
THE UNIVERSITY OF CALGARY

Deformation Based Modelling

BY

Anja Haman

A THESIS

SUBMITTED TO THE FACULT'V OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

OCTOBER, 1991

© Anja Haman 1991

1+1
National Library
of Canada

Bibliothèque nationale
du Canada

Canadian Theses Service

Ottawa. Canada
KIA 0N4

Service des thes canadiennes

The author has granted an irrevocable non-
exclusive licence allowing the National Ubrasy
of Canada to reproduce, loan, dtstiibute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without hisher per-
mission.

Canacta

ISBN

L'auteur a accordé une licence irrevocable, et
non exclusive permettant a la Bibtiothéque
naflónale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa these
de quelque manière et sous quelque forme
que ce soit pour mettre des exemptaires de
cette these a la disposition des personnes
intéressées.

L'auteur conserve la proptiété du droit d'auteur
qul protege sa these. Ni La these ni des extraits
substantiels do celle-ci ne doivent être
imprimés ou autrement reproduits sans son
autorisation.

'-315--75221-1

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled, "Deformation Based Modelling,"

submitted by Anja Haman in partial fulfillment of the requirements for the degree

of Master of Science.

Date October 29, 1991

11

L•
Dr. Brian Wyvl, Supervisor
Computer Science

Dr. lati \Vittcii
Interim Supervisor
Computer Science

Dr. J9n Rokne
Headof Department
Computer Science

Dr. Bruce MacDonald
ComputççSç1'nce

'r. Doug Norrie
Mechanical Engineering

Abstract

Providing control over objects' shapes is a central problem—perhaps the central

problem—in modelling for computer graphics. Many systems give users access to

the underlying representation of surfaces to allow them to define and adjust the

shapes they want. This has led to a wide variety of surface types, each requiring

software specific to its representation. A different approach is to control shape by

moulding predefined surfaces.

This thesis studies deformation based modelling, a surface-independent way of

allowing users to deform objects to control their shape. Barr operators, free form

deformation, and extended free form deformation are three different techniques that

provide this style of shape control. Each is described, and the three are compared

in terms of the flexibility they offer the user for creating new shapes. They have

been implemented in a testbed system, named GrtooK, which uses superquadric

surfaces as primitives. A new method that combines Barr operators and free form

deformation extends previous-work by permitting surfaces to be twisted and tapered

along curves.

To assess the viability of deformation based modelling, GROOK is compared to

five existing systems that represent the state of the art in shape control. It is demon-

strated that GROOK matches and extends most of the operations provided by these

systems.

II'

Acknowledgements

Firstly, I would like to thank the staff, students, and faculty with whom I have

worked during my Masters. The friendly atmosphere at the UofC computer science

department is quite remarkable, and I will take with me many happy memories.

I am grateful to Brian Wyvill for reading and commenting on the various versions

of my thesis and for financial support.

Sincerest thanks to Ian Witten for his unwavering dedication in the final, crucial

months of this thesis. He not only provided me with focus, but also instilled in me

the confidence I needed to complete this research. His careful scrutiny of the work

and prompt editorial feedback were motivating factors wheh that greatly improved

the final thesis.

Bruce Macdonald and Graham Birtwistle read and commented on early drafts

and their keen interest in my progress is very much appreciated. I thank Sue Stodart

for her timely proof reading assistance and her scrumptious midnight muffins. Mark

James and Eric Schenk spent 'many hours helping with latex and postscript problems.

Charles Herr's editorial feedback along with many useful discussions helped sus-

tain my enthusiasm. His desk, with its layers of German lunches, drying hockey

gear, year old pumpkins, and a sprinkling of texts is an ideal for which I strive. The

unflappable Brian Schack spent many hours listening to my incessant worrying, and

offered thoughtful advice with unfailing friendship. He is a gem.

Camille Sinanan is a woman I admire immensely, and whose caring and love have

helped me grow in countless ways. Her friendship is one I treasure deeply.

My friends Brad, Michelle, Moira, Sherrie, and Thomas patiently awaited my

iv

freedom and offered sunny breaks in the meantime. The Slind family took me into

their home with love and kindness, providing warmth, acceptance, and many deli-

cious meals. And they have a nice son.

Without my horse, kayaking, ultimate, and hockey, I might have finished sooner

but not as happily. I thank the wonderous Lou for hanging in there, and Cheryl,

Sue, and Suzanne for their help and encouragement. Marion Wooden's support over

the years is greatly appreciated - her energy and enthusiasm is an inspiration!

Konrad Slind, my "supportive man of the nineties," provided me with love and

warmth, and has shown me what patience and perseverance really mean. His con-

tinual stream of poetry for the months we spent apart brightened my days (and

provided me with new insights about my forehead).

Lastly, I owe much to my family for they are a constant source of love and

good humour. My parents, Doug and Wiebke, offer unquestioning support in my

endeavors, whether I am writing a thesis or playing sports. To my mother, who

is my greatest friend and confidante, I owe more than I can say. Her intelligence,

compassion, honesty and good humour combine to make her an extraordinary person.

If she could just mess up her house a little, she would be perfect.

V

Contents

Approval Page ii
Abstract iii
Acknowledgements iv
List of Tables viii
List of Figures ix

1 Introduction 1
1.1 Thesis goals 3
1.2 Computer graphics methodology 3
1.3 Modelling 5
1.4 Thesis contributions 8
1.5 Thesis organisation 10

2 Shape control in modelling systems 11
2.1 Parent's polygon based modeller 12
2.2 Form Synth, a system for artists 13
2.3 Delta, a polygon mesh modeller 16
2.4 Cobb's B-spline based modeller 17
2.5 Forsey's hierarchical B-spline modeller 20
2.6 Graphicsland 21
2.7 Summary 21

3 Deformations 24
3.1 Superquadrics 24

3.1.1 Quadric definition as a spherical product 25
3.1.2 Superquadric definition 29
3;1.3 Tangents and normal vectors 29

3.2 An introduction to deformations 31
3.3 Barr operators 34

3.3.1 Tangent transformation rule 35
3.3.2 Normal transformation rule 36
3.3.3 Four deformation functions:' taper, twist, bend, and shear 37

3.4 Free form deformation 42
3.5 Extended free form deformation 48
3.6 Summary 50

vi

CONTENTS

4 Design of the GRooIc system 51
4.1 GROOK 51
4.2 Superquadrics 54

4.2.1 Definition for superquadrics 54
4.2.2 Polygonising superquadrics 55

4.3 Barr operators 58
4.3.1 Taper 59
4.3.2 Twist 62
4.3.3 Bend 65
4.3.4 Npnlinear shear 6

4.4 Free form deformation 68
4.4.1 Interactive specifications 69
4.4.2 Normals and tangents 72

4.5 Extended free form deformation 73
4.5.1 Freezing the grid 73
4.5.2 . Grid formulation 74
4.5.3 Normals and tangents 75
4.5.4 Problems with Newton's iteration 75

4.6 Combining deformation techniques 76
4.7 Summary 81

5 Evaluation 82
5.1 A metric for shape analysis 82
5.2 Global operations 83

5.2.1 Scale 83
5.2.2 Bending 86
5.2.3 Thicken 87
5.2.4 Twist and taper 87
5.2.5 Variable shear 88

5.3 Local deformations 89
5.3.1 Flatten 89
5.3.2 Warps 91
5.3.3 Freeze region 96
5.3.4 Duplicate operation 97
5.3.5 Refinement 98

5.4 Summary and comparisons 99
5.4.1 Comparison to existing systems 99
5.4.2 Comparison to metric and previous capabilities 99

Conclusions 101

Bibliography 106

vii

List of Tables

2.1 Summary of Parent's system 13
2.2 Summary of Form Synth 15
2.3 Summary of Delta 17
2.4 Summary of Cobb's system 19
2.5 Summary of hierarchical B-splines 20
2.6 Summary of operations 22

3.1 Four surfaces defined with spherical product 28
3.2 Normals, tangents, and implicit equations for superquadrics 32

4.1 Explicit equations used for polygonising superquadrics 57
4.2 List of error checks for bend operator 66

5.1 Summary of operations and applicable deformation techniques . . . 84

viii

List of Figures

3.1 h(w) curve for sphere 26

3.2 Sphere as defined by h(w) and ñ(i) 27
3.3 Hyperboloid of one sheet 27
3.4 Torus 28
3.5 Superellipsoids: E2 = 1.0; El = 0.2, 1.0,2.0,3.0 30
3.6 Tangents with respect to i and w 30
3.7 Bend along y in positive z direction 40
3.8 Parabolic and cubic shear functions 42
3.9 Initial grid as specified by Xo, 8, T, and U. 43
3.10 Example grid 44
3.11 Free form deformation process 46
3.12 Binomial weighting functions for W 3(s) 47
3.13 Example grid and the area it defines 48
3.14 Example grids used by extended free form deformation 49
3.15 Sampled point lying in convex hull of two grids 50

4.1 The windows in GRooic 52
4.2 Superellipsoid El = E2 = 0.4 55
4.3 Sampling with explicit equations 57
4.4 Chair seat 58
4.5 Deformations for washer blade 60
4.6 Washing machine agitator 61
4.7 Nonconstant twist applied to a tapered superellipsoid 64
4.8 Chair model 67
4.9 Ellipsoids sheared with superhyperbola 68
4.10 Free form deformation of superellipsoid 70
4.11 Grid volume does not closely fit grid 71
4.12 Grids for which Newton's iteration failed 76
4.13 Curved surface: sheared by f(y) = 0.3y2 79
4.14 Twist along curved surface 79
4.15 Taper along curved surface 79
4.16 Nonconstant twist along curved surface 80
4.17 Taper and twist along curved surface 80
4.18 Twist using free form deformation 80

5.1 Torus scaled with free form deformation 86
5.2 Flattening a region using Barr's technique 90
5.3 Deformation with square base 92

ix

5.4 Deformation with circular base 93
5.5 Grid used for warp with circular base 93
5.6 Warp with arbitrary base 94
5.7 Skeletal warp using free form deformation: C° continuity 94
5.8 Skeletal warp using free form deformation: C' continuity 95
5.9 Creating a sharp tip in the warp using free form deformation 96

x

Chapter 1

Introduction

Computer graphics is the science of creating images with a computer. Within that

broad definition lie many sub-categories. The field has developed in response to a

variety of demands for the pictorial display of information. Two-dimensional graphics

is used for business applications to display charts and graphs, by animation stu-

dios to aid hand animators with traditional animation methods, and by designers

in general—such as graphic artists, architects, and surveyors. Further applications

can be found in computer vision, document preparation, and numerous other areas.

Three-dimensional graphics opened the door for new techniques in fields such as

medicine, physics, and engineering. For example, complex image synthesis is now

used by physicians, fluid dynamics can be studied via computer animated simu-

lations, and mathematical functions can be depicted to give mathematicians and

engineers a better understanding of the complex functions with which they deal.

The automotive and ship building industries have integrated computer aided design

and manufacturing systems into their design processes.

Three dimensional graphics has been used as a tool for artists in graphic design,

advertising, and the film industry. These applications differ from many of the others.

because the model being displayed does not need to represent physical reality. Since

the image is the final product, many constraints needed for computer-aided design

applications can be relaxed. This lack of constraints in the software usually places

an extra burden on the designer, but allows a wider range of images to be displayed.

1

2

Modelling systems provide the tools for designers to create three dimensional

scenes which are then converted to two dimensional images for display. Current

modelling systems require:

• a mathematical representation to describe the objects being modelled;

• a set of operations for manipulating the objects so represented;

• a user interface which allows the designer to create the desired model.

The model often contains additional, application dependent, information about the

object to be stored. Operations for manipulating the model generally consist of

transformations which reposition and reorient it in three dimensions. Primitives are

the surfaces that the model offers as its most basic form.

Most early systems used mathematically simple primitives with basic affine trans-

formations such as translaiion, rotation, scaling, shearing, and reflection. As the

need for more extensive shape definition became apparent, research focused on new

primitives. Large systems integrating several different representations have been

developed to provide designers with a variety of shapes; however, the complexities

of data conversion between model formats can be formidable. The introduction of

more complex primitives (as a result of faster computers and increased research in

the area) allows a wider class of objects to be modelled. This expansion, however, is

not without cost. As functions become more sophisticated, the software to process

them becomes more intricate and system response time increases.

Another approach to modelling is to shift emphasis from the primitives to the

manipulation techniques used to alter them. Altering the shape of a predefined

primitive is referred to as deformation.

3

1.1 Thesis goals

The aim of this thesis is to demonstrate that deformation based modelling is a viable

modelling technique. Specifically, it is shown that by using a simple set of primitives

that can be deformed in a multitude of ways, the designer is able to describe a

large number of shapes. The primitives used, for this research are superquadric

surfaces, which are parametric extensions to quadric surfaces [BarSi]. These are

manipulated by three different deformation techniques: Barr operators [Bar84], free

form deformation [SF86], and extended free form deformation [Coq9O]. In the course

of comparing these three techniques, it became evident that, in combination, they

provide a very useful modelling system. Thus the techniques are discussed both in

isolation and in combination.

1.2 Computer graphics methodology

The process used to create and display computer generated images depends on the

application. In general, however, three stages can be identified: modelling, rendering,

and animating.

Modelling is the creation and management of the underlying framework from

which an image can be made. This framework is mathematically based, consisting

of three-dimensional geometric objects plus any related information necessary to the

application (such as colour specifications, normal vector information, object inter-

connectivity)-

Rendering is the display of the model as a two dimensional image. Several ren-

dering techniques are available, providing images of different quality. Wire frame

4

representations are useful for displaying intermediate images of the model while it is

being designed. Hidden line and surface calculations led the way to realistic colour

images created with more complex rendering algorithms such as ray tracing [Gla89]

and radiosity [FvDFH9O]. Today, rendering methods can produce realistic images

with various light attributes, shadows, haze, transparency, textures, and many other

useful features.

Animating is creating the illusion of movement by displaying slightly different

rendered images in rapid succession. Objects in the image can change their position,

orientation, colour, shape, texture or any other attribute of the model. Lighting and

camera changes can also be used to create the illusion of change over time [FvDFH9O].

Although computer animation is used by the entertainment industry [Las87], it is

also an important tool in other areas such as simulation [MTT91].

When creating a modelling system, the rendering and, perhaps, animating phases

must be considered in the design. The rendering phase receives information about

the image from the model. Different rendering algorithms use different information,

but most use surface normals and tangents (for lighting calculations), and surface

attributes such as colour and transparency. This information is needed for each

object in the scene, and is calculated many times during the execution of the renderer.

The modeller, then, must not only contain the information needed by the renderer,

but also provide efficient access to it. The mathematical representation chosen for

the model will greatly affect the information the modeller is able to provide, and how

quickly it is able to retrieve it. The modelling information required for animation is

discussed in [All88], but is not reviewed here because animation is not addressed by

this thesis.

5

1.3 Modelling

There is a great abundance of modelling techniques. As different applications for

computer graphics are discovered, new model descriptions arise. Allan [All88] pro-

vides a taxonomy of common techniques, and summarises many of them. This thesis

addresses three deformation techniques and applies them to superquadric surfaces.

In comparing this deformation based approach to others, various primitives and

operations are discussed; they are briefly reviewed here.

