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Abstract

To enhance performance, multiprocessors incorporate sophisticated memory struc-
tures, which allow processes to have inconsistent views of memory, and can result in
unexpected program outcomes. A memory consistency model is a set of guarantees
describing constraints on the outcome of a program.

This thesis uses a unifying framework that facilitates the description, analysis,
and comparison of memory models to formalize several interpretations of two am-
biguous memory models: pipelined RAM and processor consistency.

Lipton and Sandberg described a machine that implements pipelined RAM [LS88].
This thesis presents precise descriptions of the three possible interpretations of this
machine with an equivalent formal memory model for each.

The VAX 8800 and Stanford’s DASH machine implement versions of proces-
sor consistency, originally defined by Goodman [Goo89], but their descriptions are
ambiguous. A precise description of possible interpretations with matching formal
memory models is presented.

I determine, for each pair of models presented, whether one implies the other or

whether they are incomparable.
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Chapter 1

Introduction

To enhance performance, multiprocessors incorporate sophisticated memory struc-
tures. There might be one or more copies of the shared memory and the entire
memory might be in one lgcation or distributed throughout the system. Memory
structures may be replicated through constructs such as caches and write buffers, or
may use advanced interconnection patterns including multiple buses. Many of these
architectural features allow processes to have inconsistent views of memory, which,
in turn, can result in unexpected program outcomes.

A memory consistency model is a set of guarantees describing constraints on the
outcome of a multiprocessor program. Fewer guarantees allow more performance
optimizations but yield complex machines that are difficult to program.

Sequential consistency is the memory consistency model that is generally assumed
and that programmers prefer since a distributed system implementing sequential con-
sistency most closely resembles a sequential computer. The easiest visualization of a
system implementing sequential consistency is a set of processors interacting through
a single globally shared memory where only one processor can access the memory
at a time. However, since most distributed systems use much more complicated
memory systems, most distributed systems have a much weaker memory consistency
model. These systems generally supply the programmer with synchronization prim-
itives such as locks. When these primitives are used correctly, the outcome of a

program is the same as the outcome would be when executed on a sequentially con-
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sistent machine. The use of such primitives is generally expensive. A programmer
needs to understand the memory consistency model of the system being programmed
and thus needs a precise description of the memory model of the underlying machine
in order to construct correct and efficient programs.

This thesis uses a unifying framework developed at the University of Calgary
[HKV98, HKV97] to facilitate the description, analysis, and comparison of memory
consistency models. Precision is essential for providing an unambiguous view of the
logical behavior of a memory system. Unification provides a common basis with
which memory consistency models can be compared. The framework achieves both
of these goals while remaining simple.

Using the framework, an actual machine that implements a distributed system
and an abstract representation can be described. A distributed system may contain
speedup devices such as caches, duplicate copies of the memory, buffers, and any
operation may pass through several of these devices. An actual machine is described
by stating the sequence of events that happen when an operation is executed and
by giving the constraints on the interleaving of these events. The abstract represen-
tation of a distributed system, on the other hand, only considers the outcome of an
execution of a machine. Only the completed operations, not the individual events,
are considered. The formal definition of a memory consistency model describes lim-
itations on the view that each processor in the system has of the operations in an
execution.

It is generally easier to compare the abstract representations of memory consis-
tency models, instead of the machine descriptions. Two machines might implement

the same memory consistency model, using different constructs. Thus an opera-



tion might be executed by going through a completely different set of events on
one machine from that on the other. Hence the two machines would be difficult to
compare. However, because the formal description only considers operations, the
formal description of the memory models of the two machines are easier to compare.
When the formal definitions of two memory models are equivalent this implies that
any computation arising from an execution on one machine could also arise from an
execution on the other machine, even though these might arise from two distinct
executions.

Memory consistency models that are derived from a machine description in this
thesis are interpreted as restrictions on the sequence of events that can occur on
the machine. Then a formal definition of the memory model that the machine
implements is presented. For some of the memory consistency models that were not
derived from a machine description, a machine is supplied that would implement the
memory model. The description of a machine, M, and a memory consistency model,
D, are shown to correspond by establishing that every computation that can arise
from an execution of M satisfies D and every computation that satisfies D could
have been the result of an execution on M.

In this thesis, two informal, ambiguous, memory consistency models are consid-
ered: pipelined RAM and processor consistency. The memory consistency condition
pipelined RAM is discussed and used in many papers [LS88, ABJ*93, Mos93, JS96],
but, upon close examination, not all are discussing the same machine or memory
model. Lipton and Sandberg [LS88] originally described a machine that implements
pipelined RAM. But three different assumptions can be made about this machine,

giving rise to three different machine descriptions. Ahamad et al. [ABJ*93] assumed



one set of conditions and gave a formal definition of the resulting memory model.
The machine is formalized in this thesis and Ahamad et al.’s formal definition is
translated to the framework. Mosberger [Mos93] assumed another set of conditions,
and the resulting machine and memory model are formalized and proven equivalent.
A third possible interpretation of the pipelined-RAM machine is also described, and
the precise machine description and the formal definition of the memory model it
implements are supplied.

Processor consistency was originally defined by Goodman [Goo89]. Many have
used the term processor consistency to describe differing memory consistency models
[ABJ*93, GLL*90, KNA93, Mo0s93, GGH93]. Ahamad et al. [ABJ*93] gave a for-
mal interpretation of Goodman’s ambiguous definition. They also tried to formalize
the memory model implemented by Stanford’s DASH machine [GLL+90, GGH93],
which is also named processor consistency. I show in this thesis that this formal
definition does not capture processor consistency as implemented in the DASH ma-
chine. Finally, Goodman stated that the VAX 8800 is a machine that implements
processor consistency. I give a formal definition of the memory model implemented
by the VAX 8800 and show that it is yet another definition of processor consistency.

Chapter 2 outlines previous work related to memory consistency models; chapter
3 presents the formal framework used throughout this thesis; chapter 4 describes the
memory consistency models sequential consistency and coherence; chapter 5 presents
all the possible interpretations of the pipelined RAM machine; chapter 6 gives some of
the possible interpretations of the memory model processor consistency; and chapter

7 summarizes this work and points toward future work.



Chapter 2

Previous Work on Memory Consistency Models

Lamport gave a precise definition of sequential consistency [Lam79] and launched in-
vestigations into relaxations of sequential consistency [Lam78, Lam79, Lam86], which
was previously generally assumed. Dubois, Scheurich and Briggs were the first to ac-
tually propose a consistency model weaker than sequential consistency, namely weak
ordering [DSB86]. Their work differentiated between ordinary and synchronization
operations. Synchronization operations are guaranteed to be sequentially consistent
with respect to each other; however, ordinary operations may be re-ordered in a way
that best suits performance. Later, the Stanford team built on weak ordering when
developing the DASH multiprocessor with the memory model release consistency
[GLL*90, GGH93]. Lipton and Sandberg defined and implemented a machine with
quite different

memory behavior, which they defined to be the pipelined RAM memory model
[LS88]. Goodman, in 1989, was the first to explicitly state the notion of coherence
or cache consistency [Goo89}, which is generally accepted as a minimum memory
consistency requirement. He was also the first to define processor consistency. Cur-
rently, there are several distinct variants that use the same name [ABJ+93, GLL*90,
KNA93, Mos93, GGH93]. Herlihy and Wing defined the strongest memory consis-
tency model, linearizability, which is often assumed by researchers in design and
analysis of distributed algorithms [HW90].

A different programmer-oriented approach to the problem of non-sequentially-



consistent memory was investigated independently at Stanford [GLL*90, GGH93|
and Wisconsin-Madison [Adv96, AH90a, AH93], and lead to the notions of Properly
Labeled (PL) and Data Race Free (DRF) programs, respectively. PL is a constrained
style of programming for a specific architecture. DRF develops a programming style
and then suggests how to tailor the hardware to support it. These two teams later
collaborated to combine their approaches [GAG+92].

Attiya, Chaudhuri, and Friedman have taken a complementary approach to DRF,
which first specifies the memory consistency model and then develops a programming
style [ACFW93].

These memory consistency models arise from a wide variety of sources including
architecture, system, and database designers, application programmers, and theo-
reticians. The descriptions of memory behavior use different types and degrees of
formalism. Definitions range from precise and complicated axiomatic specifications
to informal and sometimes ambiguous natural language descriptions. This makes the
many different memory consistencies difficult to reason about or to compare. Pro-
gramming for these models becomes inefficient when a new descriptive style must first
be mastered for each change of model. A single unified formalization is needed that
can specify any memory model addressed in the literature or provided by existing
and future machines.

A few research groups have proposed such unifying frameworks to describe the op-
eration of distributed shared memories. Gibbons and Merrit proposed an automata-
based framework [GMG91]. They start with a specific automaton to represent
basic architectural assumptions. Then they define a memory consistency model

as an automaton that is obtained by restricting the actions of the base automa-



ton. They used their formalism to model release consistency and to prove that, as
long as a program is properly labeled, release consistency is equivalent to sequen-
tial consistency [GM92]. At Xerox’s Palo Alto Research Center, Sindhu, Frailong,
and Cekleov [SFC91] proposed an axiomatic framework that is based on three sets:
memory operations, partial orders defined on memory operations, and axioms which
are concerned with the legality of orders. A team at Georgia Institute of Technol-
ogy (Georgie Tech) developed another framework, which is based on partial orders
[KNA93, ABJ*93, ANB*95]. The framework used by this thesis [HKV98, HKV97]

is based on the work at Georgia Tech.



Chapter 3

The Framework

The framework has been developed at the University of Calgary [HKV98, HKV97]
and models a multiprocessor system, abstractly, as a collection of processes operating
on a collection of shared data objects, as is shown in figure 3.1. In all multiproces-
sor systems considered in this thesis, processes initiate change (represented by the
sequence of invocations in figure 3.1) and objects respond to these initiations (rep-

resented by the sequence of responses in figure 3.1).

sequence of invocations
p[ - sequence of responses set
p - of
2 o objects
P =

Figure 3.1: A multiprocessor system

A data object is defined by the set of all sequences of allowable operations together
with their results (similar to the style of Herlihy and Wing [HW90]) as follows. An
action is a 4-tuple (op, obj, in, out) where “op” is an operation, “obj” is an object
name, and “in” and “out” are sequences of parameters. The action (op, obj, in, out)
means that the operation “op” with input parameters “in” is applied to the object
“obj” yielding the output parameters “out”. A (sequential data) object is specified
by a set of sequences of actions. For example, a shared atomic read-write register z

is specified by the set of all sequences (01, 02, -..) such that



1. each o; is either a read action, denoted by a four-tuple (read,z, A, v)!, that
returns the value v of register z, or a write action, denoted (write,z,v, A),

that assigns a value v to register z, and

2. for every read action, the value returned is the same as the value written by

the most recent preceding write action in the sequence.

A sequence of actions is valid for object z if and only if it is in the specification of z.

An action o = (op, obj, in, out) can be decomposed into the two matching
components, (op, obj, in), called the action-invocation and denoted invoc(o), and (op,
obj, out), called the matching action-response and denoted resp(o). Let (ey, ey, -..)
be a sequence consisting of action-invocations and action-responses. Then e; follows
e; if and only if ¢ < j and e; immediately follows e; if and only ifi = j — 1.

Informally, a process interacts with data objects by issuing a stream of invoca-
tions to some subset of them and receiving a stream of responses that are interleaved
with its invocations. This is formalized as follows. A process is a sequence of action-
invocations. A process ezecution is a (possibly infinite) sequence of action-invocations
and action-responses such that each response follows its matching invocation. An
action is blocking if it has non-empty output and the response of the action immedi-
ately follows its matching invocation in the process execution. A process execution
is blocking if, each action that has a non-empty output is blocking.

Whether blocking or non-blocking, the natural notion of the computation of
a process is the sequence of actions that arises as its invocations are processed.

Therefore, a process computation is the sequence of actions created from a process

1 X denotes the empty sequence.



10

execution by augmenting each invocation in the process sequence with the output of
its matching response.

A (multiprocess) system, (P, J), is a collection P of processes and a collection J
of objects, such that each action-invocation of each process p in P is applied to an
object in J. A (multiprocess) system ezecution for a system (P,J), is a collection
of process executions, one for each p in P. Similarly, a system computation is a
collection of process computations, one for each p in P.

Throughout this thesis, it is assumed that each action in a computation is unique
and thus the actions of a computation form a set. If some computation contains two
or more actions that are identical, the actions could simply be augmented with the
process that invoked the action and the index of the action-invocation in the process’s
program to ensure that each action is unique. In all examples in this thesis, only read
and write actions are used. For legibility, w(z)v denotes the action (write,z,v,))
and r(z)v denotes the action (read,z, A, v). The notation w,(z)v or rp(x)v is used

to emphasize that these actions are performed by process p.

p:w(z)l r(z)1

Computation 1 { ¢ : w(z)0 r(z)1

To illustrate, consider computation 1. This is a computation of a system contain-
ing two processes, p and ¢, and one object, z. Process p is defined by the sequence of
invocations: (write, z, 1) (read, z, A). Process q is defined by the sequence of invoca-
tions: (write,z,0) (read,z,X). Note that p’s process computation is a sequence of
actions that is valid for z, since the read action returns the value of the last preceding
write, and that ¢’s process computation is not valid for z. The two sequences could

be merged together such that the resulting sequence is valid for z: w(z)0 wy(z)1
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re(z)1 rg(z)1.

Let (P, J) be a multiprocess system, and O be all the actions in a computation
of this system. O|p denotes all the actions that are in the process computation of p
in P. O|z are all the actions that are applied to object z in J.

Several partial orders and relations? on the actions of a system are used through-
out this thesis to define the various memory consistency models. The following
partial order is the only one defined in this chapter as it is used throughout the
thesis. Others are defined as needed.

Action 0, program-precedes oo, denoted 0,730, if and only if invoc(o,) follows
invoc(o;) in the definition of p (equivalently, o, follows o; in the computation of p).
The partial order (O, T3) is called the program order. Observe that for each process
p in P, the program order is the process computation of p, a total order® on O|p.

For the definition of some memory consistency models it is necessary to distin-
guish the actions that change (write) a shared object from those that only inspect
(read) a shared object. Let O, denote that subset of O consisting of those actions in
O that update a shared object, and O, denote that subset consisting of the actions
that only inspect a shared object.

Given any collection of actions O on a set of objects J, a linearization of O is a
total order (O, <) such that for each object z in J, the subsequence (O|z,<.) of
(O, <) is valid for z. Thus, the sequence w,(z)0 wp(x)1 r4(z)1 r5(z)1, containing

the actions of computation 1, is a linearization.

2 A partial order is an antisymmetric, transitive relation on a set. We denote a relation by a pair
(S, R) where S is a set and R C S x S. The notation s; Rs; means (s1,s2) € R. When the set S is
understood, R denotes the relation. If S’ C S then (S’, R) denotes the relation (S’, RN (S’ x S')).

3A total order is a partial order (S, R) such that Vz,y € S = # y, either zRy or yRz and Vz
(z,z) ¢ R.
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A memory (consistency) model is a set of constraints on system computations.
A computation C satisfies some consistency condition D if the computation meets
all the conditions of D. A multiprocessor system provides memory model D if every
computation that can arise from the system satisfies the memory model D.

The preceding definitions allow us to formalize memory consistency models in
terms of constraints on computations. An additional goal is to associate common
memory consistency models with machine architectures. A (multiprocessor) machine
is a collection of processors together with various memory components. A machine
implements an action by proceeding through a sequence of events that depend on
the particular machine and that occur at the various components of the machine
such that the first event is the initiation of the action by one of the processors. A
processor of a machine implements a process by initiating the implementation of
the actions corresponding to the action-invocations of the process in program order.
A multiprocessor machine implements a system (P, J) by having each process in P
implemented by some processor in the machine. A machine ezecution is described by
the sequence of resulting machine events.* For any machine execution E, let a-2sb
iff a precedes b in E.

Finally, the following conventions are used throughout this thesis. Two events
are matching when both are part of the implementation of a single action. An event
and an action are corresponding when the event is part of the implementation of

the action. An execution on a machine satisfies the constraints of the machine. A

4Events in a multiprocessor can be simultaneous. For example, two different caches may be
simultaneously updated. However, because the same outcome would arise if these simultaneous
events were ordered one after the other in arbitrary order, we can assume that the outcome of a
machine computation arises from a sequence of events.
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computation satisfies the conditions of a memory consistency model. A machine M
implements ezactly a memory consistency model D, if every computation that arises
from some execution on M satisfied D, and every computation that satisfies D is

the result of some execution on M.
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Chapter 4

Basic Memory Consistency Models

The memory consistency model sequential consistency, is the model most program-
mers prefer to reason with because it most closely resembles a sequential machine.
Coherence is typically assumed to be a necessary memory model requirement of any
reasonable machine. These two memory models are described here since they are
the building blocks of the other memory consistency models discussed in this thesis.
Each is illustrated using a machine that implements the model. These results also

appear in a technical report [HKV98].

4.1 Sequential Consistency

Sequential consistency (henceforth abbreviated SC), defined by Lamport [Lam79], is
the most widely used memory consistency model. According to Lamport, a multi-

processor is said to be SC if:

the result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified

by its program.

Several other papers [ABJ*93, HW90, Goo89, Mos93] describe SC; some use a

different name or a different, but equivalent, definition.
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Definition 4.1.1 Let O be all the actions of a computation C of the multiprocess
system (P, J). Then C is sequentially consistent if there is a linearization (O, <)
such that (0,7%) C (0, <1).

Dubois, Scheurich and Briggs define strong ordering as a sufficient condition
for SC [DSB86] and Goodman states that “A system that adheres to this level of
consistency is said to be a strongly ordered system” [Goo89]. However, Adve and

Hill show that strong ordering and SC are similar, but are not equivalent [AH90b].

12 1 . P,

Figure 4.1: Mgc, a machine that implements SC

Figure 4.1 depicts a simple machine, Mgsc, where each processor is connected
through bi-directional First-In-First-Out (bi-FIFO) channels to a switch, which is
connected to memory via a single bi-FIFO channel. Mgsc implements a read action

(read, z, A, v) by processor p, with the ordered events

1. processor p sends a processor-read-request(z) followed by (not necessarily im-

mediately)
2. a memory-read-reply(z, v) to p.
A write action (write, =, v, A) is implemented with the ordered events

1. processor p sends a processor-write-request(z, v), followed by (not necessarily

immediately)
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2. a memory-update(z, v).

For any computation C arising from an execution of Msc, construct a sequence S
of the actions of C by placing the actions in the order in which the corresponding
memory events occurred. Sequence S must be in program order since the memory
only services one action at a time, and the channels are FIFO. Moreover, it must be
valid since each memory-read-reply will return the value of the last memory-update
of the same cell. Thus S is a linearization that satisfies Definition 4.1.1. A simple
argument in reverse can be used to show that any SC computation could have been

executed on Msc, thus establishing the following claim.

Claim 4.1.2 Mgc implements ezactly sequential consistency.

4.2 Coherence

Coherence, also called cache consistency [Goo89], is among the weakest consistency
conditions. Goodman states that coherence “only guarantees that accesses to a
given memory location are strongly ordered” [Goo89]. Mosberger indicates that

“Coherence only requires that accesses are SC on a per-location basis” [Mos93].

Definition 4.2.1 Let O be all the actions of a computation C of the multiprocess
system (P, J). Then C is coherent if for each object x € J there is some linearization

(Olz, <1.) satisfying (Olz,™3) C (Olz, <L,).

Computation 2 is coherent but not SC. The linearizations for objects x and y are
<r. = wp(z)0 14(z)0 wy(z)1 and <p, = we(y)0 r5(y)0 wy(y)1l. However, there is no

single linearization of all these actions that maintains program order.
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p:w(z)0 w(z)l r(y)0

Computation 2 { ¢ : w(y)0 w(y)1 r(z)0

Often coherence is described as a system where all processes view all the write
actions to the same object in the same order [AH90a, GLL*90, KNA93], or “all
writes to the same location are serialized in some order and are performed in that
order with respect to any processor” [GLL*90]. Furthermore, it is implicit in these

informal descriptions that program order is maintained on a per object basis.

Definition 4.2.2 Let O be all the actions of a computation C of some system (P, J).
Then C is coherent-varl if for each process p € P there is a linearization (Ojp U

Ou, <r,) satisfying

L. (O|p7 Zr'gg) = (Olp7 <Lp)7 and

2. Vg€ P andVz € J (Oylz,<1,) = (Oplz, <r,)-
Claim 4.2.3 A computation is coherent if and only if it is coherent-varl.

Proof: = Consider a coherent computation of a system (P,J). For each p € P,
construct a sequence of actions p, from the total order (O|p, 72 and from all the
linearizations (O|z, <r,) that satisfy Definition 4.2.1. Initially, let p, = (O|p, =3).
Consider each £ € J in turn. All actions, say {oy, 02, ...,0x}, in (O|p)|z appear in
(O|z,<t.) in program order. Hence, (O|z, <. ) = S§,01,5%,09,...,0r, SE for some
subsequences S§, ST, ..., S§ of (O|z, <r.). Insert each sub-segment S7 , consisting of
the sequence of writes in S¥, into p, anywhere between o0; and 0;4, (maintaining the
order of 5 ). The resulting sequence, p,, clearly contains all actions in (OlpU O,,)

and satisfies program order for p. Also, the subsequence of p, consisting of writes
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to z is exactly the sequence (Oy|z, <. ) so it is the same for each process. Finally,
the subsequence of p, consisting of actions to z is a subsequence of (O|z, <._) with
only some reads removed, so g, is a linearization. Thus for each p € P, p, satisfies
the requirements of the definition of coherent-varl.

Now consider a coherent-varl computation of a system (P,J), and any z € J.
For each p € P, let (O|pU Oy, <r,) be the linearization satisfying Definition 4.2.2.
By part 2 of Definition 4.2.2, all processors have the same ordering of writes to = and
by part 1 this ordering satisfies program order. Let p. be this sequence of writes. For
each process p, the sequence of writes in ((O|pUOy))|z, <.,) is exactly p;. Let r be
any read of z by some process g. Suppose, in the linearization ((O|qU Oy )|z, <r,),
the closest write preceding r is w(z);, and the closest write succeeding r is w(z)i1-
Since w(z); and w(zx);y+; are adjacent writes in p;, r can be inserted between them
while preserving validity and program order. In this way, every r € O;|z can be
inserted into p. yielding a linearization of O|z that preserves program order, and

satisfies the requirements of Definition 4.2.1. [ |

There is also a third possible definition of coherence, which arises because there

are no restrictions on the ordering of actions to different objects.

