
THE UNIVERSITY OF CALGARY 

Deformation Based Modelling 

BY 

Anja Haman 

A THESIS 

SUBMITTED TO THE FACULT'V OF GRADUATE STUDIES 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF MASTER OF SCIENCE 

DEPARTMENT OF COMPUTER SCIENCE 

CALGARY, ALBERTA 

OCTOBER, 1991 

© Anja Haman 1991 



1+1 
National Library 
of Canada 

Bibliothèque nationale 
du Canada 

Canadian Theses Service 

Ottawa. Canada 
KIA 0N4 

Service des thes canadiennes 

The author has granted an irrevocable non-
exclusive licence allowing the National Ubrasy 
of Canada to reproduce, loan, dtstiibute or sell 
copies of his/her thesis by any means and in 
any form or format, making this thesis available 
to interested persons. 

The author retains ownership of the copyright 
in his/her thesis. Neither the thesis nor 
substantial extracts from it may be printed or 
otherwise reproduced without hisher per-
mission. 

Canacta 

ISBN 

L'auteur a accordé une licence irrevocable, et 
non exclusive permettant a la Bibtiothéque 
naflónale du Canada de reproduire, préter, 
distribuer ou vendre des copies de sa these 
de quelque manière et sous quelque forme 
que ce soit pour mettre des exemptaires de 
cette these a la disposition des personnes 
intéressées. 

L'auteur conserve la proptiété du droit d'auteur 
qul protege sa these. Ni La these ni des extraits 
substantiels do celle-ci ne doivent être 
imprimés ou autrement reproduits sans son 
autorisation. 

'-315--75221-1 



THE UNIVERSITY OF CALGARY 

FACULTY OF GRADUATE STUDIES 

The undersigned certify that they have read, and recommend to the Faculty of 

Graduate Studies for acceptance, a thesis entitled, "Deformation Based Modelling," 

submitted by Anja Haman in partial fulfillment of the requirements for the degree 

of Master of Science. 

Date  October 29, 1991 

11 

L• 
Dr. Brian Wyvl, Supervisor 
Computer Science 

Dr. lati \Vittcii 
Interim Supervisor 
Computer Science 

Dr. J9n Rokne 
Headof Department 
Computer Science 

Dr. Bruce MacDonald 
ComputççSç1'nce 

'r. Doug Norrie 
Mechanical Engineering 



Abstract 

Providing control over objects' shapes is a central problem—perhaps the central 

problem—in modelling for computer graphics. Many systems give users access to 

the underlying representation of surfaces to allow them to define and adjust the 

shapes they want. This has led to a wide variety of surface types, each requiring 

software specific to its representation. A different approach is to control shape by 

moulding predefined surfaces. 

This thesis studies deformation based modelling, a surface-independent way of 

allowing users to deform objects to control their shape. Barr operators, free form 

deformation, and extended free form deformation are three different techniques that 

provide this style of shape control. Each is described, and the three are compared 

in terms of the flexibility they offer the user for creating new shapes. They have 

been implemented in a testbed system, named GrtooK, which uses superquadric 

surfaces as primitives. A new method that combines Barr operators and free form 

deformation extends previous-work by permitting surfaces to be twisted and tapered 

along curves. 

To assess the viability of deformation based modelling, GROOK is compared to 

five existing systems that represent the state of the art in shape control. It is demon-

strated that GROOK matches and extends most of the operations provided by these 

systems. 
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Chapter 1 

Introduction 

Computer graphics is the science of creating images with a computer. Within that 

broad definition lie many sub-categories. The field has developed in response to a 

variety of demands for the pictorial display of information. Two-dimensional graphics 

is used for business applications to display charts and graphs, by animation stu-

dios to aid hand animators with traditional animation methods, and by designers 

in general—such as graphic artists, architects, and surveyors. Further applications 

can be found in computer vision, document preparation, and numerous other areas. 

Three-dimensional graphics opened the door for new techniques in fields such as 

medicine, physics, and engineering. For example, complex image synthesis is now 

used by physicians, fluid dynamics can be studied via computer animated simu-

lations, and mathematical functions can be depicted to give mathematicians and 

engineers a better understanding of the complex functions with which they deal. 

The automotive and ship building industries have integrated computer aided design 

and manufacturing systems into their design processes. 

Three dimensional graphics has been used as a tool for artists in graphic design, 

advertising, and the film industry. These applications differ from many of the others. 

because the model being displayed does not need to represent physical reality. Since 

the image is the final product, many constraints needed for computer-aided design 

applications can be relaxed. This lack of constraints in the software usually places 

an extra burden on the designer, but allows a wider range of images to be displayed. 

1 
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Modelling systems provide the tools for designers to create three dimensional 

scenes which are then converted to two dimensional images for display. Current 

modelling systems require: 

• a mathematical representation to describe the objects being modelled; 

• a set of operations for manipulating the objects so represented; 

• a user interface which allows the designer to create the desired model. 

The model often contains additional, application dependent, information about the 

object to be stored. Operations for manipulating the model generally consist of 

transformations which reposition and reorient it in three dimensions. Primitives are 

the surfaces that the model offers as its most basic form. 

Most early systems used mathematically simple primitives with basic affine trans-

formations such as translaiion, rotation, scaling, shearing, and reflection. As the 

need for more extensive shape definition became apparent, research focused on new 

primitives. Large systems integrating several different representations have been 

developed to provide designers with a variety of shapes; however, the complexities 

of data conversion between model formats can be formidable. The introduction of 

more complex primitives (as a result of faster computers and increased research in 

the area) allows a wider class of objects to be modelled. This expansion, however, is 

not without cost. As functions become more sophisticated, the software to process 

them becomes more intricate and system response time increases. 

Another approach to modelling is to shift emphasis from the primitives to the 

manipulation techniques used to alter them. Altering the shape of a predefined 

primitive is referred to as deformation. 
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1.1 Thesis goals 

The aim of this thesis is to demonstrate that deformation based modelling is a viable 

modelling technique. Specifically, it is shown that by using a simple set of primitives 

that can be deformed in a multitude of ways, the designer is able to describe a 

large number of shapes. The primitives used, for this research are superquadric 

surfaces, which are parametric extensions to quadric surfaces [BarSi]. These are 

manipulated by three different deformation techniques: Barr operators [Bar84], free 

form deformation [SF86], and extended free form deformation [Coq9O]. In the course 

of comparing these three techniques, it became evident that, in combination, they 

provide a very useful modelling system. Thus the techniques are discussed both in 

isolation and in combination. 

1.2 Computer graphics methodology 

The process used to create and display computer generated images depends on the 

application. In general, however, three stages can be identified: modelling, rendering, 

and animating. 

Modelling is the creation and management of the underlying framework from 

which an image can be made. This framework is mathematically based, consisting 

of three-dimensional geometric objects plus any related information necessary to the 

application (such as colour specifications, normal vector information, object inter-

connectivity)-

Rendering is the display of the model as a two dimensional image. Several ren-

dering techniques are available, providing images of different quality. Wire frame 
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representations are useful for displaying intermediate images of the model while it is 

being designed. Hidden line and surface calculations led the way to realistic colour 

images created with more complex rendering algorithms such as ray tracing [Gla89] 

and radiosity [FvDFH9O]. Today, rendering methods can produce realistic images 

with various light attributes, shadows, haze, transparency, textures, and many other 

useful features. 

Animating is creating the illusion of movement by displaying slightly different 

rendered images in rapid succession. Objects in the image can change their position, 

orientation, colour, shape, texture or any other attribute of the model. Lighting and 

camera changes can also be used to create the illusion of change over time [FvDFH9O]. 

Although computer animation is used by the entertainment industry [Las87], it is 

also an important tool in other areas such as simulation [MTT91]. 

When creating a modelling system, the rendering and, perhaps, animating phases 

must be considered in the design. The rendering phase receives information about 

the image from the model. Different rendering algorithms use different information, 

but most use surface normals and tangents (for lighting calculations), and surface 

attributes such as colour and transparency. This information is needed for each 

object in the scene, and is calculated many times during the execution of the renderer. 

The modeller, then, must not only contain the information needed by the renderer, 

but also provide efficient access to it. The mathematical representation chosen for 

the model will greatly affect the information the modeller is able to provide, and how 

quickly it is able to retrieve it. The modelling information required for animation is 

discussed in [All88], but is not reviewed here because animation is not addressed by 

this thesis. 
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1.3 Modelling 

There is a great abundance of modelling techniques. As different applications for 

computer graphics are discovered, new model descriptions arise. Allan [All88] pro-

vides a taxonomy of common techniques, and summarises many of them. This thesis 

addresses three deformation techniques and applies them to superquadric surfaces. 

In comparing this deformation based approach to others, various primitives and 

operations are discussed; they are briefly reviewed here. 

Polygon models are one of the more common representations used in computer 

graphics. Their popularity is partially due to the fact that many other represen-

tations can be converted to polygons. Curved surfaces described with this method 

are approximated with planar polygons. Polygon mesh modelling provides the user 

with a way to change the geometry of the model, which consists of connected, planar 

polygons that share edges and vertices [All88}. 

Spline surfaces are based on approximation or interpolation of a set of control 

points, and are used extensively in computer aided design [Far88]. Many types of 

splines exist, and are described in [BBB87]. Spline curves are based on the piecewise 

connection of parametric polynomials. This approach permits complex curves to be 

represented without the use of high order polynomials, which can be unstable and 

inefficient [BF91]. Just as segments are joined to describe curves, spline patches can 

be joined to form surfaces. 

Spline patches are defined by a set of control points, which form a control mesh. 

The user adjusts the position of the points in the mesh to alter the shape of the 

surface. The way in which the surface reacts to this change depends on the under-
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lying polynomials, which are often based on either Bezier or B-spline curves. Bezier 

curves interpolate the first and last control points, and B-splines approximate all 

control points. This difference has many effects on the surface models, as outlined 

in [BBB87]. The most notable is that Bezier curves touch the first and last control 

points that define them, while B-spline curves do not touch any. Spline surfaces in 

general permit the user to define a surface's shape by adjusting the control points as 

desired, and in this way permit many shapes to be achieved. 

Most modelling systems allow the models to be manipulated in some form. The 

standard operations are translating, rotating, and scaling. Shear and reflect oper-

ations are also used. Besides the three basic transformations, modelling systems 

usually allow designers to add, delete and save objects in the scene. Some other 

useful functions are: 

• hierarchical ordering of objects (so that groups of objects can represent one 

item in a scene; such as a person made up of a head, a torso, two arms, and 

two legs); 

1 altering object attributes such as color, transparency, and texture; 

• simple but fast rendering techniques to aid scene design. 

The geometry of a surface can be altered by scaling or shearing it. These can 

be applied in any direction by rotating the surface in between manipulations. Other 

methods for altering an object's shape have recently attracted interest. Modelling 

with implicit surfaces [KAW91], for example, provides a method to model "soft" 

objects by blending primitives. This blending of surfaces is defined by the surface 
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representation itself. Methods to provide metamorphosis of primitives have proven 

useful for animation [KPC91], while physically based models have proven very effec-

tive for producing more realistic shape change in animation {TPBF87}, [PB88]. 

One important technique for interactively changing a surface's shape is through 

direct manipulation. This permits the user to pick a surface point and interac-

tively reposition it. The way in which the surrounding region reacts to this reposi-

tioning depends on the implementation, but can be specified by various pre-defined 

smoothing functions [A1188]. A technique for directly manipulating B-spline surfaces 

has recently been developed, where the surface control points which affect the chosen 

region are moved in a manner consistent with the user's movement of the surface 

point [FB88]. 

Barr [Bar84] introduced deformations which bend, twist, and taper any primitives 

that can be point sampled. For example, they have been applied to B-spline surfaces 

[Cob84], and superquadric surfaces [Bar84}. Barr's work was followed by a new 

method, free form deformation, which permits interactive deformation of surfaces 

in a free form manner [SP86]. This work was extended by [Coq9O]. This free form 

approach is based on deforming three-dimensional space, and can deform all point 

sampled surfaces. It has been used to deform polygonal models, implicit surfaces, 

spline patches, and surfaces of revolution [SP86]. 

Deformation based modelling refers to a modelling technique which relies on the 

deformation of surfaces for providing shape control, where the deformation does not 

rely on the underlying surface representation. In this sense, direct manipulation does 

not qualify as a deformation based technique. Deformations may be classified as local 

or global; the former manipulates only part of a surface, while the latter applies to 
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the entire surface. 

This thesis examines deformations as applied to superquadric surfaces, where the 

deformations are described by Barr operators and free form deformation. Physically 

based models and blending paradigms are not addressed. 

1.4 Thesis contributions 

In order to analyse the effectiveness of deformation based modelling, a testbed was 

written. Named "GRooK,"1 this allows experimentation with superquadric prim-

itives, and with their deformation via Barr operators, free form deformation, and 

extended free form deformation. The contributions of this thesis to superquadrics, 

Barr operators, and free form deformation are: 

Superquadrics 

• review of Barr's superquadrics: the superellipsoid, the superhyperboloids of 

one and two sheets, and the supertoroid; 

• correction to the superquadric definition as defined by [Bar81]. 

Barr Operators 

• review of twist, bend, and taper operators [Bar84]; 

• a new operator to shear objects; 

• a design specification for the parametric implementation of twist, bend, taper, 

and shear operators; 

'A, name first coined by Piet Hein for his poetry. Hem's work with superellipses and superellip-
soids has been integrated into various architectural designs [Gar77]. 
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• a list of possible errors for each of the four operators. 

Free form deformation 

• a review, including normal and tangent calculations for deformed 

superquadrics; 

• problems experienced while using the technique; 

• a technique for twisting and tapering objects in the free form deformation 

environment. 

Extended free form deformation 

• a review of the method; 

• problems experienced while using the technique; 

• a method for twisting and tapering along curved surfaces. 