Polygon models are one of the more common representations used in computer

graphics. Their popularity is partially due to the fact that many other represen-

tations can be converted to polygons. Curved surfaces described with this method

are approximated with planar polygons. Polygon mesh modelling provides the user

with a way to change the geometry of the model, which consists of connected, planar

polygons that share edges and vertices [All88}.

Spline surfaces are based on approximation or interpolation of a set of control

points, and are used extensively in computer aided design [Far88]. Many types of

splines exist, and are described in [BBB87]. Spline curves are based on the piecewise

connection of parametric polynomials. This approach permits complex curves to be

represented without the use of high order polynomials, which can be unstable and

inefficient [BF91]. Just as segments are joined to describe curves, spline patches can

be joined to form surfaces.

Spline patches are defined by a set of control points, which form a control mesh.

The user adjusts the position of the points in the mesh to alter the shape of the

surface. The way in which the surface reacts to this change depends on the under-

6

lying polynomials, which are often based on either Bezier or B-spline curves. Bezier

curves interpolate the first and last control points, and B-splines approximate all

control points. This difference has many effects on the surface models, as outlined

in [BBB87]. The most notable is that Bezier curves touch the first and last control

points that define them, while B-spline curves do not touch any. Spline surfaces in

general permit the user to define a surface's shape by adjusting the control points as

desired, and in this way permit many shapes to be achieved.

Most modelling systems allow the models to be manipulated in some form. The

standard operations are translating, rotating, and scaling. Shear and reflect oper-

ations are also used. Besides the three basic transformations, modelling systems

usually allow designers to add, delete and save objects in the scene. Some other

useful functions are:

• hierarchical ordering of objects (so that groups of objects can represent one

item in a scene; such as a person made up of a head, a torso, two arms, and

two legs);

1 altering object attributes such as color, transparency, and texture;

• simple but fast rendering techniques to aid scene design.

The geometry of a surface can be altered by scaling or shearing it. These can

be applied in any direction by rotating the surface in between manipulations. Other

methods for altering an object's shape have recently attracted interest. Modelling

with implicit surfaces [KAW91], for example, provides a method to model "soft"

objects by blending primitives. This blending of surfaces is defined by the surface

7

representation itself. Methods to provide metamorphosis of primitives have proven

useful for animation [KPC91], while physically based models have proven very effec-

tive for producing more realistic shape change in animation {TPBF87}, [PB88].

One important technique for interactively changing a surface's shape is through

direct manipulation. This permits the user to pick a surface point and interac-

tively reposition it. The way in which the surrounding region reacts to this reposi-

tioning depends on the implementation, but can be specified by various pre-defined

smoothing functions [A1188]. A technique for directly manipulating B-spline surfaces

has recently been developed, where the surface control points which affect the chosen

region are moved in a manner consistent with the user's movement of the surface

point [FB88].

Barr [Bar84] introduced deformations which bend, twist, and taper any primitives

that can be point sampled. For example, they have been applied to B-spline surfaces

[Cob84], and superquadric surfaces [Bar84}. Barr's work was followed by a new

method, free form deformation, which permits interactive deformation of surfaces

in a free form manner [SP86]. This work was extended by [Coq9O]. This free form

approach is based on deforming three-dimensional space, and can deform all point

sampled surfaces. It has been used to deform polygonal models, implicit surfaces,

spline patches, and surfaces of revolution [SP86].

Deformation based modelling refers to a modelling technique which relies on the

deformation of surfaces for providing shape control, where the deformation does not

rely on the underlying surface representation. In this sense, direct manipulation does

not qualify as a deformation based technique. Deformations may be classified as local

or global; the former manipulates only part of a surface, while the latter applies to

8

the entire surface.

This thesis examines deformations as applied to superquadric surfaces, where the

deformations are described by Barr operators and free form deformation. Physically

based models and blending paradigms are not addressed.

1.4 Thesis contributions

In order to analyse the effectiveness of deformation based modelling, a testbed was

written. Named "GRooK,"1 this allows experimentation with superquadric prim-

itives, and with their deformation via Barr operators, free form deformation, and

extended free form deformation. The contributions of this thesis to superquadrics,

Barr operators, and free form deformation are:

Superquadrics

• review of Barr's superquadrics: the superellipsoid, the superhyperboloids of

one and two sheets, and the supertoroid;

• correction to the superquadric definition as defined by [Bar81].

Barr Operators

• review of twist, bend, and taper operators [Bar84];

• a new operator to shear objects;

• a design specification for the parametric implementation of twist, bend, taper,

and shear operators;

'A, name first coined by Piet Hein for his poetry. Hem's work with superellipses and superellip-
soids has been integrated into various architectural designs [Gar77].

9

• a list of possible errors for each of the four operators.

Free form deformation

• a review, including normal and tangent calculations for deformed

superquadrics;

• problems experienced while using the technique;

• a technique for twisting and tapering objects in the free form deformation

environment.

Extended free form deformation

• a review of the method;

• problems experienced while using the technique;

• a method for twisting and tapering along curved surfaces.

Deformation based modelling

• the integration of the above techniques into a testbed system;

• an analysis of deformation based modelling using GRooK;

• a demonstration that neither Barr operators nor free form deformation tech-

niques provide adequate shape control by themselves;

• a demonstration that free form deformation can be made more general by

applying Barr operators to the grid's volume.

10

1.5 Thesis organisation

Chapter 1 provides background information for modelling techniques, with emphasis

on deformation. Chapter 2 reviews five modelling systems and analyses the shape

control they offer the designer. The types of shapes provided by the systems are

listed, along with the techniques used to create the shapes. This list is used as the

basis for the analysis of the GROOK modelling system.

Chapter 3 provides background needed to discuss the primitives and deformation

techniques used in GROOK. Superquadric primitives are summarised. A detailed

description of Barr's deformation operators is presented, as well as a new operator

to variably shear surfaces. Free form deformation [SP86] and its extension [Coq90]

are also described.

Chapter 4 describes the design and implementation of Grtooic, including user

interface issues. Chapter 5 contains an analysis of GROOK with respect to the oper-

ations listed in Chapter 2. Images created with GROOK are used to illustrate the

versatility of deformation based modelling. It is shown that neither free form defor-

mation nor Barr operators alone can adequately provide shape control, but together

they do. New deformation techniques combining these methods are presented.

Chapter 6 concludes that deformation based modelling is a viable technique for

achieving control over shape in modelling for computer graphics.

Chapter 2

Shape control in modelling systems

This chapter summarises five modelling systems in terms of the shape control they

offer the user. A list of the operations they use for shape change is presented, along

with the type of change the operation effects, so that the shape control offered by

the GRooK modelling system can be analysed in Chapter 5 with these operations

in mind.

Modelling systems must provide the user with a way to generate a desired model

easily. What makes a modeller useful depends on how well it meets the needs of the

application it is used for. There are several criteria by which such systems can be

usefully judged, such as those outlined by [All88]. Unfortunately, there do not seem

to be any generally held criteria that address the basic issue most fundamental to

the designer's needs: shape control. If a designer cannot achieve the required model,

the system will not be used. This thesis is concerned with shape control, with

the understanding that the other criteria must also be considered for a complete

modelling system analysis.

A modelling system developed to suit designers, artists and animators must

permit flexible control over shape. How this is attained has not generally been

addressed in the literature. Trying to classify the set of all shapes is beyond the

scope of this thesis, however, achieving a high level of shape control requires some

analysis of the problem. One way to better understand what shapes are useful for

computer graphics applications is to analyse existing systems. Although many mod-

11

12

elling systems exist, most are not described in the literature, and are not available for

public use.- The modelling systems summarised in this chapter were chosen because

they were available, and they offer shape control of various surface types. Here

we outline modelling systems with respect to their primitives, the operations used

to manipulate the primitives, and the motivation behind their design. This thesis

addresses shape change as applied to individual surfaces, and therefore operations

relating surfaces, such as blending [R087], [KAW91] or metamorphosis [KPC91],

are not considered. For each system, we summarise the types of manipulations and

primitives it provides.

2.1 Parent's polygon based modeller

Parent [Par77] developed an early three-dimensional system that incorporated defor-

mation based tools. It is based on the manipulation of objects as a sculptor would

manipulate a piece of clay. Polygonal representations that can be manipulated

with cutting, bending, and warping operations are used. Some three-dimensional

primitives are predefined, but the user can create a new solid by providing a two-

dimensional polygon which is then extruded to form a three-dimensional solid.

Table .1 summarises the functions available. Cutting involves calculating the

difference of two overlapping polyhedra, implying the need for intersection calcula-

tions. New primitives can be created by taking the union, intersection, or difference

of two intersecting polyhedra.

The warp command allows the user to push in or pull out a region of the surface.

It allows the user to reposition one or more polygon vertices without affecting other

13

Primitives Operations Definable Shape

Polygonal Cut Slice through primitive
Bend 2D Bend of 3D primitive
Warp Direct manipulation

Table 2.1: Summary of Parent's system

areas of the primitive. The user may select a point and move it to a new location,

moving neighboring vertices as well if desired. The size of the region to. be deformed

is determined by a constant- that represents the number of edges to be traversed

from the chosen vertex to the outer boundary of the deformed region. The distance

each vertex in the deformed region is to be moved is determined by a selection of

weighting functions.

The bend operator allows the user to reposition a skeletal approximation of the

surface rather than moving surface vertices directly, which can be a tedious task

when deforming regions with many vertices. It is implemented by mapping a three-

dimensional primitive to a two-dimensional skeleton of line segments. For each vertex

in the primitive the nearest segment is calculated, and associated with that vertex.

When a line segment is moved, all associated vertices in the primitive are moved in

a similar manner.

2.2 Form Synth, a system for artists

Form Synth [Lat89] is a three-dimensional solid modelling system designed to offer

artists a new art style. The emphasis in the design of the system is on allowing

artists to evolve complex forms, rather than use the system to depict objects already

14

envisioned. The design is based on techniques already familiar to artists such as

chiselling of stone, molding of clay, and carving of wood. The system simulates an

artist's environment in the sense that objects can be manipulated directly through

an interactive interface, but also defines a new art style by offering a set of rules.

specific to computer graphics.

Nine polygonal, three-dimensional, geometric primitives are offered: tetrahedron,

cube, octahedron, dodecahedron, icosahedron, sphere, cone, torus, and cylinder.

Only three-dimensional primitives are offered as it is argued that extruding two-

dimensional curves into three-dimensional solids is not in keeping with the way

artists think. The primitives used by Form Synth are based solely on one artist's

requirements and are therefore not meant to be a comprehensive set of surfaces for

all applications. This is justified by the fact that all artists are restricted by the

rules which govern the art style they choose to work with, computer graphics being

no exception. A general modeller permitting arbitrary shapes to be created was

therefore not a design goal for Form Synth.

Each primitive has a set of surface points and a set of internal points associ-

ated with it to facilitate shape change operations. There are five such operations,

summarised in Table 2.2. Beak, scoop, and bulge operate on surface points, which

are scattered over the surface of each primitive, while stretch and slice operate on

internal points, which are predefined locations near the center of each primitive.

Local coordinate systems are also associated with all primitives. Complex objects

composed of several primitives can be achieved through add and subtract commands,

though these do not directly alter the shape of one primitive and are therefore not

discussed here.

15

System Operations Definable Shape

Polygonal Beak Angular protrusion
Scoop Hollowing
Bulge Spherical extrusion
Slice Slice through primitive
Stretch Scale along axes

Table 2.2: Summary of Form Synth

Beak allows the user to choose a surface point and have an angular extrusion

occur at that point on the primitive. This is much like pulling a polygon vertex out

from the surface, and having all polygons containing that vertex move accordingly.

This operation is a subset of Parent's warp operation.

Scoop is like the beak operation, except that the area around the chosen surface

point is hollowed smoothly, much like the effect of chiselling stone.

Bulge creates a spherical bulge on the surface at the surface point chosen by thern

user.

Slice allows a primitive to be cut along one of its three predefined axes.

Stretch allows a primitive to be scaled along one of its three predefined axes.

These five operations simulate the basic strokes used by artists while working

with clay (bulge, stretch), wood (beak, slice), or stone (scoop). However, they are

restricted to the regions defined by the surface and internal points, as well as the

directions defined by the local coordinate systems of the primitives. As a result, each

operation limits the user by restricting the position and orientation of the desired

manipulation.

16

2.3 Delta, a polygon mesh modeller

Allan's [A1188] system Delta provides a variety of operations which alter the shape

of a polygon mesh (see Table 2.3). The design was motivated for computer graphics

applications (such as modelling for animation), but has been effectively used for

residual limb modelling as well. The primary manipulation technique is to move a

vertex in the mesh interactively. By providing options for this basic operation, Delta

affords the user considerable shape control.

The move operation is extended by controlling three parameters: the range of

neighboring vertices which are affected by-the move, the distance these neighboring

vertices move, and the direction in which they move. The range affected is determined

by the Euclidean distance from the chosen vertex, or by the number of edges to

be traversed from that vertex. The distance moved by the neighboring vertices is

controlled by various predefined functions, called decay functions. Delta provides six

of them: constant, cone, cusp, bell, wave, and random. The direction moved by the

neighboring vertices can also be specified: rather than move in the same direction

as the chosen vertex, neighboring points can move along their normal vectors, in a

random direction, or in a way which makes the material appear elastic. A function

which smooths discontinuities is also provided.

Two more options which control the shape of the mesh are given: one to anchor

vertices and another to bind them. Anchoring vertices allows, the user to specify

regions which are not to be affected by a move operation, even if they fall within

the affected region. Binding vertices allows the user to associate vertices of the mesh

which are not necessarily neighbors, so that manipulating one vertex affects all others

17

Primitives Operations Definable Shape

Polygon mesh Move vertex, plus options Warp surface
Anchor vertex Freeze region
Bind vertex Duplicate operation
Refine region Change level of detail

Table 2.3: Summary of Delta

in the set the same way. This allows the same operation to be duplicated at different

locations of the mesh simultaneously.

Finally, Delta allows regions of the mesh to be refined so that a finer level of

detail can be achieved. Polygons within a given region are divided into smaller ones,

or smaller polygons merged to give larger ones.

By offering extensions to one basic technique (the move vertex operation), Allan

provides a coherent modeller which affords considerable shape control to the user.

2.4 Cobb's B-spline based modeller

Cobb's modelling system [Cob84] is based on B-Spline, patches and was designed for

sculpting surfaces in computer aided design applications. The patches are used to

form solids using boundary representation. Previous systems based on boolean set

operations did not allow the shape control Cobb deemed necessary, and therefore

her system offers new techniques for editing B-splines.

Although Cobb's thesis describes several ways of creating graphical objects with

B-splines, this analysis will concentrate on the surface manipulation techniques pro-

vided. There are seven such methods, summarised in Table 2.4.

18

Warping creates bumps in a surface. Cobb offers three types of warps, based

on the shape of the region being deformed: circular, regional, and skeletal. Circular

warp bases the warp region on the distance from the center point of the warp, thereby

producing a circular boundary between the undeformed and the deformed surface.

Region warp allows the user to specify polygonal shapes which form the boundary

of the deformed region. Skeletal warps allow the surface to deform along a user

defined polyline. All three warps are applied to the control points of the surface, and

therefore rely on the distribution of the control points to give accurate results.

Flattening allows a region of a curved surface to be flattened. The control points

of the B-Spline patch which fall into the region are mapped onto a user defined

plane, thus flattening the surface and maintaining a fairly smooth transition to the

flattened area because of the smoothing qualities inherent in B-splines.

