsed time between the generation of the SYN and

the FIN segments for a given flow.

Flow Throughput

As Equation 5.1 represents, Flow Throughput is defined as the ratio of the total transmission

time of the flow, to the total lifetime of it. The unit of the metric is percentage (%):

Troughput = 100× totalTransmissionT ime

(FlowCompletionT ime− FlowArrivalT ime)
(5.1)

Link Utilization

Equation 5.2 shows the formula for Link Utilization. It is defined as amount of acknowledged

data (ACKedSegments) transferred over a link during the time it is active (totalUpTime).

LinkUtilization =
ACKedSegments× segmentSize
linkBandwidth× totalUpT ime

(5.2)

Fairness

Equation 5.3 represents Chiu and Jain’s fairness index [14].

f =
(
∑n

i=1 xi)
2

n×
∑n

i=1(xi)
2

(5.3)

where xi is the throughput achieved by flow i, and n is the total number of flows. The value

of f ranges between
1

n
and 1. f = 1 is the highest fairness achievable, and it means all
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flows have identical throughput. When f is close to
1

n
, it means one flow is monopolizing

the network throughput.

Average Queue Length

Equation 5.4 shows the formula for Average Queue Length (AvgQL) of a given link in the

network.

f =

∑n−1
i=1 li × (ti+1 − ti)

tn − t0
(5.4)

where li is the instantaneous queue length at time ti, and n is the number of entries in the

queue length times series.

Maximum Queue Length

Maximum Queue Length (MaxQL) metric shows the highest measured buffer occupancy

during the simulation for a given link.

5.1.2 Simulation Setup

Figure 5.1 depicts the network topology used for simulation evaluation of the proposed

solution. Table 5.1 shows the default link properties. The link properties are similar to a

Local Area Network (LAN). All bandwidths and propagation delays are set to 10 (Gb/s) and

5 (µs), respectively. Also, Table 5.2 presents the default traffic specifications. All simulation

studies use these settings, unless mentioned otherwise.
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Figure 5.1: Default network topology for simulation experiments.

Table 5.1: Default link properties.
Parameters Bandwidth(Gb/s) Propagation Delay(µs)

CLTransDelays 10 5
NLTransDelays 10 5
SLTransDelays 10 5
RLTransDelays 10 5

Table 5.2: Default traffic specifications.
Parameter Value

Flow Inter-Arrival Time (Int-AT ) 0.5 (ms)
Flow Sizes (S ) 1 MB

Number of Flows (N ) 10

5.2 Simulation Studies

The purpose of these simulation experiments is to study the behavior of the proposed solu-

tion. Each section explains the scenario studied, and then provides the results along with

their analysis.
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5.2.1 Flow Inter-Arrival Times

The purpose of this study is to investigate the effect of Int-AT on the performance of the

proposed solution. Table 5.3 presents the traffic specification for the study. Int-AT is the

main factor, and it is identical for all the flows in a single simulation run. To see the effect

of size of the flows at the same time, S is chosen as the secondary factor, and all the flows

in the simulation runs have identical sizes.

Table 5.3: Traffic specifications for Flow Inter-Arrival Times study.
Parameter Value Comments

Int-AT 0 to 2 (ms) step size = 0.1 (ms)
S 100 KB, 500 KB, 1 MB NA

To help understanding the behavior of the protocol in this study, we define the following

parameters:

• Degree of Overlapping (do): Shows the number of flows overlapping in a period of time

• Single Flow Completion Time (singleFCT ): The completion time of a flow when it is

alone in the network.

Varying Int-AT in the study results in three special cases in terms of overlapping of the

flows. Figure 5.2 shows full-overlapping, half-overlapping, and non-overlapping cases for flow

lifetimes. When Int-AT = 0, all flows arrive at the same time, and share the same sCycle.

When Int-AT =
singleFCT

2
, exactly two flows share the same sCycle most of the time.

