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Abstract

In my dissertation A Study in the Logic of Institutions I develop a logical system for reasoning

about institutions and their consistency. Since my dissertation is a work in logic rather than

one in socio-political philosophy, I don’t defend a particular theory of institutions. Instead, I

did as Yogi Bera suggested and simply took the fork in the road. A well-developed account of

institutions is given by John Searle in (1995); and (2010). His account bases all social reality

on language, and I use his account to provide a logic for institutional norms.

Briefly, social reality is constructed via language by making our intentions clear to one

another. And we do this via speech acts. There is one particular type of speech act that is

important to institutions: declarations. Declarations bring about new social objects and create

social states of affairs. It is via declarations that social institutions are created. In so far as

groups recognize an institution sustaining/making authority, that authority has the ability to

generate new institutional rules via declarations.

According to Vanderveken (1990, 1991); see also Searle and Vanderveken (1985), speech

acts have a logic. That is, performing one speech act can satisfy the conditions of having

performed another speech act. A priest declaring a baby baptized will also make it so that the

priest has asserted that the baby is baptized, for instance. More importantly, certain declarations

will result in the declarations of some of the logical consequences of the initial declarations. I

characterize the set of speech acts that stand in that relationship and develop a logical system

around that characterization.

The formal framework incorporates action and permits representations of complex institution-

dependent relations, e.g., rights and duties. I further develop this formalism to investigate the

notion of normative consistency. I show how to represent at least a minimal conception of nor-

mative inconsistency within the formal framework, and characterize its properties. I conclude

by comparing my work to that of others.
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Chapter 1

Introduction

The great thing about being a philosopher or a student of philosophy. . . [is that]
it gives you a kind of licence to stick your nose into absolutely everything.

A.C. Greyling

The purpose of this essay is to raise and answer two questions: ˛) Is a logic of institutional

norms possible?, and ˇ) Given that a logic of institutional norms is possible, what does it look

like? This introduction serves to frame our view of the methodology of philosophical logic, fix

some terminology, and outline the progression of the essay.

1.1 Some Remarks on Methodology

The foundations of deontic and imperative logic, which are both often referred to as logics of

norms, is one of the most contentious topics in philosophical logic. There is little agreement on

how to approach the topic. This uncertainty suggests approaching the topic of a logic of norms

in a manner rather different from much philosophical logic.

Generally, philosophical logics (modal logic, epistemic logic, temporal logic) are thought of

in line with scientific theories, perhaps on a naive view of scientific theories. There is some set

of data (the intuitively correct and incorrect inferences), and logicians attempt to find a theory

that respects that set.1 But we can raise the question: what is it that justifies those intuitive

judgments in the first place? If logic is supposed to be indubitable, we need a better foundation.

Part of the reason for going after the inferences that we intuit to be right and wrong is to offer

a theory that can be used in evaluating arguments that doesn’t beg any questions. Such logical

theories are meant to be aphilosophical, i.e., philosophically neutral. But even that seems to

be problematic, specifically in deontic logic. Sayre-McCord (1986), for instance, argues that

1See van Benthem (1983) for a more detailed account.
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the axioms of many deontic logics take a stand on the possibility of conflicting obligations and

dilemmas by saying that they are logically contradictory; thus, there can be no true deontic

dilemmas. Such a stand represents a substantial ethical position.

The better way is to roll with the punches, reject the temptation to develop aphilosophical

logics, and instead devise logics that formalize specific philosophical theories. This is similar to

the project of Carnapian explication. Such a project has the advantage of not needing to match

everyone’s philosophical views.

Of course it is important within these projects to recognize that not every detail will be taken

care of by a philosophical theory, so sometimes intuitive ideas sneak back in, but when they do

we notice that they are just naive philosophical theories, not the way things really are. Given

these preliminary remarks, we will fix some notation.

1.2 Fixing Some Notation and Terminology

In the following we will use `CL and CCL to stand for the classical consequence relation and

operator, respectively, over the language generated by the grammar

' ´ p j ' ^ ' j :' j ' � ' j ' _ ' j ' � '

where p 2 At is an atomic sentence and At is a set of atomic sentences. The symbol � is

always interpreted as a material conditional. Similarly � is the material biconditional. We call

this language of pure Boolean formulas LP . We will often make use of some metalanguage

notation as well: & for ‘and’,) for ‘only if’,” and iff for ‘if and only if’.

The standard mathematical symbols from set theory will be used: subset or equal to �,

element of 2, union [, intersection \, and relative complement X, as well as the set abstraction

notation: f x 2 A W '.x/ g. We will be assuming a underlying theory of ZFC set theory to go

along with this investigation—yes, sometimes we need the axiom of choice. We will assume

that the reader is familiar with the idea of a normal modal logic, and Kripke semantics for modal

logics. Appendix B.1 reviews these topics.
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Since we are talking about many different logics in this essay, we should note that each

logic will give rise to a consequence relation, and each consequence relation B between sets

of sentences and sentences from a language L will have a corresponding consequence operator

CB.�/ DDf f' 2 L W � B ' g. CCL above is simply a specific case of this when BD`CL.

We will define the notion of a subformula very generally for a formal language as follows:

Definition 1.2.1. If ', � and  are formulas in the language and � is a binary connective, while

@ is a unary connective, then the set of subformulas of � , denoted sub.'/ is defined as follows:

1. � D p, sub.p/ D fp g,

2. � D @', sub.@'/ D sub.'/ [ f@' g, and

3. � D  � ', sub. � '/ D sub. / [ sub.'/ [ f � ' g.

Now that we have fixed this terminology we will outline the essay.

1.3 Outline of the Essay

The steps involved in answering questions ˛ and ˇ are very different. To answer ˛ we need

a philosophical discussion; to answer ˇ we need to construct a logic/formal system. Since the

answers are so different we have divided the essay into two parts.

Part I goes about answering ‘is a logic of institutional norms possible?’ in a rather round-

about manner. First of all, by ‘possible’, we mean: is it epistemically possible for there to be

a logic of institutional norms? The issue we confront with this question is a kind of scepticism

regarding logics of norms. Scepticism about logics of norms can take two forms. First, one

might be sceptical about the existence of norms at all, so a fortiori, the sceptic is sceptical about

a logic of norms. Second, the sceptic may think that the logic of norms is trivial. By a triv-

ial logic we mean a logic whose consequence operator is such that C.�/ D � for any set of

sentences � .

A motivation for thinking that the logic of institutional norms is trivial is to think of the real

norms as simply those that are explicit in the institutional system. So in chapter 2 we argue that
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we should look to investigate a particular theory about the logic of institutional norms. If we

can then argue that that account of institutions gives rise to a non-trivial consequence relation,

then we can argue that a logic of institutional norms is possible. That possibility hinges on the

possibility and plausibility of the account of institutions on which it is based, but that is fine. We

also focus on showing what is involved in any account of a logic of institutional norms. We end

the chapter by pointing in the direction that we are headed, viz. Searle’s theory of institutions.

Chapter 3 is primarily an exposition of Searle’s account of institutions. Roughly, institu-

tions are socially recognized norms, but they come about through various forms of symbolic

representations. That means institutions come into existence in a manner with the same logical

form as speech acts. Speech acts, however, do have a logic. That logic is discussed at length

in Searle and Vanderveken (1985), and Vanderveken (1990, 1991). We follow Vanderveken

(1990, 1991) for our account of speech act logic. We argue that the consequence relation for a

logic of norms based on Searle’s theory is a subrelation of classical logic, but it is non-trivial.

The relation is what Vanderveken calls ‘strong implication’. These philosophical discussions

provide a philosophical theory that we can represent formally.

This brings the investigation to trying to get a handle on what the logic of institutional

norms might look like, i.e., question ˇ. In chapter 5 at the beginning of part II we develop all

of the relevant components of a language for representing Searle’s account of institutions. This

involves an account of action in the form of xstit logic, Anderson’s reduction of deontic logic

to alethic modal logic with a violation constant, and how to formalize the relation of strong

implication. We then use these pieces to generate a logic of norms.

We start chapter 6 by defining the various languages that we will use to define the conse-

quence relation for a logic of institutional norms. Then we develop an extension of the xstit

language and logic to represent the various pieces of reality: the institutional and the non-

institutional or brute. We show how to interpret the various concepts of duty, right, privilege,

etc. into our formal language. Finally, we reconstruct a notion of normative consequence and

demonstrate how the institutional language and the brute language relate.
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Chapter 7 is a completeness proof of the various logics introduced in chapter 6. We show

that the logic is complete, and we draw some connections between this work and previous

formal work in the logic of historical necessity.

The penultimate chapter is an application of our formal system. The notion of normative

inconsistency hasn’t been given a detailed study by moral philosophers and deontic logicians,

for the most part.2 As Donald Davidson once said concerning normative consistency: “It is

astonishing that in contemporary moral philosophy this problem has received little attention and

no satisfactory treatment” (Davidson, 1970, p. 105). Normative consistency is often reduced

to consistency in standard deontic logic, but that is an uninteresting kind of consistency; it is

plain logical consistency. That result issues from the limitations of the formalism of standard

deontic logic. We show at least a minimal way of interpreting normative inconsistency within

our formal framework, and prove some results about that interpretation.

Our final chapter deals with some questions of philosophical interpretation of our formal

system, and comparison to other work in the area. We consider a number of formal works on

the logic of institutions, but we focus on comparing our work with that of Stolpe (2008a), and

Grossi (2007). These latter works relate most closely with ours. We argue that our work is

superior in certain respects to that of Grossi (2007), and it doesn’t succumb to problems raised

by Stolpe (2008a).

2Hamblin (1972), Marcus (1980) and von Wright (1991) are some exceptions.
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Part I

Philosophical Foundations of Institutions
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Chapter 2

Foundational Considerations

When you come to a fork in the road, take it.

Yogi Berra

In this first part we set out to answer the first of our two questions: Is a logic of norms

possible? Essentially, an answer to an “is there a logic of. . . ” question is to provide a notion

of consequence for the ‘. . . ’ of interest. Roughly, our notion of consequence for institutions is

that ' is a consequence of � whenever the conditions for all of the norms in � to be norms of

an institution are met, then those conditions are also met for '. This formulation needs to be

expanded upon and explained, and that is our task in this first chapter.

2.1 Preservationist Consequence

We take what is called a preservationist view to consequence. The preservationist idea is that

logic, generally construed, is concerned with understanding the way that conditions on sets of

sentences transfer between sets of sentences. So any conditions whatsoever may be of logical

interest, especially if we can find general principles to characterize that transfer. One property

that has been a focus of logic is truth. What we teach in any first year logic course is the notion

of validity: an argument from premises � to a conclusion ' is valid iff whenever all of the

premises in � are true, then so is the conclusion '. Of course a set of sentences isn’t true, so

we define another notion called satisfaction, i.e., � is satisfied when all of the sentences in �

are true. The preservationist program is to generalize this age-old notion of validity.

The preservationist generalization of validity is given as follows: f' g is a #-consequence

of � iff � has the property # only if f' g has the property # . What we say is that # is preserved

from � to '. This generates a relation of #-consequence, i.e., a set of pairs h�; 'i such that '

is a #-consequence of � . We can refer to this relation as �# .
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The next steps we have to take are done for most work in (formal) philosophical logic:

A We must decide what the formulas of the formal language stand for.

B We must characterize the property # in some mathematical idiom.

C We must be able to characterize (to some degree) the �# relation using rules for manipu-

lating the formulas of the formal language.

So we take the step A to provide an interpretation of the formal language, B to provide a

mathematical (formal) semantics for the formal language, and C to provide a proof theory that

is at least sound for the formal semantics. There are many other properties that logicians like a

proof theory to have, but soundness seems like a minimal one.

An alternative preservationist project is to take an existing consequence relation �, and a

property # , then see if there is a sub- or superrelation of � that preserves # . Ideally, in this

alternative method one is looking for some relation �C�� such that � �C ' iff whenever �

has the property # , then '1 has the property # . regardless of the method used the steps A, B

and C are undertaken in some manner.

So the natural extension of the preservationist project into a logic of institutions is to look for

a property that can be preserved between sets of norms. The property that makes the most sense,

because it is manifested in most if not all conceptions of institutions, is that of in forceness. We

will refer generally to the notion of a norm being part of an institution (legal or otherwise) as

that norm being in force for that institution. Generally we just say that a norm is in force leaving

the relevant institution implicit. We will say more about this notion below, but for the moment

we leave it in its abstract form since we are discussing logic.

So the notion of institutional consequence is given by a consequence relation between sets of

norms. We then can define a notion of norm consequence as: For any set of sentences � [ f' g

that represent norms, ' is a norm consequence of � (� �N ') iff whenever all of the norms in

1Or f' g.
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� are in force, then ' is in force. This provides the general account of norm consequence, i.e.,

one that is independent of the conception of norms.

To make sense of this definition and formalize it precisely, i.e., characterize �N , a formal

language and a mathematical characterization of in forceness are needed. But as we will discuss

in section 2.2.1, both the conception of in forceness and the conception of the ontology of norms

can be very different, and influence the consequence relation for norms. We will argue that the

varying conceptions of norms and in forceness exert so much influence that it is pointless to

unify the study of norms. It is better to pick a conception of norms and develop a consequence

relation for that conception. So we can have a logic of norms; however, we will have different

logics for different conceptions of norms.

2.2 Institutions and Consequence

2.2.1 Institutions

Institutions are ways of organizing human behaviour, but what that amounts to isn’t exactly

obvious. To focus the discussion, we restrict our attention to the law. The law is a social

institution par excellence, and we take it as our paradigm example. What Anything we say

about the law will generalize to all institutions, as we use the term in this discussion.

Since social institutions are ways of organizing behaviour, they are essentially sets of norms,

and that is definitely the case for the law.2 Already at this point things get messy since there

are different conceptions concerning 1) what a norm is, and 2) whatever legal norms are, what

makes them parts of The Law. Combinations of answers to these two questions provide a con-

ception of legal institutions, but we can generalize the situation to arbitrary social institutions.

Let’s take a look at an example to get a better idea about what norms are.

A simple model of what the law is is given by the Master System interpretation of the law

due to Alchourrón (1996). Many legal systems are codified, i.e., written down in legal texts.

That is what is called the master book. But there are always various ways to interpret a master
2Dworkin (1978, Ch1–2) and his later work takes issue with this view.
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book (because of vagueness, etc.), and a particular interpretation of all of the legal texts taken

together is called a master system.

The distinction between master book and master system is related to the distinction between

an indicative sentence and a proposition. A proposition is a semantic, abstract entity: a sentence

is a linguistic and physical entity.3 Just as a particular sentence may express a proposition, we

will say that the master book (when interpreted) expresses a master system. We will refer to

the linguistic entities in a master book as norm formulations, and the things that are expressed

by the norm-formulations in the master book as norms. This makes norms a kind of semantic

entity. At the moment we haven’t said anything about the composition of norms.

But there is one more distinction that we should note before moving on. When a master book

is interpreted we get a master system, i.e., a collection of norms. We can say that each norm-

formulation in the master book expresses one norm in the interpreted master system, and each

norm in the master system is the expression via the interpretation of one norm-formulation in

the master book. This way we can make sense of the idea of an explicit norm versus an implicit

norm. For laws we have explicit laws, those that are interpretations of norm-formulations from

the master book, and maybe we have implicit laws, norms that are also laws, but not explicitly

on the books. We take the norm consequences of explicit norms to be one kind of implicit norm.

Other kinds of implicit norms do not interest us for the moment, so we leave them aside. But the

distinction between an explicit norm and an implicit one raises the question: are implicit norms

norms at all? Put another way: are implicit norms in force? We will look at some examples

below to make better sense of this question.

2.2.2 Norms

Not everyone agrees that legal systems treat norms as semantic entities, ontologically speak-

ing. At base, this disagreement comes from a disagreement about the ontology of norms and

3More precisely, tokens of sentences are physical entities.
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the primary distinction is that between the hyletic4 and expressive conceptions of norms, a dis-

tinction originating in Alchourrón and Bulygin (1981). “For the hyletic conception norms are

proposition-like entities, i.e. meanings of certain expressions” (ibid. p. 96). Indeed, they are

the semantic contents of norm formulations. “But [norm formulations], unlike descriptive sen-

tences, have prescriptive meaning: that something ought, ought not, or may be the case (or

done)” (ibid.).5 The original account of the hyletic conception holds that norms are the result

of applying deontic operators, i.e., ‘is obligatory’, ‘is permitted, etc., to propositions, but we

suggest allowing this view of the composition of norms to be one interpretation of the hyletic

view. What is fundamental is that there is a semantic category distinct from that of propositions

for interpreting norm formulations.

For the expressive conception, “norms are the result of the prescriptive use of language”

(ibid.), and “are essentially commands” (ibid. p. 97). This makes norms expressions in a

pragmatic mood, not the sense of a sentence. This view is held by many as Alchourrón and

Bulygin (1981, p. 98) point out. But now we can look at what it is that makes one norm a norm

of an institution and another not. We can get a clearer view to the distinction between explicit

vs. implicit norms.

For the expressive conception norms are commands. Presumably, for a norm to be classified

as a norm of the law means that it is the command of a legal authority. On the other hand, the

hyletic view isn’t married to that way of norms becoming legal norms since norms have an

independent existence from the commanding of some authority. There may be many ways that

a norm can come to be a legal norm on the hyletic view. One such way might be something

akin to a convention,6 if enough people all follow a norm implicitly then it is a legal norm.7

This view assumes that there are norms prior to there being an institutional norm. Or perhaps

4The word ‘hyletics’ is used in Ricoeur (1988, endnote 4, p. 281) in reference to uses by Husserl to mean “The
study of matter or raw impressions of an intentional act; the abstraction from the form.” Goldenrowley (2009).
Presumably Alchourrón and Bulygin (1981) mean to use it to say that norms are an abstraction from the form of
the norm-formulation.

5A similar view is held in Castañeda (1975).
6This view is held by Postema (1982).
7See Lewis (1969).
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God has handed down laws that we must follow, and it is only those norms that God has sent

to us that are true legal norms. A norm can be legally in force, and when it is it will have the

property of legal in forceness. The property of in forceness doesn’t apply only in the hyletic

case, however. For the expressive conception in forceness for a norm is just the act of making

that command.

Now consider the example where it is sufficient for a norm to be in force when there is a

convention in place. Then that can be a legal norm that is not in the master book, but still a

legal norm. That means that it is an implicit norm. So on this account implicit norms exist,

and are norms. One view of the expressive conception could be construed as saying that only

the explicit commands are norms. On that conception of the expressive conception there are no

implicit norms.

We will introduce one final bit of terminology. On either conception, hyletic or expressive,

norms have content. The content of a norm is what it says to do, or what will satisfy or violate

it. For the expressive conception the content of a norm is the proposition that is commanded

to be brought about according to Alchourrón and Bulygin (1981). In the hyletic conception the

content may also be the proposition that ought to or may be brought about, but that depends on

the version of the hyletic conception.8

Now we will reiterate our claim that the conception of norms and in forceness will matter to

a logic of norms. In the next section we will defend this claim. First we will argue how it is that

in forceness matters and second we will argue that the conception of norms matters as well.

2.3 The Conception Matters

2.3.1 In Forceness Matters

The conception of what makes a norm in force, whatever a norm may be, can affect the logic,

sometimes in radical ways. It is thought that logic should be aphilosophical. This means that a

logic should make as few philosophically weighty commitments as possible, e.g., be committed
8Cf. Hare (1952), von Wright (1963), Braybrooke et al. (1995), Vranas (2008).
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to a particular conception of possible worlds. This allows a philosophical logic, e.g., modal

logic, to be widely applicable in philosophical arguments. To be widely applicable means not

to validate any inferences/arguments that aren’t validated by any conception of the target topic.

In the current project, the way for a relation of norm consequence to be aphilosophical is for

it to be compatible with any conception of norms. However, some conceptions of norms and

conceptions of in forceness would restrict the norm consequences to just the explicit norms.

That would leave no room for consequences distinct from the explicit norms, and so make for

an austere and uninteresting logic.

To illustrate this point, we look specifically at conceptions of law. Various conceptions of

law differ on what is called ‘legal validity’, which is what we would call legal in forceness. In

the philosophy of law there are three leading schools of thought that all concern what it is that

makes a law in force: Natural law theory, legal positivism, and legal realism. It is this third

school that is of interest here. The legal realist doesn’t think that the in forceness of laws is

something that one may consider rationally; the law is simply the whim of judges. The legal

realist allows us to make our point.

What seems to be important to the realist, however, is that there is no special, metaphysical

basis for a law’s being in force (such as a god or special source of morality). At best, a non-judge

claiming that a norm is legally in force is a prediction about what a judge will use in making a

particular ruling on a case, or what will be used as a substantial justification in a ruling.9 The

legal realist cannot say to the judge ‘the ruling that you made was wrong,’ since the only thing

that can properly be called ‘the law’ is what the judge rules. So regardless of the conception

of norms, if the legal realist is right, then there are no logical connections between norms of

law that are in force since it is only what is actually used by the judge that gives a norm its in

forceness. Or to put it another way, the conditions for one norm being in force don’t connect or

fulfill the conditions for other norms to be in force since norm formulations for the other norms

are not used by the judge. The best a logician could do is work with a psychologist to predict

9This was a view developed by Alf Ross (1958), see Peczenik (2009, p. 214).
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the rulings a particular judge might make. This is an extreme interpretation of legal realism, so

there is room for legal realist views that could permit a logic of norms that is less austere, but

the austere view was held by at least Ross.

So we take it that we have established the two points we wished to make. First, the concep-

tion of in forceness can affect what the norm consequence relation is like. How the notion of

in forceness affects the consequence relation may be very complex or very simple. But also, to

do philosophically interesting work we should look to formalizing a particular conception. We

should focus on one conception primarily because if we look to please every conception, the

norm consequence relation would be uninteresting. Now we will argue that the conception of

norms has an effect on the norm consequence relation as well. Before moving on we would like

to make a brief aside about in forceness.

The phrase ‘in forceness’, as we are using it, is a placeholder term. It can be interpreted in

many ways, hence why we can talk about different conceptions of in forceness. Later we will

take a particular view on in forceness, but for the moment it is variable. It stands in for whatever

the norm making property is within a conception of norms. That means it can be anything from

a kind of common adherence to a particular regularity in action in certain context to the official

decrees of a monarch.

2.3.2 Norms Matter

There is another way that norm consequence could be uninteresting: if it is logic as usual. If

the logic of norms is just some standard kind of normal modal logic, then it might be seen as

uninteresting. We know a lot about modal logics. But the conception of norms can influence

what the logic looks like as well.

Consider a hyletic conception of norms where the notion of in forceness is that a legislator

utters sentences like ‘A ought to see to '’, where ' is some proposition. Thus norms are special

propositions that are made up by putting deontic operators on to propositions. It is a contentious

point what the “right” deontic logic is, i.e., the logic of the terms ‘is obligatory’, ‘is permitted’,
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and ‘is forbidden’, but deontic logic is often constructed by analogy with alethic modal logic.

Recall that in alethic modal logic whenever a proposition  implies ' in classical propositional

logic (i.e.,  truth functionally implies '), then if it is true that  is necessary, then it is true that

' is necessary. This is called the rule of inference RN. Thus by analogy, if  implies ', then if

it is true that  is obligatory, then it is true that ' is obligatory. This would be a case where the

logic of norms is logic as usual. But the expressive conception offers a different view.

On the expressive conception norms are imperatives or commands. A command is a sen-

tence, but it is not a sentence that can be true or false. So we have to ask, rhetorically, what

can we say about a logic of commands/imperatives? This is the famous Jørgensen’s dilemma

(Jørgensen, 1937), that either a logic of imperatives isn’t possible because logic only deals with

truth, or logic in some way deals with things other than truth. There are many suggestions for

a logic of imperatives cf. Jørgensen (1937), Hofstadter and McKinsey (1939), Chellas (1969),

Searle and Vanderveken (1985), Hamblin (1987), Vranas (2008), to mention a few. Some of

these try to derive a logic for imperatives from classical propositional logic by analogy to alethic

modal logic, while others look for different foundations. The analogy with alethic modal logic

interprets commands as sentences like: Bring about '! An imperative is interpreted by sentence

operator applied to a proposition: Š'. But Ross’s paradox suggests that an analogy with alethic

modal logic is problematic because of the inference rule RN. Ross’s paradox goes as follows.

Suppose that A is ordered to mail the letter B. So this has the form Š', i.e., bring about that

B is mailed. It is true of classical propositional logic that if B is mailed, then B is either mailed

or B is burnt. This is just or introduction: ' to ' _ . If imperative logic was like alethic modal

logic, i.e., RN held in all cases, then A would be ordered to mail B or burn B, i.e., Š' _  .

But that result is unpalatable. This means that RN shouldn’t hold unrestrictedly for a logic of

imperatives; the logic of imperatives isn’t logic as usual. So the conception of what a norm is,

in this case a command, may affect the logic as well.10

The notions of in forceness and the ontology of norms may be very complicated. Suppose

10A similar problem arises on the hyletic conception when we try to use deontic logic in the case of hyletic
norms, i.e., prescriptive propositions like A is obligated to bring about '.
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that the conception of in forceness being used is that of a norm being a convention, and norms

are regularities in action—whatever that is. Conventions work roughly as follows. A convention

is a regularity in action, some action type, that gets repeated in similar recurring circumstances.

The regularity in action provides a way of solving a problem involving coordinating human

action. But for a convention there are equally adequate alternatives for coordinating the action.

An example of this is driving on the right side of the road. That legal norm could have been

otherwise, but in Canada that is the norm we follow. This is roughly a view held by Postema

(1982, 1994).

We ask rhetorically, what would norm consequence be like for these conceptions of in force-

ness and norms? That problem is incredibly complex and it seems that abstract discussion will

not provide the answer. To give an answer would involve a detailed discussion of the problem.

Essentially, to answer the question we would have to try and construct a logic. The point is that

prior to investigating the details of the problem we lack a clear idea as to what the result would

be. And trying to please every conception is uninteresting. So to do novel work it is best not to

be aphilosophical.

2.4 Historical Precedent

That a logic isn’t aphilosophical is not a totally novel view. Dummett (1991) holds a similar

view concerning the difference between verificationist and realist accounts of truth. The realist

conception of truth that propositions are true regardless of human knowledge of their truth leads

to classical logic and verificationism, i.e., that truth is just the verification of a proposition’s

truth, leads to intuitionistic logic. Closer to home, Sayre-McCord (1986) argues that standard

deontic logic, which will be discussed briefly in section 5.1.3, isn’t aphilosophical because it

doesn’t permit there to be conflicting (moral) obligations. However, there are moral theories,

i.e., conceptions of morality that allow there to be conflicting moral obligations.

The idea here isn’t quite new. Indeed, Alf Ross (1944), offered the idea that there are really

two logics of imperatives. One logic of imperatives deals with imperative satisfaction. To
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satisfy an order is to fulfill the order, or do what is ordered. When A mails the letter he has been

ordered to mail he satisfies his order. But any situation in which A satisfies his order, i.e., mails

the letter, is also a situation where he satisfies the order to mail the letter or burn the letter. That

is because ‘either B is mailed or B is burnt’ is true in any circumstance where ‘B is mailed’ is

true. That means RN does hold when we are talking about satisfaction.

A logic of validity for imperatives is supposed to track what orders are given. So in ordering

that ' be done, a logic of validity would provide the other orders that were given in virtue of

the order to bring about '. It is a logic of validity that Ross’s paradox applies to. When there is

a valid order to mail the letter B, intuitively, there isn’t a valid order to mail or burn B.

We have generalized Ross’s idea of a logic of validity for imperatives to a logic of in force-

ness for institutional norms. This way we can give a general schema to be filled in by various

conceptions of in forceness and norms. Since now we have established that a logic of institu-

tions can be affected by both conceptions of norms and conceptions of in forceness, we think it

best to develop logics based on particular conceptions of norms and in forceness. We will be as

general as possible where we can, and reflect on the extent of generality in the end. But we will

not kid ourselves or our readers by passing this logic of institutions off as aphilosophical.

2.5 Our Choice

We have looked at what matters to a logic for institutions and found that there are two important

factors. First is the conception of norms, and second is the conception of in forceness. We

have laid out a principled methodology for our notion of institutional consequence, i.e., the

preservation of in forceness, in the form of preservationism. We have also provided some of the

context of discovery to help place this project within a intellectual heritage.

The primary point to take away from this discussion is that conception of institution matters

to a logic of institutions. The conception of institutions determines the nature of the norms

involved, and the nature of in forceness. But how the nature of those two components influences

the resulting logic isn’t something that can be dealt with in broad strokes. We must get our hands
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dirty. To that end in the next chapter we take up a conception of institutions and explain the

philosophical background. The idea is to use Searle’s account of social institutions to underpin

a logic of institutions. We will now take the fork in the road.
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Chapter 3

Searle on Social Institutions

Unlike shirts and shoes, institutions do not wear out with continued usage.

John R. Searle, (2010, p. 104)

As we said in the last chapter, we will choose a particular conception of institutions and

develop a logic based on that conception. The account of the logic of institutions presented

in this essay is founded on Searle’s account of social reality. Briefly, Searle’s account makes

all social institutions systems of Status Function Declarations. Searle’s account of institutional

norms takes those norms to be institutional facts. And institutional facts have special properties

and are brought into existence in a special manner.

Roughly, Searle’s account makes use of three things: The speech act of declaration, col-

lective recognition, and status functions. In what follows we will survey Searle’s account of

social reality by first looking at his account of speech acts, then at his account of norms, and

finally at his account of social ontology. This will allow us to explain the notions of declaration,

collective recognition, and status function used in Searle’s account of institutions. In explaining

Searle’s account of institutions we will highlight his conception of norms and his account of in

forceness. In chapter 4 we will discuss, in an informal manner, the logic of norms that issues

from Searle’s account.

3.1 Speech Acts

Following Searle, institutional powers are brought about by status function declarations. But

norms in general, i.e., assignments of function in general, are created by declarations. In the

following exposition we will follow Vanderveken (1990). We do this because Vanderveken is

working from Searle’s theory, but he presents a formal theory of speech acts and catalogues

many types of declarations/performative types of speech acts that are relevant for our project.
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3.1.1 Speech Act Theory

A speech act is any attempt to do something with words.1 Speech acts must be evaluated relative

to an interpretation (of the words involved) and a context of utterance. In fact, the interpretation

of some of the words involved in any utterance will be fixed by the context of utterance, e.g.,

proper names. Each speech act so interpreted will then have three parts: the locutionary act, the

illocutionary act, and the perlocutionary act. The locutionary act is the utterance itself, take for

example the utterance of a sentence ‘bring me my coat’. The locutionary act is the saying of that

sentence. The perlocutionary act, according to Austin, is what one does by saying something

(Austin, 1962, p. 109). The perlocution is an effect of what the speaker is attempting to perform,

or have recognized, or understood by the hearer(s) of an utterance; we will call all of these things

effects of an utterance. But it is the intended effect of an utterance that could be attained through

non-verbal means, which is the perlocution. So if someone yells ‘Duck!’, intending to cause the

hearer to duck, the hearer may misinterpret the speech act and look for a duck. Nonetheless, the

perlocutionary act in that case was to get the hearer to duck, although that goal was frustrated by

the hearer’s “fowl interests”. But that brings us to our focus in this section, the illocutionary act.

It is the illocutionary act that is the primary unit of meaning in the use of natural language. This

is one of the foundational theses of Vanderveken (1990). The illocutionary act is what speakers

intend to do with their utterances using language to communicate. An illocutionary act is made

up of an illocutionary force F of the speech act, and a proposition p which is referred to as the

content of the speech act. The type of illocutionary act can then be symbolized by F.p/.

Illocutionary forces come in five general flavours: Declaratives, Directives, Commissives,

Performatives, and Expressives. The central examples of the five types are assertions, orders,

promises, declarations, and emotive exclamations, respectively. The theory of Searle and Van-

derveken (1985), claims that all other speech acts such as warning, conjecturing, demanding,

begging, promulgating, christening, etc., can be represented by these five basic categories by

varying the various components within the relevant category of illocutionary force.

1The seminal theory of speech acts is found in Austin (1962).
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The reason that there are only five general types is that there are only four general “directions

of fit” between the world and our words. This sounds bizarre, but we will explain how this

happens. According to Searle, language allows its users to represent their intentional states,

such as belief and desire. A direction of fit describes the way that our intentional states relate

to the world. In making an assertion, a speaker is trying to represent the world by their words.

So the speaker wants thier words to fit the world: word-to-world direction of fit. On the other

hand, promises and orders have the opposite direction of fit. In making a promise or giving

an order the speaker is trying to make the world come to fit their words, so the illocutionary

forces have world-to-word direction of fit. Expressives have an empty direction of fit since they

do not represent, they are simply used to express intentional states. But performatives, e.g.,

declarations, both represent the world, and at the same time make the world the way that the

content of the speech act represents the world as being. Recall that the content of a speech act

is always a proposition—at least speech acts with non-empty directions of fit. So performatives

are said to have a double direction of fit. This provides four directions of fit: word-to-world,

world-to-word, both, and none. To get the five basic categories we just have to note that there

are two ways for the speaker to try and get the world to conform to its words,

1 promising (the speaker commits him/her self to making the world a certain way)

2 ordering (the speaker commits others to making the world a certain way)

So the extra world-to-word directions of fit provides the fifth category of speech act. We will

focus on explaining the general account mostly in terms of the illocutionary force relevant to

our project, viz. performatives.

Any illocutionary force, on the Searle-Vanderveken theory, is (or can be represented by)

a function of six arguments: illocutionary point, mode of achievement, propositional content

conditions, preparatory conditions, sincerity conditions and degree of strength of those sincerity

conditions. It is important to note that the arguments are not always independent. For example,

some sincerity conditions can determine preparatory conditions. However, these relationships
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are not involved in the goal of our project so we won’t discuss them. The illocutionary point

is what act-type the speech act is, i.e., what the speaker is attempting to do with the words.

The illocutionary point of ‘I will return your book’ is to promise to return the book. In the

current case, i.e., for declarations, the speaker is attempting to bring “into existence a state of

affairs by representing oneself as performing that action” (Vanderveken, 1990, p. 105). To

put this in a better perspective, consider a sentence that represents a performative speech act

like: (1) “I baptize you X”. The speaker who utters (1) represents themselves as performing

the act of baptizing. As Searle would have it, the speaker is representing that state of affairs as

existing, namely the state of affairs in which that entity being baptized becomes a member of

the Christian Church.2 As mentioned above illocutionary acts have directions of fit, and that is

what the illocutionary point represents: the direction of fit between the world and the words of

the speaker.

The mode of achievement relates to the point of the illocutionary force. The mode of

achievement of the illocutionary point restricts how that point is to be achieved. If A begs

someone to do something, it is a directive point since the speaker, A, is attempting to get some-

one to do something; but that directive has to be accomplished from a humble, polite or even

desperate position. It isn’t quite how we would usually think of a directive, but it does have a

world-to-word direction of fit in which the speaker tries to get the hearer to do what is being

begged for. We will explore this more in an example below.

The act a (Catholic) priest performs by making an utterance such as (1) isn’t something that

stands on its own, however. There are many things that go into making such an utterance really

an act of christening. The last three types of conditions concern those background requirements

of illocutionary acts. Next we have the propositional content conditions. Propositional content

conditions are those requirements on propositions that are the contents of certain illocutionary

acts. In directives, e.g., commands, the propositional content must be a future proposition: no

one can command someone to do something yesterday—although someone might say that to

2According to the Encyclopedia Britanica Online, christening is an admission ceremony of various sects of
Christianity (Encyclopdia Britannica Online, Encyclopdia Britannica Online).
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express the urgency of the desired result. The same is true about commissives.

For declarations the propositional content conditions have to do with the peculiar direc-

tion of fit. In Vanderveken’s theory, declarations cannot have necessary propositions as their

propositional content. One cannot declare a necessary proposition true, or a necessarily false

proposition false, for that matter. The propositional contents of declarations must always be

contingent propositions. There is another aspect of declarations that Vanderveken leaves out:

the proposition that grass is green is contingent, but could someone declare such a proposition

true? Presumably not since the proposition is independent of language on this view. This means

that excluding the necessary propositions from the content of declarations isn’t the whole story.

The propositions that are contents of declarations must be amenable to being declared. As hard

as A might try to declare that grass is blue, A will not succeed, the proposition expressed by

‘grass is blue’ just isn’t amenable to declaration qua performative act. We will discuss this more

in the sequel.

Preparatory conditions, as the name suggests, are the conditions that must be met to be in a

position to succeed in preforming a speech act. Promising, the commissive act par excellence,

really only needs there to be a linguistic community that includes locutionary acts that count as

commissives in certain contexts. But the existence of such a linguistic community isn’t a small

matter. The non-trivial cases of preparatory conditions, i.e., those beyond the existence of a

linguistic community, are very important to institutional reality. Consider the priest case above.

In order to properly baptize a child, the speaker must be a priest, which requires the existence

of the church and all of its requirements—a highly non-trivial set of preparatory conditions.

Sincerity conditions are where the intentionality of the speaker is very crucial. They refer to

the mental states that a speaker represents themselves as having in performing an illocutionary

act. If someone says, ‘I think there is life on Mars’, they represent themselves as believing the

content of the putative assertion, i.e., that there is life on Mars. Similarly with promises; if some-

one says ‘I shall return your book’ but doesn’t have an intention to return the book, then this

person has performed a locutionary act, and a commissive illocutionary act, but there is some-
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thing wrong with that act. That speaker isn’t sincere, i.e., doesn’t have the mental/intentional

states that they represent themselves as having.

Finally we come to the degree of strength of the sincerity conditions. The degree of strength

applies to the mental/intentional states required by the sincerity conditions. Sometimes the

mental states represented in the performance of one illocutionary act must be much stronger

than those represented in another act. For instance, if someone conjectures that there is life on

Mars then they haven’t asserted something, but they have performed a speech act in the vicinity

of asserting. Conjecturing requires representing less strength in the mental state than a bona

fide assertion.

When a locutionary act is performed, and the putative illocutionary act is of the form F.p/,

something might go wrong with some of the conditions previously outlined for the illocutionary

force F . This relates to the notion of a speech act being successful. To quote Vanderveken at

length, when:

(1) the speaker achieves the illocutionary point of F on the proposition Œp�3 with

the mode of achievement of F , and Œp� satisfies the propositional content conditions

of F in that context;

(2) the speaker moreover presupposes the propositions. . . determined by the prepara-

tory conditions. . . of F ; and

(3) the speaker also expresses with the degree of strength of F the mental states

[necessary] with the psychological modes. . . determined by the sincerity conditions

of F (1990, p. 129)

the speaker successfully performs an illocutionary act of the form F.p/. Vanderveken holds that

one can successfully perform an illocutionary act, but the act may be defective in some way,

e.g., he may presuppose a proposition needed by the preparatory conditions that is false, or may

express that he has mental states that he doesn’t. Suppose someone says ‘I promise to return

3Here Vanderveken uses a ‘P ’. The ‘. . . ’s remove notation that Vanderveken uses that we haven’t introduced.
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your book’, but has no intention of returning the book. In such a case the same illocutionary act

of promising to return said book is successful, but the necessary mental states are missing so the

sincerity conditions are not met. So Vanderveken would say, we believe, that the illocutionary

act was successful, but it was defective. On the other hand, suppose that the same locutionary

act is performed, and the sincerity conditions are in place, but the book has been burnt up in a

fire, and the speaker is unaware of that. That means there is a preparatory condition that fails

to obtain for the act of promising to be non-defective. One might meet the sincerity conditions

in the latter case, but there is no book to return. For Vanderveken a successful illocutionary act

is one where the speaker says things properly, but he might not meet all of the preparatory or

sincerity conditions, i.e., the world nor the speaker might not meet the preparatory conditions

for the speech act to happen in a non-defective manner.

Vanderveken suggests that Austin’s felicity conditions don’t distinguish between the possi-

bility of performing an illocutionary act successfully, but in a defective way.4 So what matters

to successful performance is that the speaker represents itself and the world as meeting all of the

relevant conditions. Nonetheless, the act can fail, in a certain sense, because the world hasn’t

agreed with the speaker’s presuppositions or the speaker misrepresents him/herself. When a

speaker meets the right conditions and the world agrees with the speaker’s presuppositions, then

that is what Vanderveken calls an illocutionary act being ‘non-defectively performed’ (Ibid. p.

130). In the performance of an illocutionary act a speaker represents the world and the speaker

as satisfying all of the conditions necessary for non-defective performance.

The final topic of interest in relation to illocutionary acts is the notion of a speech act be-

ing satisfied. Satisfaction has to do with the direction of fit of the illocutionary point. When

someone asserts p the direction of fit is from words to the world, i.e., words-to-world. When

an assertion is satisfied the proposition asserted is true; thus, the satisfaction conditions for

assertion reduce to the truth conditions for the proposition asserted. The case is different for

illocutionary acts with a world-to-words direction of fit. If someone promises to bring about p,

4Vanderveken isn’t correct on this point since Austin would say that a successful but defective illocutionary act
was unhappy in some way. Cf. Austin (1962, pp. 12–38).
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then the promise is satisfied when it is kept. Whether a promise is kept isn’t simply spelled out

by the truth conditions of propositional content p of the illocutionary act. Of course the truth

of the relevant p plays a role in the satisfactions conditions of any speech act, but it may not be

the whole story. Presumably, to fulfill a promise the promiser must make the proposition true,

somehow. The satisfaction conditions for declarations are particularly interesting since they

have both directions of fit. Again we quote Vanderveken:

[A] declaration is satisfied in a context if and only if the speaker performs the

action represented by its propositional content by way of representing himself as

performing that action in his utterance. On this account, a declaration could not be

satisfied if it was unsuccessful [and conversely]. (Ibid. p. 133)

Thus with declarations, succeeding is coextensive with satisfaction, i.e., occurs in all of the same

circumstances. This gives declarations a bootstrapping effect since they can make something

out of almost nothing, and that effect is what is needed for creating institutions on Searle’s

theory. That concludes our brief tour through the components of illocutionary acts. Now we

will look at some specific performative acts to bring out some details about declarations in

relation to institutions.

3.1.2 The Specific Speech Acts

In the current project we are following Searle’s theory about the construction of institutional

reality, and it is through those special acts known as declarations that we construct that reality,

as we will discuss below. Declarations are a specific form of performative speech act. In

performing a declaration the speaker brings about the truth of the propositional content of the

speech act.

But declarations aren’t as simple as the Catholic priest example above might indicate, if

anyone thought that was simple. The preparatory conditions for many kinds of declarations are

extremely complex. But once there is the underlying social infrastructure, fewer preparatory

conditions need to be added. Once there is a legal institution, judges have abilities to sentence
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and provide rulings. Any speech act is looked at in relation to a context of utterance, and it is

the context that handles many of the various conditions for successful speech acts, particularly

the preparatory conditions.

In this section we discuss some acts which highlight important considerations in the use of

illocutionary acts to make institutional facts. We will get a better understanding of their prepara-

tory conditions, propositional content conditions, and sincerity conditions. In this we focus on

the law, and only discuss the fragment consisting of one illocutionary act: promulgation. Fol-

lowing Vanderveken, to promulgate is

to declare publicly (mode of achievement) an enactment of some legal status (propo-

sitional content condition). (1990, p. 208)

We want to look at actions that change or create the composition of the institution as opposed

to actions that are within the institution, like baptism. Of course speech acts that change an

institution also have to be from within the institution itself in some sense, but we will leave that

aside for now.

As we discussed in the previous section, there are six arguments in any illocutionary force:

illocutionary point, mode of achievement of that point, propositional content conditions, prepara-

tory conditions, sincerity conditions, and their degrees of strength. We will explain these argu-

ments in what follows. The illocutionary point of a promulgation is to declare, i.e., it is a

performative type illocutionary act. However, this type of declaration requires a specific mode

of achievement involved, viz. public declaration. Thus to succeed in promulgating a new piece

of law, the public must be able to become aware of the new law.

Concerning the propositional content conditions, Vanderveken claims that the content of

the promulgation must have legal status and that status manifests as a restriction on the content

of the promulgation. But there is another legal feature about promulgations: part of the legal-

making feature of a promulgation is that it is promulgated by institutional authorities in their

capacity as legislators. Thus the legal status of a promulgation is found in three places. The

legal status is partly in the preparatory conditions, because such an authority must exist. It
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is also partly in the mode of achievement since to perform the promulgation that authority is

invoked.

The mode of achievement for promulgations is in the invoking the authority to make laws of

the speaker to make the declarations, to create the laws, and in a public manner. Simple decla-

rations don’t have these additional requirement for their modes of achievement since someone

can say ‘I am asking if it has rained today’ and so declare that one is asking a question: they

represent themselves as asking a question.5 In making that declaration the speaker wouldn’t

need to invoke any special authority to make the declaration. However, in a promulgation the

promulgator must indeed make use of the special authority in order to succeed in performing

a promulgation at all. It is like when a priest says ‘By the power invested in me. . . ’, the priest

uses a special mode of achievement in pronouncing people married. A priest invokes the power

given to them by a church to create something like a marriage; without that power a priest

cannot create a marriage. The mode of achievement for promulgations is wrapped up with the

special preparatory conditions since the promulgator must have such authority in order to invoke

it: without that authority there can be no success.

The weird part of promulgations, and declarations generally, are the sincerity conditions.

Mental states don’t seem to play into the success of these declarations in general. One could

imagine a dictator of a small country who forms no prior intention to enforce a particular law

that they have promulgated. Then we might say that the sincerity condition of this isn’t met

since it is the dictator who is the chief administrator, and the ultimate enforcer of the laws in

that country. But in democracies such as Canada it is not clear that its legislators need to have

particular mental states concerning the laws they promulgate. Indeed, in democracies it seems

that promulgation is a collective speech act. There is no one individual that performs the pro-

mulgation, it is a collective effort. We will discuss this more when it becomes relevant in section

4.2, but ultimately we want to say that there are no sincerity conditions for promulgations.

5This may seem odd since by someone saying “I am asking. . . ” seems to be simply asking a question. But
saying “I am asking. . . ” asks a question in addition to making the declaration. Whereas saying “Did it rain today?”
simply asks a question.
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When we use ‘speech acts’ to refer to promulgations by governing authorities we use

‘speech’ loosely: it could refer to any number of symbolic acts to the same effect. In Canada,

for instance, it is the signing of a bill that makes it law. But that doesn’t really affect the kind

of action qua promulgation. We should note that promulgations may not be necessary to make

laws. It is easy to imagine a ruthless ruler who makes new secret laws to entrap their public.

Such laws may be genuine laws depending on which conception of law is right, but they would

fail to be promulgated since they are not public.

So far we have dealt with the ‘declaration’ part of ‘status function declarations’. Now we

will look at Searle’s conception of institutions and explain what a status function is, as well as

the role of collective recognition in his conception of institutions.

3.2 The Components of Searle’s Conception of Institutions

Early in Searle (2010) he says

The claim that I will be expounding and defending in this book is that all of human

institutional reality is created and maintained in existence by (representations that

have the same logical form as) [Status Function] Declarations, including the cases

that are not speech acts in the explicit form of Declarations. (Searle, 2010, p. 13)

We have seen what a declaration is, but to understand the notion of a status function we have to

understand collective recognition.

Collective recognition is a form of collective intentionality, akin to collective belief and

collective desire. Collective beliefs and desires are the kinds of beliefs and desires expressed in

utterances like ‘we want to win the soccer tournament’ and ‘NASA believes the rocket launch

will proceed on schedule’. Some collective intentions are reducible to each individual having

the same intention, e.g., we believe that John is alive, i.e., each of us believes John is alive.

These are called distributive collective intentions Meijers (2007). But some intentions don’t

reduce in this way. Collective actions are sometimes like this, the playing of a piece of music
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by an orchestra is done by each member playing their part. The collective intention is to play

the piece of music, but each individual doesn’t have an intention to play the same thing, since

the role each instrument plays, i.e., the score each plays, is different. This non-distributive sense

of collective intentions can be thought of as explicit cooperation.