Bending is based on bend operations discussed in [FW83] and Barr [Bar84]. A

circular arc bend can be applied to the control points of a surface by having the

designer specify three parameters:

• the arc of the bend in radians;

• the range over which the bend should occur;

• the fixed point in the bend (the center of the range if a symmetric bend is

desired).

If the points in the control grid are too far apart, the bend may be shorter than

desired since it is applied only to the grid and not directly to the surface.

19

Primitives Operations Definable Shape

B-splines Warp: Circular
Region
Skeletal

Warp with circular base
Warp with arbitrary base
Warp surface along curve

Flatten Flatten region of surface
Bend Bend 3D primitive
Variable offset and lift Thicken surface
Stretch Scale along axes
Taper Variable scale in 2D
Twist Twist surface
Refinement Refine for local editing

Add discontinuity

Table 2.4: Summary of Cobb's system

Variable offset and lifting operations allow a surface to be "thickened" by dupli-

cating it, using the copy as the top of the surface, and joining both together to make

a solid.

Stretching allows a surface to be scaled by moving the control points along one or

more of the coordinate axes. A variable stretch is provided by allowing the distance

moved by a control point to depend on its position in space. By applying this variable

shear in two dimensions, a tapering effect can be achieved.

Twisting of a B-Spline surface is permitted by applying a twist to the control

points of the surface.

Refinement of a B-Spline offers three operations: one to add control points to

a region of the surface for increased flexibility, one to isolate a region so-that local

editing does not alter other parts of the surface, and one to add a discontinuity to a

surface.

20

Primitives Operations Definable Shape

B-splines Direct manipulation Direct manipulation
Create overlay Change level of detail

Table 2.5: Summary of hierarchical B-splines

2.5 Forsey's hierarchical B-spline modeller

Forsey [FB88] describes a system for editing B-spline patches which incorporates two

main advances: a facility for detailed editing of a region in a spline patch without

affecting other areas of the patch, and a technique for directly manipulating the

surface rather than the control points that define it. The method for local editing

is based on hierarchical representation of the spline, where regions that need more

control points to define their shape are represented as individual patches, but have

their control points stored as relative offsets from the control points of the main

patch. In this way local changes will only affect the independent surface patch,

yet global changes to the entire patch will retain the local alterations made to the

independent regions.

Direct manipulation of the surface allows the user to pick any point and move

it, rather than having to choose a point in the control grid. This allows the grids

defining the spline patches to become as complex as needed since the user no longer

needs to see them, or try to manipulate them.

Table 2.5 summarises the operations Forsey offers to effect greater shape control.

Deformations which act on the B-Spline control grid, such as those outlined by Cobb

[Cob84], can also be applied to Forsey's models.

21

2.6 Graphicsland

Graphicsland is a research oriented graphics system developed at the University

of Calgary. This section is not part of the survey because Graphicsland is not a

modelling system, but rather a collection of modellers, renderers, motion control

programs used for animation, and associated interfaces. It is used as a research

testbed, and is discussed here briefly because GrtooK is tied into it.

PG, the modeller central to Graphicsland, permits models to be read in, inst-

anced, hierarchically organised into scenes, and piped to various renderers and view-

ing programs. Although it offers other facilities, these are the ones that help extend

GROOK. Since GRooK only allows one surface model at "a time, PG is used to

combine the, deformed surfaces created in GRooIc into a scene. The figures in this

thesis were created by reading a polygonal data file into PG, inètancing the model if

necessary, positioning the primitives as needed, and saving the file in printer format

[WMG86].

2.7 Summary

This chapter examined five modelling systems with respect to the shape control they

offer. The union of their shape control operations provides a standard by which

to judge other modelling systems (see Table 2.6). In Chapter 5 we analyse the

deformation based modeller of Chapter 4 in the light of this standard.

Many of the operations offered by the five systems are similar, but have been

implemented in slightly different ways. The bend operator, for example, has been

implemented by Parent to allow direct manipulation of the surface, whereas Cobb's

22

General Operation System System Operation

Scale Most systems Stretch
Bend Parent

Cobb
Bend along polyline
Simulated bending with parameters

Thicken Cobb Variable offset and lift
Twist Cobb Twist surface
Taper Cobb Taper surface
Flatten Cobb

Form Synth
Flatten region
Slice

Warp Parent
Form Synth

Delta
Cobb
Forsey

Direct manipulation of vertices
Beak (angular), bulge (spherical),
scoop (warp inwards)
Direct manipulation of vertices
Circular, regional, skeletal
Direct manipulation of surface

Freeze region Delta Anchor vertex
Duplicate operation Delta Bind vertex
Refinement Delta

Cobb
Forsey

Refine region
Refine region/ add discontinuity
Hierarchical refinement

Direct manipulation Most systems Interactive manipulation of surface

Table 2.6: Summary of operations

23

technique relies on parametric information. Both, however, allow a surface to be

bent. Table 2.6 lists the deformations that result when the operations of the five

systems are merged.

Refinement and duplication do not directly address shape change, but have con-

siderable effect on other operations. Refinement permits a better approximation of

the surface, and thereby allows deformations of small regions to be depicted accu-

rately. Duplicating an operation is an aid for the designer, who may want several

similar deformations to be applied to one surface.

Since the goal of this work is to achieve maximal shape control, it is desirable

to choose the most general implementation of a deformation. Chapter 5 introduces

a yardstick by which shape change operations can be analysed, and shows that a

deformation based modeller can offer most of the operations listed in Table 2.6,

while extending some of them and providing new ones as well.

Chapter 3

Deformations

This chapter describes superquadric primitives and how deformation techniques can

be applied to them. The first section explains the definition of superquadric surfaces.

Then two deformation techniques are described in detail. The first is a functional

method developed by Barr which includes three kinds of deformation: taper, twist,

and bend. A new operation to variably shear a surface is described. The second tech-

nique is a recently developed deformation method, based on the sculptor's paradigm,

which lends itself to interactive manipulation. This chapter contains a mathematical

characterisation of the deformation techniques. Design and implementation issues

are discussed in Chapter 4.

3.1 Superquadrics

Quadric surfaces are defined by the equation:

Ax + 2Bxy + 2Cxz + 2Dx+

Ey2+2Fyz+2Gy+

Hz + 21z+
(3.1)

J=o

Examples include the sphere, paraboloid, and hyperboloid. This algebraic repre-

sentation of quadric surfaces is often used for computer graphics modelling [Bli86],

but geometric and parametric representations have also proven useful. Geometrically

24

25

defined quadrics are described by one point, two vectors, and three scalars, and are

often used -in constructive solid geometry to avoid the numerical instabilities associ-

ated with the other two representations [Gol83]. The parametric representation uses

two parameters to trace the surface in three dimensions, and lends itself to display

algorithms. This is the representation on which superquadrics are based, and it is

explained below.

3.1.1 Quadric definition as a spherical product

The parametric definition of quadric surfaces is based on the spherical product of

two curves [Bar81]. Given two parametrically defined curves ñi(i) and h(w)

[mi()l m?1)=[I
7722(77)

(w) =

their spherical product is defined as:

mi(77)hi(w)

rn1(77)h2(w)

M2 (71) -

h(w) defines a curve situated in the zy plane, which is modulated by ñi(ij). ml(77)

scales it in the xy plane, while m2(i) repositions it along the z axis.

To illustrate the geometric relationship between the two curves and the final

surface, consider the parametric definition of the sphere:

26

W O)

Figure 3.1: h(w) curve for sphere

cos()
=

sin(i)

=
cos(w)

sin (w)

cos() cos(w)

cos(17) sin(w)

sin()

-lr<w<7r

-≤17≤ 72 .

—ir <w <ir

The curve defined by (w) lies in the xy plane of the surface, and describes a full circle

(see Figure 3.1). The curve defined by ñ() defines a half .circle, which describes the

surface's silhouette in the third dimension by scaling and repositioning i(w) along

the z axis, as shown in Figure 3.2.

The parameters 77 and w control the shape of the surface in different directions.

Since w traces the curve in the zy plane, it controls the surface's cross-sections

parallel to that plane (this can be thought of as the east-west direction). 77 controls

27

z

Figure 3.2: Sphere as defined by h(w) and ñi(i7)

Figure 3.3: Hyperboloid of one sheet

the surface's silhouette when viewed with the z axis vertical (this can be thought of

as the north-south direction).

Table 3.1 lists,four quadrics, based on the spherical product. The ellipsoid is

a straightforward extension of the sphere defined above, where al, a2, and a3 are

constants. The hyperboloid of one sheet is created by a circle in the xy plane that is

modulated by a hyperbola along z. The circle is scaled by sec(i) and repositioned

along the z axis by tan(i), to describe a hyperbolic silhouette in the north-south

direction (see Figure 3.3).

The curve traced by w in the hyperboloid of two sheets is a hyperbola. Since w

28

Quadric ñ®h Range

Ellipsoid I
[a1cos(i)cos(w) 1
a2cos(j)sin(w)
L —ir a3sin(ij)]

I - - <w <ir
-

Hyperboloid (1 sheet) I
I sec()cos(w)

sec(ii) sin(w)
L tan(i)

< 77 <
—ir <CQ < ir

-

Hyperboloid (2 sheets)
sec(i) sec(w)
sec(i) tan(w)

tan(i)

- ir <i <
- <w < 2 2

<w <
sheet
sheet

1
2

Torus I
I (a+

(a

L

cos (ii)) cos (w)
+ cos()) sin(w)

sin(ii)

1
I
]

< —ir <w <ir

Table 3.1: Four surfaces defined with spherical product

is extended to cover two ranges, two curves result (one in positive x and the other in

negative x). The hyperbolas are scaled by sec(i) and repositioned along the z axis

by tan(17), which together describe a hyperbolic silhouette edge.

The torus cannot be expressed by equation 3.1, and is therefore not a quadric

surface. However, it can be defined as a spherical product since it is based on circular

cross-sections in the xy plane. n) describes a full circle which is translated from

Figure 3.4: Torus

29

the origin by adding a. Figure 3.4 shows one of the h(w) curves tracing ñt(i7). To

avoid self-intersection, the constant a must be greater than one.

3.1.2 Superquadric definition

By raising the trigonometric functions of the surface definitions in Table 3.1 to expo-

nents other than one, a superset of quadrics is defined [Bar81]:

ñ®i=

The modification to the functions involving 77 alters the north-south shape of the

object, while the modification to the functions involving w alters the east-west shape.

Exponents less than one push the surface outward, exponents of two create surfaces

with squarish corners, and exponents greater than two pull the surface inward. Such

superquadrics are illustrated in Figure 3.5.

The extra shape control offered by superquadrics combined with their relatively

simple definition makes them an appealing set of primitives. Various systems are

based on them [HE89], [Pen86], although little is published about implementation

details.

3.1.3 Tangents and normal vectors

Barr defines tangent and normal vector formulations as well as implicit equations

for each superquadric [Bar81]. Tangent vectors are needed to test surface continuity,

while normal vectors are used in shading algorithms, and to determine surface ori-

entation. With explicit representations for normal and tangent vectors for any point

30

Figure 3.5: Superellipsoids: E2 = 1.0; El = 0.2, 1.0, 2.0, 3.0

z

(a) T,7 tangents

z

(b) T tangents

Figure 3.6: Tangents with respect to 77 and w

on the surface, rendering programs can use exact information rather than approxi-

mations based on polygonal vertices. Implicit equations are used for testing point

inclusion, and for calculating line-surface intersections. Knowing whether a point

is inside, outside, or on a solid is very useful in solid modelling [Mor85], and line-

intersection tests are required by ray tracing 'algorithms [Gla89]. Barr derives the

implicit equations but they are not needed for this thesis.

Tangent vectors of parametric surfaces are defined by the partial derivatives of

the surface function. Let x, and x, be the partial derivatives with respect to 77 and w

respectively. Then x,7 is the tangent vector in the north-soith direction of the surface,

31

while x(,, lies in the east-west direction (see Figure 3.6 (a) and (b) respectively).

Normal vectors can be calculated by taking the cross product of two linearly

independent surface tangent vectors [Bar84] such as those discussed above. I tried

to verify the normals as specified by Barr, but despite some effort was unable to do

so. Maple [CGG+88a] was used to calculate the cross products of the tangents, but

the results would not simplify to those specified by Barr. Implementation of Barr's

normal vector calculations, however, has produced apparently correct normals.

Table 3.2 shows normal and tangent vector specifications, as well as implicit equa-

tions, for the four superquadrics. The normals are those derived by Barr. Super-

quadric surfaces may contain cusps, and at these points tangents and normals are not

well-defined. This can cause shading irregularities around the cusp when rendered

[Bar8l].

3.2 An introduction to deformations

Deformation based modelling is a way of allowing shapes to be deformed by the

user. Two recent techniques that address this problem are documented in [Bar84]

and [SP86]. An extension to the second method is described in [Coq9O].

Barr's deformations were originally introduced in [Bar81], where methods are

given for deforming two dimensional curves, three dimensional curves, and three

dimensional surfaces. The technique is described more fully, and with a stronger

computer graphics emphasis, in [Bar84]. It is based on applying a function to a

region in space to deform that space. Surfaces are deformed by sampling the surface

and applying the deformation function to the sampled points. The function need

32

Surface Normal vector and
implicit equation

Tangent vectors
T, and T

5-Ellipse

COS(77)2—El cos(u)2_E2

cos(i)2—El sin ()2_E2

sin ()2 El

(x + y1r) + ZE2

—El cos(i7)El—1 sin() cos(w)E2
—El cos(ij)El_l sin() sin(w)E2

El sin()El_l cos()

—E2 cos(77)El cos(w)E2_l sin(w)

E2 cos(i)El sin(w)E2_1 cos(w)

0

S-Hypl

sec(i7)2—El cos(w)22

sec()2_El sin(w)22

tan(i)2 '

(x +y 72-) -

El sec(q)El tan(77) cos(w)E2
El sec(i)El tan() sin(w)E2
El tan(ii)El-1(l + tan(i7)2)

—E2 sec(17)El cos(&.,)E2_l sin(w)

E2 see()El sin(w)E2_lcos(w)

0

S-Hyp2

sec(i)2_El sec(w)2 B2

sec(77)2—El tan(w)2_E2

tan(17)21

(x - -
E2sec(iltan(w)E2_l(l

El sec(j)El tan() sec(w)E2
El see(77)E1 tan(77) tan(w)E2
El tan(i7)El_l(l + tan(77)2)

E2 sec()El sec(w)B2 tan(w)

+ tan(w)2)
0

S-Torus

((x

COS(77)2—El cos(w)2_E2

cos(i)2 ' sin(w)2_E2

+ - a) El + zi1

—El cos(u7)El—1 sin (77) cos(w)E2

—El cos(i)E1_1 sin(i) sin(w)E2
El sin(i)El—1 cos(i)

E2(a + cos(i)El cos(w)E2_l sin(w)
E2(a + cos(ij)El sin(w)E2_1 cos()

0

Table 3.2: Normals, tangents, and implicit equations for superquadrics

33

not be linear and therefore extends the traditional operations mentioned in Chapter

1. Barr operators have been integrated into various other systems (e.g. see [Cob84],

[FB88]).