When Int-AT ≥ singleFCT , each flow sends all its data throughout a single sCycle shared

by no other flow.
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Figure 5.2: Flow lifetime overlapping cases: (a) full-overlapping. (b) half-overlapping.

(c) non-overlapping.

Figure 5.3 depicts two intermediate cases between the thresholds discussed in Figure 5.2.

In both cases, when Int-AT increases, the average degree of overlapping decreases. When
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0 <Int-AT<
singleFCT

2
, the average degree of overlapping is high (i.e., greater than two).

When
singleFCT

2
<Int-AT< singleFCT , the average degree of overlapping is low (i.e.,

less than two). Also, increasing the size of the flows increases the singleFCT . Hence, both

Average FCT and the threshold for entering non-overlapping state increases.

...

flow1

flow2

flow3

flown

do = 2 do = 2

...

flow1

flow2

flow3

flown

do = 1 do = 1

(a)

(b)

Figure 5.3: Flow lifetime overlapping cases: (a) high-overlapping. (b) low-overlapping.

In the simulation experiments that follow, the Int-AT is used as the main factor to vary

the structural characteristics of the network workload, as explained above. An understanding

of this workload pattern is essential to interpreting the results properly.

Figure 5.4 depicts the Average FCT for three different flow sizes. Considering flow size

of 1 (MB), when Int-AT = 0 the flows are in full-overlapping state. Hence, the Average FCT

is at its peak. As the Int-AT increases to singleFCT = 0.9 (µs), the degree of overlapping

decreases. Hence, the Average FCT decreases too. When Int-AT ≥ singleFCT , the flows
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become non-overlapping and Average FCT is constant.
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Figure 5.4: Average FCT for Flow Inter-Arrival Time study.

Figure 5.5 depicts the Fairness Index for different flow sizes. Considering the flow size of

1 (MB), when Int-AT = 0, all flows are in full-overlapping state. In this situation, all of the

SYN segments arrive to the controller within a small period of time. Hence, all flows start

sending at the same sCycle, which means all of them get an identical share of each sInterval,

and Fairness Index is equal to one.

When 0 <Int-AT< 0.45 the flows are in high-overlapping state, which means the con-

troller receives the SYN segments within a larger period of time compared to the previous

state. Hence, the earlier flows have to wait for a larger amount of time to start sending

compared to the later ones. As a results, the Fairness Index decreases.

When 0.45 <Int-AT< 0.9, the flows are in low-overlapping state, which means the con-

troller receives the SYN segments within a much larger period of time compared to the

previous state. Hence, the earlier flows get the chance to start sending segments while the

controller receives the SYN segments of the new flows and triggers the new sCycle. As a
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results, the Fairness Index increases.

When Int-AT ≥ 0.9, flows are in non-overlapping state, and they have identical Flow

Throughput. Hence the Fairness Index is constant and equal to one.

Also, the size of flows does not affect the period of time the SYN segments arrive to the

controller. Hence, the Fairness Index is the same for different flow sizes.
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Figure 5.5: Fairness Index for Flow Inter-Arrival Time study.

Figure 5.6 shows the Average FSD for different flow sizes. FSD is a function of De-

layToNextCycle and sInitialDelay. Considering flow size of 1 (MB), when the flows are

full-overlapping, the value of sInitialDelay is high. Hence, the Average FSD is high too.

However, in this scenario the controller receives all the SYN segments within a short period

of time. As a result, the delay to start the first sCycle is not high.

When Int-AT ≤ 0.45, the flows are in high-overlapping state, and the value of sInitialDe-

lay is still high. Also, because the controller receives all the SYN segment within a larger

period of time compared to full-overlapping case, the Average FSD increases.
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When Int-AT ≥ 0.45, the flows enter low-overlapping state, and the value of sInitialDelay

decreases. Hence, the Average FSD decreases too.

When Int-AT ≥ 0.9, the flows are in non-overlapping state, and the Average FSD is

constant and minimal. Increasing the size of flows does not affect the DelayToNextCycle

or sInitialDelay, though it increases the thresholds for the overlapping cases. Hence, the

Average FSD does not change.