The sense of collective recognition that Searle requires for the existence and maintenance

of institutions is the distributive kind of collective intention: it doesn’t require cooperation in

general. As Searle says

[I]n an actual transaction when I buy something from somebody and put money

in their hands, which they accept, we have full-blown cooperation. But in addi-

tion to this intentionality, we have prior to the transaction and continuing after the

transaction an attitude towards the pieces of paper of the type I am placing in the

hands of the seller, that we both recognize or accept the pieces of paper as money,

and indeed, we accept the general institution of money as well as the institution of

commerce. (Searle, 2010, pp. 56–7)

Further, for there to be cooperation within an institution there first has to be this a-cooperative

collective recognition of the institution. The collective recognition of a status function, then, is

the distributed recognition of the various status functions which make up the institution. Note

that ‘recognition’ doesn’t imply endorsement for Searle; it can be grudging acquiescence. But

what is a status function?

Searle defines a status function as

a function that is performed by an object(s), person(s), or other sort of entity(ies)

and which can only be performed in virtue of the fact that the community in which

the function is performed assigns a certain status to the object, person, or entity

in question, and the function is performed in virtue of the collective acceptance or

recognition of the object, person, or entity as having that status. (Searle, 2010, p.

94)
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It is essential to status functions that, as their name indicates, they are functions which depend

on their status within a community. A status function could not serve the function it does without

some sort of collective recognition. As one of Searle’s key examples indicates, if some tribe of

yesteryear has built a wall around their collection of huts, that wall serves as a boundary and

its function as a way of keeping individuals out is achieved because of its physical properties.

However, many years latter, after the wall has crumbled, the outline of the wall may serve as a

boundary, and people will not cross it unless authorized to do so. But that function of keeping

people out isn’t achieved because of the outline’s physical structure. In that case, the function

of the wall is achieved by a collectively recognized, symbolic status that the outline has. The

outline has power because people recognize the power, and it wouldn’t have it otherwise.

The symbolic power that the outline of the previous example has is part of what Searle calls

a deontology. A deontology is an assignment of powers, rights, prohibitions, and obligations to

various entities, especially people. In the boundary example above, the outline of the wall is a

assigned a special power because it imposes prohibitions on people: People are prohibited to

cross the outline unless they have authorization. But deontologies function if and only if they

are recognized to be binding via the community. As Searle puts it “a deontology can exist only

if it is represented as existing” (Ibid. p. 95).

The importance of collective recognition for the existence of institutions is because without

it an institution will not “lock into human rationality and will not provide reasons for action”

(ibid., p. 102). Searle makes it an important part of institutions that an institution’s subjects must

see the deontology, e.g., the existence of an obligation, as providing a reason for action. This

reason for action doesn’t have to be a desire. Indeed, Searle goes against the Humean idea that

all action must be underpinned by some desire. A full discussion of Searle’s theory of action

is unnecessary here, suffice it to say that Searle explains recognition in terms of recognizing

deontological status as providing reasons for actions. We will come back to this point in the

next section; for now we want to discuss the components of institutions.
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Another type of status function that is particularly important is that of a constitutive rule.

We will use ‘norms’ instead of ‘rules’ to be consistent with prior use in this essay, but Searle

uses ‘rules’. Searle holds that there are two kinds of norms, regulative and constitutive. For the

difference between regulative and constitutive norms we can follow Searle’s explanation:

As a start, we might say that regulative [norms] regulate antecedently or indepen-

dently existing forms of behavior [. . . ]. But constitutive [norms] do not merely

regulate, they create or define new forms of behavior (Searle, 1969, p. 33).

We might say, and Searle does (ibid. p. 53), that the action or thing to which a regulative norm

applies might have exactly the same description had the norm not existed. But that is not so in

the case of constitutive norms. There are plenty of examples: speeding versus driving at over

80 kilometers an hour. For someone to speed there must be a constitutive norm that allows the

classification of driving over 80 km/h as speeding. Playing chess is another action that would

not be possible but for the norms that constitute the game. But a regulative norm prohibiting

walking on someone’s lawn, promulgated by a sign posted that says ‘Don’t walk on the grass’,

is something that regulates a preexisting action, i.e., walking on the grass. Walking on the grass

is possible to do without there being any norms: walking and the grass exist prior to the norm.

That the walking is classified as an offence of some kind occurs because there is the rule in

force.6

These constitutive norms help define the basic components of institutions. If we go back to

the general gloss of institutions, i.e., ways of organizing human behaviour, constitutive norms

are a way of organizing human behaviour by classifying it according to the constitutive norms.

For Searle, the general logical form of a constitutive norm is ‘X counts as Y in C ’. The ‘count

as’ formula in general is: action, object, or state of affairs X , counts as Y—again an action,

object, or state of affairs—in context C . Constitutive norms allow people to connect physical

reality to institutional reality. Institutional reality (Y s) are defined into existence out of physical

or brute reality (Xs) via constitutive norms.
6Actually, it takes a whole institution of private property in most cases to make such a rule in force.
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We must pause a moment on the notion of context. In the count as formula the context

functions in a few ways. Searle often phrases count-as statements in terms like: “doing X

counts as a base hit in the context of a baseball game”. This use of context in the count as

formula is a way of specifying the conditions of application for when X count-as Y . But we

can change the logical form of this formulation to: under conditions C , X counts as Y . This

makes the role of the context a little less mysterious. However, in a case where the context is

a baseball game, there is an ultimate context that is needed: the existence of the institution of

baseball. But that context is what is being defined by the collection of status functions, of which

this one count-as formula is a part. Thus the use of context in this manner is redundant. We will

treat count-as formulas as conditionals stating under what special circumstances Xs count-as

Y s. Now we return to our discussion of constitutive norms.

Grossi (2007) offers a formal system in which regulative norms are reduced to constitutive

norms. We will develop this reduction in detail in section 9.1.3. Grossi’s idea, which is a

formalization of the account of institutions in Searle (1995), makes for a simple formalism.

According to Grossi, a regulative norm can be analysed as a constitutive norm that says certain

actions or states of affairs are to be counted as violations. For instance, to give one of Grossi’s

examples, operating vehicles in a public park counts-as a violation of the law. An important

goal for a logical system is to show how to represent all of the required notions for providing

the deontologies of status functions, i.e., rights, duties, powers, et cetera. We will do that in

section 6.4.

In the next section we will see how all of these components fit together.

3.3 Putting it Together

Searle’s account of institutions sees institutions as collections of status functions. But these

status functions are imposed on reality in a particular manner for Searle. “All institutional facts

are created by the same logical operation: the creation of a reality by representing it as existing”

Searle (2010, p. 93). Searle’s schema for this is:
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We (or I) make it the case by Declaration that the Y status function exists. (Ibid.)

So the way that institutions come about is through, as the quote at the beginning of the previous

section says, the declarations of status functions. Before moving on to mention how a logic of

institutions would come out of this we have to take a look at Searle’s account of the maintenance

and creation of institutions.

In Searle (1995), he thought all institutional facts could be handled by constitutive rules.

However, there was a counterexample to that hypothesis: limited liability corporations. Not all

status functions are assigned to some preexisting thing. Searle’s example of this is a limited

liability corporation. Such corporations are just brought into existence through a status function

declaration all the same, but although

[t]he corporation has to have a mailing address and a list of officers and stock hold-

ers and so on,. . . it does not have to be a physical object. This is a case where

following the appropriate procedures counts as the creation of a corporation and

where the corporation, once created, continues to exist, but there is no person or

physical object which becomes the corporation. (Searle, 2005, p. 16)

So in this case there is no X that is counted as Y , hence the general formulation of institutional

facts above. However, all institutional facts must connect in some way to brute reality. The

connection is achieved by assigning the various roles in something like a corporation to people

which gives them deontic powers, i.e., assigns a deontology to these people. Searle gives a more

transparent formulation of institutional facts as follows:

We (or I) make it the case by Declaration that a Y status function exists in C and

in so doing we (or I) create a relation R between Y and a certain person or persons,

S, such that in virtue of SRY, S has the power to perform acts (of type) A. (Searle,

2010, pp. 101–2)

The relation R will often be different for different status functions. In the case of money S is

the possessor of money, in the case of private property S is the owner of the property—to use

34



Searle’s examples. In the case of a corporation, Bill will be a share hold in the the corporation

Y , and so because of being a share holder, be permitted to vote to elect the president of the

company. As a note on something that we will come back to much later (section 6.6), this

formula indicates that in developing a formal system in order to interpret an institution we must

have some way to assign agents roles in that institution.

Whereas theories of law like that of the expressive conception of norms, e.g., Alchourrón

and Bulygin (1981), see legal norms as standing commands, Searle’s theory sees institutional

facts as like standing declarations. Institutions are systems of standing declarations because

in order to persist, they must continue to be used again and again. This is achieved through

collective recognition. As Searle says, “the whole apparatus [of an institution]—creation main-

tenance, and resulting power—works only because of collective acceptance or recognition”

(ibid. p. 103). So the maintenance of an institution depends on facts which have the form:

We collectively recognize or accept (There exists Y in C, and because SRY (S has

power (S does A))). (ibid.)

But Searle’s theory faces a problem: Consider for the moment all the laws in force in Canada

right now, or even just the bylaws of The City of Calgary. It seems to be an uncontroversial

point that not every member or subject of these institutions recognizes all of the status func-

tions imposed within those institutions. That is, not everyone is aware of all of the powers of

all of those institutional agents in the institution. But Searle uses the distributive kind of col-

lective recognition. So it seems that, on Searle’s theory, everyone has to recognize all of the

status functions for the institution to persist, and real institutions function without that kind of

widespread recognition.

But Searle says that,

you do not need a separate attitude of recognition or acceptance for institutional

facts within a preexisting institutional structure. If, for example, you accept the

institution of baseball, then a given home run or base hit requires no separate ac-

ceptance. You are already committed to that acceptance by your acceptance of the
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institution.. . . The system, once accepted by participants, commits them to the ac-

ceptance of facts within the system because the system consists of sets of standing

Declarations (ibid. pp. 102–3).

So recognition of an institution is at a very high level, and that general recognition of the institu-

tion is taken as a commitment to the whole collection of standing declarations which constitute

the institution. But something has to impose those status functions initially. In the sequel we

will refer to whatever imposes the status functions as an institutional authority.

Our use of ‘authority’ in this case is rather broad since it may be a whole community, or it

may be a particular individual, e.g., a monarch. In the case where the authority is a monarch,

what is recognized is a kind of second order status function that gives power to impose status

functions on the behalf of the collective, e.g., legislators. But as we have said recognition of that

power of the monarch constitutes the recognition of the status functions that monarch creates.

Searle’s conception of norms is that they can all be expressed as status functions, and with

Grossi’s insight we can make regulative norms constitutive norms which are a kind of status

function. But it makes the norms propositions, so these norms can be true and false. That

means standard classical logic can apply to them. However, according to Searle, a norm is in

force only when it has been made true by declaration. So although the norms themselves are

simply propositions and so true or false, whether classical consequences of the norms are also

in force depends on how the speech act of declaration (promulgation) interacts with classical

consequence. We investigate that in the next chapter.

A final note. There are various theorists that suggest that institutional norms can come

into force simply by a process like collective recognition, cf. Lewis (1969), Bicchieri (1997),

Binmore (2010). We don’t want to deny the plausibility of those other views, but they are not

Searle’s view. On Searle’s view collective recognition has the form of a declaration since what

is important to institutions is that they are the result of representation, and representation is

imposed by something like declarations. We are not concerned with these other views since

they presume a different account of in forceness than Searle; therefore, we set it aside.
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Chapter 4

The Justification of Normative Consequence

If you wish to make an apple pie from scratch, you must first invent the uni-
verse.

Carl Sagan, COSMOS(1980)

The first part of this essay deals with the philosophical underpinning for a logic of institu-

tional norms. In chapter 2 we argued that a logic of institutional norms requires an account of

what norms are and one of in forceness. Only with those two elements in place can anyone

properly evaluate whether there is a logic of norms on that conception. Using Searle’s interpre-

tation of norms, we assume that all norms are constitutive norms, so norms are classifications

used in the specification of status functions. These status functions are imposed on the world

through speech acts, particularly status function declarations. This latter idea of a declaration

of a status function provides a conception of in forceness. So a logic of norms in this case can

be reduced to the logic of the speech act of declaration. This logic of speech acts is known

as a logic of illocutionary acts, and even more specifically a logic for the performative acts of

abrogation and promulgation.

In this chapter we are going to show that the consequence relation for norms isn’t trivial.

We will do that by first explaining Vanderveken and Searle’s notion of illocutionary entailment,

relying mainly on Vanderveken (1990, 1991). This notion of entailment is a general entailment

relation between illocutionary acts. The deep question that we have to answer is: what is the

relationship between classical consequence as a relation between propositions and illocutionary

entailment? Specifically, for what set of pairs h�; 'i is it the case that when each proposition

expressed by a sentence in � is declared/promulgated, is it also the case that the proposition

expressed by ' is declared/promulgated? We want to find a subrelation of classical consequence

that preserves declarations, i.e., preserves in forceness. In doing this we will justify a conception

of normative consequence.
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4.1 Speech Act Entailment

Let us represent contexts of utterance by is and sentences representing illocutionary acts by A

and B for the moment. A semantic interpretation I assigns extensions and intensions to all

of the terms involved in the As and Bs. Here we haven’t given a full rendering of a formal

language, but we use the notation to simplify the discussion. The notation J�K then represents

the semantic value of whatever is inside the brackets relative to the interpretation I. Also JAKi

refers to the illocutionary act named by A in the interpretation I in the context of utterance

i . Since each illocutionary act has the form F.p/ consisting of the illocutionary force F and

the propositional content p, we say that each sentence representing an illocutionary act has the

logical form F.'/ where ‘JFK’ refers to an illocutionary force, and J'K is a proposition.

The notion of strong illocutionary entailment (or commitment) from Vanderveken and Searle

(1985) is put informally as, if A has performed the speech acts JF1.'1/K; : : : JFn.'n/K success-

fully in the context of utterance i , then A has also successfully performed the speech act JF0.' 0/K

successfully in the context of utterance. Recall that a speaker successfully performs an illocu-

tionary act when, in general, they achieve the illocutionary point of an illocutionary act while

representing themselves as correctly presupposing the preparatory conditions and expressing

that they meet the sincerity conditions to the correct degree of strength. So illocutionary entail-

ment relates the success conditions of speech acts. Also notice that there is no restriction on

what speech acts are represented. All of the speech acts could be from different categories.

Vanderveken (1991) recognizes many different notions of entailment between speech acts

since success conditions can be related to satisfaction conditions, and vice versa. So there will

be a kind of entailment relating satisfaction and success in both directions. Since for declara-

tions, the success and satisfaction conditions are coextensive so we do not have to consider any

other kind of entailment, illocutionary entailment will suffice.

We are interested primarily in Vanderveken’s definition:

Definition 4.1.1. F1.'1/ illocutionarily entails F2.'2/ (F1.'1/ �I F2.'2/) iff for any inter-
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pretation I, and any context of utterance i , if JF1.'1/Ki is successfully performed in i , then

JF2.'2/Ki is successfully performed in i .

So illocutionary entailment holds between sentences that express speech acts when the suc-

cess conditions of the illocutionary acts are related. Illocutionary entailment has to do with

what it takes to successfully perform the various acts rather than merely the propositional con-

tents of those acts. We want to know whether a logical entailment from a proposition J'K to a

proposition J K guarantees an illocutionary entailment from F.'/ to F0. /.

Since we are focusing on declarations, we only need to focus on one illocutionary force

which we will denote by JDK. That means definition 4.1.1 will suffice for our purposes. Now it

may seem odd that the success and satisfaction conditions coincide for declarations: one cannot

successfully declare something without satisfying that declaration as well. An example will

make that fact a bit clearer. Suppose some authority says “I command you to do ˛”. That is a

declaration, and the content of that declaration is that the authority commands the subject(s) to

do ˛.1

For the declaration to be successful the authority must meet all of the preparatory conditions,

etc., but if the authority does, then it has indeed commanded the subject(s) to do ˛. The success

of the declaration, however, doesn’t guarantee that the command is satisfied; the subjects of

the authority may not do what is commanded. But declarations bring about certain states of

affairs. So when declarations are used to create status functions, the declarations are always

satisfied when successful since they create institutional reality. Further, Vanderveken says,

“all successful declarations are eo ipso true, satisfied, sincere, and non-defective” (1991, p.

73). The kind of declaration used in Searle’s conception of institutions acts exactly like this.

There can be no defective but successful declarations, unlike insincere promises. The authority

represents itself as creating institutional reality, i.e., it brings into existence a particular status

function. How we and Searle analyse the bringing into existence of a status function is as the

institutional authority making certain propositions true. By so representing itself as making a

1The command associated with this declaration is ‘do ˛!’.
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certain proposition true, the authority makes that proposition true. But now we can ask what

logical relationships between propositions preserve that kind of making true?

4.2 Illocutionary Entailment and Declarations

Central to the creation of norms, on Searle’s view, is the illocutionary act of declaration. If there

is going to be a genuine logic of institutional norms, then it must describe some relationship

between the norms themselves, so it must describe a relation between the success conditions

for status function declarations since those declarations are the norms. Illocutionary entailment

provides a way of understanding the relationship between those success conditions.

It would be convenient, however, if we could find some way to characterize the illocutionary

entailments between declarations via another, better understood relation of consequence. The

best understood relations of consequence that exist are those for propositions on one descrip-

tion or another. So we want to find a relation between propositions (or sets of propositions

and propositions) characterizing illocutionary entailments between declarations. Let’s call this

relation `S . It would be spectacular if `S was a subrelation of classical consequence, and one

that we could characterize in some mathematically precise manner. What we are looking for is

a relation `S such that � `S ' if and only if DŒ�� �I D.'/. Ultimately, this relation will be (a

restriction of) the consequence relation of strong implication from Vanderveken’s work.

We will first note a necessary condition on `S that results because the contents of non-

defective declarations can’t be necessarily true or false. As mentioned in section 3.1.1 the

propositional content conditions on declarations are rather interesting. First, no content of a

declaration can be a proposition that is necessarily false or necessarily true. Thus the proposi-

tional content of any declaration must be something contingent. But that contingency must be

of a special kind for promulgations. We often recognize the contingency of the proposition that

grass is green, but it is counterintuitive to say that an institutional authority could declare that

grass is green. An authority could, possibly, invent a new term ‘greeen’ and declare it to mean

‘the colour of grass’, but that isn’t the same as declaring that grass is green. What is needed
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is the recognition of a special part or segment of language that represents social reality, and is

under the influence of those that create and maintain that institutional reality.

In order for declaration (promulgations) to be successful, an authority must have special

access or control over certain bits of language. If we recognize a special vocabulary that can be

included in the contents of declarations by the respective authorities, then that vocabulary can be

the special bits of language that institutional authorities have control over.2 This recognition of a

special institutional language also makes sense of Vanderveken’s requirement that the contents

of promulgations must have a special legal content. We will say that this language is under

institutional control.

This leads us to our first observation regarding the consequence relation `S . Suppose that

some authority makes a declaration of the formD.p/. The p cannot be a necessary proposition.

So if D.p/ illocutionarilly entails D.q/, then q cannot be a necessary proposition either. So, if

� `S ', it is necessary that J'K not be a necessary proposition, if DŒ�� �I D.'/. This means

that treating ‘declared’ as a modal operator results in a modal operator that doesn’t distribute

over classical consequence.

Before moving on with the rest of our justification we will look at Vanderveken’s use of

strong implication in relation to illocutionary entailment. Vanderveken’s justification of strong

implication is flawed, and we discuss that in section 4.3. However, we will argue in section 4.4

that strong implication does work for reasons different from Vanderveken’s, and reasons that

are particular to the case of declarations used in Searle’s theory which is closer to promulgation

than basic declaration.
2There will be more on this in section 5.1. In the construction of a formal language we introduce a special

set of atomic sentences that serve as the institutional atoms, and a special set of agent-like terms called roles. We
also introduce a relationship of institutional control that says when an authority has control over a certain bit of
language.
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4.3 Vanderveken on Strong Implication

Vanderveken’s theory of illocutionary logic uses a consequence relation that he calls ‘strong

implication’ (1991, p. 38) which provides a consequence relation that declarations, and other

illocutionary acts, will distribute over. Of course, in some cases illocutionary acts only distribute

over a certain subrelation of strong implication because of the propositional content conditions

on those illocutionary acts. For the most part, when �; ' meet the propositional content condi-

tions, and `S is the relation of strong implication, then � `S ', if and only if FŒ�� �I F.'/.

Strong implication is a relation that encodes additional information about logical conse-

quences. ' strongly implies  , when 1) ' `CL  , and 2) the propositional content of  is

contained in '. Vanderveken offers a formal account of propositional content and contain-

ment which we follow in section 5.2. The thought behind strong entailment is that requiring

containment of propositional content in addition to logical entailment provides a relationship

of equivalence between propositions such that they will be substitutable salva felicitate. That

means: when ' strongly implies  , and vice versa, JF.'/K is successfully performed if and

only if JF. /K is successfully performed. Recall that successful performance of a declaration

implies the non-defective performance of a declaration.

The intuition behind strong implication and equivalence is that when the content of a logical

consequence is contained in the premises, any agent performing illocutionary acts on the content

of those premises also simultaneously apprehends the contents of propositions that are strongly

implied by those premises. More specifically, if an agent believes p and p strongly implies q,

then the agent apprehends q as well. This intuition is contentious, but we do not need it to make

our point. We will outline the general debate and Vanderveken’s position, then point out the

issues with Vanderveken’s position.

A fundamental problem in the philosophy of logic is the connection between logic and

rationality.3 Is it irrational for A, a doxastic agent, not to believe that p when A has asserted

that q and q classically entails p? Definitely not: it would imply that A believed infinitely many

3Cf. Harman (2002), Field (2009).
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propositions, e.g., p_ q for every other proposition p. Expecting a doxastic agent to believe all

of the classical consequences of their beliefs is too high a standard for rationality.

Vanderveken recognizes this point, but he considers two principles to be fundamental to

language use, and provide necessary conditions for a human to be a language user. These two

principles are combined into what he calls “[t]he law of the rationality of the speaker” (1990, p.

141). “[L]anguage is the work of reason” he writes, reason “is constitutive of linguistic compe-

tence” (ibid.). This means that any speaker must have certain reasoning capabilities in order to

have a command of language, i.e., in order to be capable of performing illocutionary acts. But

since he says that reason is constitutive of linguistic competence, and these two principles are

those for the rationality of the speaker, then these two principles taken together are necessary

and sufficient for the level of rationality needed for linguistic competence.

The two principles that constitute the law of the rationality of the speaker are as follows:

� (MinCon) Each speaker is minimally consistent. The minimal condition is that speakers

recognize the fact that illocutionary acts of the form F.:'/ and F.'/ cannot be success-

fully performed by the same speaker in the same context of utterance when the illocution-

ary point of JFK is non-empty.

� (StComp) There is compatibility of strong implication with respect to illocutionary points

with non-empty direction of fit. The idea is that when there is a strong implication be-

tween two propositions p and q, then a successful illocutionary act of the form F.p/

produces an illocutionary act of the form F.q/, provided that q meets the propositional

content conditions required.

To justify these two principles, Vanderveken takes rather different tacks. For MinCon, Van-

derveken reports that it has been confirmed by studies in cognitive psychology,4 thus, it has an

empirical basis. StComp is given a different justification.

It is obvious that people’s beliefs are not closed under classical consequence, although it

4See Cherniak (1986).
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is often assumed as an idealization in work on belief revision and doxastic logic.5 For Van-

derveken, it is part of what it takes to be linguistically competent, however, to have one’s il-

locutionary acts be closed under strong implication. Strong implication is supposed to capture

what competent language users apprehend a priori as following from the propositional content

of their illocutionary acts. It is worthwhile to consider this position in detail.

To start, let’s look at what StComp commits us to in the case of assertion. Suppose that p

strongly implies q. When A successfully asserts p, then A has achieved the illocutionary point

of assertion on the proposition p: expressed the direction of fit between their words and the

world holds, i.e., A has expressed that p is true. A has also expressed that they presuppose the

necessary propositions needed for p to be true, and has expressed that they have the right mental

states for asserting p, i.e., they express a belief in p—although they may not in fact believe p.

Now StComp commits us to saying that A also has expressed that: q is true, they presupposed

the necessary propositions needed for q to be true, and they believe q. To express these beliefs,

however, Vanderveken is committed to saying that A apprehends q when apprehending p. So A

must be aware of the strong implications of its assertions: they cannot express that they believe

q without being aware of q.

Now that we have an example of StComp’s implications, we contrast Vanderveken’s con-

dition (StComp) with another condition that is, perhaps, less controversial. If A asserts that

p, then we would say that A is committed to the logical consequences of that assertion. The

sense of ‘committed’ used here is not that A must believe the logical consequences of their

assertion, but that when A is shown that something is a logical consequence of it, A should

not deny its truth, given A’s assertion. This conception of logical commitment is a normative

requirement rather than a descriptive requirement—unlike Vanderveken’s StComp condition.

Vanderveken’s StComp condition in this case would say that, if q is a strong implication of p,

then A’s successful assertion of p will result—eo ipso—in a successful assertion of q. Recall

that one of the sincerity conditions of assertion on Vanderveken’s theory is that A, the asserter,

5For example it is an assumption in Alchourrón et al. (1985) that belief sets are logical theories, i.e., closed
under logical consequence. This is also the position taken by Hintikka (1962).
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believe p. Thus in asserting p non-defectively, A also, in fact, believes q since A will have

asserted q non-defectively as well. But there tends to be a general distrust of belief being closed

under any collection of logical consequences.

Cherniak (1981b) credits the distrust of belief as being subject to closure under any non-

trivial consequence relation6 at all to the assent theory of belief: A believes p iff A would

assent to sentences expressing p. This theory of belief can clearly result in logical inconsis-

tencies and logical gaps in the set of propositions that A believes. There would be gaps when

there are propositions that follow logically from A’s beliefs, but A wouldn’t assent to sentences

expressing those propositions because A has never considered those sentences. Similarly, A

might assent to contradictory sentences that aren’t conspicuously contradictory.

So Vanderveken’s minimal rationality of the speaker must be interpreted as a description

of what beliefs, intentions, and desires speakers have when non-defectively preforming speech

acts. Vanderveken isn’t consistent on how the law of the rationality of the speaker is supposed

to function, however. At one point he says

strong implication is cognitively realized in the minds of speakers. Whenever a

speaker expresses a proposition in the performance of a speech act, he also ex-

presses all propositions strongly implied by that proposition. . . a rational speaker

cannot relate in thought a proposition to the world with the aim of achieving a

success of fit from the direction of an illocutionary point without also relating to

the world with the same direction of fit all weaker propositions which satisfy the

propositional content conditions of that illocutionary point. Indeed, he and the

hearer mutually know a priori, in virtue of their linguistic competence, that the

truth of these weaker propositions is a necessary condition for the success of fit of

the utterance. (Vanderveken, 1990, p. 143)

But at another he says of his project, which he calls ‘General Semantics’, that

6By trivial consequence relation we mean f h�; 'i W ' 2 � g.

45



such an investigation of cogitative aspects of meanings is purely logical and rel-

atively independent of empirical psychology. . . . in thinking we do not produce

propositions, rather we apprehend propositions with the mental capacities of the

mind [and these propositions] are not private.. . . General semantics deals only with

the cognitive aspects of propositions which are related to linguistic competence,

and neglects other empirical psychological aspects of the comprehension of mean-

ing such as, for example, the contingent limitations due to memory. (Ibid. p. 84)

But linguistic competence is almost totally a question of the contingent abilities of humans, and

quite a wide range of humans is linguistically competent. Thus, the questions of general seman-

tics must be asked relative to the lowest common denominator of linguistic competence. But

what the lowest common denominator is depends on empirical psychology, even if propositions

are objective entities. Also, what level of linguistic ability constitutes linguistic competence

isn’t an a priori matter, it too should be established by investigating the variation of linguistic

abilities.

But perhaps we can reinterpret Vanderveken’s law of rationality of the speaker, particularly

StComp. On Cherniak’s view7 minimal rationality is a cluster concept; for A to be minimally

deductively rational A just has to be able make some of a cluster of relevant inferences some

of the time. Cherniak doesn’t provide an account of what that cluster of inferences is, but he

does suggest that the account is something that would apply to human rationality and language

(see Cherniak, 1981a). So it might be suggested that Vanderveken’s minimal rationality of

the speaker should be interpreted as saying that the inferences validated as strong implications

make up that cluster of relevant inferences for minimal rationality. But StComp can’t act as a

cluster concept as in Cherniak’s theory, because a rational speaker on Vanderveken’s view must

apprehend all of the strong consequences. Otherwise there might be cases where some strong

implication of an assertion was left unapprehended, and so unasserted, contrary to StComp. So

Cherniak’s version is not a way to interpret Vanderveken’s position.

7See Cherniak (1981b).
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But what are the alternative positions? One possibility is to change StComp so that it is a

claim about commitments, in some weaker sense than actual success of implicit illocutionary

acts. Altered in this way, A may not successfully perform illocutionary acts on the strong con-

sequences of the contents of successful acts, but A is committed to those strong consequences

of the contents of successful acts. This reinterpretation is problematic for two reasons. First,

if we have changed the focus to commitment, then why not look at all of the propositions that

are true given the contents of successful assertions? I.e., why not let `SD`CL, modulo propo-

sitional content conditions, rather than strong implication? Second, and more importantly, such

a reinterpretation isn’t going to help us. Recall that on our Searlean account, an institutional

norm comes from a declaration, and that declaration must be non-defectively performed to be

in force. So unless commitment is interpreted as non-defective performance for declarations,

that move will not be of help. But to make that identification is to beg the question.

As Church points out,8 there is almost no end to how logically ignorant anyone might be,

but still be a competent language user. At least that end isn’t one that we can figure out from

our armchairs. But we think that at least for promulgation-like illocutionary acts, and perhaps

declarations more generally, we can argue that there is a non-trivial relation that `S can be

interpreted by. Justifying the closure of special declarations under strong implication, or a

subrelation thereof, via a different argument is the focus of the next section.

4.4 Strong Implication and the Specific Illocutionary Acts

What we want to show now is that in fact the particular speech acts discussed in section 3.1.2 are

closed under strong implication. We will be concerned with the kind of declaration that Searle

needs in his theory of institutions that we will call declaration�, promulgation is an instance of

declaration�. What we need first is the following definition:

Definition 4.4.1 (Informal Normative Entailment). The relation `N represents norm entailment

if and only if for all � , ', that are under institutional control, � `N ' iff DŒ�� �I D.'/.
8Church (2009, p. 14).
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So the relation `N will serve as an informal stand in for our notion of norm entailment.

Note that `N is a relationship between propositions (or sentences that express propositions),

not speech acts. We want to show that a non-defective declaration� of � implies a non-defective

declaration� of ', where ' is a strong implication of � and �[f' g all satisfy the propositional

content conditions. Recall that this is enough for the declaration� of ' to also be satisfied since

the satisfaction conditions are coextensive with the non-defective performance conditions for

performative-type speech acts, e.g., declarations. So what we have to show is that `N is the

relation of strong implication. To show this we specifically need to show the following:

Observation 4.4.1. (Informal) When � and ' are under institutional control for an authority,

then

1. The illocutionary point of declaration� transfers between propositions that stand in the

relation of strong implication,

2. the preparatory conditions for declaration� transfers between propositions that stand in

the relation of strong implication,

3. The mode of achievement for declaration� transfers between propositions that stand in

the relation of strong implication,

4. the sincerity conditions for declaration� transfers between propositions that stand in the

relation of strong implication, and

5. the degrees of strength of those sincerity conditions for declaration� between propositions

that stand in the relation of strong implication;

6. relative to all semantic interpretations.

To establish this observation we first have to ask what the illocutionary point of declaration�

is. Vanderveken doesn’t give a detailed account of what the illocutionary point of promulgation

is, simply that the point is to declare the content of the promulgation. By analogy, this means

that the point of declaration� is for the speaker to represent itself as making the content of the
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declaration� the case, and by so representing itself, it makes the content the case. For Searle

and Vanderveken the illocutionary point is connected to the direction of fit, and the direction

of fit for declarations in general is both of world-to-words and words-to-world. So the point of

declaration� is to make the content of the illocutionary act true by fiat.

For a moment we will digress on this subject because there is a view that is worth mention-

ing. Other authors take a more liberal view of what occurs in the case of illocutionary acts like

declaration�. Another way to think of the illocutionary act of a promulgation is to make the

content of the promulgation correctly assertible for the group that the authority is an authority

for. This view is held by Tuomela and Balzer (1999).

Tuomela and Balzer’s work identifies the central property of social notions as being the

products of collective acceptance and that for something to be collectively accepted it must be

true or correctly assertible-for-the-group.9 We will use ‘collective acceptance’ to distinguish

this notion from that of Searle’s collective recognition. Tuomela and Balzer define the idea of

collective acceptance as

COLLECTIVE ACCEPTANCE THESIS (CAT): A sentence s is collective–social
in a primary sense in a group G if and only if (a) it is true for group G that the
members of group G collectively accept s, and that (b) they collectively accept s if
and only if s is correctly assertable (or true). (p. 181)

This makes the correct assertability of a proposition that is collectively accepted something that

can be used by the group under any conditions in which the group, qua collective, persists. Put

another way, as long as the institutional authority is recognized or the institution persists, the

promulgated institutional facts can be used.

But Tuomela and Balzer say

CAT employs the notion of correct assertability (and truth as its special case) for the

group. The forgroupness of an accepted, hence correctly [sic] assertable, sentence

is the group’s intentional attitude towards the accepted sentence, viz., precisely the

group’s taking that sentence to have been accepted for it by it. That a sentence

9This makes it a precursor to the work of Lorini et al. (2009).
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is correctly assertable or true for G means, roughly, that the group members qua

group members are entitled to treat it as correctly assertable or true in their various

intellectual and practical activities in relevant group contexts, no matter whether

the sentence is “objectively” true. (ibid., p. 182)

So if the illocutionary point of a promulgation is the collective correct assertability of insti-

tutional facts (i.e., the contents of the promulgation), then it is possible to promulgate false

propositions. It also removes any propositional content conditions for promulgations. Indeed,

there is an example of an attempt to make a necessary falsehood correctly assertible in the in-

famous Indiana Pi case.10 However, this is not within Searle’s view, so we will set it aside. For

Searle, correct assertability is a side effect of declaration�.

In our current theory, when an authority has institutional control over some proposition,

a promulgation of that proposition becomes correctly assertible because it is made true. But

in cases where the authority doesn’t have institutional control, e.g., scientific and necessary

propositions, then the authority can’t declare them since they will not satisfy the propositional

content conditions.

Given that the illocutionary point of a promulgation is to make the contents true, we can see

the following fact:

DŒ�� �I D.'/ H) � `CL '

i.e., all illocutionary entailments are classical consequences. That also means that `N�`CL.

The reason for this containment is as follows. If the point of a declaration� of ' is to make the

contents ' true, then whatever implicit declaration�s are made require that the same illocution-

ary point be achieved on their contents as well. But the only propositions that are true because

of the declaration� of ' in every semantic interpretation are the classical logical consequences

of '. Thus, if � `N ', then � `CL '.

10In the Indiana Pi case a bill was put before the General Assembly (the state legislature) saying, in effect, that
the circle could be squared via a particular method. However, it followed from that method that the value of Pi
would be 16

5
. The bill was passed by the General Assembly, but was taken to the Indiana State Senate. There the

bill was indefinitely postponed after national press were alerted to the bill. Ogilvy (1956, pp. 118–9)
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Now we can demonstrate that `N is the relation of strong implication. What we just noticed

is that the illocutionary point is achieved on all of the classical consequence, so a fortiori it is

achieved on all of the strong consequences. What we have to show is that it is achieved only on

the strong consequences.

As a thought experiment consider the legal system of ancient Rome. Now take any ' ex-

pressing a status function from that system. Now suppose  says ‘Making duplicate digital

recordings of Lady Gaga is a violation of the laws of Caesar’. Then ' _  is a logical conse-

quence of ', so indeed ' _  would be true given that the laws of ancient Rome are in force.

Although ' _ is harmless enough, it would be odd to claim that  was really something that

would be intelligible to the law makers of ancient Rome. But it isn’t just odd, that institutional

fact isn’t part of the institution that was Rome.

The reason that ' _  isn’t an institutional fact has to do with the part that Toumela and

Balzer get right: the truth is for the group. Recall from section 3.2 that Searle uses a notion of

collective recognition rather than acceptance—‘acceptance’ has connotations of agreement or

endorsement that Searle would like to avoid—to explain the collective or social nature of social

institutions. Thus collective recognition can be tacit and indifferent awareness. This gloss of

collective recognition doesn’t mean that the institutional facts can be unintelligible to the indi-

viduals that make up the institution. Particularly, the institutional facts must be intelligible to

the authority, or the individuals that constitute the authority. Institutions are mind dependent

since they require individuals’ minds to persist, and institutional facts whose propositional con-

tent is foreign to those individuals who maintain and create the institution couldn’t be properly

realized by the individuals in the group. An institutional fact that has content no patient or

subject of the institution understands isn’t a fact that belongs to that institution.

A formal way of restricting the implicit institutional facts given the explicit institutional facts

is via strong implication. Strong implication is the consequence relation that encodes 1) logical

consequence and 2) containment of propositional content of the conclusion in the content of the

premises. To guarantee that none of the propositional content of implicit declarations is foreign
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to the explicit institutional facts, we can require that the propositional content of the implicit

declaration� is contained in the propositional content of the explicit declaration�s. Thus, the set

of pairs h�; 'i that the illocuationary point of declaration� is achieved on is at most the relation

of strong implication. This establishes 1 from observation 4.4.1.

Conditions 2–5 remain to be shown. Now conditions 4 and 5 involve sincerity conditions,

and as we said in section 3.1.2 sincerity conditions aren’t intelligible for promulgations, or they

won’t play a role. The reason for that has to do with the kind of relationship that declaration�

has to its use. Vanderveken says,

the successful performance of of an illocutionary act with the primitive illocution-

ary force of declaration is necessarily non-defective. Indeed, if the speaker makes

the propositional content true in a successful declarative utterance, then he has the

capacity to make it true. Thus, the preparatory conditions obtain in the context of

his utterance.. . . Indeed, he cannot mean to make the propositional content true in

virtue of his utterance without eo ipso believing, desiring, and intending his utter-

ance to bring out success of fit between language and the world. (1991, p. 73)

So declarations are not only satisfied when successful, they are also non-defective. But desiring

or believing that the utterance bring about a success of fit between the content of the utterance

and the world is to desire and believe that content, i.e., the proposition declared. Although

Vanderveken’s claim may hold for some declarative-type illocutionary acts, it can’t hold for

those needed in Searle’s theory. All that Searle’s theory requires in sincerity conditions is what

we will call recognition, derived from his notion of ‘collective recognition’.

Declarations allow people to create institutional reality, so they allow us to introduce institu-

tional facts where they didn’t exist before. That requires successful status function declarations

when there are no preexisting status functions. Recall that Searle’s theory requires collective

recognition of status functions. However, that collective recognition can be anything from en-

thusiastic endorsement to grudging acquiesence.

Sincerity conditions are attitudes or mental states of the agent(s) performing an illocutionary
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act that must be expressed for the agent(s) to succeed in performing that illocutionary act. But

if all that is required to sustain or even impose a status function is grudging acquiesence to that

status function, that can’t be something usually called ‘a desire’ for that status function. Thus

desire is not necessarily connected to the success conditions of declarations.

Belief in a status function, qua the content of a status function declaration, is also problem-

atic. In cases where there is no preexisting institution belief in the status function is necessary

since there is no way for the status function to take effect without the collective recognition of

the status function. However, in the case of status function declarations that go beyond those

introducing institutions for the first time, the ability to impose a status function via declaration

is held despite the speaker’s inclinations and attitudes. The crucial conditions for success are

the preparatory conditions: a legislator may enact legislation they think is false, e.g., by denying

certain status functions to certain groups of people they think should actually have that status.

In short: declarations can succeed despite the speaker’s attitudes.

Finally there are the speaker’s intentions. Again this is a case where the power to declare

overcomes any attitudes. Thus there are two options. First, the sincerity conditions are non-

existent, or, second, the degree of strength of those sincerity conditions must be neutral. If the

degree of strength is neutral, it is satisfied by no belief (desire, intention) and stronger attitudes

toward the propositional content. Either way the mental states of the speaker do not interfere

with the success of declarations of the kind Searle needs.

Since the mental states don’t matter, whether they are transferred across any consequence

relation is irrelevant to the success of a declaration of the kind Searle needs. Thus, 4 and 5

are established. So all that remains to be established is that the mode of achievement and the

preparatory conditions transfer, i.e., conditions 2 and 3.

Let’s make a rather general, and perhaps obvious, point: illocutionary consequence will

be—like standard consequence—instantaneous. There is no time-lag between the truth of

premises and the truth of consequences. So when some ' is promulgated, it is at that mo-

ment that all of its consequences become true, if they weren’t true already. That means all
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implicit promulgations are also promulgated in the very moment that ' is promulgated, and any

implicit promulgations that accrue from the combinations of explicit promulgations.

The instantaneous nature of implicit promulgations affects the preparatory conditions and

the transfer of the mode of achievement in the following way. The preparatory conditions for

a promulgation are that there is an institutional authority that is collectively recognized as such

that can make promulgations. But such preparatory conditions are not specific to particular pro-

mulgations. The existence of an authority is a general position that has control over all propo-

sitions that are under that authority’s institutional control. So when the preparatory conditions

for one promulgation are met, then they are immediately met for all implicit promulgations. So

the simultaneity makes the preparatory conditions met for strong consequences of propositions

that have been promulgated.

For the mode of achievement the argument is similar. In making a promulgation, an au-

thority must invoke the collective recognition that it is an authority. This is the special mode

of achievement for promulgations. In invoking its authority, it makes the promulgation a col-

lective act, i.e., that the content of the act is to be recognized by all of those who recognize

the authority. That means, then, that they, by recognizing the authority, recognize its power to

make the content of the promulgation true. But this ability extends to all of the propositions

that are under institutional control. Thus, by assumption about the contents of the propositions

in observation 4.4.1, we can conclude that that ability extends to ', and ' is assumed to be a

strong consequence of � . Therefore, we have demonstrated observation 4.4.1, and that `N is

the relation of strong implication.

One more aside concerning the propositional content conditions before we move on. Just

because the contents of declarations can’t be necessary propositions doesn’t mean that they

can’t be tautologies. Since the contents of promulgations could have not existed, i.e., had they

not been promulgated, they are not necessarily true, and that means that they are not neces-

sary propositions. There may not have been anything such as a Prime Minister of Canada, for

instance. So the truth and falsity of institutional propositions or facts is institution dependant.
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That means that tautologies that are under institutional control will also be institution depen-

dent. So all tautologies that are under institutional control can also be the contents of implicit,

or even explicit, promulgations.

4.5 Summary

In this chapter we have discussed the general problem of what a notion of norm consequence

looks like from an informal perspective. We based our notion of norm consequence on illocu-

tionary consequence because Searle’s conception of institutional facts makes institutional facts

the results of certain illocutionary acts, viz., declarations or promulgations. We argued that

Vanderveken’s account of why strong implication characterized illocutionary entailment was

insufficient, but gave an independent justification of strong entailment as a characterization of

illocutionary entailment in the cases we are interested in. In the sequel, strong implication will

be given a formalization and used to underpin a formalization of norm entailment, see chapter 6.
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Part II

Formal Logic and Formal Dynamics of

Institutions

56



Chapter 5

Constructing a Formal Language

. . . every language has, as Mr Wittgenstein says, a structure concerning which
in the language, nothing can be said, but that there may be another language dealing
with the structure of the first language, and having itself a new structure, and that to
this hierarchy of languages there may be no limit.

Bertrand Russell Introduction to the Tractatus

So far we have argued that there is a logic of institutions, but it will depend on what philo-

sophical account of institutions is correct. We have chosen a particular account, viz. Searle’s,

and we have discussed what consequence relation on propositions will mirror the consequence

relation of in forceness on this conception of institutions. Now we will add some formal meat

to these philosophical bones.

In this chapter we deal with two things 1) what is needed for a reasonably expressive ob-

ject language to represent institutional facts, and 2) represent the formal counterpart for strong

implication. In the first sections we discuss institutional facts and their representation. That in-

cludes discussing action and obligation. We conclude that obligation and institutional duty are

different things—at least on this conception—and we introduce Anderson’s reduction to deal

with institutional duty. We also discuss logics of action, but decide to use a version of stit logic

since it is less problematic than other logics of action, philosophically speaking.

In the final section we formalize strong implication and give a complete Hilbert style calcu-

lus for it. In the next chapter we will put these elements together to formalize norm entailment,

and show the expressive capabilities of our language.

5.1 A Formal Language of Social Reality

According to Searle, institutions come about through a collective recognition of the abilities

of some (or all) to perform certain speech acts. Through these special speech acts people can
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create new kinds of actions and objects: speeding, judges, universities, contracts. Apart from

the presumed correctness of Searle’s account of institutions, we assume that there are special,

institutional uses of terms. For example, written legal codes contain a set of definitions that

define the relevant roles, subjects, actions, and situations. If these definitions are not written

down, they are generally understood or assumed. We can see examples of this practice in the

legal definitions of words like ‘organic’.

To see exactly what we need to represent, let’s recall Searle’s general structure of status

function declarations:

We (or I) make it the case by Declaration that a Y status function exists in C and

in so doing we (or I) create a relation R between Y and a certain person or persons,

S, such that in virtue of SRY, S has the power to perform acts (of type) A. (Searle,

2010, pp. 101–2)

In this definition there is the we (or I), declaration, context C, relation R, persons S, and power

to perform acts A. So to properly represent institutional facts we have to account for these

things. The first three items on the list we can leave aside.

In the formalism we don’t represent the authorities nor do we represent the acts that bring

new institutional facts into existence. So the We and the declaration don’t enter into the for-

malism. The focus for the representation is on the content of institutional facts. We are not

concerned with representing either the processes that give rise to institutions or how the indi-

vidual institutional facts come into existence. We focused on those questions in the previous

section, and there we argued that the individual institutional facts obeyed the consequence rela-

tion of strong implication. So there is no need to represent those items in the formalism.

In section 3.2 we argued that the context, at the highest level, is defined by the existence of

the institution. That means we needn’t include the context in the formalism. This leaves us with

representing the relation(s) R, the persons S, and the powers to perform actions. We will start

by discussing how to represent actions.
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Our formalism requires some representation of action, but we would like to remain as philo-

sophically neutral with respect to action as possible. The most philosophically neutral logic

of action is given by the “seeing-to-it-that” framework of Belnap and Perloff (1992). In this

framework, an agent or set of agents see to it that a proposition becomes true. Whether that is

via a particular action, or through some choice is really irrelevant. What is important for rea-

soning about action is 1) that an agent stands at the causal nexus of some change in the world

via their choices or actions, and 2) that the formulas of formal language represent which agents

can bring about which changes.

There are many logics of action, but we are interested in using as simple a formalism as

possible that still represents certain intuitive properties of actions and how they interact with

the world. In the next section we will introduce the specific stit formalism, called xstit, that we

will use. At the end of the next section we will discuss how this formalism meets our ends and

how it deals with the persons S from above. In section 5.1.2 we will discuss institutional facts

and the relations R.