The second technique addressed in this thesis, free form deformation, is also based

on deforming three dimensional space, but does so by describing a grid that encloses

the volume to be manipulated. By interactively deforming this grid, the user can

alter any surfaces in it. The initial grid is a parallelepiped, but the deformed one

may contain curved surfaces; thus free form deformation permits nonlinear transfor-

mations.

Although developed independently, free form deformation is an elegant extension

to a similar two-dimensional deformation system described by [BW76]. Their system

is used for animation, and allows a character to be "deformed" into its next key

position. The grids defining the space are quadrilaterals, and can be altered by

moving any of the four vertices.

Although this thesis emphasizes the interactive aspects of free form deformation,

it can be used in other frameworks as well. An excellent example is a modelling

system [CHP89] that uses deformation to model the musculature of animated char-

acters. The initial grid is associated with a skeletal bone structure, and is deformed

according to kinematic and dynamic constraints that mimic the elasticity and con-

tractility of musculature. Interactive manipulation of the grid is provided as a backup

to the physical constraint formulation.

34

3.3 Barr operators

Barr operators are based on mathematical functions that alter space; in computer

graphics this has the effect of deforming the objects embedded in this space. A

deformation function maps points in object space to a new version of the space.

A function to scale an object along the three coordinate axes simultaneously, for

example, is described as:

F(x,y,z) =

ax

by

cz

This function is applied to surface points, thereby deforming the object. Barr refers

to this as a global deformation specification.

The key to Barr's technique, however, lies in what he calls local deformations.

Barr's use of the terms local and global differs from the way they are used in most

computer graphics contexts. His "global" deformations apply to an entire three-

dimensional space, mapping any points in that space to new positions. In contrast,

the "local" deformations map the tangent and normal vectors of a surface to different

orientations. In this sense, local does not imply that the deformation is restricted

to a localized region of the surface, but rather that it applies only to the part of

the space occupied by the surface itself—for it is only here that the tangents and

normals are defined.

Barr provides two rules that allow tangent and normal vectors of the deformed

surface to be calculated directly at any point on it, rather than having to approximate

them [Blo88].

35

3.3.1 Tangent transformation rule

The tangent transformation rule states that the deformed tangent is equal to the

Jacobian matrix of the deformation function multiplied by the original tangent

vector. The Jacobian matrix is defined as:

J=

OF, OF,
OX ay az

aFy 1L aF
ax ay a

\ ax ay 8z I

The example of scaling an object along the coordinate axes is used again to

demonstrate Barr's technique. The global deformation function F, defined above,

applies different scale factors along the three coordinate axes. Given a biparametric

surface (which encompasses all superquadric surfaces):

/

S y(,w)

Z(77, W) j

the deformed surface definition applies F to

F() = F(x(i ,w),y(i,w),z(i,w)) =

/
ax(i,w)

by (i1, w)

cz(i,w) ,,

The partial derivatives of the deformed surface with respect to 77 and w define tan-

gent vectors to the new surface. Since the deformed surface is a composite function

of F and 8, the chain rule for multiple dimensions is used:

OF OF Ox OFOy OF Oz

1977 OxOi 0y817 0Z077

36

(and similarly for). Since the global deformation function F is a vector with

separate functions for the x, y, and z components, the partial derivative of each

component is taken:

OF - (0F OF 0F

(and similarly for). The chain rule mathematics is simplified by the Jacobian

matrix of the deformation function, which when multiplied by the original tangent

vector gives the above partial derivative equations, and hence the new deformed

tangent vector:

-. OF(S) 0
Tdf = 077 =

OF. OF." f Ox
ex ay Oz

=
Ox Oy Ox 877

•& OF, OF
Ox Oy Ox / \OJ

(and similarly for OF' aw

3.3.2 Normal transformation rule

The normal transformation ruleas given by Barr states that the deformed normal is

equal to the inverse transpose Jacobian matrix multiplied by the original normal:
t

ATdef = j_ if/

This is proved using the fact that normal vectors are the cross-product of two linearly

independent tangent vectors [Bar84]. The determinant of the Jacobian is multiplied

by the inverse Jacobian to attain the unit normal, though often only the normal's

direction is required.

37

3.3.3 Four deformation functions: taper, twist, bend, and shear

Barr defins three operators, providing for each one the global deformation function

F, the inverse of F, the Jacobian matrix of F, and the inverse Jacobian matrix. In

this section we summarize the functions, and introduce a fourth which extends the

traditional shear operation. Where formulations are given, the function is applied

along the z axis for simplicity; the expressions can be rearranged to apply along the

x or y axes instead.

Taper operator

The taper function changes an object's size along one of the coordinate axes. The

following global function defines a taper along the z axis:

F(x,y,z) =

I

The function f(z) defines the amount of tapering, and is subject to the following

restrictions:

• if f(z) = 0 a singularity results;

• f(z) must be piecewise differentiable and CO continuous.

The derivative of f(z) defines the rate of change applied to the surface. If it is

positive the surface will increase in size, while if it is negative it will decrease. If

f (z) gives negative values, the surface will be turned inside out.

The Jacobian matrix for the taper function is:

38

0

0 f(z)

0

The inverse Jacobian multiplied by its determinant yields the normal transformation

matrix:

det(J)J' =

/ 1(z) 0 0

0 f(z) 0

—xf(z) —yf(z) dz (f(z))2 /

Twist operator

The twist operator twists space continuously along one of the coordinate axes. The

global twist function involves rotating x and y around the z axis by 0 radians, where

0 depends on the position along z, say 0 = f(z).

x cos(0) - y sin(0)

F(x,y,z) = xsin(0) + ycos(0)

z

The derivative of f(z) defines the rate of twisting around the z axis, in radians per

unit z. The Jacobian matrix for the twist function is:

/ cos(0) - sin(0) —x sin(0) y cos(0) "
dz

sin(0) cos(0) —x cos (0)—ysin(0) df

0 0 1

The corresponding normal transformation matrix is:

39

det(J)J't

/ cos(0) —sin(0) 0

sin(9) cos(9) 0

df
\ Yj dz 1 1

Bend operator

The bend operator bends a line parallel to one of the coordinate axes around an

angle 0 over a given range. The angle changes linearly in the bend region to map

the straight line to a circular arc. Outside this region, the line is merely rotated

and translated using rigid body transformations to match the endpoints of the bent

region after deformation.

Assume that the line to be bent lies parallel to the y axis, is bent toward the

positive z axis, and that the bending range is (ymin. .ymax) with the center of the

bend at yo Within this region, the bending angle 0 is defined by k, the bending rate

in radians per unit length, which is multiplied by the distance from the center of the

bend to the current position along the y axis: 0 = k(y - yo). Outside the region 0

remains constant since the line only needs to be rotated and translated to its new

orientation. Figure 3.7 illustrates a bend.

The global bend function is divided into two functions: one for the bent region

and the other for' the unbent one. The bent region is:

x

- sin (0)(z -) + Yo

cos(0)(z -) +

The unbent region is:

40

z
axis of bend A

line to be bent I
ymin

bent region

yo

I >Y
ymax

Figure 3.7: Bend along y in positive z direction

a;

- sin(0)(z -) + Yo + cos(0)(Yb)

cos(0)(z -) + + sin(0)(y,)

Here,

• Yb = y - ymin if y < ymin

• Yb = y —ymax if > ymax.

The Jacobian matrix for the bend function is:

/
1 0 0

0 cos(9)(1_k*z) —sin(0)

0 sin(0)(1 - k*z) cos(0)

The corresponding normal transformation is:

hl_k*z 0 0

det(J)J1t = 0 cos(9) _sin(9)(1_k*z)

0 sin(0) cos(0)(1 - k*z) j

41

Here,

• k* —k in the bent region

• = 0 in the unbent region

Shear operator

The above operators are based on basic affine transformations which are then made

to vary in some way. The shear operation, which linearly shifts the space along one

axis [FF79], can be extended similarly. This section describes a new operation that

permits nonlinear shearing.

An example linear shear function is:

x+2z

F(x,y,z)= y

z

The surface is shifted in the x direction dependent on z. To extend this function,

allow the shift value to include nonlinear functions:

F(x,y,z) =

I

where f(z) is a nonlinear function which must be single valued, C° continuous, and

piecewise differentiable. The Jacobian matrix is:

0 df
dz

J= 010

\ 0 0 1

42

(a) f(z) = O.2z2

and its inverse is:

(b) f(z) = 2.0z3

Figure 3.8: Parabolic and cubic shear functions

J

. 0

0

-

\ dz

10

0 lj

Figi.ires 3.8 (a) and (b) illustrate the sFiear function applied to a plane and an ellipsoid

respectively.

3.4 Free form deformation

Free form deformations are based on a three-dimensional mapping of one, space to

another, as in Barr's deformations. This involves placing a parallelepiped grid over

the volume to be deformed, deforming the grid, and thereby deforming the space it

defines. An analogy given in [SP86] describes the grid as a volume of clear plastic

which embeds the objects to be deformed; when the plastic is deformed, so are the

objects embedded in it. There are three steps:

43

Figure 3.9: Initial grid as specified by Xo, S, T, and U.

• an initial mapping of each surface point from object space to grid space;

• deforming the grid by moving its vertices;

• a final mapping of the surface points from the deformed grid space back to

object space.

The two mappings required to calculate the deformation depend on the grid

formulation. The undeformed grid specified by [SP86] is a parallelepiped, which

permits the initial mapping from object §pace to grid space to be linear. Four

vectors are used to describe the grid: three to represent the grid's local coordinate

system (call them S, T, U), and a fourth to position the grid in object space (X0).

The S, T, and U vectors specify the length of the grid along each of the axes as

illustrated in Figure 3.9.

A point in grid space (s, t, u) can be described in object space (x, y, z) by:

= O<s,t,u<l (3.2)

To calculate the (s, t, u) coordinates for a point (x, y, z), as needed for the initial

mapping, vector algebra yields:

- TxU.(X—Xo)

TxU•S
- SxU.(X—Xo)
- SxU•T

SxT•(X - X0)
U = S (3.3) xT•U

44

P021 P121 P221

Figure 3.10: Example grid

T

The parallelepiped grid can be divided into sections by specifying a number of

equal divisions along each axis. Let (1, rn, n) indicate the number of sections along

S, T, and U respectively. The corner points of each section are represented by grid

vertices Pik, which are ordered according to their relative position along each axis

(Figure 3.10):

P1Jk =X0+S+LT+U (3.4)
1 m n

The grid space coordinates range between zero and one, and represent the relative

position of the point with respect to the grid boundaries. For example, .s = 0.5

implies that the point is in the middle of the grid with respect to the S axis. To

deform the grid, its vertices are moved to new locations in object space, which means

that the Pk change values but the local coordinates of the surface point remain the

same. It is when these local grid coordinates are mapped back to object space that

the deformation becomes apparent: the relative position represented by (s, t, u) is

now relative to vertices in new positions, and the surface point is therefore moved

from its original location in object space to its deformed position.

If only linear transformations are permitted, the second mapping (from grid

space to object space) can be calculated using equation 3.2. Maintaining only linear

45

transformations, however, is restrictive. Instead, [SP86] specifies the grid space for

free form deformations with a tensor product trivariate Bernstein polynomial which

defines a Bernstein-Bezier volume [Las85]. This is an extension of the well known

Bezier curve and surface used in computer graphics, and allows the deformed space to

be curved, thereby extending the types of deformation possible. The outer bound-

aries of the volume defined by the Bernstein polynomial are composed of Bezier

surfaces which are described by the grid vertices of the outer six planes of the initial

grid. In fact, each set of vertices with one of i, j, or k in common defines a Bezier

surface.

The Bernstein polynomial uses the (s, t, u) grid position of the surface point and

the deformed grid vertices to calculate the object space position of the deformed

surface point. The polynomial is given in equation 3.5, and the process used to

deform a point is illustrated in Figure 3.11.

B(s,t,u) =

where

x

y

z

lmn

E I T4''(s)W(t)W,?(u)
i=Oj=Ok=O

Pijk.Y

Pijk.Z

• W/(s) () (1 - 8)1i8i is a binomial weighting function;

(3.5)

• the calculated vector is the deformed point in object space;

• (s, t, u) is the surface point in grid coordinates;

• 1, m, n represent the number of sections the grid is divided into along each

coordinate axis;

46

First Mapping

sample superquadric
in object space

map (x,y,z) to undeformed
grid space (s,t,u)

Equation 3.2

(s,t,u)

(Deform Grid
deform grid (s,t,u)
vertices in
object space

Alter Pijk of
Equation 3.4

Second Mapping

map the (s,t,u)
point back to object

space, using deformed
grid vertices

Equation 3.4

(x,y,zf display
point

Figure 3.11: Free form deformation process

• Pijk are the coordinates of the grid vertices in object space.

The, deformed position of a surfac point is calculated by multiplying each grid

vertex by a weight which is based on three binomial weighting functions. The

weighting takes account of the distance from the point to the grid vertex being

considered: vertices that are close to the surface point have higher weights, and

therefcre receive priority.

As an example, consider the weighting functions applied to the S axis only, where

the grid is divided into three sections (i = 3):

W 3(s) = 3 (1 - 0 ≤ i ≤ 3, 0 ≤ s ≤ 1
z

W 3(s) describes four curves, one for each set of vertices with the same i index. The

value of s defines the weighting that the grid vertex is multiplied by, and as can be

seen from Figure 3.12, those vertices closest to s receive the highest weight values.

Since the Bernstein polynomial is trivariate, each vertex in the grid is multiplied by

47

W(s)

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1
S

Figure 3.12: Binomial weighting functions for W3(s)

three weights, one for each axis.

The deformed object space coordinates ,f a surface point are based on weighted

sums of all grid vertices, which indicates that deformations of the grid are global

with respect to the grid volume. That is, moving a vertex, even if it is far from the

surface point and within a different section of the grid, will affect the surface point.

Although the movement of a vertex far from the surface point may only alter the

point slightly, it is impossible to deform the volume within just one section of the

grid—a separate grid must be used for this.

It is impoitant to note that the grid itself does not define the volume directly,

but rather defines the control points which describe the Bezier volume. Figure 3.13

illustrates this relationship in two dimensions: the shaded region represents the area

affected by the grid vertices.

48

Y
A

Polo

Pilo P210

P000 P300

i = OA, j =O..1,k = O(only the xy plane is shown here).

The shaded region represents the grid space specified

by the grid control points Iijk

Figure 3.13: Example grid and the area it defines

3.5 Extended free form deformation

P310

>- x

Free form deformation is a versatile modelling tool. However, forcing the initial grid

to be a parallelepiped restricts the deformations that can be created. Coquillar

[Coq9O] describes an extended free form deformation that permits initial grids to

be arbitrarily shaped. Allowing arbitrary initial grids implies that the initial map-

ping from object space to grid space must permit nonlinear calculations. Coquillart

uses the multidimensional Newton-Raphson technique to calculate the relative grid

coordinates (s, t, u) of a surface point. Unfortunately, this does not guarantee a

solution. A poor initial estimate may cause nonconvergence, indicating, but not

proving, that the root, does not exist [PFTV88]. Although Coquillart states that

she did not encounter this problem, the results discussed in Chapter 4 indicate that

some limitations exist.