Definition 4.2.4 Let O be all the actions of a computation E of some system (P, J).

Then E is coherent-var2 if there is some linearization (O, <) such that Vz € J

(Olz, %) C (O|z, <y1).
Claim 4.2.5 A computation is coherent if and only if it is coherent-var2.

Proof:  For any coherent computation, create one sequence by placing the ob-

ject linearizations, which satisfy Definition 4.2.1, one after the other. The result
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is a linearization that satisfies Definition 4.2.4 since it orders all the actions in the
execution, such that program order on a per object basis is maintained. For any com-
putation that satisfies Definition 4.2.4, and for each object z, set (O|z,<._) equal
to (Olz,<.). Then (O|z,<._) is valid and maintains program order so it satisfies

the requirements of Definition 4.2.1. n

Since coherence, coherence-varl and coherence-var2 are all equivalent, henceforth

only the term coherence is used.

R] - B,

Figure 4.2: M, a machine that implements coherence

In the machine, Mc, in Figure 4.2, there is one switch for each object, and each
processor is connected by a bi-FIFO channel to each switch. M implements a
read action (read, z, A, v) by process p, with the ordered events 1) a processor-
read-request is placed on the channel connecting p to =, and 2) an object;-read-
reply(v) is placed on the channel from z to p. A write action (write, z, v, A) by p
is implemented with the ordered events 1) a processor-write-request(v) is placed on
the channel connecting p to z, and 2) object;-update(v) is performed by object z.
In any execution E of M, each object.-read-reply event will contain the value of

the last preceding object.-update event that precedes it in E.

Claim 4.2.6 The machine Mc, with non-blocking reads, implements ezactly coher-

ence.
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Proof: For any computation C arising from an execution of M, and for each
object z, construct a sequence S, of the actions of C on z by placing these actions
in the order in which the corresponding object events occurred. Since each object
services only one request at a time, and the channels are FIFO, S, must satisfy
program order. Also, S; must be valid since each object,-read-reply will return the
value of the last object;-update. Thus for each z, S, is a linearization that satisfies
Definition 4.2.1.

Now, for any computation C that satisfies Definition 4.2.4, construct a sequence
S of events that reflects how C could have arisen from an execution of M¢ as fol-
lows. First, for each process p, implemented by processor p, construct a sequence
S, of processor-request events that corresponds to p. That is, the i** event of S, is
a processor-read-request (respectively, processor-write-request) placed on the chan-
nel from processor p to z, if and only if the #* action-invocation in process p is a
read of (respectively, write to) object z. Also, from the linearization L that satisfies
Definition 4.2.4 construct a sequence @ consisting of object-read-reply events and
object-update events by setting the i** event in Q to be the object event that corre-
sponds to the i* action in L. Now form S by concatenating the S,’s for each p (in
any order) followed by Q. According to S, each processor issues requests in program
order and replies are executed in program order per object. Although the order in
which processors place requests to some object = (represented by all the subsequences
Sp) may not agree with the order of the corresponding replies (represented by Q),
the asynchronous FIFO channels permit an interleaving of all the requests to = from
different processors into an order that agrees with the order of replies. And, since L

is a linearization, each object,-read-reply will return the value of the last preceding
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object -update. Therefore, the sequence of events, S, could have occurred on My. ®
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Chapter 5

Pipelined RAM

\\

Memo

\l/

|Memogz|

Figure 5.1: The pipelined RAM machine

Lipton and Sandberg [L.S88] described the Pipelined Random Access Machine (pipeli-
ned RAM) with an architecture as shown in Figure 5.1. Each processor p has its
Own COpY, iy, of the shared memory, and a FIFO channel connects every processor
to every other processor’s copy of memory. According to Lipton and Sandberg, read

and write actions by process p are implemented in this machine as follows:

e Processor p implements a read(z) “by performing a normal read from location

" of 1.

e Processor p implements a write(¢,v) “by performing a local action and initial-
izing a global action. Locally, it does a normal write to [y, at location 7 with

value v. Globally, it sends a message < 7,v > to all the other processors.”

They emphasize that, upon a write, a processor does not wait for the update to take

effect in the copies of memory at other processors. What is not completely clear
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from this description, however, is whether or not reads and/or “local” writes are
blocking; however, the use of “performing” (as opposed to “initializing”) seems to
indicate a blocking activity. It is also unclear whether a processor first completes
the update of its own copy of memory and then initiates the updates of other copies,
or whether these events can happen in arbitrary order. Different memory models
arise depending upon what assumptions are made concerning both of these issues.
Lipton and Sandberg implicitly assume that each copy of the memory receives and
implements all actions in program order. I have maintained this assumption.
Regardless of the assumption made, on a pipelined RAM machine a read action
(read,z, A, v) is implemented by the following ordered sequence of events: a) a
processorp-read-request(z) by p to up, and b) from p, a matching u,-reply(z,v) to p,
and a write action (write, z, A, v) is implemented by the ordered sequence of events:
a) a processorp-write-request(z, v) by p to all copies of the memory and b) for each
processor g, a matching p,-update,(z, v). All variants of the pipelined RAM machine

ensure that for any execution E, and for any processors p and g,

1. processor, events are in the same order as the matching y, events (if they

exist), and

2. for any location z, any values u,v and for each p,-reply(z,v) event e., if u,-

update(z, u) is the last pz,-update event to z preceding e, in E, then v = u.

Call this machine Mpranra.
Let Mpgrarmr be the machine Mpraara with the additional constraint that read
actions are blocking. Thus, any execution E on Mpgrsamr meets conditions 1 and 2

of IWPRAMA and
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3 there are no processor, events between a processor,-read-request and the match-

ing p,-reply event.

Finally, let Mpramw be Mprara with the addition constraint that, during the
implementation of a write action, the writer’s copy of the memory is updated before
any other processor’s copy of the memory. Thus, any execution E on Mppayw

satisfies the two constraints of Mpraar4 and

4 a pp-update, event is ordered before any matching p,-update, event for any

processor q # p.

The following three sections give formal definition for each of these three machines
and the final section in this chapter compares these with the previously discussed

memory consistency models.

5.1 Pipelined RAM as interpreted by Ahamad et al.

Ahamad et al. [ABJ*93] at Georgia Tech formalized one version of the Pipelined
RAM machine, which, in the framework, becomes the following widely quoted defi-

nition:

Definition 5.1.1 Let O be all the actions of a computation C of the multiprocess
system (P, J). Then C is P-RAM-A if for each process p € P there is a linearization
(OlpU Oy, <r,) satisfying (O|p U Oy, -@3) C (OlpU Oy, <y,)-

Claim 5.1.2 The machine Mpraama tmplements ezactly P-RAM-A.
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Proof: Consider any execution E on Mpgaa4 with resulting computation C con-
taining actions O. Let P = {p | processor pis in Mprara } be a set of processes such
that the 7** action-invocation in each process 5 corresponds to the processor, event
in E. The set of objects J is the set of all memory locations in Mpgraa 4. For all pro-
cessors p in Mpraara construct a subsequence for each processor p by including only
the “view of p’s memory”. That is, for each processor p, let E, be the subsequence
of E containing exactly all u, events. Define, for each process p, a sequence <, of
reads and writes as follows. The ** action in <g, is r5(z)v (respectively, wy(z)v) if
and only if the #** event in E,, is pu,-reply(z, v) (respectively, u,-updatey(z,v)). Then
<y, clearly satisfies program order by constraint 1 of Mprasma, consists of exactly
O|pU O, by construction, and is valid by constraint 2 of Mprama. And thus, for
each process 7, (O[pU Oy, <r,) is a linearization that satisfies P-RAM-A.

Now consider any computation, C, of system (P,J) containing actions O, that
satisfies definition 5.1.1. Let the processor that implements process p € P be named
p and the objects in J are the locations in Mpg4pra. Choose any set of linearizations,
one for each process p € P, that satisfy P-RAM-A and construct a corresponding
sequence of events FE for Mpraama from an n-way merge of these n linearizations
(OlpUOy, <i,) = 0,05, ..., 0} as follows. Initially, E = X and, for each processor 5,
implementing process p € P, L, = (OpU Oy, <r,) and F, = (Olp, 7). Consider
the first remaining action of of each sequence L, in turn (the first time this will be
action of for each process p). If the processor event corresponding to of is not in E
yet and of € O|q for some process g, append to E, in order, all events corresponding
to actions in P, up to and including of and remove these actions from P,. Now

append the p; event corresponding to o} and remove of from L,.
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Clearly, processor; events are in program order and precede the matching g
events. Hence the ordering of events corresponding to an action is satisfied. All
K5 events are in the same order as the corresponding actions are ordered in (O|p U
Ouw, <L,), which satisfies program order, and all processor; events are also in program
order in E by construction of E. Thus, condition 1 of Mpgraaa4 is satisfied. Since
(Olp U Oy, <i,) is a linearization, constraint 2 of Mpgrar4 is also satisfied. Hence,

E could have occurred on Mpraara- ]

5.2 Pipelined RAM as interpreted by Mosberger

In contrast to Ahamad et al., Mosberger assumed that upon a write-request, a pro-
cessor first updates its own memory and subsequently broadcasts this update to all
other processors or ... on a read, a [Pipelined RAM] would simply return the value
stored at the local copy of the memory. On a write, it would update the local copy
first and broadcast the new value to the other process.” [Mos93].

Thus, if p observed a write, w,, by some other process g before its own write
wp, then ¢ must also observe w, before w,. That is, in the linearizations (Ofp U
Ouw, <ir,) that capture processes’ views of the computation, We<r,Wp = We<rp,Wp-
Furthermore, if p observed that w, occurred before w, and some other process
observed w, before its own write w,, then ¢ must also observe that w, occurred
before w,. That is we<p,wp <r, wr = wye<p w,. In general, the antecedent of this

implication can be any finite length.

Definition 5.2.1 Let O be all the actions of a computation C of the multiprocess

system (P, J). Then C is P-RAM-W if for each process p € P there is a linearization



(OlpU Oy, <i,) satisfying

1. (Olpu 0,,T3) C (OlpU Oy, <y,), and

2. for anym > 1 and for all wp,, wp,, - .., Wp,, € Oy, where for any i, wp, € Ou|p;

and p; € P, if wp, <g,, Wp, <i,, Wp, <Ly, -+ <Ly Wpm then Wpy <L,  Wpy-
Claim 5.2.2 Mpgramw implements ezactly P-RAM-W.

Proof: Let E be any Mpraymw execution, thus satisfying constraints 1, 2 and 4,
and let C be the computation resulting from E with set of actions O. Let P = {p |
processor p is in Mprayw } be a set of processes such that the 7 action-invocation
in each p corresponds to the ** processor, event in E. The set of objects J is the
set of all locations in Mprasw. From E, construct a subsequence for each processor
p by including only the “view of p’s memory”. That is, for each processor p, let E,
be the subsequence of E containing exactly all u, events. Define, for each process
D a sequence <., of reads and writes as follows. The #** action in <, is m5(z)v
(respectively, wg(z)v) if and only if the i** event in E, is y,-reply(z, v) (respectively,
pp-update,(z,v)). Then <, satisfies program order by constraint 1 and consists of
exactly O|p U O, by construction and is valid by constraint 2.

To show that the collection of sequences <., also satisfy condition 2, assume that
there exist m > 1, and wsy, wp,, . - ., ws,, € Oy, where w;, is a2 write by process p;
such that wp, <r; Ws <is, Wp <iz --- <Lz, Wpn - Lhen in E, for all 7, where
1 <7 < m, up,-updatep,_, i)uz,,,.-upda.te,,,.. By constraint 4, pp,,-updatep, = TR
update,, and thus pu,,-update,, = Lip,-update,, = Ky, -update,, = Ip,-update,,

£, tip,-updatep, PO N Hp..-updatep,, , 2N Upn-update,,, = lp,-update,,,.
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That is ppo-updatem—E—mpo-updatepm. Hence, by construction, ws, <r; ws,. And
thus, for each process p, (O|pU Oy, <t,) is a linearization that satisfies P-RAM-W.

Now consider any computation, C, of system (P, J) containing set of actions O,
that satisfies Definition 5.2.1. Let the processor that implements process p € P be
named p and let the objects in J be the locations in Mpraamw. Choose any set
of linearizations, one for each process p € P, that satisfy P-RAM-W and construct
a corresponding sequence of events E for Mpgapw from an n-way merge of these
n linearizations (Olp U Oy, <p,) = o},05,...,0} as follows. Initially, E = A and
L, = (O|puU Oy, <t,) for each processor p implementing process p € P. Consider
the first remaining action o} of each sequence L, in turn (the first time this will
be action of for each process p). If of € O|p then append to E the corresponding
processor; and p; events in that order and remove the action of from L,. Otherwise,
0} € Oy|q for some process g # p. If the corresponding p;-update; event is already
in E, then append the p;-update; event corresponding to of to E, and remove the
action o} from L,, otherwise leave L, and E unchanged. Now consider the first
remaining action of the next sequence L.

If this construction exhausts each L,, then clearly, processor; events are in pro-
gram order and precede the matching p; events. Hence the ordering of events cor-
responding to an action is satisfied. All p; events are in the same order as the
corresponding actions are ordered in (O|pU Oy, <r,), which are in program order,
and processor; events are in program order in E by construction of E. Thus, con-
straint 1 is satisfied by E. Since (O[pU Oy, <yr,) is a linearization, constraint 2 is
also satisfied. And by construction of E, the p;-update; event precedes the match-

ing pus-update; for all processors ¢ # P, satisfying constraint 4. Hence, E could have
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occurred on Mpranmw-

So it remains to verify that all events associated with the execution are necessarily
added to E. Assume instead that at some point in the construction of E, each
sequence L, begins with a write o € O,|q for some ¢ # p and the corresponding
processor; event is not yet in E. Then there must be a cyclic sequence pq, , Day; ---s Pay
of processes such that L, begins with a write by process p,,,, labeled w,,,, and
L,, begins with a write by process pe,. Also, w,; must be in Ly, since otherwise the
construction could proceed. But this contradicts condition 2 of P-RAM-W. Hence

the construction of E completes, and E describes an execution on Mpgaaw of C. B

5.3 The pipelined RAM Machine with Blocking Reads

Finally, consider the pipelined RAM machine with blocking reads. In any computa-
tion resulting from some execution on Mpranr, let a read by some processor p, rp,
precede a write by p, w,. If, furthermore, some other processor ¢ observes that wy
occurred before its own read action r, which in turn precedes ¢'s write action wy,
then p must view that r, preceded w,, because the write by p could not have been
initiated until the read by p was completed. Using a similar argument as used for

P-RAM-W, the following formal definition results:

Definition 5.3.1 Let O be all the actions of a computation C of the multiprocess
system (P, J). Then C is P-RAM-R if for each process p € P there is a linearization

(OlpU Ouw, <t,) satisfying

1. (OlpU Oy, =%) C (Olp U Ow, <1,), and
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2. for anym > 1 and for all wp,, wp,, . .., Wp,, € Oy and for all 15y, Tp,,-- -, Tp, €
Or, where for each i, wp; € Oyulp;, Tp, € O|p; and p; € P, if Tpy <r,, Wy <t,,
Tor <Lpy Wpr <Ly, T2 <Ly, Wpp <Lpy -+ <Lpm Tom <Lpm Wpm then Tpy <r,

Wp

Claim 5.3.2 Mpramr implements ezxactly P-RAM-R .

Proof: Let E be a Mpramr execution, thus satisfying constraints 1, 2, and 3,
with resulting computation C containing set of actions O. Let P = {p | processor
pis in Mpramr } be a set of processes such that the ** action-invocation in each
P corresponds to the #* processor, event in E. The set of objects J is the set of
all locations in Mpgrapgr. From E, construct a subsequence for each processor p
by including only the “view of p’s memory”. That is, for each processor p, let E,
be the subsequence of E containing exactly all p, events. Define, for each p € P,
a sequence <r, of reads and writes as follows. The i** action in <g, is rs(z)v
(respectively, wg(z)v) if and only if the i** event in E,, is p,-reply(z, v) (respectively,
pp-update,(z,v)). Then <., clearly satisfies program order by constraint 1 and
consists of exactly O|p U O, (by construction) and is valid by constraint 2.

To show that the collection of sequences <, also satisfy condition 2 of P-RAM-R,
assume that there exist m > 1, and wp,, Wp,, - .., Wp,, € Oy, a0d Tp5, 515+ -2 T €
O, where wy, (5, respectively) is a write (read, respectively) by process #; such
that rp <Lz, Wpo <Ls, Th <Lp Wp <Lj, Thz <Lp, Wp2 <Lp; TPz <Lpgz - - Wpm-1 <Lpm
Tom <Lpm Wsn- 1hen, by construction of each <, um-reply—§+upo-upda.tem and
for each ¢, where 1 < ¢ < m, u,.-update,,_, £ pp,-reply > Up.-updatep;. Let

e? be any p,-reply event and e’ be any pp,-update, event. Furthermore, let o?
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be the processor,-read-request event matching e?, let af, be the processor,-write-
request event matching e, and, for all processors g, let €29 be the p,-update, event
matching e2. Then condition 1 of Mpgaar4 implies that if e{,’—i)eﬁ, then a’,’—E—re”w.
Furthermore, by constraint 3, if af—Ei)aQ then a,’fi)ef&a{;,. And thus, e{.’iwﬁ;"
since a{;&e‘g". Thus, for each %, where 0 < i < m, p,,-reply £ Hp;.-updatey,,
where indices are reduced modulo m + 1. That is, p,,-reply =, Hp,-update,, £
{2p,-reply —2» Up,-update,, = Hp,-reply =5 Ups-update,, = Kpn-update,  _,
N Hp-Teply £ Kpo-update,,,. Thus, by construction of <p, , Ts <r;, Wpn,
satisfying condition 2 of P-RAM-R and, for each process p, (O[fU Oy, <p,) is a
linearization that satisfies P-RAM-R.

Now consider any computation, C, containing set of actions O, of system (P, J)
that satisfies Definition 5.3.1. Let the processor that implements process p € P be
named p and let the objects in J be the locations in Mpraamr. Choose any set of
n linearizations, one for each process p € P, that satisfy P-RAM-R and construct
a corresponding sequence of events E for Mpraar from an n-way merge of these n
linearizations (O[pUOy, <r,) = 0§, 05, . .., 0} as follows. Initially, E = ) and for each
processor p, implementing process p € P, L, = (O[pUOy, <,) and P, = (O|p, ™).
Consider the first remaining action of of each sequence L, in turn (the first time this
will be action of for each process p). If of € O|p, append to E the corresponding
processor; event unless it is in E already and then append the y; event corresponding
to of. Remove the action of from L, and P, (if it still is in P,). Otherwise of € Oylq
for some process g # p. There are 3 possible cases: 1) if of is the first action in
Py, then append the processorg-write-request and us-update; events corresponding

to of to E in that order and remove of from L, and P,; 2) if the ug-update; event
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corresponding to of is already in E, then append the matching p;-update; to E, and
remove the action of from L,; 3) otherwise leave L, and E unchanged. Now consider
the first remaining action of the next sequence Ly. It is straightforward to check
that the sequence E so constructed satisfies the conditions of Mpraarrr, provided
that this construction exhausts each L,.

So it remains to verify that all events associated with the execution are necessarily
added to E. Assume instead that at some point in the construction of E, each
sequence L, begins with a write of € O,|q for some ¢ # p and the corresponding
processor; event is not yet in E. Furthermore, o} is preceded in F; by some read
action 4 otherwise construction could proceed. (It is not possible that of is preceded
by a write action in P,, since this write action must also precede o} in L, and would
already be removed from F,.) Then there must be a cyclic sequence pe,, Pay; ---Pay Of
processes such that Ly, begins with a write by process pa,,, labeled weq,,, and L,,,
begins with a write by process pa,. Also, w,, must be in Ly, , and there must be a
read action 7o, by po, between we,,, and wq, in Ly, since otherwise the construction
could proceed. Thus, wa, < Lap, Tar <Lap, War <Lap, Tar <Lap, Waz <Lap, - Te
<La,, Wa,- But this contradicts condition 2 of P-RAM-R. Hence the construction of

E completes, and E describes an execution on Mpgrayr of C. [ |

5.4 Memory Consistency Models Compared

If a computation is P-RAM-R or P-RAM-W, then it clearly is also P-RAM-A. Fur-
thermore, any P-RAM-W computation is P-RAM-R. Consider any P-RAM-W com-

putation C of some system (P, J) containing set of actions O. Let {(O|pU Oy, <r,) |
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p € P} be any set of linearizations, containing exactly one linearization for each
process p, that satisfy the conditions of P-RAM-W. These linearizations will also
satisfy condition 1 of P-RAM-R trivially. To show that these linearizations satisfy
condition 2 of P-RAM-R, let for any m > 1 and any wp,y, Wp,, . - ., Wp, € Oy and any
TporTprs -+ -2 Tpm € Or, where each wp, (respectively, rp;) is a write (respectively, read)
by process p;, and 7, <Ly Wpo <Ly Tor <Lp Wpr <Ly, Tpz <Ly Wpz <Ly --- <Lpm
Tpm <Lpm Wpm- This implies that w,, <r, wp, <r,, Wp, <L, --- <L,, Wp.- Hence,
by condition 2 of P-RAM-W, wy, <r,, Wp, and rp, <r, Wp, Since rp, <z, Wp,-

Thus C is P-RAM-R.