5.1.1 The Xstit Formalism

The stit language that we use is called xstit in Broersen and Meyer (2011), the reader can

compare this logic to standard stit logics in Belnap and Perloff (1992). In xstit logic a group

of agents’ actions or choices determine possible future states in the state following the current

state of the world. The language is constructed from a set of agents Ag and atomic propositions

from At. Sets of agents are denoted by capital Roman letters A;B;C. We can then define a

language Lxstit as follows:

' ´ p j :' j ' ^ ' j �' j ŒA xstit� ' j X'

Informally ŒA xstit� ' means that A sees to it that ' in the next state. �' means that ' is

historically necessary. That just means, however, that ' is true relative to every history at this

moment. This will become clearer when we introduce the semantics. X' means that in the next

state relative to the history we are in, ' is true.
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Like in Belnap and Perloff (1992), the semantics evaluates formulas relative to histories and

moments. A history is a set of moments that is linearly ordered. This is modelled as follows:

Definition 5.1.1. An xstit frame is a triple F D hS;H;Ei such that:

1. S ¤ ¿ are called the static states.

2. H ¤ ¿ is a set of ordered sets hh;<hi such that for each h 2 H

(a) h � S and hh;<hi is isomorphic to Z with its usual order, and

(b) if s 2 h \ h0, then f s0 W s0 <h s g D f s0 W s0 <h0 s g. Since each order is isomor-

phic with Z, there is a unique successor and predecessor in h for each s 2 h, we

refer to these by lub.s; h/ and glb.s; h/, respectively. We can generalize these con-

cepts in the following way: glb.s/ D f glb.s; h/ W s 2 h & h 2 H g and lub.s/ D

f lub.s; h/ W s 2 h & h 2 H g. These give the set of successors and predecessors of

s, respectively.1

3. E W S �H � P.Ag/ ! P.S/, the h-effectivity function, assigns a set of static states to

each triple .s; h;A/. It must obey the following conditions:

(a) If s 62 h, then E.s; h;A/ D ¿

(b) If s0 2 E.s; h;A/, then s0 2 lub.s/ (i.e., E.s; h;A/ � lub.s/)

(c) If s 2 h, lub.s; h/ 2 E.s; h;A/

(d) If s 2 h, E.s; h;¿/ D lub.s/

(e) If s 2 h, then E.s; h;Ag/ D f lub.s; h/ g

(f) If A ¤ B, then E.s; h;B/ � E.s; h;A/

(g) If A \ B D ¿ and s 2 h \ h0, then for some h00 with s 2 h00, and E.s; h00;A/ �

E.s; h;A/ and E.s; h00;B/ � E.s; h0;B/.2

1The rationale behind lub and glb is to put the terminology in line with that from order theory.
2The condition g) in Broersen and Meyer (2011) is different in that it only requires that E.s; h;A/ \

E.s; h0;B/ ¤ ¿ , and that doesn’t seem to suffice.
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If F D hS;H;Ei is an xstit frame, then each history-static state pair .s; h/ is called a dynamic

state, and the domain of F, denoted jFj, is the set of dynamic states such that s 2 h.

We will pause to explain the conditions in this definition. The first, 1, condition is standard in

modal logic. Condition 2a says that we can order each history like Z: : : : s�2; s�1; s0; s1; s2; : : :

the set of integers. 2b says that if two histories share a static state in common they, they have

each previous static state in common as well. This also means that once two histories diverge,

they will not join other histories. This means the histories form a forest; the histories can be a

collection of trees. We call Lxstit frames/models that are made up of trees regular frames/models.

In what follows, we will assume that the histories form just one tree, and call such a frame/model

a regular, universal frame/model. This should conjure images of S5 being a logic complete for

the class of equivalence relations, and universal relations. The logic of xstit is complete with

respect to the class of regular models and the class of regular universal models.

The notion of effectivity functions comes from coalition logic (cf. Pauly (2001)), and in

general represents what a group of agents is capable of bringing about. E.s; h;A/ represents

A’s choice at the static state s relative to the history h;E.s; h;A/ is the set of next possible states

that the world might evolve into given that A acts in accord with history h. Since E.s; h;A/ �

lub.s/, by condition 3b, for each s 2 S , the effectivity function selects a set of states from the

totality of possible continuations given the current static state. If s0 62 E.s; h;A/ but s0 2 lub.s/,

then s0 isn’t one of the next states given that A has chosen relative to h.

Each effectivity function is evaluated at a dynamic state .s; h/: a history-static state pair.

Condition 3a states that it only makes sense for agents to be effective for anything at dynamic

states where the static state is in the history, i.e., s 2 h. This condition is mainly to make E a

function, rather than a partial function. 3b says that the only states that agents can be effective

for bringing about are those that follow in some history running through the current static state.

Essentially, agents can only constrain the outcomes, not create new ones.

3c says that any set of agents is effective to constrain the outcomes to at least the immediate

successor—relative to h—of the current static state. 3d says that the effectivity of the empty set
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Figure 5.1: Universal, Regular L-model

of agents is all of the possible continuations from a static state. The empty set is considered to

be Nature’s effectiveness; Nature sets the range of possible outcomes.

3e requires that the total set of agents, Ag, determines the successor state of s at h for each

.s; h/ 2 jFj. The next state in a history is completely determined by the whole set of agents.

Broersen and Meyer point out that although the next static state is determined by the set of all

agents, static states are only half of the auxiliary parameters in the evaluation of formulas. The

set of agents doesn’t determine the next dynamic state.

3f states that the more choices that are made, the more the outcomes are constrained. That

results in the anti-monotonicity of effectivity functions. Finally, 3g states that the choices of

agents never determine what other agents can choose. This is referred to as independence of

agency. In figure 5.1 we have an image of the tree structures that act as frames for Lxstit models.

62



The models of xstit are given as follows:

Definition 5.1.2. An xstit model M is an xstit frame F with a valuation v W At! P.S/.

We can then give the semantics for the language Lxstit:

Definition 5.1.3. Truth or satisfaction of a formula in Lxstit relative to a model M and .s; h/ 2

jMj is defined by:

1. .s; h/ � p iff s 2 v.p/

2. .s; h/ � :' iff .s; h/ ² '

3. .s; h/ � ' ^  iff .s; h/ � ' and .s; h/ �  

4. .s; h/ � �' iff for all h0 with s 2 h0, .s; h0/ � '

5. .s; h/ � X' iff , .lub.s; h/; h/ � '

6. .s; h/ � ŒA xstit� ' iff s0 2 E.s; h;A/ and h0 3 s0 only if .s0; h0/ � '

Satisfiability of a set of formulas � is defined as: there is some model M and .s; h/ 2 jMj,

such that M; .s; h/ � ' for each ' 2 � . In short we write M; .s; h/ � � . A set � xstit entails

a formula ' (� �X ') iff for each xstit model M and .s; h/ 2 jMj such that M; .s; h/ � � ,

M; .s; h/ � '.

Something to note about this semantics is that when a non-modal formula, that is a formula

without xstit operators, X or �, is true at a dynamic state, then it is true relative to all dynamic

states that share that static state. Formally, this means if M; .s; h/ � ', and ' is a non-modal

formula, then M; .s; h0/ � ' for all h0 with s 2 h0. This can be captured by a simple formula

p � �p. This logic can be axiomatized by the following set of axiom schema for a Hilbert

style proof theory.

Definition 5.1.4. Assume that A;B � Ag, p 2 At and '; 2 Lxstit,

(p) p � �p

S5 for�:
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K �.' �  / � .�' � � /

T �' � '

4 �' � ��'

B ' � �:�:'

KD for each ŒA xstit� ' and X :

KA ŒA xstit�.' �  / � .ŒA xstit� ' � ŒA xstit�  /

DA ŒA xstit� ' � : ŒA xstit�:'

KX X.' �  / � .X' � X /

DX X' � :X:'

(DetX) :X:' � X'

(¿=SettX) Œ¿ xstit� ' � �X'

(Ag=XSett) ŒAg xstit� ' � X�'

(C-mon) ŒA xstit� ' � ŒA [ B xstit� '

(Indep-G) ˙ ŒA xstit� ' ^˙ ŒB xstit�  � ˙.ŒA xstit� ' ^ ŒB xstit�  / where A \ B D ¿.

For the rules we have modus ponens (MP) and the necessitation rule: If ` ', then ` |' for

| 2 f�; X; P g [ f ŒA xstit� W A � Ag g. Note that ˙ D :�:. In Broersen and Meyer (2011)

a proof sketch is provided that the axioms from definition 5.1.4 are complete with respect to the

semantics from definitions 5.1.3 and 5.1.2. This provides a basic logic of action that we use in

the sequel. For a comparison of this logic with the usual stit logic of Belnap and Perloff (1992)

see Broersen and Meyer (2011). We choose xstit logic instead of regular stit logic because

of the existence of the above recursive axiomatization. The stit logic for groups of agents of

Belnap and Perloff (1992) has been shown not to be finitely axiomatizable, and the satisfiability

problem is not decidable, see Herzig and Schwarzentruber (2008). Although we don’t give a

finite axiomatization, we conjecture that xstit logic is decidable, and a certain sublogic is finitely

axiomatizable.
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Stit-type logics have a long history. They start really with Kanger and Kanger (1966) and

Pörn (1977), but have been the object of thorough study in the past two decades. The particular

logic that we have chosen accords with certain intuitions about action in a non-deterministic

world. Each choice that a set of agents makes results in moving the world in a certain direction,

i.e., favouring certain histories over others.

We don’t want to engage in a defense of stit logic in general as an appropriate logic of action,

that has been done in Belnap and Perloff (1992, ch. 1–3), and in Horty (2001, ch. 1–2). We

do have to argue that xstit satisfies the same conditions of the logics of those previous works.

Since stit operators ŒA stit W '� say that A sees to ' now, and ŒA xstit� ' says that A sees to ' in

the next state, we have to reassure ourselves that things are roughly the same in the xstit cases.

We will briefly explain the major difference in the models of stit and xstit.

In a model for stit, choice is instantaneous, so a set of agents choices is represented by

partitioning the set of histories present at a static state, denoted C.A; s/. Each possible choice

available to an agent or set of agents is represented by a cell in that partition. Agents choose in

accord with histories, and the effect of an agent’s choice in accord with a history h is represented

by the cell of the partition in which h occurs, denoted C.A; s; h/. There are three crucial con-

ditions on C.A; s/. First, if histories h and h0 do not separate at s (i.e., lub.s; h/ D lub.s; h0/),

then they must be in the same cell of C.A; s/, i.e., C.A; s; h/ D C.A; s; h0/. Second, the

choices of agents are independent, meaning that for any choice open to an agent, there is some

way for that agent to realize that choice regardless of what the other agents choose. Formally,

this is expressed as: whenever we take a set of cells X , one from each C.f a g ; s/ for a 2 Ag,

\X ¤ ¿. Finally, the effect of the choices of a group distributes evenly. Formally we can say

this as C.A; s; h/ D \a2AC.f a g ; s; h/ ¤ ¿.

In the xstit case things are sightly different. The first condition above is irrelevant since

E.s; h;A/ is a set of static states rather than histories so there is no way to separate histories

using the effectivity function. The second condition is mimicked in condition g. The crucial

differences between xstit and stit are in the third condition above and the way atoms are eval-
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uated. In an xstit model E.s; h;A/ may not be identical with \a2AE.s; h; f a g/, so the third

condition doesn’t translate to xstit. In a stit model the truth of an atom is history dependent, so

p may be true relative to .s; h/, and false relative to .s; h0/ although both s 2 h \ h0. The truth

condition for ŒA stit W '� is given by

.s; h/ � ŒA stit W '�”8h0 2 C.A; s; h/; .s; h0/ � ':

This definition is similar to that for ŒA xstit� ', but uses C.A; s; h/ of course. Note that the

instantaneousness of choice is represented because ' is evaluated at .s; h0/ which is the same

static state that ŒA stit W '� is evaluated at. Now that we have seen the similarities and differences

between the formalisms of stit and xstit, we will move onto our initial discussion and look at

four things: parsimony of ontological commitment, ability, refraining, and responsibility. The

xstit formalism is adequate on all of these considerations. We will deal with each in that order.

In other work offering logical foundations for institutions, i.e., Castañeda (1975) and Lorini

et al. (2009), there is a great deal of philosophical discussion in the former case, and little in the

latter case. However, Castañeda introduces a rather complicated ontology of language to deal

with his logic of action and obligation. There are new kinds of proposition-like entities that

are the senses of imperatives, and other semantics entities, but our ontology isn’t so diverse.

Using Searle’s foundation of institutions requires only propositions, and acts involving those

propositions, and we will need special kinds of propositions that are under institutional control,

but those are still among the same category of semantic entity. To represent our philosophical

foundations, then, it is best to do it with no more than the entities we are committed to in our

philosophical theory. The xstit language allows us that conservative sentiment.

In the xstit theory there are only agents, choices, and propositions. The effectivity functions

are a very abstract representation of action and choice and so are ideal for not begging any

questions about the ontology of actions. The xstit theory also takes group action as primary.

So the action of an individual a at a dynamic state .s; h/ is given by the action E.s; h; f a g/ of

the degenerate group f a g. The conditions on group action are also rather meager. Condition

3f represents that the larger the group, the more they are capable of constraining the outcome
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of the future. And 3g ensures that non-overlapping groups are free to realize their potential,

meaning that individual agents have a partial independence of action. Each individual is able to

realize at least some of each choice regardless of the choices of others. If groups share agents in

common, however, one group may not be independent from another group’s actions. So we will

notice that this allows us to represent the persons S from Searle’s schema above. So xstit only

requires the ontological commitments that are needed, and is more parsimonious than previous

theories.

Representing ability is straightforward: ˙ ŒA xstit� ' is read as ‘it is possible for A to see to

it that ' in the next state. Horty (2001) has an extended discussion of what the logic of ability

should be like (see pp. 19–33). However, many of the principles suggested there require that the

stit operator be instantaneous, i.e., the result applies to the moment of evaluation. As a result

the stit operators can be iterated in a way that carries a different meaning from iterating xstit

operators. ŒA xstit� ŒA xstit� ' is very different in meaning from ŒA stit W ŒA stit W '��. The former

says ‘A can see to it that in the next state that A can see to it in the next state that '’, whereas

the latter says ‘A can see to it that A sees to it that '’. ŒA xstit� ŒA xstit� ' makes reference to

A’s ability two states into the future. But ŒA stit W '� implies both ŒA stit W '� and '; the former

implies neither.

But this expressive disability isn’t a concern since ˙ ŒA xstit� ' still gives a proper sense

of ability. ˙ ŒA xstit� ' represents that A’s choice now leads to the truth of ' in the next state.

Whether A is responsible for the truth of ' is another matter, and we will deal with that in a

moment. ˙ ŒA xstit� ' is enough to capture ability.

Correlated with action is refraining.3 There is a sense in which simply not going to class and

refraining from going to class are different, although the second implies the first. The sentence

: ŒA xstit� ', says that A doesn’t see to it that ' in the next state, but that is simply not seeing

to '. Whereas to refrain requires some possibility of doing the thing, even though it isn’t done.

Horty characterizes this notion as follows: ŒA stit W :ŒA stit W '��, i.e., A sees to it that A doesn’t

3Horty (2001, p. 25) points out that von Wright (1963, p. 45) characterized refraining in the way he describes
and the way we represent in this essay.
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see to it that '. A is active in ensuring that A doesn’t see to it that '. But as we noted above,

iterating xstit operators has a very different meaning than iterating stit operators. However,

Horty offers another account of refraining in terms of not seeing to it that ', but being able to

do so: :ŒA stit W '�^˙ŒA stit W '�. This is a direct translation of this interpretation of refraining.

Since we can’t iterate xstit operators without referring to what it happening two states into the

future, the representation of refraining as : ŒA xstit� ' ^˙ ŒA xstit� ' is preferred.

Finally we come to representing responsibility. Whether a tautology is true has nothing to

do with what an agent does, usually. But tautologies hold at every moment-history pair, so they

will hold at all the .s; h/ such that s 2 lub.s0/ and s 2 h, i.e., all the state/history pairs that

follow s0, for any s0 2 S . Of course E.s0; h;A/ � lub.s/, so any tautology will be true at all

history/state pairs in E.s0; h;A/. But it seems odd to say that A is responsible for the truth of

the tautology. To capture reposibility we use the xdstit operator.

For these reasons, the deliberative xstit (or xdstit) captures the idea of being able to bring

something about, but had that choice not been made, that something might not have happened.

The xdstit operator is defined as ŒA xdstit� '” ŒA xstit� ' ^ :�X', we can give a semantic

condition for this operator in the metalanguage as follows:

Definition 5.1.5. [Deliberate xstit]

1. .s; h/ � ŒA xdstit� ' iff

[P] 1/8.s0; h0/; s0 2 E.s; h;A/ & s0 2 h0) .s0; h0/ � ', and

[N] 2/9.s0; h0/ with s 2 h0, s0 2 h0 and s0 2 lub.s/ such that .s0; h0/ ² '.

Regarding the problem of tautologies above, tautologies can never be false in these models,

so :�X' couldn’t be true if ' is a tautology since X' is true everywhere. Thus xdstit gives

us a model of deliberate choice or action, in so far as deliberate action is something that merely

could have been otherwise and our choice limits decisions.

The xdstit condition represents responsibility, but it might be suggested that ŒA xstit� doesn’t

properly represent ability since A doesn’t really have the ability to make tautologies true. Even
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though we have said that certain institutional actions bring about new tautologies, e.g., promul-

gations, those kinds of actions are not represented in the object language of our formal system.

Nonetheless, ultimately we will use Œ� xstit� operators for defining ability for institutional facts

rather than Œ� xdstit�.

Now that we have our account of action and ability, we need a way of explaining the differ-

ence between social, institutional facts and, so-called, ‘brute’ facts.

5.1.2 Institutional Facts and Roles

As we noted in section 3.1.2 and in section 4.2, there are special propositional content condi-

tions for status function declarations, and the contents of those declarations are what constitute

institutional facts. So institutional facts have special propositional content. This special content

is what institutional authorities have control over. We will call that kind of content institutional

content. The kind of content that institutional authorities do not have control over we will call,

following Anscombe (1958), brute content.

The distinction between these two kinds of content allows us to account for a few aspects

of institutional facts. First is that there are special facts that just wouldn’t exist without being

part of an institution, e.g., that Jeff owns savings bonds. That fact doesn’t make sense without

institutions of private property, money, trade, et cetera. The formal language we will be using

later is based on a propositional language, i.e., we will not deal with quantifiers or predicates.

So in the current work we stick to a coarse grained level of idealized representation.

We will treat the fact that Jeff owns savings bonds as an atomic institutional fact. However,

there are other brute facts as well. Consider ‘Dave has cancer’: that sentence is a basic fact,

but it isn’t institutional (although it may have ramifications since it may entitle Dave to certain

things like being given money to buy special medication to treat the cancer).

The formal model that we suggest to capture this distinction is to interpret the institutional

content with a separate language from the brute language. Thus we introduce two distinct sets

of atomic formulas: AtB and AtI (B for brute and I for institutional). We will distinguish these
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by using p 2 AtB and q 2 AtI . Thus we have given a meaning to the special institutional

situations when we consider formulas constructed from AtI and the boolean connectives, i.e.:

' ´ q j ' ^ ' j :' j ' � ' j ' _ ' j ' � '

we will call this language LI , the institutional language. This language is really a fragment of

a larger language that includes the brute facts.

The other aspect of institutional facts that we need to capture is what Searle describes as

institutional facts being “intensional-with-an-s”(Searle, 2010, p. 119). Understanding this char-

acteristic will allow us to represent the relations in Searle’s schema via institutional roles. Let’s

consider Searle’s example:

1. As the winner of the 2008 presidential election, Barack Obama counts as the

present president of the United States.

2. The president of the United States is identical with Michelle’s husband.

3. As the winner of the 2008 election, Barack Obama counts as Michelle’s hus-

band. (Ibid.)

It is clear that (1) and (2) do not entail (3). Although our language doesn’t include an identity

predicate, so we are unable to represent this argument, we just want to use it to make a point.

Our point is that there is an intuitive distinction that we can represent, and helps with represent-

ing institutional codes. One might diagnose the problem with the argument above as attempting

to make predications based on non-equivalent descriptions of the same object, i.e., Michelle’s

husband and President of The United States. These two descriptions are accurate since there is

one object is holding two different institutional roles, i.e., Barack Obama. So we introduce into

the object language a set of institutional roles.

Thus we introduce a new set of terms: the roles Rol D f r1; r2; : : : g. These terms can be

combined with xstit operators in the same way that we combine agent terms with xstit operators.

If r 2 Rol, and ' is some formula, Œr xstit� ' is also a formula.4

4A very similar idea is used in Hansson (2001), but his rules contain predicates and variables that can be filled
in with constant symbols. Here we are not using predicates, but the roles will act in a similar manner to variables.
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But we will not add Rol to Lxstit. There will be two separate languages, one that contains

only the roles, and the other that only contains agents. We must make a brief aside to explain

the rationale behind this separation. Institutional facts, according to Searle have a logical form

that looks like: X counts-as Y in C. But in these count-as schema the Y terms are—as in the

case of The President of The United States—spelled out with a deontology. This deontology

would have to be given in general terms. It is only the imposition of the deontology that ties

the institution, the institutional role, to the world. So the institutional facts are specified in

abstraction from the “real world”. It is only upon imposition via declarations that they become

connected to the world, i.e., individuals become affected by the institution’s deontology. So

we specify the contents of institutional facts in general terms, and those general terms are the

institutional roles involved. Now we can return to what is represented in our formalism.

Now we have to identify the different ways that roles can be held. 1) A role can be held by

a group. Committees are like that. 2) One role can be held by many different agents. Think of

the role of home owner. Although home owners will often own different homes, it is one and

the same role held by many individuals. Also, multiple collective agents can fulfill the same

role. Think of the role of basketball team in the NBA; that role is fulfilled by many different

groups at the same time. 3) Certain roles are sometimes fulfilled and sometimes not. Think of

the legal role of driver. Sometimes people are operating motor vehicles, sometimes not. When

people are not driving, they are not drivers. Similarly, sometimes a police officer is off duty,

sometimes on duty. 4) Some roles are held continuously. Even when Barack Obama is asleep

he is still the president of The United States, and Michelle’s husband. This kind of role isn’t a

permanent role, but it is more stable than the role of driver.

We will focus on representing the ways 1, 2, and 4 that roles can be held. We will leave 3

for future research. Ultimately we will interpret institutional roles by by assigning role terms

to agent terms: see section 6.6. Representing 1 is straightforward; all that is needed is to allow

roles to be interpreted as sets of individual agent terms. To represent 2, we allow the assignment

of agent terms to roles to be a relation. So many agent terms can be assigned to a single role
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term. To represent 4 all that is needed is to allow the assignment of agent terms to role terms to

persist over time. But there are a few worries to deal with before moving on.

We should make another brief remark on role and agent terms. Given two individual agent

terms a;b each is supposed to be interpreted as representing different agents. This makes the

formalism a bit simpler since we don’t have to include an identity predicate. In some work,

e.g., Sauro et al. (2006), the agents from the model are part of the language as well. Here we

chose to use terms to stand in for agents rather than make the agents part of the language. Given

our treatment of agents, we treat roles in the same way. When we use distinct role terms they

represent different roles.

From our remarks in the previous paragraph, it should be clear that our formalism can only

express things in the following manner: Œr xstit� ' � Œr0 xstit�  . If this sentence is supposed to

specify something that a citizen r, a kind of role, must do for another citizen r0, and there is only

one role term for citizen, we can’t use r0 to specify another, distinct citizen. But reformulating

it as Œr xstit� ' � Œr xstit�  would only say something about one and the same agent that fulfills

r.

To overcome this problem we will distinguish a role term from a general role. Each role

term must be interpreted as a unique agent (collective or singular), but each role term can be

conceived of as an instantiation of a general role, i.e., a role that can be held by many agents

at a time. Although we can’t express the sameness of the roles in the object language, we can

overcome the problem by imposing conditions on the metalanguage and on the interpretation

of the object language. The way to handle this barrier to interpretation is to partition Rol so

that each cell of the partition represents a General Role (GR). The idea behind introducing this

formal characterization via a partition of Rol is so that we can have many agents/groups holding

the same role, but not being interpreted as the same members of Rol. Some cells in the partition

may be unit sets. Those cells represent degenerate GRs, i.e., GRs that can’t be held by many

agents/groups at a time. How this will play out formally is discussed in section 6.6.

But we will not represent the assignment of agent terms to role terms in the object language.
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There is no need to represent these assignments in the object language because the object lan-

guage is used to represent the abstract version of the institution, and agent terms have not been

assigned to the roles in the abstract version. We will, however, have a use for a representation

of these assignments in the object language when we look at how an institution is imposed on a

representation of the brute world.

Now that we have discussed institutional roles, we have completed expressing what we

needed to be able to express about agents.

5.1.3 A Special Institutional Fact: The Violation Constant

Deontic logic was first developed in Ernst Mally (1926), and concieved rather differently later

in von Wright (1951), but even later developments justified deontic logic largely by analogy

with alethic modal logic. This analogy uses a language as follows:

' ´ p j :' j ' ^ ' j ' � ' j O'

Where p is an atomic sentence, and O' is read as ‘it is obligatory that '’. So the language is

interpreted as saying what ought to be rather than what someone ought to do. The orthodox

deontic logic, called SDL for ‘standard deontic logic’, is given by a Hilbert style calculus with

axioms K O.' �  / � .O' � O /, and D O' � :O:' and closed under the rules of

modus ponens and necessitation for O, i.e., if ` ', then ` O'. This logic is widely seen as in-

adequate for representing the intuitive notions of moral obligation, or other kinds of obligation,

but we won’t be concerned with that at the moment.

SDL can be given an intuitive semantics in terms of possible worlds. O' is true at a worldw,

i.e., ' is obligatory, iff ' is true at all deontically ideal worlds relative to w. This can be

modelled mathematically in terms of the standard Kripke semantics5 for modal logic. SDL is

sound and complete with respect to the class of Kripke models where the frame relation R is

serial (8x9yRxy). That means that every argument that is validated by the semantics is also

validated by the proof theory and vice versa.
5For a reminder of Kripke semantics, i.e., Kripke models see appendix B.1.
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Another interpretation of SDL can be derived from Anderson (1958). Anderson’s idea is

that if the rules of some code have been transgressed, i.e., something prohibited is the case,

then there is a violation, or there is liability to sanction. Also, conversely, if there is liability to

sanction or some violation of a code, then something prohibited must be the case. So Anderson

suggested that deontic logic could be reduced to alethic modal logic, but within that logic a

special atomic sentence is singled out as a violation constant. We will call this violation constant

V .

Anderson’s reduction is formalized as follows. The language is given by

' ´ p j :' j ' ^ ' j ' � ' j �' j V

Where �' is ‘it is necessary that '’ and V is ‘there is a violation’. Although Anderson (1958)

uses a more complex logic, a very simple logic can be given for this that is adequate to express

the deontic relations of SDL. The logic is given by a Hilbert style calculus

K �.' �  / � .�' � � /,

V :�V ,

and is closed under the rules of modus ponens and necessitation for �, i.e., if ` ', then

` �'.

We can call this system K+V. The sentence O' can be expressed intuitively in this language as

‘if not ', then there is a violation’. Formally that is expressed as�.:' � V /. Using that logic

and the translation t from SDL to Anderson’s language given by:

� t .p/ D p

� t .' �  / D t .'/ � t . / for � 2 f^;_;�;�g

� t .:'/ D :t .'/, and

� t .O'/ D �.:t .'/ � V /
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It can be shown that t .O.' �  // � .t.O'/ � t .O //, and D t .O'/ � :t .O:'/, are both

theorems of K+V.

Semantically, we can interpret the language on Kripke frames again. K+V is interpreted onto

Kripke models hW;R; vi in the usual way for where for �, but they must satisfy the following

condition. We need to require that the valuation v of the models is such that for all x 2 W ,

fy 2 W W Rxy g 6� v.V /. This means that in every state/world it is possible that there isn’t a

violation, i.e., there is a related state/world that is a non-violation state/world. It is easily seen

that V is validated iff the model satisfies: for all x 2 W , fy 2 W W Rxy g 6� v.V /. Through

a standard completeness proof we can see that K+V is complete with respect to the class of

Kripke models that satisfy for all x 2 W , fy 2 W W Rxy g 6� v.V /.

Using Anderson’s reduction we can represent other deontic concepts:

1. ' is permitted: ˙.' ^ :V /

2. ' is forbidden: �.' � V /

3. Ought implies can: O' � ˙' (Kant’s thesis)

In some ways the ability of Anderson’s reduction to express Kant’s thesis makes the reduction

a better expression of deontic concepts than pure SDL.

The violation constant V allows us to represent when a violation has occurred, and allows

the classification of '-states as violation states, i.e., V -states. The idea of interpreting Ander-

son’s reduction as a way of classifying states as violation states we attribute to Grossi (2007).

How to represent permission and obligation we leave until section 6.4. The introduction of V

into language of xstit we allows us to represent all of the necessary deontic relationships for

specifying institutional roles.

So now we have discussed all of the parts of Searle’s general schema of status function

declarations. The assignment of roles is what allows use to represent the relations. Power is

captured by ability via xstit, but we will deal with that fully in section 6.4. We will show that we
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can express all that needs to be expressed in the content of those status function declarations, i.e.,

deontology. Now we will offer a formal model of Vanderveken’s account of strong implication.

5.2 Illocutionary Entailment

Strong implication is the restriction of classical consequence to entailment between propositions

where the content of the conclusion is contained in the content of the premise(s). We need to

explain a bit more about Vanderveken’s formal semantics of propositions in order to explain

strong implication. For this we will follow Vanderveken (1991) and Vanderveken and Nowak

(1995): since the former has more to do with our project, but the latter focuses on a more

specialized version of the logic suitable for our purposes.

It isn’t clear what propositions are, ontologically speaking. But we don’t want to take a view

on the constituents of propositions to represent them in a way that captures our intuitions, and

is extensionally adequate in that respect. We are following Vanderveken’s ideas, so we want to

develop a way to talk about the propositions that results in them having an equivalent structure

to that in Vanderveken’s work.

What consequence relation in a formal language strong implication corresponds to depends

on what view of propositional containment is represented in that formal system. Vanderveken’s

thought is that the propositional content of a proposition J'K corresponds to the set of atomic

propositions that are sub-propositions of J'K. In terms of formulas in a formal language, the

content of ' is the set of atomic sentences that occur as sub-formulas of '. But what the content

of a proposition “actually is” is not something we want to take a view on. All that we need is a

way to represent the content so that it meets up with Vanderveken’s basic idea.

We are on the way to representing strong implication, but we need to introduce a new formal

language. Let the language LS be defined by the following grammar:

' ´ ? j p j .' ^ '/ j :.'/ j ' � ' j .' _ '/ j .' � '/ j .A b B/

Where A;B are pure Boolean formulas (from the language LP ) and p 2 At the set of atomic
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formulas. In what follows we will refer to pure Boolean formulas by A;B;C;A1; B2 : : : A

formula of the form ' b  is interpreted as saying that the propositional content of ' is

contained in the propositional content of  . The reason that we restrict b in the way that we

do is because it is not clear what the propositional content of A b B would be. Would it be

contained in the propositional content of A ^ B? Or just in A (or B)? The issue is one that we

simply wish to avoid since the discussion would take us away from the point.

We interpret the formulas of LS relative to an interpretation I which is a combination of an

SI-frame and a valuation v.

Definition 5.2.1. hD; I i is an SI-frame for LS where

1. I is a set of possible worlds such that I ¤ ¿,

2. D D hD;.;g;}i where hD;.i is a partial order6 with D non-empty, such that

(a) for all d1; d2 2 D, there is d1 gd2 2 D that is a supremum of d1 and d2. Explicitly,

d1; d2 . d1 gd2, and for any d3 2 D such that d1 . d3 and d2 . d3, d1 gd2 . d3.

(b) an element} in D that is a global infimum. Formally, for all d 2 D,} . d ,

(c) there is a (non-empty) set of atoms of D,DA which have the property that if d 2 DA;

then 8d 0 2 D.d 0 ¤ }& d 0 . d only if d D d 0/ (These are the members of D that

are almost at the bottom), and

(d) the members ofDA also satisfy the following property: for d 2 DA and any d1; d2 2

D, if d . d1 g d2, then either d . d1 or d . d2.

Definition 5.2.2. An SI-model I D hD; I; vi is an SI-frame together with a valuation v W At!

DA � P.I /. As a stylistic variant we will also call I D hD; I; vi an SI -interpretation.

For these interpretations I we get a semantic value for each A in LS denoted by JAKI which

is a member of D � P.I /. We will usually omit the subscript I when there is no ambiguity.

6A partial order is one where the order relation is reflexive, transitive and antisymmetric.
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These elements D and the subsets of I represent propositional contents and what we call in-

formational content, respectively. The subsets of I are the set of worlds where the sentences

are true which is the informational content of a sentence (that is how informational content is

modelled in Dretske (1981)). In JAK will refer to the first coordinate as JAK1 and the second

coordinate JAK2. Now we can extend v to J�K as follows: Let A;B 2 LS , and for X � I ,

Xc D I XX ,

1. for p 2 At, JpK D v.p/

2. J?K D h};¿i

3. J>K D h}; I i

4. J:AK D hJAK1; I n JAK2i

5. JA ^ BK D hJAK1 g JBK1; JAK2 \ JBK2i

6. JA _ BK D hJAK1 g JBK1; JAK2 [ JBK2i

7. JA � BK D hJAK1 g JBK1; JAKc2 [ JBK2i

8. JA � BK D hJAK1 g JBK1; .JAKc2 \ JBKc2/ [ .JAK2 \ JBK2/i

In the definitions above we can see that only atomic propositional contents, i.e., members

of DA are assigned to atomic sentences, and negation and conjunction are defined as one might

think: the propositional content is cumulative and the other conditions correspond to the set-

theoretic analogs of the respective logical operations. ? and > have null propositional content.

But notice that ' ^ :' will have the propositional content J'K1, so J?K1 ¤ J' ^ :'K1.

Truth at a possible world i is defined recursively for all formulas '; of LS as follows:

1. for p 2 At, I; i 
 p iff i 2 JpK2

2. I; i ± ?

3. I; i 
 >
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4. I; i 
 : iff I; i ±  .

5. I; i 
 ' ^  iff I; i 
 ' and I; i 
  

6. I; i 
 ' _  iff I; i 
 ' or I; i 
  

7. I; i 
 ' �  iff I; i ± ' or I; i 
  

8. I; i 
 ' �  iff (I; i 
 ' only if I; i 
  ) and (I; i 
 ' if, I; i 
  )

9. I; i 
 A b B iff JAK1 . JBK1

Recall that A and B are pure Boolean formulas. We can then define semantic SI -entailment

�SI between a set of sentences � and a sentence ' as follows: � �SI ' iff for all SI -models

I D hD; I; vi, and i 2 I , if I; i 
 
 for all 
 2 � , then I; i 
 '. When � is empty we

write �SI ' and say ' is a logical SI -truth. Moving from the semantics to the proof theory we

give the following axiomatization which is amended from Vanderveken and Nowak (1995, p.

397–8).

Definition 5.2.3. Axioms for the Logic SI :

Axioms for Classical Propositional Logic (CL)

CL1 ' � . � '/

CL2 .' � . � �// � ..' �  / � . � �//

CL3 .' ^  / �  

CL4 .' ^  / � '

CL5 .' �  / � ..' � �/ � .' �  ^ �//

CL6 ' � .' _  /

CL7  � .' _  /

CL8 .' �  / � ..� �  / � .' _ � �  //
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CL9 . � :'/ � .' � : /

CL10 :. �  / � '

CL11 ' _ :'

CL12 .' ^ :'/ � ?

Axioms for Propositional Containment

PC1 A b A

PC2 .B b A/ � ..C b B/ � .C b A//

PC3 .pi b pj / � .pj b pi/

PC4 A b .A ^ B/

PC5 B b .A ^ B/

PC6 .B b A/ � ..C b A/ � ..C ^ B/ b A//

PC7 A b :A

PC8 :A b A

PC9 .pi b .A ^ B// � ..pi b A/ _ .pi b B//

PC10 ? b A

PC11 A b .A _ B/

PC12 B b .A _ B/

PC12A .A _ B/ b .A ^ B/

PC13 A b .A � B/

PC14 B b .A � B/

PC14A .A � B/ b .A ^ B/

PC15 A b .A � B/

PC16 B b .A � B/
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PC16A .A � B/ b .A ^ B/

PC17 > b A

Rules

MP If `SI ' �  and `SI ', then `SI  

An SI -proof is a sequence of LS sentences '1; : : : ; 'n such that for each 1 � i � n, either

'i is an axiom, or there are sentences 'j and 'k with j; k < i such that:

1. 'j D 'k � 'i and so we can use MP to get 'i , or

A set of sentences � SI -proves a conclusion ' iff there are f 
1; : : : ; 
n g � � and

`SI 
1 ^ : : : ^ 
n � '. An SI -consistent set � is a set of sentences such that � °SI ?. We

will omit the subscript SI from the ` when no confusion will occur, and ‘sentence’ will mean

SI -sentence unless otherwise specified. In the next section we provide a proof of completeness

of `SI with respect to the semantics. Now we can formally define strong implication.

This logic provides us with a complete characterization of how b acts and interacts with

the Boolean connectives. However, �SI = `SI does not, by itself, give a forma account of

the notion of strong implication. But we can use �SI = `SI to account for strong implication.

There are two ways that we can use the logic of SI to define strong implication. The intuition

underlying strong implication is that for a set of sentences � to strongly imply ', � `CL '

and the content of ' must be contained in the content of � . We can interpret the connection

between the contents of ' and � either relative to a single interpretation I, or relative to every

interpretation. We choose the following definition for its generality.

Definition 5.2.4 (Strong Implication). A set of sentences � strongly implies ' (� `S ') iff

there are sentences 
1; : : : ; 
n in � such that `CL 
1 ^ : : :^ 
n � ', and there are 
 01; : : : ; 

0
m

in � such that `SI 
 01 ^ : : : ^ 

0
m � .' b 
1 ^ : : : ^ 
n/

The set of sentences � is just a general set of SI -sentences. So it may contain propositional

content sentences of the form A b B which are not theorems of SI . This means that � may

81



contain auxiliary facts about propositional containment that can be used in making inferences

from � about what follows. This is in contrast to ignoring these auxiliary facts about content

contained in � . If we ignored the extra facts about containment, then we would say that � `S '

iff � `CL and `SI ' b
Vn
iD1 
i for some 
1; : : : ; 
n 2 � .

But if � consists of pure Boolean formulas, then there are no auxiliary facts about contain-

ment to consult. Therefore, the general definition is reduced to the more restrictive definition

of strong implication. In the next section we provide a completeness proof for `SI relative to

�SI .

5.3 Completeness of `SI

First we show that the axioms from definition 5.2.3 are sound for the class of models we have

defined.

Proposition 5.3.1. The axioms are sound for any SI -model I.

Proof. The CL axioms are those for classical logic and the semantics is defined classically so

we will do the proof for the PC axioms only. If in any model I D hD; I; vi we have that I

assigns to each atom p a member of D, and any pure Boolean formula A will also be assigned

a member of D according to the rules above. For any A, JAK1 . JAK1 by the conditions on

D, and so for any i 2 I , I; i 
 A b A. We can use the conditions on . to handle PC2 and

conditions on g to handle PC4-6. The Not condition above gives PC7 and PC8. PC3 and PC9

are the only interesting cases. For PC3 assume that I; i 
 pi b pj . All atomic sentences are

assigned atoms of D, and JpiK1 . Jpj K1 implies that Jpj K1 . JpiK1 by definition 5.2.1–2(c).

Thus, I; i 
 pj b pi and so I; i 
 .pi b pj / � .pj b pi/. For PC9 we note that the

condition that all members d 2 DA must be such that if d . d1 g d2, then either d . d1 or

d . d2 makes the condition go through.

A set of sentences � is an SI -theory if it is closed under `SI , i.e., if � `SI ', then ' 2 � .

When no confusion will result we will call SI -theories, simply ‘theories’. Maximally consistent
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theories are theories � such that if ' 62 � , �I' ` ?. From here we will prove the completeness

of the axioms in definition 5.2.3 for the semantics of SI above by using a modified Lindenbaum

construction coupled with the canonical model constructions of Scott, Lemmon and Makinson.

In what follows we take ` to mean `SI .

Proposition 5.3.2. Each SI -consistent set � can be extended to a maximally SI -consistent set

�C.

Proof. Let � be a consistent set. Let f'n W n 2 N g be an enumeration of all the formulas of

LS . Define a sequence of sets as follows:

†0 D �

†n D

8̂̂<̂
:̂
†n�1 [ f'n�1 g if †n�1I'n�1 ° ?:

†n�1 otherwise

Then we define �C D
S
n2N †n. �C is consistent since, if �C ` ?, there would be a finite

�C0 � �
C such that �C0 ` ?. But �C0 � †k for some k, and hence †k ` ?. But by definition

each †k is consistent.

To show that �C is maximal suppose that ' 62 �C. ' D 'k for some k 2 N, so at stage

k C 1 'k was considered, but 'k wasn’t added. Thus, at stage k C 1, †kI'k ` ?. Since

†k � �
C, �CI'k ` ?. Hence no extension of �C is consistent.

So we can extend any consistent set to a maximally consistent set, it is also trivial to show

that maximally consistent sets are theories. For each maximal set there is a canonical model,

and many maximal sets will have the same canonical model. But the canonical model de-

pends on which maximal set is chosen as a starting point. Let � be a maximal set, then let

I �� D f�
0 W A;B 2 LP ; A b B 2 � iff A b B 2 �0 g. Also, we define an equivalence relation

between sentences of LP relative to �, ��SI , as follows: let A;B 2 LP

A ��SI B iff .A b B/ ^ .B b A/ 2 � (5.1)
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We then define ŒA� D
˚
B 2 LP W A ��SI B

	
for A 2 LP . Clearly ��SI is an equivalence

relation from axioms PC1, PC2, and because both A b B and B b A are in �. Also, if

�0 2 I ��, then ��SID�
�0

SI since all of the sets in I �� agree with � on the b-sentences. Before

moving on, we have to notice something rather important:

Observation 5.3.3. For all A 2 LP , ŒA� D Œ^ipi � such that ^ipi is the conjunction of all the

atoms which are subformulas of A.

Proof. The proof is by induction on the complexity of A. The basis case is trivial. Now by

axioms PC2, and PC4,5,6 we can show that if ŒA� D ŒA1� and ŒB� D ŒB1�, then ŒA ^ B� D

ŒA1 ^ B1�. Now by axioms PC11–PC16A, ŒA _ B� D ŒA � B� D ŒA � B� D ŒA ^ B�.

So if ŒA� D Œ^pi � such that pi is a subformula of A, and ŒB� D Œ^qj � such that qj is a

subformula of B by the induction hypothesis, then Œ.^pi/ ^ .^qj /� D ŒA ^ B� D ŒA � B� for

� 2 f�;_;�g. But the pi and qj are the subformulas ofA andB , respectively. That completes

the induction.

Now we can define the canonical model for �.

Definition 5.3.1. Let � be a maximally SI-consistent set. Define the canonical model for � as

I�� D
˝
D��; I ��; v��

˛
as follows:

1. I �� is as we have defined it above.

2. D�� D hD�;.�;g�;}�i where D� D LP= ��SI , and for all A;B 2 LP ŒA� .� ŒB� iff

A b B 2 � or ŒA� D ŒB�, and ŒA� g� ŒB� D ŒA ^ B�. Finally,}� D Œ?�.

3. v�.p/ D hŒp�; f� 2 I � W p 2 � gi

Now we have to ensure that I�� is a model for SI . For this we need to note the following

lemma.

Lemma 5.3.4. For A 2 LP , JAK1 D ŒA�.
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Proof. The proof is by induction on the complexity of A. The basis case holds by definition.

Assume for all C of less complexity thanD, ŒD� D JDK1. By definition ŒA^B� D ŒA�g� ŒB�,

so by IH JAK1 g JBK1 D JA ^ BK1, by definition.

By axioms PC11–PC16A ŒA _ B� D ŒA � B� D ŒA � B� D ŒA ^ B�. Thus, ŒA � B� D

ŒA� g� ŒB� for � 2 f�;_;�g. So by IH, ŒA� g� ŒB� D JAK1 g� JBK1 D JA � BK1.

Finally, Œ:A� D ŒA� by axioms PC7 and PC8, so by IH, ŒA� D JAK1, and JAK1 D J:AK1 by

definition. That completes the induction.

Now we can see that I�� is an SI -model. Clearly, I �� ¤ ¿ since � 2 I ��. hD�;.�i is a

partial order. The transitive and reflexive axioms for b also make .� transitive and reflexive.

It is antisymmetric since if A b B and B b A are both in all of the sets in I ��, ŒA� D ŒB�.

Inspection of the PC axioms guarantees the other restrictions on D. If ŒA�; ŒB� 2 D�, then

ŒA ^ B� 2 D� by definition, and by PC4,5 ŒA�; ŒB� .� ŒA ^ B�. Also, by PC6 ŒA ^ B� is

a supremum of ŒA� and ŒB�. Finally, by PC10 Œ?� is a global infimum. Each Œp� is an atom

since, first, if ŒB� ¤ Œ?�, then suppose that ŒB� .� Œp�. That means B b p 2 �. From the

observation above we know that ŒB� D Œ^pi � for all of the atoms in B , but then Œ^pi � .� Œp�.

So ^pi b p 2 �, and so by PC2,4 and 5, pi b p for each pi from B . But then we know that

p b pi 2 � by axiom PC3. Thus Œpi � D Œp� for each pi in B . Thus, Œp� D Œ^pi � by PC2,4 and

6 and the observation above. Yet Œ^pi � D ŒB�, so Œp� D ŒB�. Next we check definition 5.2.1

2(d). If Œp� .� ŒA� g� ŒB�, then since ŒA� g� ŒB� D ŒA ^ B�, p b A ^ B 2 �. But then by

PC9 .p b A/ _ .p b B/ 2 �. Since � is maximal, either p b A 2 � or p b B 2 �, so

either Œp� .� ŒA� or Œp� .� ŒB�. Finally, by our definition of v��, it is a function from At to

D� �P.I ��/. Thus, I� is an SI -model. Now we can show the fundamental theorem for SI . In

the next theorem we take the maximal set to be implicit.

Proposition 5.3.5. For each canonical model I� and formula ', and all � 2 I �,

I�; � 
 '” ' 2 �

Proof. The proof is by induction on the complexity of '. For the atomic case, p, it is handled
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by the definition of I. The induction hypothesis is that for all  of lower complexity than ',

and all � 2 I �

I�; � 
  ”  2 �

The Boolean cases are standard so we will omit them. If I�; � 
 A b B , then JAK1 .� JBK1.

By the definition of the canonical model we have ŒA� .� ŒB�, and that occurs only if A b B 2

�0 for all �0 2 I �. So, a fortiori A b B 2 �. In the other direction if A b B 2 �, then it

must be a member of all �0 2 I � by the definition of I �. Thus, ŒA� .� ŒB�, so by the previous

lemma JAK1 .� JBK1; therefore, I�; � 
 A b B .

Given a consistent set of sentences � , we can then extend this set to a �C. We can then take

the set of all of the maximally consistent sets of sentences that agree with �C on all sentences

of the form A b B , we call this set I �� as before. Note that there could be many canonical

models for a set � since each will depend on the maximal extension constructed.

Proposition 5.3.6. If � �SI ', then � `SI '.

Proof. Suppose that � ° ', then �I :' is consistent, and so can be extended to maximally con-

sistent set .�I'/C. Then we construct a canonical model around .�I'/C using I.�I'/C . Since

.�I'/C 2 I.�I'/C , by proposition 5.3.5, we will have I�
.�I'/C

; .�I'/C ± ', yet I�; .�I'/C 



 for all 
 2 �—since � � .�I'/C. But then � ²SI '.

The proceeding proposition and proposition 5.3.1, provide the completeness proof that we

are after.
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Chapter 6

Formalization of Normative Entailment

. . . a consequence of this analysis is that society has a logical structure.
. . . Theories about . . . parts of nature have logical structures but not the nature itself.
But society consists in part of representations and those representations have logical
structures. Any adequate theory about such phenomena must contain a logical analysis
of their structures.

Searle (2005, p. 22)

6.1 Introduction

In chapter 5, we discussed various pieces necessary to represent institutions. In this chapter we

will put those pieces together. We will extend each of the languages of the previous chapter to

do so. As the quote from Searle above says, we have to provide a way to represent the logical

structure of institutions. Let’s recall Searle’s general characterization of institutional facts.