Deformation based modelling 

• the integration of the above techniques into a testbed system; 

• an analysis of deformation based modelling using GRooK; 

• a demonstration that neither Barr operators nor free form deformation tech-

niques provide adequate shape control by themselves; 

• a demonstration that free form deformation can be made more general by 

applying Barr operators to the grid's volume. 
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1.5 Thesis organisation 

Chapter 1 provides background information for modelling techniques, with emphasis 

on deformation. Chapter 2 reviews five modelling systems and analyses the shape 

control they offer the designer. The types of shapes provided by the systems are 

listed, along with the techniques used to create the shapes. This list is used as the 

basis for the analysis of the GROOK modelling system. 

Chapter 3 provides background needed to discuss the primitives and deformation 

techniques used in GROOK. Superquadric primitives are summarised. A detailed 

description of Barr's deformation operators is presented, as well as a new operator 

to variably shear surfaces. Free form deformation [SP86] and its extension [Coq90] 

are also described. 

Chapter 4 describes the design and implementation of Grtooic, including user 

interface issues. Chapter 5 contains an analysis of GROOK with respect to the oper-

ations listed in Chapter 2. Images created with GROOK are used to illustrate the 

versatility of deformation based modelling. It is shown that neither free form defor-

mation nor Barr operators alone can adequately provide shape control, but together 

they do. New deformation techniques combining these methods are presented. 

Chapter 6 concludes that deformation based modelling is a viable technique for 

achieving control over shape in modelling for computer graphics. 



Chapter 2 

Shape control in modelling systems 

This chapter summarises five modelling systems in terms of the shape control they 

offer the user. A list of the operations they use for shape change is presented, along 

with the type of change the operation effects, so that the shape control offered by 

the GRooK modelling system can be analysed in Chapter 5 with these operations 

in mind. 

Modelling systems must provide the user with a way to generate a desired model 

easily. What makes a modeller useful depends on how well it meets the needs of the 

application it is used for. There are several criteria by which such systems can be 

usefully judged, such as those outlined by [All88]. Unfortunately, there do not seem 

to be any generally held criteria that address the basic issue most fundamental to 

the designer's needs: shape control. If a designer cannot achieve the required model, 

the system will not be used. This thesis is concerned with shape control, with 

the understanding that the other criteria must also be considered for a complete 

modelling system analysis. 

A modelling system developed to suit designers, artists and animators must 

permit flexible control over shape. How this is attained has not generally been 

addressed in the literature. Trying to classify the set of all shapes is beyond the 

scope of this thesis, however, achieving a high level of shape control requires some 

analysis of the problem. One way to better understand what shapes are useful for 

computer graphics applications is to analyse existing systems. Although many mod-

11 
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elling systems exist, most are not described in the literature, and are not available for 

public use.- The modelling systems summarised in this chapter were chosen because 

they were available, and they offer shape control of various surface types. Here 

we outline modelling systems with respect to their primitives, the operations used 

to manipulate the primitives, and the motivation behind their design. This thesis 

addresses shape change as applied to individual surfaces, and therefore operations 

relating surfaces, such as blending [R087], [KAW91] or metamorphosis [KPC91], 

are not considered. For each system, we summarise the types of manipulations and 

primitives it provides. 

2.1 Parent's polygon based modeller 

Parent [Par77] developed an early three-dimensional system that incorporated defor-

mation based tools. It is based on the manipulation of objects as a sculptor would 

manipulate a piece of clay. Polygonal representations that can be manipulated 

with cutting, bending, and warping operations are used. Some three-dimensional 

primitives are predefined, but the user can create a new solid by providing a two-

dimensional polygon which is then extruded to form a three-dimensional solid. 

Table .1 summarises the functions available. Cutting involves calculating the 

difference of two overlapping polyhedra, implying the need for intersection calcula-

tions. New primitives can be created by taking the union, intersection, or difference 

of two intersecting polyhedra. 

The warp command allows the user to push in or pull out a region of the surface. 

It allows the user to reposition one or more polygon vertices without affecting other 
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Primitives Operations Definable Shape 

Polygonal Cut Slice through primitive 
Bend 2D Bend of 3D primitive 
Warp Direct manipulation 

Table 2.1: Summary of Parent's system 

areas of the primitive. The user may select a point and move it to a new location, 

moving neighboring vertices as well if desired. The size of the region to. be deformed 

is determined by a constant- that represents the number of edges to be traversed 

from the chosen vertex to the outer boundary of the deformed region. The distance 

each vertex in the deformed region is to be moved is determined by a selection of 

weighting functions. 

The bend operator allows the user to reposition a skeletal approximation of the 

surface rather than moving surface vertices directly, which can be a tedious task 

when deforming regions with many vertices. It is implemented by mapping a three-

dimensional primitive to a two-dimensional skeleton of line segments. For each vertex 

in the primitive the nearest segment is calculated, and associated with that vertex. 

When a line segment is moved, all associated vertices in the primitive are moved in 

a similar manner. 

2.2 Form Synth, a system for artists 

Form Synth [Lat89] is a three-dimensional solid modelling system designed to offer 

artists a new art style. The emphasis in the design of the system is on allowing 

artists to evolve complex forms, rather than use the system to depict objects already 
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envisioned. The design is based on techniques already familiar to artists such as 

chiselling of stone, molding of clay, and carving of wood. The system simulates an 

artist's environment in the sense that objects can be manipulated directly through 

an interactive interface, but also defines a new art style by offering a set of rules. 

specific to computer graphics. 

Nine polygonal, three-dimensional, geometric primitives are offered: tetrahedron, 

cube, octahedron, dodecahedron, icosahedron, sphere, cone, torus, and cylinder. 

Only three-dimensional primitives are offered as it is argued that extruding two-

dimensional curves into three-dimensional solids is not in keeping with the way 

artists think. The primitives used by Form Synth are based solely on one artist's 

requirements and are therefore not meant to be a comprehensive set of surfaces for 

all applications. This is justified by the fact that all artists are restricted by the 

rules which govern the art style they choose to work with, computer graphics being 

no exception. A general modeller permitting arbitrary shapes to be created was 

therefore not a design goal for Form Synth. 

Each primitive has a set of surface points and a set of internal points associ-

ated with it to facilitate shape change operations. There are five such operations, 

summarised in Table 2.2. Beak, scoop, and bulge operate on surface points, which 

are scattered over the surface of each primitive, while stretch and slice operate on 

internal points, which are predefined locations near the center of each primitive. 

Local coordinate systems are also associated with all primitives. Complex objects 

composed of several primitives can be achieved through add and subtract commands, 

though these do not directly alter the shape of one primitive and are therefore not 

discussed here. 
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System Operations Definable Shape 

Polygonal Beak Angular protrusion 
Scoop Hollowing 
Bulge Spherical extrusion 
Slice Slice through primitive 
Stretch Scale along axes 

Table 2.2: Summary of Form Synth 

Beak allows the user to choose a surface point and have an angular extrusion 

occur at that point on the primitive. This is much like pulling a polygon vertex out 

from the surface, and having all polygons containing that vertex move accordingly. 

This operation is a subset of Parent's warp operation. 

Scoop is like the beak operation, except that the area around the chosen surface 

point is hollowed smoothly, much like the effect of chiselling stone. 

Bulge creates a spherical bulge on the surface at the surface point chosen by thern 

user. 

Slice allows a primitive to be cut along one of its three predefined axes. 

Stretch allows a primitive to be scaled along one of its three predefined axes. 

These five operations simulate the basic strokes used by artists while working 

with clay (bulge, stretch), wood (beak, slice), or stone (scoop). However, they are 

restricted to the regions defined by the surface and internal points, as well as the 

directions defined by the local coordinate systems of the primitives. As a result, each 

operation limits the user by restricting the position and orientation of the desired 

manipulation. 
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2.3 Delta, a polygon mesh modeller 

Allan's [A1188] system Delta provides a variety of operations which alter the shape 

of a polygon mesh (see Table 2.3). The design was motivated for computer graphics 

applications (such as modelling for animation), but has been effectively used for 

residual limb modelling as well. The primary manipulation technique is to move a 

vertex in the mesh interactively. By providing options for this basic operation, Delta 

affords the user considerable shape control. 

The move operation is extended by controlling three parameters: the range of 

neighboring vertices which are affected by-the move, the distance these neighboring 

vertices move, and the direction in which they move. The range affected is determined 

by the Euclidean distance from the chosen vertex, or by the number of edges to 

be traversed from that vertex. The distance moved by the neighboring vertices is 

controlled by various predefined functions, called decay functions. Delta provides six 

of them: constant, cone, cusp, bell, wave, and random. The direction moved by the 

neighboring vertices can also be specified: rather than move in the same direction 

as the chosen vertex, neighboring points can move along their normal vectors, in a 

random direction, or in a way which makes the material appear elastic. A function 

which smooths discontinuities is also provided. 

Two more options which control the shape of the mesh are given: one to anchor 

vertices and another to bind them. Anchoring vertices allows, the user to specify 

regions which are not to be affected by a move operation, even if they fall within 

the affected region. Binding vertices allows the user to associate vertices of the mesh 

which are not necessarily neighbors, so that manipulating one vertex affects all others 
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Primitives Operations Definable Shape 

Polygon mesh Move vertex, plus options Warp surface 
Anchor vertex Freeze region 
Bind vertex Duplicate operation 
Refine region Change level of detail 

Table 2.3: Summary of Delta 

in the set the same way. This allows the same operation to be duplicated at different 

locations of the mesh simultaneously. 

Finally, Delta allows regions of the mesh to be refined so that a finer level of 

detail can be achieved. Polygons within a given region are divided into smaller ones, 

or smaller polygons merged to give larger ones. 

By offering extensions to one basic technique (the move vertex operation), Allan 

provides a coherent modeller which affords considerable shape control to the user. 

2.4 Cobb's B-spline based modeller 

Cobb's modelling system [Cob84] is based on B-Spline, patches and was designed for 

sculpting surfaces in computer aided design applications. The patches are used to 

form solids using boundary representation. Previous systems based on boolean set 

operations did not allow the shape control Cobb deemed necessary, and therefore 

her system offers new techniques for editing B-splines. 

Although Cobb's thesis describes several ways of creating graphical objects with 

B-splines, this analysis will concentrate on the surface manipulation techniques pro-

vided. There are seven such methods, summarised in Table 2.4. 



18 

Warping creates bumps in a surface. Cobb offers three types of warps, based 

on the shape of the region being deformed: circular, regional, and skeletal. Circular 

warp bases the warp region on the distance from the center point of the warp, thereby 

producing a circular boundary between the undeformed and the deformed surface. 

Region warp allows the user to specify polygonal shapes which form the boundary 

of the deformed region. Skeletal warps allow the surface to deform along a user 

defined polyline. All three warps are applied to the control points of the surface, and 

therefore rely on the distribution of the control points to give accurate results. 

Flattening allows a region of a curved surface to be flattened. The control points 

of the B-Spline patch which fall into the region are mapped onto a user defined 

plane, thus flattening the surface and maintaining a fairly smooth transition to the 

flattened area because of the smoothing qualities inherent in B-splines. 

Bending is based on bend operations discussed in [FW83] and Barr [Bar84]. A 

circular arc bend can be applied to the control points of a surface by having the 

designer specify three parameters: 

• the arc of the bend in radians; 

• the range over which the bend should occur; 

• the fixed point in the bend (the center of the range if a symmetric bend is 

desired). 

If the points in the control grid are too far apart, the bend may be shorter than 

desired since it is applied only to the grid and not directly to the surface. 
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Primitives Operations Definable Shape 

B-splines Warp: Circular 
Region 
Skeletal 

Warp with circular base 
Warp with arbitrary base 
Warp surface along curve 

Flatten Flatten region of surface 
Bend Bend 3D primitive 
Variable offset and lift Thicken surface 
Stretch Scale along axes 
Taper Variable scale in 2D 
Twist Twist surface 
Refinement Refine for local editing 

Add discontinuity 

Table 2.4: Summary of Cobb's system 

Variable offset and lifting operations allow a surface to be "thickened" by dupli-

cating it, using the copy as the top of the surface, and joining both together to make 

a solid. 

Stretching allows a surface to be scaled by moving the control points along one or 

more of the coordinate axes. A variable stretch is provided by allowing the distance 

moved by a control point to depend on its position in space. By applying this variable 

shear in two dimensions, a tapering effect can be achieved. 

Twisting of a B-Spline surface is permitted by applying a twist to the control 

points of the surface. 

Refinement of a B-Spline offers three operations: one to add control points to 

a region of the surface for increased flexibility, one to isolate a region so-that local 

editing does not alter other parts of the surface, and one to add a discontinuity to a 

surface. 
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Primitives Operations Definable Shape 

B-splines Direct manipulation Direct manipulation 
Create overlay Change level of detail 

Table 2.5: Summary of hierarchical B-splines 

2.5 Forsey's hierarchical B-spline modeller 

Forsey [FB88] describes a system for editing B-spline patches which incorporates two 

main advances: a facility for detailed editing of a region in a spline patch without 

affecting other areas of the patch, and a technique for directly manipulating the 

surface rather than the control points that define it. The method for local editing 

is based on hierarchical representation of the spline, where regions that need more 

control points to define their shape are represented as individual patches, but have 

their control points stored as relative offsets from the control points of the main 

patch. In this way local changes will only affect the independent surface patch, 

yet global changes to the entire patch will retain the local alterations made to the 

independent regions. 

Direct manipulation of the surface allows the user to pick any point and move 

it, rather than having to choose a point in the control grid. This allows the grids 

defining the spline patches to become as complex as needed since the user no longer 

needs to see them, or try to manipulate them. 

Table 2.5 summarises the operations Forsey offers to effect greater shape control. 

Deformations which act on the B-Spline control grid, such as those outlined by Cobb 

[Cob84], can also be applied to Forsey's models. 
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2.6 Graphicsland 

Graphicsland is a research oriented graphics system developed at the University 

of Calgary. This section is not part of the survey because Graphicsland is not a 

modelling system, but rather a collection of modellers, renderers, motion control 

programs used for animation, and associated interfaces. It is used as a research 

testbed, and is discussed here briefly because GrtooK is tied into it. 