Computation 3 { Z zg;g :gﬁ z((‘;ﬁ

In fact, the following two computations, computations 3 and 4 show that P-
RAM-W is strictly stronger than P-RAM-R, which is strictly stronger than P-RAM-
A. Consider computation 3. The linearizations <p, = w,(¥)0 we(z)0 we(y)1 rp(y)1
wp(z)1 and <;, = we(z)0 wy(y)0 wp(z)1 r4(z)1 wy(y)l satisfy the conditions of
P-RAM-A since each maintains program order. Notice, however, that necessarily
we(y)1<r,mp(¥)1<r,wp(z)1 and wy(z)1<L,rq(x)1<s,we(y)1 to satisfy validity and
program order. Hence it is impossible to find linearizations that satisfy condition 2

of definition 5.3.1 of P-RAM-R. Thus computation 3 is P-RAM-A but not P-RAM-R.

p:w(z)l w(y)l r(y)0 r(z)1

Computation 4 { g: w(z)0 w(y)0 r(y)1 r(z)0

Consider computation 4. The linearizations <p, = w,(z)0 wy(z)1 wy(y)1 wy(y)0
Tp(¥)0 ()1 and <z, = wp(z)1 we(z)0 we(y)0 wp(y)1 r4(y)1 r4(z)0 clearly satisfy

condition 1 of P-RAM-R and also satisfy condition 2 since no write in computation 4
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is preceded by a read in program order. However, according to process p, necessarily
wp(¥)1<p,wqe(¥)0<,7p(¥)0. And since the linearizations must also maintain pro-
gram order, w,(z)0<.,w,(y)0. Hence, in any linearization for p, wy(z)0<,, mp(z)1.
Thus, to ensure that the sequence is valid, we(z)0<z,w,(z)1. Using a similar argu-
ment, necessarily w,(z)1<z,wq(z)0 which violates condition 2 of P-RAM-W. Thus
P-RAM-W is a strictly stronger memory consistency condition than P-RAM-R.
Neither P-RAM-A nor P-RAM-R nor P-RAM-W is comparable with coherence.

p:w(z)0 r(z)1

Computation 5 { g : w(z)1 r(z)0

In Computation 5, let <;, = w(z)0 w(z)1 r(z)l and <r, = w(z)1 w(z)0 r(z)0.
Then <, (respectively, <.,) is a linearization of the actions by p (respectively,
q) together with all the write actions, which maintains program order and satisfies
condition 2 of P-RAM-W. Hence Computation 5 is P-RAM-A and P-RAM-R and
P-RAM-W. Since it is not possible to construct a linearization of all the actions to

location z that maintains program order, it is not coherent.

p:w(z)0 w(z)l w(y)2

Computation 6
P { qg:1(y)2 r(z)0

For Computation 6, let the object linearizations be: <, = w(z)0 r(z)0 w(z)1
and <r, = w(y)2 r(y)2. Both these linearizations maintain program order and thus
the computation is coherent. Since it is not possible to construct a linearization
for the actions by g together with the writes by p that extends program order, the
computation is not P-RAM-A and thus neither P-RAM-R nor P-RAM-W.
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Chapter 6

Processor Consistency

The term processor consistency was first used by Goodman [Goo89] to define a mem-
ory consistency model for distributed systems. Many have used the term processor
consistency [ABJ*93, GLL*90, KNA93, Mos93, GGH93] but do not actually define
equivalent memory models, although the differences between them are often subtle.
All have in common Goodman’s original intentions of modeling a system that is
coherent but not as strong as sequential consistency.

Goodman defines processor consistency as being stronger than weak ordering

(meaning coherence). Furthermore,

the order in which writes from two processors occur, as observed by
themselves or a third processor need not be identical, but writes issuing
from any processor may not be observed in any order other than that in

which they are issued. [Goo89]

Thus Goodman allows the interleaving of writes by two different processors to be
viewed differently by each processor, as long as program order is maintained. But
this description of processor consistency is somewhat vague. For example, it is not
clear whether reads must be executed in program order or if all writes must be visible
to all processes.

The following sections explore the different definitions of processor consistency,

translate each into the framework, and illustrate the differences between them.
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6.1 Processor Consistency as defined by Ahamad et al.

Ahamad et al. [ABJ*93] formalized Goodman’s definition. This formalism, trans-

lated to the framework, becomes,

Definition 6.1.1 Let O be all the actions of a computation C of the multiprocessor
system (P, J). Then C is PCG if for each processor p € P there is some linearization

(OlpU Oy, <r,) such that

1. (OlpU 0, B3) C (OlpU Oy, <1,), and

2. Vg € P and Vz € J (Oylz,<1,) = (Oulz, <1,)-

James and Singh also use this definition of processor consistency and state that
it is the intersection of coherence and P-RAM-A [JS96]. This is incorrect. Any
computation for which there is a linearization for each process that satisfies both
of the conditions of P-RAM-A and coherence (definition 4.2.2) is also PCG, since
these same process linearizations will satisfy the conditions of PCG. However, there
are computations where there is one possible set of linearizations that satisfies P-
RAM-A, and another set of linearizations that satisfies coherence, but no single set

of linearizations that satisfies both.

p: w(z)0 w(y)0
Computation 7 | ¢:7(y)0 w(z)l
r:r(z)l r(z)0
Consider, for example, Computation 7. The object linearizations of the actions
of Computation 7 <r, = w(z)1 r(z)1 w(z)0 r(x)0 and <;, = w(y)0 r(y)0 satisfy

definition 4.2.1 of coherence since each maintains program order. Thus Computation

7 is coherent. The process linearizations <;,= w(z)0 w(y)0 w(z)l, <.,= w(z)0



37

w(y)0 r(y)0 w(z)1, and <; = w(z)1 r(z)1 w(z)0 r(z)0 w(y)0 contain the processes’
own actions and others’ writes while maintaining program order. Thus Computation
7 is P-RAM-A. And, since p and g agree on the ordering of all write actions and
since r’s process computation contains no write actions, condition 2 of P-RAM-W
is also satisfied. Hence Computation 7 is also P-RAM-R and P-RAM-W. However,
it is necessary to change the order in which the writes to location z are perceived
by process r to get a linearization for r. Since condition 2 of PCG requires that
the writes to the same object must be perceived by each process in the same order,
Computation 7 is not PCG.

Any linearization that satisfies definition 6.1.1 will also satisfy definition 4.2.2 of
coherence. Computation 6 on page 34 is coherent, but is not PCG, since it is not
P-RAM-A. Hence, PCG is strictly stronger than coherence.

Computation 3 on page 33, which is neither P-RAM-W nor P-RAM-R, is PCG,
since the sequences <z, = wp(¥)0 we(z)0 we(y)1 p(¥)1 wp(x)1 and <z, = wy(y)0
we(z)0 wy(z)1 14(z)1 wye(y)1 are linearizations that satisfy program order and agree
on the ordering of writes to the same object. Hence, PCG and P-RAM-R and PCG

and P-RAM-W are incomparable memory consistency models.

6.2 Processor Consistency as implemented on the VAX 8800

Goodman states that the VAX 8800 [FKHS87] is an example of a system that satisfies
processor consistency [Goo89]. But he does not clarify if a system that is processor
consistent must guarantee at least as much as the VAX 8800 or if something weaker

is also acceptable. The VAX architecture is described by Fu, Keller and Haduch
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[FKH87] and is summarized here, first informally, and then more precisely. A formal

definition of the memory consistency model that is implemented by the VAX 8800

pl ..o pn
WB, WE,

NMI i

Figure 6.1: My 4x the VAX 8800 machine

is then presented.

T

Each processor in the VAX 8800 has a cache and a write buffer and is connected
to the NMI bus which is connected to the memory [FKH87]. The NMI bus has two
channels, one for reads and one for writes. The reads are sent into the NMI bus in
program order and the writes are sent into the NMI bus in program order, but, since
they are on different channels, reads with respect to writes do not necessarily remain
in program order. The NMI bus does, however, ensure that two events to the same
location remain in program order.

The write buffer can contain one octaword. Consecutive writes that change the
same block (but not necessarily the same location) are placed in the buffer. If a
write tries to update a location outside of that block, the buffer is emptied (the
pending writes are placed on the NMI bus and sent to the memory), and this new
write replaces it.

When a processor does a write, the cache is first checked. If the location to be

updated is in the cache, the cache is updated, otherwise, the cache is left unchanged.
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In either case, the write is then placed in the write buffer. Upon a read action, first
the cache is checked. If the location to be read is in the cache the value in the cache
is used. If it is not in the cache the write buffer is checked. If there is a pending
write in the write buffer to the location being read, the write buffer is emptied and
the read is subsequently sent to memory. If there is no such pending write, the read
is simply sent to the memory. If the location read was not in the cache, the cache is
updated to include the location read such that it contains the value read. It is not
clear whether the processors wait for the response to a read before initiating the next
action; I have assumed that they do. I have also assumed that a processor blocks
until the cache has processed an action before initiating the next. Finally, I assume
that the cache size is unbounded.

The cache is kept current by using a snoopy bus. If processor p has object z in
the cache, and some other processor ¢ puts a write to £ on the NMI bus, object z is

marked invalid in p’s cache.

6.2.1 My x and the memory model it implements

I will now present a precise definition of the VAX 8800. Recall the use of “matching”
and “corresponding” from section 3. Let My 4x be the machine in figure 6.1 and as
described above. A read action (read, z, A, v) of processor p on My, 4 x is implemented

by the following ordered sequence of events:
1. p sends processor,-read-request{z), followed by

2. either a matching cache,-reply(z,v) to p, or a matching memory-reply,(z, v)

to p.
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A write action (write,z,v, A) of p is implemented by the following ordered sequence

of events:

1.

2.

3.

p sends processor,-write-request(z, v), then possibly
a matching cache,-update(z, v), followed by

the matching memory-update,(z, v).

Furthermore, any execution FE on My 4x, which is a sequence of these six events, will

also meet all the following constraints, for all processors p, locations z and values

u,v, v, o

1.

[(V)

Cache events are in program order. That is, cache, events are in the same

order in E as the matching processor, events.

. Reads are received by memory in program order. That is, memory-reply,

events are in the same order in E as the matching processor, events.

Writes are received by memory in program order. That is, memory-update,

events are in the same order as the matching processor, events in E.

Actions to the same location are received by memory in program order. That is,
the set of all memory-reply, and memory-update, events to the same location

are in the same order in E as the matching processor, events.

. A location z can only be in cache at some point v in the execution if there

is some preceding read of that location by the processor, the location has not
been invalidated, and all actions to £ between the read and < result in a cache-

hit. That is, for each cache,-reply(z,v) or cache,-update(z,v) event, ¢, with
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matching processor, event a., there is some memory-reply,(z, u) event m, with

matching processor,-read-request event oy, such that m-Z5c¢ and such that

(a) for any processor g # p there does not exist any memory-update,(z,v’)

E__E
event, e, such that m—e—c¢, and

(b) for each processor,-read-request(z) or processor,-write-request(z,7), a,

E_E . .
where a,;,—ra—a, there is some matching cache, event.

6. A read of cache returns the value that is in cache at the location read. That
is, for each cache,-reply(z, v) event, c, find the subsequence of events in E that
precede cin E containing all memory-reply events from z and all cache,-update
events of z. If memory-reply(z,u) is the last event in the subsequence then
v = u, otherwise, if cache,-update(z,v’) is the last event in the subsequence,

then v = v'.

7. A read of the memory returns the value that is in memory at the location
read. That is, for each memory-reply,(z, v) event, m,, if there is some memory-
update, event, for any processor g, that precedes m, in E and if m,, is the latest
such memory-updatey(z,u) event, then v = u. If no such m, exists, then v is

equal to the initialized value of z.

8. Actions at the cache are blocking. That is, for each cache, event, ¢, with

matching processor, event o, there is no processor, event between o, and cin

E.

9. Read actions are blocking. That is, for each memory-reply, event, m, with

matching processor,-read-request event, o, there is no processor, event be-



tween a,, and m in E.

Notice that in My 4x, the value written by some write by some processor g to
some location z will never be read by p if there is some write by p to z, such that
the memory-update, event is between the processorp,-write-request event and the
memory-update, event in the execution. Hence, those writes could be treated as
invisible writes in p’s view. Furthermore, consider any two reads by some processor
p, both of location z. Both could return values written by the same write by p, but
one might receive the value from the cache and the other from the memory. Hence,
from p’s viewpoint writes by p can occur twice. In the following, (AW B) denotes the
disjoint union of A and B, and if z € AN B then the copy of z in A is denoted z4 and
the copy of z in B is denoted zg. For any computation C containing set of actions
O of some system (P, J), let, for some p € P, (O|p¥ Oy, —>) be any total order.
Then 022, = {r | 3r’ such that r,v’ € (O;|p)|z A P8 AV # p 2w € (Oyulg)|x
such that ' — w — 7} and O e, = {w | w € (Ou|z\Olp) A 0’ € (Oulp)lz

such that wIOlp — w — wp_ } and Omemupdates, = {Wo,, | W € Oy |p}

Definition 6.2.1 Let O be all the actions of a computation C of the multiprocessor
system (P,J). Then C is PCVaz if Vp € P there is some total order (Olp® Oy, "ﬂf)
such that

1. (Ou, %) C (0, ™2%), and

2. (Olp, ™8) = (Olp, vi”f), and

3. Vg € P (Op, ™2 = (O, %), and

4. Yw € Oylp wolp"iﬂfwow, and
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view, .
5. Vz e J,Vre ((O \Oﬁi)lp) |z and Vw € (Oulp)|z if wT3r then wo, —3r,
and

iew

6. if ((O1p ¥ 0u) \ (Omartipte, U Omemapdates,)s —F) is @ linearization.

In the remainder of this section, Ojnyisiste, a0d Ocache, are used to denote Oimvisible,

and O2;,,, respectively when the total order — is understood.

6.2.2 My x implements exactly PCVax

Theorem 6.2.2 My 4x tmplements exactly PCVaz.
The theorem follows directly from the following two lemmas.
Lemma 6.2.3 Any PCVaz computation ts the result of some ezecution on My ax.

Proof: To show that all PCVax computations arise from some execution on My 4x,
I first construct an execution merging the total orders (O|p & Ow,"iiwf) that satisfy
PCVax. I then show that this execution satisfies all the constraints of an execution
on My 4x.

Let C be any PCVax computation of some system (P, J) containing actions O.
Let the processor that implements process p € P be named p and let the objects
in J be the locations in My 4x. Construct the sequence E containing exactly all
the processor, cache and memory events using the total orders (O|p & Ow,"—'ff) for
each process p that satisfy PCVax in the following manner. Informally, the viewp
total orders are merged, such that the writes from O,, represent the update events at
the memory, the writes from O|p represent the processor,-write-request events, the

reads from O|pNOcqche, are the cache,-reply events and such that the remaining reads
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from O|p are the memory-reply, events. The processor,-read-request events are then
added such that they immediately precede the matching reply events and the neces-
sary cache,-update events are subsequently added such that they immediately follow
the matching processorp-write-request events. Formally, if (O, u-12;') = Wi, Ws, .- Wk
(which will be the same sequence independent of which process p is chosen by con-
dition 3 of PCVax) then, initially E = ml,m2,...m¥, a sequence of all memory-
update events associated with the actions of O, in C such that m?, is the memory-
update; event corresponding to the write action w; by process p implemented by
processor p. Let S5, S?,...,S? be the subsequences of (O|p 4 Ow,miwf) defined by
(Olp Ow,"i—w-f) = S§,uwt, ST, wh,...,uf,SE. Let E? be the sequence of memory-
reply,; events, caches-reply and processorz-write-request events corresponding to ac-
tions in Olp such that the j** event in E? corresponds to the j* action in S?.

Furthermore if the j* action in S? is o; and

1. if 0; is a write action by p then the j** event in E? is a processorz-write-request

event, otherwise
2. if 0; € Or N Ocache, then the j* event in E? is a caches-reply event, otherwise
3. if o; € O, \ Ocache, then the j* event in E¥ is a memory-reply; event.

Insert each sequence E? into E anywhere between the events, m{, and mi+! (main-
taining the order of ET). To add the necessary caches;-update events for each pro-
cessor p, consider each processors-write-request event in E in turn. Let o be any
processors-write-request event to some location z. If there is some memory-reply;

event from location z, m,, preceding « in E such that there is no memory-update
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event of location z by some processor § # p between & and m, in E, add the cache;
event matching o to E such that it immediately follows a. Finally, for each pro-
cessor p and each memory-reply; and caches-reply event in E, place the matching
processors-read-request event immediately in front of the reply event in E.

The construction of E satisfies the ordering requirement of My 4x. Notice that
processor; events are ordered in the same order as the corresponding actions from
O|p are ordered in (O[py¥ Ow,viiw?), which are in program order by condition 2 of
PCVax. Constraint 1 of My 4x is also satisfied by E since cache; events immediately
follow the matching processor; events. Since memory;-reply events are in the same
order as the corresponding reads are ordered in (O|pW O, vfﬁf), and using condition
2 of PCVax, constraint 2 of My 4x is also satisfied by £. Memory-update events
are in the same order as the corresponding actions from the set O, are ordered in
(Ow,vii"f), which are in program order by condition 3 of PCVax. Thus constraint 3
of My 4x is also satisfied by E.

The memory events in E correspond to either write actions from the set O,, or
read actions not in any Ocache,- By condition 1 of PCVax, memory-update; events at
the same location will be in the same order as the matching processor;-write-request
events. By condition 2 of PCVax, memory;-reply events from location z will be in
the same order as the matching processor;-read-request events. Now consider any
memory;-reply event from location z, m,, and any memory-update; event at location
z, my. Let oy and o, be the processor; events matching, respectively, m, and m,
and let r and w be the read and write actions corresponding, respectively, to m,
and m,. If au—i)af then wZ3r and by condition 5 of PCVax, wow"ielu-fr. Thus,

by the construction of E, mu—E->m, If af—E+aw then rZ3w and by condition 2 of
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PCVax, r"—iﬂfwolp. By condition 6 of PCVax, wolpv—iﬁwow. Thus, mr—§->mu since
rvlwfwow. Hence, constraint 4 of My 4x is satisfied by E.

By construction of E reads and cache actions are clearly blocking, hence condi-
tions 8 and 9 of My 4x are also satisfied by E.

To show that constraint 5 of My ax is satisfied, consider any cache; event, c,
with matching processor; event «. and corresponding action o. If c is a caches-reply
event from location z, then, by construction of E, 0 € Ocecne,- By the definition
of Ocyche,, there exists some read by p of z preceding o in (Olp & O,, viﬂf) such
that there are no writes to z by any process ¢ # p between this read and o in
Olpy Ow,"iwf). Consider the earliest such read, r’. By definition of Ogeie,, ™' ¢
Ocache,- Hence, E contains the memory-reply; event, m, corresponding to v’ and
m—Z+c. And since there are no writes by any process ¢ # p between r’ and r
in (Olpy Ow,"ii"f), there are no memory-update; events between m and c in E.
Hence, c satisfies constraint 5a of My ,4x. Let oy, be the processor;-read-request
event matching m. Clearly, am—li)ac. Consider any processor; event to z, ¢, such
that am—E—m—Eﬁac. If « is a processors-read-request with corresponding read action
7, then, since processor; events are in program order by the construction of E,
rZX{ 7%, Hence, by condition 2 of PCVax, Hvia—"ff”i—mf'o, and 7 € Ocache, by
definition of Oceene,- Hence, o is immediately followed by its matching cache;-reply
event in E, satisfying 5b of My ax. If a is a processors-write-request then, since o
appears between m and ¢, there is no memory-update event to £ by some processor
¢ # p between m and « and thus, by the construction of E, « is immediately followed

by its matching caches-update event in E, satisfying 5b of My 4x. Using a similar
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argument, it can be shown that c also satisfies constraint 5 if ¢ is a caches;-update
event.

To show that constraint 6 of My 4x is also satisfied, consider, for any processor p,
any cache;-reply event from location z, ¢, and let m] be the last preceding memory-
reply; event from z in E. Let r and r’ be the read actions corresponding to ¢, and m]
respectively. Since m’rimf, by construction of E 2% Also by the construction
of E, 7 € Ocache, and 7’ is the last read action of z not in Ocsche, preceding r in
Olpw Ow,"ieff). Thus, by the definition of Ocache,, there is no w € (Oulg)|z for
any ¢ # p € P such that O e S’ 28 Hence, by the construction of E, there does
not exist a memory-update; event of z, m,,, where § # p, such that mj.imv.w—s—)c,..

Consider two cases:

1. If there is some caches-update event of z between m; and c,, let c, be the last
such event and let oy be the processors-write-request event matching c,. By
construction of E, au—E-mu, and, since caches-update events are immediately
preceded by the matching processor event, also mf.i)au-—E»cu—Em,.. Let w be
the write action corresponding to ¢,. Since m’,—E-)au i)c,., by the construction
of E, r’"iw?wo”,viegfr. Because caches-update events are in the same order as
the corresponding write actions, w is the last write to z such that the copy from
O|p appears between 7’ and r in (O[p W Ou,,"i—wf). Furthermore, there are no
writes to z by any process ¢ # p between woj, and 7 in (O|pwO,, "i—wf) and the
writes by p from O,, are in Omemupdates, thus w will be the last write to precede
r in ((Olp W Oy) \ (Oinvisitie, Y Ommupdamp),ﬁ—wf), which is a linearization.

Hence, r contains the value that w wrote and thus ¢, returns the value that ¢,



wrote, satisfying constraint 6 of My 4x.

2. If there is no caches-update of = between m/. and c,, then there is also no write
by p of z whose copy from O|p appears between ' and 7 in (Olp ¥ Ow,vie—w-f).
Since there is no write by some process g # p to = between r’ and r in (Olp &
Ow,vii"f) and all writes by p to z between ' and r will be in Onemupdates,:
there will be no write to z between 7 and 7 in ((O|p ¥ Ouw) \ (Oinvisitte, U
Omu,damp),"iﬁf). Hence, r returns the same value as r/, and ¢, returns the

same value as m/., satisfying constraint 6 of Mv 4x.

Finally, to show that constraint 7 of My 4x is satisfied, consider, for any processor
p and any location z, any memory-reply; event from location z, m,. Let m, be the
last memory-update event of = preceding m, in E and let 7 and w be the read and
write actions corresponding, respectively, to m, and m,. If m, is 2 memory-update;
event for some processor § # P, then w will be the last write to z preceding r in
((Olp ¥ Oy) \ Omemupdatesy» "—‘fff) since any w’ € (Oy|p)lz such that wviﬂfwblpviﬂfr
would imply, by condition 2 of PCVax, that v’ ™ r. By construction of E, r ¢
Ocache,, hence, by condition 5 of PCVax, wngﬂfr. By condition 4 of PCVax,
wblpviﬂfw'owv—iiw-fr. Hence, wwwblpww’owvﬂ?r implying that m, was not the
last memory-update preceding m, in E. Thus w will be the last write to z preceding
rin ((Olp ¥ Oy) \ (Oinvisivte, U Ommupdmsp),”i—mf), unless w € Oinvisible,- Assume,
to reach a contradiction, that w € Oinyisiste,- Hence, there exists w' € (Oulp)lz
such that wblpvi—wfw"iwfw'ow. Since w is the last write to z to precede r in (Ojp &
Ow,"ie'—”f), wblpvﬂfw“—w-frvia—”fw’ow. Hence, by condition 5 of PCVax, rZ3w’. But

then w’mpvfffr violates condition 2 of PCVax, hence w & Ojnvisitle,- 1f m, matches
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a processor; event then all writes by processes other than p between woy, and wo,
in (Olpw Ow,"i—wf) will be in Oipyisiste,, 2nd since all writes by p from the set Olp
are in program order by condition 2 of PCVax, and since all writes by p from the
set O,, are in program order by condition 1 of PCVax, w will also be the last write
to precede r in ((O|p W Ou) \ (Oinvisiste, U Omemupdates,, ) vﬁf) Hence, m, satisfies
constraint 7 of My 4x and E is an execution satisfying all the constraints of My 4x-

Lemma 6.2.4 Any computation arising from an execution E of My ax ts PCVaz.