We (or I) make it the case by Declaration that a Y status function exists in C and

in so doing we (or I) create a relation R between Y and a certain person or persons,

S, such that in virtue of SRY, S has the power to perform acts (of type) A. (Searle,

2010, pp. 101–2)

In Searle’s characterization there are two parts. There is the declaration that is made to generate

the institutional fact, i.e., the status function, and there is the characterization of that status

function in terms of its powers, i.e., performing acts of type A. In that sense we really have two

levels of reality—for lack of a better term: an institutional reality which is constituted by the

powers specific to the institution/status function, and the brute reality on to which those powers

are imposed. Since institutions have logical structure, as Searle’s quote above indicates, this

distinction between an institutional reality and brute reality should be mirrored in the logic as

well.
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To a certain extent, the status function is independent from its being declared. The insti-

tutional facts, which we have been calling norms, are represented independently from their

imposition. A status function declaration will be the imposition of institutional facts on to a

brute reality. We call this imposition an implementation.

After we have explained the distinctions between the languages, we will characterize the

relation of norm consequence for this language. We call this relation `N . Norm consequence

is strong implication applied to this new language. So although we have the basic relation of

strong implication, we have to extend it to this more complex language.

In order to represent the various ‘actions of type A’ we have to show that we can represent,

in the new language, the relevant relations. The basic sets of relations that are necessary to

accomplish this come from Holfeld (1920). We will show that our language is sufficient to this

task after in the penultimate section of this chapter.

Just as a new piece of notation, we will use� to refer to institutions. Institutions, on Searle’s

view, can be identified with the set of institutional facts. So ‘�’ will refer to a set of formulas

that represents the institutional facts of an institution. However, in mathematical logic there is

already a notion called institution, but we do not mean that. As a stylistic variation we will also

refer to � as a code.

6.2 Formal Languages for Institutions

As we said there are two realities and so to represent that we will need two languages. But there

are a number of fragments of these languages that will play important roles in our discussion.

So we start by extending Lxstit as follows:

We construct the language L as follows: Let Œ�� 2 f�; P;X; ŒA xstit� g, and p 2 AtI [AtB

' ´ ? j p j V j .' ^ '/ j :.'/ j .' � '/ j .' _ '/ j .' � '/ j Œ��'

where Ag is a finite set of singular agent terms and A � Ag. We will call A � Ag agent terms

even though they may be plural agents. Note that we have added an operator P to this language.
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It is the backward looking counterpart to the X operator. P' is read as ‘in the previous state

'’. Also notice the atoms come from either AtI or AtB . Thus they are either institutional or

brute. The language L describes both the brute world and the institutional facts. We also have

the violation constant V . It is treated as an atomic sentence, but is assigned a special meaning.

The language LB is the “brute fragment” of this language. We construct the language LB

as follows: Let Œ�� 2 f�; P;X; ŒA xstit� g, and p 2 AtB

' ´ ? j p j .' ^ '/ j :.'/ j .' � '/ j .' _ '/ j .' � '/ j Œ��'

where A � Ag. So LB expresses all of the brute facts. Now we have to have an institutional

counterpart to LB .

Recall that status functions are formulated as relations between institutional roles. However,

some of the brute language is usually necessary in formulating institutional facts. Consider a

sign that says ‘don’t walk on the grass’. That sign says that certain brute objects and actions,

i.e., grass and walking, are prohibited in that area. So to represent the status functions, we

will require a language to contain the institutional atoms, the brute atoms, and the institutional

roles. But since norms are formulated in general ways, as we discussed in section 5.1, we don’t

include agent terms, i.e., A � Ag, only role terms R � Rol.

We construct the language LI as follows: Let Œ�� 2 f�; P;X; ŒR xstit� g, and p 2 AtI [AtB

' ´ ? j p j V j .' ^ '/ j :.'/ j .' � '/ j .' _ '/ j .' � '/ j Œ��'

where R � Rol. So LI is just like L with the exception that there are role terms in place of

agent terms.

Sometimes we will need to make reference to only some institutional facts. To do that we

will define a function at.�/ which assigns each formula ' the set at.'/ of atomic formulas in

'. This generalizes to sets of formulas in the standard way at.�/ D
S
f at.'/ W ' 2 � g. We

will look at the restricted language LB� which is defined as follows.

' ´ ? j p j .' ^ '/ j :.'/ j .' � '/ j .' _ '/ j .' � '/ j Œ��'
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where A � Ag and p 2 at.�/. This language contains all of the institutional facts that can be

expressed using the atomic institutional facts in �, but not all of the institutional facts in AtI .

Now that we have the languages which express actions and institutional facts, we will add

to the language LI the operator that represents propositional containmentb. This generates the

language LIb. Let Œ�� 2 f�; P;X; ŒR xstit� g, and p 2 AtI [ AtB

' ´ ? j p j V j .' ^ '/ j :.'/ j .' � '/ j .' _ '/ j .' � '/ j Œ��� j A b B

where R � Rol, A;B 2 P.Rol/ [ LI , and � 2 LI . This means this new language can contain

formulas like f r g b ŒR xstit�.:p^V /, and .p^q b ŒR xstit�.p// � .p_ŒR0 xstit�q/. However,

the language will not contain sentences like ŒR xstit�.p^V / b .p b q/, or ŒR xstit�.p b r/. I.e.,

the operator b cannot be iterated, nor can the operators f�; P;X; ŒR xstit� g take b-formulas

as their complements.

There are two important restrictions that we must impose. First, as we have mentioned

already, Rol and Ag are required to be finite. Second, AtI is finite. This means that the lan-

guages we have defined should really be displayed as LIm;k;n

where jAtI j D m, jRolj D n

and jAgj D k. The reason for these restrictions have to do with the characterization of norm

consequence. To fully characterize norm consequence we need to make sure that the purely

institutional language is not only recursively specifiable, but that we can decide whether some-

thing is purely institutional in a finite number of steps. The reason for this will be made clear

later. These specifications don’t affect the logic per se since we will specify the axioms for it

schematically, but it is important to be transparent about these matters.

In the next section we will provide a semantics and logic for LIb. In section 6.5 we provide

a characterization of norm consequence. In the final two sections we formalize the notion of an

implementation that we mentioned informally in the introduction to this chapter, then we show

that we can represent Holfeld’s legal relations.
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6.3 Logic of LIb

The way that we approach institutional entailment is by constructing something similar to what

is called elsewhere1 the parametrization of the logic of strong entailment by the logic of xstit.

In a parametrization one logic L is given, and another logic L0 is also given, but in the axioma-

tization and construction of the language formulas of L0 can replace atoms of the logic L. Next

we give the semantics for this language LIb, leaving the m; k; n implicit.

6.3.1 Semantics for LIb

We begin by defining an LI -frame. In the next chapter we define frames for L alone, and show

that they match up with the frames and models from definition 5.1.1.

Definition 6.3.1. An LI -frame F is a pair hD;Fxi consisting of

1. D as in definition 5.2.1, and

2. Fx is an xstit frame hS;H;Ei according to definition 5.1.1 where E satisfies conditions

a)–f).2

We can then define models

Definition 6.3.2. A model for LI is a frame F with a valuation v W AtI [AtB [ fV g [Rol!

.DA [ .DA � P.S/// such that for each atomic sentence s,

1. v.s/ 2 DA � P.S/, and

2. for each r 2 Rol, v.r/ 2 DA such that

3. if v.s/ D hd; P i, then v.r/ ¤ d .

The domain of the model M, jMj is f .s; h/ j s 2 h g.

1See Caleiro et al. (1999).
2The subscript ‘x’ is to differentiate it from the new use of F to denote an LI frame.
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As we saw before, D is used to interpret the propositional content of a sentence, and Fx

is used to interpret the xstit fragment of the language. However, there are some differences

between this definition and its predecessors. We will start with the differences in D from defi-

nition 5.2.1. The reason the role terms are assigned propositional content is because which role

does what has an affect on the proposition expressed by ŒR xstit� '.

Each atomic sentence gets assigned an atomic element in the partial order of D, and some

subset of S . But now we have to interpret the input to propositional content that the role terms

will make. Each role term is assigned some atom fromD, but no sentence and role term may be

assigned the same atom inD. One might suggest that each set in P.Rol/ be assigned an element

of DA, but there is the looming question of the appropriate relationship between a group and

its members that we do not wish to beg. We don’t want to further complicate matters in the

formalism here, so we will simply treat the content that R � Rol contributes to ŒR xstit� ' as

given by
b
f v.r0/ W r0 2 R g.

As before, the domain of the model is determined by all of the dynamic states that are

composed of pairs of static states and the histories they are present in. The major difference is

that we do not assume that the effectivity functions satisfy the condition (g). In these frames

E W S � H � P.Rol/ ! P.S/ is a function that specifies, relative to a dynamic state, that a

group of roles is effective to ensure that the future continuations are among E.s; h;R/. The

function E must obey only the following conditions in this case:

(a) if s 62 h, then E.s; h;R/ D ¿

(b) if s0 2 E.s; h;R/, then s0 2 lub.s/

(c) if s 2 h, lub.s; h/ 2 E.s; h;R/

(d) E.s; h;¿/ D lub.s/

(e) if s 2 h, then E.s; h;Rol/ D f lub.s; h/ g

(f) if R ¤ R0, then E.s; h;R0/ � E.s; h;R/
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In this new scenario the logic will be what governs norm consequence. Most of these conditions

are acceptable for a logic that is supposed to play this role. Certainly conditions (a)–(c) are

unproblematic given their interpretation from section 5.1.1. Condition (d) is still acceptable

since it specifies that the empty set of roles, i.e., no one, still can’t constrain the evolution of

history beyond what is determined by nature. Condition (e) specifies that the total actions of

all of the roles according to the same history moves the institution into its next state along

that history. That is still acceptable, perhaps even more so given that institutions are simply

constituted by its set of roles.

Condition (f) specifies that the larger the group of roles considered, the more the future

possibilities are determined. Indeed, the more institutional roles included in the determination

of a next state, the more closely predictable the next state will be. But condition (g) gives too

much credit to those who construct institutions. Condition (g) says if R\R0 D ¿ and s 2 h\h0,

then there is h00 with s 2 h00 and E.s; h00;R/ and E.s; h00;R0/ are contained in E.s; h;R/ and

E.s; h0;R0/, respectively. This means that there is no way for two disjoint sets of roles to act

against each other. Put another way, if R is capable of ensuring something happens, then R’s

actions cannot frustrate the actions of another, disjoint group R0. Certainly that has to be false

when it comes to modern bureaucracies, so it would be a mistake to resolve that problem by

denying its existence. Now we return to the formal descriptions.

Again we extend the valuation to get a semantic value for any sentence. The semantic value

of a term or sentence � in LI relative to a model M D hD; hS;H;Ei ; vi is referred to as J�KM.

We will define J�KM for the fragment of LIb, LI , and leave the superscript ‘M’ implicit. Recall

from section 5.2 that J�K1 refers to an element of D, and J�K2 refers to a subset of the domain,

so in this case to an element of P.jMj/. Let �; � 0 2 LI and R � Rol:

At for s 2 AtB [ AtI [ fV g, and v.s/ D hd; P i,

JsK D hd; f .s; h/ 2 jMj j s 2 P gi

R JRK D
b
f v.r0/ W r0 2 R g

93



? J?K D h};¿i

> J>K D h}; jMji

And J� ^ � 0K D hJ�K1 g J� 0K1; J�K2 \ J� 0K2i

Or J� ^ � 0K D hJ�K1 g J� 0K1; J�K2 [ J� 0K2i

If J� ^ � 0K D hJ�K1 g J� 0K1; .jMj X J�K/2 [ J� 0K2i

Iff J� ^ � 0K D

hJ�K1 g J� 0K1; Œ.jMj X J�K2/ [ J� 0K2� \ Œ.jMj X J� 0K2/ [ J�K2�i

Not J:�K D hJ�K1; jMj X J�K2i

X JX�K D hJ�K1; f .s; h/ j .lub.s; h/; h/ 2 J�K2 gi

P JP�K D hJ�K1; f .s; h/ j .glb.s; h/; h/ 2 J�K2 gi

� J��K D hJ�K1; f .s; h/ j 8h0; s.t. s 2 h0; .lub.s; h0/; h0/ 2 J�K2 gi

xstit JŒR xstit� �K D

hJRK1 g J�K1; f .s; h/ j 8h0; s0 s.t. s0 2 E.s; h;R/; .s0; h0/ 2 J�K2 gi

Note that V is treated as any other atomic sentence. Here the propositional content of the atomic

sentences are all atoms of D. The contents of Boolean sentences are just joins of contents, as

Vanderveken’s theory had it. The difference here is that X , P and � don’t do anything to

the propositional content of the complement � of X�;�� or P� . Modal operators affect the

informational content of the sentence, not its propositional content. The sentence ‘the door will

be closed in the next state’ and ‘the door is closed’ say different things, but the content is the

same. The former just says that the state of affairs of the door being closed happens in the next

state, the latter says that the same state of affairs is actual. This difference in informational

content is captured in the difference between J�K2 and JX�K2, but J�K1 D J�K1, so they have

the same propositional content. Similarly for� and P .
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For the ŒR xstit� �-case, the complement is affected since the xstit-proposition concerns who

sees-to-it-that � is true. So when there are two roles that should be distinct we have to adjoin

different atomic elements of D to J�K1. That way the content of Œf r g xstit� � and Œf r0 g xstit� �

can be different, as long as v.r/ ¤ v.r0/.

Now we can provide the satisfaction conditions as follows:

Definition 6.3.3. For formulas in '; 2 LIb, �; � 0 2 LI , and R � Rol with an LIb-model M

with s 2 S and h 2 H ,

� .s; h/ � p iff s 2 JpK2 where p 2 AtI [ AtB

� .s; h/ � V iff s 2 JV K2

� .s; h/ ² ?

� .s; h/ � :' iff .s; h/ ² '

� .s; h/ � ' ^  iff .s; h/ � ' and .s; h/ �  

� .s; h/ � �� iff for all h0 with s 2 h0, .s; h0/ � �

� .s; h/ � X� iff .lub.s; h/; h/ � �

� .s; h/ � P� iff .glb.s; h/; h/ � �

� .s; h/ � ŒR xstit� � iff for all s0; h0, if s0 2 E.s; h;R/ and s0 2 h0, then .s0; h0/ � �

� .s; h/ � � b � 0 iff J�K1 . J� 0K1

Definition 6.3.4. If �; ' � LIb, then � �Ixp ' iff for all LIb-models M, and .s; h/ 2 jMj, if

M; .s; h/ � 
 for all 
 2 � , then M; .s; h/ � '.

At this point we provide a set of axioms that are complete relative to the semantics.

6.3.2 Proof Theory

Again we provide a Hilbert style proof theory for the logic. The axiom system extends the

two previous systems of definitions 5.2.3 and 5.1.4. We will refer to this proof system and its

consequence relation as `Ixp.
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Definition 6.3.5. Axioms of `Ixp.

1. First we include all axioms for classical logic (Group CL axioms) where '; 2 LIb:

CL1 ' � . � '/

CL2 .' � . � �// � ..' �  / � . � �//

CL3 .' ^  / �  

CL4 .' ^  / � '

CL5 .' �  / � ..' � �/ � .' �  ^ �//

CL6 ' � .' _  /

CL7  � .' _  /

CL8 .' �  / � ..� �  / � .' _ � �  //

CL9 . � :'/ � .' � : /

CL10 :. �  / � '

CL11 ' _ :'

CL12 .' ^ :'/ � ?

2. We extend the axioms for propositional containment (group PC axioms) whereA;B;C 2

LI , s; s0 2 AtI [ AtB [ fV g and R [ f r; r0 g � Rol:

PC1 A b A

PC2 .B b A/ � ..C b B/ � .C b A//

PC3 .s b s0/ � .s0 b s/

PC4 A b .A ^ B/

PC5 B b .A ^ B/

PC6 .B b A/ � ..C b A/ � ..C ^ B/ b A//

PC7 A b :A
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PC8 :A b A

PC9 .s b .A ^ B// � ..s b A/ _ .s b B//

PC10 ? b A

PC11 A b .A _ B/

PC12 B b .A _ B/

PC12A .A _ B/ b .A ^ B/

PC13 A b .A � B/

PC14 B b .A � B/

PC14A .A � B/ b .A ^ B/

PC15 A b .A � B/

PC16 B b .A � B/

PC16A .A � B/ b .A ^ B/

PC17 > b A

PCX1 A b �A

PCX2 XA b A

PCX3 PA b XA

PCX4 �A b PA

PCX5 A b Œr xstit� A

PCX6 R b ŒR xstit� A

PCX7 ? b r

PCX8 .f r g b f r0 g/ � .f r0 g b f r g/

PCX9 f r g b R for r 2 R � Rol

PCX10 :.f r g b p/ ^ :.p b f r g/
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3. We then extend the axioms for xstit (we call these the XPstit-group) by the following for

�; � 0 2 LI ,

(p) p � �p

S5 for�:

K �.� � � 0/ � .�� � �� 0/

T �� � �

4 �� � ���

B � � �:�:�

KD for each ŒR xstit� � , R � Rol, P and X :

KR ŒR xstit�.� � � 0/ � .ŒR xstit� � � ŒR xstit� � 0/

DR ŒR xstit� � � : ŒR xstit�:�

KX X.� � � 0/ � .X� � X� 0/

DX X� � :X:�

KP P.� � � 0/ � .P � � P� 0/

DP P� � :P:�

(DetX) :X:� � X�

(DetP) :P:� � P�

(XP) XP� � �

(PX) � � PX�

(NP) P�� � �P�

(SettX) Œ¿ xstit� � � �X�

(XSett) ŒRol xstit� � � X��

(C-mon) ŒR xstit� � � ŒR [ R0 xstit� � where R0 [ R � Rol

4. Rules: MP and Nec| for | 2 f�; X; P; ŒR xstit� W R � Rol g
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It is very important to note which axioms apply to which classes of formulas. The addition

of the axioms PCX1–5 capture relationships between the contents of the new expressions from

LI . Also note that the truth of a b-sentence A b B depends only on what members of D are

assigned to A and B , but that is independent of the xstit part of an LIb-model. However, in the

language LIb, we cannot say anything that would reflect that fact, e.g., �.A b B/ � .A b B/,

since that formula isn’t well formed.

The XP-stit axioms are largely the same from definition 5.1.4 with the exception that they

are in terms of roles R rather than agents A. There is the addition of the axioms for P , and

those mirror the axioms for X . That is to be expected since P is kind of like an inverse of X ,

as XP and PX indicate. There are no interaction axioms for P and the ŒR xstit�-operators since

ŒR xstit� is a forward looking operator, and P is backward looking. The axiom NP is there to

indicate that the past is necessary, i.e., the histories do not branch into the past. What should

be noted is the absence of Indep-G. The axiom Indep-G corresponds to condition (g) on the

effectivity function from the model, which is not required in the semantics of LI (see p. 92), so

Indep-G fails. From here we sketch a completeness proof for this system. We leave the detailed

completeness proof for chapter 7.

6.3.3 Soundness and Completeness

The completeness proof for `Ixp with respect to �Ixp proceeds in a number of stages. In order to

complete the proof we first give a completeness proof for a logic based on the language L, we

refer to that logic—i.e., its consequence relation—as `xp. The logic `xp can be defined as the

Hilbert style axiom system consisting of CL-group axioms and the XP-Stit group axioms from

definition 6.3.5 above. However, we replace the role terms with agent terms. The axiomatization

is as follows:

Definition 6.3.6. Axioms for `xp.

1. Axioms for classical logic

(p) p � �p, p 2 AtB [ AtI
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S5 for�:

K �.� � � 0/ � .�� � �� 0/

T �� � �

4 �� � ���

B � � �:�:�

KD for each ŒA xstit� � , A � Ag, P and X :

KA ŒA xstit�.� � � 0/ � .ŒA xstit� � � ŒA xstit� � 0/

DA ŒA xstit� � � : ŒA xstit�:�

KX X.� � � 0/ � .X� � X� 0/

DX X� � :X:�

KP P.� � � 0/ � .P � � P� 0/

DP P� � :P:�

[(DetX)] :X:� � X�

[(DetP)] :P:� � P�

[(XP)] XP� � �

[(PX)] � � PX�

[(NP)] P�� � �P�

[(SettX)] Œ¿ xstit� � � �X�

[(XSett)] ŒAg xstit� � � X��

[(C-mon)] ŒA xstit� � � ŒA [ B xstit� �

[(Indep-G)] ˙ ŒA xstit� � ^˙ ŒB xstit� � 0 � ˙.ŒA xstit� � ^ ŒB xstit� � 0/ where A\B D ¿.

2. Rules: MP and Nec| for | 2 f�; X; P; ŒA xstit� W A � Ag g

100



In chapter 7 we we don’t distinguish between AtB and AtI since they don’t play a role in the

logic, just in the relation to norm consequence as we will discuss in section 6.5. We then show

that if condition g for effectivity functions fails in the class of models, then we can invalidate

Indep-G. This provides a completeness proof for the set of axioms for `Ixp which are given as

Definition 6.3.7. Axioms for `Ixp

1. Axioms for classical logic

(p) p � �p, p 2 AtB [ AtI

S5 for�:

K �.� � � 0/ � .�� � �� 0/

T �� � �

4 �� � ���

B � � �:�:�

KD for each ŒR xstit� � , R � Rol, P and X :

KR ŒR xstit�.� � � 0/ � .ŒR xstit� � � ŒR xstit� � 0/

DR ŒR xstit� � � : ŒR xstit�:�

KX X.� � � 0/ � .X� � X� 0/

DX X� � :X:�

KP P.� � � 0/ � .P � � P� 0/

DP P� � :P:�

[(DetX)] :X:� � X�

[(DetP)] :P:� � P�

[(XP)] XP� � �

[(PX)] � � PX�
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[(NP)] P�� � �P�

[(SettX)] Œ¿ xstit� � � �X�

[(XSett)] ŒRol xstit� � � X��

[(C-mon)] ŒR xstit� � � ŒR [ R0 xstit� �

2. Rules: MP and Nec| for | 2 f�; X; P; ŒR xstit� W R � Rol g

That gives us completeness of the logics `xp and `Ixp. That completeness proof allows

us to prove that we can then build canonical models for LIb by, essentially, combining an L

frame with an extension of an SI-frame (see definition 5.2.1). This is, as far as we can tell,

the first attempt to construct a canonical model for the xstit logic. There haven’t been detailed

completeness proofs like this in print, and particularly not for these models where the frames

are constructed from histories that are copies of Z from Broersen and Meyer (2011), what we

call regular models.

An interesting point to note is that the canonical model based on the logic of definition

6.3.6 isn’t a model/frame in the class of models from definitions 5.1.1 and 5.1.2. It is even

worse since the models are based on what Thomason (1984) calls a Neutral Frame. But adding

the P operator and doing some fancy footwork allows us to construct a model that is in the

right class to invalidate all of the unprovable `xp-arguments. I.e., what we show is that every

model like those in definitions 5.1.1 and 5.1.2 is a neutral model, and for any model like that in

definitions 5.1.1 and 5.1.2, we can find a model based on a neutral frame that refutes all of the

`xp-theorems.

There is a final consequence relation that we will make use of: `�xp. This consequence

relation is defined by the set of axioms for `xp, however, it is defined over the language LB�.

This relation is used to restrict the notion of `xp-consequence to the language that occurs in

the code �. It simply is `xp; however, there will only be atoms from at.�/ included in the

expansion of the language.

Before we move on we will say some things by way of comparison with previous work. The
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semantics from definition 5.1.1 are called various things in the literature, e.g., bundled trees or

Kamp frames.3 The major difference between our work and the other work is that the language

L doesn’t have an operator that looks at all the future or past, but only one step ahead and

behind. The closest that we have seen is that of Ciuni and Zanardo (2010) and Zanardo and

Carmo (1993). But these do not give up the “all future times” operators. Here we do. But

not without good reason. If a language has a “next state” operator, and an “all future states”

operator, then the semantic consequence relation won’t be compact. Using the standard notation

of ‘G'’ for ‘in all future states ' is true’, the set fXn' W n 2 N g will entail G', but no finite

subset will entail G'. However, in the sequel (section 8.3) compactness is important for our

system. Thus we will take the road into the future one step/state at a time.

6.4 How to Say Things Without Words: Expressing Legal Relations

Now that we have the language LIb we can look at how to say certain things that are involved

in constructing a system of norms, in Searle’s phrase: a deontology. We want to show how to

express sentences like ‘employees must submit their time sheets’, and ‘managers are prohibited

from using company cars for non-work related purposes’ and ‘the president of the company has

the ability to purchase new equipment for the production plant’. We will do this by exploiting

terminology from Holfeld (1920), and focusing on representing his legal relations.

The first step is to recognize that we are working within a propositional language, so some

elements of sentences will go unanalysed. So a phrase like ‘employees must submit their time

sheets’ must be paraphrased like ‘employees must see to it that the employee’s time sheet is

submitted’. In general we would like to capture the expressions in table 6.1 where x is a role

term, and p is a proposition.4

3See Zanardo (1996) for an in-depth overview and Thomason (1984), for an equally broad but less detailed
overview. Such structures are like Ockamist frames but there may be some slight differences.

4There is a long literature on formal representations of legal relations starting with Holfeld (1920), and extend-
ing to the new millennium, See Kanger and Kanger (1966), Fitch (1967), Makinson (1986) and Hansson (2001,
Ch. 13). These authors have extended and criticized Holfeld’s work, but due to lack of space we will avoid an in
depth discussion of the subtle points in this literature.
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power.x; p/ x has the power to bring about p
disability.x; p/ x is unable to bring about p

duty.x; p) x has a duty to bring about p
prohibition.x; p/ x is prohibited from bringing about p
exemption.x; p/ x is exempted from bringing about p
privilege.x; p/ x has a privilege to bring about p

right.x; p/ x has a right to bring about p

Table 6.1: Target Expressions

We start by showing how to express power.x; p/, and treat each in turn. These relations

are evaluated in this framework relative to dynamic states: .s; h/. If we are considering what

powers R � Rol has, we are really asking what R is able to do. So R’s powers depend on what

R is effective for relative to all of the histories coincident with h at s, i.e., all h0 such that s 2 h0.

Thus power.R; p/ can be expressed as ˙ ŒR xstit� p. Similarly, disability is a lack of power, so

disability.R; p/ can be expressed as :˙ ŒR xstit� p.

Duty and prohibition are trickier items. Since our language LI contains the violation con-

stant V , and according to Searle’s view, institutions define things like duties, we should extend

Anderson’s reduction—recall section 5.1.3—to define institutional duties and prohibitions. A

standard way5 of expressing obligation and forbiddance, i.e., duty and prohibition, in stit logic

using Anderson’s reduction is via a sentence like :ŒR stit W '� � V , which is read as ‘refraining

from seeing to ' results in a violation’ for duty; and ŒR stit W '� � V read as ‘seeing to ' is

a violation’ for prohibition. The regular stit operator from Belnap and Perloff (1992), Bartha

(1993) and Horty (2001) acts on the current state of evaluation, whereas the ŒR xstit� operator

is future looking. So the question is: does the violation occur now or later? If we express

prohibition.R; '/ as : ŒR xstit� ' � V , then it means that failing to make a choice that leads to

' is a violation now. Saying something like : ŒR xstit� ' � XV , is to say that failing to make a

choice that leads to ' leads to a violation in the next state of the current history. To remain con-

sistent with Searle, and Grossi, we will formalize: R’s failure to see to ' counts as a violation.

5Cf. Bartha (1993).
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What we will argue next is that the best way to represent that is by: : ŒR xstit� ' � ŒR xstit� V .

This is read as: R failing to see to ' in the next states results in R seeing to a violation in the

next state.

We give one positive argument and one negative argument for the view that the violation

should be in the future and represented in the way we sugggest. These arguments focus on

prohibition, but duty and prohibition are developed in analogy with one another. The standard

option for prohibition is �.ŒR xstit� ' � V /. But in this formalism, since V is treated like an

atomic sentence, if .s; h/ � V , then .s; h0/ � V for all h0 with s 2 h0. So if it is prohibited

to see to ', then it is a violation to choose to see to '. However, any choice that doesn’t

lead to ' would intuitively not be in violation of the norms. But suppose that ˙.ŒR xstit� '/,

and �.ŒR xstit� ' � V / are true at .s; h/. Then there is h0 such that .s; h0/ � ŒR xstit� ', so

.s; h0/ � V . But that means .s; h/ � V . So if R is capable of doing something wrong, then R

is already in violation. But that can’t be right.

The positive argument has to do with reasoning about prohibitions. In our system there

can be classifications of states as violations. Intuitively, if ' is classified as a violation, then it

should be prohibited to bring about '. However, interpreting prohibition as�.ŒR xstit� ' � V /

doesn’t guarantee that prohibitions against ' arise from classifying ' as a violation. Suppose

that ' is classified as a violation, then ' � V is always true, i.e., .s; h/ � �Xn.' � V /

for n 2 N. But ŒR xstit� ' doesn’t imply that ' is true, so V doesn’t have to be true even

though ŒR xstit� ' is. However, and this is the positive argument, if prohibition is interpreted as

ŒR xstit� ' � ŒR xstit� V , then we get the result: assume .s; h/ � �Xn.' � V / for n 2 N, then

.s; h/ � �X.' � V /, so then .s; h/ � Œ¿ xstit�.' � V / by settX, so .s; h/ � ŒR xstit�.' �

V / is by C-mon, so by K for ŒR xstit�, we get .s; h/ � ŒR xstit� ' � ŒR xstit� V . Whereas

interpreting ‘prohibited.R; '/’ as ‘ŒR xstit� ' � V ’ results in two counterintuitive results within

the formalism, ŒR xstit� ' � ŒR xstit� V gives us exactly what we would expect.

This means that prohibition is put in terms of making choices that lead to violations. Of

course when we want to express that something is a duty or prohibited always, that means it is
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so relative to any dynamic state. Thus to express prohibition we need to say �.ŒR xstit� ' �

ŒR xstit� V /. Duty is similar to prohibition except that it is the failure to see to something that is

classified as seeing to a violation, in all cases, i.e.,�.: ŒR xstit� ' � ŒR xstit� V /.

Now we come to another two correlated concepts exemption and privilege. A role R has a

privilege when it is possible for the role to do something without violation. The way that we

interpret this is by saying that it is possible for R to see to ', and be guaranteed not to see to

a violation, i.e., ˙.ŒR xstit� ' ^ : hR xstitiV /. Likewise, exemption is not doing something

and avoiding violation: ˙.: ŒR xstit� ' ^ : hR xstitiV /. Of course privilege and exemption

usually have a connotation that R is doing something that it usually wouldn’t be allowed to do.

Usually exemptions are equivalent to the negation of a duty, and a privilege is the negation of a

prohibition. However, because of axiom DR we get the weaker:

Observation 6.4.1. For R � Rol and ' 2 LIb,

1. ˙.ŒR xstit� ' ^ : hR xstitiV / `Ixp :�.ŒR xstit� ' � ŒR xstit� V /.

2. ˙.: ŒR xstit� ' ^ : hR xstitiV / `Ixp :�.: ŒR xstit� ' � ŒR xstit� V /

So a privilege implies the negation of a prohibition, and an exemption implies the negation

of a duty.

Finally we come to a right. There is a long literature on how to represent rights that we

don’t want to engage with here. That can be displaced to future work. We will be to focus on

just one interpretation of what a right is, and admit that it may not be the best nor the state of

the art. Intuitively, R has a right to bring about ', when no one is permitted to interfere with

Rs ability to bring ' about. Another way to put that is to say that everyone else is prohibited

from interfering with Rs ability to bring ' about. This latter paraphrase is close to something

we have already discussed. The major obstacle is the ‘everyone else’ in the paraphrase.

For instance if we were attributing a right to walk dogs to a role r, then we could say that

any role r0 interfering with r’s seeing to it that r walks a dog, then r0 is seeing to a violation.
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power.R; '/ ˙ ŒR xstit� '
disability.R; '/ :˙ ŒR xstit� '
duty.R; ') �.: ŒR xstit� ' � ŒR xstit� V /
prohibition.R; '/ �.ŒR xstit� ' � ŒR xstit� V /
exemption.R; '/ ˙.ŒR xstit� ' ^ : ŒR xstit� V /
privilege.R; '/ ˙.: ŒR xstit� ' ^ : ŒR xstit� V /
right.R; '/

V
R0�RolXfR g�.ŒR0 xstit�: ŒR xstit� ' � ŒR0 xstit� V /

Table 6.2: Institutional Relations

But also since Rol is finite P.Rol/ is finite. So generally we can express Rs right to see to ' as

^
R�RolXf r g

�.ŒR xstit�: Œr xstit� ' � ŒR xstit� V / (6.1)

This formula takes the conjunction of every formula that says R seeing to it that r doesn’t bring

about ', is bringing about a violation. However we have restricted the Rs so that they don’t

include r. This is an odd point of debate whether an individual can interfere with his/her own

rights. We have just taken a side and said no. So now we have represented all of the relations

in table 6.1. We collect our findings about how to express these institutional relation together in

table 6.2.

6.5 Normative Entailment

Using the formal machinery developed so far we will characterize the relation of normative

entailment for the language LI . Normative entailment is the relation that holds between insti-

tutional facts, i.e., holds between the contents of norms that are in force. In chapter 4, we had

a detailed philosophical discussion to defend the view that the relation of norm consequence

was, at least on Searle’s view, strong implication. In that discussion, however, the language

that the consequence relation was defined over was assumed to be a natural language. Then in

section 6 we introduced a formal language to characterize strong implication, but that was for a

merely propositional language. In the current chapter we have introduced a formal language in

which we can formulate norms, as we have seen in the previous section, and so we can, using
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definition 5.2.4, define a formal relation for normative consequence.

Let’s recall how we characterized norm consequence in chapter 4. There we said

The relation `S represents norm entailment if and only if for all � , ', that are under

institutional control, � `S ' iff DŒ�� �I D.'/.

What we went on to argue was that `S is the relation of strong implication. The formulas of

LI represent possible contents of norms that are declared by authorities. Thus codes, strictly

speaking, are sets of formulas from LI . And as we said in the informal characterization of norm

consequence, � and ' must be under institutional control. So to have a total characterization

we also have to represent in a formal manner the idea of a formal sentence being under insti-

tutional control. Obviously atomic sentences from AtB , i.e., the brute sentences, are not under

institutional control. But clearly members of AtI are. But there are cases where sentences can

combine atoms from both the brute and institutional primitive vocabulary. For instance, when

p � V , i.e., classifying p-states as violation states.

We characterize the set of formulas that is under institutional control via a recursive defini-

tion as follows:

Definition 6.5.1. The institutional control function Ic W L ! f 0; 1 g is defined recursively as

follows:

1. Ic.s/ D 1, iff s 2 AtI [ fV g,

2. Ic.?/ D 0

3. Ic.:'/ D 1 iff Ic.'/ D 1.

4. Ic.' ^  / D 1 iff Ic.'/ D 1 and Ic. / D 1

5. Ic.' _  / D 1 iff Ic.'/ D 1 and Ic. / D 1

6. Ic.' �  / D 1 iff Ic. / D 1

7. Ic.' �  / D 1 iff Ic.'/ D 1 or Ic. / D 1

8. Ic.ŒR xstit� '/ D 1 for R � Rol
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9. Ic.�'/ D 1 iff Ic.'/ D 1

10. Ic.X'/ D 1 iff Ic.'/ D 1

This function represents the set of formulas of LI that are under institutional control as

follows:

Definition 6.5.2. ' 2 IC.LI / iff Ic.'/ D 1.

We can explain our rationale for the recursive clauses as follows. The right propositional

content conditions for status function declarations, e.g., promulgations, is that the truth of the

content be manipulable by the authority making the declaration. But by ‘manipulable’ we

mean that the truth (or falsity) of sentence ' depends on whether some of its content has been

introduced into the institutional vocabulary. Without being introduced that sentence isn’t com-

prehensible within the institution.

Let’s first consider the atoms. Clearly, it is the atoms in AtI that are controlled by the

authority. Now it isn’t that the truth or falsity depends on whether an authority says the atom is

true or false. But the authority lays down the conditions under which that atom can be true or

false, the authority connects the atom to the world. Whether Frank is the legal guardian of Jesse

may be the case because of a purely biological accident: Frank is Jesse’s father. But without the

legal authority stipulating that ‘legal guardian’ applies when there is a relationship of biological

fatherhood is up to the authority. But whether there is biological fatherhood isn’t up the the

authority. So atoms in AtB are not under institutional control.

For the Boolean cases, we must consider both the truth conditions and the falsity conditions.

The sentence :' is going to be under institutional control when ' is. For ' ^  , we see that if

one conjunct wasn’t under institutional control, then the truth of the sentence wouldn’t be under

institutional control, although the falsity of the sentence would be. Of course we have the dual

situation in the case of ' _ , if only one of the disjuncts is under institutional control, then the

truth of the sentence is under institutional control, but the falsity of the sentence isn’t.

For the sentence ' �  , we are in a similar situation as with atoms. These institutions
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function by introducing ways of classifying previously existing entities (i.e., states) under newly

introduced vocabulary, and specifying deontologies. By having ' �  under institutional

control iff  is, conditionals can be used by authorities to introduce new classifications onto

pre-existing vocabulary. But they can’t introduce new vocabulary onto old, think of trying to

classify money as a mineral, it just wouldn’t work. For a similar reason, ' �  will be under

institutional control when either equivalent is.

What about sentences of the formX', P' and�'? Here, it is a mode of truth, whether ' is

true in the next stage, or true relative to every history at a static state. So these sentences will be

under institutional control when ' is. Finally, we have Œr xstit� ' (or ŒR xstit� ' where R � Rol).

Does this sentence being under institutional control depend on whether ' is? Surprisingly the

answer is no. The reason is, institutional authorities have complete control. Whether R has

certain abilities depends on what other abilities that the authority gives that set of roles. This

means that whether ˙ ŒR xstit�p for some p 2 AtB is true, is under the institutional authority’s

control. It might be objected that an authority is not able to give a baby the power to see to it that

a 1000kg of cement is lifted. Indeed, but the authority could reassign whatever role was given to

the baby to something or someone that can see to that task. Or consider an example where some

role r is under an obligation to cut down a tree. But suppose r can order r0 to cut down the tree,

and r0 does so. If that happens the authority can count r0’s cutting the tree down as r seeing-

to-it-that the tree is cut down. And that latter sentence should be under institutional control.

But if whether Œr xstit� ' is under institutional control depended on ' being under institutional

control, that sentence wouldn’t be under institutional control. Thus Œr xstit� ' (or ŒR xstit� ') is

under institutional control regardless of whether ' is.

The set IC.LI / is defined by Ic, but we can notice another property that this set has. Since

AtI is finite, and Ic is defined recursively, whether a sentence in LI is a member of IC.LI / is

decidable. This is very easy to see since each formula is finite, and there are only finitely many

steps to go through to get to atoms, and only finitely many atoms in at.'/ and only finitely

many elements of AtI to check any p 2 at.'/ against. Thus there are only finitely many steps
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to check whether Ic.'/ D 1. So now we have a formal characterization of institutional control

for LI .

We can informally characterize normative entailment as follows: � `N ' iff 1) � `S ',

and 2) �I' � IC.LI /. All that remains is extending strong implication from definition 5.2.4

to the language LI .

As we mentioned at the end of section 5.2, we allowed strong implication to hold between

a set of sentences that might contain sentences of the form � b � 0. Strictly speaking a sentence

about propositional containment isn’t the content of a declaration. However, in a certain sense,

sentences about containment are under institutional control. Of course some aren’t as well.

The point is that there are different levels of normative entailment, each specific to a set of

background facts.

Indeed, we see this kind of specificity manifested in the law. We have argued that the law

can’t decide what is true scientifically speaking, but there is a kind of background scientific

framework that is in use when making legal judgments. A theory of norm consequence may

represent this level of specificity, but it could be argued that normative consequences derived in

relation to a particular background theory aren’t the strictly “logical” consequences.

Finally, we come to give a definition of norm consequence or norm entailment, its converse.

Definition 6.5.3 („-Relative Norm Consequence). Let � be a code, i.e., � � IC.LI /, and „

a set of formulas from LIb, then

� „-Norm Entails ' (� `„N ') iff there are ı1; : : : ; ın 2 � [ „,  1; : : : ;  k 2 „, and

 01; : : : ;  
0
m 2 � s.t.

„-NC1: `Ixp ı1 ^ : : : ın � ',

„-NC2: `Ixp . 1 ^ : : : ^  k/ � .' b . 01 ^ : : : ^  0m//, and

„-NC3: ' 2 IC.LI /.

So we can state this more succinctly as follows:

„-NC1: � [„ `Ixp '
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„-NC2: � [„ `Ixp ' b . 01 ^ : : : ^  0m/ for some  01 : : :  
0
m 2 �, and

„-NC3: ' 2 IC.LI /.

So the definition says that ' is a normative consequence of � when it is a logical consequence,

in the language of LIb, of � along with other background facts from „, and the content of ' is

contained in the content of �, possibly given other facts about propositional containment in „.

But it is also required that ' be under institutional control. Thus we can see how this connects

to the conditions on promulgations discussed in section 4.4.

This definition might be called ‘„ence6 relative norm consequence’. Intuitively as well, we

would restrict „ to contain only facts about nature, i.e., brute facts, and positional containment

(b)-sentences. The special case of this, which we will use in the sequel, we will call Norm

Consequence. Norm consequence is ¿-Relative Norm Consequence, and defined as

Definition 6.5.4 (Norm Consequence). � Norm Entails ' (� `N ') iff there are  01; : : : ;  
0
m 2

� s.t.

NC1: � `Ixp ',

NC2: `Ixp ' b . 01 ^ : : : ^  0m/, and

NC3: ' 2 IC.LI /.

This account of normative consequence is most like the account of illocutionary entailment

since its relations of propositional containment will hold regardless of which semantic interpre-

tation is given to the sentences. Of course we would hold the semantic interpretation of LI fixed

in a certain respect since the elements of AtI and AtB would always be interpreted as institu-

tional or brute atomic sentences. This relates to the most heretical position considered in this

essay. We have made a notion of logical consequence, i.e., the logic of institutions/normative

consequence, dependent on content and not strictly on form. We think, however, that the no-

tion of content used is misnamed. We are, after all, still working with a formal language. Any

6Pronounced ‘Xi-ence’.
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Figure 6.1: The Relation Between Institutions and Reality

consequence relation that we construct will be formal in the sense that the interpretations of the

basic atoms in AtB and AtI are left unspecified. So that charge won’t worry us.

6.6 Institutions and “The World”

Social reality is, on Searle’s model, independent from brute reality. We can picture this as in

figure 6.1. The things that make the brute language true are not the same as those which make

the institutional language true; that is why we offered distinct basic languages to represent

atomic brute and institutional facts. It is also why we have roles (Rol) as distinct from agents

(Ag). But the connection between the brute and institutional reality is given in the form of the

status function declaration. The institutional deontology is imposed on the brute reality when

agents are assigned roles, and the various count as conditionals are brought into force.

In this section we want to model, formally, the structure of this imposition. We are not

looking to model the mechanisms by which social reality is imposed or sustained, just what

happens after the institution is imposed. Our formal model of this imposition is what we will

call an implementation.
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In our logic of institutions we have two languages, one of which is used to represent the brute

world, and the other represents the social world. These languages are LB and LI , respectively.

The language LIb allows us to represent the combinations of the two realities, and `Ixp provides

us with its logic. We required this separation partly because it makes better sense of Searle’s

account of institutions, but, second, it will also allow us to model the fact that one norm applies

to many agents.

Recall that LI contains AtB and AtI , whereas LB only contains AtB . Also, LI only has

role terms, whereas LB has agent terms. As per our notion of norm consequence, i.e., definition

6.5.4, a code� is completely contained in IC.LI / thus it doesn’t contain any agent terms in its

representations. An implementation is an assignment of agent terms to roles in the sentences of

�. Recall that a code � is our formal representation of an institution.

We will also provide a way to connect a code to a model of the brute world, i.e., an LB-

model. Models of LB are representations of ways the world might be independently of an

institution. And if Searle is right that there is independence between the social and brute reality,

then the range of possibilities of the brute world is all there is to the total range of possibilities.

Of course this seems wrong because there are many ways an institution might be imposed on

the world. Once we have the notion of an implementation we can resolve this putative conflict.

So now we come to our definition.

Definition 6.6.1. Let � be a code. An implementation of � is a triple I D hholds; �;I .�/i

such that

1. holds � P.Ag/ � Rol, such that for each a 2 Ag there is A � Ag and r 2 Rol such that

a 2 A and hA; ri 2 holds.

2. � is a partition of Rol, where �r is the cell of the partition containing r, such that

3. if hA; ri 2 holds, then for all r0 2 �r, hA; r0i 2 holds, and

4. I .�/ � LB� such that each ı 2 I .�/ is a substitution instance of some ' 2 �, where

each role term r mentioned in ' is replaced uniformly in ' by an agent term A such that
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hA; ri 2 holds.

We will now explain the conditions in definition 6.6.1. holds is a relation between agent

terms and singular role terms. As we said above, an implementation is a specification of who

plays what roles, and that is exactly what holds does. But notice that since holds is a relation,

multiple agents (singular or plural) can hold a single role, and vice versa.

The partition of Rol by � provides what we called a general role in section 5.1.2. The

rationale behind the general role is that since we don’t have quantifiers, we can still repre-

sent multiple types of the same role in one formula. Why is this important? In the for-

mula Œr xstit� ' � .Œr xstit�  � V /, we have to interpret r by the same agent, in formula

Œr xstit� ' � .Œr0 xstit�  � V /, r and r0 can be interpreted by different agents. But when we

want to interpret natural language expressions like ‘citizens must not see to it that other citizens

see to fires’ we have to represent it with something like �.: Œr xstit�: Œr0 xstit� ' � Œr xstit� V /

as per our discussion in section 6.4. We can then interpret r and r0 both as citizens when

r; r0 2 �Citizen. The cells in � have another role to play in connecting LI to LB .

Condition 3 specifies that if r; r0 2 �r00 , then any agent that holds r must also hold r0 (and

r00 as well). This makes sense since if, say, A is a citizen, then A must have all of the responsi-

bilities, powers, and privileges that any citizen has simply in virtue of being a citizen.

As we said, the implementation is to bridge the gap between the institutional language and

the brute language. So far holds provides a way to connect the institutional roles to agents,

but we need to do more. To fully assign the deontology of an institution to agents it must be

the relevant agents that hold the roles are also given the powers, and bear the burden of the

responsibilities that come with those roles. In our language, we represent that r has a duty to

', as per section 6.4, by �.: Œr xstit� ' � Œr xstit� V /. To impose the institutional fact that A

now fulfills the role r under this implementation, it must be that �.: ŒA xstit� ' � ŒA xstit� V /

is true. Indeed, that must be the case for each member of �, r and A. So we take all of the

substitution instances of the formulas  in �, where if hA; ri 2 holds, then I .'/ replaces r

with A uniformly in  .
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So for instance say f�.: Œr xstit�: Œr0 xstit� ' � Œr xstit� V / g D �, and say that the imple-

mentation I is given by

1. holds D f hA; ri ; hB; ri ; hB; r0i g and

2. � D f f r g ; f r0 g g.

For Ag D f a;b g and A D f a g and B D fb g. Then I .�/ must contain at least the following

formulas:

�.: ŒA xstit�: ŒB xstit� ' � ŒA xstit� V /

�.: ŒA xstit�: ŒB xstit� ' � ŒB xstit� V /

�.: ŒB xstit�: ŒB xstit� ' � ŒB xstit� V /

Just one more point about the relationship between the general roles and I .�/. Condition 3

also says that anywhere that an agent term A can appear for a role r, any other role term in that

general role A can be, and must be substituted there as well. Finally, we should also notice that

condition 1 requires that each agent hold some role, or be part of some role. This assumption is

for technical reasons, but it has an intuitive grounding as well. The implementation of a code

specifies who plays which roles in an institution. If someone is accorded absolutely no role, then

it is reasonable to assume that agent isn’t part of that institution. So from a technical standpoint

that agent can simply be removed from Ag without any loss since none of the institutional facts

applies to that agent.

The implementation allows us to bridge the gap between LI and LB . The set I .�/ rep-

resents what has to be true for the institutional norms to be in force relative to a particular

imposition. But it doesn’t represent a model of “the world”, in which the code � is in force.