PG, the modeller central to Graphicsland, permits models to be read in, inst-

anced, hierarchically organised into scenes, and piped to various renderers and view-

ing programs. Although it offers other facilities, these are the ones that help extend 

GROOK. Since GRooK only allows one surface model at "a time, PG is used to 

combine the, deformed surfaces created in GRooIc into a scene. The figures in this 

thesis were created by reading a polygonal data file into PG, inètancing the model if 

necessary, positioning the primitives as needed, and saving the file in printer format 

[WMG86]. 

2.7 Summary 

This chapter examined five modelling systems with respect to the shape control they 

offer. The union of their shape control operations provides a standard by which 

to judge other modelling systems (see Table 2.6). In Chapter 5 we analyse the 

deformation based modeller of Chapter 4 in the light of this standard. 

Many of the operations offered by the five systems are similar, but have been 

implemented in slightly different ways. The bend operator, for example, has been 

implemented by Parent to allow direct manipulation of the surface, whereas Cobb's 
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General Operation System System Operation 

Scale Most systems Stretch 
Bend Parent 

Cobb 
Bend along polyline 
Simulated bending with parameters 

Thicken Cobb Variable offset and lift 
Twist Cobb Twist surface 
Taper Cobb Taper surface 
Flatten Cobb 

Form Synth 
Flatten region 
Slice 

Warp Parent 
Form Synth 

Delta 
Cobb 
Forsey 

Direct manipulation of vertices 
Beak (angular), bulge (spherical), 
scoop (warp inwards) 
Direct manipulation of vertices 
Circular, regional, skeletal 
Direct manipulation of surface 

Freeze region Delta Anchor vertex 
Duplicate operation Delta Bind vertex 
Refinement Delta 

Cobb 
Forsey 

Refine region 
Refine region/ add discontinuity 
Hierarchical refinement 

Direct manipulation Most systems Interactive manipulation of surface 

Table 2.6: Summary of operations 
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technique relies on parametric information. Both, however, allow a surface to be 

bent. Table 2.6 lists the deformations that result when the operations of the five 

systems are merged. 

Refinement and duplication do not directly address shape change, but have con-

siderable effect on other operations. Refinement permits a better approximation of 

the surface, and thereby allows deformations of small regions to be depicted accu-

rately. Duplicating an operation is an aid for the designer, who may want several 

similar deformations to be applied to one surface. 

Since the goal of this work is to achieve maximal shape control, it is desirable 

to choose the most general implementation of a deformation. Chapter 5 introduces 

a yardstick by which shape change operations can be analysed, and shows that a 

deformation based modeller can offer most of the operations listed in Table 2.6, 

while extending some of them and providing new ones as well. 



Chapter 3 

Deformations 

This chapter describes superquadric primitives and how deformation techniques can 

be applied to them. The first section explains the definition of superquadric surfaces. 

Then two deformation techniques are described in detail. The first is a functional 

method developed by Barr which includes three kinds of deformation: taper, twist, 

and bend. A new operation to variably shear a surface is described. The second tech-

nique is a recently developed deformation method, based on the sculptor's paradigm, 

which lends itself to interactive manipulation. This chapter contains a mathematical 

characterisation of the deformation techniques. Design and implementation issues 

are discussed in Chapter 4. 

3.1 Superquadrics 

Quadric surfaces are defined by the equation: 

Ax  + 2Bxy + 2Cxz + 2Dx+ 

Ey2+2Fyz+2Gy+ 

Hz  + 21z+ 
(3.1) 

J=o 

Examples include the sphere, paraboloid, and hyperboloid. This algebraic repre-

sentation of quadric surfaces is often used for computer graphics modelling [Bli86], 

but geometric and parametric representations have also proven useful. Geometrically 
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defined quadrics are described by one point, two vectors, and three scalars, and are 

often used -in constructive solid geometry to avoid the numerical instabilities associ-

ated with the other two representations [Gol83]. The parametric representation uses 

two parameters to trace the surface in three dimensions, and lends itself to display 

algorithms. This is the representation on which superquadrics are based, and it is 

explained below. 

3.1.1 Quadric definition as a spherical product 

The parametric definition of quadric surfaces is based on the spherical product of 

two curves [Bar81]. Given two parametrically defined curves ñi(i) and h(w) 

[mi()l m?1)=[ I 
7722(77) 

(w) = 

their spherical product is defined as: 

mi(77)hi(w) 

rn1(77)h2(w) 

M2 (71) - 

h(w) defines a curve situated in the zy plane, which is modulated by ñi(ij). ml(77) 

scales it in the xy plane, while m2(i) repositions it along the z axis. 

To illustrate the geometric relationship between the two curves and the final 

surface, consider the parametric definition of the sphere: 
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W O) 

Figure 3.1: h(w) curve for sphere 

cos() 
= 

sin(i) 

= 
cos(w) 

sin (w) 

cos() cos(w) 

cos(17) sin(w) 

sin() 

-lr<w<7r 

-≤17≤ 72 . 

—ir <w <ir 

The curve defined by (w) lies in the xy plane of the surface, and describes a full circle 

(see Figure 3.1). The curve defined by ñ() defines a half .circle, which describes the 

surface's silhouette in the third dimension by scaling and repositioning i(w) along 

the z axis, as shown in Figure 3.2. 

The parameters 77 and w control the shape of the surface in different directions. 

Since w traces the curve in the zy plane, it controls the surface's cross-sections 

parallel to that plane (this can be thought of as the east-west direction). 77 controls 
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z 

Figure 3.2: Sphere as defined by h(w) and ñi(i7) 

Figure 3.3: Hyperboloid of one sheet 

the surface's silhouette when viewed with the z axis vertical (this can be thought of 

as the north-south direction). 

Table 3.1 lists,four quadrics, based on the spherical product. The ellipsoid is 

a straightforward extension of the sphere defined above, where al, a2, and a3 are 

constants. The hyperboloid of one sheet is created by a circle in the xy plane that is 

modulated by a hyperbola along z. The circle is scaled by sec(i) and repositioned 

along the z axis by tan(i), to describe a hyperbolic silhouette in the north-south 

direction (see Figure 3.3). 

The curve traced by w in the hyperboloid of two sheets is a hyperbola. Since w 
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Quadric ñ®h Range 

Ellipsoid I 
[ a1cos(i)cos(w) 1 
a2cos(j)sin(w) 
L —ir a3sin(ij) ] 

I - - <w <ir 
- 

Hyperboloid (1 sheet) I 
I sec()cos(w) 

sec(ii) sin(w) 
L tan(i) 

<  77 < 
—ir <CQ < ir 

- 

Hyperboloid (2 sheets) 
sec(i) sec(w) 
sec(i) tan(w) 

tan(i) 

- ir  <i < 
- <w < 2 2 

<w < 
sheet 
sheet 

1 
2 

Torus I 
I (a+ 

(a 

L 

cos (ii)) cos (w) 
+ cos()) sin(w) 

sin(ii) 

1 
I 
] 

< —ir <w <ir 

Table 3.1: Four surfaces defined with spherical product 

is extended to cover two ranges, two curves result (one in positive x and the other in 

negative x). The hyperbolas are scaled by sec(i) and repositioned along the z axis 

by tan(17), which together describe a hyperbolic silhouette edge. 

The torus cannot be expressed by equation 3.1, and is therefore not a quadric 

surface. However, it can be defined as a spherical product since it is based on circular 

cross-sections in the xy plane. n) describes a full circle which is translated from 

Figure 3.4: Torus 
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the origin by adding a. Figure 3.4 shows one of the h(w) curves tracing ñt(i7). To 

avoid self-intersection, the constant a must be greater than one. 

3.1.2 Superquadric definition 

By raising the trigonometric functions of the surface definitions in Table 3.1 to expo-

nents other than one, a superset of quadrics is defined [Bar81]: 

ñ®i= 

The modification to the functions involving 77 alters the north-south shape of the 

object, while the modification to the functions involving w alters the east-west shape. 

Exponents less than one push the surface outward, exponents of two create surfaces 

with squarish corners, and exponents greater than two pull the surface inward. Such 

superquadrics are illustrated in Figure 3.5. 

The extra shape control offered by superquadrics combined with their relatively 

simple definition makes them an appealing set of primitives. Various systems are 

based on them [HE89], [Pen86], although little is published about implementation 

details. 

3.1.3 Tangents and normal vectors 

Barr defines tangent and normal vector formulations as well as implicit equations 

for each superquadric [Bar81]. Tangent vectors are needed to test surface continuity, 

while normal vectors are used in shading algorithms, and to determine surface ori-

entation. With explicit representations for normal and tangent vectors for any point 
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Figure 3.5: Superellipsoids: E2 = 1.0; El = 0.2, 1.0, 2.0, 3.0 

z 

(a) T,7 tangents 

z 

(b) T tangents 

Figure 3.6: Tangents with respect to 77 and w 

on the surface, rendering programs can use exact information rather than approxi-

mations based on polygonal vertices. Implicit equations are used for testing point 

inclusion, and for calculating line-surface intersections. Knowing whether a point 

is inside, outside, or on a solid is very useful in solid modelling [Mor85], and line-

intersection tests are required by ray tracing 'algorithms [Gla89]. Barr derives the 

implicit equations but they are not needed for this thesis. 

Tangent vectors of parametric surfaces are defined by the partial derivatives of 

the surface function. Let x, and x, be the partial derivatives with respect to 77 and w 

respectively. Then x,7 is the tangent vector in the north-soith direction of the surface, 
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while x(,, lies in the east-west direction (see Figure 3.6 (a) and (b) respectively). 

Normal vectors can be calculated by taking the cross product of two linearly 

independent surface tangent vectors [Bar84] such as those discussed above. I tried 

to verify the normals as specified by Barr, but despite some effort was unable to do 

so. Maple [CGG+88a] was used to calculate the cross products of the tangents, but 

the results would not simplify to those specified by Barr. Implementation of Barr's 

normal vector calculations, however, has produced apparently correct normals. 

Table 3.2 shows normal and tangent vector specifications, as well as implicit equa-

tions, for the four superquadrics. The normals are those derived by Barr. Super-

quadric surfaces may contain cusps, and at these points tangents and normals are not 

well-defined. This can cause shading irregularities around the cusp when rendered 

[Bar8l]. 

3.2 An introduction to deformations 

Deformation based modelling is a way of allowing shapes to be deformed by the 

user. Two recent techniques that address this problem are documented in [Bar84] 

and [SP86]. An extension to the second method is described in [Coq9O]. 

Barr's deformations were originally introduced in [Bar81], where methods are 

given for deforming two dimensional curves, three dimensional curves, and three 

dimensional surfaces. The technique is described more fully, and with a stronger 

computer graphics emphasis, in [Bar84]. It is based on applying a function to a 

region in space to deform that space. Surfaces are deformed by sampling the surface 

and applying the deformation function to the sampled points. The function need 
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Surface Normal vector and 
implicit equation 

Tangent vectors 
T, and T 

5-Ellipse 

COS(77)2—El cos(u)2_E2 

cos(i)2—El sin ()2_E2 

sin ()2 El 

(x + y1r ) + ZE2 

—El cos(i7)El—1 sin() cos(w )E2 
—El cos(ij)El_l sin() sin(w)E2 

El sin()El_l cos() 

—E2 cos( 77)El cos(w)E2_l sin(w) 

E2 cos(i)El sin(w)E2_1 cos(w) 

0 

S-Hypl 

sec(i7)2—El cos(w)22 

sec()2_El sin(w)22 

tan(i)2 ' 

(x +y 72- ) - 

El sec(q)El tan(77) cos(w)E2 
El sec(i)El tan() sin(w)E2 
El tan(ii)El-1(l + tan(i7)2) 

—E2 sec(17)El cos( &.,)E2_l sin(w) 

E2 see( )El sin(w )E2_lcos(w) 

0 

S-Hyp2 

sec(i)2_El sec(w)2 B2 

sec( 77)2—El tan(w)2_E2 

tan(17)21 

(x - - 
E2sec(iltan(w)E2_l(l 

El sec(j)El tan() sec(w)E2 
El see( 77)E1 tan(77) tan(w)E2 
El tan(i7)El_l(l + tan(77)2) 

E2 sec()El sec(w)B2 tan(w) 

+ tan(w)2) 
0 

S-Torus 

((x 

COS(77)2—El cos(w)2_E2 

cos(i)2 ' sin(w)2_E2 

+ - a) El + zi1 

—El cos(u7)El—1 sin (77) cos(w)E2 

—El cos(i)E1_1 sin(i) sin(w)E2 
El sin(i)El—1 cos(i) 

E2(a + cos(i)El cos(w)E2_l sin(w) 
E2(a + cos(ij)El sin(w)E2_1 cos() 

0 

Table 3.2: Normals, tangents, and implicit equations for superquadrics 
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not be linear and therefore extends the traditional operations mentioned in Chapter 

1. Barr operators have been integrated into various other systems (e.g. see [Cob84], 

[FB88]). 

The second technique addressed in this thesis, free form deformation, is also based 

on deforming three dimensional space, but does so by describing a grid that encloses 

the volume to be manipulated. By interactively deforming this grid, the user can 

alter any surfaces in it. The initial grid is a parallelepiped, but the deformed one 

may contain curved surfaces; thus free form deformation permits nonlinear transfor-

mations. 

Although developed independently, free form deformation is an elegant extension 

to a similar two-dimensional deformation system described by [BW76]. Their system 

is used for animation, and allows a character to be "deformed" into its next key 

position. The grids defining the space are quadrilaterals, and can be altered by 

moving any of the four vertices. 

Although this thesis emphasizes the interactive aspects of free form deformation, 

it can be used in other frameworks as well. An excellent example is a modelling 

system [CHP89] that uses deformation to model the musculature of animated char-

acters. The initial grid is associated with a skeletal bone structure, and is deformed 

according to kinematic and dynamic constraints that mimic the elasticity and con-

tractility of musculature. Interactive manipulation of the grid is provided as a backup 

to the physical constraint formulation. 
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3.3 Barr operators 

Barr operators are based on mathematical functions that alter space; in computer 

graphics this has the effect of deforming the objects embedded in this space. A 

deformation function maps points in object space to a new version of the space. 