Proof: To show that any computation C arising from an execution E of My 4x is
PCVax, I first construct, for each process p, a total order (O|pU O,, vi—mf), using the
subsequence of E containing the processorp, cache,, memory-reply, and memory-
update events. I then show that these total orders satisfy PCVax.

Consider any computation C arising from an execution E of My ,x containing
actions O. Let P = {p | processor p is in My.x } be a set of processes such that
the ¢** action-invocation in each p corresponds to the it* processor, event in E. The
set of objects J is the set of all locations in My ,x. For each processor p, let E, be
the subsequence of E containing exactly all cache,-reply, memory-reply,, memory-
update and processor,-write-request events. For each process 7, let (O|p® Oy, "iiwf)
be the sequence such that the i** action in (O[p & Oy, =F) corresponds to the it

event in E,. Specifically, if the i** event in E, is e; and

1. if ¢; is a memory-update event, then the * action in (O|p & Ow,"i—m-f) is from
Ou,
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2. if e; is a cache,-update event, then the i** action in (Olp W Ow,"ieﬂf) is from
Olp,

3. if e; is a memory-reply, event, then the ¢** action in (O|f & Ow,ﬁ—wf) is from
Olp,

4. if e; is a processor,-write-request, then the i** action in (O|p & Ow, —%) is a

write action from O|p.

The subsequence (0,,,,“—“?) maintains program order by constraint 3 of My 4x,
hence condition 1 of PCVax is satisfied. To show that condition 2 of PCVax is also
satisfied, consider any o0;,0, € O|p such that 0,730,. Let the i and j, respectively,
be the positions of 01,,; and oy, in (Ol W Ow, =%). The it* and j* events in
E, can each either be a cache,-reply event, a memory-reply, event or a processorp-
write-request event by the construction of (O|pWO,,, "i—ewf). Thus, there are 9 possible

combinations:

1. If the i and j* events in E, are cache,-reply events, then these two events

are in the same order as the processor, events by constraint 1 of My 4x. Hence
Olviw-gOQ.

2. If the #** and j* events in E, are processor,-write-request events, then clearly
Olu—ti‘w—?Oz.

3. If the i** and j* events in E, are memory,-reply events then o, —F 02 since,
by constraint 2 of My 4x memory,-reply events are in the same order as the

matching processorp-read-request events, which are in program order.
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4. If the ** event in E, is a cache,-reply event, c, and the jt event in E, is a

processor,-write-request event, o, let o, be the processor event matching c.

Since 0, 2% 0, acimz. By constraint 8 of My 4x, a,_.——E—)c—Em, thus 0; —=F 0.

n

. If the 7** event in E, is a memory-teply, event and the j* event in E, is a
processor,-write-request event then by a similar argument as the previous case

(using constraint 9 instead of 8), 0 —%0,.

6. If the i** event in E, is a processorp,-write-request event, ¢, and the j% event
in E, is a cache,-reply event, 7, then let o, be the processor, event matching
r. Since 0, =% 0,, ai)a,.. Thus, by the ordering of events corresponding to a

. E E view,
read action, a—a,.—r. Hence 0; —F 0,.

7. If the i** event in E, is a processor,-write-request event and the j* event in E,

is a memory-reply, then by the same argument as the previous case 01—%0,.

8. If the i event in E, is a cache,-reply event, ¢, and the j* event in E, is a
memory-reply, event, m, then let a. and a;, be the processor event matching

. . pro E .
¢ and m respectively. Since 0.™%0,, a.—=>a,,. By constraint 8 of My ax,
acimi)am, and, by the ordering of events corresponding to a read action,

E. E E view,
Qc—C—ram—m. Hence 0, —50,.

9. If the i** event in E, is a memory-reply, event and the j* event in E, is a
cache,-reply event then, by using a similar argument as the previous case (using

constraint 9 instead of 8), 01 =% 0.

Thus condition 2 of PCVax is also satisfied by (O]t Oy, vie'ff).
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Since each E, has the same subsequence of memory-update events, condition 3
of PCVax is clearly also satisfied by (O|pwO,,, "iwf) Furthermore, since processor,-
write-request events precede matching memory-update, events by the ordering of
events constraint of My 4x, condition 4 of PCVax is also satisfied by each (O|f W
Ouw,23).

To show that each (O|py Ow,"iiwf) also satisfies condition 5 of PCVax, consider,
for any object z, any r € ((Or \ Ocacre;)|D)|x and any w € (Ouw|p)lz such that wZ%r,
By the definition of Ocene;, either there is no ' € (O,|p)|z such that r'Z3r, or if
3 € (O,|p)|x such that Z3r then there is some w’ € (Oy|d)|z, § # P, such that
o i 290 i 08 Hence, by constraint 5 of My 4x, r does not match a cache,-reply
event in E,. By constraint 4 of My 4x, the memory events corresponding to w and r
must be in program order, hence, by construction of each (O|pwO,,, "i—ewf), wow"i—ew-fr.

Finally, to show that C is PCVax, each <1, = ((O|p 8 Ou) \ (Oinvisistes; U
Omemupdates;) vﬁ”—f) must be a linearization. For any z € J, consider any read action
r € (O,[p)|z. Let w be the last write action to z preceding r in <,,. Let m, and
m, be the memory events corresponding to w and r respectively, let ¢, and ¢, be
the cache events corresponding to w and r respectively, and let o, and a, be the
processor events corresponding to w and r respectively and let w and r be the **

and j** actions in (O|p & O, vfi'f) respectively. There are 4 possible cases:

1. If the i*® and j* events in E, are both memory events in E,, then w—r
implies that mwiwnr. If w € O|p, then w is the copy from O,, by construction
view

of (O|p W Oy, —F), and is in the set Omemupdates;» Which is not possible since

it precedes r in <.,. Hence w € O,|¢ for some process ¢ # p and m,, is some
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memory-update, event. Consider now the following two facts: 1) since w ¢
Oinvisibie;, there does not exist any w’ € (Oy|p)|z such that wblﬁvﬁu—fw"ﬂfw’ow;
and 2) since w is the last write to z to precede r in <., there is no @ such
that wviwfﬁ;o‘ﬁtﬂfr. These two facts imply that there is no write by p such
that the copy from O, appears between w and r in (Ofp & Ow,viﬂf). They
also imply that there is no @ € (O,|3)|z, for some process § # 7 such that
Wi 5, If such a @ did exists then necessarily @ € Oinyisibte; Since
W ¢ <r,. Hence, by the definition of Oinvisisie;, there is some w' € (Oy|p)|z
such that w’o[ﬁ”i‘ﬁ’fw""ﬂfwgw. But, by fact 1, it is not possible that w'Olﬁ
precedes w in (O|p & Ow,"ie—wf), and, by fact 2, w’ow can’t occur between w
and ¥ in (O|pY Oy, "ﬁf). Thus such a w' does not exist and thus @ does not
exist. Hence, m,, is also the last memory-update of location z to precede m,

in E, and by constraint 7 of My 4x, m, returns the value that m,, wrote, and

hence r returns the 'correct’ value in <g,.

. If the #** and j** events in E, are a cache,-update and a memory-reply, event
respectively, then w is necessarily by p and is not in the set Omemupdates;- Fur-
thermore, w2y implies that Caw-—E-)m.,.. By the ordering of events, aw—§—>cw
and a,—’im,. By constraints 8 and 9, read and cache actions are blocking,
hence aw-icw—Eéa,——E—)m, and a,ui)a,.. Thus, by constraint 4 of My x,
mw—E—)m,. Since w is the last write by p to r preceding 7 in <;,, there does
not exist any w' € (Oy|D)|z such that wolﬁ"—iﬂfw’olﬁvi—w-fr. Hence, there is no
processor,-write-request event to x between a,, and a, and thus, by constraint

4 of My 4x, there is no memory-update, event of z between m,, and m,. Fur-
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thermore, any w € O,|g, where § # p € P, appearing between wo_ and r in
Olp v Ow,"iiwf) could not be in the set Oinyisisie; (and thus cannot exist by
the choice of w) since any such % must be surrounded in (O|p & Ow,mﬁ?) by
a write, W, from the set O|f and the matching write from the set O,. This
implies that wowvi—wfwow. Hence, also wolﬁvie'—"fwow and by the choice of w,
wowviﬂfwo[ﬁvjfffw"ii"?r, and it has already been shown that such a @ does
not exist. Thus, there are no memory-update events between m,, and m, in E,
and by constraint 7 of My 4x, m, returns the update value of m,, and r and w

contain the same value.

. If the #** and j* events in E, are cache,-update and cache,-reply events re-
spectively, then, by the construction of (O|p Ow,"ii"f), cw——rc,. Consider
the subsequence S of E containing all memory-reply, events from z and all
cache,-update events of z that precede ¢, in E. By the choice of w, there are
clearly no other cache,-update events of z between ¢, and ¢, in E. Thus, the
last event in S is either c,, or some memory-reply, event. If ¢, is the last event
in S, then by constraint 6 of My 4x, ¢ returns the update value of ¢, and thus
r and w contain the same value. If some memory-reply,, m/, is the last event
in E, let o} be the matching processorp,-read-request event. By constraint 6
of My ax, ¢ returns the same value as m;. It remains to show that m. re-
turns the update value of ¢,. Since cw—ﬂm;—ac,. and since cache and read
actions are blocking, aw—E-)c.,,—E-m{.—E)mﬁ.-ﬁ-mri)c,. Thus, by constraint 4
of Mvax, mw—E->m',. Let 7’ be the read action corresponding to m.. Then,

by construction of (O|pW Ow,viwf), wowvﬁfwow"iwfr’vi—mfr and w<p, <.
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By the choice of w, w is also the last write to z to precede r in <;,. The
previous case already showed that ’ and w contain the same value, thus r and

w contain the same value.

4. If the i** and j** events in E, are a memory-update and a cache,-reply event
respectively then mw-ic,. As was shown in case 1, w € O|q for some process
g # p. Thus, by constraint 5 of My 4x there exists some memory-reply, event
from z such that it appears between m,, and ¢, in E. Let m] be the last such
memory-reply, event and r’ be the read action corresponding to m;. Since
mw—ﬂmii)cr, by the construction of (O|f ¥ Ow,"iﬂf), w2 and
w<g,r'<r,r. By the choice of w, w is also the last write to z to precede r’ in
<, and case 1 shows that w and r will contain the same value. Furthermore,
since w is the last write to z to precede r in <, there is no w' € (Oy|p)|x such
that w<r,r<r,wop<r,7- Thus there is no cache,-update event of z between
m,. and ¢, in E and by constraint 6 of My 4x, ¢, returns the same value as m..

Thus w and r contain the same value.

6.2.3 Comparing PCVax with other memory models

p:w(z)l
:w(y)l
:w(z)0 r(z)1 r(y)0
:w(y)0 r(y)1 r(z)0

Computation 8 is coherent, PCG, P-RAM-W (and thus also P-RAM-R and P-

Ccemputation 8

nh 3 Q

RAM-A) but is not PCVax nor SC. It is obviously not SC, since it is not possible to

build a linearization of all the actions of Computation 8 that extends the program
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order. The process linearizations <., = w,(z)0 ws(y¥)0 wp(z)1 we(y)1, <, = wr(z)0
ws(¥)0 wy(z)1 we(y)1, <, = wr(z)0 we(y)0 wyp(z)1 7 (z)1 7-(y)0 we(y)1 and <,
= w,(z)0 w,(¥)0 we(y)l m5(¥)1 r5(z)0 wyp(z)1 satisfy the definition of coherence
(definition 4.2.2), of P-RAM-W, and of PCG. But notice that in Computation 8 the
set Ocqche is empty for each process since none of the actions is preceded in program
order by a read action of the same object. Furthermore, processes 7 and s cannot
agree on an ordering of writes (in particular the writes w(z)1 and w(y)1) and thus

Computation 8 is not PCVax.

p:w(z)0 r(y)1 r(y)2 r(y)3 r(z)0
q: w(y)l w(y)2 w(z)6 w(y)3

Computation 9 {

Computation 9 [HKV97, HKV98] is PCVax but not P-RAM-A (and thus also not
P-RAM-R nor P-RAM-W nor PCG). The sequences —f = w(z)0op, w(y)1 r(y)1
w(y)2 r(y)2 w(z)6 w(y)3 r(y)3 w(z)0o, r(x)0 20d % = w(y)1op w(y)lo, W(H)20p
w(y)20, w(z)6op w(x)bo, w(y)3op w(y)3o, w(x)0 maintain program order with
respect to writes from O, and all actions by the process itself. And Ocgepe, =
Ocache, = ¢- All the read actions in each sequence maintain program order with
respect to all writes from the set O,,, hence the sequences satisfy conditions 1, 2, and 5
of PCVax. Condition 3 is also satisfied since both F and "% order the writes from
the set O, in the following sequence: w(y)1 w(y)2 w(z)6 w(y)3 w(z)0. And clearly
condition 4 of PCVax is also satisfied. Note that Oinvisiste, = w(z)6 and Oinvisibte, =
8, hence ((Olp® Ow) \ (Oimvisitte, U Omemupdates, ) —F) = w(z)0 w(y)1 r(y)1 w(y)2
r(y)2 w(y)3 r(¥)3 r(2)0 and ((Olg8 Ou) \ (Oinvisitte, U Omemupdates,)s —) = w(y)1
w(y)2 w(z)6 w(y)3 w(z)0. These are both linearizations, hence Computation 9 is

PCVax. But it is not P-RAM-A nor PCG because it is not possible to build a



linearization of Olp U O,, that maintains program order.
This establishes that PCVax is strictly weaker than SC and is incomparable with
PCG, P-RAM-W, P-RAM-R and P-RAM-A. The following claim, together with

Computation 8, shows that PCVax is strictly stronger than coherence.
Claim 6.2.5 Any computation that is PCVaz ts also coherent.

Proof: Let C be any PCVax computation on system (P, J) with set of actions O.
Choose any set of sequences (O|p& Oy, "ie—wf), one for each process p € P, that satisfy
definition 6.2.1 to build the object sequences Sz, one for each z € J that contain all
the actions to z in O. Initially, S; = (O,|z, vﬂf) for any process p. (By condition 3
of PCVax, S, will be the same sequence, regardless of the choice of p). Now, for each
z€ Jand each p € P, let S2 = ((Olp# Ou) \ (Oinvisisie, U Omemupdates, )|, ) =
RGP, wi?, RY?, w3®, B3P, ..., wiP, Rzp’p, where each wi” is a write action and each
R?? is a sequence of read actions. Note that each write action in S? also appears in
Sz (but not vice versa), but it is not obvious that these write actions appear in the
same order in S, and SP. For each 0 < i < k,, insert, in order, R into S, directly
after wi? and insert Rg”? into S, in order, before the first action of S,.

Clearly, each S; is a linearization. To show that each S; also maintains program
order, consider any two actions 0,0, € (O|p)|z such that o, P%0,. If 01,00 € Oy,
then by condition 1 of PCVax, o; precedes o0, in S;. If 03,00 € O,, then there are 2
possible cases: 1) If 01,02 € R;"? for some index 7 then by condition 2 of PCVax, o0,
precedes o, in Sg; 2) If o1 € R{” and 0, € R}, for some indices ¢ and j, then assume,
to reach a contradiction, that o, precedes o, in S;. By condition 2 of PCVax, o,

precedes o, in S?, thus ¢ < j. Furthermore, exactly one of wi"* and w}™ is not by p.
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Otherwise, w;” and w}"” would appear in the same order in both S; and S? which
would imply that o; precedes oy in S;. Since wfc’)’w i 4 wi? , and since also wi?
i w}”®, clearly wi" is the write action by p and wfc;‘; a4 wi® i wiP . But
this implies that w}"® € Ojnisiste, and thus wi”? ¢ SP, leading to a contradiction.

If o, € Oy and 03 € Oy, let 0, € R™®. If 0, = wi”? then o0; precedes 0; in S;
by construction of S,. Otherwise, if w{*® € O|p then by condition 2 of PCVax, wi?
™ 0,. Since w;?® is the last write to £ by p to precede o, and since 0:5%0,, also
01753 wTP. Hence o0, precedes w?? in S; and by construction of Sg, w?® precedes 0, in
Sz. If wi? € O|q for some process g # p then assume, to reach a contradiction, that
w;*? precedes o0y in S;. Hence, o1, Ry I T o, T 010, and wi® € Oinvisisie,
and thus wi? ¢ S?, leading to a contradiction. Thus o0, precedes o, in S;.

Finally, consider the case when o; € O, and 0, € O,,. Since 0;730,, by condition
2 of PCVax, oltf-e—wfo%lp and by condition 4 of PCVax, olviezfozowviiwfozow. Let
o1 € R, If w{”® € Ol|p then wi? i P 020, e 02, - Since wil e 020,
implies that w®? T8 o,, wF? precedes o, in S; by condition 1 of PCVax. And thus
by construction of Sz, o; precedes o; in S;. If wi? € O|q for some process ¢ # p,

then clearly wi"? precedes o0, in S; and thus o, precedes 02 in S;. =

It must be remembered that the description of the VAX 8800 [FKH87] is am-
biguous. The formal definition would change if it was assumed that in the VAX 8800
processes do not block on read actions. Furthermore, one could assume that a write

action is always slower than a read action, which could change the definition again.
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6.3 Processor Consistency as implemented in the DASH

Machine

Stanford’s DASH machine implements a memory consistency model called Release
Consistency. Release Consistency distinguishes between ordinary and special opera-
tions. The special operations are guaranteed to be processor consistent with respect
to one another. This definition of processor consistency is yet another interpreta-
tion of Goodman’s original definition. The Stanford team made several attempts to
define processor consistency as implemented in the DASH and a group at Georgia
Tech attempted to formalize one of these. The following subsections examine these

attempts, formalizes each version, and shows the differences between them.

6.3.1 The first attempt to define Processor Counsistency as implemented
in the DASH

In 1990, Gharachorloo et al. at Stanford University described processor consistency

as implemented in the DASH machine [GLL*90| and stated the following conditions:

1. “memory is kept coherent, that is, all writes to the same location are serialized

in some order and are performed in that order with respect to any processor”

2. “before a LOAD is allowed to perform with respect to any other processor, all

previous LOAD accesses must be performed”

3. “before a STORE is allowed to perform with respect to any other processor,

all previous accesses (LOADs and STOREs) must be performed”
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Point 1 states that the memory is coherent, but it is not sufficient that all pro-
cessors order all writes to the same location in the same order. Definition 4.2.2 of
coherence also requires that program order is maintained when actions are to the
same object. I will assume that the DASH machine does indeed accomplish this.

Gharachorloo et al. state that a load/read of object z is performed with respect
to some processor p, when a store/write action by p to =z does not affect the value
returned by the load/read. Similarly a store/write of some value at object z is
performed with respect to processor p when a load/read by p of object z returns
the value stored/written or some subsequent value written to £ [GLL*90]. These
subsequent values are well defined because all processors view writes to the same
location in the same order. An action is performed when it is performed with respect
to all processors in the system. Let us now examine closely the conditions 2 and 3.

Since each process may view an action as being performed at different times,
each processor p may have its own view of the memory, or its own copy of the shared
memory, y,. Thus, similarly to the pipelined-RAM machine, each write action by
some processor p has n corresponding p,-update, events, one for each processor g
in the machine. Furthermore, if any processor views that the value of a read by
some processor p is determined, all other reads preceding it in program order must
also already be determined. If any processor views that an update corresponding to
some write action w by some processor p has been implemented, then all processors
must view that all updates corresponding to all other write actions preceding w in
p’s program have already been implemented and that all values of reads preceding
w in p’s program have already been determined. Gharachorloo et al. state that

these conditions are minimum requirements for any machine implementing processor
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consistency. Call such a machine Mgparachorico-

6.3.1.1 Mgharachorico @and the memory model it implements
In MGharechorioo @ Tead action (read, z, A, v) is implemented by the following ordered

sequence of events:

1. a processor,-read-request(z) to p’s copy of the memory, and

2. a matching p,-reply(z,v) from p’s copy of the memory to p.

A write action (write, z,v, A) is implemented by the ordered sequence of events:
1. processor,-write-request(z, v) to u,, and
2. a matching p,-updatey(z,v) at each processor ¢’s copy of the memory.

Furthermore, any execution E on Mgharechorico, Which is a sequence of these 4 types
of events, will also meet all the following constraints, for all processors p,q,T, s,

locations z and values u, v:

1. A read returns the value observed in the memory. That is, for each -
reply(z,v) event if p,-update(z,u) is the last preceding p,-update event to

location z then v = u.

2. Each copy of the memory implements writes to the same location in the same
order. That is, if y,-update,(z,v) = ip-update,(z,u) then the matching u,

events satisfy u,-update,(z,v) E, us-update, (z, u).

3. Each copy of the memory, p,, maintains program order with respect to actions
to the same location by p. That is, any two processor, events to the same

location z are in the same order as the matching p, events.
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4. Read actions are received by the memory in program order. That is, for any
two processor,-read-requests, a; and a,, where ry, 73 are the matching p,-reply

. . E E
events respectively , if a; —ay, then ri—375.

5. If an action o precedes a write in program order, then all events corresponding
to o precede any update event corresponding to the write. That is, for any
processor, event « and any processorp,-write-request oy, and for all 1, event(s)

m matching « and for all 4 events m,, matching ay,, if aimzu, then m-i)mw.