For that we need an xstit model, but not just any xstit model.

Our argument in section 4.4 for why normative entailment was strong implication turned, in

the end, on the fact that institutional facts that don’t exist relative to a particular society shouldn’t

be included as normative consequences of declarations of authorities in that society, even when
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propositions including those institutional facts are classical consequences of declarations. That

is enshrined in condition NC2 of definition 6.5.4. So if an LB-model is a model of “the world”,

then it shouldn’t interpret any institutional language that isn’t in �. Thus, we need a model of

the language LB�, to represent a world in which � is in force.

But again we want to maintain the Searlean7 point that the brute world is all that is or could

possibly be the case. More importantly, an institution can be imposed on the brute world. To

reflect these points we define models of LB� as expansions of LB-models. Of course only some

expansions will be appropriate, i.e., only some expansions will be models of the code �. Let’s

recall the definition of a model for LB .

An LB model M is a regular, universal model hS;H;E; vi where

1. S ¤ ¿, are the static states.

2. H ¤ ¿ is a set of orders hh;<hi such that for each h 2 H

(a) h � S and hh;<hi is isomorphic to Z with its usual order, and

(b) if s 2 h \ h0, then f s0 W s0 <h s g D f s0 W s0 <h0 s g. Since each order is isomorphic

with Z, there is a unique successor and predecessor for each s 2 h, we refer to these

by lub.s; h/ and glb.s; h/ respectively.

3. E W S �H � P.Ag/ ! P.S/, the h-effectivity function, assigns a set of static states to

each triple .s; h;A/. It must obey the following conditions:

(a) if s 62 h, then E.s; h;A/ D ¿

(b) if s0 2 E.s; h;A/, then s0 2 lub.s/

(c) if s 2 h, lub.s; h/ 2 E.s; h;A/

(d) E.s; h;¿/ D lub.s/, if s 2 h

(e) if s 2 h, then E.s; h;Ag/ D f lub.s; h/ g

7Although it could be a Wittgensteinian point too.
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(f) if A ¤ B, then E.s; h;B/ � E.s; h;A/

(g) if A \ B D ¿ and s 2 h \ h0, then there is h00 with s 2 h00 and E.s; h00;A/ and

E.s; h00;B/ are contained in E.s; h;A/ and E.s; h0;B/, respectively.

4. v W AtB ! P.S/. And interprets the language LB as follows:

v gives rise to a truth relation � as follows:

1. .s; h/ � p 2 AtB iff s 2 v.p/

2. .s; h/ � :' iff .s; h/ ² '

3. .s; h/ � ' ^  iff .s; h/ � ' and .s; h/ �  

4. .s; h/ � ' _  iff .s; h/ � ' or .s; h/ �  

5. .s; h/ � ' �  iff .s; h/ ² ' or .s; h/ �  

6. .s; h/ � �� iff for all h0 with s 2 h0, .s; h0/ � �

7. .s; h/ � X� iff for all .lub.s; h/; h/ � �

8. .s; h/ � P� iff for all .glb.s; h/; h/ � �

9. .s; h/ � ŒA xstit� � iff for all s0; h0, if s0 2 E.s; h;A/ and s0 2 h0, then .s0; h0/ � �

To extend M to a model of LB�, M�, v is extended to a function v� from AtB [ at.�/ to

P.S/ such that if p 2 AtB , then v�.p/ D v.p/. We will say that a particular LB�-model M�

realizes � when it models an implementation of �. Put formally,

Definition 6.6.2. Let � be a code, and I an implementation of �. Let M be an LB model,

M� an extension of M to a model of LB�, and .s; h/ 2 jM�j D jMj. Then M�; .s; h/ realizes

� relative to I iff M�; .s; h/ � I .�/.
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Figure 6.2: Realization of Implementation

So the relation of ‘realization’ is triadic between a model, a code and an implementation.

However, our notions of implementation and realization (relative to an implementation) allow

us to talk about codes, i.e., subsets of IC.LI /, as subsets of LB� which are satisfied (in the

usual logical sense) in models of the “real” world—modulo some institutional facts. So we

have provided a bridge from the institutional reality represented in � to its imposition onto a

brute reality through the realization of implementations of those codes. We picture a realization

of an implementation of � in figure 6.2.

But there is a pressing question. Since � is a subset of IC.LI /, we take it to represent the

set of explicitly promulgated norms of some authority. The implicitly promulgated norms are

the norm consequences of �, i.e., the implicit norms are CN .�/ D
˚
' 2 LI W � `N '

	
. But

what, if any, relationship is there between implicit norms, and substitution instances of those

implicit norms in an implementation? The worrisome scenario is if � `N ', but there was a

realization of � that didn’t realize '. Fortunately that can’t happen, and that is shown in the
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following observation (see section 7.4 for the proof).

Proposition 6.6.1. For any implementation I , if � `N ', � °Ixp ? and ' 2 LI , then

I .�/ `�xp ı for all ı 2 I .'/.

So not only does every consequence of � get reflected, but every instantiation under an

implementation gets reflected in any realization of an implementation. This is very good news.

6.7 Responses to Some Objections

We will pause to respond to some objections in the literature. Sven Ove Hannson has levelled

a couple of criticisms on our way of expressing legal relations like power. The first is that

the legal relation of having a power should not be confused with the idea of a power in general,

i.e., a physical power. Hannson’s objection can be interpreted as claiming that stit-like proposals

mistakes physical power for legal power. In this system there is no such confusion. Agents have

physical powers, while institutional roles have legal (or institutional) powers as well. Agents

have institutional powers in virtue of holding a particular role, i.e., that role being assigned to

the agent via an implementation. But a general may have the power to destroy a city simply

because of their institutional power of command of the military. Legal power and physical

power are not confused.

Second, Kanger and Kanger (1966) express a legal power as the permission to see to a

proposition. This again, claims Hannson, mistakes the power to do something with permission

to do that something, i.e., it confuses permission with ability. The current system doesn’t make

that mistake. Power is the possibility of seeing to something, not the permission. And from the

previous paragraph, we do not conflate institutional power with physical power.

The next issue we would like to address is a common worry to do with Anderson-like re-

ductions of deontic logic.8 In an Ixstit model, when .s; h/ � �XV , then .s0; h0/ � V for

any h0 with s 2 h0 and lub.s; h0/ D s0. That means .s; h/ � � ŒR xstit� V for any R � Rol.
8A form of this objection is in one of Anderson’s papers on the topic, cf. Anderson (1967).
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Thus, when .s; h/ � �XV , then for any ', .s; h/ � �.ŒR xstit� ' � ŒR xstit� V / as well as

.s; h/ � �.: ŒR xstit� ' � ŒR xstit� V /. So when there is a violation in all the next states

everything is a duty and prohibited!

This is not the case. Indeed, when �XV is true, all duty and prohibition sentences are

true, but that does not a duty or prohibition make. For there to be a prohibition the sentence

�.ŒR xstit� ' � ŒR xstit� V / must follow from the code, i.e., � `N �.ŒR xstit� ' � ŒR xstit� V /.

Mere truths in a model don’t, necessarily, mean anything. Also, once a code has been imple-

mented, there are no longer roles expressed in the language. An implementation takes � from

LI to LB�, and the latter language doesn’t contain role terms, only agent terms. Thus duties

for an agent are given in virtue of an implementation of a code on an LB�-model. Again, what

happens in one particular model isn’t an issue. Indeed, how we interpret obligations relative to

an institution is distinct from institutional duties, and is treated briefly in section 9.1.2.

One final objection has to do with `N .9 As we have defined it, if� `N ', then ' 2 Ic.LI /.

But this implies that although ' �  2 Ic.LI /, and `Ixp : � :' b ' �  , and ' �

 `Ixp : � :', it is not the case that ' �  `N : � :', since : � :' is not under

institutional control when ' isn’t. Contraposition fails for norm consequence. But this isn’t a

problem for our system.

Indeed, if ' isn’t under institutional control, then an institutional authority doesn’t want to

say that non- states are to be classified as non-' states. As we disscussed in our explanation of

Ic, allowing � � � 0 to be under institutional control when � 0 isn’t supposes that non-institutional

vocabulary can be hijacked by institutional vocabulary. But it will be true that a non- state

is a non-' states when '-states are already classified as  -states in the institution. So what is

expressible by : � :' is expressible by a sentence that is under institutional control, viz.

' �  . Any conclusion under institutional control that is `Ixp-derivable from : � :', when

� `Ixp : � :', and whose content is contained in � will be a norm consequence of �.

9Thank you to Allen Hazen for this criticism.
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Chapter 7

Completeness of `Ixp

“I’m a metalogician”, Bron said. “I define and redefine the relation between P
and Not-P five hours a day, four days a week.”

From Trouble on Triton, by Samuel Delany, 1976.

This chapter acts as an appendix to chapter 6. In this chapter we prove various important

facts about the logical systems presented in the previous chapter. Our goal is to prove that `Ixp

is complete with respect to �Ixp. To accomplish that, as we mentioned in the last chapter, we

first prove completeness of `xp with respect to the frames/models from definition 5.1.1. We

then show that if condition g on effectivity functions fails, then we can invalidate Indep-G. This

provides a completeness proof for `Ixp. Then we argue that we can combine that result with the

one from section 5.3 for SI-validity. Those will give us a completeness proof for `Ixp.

7.1 Completeness of `xp

The proof of completeness for `xp is rather roundabout. Recall that in definition 5.1.1 we called

that kind of model a universal, regular frame. A universal, regular frame for L has the special

properties that each of its histories look like Z, and that when s 2 h \ h0, then all of the past

static states are shared, i.e., no backwards branching.

It became evident that the usual way of proving completeness didn’t function with respect

to regular models. The problem is that the usual canonical model construction doesn’t generate

a regular model. In the canonical model construction we take the maximally consistent sets—

which we call maxi sets—as the static states, and the histories to be lines of maxi sets. But since

the successor and predecessors in those lines must be unique there can be no branching. But

that means the canonical model doesn’t provide enough countermodels for non-theorems.

But it didn’t seem that the canonical model could easily be made into a regular model either.
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The “canonical” way of imposing a branching structure on the canonical model is to take the

static states to be equivalence classes of maxi sets. But doing that would cause states to loop

which would disrupt the Z-like structure of histories in regular models. So what we decided to

do was provide a completeness proof in the usual way to see what kind of models the language

L is directly talking about. These irregular models for L we call neutral models after Thomason

(1984). We show that completeness holds for the irregular models, but we can also show that

regular models can be generated from the irregular models so that completeness holds for the

regular models as well. We will start with a review of regular models.

7.1.1 Regular Models of L

We will recall the definitions of a regular model here, as well as the semantics, for clarity. An

L-model M D hS;H;E; vi is a regular model when

1. S ¤ ¿, are the static states.

2. H ¤ ¿ is a set of orders hh;<hi such that for each h 2 H

(a) h � S and hh;<hi is isomorphic to Z with its usual order, and

(b) if s 2 h \ h0, then f s0 W s0 <h s g D f s0 W s0 <h0 s g. Since each order is iso-

morphic with Z, there is a unique successor and predecessor for each s 2 h,

we refer to these by lub.s; h/ and glb.s; h/ respectively. We can generalize these

concepts in the following way: glb.s/ D f s0 W 9h glb.s; h/ D s0 g and lub.s/ D

f s0 W 9h lub.s; h/ D s0 g. These give the set of successors and predecessors of s,

respectively.

3. E W S �H �P.Ag/! P.S/ is called an h-effectivity function. The effectivity function

provides a set of states that a group of agents is effective in ensuring from a given state s,

relative to a history h. The function E must obey the following conditions:

(a) if s 62 h, then E.s; h;A/ D ¿
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(b) if s0 2 E.s; h;A/, then s0 2 lub.s/

(c) if s 2 h, lub.s; h/ 2 E.s; h;A/

(d) E.s; h;¿/ D lub.s/, if s 2 h

(e) if s 2 h, then E.s; h;Ag/ D f lub.s; h/ g

(f) if A ¤ B, then E.s; h;B/ � E.s; h;A/

(g) if A \ B D ¿ and s 2 h \ h0, then there is h00 with s 2 h00 and E.s; h00;A/ and

E.s; h00;B/ are contained in E.s; h;A/ and E.s; h0;B/, respectively.

And v is a function At! P.S/. We interpret the language L as follows:

1. .s; h/ � p 2 At iff s 2 v.p/

2. .s; h/ � :' iff .s; h/ ² '

3. .s; h/ � ' ^  iff .s; h/ � ' and .s; h/ �  

4. .s; h/ � ' _  iff .s; h/ � ' or .s; h/ �  

5. .s; h/ � ' �  iff .s; h/ ² ' or .s; h/ �  

6. .s; h/ � �� iff for all h0 with s 2 h0, .s; h0/ � �

7. .s; h/ � X� iff for all .lub.s; h/; h/ � �

8. .s; h/ � P� iff for all .glb.s; h/; h/ � �

9. .s; h/ � ŒA xstit� � iff for all s0; h0, if s0 2 E.s; h;A/ and s0 2 h0, then .s0; h0/ � �

After introducing regular frame and models in definition 5.1.1, we said that we would focus on

universal regular L-models. The distinction between a universal and a non-universal, regular

model can be explained as follows: in a universal regular model
T
H ¤ ¿ whereas in a non-

universal regular model
T
H D ¿. We use the term ‘regular’ for these models since they are

the models that are used most in applications, and so we will use them to define validity for L

and denote entailment relative to these models with �xp.
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Definition 7.1.1. � �xp ' iff For any regular L-model M; and .s; h/ 2 jMj, M; .s; h/ � �

only if M; .s; h/ � '.

We have to be clear about calling something a regular L-model since it encourages the

thought that there could be irregular L-models. By ‘irregular’ we do not mean non-universal,

we mean that it is a general form of model for L than the regular models. Indeed, our proof of

completeness will depend on these irregular models for L.

7.1.2 Neutral Models of L

To define a neural model, we have to define some mathematical structures that have a similar

structure to Z. So we will start with some general notation.

Suppose that R � S � S is a function (i.e., For each s 2 S there is unique s0 2 S such that

sRs0, hence we could write sRs0 as R.s/ D s0). A function that is from a set to itself is called

an endomorphism and one can iterate endomorphisms: R.R.R.s/// D R3.s/, for instance.

Whenever an endomorphism satisfies R.s/ D R.s0/ only if s D s0 we say that it is injective.

Usually we will refer to functions with lower case letters: f; g; b; : : :.

If R is a relation on S , then the transitive closure of R, denoted RC, is constructed recur-

sively: aR0b iff aRb, aR1b iff there is z such that aRz and zRb, aRnC1b iff there is z such

that aRnz and zRb. Then RC D
S1
nD0R

n. RC is a transitive relation. If f is a function on S ,

then we can define the transitive closure of the function, denoted f C, recursively as f 1.s/ D s0

iff f .s/ D s0, and f n.s/ D s0 iff there is z such that f n�1.s/ D z and f .z/ D s0. s and s0

are related by the transitive closure of f is denoted as f C.s/ D s0, i.e., for some n 2 N, with

n > 0 f n.s/ D s0. Notice that f 0.s/ D s.

An almost injective endomorphism f is an endomorphism that obeys the following prop-

erty:

8s; s0 2 SŒf .s/ ¤ s & f .s0/ ¤ s0�) Œf .s/ D f .s0/) s D s0� (7.1)

This says that as long as arguments are not fixed points of f , f acts injectively on the argu-

ments. It is also important to note that injective endomorphisms also satisfy this property. As
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we noted each history in a regular model looks like Z, and our goal is to generalize this structure

to provide an irregular class of models for L.

Definition 7.1.2. A Discrete Line Function (DLF) on a non-empty set S is an almost injective

endomorphism f W S ! S such that

[TRI] its transitive closure obeys trichotomy: for every s; s0 2 S : either f C.s/ D s0 or

f C.s0/ D s or s D s0, and

[UFIX] if s; s0 2 S , with f .s/ D s and f .s0/ D s0, then s D s0.

The first condition TRI says that every two distinct members of S are related by f by some

finite distance, i.e., there is n 2 N such that either f n.s/ D s0 or f n.s/ D s0. The UFIX

condition states that if there is a fixed point, it is unique. The structures in this class are all

manner of objects: finite and infinite lines, loops, lines with loops at a point on the end, reverse

trees, among others. But we want to focus on structures like hN; x C 1i or hZ; x C 1i. We call

the class of discrete line functions DLF.

To properly mimic the structure of Z we need to place an inverse-like function to match f

on the DLF, which we will call b, which is also a DLF, but in the opposite direction. However,

we want to require that it relates to f in a certain way. We will call such a structure a Double

DLF (DDLF).

Definition 7.1.3. A Double DLF is a triple hS; f; bi where f and b are both DLFs from S ¤ ¿

to S such that

[CONV1] For any s 2 S , 9s0 ¤ s with f .s/ D s0 only if b.f .s// D s,

[CONV2] For any s 2 S , 9s0 ¤ s with b.s/ D s0 only if f .b.s// D s, and

[SIZE] jS j � 2 only if for any s 2 S , if f .s/ D s, then b.s/ ¤ s.

So b is almost the inverse of f . At the end points the functions must stop being inverses.

DDLFs of size 1 are unique up to isomorphism, it is not so with DDLFs of larger finite car-

dinality. Intuitively, DDLFs of finite cardinality are either loops or lines with loops on either

end:
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A DDLF of infinite cardinality will look like Z or like N with a loop at 0. We will call the class

of DDLFs DDLF. We notice that when jS j D 1, both f .s/ D s D b.s/ by necessity, so in such

a case the SIZE condition would fail, but that is why there is the condition that the cardinality

must be at least 2.

We make another observation that allows us to classify these objects.

Observation 7.1.1. Let hS; f; bi be a DDLF, then

1. f is injective iff for all s 2 S , b.f .s// D s

2. g is injective iff for all s 2 S , f .b.s// D s

3. f and g are injective iff for all s 2 S f .b.s// D s D b.f .s//.

Proof. We will do the first, since the second is symmetric. (ONLY IF) Suppose that f is

injective. If jS j D 1, then clearly b.f .s// D s. So assume that jS j � 2. Now what we will

show is that for all s 2 S , f .s/ ¤ s. Suppose for reductio that f .s/ D s. Then by SIZE,

b.s/ ¤ s, which means by CONV2 that f .b.s// D s. But by injectivity we also have that

f .b.s// ¤ s, a contradiction. So then by CONV1, it follows that b.f .s// D s.

(IF) Suppose that for all s 2 S , b.f .s// D s, then suppose that f .s/ D f .s0/. Then by our

assumption, s D b.f .s// D b.f .s0// D s0. Hence f is injective.

3 follows from 1 and 2.

We must also notice something about the structures,

Observation 7.1.2. If hS; f; bi is a DDLF with both f and g injective, then either it is isomor-

phic to hZ; x C 1; x � 1i, or hZn; x C 1; x � 1i for some n 2 N.

Proof. Clearly, hZ; x C 1; x � 1i and hZn; x C 1; x � 1i are such DDLF structures. If S is

infinite, then pick some s 2 S , and define g W Z ! S such that g.0/ D s, and g.n C 1/ D
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f .g.n// and g.n � 1/ D b.g.n//. The same method can be used in the finite case. But we just

pick ZjS j as the domain of g.

From here on, when we call something an ‘injective DDLF’ we will mean that both f and b

are injective. We will refer to the class of injective DDLFs as IDDLF and abbreviate ‘injective

DDLF’ as IDDLF. From these structures we can define lub and glb functions. What we had in

the regular models was a kind of standard ordering on the histories, i.e., the one from Z. Here

things are a bit more liberal, but we can still interpret the language L. What we do is make

each history h a triple hh; fh; bhi such that h � S (S the static domain of the model) which is

a DDLF.

Now we define a semantics for L based on a kind of structure that Thomason (1984) calls

a neutral frame. In general, a neutral frame is a bunch of independent time streams (histories)

whose points are related by an equivalence relation. This relation represents what the modal

alternatives are. This model is somewhat different from the original conception of definition

5.1.1 because there alternatives share the past, coincident pasts are identical. That may seem

more intuitive, in a neutral frame the pasts of alternatives are at most indiscernible. What we

will get are the following:

Definition 7.1.4. A neutral L-frame is a triple F D hS;H;E;�i such that:

1. S ¤ ¿, are the static states.

2. � is an equivalence relation on S

3. H ¤ ¿ is a set of triples h D hh; fh; bhi with h � S such that

H1 each hh; fh; bhi 2 H is an injective DDLF,

H2 if s 2 h and s0 2 h0 with s � s0, then for each n 2 N, bn
h
.s/ � bn

h0
.s0/.

4. jFj D f .s; h/ 2 S �H W s 2 h g (the domain of F)

5. lubF.s; h/ D fh.s/ and glbF.s; h/ D bh.s/ but now

6. lubF.s/ D f s
� 2 S W 9h0; s0 s.t. s � s0 & fh0.s

0/ D s� g, and
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7. glbF.s/ D f s
� 2 S W 9h0; s0 s.t. s � s0 & bh0.s

0/ D s� g.

8. E W S �H �P.Ag/! P.S/ is called an h-effectivity function. The effectivity function

provides a set of states that, relative to a history h a group of agents is effective in ensuring

from a given state s. The function E must obey the following conditions:

(a) if s 62 h, then E.s; h;A/ D ¿

(b) if s0 2 E.s; h;A/, then s0 2 lub.s/

(c) if s 2 h, lub.s; h/ 2 E.s; h;A/

(d) E.s; h;¿/ D lub.s/

(e) if s 2 h, then E.s; h;Ag/ D f s0 W s0 � lub.s; h/ g

(f) if A ¤ B, then E.s; h;B/ � E.s; h;A/

(g) For all A;B .s; h/; .s0; h0/; .s00; h00/ 2 jFj, if A \ B D ¿ and s0 � s � s00, then

there is .s000; h000/ 2 jFj such that s000 � s with E.s000; h000;A/ � E.s0; h0;A/ and

E.s000; h000;B/ � E.s00; h00;B/.

We will usually omit the subscript F on, inter alia, the lub and glb functions, taking it to be

understood. We then define a model as follows:

Definition 7.1.5. A neutral L-model M, is a neutral L-frame F with a valuation v W At! P.S/

such that if s � s0 and s 2 v.p/, then s0 2 v.p/.

We can picture the neutral models for L as in figure 7.1. Notice that � can hold between

static states in the same history, and so successor states of s.

When we have a neutral L-model, we can provide an interpretation of L as follows:

Definition 7.1.6. For formulas in L and A � Ag and neutral model M with s 2 S and h 2 H ,

� .s; h/ � p iff s 2 v.p/ where p 2 At

� .s; h/ � :' iff .s; h/ ² '

� .s; h/ � ' ^  iff .s; h/ � ' and .s; h/ �  
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Figure 7.1: lub.s/ in a neutral model

� .s; h/ � �' iff for all h0 with s0 2 h0 and s � s0, .s0; h0/ � '

� .s; h/ � X' iff for all .lub.s; h/; h/ � '

� .s; h/ � P' iff for all .glb.s; h/; h/ � '

� .s; h/ � ŒA xstit� ' iff for all s0; h0, if s0 2 E.s; h;A/ and s0 2 h0, then .s0; h0/ � '

We can then define entailment in the usual way:

Definition 7.1.7. � �NU ' iff for any neutral L-model M, if M; .s; h/ � � , then M; .s; h/ � '.

Notice that At isn’t broken up into AtI and AtB , since those distinctions don’t matter to the

logic, just the notion of norm consequence.

In Broersen and Meyer (2011) a proof sketch is provided that the axioms from definition

5.1.4 for the logic `x alone are complete with respect to the semantics from definitions 5.1.3

and 5.1.2 which we will call regular models. One thing to notice immediately is that each

regular model is a neutral model, the � relation in a regular model is simply identity. That
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means after noting that `xp is sound for neutral models, `xp is sound for regular models as well.

But we will also show that `xp is complete for the class of neutral models.

7.1.3 Completeness Relative to NU

The proof of completeness proceeds in the usual way by constructing a canonical model for the

logic. First we prove soundness.

Proposition 7.1.3. The axioms from definition 6.3.6 are sound with respect to neutral L-frames.

Proof. We here provide the cases of the more irregular axioms. Clearly classical logic and MP

are valid, as are the Nec rules. DX: If .s; h/ � X� , then .lub.s; h/; h/ ² :� . So .s; h/ ² X:� ,

i.e., .s; h/ � :X:� .

DetX: Suppose .s; h/ � :X:� . Then .s; h/ ² X:� , so .lub.s; h/; h/ ² :� . But that

means .lub.s; h/; h/ � � , thus .s; h/ � X� . The argument is similar for the P case except

using glb.

XP: Suppose that .s; h/ � XP� . Then .lub.s; h/; h/ � P� , but that means

.glb.lub.s; h/; h/; h/ � � . Now in an injective DDLF, for each s, fh.bh.s// D s. Thus

glb.lub.s; h/; h/ D s by observation 7.1.1 3. Thus .s; h/ � � . Suppose that .s; h/ � � .

Again since glb.lub.s; h/; h/ D s, .glb.lub.s; h/; h/; h/ � � , so .lub.s; h/; h/ � P� . Finally,

.s; h/ � XP� . The PX case is symmetric.

NP: Suppose .s; h/ � P�� . Then .glb.s; h/; h/ � �� . That means that for any h0 with

s0 2 h0 such that s0 � glb.s; h/, .s0; h0/ � � . Now suppose that s� 2 h� with s� � s, thus

bh.s/ � bh�.s
�/ by the condition H2, so glb.s; h/ � glb.s�; h�/. By what we just noted, we can

conclude that .s�; h�/ � P� . Since .s�; h�/ was arbitrary we can conclude that .s; h/ � �P� .

¿ D Set tX : Suppose .s; h/ � Œ¿ xstit� � . By condition d E.s; h;¿/ D lub.s/. Let

.s0; h0/ be such that s � s0 2 h0. By the supposition, we have that for each s0 2 lub.s/, and

h0 such that s0 2 h0 .s0; h0/ � � . Thus lub.s0; h0/; h0 � � . Since s0 2 lub.s/, glb.s0; h0/ � s

and so .glb.s0; h0/; h0/ � X� . Since .s0; h0/ was arbitrary, for all .s0; h0/, with s0 2 lub.s/,

.glb.s0; h0/; h0/ � X� . Therefore, .s; h/ � �X� .
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Suppose .s; h/ � �X� . Let s0 2 E.s; h;¿/ which is lub.s/ by condition d. Suppose that

s� 2 h0 so that both s � s� and lub.s�; h0/ D s0. By the supposition .s�; h0/ � X� and because

lub.s�; h0/ D s0, .s0; h0/ � � . Since s0 and h0 were arbitrary, .s; h/ � Œ¿ xstit� � .

Ag D XSet t : Suppose .s; h/ � ŒAg xstit� � . So by definition for each s0 2 E.s; h;Ag/ and

h0 with s0 2 h0 .s0; h0/ � � . By condition e from definition 7.1.4

E.s; h;Ag/ D f s0 W s0 � lub.s; h/ g. So if we take s0 � lub.s; h/, s0 2 E.s; h;Ag/ thus for any

.s00; h00/ 2 jMj with s00 � lub.s; h/, .s00; h00/ � � . That means .lub.s; h/; h/ � �� . So finally

.s; h/ � X�� .

Suppose .s; h/ � X�� . Then by definition .lub.s; h/; h/ � �� . And for each s0 2 h0

with s0 � lub.s; h/, .s0; h0/ � � . But since E.s; h;Ag/ D f s0 W s0 � lub.s; h/ g, for all s0 2

E.s; h;Ag/ and h0 with s0 2 h0, .s0; h0/ � � . Therefore, .s; h/ � ŒAg xstit� � .

C-mon: Suppose .s; h/ � ŒA xstit� � . So for all s0 2 E.s; h;A/ and h0 with s0 2 h0, .s0; h0/ �

� . There are two possibilities either A [ B D A or not. If so then E.s; h;A [ B/ D E.s; h;A/

so .s; h/ � ŒA [ B xstit� � . If not, then A ¤ A [ B, so by condition f, E.s; h;A [ B/ �

E.s; h;A/. If s0 2 E.s; h;A [ B/, then s0 2 E.s; h;A/; therefore, for each h0 with s0 2 h0

.s0; h0/ � � . Hence .s; h/ � ŒA [ B xstit� � .

The axiom is Indep-G: Suppose that .s; h/ � ˙ ŒA xstit� � ^ ˙ ŒB xstit� � 0. So for some

.s0; h0/; .s00; h00/ with s0 � s � s00, .s0; h0/ � ŒA xstit� � and .s00; h00/ � ŒB xstit� � 0. That

also means that for all .s1; h1/; .s2; h2/ such that s1 2 E.s0; h0;A/ and s2 2 E.s00; h00;B/,

.s1; h1/ � � and .s2; h2/ � � 0. By condition g we then have .s�; h�/ such that s0 � s�, and

both E.s�; h�;A/ � E.s0; h0;A/ and E.s�; h�;B/ � E.s00; h00;B/. Let st 2 E.s�; h�;A/, then

st 2 E.s
0; h0;A/, so .st ; ht/ � � and the same will go for arbitrary st 2 E.s�; h�;B/ in relation

to � 0. Thus .s�; h�/ � ŒA xstit� � ^ ŒB xstit� � 0, and since � is an equivalence we have s � s�;

thus, .s; h/ � ˙.ŒA xstit� � ^ ŒB xstit� � 0/.

So `xp is sound for �NU, and so a fortiori for �xp. Next we show completeness via a

canonical model construction.
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Relations for the Canonical Models

Let �, �0 be `xp maximal consistent sets. These can be derived from maximal extensions of

consistent sets with the usual Lindenbaum extension. The set of all maximally consistent sets

of L is max`.L/.

Definition 7.1.8. Define the relations on max`.L/ as follows:

�R��
0
” 8�;�� 2 �) � 2 �0

�RX�
0
” 8�;X� 2 �) � 2 �0

�RA�
0
” 8�; ŒA xstit� � 2 �) � 2 �0

�RP�
0
” 8�; P � 2 �) � 2 �0

�RS�
0
” Œ8�; n 2 N; P n�� 2 �, P n�� 2 �0�

where P n D P : : : P„ ƒ‚ …
n�times

.

The RP relation is like the converse of the RX relation. Finally, let’s notice that if 8�; n 2

N; P n�� 2 � , P n�� 2 �0, then for all ' �' 2 � iff �' 2 �0, but since � obeys T,

�R��
0. Clearly, RS is an equivalence relation, thus it partitions max`.L/.

We will now proceed to construct canonical models for `xp. From these relations we can

define the canonical collection of static states. But before we do that let’s make some observa-

tions

Observation 7.1.4. 1. If �R��0 and ' 2 �0, then ˙' 2 �

2. If A ¨ B, then RB � RA.

3. For all A, RA � R¿.

4. For all A, RAg � RA.

5. If �RX�0 and � 2 �0, then X� 2 �.

6. If �RP�0 and � 2 �0, then P� 2 �.

7. If �RX�0 and �RX�00, then �00 D �0.
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8. If �RP�0 and �RP�00, then �00 D �0.

9. RX and RP are functions.

Proof. 1 is a standard point in modal logic. 2 follows from C-mon, and 3 and 4 from 1 and 2.

For 5 and 6, Assume �RX�0 and � 2 �0. Then suppose X� 62 �. But if that is the case, then

by maximality and DetX X:� 2 �, so :� 2 �0 because�RX�0. But that is impossible. Thus

X� 2 �. For 6 we just swap P for X . Results 7 and 8 follow immediately from DetX and

DetP, respectively.

Finally, for 9, DX and DP imply thatRX andRP are serial relations. 7 and 8 then imply that

RX and RP are partial functions. Together with seriality RX and RP are total functions.

Also we notice that:

Proposition 7.1.5. �RX�”:9�0 ¤ � s.t. �RCX�
0. (Same for RP .)

Proof. (IF) Note that RX is serial by DX, thus there is something that RX relates � to. So if

there is no distinct maximal set that � relates to, RX must relate � to itself.

(ONLY IF) By contraposition. Suppose that �RCX�
0 with � ¤ �0. We show that � 6 RX�.

There must be a least m, and �00 ¤ � such that �RmX�
00. I.e., if �RkX�

00 where k < m, then

� D �0. This follows by the well ordering of N. Suppose for reductio that �RX�. If m D 0,

then �RX�00 and � ¤ �00, but �RX�, so we would have a contradiction since RX -successors

are unique by result 7. So suppose m > 0. Then we have that �Rm�1X � (since m was the

least natural number) and �RX�00 by definition of RmX , with � ¤ �00. But again that would

contradict our assumption that �RX�. Thus, not �RX�.

Also let’s note that

Observation 7.1.6. (1) If �;�0 2 max`.L/ and � ¤ �0, then �RX�0 only if �0RP�.

(2) If �;�0 2 max`.L/ and � ¤ �0, then �RP�0 only if �0RX�.

(3) If�1; : : : ; �nC1 are all distinct with�iRX�iC1 and�iC1RP�i ,�1RnX�n iff�nRnP�1.
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Proof. Since � ¤ �0, there is � 2 �0 and � 62 �. By observation 7.1.4 we know that X� 2 �,

and so X� ^ :� 2 � Thus :.X� � �/ 2 �. This means that for any ', XP' � ' 2 � by

XP. Suppose that P� 0 2 �0, then XP� 0 2 �, again by observation 7.1.4; thus, � 0 2 �. Since

� 0 was arbitrary, �0RP�. (2) Follows by swapping P for X and using PX.

The third observation follows from the first two by induction.

Now we want to define a canonical model Mo D hSo;H o; Eo;�o; voi from the maximal

consistent sets.

Histories

We can define the canonical domain as follows:

Definition 7.1.9 (Canonical Static Domain). Let So be the canonical static domain, i.e., So D

max`.L/.

We now define the histories in a couple of steps. To define histories we start with the base

of a history as a line running through max`.L/ as follows:

h� DDf
˚
�0 2 So W �RCX�

0; �RCP�
0 or �0 D �

	
(7.2)

This relates maximal sets that are successors or predecessors of the current set �. Some

distinct maxi sets will end up in the same lines. But more importantly, from observation 7.1.6,

we can argue by induction that �RnX�
0 iff �0RnP� as long as � ¤ �0. So, if we have �RnX�

0,

and � ¤ �0, then �0RnP�. But that means � 2 h�0 . So when either �RCX�
0 or �RCP�

0, then

h� D h�0 . These lines are also equivalence relations on max`.L/, and so we will be guaranteed

that each maxi set appears in some line. Now we can notice something about these lines through

max`.L/.

Lemma 7.1.7. Let h�00 be defined as in 7.2. Now define the functions f and b on h�00 as

follows:

For �;�0 2 h�00
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1 f .�/ D �0 iff �RX�0, and

2 b.�/ D �0 iff �RP�0.

Then hh�00; f; bi is an injective DDLF.

Proof. First note that RX and RP are functions on the set of maximal sets by observation

7.1.4(9). f C and bC satisfy TRI by definition of h�00 but we relate RX to f as xRnXy iff

f nC1.x/ D y, similarly for RP and b. Suppose that f C.�/ ¤ �0, and that bC.�/ ¤ �0, we

want to show that � D �0. Since �;�0 2 h�00 , we know that both

�RCX�
00; �RCP�

00 or �00 D �

and

�0RCX�
00; �0RCP�

00 or �00 D �0

by definition, so we argue by cases. If both �00 D � and �00 D �0, then �0 D �. On the other

hand, if only one of either �00 D � or �00 D �0, then that will contradict our assumptions that

f C.�/ ¤ �0, and bC.�/ ¤ �0. So�00 ¤ � or�00 ¤ �0. But that means by an easy induction

from observation 7.1.6 that

�RCX�
00
” �00RCP�

and the same with �0. But if �RCX�
00 �RCP�

00, then by transitivity we would have a contradic-

tion with our assumptions that f C.�/ ¤ �0, and bC.�/ ¤ �0. Similarly when �RCP�
00 and

�0RCX�
00. So either �RCX�

00 and �0RCX�
00 or �0RCP�

00 and �0RCP�
00.

If it is the first case then there arem; n 2 N such that�RnX�
00 and�0RmX�

00. Ifm ¤ n, that

means without loss of generality that m < n, and so �Rn�.mC1/X �0, and so n � .mC 1/ � 0,

but then �RCX�
0, contrary to assumption. So m D n. But that means � D �0. The case is

symmetric for the RCP case. Thus, � D �0.

Both functions are almost injective for suppose that b.�0/ ¤ �0 and b.�00/ ¤ �00. Now

suppose that b.�0/ D �� and b.�00/ D ��. Then we know that �0 ¤ �� ¤ �00, and so by

observation 7.1.6(2) and the definition of b, we have that��RX�0 and��RX�00, thus�0 D �00

since RX is a function.
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The fixed points of RX and RP are unique. If there were two,�0 and�, then either�RCP�
0

or�0RCP�. Either way there would need to some non-identical setRP -related to the fixed point

which is impossible given the assumption that�RP� and�0RP�0. The same reasoning works

for the RX case.

CONV1 and 2 follow from observation 7.1.4 pretty much immediately. If h�00 has more

than one member, then suppose that �0; � 2 h�00 , and f .�0/ D �0. Now it must be that either

�RCX�
0 or �RCP�

0. If � D �0, then we see that there must be another �00 such that �00RX�0,

and �00 ¤ �0. But then It is not the case that �0RP�0. If � ¤ �0, there must still be �00 ¤ �0

such that �00RX�0, so it is not the case that �0RP�0. Thus SIZE holds.

Now that we know that hh�00; f; bi is a DDLF, let’s notice that for all � ¤ �0 2 h�00 ,

�RX�
0
” �0RP�

Suppose (1) �RX�0, and (2) P' 2 �0. Then XP' 2 � because of 1, so that means ' 2 �

by closure, XP and PX. Thus �0RP�. Now suppose (3) �0RP�, and let X' 2 �. Then

PX' 2 �0 by 3 and so ' 2 �0 by XP and PX. Hence �RX�0. But that means f .b.�// D

� D b.f .�//, and by observation 7.1.1, f and b are both injective.

Thus, we define histories as h D h� for � 2 max` L, and for �0; �00 2 h,

f oh .�
0/ D �00” �0RX�

00 (7.3)

and

boh.�
0/ D �00” �0RP�

00 (7.4)

So this gives rise to the definitions of lub and glb as

f oh .�
0/ D lub.s; h/ & s D �0 (7.5)

and

boh.�
0/ D glb.s; h/ & s D �0 (7.6)
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Now we will deal with the �o relation and as one might guess that is going to be handled by

RS :

� �o �0” �RS�
0 (7.7)

Now we have to check the conditions governing it, i.e., H2.

Observation 7.1.8. If � D s 2 h and �0 D s0 2 h0 with s �o s0, then for each n 2 N,

.bo
h
/n.s/ �o .bo

h0
/n.s0/

Proof. Let � 2 h and �0 2 h0 with � �o �0, i.e., �RS�0. Let n 2 N, and suppose �RnP�
�.

Assume Pm�' 2 ��; then P nPm�' 2 �. So P nPm�' 2 �0, thus Pm�' 2 �00 such that

�0RnP�
00. The same goes in the other direction. Thus .bo

h
/n.�/ D �� �o �00 D .bo

h0
/n.�0/.

So it obeys condition H2.

The final thing we have to check is whether we can define effectivity functions.

Effectivity Functions

Now that we have made sure that H o is constructed properly we must construct the effectivity

function: Eo.s; h;A/.

Definition 7.1.10. We define Eo.�; h;A/ as follows

Eo.�; h;A/ D

8̂̂<̂
:̂
f�0 W �RA�

0 g if � 2 h

¿ o.w.

We must now check to make sure that Eo defined in this way meets all of the criteria for an

effectivity function from definition 5.1.1. First we mention a lemma.

Lemma 7.1.9. 1. s0 D lub.s; h/ iff �0 D s0, � D s with �;�0 2 h and �RX�0.

2. For � D s 2 So, lub.s/ D f�0 W 9�00 w/ �RS�0 & �00RX�
0 g.

3. �� � ŒA xstit� P � is a theorem for each A.
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Proof. The first two follow immediately from the definitions. For the third observation note

that�� � �XP� � Œ¿ xstit� P � , so it follows that ŒA xstit� P � by C-mon.

Proposition 7.1.10. Eo meets criteria a)–g).

Proof. Let’s assume that s D � and h D h�. (a) If s 62 h, then E.s; h;A/ D ¿: If s D � 62 h,

then E.s; h;A/ D ¿ by definition.

(b) If s0 2 E.s; h;A/, then s0 2 lub.s/: if s0 D �0, and s D �, with Eo.�; h;A/ then by

definition �RA�
0. We define the history h0 as follows: h0 D h�0 . Note that

ˆ D
˚
� W P� 2 �0

	
[ fP n�' W P n�' 2 � g

is consistent. If it wasn’t, there would be some 's and �s, such that fP n�' g ` :� , so

f�P n�' g ` �:� (normality of �). But P n�' ` �P n�' (NP, and use of 4 for �), so

�:� 2 �. From last observation of lemma 7.1.9, �:� ` ŒA xstit� P:� , thus ŒA xstit� P:� 2

�. That means P:� 2 �0 which then means that both P� 2 �0 as well so by DP �0 ` ?

which is a contradiction. Thus we extend ˆ to a maximal set ˆC. Clearly, �RSˆC, and if

P� 2 �0, then � 2 ˆC, so �0RPˆC. But then we can conclude that ˆCRX�0 since RX and

RP are injective.

(c) If s 2 h, lub.s; h/ 2 E.s; h;A/: If �0 is such that �RX�0, i.e., �0 D lub.s; h/, then

suppose that ŒA xstit� ' 2 �. But then by C-mon, ŒAg xstit� ' 2 � and by Ag X�' 2 �. But

that means�' 2 �0 so by T for�, ' 2 �0. Thus, �RA�
0. Hence, �0 2 E.s; h;A/.

(d) E.s; h;¿/ D lub.s/: From b we have for any A � P.Ag/, E.s; h;A/ � lub.s/ so the

same holds for A D ¿. For the other direction suppose s0 2 lub.s/, so s0 D �0 and �00RX�0

with �RS�00. We want to show that �R¿�0. Suppose that Œ¿ xstit� � 2 �. So �X� 2 � by

SettX, and then since �R��00, X� 2 �00, thus � 2 �0.

(e) If s 2 h, then E.s; h;Ag/ D f s0 W s0 � lub.s; h/ g: Suppose s D �, then by def-

inition E.�; h;Ag/ D
˚
�0 W �RAg�

0
	
. We want to show that f�0 W �0 �o lub.s; h/ g D˚

�0 W �RAg�
0
	
. Since s D �, by 7.5 we have that lub.s; h/ D f o

h
.�/, and by 7.7, �oD RS .

What we want to show is that both
˚
�0 W �RAg�

0
	
�
˚
�0 W f o

h
.�/RS�

0
	

and vice versa.

139



Suppose that † 2
˚
�0 W �RAg�

0
	
, then † 2 lub.�/ from b above, so there is ‰ �o � and

‰RX†. That means if P n�' 2 †, then P n�1�' 2 ‰ by observation 7.1.4(5), XP and PX. So

P n�1�' 2 �, thus P n�' 2 f o
h
.�/ (since f o

h
.�/RP�). Now suppose that P n�' 2 f o

h
.�/,

then �P n�' 2 f o
h
.�/ and so X�P n�' 2 �, but that means ŒAg xstit� P n�' 2 �;

thus, P n�' 2 †. So for n > 0, P n�' 2 f o
h
.�/ iff P n�' 2 �0. Now suppose that

�' 2 f o
h
.�/, then X�' 2 �, thus ŒAg xstit� ' 2 � so ' 2 †. That means f o

h
.�/R�†, and

so f o
h
.�/RS†. So

˚
�0 W �RAg�

0
	
�
˚
�0 W f o

h
.�/RS�

0
	
. Now for the other containment.

Assume that f o
h
.�/RS†, i.e., † 2

˚
�0 W f o

h
.�/RS�

0
	
, then let ŒAg xstit� ' 2 �, we have

X�' 2 �, so �' 2 f o
h
.�/ and so �' 2 †, but then by T ' 2 �0. I.e., �RAg†. Thus,˚

�0 W f o
h
.�/RS�

0
	
�
˚
�0 W �RAg�

0
	
.

(f) If A ¤ B, then E.s; h;B/ � E.s; h;A/: Follows because RB � RA from observation

7.1.4.

(g) For all A;B .s; h/; .s0; h0/; .s00; h00/, if A\B D ¿ and s0 � s � s00, then there is .s000; h000/

such that s000 � s with E.s000; h000;A/ � E.s0; h0;A/ and E.s000; h000;B/ � E.s00; h00;B/: Suppose

A \ B D ¿ and † �o � �o ‰. Then the set ˆ D fP n�' 2 � W n 2 N g[

f ŒA xstit� � 2 † W ˙ ŒA xstit� � 2 � g [ f ŒB xstit� � 2 ‰ W ˙ ŒB xstit� � 2 � g

is consistent. If it wasn’t there would be �; � 0 and ' such that

ŒA xstit� � ^ ŒB xstit� � 0 ^ P n�' ` ?

which then means that with a bit of modal logic

˙.ŒA xstit� � ^ ŒB xstit� � 0/ ` ˙:P n�'

But ˙:P n�' � :�P n�' and P n�' � �P n�', so

˙.ŒA xstit� � ^ ŒB xstit� � 0/ ` :P n�'

Since the xstit operators are normal and each ŒA xstit� � is in † and ŒB xstit� � 0 is in ‰ we will

have ˙ ŒA xstit� � 2 � and ˙ ŒB xstit� � 0 2 � because �R�† and �R�‰. But that means,
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from axiom Indepen-G, ˙.ŒA xstit� � ^ ŒB xstit� � 0/ 2 �. But that would mean :P n�' 2 �,

but it can’t be.

Now we extend ˆ to ˆC. Now for each � , ŒA xstit� � 2 ˆC ” ŒA xstit� � 2 †, so if

�� is such that ˆCRA�
�, then if ŒA xstit� � 2 †, � 0 2 ��. Thus †RA�

�. The same goes for

RB . Thus E.ˆC; hˆC;A/ � E.†; h†;A/ and E.ˆC; hˆC;B/ � E.†; h†;B/. And it clearly

holds that � �o ˆC.

Thus, Fo D hSo;H o; Eo;�oi is a L-frame, we then make the canonical model in the usual

way by setting vo.p/ D f� W p 2 � g. The domain jFoj is the set of .s; h/ such that s 2 h

(i.e.,� 2 h). Note that if p 2 �, then p 2 �0 for all�0 that are�o-related to� (They all agree

on�ed formulas, and p � �p). Now we have to show the following:

Theorem 7.1.11 (Fundamental Theorem of `xp). For all � , and s 2 So, if .s; h/ D .�; h�/,

then

� 2 �” .s; h/ � �:

To show this we must make an observation.

Observation 7.1.12. 1. If ˙� 2 �, then there exists �0 such that �RS�0 and � 2 �0.

Proof. If˙' 2 �, thenˆ D fP n�� j P n�� 2 � & n 2 N g[f' g is consistent. If it wasn’t,

then there are some �s, such that P n�� ` :', and so�P n�� ` �:'. But f�P n�� g � �;

therefore, �:' 2 �, i.e., :˙' 2 �, a contradiction. If we extend ˆ to a maxi set ˆC,

ˆCRS�. Done.

proof of theorem 7.1.11. By induction. For atomic sentences p, .s; h/ � p iff � 2 vo.p/ iff

p 2 � by definition of vo.

The IH is: for all � 0, with less complexity than � and s 2 So, if s D �0 and s 2 h D h�0 ,

then

� 0 2 �0” .s; h/ � � 0:
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We won’t go through all of the cases in detail, just the novel ones. The � case uses the

observation above. We will give the P case. Suppose .s; h/ � P� , then since s D �,

glb.s; h/ D bo
h
.�/. By the semantics .glb.s; h/; h/ � � . We use the IH and � 2 bo

h
.�/.