Figure 5.7 and Figure 5.8 represent the Average Flow Throughput and the Bottleneck

Link Utilization, respectively. Similar to FSD, both Flow Throughput and the Bottleneck

Link Utilization are functions of DelayToNextCycle and sInitialDelay. Hence, the same

analysis applies for them too.
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Figure 5.6: Average FSD for Flow Inter-Arrival Time study.
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Figure 5.7: Average Flow Throughput for Flow Inter-Arrival Time study.
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Figure 5.8: Bottleneck Link Utilization for Flow Inter-Arrival Time study.
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5.2.2 Number of Flows

This study examines the effect of N on the performance of the proposed protocol. Table 5.4

presents the traffic specification used for this study.

According to the analytical model of the proposed solution, when the number of flows

passes the point that sWnd < 1, the protocol will allow all flows to send at least one segment

per each sInterval. As a result, a persistent queue starts to form. In this experiment, we set

the size of the bottleneck link buffer to infinity to see the behavior of the protocol when it

reaches the breaking point.

Table 5.4: Traffic specifications for N study.
Parameter Value Comments

N 1 to 100 step size = 5
S 100 KB, 500 KB, 1 MB NA

Int-AT 0.1 (ms) To avoid non-overlapping flows

Figure 5.9 depicts the Average FCT. When 1 ≤ N ≤ 20, as N increases, more flows

share the same sCycle, and sWnd decreases drastically. Hence, Average FCT increases, and

Average Flow Throughput decreases (see Figure 5.11). As Figure 5.12 shows, because of the

increase in sInitialDelay, Bottleneck Link Utilization decreases in this range.

For 20 < N < 60, since the controller divides the sInterval by N to determine the sWnd,

the changes in sWnd is modest. Hence, Average FCT and Average Flow Throughput do not

change that much either.

When N > 60, even if all flows use sWnd = 1, the number of segments in each sInterval

exceeds the capacity of the bottleneck link. The Bottleneck AvgQL shown in Figure 5.13

shows that a persistent queue starts to form at the bottleneck link buffer at this point. As

a result, Average FCT starts to increase drastically.
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Figure 5.9: Average FCT for Number of Flows study.
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Figure 5.10: Average FSD for Number of Flows study.
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Figure 5.11: Average Flow Throughput for Number of Flows study.
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Figure 5.12: Bottleneck Link Utilization for Number of Flows study.
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Figure 5.13: Bottleneck AvgQL for Number of Flows study.

5.2.3 In-cast Problem

This scenario aims to study the TCP in-cast problem [13], and investigate the performance of

the proposed solution mentioned in the Number of Flows study. The previous study showed

that the protocol performance degrades drastically when it reaches the breaking point. The

number of flows (connected to the same access switch) needed to break the solution was 50.

This means the protocol is not quite scalable for a typical LAN network. However, according

to the analytical model for the solution, increasing the value of γ increases the length of each

sInterval. Hence, the sWnd increases too, and the breaking point should happen for a greater

number of flows. For this reason, γ is considered as the secondary factor of this study to see

if it can improve the scalability of the protocol.

Figure 5.14, Figure 5.15, and Figure 5.16 show the Bottleneck AvgQL, Bottleneck Link

Utilization, and Average FCT, respectively.