Note that constraints 4 and 5 do not require that this machine maintains program
order if a read follows a write. Let the relaxed program order (O, =5°) be defined as
follows: (01,00) € (0, =537) iff 0,730, and either 0; € O, or 01,02 € O,. Relaxed
program order does not include the requirement that actions to the same object must
remain in program order, as implied by constraint 3 of Mgherachorico- This is because
constraint 3 only restricts the ordering at the memory of the processor that initiated
the two actions to the same location, not at all copies of the memory.

The formal definition of the memory model implemented by Mgharachorioo requires
another relation. Consider any computation of system (P, J) containing the set of
actions O. Let S = {<,} be any set of sequences over the set of actions O such

p.g_d;(f‘))

that it contains exactly one sequence for each p € P. Then the relation (O, ) is

defined as follows: olpg(—i)oz iff 3p € P and 3z € J such that one of the following

conditions holds:
1. 01,0, € O|p and 0, 23%0,.

2. 0y <, 09, and either 0; € O|z and 0, € (O,|p)|z or 01,05 € Oylz.
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3. 01 € (O:|p)|z, 02 € Oy and 30’ € Oylz such that 0, <, 0 E3%0,.

For any cycle 8 = 0g, 01, - - - 0% in (O, pfd—(b;)), let the ezrtended cycle Bbe augmented

as follows. For every i such that o,-pld;(s))o,-.,.l arises from part 3 of the definition

—

ped .
of 43 (that is, such that o; € (O|p)|z, 0ix1 € Oy and o' € Oylz such that
0; <p o’rﬂgo,-_,.l), insert between o; and o0;,; the o’ action that is mentioned in part

3. Call any such o' an inserted action.

Definition 6.3.1 Let O be all the actions of a computation C of the multiprocessor
system (P,J). Then C is PCGharachorloo if for each processor p € P there is some

linearization (O|p U Oy, <i,) such that

1. (OlpuU Oy, =5%) C (OlpU Oy, <1,), and
2.VzelJ
(a) ((Olp)lz, B=3) = ((Olp)|z, <1,), and

(b) Vg € P (O, NOlz, <1,) = (Oy N O|z,<1,), and

ped({<L,[9€P))
—_—

3. (O, ) is cycle-free.

6.3.1.2  Mgharachorico implements exactly PCGharachorloo
In the following discussion, for any set of actions O, any object z, any process p, and
any linearization (Olp U Ow,<r,) , 01 <5 02 iff (01,02) € ((OlpU Ou)lz, <r,)- The

. ped, | . . ped(S
notation (O,*%3) is used to abbreviate (0,723

). Also, all results of calculations on
indices are reduced modulo & + 1. The following two lemmas are used to prove that

MGharachorico implements exactly PCGharachorloo.
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Lemma 6.3.2 Let O be some set of actions, P some set of processes, J some set of
objects, {(OlpU Oy, <L,) | p € P} a set of sequences satisfying conditions 1 and 2 of
definition 6.5.1, and B = 0y, 01, - - -, 0 any extended cycle of B, a cycle in (O, »ﬁ).

If3p,qg € P, and 3z € J, and 3¢, 0 <@ < k such that 0; <7 0i41 < 0iv2, then either

i pcd
1. there ezists some shorter extended cycle of (O, =), or
2. 0;: <3 0it1 —5°0i42, OT

T—prog
8. 0; — Oi41 <: Oiy2.

Proof: If 0;41 is a read, then p = ¢ since a read action only appears in the
linearization of the reading process and thus 0;., <7 0;+2 implying that o; <7 oi4o.
If 0;42 € Ofp then o; <3 0is1 —5°0;49, establishing the lemma. If 0,4 € Oylg for
some q # p, then 0;4.o must be an inserted action by the definition of (O,Ed-)), and
0; <7 0iy1 <p o,-+2r:£?go,-+3. If o; € O, then removing 0;;; from §' still results in
a cycle in (O, rfzi-)), and removing o0;;; from 3 results in a shorter extended cycle,
establishing the lemma. If o; € O|p, then o; <3 Oivo ——3 0i43 implies that o,-ﬁo,-.m
by point 3 of (O, r@))- Hence removing o0;,; from § also results in a shorter extended
cycle.

Now consider the case when 0;;; is a write action by some process s. If 0,42 €
Oyls then o; <3 Ois1 —=30;10, establishing the lemma. If 0,5 € Oylt for some
process t # s then 0;,; cannot be an inserted action since (041, 0i42) ¢ (O, —=7).
Hence o; ¢ O;. If o; is an inserted action, then oir_—prf)’go,-.,,l <7 0i+2, establishing the
lemma. Otherwise, since all processes p agree on the ordering of writes to the same
location, 0;;; can be removed from § to form a shorter extended cycle. Finally, if

. . . —PT O
0i1+2 € O:|q then 0,1 is not an inserted action. If 0; € O, then 0; ——"0;41 <7 Oiy2
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- ped . . . .
by the definition of (O,*=) and since 0;;; is not an inserted action. If o; € O,
- - . . Tr—pro . .
and if o; is an inserted action then o; —pr—>go,-+1 <7 0Oit+2, otherwise, since 0; <} 0;41
implies that 0; <7 0i+1 when both o; and 0;,; are write actions, 0;1; can be removed

from (G to form a shorter extended cycle. a

Lemma 6.3.3 Let O be some set of actions, P some set of processes, J some set of

objects, {(OlpU Oy, <r,) | p € P} a set of sequences satisfying conditions 1 and 2 of

definition 6.8.1, and 8 = 0p, 01, - -.,0r any ertended cycle of (O, rﬁd)). If, for some
—prog

5, 0<i<k, 0 0;41 s 0i4+2, then 0g, 01, ...,0;, 0i42, - - ., 0 1S also an eztended

cycle in (O, rp—)) .

Proof: First note that Oir:pLgQOi.{..lrﬂgOi.*.z implies that olr—;)mgo,-_*.g. If neither
0; nor 0;., is an inserted action, then removing o0;4+; from B results in a shorter
extended cycle in (O,Ei-)). If 0;41 is a read action and o0;,, is an inserted action,
then Oirﬂ90i+1 ——pr—>go,+2r17+ 0i+3 and removing o;4+; from B results in a shorter
extended cycle in (O, »p—)). Finally consider the case when 0;, is a write action and
o; is an inserted action. Since 0;4, must be a write action (otherwise (0;41,0;42) ¢

(0,"29)), removing 0;+1 will still allow o; to be one of the o actions. Hence,

removing 0;,1 from B results in a shorter extended cycle of (O, ) |

These preceding two lemmas are now combined to conclude that, for any short-
est extended cycle, the relation between consecutive actions in the cycle alternates
between "—==° and <. Say that an extended cycle alternates if Vi either o; <
o,'.,.lr:p—";go,-.,.z or o,-rf—?goi“ <3 Oit2, where 0;,0;41 and 0;,, are consecutive actions

in the extended cycle.
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Corollary 6.3.4 Let O be some set of actions, P some set of processes, J some set
of objects, and {(O|pU Oy, <y,) | p € P} a set of sequences satisfying conditions 1
and 2 of definition 6.3.1. Then any shortest extended cycle of (O,ﬂ) alternates.

Proof: Let 8 = 0g,01,---,0r be a shortest extended cycle of (O,»ﬁ). By the
definition of (O, E‘#), each action in § is related to its successor and predecessor in
B by either "—=5¢ or by < for some process p and some object z. By lemma 6.3.2,
there is some ¢ such that o,-r_-;)mgo,-.,.l. Without loss of generality, suppose 00 =370,
(otherwise renumber the actions in the cycle). By lemma 6.3.3, o1 <} o0 for some
process p and some object z. Thus 3 alternates from action oy to action ;. Suppose
that alternation first fails between o; and 0;4; for 2 < 7 < k—1. As a consequence of
lemma 6.3.3, it must be 0;—; <7 0; <7 0;+1 for some process p and g and some object =
and 0;_» -23°0;_;. By lemma 6.3.2, either 0;_; —2°0; <% 0;41 OF 0;—1 —0; <T 0341
holds. However, since 0;_p ——0;_1, it is impossible that 0;—1 =5%; by lemma 6.3.3.
Hence, 0;_; <z o,-rﬂgo,-.,.l, contradicting the assumption of non-alternation around
action o;. Hence, § alternates from op to o¢. Furthermore, by lemma 6.3.3, ox <7 0o
for some process ¢ and some object z. Hence, by lemma 6.3.3, 0k—1 =370, otherwise,
by lemma 6.3.2 og—1 <F 0% <g 0o could be replaced to create 2 consecutive i o

relations, contradicting that 3 is any of the shortest extended cycles in (O,nfﬁ) by

lemma 6.3.3. Thus §# alternates.

Theorem 6.3.5 Mgharechorioo tmplements ezactly PCGharachorloo.

The theorem follows immediately from the following two lemmas.
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Lemma 6.3.6 Any computation arising from an execution on Mgparechorioo 1S PCGha-

rachorloo.

Proof: To show that any computation C arising from an executior E of
Mghrarachorioo 1s PCGharachorloo, I first construct, for each process p, a total or-
der (O|pU Oy, <i,), using the subsequence of E containing the p,, such that each
memory event represents the corresponding action. I then show that these total
orders satisfy PCGharachorloo.

Let E be any execution on Mghrarchorico With resulting computation C and set of
actions O. Let P = {§ | processor p is in Mgparachorioo } D€ a set of processes such that
the i** action-invocation in each p corresponds to the #* processor, event in E. The
set of objects J is the set of all locations in Mgharachortoo- FOr e€ach processor p let E,
be the subsequence of E containing only all x, events and, for each p, let <., be the
sequence of all write actions and actions by 7 in O such that the #** action in < L, cor-
responds to the 7** event in E,. Then each <, satisfies condition 1 of PCGharachor-
loo by constraints 4 and 5 of Mgharachorico- Condition 2a of PCGharachorloo is satis-
fied by each <., by constraint 3 of Mgparachorico and condition 2b of PCGharachorloo
is satisfied by each <, by constraint 2 of Mgparachorico- Furthermore, <z, is lineariza-
tion, by constraint 1 of Mgharachorico- Thus it remains to show that (O, rﬁ)) is cycle-
free to establish that computation C is PCGharachorloo. Assume for a contradiction
that it is not cycle-free. Let 8 = 01,02, 03, ..., 0, be any of the shortest extended cy-
clesin (O, rﬂ). By corollary 6.3.4 (and by selectively choosing which action is named
0, in B) the cycle is of the form o, < 05 23504 <z 04 259, .. <§,':j Om —=5%0,

for some processes pi,D3,---,Pm—1 € P and some objects 7,,z3,...Zm-1 € J.
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For any 7 and j, let ,u{;i be the memory event at p;’s copy of the memory, corre-
sponding to the action o;. By construction of each <is» Oi <7 0i41 implies that

: E : . r—pro . -
Uy, — 5T, Furthermore, if o; %90;+1 then, by constraints 4 and 5 of Mgparachorico:

i E_ r—prog r—pro Tm— r—prog - .
/‘;,--1—"‘”;—21' Thus o; <3! 0o %04 <F 04 Lk <pm_: Om — 0; implies that
1 E 2 E 3 EA\ 4 E\ E\ m E 1 3 3
Hoy = flg, —F g g, — . .. —Fipl [l . Thus there is a cycle in the execu-

tion E and this is clearly impossible. Hence computation C is PCGharachorloo.

Lemma 6.3.7 Any PCGharachorloo computation is the result of some ezecution of

M, Gharachorloo-

Proof: To show that all PCGharachorloo computations arise from some execution
on Mgparachorioos 1 first construct an execution by merging the linearizations and
program orders of each process. I then show that this execution satisfies all the
constraints of an execution on Mgaarachorico-

Consider any PCGharachorloo computation C containing set of actions O of
system (P,J). Let the processor that implements process p € P be named p and
let the objects in J be the locations in Mgperachorico- For all p € P, initially L, =
(OlpUOy, <iL,) = &, 05,...0; and P, = (O|p, ™) =a?,ds,... a} and 3, = 1. Also,
initially i = 1 and E = A. Then the algorithm

while (Vk, i <= k,) do
while (3p € P such that of € L;) do
form+1tondo
ConsiderAdding( 7, pm )
end for
end while
t1—1+1
end while
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constructs the sequence E containing all processor and u; events corresponding to
the actions in O where the procedure ConsiderAdding is shown in figure 6.3.1.2.
To show that E is an execution that could have occurred on Mgharachorico, aSSUMeE
first that this algorithm exhausts each L,. Thus, all events corresponding to actions
in O are in E since lines 2 to 9 add events corresponding to a read action (and possibly
some extra processor events) and that lines 12 to 18 add events corresponding to a
write action (and possibly some extra processor events). Furthermore, processor
events are obviously appended to E in program order. Also the algorithm ensures
that the processor events precede the matching memory events. Lines 1 and 10
ensure that y; memory events to the same location are in the same order in E as
the corresponding actions are ordered in (O|p U Oy, <r,). Since each linearization
agrees on the ordering of writes to the same location, updates of the same location
will also agree in E across all copies of the memory, and thus E satisfies constraint
2 of Mharachorioo- Since each linearization maintains program order with respect to
actions to the same object, constraint 3 is also satisfied by E. Furthermore, since line
1 of the algorithm ensures that p5-reply events are appended to E in the same order
as the corresponding reads appear in the linearization (O|pU Oy, <t,), by condition
1 of PCGharachorloo, E satisfies constraint 4. Similarly, the if-statement of line 10
ensures that if 0,230, and, for some process g, 0; € O|q and 0, € O,lg, then all
memory events corresponding to o; are in E before any memory event corresponding
to oy is appended to E, thus constraint 3 of Mgharachorico i also satisfied by E.
Finally, constraint 1 of Mgharachorico 1S satisfied by E since all p; memory events
are in the same order as the corresponding actions are ordered in the linearization

(OlpU Ow, <i,)-
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procedure ConsiderAdding( index j, process p )

if (o} € L, and 3z € J such that of € (O;|p)|z and
wg, the last write to = preceding of in (O|pU Oy, <r,), is no longer in L,
and all events corresponding to r, the last read preceding of in program
order, are in E ) then
if (the processor; event corresponding to o_f is not in E yet) then
repeat
append to E the processor; event corresponding to afp
remove af from P,
p—ip+1
until (af,,-l = 0’;)
end if
append to E the y;-reply event corresponding to o
remove o} from L,
end if
if (of € L, and 3z € J and 3q € P such that of € (Oylg)|z and
all events corresponding to o, the last action preceding a;’ in program
order, are all in E and o, the last action to z preceding af in
(OlpU Ow, <L,), is no longer in L,) then
if (the processor event corresponding to o is not in E yet) then
repeat
append to E the processor; event corresponding to a}’q
remove a] from P,
lg ¢—1g+1
until (ag.,-l = o)
end if
append to E the us-update; event corresponding to of
remove o} from L,
else
ConsiderAdding(j + 1, p)
end if

Figure 6.2: Part of construction of an ezecution E on Mgparachorioo-
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So it remains to verify that each L, is exhausted by the algorithm and that all
events are added to E. Assume instead that at some point in the construction of E,
for some m, the sequences L,,, Lp,,..., Ly, are not exhausted. For any 1 <7 < m,
consider any action o € L,,. Therefore, for some object £ € J and some process
Dj, Pk, where 1 < j,k < m, one of the following 6 cases prevents o from being

removed from L,, (and the p,, memory event cannot be added to E).
1. 0 € O, and 3¢ € O, such that o' == oa.ndo'eLp,or

2. 0 € O;|z and 3¢’ € Oy |z such that o' <% oand o' € L,,, or
Di Pi

3. 0 € Oy|p; and 30’ € O;|p; such that o =50 and o’ € L,,, or
4. 0 € Oy|p; and 30’ € Oy|p; such that o' 5% and o € L,,, or
5. 0 € Oy|z and 30" € (Or|p;)|z such that o' <7 oand o’ € Ly, or

6. 0 € Oy|z and 30’ € Oylz such that o’ <%, o0 and o' € L,,.

Thus the actions in the sequences L,, to L,, form cycles, where each link is one of
the above 6 cases. Notice that in the cases 1 to 4 and 6, O',_PE)O_ Thus, if any cycle
does not contain a case 5 link, this means that there is a cycle in (O, Eg)), which
would imply that C is not PCGharachorloo. Hence, in every cycle, at least one of
the links is due to case 5.

Examine any such cycle § = 0g, 01, . . . 0x. I will show that removing some actions
from [ results in an extended cycle of (O, ic?—)). Choose any link in 8 that is due to
case 5 and call the write action of the link w and let r be the read to the same object

z of the link. Thus, for some process p;, 7 <7, w and r € Ly,. Let H; be the sequence
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starting with the action w and followed by the sequence of actions following w in 3,
such that each action is from L,,, and such that each action is related to the next by
(O, Iﬁ). Let H, start with the action 0,4, where o; is the last action of H,, followed
by the sequence of actions that follows 0,4 in £ such that all actions of H, are from
the same L, sequence and each is related to its successor by (O,rﬁ). Continue
building these sequences, until all actions of § are in some sequence, resulting in the
sequences H; to Hy for some m > 0. Without loss of generality, let the sequences
starting with a write that is the second action in a case 5 link be Hy, Hs, ..., H; for
some [ > 1 and let the remaining sequences be H.; to Hy,.

For any 1 <7 < [, let the first action of any sequence H; be named w; € Oylz for
some object z, and, for some process pj, let w; € Ly,. There must be some action
7; € (O:|pj)|z such that r; <g, Wi since w; is part of a case 5 link. Note that r; must
be related to its predecessor in 3 by (O,rﬁ). If H; is of length 1, then w; is the
first action (the o’ action) of a case 4 link, and thus 3w} € O, such that w; 2wl
If o is the action immediately following w} in 8 then 111{-»—’7—\“—’[)0,-c since this cannot be
a case 5 link. Hence, r; <3, wirﬂgwél-@o,;. By part 3 of (O,r@)), r,-nﬁw,f and
thus ok»@rirﬁw{-r-@mk and w; is an inserted action in an extended cycle. If w;
is immediately followed by some read action 7}, then w; <} r;and r; € (Orlpj)iz.
Since 7; and r] are by the same process, ri =71}, and thus r,-rid)rﬁ. Remove all these
w; write actions from 8 to form the cycle #'. If the action immediately following
w; is some write action w! and if w;" —— w/, then r,-rigf)wg. Hence, w; is an inserted
action. (Note that w! must be related to its successor in 8 and B’ by (O,i@))).

If w; is immediately followed by some write action w] and w; <§j w}, then also,

r; <p; wi- Such a write must be followed by a sequence of zero or more writes, all
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related only because they are to the same object, but must finally be followed by
either a read or another write in the relaxed program order, since the sequence is of
finite length and can only be ended through a link using the relaxed program order.
Thus r; <7, wi <g, wi <§, w} <j, w? <; ... <3 w}, thatis, r; < w! for some

2
i1

h > 0 and some w},w?,... w! € Oylz. If w! is followed by a read, l, in H;, then,
for all such cases, remove the actions w;, w},w}, ... w? from 8’ to form the cycle B.
Note that r,-vi%r{-. If w? is followed in 8 by some w?*! € O, and w? Z3w*!, then,
in all such cases, remove all actions w;, w}, w},...w?"! from f to form the cycle 3.

AT”PTO9, h+1 h+1

Note that r; <,, w} — w;™" and thus r,-:-’—’ﬂwi . But 3 is an extended cycle in

(O,ﬂ) and thus (O, x-E)) contains a cycle. n

6.3.1.3 Comparing PCGharachorloo with other memory models
Computation 6 on page 34 was shown to be a coherent computation, but is not
PCGharachorloo since it is not possible to form a linearization for process g that
maintains relaxed program order. Since PCGharachorloo clearly implies coherence,
PCGharachorloo is strictly stronger than coherence.

Computation 2 on page 17, which is not SC, is PCGharachorloo since <;, =
wp(2)0 wy(¥)0 wp(2)1 T5(¥)0 We(y)1 and <z, = wy(z)0 wy(y)0 wy(y)1 ry(z)0 wpy(z)1
are linearizations that maintain program order, agree on the ordering of writes to
the same object and (O, rl@)) does not contain a cycle. Clearly, any SC computation

will also be PCGharachorloo, hence SC is strictly stronger than PCGharachorloo.

?:w(y)2 w(z)0 w(z)l w(z)0 r(y)0 w(y)3 r(z)1
g: w(z)2 w(y)0 w(y)l w(z)1 r(z)0 r(y)3 r(z)1

Computation 10 is PCGharachorloo, but is not PCG, nor P-RAM-A (and thus

Computation 10 {

not P-RAM-R nor P-RAM-W). The sequences
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<t, = Wp(¥)2 we(z)2 wp(z)0 wp(z)1 wp(2)0 we(y)0 m5(y)0 we(y)1 wy(y)3 wy(2)1
Tp(2)1 and <g, = wp(y)2 we(z)2 wp(z)0 r7¢(x)0 wy(x)1 wy(2)0 we(y)0 wye(y)1 wy(y)3
T4(¥)3 wqe(2)1 r4(z)1 are linearizations that satisfy the conditions of PCGharachorloo.
Each maintains relaxed program order, and agrees on the ordering of writes to the

same object. To show that (O,Ji“;) does not contain a cycle, consider figures 6.3

and 6.4.
()2 wy(x)2 w52 _
~ ~ -
\ \ Pl
Wo(y)0 W, (x)0 w ()0 = (x)0
ww r4x)o WP(Z)O ,w)o « . ;4:)0 2 w,(2)0
J X L
w1 wp(x)1 w ()1 'l LA )’\ w7 - - w @)1
\ ~ Vs Mo 4
* * * ~J S, - *
‘ - kv\ - ~ _ - -
)3 21 2 TN __
v _ae-T ~
\ vy _.-- .
3 ol T R ran
A B

Figure 6.3: The O,rlcf) relation in Computation 10
gu
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In figure 6.3 part A there is an arrow between two actions if they are related
by part 2 of the definition of (O,E‘i)) such that arrows due to ransitive closure of
existing arrows are ommitted. In part B of figure 6.3, the added dashed arrows
connect two actions that are related by part 1 of the definition of (O,ia—i)), unless
there is some path between the two actions in the graph already. In part C of figure
6.3 arrows due to part 3 of (O,ﬁg) that are needed to show the final graph for the
relation (O, rﬁ) are added. Figure 6.4 shows a picture of the relation (O, »—’Ed)) that
is based on the linearizations <;, and <r,. In the diagram, arrows from part C of
figure 6.3 are removed if they are redundant. That is, an arrow between two actions
is removed if it can be infered by transitive closure. In the remainder of this chapter,
only the final graph of a relations is shown for other example computations.