Of course,�RPboh.�/, (i.e., for all � , � 2 bo
h
.�/ only if P� 2 �) and so P� 2 �. If P� 2 �,

then � 2 bo
h
.�/ D glb.s; h/, so .glb.s; h/; h/ � � by the IH, so then .s; h/ � P� .

The X case works the same as the P case just using f o
h

, the real trouble one is the ŒA xstit�

case. First we show that .s; h/ � ŒA xstit� � only if ŒA xstit� � 2 � where � D s. As per usual

this is done by contraposition. Suppose ŒA xstit� � 62 �. The set

ˆ D
˚
P nC1�' W P n�' 2 � & n 2 N

	
[
˚
� 0 W ŒA xstit� � 0 2 �

	
[ f:� g

is consistent. If it wasn’t there would be 's and � 0s such that P nC1�' ^ � 0 ` � . But then

ŒA xstit� P nC1�' ^ ŒA xstit� � 0 ` ŒA xstit� � . But from the lemma 7.1.9(3) above, P n�' `

�P n�' and �P n�' ` ŒA xstit� PP n�', so ŒA xstit� P nC1�' ^ ŒA xstit� � 0 2 �. That

means ŒA xstit� � 2 �, but it isn’t.

We extend ˆ to ˆC. Clearly, �RAˆ
C, and �RSbo.ˆC/. Thus we have made s0 D ˆC 2

E.s; h;A/, and set h0 D hˆC and so :� 2 ˆC. By the IH .s0; h0/ ² � . By the semantics

.s; h/ ² ŒA xstit� � .

For the converse, suppose ŒA xstit� � 2 �. Suppose �0 D s0 2 h0 and s0 2 E.s; h;A/.

Then �RA�
0. So � 2 �0. By the IH .s0; h0/ � � . Now s0 and h0 were arbitrary; therefore,

.s; h/ � ŒA xstit� � . Also A is arbitrary. Thus we have completed the inductive step.

Now completeness is easily proved. If � °xp ', for an arbitrary � , then �I :' is consistent,

and so we can extend it to a maxi set �C. It will be in the canonical model, and :' 2 �C, so

' 62 �C, but � � �C. Letting s D �C and h D h�C , by the fundamental theorem, .s; h/ � � ,

but .s; h/ ² '. Therefore, � ² '. So we have proved:

Theorem 7.1.13. The class of neutral L-models provides a (strongly) complete semantics for

the axioms of `xp.
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7.1.4 Different Classes

Now we have seen the following facts

� `xp '” � �NU '

and Broersen and Meyer (2011) said that

� `x '” � �xp '

What we now want to show is that `xp can be captured by the class of neutral models where

each history is like Z. That is each history in a neutral frame is is an infinite IDDLF. One thing

to notice from before is that `xp is complete with respect to a smaller class of models than NU.

The canonical model is one such that for all h; h0 2 H o h \ h0 D ¿. So `xp is complete with

respect to the class of disjoint neutral models.1 We first have to start with some facts about

histories and neutral models.

Lemma 7.1.14. Let h D hh; f; bi be a history in a neutral model M D hS;H;E;�i.

1. If s � f .s/ in h, then for any n 2 N, bn.f .s// � f .s/.

2. If s � s0 2 h when s ¤ s0 with jhj D n, and bm.s/ D s0 and bm.s0/ D s, then

f .s/ � f .s0/.

3. If s0 � s in h with bm.s/ D s0, bkm.s/ � s for k 2 N.

4. If s0 � s in h with bm.s/ D s0, and bkm.s0/ D s for some k 2 N, then f .s/ � f .s0/.

Proof. 1. Suppose that s � f .s/ in h. We proceed by induction. For n D 1, then b1.f .s// D s

and f .s/ � s. Now suppose that for all k < n, bk.f .s// � f .s/. bn.f .s// D b.bn�1.f .s///,

so by inductive hypothesis bn�1.f .s// � f .s/. That means that b.bn�1.f .s/// � b.f .s// by

H2, and b.f .s// D s � f .s/, so bn.f .s// � f .s/.

2. Now suppose s � s0 2 h where s ¤ s0 with jhj D n, bm.s/ D s0 and bm.s0/ D s.

Since jhj D n, n D 2m since we can always get from one element to another either via f or
1Actually what Thomason (1984) calls a neutral model is what we call a disjoint neutral model.
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b, but since we can get from s to s0 and from s0 to s with b, we go in a semicircle from s to

s0 and vice versa m steps each way, so n D 2m. But that means that f .s0/ D bm�1.s/ and

bm�1.s0/ D f .s/. But we know, since s � s0, bm�1.s/ � bm�1.s0/, i.e., f .s/ � f .s0/.

3. Suppose s0 � s in hwith bm.s/ D s0. We proceed by induction. For n D 1, bm.s/ D s0 �

s. Suppose that it is true for k < l , i.e., bkm.s/ � s. Now, blm.s/ D bm.b.l�1/m.s//, and by

inductive hypothesis, b.l�1/m.s/ � s. So bm.b.l�1/m.s// � bm.s/ by H2, but bm.s/ D s0 � s.

Thus blm.s/ � s.

4. Suppose that s0 � s in h with bm.s/ D s0, and bkm.s0/ D s for some k 2 N. Then from

our third observation, b.k�1/m.s0/ � s � s0. Now bm�1.b.k�1/m.s0// D f .s/, and bm�1.s/ D

f .s0/. But we know that bm�1.b.k�1/m.s0// � bm�1.s/ by H2, thus f .s/ � f .s0/.

These facts allow us to prove that

Lemma 7.1.15. If jhj D n and s0 � s in h, then f .s/ � f .s0/.

Proof. Suppose jhj D n and s0 � s in h. Since h is finite, there is some m 2 N such that

bm.s/ D s0. Then, because h is finite, bk.s0/ D s for some k. Now there are three possibilities,

1) k D m, k < m or k > m. If k D m, then we have the situation in lemma 7.1.14 (2) so

our conclusion follows. If k > m and m D 1, then we have the situation in lemma 7.1.14 (1),

and so our conclusion, again, follows. If m > 1, then there is some t 2 N such that it is the

smallest natural number such that bt.s/ � s (well orderedness of N). It then follows that there

is an l 2 N, such that blt.s/ D s, i.e., n D lt . If there weren’t then t < n, and n D lt C r

for some r < t . But we know from lemma 7.1.14 (2) that blt.s/ � s, and br.blt.s// D s, so

br.s/ � br.blt.s// D s. But that contradicts t being the smallest such natural number. Now

m D jt C r for some j; r 2 N. If r > 0, and it must be less than t , then we have bjt.s/ � s,

and bjtCr.s/ D bm.s/ D s0 � s, but that means s � br.bjt.s// � br.s/. So t wouldn’t be

the smallest natural number; thus, r D 0. So m D jt . But then b.l�1/t.s/ � s � b.j�1/t.s/

by lemma 7.1.14 (3). That means blt�1.s/ D f .s/, and bjt�1.s/ D f .s0/. But then f .s0/ D

bt�1.b.j�1/t/.s/ D bjt�1.s/ � bt�1.b.l�1/t.s// D f .s/. Again our conclusion follows.
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Figure 7.2: Stretching Out h to hN

Now suppose that k < m. In this case we can argue in the same way as before except that

we reverse the roles of s and s0. So then our conclusion follows as well.

We will uses these facts in constructing our new model.

Let M D hS;H;E;�; vi be a disjoint neutral model, i.e., one such that for each h; h0 2 H ,

h \ h0 D ¿. We will build a new model which we will call MN D hSN ;HN ; EN ;�N ; vN i in

a number of stages starting with HN . Each h 2 H is either finite or not. If it is infinite, then

hN D h D hh; fh; bhi, i.e., we just continue to use h. If not, then jhj D n, say, and we can pick

an ordering of h as h D f s0; : : : ; sn�1 g and then add to h two denumerable sets hC and h� as˝
h�; h; hC

˛
. Any sets that we add must be disjoint from other sets added and from S . So the

new infinite hN will look like: h�2; h�1; s0; s1; : : : ; sn�1; hn; hnC1; : : :. And we will notice that

h0 D s0 h1 D s1, etc. So here we are taking up a convention of calling the nth position in hN ,

hn. An image of the transformation is in figure 7.2.

On each of these new sets hN , if h was infinite, then we keep the old functions fh and bh.

If h was finite we have to define new functions fhN
and bhN

. We do that as follows: define

fhN
.hi/ D hiC1 and bhN

.hi/ D hi�1. Of course fhN
.hi/ D fh.si/ for 0 � i < n�2. The idea

145



is that the successors of the “original” components of h in hN are the same, i.e., fhN
.h0/ D

fhN
.s0/ D fh.s0/, the same for s1 and all up until sn�1, the successor of hn�1 D sn�1 in hN

has to be hn, which is “the first” new element from hC. An analogous situation will hold for

bN and s0 with respect to h�. So hN D hhN ; fhN
; bhN
i. These new functions clearly form an

IDDLF (it looks like hZ; z C 1; z � 1i). Next we have to define�N .

We also have to define�N in stages. For the moment consider an hN generated from a finite

h from the original model. If jhj D n, we then stipulate that for m < n, and k 2 Z, hk �hN
sm

where sm D hm and k � m.modn/. So every mth object (from h0) in hN will be �-related to

some member from the original set h. Notice that h�1 �hN
sn�1, as we might expect. Also,

sm �hN
sm since hm D sm.

To form �N we want to keep the old relationships in �, but add in all of the new ones

formed from the�hN
relations. Thus we form the set[

hN2HN

.�hN
[ �/ (7.8)

This relation includes all of the new objects. Now to form �N we take the reflexive, then

symmetric, then the transitive closures of the set from 7.8. Clearly that new relation will be an

equivalence relation since it will be reflexive, transitive and symmetric. Now this new relation

doesn’t require that h1 �N h01, for instance. The orders according to Z hN has are dependant

on the ordering given to the h it was built from. However, each hm will be �N -related to some

member of the original h—this is true trivially for infinite histories fromH since� is reflexive.

We will also have that if s0 is an nth-predecessor of s in hN , and if s� is a member of h that s

is �N -related to, s0 will be �N -related to an nth-predecessor of s� from the original order that

was on h.

We must also notice that the reflexive and symmetric closure of each�hN
[ � would only

relate new elements of hN with elements of hN . Any elements of hN related to objects outside

of hN would have to already be related to those objects by �. What that means is that any

objects from S that are related by�N are related by�. So�N is conservative over�. We can

see this since if s; s0 2 S , are related, there must be some chain in the reflexive and symmetric
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closures of 7.8 to get from s to s0. We should also notice that no new relations between elements

of S will be introduced by the reflexive and symmetric closures. But this chain must include

some new element, but if s� and s00 are new, then they only relate via old elements, so that

chain was already there for �, and � is transitive. Also, we should notice that if s; bhN
.s/ are

not in h, then s D hi and bhN
.s/ D hi�1, and s will relate to sm such that i � m.modn/. So

i�1 � m�1.modn/, thus hi�1 �N sm�1. That means the successor/predecessor relationships

that holds in h are mirrored in hN .

A notion that we will be using again and again in the next stage is the notion of a represen-

tative of a static state, we will denote this by rep.s; hN /. It is defined as follows:

rep.s; hN / D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

s if jhj 62 N

s jhj 2 N & s 2 h

sm the least m where s D hk & k � m.modn/ o.w.

(7.9)

So in each case where s� D rep.s; hN /, s� �N s.

Now what can be shown, assuming those two facts (the conservativeness of �N over �,

and that the representative in h of hi�1 is the predecessor of the representative in h of hi ), is

that condition H2 from definition 7.1.4 is met, i.e., if s �N s0 with s 2 hN and s0 2 h0N , then

for all n 2 N, bn
hN
.s/ �N b

n
h0N
.s0/. We can show that by induction. The cases are long, but not

hard using those two facts so we omit the proof.

Here we can define the effectivity function for the new model. If s 62 h, then as we have

defined it we have an sm 2 h such that s D hk with k � m.modn/ where n D jhj. Thus, we

define EN .s; hN ;A/ as8̂̂<̂
:̂
f s� 2 SN W 9s

0 2 E.rep.s; hN /; h;A/ w/ s0 �N s� g if s 2 h

¿ if s 62 h
(7.10)

What this function does is generate EN from E of the representative of s from the original

model. The general condition for something, x say, to be in EN .s; hN ;A/ is for there to be
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something in E.s0; h;A/ that �N -relates x where s0 is the representative of s from h. We now

have to check that this function fulfills its duties. To do that we need some supporting facts:

Lemma 7.1.16. 1 If jhj D n and s 2 h, then fh.s/ �N fhN
.s/.

2 If jhj 2 N, then s0 �N s with s0 2 h and s 2 hN only if fh.s0/ � fhN
.s/.

Proof. For 1, if s 2 h and jhj D n, then s D sm for 0 � m < n. If m < n � 1, then

fhN
.sm/ D fh.sm/ and �N is reflexive. If m D n � 1, then fhN

.sm/ D hn and n � 0.modn/

so s0 �N fhN
.sm/. But also fh.sm/ D fh.sn�1/ D s0. So we have our result.

For 2, suppose that s0 �N s with s0 2 h and s 2 hN and h finite. Now there is sm 2 h

such that hm D sm and s D hk where k � m.modn/, jhj D n. Thus k C 1 � mC 1.modn/,

and that means fhN
.sm/ �N fhN

.s/ D hkC1 by definition. But fhN
.sm/ �N fh.sm/ also by

construction. Since s0 �N s and s �N sm, s0 �N sm and by the conservativity of �N over

�, s0 � sm. Thus, by lemma 7.1.15, fh.s0/ � fh.sm/, but that means fh.s0/ �N fh.sm/, so

fh.s0/ �N fhN
.s/, by the transitivity of�N .

Now we can show that EN obeys the conditions. In what follows we make no distinction

between x �N y and y �N x since the relation is symmetric. The same goes for�.

(a) if s 62 hN , then EN .s; h;A/ D ¿. In order for EN .s; hN ;A/ to be non-empty E.s0; h;A/

would have to be non-empty for the representative of s, s0, but if s 62 hN then s has no

representative in hN .

(b) if s0 2 EN .s; hN ;A/, then s0 2 lub.s/: Suppose that s0 2 EN .s; hN ; A/. So there is s� 2

h (from the original model) s.t. s� �N s and s00 2 E.s�; h; A/ (in the original model)

with s00 �N s0. Since E.s�; h; A/ � lub.s�/, bh0.s00/ � s�. So then bh0.s00/ �N s�

by the definition of �N , and since �N is transitive, bh0.s00/ �N s. Now s00 �N s0 so

bh0N .s
00/ �N bhN

.s0/. Therefore, bhN
.s0/ �N s and fhN

.bhN
.s0// D s0, thus s0 2 lub.s/.

(c) if s 2 hN , lub.s; hN / 2 EN .s; hN ;A/: If s 2 hN , then lub.s; hN / D fhN
.s/. We have the

two cases where h is finite or infinite. Let’s suppose h is infinite. Then the representative

148



of s is s, so for any object x, x 2 EN .s; hN ;A/ iff there is y 2 E.s; h;A/ and y �N

x. Since E obeys c, lub.s; h/ 2 E.s; h;A/. Because �N is reflexive, lub.s; h/ �N

lub.s; h/ D lub.s; hN /, and so lub.s; hN / 2 EN .s; hN ;A/.

For the next case assume jhj D n. Now we know that there is sm 2 h which is the

representative of s such that sm �N s and s D hk with k � m.modn/. We also have for

any object x, x 2 EN .s; hN ;A/ iff there is y 2 E.sm; h;A/ and y �N x. Since E obeys

c we have that fh.sm/ D lub.sm; h/ 2 E.sm; h;A/. But we know by lemma 7.1.16(2)

fh.sm/ �N fhN
.s/. Thus, fhN

.s/ D lub.s; hN / 2 EN .s; hN ;A/.

(d) EN .s; hN ;¿/ D lub.s/. For this we already have that EN .s; hN ;¿/ � lub.s/ from

condition b, so we assume that x 2 lub.s/. That means that there are h0N and s0 2 h0N

such that s �N s0 and fh0N .s
0/ D x. From here there are four cases:

Case 1: jhj; jh0j 62 N. Here hN D h and h0 D h0N . So x 2 h0 and s 2 h, so x 2

E.s; h;¿/. So simply from the definition of EN , x 2 EN .s; hN ;¿/.

Case 2: jhj 2 N; jh0j 62 N. Here h0 D h0N , so fh0N .s
0/ D fh0.s

0/ D x and s0 2 h0.

Now there is sm 2 h such that s �N sm and s D hk with k � m.modn/ where

jhj D n. By the transitivity of �N , sm �N s0 and so by conservativity, sm � s0. Since

E.sm; h;¿/ D lub.sm/ in the original model, and x 2 lub.sm/ of the original model, so

x 2 E.sm; h;¿/. Since�N is reflexive, x �N x so by the second clause of the definition

7.10, we have x 2 EN .s; hN ;¿/.

Case 3: jhj 62 N; jh0j 2 N. Here h D hN , so s 2 h. There must be s� 2 h0 such that

s0 �N s�, so s� � s by conservativity. Now by lemma 7.1.16(2) fh0.s�/ �N fh0N .s
0/ D

x. But then, since E.s; h;¿/ D lub.s/ in the original model and fh0.s�/ 2 lub.s/,

fh0.s
�/ 2 E.s; h;¿/. So there is something in E.s; h;¿/ whose predecessor relates to s,

and that relates to x. Thus, x 2 EN .s; hN ;¿/.

Case 4: jhj; jh0j 2 N. Since both are finite, jhj D n and jh0j D n0 and there must

be sm 2 h and sl 2 h0 such that s D hk and k � m.modn/, while s0 D h0
k0

such
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that k0 � l.modn0/. That means h0
k0C1

D x D fh0N .s
0/, with h0

k0C1
�N fh0N .sl/.

But we know also that sm �N sl by transitivity since s �N sm and s0 �N sl , so by

conservativity we have sm � sl . Since E.sm; h;¿/ D lub.sm/, fh0.sl/ 2 E.sm; h;¿/,

and we know fh0N .sl/ �N fh0.sl/. So that means there is something in h, namely sm,

that �N -relates to s and that there is something in E.sm; h;¿/ that �N -relates to x.

Therefore, x 2 EN .s; hN ;¿/.

(e) if s 2 hN , then EN .s; hN ;Ag/ D f s0 W s0 �N lub.s; hN / g. From c we know that

lub.s; hN / 2 EN .s; hN ;Ag/. Now we have two cases, one where h is finite, and the

other where it isn’t.

Suppose jhj D n, then we know that there is hk D s and sm 2 h such that k � m.modn/.

So hkC1 D lub.s; hN / D fhN
.s/. We also know that by construction fh.sm/ �N

fhN
.sm/, and fhN

.sm/ �N fhN
.s/. And we further know that

E.sm; h;Ag/ D fy 2 S W lub.sm; h/ � y g, with lub.sm; h/ D fh.sm/.

Now suppose that x 2 f s0 W s0 � lub.s; hN / g, so x �N fhN
.s/. There is s0 2 h (namely

sm) that is �N -related to s and s00 2 E.sm; h;Ag/ (namely fh.sm/), such that s00 �N x.

That means x 2 EN .s; hN ;Ag/.

Conversely, suppose x 2 EN .s; hN ;Ag/. Then sm �N s and there is s00 2 E.sm; h;Ag/

with s00 �N x. Since s00 2 E.sm; h;Ag/, s00 � lub.sm; h/ D fh.sm/, and because

s �N sm and h is finite we know fh.sm/ �N fhN
.s/ D lub.s; hN /. So by transitivity of

�N , we have s00 �N lub.s; hN /. Thus x �N lub.s; hN / as we wanted.

If h is infinite, then h D hN . If x �N lub.s; hN / D fh.s/, then since h D hN . Now there

is s0 2 h0 (where x 2 h0N ) such that s0 �N fh.s/ so by conservativity s0 � fh.s/. Since

lub.s; hN / D fh.s/ D lub.s; h/ 2 E.s; h;Ag/, x �N fh.s/. So x 2 EN .s; hN ;Ag/.

Conversely, If x 2 EN .s; hN ;Ag/, then there is s0 2 E.s; h;Ag/ since h D hN s.t.

s0 �N x. Now s0 � lub.s; h/ since E obeys e and that means s0 �N lub.s; hN /, and by

transitivity x �N lub.s; hN /.
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(f) if A ¤ B, then EN .s; hN ;B/ � EN .s; hN ;A/. Now if we assume the condition, then

suppose that x 2 EN .s; hN ;B/, we know by definition that the representative of s, call it

s0, from h is such that there is y 2 E.s0; h;B/ with y �N x. Since E obeys f, y will be

in E.s0; h;A/, but that means x 2 EN .s; hN ;A/.

(g) For all A;B .s; h/; .s0; h0/; .s00; h00/, if A \ B D ¿ and s0 �N s �N s00, then there

is .s000; h000/ such that s000 �N s with EN .s000; h000;A/ and EN .s000; h000;B/ contained in

EN .s
0; h0N ;A/ and EN .s00; h00N ;B/, respectively. Now suppose that A \ B D ¿ and

s0 �N s �N s00 where s0 2 h0N , s00 2 h00N and s 2 hN . That means that there is s0 �N

s1 2 h
0, s00 �N s2 2 h

00 which are the representatives s0 and s00. By the transitivity of

�N , s1 �N s2 so these relations hold in the original model by conservativity. But sinceE

obeys g, we have a s000 2 h000 such thatE.s000; h000;A/ � E.s1; h0;A/ andEN .s000; h000;B/ �

E.s2; h
00;B/. Here we will do the case for A since the other is symmetric. Suppose that

x 2 EN .s
000; h000N ;A/ then there is y 2 E.s000; h000N ;A/ such that y �N x. That means

y 2 E.s1; h
0;A/ and y �N x and so by definition x 2 EN .s0; h0N ;A/. We also note that

since s000 � s1, s000 �N s1 so s000 �N s0, and so s000 �N s.

Finally we can define vN for the new model. The new valuation we define as

vN .p/ D
˚
s� 2 SN W 9s

0
2 v.p/ & s� �N s

0
	

(7.11)

We can see pretty quickly that if s 2 vN .p/ and s �N s0, then s0 2 vN .p/. Suppose that

s 2 vN .p/, then there is s� 2 v.p/ such that s� �N s. If s �N s0, then by transitivity, s� �N s0,

thus s0 2 vN .p/. Therefore MN is a disjoint neutral model for L, but each history is an infinite

IDDLF. Now what we will claim is that

Proposition 7.1.17. If M is a disjoint neutral model, then the disjoint neutral model MN just

defined is such that for all .s; hN / in MN , and  from L, if s� D rep.s; hN /, then

MN ; .s
�; hN / �  ”MN ; .s; hN / �  
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Proof. We proceed by induction on the complexity of  . For the base case, suppose that

.s; hN / � p. Then s 2 vN .p/ by definition. Now notice that s� �N s by our observation

above. By definition of vN , then there is s0 2 v.p/ such that s �N s0, but that means s0 �N s�

by transitivity. Thus, s� 2 vN .p/, i.e., .s�; hN / � p.

Now suppose that s� 2 vN .p/. Since by definition s� �N s, we have immediately, s 2

vN .p/.

IH: for all .s; hN / in MN , where rep.s; hN / D s� and ' of less complexity than  from L,

MN ; .s; hN / � '”MN ; .s
�; hN / � '

Now there are two situations that we have to consider, if h is infinite, and when it isn’t. If

it is infinite, then rep.s; hN / D s so all cases follow because they are identical. So we assume

that h is finite, say of size n.

Suppose that .s; hN / � X'. Now suppose that s� D sm for 0 � m � n � 1. So s D hk

and k � m.modn/. This means that hkC1 D fhN
.s/ and .hkC1; hN / � '. Now there are two

cases to consider: 1) fhN
.sm/ 2 h in which case fhN

.sm/ D fh.sm/ D smC1. If not 2), then

fhN
.sm/ D hmC1, and fh.sm/ D s0.

If 1), then k C 1 � m C 1.modn/. So we have .hkC1; hN / � ', and by IH, since

rep.hkC1; hn/ D smC1, .smC1; hN / � '. That means .sm; hN / � X'.

If 2), then rep.hkC1; hN / D s0. But we also have that rep.fhN
.sm/; hN / D s0, this means

that .s0; hN / � ' by IH, so again by IH .fhN
.sm/; hN / � '. But that means .sm; hN / � X'.

Now conversely, .sm; hN / � X'. Again we have the same two cases. If fhN
.sm/ D

smC1, i.e., is in h, then rep.hkC1; hN / D smC1, so by assumption .smC1; hN / � '. By IH,

.hkC1; hN / � ', which means .hk; hN / D .s; hN / � X'.

Now suppose that fhN
.sm/ 62 h, then again rep.fhN

.sm/; hN / D s0 so by IH .s0; hN / � '.

This means that .hkC1; hN / � '. So again .hk; hN / D .s; hN / � X'.

The P case is symmetric to the X one so we omit it. For the ŒA xstit� ' case, it follows

because EN .s; hN ;A/ D EN .s�; hN ;A/.

Suppose that .s; hN / � �'. Then let s0 �N s�. Since rep.s; hN / D s�, s �N s� so
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s0 �N s, which means that .s0; h0N / � ', by supposition. Since s0 was arbitrary, .s�; hN / � �'.

Now suppose that .s�; hN / � �'. If s �N s0, then of course s� �N s0 so .s0; hN / � '.

That means .s; hN / � �' since s0 was arbitrary.

Now if we consider a disjoint neutral model M, and .s; h/ from M, then .s; hN / is in MN .

That means rep.s; hN / D s. But what will follow is that

Proposition 7.1.18. If M is a disjoint neutral model, then the disjoint neutral model MN just

defined is such that for all .s; h/ in M, and ' from L

M; .s; h/ � '”MN ; .s; hN / � '

Proof. This follows from the previous proposition because each such .s; h/ is its own represen-

tative.

Since we can see that each history in MN is an infinite IDDLF, so it looks like a copy of Z,

call it an NUZ model, and refer to that class of models as NUZ. So we can conclude that

Theorem 7.1.19. For all �; ' 2 L, � `xp ' iff � �NUZ ', i.e., `xp is complete with respect to

NUZ.

Proof. Since NUZ � NU, we have soundness for `xp. By the completeness theorem (theorem

7.1.13)we know that `xp is complete with respect to the class of disjoint neutral models. Now

if � °NU ', then there is a disjoint NU model M and .s; h/ in M such that M; .s; h/ � � , but

M; .s; h/ ² '. But then by proposition 7.1.18, we have MN 2 NUZ, and MN agrees with M

for each .s; h/ in jMj. Therefore, MN ; .s; hN / � � and MN ; .s; hN / ² '. So, � �NU ' iff

� �NUZ '. Thus, � `xp ' iff � �NUZ '.

7.1.5 The Same Old Models

Where we started off was with a collection of models where all of the histories which have some

point in common share a common past. However, what we have noticed is that the canonical

153



model for the logic `xp isn’t like that. But we provided a more general class of models that

`xp is complete with respect to, and in fact we have shown that it is complete with respect to

a smaller class of models. Namely, those in which each history is an infinite IDDLF. What

we would like to show now is that `xp is actually complete with respect to the class of models

defined in definitions 5.1.1 and 5.1.2. The models defined in those definitions, as we have noted

above, are among those in NU, but the relation � from definition 7.1.4 has to be identity, and

each history must be infinite. Ensuring that all of the histories are infinite has been done, but in

those models all of the histories are disjoint, a far cry from� being identity.

The big problem, and the one that faced us in the completeness proof using canonical models

was that the natural way to make�o into identity is to take the members of So to be equivalence

classes of maximal sets rather than the maximal sets themselves. But there is the possibility of

a line looping back on itself, or simply having a finite sequence of maximal sets that repeat

the same collection of necessary truths about the past every n steps towards the past. So the

equivalence classes of maximal sets would generate histories that loop. Models with those

kinds of histories are certainly not regular. We will call these kinds of histories periodic.

Definition 7.1.11. Let h be a history from a model M D hS;H;E;�; vi from NU, then we

say that

0 h has a period of n 2 N at s 2 h iff bn
h
.s/ � s.

1 h is periodic iff there is an s 2 h and n 2 N such that bn
h
.s/ � s, there is some n 2 N

such that h has a period of n.

2 h is partially periodic iff h is periodic, but there is s 2 h such that for all n 2 N,

f n
h
.s/ 6� s.

3 h is totally periodic iff for all s 2 h, there is n 2 N such that f n
h
.s/ � s.

The kinds of histories defined by this definition have characteristic shapes. A periodic his-

tory is one that has a repeating past. A partially periodic history is one that has a repeating past,
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but has, after some point, a future that doesn’t repeat. A totally periodic history is one that re-

peats perpetually. If we consider totally periodic histories they are equivalent to finite histories,

although they needn’t be finite. Non-periodic histories are those that never have a repeating

past at any point. Now what of the relationships between these kinds of histories. We catalogue

these relationships in the following easily proved list of observations

Observation 7.1.20. Let h and h0 be histories from a model M from NU, then:

0 If there is s 2 h and s0 2 h0 with s � s0, and h has a period of n at s, then h0 has a period

of n at s0.

1 If there is s 2 h and h is partially periodic, then there is a first s for which h isn’t periodic.

I.e., there is an s 2 h where for all n 2 N f n
h
.s/ 6� s, and for all m 2 N, there is k 2 N

such that f k
h
.bm
h
.s// � bm

h
.s/.

2 If h is periodic, then there is a least n 2 N such that there is s 2 h where h has a period

of n at s.

3 If h has a period of n at s and that is its least period, then for every m 2 N, h has a

period of n at bm
h
.s/.

4 If h is partially periodic with a least period of k, and s 2 h is the least s such that it isn’t

periodic after that s, then h has a period of k at s.

5 If h is partially periodic, s 2 h is the least s such that h isn’t periodic after that s, and

the least period of h is n, then for all k � n and m > 0, bm
h
.f k
h
.s// 6� f k

h
.s/.

6 If h is partially periodic, s is the least s such that h isn’t periodic after that s, and there

are s0 2 h and s1 2 h0 such that s0 � s1, then there is s� 2 h0 such that s � s�.

Proof. The first four observations follow from condition H2 from definition 7.1.4 and from

observations 7.1.14 and 7.1.15.

The fifth observation follows because h has a period of k, and s is the least such state such

that for all n, f n
h
.s/ 6� s. So for all 0 < m 2 N, there is l 2 N such that f l

h
.bm
h
.s// � bm

h
.s/.
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But that means f k
h
.bk
h
.s// � bk

h
.s/. However, f k

h
.bk
h
.s// D s so bk

h
.s/ � s by transitivity of

�, so h has a period of k at s.

The sixth follows because s marks the beginning of the last period of h so after the nth

successor of s, nothing from before the nth successor can relate to it or anything after it least

another period start. The 7th follows because, if n is the least period for h, then there is s0 2 h

such that s0 � s0 and f k
h
.s/ D s0 for some k < n. That is true because s0 must relate to some

state in the last period of h. But then s D bk
h
.f k
h
.s// � bk.s0/ � b

k
h0
.s1/.

Now we can draw some conclusions from these observations. If M is in NUZ, then it is

clumpy, by which we mean that the set of histories can be divided into clumps, or partitioned.

That is we could say that h and h0 are in the same clump iff there is s 2 h and s0 2 h0 such

that s � s0. So in a sense � partitions H and not just S . Also, because of condition b on

E the effectivity function, we have that if s 2 E.s0; h0;A/, then s is in a history in the same

clump as h0. So that means `xp is complete with respect to the class of NUZ models that has

only one clump of histories. This is much like how S5 is complete with respect to the class of

equivalence relation and the class of universal relations.

So now let’s restrict our attention to the class of disjoint NUZ models that have only one

clump. We can call these models universal NUZ models. We must also notice that if a history

is periodic, then every history in that clump is periodic with the same minimal period. If there

is a partially periodic history in the clump that doesn’t mean that every history in the clump

is partially periodic, there can be totally periodic histories in there too. But all of the periodic

histories have the same minimal period. This follows from observation 7.1.20(0) and condition

H2.

Now if we have a model M that is in our particular restricted class that we are considering,

and it has the property that

8s; s0 2 h 2 H; s � s0 only if s D s0 (7.12)
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we say it has the Kamp Property (Kamp for short)2 What the Kamp property amounts to is that

no histories in our universal model are periodic. Non-periodicity follows from the contrapositive

of the Kamp property. So that is an equivalent formulation for a model to satisfy the Kamp

property, for all histories to be non-periodic. Of course if even one history is non-periodic in a

universal model, they all must be.

It is shown in Reynolds (2002) that for a different—but similar—language Models that

satisfy the Kamp property are elementarily equivalent to those given in definition 5.1.1. We

shall show, by the same sort of argument, that NUZ models that satisfy the Kamp property, are

elementarily equivalent to the regular L-models from definition 5.1.1.

Given a model that satisfies the Kamp property, we can then construct another model as

follows:

1. S� D S= �,

2. H � will be given as the triples
˝
Œh�; fŒh�; bŒh�

˛
where

(a) Œh� D f Œs� W s 2 h g

(b) fŒh�.Œs�/ D Œs0� iff there is s0 2 h such that s0 � s and fh.s0/ � s0

(c) bŒh�.Œs�/ D Œs0� iff there are s0 2 h such that s0 � s and bh.s0/ � s0

3. E�.Œs�; Œh�;A/ is the set of Œs0� 2 S� such that there is s0 2 h with s0 � s and s1 � s0

with s1 2 E.s0; h;A/.

4. Œs� �� Œs0� iff s � s0 which means�� isD, and

5. v�.p/ D f Œs� 2 S� W s 2 v.p/ g

From observation 7.1.2, we know that an infinite IDDLF is Z-like, and that means that as

long as each
˝
Œh�; fŒh�; bŒh�

˛
is an infinite IDDLF, and obeys H1 and H2, we will have that the

structure satisfies conditions 2:a and 2:b from definition 5.1.1. Notice too that if s 2 h from
2This is because it defines what is elsewhere called a Kamp Model, see Thomason (1984), and Reynolds (2002).
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M, then since fh.s/ � fh.s/, fŒh�.Œs�/ D Œfh.s/�. Next we check the conditions for an infinite

injective DDLF in

Observation 7.1.21. Here we show that each
˝
Œh�; fŒh�; bŒh�

˛
2 H �, is an infinite injective DDLF.

Proof. The first thing to notice is that if Œs� ¤ Œs0� are in Œh�, then there are s0 � s and s1 � s0

from h, and either f C
h
.s0/ D s1 or f C

h
.s1/ D s0 so either f C

Œh�
.Œs�/ D Œs0� or f C

Œh�
.Œs0�/ D Œs�.

So it obeys TRI. We can see that fŒh� is a function since if Œs� D Œs0�, and fŒh�.Œs�/ D Œs��, there

there is s0 2 h with s0 � s and fh.s0/ � s�. Since s0 � s and Œs0� D Œs�, s0 � s0. So we have

fŒh�.Œs
0�/ D fŒh�.Œs�/.

For injectivity, suppose that fŒh�.Œs0�/ D fŒh�.Œs�/ D Œs��. Then there are s0 � s and s1 � s0

both in h such that fh.s0/ � s� and fh.s1/ � s�. But that means fh.s0/ � fh.s1/, and so by

Kamp, fh.s0/ D fh.s1/, and since fh is injective, we have s0 D s1. Thus, Œs� D Œs0�.

We can UFIX is satisfied since if fŒh�.Œs�/ D Œs�, and fŒh�.Œs0�/ D Œs0�, then there are s0 2 h

and s1 2 h such that s0 � s and s1 � s0 such that fh.s0/ � s and fh.s1/ � s0. But that means

fh.s0/ � s0 and fh.s1/ � s1. By Kamp we must have fh.s0/ D s0 and fh.s1/ D s1. Since fh

obeys UFIX, s1 D s0. So Œs� D Œs0�.

All of the above will be basically the same for bŒh�.

Now suppose that jŒh�j � 2, and fŒh�.Œs�/ D Œs�, so there is s0 2 h such that fh.s0/ D s0 as

above. So by SIZE for fh, since jhjmust be at least 2, bh.s0/ ¤ s0. If bŒh�.Œs�/ D Œs�, then there

is s00 2 h with s00 � s and bh.s00/ � s. But by Kamp that means bh.s00/ D s00. That also means

that s0 � s � s00 so again by Kamp s0 D s00. So we would have bh.s0/ D s0, a contradiction.

Thus, bŒh�.Œs�/ ¤ Œs�.

Now for CONV1, the CONV2 case is similar. Let Œs� ¤ Œs0�, and fŒh�.Œs�/ D Œs0�. So there

is s0 2 h with fh.s0/ � s0 and s0 � s. fh.s0/ ¤ s0 since if it did s0 � s0 and that would

contradict Œs� ¤ Œs0�. So bh.fh.s0// D s0. That means bh.fh.s0// � s0. So now there is an

s�0 2 h such that Œs�0 � D fŒh�.Œs�/, namely fh.s0/. So bŒh�.fŒh�.Œs�// D Œs�.

The fact that jŒh�jmust be infinite follows because if Œh� was finite, then there would have to

be some s � s0 both in h, and not equal. But that is impossible.
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Of course, that the functions are well defined is standard fare with such quotient structures.

The 2:a condition is clearly satisfied, and so we can see the 2:b condition because, if Œs� 2

Œh� \ Œh0�, then there is s0 2 h and s1 2 h0 such that s0 � s � s1. That means that for all n,

bn
h
.s0/ � bn

h0
.s1/ by H2. Now suppose that bn

Œh�
.Œs�/ D Œs0�. That means bn

Œh�
.Œs0�/ D Œs0�, so by

definition, bn
h
.s0/ � s

0, but by transitivity of�, bn
h0
.s1/ � s

0. So bn
Œh0�
.Œs1�/ D Œs

0�, so Œs0� 2 Œh0�.

The other direction is symmetric. The real work is of course is done in checking the conditions

on effectivity functions.

Observation 7.1.22. E� obeys conditions a–g.

Proof. (a) if Œs� 62 Œh�, then there is no s0 � s such that s0 2 h. If Œs0� 2 E�.Œs�; Œh�;A/, then

there would have to be s0 � s and s0 2 h, contrary to assumption. So E�.Œs�; Œh�;A/ D

¿.

(b) Suppose that Œs0� 2 E�.Œs�; Œh�;A/. We want to show that Œs0� 2 lub.Œs�/. So we need to

find Œh0� such that Œs� 2 Œh0� and fŒh0�.Œs�/ D Œs0�. Thus we need s1 2 h0 such that s1 � s

and fh0.s1/ � s0. From our assumption there is s00 2 h such that s00 � s and s� � s0 with

s� 2 E.s00; h;A/. That means s� 2 lub.s00/ since E obeys b, and that means there is h0

and s1 2 h0 with s1 � s00 where fh0.s1/ D s�. So fh0.s1/ � s0, and we are done.

(c) Suppose Œs� 2 Œh�. Now by definition lub.Œs�; Œh�/ D fŒh�.Œs�/ is defined by our assump-

tion, so suppose it is Œs0�. That means there is s0 2 h with s0 � s and fh.s0/ � s0. Since

E obeys c, fh.s0/ 2 E.s0; h;A/. Thus lub.Œs�; Œh�/ D fŒh�.Œs�/ 2 E�.Œs�; Œh�;A/.

(d) Suppose that Œs� 2 Œh�. From b we know that E�.Œs�; Œh�;¿/ � lub.Œs�/, so now assume

that Œs0� 2 lub.Œs�/. We want to show that Œs0� 2 E�.Œs�; Œh�;¿/, so we need s0 � s

such that s0 2 h and an s1 � s0 in E.s0; h;¿/. From our first supposition there is

s0 � s and s0 2 h. By our assumption there is h0 such that fŒh0�.Œs�/ D Œs0�. Thus

there is s00 2 h0 �-related to s such that fh0.s00/ � s0. Since s � s00, we have that

s0 � s00, so fh0.s00/ 2 lub.s0/ by definition of lub, and that means, since E obeys d, that

fh0.s
0
0/ 2 E.s0; h

0;¿/, which is the s1 that we needed.
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(e) Suppose that Œs� 2 Œh�. From c we know that lub.Œs�; Œh�/ 2 E�.Œs�; Œh�;Ag/. Now we

want to show that that is the only element in that set. Recall that lub.Œs�; Œh�/ D fŒh�.Œs�/.

Now assume that Œs0� 2 E�.Œs�; Œh�;Ag/. So there is s0 2 h with s0 � s and s1 � s0 with

s1 2 E.s0; h;Ag/. That means that s1 � lub.s0; h/ D fh.s0/. What we want to show is

that fŒh�.Œs�/ D Œs0�, so we need s� 2 h such that s� � s and fh.s�/ � s0. Since s1 � s0,

let s� D s0. Thus, f lub.Œs�; Œh�/ g D E�.Œs�; Œh�;Ag/.

(f) If A ¤ B, then E�.Œs�; Œh�;B/ � E�.Œs�; Œh�;A/, because E obeys f. Finally, we have,

(g) Suppose that A \ B D ¿ and Œs� 2 Œh� \ Œh0�. That means that there is s0 � s � s1

such that s0 2 h and s1 2 h0. Since E obeys g, we have s00 2 h00 such that s00 � s and

E.s00; h00;A/ � E.s0; h;A/ and E.s00; h00;B/ � E.s1; h0;B/. We will do the B case since

the A is the same. So we have Œs00� 2 Œh00� and Œs00� D Œs�, so Œs� 2 Œh00�. Now suppose

that Œs�� 2 E�.Œs00�; Œh00�;B/. So there is s2 2 h00 with s2 � s00 and s3 2 E.s2; h00;B/ with

s3 � s�. Since both of s2 and s00 are in h00, by Kamp we have that s2 D s00. That means

that s3 2 E.s00; h00;B/, so s3 2 E.s1; h0;B/. But recall that s1 � s, so that is the condition

for Œs�� 2 E�.Œs�; Œh0�;B/.

From these observations we can see that M� is a (perhaps non-universal) regular model,

i.e., a (non-universal) neutral model where� is identity. We can then prove the following:

Theorem 7.1.23. Let M D hS;H;E;�; vi be a disjoint, NUZ model that satisfies the Kamp

property. If M� D M= � (the quotient model just defined), then for all .s; h/ 2 jMj and

' 2 L,

M; .s; h/ � '”M�; .Œs�; Œh�/ � '

Proof. We do this by induction on the complexity of '. Clearly the base case holds. We will do

the X ,� and ŒA xstit� cases as examples since the rest are standard.

Suppose that M; .s; h/ � X . So we have M; .fh.s/; h/ � ', so by IH, M�; .Œfh.s/�; Œh�/ �

 . But Œfh.s/� D fŒh�.Œs�/, so we have M�; .fŒh�.Œs�/; Œh�/ �  , and so by the truth condition
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for X , M�; .Œs�; Œh�/ � X . Each of those steps was an equivalence.

Suppose that M; .s; h/ � � . That happens iff for each s0 such that s0 � s, M; .s0; h0/ �

 where s0 2 h0 (there is always only one h0). Any Œh0� that contains Œs� will be such that

there is s� 2 h0 and s� � s, so M�; .Œs0�; Œh0�/ �  by IH. So this holds for any Œh0�; thus,

M�; .Œs�; Œh�/ � � . Each step here was actually an equivalence.

Now suppose that M; .s; h/ � ŒA xstit�  . So for each s0 2 E.s; h;A/, where s0 2 h0,

M; .s0; h0/ �  . Suppose that Œs�� 2 E�.Œs�; Œh�;A/. That means there is s0 2 h with s0 � s

and s1 2 E.s0; h;A/ such that s1 � s�. Since both s0 and s are in h, s0 D s by Kamp so

s1 2 E.s; h;A/. That means M; .s1; h1/ �  so by IH, M�; .Œs1�; Œh1�/ �  . But Œs1� D Œs��,

so Œs�� 2 Œh1� and M�; .Œs��; Œh1�/ �  . Therefore, M�; .Œs�; Œh�/ � ŒA xstit�  since Œs�� was

arbitrary.

Conversely, suppose that M�; .Œs�; Œh�/ � ŒA xstit�  . So for each Œs�� 2 E�.Œs�; Œh�;A/,

M�; .Œs��; Œh��/ �  . Now let s0 2 E.s; h;A/. That means Œs0� 2 E�.Œs�; Œh�;A/, and so by IH,

M; .s0; h0/ �  where s0 2 h0. Since s0 was arbitrary, M; .s; h/ � ŒA xstit�  .

This means that if a sentence fails in a Kamp model, it will fail in a regular model, i.e.,

M�. We introduce a special name for models derived from these quotient structures: M= �.

Now the problem facing us is that not all NUZ models satisfy Kamp; there are models that are

periodic. What we will now argue is that given a model that is periodic where some argument

fails, we can generate a Kamp model from it where that argument fails. For this we construct

another model MK D hSK ;HK ; EK ;�K ; vKi as follows.

Let M D hS;H;E;�; vi be a universal and disjoint NUZ L-model. So it is also disjoint

and suppose that it doesn’t satisfy Kamp; thus, it is periodic. Every history must be periodic,

and those histories all have the same shortest period n 2 N since there is only one clump (since

the model is universal). Let h 2 H and s 2 h. Now h is either partially or totally periodic.

We will define a new set of histories f hs W s 2 h g for each h 2 H , where each hs is defined as
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follows: 8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

:::

hsC2

hsC1

hsC0 D s

hs�1

hs�2

:::

where each hs˙i , i ¤ 0, is new to S and doesn’t overlap with any other h0s0 . Thus they are all

new elements, and every h0s0 is disjoint from every other. The idea of these new histories is that

each history shifts by one. So, s 2 hs, but s 62 hs0 when s ¤ s0 but s0 2 h. We will impose

the following conventions that hs�0 D hsC0 D s. Often we will have to deal with separate

cases where a static state is, whether it is above or below the element from the original model.

If x D hsCk we will call it a positive case, if x D hs�k we will call it a negative case.

Now we define the triples hhs; fhs
; bhs
i. We define the functions fhs

.x/ and bhs
.x/ as

fhs
.x/ D

8̂̂<̂
:̂
hsC.iC1/ if i 2 N & x D hsCi

hs�.i�1/ if i 2 N & x D hs�i

and

bhs
.x/ D

8̂̂<̂
:̂
hsC.i�1/ if i 2 N & x D hsCi

hs�.iC1/ if i 2 N & x D hs�i

Each of these histories is isomorphic to hZ; z C 1; z � 1i. Since each triple is an infinite IDDLF,

b and f are inverses. So we will write f �k
h
.s/ D bk

h
.s/ where k 2 N. This way f k

h
.f �l
h
.s// D

f k�l
h

.s/. We can picture the lub of an hsCk as in figure 7.3.

Now we have to define the new parts SK ;HK ;�K . What we do for HK is simply take the

set
S˚
f hhs; fhs

; bhs
i gs2h W h 2 H

	
. Then to get SK we take

S
s2S hs. Notice that S � SK .
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Figure 7.3: lub.hsCk/ in MK
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Figure 7.4: Defining�K in MK

For the new alternativeness relation �K , we have to be very careful. We proceed in the

following way: for j; k 2 N,�KDn ˝
hs�j ; h

0
s0�k

˛
W b

j

h
.s/ � bkh0.s

0/ & j D k
o
[

n ˝
hsCj ; h

0
s0Ck

˛
W f

j

h
.s/ � f kh0 .s

0/ & j D k
o

(7.13)

If two static states hs�j ; h0s0�k are related by �K , then it must be that j D k, so they are

both kth predecessors of s and s0 in hs and h0s0 , respectively, but it is also required that in the

original model, the kth predecessor of s in h, and the kth predecessor of s0 in h0 are related. The

situation is similar for the right hand set except that we are comparing kth successors. We give

a picture of this transformation in figure 7.4.

This relation will relate everything to itself since � is reflexive, and it relates all of the

members of hs and h0s0 that come at the same intervals before s and s0 in hs and h0s0 when s � s0.