A function to scale an object along the three coordinate axes simultaneously, for 

example, is described as: 

F(x,y,z) = 

ax 

by 

cz 

This function is applied to surface points, thereby deforming the object. Barr refers 

to this as a global deformation specification. 

The key to Barr's technique, however, lies in what he calls local deformations. 

Barr's use of the terms local and global differs from the way they are used in most 

computer graphics contexts. His "global" deformations apply to an entire three-

dimensional space, mapping any points in that space to new positions. In contrast, 

the "local" deformations map the tangent and normal vectors of a surface to different 

orientations. In this sense, local does not imply that the deformation is restricted 

to a localized region of the surface, but rather that it applies only to the part of 

the space occupied by the surface itself—for it is only here that the tangents and 

normals are defined. 

Barr provides two rules that allow tangent and normal vectors of the deformed 

surface to be calculated directly at any point on it, rather than having to approximate 

them [Blo88]. 
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3.3.1 Tangent transformation rule 

The tangent transformation rule states that the deformed tangent is equal to the 

Jacobian matrix of the deformation function multiplied by the original tangent 

vector. The Jacobian matrix is defined as: 

J= 

OF, OF,  
OX ay az 

aFy 1L aF  
ax ay a 

\ ax ay 8z I 

The example of scaling an object along the coordinate axes is used again to 

demonstrate Barr's technique. The global deformation function F, defined above, 

applies different scale factors along the three coordinate axes. Given a biparametric 

surface (which encompasses all superquadric surfaces): 

/ 

S y(,w) 

Z(77, W) j 

the deformed surface definition applies F to 

F() = F(x(i ,w),y(i,w),z(i,w)) = 

/ 
ax(i,w) 

by (i1, w) 

cz(i,w) ,, 

The partial derivatives of the deformed surface with respect to 77 and w define tan-

gent vectors to the new surface. Since the deformed surface is a composite function 

of F and 8, the chain rule for multiple dimensions is used: 

OF OF Ox OFOy OF Oz 

1977 OxOi 0y817 0Z077 
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(and similarly for ). Since the global deformation function F is a vector with 

separate functions for the x, y, and z components, the partial derivative of each 

component is taken: 

OF - (0F OF 0F 

(and similarly for ). The chain rule mathematics is simplified by the Jacobian 

matrix of the deformation function, which when multiplied by the original tangent 

vector gives the above partial derivative equations, and hence the new deformed 

tangent vector: 

-. OF(S) 0 
Tdf = 077 = 

OF. OF." f Ox 
ex ay Oz 

= 
Ox Oy Ox 877 

•& OF, OF  
Ox Oy Ox / \OJ 

(and similarly for OF' aw 

3.3.2 Normal transformation rule 

The normal transformation ruleas given by Barr states that the deformed normal is 

equal to the inverse transpose Jacobian matrix multiplied by the original normal: 
t 

ATdef = j_ if/ 

This is proved using the fact that normal vectors are the cross-product of two linearly 

independent tangent vectors [Bar84]. The determinant of the Jacobian is multiplied 

by the inverse Jacobian to attain the unit normal, though often only the normal's 

direction is required. 
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3.3.3 Four deformation functions: taper, twist, bend, and shear 

Barr defins three operators, providing for each one the global deformation function 

F, the inverse of F, the Jacobian matrix of F, and the inverse Jacobian matrix. In 

this section we summarize the functions, and introduce a fourth which extends the 

traditional shear operation. Where formulations are given, the function is applied 

along the z axis for simplicity; the expressions can be rearranged to apply along the 

x or y axes instead. 

Taper operator 

The taper function changes an object's size along one of the coordinate axes. The 

following global function defines a taper along the z axis: 

F(x,y,z) = 

I 

The function f(z) defines the amount of tapering, and is subject to the following 

restrictions: 

• if f(z) = 0 a singularity results; 

• f(z) must be piecewise differentiable and CO continuous. 

The derivative of f(z) defines the rate of change applied to the surface. If it is 

positive the surface will increase in size, while if it is negative it will decrease. If 

f (z) gives negative values, the surface will be turned inside out. 

The Jacobian matrix for the taper function is: 
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0 

0 f(z) 

0 

The inverse Jacobian multiplied by its determinant yields the normal transformation 

matrix: 

det(J)J' = 

/ 1(z) 0 0 

0 f(z) 0 

—xf(z) —yf(z) dz (f(z))2 / 

Twist operator 

The twist operator twists space continuously along one of the coordinate axes. The 

global twist function involves rotating x and y around the z axis by 0 radians, where 

0 depends on the position along z, say 0 = f(z). 

x cos(0) - y sin(0) 

F(x,y,z) = xsin(0) + ycos(0) 

z 

The derivative of f(z) defines the rate of twisting around the z axis, in radians per 

unit z. The Jacobian matrix for the twist function is: 

/ cos(0) - sin(0) —x sin(0) y cos(0) " 
dz 

sin(0) cos(0) —x cos (0)—ysin(0) df 

0 0 1 

The corresponding normal transformation matrix is: 
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det(J)J't 

/ cos(0) —sin(0) 0 

sin(9) cos(9) 0 

df 
\ Yj dz 1 1 

Bend operator 

The bend operator bends a line parallel to one of the coordinate axes around an 

angle 0 over a given range. The angle changes linearly in the bend region to map 

the straight line to a circular arc. Outside this region, the line is merely rotated 

and translated using rigid body transformations to match the endpoints of the bent 

region after deformation. 

Assume that the line to be bent lies parallel to the y axis, is bent toward the 

positive z axis, and that the bending range is (ymin. .ymax) with the center of the 

bend at yo Within this region, the bending angle 0 is defined by k, the bending rate 

in radians per unit length, which is multiplied by the distance from the center of the 

bend to the current position along the y axis: 0 = k(y - yo). Outside the region 0 

remains constant since the line only needs to be rotated and translated to its new 

orientation. Figure 3.7 illustrates a bend. 

The global bend function is divided into two functions: one for the bent region 

and the other for' the unbent one. The bent region is: 

x 

- sin (0)(z - ) + Yo 

cos(0)(z - ) + 

The unbent region is: 
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z 
axis of bend A 

line to be bent  I 
ymin 

bent region 

yo 

I >Y 
ymax 

Figure 3.7: Bend along y in positive z direction 

a; 

- sin(0)(z - ) + Yo + cos(0)(Yb) 

cos(0)(z - ) + + sin(0)(y,) 

Here, 

• Yb = y - ymin if y < ymin 

• Yb = y —ymax if  > ymax. 

The Jacobian matrix for the bend function is: 

/ 
1 0 0 

0 cos(9)(1_k*z) —sin(0) 

0 sin(0)(1 - k*z) cos(0) 

The corresponding normal transformation is: 

hl_k*z 0 0 

det(J)J1t = 0 cos(9) _sin(9)(1_k*z) 

0 sin(0) cos(0)(1 - k*z) j 
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Here, 

• k* —k in the bent region 

• = 0 in the unbent region 

Shear operator 

The above operators are based on basic affine transformations which are then made 

to vary in some way. The shear operation, which linearly shifts the space along one 

axis [FF79], can be extended similarly. This section describes a new operation that 

permits nonlinear shearing. 

An example linear shear function is: 

x+2z 

F(x,y,z)= y 

z 

The surface is shifted in the x direction dependent on z. To extend this function, 

allow the shift value to include nonlinear functions: 

F(x,y,z) = 

I 

where f(z) is a nonlinear function which must be single valued, C° continuous, and 

piecewise differentiable. The Jacobian matrix is: 

0 df 
dz 

J= 010 

\ 0 0 1 
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(a) f(z) = O.2z2 

and its inverse is: 

(b) f(z) = 2.0z3 

Figure 3.8: Parabolic and cubic shear functions 

J 

. 0 

0 

- 

\ dz 

10 

0 lj 

Figi.ires 3.8 (a) and (b) illustrate the sFiear function applied to a plane and an ellipsoid 

respectively. 

3.4 Free form deformation 

Free form deformations are based on a three-dimensional mapping of one, space to 

another, as in Barr's deformations. This involves placing a parallelepiped grid over 

the volume to be deformed, deforming the grid, and thereby deforming the space it 

defines. An analogy given in [SP86] describes the grid as a volume of clear plastic 

which embeds the objects to be deformed; when the plastic is deformed, so are the 

objects embedded in it. There are three steps: 
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Figure 3.9: Initial grid as specified by Xo, S, T, and U. 

• an initial mapping of each surface point from object space to grid space; 

• deforming the grid by moving its vertices; 

• a final mapping of the surface points from the deformed grid space back to 

object space. 

The two mappings required to calculate the deformation depend on the grid 

formulation. The undeformed grid specified by [SP86] is a parallelepiped, which 

permits the initial mapping from object §pace to grid space to be linear. Four 

vectors are used to describe the grid: three to represent the grid's local coordinate 

system (call them S, T, U), and a fourth to position the grid in object space (X0). 

The S, T, and U vectors specify the length of the grid along each of the axes as 

illustrated in Figure 3.9. 

A point in grid space (s, t, u) can be described in object space (x, y, z) by: 

= O<s,t,u<l (3.2) 

To calculate the (s, t, u) coordinates for a point (x, y, z), as needed for the initial 

mapping, vector algebra yields: 

- TxU.(X—Xo)  

TxU•S 
- SxU.(X—Xo)  
- SxU•T 

SxT•(X -  X0) 
U  = S (3.3) xT•U  
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P021 P121 P221 

Figure 3.10: Example grid 

T 

The parallelepiped grid can be divided into sections by specifying a number of 

equal divisions along each axis. Let (1, rn, n) indicate the number of sections along 

S, T, and U respectively. The corner points of each section are represented by grid 

vertices Pik, which are ordered according to their relative position along each axis 

(Figure 3.10): 

P1Jk =X0+S+LT+U (3.4) 
1 m n 

The grid space coordinates range between zero and one, and represent the relative 

position of the point with respect to the grid boundaries. For example, .s = 0.5 

implies that the point is in the middle of the grid with respect to the S axis. To 

deform the grid, its vertices are moved to new locations in object space, which means 

that the Pk change values but the local coordinates of the surface point remain the 

same. It is when these local grid coordinates are mapped back to object space that 

the deformation becomes apparent: the relative position represented by (s, t, u) is 

now relative to vertices in new positions, and the surface point is therefore moved 

from its original location in object space to its deformed position. 

If only linear transformations are permitted, the second mapping (from grid 

space to object space) can be calculated using equation 3.2. Maintaining only linear 
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transformations, however, is restrictive. Instead, [SP86] specifies the grid space for 

free form deformations with a tensor product trivariate Bernstein polynomial which 

defines a Bernstein-Bezier volume [Las85]. This is an extension of the well known 

Bezier curve and surface used in computer graphics, and allows the deformed space to 

be curved, thereby extending the types of deformation possible. The outer bound-

aries of the volume defined by the Bernstein polynomial are composed of Bezier 

surfaces which are described by the grid vertices of the outer six planes of the initial 

grid. In fact, each set of vertices with one of i, j, or k in common defines a Bezier 

surface. 

The Bernstein polynomial uses the (s, t, u) grid position of the surface point and 

the deformed grid vertices to calculate the object space position of the deformed 

surface point. The polynomial is given in equation 3.5, and the process used to 

deform a point is illustrated in Figure 3.11. 

B(s,t,u) = 

where 

x 

y 

z 

lmn 

E I T4''(s)W(t)W,?(u) 
i=Oj=Ok=O 

Pijk.Y 

Pijk.Z 

• W/(s) ( ) (1 - 8)1i8i is a binomial weighting function; 

(3.5) 

• the calculated vector is the deformed point in object space; 

• (s, t, u) is the surface point in grid coordinates; 

• 1, m, n represent the number of sections the grid is divided into along each 

coordinate axis; 
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First Mapping 

sample superquadric 
in object space 

map (x,y,z) to undeformed 
grid space (s,t,u) 

Equation 3.2 

(s,t,u) 

( Deform Grid 
deform grid (s,t,u) 
vertices in 
object space 

Alter Pijk of 
Equation 3.4 

Second Mapping 

map the (s,t,u) 
point back to object 

space, using deformed 
grid vertices 

Equation 3.4 

(x,y,zf display 
point 

Figure 3.11: Free form deformation process 

• Pijk are the coordinates of the grid vertices in object space. 

The, deformed position of a surfac point is calculated by multiplying each grid 

vertex by a weight which is based on three binomial weighting functions. The 

weighting takes account of the distance from the point to the grid vertex being 

considered: vertices that are close to the surface point have higher weights, and 

therefcre receive priority. 

As an example, consider the weighting functions applied to the S axis only, where 

the grid is divided into three sections (i = 3): 

W 3(s) = 3 (1 - 0 ≤ i ≤ 3, 0 ≤ s ≤ 1 
z 

W 3(s) describes four curves, one for each set of vertices with the same i index. The 

value of s defines the weighting that the grid vertex is multiplied by, and as can be 

seen from Figure 3.12, those vertices closest to s receive the highest weight values. 

Since the Bernstein polynomial is trivariate, each vertex in the grid is multiplied by 
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W(s) 

0.8 

0.6 

0.4 

0.2 

0.2 0.4 0.6 0.8 1 
S 

Figure 3.12: Binomial weighting functions for W3(s) 

three weights, one for each axis. 

The deformed object space coordinates ,f a surface point are based on weighted 

sums of all grid vertices, which indicates that deformations of the grid are global 

with respect to the grid volume. That is, moving a vertex, even if it is far from the 

surface point and within a different section of the grid, will affect the surface point. 

Although the movement of a vertex far from the surface point may only alter the 

point slightly, it is impossible to deform the volume within just one section of the 

grid—a separate grid must be used for this. 

It is impoitant to note that the grid itself does not define the volume directly, 

but rather defines the control points which describe the Bezier volume. Figure 3.13 

illustrates this relationship in two dimensions: the shaded region represents the area 

affected by the grid vertices. 
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Y 
A 

Polo 

Pilo P210 

P000 P300 

i = OA, j =O..1,k = O(only the xy plane is shown here). 