Figure 6.4 shows that (O, vﬁ‘i)) does not contain a cycle. However, it is impossible

w,(¥)2 ><wq(x)2
W (y)0 W, (x)0

' f

0 G0 / w,(2)0

wq(y)l wp(x)l wq(z)l

' f

wp(y)3/ (2)1
()3 (@)1

Figure 6.4: The (O,ﬂ) relation in Computation 10

to build linearizations that extend program order for process g. Process g requires
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that p’s w(z)1 appears after ¢’s read of =z and that p’s w(y)3 appears before ¢’s read
of y. Hence, w(z)0 must appear between w(z)1 and r(z)1 according to ¢’s view.
Hence, Computation 10 is neither PCG, nor P-RAM-A since they require that each
process views all actions in program order.

Condition 2 of PCGharachorloo is exactly the definition of coherence (definition
4.2.2), thus any computation that is PCGharachorloo is also coherent. But compu-
tation 6 on page 34, which is coherent, is not PCGharachorloo since it is not possible
to construct a linearization for ¢ that maintains the relaxed program order. Hence,
PCGharachorloo is stronger than coherence.

Computation 3 on page 33 is PCG and P-RAM-A but is not PCGharachorloo.
In any linearization for p, w(y)l must appear before r(x)1 and in any lineariza-
tion for ¢ w(y)l must appear before r(y)1. Since w(y)l <} r(y)1 = w(z)1 <z
r(z)1"3%w(y)1 implies that w(y)1£d+r(y)1+£d)w(x)llﬁr(z)li%w(y)l, there are
no linearizations that satisfy PCGharachorloo. Hence PCGharachorloo and PCG
are incomparable and PCGharachorloo and P-RAM-A are incomparable.

Computation 5 on page 34 is P-RAM-W and P-RAM-R, but is not coherent and
hence, not PCGharachorloo. Thus PCGharachorloo is incomparable with P-RAM-W
and P-RAM-R.

Finally, Computation 8 on page 55 is not PCVax, but is PCGharachorloo since
<r, = wr(z)0 we(y)0 wp(x)l we(y)l, <1, = wr(z)0 ws(y)0 wp(z)1 we(y)l, <,
= w ()0 ws(¥)0 wy(z)l ()1 7+(¥)0 wye(y)l and <z, = w,(2)0 w,(y)0 wye(y)l
rs(¥)1 75(x)0 wy(y)1 are linearizations that satisfy PCGharachorloo. Each maintains
the relaxed program order, maintains program order on a per location basis and

——

agrees on the ordering of writes to the same location. Figure 6.5 shows the (O, 2
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relation, which clearly does not contain a cycle. Computation 9 is PCVax, but not

w(x)0 w;(y)0
rs(i)o rf(i)o
wp(x)1 w1
rr(i)l rs(i)l

Figure 6.5: The (O,IE) relation of Computation 8
gu

PCGharachorloo since it is not possible to build a linearization for p, containing all
actions by p and all write actions by ¢, that maintains the relaxed program order.

Hence, PCVax and PCGharachorloo are incomparable.

6.3.2 Two attempts to formalize at Georgia Tech

Besides developing the formal definition PCG, Ahamad et al. at Georgia Tech also
developed a formal definition of processor consistency as implemented in the DASH
machine based on Gharachorloo et al's 1990 paper [ABJ*93, GLL+90]. This same
group of people modifies this formal definition somewhat in a later paper [KNA93].

Neither of these formal definitions is equivalent to PCGharachorloo.

6.3.2.1 PCAhamad and PCKohli

To define processor consistency, both papers use a new relation, the partial program
order [KNA93] (£23, also called —%+ in the earlier paper [ABJ+93]) which is a re-
laxation on the program order similar to the relaxed program order and defined as

follows. For any computation C of system (P, J) containing set of actions O and
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Yoy, 00 € O, 0,250, iff 022805, and either
1. 01,02 are both read or both write actions, or
2. 01 is a read and o is a write action, or
3. 01,09 are actions to the same object, or
4. 3o’ such that 0 20 Z50,.

Both papers also assume that for each object z in an execution, each update of z
has a unique value. This is used when defining the semi-causality relation. Consider
any computation of system (P, J) containing the set of actions O. Let S = {<,} be
any set of sequences over the set of actions O including exactly one sequence for each
p € P. Then the relation (O,sem S)) is defined as follows: olmliig)oz iff 3¢, r € P

and dz € J such that
1. 01,02 € O|q and 0; 250, or

2. 01 € Oylr, 0 € (O,|q)|z with return value v, and 30’ € (Oy|r)|z with value v

such that o; 250 , Or
3. 01 € (Or|g)|z, 02 € Oylr, and 30’ € (Oyir)|z such that o, <, o' Z30,, or
4. Jo’ € O such that olsﬂs)o’sﬂs)ow.

Even though Kohli et al.’s [KNA93] paper is the later version of this group’s
interpretation of processor consistency as implemented in the DASH machine, it is

stated first here, because it is actually weaker than the earlier similar definition.
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Definition 6.3.8 Let O be all the actions of a computation C of the multiproces-
sor system (P,J). Then C is PCKohli if for each processor p € P there is some

linearization (O|p U Oy, <r,) such that

1. Vz € J andVq € P (O, NO|z,<.,) = (O N O|z,<,), and

semi({< P
2. (OlpU 0., ™ "8 ™) ¢ (OlpU 0w, <1,).

In the earlier paper [ABJ*¥93] another restriction to processor consistency is
added, which makes the older definition stronger. An additional relation is needed for
this alternate definition, namely the weak-order relation (—) which uses yet another
relation: the writes-before order (rib)) The writes-before order relates a read action
to the write action that is observed by the read. More formally, for any computation
C of system (P, J) containing set of actions O, where each write in O is unique, and
Yw,r € O, wr iff 3z € J such that w € Oy |z with value v and r € O,|z with
return value v. The weak-order relation is the transitive closure' of the union of the
partial program order and the writes-before order, or = = (Z3 U rﬂ)‘*‘

The definition of processor consistency as used by Ahamad et al. [ABJ*93],

becomes the following, when translated to the framework.

Definition 6.3.9 Let O be all the actions of a computation C of the multiprocessor
system (P,J). Then C is PCAhamad if

1. Vz € J there is some linearization (Olz, <r_) such that (O|z,=3) C (Olz, <r.),

and

2. Vp € P there is some linearization (O|pU Oy, <r,) such that

IFor any relation R C S x S, the transitive closure of R is {(s,s")[3k > 1,3sy,s2,...,5: € S st
3R81 RSQR ces RskRs’}
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semi({<
() (OlpU Oy, ™ =581 Py ¢ (OpU O, <v1,), and

(b) Vz € J(Oulz, <1,) = (Ouwlz,<L.), and

3. (0,=%) is cycle-free.

In the following discussion, the notation = is used to abbreviate e ), when

the set S is understood.

6.3.2.2 Comparing PCAhamad and PCKohli
Claim 6.3.10 A computation satisfies definition 6.3.8 iff it satisfies conditions 1

and 2 of definition 6.3.9.

Proof: Let C be any computation of some system (P, J) containing actions O that
satisfies definition 6.3.8 and choose any set of process linearizations, (O|pU Oy, <r,),
one for each process p € P, that satisfy definition 6.3.8. Use the method shown in the
proof of claim 4.2.3 to find the object linearizations (O|z, <;_), one for each object
z € J, that satisfy definition 4.2.1 of coherence. Hence, condition 1 of PCAhamad
is satisfied by computation C. Each (O|p U Oy, <i,) clearly also satisfies 2a of
PCAhamad, and, by the construction of each (O|z, <._), each process linearization
also satisfies 2b of PCAhamad. Hence, C satisfies conditions 1 and 2 of definition
6.3.9.

Now choose any computation C of some system (P, J) containing actions O that
satisfies conditions 1 and 2 of definition 6.3.9 and choose any set of object lineariza-
tions (O|z, <r_), one for each z € J, and any set of process linearizations (O|pUO,),
one for each p € P, that satisfy condition 1 and 2 of definition 6.3.9. Each process

linearization clearly satisfies the second condition of PCKohli. Since each process
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linearization agrees on the ordering of writes to any object z, namely in the same
order as they appear in (O|z,<[_), condition 1 of PCKohli is also satisfied by the

process linearizations. Hence C satisfies definition 6.3.8. [ |

Computation 3 on page 33 is not PCAhamad, since wg(y)1 LN ro(y)1 22 wy(z)1
LN rq(z)1 2% wq(y)1 and hence (O,+2%) contains a cycle. But Computation 3 is
PCKohli since the sequences <, = w,(y)0 we(z)0 w,(y)1 rp(y)1 wp(z)1 and <,
= we(z)0 wy(y)0 wy(z)1 T4(z)1 wy(y)l are linearizations that maintain program
order and agree on the ordering of writes to the same location. Furthermore in

semi({<L,,<L,})
—

Computation 3, the relation (O, ) = (0, %3). Thus, PCAhamad is

strictly stronger than PCKohli.

6.3.2.3 Comparing PCAhamad and PCKohli with other memory models
Any computation that is PCKohli is also coherent since each process must agree
on the ordering of writes to the same object, and program order on a per object
basis must be maintained. Thus, any linearization that satisfies definition 6.3.8 will
also satisfy definition 4.2.2 of coherence on page 17. Computation 6 on page 34
was shown to be coherent but is not PCKohli since it is not possible to construct a
linearization containing ¢’s read actions and p’s write actions that maintains partial
program order. Hence, both PCAhamad and PCKohli are strictly stronger memory
consistency models than coherence.

Computation 5 on page 34, which is P-RAM-W (and thus P-RAM-R and P-RAM-
A), is not PCKohli (and hence not PCAhamad) since it is not coherent. Computation
10 on page 73, which is neither P-RAM-A (and thus not P-RAM-W nor P-RAM-R)
nor PCG, is PCAhamad (and hence PCKohli). The sequences <;, = w,(¥)2 we(z)2
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wp(z)0 wp(z)1 wp(2)0 wy(y)0 75(1)0 we(¥)1 wy(y)3 we(2)1 rp(2)1 and <z, = wy(y)2
we(7)2 wp(z)0 774(2)0 wp(z)1 wy(2)0 wye(y)0 wy(y)1 wp(y)3 r4(y)3 wy(2)1 74(2)1 are
linearizations that satisfy the conditions of PCAhamad. The two linearizations agree
on the ordering of writes to the same location. Part D of figure 6.6 shows the relation
(0, r“—mf) pictorially. Part A of figure 6.6 shows the partial program order, which is
the first part of (O,fﬂ;). Part B adds arrows for actions which are related by
part 2 of (O, lsﬂi), unless there already is some path between the two actions, and
part C adds arrows for actions which are related by part 3 of (O,r"—‘l"-;). Part D
has arrows between actions removed, if they can be derived from transitive closure.
Both linearizations, <., and <L,,» maintain the semi-causality relation as shown in
figure 6.6, and (O,—>) is cycle-free. Hence, Computation 10 is PCAhamad. Thus,
both PCKohli and PCAhamad are incomparable with P-RAM-W, P-RAM-R and
P-RAM-A.

:w(z)0 w(z)l wy)l
:7(y)1 r(2)0
:w(z)0 w(z)1 w(v)l
: 7(v)1 r(z)0

Computation 11

n 33

Computation 11 [ABJ*93] is PCG, since the sequences <., = wp(z)0 wy(z)1
wp(y)1 wr(2)0 wr(2)1 wr(v)l, <z, = wp(x)0 wp(z)1 wp(y)1 ro(y)! wr(2)0 14(2)0
wr(2)1 we(v)1, <p.= <z, and <g,= w,;(2)0 w(2)1 w,(v)1 75(v)1 wy(z)0 75(z)0
wp(z)1 wy(y)1 are linearizations that agree on the ordering of writes to the same
object and extend program order. But any process linearization for s that con-
tains all the write actions in the computation and the two read actions by s and
maintains the partial program order must order the action r(z)0 between the writes

w(z)0 and w(z)1 by p. And, since w(z)1ZE3w(y)1, r(z)0 <z, w(z)l implies that
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wy(y)2 wy{x) wp(*y)z r/q(;)
w{x)0 w/(y)0 wp(+x)0 S . wq(+y)0
wyx)1 wiy) w,,(;)l ><{ ,wq;y)
Z)0 w1 W20, 0~ w2)1
VIS
F(¥)0 r(x)0 5(7)0 ~ r(x)0
) v ‘ 'y
W3 A% w3 7 B3
g {
5(2)1 r(z)1 r(2)1 n(z)!
B
wi(y)2 W(x)
wy(x)0 w(y)0
wp(x}1 wy)
wz)0 wdz)1
p(y)o r(x)0
9
wl¥)3 ()3
B(2)1 (71 1 4¢42 ()1
D

Figure 6.6: The (O, rsﬁ"-;) relation in Computation 10

()05 w(y)1. Similarly, the linearization for ¢ necessarily orders the action r(z)0
between the two writes w(2)0 and w(z)1 by 7, and, since w(z)1 3 w(v)1, r(z)0 &5
w(v)1. Also r(y)1Z5r(2)0 implies that r(y)15%r(2)0. Thus, r(z)0 &5 w(y)1 &
r(y)1 & r(2)0 = w(v)1. Hence, any linearizations satisfying PCKohli must order
the action r(z)0 before the action w(v)l in the process linearization for s, which

is not possible if the partial program order must be maintained. Hence Compu-
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tation 11 is neither PCkohli, nor PCAhamad. Thus PCAhamad and PCKohli are
incomparable with PCG.

Computation 8 on page 55, which is not PCVax, is PCAhamad (and thus PCK-
ohli). Consider the following linearizations <z, = wr(z)0 ws(y)0 wp(z)1 we(y)1, <r,
= w(2)0 w,(¥)0 wp()1 we®)1, <z = wr(2)0 W(¥)0 wp()1 o (2)1 T+(¥)0 we(y)1
and <1, = w-(2)0 w,(y)0 we(y)1 r5(y)1 r5(x)0 wy(z)1 and note that (0,5%) =
(0, 2%) and that (O0,—>) does not contain a cycle. The linearizations agree on
the ordering of writes to the same object and maintain the partial program order
and thus Computation 8 is PCAhamad. Computation 9 on page 56, which is PC-
Vax, is not PCKohli (and thus not PCAhamad) since it is not possible to build
a linearization for process p that orders all of p’s actions and all of ¢’s actions and
maintains partial program order. Hence, PCKohli and PCAhamad are incomparable
with PCVax.

:7(z)2 w(y)4
: w(y)3 w(z)2
:7(y)4 w(z)l
:r(z)1 w(z)2

Computation 12

w 3 Q3

In Computation 12 the linearizations <p, = wq(y)3 wr(z)1 we(z)2 ()2 wyo(y)4,
<1, = we(¥)3 W ()1 we(2)2 wp(¥)4, <z, = we(¥)3 wp(y)4 7+ (y)4 w,(2)1 we(z)2, and
<t,= We(¥)3 wp(¥)4 w-(x)1 74(z)1 wy(x)2 r5(z)2 agree on the ordering of writes
to the same object, and maintain partial program order. Furthermore, the semi-
causality relation is equivalent to the partial program order and the weak-order
relation is cycle-free. Thus Computation 12 is PCAhamad and PCKohli. But Com-
putation 12 is not PCGharachorloo. Any linearization for process p must order

wq(z)2 before rp(x)2, and hence, necessarily, wq(z)2sf-ﬁrp(a:)2. Similarly, process r
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must order the action w,(y)4 before its own action r.(y)4 in its linearization, and
hence w,(y)4r£°2>r,.(y)4. Since process s requires that all processes view w.(z)1 be-
fore w,(z)2, also wr(:r)lrﬂwq(x)z That is, w,(z)1 2o, wq(z)2 P, rp(z)2 =53¢
wp(y)4 r@) r-(y)4 "5 w.(z)1. Hence, any linearizations would cause a cycle to
appear in (O, Eﬁ)) implying that Computation 12 is not PCGharachorloo.

p:w(z)0 w(z)0 r(2)1 r(z)0 r(z)1
Computation 13 { ¢:w(z)l r(z)1 r(y)1
{ T :w(y)l w(y)2 w(z)l

Finally, Computation 13 is PCGharachorloo but is not PCKohli, and thus is not
PCAhamad. Any linearization for process ¢ that satisfies PCKohli must order 7(y)1
by q between the writes w(y)1 and w(y)2 by r. The orderings w(y)2Z3w(z)1 and
T(y)1<r,w(y)2 imply that r(y) 158 w(2)1, and w(z)1 257 (z)153r(y)1 implies that
w(x)lﬂr(y)l. Furthermore, the linearization of process p must order the write
w(z)1 by ¢ between the reads r(z)0 and r(z)1 by p. Hence, since the linearization
for p must maintain the partial program order, any linearization for p satisfying
PCAhamad must order the action r(z)1 before the action r(x)0. The action r(z)0
must be ordered before the action w(z)1 in order for the sequence to be valid. Finally,
to satisfy the relation (O, fﬂf), the linearization for p must order the action w(z)l
before w(z)1. Hence, r(z)1 must be ordered before w(z)1 which is clearly invalid.
Hence, Computation 13 is not PCAhamad nor PCKohli.

Now consider the following linearizations: <., = w,(z)0 w,(2)0 w-(y)1 w-(y)2
wr(2)1 15(2)1 15(x)0 wye(z)1 rp(z)1, and <p, = wp(z)0 wp(2)0 we(x)l re(z)1 wr(y)l
Te(¥)1 wr(¥)2 we(2)1, and < = wy(x)0 wp(2)0 wye(z)l wr(y)1 wr(y)2 we(z)1. Each

maintains the relaxed program order, maintains program order on a per object ba-

sis, and agrees on the ordering of writes to the same location. Figure 6.7 shows the
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relation (O,»—’E—)) and does not contain a cycle. Thus Computation 13 is PCGhara-

chorloo.

Wp(X)0 —" w,(2)0 we (N1

' ! '
p(x)0 \WriZ)l 1

1
We(x)1 @)

we(y)2

p(x)1

(x)1

Figure 6.7: The (O, rlc—‘#) relation in Computation 13

Hence, PCKohli and PCAhamad are incomparable with PCGharachorloo.

6.3.3 A revision of Stanford’s original attempt to define Processor Con-

sistency as implemented in the DASH machine

In 1990, Gharachorloo et al. intended to capture processor consistency as im-
plemented in the DASH machine [GLL*90]. However, in a revision to this paper
[GGH93], they correct an error in their original specifications. Computation 14
[GGH93] is an example of a computation that is allowed in the DASH system, but
is not permitted according to the formal definition PCGharachorloo .

. p:w(y)0 w(y)l w(z)l r(z)1 r(z)0
Computation 14 { g : w(2)0 w(2)1 w(z)2 r(z)2 r(y)0
Process p must view the action w,(2)1 after its read action 7(z)0 and w(y)1 "=’

w(z)l <3 r(z)1 "% r(2)0. Similarly, process ¢ must view the action w,(y)1 after
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its read action r(y)O and w(z)1 23° w(z)2 <gr(z)2 — "3 r()0. Thus, w(y)1 "=°
w(z)l <E r(z)1 25 r(z)O <z w(z)1 25 w(z)2 <Z r(z)2 2 r(y)0 <¥ w(y)lis
an extended cycle in 2%, This implies that any linearization that satisfies the first
2 conditions of PCGharachorloo will cause a cycle in (O,r@)). Hence computation
14 is not PCGharachorloo.

The example is possible due to the use of write buffers in the DASH machine.
The behaviour that is not allowed by PCGharachorloo, but is possible in the DASH
system, occurs when a processor p reads a value from its write buffer, which contains
only writes by p, before it has been serialized in p’s copy of the memory. Thus, if in
some execution and for some processor p, a processorp-write-request(z,v) a,, pre-
cedes a processor,-read-request(z), o, the u,-reply(z, v) matching a, could precede
the p,-update,(z,v) matching o, in the execution. In the DASH, it is therefore
unnecessary that all actions by p to the same location are implemented by u, in

program order to assure that the system is coherent.

6.3.3.1 Mpssg and the memory model it implements
In Mpasr a read action (read, z, A, v) is implemented by the following ordered se-

quence of events:
1. a processor,-read-request(z) to p’s copy of the memory, and

2. a matching p,-reply(z, v) from p’s copy of the memory or from p’s write buffer

to p.
A write action (write,z,v, A) is implemented by the ordered sequence of events:

1. a processor,-write-request(z,v) to u,, and
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2. a matching p,-update,(z, v) at each process ¢’s copy of the memory.

Furthermore, any execution E on Mp sy, which is a sequence of these 4 events, will
also meet all the following constraints, for all processors p, g, r, s, locations z and

values u, v, u'.

1. A read by p of r returns the value of the most recent update of u, at z,
unless the processor,-read-request follows some processor,-write-request to z
and the matching p,-reply is followed by the matching py-update, event. In
that case, the read returns the value of the latest such processor,-write-request
event (and the reply is from the write buffer). That is, for each p,-reply(z,v)
event, m,, with matching processor,-read-request, o,, if py,-update,(z,u) is
the last preceding up-update event of location = then v = u, unless processor,-
write-request(z, u) = e 5 Up-reply(z, v) £ Up-updatey(z, u) for some
(write, z, v, A). In this case, v is the value of the last processor,-write-request

to z preceding ¢, in E.

2. Each copy of the memory implements writes to the same location in the same
order. That is, if u,-update,(z, v) £, pp-update (z,u) then the matching yg

events satisfy p,-updatey(z,v) £, us-update,(z, u).

3. Read actions are received by the memory in program order. That is, for any
two processorp-read-requests, o; and oz, where 71, r; are the matching p,-reply

. . E E
events respectively , if a;—ay, then 71— 7.

4. If an action o precedes a write in program order, then all events corresponding

to o precede any update event corresponding to the write. That is, for any
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processor, event & and any processor,-write-request a,, and for all y, event(s)

m matching o and for all y,; events m,, matching oy, if aimw then mi)mw.