Coquillart also introduces a slightly different formulation of the grid volume

through the Bernstein polynomial. Her definition separates the grid into "chunks"

49

Figure 3.14: Example grids used by extended free form deformation

which are composed of 27 sections (the grid is a 3 x 3 x 3 volume of sections). Each

chunk is defined by a separate Bernstein polynomial of degree three, and is therefore

independent of all other chunks. This allows deformations to be performed locally,

because deformations to grid vertices inside a chunk will not affect other chunks.

Figure 3.14 shows some example grid chunks.

To maintain separate chunks within a grid, one must determine which chunk a

point lies in before using the Newton-Raphson algorithm to calculate its relative grid

coordinates. Coquillart uses the convex hull property of Bernstein- Bezier volumes

to determine this. Although this provides a reasonably accurate indication of point

inclusion, it does not guarantee it. Figure 3.15 shows the problem: the point lies in

the convex hulls of both chunks, but is only in the volume defined by the upper one.

Similarly, the point may be in the convex hull of a chunk, but not in the grid volume

at all. As a result, if the Newton-Raphson method does not converge for one chunk,

the convex hull test must be used for neighboring chunks in the grid until all have

been tested, or convergence is achieved.

As will be seen in Chapter 4, nonconvergence can occur even if the point lies in

50

Sampled point
upper chunk

lower chunk

Figure 3.15: Sampled point lying in convex hull of two grids

the chunk being tested. This complicates the process. Nonconvergence implies one

of three conditions: the point is in the current chunk, but a better initial estimate

is required; the point is in a neighboring chunk; or the point is outside the Bezier

volume.

3.6 Summary

This chapter presented the mathematics of superquadric surfces and three defor-

mation techniques: Barr operators, free form deformation, and extended free form

deformation. A new operator for shearing surfaces was defined. The next chapter

provides design and implementation details of a modelling system based on deforming

superquadrics with these operations.

Chapter 4

Design of the GROOK system

This chapter describes GROOK, a system that implements the three deformation

techniques outlined in Chapter 3, namely Barr operators, free form deformation,

and extended free form deformation. The goal of the system is to provide a testbed

for deforming superquadric primitives with Barr operators and free form deformation

and its extension. The system is ultimately intended to be fully interactive; however,

due to time constraints, not all features have been implemented.' Free form defor-

mation and its extension are fully implemented to allow interactive manipulation

since interactive deformation of surfaces is the key to the technique. Barr operators

have been designed for interactive input, but in its present state the system requires

parametric input to be hard coded.

4.1 GRooIc

GROOK has four windows, as shown in Figure 4.1: three orthogonal views of the

scene (one along each coordinate axis) and one general three-dimensional viewing

window. The general viewing window allows the user to rotate the scene using a

mouse. All windows can be zoomed and panned, and by clicking on a window bar

they grow to fill the whole window space allocated to GROOK. Clicking the window

bar again brings back the four viewing windows.

'The skeleton for such a system exists, with menus defined but not all options available.

51

52

Figure 4.1: The windows in GROOK

53

There are four menus with which the user can create deformed objects, one to

choose a superquadric and three to deform the chosen primitive, one menu for each

deformation technique. To deform a superquadric, the user:

• chooses a superquadric primitive (which displays a wire frame image);

• specifies the parameters for the deformation via the deformation menus;

• returns to the superquadric menu and redisplays the primitive with deformation

mode on.

GRooK does not allow more than one primitive to be deformed at a time, but does

permit multiple deformations of the same primitive. Although only one deformation

using the free form technique is permitted, a sequence of Barr operators can be

applied, before or after the free form deformation is applied.

GrtooK links to the Graphicsland research environment by writing polygonised

versions of the object to a file that is read by the polygon modeller. This can read

multiple files and group them hierarchically to create a scene. Various pictures in

this chapter have combined surfaces in this way.

The code for GRooK is written in C, and runs on a Personal Iris workstation.

There are approximately 8000 lines of code, two thirds of which deals with deforming

and rendering primitives, while the remaining third constitutes window and menu

handling routines. The windowing and menu routines are based on Joy [McP90], a

local graphics package that extends the Iris windowing tools.

54

4.2 Superquadrics

The menu for superquadrics allows one of five primitives to be chosen: the superel-

lipsoid, superhyperboloids of one and two sheets, the supertorus, and a plane. The

plane is a degenerate superquadric, but was deemed useful for testing deformations

on simple surfaces.

Superquadric exponent values can be increased or decreased interactively. Two

types of polygonisation are implemented (see Section 4.2.2), and the user may select

either one by toggling a button. The sampling rate can be altered to allow a fine or

coarse level of polygonisation, and the result can be saved to a file for later display

within Graphicsland.

4.2.1 Definition for superquadrics

The definition provided by Barr [Bar8l] does not accurately characterise super-

quadrics as described in Chapter 3. When the exponents El and E2 are set to

values less than one, they require nth roots of trigonometric functions to be taken.

Since some of the trigonometric functions evaluate to negative numbers, run-time

errors occur. The sign of the trigonometric function places the surface point in the

correct quadrant, and the exponentiation calculates the correct magnitude. The solu-

tion is to store the trigonometric function's sign, apply the exponent to its absolute

value, and multiply the magnitude by the stored sign.

55

Figure 4.2: Superellipsoid El = E2 = 0.4

'1.2.2 Polygonising superquadrics

Various schemes to polygonise superquadrics are discussed in [FB81]. The most basic

method uses the parametric representation of superquadrics introduced in Chapter

3, where i and w are used to trace the surface. Each superquadric is defined with

two two-dimensional curves, one based on i, the other on w. By sampling each curve

and taking the spherical product of the two values, the three-dimensional surface

point is calculated. If for every point sampled on the i curve, the entire w curve

is sampled, the whole surface is covered. GRooIC creates triangular polygons as it

increments along the w curve.

The ease with which the surface is traced makes parametric representations suit-

able for display. In the case of superquadrics, the natural spacing that results is

also desirable as more points are plotted where the curvature is high (Figure 4.2).

Barr [Bar8l] shows how a surface can be adaptively subdivided, but his technique

depends on the particular superquadric being rendered, and requires complex cal-

56

culations involving first and second derivatives. Since the comparatively fast para-

metric sampling is easy to implement and approximates the curvature sampling to

some degree, it is suitable for most applications. Increments used for 77 and w as

they trace the surface should evenly divide the regions between cusps so that the

cusps are polygonised accurately. The superellipsoid, for example, may have cusps

at —7r/2, 0 and ir/2 for i, and —ir, —ir/2, 0, and ir/2 for w.

Although the parametric method works well for undeformed superquadrics, when

primitives are deformed using Barr operators or free form deformation a more evenly

spaced sampling technique is required. Since dformation may be applied to rela-

tively flat areas of a superquadric, the parametric polygonisation method does not

provide enough sampling for the deformed surface. To correct this, the sampling

rate has to be increased so much that the rest of the superquadric is oversampled.

Figure 4.4 shows a superellipsoid that has been scaled and bent to represent a chair

seat. The versions in Figure 4.4 (a) and (b) were sampled using the parametric

method, the latter with a higher sampling rate. As can be seen, the bend in the seat

needs more sampling to achieve a smooth curve, but even with the higher rate the

deformed area is poorly approximated.

The explicit polygonisation discussed in [FB81] is more suitable for deformed sur-

faces since it samples the surface evenly. The algorithm resembles the parametric one,

but uses explicit equations based on (x, y, z) instead of the trigonometric functions

based on (ii, w). The two forms are equivalent, but the explicit representation gives

a sampling that is uniform in object space instead of parametric space. Table 4.1

gives equations that are equivalent to the parametric curves of Section 3.1.1.

There are two problems that affect the implementation of the algorithm: the

57

Curve Explicit Function

superellipse x (1 - IzIY'
superhyperbola x = (1 + IzI TIF)
curve for torus x = (1

- Iz + aIr)

Table 4.1: Explicit equations used for polygonising superquadrics

poor sampling rate
as curve drops.

X
incremental sampling along x

Figure 4.3: Sampling with explicit equations

explicit equations are multivalued, and sampling along an axis does not provide

uniform sampling along a curve. Consider, for instance, a superellipsoid. The first

problem is solved by calculating the positive quadrant and reflecting it seven times

to complete the surface. The second problem is illustrated in Figure 4.3, where a

quarter circle is sampled along the x axis: as the curve drops, the distance between

sampled points on the curve increases. To overcome this problem the surface is

sampled to the midpoint of the curve and then reflected. Hyperbolas (which are

used for hyperboloids) are not affected by this sampling problem as much as ellipses,

and are therefore sampled over the entire positive quadrant and then reflected to

complete the curve.

The seat in Figure 4.4(c) was polygonised with the explicit method. Besides

58

(a) 1770 polygons (c) 1600 polygons (b) 4950 polygons

Figure 4.4: Chair seat

providing a better sampling of the deformed area, this has fewer polygons than the

seats in Figure 4.4 (a) and (b).

4.3 Barr operators

Barr operators deform points in space by applying piecewise differentiable functions

to them. To allow greatest flexibility in shape control, the user should specify the

deformation function (F), and also has to provide:

• the range over which F is applied;

• the Jacobian matrix of F;

• the inverse Jacobian of F.

Since the function is not restricted (except that it be CO continuous and piecewise

differentiable), automatic calculation of the Jacobian requires advanced techniques

59

from symbolic algebra. This method of specification clearly requires users to have a

good understanding of mathematics, and is prone to input errors.

To. overcome these difficulties, the range of deformations can be restricted in

return for easier control of input. GRooK provides specific functions that allow

the user to control shape by specifying parameters. This technique is well suited

to interactive input, and demands little mathematical knowledge of the user. A

modelling system may provide both methods by offering predefined functions for

interactive use and also allowing user-defined functions to be compiled into the code.

The following sections outline the operators offered by GRooK. Three are based

on Barr's work and one is a new operator that extends the linear shear function.

Although GRooIc requires hard coded input, the design for interactive specification

of input is discussed.

4.3.1 Taper

GROoK implements the linear taper function

F(x,y,z) = where f(z) = mz + b

z.

described in Section 3.3.3. The taper is specified by the four parameters described

in Figure 4.5(c). Given these, m and b of f(z) need to be determined. The slope of

the taper, m, is easily calculated from the scale values at the beginning and end of

the range, iniLscale and final-scale. To allow tapers to be applied off the origin,

b must be calculated by substituting mit_scale, zstart, and in into f(z). The four

parameters allow the user to create a function intuitively by giving general dimensions

4.5(a) Taper

60

4.5(b) Twist

Parameters Name Example Values

Range over which taper function has effect zstart -0.1087
zstop -4.3513

Scale factor at the beginning of the range mit_scale 0.2
Scale factor at the end of the range final-scale 2.0

4.5(c) Parametric input for linear taper: washer blade

Parameters Name Example Values

Range over which twist function has effect zstart -0.1087
zstop -4.3513

The number of twists per range total-twists 0.5

4.5(d) Parametric input for twist: washer blade

Figure 4.5: Deformations for washer blade

61

Figure 4.6: Washing machine agitator

relating to the object being tapered. The washing machine agitator blade shown in

Figure 4.6 uses this operator to control the amount of tapering; the twist is described

below. Figures 4.5(a) and (b) show the blade before and after the tapering.

It is necessary to check that the taper function f(z) is always greater than zero to

avoid singularities or everted objects. A simple check that f(zstart) and f(zstop)

are greater than zero ensures positive values throughout the range. The taper func-

tion must also be applied off the origin, implying that the user-defined range must

not include zero.

2 t evert means to turn inside out

62

4.3.2 Twist

The twist deformation function is:

x cos(0) + y sin(0)

x sin (0)—y cos (9) where O=f(z) F(x,y,z)

Z

GRooK implements both a constant and a nonconstant twist function.

Constant twist

The function f(z) controls the angle of rotation, while its derivative specifies the

rate of twisting. For a constant twist the derivative must be constant:

f(z) = RadiansPerUnit x z + b

Of = RadiansPerUnit ex

Specifying the the number of twists per unit z is desirable when the surface is

tightly twisted; however, the user may prefer to specify the total number of twists

over a specified range. This can be converted to radians per unit z:

RadiansPerUnit = total_twists 2ir
(stop—zstart)

The twist may be applied to a section of the surface, but continuity at its begin-

ning and end must be ensured. This can be achieved by forcing the rotation angle

at the beginning of the twist to be zero, and calculating the constant b accordingly:

f(zstart) = 0

0 = RadiansPerUnit x zstart + b

b = —(RadiansPerUnit x zstart)

63

Continuity at the end of the twist can be ensured if the total number of twists is an

integer. However, it does not have to be an integer for the cases where the twist is

applied to the end of the object. The washing machine agitator blades were twisted

by specifying the number of twists over a range; Table 4.5(d) lists the parametric

values used.

Nonconstant twist

Since the derivative of 1(z) defines the rate of twisting in radians per unit, a non-

constant derivative will give a nonconstant twist. The most basic form is a linearly

increasing or decreasing function:

Let

Then

•f =az+b

f(z) = z2+bz+c

The user specifies the amount of twisting per unit z at the beginning and end of

the desired range. This information is used to calculate a:

a final-twists - riit_iwists
• z.stop - zstart

As before, b is used to permit the rate of twisting to be specified at locations other

than z = 0:

L 9z (zsiart) = a(zstat) + b

b = init_twi.sts(2ir) - a(zstart)

The fact that, as before, f(zstart) must equal zero, is used to calculate C:

= _((zstart)2 - b(zstart)).

Figure 4.7 illustrates a nonconstant twist as applied to a tapered superellipsoid;

64

(a) The resulting picture

Parameters for Nonconstant Twist Name Example Values

Range over which the twist is applied zstart 4.0
zstop 8.0

Number of twists per unit length at zstart mit_twists 0.25
Number of twists per unit length at zstop final-twists 1.0

(b) The parameters

Figure 4.7: Nonconstant twist applied to a tapered superellipsoid

65

4.3.3 Bend

The bend operator is specified by two functions, one for the bent region:

/
X

Y

\Z)

/

and the other for the unbent region:

X x 0 0

(z—)+

y = 0 —sin(0) cos(0) z

z / 0 cos(0) sin(0) j

Where:

• (Yb =y — ymin) if <Ymin

• (Yb = Y - Ymax) if y > Yrnax.

1'

1
k

Yb

(4.1)

(4.2)

These are for bends along the y axis in the yz plane. The parameters required are

yo, jmin, Ymax, and lc, as shown in Figure 3.7. To implement the bend operator, an

intuitive manner for specifying the parameters is needed. Since the centerline is the

y axis, the surface being bent should be aligned accordingly. Most of the parameters

are then easily understood, except perhaps the bending rate k. In case the user

does not wish to think in terms of radians per unit, the same information could be

specified interactively by picking a point around which the line is to be bent. If this

point is (Yc, z0), then Yc = yo and z =

Several different bend types can be achieved by varying the parameters.

66

Error Condition Resulting Error

ymin >= ymax
k = 0
k is positive, z> k
k is negative, z < k
yo not in ymin. .ymax

incorrect results
divide by zero
crimp in bend
crimp in bend
unexpected rotations

Table 4.2: List of error checks for bend operator

• If yo is not halfway between ymin and ymax, the bend is asymmetric. The

torus used for the legs of the chair model in'-Figure 4.8 illustrates this feature.

• To bend toward the negative axis, k is negative.

• The y axis is the centerline of the bend, and is the only line to remain the same

length after bending.