When γ = 1, and N exceeds the maximum number of segments the bottleneck can
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Table 5.5: Traffic specifications for In-cast Problem study.
Parameter Value Comments

N 1 to 100 step size = 5
γ 1, 1.5, 2 NA
S 1 MB NA

Int-AT 0 All flows arrive at the same time

transmit in sInterval, Average FCT and Bottleneck AvgQL increase very quickly. Increasing

γ increases the sInterval. Hence, the upper bound for N increases too. As Figure 5.16

depicts, for γ = 1 the maximum value for N without a persistent queue at the bottleneck

link is 55. Using γ = 1.5, this value extends to 80. For γ = 2, the proposed protocol

can handle 100 flows arriving at the same time to the access switch. The results of this

experiment shows that by tuning γ the scalability of the protocol improves.
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Figure 5.14: Average FCT for In-cast Problem study.
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Figure 5.15: Bottleneck Link Utilization for In-cast Problem study.
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Figure 5.16: Bottleneck AvgQL for In-cast Problem study.
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5.2.4 Gamma

The purpose of this study is to investigate the effect of varying γ on the performance of the

protocol. Table 5.6 shows the factors, with their levels, used in this study.

Table 5.6: The first and the second factors for the Gamma study.
Parameter Value Comments

γ 1 to 200 step size = 1
Int-AT 0, 0.5, 1 (ms) NA

The parameter γ is defined to over-estimate the sInterval. Increasing γ increases the

sInterval. Hence, the sWnd for each flow in the sCycle increases too. When the Int-AT is

equal to 1 (ms), none of the flows overlap with each other. Hence, changing the value of γ

does not affect any of the performance metrics.
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Figure 5.17: Average FCT for Gamma study.
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Figure 5.18: Average Flow Throughput for Gamma study.
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Figure 5.19: Bottleneck Link Utilization for Gamma study.
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Figure 5.20: Average FSD for Gamma Study.

As Figure 5.17, Figure 5.18, and Figure 5.19 depict, when the Int-AT is low, increasing

γ improves Average FCT, Average Flow Throughput, and Bottleneck Link Utilization, re-

spectively. However, as Figure 5.20 shows, increasing γ increases Average FSD. The lower

the Int-AT is, the more linear this increment is.

In summary, the study suggests that increasing γ to some extent, when Int-AT is low,

improves the performance of the proposed solution.

5.3 Summary

This chapter presented the simulation evaluation of the proposed solution. In particular, it

provided an overview of the performance metrics and simulation setup. It also presented

the simulation studies along with their results and analysis. The next chapter concludes the

thesis and discusses future work.
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Chapter 6

Conclusions and Future Work

This chapter provides a summary of the thesis, conclusions, and future work. Section 6.1

summarizes the thesis. Section 6.2 discusses the conclusions of the research work. Section 6.3

suggests some directions for future work.

6.1 Thesis Summary

A summary of the thesis is as follows:

• Chapter 2 provided the background knowledge and related work. It described TCP

along with its reliability and congestion control mechanisms. Also, it provided an

overview about SDN, and explained the related work for the thesis.

• Chapter 3 discussed the SDN Simulation Tool. It described the components of the

simulator in detail. Also, it explained the verification test along with its results.

• Chapter 4 introduced the proposed solution. It described the analytical and simulation

model of the protocol. Moreover, it discussed the verification test for implementation

of the simulation model.

• Chapter 5 presented simulation experiments and results. It discussed the experimental
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methodology. Also, it explained simulation experiments along with their results.

6.2 Conclusions

The thesis has the following objectives:

• To design a centralized congestion control scheme for SDN: We used a simplified net-

work to create the analytical model for the solution. The analytical model defined

equations for newly introduced congestion control parameters by doing a fine-grained

analysis of the network.

• To develop an SDN simulation tool: The simulator models the transport and network

layers of SDN. Moreover, the integrated framework facilitates simulation experiments

by providing traffic and topology generators. Also, it formats the simulation output in

the form of tables and graphs for desired performance metrics. The tool is developed

in Java and benefits from a modular object-oriented design, which enhances its re-

usability and extensibility.

• To evaluate the proposed solution: We used the analytical model of the proposed

solution to create the simulation model for our SDN Simulation Tool. Then the imple-

mentation of the simulation model was verified by multiple verification test scenarios.

Also, multiple simulation experiments are designed and executed to investigate the

behavior of the proposed solution in different scenarios.