The shaded region represents the grid space specified 

by the grid control points Iijk  

Figure 3.13: Example grid and the area it defines 

3.5 Extended free form deformation 

P310 

>- x 

Free form deformation is a versatile modelling tool. However, forcing the initial grid 

to be a parallelepiped restricts the deformations that can be created. Coquillar 

[Coq9O] describes an extended free form deformation that permits initial grids to 

be arbitrarily shaped. Allowing arbitrary initial grids implies that the initial map-

ping from object space to grid space must permit nonlinear calculations. Coquillart 

uses the multidimensional Newton-Raphson technique to calculate the relative grid 

coordinates (s, t, u) of a surface point. Unfortunately, this does not guarantee a 

solution. A poor initial estimate may cause nonconvergence, indicating, but not 

proving, that the root, does not exist [PFTV88]. Although Coquillart states that 

she did not encounter this problem, the results discussed in Chapter 4 indicate that 

some limitations exist. 

Coquillart also introduces a slightly different formulation of the grid volume 

through the Bernstein polynomial. Her definition separates the grid into "chunks" 
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Figure 3.14: Example grids used by extended free form deformation 

which are composed of 27 sections (the grid is a 3 x 3 x 3 volume of sections). Each 

chunk is defined by a separate Bernstein polynomial of degree three, and is therefore 

independent of all other chunks. This allows deformations to be performed locally, 

because deformations to grid vertices inside a chunk will not affect other chunks. 

Figure 3.14 shows some example grid chunks. 

To maintain separate chunks within a grid, one must determine which chunk a 

point lies in before using the Newton-Raphson algorithm to calculate its relative grid 

coordinates. Coquillart uses the convex hull property of Bernstein- Bezier volumes 

to determine this. Although this provides a reasonably accurate indication of point 

inclusion, it does not guarantee it. Figure 3.15 shows the problem: the point lies in 

the convex hulls of both chunks, but is only in the volume defined by the upper one. 

Similarly, the point may be in the convex hull of a chunk, but not in the grid volume 

at all. As a result, if the Newton-Raphson method does not converge for one chunk, 

the convex hull test must be used for neighboring chunks in the grid until all have 

been tested, or convergence is achieved. 

As will be seen in Chapter 4, nonconvergence can occur even if the point lies in 
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Sampled point 
upper chunk 

lower chunk 

Figure 3.15: Sampled point lying in convex hull of two grids 

the chunk being tested. This complicates the process. Nonconvergence implies one 

of three conditions: the point is in the current chunk, but a better initial estimate 

is required; the point is in a neighboring chunk; or the point is outside the Bezier 

volume. 

3.6 Summary 

This chapter presented the mathematics of superquadric surfces and three defor-

mation techniques: Barr operators, free form deformation, and extended free form 

deformation. A new operator for shearing surfaces was defined. The next chapter 

provides design and implementation details of a modelling system based on deforming 

superquadrics with these operations. 



Chapter 4 

Design of the GROOK system 

This chapter describes GROOK, a system that implements the three deformation 

techniques outlined in Chapter 3, namely Barr operators, free form deformation, 

and extended free form deformation. The goal of the system is to provide a testbed 

for deforming superquadric primitives with Barr operators and free form deformation 

and its extension. The system is ultimately intended to be fully interactive; however, 

due to time constraints, not all features have been implemented.' Free form defor-

mation and its extension are fully implemented to allow interactive manipulation 

since interactive deformation of surfaces is the key to the technique. Barr operators 

have been designed for interactive input, but in its present state the system requires 

parametric input to be hard coded. 

4.1 GRooIc 

GROOK has four windows, as shown in Figure 4.1: three orthogonal views of the 

scene (one along each coordinate axis) and one general three-dimensional viewing 

window. The general viewing window allows the user to rotate the scene using a 

mouse. All windows can be zoomed and panned, and by clicking on a window bar 

they grow to fill the whole window space allocated to GROOK. Clicking the window 

bar again brings back the four viewing windows. 

'The skeleton for such a system exists, with menus defined but not all options available. 

51 
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Figure 4.1: The windows in GROOK 
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There are four menus with which the user can create deformed objects, one to 

choose a superquadric and three to deform the chosen primitive, one menu for each 

deformation technique. To deform a superquadric, the user: 

• chooses a superquadric primitive (which displays a wire frame image); 

• specifies the parameters for the deformation via the deformation menus; 

• returns to the superquadric menu and redisplays the primitive with deformation 

mode on. 

GRooK does not allow more than one primitive to be deformed at a time, but does 

permit multiple deformations of the same primitive. Although only one deformation 

using the free form technique is permitted, a sequence of Barr operators can be 

applied, before or after the free form deformation is applied. 

GrtooK links to the Graphicsland research environment by writing polygonised 

versions of the object to a file that is read by the polygon modeller. This can read 

multiple files and group them hierarchically to create a scene. Various pictures in 

this chapter have combined surfaces in this way. 

The code for GRooK is written in C, and runs on a Personal Iris workstation. 

There are approximately 8000 lines of code, two thirds of which deals with deforming 

and rendering primitives, while the remaining third constitutes window and menu 

handling routines. The windowing and menu routines are based on Joy [McP90], a 

local graphics package that extends the Iris windowing tools. 
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4.2 Superquadrics 

The menu for superquadrics allows one of five primitives to be chosen: the superel-

lipsoid, superhyperboloids of one and two sheets, the supertorus, and a plane. The 

plane is a degenerate superquadric, but was deemed useful for testing deformations 

on simple surfaces. 

Superquadric exponent values can be increased or decreased interactively. Two 

types of polygonisation are implemented (see Section 4.2.2), and the user may select 

either one by toggling a button. The sampling rate can be altered to allow a fine or 

coarse level of polygonisation, and the result can be saved to a file for later display 

within Graphicsland. 

4.2.1 Definition for superquadrics 

The definition provided by Barr [Bar8l] does not accurately characterise super-

quadrics as described in Chapter 3. When the exponents El and E2 are set to 

values less than one, they require nth roots of trigonometric functions to be taken. 

Since some of the trigonometric functions evaluate to negative numbers, run-time 

errors occur. The sign of the trigonometric function places the surface point in the 

correct quadrant, and the exponentiation calculates the correct magnitude. The solu-

tion is to store the trigonometric function's sign, apply the exponent to its absolute 

value, and multiply the magnitude by the stored sign. 
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Figure 4.2: Superellipsoid El = E2 = 0.4 

'1.2.2 Polygonising superquadrics 

Various schemes to polygonise superquadrics are discussed in [FB81]. The most basic 

method uses the parametric representation of superquadrics introduced in Chapter 

3, where i and w are used to trace the surface. Each superquadric is defined with 

two two-dimensional curves, one based on i, the other on w. By sampling each curve 

and taking the spherical product of the two values, the three-dimensional surface 

point is calculated. If for every point sampled on the i curve, the entire w curve 

is sampled, the whole surface is covered. GRooIC creates triangular polygons as it 

increments along the w curve. 

The ease with which the surface is traced makes parametric representations suit-

able for display. In the case of superquadrics, the natural spacing that results is 

also desirable as more points are plotted where the curvature is high (Figure 4.2). 

Barr [Bar8l] shows how a surface can be adaptively subdivided, but his technique 

depends on the particular superquadric being rendered, and requires complex cal-
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culations involving first and second derivatives. Since the comparatively fast para-

metric sampling is easy to implement and approximates the curvature sampling to 

some degree, it is suitable for most applications. Increments used for 77 and w as 

they trace the surface should evenly divide the regions between cusps so that the 

cusps are polygonised accurately. The superellipsoid, for example, may have cusps 

at —7r/2, 0 and ir/2 for i, and —ir, —ir/2, 0, and ir/2 for w. 

Although the parametric method works well for undeformed superquadrics, when 

primitives are deformed using Barr operators or free form deformation a more evenly 

spaced sampling technique is required. Since dformation may be applied to rela-

tively flat areas of a superquadric, the parametric polygonisation method does not 

provide enough sampling for the deformed surface. To correct this, the sampling 

rate has to be increased so much that the rest of the superquadric is oversampled. 

Figure 4.4 shows a superellipsoid that has been scaled and bent to represent a chair 

seat. The versions in Figure 4.4 (a) and (b) were sampled using the parametric 

method, the latter with a higher sampling rate. As can be seen, the bend in the seat 

needs more sampling to achieve a smooth curve, but even with the higher rate the 

deformed area is poorly approximated. 

The explicit polygonisation discussed in [FB81] is more suitable for deformed sur-

faces since it samples the surface evenly. The algorithm resembles the parametric one, 

but uses explicit equations based on (x, y, z) instead of the trigonometric functions 

based on (ii, w). The two forms are equivalent, but the explicit representation gives 

a sampling that is uniform in object space instead of parametric space. Table 4.1 

gives equations that are equivalent to the parametric curves of Section 3.1.1. 

There are two problems that affect the implementation of the algorithm: the 
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Curve Explicit Function 

superellipse x (1 - IzIY' 
superhyperbola x = (1 + IzI TIF) 
curve for torus x = (1 

- Iz + aIr) 

Table 4.1: Explicit equations used for polygonising superquadrics 

poor sampling rate 
as curve drops. 

X 
incremental sampling along x 

Figure 4.3: Sampling with explicit equations 

explicit equations are multivalued, and sampling along an axis does not provide 

uniform sampling along a curve. Consider, for instance, a superellipsoid. The first 

problem is solved by calculating the positive quadrant and reflecting it seven times 

to complete the surface. The second problem is illustrated in Figure 4.3, where a 

quarter circle is sampled along the x axis: as the curve drops, the distance between 

sampled points on the curve increases. To overcome this problem the surface is 

sampled to the midpoint of the curve and then reflected. Hyperbolas (which are 

used for hyperboloids) are not affected by this sampling problem as much as ellipses, 

and are therefore sampled over the entire positive quadrant and then reflected to 

complete the curve. 

The seat in Figure 4.4(c) was polygonised with the explicit method. Besides 
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(a) 1770 polygons (c) 1600 polygons (b) 4950 polygons 

Figure 4.4: Chair seat 

providing a better sampling of the deformed area, this has fewer polygons than the 

seats in Figure 4.4 (a) and (b). 

4.3 Barr operators 

Barr operators deform points in space by applying piecewise differentiable functions 

to them. To allow greatest flexibility in shape control, the user should specify the 

deformation function (F), and also has to provide: 

• the range over which F is applied; 

• the Jacobian matrix of F; 

• the inverse Jacobian of F. 

Since the function is not restricted (except that it be CO continuous and piecewise 

differentiable), automatic calculation of the Jacobian requires advanced techniques 
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from symbolic algebra. This method of specification clearly requires users to have a 

good understanding of mathematics, and is prone to input errors. 

To. overcome these difficulties, the range of deformations can be restricted in 

return for easier control of input. GRooK provides specific functions that allow 

the user to control shape by specifying parameters. This technique is well suited 

to interactive input, and demands little mathematical knowledge of the user. A 

modelling system may provide both methods by offering predefined functions for 

interactive use and also allowing user-defined functions to be compiled into the code. 

The following sections outline the operators offered by GRooK. Three are based 

on Barr's work and one is a new operator that extends the linear shear function. 

Although GRooIc requires hard coded input, the design for interactive specification 

of input is discussed. 

4.3.1 Taper 

GROoK implements the linear taper function 

F(x,y,z) = where f(z) = mz + b 

z. 

described in Section 3.3.3. The taper is specified by the four parameters described 

in Figure 4.5(c). Given these, m and b of f(z) need to be determined. The slope of 

the taper, m, is easily calculated from the scale values at the beginning and end of 

the range, iniLscale and final-scale. To allow tapers to be applied off the origin, 

b must be calculated by substituting mit_scale, zstart, and in into f(z). The four 

parameters allow the user to create a function intuitively by giving general dimensions 
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4.5(b) Twist 

Parameters Name Example Values 

Range over which taper function has effect zstart -0.1087 
zstop -4.3513 

Scale factor at the beginning of the range mit_scale 0.2 
Scale factor at the end of the range final-scale 2.0 

4.5(c) Parametric input for linear taper: washer blade 

Parameters Name Example Values 

Range over which twist function has effect zstart -0.1087 
zstop -4.3513 

The number of twists per range total-twists 0.5 

4.5(d) Parametric input for twist: washer blade 

Figure 4.5: Deformations for washer blade 
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Figure 4.6: Washing machine agitator 

relating to the object being tapered. The washing machine agitator blade shown in 

Figure 4.6 uses this operator to control the amount of tapering; the twist is described 

below. Figures 4.5(a) and (b) show the blade before and after the tapering. 

It is necessary to check that the taper function f(z) is always greater than zero to 

avoid singularities or everted  objects. A simple check that f(zstart) and f(zstop) 

are greater than zero ensures positive values throughout the range. The taper func-

tion must also be applied off the origin, implying that the user-defined range must 

not include zero. 

2 t evert means to turn inside out 
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4.3.2 Twist 

The twist deformation function is: 

x cos(0) + y sin(0) 

x sin (0)—y cos (9) where O=f(z) F(x,y,z) 

Z 

GRooK implements both a constant and a nonconstant twist function. 

Constant twist 

The function f(z) controls the angle of rotation, while its derivative specifies the 

rate of twisting. For a constant twist the derivative must be constant: 

f(z) = RadiansPerUnit x z + b 

Of = RadiansPerUnit ex 

Specifying the the number of twists per unit z is desirable when the surface is 

tightly twisted; however, the user may prefer to specify the total number of twists 

over a specified range. This can be converted to radians per unit z: 

RadiansPerUnit = total_twists  2ir 
(stop—zstart) 

The twist may be applied to a section of the surface, but continuity at its begin-

ning and end must be ensured. This can be achieved by forcing the rotation angle 

at the beginning of the twist to be zero, and calculating the constant b accordingly: 

f(zstart) = 0 

0 = RadiansPerUnit x zstart + b 

b = —(RadiansPerUnit x zstart) 
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Continuity at the end of the twist can be ensured if the total number of twists is an 

integer. However, it does not have to be an integer for the cases where the twist is 

applied to the end of the object. The washing machine agitator blades were twisted 

by specifying the number of twists over a range; Table 4.5(d) lists the parametric 

values used. 