It also relates things that continue to be related after s and s0. The idea behind the new model
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is to generate new histories, one for each s 2 h, and h 2 H . The new history for s 2 h is

supposed to mimic the ordering and relations to other states and histories in M, but all from the

perspective of s. Each new history only contains one static state from the original model. This

will eliminate the possibility of a static state “looping” back on itself in the sense that s � s0 for

s; s0 2 h. However, we will keep the same relations between the static states from the original

model.

Clearly, �K is an equivalence relation since � is. And if hs�j �K h0
s0�k

, then if they are

different points, it must be that j D k and s � s0.

Observation 7.1.24. HK obeys condition H2.

Proof. Suppose that hs�j �K h0s0�j , without loss of generality. Then let m 2 N, so we will

have bm
hs
.hs�j / D hs�.jCm/, and h0

s0�.jCm/
D bm

h0
s0
.h0s0�j /. Also from our supposition we

have bj
h
.s/ � b

j

h0
.s0/. So by condition H2 for �, we have bjCm

h
.s/ � b

jCm

h0
.s0/, and since

j Cm D j Cm, hs�.jCm/ �K h0s0�.jCm/.

Suppose that hsCj �K h0s0Cj , without loss of generality. Then let m 2 N, so we will

have bm
hs
.hsCj / D hsC.j�m/, and h0

s0C.j�m/
D bm

h0
s0
.h0s0Cj /. Also from our supposition we

have f j
h
.s/ � f

j

h0
.s0/. So by condition H2 for �, we have f j�m

h
.s/ � f

j�m

h0
.s0/, and since

j �m D j �m, hsC.j�m/ �K h0s0C.j�m/. So condition H2 is satisfied.

Now we define the effectivity function EK .

EK.x; hs;A/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

¿ if x 62 hsn
h0s0Cj W f

j

h0
.s0/ 2 E.f k

h
.s/; h;A/

o
\ lub.hsCk/ if x D hsCkn

h0s0�j W b
j

h0
.s0/ 2 E.bk

h
.s/; h;A/

o
\ lub.hs�k/ if x D hs�k

(7.14)

With this function we define it in cases because of where its input sits, either above or below

s, determines what we are going to put into the result of the function. What it does is relate the

EK function to the E function from the original model. To explain how this works let’s define
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the representative of an element of the new model. Define the function rep as follows:

rep.x/ D

8̂̂<̂
:̂
.f k
h
.s/; h/ if x D .hsCk; hs/

.bk
h
.s/; h/ if x D .hs�k; hs/

(7.15)

The idea is that each element of the new model has a representative in the original model. We

will abuse this notation by saying that sometimes rep.s/ is simply the static state coordinate.

Notice that different xs will be assigned the same representative.

So the rationale behind EK is that a static state h0s0Cj is in EK.hsCk; hs;A/, when the rep-

resentative of .h0s0Cj ; h
0
s0/, i.e., f j

h0
.s0/ is in E.f k

h
.s/; h;A/. However, that could lead to EK

making some wild jumps into the future, so we restrict it by requiring that only elements from

the immediate future be admitted, i.e., we intersect EK with lub.hsCk/. The same rationale

goes for the negative case.

So now we must check that EK has the conditions a–g of definition 7.1.4. We should notice

a few things first.

Observation 7.1.25. 1. In general, if s � s0, then lub.s/ D lub.s0/. This will hold for �K

as well.

2. If h00
s00Ck

2 lub.hsCj /, then k D j C 1. And if h0
s0�k
2 lub.hs�j /, then k D j � 1. This

also means that the only time hsCj (a positive case) will be a possible successor to h0
s0�k

(a negative case) is when j D 0, and k D 1.

3. Finally, there is no way that hs�k would ever be a successor of h0s0Cj .

Proof. For 1, it follows from the definitions immediately. For 2, consider the definition of

lub.hsCj / DDf n
h0s0˙k W 9h

0
s0; hs0˙l � hsCj & fh0

s0
.hs0˙l/ D hs0˙k

o
Now for hs0˙l �K hsCj to hold, hs0˙l D h0

s0Cl
, and l D j . But then also fh0

s0
.hs0Cl/ D

hs0˙k D hs0Ck D hs0C.lC1/. So given that l D j , k D j C 1.
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For the negative case consider the definition of lub.hsCj / DDfn
h0s0˙k W 9h

0
s0; hs0˙l � hs�j & fh0

s0
.hs0˙l/ D hs0˙k

o
Now for hs0˙l �K hs�j to hold, hs0˙l D h0s0�l , and l D j . But then also fh0

s0
.hs0�l/ D hs0˙k D

hs0�k D hs0�.l�1/. So given that l D j , k D j � 1.

For 3, it is just inconsistent with the construction.

So there are really two cases to consider in the next proofs: when both x states are positive

cases or negative cases.

Lemma 7.1.26. EK has the properties a–g of definition 7.1.4.

Proof. [a] If x 62 hs, then EK.x; hs;A/ D ¿. This follows by definition of EK

[b] If x0 2 EK.x; hs;A/, then x0 2 lub.x/. This also follows by definition of EK .

[c] Suppose that x D hsCk 2 hs. We want to show that lub.hsCk; hs/ 2 EK.hsCk; hs;A/.

By definition lub.hsCk; hs/ D fhs
.hsCk/ D hsC.kC1/. Clearly, hsC.kC1/ 2 lub.hsCk/, and

since E obeys c we have that f kC1
h

.s/, the representative of hsC.kC1/, is in E.f k
h
.s/; h;A/,

and that means hsC.kC1/ 2 EK.hsCk; hs;A/. In the negative case, i.e., x D hs�k we have

the same situation since fh.bkh.s// 2 E.b
k
h
.s/; h;A/, and fh.bkh.s// D bk�1

h
.s/ which is the

representative of hs�.k�1/.

[d] Suppose that x D hsCk 2 hs, we want to show that EK.x; hs;¿/ D lub.x/. From b

we know that EK.hsCk; hs;¿/ � lub.hsCk/. So suppose that h0s0Cj 2 lub.hsCk/. That means

j D k C 1, as we noted in observation 7.1.25, and so h0
s0C.j�1/

D h0
s0C.k/

�K hsCk. That

means by definition of �K , that f k
h0
.s0/ � f k

h
.s/. And that means f kC1

h0
.s0/ 2 E.f k

h
.s/; h;¿/

since E obeys d, and f kC1
h0

.s0/ 2 lub.f k
h
.s//. That means h0s0Cj 2 EK.hsCk; hs;¿/ since

f kC1
h0

.s0/ is the representative of h0s0Cj (k C 1 D j ). If x D hs�k, then suppose that h0s0�j 2

lub.hs�k/. Here j D k � 1, and so h0
s0�k
�K hs�k, thus bk

h0
.s0/ � bk

h
.s/. Then fh0.bkh0.s

0// D

b
j

h0
.s0/ 2 lub.bk

h
.s// D E.bk

h
.s/; h;¿/, and bj

h0
.s0/ is the representative of h0s0�j . So h0s0�j 2

EK.x; hs;¿/. Therefore, EK.x; hs;¿/ D lub.x/, if x 2 hs.

167



[e] Suppose x 2 hs, and x D hsCk . We want to show that

EK.hsCk; hs;Ag/ D
˚
hs0Cj W hs0Cj �K lub.hsCk; hs/

	
. We know from c that

lub.hsCk; hs/ D fhs
.hsCk/ and so fhs

.hsCk/ D hsC.kC1/ 2 EK.ssCk; hs;Ag/. Now suppose

that h0s0Cj 2 EK.ssCk; hs;Ag/. By b h0s0Cj 2 lub.hsCk/, so j D kC1 by observation 7.1.25(2).

That means the representative of h0s0Cj D h
0
s0C.kC1/

, f kC1
h0

.s0/ is a member of E.f k
h
.s/; h;Ag/.

Thus, f kC1
h0

.s0/ � f kC1
h

.s/ D lub.f k
h
.s// since E.f k

h
.s/; h;Ag/ D

˚
s0 W s0 � lub.f k

h
.s/; h/

	
because E obeys e. But that means h0s0Cj D h

0
s0C.kC1/

�K hsC.kC1/ by definition of �K . Now

suppose that h0s0Cj �K hsC.kC1/, and so h0s0Cj D h0
s0C.kC1/

, and we have by definition of �K ,

f kC1
h0

.s0/ � f kC1
h

.s/. That means f k
h0
.s0/ � f k

h
.s/ by H2 for�, and so h0

s0C.kC1/
2 lub.hsCk/.

But it also means that the representative of h0s0Cj , f kC1
h0

.s0/ is a member of E.f k
h
.s/; h;A/. So

h0s0Cj D h
0
s0C.kC1/

2 EK.ssCk; hs;Ag/.

For the negative case, suppose that x D hs�k. We know from c that lub.hs�k; hs/ D

fhs
.hs�k/ D hs�.k�1/ 2 EK.hs�k; hs;Ag/. Now suppose that h0s0�j 2 EK.ss�k; hs;Ag/.

By observation 7.1.25(2), j D k � 1 and bk�1
h0

.s0/ 2 E.bk
h
.s/; h;Ag/. Thus, bk�1

h0
.s0/ D

fh0.b
k
h0
.s0/ � f kC1

h
.s/ D lub.f k

h
.s// since E.bk

h
.s/; h;Ag/ D

˚
s0 W s0 � lub.bk

h
.s/; h/

	
be-

cause E obeys e. But that means h0s0�j D h0
s0�.k�1/

�K hs�.k�1/, which is what we want.

Now suppose that h0s0�j �K hs�.k�1/, and so h0s0�j D h0
s0�.k�1/

, and we have by definition of

�K , bk�1
h0

.s0/ � bk�1
h

.s/. That means fh0.bkh0.s
0/ � fh.b

k
h
.s// and so h0

s0�.k�1/
2 lub.hs�k/.

But it also means that bk�1
h0

.s0/ 2 E.bk
h
.s/; h;A/ which is the representative of h0

s0�.k�1/
. So

h0s0�j D h
0
s0�.k�1/

2 EK.ss�k; hs;Ag/.

[f] Suppose that A ¤ B. Now suppose that h0s0Cj 2 EK.hsCk; hs;B/. So j D k C 1

and f kC1
h0

.s0/ 2 E.f k
h
.s/; h;B/ and h0s0Cj 2 lub.hsCk/. But we know that E.f k

h
.s/; h;B/ �

E.f k
h
.s/; h;A/ because E obeys f, thus f kC1

h0
.s0/ 2 E.f k

h
.s/; h;A/ and so

h0s0Cj 2 EK.hsCk; hs;A/.

Now suppose that h0s0�j 2 EK.hs�k; hs;B/. So j D k � 1 and bk�1
h0

.s0/ 2 E.bk
h
.s/; h;B/,

and h0s0�j 2 lub.hs�k/. But we know that E.bk
h
.s/; h;B/ � E.bk

h
.s/; h;A/ because E obeys f,

thus bk�1
h0

.s0/ 2 E.bk
h
.s/; h;A/, and so h0s0�j 2 EK.hs�k; hs;A/.
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[g] Suppose that x0 D h0
s0Ck0

, x D hsCk and x00 D h00
s00Ck00

and A \ B D ¿ with x0 �K

x �K x00, i.e., h0
s0Ck
�K hsCk �K h00

s00Ck
. That means k0 D k D k00, and then that f k

h0
.s0/ �

f k
h
.s/ � f k

h00
.s00/. Since E obeys g, we have that there is .s000; h000/ such that s000 � f k

h
.s/ with

E.s000; h000;A/ and E.s000; h000;B/ contained in E.f k
h0
.s0/; h0;A/ and E.f k

h00
.s00/; h00;B/, respec-

tively.

Now since s000 � f k
h
.s/, bk

h000
.s000/ � bk

h
.f k
h
.s// D s by H2 for �. Let’s call bk

h000
.s000/,

‘s3’. So f k
h000
.s3/ D f

k
h000
.bk
h000
.s000// � f k

h
.s/. That means h000

s3Ck
�K hsCk by definition of �K .

But we will also, by the same argument, have that h000
s3Ck

�K h0
s0Ck

and h000
s3Ck

�K h00
s00Ck

. By

observation 7.1.25(1), we have lub.hs3Ck/ D lub.h0
s0Ck

/ and lub.hs3Ck/ D lub.h00
s00Ck

/.

Now suppose that h�s�Cm 2 EK.h
000
s3Ck

; h000s3;A/. That means m D k C 1 by observa-

tion 7.1.25(2), and f kC1
h�

.s�/ 2 E.s000; h000;A/ since s000 D f k
h000
.s3/ and f kC1

h�
.s�/ is the rep-

resentative of h�s�Cm. So f kC1
h�

.s�/ 2 E.f k
h0
.s0/; h0;A/. Since lub.hs3Ck/ D lub.h0

s0Ck
/,

h�s�Cm 2 EK.h
0
s0Ck

; h0s0;A/. The same will go for the B case using h0
s0Ck

.

Now suppose that x0 D h0
s0�k0

, x D hs�k and x00 D h00
s00�k00

and A \ B D ¿ with

x0 �K x �K x00, i.e., h0
s0�k

�K hs�k �K h00
s00�k

. That means k0 D k D k00, and then

that bk
h0
.s0/ � bk

h
.s/ � bk

h00
.s00/. Since E obeys g, there must be .s000; h000/ such that s000 � bk

h
.s/

with E.s000; h000;A/ and E.s000; h000;B/ contained in E.bk
h0
.s0/; h0;A/ and E.bk

h00
.s00/; h00;B/, re-

spectively. Now let f k
h000
.s000/ D s3, then bk

h000
.s3/ D bk

h000
.f k
h000
.s000// D s000. So bk

h000
.s3/ � bk

h
.s/,

and thus h000
s3�k
�K hs�k.

Now suppose that h�s��m 2 EK.h
000
s3�k

; h000s3;A/. That means m D k � 1, and bk�1
h�

.s�/ 2

E.s000; h000;A/ since s000 D bk
h000
.s3/. So f k�1

h�
.s�/ 2 E.bk

h0
.s0/; h0;A/. Since hs3�k/ �K h0

s0�k
,

lub.hs3�k/ D lub.h0
s0�k

/ by observation 7.1.25, so h�s��m 2 EK.h
0
s0�k

; h0s0;A/. The same will

go for the B case.

So we have that MK is a neutral frame, it may not be universal even when M is, but that

won’t bother us. Now we must show that it acts like M is certain ways. For that we need the
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new valuation vK which we define as

vK.p/ D f x 2 SK W rep.x/ 2 v.p/ g (7.16)

here we abuse the rep notation as we mentioned above. From the way that we have defined

�K , if s �K s0, then rep.s/ � rep.s0/. So if s 2 vK.p/ and s �K s0, then rep.s/ 2 v.p/ and

so rep.s0/ 2 v.p/, i.e., s0 2 vK.p/. Thus, MK is a disjoin NUZ L-model that obeys Kamp.

Now we will show that,

Theorem 7.1.27. For all .s; h/ from MK , and all ' 2 L,

MK ; .s; h/ � '”M; rep.s; h/ � '

Proof. One thing to remember is that each static state in M, and in MK is in exactly one history.

[p] Suppose that MK ; .hs˙k; hs/ � p, so hs˙k 2 vK.p/, that means rep.hs˙k/ 2 v.p/ so

M; .rep.hs˙k/; h/ � p. Of course it works conversely as well.

[IH:] suppose that for all of less complexity than ', MK ; .s; h/ �  ”M; rep.s; h/ �

 .

[X;P ] Suppose that MK ; .hs�k; hs/ � P . Then by definition MK ; .hs�.kC1/; hs/ �

 , so then by IH, M; .rep.hs�.kC1//; h/ �  . Of course, rep.hs�.kC1// D bkC1
h

.s/, so

M; .bkC1
h

.s/; h/ �  , of course glb.bk
h
.s/; h/ D bkC1

h
.s/, so M; rep.hs�.k/; hs/ � P .

The same holds for the positive case. Now suppose that M; rep.hs�.k/; hs/ � P . Then

we have that rep.hs�.k// D bkh.s/, so glb.bk
h
.s/; h/ D bkC1

h
.s/. Thus by the truth condition of

P , M; .bkC1
h

.s/; h/ �  . So by the inductive hypothesis and that rep.hs�.kC1// D bkC1
h

.s/

we have MK ; .hs�.kC1/; hs/ �  . Therefore, MK ; .hs�k; hs/ � P . The X case works in

analogy with the P case.

[�] Suppose that MK ; .hs�k; hs/ � � . Then by definition for all h0
s0�k

�K hs�k,

MK ; .h
0
s0�k

; h0s0/ �  . We also have that rep.hs�k; hs/ D .bk
h
.s/; h/, so suppose that s� �

bk
h
.s/. Then say s� 2 h� since it has to be in some history, so let f k

h�
.s�/ D s�, then

bk
h�
.s�/ � bk

h
.s/. Thus h�

s��k
�K hs�k . That means MK ; .h

�
s��k

; h�s�/ �  , so by IH,
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M; .bk
h�
.s�/; h

�/ �  , i.e., M; .s�; h�/ �  . Thus, M; .bk
h
.s/; h/ � � . The positive case is

similar, but one has s� � f k
h
.s/ so you use bk

h�
.s�/ D s�.

Now suppose that M; .bk
h
.s/; h/ � � , so for all s� such that s� � bk

h
.s/, M; .s�; h�/ �  .

Assume that h0
s0�k
�K hs�k. That means bk

h0
.s0/ � bk

h
.s/, so M; .bk

h0
.s0/; h0/ �  . By IH,

MK ; .h
0
s0�k

; h0s0/ �  , since h0
s0�k

was arbitrary, MK ; .hs�k; hs/ � � . The positive case is

the same.

[ŒA xstit�] Now suppose that MK ; .hs�k; hs/ � ŒA xstit�  . By definition for all h0s0�m 2

EK.hs�k; hs;A/,m D k�1 and MK ; .h
0
s0�m; h

0
s0/ �  . Now suppose that s� 2 E.bk

h
.s/; h;A/.

Again, we will have bh�.s�/ � bk
h
.s/ since E.bk

h
.s/; h;A/ � lub.bk

h
.s//, so then s� D

bk
h�
.f k�1
h�

.s�// � bk
h
.s/, and we can call f k�1

h�
.s�/, s�. Thus bk

h�
.s�/ � b

k
h
.s/, thus h�

s��k
�K

hs�k . That means MK ; .h
�
s��k

; h�s�/ �  and so by IH, M; .bk
h�
.s�/; h

�/ �  , i.e.,

M; .s�; h�/ �  . And since s� was arbitrary, M; .bk
h
.s/; h/ � ŒA xstit�  . The positive case

where MK ; .hsCk; hs/ � ŒA xstit�  we have by definition, for all h0s0Cm 2 EK.hsCk; hs;A/,

m D k C 1 and MK ; .h
0
s0Cm; h

0
s0/ �  . Now taking s� 2 E.f k

h
.s/; h;A/, it must be that

bh�.s
�/ � f k

h
.s/, and then bkC1

h�
.s�/ � s by H2, so let s� D bkC1h�

.s�/, then f k
h�
.s�/ � f

k
h
.s/,

and then we proceed as above.

Conversely, for the positive case, if M; .f k
h
.s/; h/ � ŒA xstit�  . Then for all

s0 2 E.f k
h
.s/; h;A/, M; .s0; h0/ �  . Now suppose that h0s0Cm 2 EK.hsCk; hs;A/. Then

rep.hsCk/ D f k
h
.s/ and rep.h0s0Cm/ D f m

h0
.s0/, and m D k C 1. So by definition of

EK we have f m
h0
.s0/ D f kC1

h0
.s0/ 2 E.f k

h
.s/; h;A/; thus, M; .f kC1

h
.s/; h/ �  . So by

IH MK ; .h
0
s0CkC1

; h0s0/ �  . Since h0s0Cm was arbitrary, MK ; .hsCk; hs/ � ŒA xstit�  . For

the negative case, we have M; .bk
h
.s/; h/ � ŒA xstit�  . Then for all s0 2 E.bk

h
.s/; h;A/,

M; .s0; h0/ �  . Then rep.hs�k/ D bk
h
.s/ and rep.h0s0�m/ D bm

h0
.s0/, with m D k � 1. So by

definition of EK we have bm
h0
.s0/ D bk�1

h0
.s0/ 2 E.bk

h
.s/; h;A/; thus, M; .f k�1

h
.s/; h/ �  . So

by IH MK ; .h
0
s0�k�1

; h0s0/ �  . Since h0s0�m was arbitrary, MK ; .hs�k; hs/ � ŒA xstit�  .

If we look at the proofs involved in proving theorem 7.1.23, we will see that we didn’t use
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the universal property at all. We did of course use the Kamp property extensively. This means

that every disjoint neutral model M has an elementarily equivalent regular model, i.e., the Kamp

quotient structure M�. Now we should observe that MK will have the Kamp property. This is

quite easy to see: if hs�k �K hs�k0 , i.e., they are in the same history, hs, we must have k D k0,

so hs�k D hs�k0 . The same will go for hsCk . That means that MK has a regular model M�
K

such that for all .hs˙k; hs/ 2 jMK j, Mk; .hs˙k; hs/ � ' iff M�; .Œhs˙k�; Œhs�/ � '.

Now, we might notice that if .s; h/ 2 jMj, then rep.hs�0; hs/ D .s; h/. So for each .s; h/,

from M,

MK ; .hs�0; hs/ � '”M; .s; h/ � '

and that means that if M; .s; h/ ² ', but M; .s; h/ � � , then MK ; .hs�0; hs/ ² ' and

MK ; .hs�0; hs/ � � . But then M�
K ; .Œhs�0�; Œhs�/ ² ' while, M�

K ; .Œhs�0�; Œhs�/ � � . So

if � holds, while ' fails in a universal NUZ L-model, then � will hold and ' will fail in a

regular L-model. It is easy to see that it will then hold in a universal regular L-model by a

standard generated submodel argument:

Observation 7.1.28. If M D hS;H;E; vi is a regular L-model, with .s; h/ 2 jMj, then M.s;h/

defined as

1. H .s;h/ D f h0 2 H W 9s0 2 S s.t. s0 2 h \ h0 g

2. S .s;h/ D [H .s;h/

3. E.s;h/.s0; h0;A/ D E.s0; h0;A/ \ S .s;h/

4. v.s;h/.p/ D v.p/ \ S .s;h/

is such that for all ' 2 L,

M; .s; h/ � '”M.s;h/; .s; h/ � '

Thus we have proved.

Theorem 7.1.29. `xp is complete with respect to the class of universal regular models:

� `xp ' iff � �xp ':
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Figure 7.5: Counter Example to Indep-G

7.2 Completeness of `Ixp

For this we just have to make a model that doesn’t satisfy condition g and falsifies Indep-G. Let

the language be Ag D f a;b g H D fZa;Zb g such that if zb; za � 0, za D zb, and after 0 not.

And At D fp;q g, then let

1. S D Za [ Zb,

2. E.z;Za; a/ D .z C 1a;Za/

3. E.z;Zb;b/ D .z C 1b;Zb/ for non 0 z.

4. E.0a;Za; a/ D .1a;Za/ D E.0a;Za;b/

5. E.0b;Zb;b/ D .1b;Zb/ D E.0b;Zb; a/

6. v.p/ D f 1a g

7. v.q/ D f 1b g

We provide an image of this counter model in figure 7.5. This is clearly a regular model, but at 0

we would have that .0a;Za/ � ˙.Œa xstit�p/ ^˙.Œb xstit�q/ (the right conjunct is true because
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of .0b;Zb/). But relative to .0a;Za/, Œb xstit�q fails, and relative to .0b;Zb/, Œa xstit�p fails,

and 0a D 0b, and those are the only choices, so .0a;Za/ ² ˙.Œa xstit�p ^ Œb xstit�q/. So the

class of regular frames, with effectivity functions that may not satisfy g doesn’t validate Indep-

G. Of course this is in a restricted language, but if we add more agent terms we can sill get

the same result, similarly with more atomic sentences. This was also done with agent terms not

with roles, but those are simply notational variants. Let’s call the class of models like this for LI

in which E may not satisfy condition g, LI -models. We can let the entailment relation defined

by: For all LI -models M, and for all .s; h/ 2 jMj, M; .s; h/ � � only if M; .s; h/ � ', be

denoted by � �Ixp '. If we replace the agent terms in L with those of role terms, we would get

LI . So using the axioms of `xp with agent terms replaced with role terms we get an institutional

version of `xp. We call that logic, i.e., its consequence relation, `�xp. We can then show:

Theorem 7.2.1. If �I' � LI , then � `Ixp ' iff � �Ixp '.

Proof. For completeness just repeat the completeness proof of section 7.1 without condition g

on effectivity functions.

7.3 Completeness of the Rest: `Ixp

We will now stop ignoring b. As a brief aside, notice that since the logic of `Ixp is a sub-logic

of `Ixp, if a set� of LI -sentences is `Ixp-inconsistent, i.e.,� `Ixp ?, then� `Ixp ?. This means

that `Ixp-consistency implies `Ixp-consistency. The situation is better than that though. To see

how much better, we need a lemma.

Lemma 7.3.1. If M D hD;Fx; vi is an LIb-model, and M� D hF�; v�i is a universal regular

LI -model, then Mc D hD;F�; vci where vc is defined as

1. vc.p/ D
˝
JpKM

1 ; v
�.p/

˛
2. vc.r/ D v.r/

is such that for all  b  0 and ' 2 LI ,
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1. for all .s; h/ 2 jMcj D jM�j, Mc; .s; h/ � ' iff M�; .s; h/ � ', and

2. Mc �  b  0 iff M �  b  0.

Proof. The proof is by induction on the complexity of  ,  0 and '. It is straight forward, so we

will omit the details. The overall reason is that vc agrees with v� with respect to the formulas

of LI , and we keep the content relations from D. That means it maintains the content sentences

from M.

Now we will argue that `Ixp is sound with respect to �Ixp.

Proposition 7.3.2. For all �I' � LIb, � `Ixp ' only if � �Ixp '.

Proof. In proposition 7.1.3, we argued that the XP-stit group axioms from definition 6.3.5 were

sound for the neutral models, so they are sound for the regular models. Therefore they are sound

for LIb-models. The classical axioms are clearly sound. In proposition 5.3.1 we argued that the

b axioms were sound for SI -frames, and D in an LIb-model is an SI -frame, so they are sound

here too. We have a few new cases: PCX1–10, but those are clearly sound as well. For example

PCX10 holds since each r 2 Rol and p 2 At is assigned an atom, but in the definition of an

LIb-model, JpK1 ¤ JrK1, so if either JpK1 . JrK1 or JrK1 . JpK1, then JpK1 D JrK1 since JpK1

and JrK1 are atoms in D. We leave the other cases for the reader.

With this, then we can show that,

Proposition 7.3.3. If � `Ixp ', and � and ' are both in LI , then � `Ixp '. As a corollary we

have that LI -consistency implies LIb-consistency.

Proof. Suppose that � °Ixp '. Then there is an LI -model M D hS;H;E; vi and .s; h/ in jMj

that satisfies �, but doesn’t satisfy ' by theorem 7.2.1. Let D be any SI -frame for LIb. Such

things exists since `Ixp is sound, so ¿ has a model, so D could be a model for ¿. By lemma

7.3.1(1), Mc D hD; S;H;E; vci is an LIb-model such that for all .s0; h0/ 2 jMcj D jMj,

Mc; .s0; h0/ � ' iff M; .s0; h0/ � '. So a fortiori, Mc; .s; h/ � ' iff M; .s; h/ � '. So
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Mc; .s; h/ � �, and Mc; .s; h/ ² '. That means by proposition 7.3.2, � °Ixp '. So we have

the first result. For the corollary, if � °Ixp ?, i.e., it is `Ixp-consistent, then � °Ixp ? by the

previous result. That means `Ixp is a conservative extension of `Ixp.

To show completeness of `Ixp with respect to �Ixp, we construct what is known as a param-

eterization3 of the logic `SI by the logic `Ixp. In Caleiro et al. (1999) the authors show that

completeness of logics can be preserved by a combination by parameterization. However, their

demonstration is with respect to a general class of structures that would take us to far away from

the current models to explain. Instead we will show that the logic is complete in a more direct

manner.

First we note that a model, like that in definition 5.3.1, can be constructed from a `Ixp-

maximal consistent set. Of course such maximal sets exist and any `Ixp-consistent set can

be extended to a maximal one by Lindenbaum’s lemma. We construct the special PO-set as

follows:

Definition 7.3.1. Let � be a `Ixp-maximal consistent set. Define the canonical SI -frame for � ,

as D� as follows:

1. D� D hD� ;.� ;g� ;}�i where D� D LI= �SI .

2. �SI is defined between A;B 2 LI [P.Rol/ (A �SI B) when .A b B/^ .B b A/ 2 � .

ŒA� refers to the equivalence class
˚
B 2 LI [ P.Rol/ W A �SI B

	
, of A under �SI .

3. For all A;B 2 LI [ P.Rol/ ŒA� .� ŒB� iff A b B 2 � or ŒA� D ŒB�, and ŒA� g� ŒB� D

ŒA ^ B�.

4. D�A
D f Œp� W p 2 At g [ f Œr� W r 2 Rol g, and}� D Œ?�.

By inspecting the PC and PCX axioms from definition 6.3.5, we can see that D� is the

right kind of PO-set. That means for any LI -model M D hS;H;E; vi, hD� ; S;H;E; vci

where vc is as in observation 7.3.1, is an LIb-model. That is we define vc.p/ D hŒp�; v.p/i and

3See Caleiro et al. (1999).
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vc.r/ D Œr�. In this model, clearly M; .s; h/ � A b B iff A b B 2 � . Now we show the

following lemma.

Lemma 7.3.4. Suppose that � is a `Ixp-maximally consistent set. Then for any LIb-model M

and .s; h/ 2 jMj, if

1. M; .s; h/ � A b B iff A b B 2 � , and

2. M; .s; h/ � � for all � 2 � \ LI , then

For all ' 2 LIb, M; .s; h/ � ' iff ' 2 � .

Proof. Suppose that

1. M; .s; h/ � A b B for all A b B 2 � , and

2. M; .s; h/ � � for all � 2 � \ LI .

The proof is by induction on the complexity of '. Suppose p 2 At, then suppose that p 2 � ,

then p 2 LI , so M; .s; h/ � p by 2. Conversely, suppose that M; .s; h/ � p, then p 2 LI .

If p 62 � , then :p 2 � by maximality, and :p 2 LI , so M; .s; h/ � :p by 2. Therefore

M; .s; h/ ² p, a contradiction.

IH: Suppose for all � 0 2 LIb of less complexity than ', M; .s; h/ � � 0 iff � 0 2 � .

The Boolean cases are standard, and follow by the use of the induction hypothesis. Note that

if ' D Œ��� 0 for Œ�� 2 f ŒR xstit�; X; P;� W R � Rol g, then ' 2 LI by the construction of the

language LIb. So each of those cases follow from 2. If ' D A b B , then M; .s; h/ � A b B

iff A b B 2 � , by 1.

What this lemma says, in essence, is that the truth of formulas in LIb is separable into the

truth of the b part, and the truth of the LI part. But we can use this to show the following fact.

Observation 7.3.5. If

1. � � LIb,

2. � °Ixp ?,
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3. ' 2 LI , and

4. �I' `Ixp ?,

then there is � 0 � � \LI such that � 0I' `Ixp ?. I.e., if a set of LIb sentences is `Ixp-consistent,

but it is `Ixp-inconsistent with a LI -formula ', then there is a subset of LI sentences in � that

is `Ixp-inconsistent with '.

Proof. Suppose 1,2,3, and 4. Suppose for reductio that all � 0 � �\LI , are such that � 0I' °Ixp

?. Since � is `Ixp-consistent by 2, there is a maximally `Ixp-consistent extension of � , call it

�C. With �C we can form D�C as in definition 7.3.1. Let � 00 D � \ LI . Since � 00 � � ,

it is `Ixp-consistent by proposition 7.3.3. Also, by assumption � 00I' is `Ixp-consistent. That

means there is a LI -model M D hS;H;E; vi, and .s; h/ 2 jMj such that M; .s; h/ � � 00I' by

theorem 7.2.1. Then we can form Mc D hD�C; S;H;E; vci as before, and we will have that

for all � 2 LI ,

1. for all .s; h/ 2 jMcj D jMj, Mc; .s; h/ � � iff M; .s; h/ � � , and

2. Mc �  b  0 iff  b  0 2 �C.

We will then have that Mc; .s; h/ � � for all � 2 �I'. But that means �I' is not `Ixp-

inconsistent (by soundness) contrary to 4.

So there is some � 0 � � \ LI such that � 0I' `Ixp ?.

Finally we can show completeness.

Theorem 7.3.6. If �I' � LIb, then � `Ixp ' iff � �Ixp '.

Proof. The only if direction follows by soundness. So suppose that � °Ixp ' for the if direction.

That means �I :' is `Ixp-consistent and so there is a maximally `Ixp-consistent extension of

�I :', call it �C. Now we can form D�C as before, but we can also look at �C \ LI . Since it

is contained in �C it is `Ixp-consistent, and so it is `Ixp-consistent. Therefore it has a LI -model

M D hS;H;E:vi, i.e., there is .s; h/ 2 jMj, and M; .s; h/ � �C \ LI . So we can form

Mc D hD�C; S;H;E; vci, as before and we get that for all � 2 �C \ LI , Mc; .s; h/ � � ,
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and A b B 2 �C iff Mc; .s; h/ � A b B . So by lemma 7.3.4, we have that for all � 2 �C,

Mc; .s; h/ � � . Therefore Mc; .s; h/ � � , but Mc; .s; h/ ² '. Thus � ²xp '.

7.4 Proof of Proposition 6.6.1

We recall proposition 6.6.1 and the definition of an implementation for clarity.

Proposition 6.6.1. For any implementation I , if � `N ', and � °Ixp ? and ' 2 LI , then

I .�/ `�xp ı for all ı 2 I .'/.

Definition of Implementation. Let � be a code. An implementation of � is a triple I D

hholds; �;I .�/i such that

1. holds � P.Ag/ � Rol, such that for each a 2 Ag there is A � Ag and r 2 Rol such that

a 2 A and hA; ri 2 holds.

2. � is a partition of Rol, where �r is the cell of the partition containing r, such that

3. if hA; ri 2 holds, then for all r0 2 �r, hA; r0i 2 holds, and

4. I .�/ � LB� such that each ı 2 I .�/ is a substitution instance of some ' 2 �, where

each role term r mentioned in ' is replaced uniformly in ' by an agent term A such that

hA; ri 2 holds.

If we have a set Q � holds such that for each r 2 Rol, there is a unique A � Ag with

hA; ri 2 Q, then we can define holds�1Q .r/ D A such that hA; ri 2 Q. We also define IQ.R/ D

[fA W hA; ri 2 Q & r 2 R g. Now for each ' 0 2 �, form the set of substitution instances

IQ.'
0/ using the pairs in Q. That is for each ' 0 2 � and r mentioned in ' 0 we uniformly

substitute A for r when hA; ri 2 Q. We will call this set of formulas IQ.�/. Notice that for

each ' 0 2 �, IQ.'
0/will consist of just one formula since there is only one possible substitution

for each r mentioned in ' 0.

To prove proposition 6.6.1, we show the following
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Lemma 7.4.1. If I is an implementation of �, M D hD;Fx; vi an LIb-model,

M� D hS�;H �; E�; v�i is a LB�-model, and Q � holds such that for each r, with hA; ri 2 Q,

then A is the unique A � Ag such that hA; ri 2 Q, then MC D
˝
D;
˝
S�;H �; EC

˛
; vC

˛
where

vC is defined as

1. vC.p/ D
˝
JpKM

1 ; v
�.p/

˛
2. vC.r/ D v.r/

and EC is defined as

1. EC.s; h;¿/ D E�.s; h;¿/,

2. EC.s; h; f r g/ D E�.s; h; holds�1Q .r// for r 2 Rol, and more generally,

3. EC.s; h;R/ D E�.s; h;IQ.R//.

Then for all ' 2 LI , and .s; h/ from jMCj, MC; .s; h/ � ' iff M�; .s; h/ � IQ.'/.

Proof. Suppose all that we need. Then we first have to show that MC is an LIb-model. The

thing to check is that EC obeys conditions a–f

(a) If s 62 h, then for all A, E�.s; h;A/ D ¿, so the same will hold for any R.

(b) If s0 2 EC.s; h;R/, then s0 2 E�.s; h;I .R// � E�.s; h;¿/ D EC.s; h;¿/.

(c) If s 2 h, then lub.s; h/ 2 E�.s; h;A/, for any A, so it will hold for E�.s; h;I .R// D

EC.s; h;R/.

(d) lub.s/ D E�.s; h;¿/ D EC.s; h;¿/.

(e) If s 2 h, then EC.s; h;Rol/ D E�.s; h;I .Rol//, and

I .Rol/ D [fA W hA; ri 2 holds & r 2 Rol g. But each a 2 Ag is assigned to some role,

so I .Rol/ D Ag. So EC.s; h;Rol/ D f lub.s; h/ g since E�.s; h;Ag/ D f lub.s; h/ g.

(f) Suppose that R � R0. Then I .R/ � I .R0/, so EC.s; h;R0/ D E�.s; h;I .R0// �

E�.s; h;I .R// D EC.s; h;R/.
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So
˝
S�;H �; EC

˛
is a model of the right kind, now we just have to apply lemma 7.3.1(1), and

we have our result.

For proposition 6.6.1, we suppose that � `N '. Now suppose that I .�/ °�xp ı and

ı 2 I .'/. By completeness we will have a LB�-model M D hS;H;E; vi with a dynamic state

.s; h/ such that M; .s; h/ � I .�/, but M; .s; h/ ² ı. What we need to do is specify a set

Q � holds that interprets each r with a unique agent term A. Since ı 2 I .'/, ı is the result

of substituting an agent term A for each r mentioned in '. Recall that if there is a formula like

Œr; r0 xstit�p in �, and hA; ri ; hB; r0i 2 holds in I , then ŒA [ B xstit�p 2 I .�/. So, for each r

mentioned in ', there is hA; ri 2 holds where A is the agent term used to replace r in ' to make

ı. So define Q� as the set of all hA; ri for each r mentioned in ' where A is used to replace r

to make ı. For each r0 2 Rol XQ�, we choose one pair hB; r0i 2 holds. Call that set QC, then

Q D Q� [QC. We are assuming that all of the roles are used in some member of �. So for

each r 2 Rol, there is hA; ri 2 Q and A is unique.

Clearly IQ.�/ � I .�/ since Q � holds. Also, since I .�/ °�xp ı, it follows that

IQ.�/ °�xp ı. And we will further recognize that M; .s; h/ � IQ.�/.

Since � is `Ixp-consistent, there is a LIb-model M0 D hD0;F0x; v
0i and .s0; h0/ 2 M0 such

that M0; .s0; h0/ � �. Now we use M, M0, and Q to form MC as in lemma 7.4.1. I.e., let

MC D
˝
D0; hS;H;Ei ; vC

˛
where vC is defined as in the previous lemma. But since � is a

code, i.e., � � LI , and ' 2 LI , MC; .s; h/ � �, and MC; .s; h/ ² '. That means � °Ixp ',

by completeness. Thus, � °N ', a contradiction.
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Chapter 8

Normative Consistency

If two duties, equally sacred, conflict, an exercise of the will can settle the
conflict, but not a calculation of values.

van Fraassen (1973, p. 9)

In sections 6.2–6.6 we developed a language in which to formulate institutional norms, i.e.,

classification sentences. That language is the language of institutions, particularly the language

that is under institutional control, i.e., the sentences ' for which Ic.'/ D 1. Within that lan-

guage we represent the various legal relations discussed by Holfeld (see 6.4). But now we want

to take up another topic in the following chapter: we will investigate the notion of Normative

Consistency. We will first discuss it via examples, then at theoretical level. Finally, we will

make those theoretical notions clear within the new formal framework.

8.1 Actual Inconsistencies

A first question to raise is whether there are really inconsistent codes. On the face of it, such

codes do exist. For example, the articles 97 and 112 of the Civil Code of Louisiana, at one

time, were at odds. “According to the former ‘The minor of either sex, who has attained the

competent age to marry, must have received the consent of his father and mother . . . .’ But

article 112 prescribes that ‘The marriage of minors, contracted without the consent of the father

and mother, can not for that cause be annulled . . . .” (Alchourrón, 1996, p. 338). What

exactly is the meaning these two statues? Article 97, says that for a marriage to be valid, it is a

necessary condition that the minors’ parents consent to the marriage. But article 112, says that,

if for some reason there is a marriage that is valid without that necessary condition, the lack of

that condition isn’t a reason to annul the marriage.

Article 112 is rather curious since it is really a rule about what can be cited as justification for
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the annulment of a marriage, or rather a justification that can’t be cited. What seems to follow

from the existence of such a rule is that it might be possible for a minor to be married without

the consent of his/her parents. The two statues are not at odds unless there was a marriage, a

genuine marriage, between minors. But article 97 seems to preclude that possibility.

What might have happened is that article 97 was brought into existence, and then people

noticed that it would be possible to annul many marriages, marriages that took place between

two minors, but by the time article 97 was in force those minors were now adults. But article

97 would make those marriages invalid. Since they didn’t want article 97 to be applied retroac-

tively, they made article 112. So through interpretation we see that there is no inconsistency

because we interpret the putatively inconsistent situations away.

Consider that in the Drafting manual of the state of Maine it says

When law proposed by a bill conflicts with existing law, the existing law should be

expressly changed or repealed since the courts are generally unwilling to find that

a law is repealed by implication. In addition, a drafter should not rely on general

language such as “This Act applies notwithstanding any other law to the contrary”

to take care of inconsistent law. Use of such general language is confusing and does

not make clear which of several inconsistent laws is to prevail. of Statutes (2009,

pp. 29–30)

This directive seems to indicate a preference toward new law over old law, but it recognizes

the problem and ambiguity that arises in legal applications of laws that are inconsistent but left

in the master book. This is really an imperative to be careful in editing legal texts. Nonethe-

less, it seems possible that incompatibilities get missed, and so the master book could contain

inconsistencies.

But the kind of incompatibility above isn’t so terrible. If there were an explicit exception

made for preexisting marriages in article 97, then there would be no incompatibility at all. The

kinds of incompatibility that are really vicious are those that make a code unusable. Are such

incompatibilities possible? Consider the following actual law
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�8059. Inconsistent rules

When 2 rules are inconsistent or in conflict with one another, so that compliance

with both is impossible, then compliance with either rule shall be deemed to be

compliance with the other. [1985, c. 680, 7 (RPR).]

Title 5: ADMINISTRATIVE PROCEDURES AND SERVICES Part 18: ADMIN-

ISTRATIVE PROCEDURES Chapter 375: MAINE ADMINISTRATIVE PROCE-

DURE ACT Subchapter 2: RULEMAKING

This law, also from Maine, provides a way to correct for inconsistencies. Rules that would end

someone up in a spot where there is no way to obey one law without being subject to sanctions

from another remove the agent’s liability to sanction. This doesn’t mean that the law as a whole

is made consistent, it is just that the agents bound by it, those for which it is in force, are not

going to face situations where they have no choice but to be sanctioned. In a sense any action in

relation to those incompatible laws would be a violation, but not a prosecutable violation. But

not all legal systems have rules like �8059.

What have not, and will not deal with, how to handle inconsistencies. Many actual systems

of law use various techniques. For example, lex posterior derogat lex priori is a principle used

in applying the law that gives priority to older law over new law, unlike the principle from

Maine above. But we also have other ways. Sometimes norms are put into hierarchies so

that superior laws will override inferior laws. These are ways of actually handling inconsistent

law, but it doesn’t rule out the possibility of inconsistency. We will not make any detailed

recommendations on how one might reason within systems that are genuinely inconsistent.

Now we will look at some previous accounts of inconsistency.

8.2 (In)Consistency of Codes

In this section we will discuss normative inconsistency. Ultimately, we will come to rest on

an account of normative consistency in the sense of a code being followable. To come to this
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conclusion we consider some theories put forward by von Wright (1991), and Hamblin (1972).

8.2.1 Von Wright

To start our formal discussion of normative inconsistency we will refer to von Wright (1991).

In that paper von Wright discusses a way of making sense of deontic logic as a logic of rational

norm-making. When von Wright says ‘norm’ he means either a proposition ‘O'’ or a propo-

sition ‘P'’ which are interpreted as ‘' is obligatory’ and ‘' is permitted’, respectively. The

norms O' are called O-norms and P' are called P-norms. Also, von Wright says that genuine

norms are those where ' isn’t necessarily true or necessarily false.

A necessary condition for rational norm-making, on von Wright’s view, is that norm-makers

intend their norms to be followable. This claim leads to a definition of normative inconsistency.

Intuitively, a set of norms is normatively consistent if and only if it is followable.

The concept of followability is explained in terms of the contents of sets of norms. The

content of O' is ', and the content of P' is '. But there are different ways that a set of norms

can fail to be followable. A set of obligations can be unfollowable when they conflict. That is,

if � is a set of O-norms, then � is followable if and only if f' W O' 2 � g is consistent.

But von Wright notes that a set of P-norms is always followable. Even when P:' and P'

are both in the set, any agent can do one or the other, they needn’t do both. However, a set of

mixed norms, i.e., both P- and O-norms will be unfollowable if something is both obligatory

and omissible, i.e., O' and P:' are both in the set. This leads von Wright to a definition of

normative consistency as (CONN ): for a set of mixed norms � , CONN .�/ iff for each P' 2 � ,

f W O 2 � g [ f' g is consistent.

This provides an interesting formalization of normative inconsistency, but the language

lacks expressiveness. We can’t really say much with this language. There are two kinds of

normative inconsistency. Requiring that something be done, while at the same time permitting

that it not be done, that is the kind of inconsistency in the case of mixed norms. The other is

having conflicting obligations. Of course the unfollowability of a set of O-norms implies that
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the set is not consistent in the CONN sense. Thus, normative inconsistency can be reduced to

the CONN sense alone. But we might do better if we thought about normative inconsistency in

another framework, i.e., one similar to ours.

8.2.2 Hamblin

Hamblin (1972) offers some ideas how norms can conflict with each other, what he calls quan-

daries. A quandary is where there are no ways of acting that are in line with the norms. Every-

thing transgresses the norms somehow.

Mathematically speaking, we can model quandaries in our stit framework in a way similar

to what Hamblin does. Recall that each history from an xstit model is a way the world might

unfold, and a single transition, i.e., pair of static states hs; s0i such that s0 2 lub.s/, represents a

possible “next step” from s in the model. Hamblin thinks of norms as sets of transitions between

the static states in an xstit model. The set of transitions corresponding to each norm represents

all of the illegal transitions according to a set of norms. So if a transition is in the norm N , then

that transition transgresses against the code.

This model for thinking about action and norms allows Hamblin to identify a sense of nor-

mative inconsistency that departs from the technical definition von Wright gives in terms of

logical consistency, but remains true to the spirit of von Wright’s idea. For Hamblin, inconsis-

tency in a set of norms, i.e., a set of transitions in an xstit model, is for an agent to be placed in a

situation where all of the transitions available to her are illegal. This is what, formally, Hamblin

calls a quandary. We will not discuss the various kinds of quandaries Hamblin distinguishes

since we are just using Hamblin’s work to motivate our own. That will be a topic for future

work.1

However, there is an issue to do with expressiveness in Hamblin’s work as well. Norms are

simply sets of states of transitions, and so are actions on his account. Thus what is needed to

formulate norms syntactically rather than semantically is a formalism that is expressive enough

1Hamblin’s notions of norms are also similar to the work of Braybrooke et al. (1995), Ågotnes et al. (2007),
and Segerberg (2009).
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to represent that a set of rules being broken. Of course we have developed such a formalism in

LIb.

8.3 Formal Account of Normative Consistency

We look at normative inconsistency via the kinds of quandaries that are possible. But we will

set one kind of inconsistency to the side before we venture further. An explicit inconsistency

' and :' in a code would make the code problematic, and unusable or unfollowable, but in a

rather uninteresting way. Indeed, we are more interested in ways that codes can be problematic

although they are logically consistent. As it will turn out, if a code is normatively consistent,

then it will also be logically consistent, so we will not be worried about our restricted view.