Note that Mgharachorico and Mpasy are very similar machines. Constraint 3 of
Mcharechorioo 1S satisfied by Mpasg, but constraint 1 of Mp4sg is different than
constraint 1 of Mgrerachorioo tO capture the fact that in Mp s a read might receive
its value from the write buffer. The effect of the added write buffer is that any
up-update,(z, v) event is unnoticed by (or invisible to) processor p in some execution
E if it occurs in E between a processor,-write-request(z, ) event and its matching
Up-update,(z,u) event. No p,-reply from location z will return that value v by
constraint 1 of Mpasy-

To simplify the proof that Mp 457 implements exactly the formal model presented
later in this section, any execution on Mp4sg is altered to an execution that blocks
on read actions but is still an execution on Mp4sg. For any execution E on MpasH,
let the altered-erecution, E’, be constructed as follows. Initially, E’ «— E. Consider
each event in E’ in turn, starting with the last event in E’ and moving back through
E' to the first event in E'. If the event being considered is a p,-reply(z,v) event,
m,, let the matching processor,-read-request(z) be a;,.. By the ordering of events
corresponding to a read in E, E' = S, oy, So, m,, S3 for some sequences S;, Ss, and
S3. Let S! be the subsequence of S, containing exactly all processor,-write-request
events and let S be the subsequence of S, containing the remaining events. Then

E’ — Sl: S%, G, My, S%’ 53'

Lemma 6.3.11 If E’ is the altered-ezecution of E, an ezecution of Mpasy, then E

and E' agree on the ordering of memory events.
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Lemma 6.3.12 If E’ is the altered-ezecution of E, an ezecution of Mpssg, then
read actions are blocking in E’. That is, each processorp-read-request is immediately

followed by its matching p,-reply event in E'.

Lemmas 6.3.11 and 6.3.12 follow immediately from the construction of an altered-

execution.

Lemma 6.3.13 If E’ is the altered-ezecution of E, an ezecution of Mpasg, then E

and E' agree on the ordering of processor, events for each processor p in MpasH.

Proof: Let a, and o] be any processor,-read-request events in £ matching,
respectively, to u,-reply events m, and m,. Let o, and o/, be any processor,-write-
request events in E matching, respectively, to u,-update, events m,, and m;, for any

processor g. Consider the following four cases:

E E' . . . .
1. If ay,—aj, then ay,—>c!, since the ordering of processor,-write-requests is

not changed during the construction of E'.

2. If a,iny;. then, by constraint 4 of MpasxH, m,.—E—>m;. By lemma 6.3.12 and

El El ’ EI ' EI
6.3.11, a,—>m,—ral—m,. Thus, o, — 0.

3. If awim,., let m, be the last p,-reply event such that aL—E)au, —E-)m’r. Then,
a{.—E—mw—E—)a,, which implies that m’,—§—>m,. During the construction of E’,
@y is moved behind m; such that there are only processor,-write-request events
between m,. and o, and by lemma 6.3.12, o, immediately precedes m, in E’.
Hence, m;.-ﬁl-)aw-ﬂ)a,—i)mr. Thus, E and E’ agree on the ordering of o, and
a,. If no m;. exists such that a’,-—E—)aw—E+m’, then a,, is not moved during the

construction of £’ and ¢, can only move to occur later in E'. Hence, awimr.
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4. If a,.—E—>aw then there are two possible sub cases. If a,.—Eém,.i)aw then
clearly a,.-ﬂm,- During the construction of E’, no processor,-write-request
event is moved back, that is, a processor,-write-request event only precedes
a pp-reply event in E’ if it did so in E. Hence, m,.i'mzw and a,—iaw. If
a,-iaw—ﬁm, then o, succeeds either m, or some other p,-reply event that

succeeds m, in E and E’. Since a,.i'nn,., a,—Eme.

Hence, E and E’ agree on the ordering of processor, events for all processors p in

MDASH- |

Lemma 6.3.14 If E' is the altered-ezecution of E, an erecution on Mpasy, then

any processor, event in E' precedes its matching memory events in E'.

Proof: By the construction of E', processor,-read-request events clearly precede the
matching p,-reply event. Consider any processor,-write-request event, . For all
processorp-read-request events, ¢, such that arimzw, the p,-reply event matching
a, precedes all p,-update, events matching o, by constraint 4 of Mpssy. Thus,
during the construction of E’, a,, is not moved ahead of any of its matching .-
update, events. Hence, any processor,-write-request event in E’ precedes all its

matching p,-update, events in E'. ]

Lemma 6.3.15 If E' is the altered-ezecution of E, an ezecution on Mpasg, then
for any processorp-write-request event, an,, with matching p,-update, event, m?,
and for any processory-read-request event, ., with matching u,-reply event, m,,

4

. E El '
if awiya,—ﬂm,—-—)mfv then a,,,—)a,——)m,i)mﬁ,.
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Proof: Bylemma 6.3.11, mri')m{;,. By lemma 6.3.14, ari’)m,. By lemma 6.3.13,
El

Oy —>Cly. n
Claim 6.3.16 If E' is the altered-ezecution of E, an ezecution of Mp,sy, then E'

is an ezecution of Mpasg-

Proof: The ordering of events corresponding to an action is satisfied by E’ by
lemma 6.3.14. Constraint 1 of Mp 455 is satisfied by E’, by lemmas 6.3.11 and 6.3.15.
Constraint 2 of Mpasg is satisfied by lemma 6.3.11. Constraints 3 and 4 of Mpasy
are satisfied by E’ by lemma 6.3.13 and 6.3.11. Hence, E’ is an execution of Mpasg.

The formal definition of the memory model implemented by Mp,sy requires a
new relation. Consider any computation of system (P, J) containing set of actions
O. Let S; = {<p} and S2 = {m—w—f} be sets of sequences over the set of actions
O. Then the relation (O,pcd»-(s—1$52)) is defined as follows: o0," dﬁi}sz)og iff Eip.e P and

Jx € J such that
1. 01,00 € O|p and 01 —=370,, Or
2. 3¢ # p € P such that o, € (Oy|qg)|z, 02 € (O;|p)|z and 0; <, 0y, or

3. 01,02 € Oy|z and olowtﬁagow, or

4. 01 € (Or|p)|z, 02 € Oy and 30’ € Oylz such that 0; <, 0" =3 0.

. cd(S1,S: -
For any cycle 8 = o0g,01,...0¢ in (O,” {51 2)), let the extended cycle § be 3 aug-
mented as follows. For every ¢ such that o,-p Cd»(—sl—isz)oiﬂ arises from part 4 of the
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definition of "L

, insert between o; and o0;4; the o’ action that is guaranteed by
part 4. Call any such o' an inserted action.

Recall the definition of (AW B), O and Omemupdates, O page 42.

tnvisiblep

Definition 6.3.17 Let O be all the actions of a computation C of the multiprocessor
system (P,J). Then C is PCDash if for each processor p € P there is some total
order (Olp & Oy, vﬂf) such that

1. (Ou, Z8) C (Oyy =), and
2. Vz € J and Vg € P (Oylz, viw?) = (Oylz, vﬁ?), and

. (Olp, =%) = (Olp, =), and

Co

4. iff w € Oy|p then wolpvii”fwow, and

. <1, = ((Olp & Ou)\(Oinvisisie, U Omemupdates, ) vi—w-f) is a linearization, and

Oy

vieu)q
ped({<p,lg€P}.,{ —|qeP})
—

6. (O, ) is cycle-free.

Abusing notation, I use <z, to denote both the linearization and the total order

relation that is inherent in the sequence.

6.3.3.2 Mpssg implements exactly PCDash

In the following discussion, for any set of actions O, any object z, any process p,
and any sequence (Olp & Ow,miw?) , let oy < op iff either (0;,00) € (Ow,"iiwf)
or (01,02) € (((Olp & Ou)\(Oinisitie, U Omemupdates,))|T> —F). When the sets S
and S, are understood, (O,ﬂ) is used to denote (O,Wf(iis 2)). Furthermore, all
results of calculations on indices are reduced modulo k + 1. The proof that Mpasy

implements exactly PCDash is very similar to the proof that Mgperecrorico implements
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exactly PCGharachorloo. The following two lemmas are used to prove that Mp sy

implements exactly PCDash.

Lemma 6.3.18 Let O be some set of actions, P some set of processes, and J some
set of objects. Let {(Olp ¥ Ow,vi—mf) | p € P} be a set of sequences satisfying
conditions 1 to 5 of definition 6.3.17, and let 8 = 09,01, - . ., 0 be any extended cycle
of B, a cycle in (O,rp—°d>). Ifdp,qe P, and 3z € J, and 3i, 0 < i < k such that

0; <p 0i+1 <7 Oit+2, then either
i cd
1. there ezists some shorter eztended cycle of (O,*—), or
2. o; <: 0i+1r:pL¢),gOi+2, or

r—prog
3. 0i = 0i41 <7 Oiyo.

——

The proof is identical to the proof of lemma 6.3.2 on page 64 with Rt replaced by

Ry

Lemma 6.3.19 Let O be some set of actions, P some set of precesses, and J some
set of objects. Let {(Olp ¥ Ow,v-iiw—f) | p € P} be a set of sequences satisfying
conditions 1 to 5 of definition 6.3.17, and let 8 = 0p, 01, - - ., 0r be any extended cycle
of 8, a cycle in (O,ﬁ‘#). If, for some i, 0 < i < k, 0; =3°0i41 —=3"0i12, then
00,01, - - - , 0, 0j43, - - - , O 1S also an eztended cycle in (O,lﬂ).
The proof is identical to the proof of lemma 6.3.3 on page 65 with E‘—i) replaced by
Ry

These preceding two lemmas are now combined to conclude that, for any shortest

extended cycle, the relation between consecutive actions in the cycle alternates.

(Recall the definition of alternating from page 66.)
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Corollary 6.3.20 Let O be some set of actions, P some set of processes, and J
some set of objects, and {(Olp & Ow,"jﬂi’) | p € P} be a set of sequences satisfying
conditions 1 to 5 of definition 6.8.17, und B = 04,04, ...,0r be any of the shortest

eztended cycle of (O, vﬂ)). Then any shortest eztended cycle of (O,bﬁd-)) alternates.
The proof is identical to the proof of corollary 6.3.4 on page 66.

Theorem 6.3.21 Mp sy implements ezactly PCDash.

The theorem follows directly from the following two lemmas.

Lemma 6.3.22 Any computation arising from an ezecution of Mpasg ts PCDash.

Proof: To show that any computation C resulting from some execution E on
Mpasg is PCDash, I use the fact that this computation also results from the altered-
execution of E, E'. I first construct the total orders (Ojp 4 O, vﬂf) by taking the
subsequence of E’ containing the processor,-write-request and y, events. I then show
that each (Olpw Ow,viiwf) satisfies PCDash.

Let E be any execution on Mpsg with resulting computation C and set of ac-
tions O and let E’ be the altered-execution of E. Recall that E’ is also an execution
on Mpasg by claim 6.3.16 and thus satisfies all the constraints of Mpasg. Further-
more, by lemmas 6.3.11, 6.3.13 and 6.3.15, C is also a computation resulting from
execution E’. Let P = {{ | processor p is in Mpasy } be a set of processes such that
the ¢** action-invocation in each p corresponds to the processor, event in E’. The
set of objects J is the set of all locations in Mpssg. For each processor p let E, be
the subsequence of E’ containing all processor,-write-request and all p, events. For

each process p € P, let (O|p ¥ O, vii”f) be the sequence of all write actions and all
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actions by process p such that the i** action in (O|pw Oy, vﬁf) corresponds with the
i** event in E,. Note that the write actions by 7 appear twice, one copy in O|f and
one in O,,. Specifically, if the i** action of (O|p & Ow,vie'—"?) is 0; and the 7** event of
E, is a u,-update event then o; € O, otherwise o; € O|p.

By constraint 4 of Mpasg, all update events by the same processor appear in
program order in E’ and, by constraint 2 of Mpasy, all updates at the same location
appear in the same order across all copies of the memory in E’. Thus conditions 1
and 2 of PCDash are satisfied by each (Ow,"i—w?). Since processor, events occur in
program order in E’, and since processor,-read-request events immediately precede
the matching u,-reply event, condition 3 is satisfied by each (O|f & Ow,ﬁ—w-f). By
lemma 6.3.14, each processor,-write-request event appears before the matching -
update, event in E’, hence, condition 4 is also satisfied by each (O|p & Ow,mﬂ"f).

Now consider each sequence L, = ((O|p ¥ Oy) \ (Oinvisisie; U Omemupdates;) vﬁf)
To show that each is a linearization, consider any r € (O,|p)|z for any process p and
any object z and let w be the last write to = to precede 7 in L,. Let o and m, be,
respectively, the processor,-read-request and p,-reply events corresponding to r and
let o, and m,, be, respectively, the processor,-write-request and u,-update, events
corresponding to w. If w € O|p then wolﬁuﬂfr implies that w3r since it has been
shown that “=% satisfies condition 3 of PCDash. Hence, awi')a,. By the choice
of w, there is no processor,-write-request to z event o/, such that %ﬁa;—’i)a,.
If aw—g-)a,—ls—'-)mr—z'-)mw, then, by constraint 1 of Mpssg, m, returns the update
value of o, and thus w and r contain the same value. If awimwi)mr then,

by the construction of v—‘ﬁ, wolﬁwwow"ﬂr. By the choice of w, there is no
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w' € (Oy|p)|x such that wowﬁﬂfwblﬁviiw—fr. Hence, there is no w’ € (Oy|p)|z such
that wowviﬂfwbwvﬁ"-fr. Furthermore, there is no w' € (O|g)|x for some § # p such
that wowviiwfw"riwf’r since such a w’ would not be in the set Ojinyisiste;- Hence, my,
is the last write to z preceding m, in E’.

If w € 0|, for some g # P, then, by construction of (O|f W Oy, "i—m?), mw-ﬂnn,.
mwi)m,.. Since w € Oinvisibie;, there is no w' € (Oy|p)|z such that wblﬁﬁiwfwvﬂfw’ow.
Furthermore, by the choice of w, there is no write by  to z whose copy from O|p
appears between w and r. Hence, there is no write by p to z, whose copy from O,
appears between w and r and there is no W € Ojnyisibie;|T such that w2y ey
Hence, there is no update of = between m,, and m, in E' and, by constraint 1 of
Mpasa, m, returns the update value of m,,. Thus, w and r contain the same value.

The remainder of this proof is identical in the proof of lemma 6.3.6 on page 67.
It is stated here for completeness.

It remains to show that (O,rﬂ) is cycle-free to establish that computation
C is PCDash. Assume for a contradiction that it is not cycle-free. Let 8 =
0p, 01, ---,0n, be any of the shortest extended cycles in (O,rfid)). By corollary
6.3.20 (and by selectively choosing which action is named oy in B) the cycle can
be written as op <z? o1 5%, <z %rﬂg <;,',’:j om =300 for some pro-
cesses Po, Do, ---,Pm—1 € P and some objects zg,zs,...zm—1 € J. For any i,j,
let u{;i be the memory event at p;’s copy of the memory, corresponding to the ac-
tion o;. Then, by construction of each (O|p W O, viﬂf), 0; <z 0i41 implies that
ﬂ;;‘g'*/‘;fl' Furthermore, if 0; == 0;+, then, by constraints 4 and 5 of Mpssg,

—prog —pro

. E r—prog T Lo T g : :
1 i+1 L T m—1
Ppey — g - Thus 0p <32 01 — 02 <3 03 — ... <p"| Om —> Op implies that
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13, Bm;o Eﬂzﬁz E%,ugz e, .. E>u§f,,_,£+#go- Thus there is a cycle in the execu-
tion E and this is clearly impossible. Hence computation C is PCDash. =

Lemma 6.3.23 Any PCDash computation is the result of some ezecution of Mpasg-

Proof: To show that all PCDash computations arise from some execution on
MeGharachortoo, 1 Will first construct an execution by merging the linearizations and
program orders of each process. I will then show that this execution satisfies all the
constraints of an execution on Mpg,,;.

Consider any PCDash computation C of system (P,J) with resulting set of
actions O. Let the processor that implements process p € P be named p and
let the objects in J be the locations in Mpasyg. Choose any set of sequences
Olp & Ow,mﬁ”-f), one for each process p, that satisfy PCDash. For all p € P,
initially L, = (OrlpU Ou, %) = o, },...0%, and P, = (Olp,=%) = a%,d},...dl,
and ip = 1. Also, initially ¢ =1 and E = A. Then the algorithm

while (V& i <= k;) do
while (3p € P such that of € L,) do
for m < 1 to n do
ConsiderAdding( 7, pn, )
end for
end while
t¢—1+1
end while

constructs the sequence E containing all processor and p; events corresponding to
the actions in O where the procedure ConsiderAdding is shown in figure 6.3.3.2.

Note that each sequence L, initially contains each read action by p and all writes

from the set O, and that L, is derived from =% rather than from <L,
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procedure ConsiderAdding( index j, process p )

if (o € L, and 3z € J such that o} € (O:|p)|z and

the last write not by p to z preceding of in (O,|pU Oy, Z2%) is no longer
in L, and the last read preceding of in program order is no longer in L,
) then
if (the processor; event corresponding to of is not in E yet) then
repeat
append to E the processor; event corresponding to a{-’p
remove af, from P,
p—ip+1
until (af,_, = of)
end if
append to E the us-reply event corresponding to og
remove o7 from L,
end if
if (o} € L, and 3z € J and 3q € P such that of € (Oylg)|z and
all events corresponding to the last action preceding of in program order

are all in E and the last action to z preceding o} in (O,|pU Oy, %), is
no longer in L,) then
if (the processor; event corresponding to o} is not in E yet) then
repeat
append to E the processor; event corresponding to aa
remove a] from P,
lg g +1
until (a;’q—l = 0f)
end if
append to E the us;-update; event corresponding to of
remove of from L,
else
ConsiderAdding(j + 1, p)
end if

Figure 6.8: Part of construction of an ezecution E on Mpasg-
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To show that F is an execution that could have occurred on Mp, 55, assume
first that this algorithm exhausts each L,. Thus, all events corresponding to actions
in O are in E since lines 2 to 9 add events corresponding to a read action (and
possibly some extra processor events) and lines 12 to 18 add events corresponding to
a write action (and possibly some extra processor events). Furthermore, all processor
events are appended to E in program order in lines 4 and 13. It is obvious that the
algorithm ensures that the processor events precede the matching memory events.
Lines 1 and 10 ensure that p; memory events to the same location are in the same
order in E as the corresponding actions are ordered in (O,, viiwf).

Each sequence (O|p® O,, "—szf) agrees on the ordering of writes from O,, to the
same location, thus updates of the same location will also agree in E across all copies
of the memory, and thus E satisfies constraint 2 of Mpssg. Line 1 of the algorithm
ensures that p;-reply events are appended to E in the same order as the correspond-
ing reads appear in (O|p W Ow,"i?—”-f), thus, by condition 2 of PCDash, F satisfies
constraint 3. Similarly, the if-statement of line 10 ensures that if 0; Z-30, and, for
some process ¢, 0; € O|g and 0, € O,lq, then all memory events corresponding to
o; are in E before any memory event corresponding to oo is appended to E, thus
constraint 5 of Mpasy is also satisfied by E.

Finally, to show that constraint 1 of Mpssy is satisfied, consider any ps-reply
event m, from location z, with matching processors-read-request event, o, and
corresponding to read action r. If m, is between some processor;-write-request event
of z and its matching us;-update; event in E, let o, be the last processors-write-
request event to z preceding m, in E. Let m,, be the ps-update; event matching o,

and let w be the write action corresponding to ay,. Since aw—E—->m,, w%r, by the
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construction of £. Thus, by condition 3 of PCDash, wo|pvie—wfr and, by the choice
of a,, there is no w' € (Oy|p)|z such that wou,u—i—e'—”fw’o[p”iﬂfr. If wo[p"—ie—wfr"i—wfwow,
then, since any write by ¢ # p to z between wolp and 7 is in the set Oinvisible, and
any write by p to = between w and r is in the set Omemupdates,, W is the last write to
z preceding 7 in ((O}p® 0,) \ (Onvisibie, U Omemupdates,)s —F). I wop —Fwo, ~%r,
then, by line 1 of the algorithm, and since m,.-£+mw, for any process ¢ # p, there is
no w’' € (Oylg)|x such that wowviw-fw’owviﬂfr and w is the last write to z preceding
rin ((Olp & Oy) \ (Oinvisiste, U Ommupm&,p),“ﬂf). Thus, in either case, w and r
contain the same value and m, returns the value of a,,, satisfying constraint 1 of
PCDash.

If no such a,, exists, then let m,, be the last us;-update event of z preceding m,
in E with matching processor;-write-request event o, and corresponding to write
action w. By construction of E, wowuiwfr and there is no w' € O, such that
wowvﬂfw’ow"ﬁ"-fr. If w € O|q for some process g # p, then clearly w is also the last
write to z preceding 7 in ((O|p & Ou) \ (Oinvisiste, U Omemupdamp),vii”f), which is a
linearization. Thus 7 and w contain the same value and m, returns the update value
of my,. If w € Olp then wgy, is the last write from O|p that precedes wo,, in vieve
and since all writes not by p between woj, and wo,, are in Ojnyisitte,, W is also the
last write to z preceding r in ((O|p® Ouw) \ (Oinvisitte, U Omupdamp),mﬁf). Hence,
w and r contain the same values and m, returns the value that m,, wrote. Hence,
constraint 1 of Mp sy is satisfied.

The remainder of this proof is identical in the proof of lemma 6.3.7 on page 68,

except case 2 below is changed slightly. It is stated here for completeness.
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So it remains to verify that each L, is exhausted by the algorithm and that all
events are added to E. Assume instead that at some point in the construction of E,
for some m, the sequences Ly, Ly,,..., Ly, are not exhausted, and the algorithm
is in the while loop of line 22 infinitely. For any 1 < ¢ < m, consider any action
0 € L,,. Then o cannot be removed from L,, (and the pu,, memory event cannot be
added to E) by one of the following 6 cases for some object z € J and some process

Pj» Pk, Wwhere 1 < 5,k < m:

P

. 0 € O, and 3¢’ € O, such that 0" 3% and o' € L,,, or
2. 0 € Or|z and 30’ € (Oyulpj)lz, pj # pi, such that o <%, o0 and o € Ly,, or
3. 0 € Oylp; and 30’ € O,|p; such that 0" 3% and o € Ly, or

4. 0 € Oylp; and 30’ € O,|p; such that o’ = 5% and o' € L,,, or

w

. 0 € Oy|z and 30’ € (O;|p;)|z such that o’ <}, 0 and o' € Ly,, or
6. 0 € Oy|z and 30’ € Oy|z such that o' <3, o and o' € Ly,.