Nonconstant twist 

Since the derivative of 1(z) defines the rate of twisting in radians per unit, a non-

constant derivative will give a nonconstant twist. The most basic form is a linearly 

increasing or decreasing function: 

Let 

Then 

•f =az+b 

f(z) = z2+bz+c 

The user specifies the amount of twisting per unit z at the beginning and end of 

the desired range. This information is used to calculate a: 

a final-twists - riit_iwists 
• z.stop - zstart 

As before, b is used to permit the rate of twisting to be specified at locations other 

than z = 0: 

L 9z (zsiart) = a(zstat) + b 

b = init_twi.sts(2ir) - a(zstart) 

The fact that, as before, f(zstart) must equal zero, is used to calculate C: 

= _((zstart)2 - b(zstart)). 

Figure 4.7 illustrates a nonconstant twist as applied to a tapered superellipsoid; 
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(a) The resulting picture 

Parameters for Nonconstant Twist Name Example Values 

Range over which the twist is applied zstart 4.0 
zstop 8.0 

Number of twists per unit length at zstart mit_twists 0.25 
Number of twists per unit length at zstop final-twists 1.0 

(b) The parameters 

Figure 4.7: Nonconstant twist applied to a tapered superellipsoid 
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4.3.3 Bend 

The bend operator is specified by two functions, one for the bent region: 

/ 
X 

Y 

\Z) 

/ 

and the other for the unbent region: 

X x 0 0 

(z—)+ 

y = 0 —sin(0) cos(0) z 

z / 0 cos(0) sin(0) j 

Where: 

• (Yb =y — ymin) if  <Ymin 

• (Yb = Y - Ymax) if y > Yrnax. 

1' 

1 
k 

Yb  

(4.1) 

(4.2) 

These are for bends along the y axis in the yz plane. The parameters required are 

yo, jmin, Ymax, and lc, as shown in Figure 3.7. To implement the bend operator, an 

intuitive manner for specifying the parameters is needed. Since the centerline is the 

y axis, the surface being bent should be aligned accordingly. Most of the parameters 

are then easily understood, except perhaps the bending rate k. In case the user 

does not wish to think in terms of radians per unit, the same information could be 

specified interactively by picking a point around which the line is to be bent. If this 

point is (Yc, z0), then Yc = yo and z = 

Several different bend types can be achieved by varying the parameters. 
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Error Condition Resulting Error 

ymin >= ymax 
k = 0 
k is positive, z> k 
k is negative, z < k 
yo not in ymin. .ymax 

incorrect results 
divide by zero 
crimp in bend 
crimp in bend 
unexpected rotations 

Table 4.2: List of error checks for bend operator 

• If yo is not halfway between ymin and ymax, the bend is asymmetric. The 

torus used for the legs of the chair model in'-Figure 4.8 illustrates this feature. 

• To bend toward the negative axis, k is negative. 

• The y axis is the centerline of the bend, and is the only line to remain the same 

length after bending. 

Many checks must be made for the bena operator to work reliably, as shown in 

Table 4.2. The chair depicted in Figure 4.8(d) uses four bend operations: two for 

the seat, and two for the legs. The parameters are listed in Figures 4.8(e) and (f). 

4.3.4 Nonlinear shear 

For the shear operator discussed in Chapter 3, the user must specify the shear func-

tion: 

F(x,y,z 

Z 

GROOK allows the user to shear surfaces with superconics, the two-dimensional ver-

sions of superquadrics. The explicit representation of the curves is used instead of 
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(a) Torus 

(c) Second bend 

(b) First bend 

(d) Chair 

Parameters First bend Second bend 

ymin 0.5 —2.5 
ymax 2.5 —0.5 

(e) Parametric input for bending chair legs 

Parameters Main bend Minor bend 

ymin —0.2 —1.0 
ymax 0.3 1.0 

1.2 16.0 

(f) Parametric input for bending chair seat 

Figure 4.8: Chair model 
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Figure 4.9: Ellipsoids sheared with superhyperbola 

the parametric representation since the shear function must be expressed in terms 

of x, y, or z. GrtooK implements the superellipse shear function: 

f(z)=(1_IzI 2T)2 

and the superhyperbola shear function: 

2 El 

Az) (1 + Izt El )  

The legs of the table in Figure 4.9 were created by applying a superhyperbola shear 

to scaled superellipsoids. A single leg was created in GRooK and PG was used to 

make three instances of it. 

4.4 Free form deformation 

GrtooK 'S implementation of free form deformation permits interactive manipula-

tion. The following sections describe the process used to deform a superquadric, the 
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data structures required to store the information, the techniques used by GrtooK to 

handle normal and tangent calculations, and continuity control between deformed 

and undeformed regions. 

4.4.1 Interactive specifications 

Free form deformation lends itself to interactive manipulation by allowing the user 

to place the initial parallelepiped over the desired volume to be deformed, and then 

drag the grid's vertices to new locations in space to deform the objects. The sequence 

of steps in a typical deformation is: 

• the undeformed grid is specified (S, T, U to determine the grid length along 

each axis, and X0 to determine its position in object space); 

• the user adjusts the grid position by dragging it to the correct location; 

• the grid is deformed byits vertices being picked and dragged to new locations; 

• the surface is redrawn with the deformation applied to any pOints falling within 

the undeformed grid. 

Figure 4.10 shows a superellipsoid before and after deformation. 

The undeformed grid can be chosen in two ways: the user may either pick a 

default grid or specify S, T, U and Xo interactively. The grid may be divided into 

sections along each axis by changing the values of 1, in, and m of equation 3.5. 

Direct manipulation of the grid vertices is used to deform the volume, and can 

be executed in any of the three orthogonal view windows. GROOK allows groups of 
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U) 

'(I  

(a) undeformed superellipsoid and grid (b) deformed superellipsoid and grid 

Figure 4.10: Free form deformation of superellipsoid 

vertices to be chosen: vertices that lie "behind" one another can be moved simul-

taneously. For example, F000, F100, and P200 can be grouped in the window with a 

view down the x axis. Although this is the only type of grouping Grtooi< allows, 

other methods might prove useful, such as letting the user pick individual vertices 

to be grouped, or providing sets of groups (such as all vertices with z=0 and j=2). 

The current implementation of the modeller applies the deformation only if 

the "deformation" button is turned on, and only when the surface is redisplayed. 

This was incorporated mostly for extended free form deformation, which is more 

computation-intensive than the original deformation technique. 

The positions of the undeformed and deformed grid vertices need to be available 

when the surface is sampled. The former are used to map the surface point to grid 

space, and the latter are used in the Bernstein polynomial to map the deformed point 

back to object space. The position of the undeformed grid vertices can be calculated 

using S, T, U and X0 along with 1, m, and n as shown in equation 3.4. Since there is 
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Figure 4.11: Grid volume does not closely fit grid 

no such relationship between the deformed vertices, they must be stored individually. 

GROOK uses a three-dimensional array since the grid vertices are ordered, and their 

ordering relates directly to the array indexing. 

Two further points are worth mentioning. First, since the mapping used is contin-

uous, it does not make sense to cross sections of the grid with one another, for that 

would yield an impossible surface. Second, the grid volume is the Bezier volume 

defined by the control vertices of the grid, not that enclosed by the grid vertices 

themselves, and this sometimes causes unexpected results. Figure 4.11 shows a sit-

uation in which the user wishes to pull the surface to a point that is close to the 

deformed grid points, but since the Bezier curve described by the top five vertices 

is a shallow one, the effect is not as marked as desired. A familiarity with Bezier 

curves would, of course, benefit the user here. Using a grid that is larger than the 

object embedded in it accentuates this effect, and therefore grids are best chosen to 

fit the undeformed surface as closely as possible. 
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4.4.2 Normals and tangents 

Tangents of surfaces deformed with free form deformation can be calculated using 

Barr's tangent transformation rule: 

/ aB  
an 
aBy 
an 
aB,  

\ an I 

/ 0B2, aB aB   ax 
ax a az an 

aBs, ay 
ax ay az an 

8B aB aB  
8x ay az J \anj 

The Bernstein polynomial (equation 3.5), needs to be defined in terms of x, j, and z 

instead of .s, t, and u. This can be done by substituting s, t, and u with the linear 

equivalents in x, y, and z: 

- (Pt.X - Xo 

S.x 

- (Pt.X - Xo 

T.y 
u= 

(pt.x - Xo 

U.z 
(4.3) 

The inverse Jacobian of the Bernstein polynomial is quite complex and has not 

been calculated. Instead, the normal at a point on the surface may be derived by 

taking the cross-product of the deformed tangents based on i and W. The only 

problem associated with this step occurs if the two tangents have been mapped so 

that they are not linearly independent, which implies that the mapping is degenerate. 

This can be detected by checking the determinant of the Jacobian matrix: if it is 

zero the deformation is degenerate and cannot be performed. 

Continuity 

Continuity may be important in two situations: when two or more grids are joined 

together, and when a grid is placed over just part of a surface. Since GRooK only 

offers one grid, the first case does not arise (it has been investigated in [Par86]). The 

second case requires continuity to be maintained at the intersection of the grid and 
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the surface. By not altering the first plane in the grid that intersects the surface, 

C° continuity is maintained. C' continuity can be achieved by not deforming the 

firstk planes that intersect the surface [SP86]. This provides an easy way to control 

continuity interactively. GROOK leaves this control to the user; however, a fully 

developed system might automatically freeze k outer planes in the grid when CC 

continuity is requested by the user. 

4.5 Extended free form deformation 

GitooK allows extended free form deformations to be specified interactively by menu 

selection. The following sections describe the differences between the free form defor-

mation implementation and its extension, and discuss problems encountered with the 

extended deformation technique. 

4.5.1 Freezing the grid 

Extended free form deformation is more complex to implement than the original ver-

sion, since the vertex positions must be stored for both deformed and undeformed 

grids. In the original (unextended) technique, the initial mapping to grid sacecoor-

dinates uses the vectors S, T, U and Xo (equation 3.3), and therefore the undeformed 

grid vertex positions need not be stored. The initial grid vertices for the extended 

version cannot be similarly related since the grid is arbitrarily shaped; hence the 

vertices must be stored in a second three-dimensional array. 

The process for deforming a surface also changes. Rather than simply dragging 

the grid to the desired location and then deforming it, the user must now drag the 
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grid to the desired location, freeze it to store the vertex positions, and then deform it 

and apply the deformation to the surface. The grid, once frozen, cannot be dragged 

to a new location unless it is refrozen before deformation. 

The process of deforming a surface using extended free form deformation in 

GRooK is: 

the undeformed grid is chosen (GRooK provides several predefined grids); 

• the user adjusts the grid position by dragging it to the correct location, or 

adjusts any vertex by dragging it to a new location; 

• when the grid is shaped and positioned as desired, the grid is frozen; 

• the grid is deformed by directly manipulating its vertices, as in free form defor-

mation; 

• the surface is redrawn with the deformation applied to any points falling within 

the undeformed grid. 

Each stage is controlled by buttons at the side of the interface. Modes are set so 

that manipulating the grid alters the initial array if the grid has not been frozen, 

and alters the deformed grid array if it has been frozen. Deformation of the grid is 

the same as for unextended free form deformation in that single points or groups of 

points may be repositioned. 

4.5.2 Grid formulation 

The extended free form deformation grid is equivalent to an (unextended) free form 

deformation grid where 1, m, n = 3, and the grid may be nonparallelepiped. The 
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restriction in the number of sections simplifies the calculations used by Newton's 

method. 

4.5.3 Normals and tangents 

Tangents for a surface deformed with extended free form deformation cannot be 

calculated using Barr's tangent transformation rule since there is no analytic mapping 

between object and grid space. This means that the Bernstein polynomial cannot 

be expressed in terms of x, y, and z as required by the Jacobian. As a result, 

Grtooic does not provide tangents and normals for superquadrics deformed with 

this technique. Approximation methods such as those outlined in [Blo88] should be 

further investigated. 

4.5.4 Problems with Newton's iteration 

The extensions added to free form deformation by Coquillart greatly expand the 

set of shapes attainable with the technique. However, the mapping from (x, y, z) 

coordinates to (s, t, u) coordinates is now nonlinear, and this not only requires much 

more computation than the linear mapping, but. also does not guarantee a correct 

result. 

GRooK uses multidimensional Newton's method to calculate the grid coordinates 

of the undeformed surface point. Although Coquillart, using the same technique, 

claimed that convergence problems did not arise, such problems were encountered 

while testing various grids with GROOK. Newton's method requires an initial guess 

to start the iteration process, and Coquillart used a starting value of 0.5 for s, t, 

and u. The grids shown in Figure 4.12 did not converge with these starting values, 
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Figure 4.12: Grids for which Newton's iteration failed 

although with better initial estimates the convergence problems disappeared. Good 

initial estimates are the key to effective use of multidimensional -Newton's method. 

Since the whole point of extended free form deformation is to allow arbitrarily 

shaped initial grids, it would defeat the purpose to restrict the grids to simple ones 

which were known to work with Newton's method. GRooK only permits one grid and 

relies on it to provide adequate complexity in shape, whereas a system that allowed 

multiple grids could affdrd to restrict each one to a simple shape. Techniques for 

determining good starting values should be investigated further, even if simple grids 

are used, since these will speed up the iteration process. 

4.6 Combining deformation techniques 

In contrast to free form deformation, Barr operators seem to be rather restricted, and 

it is worth asking whether they are still necessary, or whether free form deformation 
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might not offer enough shape control to render them redundant. Although Barr 

operators are efficient, the free form techniques provide a better 'balance between 

control of shape and ease of use. If they can perform the same operations as the 

Barr functions, then perhaps a system based solely on them could offer the user a 

more consistent interface with the same expressiveness. 