Many checks must be made for the bena operator to work reliably, as shown in

Table 4.2. The chair depicted in Figure 4.8(d) uses four bend operations: two for

the seat, and two for the legs. The parameters are listed in Figures 4.8(e) and (f).

4.3.4 Nonlinear shear

For the shear operator discussed in Chapter 3, the user must specify the shear func-

tion:

F(x,y,z

Z

GROOK allows the user to shear surfaces with superconics, the two-dimensional ver-

sions of superquadrics. The explicit representation of the curves is used instead of

67

(a) Torus

(c) Second bend

(b) First bend

(d) Chair

Parameters First bend Second bend

ymin 0.5 —2.5
ymax 2.5 —0.5

(e) Parametric input for bending chair legs

Parameters Main bend Minor bend

ymin —0.2 —1.0
ymax 0.3 1.0

1.2 16.0

(f) Parametric input for bending chair seat

Figure 4.8: Chair model

68

Figure 4.9: Ellipsoids sheared with superhyperbola

the parametric representation since the shear function must be expressed in terms

of x, y, or z. GrtooK implements the superellipse shear function:

f(z)=(1_IzI 2T)2

and the superhyperbola shear function:

2 El

Az) (1 + Izt El)

The legs of the table in Figure 4.9 were created by applying a superhyperbola shear

to scaled superellipsoids. A single leg was created in GRooK and PG was used to

make three instances of it.

4.4 Free form deformation

GrtooK 'S implementation of free form deformation permits interactive manipula-

tion. The following sections describe the process used to deform a superquadric, the

69

data structures required to store the information, the techniques used by GrtooK to

handle normal and tangent calculations, and continuity control between deformed

and undeformed regions.

4.4.1 Interactive specifications

Free form deformation lends itself to interactive manipulation by allowing the user

to place the initial parallelepiped over the desired volume to be deformed, and then

drag the grid's vertices to new locations in space to deform the objects. The sequence

of steps in a typical deformation is:

• the undeformed grid is specified (S, T, U to determine the grid length along

each axis, and X0 to determine its position in object space);

• the user adjusts the grid position by dragging it to the correct location;

• the grid is deformed byits vertices being picked and dragged to new locations;

• the surface is redrawn with the deformation applied to any pOints falling within

the undeformed grid.

Figure 4.10 shows a superellipsoid before and after deformation.

The undeformed grid can be chosen in two ways: the user may either pick a

default grid or specify S, T, U and Xo interactively. The grid may be divided into

sections along each axis by changing the values of 1, in, and m of equation 3.5.

Direct manipulation of the grid vertices is used to deform the volume, and can

be executed in any of the three orthogonal view windows. GROOK allows groups of

70

U)

'(I

(a) undeformed superellipsoid and grid (b) deformed superellipsoid and grid

Figure 4.10: Free form deformation of superellipsoid

vertices to be chosen: vertices that lie "behind" one another can be moved simul-

taneously. For example, F000, F100, and P200 can be grouped in the window with a

view down the x axis. Although this is the only type of grouping Grtooi< allows,

other methods might prove useful, such as letting the user pick individual vertices

to be grouped, or providing sets of groups (such as all vertices with z=0 and j=2).

The current implementation of the modeller applies the deformation only if

the "deformation" button is turned on, and only when the surface is redisplayed.

This was incorporated mostly for extended free form deformation, which is more

computation-intensive than the original deformation technique.

The positions of the undeformed and deformed grid vertices need to be available

when the surface is sampled. The former are used to map the surface point to grid

space, and the latter are used in the Bernstein polynomial to map the deformed point

back to object space. The position of the undeformed grid vertices can be calculated

using S, T, U and X0 along with 1, m, and n as shown in equation 3.4. Since there is

71

Figure 4.11: Grid volume does not closely fit grid

no such relationship between the deformed vertices, they must be stored individually.

GROOK uses a three-dimensional array since the grid vertices are ordered, and their

ordering relates directly to the array indexing.

Two further points are worth mentioning. First, since the mapping used is contin-

uous, it does not make sense to cross sections of the grid with one another, for that

would yield an impossible surface. Second, the grid volume is the Bezier volume

defined by the control vertices of the grid, not that enclosed by the grid vertices

themselves, and this sometimes causes unexpected results. Figure 4.11 shows a sit-

uation in which the user wishes to pull the surface to a point that is close to the

deformed grid points, but since the Bezier curve described by the top five vertices

is a shallow one, the effect is not as marked as desired. A familiarity with Bezier

curves would, of course, benefit the user here. Using a grid that is larger than the

object embedded in it accentuates this effect, and therefore grids are best chosen to

fit the undeformed surface as closely as possible.

72

4.4.2 Normals and tangents

Tangents of surfaces deformed with free form deformation can be calculated using

Barr's tangent transformation rule:

/ aB
an
aBy
an
aB,

\ an I

/ 0B2, aB aB ax
ax a az an

aBs, ay
ax ay az an

8B aB aB
8x ay az J \anj

The Bernstein polynomial (equation 3.5), needs to be defined in terms of x, j, and z

instead of .s, t, and u. This can be done by substituting s, t, and u with the linear

equivalents in x, y, and z:

- (Pt.X - Xo

S.x

- (Pt.X - Xo

T.y
u=

(pt.x - Xo

U.z
(4.3)

The inverse Jacobian of the Bernstein polynomial is quite complex and has not

been calculated. Instead, the normal at a point on the surface may be derived by

taking the cross-product of the deformed tangents based on i and W. The only

problem associated with this step occurs if the two tangents have been mapped so

that they are not linearly independent, which implies that the mapping is degenerate.

This can be detected by checking the determinant of the Jacobian matrix: if it is

zero the deformation is degenerate and cannot be performed.

Continuity

Continuity may be important in two situations: when two or more grids are joined

together, and when a grid is placed over just part of a surface. Since GRooK only

offers one grid, the first case does not arise (it has been investigated in [Par86]). The

second case requires continuity to be maintained at the intersection of the grid and

73

the surface. By not altering the first plane in the grid that intersects the surface,

C° continuity is maintained. C' continuity can be achieved by not deforming the

firstk planes that intersect the surface [SP86]. This provides an easy way to control

continuity interactively. GROOK leaves this control to the user; however, a fully

developed system might automatically freeze k outer planes in the grid when CC

continuity is requested by the user.

4.5 Extended free form deformation

GitooK allows extended free form deformations to be specified interactively by menu

selection. The following sections describe the differences between the free form defor-

mation implementation and its extension, and discuss problems encountered with the

extended deformation technique.

4.5.1 Freezing the grid

Extended free form deformation is more complex to implement than the original ver-

sion, since the vertex positions must be stored for both deformed and undeformed

grids. In the original (unextended) technique, the initial mapping to grid sacecoor-

dinates uses the vectors S, T, U and Xo (equation 3.3), and therefore the undeformed

grid vertex positions need not be stored. The initial grid vertices for the extended

version cannot be similarly related since the grid is arbitrarily shaped; hence the

vertices must be stored in a second three-dimensional array.

The process for deforming a surface also changes. Rather than simply dragging

the grid to the desired location and then deforming it, the user must now drag the

74

grid to the desired location, freeze it to store the vertex positions, and then deform it

and apply the deformation to the surface. The grid, once frozen, cannot be dragged

to a new location unless it is refrozen before deformation.

The process of deforming a surface using extended free form deformation in

GRooK is:

the undeformed grid is chosen (GRooK provides several predefined grids);

• the user adjusts the grid position by dragging it to the correct location, or

adjusts any vertex by dragging it to a new location;

• when the grid is shaped and positioned as desired, the grid is frozen;

• the grid is deformed by directly manipulating its vertices, as in free form defor-

mation;

• the surface is redrawn with the deformation applied to any points falling within

the undeformed grid.

Each stage is controlled by buttons at the side of the interface. Modes are set so

that manipulating the grid alters the initial array if the grid has not been frozen,

and alters the deformed grid array if it has been frozen. Deformation of the grid is

the same as for unextended free form deformation in that single points or groups of

points may be repositioned.

4.5.2 Grid formulation

The extended free form deformation grid is equivalent to an (unextended) free form

deformation grid where 1, m, n = 3, and the grid may be nonparallelepiped. The

75

restriction in the number of sections simplifies the calculations used by Newton's

method.

4.5.3 Normals and tangents

Tangents for a surface deformed with extended free form deformation cannot be

calculated using Barr's tangent transformation rule since there is no analytic mapping

between object and grid space. This means that the Bernstein polynomial cannot

be expressed in terms of x, y, and z as required by the Jacobian. As a result,

Grtooic does not provide tangents and normals for superquadrics deformed with

this technique. Approximation methods such as those outlined in [Blo88] should be

further investigated.

4.5.4 Problems with Newton's iteration

The extensions added to free form deformation by Coquillart greatly expand the

set of shapes attainable with the technique. However, the mapping from (x, y, z)

coordinates to (s, t, u) coordinates is now nonlinear, and this not only requires much

more computation than the linear mapping, but. also does not guarantee a correct

result.

GRooK uses multidimensional Newton's method to calculate the grid coordinates

of the undeformed surface point. Although Coquillart, using the same technique,

claimed that convergence problems did not arise, such problems were encountered

while testing various grids with GROOK. Newton's method requires an initial guess

to start the iteration process, and Coquillart used a starting value of 0.5 for s, t,

and u. The grids shown in Figure 4.12 did not converge with these starting values,

76

Figure 4.12: Grids for which Newton's iteration failed

although with better initial estimates the convergence problems disappeared. Good

initial estimates are the key to effective use of multidimensional -Newton's method.

Since the whole point of extended free form deformation is to allow arbitrarily

shaped initial grids, it would defeat the purpose to restrict the grids to simple ones

which were known to work with Newton's method. GRooK only permits one grid and

relies on it to provide adequate complexity in shape, whereas a system that allowed

multiple grids could affdrd to restrict each one to a simple shape. Techniques for

determining good starting values should be investigated further, even if simple grids

are used, since these will speed up the iteration process.

4.6 Combining deformation techniques

In contrast to free form deformation, Barr operators seem to be rather restricted, and

it is worth asking whether they are still necessary, or whether free form deformation

77

might not offer enough shape control to render them redundant. Although Barr

operators are efficient, the free form techniques provide a better 'balance between

control of shape and ease of use. If they can perform the same operations as the

Barr functions, then perhaps a system based solely on them could offer the user a

more consistent interface with the same expressiveness.

Scaling, tapering, and bending can be accomplished with the free form techniques,

but twisting is difficult. Applying Barr's twist function to the grid vertices overcomes

the challenge of interactively twisting them, but because of the Bezier based definition

of the volume, the twisted grid is much narrower along the twist direction than the

original. Instead, the twist function can be applied to the grid space itself. In fact,

both twist and taper functions can be applied to the grid volume. This has several

benefits:

. the space is not narrowed as it is when the grid vertices are twisted;

• it provides the user with a consistent interface for deformations - the grid

volume is always used to encompass the region to be deformed;

• twists and tapers can be applied along curves: since the functions are applied

in (s, t, u) space, they will follow in the direction of the s, t, or u axes, which

will be curved relative to object space if the grid is curved.

The last point describes a new type of shape control, since any function can be

applied to the grid space as long as the deformed points remain in the grid volume.

The procedure used with GRooK is outlined below, assuming a twist function is

being applied to a superquadric:

78

• calculate the (s, t, u) coordinate of the sampled superquadric surface point;

• since the grid volume is defined from 0..1 along each axis, the surface point

must be translated by —0.5 so that the twist is centered around zero;

• apply the twist function to the point;

• use the deformed (s, t, u) coordinate in the Bernstein polynomial to calculate

the deformed position in object space.

The surface point in grid space must remain within the grid volume after deformation,

so that its position in object space can be calculated by the Bernstein polynomial in

the final step. This implies that the grid volume must be wide enough to contain not

only the original surface, but also the deformed one. GROOK does not check for this,

but any deformed (s, t, u) point outside of the range (-0.5..0.5) could be flagged as

an error, signalling the user to resize the grid.

Since the grid defines the region to be deformed, the user no longer needs to

specify the range over which the twist should be applied. The functions are all similar

to those defined in Section 4.3.2, except that specifying the number of twists per

unit cannot be calculated since the twist is not in object space, and the relationship

between grid space and object space is not easily obtained.

Figures 4.14 to 4.17 illustrate the effect of this new operation. The primitive is a

superellipsoid which is variably sheared along the x axis. The initial grid used for all

four deformations is cylindrical, and is aligned with the curved surface by applying

the same varying shear function to its vertices. Interactive manipulation of some of

the grid points then permits final adjustments to ensure that the grid volume closely

79

Figure 4.13: Curved surface: sheared by 1(y) = O.3y2

1/

/f/,/,fl

Figure 4.14: Twist along curved surface

Figure 4.15: Taper along curved surface

80

Figure 4.16: Nonconstant twist along curved surface

Figure 4.17: Taper and twist along curved surface

Figure 4.18: Twist using free form deformation

81

follows the curve of the surface. The superellipsoid shown in Figure 4.18 illustrates

that twisting can be applied locally as well as globally with this method.

4.7 Summary

This chapter described GROOK, a system that implements three deformation tech-

niques. Two po1ygonistion algorithms for its superquadric primitiyes were desc-

ribed, and each of the deformation techniques was discussed. A new technique for

combining Barr operators and free form deformation methods was presented.

Chapter 5

Evaluation

This chapter shows how Barr operators, free form deformation, and extended free

form deformation can be used to replicate, and extend, most of the operations listed

in Chapter 2. When possible, GROOK was used to replicate the operations. Occa-

sionally, GRooK did not offer an operation, although there was no inherent reason

why Barr operators or free form deformations could not have been used. In these

cases the details of such an implementation are discussed.

5.1 A metric for shape analysis

In order to analyse the shape control offered by CROOK a metric is required. It is not

possible to design a metric and justify it on purely logical grounds [Koe9O]. Instead,

we illustrate the strength of deformation based modelling by showing that GRooK

can provide the shape control offered by existing systems. However, a basis for eval-

uating the extent to which each operation provides flexibility is needed. Coquillart

[Coq9O] outlines four areas where operations should provide generality:

• the size of the deformed region;

• the position of the deformed region;

• the shape of the boundary of the deformed region;

• theshape of the deformed region itself.

82

83

Although she applies these criteria to warps, they can be used for all local defor-

mations. They do not apply to global, deformations, since it makes no sense to

discuss the position, size, and boundary of a region when the entire surface is being

deformed. Since there is no general way of evaluating global operations, each oper-

ation is discussed independently.

The operations in Table 5.1 are listed as either local or global. For each operation

from Chapter 2, the deformation techniques that implement it are listed. In the

sequel, the implementation of each operation is discussed in detail, and extensions

are noted.

For the purpose of this chapter, "free form deformation" refers to both the original

and its extension, unless otherwise noted. Since the original is faster, it is preferable

in cases where both can be used. Only the original is discussed when no benefit is

gained with the extension.