Thus the actions in the sequences L,, to L, form cycles, where each link is one of
the above 6 cases. Notice that in the cases 1 to 4 and 6, o250 Thus, if any cycle
does not contain a case 5 link, this means that there is a cycle in (O,rﬂ)), which
would imply that C is not PCDash. Hence, at least one of the links is due to case 5.
Examine any cycle 8 = o0g, 01, . . .0r with links of the above cases. I will show that
removing some actions from (3 results in an extended cycle of (O,:E)). Choose any
case 5 link in 8 and call the write action of the link w and let  be the read to the

same object z of the link. Thus, for some process p;, 7 <7, w and r € Ly,. Let Hy
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be the sequence starting with the action w and followed by the sequence of actions
following w in G, such that each action is from L,,, and such that each action is
related to the next by (O,+2 ) Let H, start with the action 04, where o; is the
last action of H;, followed by the sequence of actions that follows 0;4; in 3 such that
all actions of Hs are from the same L, sequence and each is related to its successor
by (O,ﬂ). Continue building these sequences, until all actions of 3 are in some
sequence, resulting in the sequences H; to H; for some > 0. Without loss of
generality, let the sequences starting with a write that is the second action in a case
5 link be H; to H; for some | > 1 and let the remaining sequences be H;, to Hy,.
For any 1 < i <[, let the first action of any sequence H; be named w; € Oylz
for some object z, and for some process p;, w; € L,,. There must be some action
T; € (Or|p;)|z such that r; <p, wi since w; is part of a case 5 link. Note that r; must
be related to its predecessor in 8 by (O, = Cd) If H; is of length 1, then w; is the
first action (the o’ action) of a case 4 link, and thus 3w! € O,, such that w;" =5 w!.
If o; is the action immediately following w] in 8 then w;] r—di)ok since this cannot be a
case 5 link. Hence, r; <7, wi = r—ci)ok By part 4 of (O,rp—>), rp—'ic—d>w§ and thus
okﬂriﬂwgﬂo,; and w; is an inserted action of (O,rﬂ)). If w; is immediately
followed by some read action 7{ , then w; <7 r; and r; € (O,|p;)|z . Since r; and
v} are by the same process, 2y r’ and thus r,r—>r Remove all these w; write
actions from 8 to form the cycle 3'. If the action immediately following w; is some
write action w} and if w; =37 wj, then r,-nﬂwg. Hence, w; is an inserted action of
(0, lp—>). (Note that w} must be related to its successor in 8 and S’ by (O,»ﬁd))).

If w; is immediately followed by some write action w} and w; <;’j w}, then also,

T <;J. w;. Such a write must be followed by a sequence of zero or more writes, all
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related only because they are to the same object, but must finally be followed by
either a read or another write in the relaxed program order, since the sequence is of
finite length and can only be ended through a link using the relaxed program order.
Thus r; <§, wi <3, wi <j, w} <, wf <} ... <g wh, thatis, r; <Z, w} for some
h > 0 and some w}, w?,...w} € Oylz. If wh is followed by a read, 7/, in H;, then,
for all such cases, remove the actions w;, w!, w},...w? from 8’ to form the cycle 5.
Note that ra25r!. If w is followed in 8 by some w*! € O,, and wF" =Z5%w ! then,
in all such cases, remove all actions w;, w!, wl,...w?! from B to form the cycle 3.
RT—PTOS 4l

Note that r; <,, w239+ and thus rp25wi+!. But 3 is an extended cycle in
Pi ? 1 1

(O, ﬂ) and thus (O,'E)) contains a cycle. [ |

Processor Consistency as implemented in the DASH machine is described again
in Gharachorloo’s PhD thesis [Gha95]. The definition is similar to the two previous
papers combined [GLL*¥90, GGH93|, but uses different terminology and is ambigu-
ous. Gharachorloo states, for example, that read actions appear atomic. This might
imply that read actions are blocking. He also uses the picture in figure 6.9 to repre-
sent a machine that implements PCDash. Each processor in the machine has its own
copy of the memory and a write buffer. The picture suggests that a processor up-
dates its own copy of the memory before broadcasting the update to other processes.

This requirement is not met by the definition of PCDash.

6.3.3.3 Comparing PCGharachorloo with other memory models
Computation 6 on page 34 was shown to be a coherent computation, but is not
PCDash since it is not possible to form a linearization for process ¢ that maintains

program order with respect to the two reads by ¢g. Combining this with the following
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| | SB,| L{ SB, L | SBy

Ml M2 Mn

| - |

Figure 6.9: A machine that implements the DASH’s processor consistency [Gha95]

claim, we have that PCDash is strictly stronger than coherence. The proof of the

claim is very similar to the proof of claim 6.2.5 on page 57.
Claim 6.3.24 Any computation that is PCDash is also Coherent.

Proof: Let C be any PCDash computation on system (P, J) with set of actions
O. Take any set of sequences (Olp & Ow,v—iﬂ), one for each p € P, that satisfy
definition 6.3.17 on page 93 to build the object sequences Sx, one for each =z € J,
that contain all the actions to z in O. Initially, S. (Ou,l:z:, Z=%%) for any process p.
(By condition 2 of PCDash, S; will be the same sequence, independent of the process
p chosen). Now, for each z € J and each p € P, let SE = ((Olp ¥ Ou) \ (Oinvisisle, U
Ommupdamp),"ii"f) = Rg?,wi”, R{?, w3, R5%, ..., wi®, RyP, where each wi'” is a
write action and each R7” is a sequence of read actions. Note that each write action
n S? also appears in S; (but not vice versa), and that these write actions appear
in the same order in S; and S?. For each 0 < ¢ < k,, insert, in order, R into S,
directly behind w* and insert R” into S;, in order, before the first action of S;.
Clearly, each S; is a linearization. To show that each S, also maintains program
order, consider any two actions 0,0, € (O|p)|z such that 0,530,. If 01,0, € Oy,
then by condition 1 of PCDash, 0, precedes o in S;. If 01,02 € O, then there are

2 possible cases:
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1. If 0,,0, € R{" for some index ¢ then, by condition 3 of PCDash, o, precedes

0, in Sz, otherwise

2. ifo, € RY” and 0, € R}”®, for some indices i and j, then necessarily wf? —$w?™.

Thus w;*? precedes w}” in S; and by construction of S;, o, precedes oq in S,.

If o € Oy and 02 € Oy, let 0o € RIP. If 0; = w{"® then o, precedes oz in S;
by construction of S;. Otherwise, if wi? € O|p then by condition 3 of PCDash,
w?PT%0,. Since wi? is the last write to = by p to precede 0, and since 0; =3 0o,
0173wf?. Hence o0; precedes wi” in S, and by construction of S;, w®” precedes
02 in S;. If wi? € Olq for some process ¢ # p then olo[pvi—ewfwf”’”ia—"?oz by con-
dition 4 of PCDash and because w? is the last write preceding 0, in < L,- Thus,
01<r,w;?<r,09. Since <., and S; agree on the ordering of writes, o; precedes wi”
in S; and thus o, precedes o, in S;.

Finally, consider the case when 0; € O, and 0, € O,,. Since, olp—rﬂoz, by condition
3 of PCDash, olvia-ffmm , and by condition 4 of PCDash, olu—ii"fozolpv—'ﬁfo%w. Let
o1 € Ri?. If wi? € Olp then wfo":’p"i—wfolvi—wfozowvi—mfogow and wi?<;,00<r,02-
Since <., and S; agree on the ordering of writes to the same location, w]”” precedes

02 in Sz, and by the construction of S;, o; precedes o, in S;.

Hence, each S; is a linearization that satisfies definition 4.2.2 on page 17. [

Computation 14 is PCDash but is not PCVax. Notice that none of the reads
by p are in the set Ocscne, and none of the reads by g are in the set Oche,, since
they are not preceded by other reads to the same object. Thus, by condition 5 of
PCVax, w(x)lowviwfr(x)l and w(x)zow"ic-'f?r(x)z Furthermore, by condition 3 of

PCVax, both (Olp¥ Oy, m—ezf) and (O|q¥ Oy, vﬂf) must agree on the ordering of all
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writes from the set O,,. If w(:z:)low"iiwfw(a:)Qow and w(x)lowviffw(:r)Zow then, by

condition 1 of PCVax, w(y)O"iwfw(y)lviwfw(x)lﬁwfw(z)fiw?r(x)z By condition
2 of PCVax, r(x)2"iiw$’r(y)0. Hence, w(y)O"ii”fw(y)lvie‘—"fr(y)O. This clearly does
not satisfy condition 6 of PCVax. If w(x)QOw"iﬂfw(x)low and w(x)?ow"ieffw(x)low
then, by a similar argument, w(z)O"ii"fw(z)l"iﬂfr(z)O, which, similarly, does not
satisfy condition 6 of PCVax. Hence, Computation 14 is not PCVax.

Now consider the following sequences: i w(y)0ojp w(y)00, w(¥)lop w(y)lo,
w(z)lop r(z)1 w(2)0 r(2)0 w(2)l w(z)2 w(z)le,, and i w(z)00}q w(z)00,
w(z)log w(z)lo, w(z)20p w(z)20, r(z)2 w(y)0 r(y)0 w(y)l w(z)l. They agree
on the ordering of writes to the same object from the set O, and all writes from
O, maintain program order. Each sequence maintains the relaxed program order
and maintains program order with respect to actions to the same object. For each
write, the copy from the process set appears before the copy from O,. Finally,
((Olp & Ou) \ (Osuvisisiey U Omemupdates,), =) = w(y)0 w(y)1 w(z)1 r(@)1 w(z)0
r(2)0 w(2)1 w(z)2 and ((Olg¥ Ou) \ (Oinvisitie, U Omemupdates,)s —F) = w(2)0 w(z)1
w(z)2 r(z)2 w(y)0 r(y)0 w(y)1 w(z)1 are linearizations. The relation (O, vﬁ‘#), which
is shown in figure 6.10, does not contain a cycle. Hence, computation 14 is PCDash.

Wo(¥)0 T2 wp(y)1 — wp(x)1

p(x)1 (z)0

We(Z)0 = wy(z)1 — wy(x)2 I((x)2 (y)0

Figure 6.10: The (O,lﬂd)) relation of Computation 14
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Computation 14 and the following claim show that PCVax is a stronger memory

consistency model than PCDash.
Claim 6.3.25 Any PCVaz computation is PCDash.

Proof: Consider any PCVax computation C containing set of actions O of system
(P,J) and choose any set of sequences (O|p & Ow,"iiwf), one for each process in P,
that satisfies the definition of PCVax (page 42). It can easily be verified that each
(O|pwOy, miwf) satisfies conditions 1 to 5 of PCDash. To show that (O, nﬂdr) does not
contain a cycle, one can build one total order of all actions in the system, such that
each write occurs twice, (OWO,, ﬂ) The total order (OW6O,,, M) will be a merge
of all the sequences (OlpWO,, "ﬂf) Initially, ey (Ow, viw—f) = wy, Wy, ..., W for
any process p and some k > 0. By condition 3 of PCVax, Y% isa subsequence of each
(Olq & Oy, "—f—mfi'). Thus, for all processes ¢, there are some sequences Sj, S7, ..., S7,
such that (O|qu Ow,"iiwf) = S§, w1, SY,ws, 53, ..., S}, wg. Insert each Sy into riey
anywhere between w;_; and w;.

Consider any 0y, 02 € O such that olnﬁd)m. There are four possible cases.

1. If, for some process p € P, 01,0, € Olp and 0, 2="0,, then, by condition 2 of

PCVax, (01,0:) € (O, %), otherwise

2. if 3p,q € P, where p # ¢, and 3z € J such that o, € (Oylg)|z, 02 € (O:|p)lz
and 0;<r,0; then olv—iffoz, and, by construction of (O & Oy, L)Y, 012K 0y,

otherwise

3. if 3p € P and 3z € J such that 0,, 0, € Oy, and olowvii"fozow then, by condition

1 of PCVax, 0y, ﬂozow, otherwise
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4. if for some z € J and some p € P, o; € (O,|p)|z, 02 € Oy|z and 30’ € O, such
that 01<Lpo’r1";gog, then, by conditions 1 and 5 of PCVax, olvie—w-fo’ow and,
by condition 1 of PCVax, o’ow"i—ew-foz. Thus, by construction of (O & O, "—iﬁi),
0128 o' o, .

Hence, in all cases, olﬂ@. Since (O & Oy, ﬁﬂ) is a total order, (O,ﬂ) does not

contain a cycle. u

Computation 9 on page 56 was shown not to be PCGharachorloo, but is PC-
Dash since it is PCVax. The following claim shows that PCGharachorloo is strictly

stronger than PCDash.
Claim 6.3.26 Any PCGharachorloo computation is PCDash.

Proof: Consider any PCGharachorloo computation C with resulting set of actions
O on system (P, J). Choose any set of linearizations, containing exactly one lineariza-
tion for each process in P, that satisfies the definition of PCGharachorloo (page 63).
Initially, for each process p, i (OlpU Ou, <t,)- To construct (O|p 8 Oy, vieﬂf),
let the writes that are already in " be the writes from O,, and add each write by p
from O|p such that it immediately follows the action from (O|p) that it immediately
follows in (O|p, =%). Condition 1 of PCDash is satisfied by condition 1 of PCGhara-
chorloo. Condition 2 of PCDash is satisfied by condition 2b of PCGharachorloo. In
(Olp, miwf) the read actions are in program order by condition 1 of PCGharachorloo.
Since the write actions are inserted in program order, (O|p, vlwf) satisfies condition
3 of PCDash.

Assume, to reach a contradiction, that condition 4 of PCDash is not satisfied by

(Olp @ Oy, viiwf’) for some process p. Consider the first write by p from O,,, w, such
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that wowvii"fwo[p. If, for some r € O,|p, w immediately follows r in (O|p, ==3), then
<, w by condition 1 of PCGharachorloo. Thus, by construction of (O|p&iO,, "i—ew-f),
rvi—mfwolp"ie—wfwow, contradicting that wow"iﬂfwmp. If, for some w’ € Oylp, w imme-
diately follows w’ in (O|p, ©3), then w'< ¢, w by condition 1 of PCGharachorloo. By
the choice of w, w’OIPviiw-fw'ow and by construction of (O|pt# O,, viewp), w’owvi—ewfwow
and wo), immediately follows wg,, in (Olp & Ow,via—"f). Hence, wolp"jﬂfwow, con-
tradicting that wowvﬂfwolp. Hence, each (Olp W Ow,mﬂf) satisfies condition 4 of
PCDash.

To show that condition 5 of PCDash is satisfied, for each p € P, let L, =
((Olp® Oy) \ (Oinvisiste, Y Ommu,,dat,sp),"i—ew-f). Consider any r € (O, |p)|z for some
object £ and some process p and let w € (O,|z) be the last write to = preceding
rin L,. If w € O|p then wo[p”-ifﬁfr implies that wZ=3r. Hence, by condition 2 of
PCGharachorloo, w<,,r and thus wolpv—if-fwowviﬂfr. By the choice of w, there is
no w' € (Oylp)|z such that wolpvi—ew-fw'om"i—w-fr and hence, no w’' € (Oyulp)|z such
that wowvii"fw'ow”ie'—?r. This also implies that there is no w’ € (Oylg)|z such that
wowvi—mfw'vi—mfr, since such a w' & Oinvisisie,- Hence, there is no w’ € Oylz such
that w<;,w'<,,r and w is the last write to z preceding r in <,,. Hence, w and r
contain the same value.

If w € Olq for some g # p, then thereis no w’ € (Oy|p)|z such that wviiw-fw’owvﬁuf T
by the choice of w. Furthermore, there is no w’ such that wviﬂfw’owuiﬂfr, since this
would imply that wblpviiwiwvfw—fwbw and w € Oinyisitte, 2nd w could not be the last
write to = to precede r in L,. Furthermore, by a similar argument, there is no write,

view view, .
w’, to z by some process s # p such that w—w'—r, since w’ ¢ Oinvisitle,- Hence,
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w is the last write to z preceding r in <;, and w and r contain the same value.
Finally, since (Oy, 22¥) = (Ouw,<1,), (0,%5) C (0,23). Thus, (0,23) is

cycle-free by condition 3 of PCGharachorloo. =

Since SC is stronger than PCGharachorloo, SC is also strictly stronger than
PCDash.

Computation 10 on page 73 is PCDash since it was shown to be PCGharachorloo,
but is not PCG, nor P-RAM-A (and thus not P-RAM-R nor P-RAM-W).

Computation 3 on page 33 is PCG and P-RAM-A but is not PCDash. In any
sequence for p, w(y)1 must appear before r(z)1 and in any sequence for ¢ w(y)1 must
appear before r(y)1. Since w(y)l <} r(y)1 w(z)1 <z r(z)1 % (y)1 implies
that w(y)lipid)r(y)lrﬂciw(z)lr—’ﬁr(z)lr—p—cfi-)w(y)l, there are no sequences that satisfy
PCDash. Hence PCDash and PCG are incomparable and PCDash and P-RAM-A
are incomparable.

Computation 5 is P-RAM-W and P-RAM-R, but is not coherent and hence, not
PCDash. Thus, PCDash is incomparable with P-RAM-W and P-RAM-R.

Computation 12 on page 84 was shown to be PCAhamad, but is not PCDash.
Any sequence for process p must order wy(z)2 before 7,(z)2, and hence, necessarily,
wq(a:)2rﬂ)rp(z)2. Similarly, process r must order the action w,(y)4 before its own
action r.(y)4 in its sequence, and hence w,,(y)4»’3-°5>r,.(y)4. Since process s requires
that all processes view w.(z)1 before w,(z)2, also wr(:r)lr—p—cg)wq(:cﬁ and wr(z)1 LicY
we(x)2 i ()2 "7 wy(y)d 2 r(y)4 "53¢ w,.(z)1. Hence, any sequences
satisfying conditions 1 to 6 of PCDash would cause a cycle to appear in (O,ﬂ)

implying that Computation 12 is not PCDash.
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Finally, Computation 13 on page 85 was shown not to be PCKohli (and hence
not PCAhamad), but is PCDash since it is PCGharachorloo. Hence, PCKohli and
PCAhamad are incomparable with PCDash.
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Chapter 7

Summary and Concluding Remarks

This thesis provides a framework that facilitates the description, analysis and com-
parison of memory consistency models; gives an overview of two standard memory
consistency models, sequential consistency and coherence; and focuses on two com-
monly used terms that have various interpretations, pipelined RAM and processor
consistency.

The pipelined RAM machine is defined ambiguously by Lipton and Sandberg
[LS88]. Ahamad et al. give a formal definition of the memory model that one possible
interpretation of the machine implements [ABJ*93]. This thesis presents a precise
description of this interpretation of the machine and proves that Ahamad et al.’s
definition does indeed capture that machine. Mosberger describes a second possible
interpretation of the machine [Mos93]. The precise description of this machine is
presented together with the formal definition of the memory model implemented.
Furthermore, a third possible interpretation is presented, with the precise description
of the machine and the formal definition of the memory consistency model that it
implements.

The other memory consistency model, processor consistency, has many more in-
terpretations, and some of them are presented in this thesis. There is one formal
interpretation of Goodman’s original definition [Goo89] (PCG) [ABJ*+93, KNA93]
and there are two machines that implement a memory model called processor consis-

tency. Both machines are defined ambiguously [FKH87, GLL*90, GGH93, Gha95).
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For the VAX 8800, one possible interpretation is presented in this thesis, stating
the assumption made, with the precise machine description (M 4x) and the formal
definition of the memory model that is implemented (PCVax).

Processor consistency as implemented in Stanford’s DASH machine was originally
presented and described in 1990 [GLL*90] by Gharachorloo et al. (Mgharachorioo)-
This thesis shows that Ahamad et al.’s formal definitions of the memory model of
processor consistency as implemented in the DASH, based on this early work, (PC-
Ahamad and PCKohli) [ABJ*93, KNA93] do not accurately capture Mgharachorioo-
Furthermore, this thesis supplies a precise definition of Mgharachorico 2nd a formal
definition of the memory model implemented (PCGharachorloo).

In 1993, Gharachorloo et al. presented a correction to their original description
of processor consistency as implemented in the DASH machine [GGH93]. A precise
description of this machine (Mpasg) is presented in this thesis with the formal
definition of the memory model that it implements (PCDash). This machine is
described again later using different terminology [Gha95]. Some possibly different
interpretation of this new description of processor consistency as implemented in the
DASH is discussed.

Figure 7.1 summarizes the models described in this thesis and their relationships.
An arrow from memory consistency model A to another memory model B, indicates
that any system satisfying the constraints of model A will also satisfy the constraints
of model B; that is, A is a stronger memory model than B.

Table 7 summarizes the relationships between the computations and models used
throughout this thesis.

This thesis illustrates clearly the need for a unifying formal framework to describe



memory consistency models, such as the framework used in this thesis.

However, the framework still has a notable weakness. Each machine in this thesis
has a set of constraints that describes the possible executions on the machine. From
the machine description, it is generally clear that the machine does indeed satisfy
these constraints. However, it is possible that some execution satisfies the constraints
of the precise description of the machine, but is not actually possible on the machine
itself. T know of no way to verify that the constraints are sufficient to describe any
execution on a machine.

Ongoing research, which uses the formal definitions of memory consistency mod-
els such as presented in this thesis, is developing basic tools such as mutual ex-
clusion, using a minimum of synchronization constructs for various weak memory
consistency models. Future research that could benefit from the work in this thesis
includes (semi) automated verification that a machine implements a particular mem-
ory consistency model, that two memory consistency models are equivalent or that an
algorithm behaves as required when implemented on a multiprocessor machine with
a particular memory consistency model. CCS’s workbench, which is a verification

tool, could be considered as a possible tool for such automated verification.
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SC | coherence P-RAM- PC
______I— [A T R ] W | G | Vax | Gharachorloo | Abamad | KobE | Dash
Computation L | v vivivivy] Vv v v v
Computation 2 v VIiVIiVIVE Y v v v v

Computation 3 v v Vv v
Computation 4 viv

Computation 5 viviv

Computation 6 v

Computation 7 v Viviv

Computation 8 N VIiVvIVvIv v Vv Vi v
Computation 9 Vv v v
Computation 10 v Vi v Vv v v
Computation 11 v vViviviv

Computation 12 v ANARARERY v v
Computation 13 Vv VIiviviv v v
Computation 14 v viviv v

Table 7.1: Model-computation relationships
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