Scaling, tapering, and bending can be accomplished with the free form techniques, 

but twisting is difficult. Applying Barr's twist function to the grid vertices overcomes 

the challenge of interactively twisting them, but because of the Bezier based definition 

of the volume, the twisted grid is much narrower along the twist direction than the 

original. Instead, the twist function can be applied to the grid space itself. In fact, 

both twist and taper functions can be applied to the grid volume. This has several 

benefits: 

. the space is not narrowed as it is when the grid vertices are twisted; 

• it provides the user with a consistent interface for deformations - the grid 

volume is always used to encompass the region to be deformed; 

• twists and tapers can be applied along curves: since the functions are applied 

in (s, t, u) space, they will follow in the direction of the s, t, or u axes, which 

will be curved relative to object space if the grid is curved. 

The last point describes a new type of shape control, since any function can be 

applied to the grid space as long as the deformed points remain in the grid volume. 

The procedure used with GRooK is outlined below, assuming a twist function is 

being applied to a superquadric: 
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• calculate the (s, t, u) coordinate of the sampled superquadric surface point; 

• since the grid volume is defined from 0..1 along each axis, the surface point 

must be translated by —0.5 so that the twist is centered around zero; 

• apply the twist function to the point; 

• use the deformed (s, t, u) coordinate in the Bernstein polynomial to calculate 

the deformed position in object space. 

The surface point in grid space must remain within the grid volume after deformation, 

so that its position in object space can be calculated by the Bernstein polynomial in 

the final step. This implies that the grid volume must be wide enough to contain not 

only the original surface, but also the deformed one. GROOK does not check for this, 

but any deformed (s, t, u) point outside of the range (-0.5..0.5) could be flagged as 

an error, signalling the user to resize the grid. 

Since the grid defines the region to be deformed, the user no longer needs to 

specify the range over which the twist should be applied. The functions are all similar 

to those defined in Section 4.3.2, except that specifying the number of twists per 

unit cannot be calculated since the twist is not in object space, and the relationship 

between grid space and object space is not easily obtained. 

Figures 4.14 to 4.17 illustrate the effect of this new operation. The primitive is a 

superellipsoid which is variably sheared along the x axis. The initial grid used for all 

four deformations is cylindrical, and is aligned with the curved surface by applying 

the same varying shear function to its vertices. Interactive manipulation of some of 

the grid points then permits final adjustments to ensure that the grid volume closely 
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Figure 4.13: Curved surface: sheared by 1(y) = O.3y2 

1/ 

/f/,/,fl 

Figure 4.14: Twist along curved surface 

Figure 4.15: Taper along curved surface 
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Figure 4.16: Nonconstant twist along curved surface 

Figure 4.17: Taper and twist along curved surface 

Figure 4.18: Twist using free form deformation 
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follows the curve of the surface. The superellipsoid shown in Figure 4.18 illustrates 

that twisting can be applied locally as well as globally with this method. 

4.7 Summary 

This chapter described GROOK, a system that implements three deformation tech-

niques. Two po1ygonistion algorithms for its superquadric primitiyes were desc-

ribed, and each of the deformation techniques was discussed. A new technique for 

combining Barr operators and free form deformation methods was presented. 



Chapter 5 

Evaluation 

This chapter shows how Barr operators, free form deformation, and extended free 

form deformation can be used to replicate, and extend, most of the operations listed 

in Chapter 2. When possible, GROOK was used to replicate the operations. Occa-

sionally, GRooK did not offer an operation, although there was no inherent reason 

why Barr operators or free form deformations could not have been used. In these 

cases the details of such an implementation are discussed. 

5.1 A metric for shape analysis 

In order to analyse the shape control offered by CROOK a metric is required. It is not 

possible to design a metric and justify it on purely logical grounds [Koe9O]. Instead, 

we illustrate the strength of deformation based modelling by showing that GRooK 

can provide the shape control offered by existing systems. However, a basis for eval-

uating the extent to which each operation provides flexibility is needed. Coquillart 

[Coq9O] outlines four areas where operations should provide generality: 

• the size of the deformed region; 

• the position of the deformed region; 

• the shape of the boundary of the deformed region; 

• theshape of the deformed region itself. 

82 
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Although she applies these criteria to warps, they can be used for all local defor-

mations. They do not apply to global, deformations, since it makes no sense to 

discuss the position, size, and boundary of a region when the entire surface is being 

deformed. Since there is no general way of evaluating global operations, each oper-

ation is discussed independently. 

The operations in Table 5.1 are listed as either local or global. For each operation 

from Chapter 2, the deformation techniques that implement it are listed. In the 

sequel, the implementation of each operation is discussed in detail, and extensions 

are noted. 

For the purpose of this chapter, "free form deformation" refers to both the original 

and its extension, unless otherwise noted. Since the original is faster, it is preferable 

in cases where both can be used. Only the original is discussed when no benefit is 

gained with the extension. 

5.2 Global operations 

5.2.1 Scale 

Scaling can be achieved using Barr operators or free form deformation: The former 

allows the designer to scale a surface to some desired dimensions, whereas the latter 

does not easily permit such precision. In fact, the extra precision afforded by Barr 

operators over the free form techniques applies to many of the shape control opera-

tions. Since free form deformation embeds the surface in a volume, precision scaling 

can only be achieved if the volume fits the surface exactly. This is often difficult, 

especially when using interactive techniques where the grid may appear to fit, but 
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Type Operation Applicable Technique 

Global Scale Barr, FFD, EFFD 
Bend Barr, FFD, EFFD 
Thicken Superquadrics 
Variable Shear Barr 
Taper Barr, FFD, EFFD 
Twist Barr, Barr applied to FFD, EFFD 

Local Flatten Barr 
Warp: square base FFD, EFFD 
Warp: circular base EFFD 
Warp: arbitrary base EFFD 
Warp: skeletal base EFFD 
Warp: beak none 
Warp: scoop FFD, EFFD 
Warp: bulge none 
Freeze Region FFD, EFFD 
Duplicate operation Barr, FFD, EFFD 
Refinement Superquadric sampling rate 

Table 5.1: Summary of operations and applicable deformation techniques 
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does not. 

Although Barr's scale operator is more precise, it does not always do exactly 

what is intended. The supertorus that serves as the "legs" to the chair model in 

Figure 4.8 illustrates this point. It is centered on the origin, and scaled using the 

scale operator as discussed in Section 3.3. The scale not only stretches the torus to 

make it longer, but also thickens it along the sides that run perpendicular to the 

direction of scaling. Although the result is aesthetically pleasing, it is not what was 

intended: the part of the legs that lies on the- ground should have been the same 

thickness as the rest. 

To overcome this problem, scaling was performed using free form deformation 

instead of the scale operator. A grid was placed over the entire supertorus, with eight 

sections dividing it along the z axis, as in Figure 5.1. The leftmost and rightmost 

sections of the grid were held a constant size, and merely moved out from the center of 

the supertorus, while the inner sections were expanded to simulate scaling. Figure 5.1 

shows the grid after deformation. Notice that the torus need not be centered on the 

origin when scaling with free form deformation. 

Extended free form deformation can be used to scale curved surfaces. In practice, 

models are often imported from other modellers, or have been created in the past 

with no history of their deformation process. In these cases, scaling along an axis is 

not general enough, as the scale may need to be applied along a curve. To scale the 

supertorus after the bend operations have been applied, a curved grid can be fitted 

to it and then scaled as needed. Since the grid can be curved in three dimensions, 

scaling along nonpianar curves is supported by this technique. 

GRooK's scale operator extends previous operators by allowing the operation to 
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Figure 5.1: Torus scaled with free form deformation 

be applied along three-dimensional curves. 

5.2.2 Bending 

Bending can be achieved using either Barr operators or free form deformation. The 

chair in Figure 4.8 was modelled on the Cobb chair and demonstrates how bend and 

scale can be used to deform superquadric primitives. The seat is modelled using a 

superellipsoid with exponents of 0.2 to square it, and then a scale to thin it along z. 

Two bends are used: one to create the sharp bend between the seat and the backrest, 

and a shallow one running from the front of the seat to the top of the backrest. Both 

were implemented using Barr operators. 
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Free form deformation can also be used to effect a bend, but lacks the precision 

of the Barr operator. It does, however, offer more flexibility in the types of bends 

permitted, since a bend in three dimensions can be executed in one application, 

whereas the Barr operator can only bend in a plane. Free form deformation also 

allows the surface to be bent and then tapered along that bend, which Barr operators 

cannot do. The extended version can be used .to bend surfaces which are already 

bent. 

GROOK's bend operator extends previous operators by allowing the bend to be 

• defined in three dimensions. 

5.2.3 Thicken 

The variable lift and odset operator specified by Cobb allows a surface to become a 

solid by duplicating it and joining the copied surface to the original. This feature 

has not been introduced into GRoor< because "thickening" surfaces is not needed: 

solid superquadrics can be deformed to achieve the desired models. For example, a 

variety of solids have been created simply by deforming superellipsoids: the agitator 

blades of Figure 4.6, the table legs of Figure 4.9, the chair seat of Figure 4.8, and 

the flashlight handle of Figure 5.2. 

5.2.4 Twist and taper 

A twisted or tapered surface can be created using Barr operators, or by. using Barr 

operators with free form deformation. The blades for the washing machine agitator 

were created using the Barr twist and taper operators, while the horns in Figures 4.14 

and 4.15 were executed by applying Barr operators to the space enclosed by an 
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extended free form deformation grid. In this case, the free form technique is not 

quite as intuitive as the Barr operator, given the details outlined in Chapter 4, but 

the extended version allows surfaces to be twisted and tapered along a curve, which 

other systems do not allow. It may be useful to apply other functions along a curved 

surface, although this has not been investigated. 

The twist and taper operations must be applied over the entire cross-section 

of a surface, and in this sense are global. The operations can be applied locally 

by specifying a range over which they are applied when using Barr operators, or 

by placing the grid over the desired range when using free form deformation. This 

permits some flexibility in the position of the deformation. The shape of the deformed 

region can be altered by controlling the rate of tapering or twisting. 

The twist and taper operations offered by GrtooK extend previous operations by 

permitting the functions to be applied along three-dimensional curves. 

5.2.5 Variable shear 

Variable shearing is a new operation offered by GRooK, and is particularly useful 

for superquadric based modellers because conic shear functions can be applied to 

surfaces. Since superquadric silhouettes are defined by conics, surfaces can be made 

to align with each other, as in Figure 4.9. The table legs are modelled with a scaled 

superellipsoid which is sheared along a hyperbola to make it fit the centerpiece (a 

superhyperboloid of one sheet). 

As this is a new operation, it extends the set of primitive operations. It extends 

the shear operation by including nonlinear functions, but is still applied along a 

straight line, in a plane. 
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5.3 Local deformations 

5.3.1 Flatten 

The flatten operator is implemented in GROOK, but is not a well defined operator. 

It bases the deformation function on the flatten operator as implemented by Cobb 

{Cob84}. The function is: 

x + F(x,y,z)= an,y+any 

z + an 

where n is the vector of projection. All surface points falling within a defined region 

are projected onto a user-defined plane in the direction of n. The constant a repre-

sents the distance between the sampled point and the plane along the direction of 

projection. The equation of the plane must be given: 

Ax+By+Cz+D=O 

By substituting the equations of the projected point into the plane equation, the 

distance can be calculated: 

a= 
—Ax — By — Cz — D 

An + Bn ± Cm 

The flashlight handle in Figure 5.2 illustrates how a region of a superquadric can 

be flattened. Though this function works well with polygonised surfaces, it does not 

maintain a CO continuous surface as required by Barr operators. When the surface 

is lifted to the planar region, it is disconnected from the rest of the surface along 

the boundary. The polygonisation will create polygons to connect the regions, but 

the surface itself will no longer be connected. The position of the flattened region is 
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Figure 5.2: Flattening a region using Barr's technique 

also restricted since deformed superquadric primitives may have regions that overlap 

along the line of projection. This causes the surface to self-intersect in the flattened 

region, and must be avoided. Cobb's flatten operator is made possible by applying 

the flatten operation to the control points of a B-spline surface, rather than to the 

surface itself. This not only maiitains surface continuity but also provides a smooth 

transition at the boundary. 

Flattening a curved surface with extended free form deformation also proves to 

be difficult. The method involves fitting the initial grid to the surface, then pulling 

control points in the grid up from the surface into a thin, flat parallelepiped shape. 

However, several problems are encountered: 

• a close fit between the surface and the grid volume is crucial for the flatten to 

work properly; 

• fitting the grid volume to. the surface is not easy; 

• more than one chunk (3x3x3 grid) is required to attain a flat volume, and 

GRooK only supports volumes defined by one chunk. 

Since the grid is the control mesh for a Bezier volume, just fitting the grid to a 

surface does not mean that the volume defined by it fits the surface. If the surface is 
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at all complex, adjusting the grid vertices appropriately can be a tedious task. Even 

then, it is hard to determine whether the surface fits entirely within the volume, since 

the wire frame images of the grid v'olume and the surface do not provide adequate 

perceptual cues. 

GROoK could not be used to test even simple cases since a 3 x 3 x 3 grid cannot be 

used to flatten the surface. To maintain CO continuity at the boundaries, the outer 

planes of the grid must remain in their original positions, while the inner vertices are 

lifted. The Bezier definition of a 3 x 3 x 3 grid causes the volume to be curved, as in 

Figure 3.13. An implementation that uses multiple chunks in one grid could likely 

overcome this by lifting entire chunks. 

5.3.2 Warps 

Extended free form deformation was designed to create arbitrarily shaped warps 

in surfaces with respect to the criteria provided by [Coq9O]. The warps offered by 

GRooK provide the same level of generality. Although a functional specification for 

warping could be given, the inherent benefits of the free form technique make it the 

most feasible approach, except in the rare cases when the shape is easily described 

analytically. The following paragraphs describe how free form techniques can be 

used to implement each of the warps mentioned in Chapter 2. 