5.2 Global operations

5.2.1 Scale

Scaling can be achieved using Barr operators or free form deformation: The former

allows the designer to scale a surface to some desired dimensions, whereas the latter

does not easily permit such precision. In fact, the extra precision afforded by Barr

operators over the free form techniques applies to many of the shape control opera-

tions. Since free form deformation embeds the surface in a volume, precision scaling

can only be achieved if the volume fits the surface exactly. This is often difficult,

especially when using interactive techniques where the grid may appear to fit, but

84

Type Operation Applicable Technique

Global Scale Barr, FFD, EFFD
Bend Barr, FFD, EFFD
Thicken Superquadrics
Variable Shear Barr
Taper Barr, FFD, EFFD
Twist Barr, Barr applied to FFD, EFFD

Local Flatten Barr
Warp: square base FFD, EFFD
Warp: circular base EFFD
Warp: arbitrary base EFFD
Warp: skeletal base EFFD
Warp: beak none
Warp: scoop FFD, EFFD
Warp: bulge none
Freeze Region FFD, EFFD
Duplicate operation Barr, FFD, EFFD
Refinement Superquadric sampling rate

Table 5.1: Summary of operations and applicable deformation techniques

85

does not.

Although Barr's scale operator is more precise, it does not always do exactly

what is intended. The supertorus that serves as the "legs" to the chair model in

Figure 4.8 illustrates this point. It is centered on the origin, and scaled using the

scale operator as discussed in Section 3.3. The scale not only stretches the torus to

make it longer, but also thickens it along the sides that run perpendicular to the

direction of scaling. Although the result is aesthetically pleasing, it is not what was

intended: the part of the legs that lies on the- ground should have been the same

thickness as the rest.

To overcome this problem, scaling was performed using free form deformation

instead of the scale operator. A grid was placed over the entire supertorus, with eight

sections dividing it along the z axis, as in Figure 5.1. The leftmost and rightmost

sections of the grid were held a constant size, and merely moved out from the center of

the supertorus, while the inner sections were expanded to simulate scaling. Figure 5.1

shows the grid after deformation. Notice that the torus need not be centered on the

origin when scaling with free form deformation.

Extended free form deformation can be used to scale curved surfaces. In practice,

models are often imported from other modellers, or have been created in the past

with no history of their deformation process. In these cases, scaling along an axis is

not general enough, as the scale may need to be applied along a curve. To scale the

supertorus after the bend operations have been applied, a curved grid can be fitted

to it and then scaled as needed. Since the grid can be curved in three dimensions,

scaling along nonpianar curves is supported by this technique.

GRooK's scale operator extends previous operators by allowing the operation to

86

71

1111111 --------------I;
0 a-f 13

A-J

Figure 5.1: Torus scaled with free form deformation

be applied along three-dimensional curves.

5.2.2 Bending

Bending can be achieved using either Barr operators or free form deformation. The

chair in Figure 4.8 was modelled on the Cobb chair and demonstrates how bend and

scale can be used to deform superquadric primitives. The seat is modelled using a

superellipsoid with exponents of 0.2 to square it, and then a scale to thin it along z.

Two bends are used: one to create the sharp bend between the seat and the backrest,

and a shallow one running from the front of the seat to the top of the backrest. Both

were implemented using Barr operators.

87

Free form deformation can also be used to effect a bend, but lacks the precision

of the Barr operator. It does, however, offer more flexibility in the types of bends

permitted, since a bend in three dimensions can be executed in one application,

whereas the Barr operator can only bend in a plane. Free form deformation also

allows the surface to be bent and then tapered along that bend, which Barr operators

cannot do. The extended version can be used .to bend surfaces which are already

bent.

GROOK's bend operator extends previous operators by allowing the bend to be

• defined in three dimensions.

5.2.3 Thicken

The variable lift and odset operator specified by Cobb allows a surface to become a

solid by duplicating it and joining the copied surface to the original. This feature

has not been introduced into GRoor< because "thickening" surfaces is not needed:

solid superquadrics can be deformed to achieve the desired models. For example, a

variety of solids have been created simply by deforming superellipsoids: the agitator

blades of Figure 4.6, the table legs of Figure 4.9, the chair seat of Figure 4.8, and

the flashlight handle of Figure 5.2.

5.2.4 Twist and taper

A twisted or tapered surface can be created using Barr operators, or by. using Barr

operators with free form deformation. The blades for the washing machine agitator

were created using the Barr twist and taper operators, while the horns in Figures 4.14

and 4.15 were executed by applying Barr operators to the space enclosed by an

88

extended free form deformation grid. In this case, the free form technique is not

quite as intuitive as the Barr operator, given the details outlined in Chapter 4, but

the extended version allows surfaces to be twisted and tapered along a curve, which

other systems do not allow. It may be useful to apply other functions along a curved

surface, although this has not been investigated.

The twist and taper operations must be applied over the entire cross-section

of a surface, and in this sense are global. The operations can be applied locally

by specifying a range over which they are applied when using Barr operators, or

by placing the grid over the desired range when using free form deformation. This

permits some flexibility in the position of the deformation. The shape of the deformed

region can be altered by controlling the rate of tapering or twisting.

The twist and taper operations offered by GrtooK extend previous operations by

permitting the functions to be applied along three-dimensional curves.

5.2.5 Variable shear

Variable shearing is a new operation offered by GRooK, and is particularly useful

for superquadric based modellers because conic shear functions can be applied to

surfaces. Since superquadric silhouettes are defined by conics, surfaces can be made

to align with each other, as in Figure 4.9. The table legs are modelled with a scaled

superellipsoid which is sheared along a hyperbola to make it fit the centerpiece (a

superhyperboloid of one sheet).

As this is a new operation, it extends the set of primitive operations. It extends

the shear operation by including nonlinear functions, but is still applied along a

straight line, in a plane.

89

5.3 Local deformations

5.3.1 Flatten

The flatten operator is implemented in GROOK, but is not a well defined operator.

It bases the deformation function on the flatten operator as implemented by Cobb

{Cob84}. The function is:

x + F(x,y,z)= an,y+any

z + an

where n is the vector of projection. All surface points falling within a defined region

are projected onto a user-defined plane in the direction of n. The constant a repre-

sents the distance between the sampled point and the plane along the direction of

projection. The equation of the plane must be given:

Ax+By+Cz+D=O

By substituting the equations of the projected point into the plane equation, the

distance can be calculated:

a=
—Ax — By — Cz — D

An + Bn ± Cm

The flashlight handle in Figure 5.2 illustrates how a region of a superquadric can

be flattened. Though this function works well with polygonised surfaces, it does not

maintain a CO continuous surface as required by Barr operators. When the surface

is lifted to the planar region, it is disconnected from the rest of the surface along

the boundary. The polygonisation will create polygons to connect the regions, but

the surface itself will no longer be connected. The position of the flattened region is

90

Figure 5.2: Flattening a region using Barr's technique

also restricted since deformed superquadric primitives may have regions that overlap

along the line of projection. This causes the surface to self-intersect in the flattened

region, and must be avoided. Cobb's flatten operator is made possible by applying

the flatten operation to the control points of a B-spline surface, rather than to the

surface itself. This not only maiitains surface continuity but also provides a smooth

transition at the boundary.

Flattening a curved surface with extended free form deformation also proves to

be difficult. The method involves fitting the initial grid to the surface, then pulling

control points in the grid up from the surface into a thin, flat parallelepiped shape.

However, several problems are encountered:

• a close fit between the surface and the grid volume is crucial for the flatten to

work properly;

• fitting the grid volume to. the surface is not easy;

• more than one chunk (3x3x3 grid) is required to attain a flat volume, and

GRooK only supports volumes defined by one chunk.

Since the grid is the control mesh for a Bezier volume, just fitting the grid to a

surface does not mean that the volume defined by it fits the surface. If the surface is

91

at all complex, adjusting the grid vertices appropriately can be a tedious task. Even

then, it is hard to determine whether the surface fits entirely within the volume, since

the wire frame images of the grid v'olume and the surface do not provide adequate

perceptual cues.

GROoK could not be used to test even simple cases since a 3 x 3 x 3 grid cannot be

used to flatten the surface. To maintain CO continuity at the boundaries, the outer

planes of the grid must remain in their original positions, while the inner vertices are

lifted. The Bezier definition of a 3 x 3 x 3 grid causes the volume to be curved, as in

Figure 3.13. An implementation that uses multiple chunks in one grid could likely

overcome this by lifting entire chunks.

5.3.2 Warps

Extended free form deformation was designed to create arbitrarily shaped warps

in surfaces with respect to the criteria provided by [Coq9O]. The warps offered by

GRooK provide the same level of generality. Although a functional specification for

warping could be given, the inherent benefits of the free form technique make it the

most feasible approach, except in the rare cases when the shape is easily described

analytically. The following paragraphs describe how free form techniques can be

used to implement each of the warps mentioned in Chapter 2.

Square base

Free form deformation allows bumps in surfaces to be created interactively. Figure 5.3

shows a grid being used to create a warp in a plane. The boundary between the

deformed and undeformed areas is rectangular since the grid is parallelepiped. All

92

Figure 5.3: Deformation with square base

boundaries for free form deformations are restricted in this way.

Circular base

Figure 5.4 illustrates a circular warp, as described by Cobb. Extended free form

deformation provides the necessary flexibility by allowing a nonparallelepiped grid.

In this case, the grid approximates a circular base as shown in Figure 5.5.

Arbitrary base

Arbitrarily shaped initial grids can be used to deform various surfaces. Figure 5.6

shows some examples.

Skeletal base

The skeletal warps described by Cobb can be readily executed using free form tech-

niques since an initial grid can be placed on the surface and then pulled up to raise

the surface along the grid. A smooth deformation can be attained by only pulling

up the grid's inner control points. Figures 5.7 and 5.8 show a skeletal warp with

93

Figure 5.4: Deformation with circular base

Figure 5.5: Grid used for warp with circular base

94

Figure 5.6: Warp with arbitrary base

-

-
p. p.

2R n=5

muumuu 24 444r4!4r4
-'-4 -4

-d

IM Gap, MIMMMiMIMI" ;! RM

MIR

Figure 5.7: Skeletal warp using free form deformation: C° continuity

95

I

I

F AREW V.

I
Figure 5.8: Skeletal warp using free form deformation: C' continuity

CO and C' continuity at its ends.

Beak - nonsmooth warps

The beak operation requires direct manipulation of the surface. Since this is not

possible using Barr operators or free form techniques, Gaooi< cannot provide this

operation. The angular warps resulting from the beak operation should, however, be

achievable with GrtooK. Sharp edges cannot be obtained with free form techniques—

the deformed volume is based on Bezier surfaces, which are smooth. Figure 5.9

illustrates how even an extreme deformation in the grid still results in a smooth

warp. A system permitting hierarchical application of free form deformation could

likely attain angular warps by repeatedly applying grids until the required level of

sharpness is achieved.

Scoop - inverse warps

The scoop operation offered by Form Synth can be attained using free form defor-

mation by pushing the control points inward rather than outward from the surface.

96

Figure 5.9: Creating a sharp tip in the warp using free form deformation

The position, size, and shape of the deformation are as flexible for the scoop as they

are for the outward warp.

Bulge - spherical warps

Although free form deformation allows a multitude of warps, it has limitations. One

is that the bulge operation of Form Synth cannot be simulated. The problem lies in

the size of the warp at the tip: the fact that it has a narrow base and a spherical

end makes it difficult to deform the grid enough to make the spherical expansion

without having grid sections near the base of the warp intersect. A system allowing

hierarchical applications of deformations could likely overcome this by pulling up the

surface in the first application, and then expanding the region in the following one.

5.3.3 Freeze region

GROOK does not offer a way to freeze a region of a superquadric so that deformations

will not affect that region. The operation used by Delta allows warps to have arbi-

97

trary boundaries by permitting parts of the warp region to be frozen. Since extended

free form deformation permits arbitrary boundaries, it can be used to achieve the

same effect: the grid is designed to cover only those regions that need to be deformed.

Freezing of a superquadric region, as in Delta, could not be implemented in

any case because it relies on the underlying polygonal representation. Polygons

connecting the deformed and the frozen regions are stretched to ensure surface con-

tinuity. The functional specification of the superquadric surface requires that the

deformation provide a smooth connection to the frozen region, otherwise CO conti-

nuity would not be guaranteed.

5.3.4 Duplicate operation

GRoOK does not allow duplicate operations to be applied to surfaces. Both Barr

operators and free form deformation can be augmented to duplicate operations at

other locations of the surface, but Barr operators are restricted in the orientation of

the duplication. Since operators such as the taper function use the position of a point

along one axis to determine the amount of deformation, they give different results

when applied to identical surfaces at different locations. As a result, the surface must

be translated and rotated to have the same orientation and position with respect to

the deformation being applied. Assuming the restrictions for the specific operation

being duplicated are met, Barr operators can be duplicated with no restriction on

the size, position, boundary, or shape of the deformed region.

Duplicating an operation executed with free form techniques entails saving both

the original and the deformed grids. The former must then be placed at its new

location, and the latter aligned with it. This alignment must match exactly, and

98

cannot be done interactively. If the duplicate application has the same orientation

the relative offsets of the deformed grid points from the original grid points could be

stored. If a different orientation is desired, the offsets would need to be rotated the

same amount as the grid.

The size, position, boundary, and shape of the region being duplicated with free

form deformation is arbitrary.

5.3.5 Refinement

Since superquadrics are defined by continuous, functional specifications of a surface,

they do not need a refinement operation. However, since GrtooK uses polygonisation

for rendering, there must be a way of controlling sampling. The user can set a

"resolution" value which determines the sampling rate for the superquadric surface.

The sampling is uniform in either parameter or object space, and there is no provision

for highly deformed areas to be refined. Consequently, other rendering techniques

such as adaptive subdivision should be explored (these are summarised in Chapter

6).

Since GRooK implements global refinement, the size, position, boundary, and

shape of the deformed region is not arbitrary. Adaptive subdivision automatically

refines the sampling at regions of high curvature, which does not provide arbitrary

control of the region being refined, but is based on a reasonable assumption.

99

5.4 Summary and comparisons

This chapter compared the deformations achievable with GROOK with the operations

listed in Chapter 2. Each operation as defined in GROOK was analysed with respect

to the generality it provided. A yardstick for discussing generality in operations was

provided for local deformations. The following questions arise:

• how well does GROOK compare to previous systems?

• how general are the operations it implements?

5.4.1 Comparison to existing systems

Barr operators and free form deformation can be used to replicate most of the oper-

ations in Chapter 2. All have been successfully modelled with GRoor< with the

following exceptions: flatten, beak and bulge warps, local refinement, and freezing

a region. Of these operations, the flatten operator is the only one that is difficult

to represent with the three deformation methods discussed in this thesis. Beak and

bulge warps can likely be attained with a system that permits hierarchical appli-

cation of free form deformation. Local refinement based on adaptive subdivision is

documented in the literature [11B87], but its implementation is beyond the scope of

this thesis. Freezing a region was shown to be redundant in a deformation based

system.

5.4.2 Comparison to metric and previous capabilities

Global operations are extended by GROOK in several ways. First, surfaces may

be scaled, bent, tapered, and twisted along a curve. This extends the original

100

operations, which are applied along axes. Second, surfaces may be scaled, bent,

tapered, and twisted along three-dimensional curves. Rather than having to apply

several planar operations, only one application of the deformation is needed. Scaling,

bending, and tapering rely on extended free form deformation, while twisting requires

a combination of Barr operators and extended free form deformation. Third, the

deformation can be applied anywhere in the coordinate system, at any orientation.

This is in contrast to many of the operations listed in Chapter 2, where the surface

must be applied at or near the origin, along one of the axes. Finally, GrtooK offers a

new operation to variably shear surfaces. This permits superquadrics to be aligned

with one another.