The simulation experiments focused on a simple LAN network. The results and analysis

of the experiments provided the following insights:

• The proposed protocol maintains minimal queue length at the bottleneck link.

• The proposed protocol maintains a high level of fairness in different circumstances.

Specifically the Int-AT study showed that the lowest degradation of Fairness Index

was 30% for a specific set of values for Int-AT.
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• Average Flow Completion time increases linearly (before the breaking point) for most

of the situations.

• The tuning parameter γ increases the scalability of the protocol. In particular, for

In-cast Problem experiment, increasing the value of γ by 50% increased the number of

flows needed for reaching the breaking point by 60%.

6.3 Future Work

The possible future directions for this thesis can be categorized as follows:

• Evaluation of the protocol: The simulation experiments done in this thesis can be

extended to more complicated scenarios. In particular, using a more complex net-

work topology will shed more light on the behavior of the proposed protocol. Also,

the possible comparison of the proposed solution with well-known TCP variants such

as NewReno, CUBIC, and BBR will provide more comprehensive insights about its

strengths and limitations.

• Design of the protocol: Even though the results of the experiments demonstrated

the functionality of the solution, it is not a complete protocol. By analyzing a more

complex model of the network, a more comprehensive analytical model can be designed

for the solution.

• SDN Simulation Tool: The simulation tool is designed and implemented in a way to be

highly modular and extensible. The current version of the simulator uses zero process-

ing delays for SDN entities such as switches and the controller. A simple measurement

study of a small real-world SDN network can improves the simulator’s model of the

network layer. Moreover, the model for the TCP variants and UDP protocol can be

easily integrated to the simulator.
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• Actual implementation and experimental evaluation: Implementing a prototype of the

solution and evaluating it on a real SDN network could provide more insights about

its practicality.
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Appendix A

A.1 Debugging Output

The simulation tool is capable of generating sequence number output for any desired flow

in the scenario. This output is used for debugging purposes. Figure A.1 shows the output

data generated in form of a table. Figure A.2 shows the generated graph for the sequence

number data.

Data Segments ACKs

Time (us) Sequence Number Time (us) Sequence Number

0.00 0 10.48 0

18.88 1 31.04 1

19.88 2 32.04 2

20.88 3 33.04 3

21.88 4 34.04 4

22.88 5 35.04 5

23.88 6 36.04 6

24.88 7 37.04 7

25.88 8 38.04 8

26.88 9 39.04 9

27.88 10 40.04 10

28.88 11 41.04 11

29.88 12 42.04 12

30.88 13 43.04 13

31.88 14 44.04 14

32.88 15 45.04 15

Figure A.1: The sequence number output in form of table.
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Figure A.2: The sequence number graph.

A.2 Study Output

The simulation tool is capable of generating the output for a double factor simulation study

in form of table and graphs. Figure A.3 represents the table generated by the tool for a

performance metric. Figure A.4 shows the line graph generated for a double factor study.

This type of graph is suitable for studies with a continuous first factor. Figure A.5 shows

the bar graph generated for a double factor study. This type of graph is recommended for

studies with categorical first factor.
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Second Factor = 100 Second Factor  = 500 Second Factor  = 1000

Frist Factor Performance Metric Frist Factor Performance Metric Frist Factor Performance Metric

0 1172.17 0 5504.97 0 10920.97

100 308.17 100 4100.26 100 9516.26

200 184.77 200 3010.50 200 8194.72

300 184.77 300 1844.28 300 6922.44

400 184.77 400 848.92 400 5956.31

500 184.77 500 512.34 500 4700.74

600 184.77 600 512.19 600 3500.65

700 184.77 700 512.19 700 2350.79

800 184.77 800 512.19 800 1378.46

900 184.77 900 512.19 900 920.69

1000 184.77 1000 512.19 1000 920.54

Figure A.3: The double factor study output in form of table.
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Figure A.4: The double factor study output in form of line graph.
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Figure A.5: The double factor study output in form of bar graph.

96