Square base 

Free form deformation allows bumps in surfaces to be created interactively. Figure 5.3 

shows a grid being used to create a warp in a plane. The boundary between the 

deformed and undeformed areas is rectangular since the grid is parallelepiped. All 
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Figure 5.3: Deformation with square base 

boundaries for free form deformations are restricted in this way. 

Circular base 

Figure 5.4 illustrates a circular warp, as described by Cobb. Extended free form 

deformation provides the necessary flexibility by allowing a nonparallelepiped grid. 

In this case, the grid approximates a circular base as shown in Figure 5.5. 

Arbitrary base 

Arbitrarily shaped initial grids can be used to deform various surfaces. Figure 5.6 

shows some examples. 

Skeletal base 

The skeletal warps described by Cobb can be readily executed using free form tech-

niques since an initial grid can be placed on the surface and then pulled up to raise 

the surface along the grid. A smooth deformation can be attained by only pulling 

up the grid's inner control points. Figures 5.7 and 5.8 show a skeletal warp with 
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Figure 5.4: Deformation with circular base 

Figure 5.5: Grid used for warp with circular base 
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Figure 5.6: Warp with arbitrary base 
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Figure 5.7: Skeletal warp using free form deformation: C° continuity 
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Figure 5.8: Skeletal warp using free form deformation: C' continuity 

CO and C' continuity at its ends. 

Beak - nonsmooth warps 

The beak operation requires direct manipulation of the surface. Since this is not 

possible using Barr operators or free form techniques, Gaooi< cannot provide this 

operation. The angular warps resulting from the beak operation should, however, be 

achievable with GrtooK. Sharp edges cannot be obtained with free form techniques— 

the deformed volume is based on Bezier surfaces, which are smooth. Figure 5.9 

illustrates how even an extreme deformation in the grid still results in a smooth 

warp. A system permitting hierarchical application of free form deformation could 

likely attain angular warps by repeatedly applying grids until the required level of 

sharpness is achieved. 

Scoop - inverse warps 

The scoop operation offered by Form Synth can be attained using free form defor-

mation by pushing the control points inward rather than outward from the surface. 
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Figure 5.9: Creating a sharp tip in the warp using free form deformation 

The position, size, and shape of the deformation are as flexible for the scoop as they 

are for the outward warp. 

Bulge - spherical warps 

Although free form deformation allows a multitude of warps, it has limitations. One 

is that the bulge operation of Form Synth cannot be simulated. The problem lies in 

the size of the warp at the tip: the fact that it has a narrow base and a spherical 

end makes it difficult to deform the grid enough to make the spherical expansion 

without having grid sections near the base of the warp intersect. A system allowing 

hierarchical applications of deformations could likely overcome this by pulling up the 

surface in the first application, and then expanding the region in the following one. 

5.3.3 Freeze region 

GROOK does not offer a way to freeze a region of a superquadric so that deformations 

will not affect that region. The operation used by Delta allows warps to have arbi-
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trary boundaries by permitting parts of the warp region to be frozen. Since extended 

free form deformation permits arbitrary boundaries, it can be used to achieve the 

same effect: the grid is designed to cover only those regions that need to be deformed. 

Freezing of a superquadric region, as in Delta, could not be implemented in 

any case because it relies on the underlying polygonal representation. Polygons 

connecting the deformed and the frozen regions are stretched to ensure surface con-

tinuity. The functional specification of the superquadric surface requires that the 

deformation provide a smooth connection to the frozen region, otherwise CO conti-

nuity would not be guaranteed. 

5.3.4 Duplicate operation 

GRoOK does not allow duplicate operations to be applied to surfaces. Both Barr 

operators and free form deformation can be augmented to duplicate operations at 

other locations of the surface, but Barr operators are restricted in the orientation of 

the duplication. Since operators such as the taper function use the position of a point 

along one axis to determine the amount of deformation, they give different results 

when applied to identical surfaces at different locations. As a result, the surface must 

be translated and rotated to have the same orientation and position with respect to 

the deformation being applied. Assuming the restrictions for the specific operation 

being duplicated are met, Barr operators can be duplicated with no restriction on 

the size, position, boundary, or shape of the deformed region. 

Duplicating an operation executed with free form techniques entails saving both 

the original and the deformed grids. The former must then be placed at its new 

location, and the latter aligned with it. This alignment must match exactly, and 
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cannot be done interactively. If the duplicate application has the same orientation 

the relative offsets of the deformed grid points from the original grid points could be 

stored. If a different orientation is desired, the offsets would need to be rotated the 

same amount as the grid. 

The size, position, boundary, and shape of the region being duplicated with free 

form deformation is arbitrary. 

5.3.5 Refinement 

Since superquadrics are defined by continuous, functional specifications of a surface, 

they do not need a refinement operation. However, since GrtooK uses polygonisation 

for rendering, there must be a way of controlling sampling. The user can set a 

"resolution" value which determines the sampling rate for the superquadric surface. 

The sampling is uniform in either parameter or object space, and there is no provision 

for highly deformed areas to be refined. Consequently, other rendering techniques 

such as adaptive subdivision should be explored (these are summarised in Chapter 

6). 

Since GRooK implements global refinement, the size, position, boundary, and 

shape of the deformed region is not arbitrary. Adaptive subdivision automatically 

refines the sampling at regions of high curvature, which does not provide arbitrary 

control of the region being refined, but is based on a reasonable assumption. 
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5.4 Summary and comparisons 

This chapter compared the deformations achievable with GROOK with the operations 

listed in Chapter 2. Each operation as defined in GROOK was analysed with respect 

to the generality it provided. A yardstick for discussing generality in operations was 

provided for local deformations. The following questions arise: 

• how well does GROOK compare to previous systems? 

• how general are the operations it implements? 

5.4.1 Comparison to existing systems 

Barr operators and free form deformation can be used to replicate most of the oper-

ations in Chapter 2. All have been successfully modelled with GRoor< with the 

following exceptions: flatten, beak and bulge warps, local refinement, and freezing 

a region. Of these operations, the flatten operator is the only one that is difficult 

to represent with the three deformation methods discussed in this thesis. Beak and 

bulge warps can likely be attained with a system that permits hierarchical appli-

cation of free form deformation. Local refinement based on adaptive subdivision is 

documented in the literature [11B87], but its implementation is beyond the scope of 

this thesis. Freezing a region was shown to be redundant in a deformation based 

system. 

5.4.2 Comparison to metric and previous capabilities 

Global operations are extended by GROOK in several ways. First, surfaces may 

be scaled, bent, tapered, and twisted along a curve. This extends the original 
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operations, which are applied along axes. Second, surfaces may be scaled, bent, 

tapered, and twisted along three-dimensional curves. Rather than having to apply 

several planar operations, only one application of the deformation is needed. Scaling, 

bending, and tapering rely on extended free form deformation, while twisting requires 

a combination of Barr operators and extended free form deformation. Third, the 

deformation can be applied anywhere in the coordinate system, at any orientation. 

This is in contrast to many of the operations listed in Chapter 2, where the surface 

must be applied at or near the origin, along one of the axes. Finally, GrtooK offers a 

new operation to variably shear surfaces. This permits superquadrics to be aligned 

with one another. 

Local operations can all be implemented with deformation based techniques, 

except the flatten operator. As noted, each operation should provide generality in 

the size, position, boundary, and shape of the deformed region. The warp operation 

is enhanced by extended free form deformation to meet each of the four requirements. 

Local refinement can be implemented to provide adaptive subdivision, which does 

not provide generality in the four areas, but does provide refinement where it is most 

often needed. Duplication of both Barr operators and free form deformation can be 

implemented in an arbitrary manner. 



Chapter 6 

Conclusions 

This thesis has shown that deformation based modelling is a viable modelling tech-

nique, in that it provides: 

• a rich set of operations; 

• operations that are general; 

• an intuitive interface. 

This has been substantiated as follows. Chapter 2 provides a survey of existing 

systems and summarises the operations they offer. Chapter 3 provides mathematical 

details of superquadrics, Barr operators, free form deformation, and its extension. A 

new operation to variably shear a surface is defined. Chapter 4 includes design and 

implementation details of the testbed program GRooK, and illustrates strengths 

and weaknesses in the deformation techniques and their superquadric primitives. 

Chapter 5 demonstrates that a deformation based modeller can perform most of the 

operations listed in Chapter 2, and extends many of them. 

New contributions resulting from this work are: 

• a comparison of three deformation based techniques; 

• a method to combine Barr operators with free form deformation; 

• the unification of the three approaches into one system, thus providing a spec-

trum of techniques that can be applied to the problem at hand; 
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• the variable shear operation, which can be used to align superquadrics; 

• normal and tangent calculations for superquadrics deformed with free form 

deformation. 

Several conclusions were drawn from experimentation with the three deformation 

based techniques. First, in terms of execution speed, Barr operators are the most 

efficient of the three techniques, while extended free form deformation is the least 

efficient. However, the extension provides considerably more expressive power than 

the original, unextended, free form deformation. Second, free form deformation 

and its extension provide more generality in shape control than Barr operators. 

However, Barr operators are indispensable as they provide precise specification of 

the operations, which free form deformation cannot. Third, Barr operators can 

provide deformations which free form deformation cannot, such as the variable shear 

function. 

Several areas of deformation based modelling deserve further investigation. We 

briefly examine five: surfaces based on the spherical product, the user interface, 

rendering, extensions to each of the deformation techniques, and the design of a, 

fully developed system. 

This thesis described four superquadric surfaces. The spherical product can be 

used to describe many more surfaces by using different curves for h(W) and M- (77). 

This extension fits nicely into a deformation based modeller since the spherical 

product is a deformation specification: it deforms a two-dimensional curve along an 

axis. Other quadrics such as the ones listed in [RA9O] can create new superquadrics, 

while nonconic curves can be used to create nonquadric based surfaces. 
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The user interface for GROOK should permit free form deformation grids to be 

specified interactively. Coquillart's system [Coq90] provides lofting and extruding 

operations so that grids can be created from two-dimensional curves. Other possi-

bilities should be investigated. Modes for manipulating the grids should be more 

flexible. A method for grouping vertices so that they can be moved simultaneously 

has been discussed in Section 4.4.1. Since grids may become complex, the user should 

be able to "hide" certain parts of the grid by not having them displayed. This tech-

nique is used by Forsey [FBS8]. Finally, when Barr operators are applied to free 

form deformation volumes, the deformed surface must remain embedded in the grid. 

A way to check this before the entire surface is deformed would be of great benefit. 

Without proper rendering techniques, the most impressive deformations will not 

be adequately illustrated. Two algorithms for deformed surfaces have been docu-

mented: one to ray trace parametric surfaces directly [Bar86] and another to calcu-

late triangulations of them [HB87]. The triangulation method is more general as the 

output can be fed to scan-line algorithms or ray tracers. 

Each of the deformation techniques deserves further investigation. More examples 

of Barr operators may prove useful, as did the variable shear function. A flatten 

operator, for example, that permits an arbitrary boundary may yet be accomplished 

with a Barr function. 

Extended free form deformation warrants further research in several directions. 

An expanded formulation that includes multiple chunks per grid and hierarchical 

application of grids should be implemented. Multiple chunks permit a greater variety 

of shapes to be expressed, and would permit a better framework in which to test 

situations in which Newton's iteration fails to converge. Continuity between chunks 
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would need to be guaranteed, possibly with the tangent alignment method proposed 

by [Coq90]. This also affects the way Barr operators are applied to a grid: the defor-

mation function must continue smoothly between chunks, each of which is defined 

by separate Bernstein 'polynomials. Unexpected results may occur if the grid chunks 

are not the same relative size, since a function applied over all chunks would not 

necessarily be applied evenly in object space. 

Hierarchical application of grids would allow the beak and bulge operations to be 

tested. It may prove fruitful to permit multiple grids to be hierarchically organised 

into one "object," much as primitives can be grouped hierarchically in systems such 

as PG [WMG86]. This would permit the designer to move them as one object, and 

would allow local deformations of other larger deformations. In this way, changes to 

the large deformation grid would also affect the local grid, as in [FB88]. Whether 

this is possible is not clear: the surface deformed by the large grid may not lie in the 

volume defined by the local one. 

This thesis evaluated deformation based modelling according to its ability to 

create a wide variety of shapes. Since it has proven to be useful in this area, a 

complete system should be analysed with respect to other criteria such as those 

outlined in [A1188]. In particular, efficiency of each technique should be further 

investigated. A great deal is known about algorithms for Bernstein polynomials 

{GR74} [FR87], and a faster, more efficient implementation based on these should 

be investigated. For example, Bernstein polynomials can be evaluated using the de 

Casteljau algorithm [Las85]. 

Finally, a fully developed modeller based on deformations should be developed. 

Grids could be used not only to deform surfaces, but also to position objects within 
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a scene: the objects are embedded in a grid, it is deformed or a Barr operator is 

applied to it, and the position vector of the object is deformed accordingly. Such 

a system presents interesting possibilities for animation, and an animated free form 

deformation has already been described [Coq91]. 

In 1989 I made a computer animated movie entitled "Snoozin' Blues." This 

depicted a saxophone that expanded and contracted as it snored. I wanted the keys, 

represented by a row of spheres, to be twisted around the bore of the saxophone. 

Since the instrument was conical and bent, the twist needed, to be applied along a 

bend, and diagonally outward from the axis. I had to do this by trial and error— 

a very tedious process (I finally changed the script to avoid the twist). However, 

deformation based modelling would have been an ideal solution. By embedding the 

saxophone in a similarly shaped grid and aligning the spheres alongside it, a Barr 

twist function applied to the volume would calculate the new positions of the spheres. 

Piet Hem's superellipses initiated the developments that led to this thesis. His 

aim, to bridge the gap between Art and Science, is the essence of computer graphics. 

The challenge is to provide an expressive environment for artists and designers; 

this can only be achieved when the science behind the system is made transparent. 

Deformation based modelling is an important approach to this goal. The work 

presened in this thesis provides a sound basis for a powerful modelling technique in 

computer graphics. 
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