Local operations can all be implemented with deformation based techniques,

except the flatten operator. As noted, each operation should provide generality in

the size, position, boundary, and shape of the deformed region. The warp operation

is enhanced by extended free form deformation to meet each of the four requirements.

Local refinement can be implemented to provide adaptive subdivision, which does

not provide generality in the four areas, but does provide refinement where it is most

often needed. Duplication of both Barr operators and free form deformation can be

implemented in an arbitrary manner.

Chapter 6

Conclusions

This thesis has shown that deformation based modelling is a viable modelling tech-

nique, in that it provides:

• a rich set of operations;

• operations that are general;

• an intuitive interface.

This has been substantiated as follows. Chapter 2 provides a survey of existing

systems and summarises the operations they offer. Chapter 3 provides mathematical

details of superquadrics, Barr operators, free form deformation, and its extension. A

new operation to variably shear a surface is defined. Chapter 4 includes design and

implementation details of the testbed program GRooK, and illustrates strengths

and weaknesses in the deformation techniques and their superquadric primitives.

Chapter 5 demonstrates that a deformation based modeller can perform most of the

operations listed in Chapter 2, and extends many of them.

New contributions resulting from this work are:

• a comparison of three deformation based techniques;

• a method to combine Barr operators with free form deformation;

• the unification of the three approaches into one system, thus providing a spec-

trum of techniques that can be applied to the problem at hand;

101

102

• the variable shear operation, which can be used to align superquadrics;

• normal and tangent calculations for superquadrics deformed with free form

deformation.

Several conclusions were drawn from experimentation with the three deformation

based techniques. First, in terms of execution speed, Barr operators are the most

efficient of the three techniques, while extended free form deformation is the least

efficient. However, the extension provides considerably more expressive power than

the original, unextended, free form deformation. Second, free form deformation

and its extension provide more generality in shape control than Barr operators.

However, Barr operators are indispensable as they provide precise specification of

the operations, which free form deformation cannot. Third, Barr operators can

provide deformations which free form deformation cannot, such as the variable shear

function.

Several areas of deformation based modelling deserve further investigation. We

briefly examine five: surfaces based on the spherical product, the user interface,

rendering, extensions to each of the deformation techniques, and the design of a,

fully developed system.

This thesis described four superquadric surfaces. The spherical product can be

used to describe many more surfaces by using different curves for h(W) and M- (77).

This extension fits nicely into a deformation based modeller since the spherical

product is a deformation specification: it deforms a two-dimensional curve along an

axis. Other quadrics such as the ones listed in [RA9O] can create new superquadrics,

while nonconic curves can be used to create nonquadric based surfaces.

103

The user interface for GROOK should permit free form deformation grids to be

specified interactively. Coquillart's system [Coq90] provides lofting and extruding

operations so that grids can be created from two-dimensional curves. Other possi-

bilities should be investigated. Modes for manipulating the grids should be more

flexible. A method for grouping vertices so that they can be moved simultaneously

has been discussed in Section 4.4.1. Since grids may become complex, the user should

be able to "hide" certain parts of the grid by not having them displayed. This tech-

nique is used by Forsey [FBS8]. Finally, when Barr operators are applied to free

form deformation volumes, the deformed surface must remain embedded in the grid.

A way to check this before the entire surface is deformed would be of great benefit.

Without proper rendering techniques, the most impressive deformations will not

be adequately illustrated. Two algorithms for deformed surfaces have been docu-

mented: one to ray trace parametric surfaces directly [Bar86] and another to calcu-

late triangulations of them [HB87]. The triangulation method is more general as the

output can be fed to scan-line algorithms or ray tracers.

Each of the deformation techniques deserves further investigation. More examples

of Barr operators may prove useful, as did the variable shear function. A flatten

operator, for example, that permits an arbitrary boundary may yet be accomplished

with a Barr function.

Extended free form deformation warrants further research in several directions.

An expanded formulation that includes multiple chunks per grid and hierarchical

application of grids should be implemented. Multiple chunks permit a greater variety

of shapes to be expressed, and would permit a better framework in which to test

situations in which Newton's iteration fails to converge. Continuity between chunks

104

would need to be guaranteed, possibly with the tangent alignment method proposed

by [Coq90]. This also affects the way Barr operators are applied to a grid: the defor-

mation function must continue smoothly between chunks, each of which is defined

by separate Bernstein 'polynomials. Unexpected results may occur if the grid chunks

are not the same relative size, since a function applied over all chunks would not

necessarily be applied evenly in object space.

Hierarchical application of grids would allow the beak and bulge operations to be

tested. It may prove fruitful to permit multiple grids to be hierarchically organised

into one "object," much as primitives can be grouped hierarchically in systems such

as PG [WMG86]. This would permit the designer to move them as one object, and

would allow local deformations of other larger deformations. In this way, changes to

the large deformation grid would also affect the local grid, as in [FB88]. Whether

this is possible is not clear: the surface deformed by the large grid may not lie in the

volume defined by the local one.

This thesis evaluated deformation based modelling according to its ability to

create a wide variety of shapes. Since it has proven to be useful in this area, a

complete system should be analysed with respect to other criteria such as those

outlined in [A1188]. In particular, efficiency of each technique should be further

investigated. A great deal is known about algorithms for Bernstein polynomials

{GR74} [FR87], and a faster, more efficient implementation based on these should

be investigated. For example, Bernstein polynomials can be evaluated using the de

Casteljau algorithm [Las85].

Finally, a fully developed modeller based on deformations should be developed.

Grids could be used not only to deform surfaces, but also to position objects within

105

a scene: the objects are embedded in a grid, it is deformed or a Barr operator is

applied to it, and the position vector of the object is deformed accordingly. Such

a system presents interesting possibilities for animation, and an animated free form

deformation has already been described [Coq91].

In 1989 I made a computer animated movie entitled "Snoozin' Blues." This

depicted a saxophone that expanded and contracted as it snored. I wanted the keys,

represented by a row of spheres, to be twisted around the bore of the saxophone.

Since the instrument was conical and bent, the twist needed, to be applied along a

bend, and diagonally outward from the axis. I had to do this by trial and error—

a very tedious process (I finally changed the script to avoid the twist). However,

deformation based modelling would have been an ideal solution. By embedding the

saxophone in a similarly shaped grid and aligning the spheres alongside it, a Barr

twist function applied to the volume would calculate the new positions of the spheres.

Piet Hem's superellipses initiated the developments that led to this thesis. His

aim, to bridge the gap between Art and Science, is the essence of computer graphics.

The challenge is to provide an expressive environment for artists and designers;

this can only be achieved when the science behind the system is made transparent.

Deformation based modelling is an important approach to this goal. The work

presened in this thesis provides a sound basis for a powerful modelling technique in

computer graphics.

Bibliography

[A1188] Jeffrey B. Allan. Polygon mesh modelling. Master's thesis, University

of Calgary, September 1988.

[Ant81] Howard Anton. Elementary Linear Algebra. John Wiley and Sons, New

York, third edition, 1981.

[Bar81] Alan H. Barr. Superquadrics and angle preserving transformations.

IEEE Computer Graphics and Applications, 1(1):11-23, Jan 1981.

[Bar84] Alan H. Barr. Global and local deformations of solid primitives. ACM

Siggraph, 18(3):21-30, July 1984.

[Bar86] Alan H. Barr. Ray tracing deformed surfaces. ACM Siggraph,

20(4):287-296, August 1986.

[BBB87] Richard H. Bartels, John C. Beatty, and Brian A. Barsky. Curves and

Surfaces for Computer Aided Geometric Design. Morgan Kaufmann

Publishers Inc, Los Altos, California 94022, 1987.

[BF91] P. J. Barry and D. R. Forsey. An introduction to spline curves and

surfaces. Graphics Interface course notes, June 1991.

[Bli86] James Blinn. Geometry for computer graphics and computer aided

design. ACM SIGGRAPH Course Notes, Number 10, August 1986.

[Blo88] J. Bloomenthal. Polygonization of implicit surfaces. Computer Aided

Geometric Design, 5(4):341-355, 1988.

106

107

[BW76] N. Burtnyk and M. Wein. Interactive skeleton techniques for enhancing

motion dynamics in key frame animation. ACM Siggraph, 1976.

[CGG88a] Bruce W. Char, Keith 0. Geddes, Gaston H. Gonnet, Michael B. Mon-

agan, and Stephen M. Watt. Maple Reference Manual. Symbolic Com-

putation Group, University of Waterloo, Canada, fifth edition, March

1988. Published by Watcom Publications Limited.

[CGG88b] Bruce W. Char, Keith 0. Geddes, Gaston H. Gonnet, Michael B. Mon-

agan, and Stephen M. Watt. First Leaves: a tutorial Introduction to

Maple. Symbolic Computation Group, University of Waterloo, Canada,

July 1988. Published by Watcom Publications Limited.

[C11P89] John E. Chadwick, David R. Haumann, and Richard E. Parent. Lay-

ered construction for deformable animated characters. ACM Siggraph,

23(3):243-252, July 1989.

[Cob84] Elizabeth Susan Cobb. Design of Sculptured Surfaces Using the B-

Spline Representation. PhD thesis, The University of Utah, June 1984.

[Coq90] Sabine Coquillart. Extended free-form deformation: A sculpturing tool

for 3d geometric modeling. Computer Graphics SIGGRAPH, 24(4):187-

193, August 1990.

[Coq91] Sabine Coquillart. Animated free-form deformation: An interactive ani-

mation technique. Computer Graphics SIGGRAPH, 25(4):23-26, July

1991.

108

[Far88] Gerald Farin. Curves and Surfaces for Computer Aided Geometric

Design. Academic Press, Inc, 1988.

[FB81] Wm. Randolph Franklin and Alan H. Barr. Faster calculation of super-

quadric shapes. IEEE Computer Graphics and Applications, 1, 1981.

[FB88] David R. Forsey and Richard H. Bartels. Hierarchical B-Spline refine-

ment. ACM Siggraph, 22(4):205-212, August 1988.

{FP79} I. D. Faux and M. J. Pratt. Computational Geometry for Design and

Manufacture. Ellis Horwood Publishers, 1979.

[FR87] R. T. Farouki and V. T. Rajan. On the numerical condition of polyno-

mials in Bernstein form. Computer Aided Geometric Design, 4:191-216,

1987.

[FvDFH90] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Cothputer

Graphics Principles and Practice. Addison-Wesley Publishing Com-

pany, New York, second edition, 1990.

[FW83] A. Fournier and M. A. Wesley. Bending polyhedral objects. Computer-

Aided Design, 15(2):79-87, March 1983.

[Gar77] Martin Gardner. Mathematical Carnival, chapter 18, pages 240-254.

Vintage Books, 1977.

[Gar84] Geoffrey Y. Gardner. Simulation of natural scenes using textured

quadric surfaces. ACM Siggraph, 18(3):11-20, July 1984.

109

[Gla89] Andrew Glassner. An Introduction to Ray Tracing. Academic Press,

1989.

[Gol83] Ronald N. Goldman. Two approaches to a computer model for quadric

surfaces. IEEE Computer Graphics and Applications, Sept 21-24 1983.

[GR74] William J. Gordon and Richard F. Riesenfeld. Bernstein-Bezier

methods for the computer-aided design of free-form curves and sur-

faces. Journal of the Association of Computing Machinery, 21(2):293-

310, 1974.

[HB87] Brian Von Herzen and Alan H. Barr. Accurate triangulations of def-

ormed, intersecting surfaces. ACM Siggraph, 21(4):103-110, July 1987.

[HE89] Avon Huxor and lain Elliot. Superquadric-based symbolic graphics for

design. In Computers in Art, Design and Animation, pages 183-194.

Springer-Verlag, 1989.

[KAW91] Zoran Kacic-Alesic and Brian Wyvill. Controlled blending of procedural

implicit surfaces. Graphics Interface, pages 236-245, June 1991.

[Koe90] Jan J. Koenderink. Solid Shape. The MIT Press, Cambridge, Mas-

sachusetts, 1990:

[KPC91] James R. Kent, Richart E. Parent, and Wayne E. Carlson. Establishing

correspondences by topological merging: A new approach to 3-D shape

transformation. Graphics Interface, pages 236-245, June 1991.

110

[Las85] Dieter Lasser. Bernstein- Bezier representation of volumes. Computer

Aided Geometric Design, 2:145-149, 1985.

[Las87] John Lasseter. Principles of traditional animation applied to 3D com-

puter animation. ACM Siggraph, 21(4):35-44, July 1987.

[Lat89] William Latham. Form synth: The rule-based evolution of complex

forms from geometric primitives. In John Lansdown and Rae A. Earn-

shaw, editors, Computers in Art, Design and Animation, pages 80-108.

Springer-Verlag, 1989.

[Lor53] G. G. Lorentz, Bernstein Polynomials. University of Toronto Press,

1953. Mathematical Expositions, No. 8.

[McP90] Craig McPheeters. The Joy Manual. Computer Graphics Laboratory,

University of Calgary, Canada, October 1990.

[Mor85] Michael E. Mortensen. Geometric Modeling. John Wiley and Sons, New

York, 1985.

[MTT89] Nadia Magnenat-Thalmann and Daniel Thalmann. State-of-the-Art in

Computer Animation. Springer-Verlag, New York, 1989.

[MTT91] Nadia Magnenat-Thalmann and Daniel Thalmann. New Trends in Ani-

mation and Visualization. John Wiley and Sons, New York, 1991.

{Par77} Richard E. Parent. A system for sculpting 3-d data. Computer

Graphics, 11(2):138-147, July 1977.

III

[Par86] Scott R. Parry. Free-Form Deformations in a Constructive Solid Geom-

etry Modeling System. PhD thesis, Brigham Young University, April

1986.

[PB88] John C. Platt and Alan H. Barr. Constraint methods for flexible models.

ACM Siggraph, 22(4):279-288, August 1988.

[Pen86] Alex P. Pentland. Perceptual organization and the representation of

natural form. Artificial Intelligence, 28:293-331, 1986.

[PFTV88] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.

Vetterling. Numerical Recipes in C. Cambridge University Press, 1988.

[RA9O] David F. Rogers and J. Alan Adams. Mathematical Elements for Com-

puter Graphics. McGraw-Hill Publishing Company, second edition,

1990.

[R087] Alyn P. Rockwood and John C. Owen. Blending surfaces in solid mod-

eling. In Gerald E. Farm, editor, Geometric Modelling: Algorithms and

New Trends, pages 367-383. Society for Industrial and Applied Mathe-

matics, 1987.

[Smi89] Gillian Crampton Smith. Computer graphics and graphic design: Too

costly, too complex, too cryptic. In John Lansdown and Rae A. Earn-

shaw, editors, Computers in Art, Design and Animation, pages 225-234.

Springer-Verlag, 1989.

112

[SP86] Thomas W. Sederberg and Scott R. Parry. Free-form deformation of

solid geometric models. ACM Siggraph, 20(4):151-160, August 1986.

[TPBF87] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elas-

tically deformable models. ACM Siggraph, 21(4):205-213, July 1987.

[WMG86] Brian Wyvill, Craig McPheeters, and Rick Garbutt. The University

of Calgary 3D Computer Animation System. Journal of the Society of

Motion Picture and Television Engineers, 95(6):629-636, 1986.