In relation to our discussion of Hamblin we will interpret the notion of normative inconsis-

tency in terms of norms being transgressed. In Hamblin’s case, norms are sets of transitions, i.e.,

pairs of static states .s; s0/ such that s0 2 lub.s/. In the xstit framework norms are formulas, and

we can represent when a code has been transgressed by the truth of the violation constant V . To

this end, as an abuse of notation let’s shorten ‘for any s0 2 E.s; h;A/, and s0 2 h0, s0; h0 � V ’,

to ‘E.s; h;A/ � JV K’.2 Our goal is to represent normative consistency, i.e., followability, by

some condition(s) on L-models of codes.

Now that we have looked at how to represent transgressions of a normative code, we simply

define a code in this formal framework to be a set of formulas. Since we have only introduced

one violation constant, we are only dealing with one code in this paper, but we could add other

violation constants, both to represent different codes and different sorts of violations within

a code. A code needn’t be a theory since it is supposed to represent the collection of norms

explicitly promulgated; what the norm consequences of a code are is another discussion. Now

that we have these bits of terminology we can ask: When would it be that a code would really

be unfollowable?
2The fact that this formalism is a complete logic with respect to the semantics is also significant. It means that

we can discuss things in the semantic setting and translate them back into the syntax. Also, adding the violation
constant does nothing to the logic since V is treated simply as an atomic sentence.
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To evaluate whether a code is followable we have to look at it in all situations. But, for the

moment, we will look at an implementation of a code in all situations. Since we are looking at

an implementation of a code, rather than a code, i.e., a set in L, rather than a set in LI , we will

refer to codes by �s.

We say that a code is ‘in force’ when its norms are in effect, i.e., declared by the institutional

authority. In these models the way that we model a code � as being in force is for its sentences

to be true. To judge whether a code is really followable we have to look at whether it can

come into force and stay in force thereafter without causing too many problems. Our goal is to

formally describe what it means for a code to cause too many problems.

Before we describe the problems formally we have to formalize the notion of a code being

in force and staying in force thereafter. We can make sense of the target situation formally as

follows.

Definition 8.3.1. We say that a code� is sustained in force after a point .s; h/ in an xstit model

M, in symbols M; .s; h/ É�, iff M; .s; h/ � �, and for each .s0; h0/ 2 jMj such that s 2 h0,

and s �h0 s0; M; .s0; h0/ � �.

We say that M sustains� in force, MÉ�, iff there is .s; h/ 2 jMj such that M; .s; h/É�.

We can also refer to the set of states .s0; h0/ after .s; h/, as

AFT.s; h/ D
˚
.s0; h0/ 2 jMj W s 2 h0 & s �h0 s

0
	

We will say that s0 2 AFT.s; h/ iff there is h0 with s0 2 h0 and .s0; h0/ 2 AFT.s; h/.

Recall that jMj D f .s; h/ 2 S �H W s 2 h g. The idea is that there is some state at which

� is satisfied, and it is satisfied at every “state” after that one. Every state that is potentially

“after” .s; h/, is a way the world could turn out after .s; h/. This definition requires any code

that can be sustained in force to be xstit-consistent (by completeness).

Following Hamblin’s ideas, a code is bad when it puts its subjects into a quandary, i.e.,

leaves them with no legal continuations. In this framework a legal continuation is a path from

.s; h/ to .s0; h0/ where s 2 h0, lub.s; h0/ D s0 and s0 62 JV K. So A is in a quandary at s when
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for each h 3 s, E.s; h;A/ � JV K. But the mere existence of a situation where an agent/group

is in a quandary isn’t by itself damning for a code: it may be possible to make a series of bad

decisions and end up in a quandary. But that series of decisions isn’t the fault of the code, it is

the fault of the agent. If quandaries are too easy to come by, then we can say that the code is

unusable. Thus we have to provide a formal way of characterizing what it means to say that a

quandary is “too easy to come by”.

Part of being in a quandary is to be in a position to xstit a violation, i.e., E.s; h;A/ � JV K.

A code that could never lead to any quandary would be a kind of utopian code. So clearly

isolated incidents of xstit-ing V is a kind of unproblematic consequence of the application of a

code: agents should be capable of breaking the rules. We will say that A is in a Bad Situation

at .s; h/ when E.s; h;A/ � JV K. What we should be worried about are codes that give rise to

quandaries in too many cases; those are the genuine quandaries. Now we have to explain what

makes up a ‘case’.

The ‘situations’ in the logic of xstit can be represented by the dynamic states in a model

since those are the points of evaluation. However, at any dynamic state in a model, there is also

the set of agents. So situations are composed of: a model, a dynamic state in that model, and

a set of agents. One benefit of introducing formalism is the ability to precisely characterize a

totality of possible situations: it makes the precise expression of all possibilities possible. In

our case, there are three parameters to consider in how frequently bad situations come about

after a code is sustained in force. Frequency, logically speaking, can only be represented by the

two quantifiers all and some.

These three parameters allow us to formulate properties of classes of xstit models that sus-

tain a code � in force that represent putative ways that a code can be unfollowable. These

properties are what we will call quandaries. Each of the three parameters corresponds to a kind

of restricted quantifier (either 8 or 9), and alternating the quantifiers in relation to a code �

gives all of the possible, relevant conditions on models. The three restricted quantifiers are: (A)

8=9M; .s; h/ É�, (B) 8=9.s0; h0/ 2 AFT.s; h/, and (C) 8=9A � Ag. This means that we can
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get a well defined range of quandaries by looking at all of the ways to arrange these quantifiers.

There are certain restrictions on the permutations of the quantifiers as follows: The .s; h/-

values in the kind A quantifier depend on the model M, so we cannot alternate the A and B

quantifiers like 8.s; h/8M. However, the agent term variables A are not model dependent;

they are part of the language. So alternating the type A and C quantifiers as in 8A8M is

intelligible. But since a permutation like 8A8M will be equivalent to one like 8M8A, we

will only represent the latter. Given the intelligibility of these arrangements of quantifiers, we

have the full range of possibilities for quandaries. Each potential quandary will take the form

Q1;Q2;Q3; E.s
0; h0;A/ � JV K whereQ1 is either 8=9M or 8=9A � Ag,Q2 is either 8=9M

or 8=9A � Ag or 8=9.s0; h0/ 2 AFT.s; h/, and Q3 is either 8=9A � Ag or 8=9.s0; h0/ 2

AFT.s; h/. To make this a bit clearer we list all of the combinations below.

1. 8M; .s; h/É�;8A � Ag;8.s0; h0/ 2 AFT.s; h/; E.s0; h0;A/ � JV K

2. 8M; .s; h/É�;8A � Ag; 9.s0; h0/ 2 AFT.s; h/; E.s0; h0;A/ � JV K

3. 8M; .s; h/É�; 9A � Ag;8.s0; h0/ 2 AFT.s; h/; E.s0; h0;A/ � JV K

4. 8M; .s; h/É�; 9A � Ag; 9.s0; h0/ 2 AFT.s; h/; E.s0; h0;A/ � JV K

5. 9M; .s; h/É�;8A � Ag;8.s0; h0/ 2 AFT.s; h/; E.s0; h0;A/ � JV K

6. 9M; .s; h/É�;8A � Ag; 9.s0; h0/ 2 AFT.s; h/; E.s0; h0;A/ � JV K

7. 9M; .s; h/É�; 9A � Ag;8.s0; h0/ 2 AFT.s; h/; E.s0; h0;A/ � JV K

8. 9M; .s; h/É�; 9A � Ag; 9.s0; h0/ 2 AFT.s; h/; E.s0; h0;A/ � JV K

9. 8M; .s; h/É�;8.s0; h0/ 2 AFT.s; h/; 9A � Ag; E.s0; h0;A/ � JV K

10. 9M; .s; h/É�;8.s0; h0/ 2 AFT.s; h/; 9A � Ag; E.s0; h0;A/ � JV K

11. 9A � Ag;8M; .s; h/É�; 9.s0; h0/ 2 AFT.s; h/; E.s0; h0;A/ � JV K

12. 9A � Ag;8M; .s; h/É�;8.s0; h0/ 2 AFT.s; h/; E.s0; h0;A/ � JV K
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13. 8A � Ag; 9M; .s; h/É�; 9.s0; h0/ 2 AFT.s; h/; E.s0; h0;A/ � JV K

14. 8A � Ag; 9M; .s; h/É�;8.s0; h0/ 2 AFT.s; h/; E.s0; h0;A/ � JV K

There are four possibilities that are not listed here since they just involve M; .s; h/ É �, and

.s0; h0/ 2 AFT.s; h/. Quandaries not involving reference agents we call total quandaries or

T-quandaries for short. This is to say that whether there is a bad situation “after” the code has

come into force is independent of the groups. The possible T-quandaries are

T1 8M; .s; h/É�;8.s0; h0/ 2 AFT.s; h/; lub.s0/ � JV K

T2 8M; .s; h/É�; 9.s0; h0/ 2 AFT.s; h/; lub.s0/ � JV K

T3 9M; .s; h/É�;8.s0; h0/ 2 AFT.s; h/; lub.s0/ � JV K

T4 9M; .s; h/É�; 9.s0; h0/ 2 AFT.s; h/; lub.s0/ � JV K

So each of these conditions 1–12, T1–4 may represent a problem for a code �. Each condition

says that the class of models that sustains the code � in force has a certain property, i.e., leads

to a bad situation “frequently”. But now we can do some pruning to cut away unproblematic

conditions, conditions that are too strict on what models are problematic. Any condition that has

‘9M in it, simply says that there is a model where there is some—even many—bad situations.

These conditions aren’t really problematic, they are expected. Even a case where there is a

model where every situation is bad for every group does not spell disaster for a code. The

intuition is that it should be possible for everyone to be bad all of the time. It shouldn’t be an

act of logic or of legislation that at least someone is good at each moment. So we can ignore

cases 5–8 and 10, 13 and 14, as well as T3 and T4.

We focus on the first list of conditions and consider, in particular, the first four. Condition

4 says that in each model there is a group that is capable of being in a bad situation at some

point. And what we say is that condition 4 can be true of the class of models that make the code

sustained in force without the code being problematic, so we won’t require its falsity. Condition

2 is problematic, i.e., it does represent a kind of inconsistency, but we will deal with that later.
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Condition 11 says that there is a particular group that in any model can be in trouble. This

condition is a bit more worrisome since it is kind of discriminatory. That one particular group

must be extra careful and not to step out of line. Of course we have groups like that, e.g., police.

So, intuitively, a particular group being capable of being in trouble shouldn’t worry us.

The really worrisome conditions are those where someone is always in trouble in every

model after the code is sustained in force. The conditions that instantiate that worry are 1, 3, 9,

and 12. In the case of 1, in every model, everyone is always in a bad situation. That’s bad when

it is forced by legislation. Since in every model everyone is in a bad situation always, we can

say that that condition is due to the formulation of the code and not the actions of the code’s

subjects. Similarly with condition 3. In each model, there is a group that is always in trouble.

That is discrimination, it is only a misanthropic code that would require that somebody must

be persecuted. Condition 9 is also a problem since it is selective discrimination; some group

is preselected to always in trouble in every model. Finally, in condition 12 someone/group is

always in trouble, again it is a kind of misanthropic code that would force that condition. So we

suggest that codes that force conditions like 1, 3, 9 or 12 are bad. We are indifferent to the rest

of the conditions from the first list.

In the second list the remaining possibilities are T1 and T2. T1 says that in every model

every situation after the code comes into force is a bad situation. That is clearly undesirable.

Condition T2 is also, in a sense undesirable. It says that in every model, after the code is in

force we are guaranteed some point at which things go bad for everyone. That means that it is

just a matter of time before things go bad, and that is a problem for a code.

Now we can deal with condition 2. Notice that condition 2 is equivalent to T2. If condition

2 holds, then for any model that sustains � in force at .s; h/, every group can, at some point in

AFT.s; h/, xstit a violation. So that is true of¿, and lub.s0/ D E.s0; h0;¿/ � JV K so T2 is true.

And if T2 is true, then E.s0; h0;¿/ D lub.s0/ � JV K, so for any A, A will xstit a violation at

.s0; h0/. So condition 2 is true as well. So although condition 2 is problematic, it can be folded

into T2.
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Now let’s give these special conditions some names to make them easy to refer to. We have

already introduced the T-quandary terminology for quandaries that result from V being true

everywhere. What we will do now is refine these a bit. There is another kind of total quandary

that might arise where a particular state s is such that lub.s/ � JV K after the code comes

into force whenever it comes into force. This means that there is no way to proceed without

everyone ending up in a quandary, and if that follows by legislation that is a problem. We call

that a TE-quandary (total existential quandary). Condition T1 is a T-quandary and condition T2

is a TE-quandary. Note that if there is a T-quandary, then there is a TE-quandary.

We introduce another kind of quandary called a global quandary or G-quandary for short.

We also introduce a second kind of G-quandary that we call a GE-quandary to parallel the T-

types. The G-types are made up of conditions 1 and 9. In condition 1, the quandary is global

since everyone is in trouble. Condition 9 is global in the sense that in every situation someone is

in trouble; who is in trouble may depend on the dynamic state. Finally, we will call conditions 3

and 12 Discriminatory Quandaries (DE- and D-quandaries, respectively). This is because they

are similar in that they discriminate against at least one particular group independent of some

aspect of the situation. In 3 that group may depend on the model, but not the dynamic state. In

12 it doesn’t depend on either the dynamic state or the model. Again we note that D-quandaries

imply DE-quandaries.

One final point before we give the definition of the quandaries. We will require that MÉ�

is true for � to have a quandary. To define quandaries we needed to extend the notion of when

a code was in force. When a code is in force it is used to evaluate any situation, not just the

current situation; the code is in force everywhere/when. If it isn’t possible to sustain a code in

force, then it isn’t really possible to use that code to evaluate every situation. But we needed a

notion stronger than consistency to guarantee that. To see this reason better, consider a code �

that has a model, i.e., there is .s; h/ in M that satisfies �, then it may not be the case that it is

satisfied everywhere in that model. In fact it may not be possible to satisfy it everywhere after a

certain state. Consider the set fX:p;p g. If that is to be true everywhere after the current state
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as well, then it must be true at the successor state. So at the current state X:p would have to be

true, but then both p and :p would have to be true at the successor state. So we want to restrict

the notion of a code having a quandary to non-trivially having a quandary in the sense that the

code could be used, but gave rise to problems. This means that there is M, such that MÉ� as

in definition 8.3.1 below.

So we can finally arrive at a definition for the types of quandaries.

Definition 8.3.2. We say that a code �, such that there is M and MÉ�, has a

1. T-quandary iff every model M with .s; h/ such that M; .s; h/É� is such that

8s0 2 AFT.s; h/; lub.s0/ � JV K

2. TE-quandary iff every model M with .s; h/ such that M; .s; h/É� is such that

9s0 2 AFT.s; h/; lub.s0/ � JV K

3. G-quandary iff every model M with .s; h/ such that M; .s; h/É� is such that

8A � Ag;8.s0; h0/ 2 AFT.s; h/; E.s0; h0;A/ � JV K

4. GE-quandary iff every model M with .s; h/ such that M; .s; h/É� is such that

8.s0; h0/ 2 AFT.s; h/; 9A � Ag; E.s0; h0;A/ � JV K

5. D-quandary iff 9A � Ag such that for every model M with .s; h/ such that M; .s; h/É�,

8.s0; h0/ 2 AFT.s; h/; E.s0; h0;A/ � JV K

6. DE-quandary iff every model M with .s; h/ such that M; .s; h/É� is such that

9A � Ag;8.s0; h0/ 2 AFT.s; h/; E.s0; h0;A/ � JV K

There is another philosophical question worth discussing briefly: what about responsibility?

If a code has a T or TE-quandary (a T-type quandary), then no one is properly responsible for

the violations. Indeed, no one need be responsible in the sense of xdstit for any quandary. If a

code has a T-type quandary, there is definitely a problem, but we can’t hold anyone responsible

for the badness. But, one might argue, we recognize that these quandaries aren’t anyone’s

fault, so we won’t try to punish anyone for something they couldn’t help. The thought that
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responsibility is important for justly administering punishment is a conceptual one to do with

the law or morality. Even if no one is responsible for the violations, that doesn’t make the

conditions the code imposes useful. Indeed, when there is a T-quandary the code doesn’t allow

us to distinguish which actions should be “really counted” as wrongdoing. If a code doesn’t

allow anyone to do something right, ever, that isn’t a very useful code.

Now we can raise two questions about what kinds of codes lead to G, T, or D-type quan-

daries. The definitions of the quandaries were given in terms of conditions on models, so we

may want to attempt to characterize those conditions by what those codes can prove, the con-

sequences of those codes. So we can first ask: what conditions on the consequences of codes

correspond, if any, to the quandaries? The second question to raise is whether there are connec-

tions between the kinds of quandaries.

As it turns out the conditions on quandaries are very similar given the formalism that we

are working with. We can connect them according to the following theorem where the arrow is

implication: X H) Y means If � has an X -type quandary, then � has a Y -type quandary.

Theorem 8.3.1.

G ” D ” T

GE

�
wwww
”DE

~wwww
TE

�
wwww

This is proved in section 8.4. The upshot of this theorem is that the only difference between

the quandaries, really, is 5/6 of the quandaries are equivalent and TE on the other. But the other

five all imply TE. This result is definitely an artifact of the formalism. The big jumps, like from

D to T, that cause the collapse are forced because of the anti-monotonicity of the effectivity

function, i.e., condition f, and the fact that E.s; h;Ag/ D f lub.s; h/ g for any s 2 h, i.e.,

condition e. Giving up either of condition e or f would help separate these conditions. However,

conditions e and f can be justified by referencing certain intuitions about action, condition f in

particular. That investigation will be passed to future work. Does this mean that the formalism

is useless in distinguishing the kinds of quandaries? No, there is still the distinction between the
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TE quandaries and the rest. But this result permits a simple definition of normative consistency

that we give below.

What this means from the semantic side of things is that we can define the consistency of a

normative system as quandary freeness, and all that we need to ensure quandary freeness is that

there is no TE-quandary. Thus we are in a position much like that of von Wright’s condition.

However, it doesn’t reduce directly to regular inconsistency since to have a TE-quandary the

code must be consistent.

Notice that the notions of D and DE quandary are not usually considered logical notions

of inconsistency. They aren’t conditions that have to do with whether the code is followable.

Even if the code discriminates against some group, it is still followable by others. That kind

of condition is usually described as a code being unfair or unjust. But in the xstit framework

unfairness is on par with other notions of followability since it is extensionally the same as those

other notions.

We can move on to our second question about characterizing the quandaries in terms of

provability. We don’t characterize them in terms of normative consequence, because we have

to look at the code in a different light. We will see how this works soon. We first have to build

up some technical results to support our investigation.

Given a set � define a set �if as follows:

�if D f�Xnı j ı 2 � & n 2 N g (8.1)

So for any ı 2 �, we have �ı 2 �if , �XXXXı 2 �if , but also XXXXı 2 C`xp.�if / and

ı 2 C`xp.�if /. The latter two facts follow since � is an S5 modality. Now we can make an

observation:

Observation 8.3.2. M; .s; h/É� if and only if M; .s; h/ � �if .

We require one more lemma.

Lemma 8.3.3. Suppose that there is a .s; h/ 2 jMj, such that M; .s; h/ � �if , and .s0; h0/ 2

AFT.s; h/. Then M; .s0; h0/ � �if
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Proof. Suppose that there is a .s; h/ 2 jMj, such that M; .s; h/ � �if , and .s0; h0/ 2 AFT.s; h/.

By observation 8.3.2, M; .s; h/ É �. But that means that at each .s00; h00/ 2 AFT.s; h/,

M; .s00; h00/ � �. So if n 2 N, ı 2 �, �Xnı is always true at .s0; h0/ since ı is true ev-

erywhere after that point a fortiori. Thus M; .s0; h0/ � �if .

Now that we have these results we can show how to define conditions on provability that

will translate into quandaries and back. Because we have theorem 8.3.1, we really only need

two results, one for T and one for TE. However, we can provide more specific results for most

of the types of quandaries. We collect the conditions together in theorem 8.3.4. Recall that

the set Ag is finite, and so P.Ag/ is finite. As another bit of notational convenience let �V D

f:˙Xn�XV j n 2 N g.

Theorem 8.3.4. If � is a code, and �if °xp ? then

1. � has a T quandary iff �if `xp �XV

2. � has a TE quandary iff �if [�V `xp ?

3. � has a G quandary iff �if `xp
V

A�Ag ŒA xstit� V

4. � has a GE quandary iff �if `xp
W

A�Ag ŒA xstit� V

5. � has a D quandary iff �if `xp ŒA xstit� V for some A � Ag

The proof appears below. There isn’t a clear condition that matches up with the DE case.

But because of the equivalence of DE to D, we don’t have to worry about representing the

condition here. We want to point out an interesting fact as an aside. The TE condition is unlike

the others since it put in terms of �if ’s inconsistency with �V . As is used in the proof in the

appendix, that conditions means, by compactness of `xp, that there is some finite set X � N

such that �if [ f˙Xn�XV W j n 2 X g `xp ?. And so there must be a largest n in that set.

That means if M; .s; h/ � �if , there is an upper bound on how far into the future one has to go

before lub.s0/ � JV K.
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But now we are finally in a position to take up the notion of normative consistency for our

system. Standardly, one has a notion of consequence, `, and then one defines inconsistency as

proving some formula, or some set of formulas, C . Then consistency can be defined as� ° C .

Here we take a slightly different view since consequence is normative consequence `N , and

that isn’t what is used to define quandaries.

Normative consistency CONN will have something to do with the existence of quandaries.

What is nice in the current situation is that if there is a quandary of any type (T,G,D), then there

is a TE-quandary. But that means if we say that a code doesn’t have a TE-quandary, then it

won’t have any of the problematic quandaries either. But there is also the situation of standard

inconsistency, i.e., � `xp ?. A code that is simply inconsistent is rather problematic, at least

from a logical standpoint. As we discussed in section 8.2, in practice we find ways to get along

without the code when things are broken. There may be ways to model that, but in this logical

setting we are setting those possibilities aside.

Now a code� that is inconsistent can’t be made true at all, so it can’t do its job in our setting.

But it is also a problem if a code isn’t able to be used to evaluate all situations, i.e., �if `xp ?.

As we noticed in observation 8.3.2, the consistency of �if is necessary and sufficient for �

to be usable as a code. By the transitivity of `xp, if � `xp ?, then �if `xp ? since � �

C`xp.�if /. That means the consistency of�if implies the consistency of�. Thus part of being

a normatively consistent code is for �if to be consistent. The other part, as you might have

guessed, is for there to be no TE-quandary.

But for there to be a TE quandary, it must be that �if [�V `xp ?. If �if `xp ?, then by

monotonicity of `xp, �if [�V `xp ?. So if there is no TE-quandary, then �if °xp ?. Thus

if no TE-quandary,� is normatively consistent. So far we have been discussing quandaries and

normative consistency in the setting of L, but codes are formulated in LI . For this reason we

have the following definition:3

Definition 8.3.3. A code � � LI is normatively inconsistent, relative to an implementation I

3This notion is a much like a formal version the notion of deontic consistency from Marcus (1980).
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iff I .�/ has a TE-quandary. So we can define normative inconsistency CONI
N .�/ formally as

follows

CONI
N .�/” ŒI .�/if [�V `

�
xp ?�

This is an implementation relative notion of consistency. So it remains to discuss what role

the implementation plays in the normative consistency of � tout court. There are only two

possibilities: either it is normatively consistent relative to all implementations of a code, or

just some. But as in the previous discussion about which possible conditions for quandaries

are problematic, there simply being a way for things to go wrong doesn’t seem too bad. Of

course, if there exists an implementation that implies a T-quandary that is problematic. But all

that means is that we have to be mindful about the implementation. So again, we go with the

universal quantifier:

Definition 8.3.4. A code � is normatively inconsistent iff every implementation I .�/ has a

TE-quandary. So we can define normative inconsistency CONN .�/ formally as follows,

CONN .�/”8I ; ŒI .�/if [�V `
�
xp ?�

8.4 Proofs from Section 8.3

Proof of theorem 8.3.1. We will proceed by first noticing that in each type of quandary X, X

implies XE for X=T,G,D. Also notice the rather trivial result that if � has a T-quandary, then

� has both G and D-quandaries too. Let M be any model of � such that .s; h/ 2 jMj, and

M; .s; h/ É �. If � has T quandary, all states after the code is in force only have successor

states that are V states, i.e., for all .s0; h0/ 2 AFT.s; h/, lub.s0/ � JV K. So whatever any group

is effective for is going to be a set of V states, i.e., for all A � Ag, and .s0; h0/ 2 AFT.s; h/,

E.s0; h0;A/ � JV K since E.s0; h0;A/ � lub.s0/. Since M was arbitarily chosen, � has a G-

quandary. Under the same condition of � having a T-quandary, for any M; .s; h/ É �, and

.s0; h0/ 2 AFT.s; h/, E.s0; h0;¿/ D lub.s0/ � JV K. But that will be true for A D ¿ � Ag for

any model, so � has a D-quandary.
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Now we show that G implies T. Suppose � has a G-quandary. Then in any model with

.s; h/ such that M; .s; h/É�, every group is such that it is always effective for violations, i.e.,

for all A � Ag, and .s0; h0/ 2 AFT.s; h/, E.s0; h0;A/ � JV K. But that means ¿ is effective

for violations, i.e., E.s0; h0;¿/ � JV K for all .s0; h0/ 2 AFT.s; h/. But that is just to say that

lub.s0/ � JV K by condition d on effectivity functions. Since M was arbitrarily, chosen � has a

T-quandary.

To show D implies T suppose � has a D-quandary, i.e., there is A such that for any model

with .s; h/ such that M; .s; h/É�, for all .s0; h0/ 2 AFT.s; h/, E.s0; h0;A/ � JV K. But then by

the anti monotonicity of E and because A � Ag, E.s0; h0;Ag/ � JV K. But that holds for every

s0 2 h0. Let s00 2 lub.s0/, arbitrary s0 from AFT.s; h/. Then there is h00 such that s00 2 h00 and

.s00; h00/ is in AFT.s; h/ since s0 is. But also lub.s0; h00/ D .s00; h00/, and E.s0; h00;Ag/ � JV K

(because it holds for all elements of AFT.s; h/). But then .s00; h00/ � V , so s00 2 JV K. Since s00

was arbitrary, lub.s0/ � JV K, i.e., � has a T-quandary.

From DE to GE is simple since if for each model with .s; h/ such that M; .s; h/ É�, there

is an A, call it B, such that for any .s0; h0/ 2 AFT.s; h/, E.s0; h0;B/ � JV K, then for any

.s0; h0/ 2 AFT.s; h/ there is an A, viz. B, such that E.s0; h0;A/ � JV K, i.e., � has a GE-

quandary

So we are left with showing that GE implies G. Suppose that for each model with .s; h/ that

M; .s; h/É�, and any .s0; h0/ 2 AFT.s; h/, there is A � Ag, such that E.s0; h0;A/ � JV K, i.e.,

� has a GE-quandary. We want to show that� has a G-quandary, that is for any M; .s; h/É�,

and A � Ag, and .s0; h0/ 2 AFT.s; h/, E.s0; h0;A/ � JV K. So let M; .s; h/ É�, and B � Ag

and .s0; h0/ 2 AFT.s; h/. We will show that lub.s0/ � JV K. That will imply E.s0; h0;B/ � JV K,

and since B and .s0; h0/ were chosen arbitrarily, � will have a G-quandary.

Suppose that h00 3 s0. Then .s0; h00/ 2 AFT.s; h/, so there is A0 such that E.s0; h00;A0/ �

JV K. By the anti-monotonicity of E, E.s0; h00;Ag/ � JV K so lub.s0; h00/ 2 JV K. Since h00 was

arbitrarily chosen, lub.s0/ � JV K as we wanted. So � has a G-quandary.

Just for fun we can show that GE implies DE. If GE is true, then for each model with .s; h/
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that M; .s; h/É�, and any .s0; h0/ 2 AFT.s; h/, there is A � Ag, such that E.s0; h0;A/ � JV K.

As we noticed, that means E.s0; h0;Ag/ � JV K, for each .s0; h0/ 2 AFT.s; h/. But then T is

true, and so D is true and D implies DE.

Proof of observation 8.3.2. Suppose M; .s; h/ � �if . Note that M; .s; h/ � � since �Œ�� �

�if and �Œ�� `xp ı for each ı 2 �, and Ixstit is sound. Then let .s0; h0/ be “after” .s; h/, so

s; s0 2 h0, and let ı 2 �. Suppose, without loss of generality, that s0 is the n-successor of h0

from s. Then �Xnı 2 �if by definition. But that means .s; h/ � �Xnı, .s; h0/ � Xnı and

.s0; h0/ � ı also by definition. Since ı was arbitrarily chosen, .s0; h0/ � �. .s0; h0/ was also

arbitrary, so M; .s; h/É�.

For the other direction suppose M; .s; h/É�. Then let ı 2 � (i.e.,�Xnı 2 �if ). Clearly,

.s; h/ � � since �Œ�� � �if . Let h0 be such that s 2 h0. Take the n-th h0-successor of s,

call it s0, then by assumption .s0; h0/ � ı. But that means that .s; h0/ � Xnı, and since h0 was

arbitrarily chosen, .s; h/ � �Xnı, and since n was also arbitrary this holds for all n 2 N. That

means �if is satisfied at .s; h/.

Proof of theorem 8.3.4. Here we will prove the T case, the TE case and the GE case, all of the

other cases proceed in a similar manner.

(T case) [)] Suppose that � has a T quandary. So every model M with .s; h/ such that

M; .s; h/ É � is such that 8s0 2 AFT.s; h/; lub.s0/ � JV K, and there is M0 É �. That means

M0; .s00; h00/ � �if , for some .s00; h00/ and so by completeness�if °xp ?. Let M; .s; h/ � �if .

By observation 8.3.2 M; .s; h/ É �. But that means lub.s0/ � JV K for any s0 in AFT.s; h/.

Suppose s 2 h0. Then .s; h0/ 2 AFT.s; h/, so lub.s/ � JV K. But that means M; .s; h0/ � XV ,

and since h0 was arbitrary M; .s; h/ � �XV . Since M; .s; h/ was arbitrary, �if � �XV , and

by completeness �if `xp �XV .

(T case) [(] Suppose that�if `xp �XV and�if °xp ?, then by soundness�if � �XV ,

and by completeness and observation 8.3.2 there is M0 such that M0É�. Suppose M; .s; h/É�,

and let s0 2 AFT.s; h/. Then .s0; h0/ � �if by lemma 8.3.3 for any h0 with s 2 h0, so

201



.s0; h0/ � �XV . But that happens only when lub.s0/ � JV K. Since s0 was arbitrary it holds for

any s0, and since M; .s; h/ was arbitrary, T holds.

(TE case) [)] Suppose that � has a TE quandary. So every model M with .s; h/ such that

M; .s; h/ É� is such that 9s0 2 AFT.s; h/; lub.s0/ � JV K, and there is M0 É�. The latter as-

sumption means M0; .s00; h00/ � �if for some .s00; h00/, and so by completeness �if °xp ?.

Let M; .s; h/ � �if . Then, M; .s; h/ É � by observation 8.3.2, and that means there is

s0 2 AFT.s; h/ such that lub.s0/ � JV K. And there is a history h0 with s0 2 h0. s0 must

be the nth h0-successor from s for some n 2 N, and .s0; h0/ � �XV . But that means,

.s; h0/ � Xn�XV . And so .s; h/ � ˙Xn�XV . Since M and .s; h/ were arbitrary, there

are no models of �if [ f:˙Xn�XV j n 2 N g. That means, by completeness of `xp, �if [

f:˙Xn�XV j n 2 N g `xp ?.

(TE case) [(] Suppose that �if [ �V `xp ?, and �if °xp ?, then by completeness

and observation 8.3.2 there is M0 such that M0 É � from the latter assumption. Suppose

M; .s; h/ É�. Then .s; h/ � �if by observation 8.3.2. By compactness of `xp there must be

n1; : : : ; nk 2 N such that �if [ f:˙Xni�XV j 1 � i � k g `xp ?. But that means �if `xpW
1�i�k ˙Xni�XV by classical logic, and by soundness of `xp, �if �

W
1�i�k ˙Xni�XV .

What this means is that ˙Xni�XV is true at .s; h/ for some 1 � i � k. Let it be ni , i.e.,

.s; h/ � ˙Xni�XV . Then there is h0 with s 2 h0 and .s; h0/ � Xni�XV . Let s0 be the ni th

h0-successor from s, then .s0; h0/ � �XV . But that means lub.s0/ � JV K. Since M; .s; h/ were

arbitrary, there is a TE-quandary.

(GE case) [)] Suppose that � has a GE quandary. So every model M with .s; h/ such

that M; .s; h/ É � is such that 8.s0; h0/ 2 AFT.s; h/, 9A � Ag, such that E.s0; h0;A/ �

JV K, and there is M0 É �. That means M0; .s00; h00/ � �if for some .s00; h00/. Suppose that

M; .s; h/ � �if . Then there is A � Ag such that E.s0; h0;A/ � JV K by assumption for

any .s0; h0/ 2 AFT.s; h/. That means, since .s; h/ 2 AFT.s; h/, .s; h/ � ŒA xstit� V , and so

.s; h/ �
W

A2P.Ag/ ŒA xstit� V . Since M; .s; h/ was arbitrary, �if �
W

A2P.Ag/ ŒA xstit� V . By

completeness, �if `xp
W

A2P.Ag/ ŒA xstit� V .
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(GE case) [(] Suppose that �if `xp
W

A2P.Ag/ ŒA xstit� V , and �if °xp ?, then by sound-

ness �if �
W

A2P.Ag/ ŒA xstit� V , and by completeness and observation 8.3.2 there is M0 such

that M0 É �. Suppose M; .s; h/ É �, and let .s0; h0/ 2 AFT.s; h/. Then .s0; h0/ � �if

by lemma 8.3.3, and so .s0; h0/ �
W

A2P.Ag/ ŒA xstit� V from our assumption. Thus for some

A � Ag, E.s0; h0;A/ � JV K. So there must be A such that E.s0; h0;A/ � JV K for any .s0; h0/

since it was arbitrary. And because M and .s; h/ were arbitrary, GE holds.

The other cases follow similar patterns.

It might worry the reader that TE-quandaries are not independent of the conditions 4 and 11

above. Indeed, if � has a TE-quandary, then both 4 and 11 will hold of �. But we have said

that a code can be normatively consistent while 4 and 11 are true of the code. That means what

we have to ensure is that neither 4 nor 11 imply that a code has a TE-quandary.

Proposition 8.4.1. There is a code� such that although� is such that, 9A � Ag;8M; .s; h/É

�; 9.s0; h0/ 2 AFT.s; h/; E.s0; h0;A/ � JV K, � does not have a TE-quandary

Proof. Consider the set � D f˙XV g. Now consider the set Ag. Claim: this set is such that

for any model M, and .s; h/ 2 jMj, if M; .s; h/ É �, then there is .s0; h0/ 2 AFT.s; h/ such

that E.s0; h0;Ag/. Suppose M; .s; h/ É �. Then M; .s; h/ � ˙XV , so there is h0 3 s such

that M; .s; h0/ � XV . But then M; .lub.s; h0/; h0/ � V , and E.s; h0;Ag/ D f lub.s; h0/ g, so

E.s; h0;Ag/ � JV K. So 11 holds for �.

Now consider the model M� defined as follows: S is the negative integers, and after 0 it is a

tree such that each node has 2 successor nodes. We will call them the left and right nodes. H is

all of the paths through that tree. Now suppose that v.V / is the set of all right nodes. This model

is such that M�; .0; h/ É �. Since at each M�; .s0; h0/ 2 AFT.0; h/ its right successor node

is a V -state, M�; .s0; h0/ � ˙XV . But also, since each left successor state is a non-V -state,

lub.s0/ 6� JV K. Thus, M�; .0; h/ É�, but there is no s0 2 AFT.0; h/ such that lub.s0/ � JV K.

Therefore � does not have a TE-quandary.
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Corollary 8.4.2. It is not necessary that if� satisfies 4, i.e.,8M; .s; h/É�; 9A � Ag; 9.s0; h0/ 2

AFT.s; h/; E.s0; h0;A/ � JV K, then � has a TE-quandary.

Proof. Since 9A � Ag;8M; .s; h/ É �; 9.s0; h0/ 2 AFT.s; h/; E.s0; h0;A/ � JV K implies

8M; .s; h/ É �; 9A � Ag; 9.s0; h0/ 2 AFT.s; h/; E.s0; h0;A/ � JV K, 11 implies 4. Now, if

� satisfying 4 implied that it also had a TE-quandary, that would mean that, � satisfying 11

implied it having a TE-quandary. But as we have just seen � satisfying 11 doesn’t imply that

� has a TE-quandary. Therefore � satisfying 4 doesn’t imply that � has a TE-quandary.
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Chapter 9

Reflections on the Logic

“Then my sunset?” the little prince reminded him: for he never forgot a ques-
tion once he had asked it.

“You shall have your sunset. I shall command it. But, according to my science
of government, I shall wait until conditions are favourable.”

“When will that be?” inquired the little prince.
“Hum! Hum!” replied the king; and before saying anything else he consulted a

bulky almanac. “Hum! Hum! That will be about–about–that will be this evening about
twenty minutes to eight. And you will see how well I am obeyed!”

The Little Prince, Antoine de Saint Exupéry

In this chapter we want to reflect on what we have done over the course of this essay. We

start by summarizing what has happened, then we look at three things: work by others in this

area, how our system stands up in philosophical applications, and whether it is aphilosophical,

i.e., philosophically neutral. We end by considering some future directions of research.

In chapter 2 we discussed the logic of institutions in general and found that a logic of insti-

tutions is determined by two things: a conception of norms and a conception of in forceness for

institutional norms. We argued that it isn’t fruitful to construct an aphilosophical logic of norms

because it would be trivial, so we chose one prong of this fork.

In chapter 3 we elaborated on the details of the prong that we chose, which was roughly

Searle’s conception of institutions. Searle’s conception of institutions gave us both a concep-

tion of norms: all institutional norms are representations of status functions, and a conception

of in forceness: declarations by collectively recognized institutional authorities. That provided

us with a way to conceive of a consequence relation. The notion of consequence is given by

the classical consequences that are preserved by the illocutionary act of status function decla-

ration, e.g., promulgation. In chapter 4 we argued that that consequence relation is captured by

Vanderveken’s notion of strong implication.

Part I of the essay provides an answer to question ˛ from the introduction: is a logic of
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norms possible? The answer is yes, a logic of norms is possible in so far as our interpretation

of Searle is plausible, and assuming Searle’s theory is plausible. By a logic of norms we mean

institutional norms, of course. Part two set about answering question ˇ: What does a logic of

norms look like?

We constructed a formal language for representing institutional roles, institutional facts,

and a certain account of action via xstit logic. In chapter 6 we formalized the informal notion

of norm consequence introduced in chapter 4. We also showed how to interpret the formal

language, and how the language of institutions is to be applied to the “real world”.

In chapter 7 we proved the formal results that are standard with the introduction of a logic,

i.e., soundness and completeness. In chapter 8 we used those formal results to look at an issue

in relation to a logic of institutions: normative consistency. We showed how to represent various

notions of inconsistency based on the existence of quandaries which reduced to the existence

of violations states. Then we demonstrated that these notions in the formal framework can be

reduced to just one condition which we named CONN .

We are now interested in providing some analysis of the formal and philosophical positions

defended in this paper. First we compare the formal theory to other work in a similar vein, we

then look at what the philosophical range of this theory is, and finally we turn to the range of

the formal theory.

9.1 Formal Accounts of Norms

9.1.1 Other Work on Action

In this section we want to briefly mention some work on logics of norms that come from a

different conception than ours. That makes a complete comparison rather difficult. From a

strictly formal point of view, i.e., the sets of formulas of the consequence relations, there may

be some comparisons to make, but that comparison would be almost meaningless since the

interpretations of what those formal sentences mean would be so radically different.
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Braybrooke, Brown, and Schotch (1995) develop a semantics for norms which we will call

TRACK.1 The kinds of norms that interest the authors are social norms. These norms may be

those of etiquette, law or morality. The semantics for norms is based on their definition of norms

developed in their chapter 2. Simply put, a norm or rule is a system of imperatives. Also, the

authors believe that all norms are of, or are reducible to, one fundamental kind: prohibitions.

This is, of course, open to refutation, if there are permissions that cannot be reduced to prohi-

bitions or explained as exceptions to prohibitions. But if we grant their account of norms, all

norms can be so reduced without the loss of any logically relevant character. On the TRACK

view, norms have three components of logical interest. There is the group of agents for whom

the norms are in force (this is the ‘who’ of the norm), the set of circumstances that determine

when the norm applies (this is the ‘when’ of the norm), and the actions (or action types) the

norm prohibits–what they call the ‘nono’.2 Norms have a certain amount of specificity on the

TRACK view. The who and when are crucial, but not problematic. How to characterize the

actions prohibited is the central project in TRACK.

But as we said, a norm is something radically different from our view, their norms are

triples of people, situations and actions. Also, their conception of a norm being in force is

rather opaque and a long discussion would be impractical at the moment. Suffice it to say that it

is different, but we will make one criticism. The TRACK view takes a stance on what an action

is, it is a transition from one state to another. But their characterization of the ‘nono’, i.e., the

set of prohibited actions requires a commitment to action individuation which is a notoriously

difficult and contentious subject in the philosophy of action. On our view the agentive sentences

don’t commit us to a particular view on actions nor act individuation. So our project has the

virtue of parsimony over the TRACK theory. However, it is a project of its own to fully compare

our two accounts.

Next we consider a system developed by Ågotnes, van der Hoek, Rodrı́guez-Aguilar, Sierra,

and Wooldridge (2007) called normative temporal logic (NTL). This logic allows reasoning

1That account shares much in common with an account of imperatives in Hamblin (1972).
2This analysis is much like von Wright’s of the norm-kernel of a regulation cf. von Wright (1963, p. 70–1).
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about normative systems and adds an explicit temporal dimension. NTL allows reasoning about

obligations, and changes in obligations over time.

The formal semantics of NTL is defined on a frame hW;W0; Ri where W is a non-empty

set called the domain, W0 a set of start states and R a relation on W . A normative system � is

interpreted as a set of forbidden transitions from R such that R � � is a serial relation on W .

The transitions are supposed to be transitions of one social state to another. Paths are defined as

being sequences in W of length ! each step of which is in R. Paths in NTL frames resemble

histories in the models of xstit logics. A path conforms to a normative system � when it doesn’t

share any elements in common with �, that is, a path obeys the rules when it doesn’t contain

any of the transitions prohibited by �. This system is very closely related to that of Hamblin

(1972), but the syntax is very different.

Syntactically speaking, each deontic operator is relativized to a normative system � and

must be followed by a temporal operator. Thus obligations and permissions are always relative

to a time and a normative system. NTL can be extended to consider unions and intersections of

normative systems which the authors claim will give a kind of calculus of normative systems.

NTL is also a comparative model of how liberal a system is, which is to say we can compare

whether one system has more prohibitions or permissions than another. However, union and

intersection are operations on the semantic representations of normative systems. There is also

no mention of agents in this system, although these could be added fairly easily. But more

importantly, there are no representations of the norms themselves in the object language, only

the obligations that arise from the imposition of the norms.3 But our system represents the

norms in the object language rather than just what obligations or permissions issue from the

norm system being in force. Also, our system makes sense of norm systems being those that

follow legal transitions, i.e., an illegal transition is one that ends up in a violation state. However,

their conception of what in forceness is or how it is preserved by logical consequence isn’t clear.

Also, their system doesn’t incorporate a syntactic account of codes, the � are simple sets of

3A similar system is found in Segerberg (2009), but that system suffers from similar deficiencies for the in-
tended applications.
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transitions. This puts our formulation on a better path. But to be fair we have to mention that

their semantics of obligation is in terms of what holds in all permitted continuations. This is at

least conceptually distinct from our account of section 6.4, so it makes comparison difficult.

9.1.2 The Input/Output Camp

One of the guiding principles behind input/output logic is that it treats logic as an operation that

takes as inputs premises and outputs conclusions. One of the attractive aspects of i/o logic is

that it doesn’t make any assumptions about the underlying language. The language indifference

of i/o logic makes it a continuation of the general theory of consequence operators started—

perhaps inadvertently—by Tarski in the 1930s.

The theory uses the consequence operator Cn as a basis for defining the operation, which is

simply CCL. The idea of an i/o logic is that it takes a consequence operator and uses it to extend

a collection of conditionals. I/o logic was developed in Makinson and van der Torre (2000),

but it was applied most extensively to the theory of norms in the work of Stolpe, e.g., Stolpe

(2008b). The attractive thing about the i/o paradigm is that the conditional used to compose

conditional norms isn’t assumed to have any special logical properties. A norm on this view is

made up of a pair of sentences .';  / where ' describes the condition in which a state of affairs

described by  is obligatory. The sense in which the norms are arbitrary is that the connection

between the condition and the obligation isn’t assumed to have any of the logical properties

of material or even strict conditionals. Thus a normative code G is a set of pairs .';  / as just

described. But .';  / isn’t really a conditional since it doesn’t have any introduction conditions;

the connections between conditions and obligations are arbitrary. Given a set of sentences �

the application of G to � , G.�/ is defined as f' W  2 � & . ; '/ 2 G g.

Stolpe’s concern is how to extend the explicit normsPN (proper norms) to the set of implicit

norms IN by logical consequence. He sees one way of extending PN , called chaining, as

unproblematic: if .';  / and . ; ' 0/ are both in PN , then .'; ' 0/ is an implicit norm, and

.'; ' 0/ 2 PN . But we have to ask if .';  / and .' 0;  0/ are in PN and  `CL ' 0, then should
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.';  0/ be included in PN ? Stolpe thinks that this latter closure condition, called mediated

transitivity, is an acceptable way to extend the PN . But a rule that is unacceptable is weakening

the output with arbitrary logical consequences: if .';  / is in PN , and  `CL  0, then .';  0/

is in PN . The reason stems from a argument from Carmo and Jones (2002), and is essentially

why Ross’s paradox is problematic. If someone is obligated to mail a letter, then they are

obligated to mail or burn the letter. If the obligation to mail or burn the letter is on par with the

obligation to mail the letter, then failing to do both mail and burn the letter would be to violate

the obligation to mail or burn the letter. If the letter isn’t mailed, then why not burn it? At least

then they would violate fewer of their obligations. So Ross’s paradox isn’t harmless because it

seems to mix up the priority of duties when arbitrary logical consequences of obligations are

taken to have the same status as obligations. Obligations not only have fulfillment conditions,

they also have violation conditions, and each of those conditions must be accounted for when

looking at derived obligations.

Now one might express doubt about counting such derived obligations as on par with explicit

obligations at all. But that is a form of scepticism about a logic of norms. But what Ross’s

paradox can partially show us is that extending PN by arbitrary logical consequence includes

too much. So Stolpe’s goal is to find some middle ground.

But, Stolpe thinks, that when norms are obeyed, i.e., when .';  / is a norm, ' is true and

whomever this norm is applied to does  , the situation that arises from doing  also has an

impact on what other norms are triggered. What he wants is that

When a norm is used to produce an output, then its consequent–i.e.what the norm

decrees to be ideal or obligatory–is dissociated from logically weaker items so that

its normative force, so to speak, does not extend to items that are merely true upon

fulfillment. Hence all obligations generated are genuine in the sense that they cor-

respond to accumulations of explicitly given duties pertaining to the circumstances.

Stolpe (2008a, p. 181)

This idea is captured by a particular formal system, given as follows:
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Definition 9.1.1. Der.G/ is the set of all .';  / such that either .';  / 2 GI .>;>/ or it is

derivable from GI .>;>/4 by the rules: such

SI

.' 0;  0/

.' 00;  0/
and ' 00 `CL ' 0

Eq

.' 0;  0/

.' 0;  00/
and  0 �  00

AND

.' 0;  0/; .' 0;  00/

.' 0;  0 ^  00/

and

MCT

.' 0;  0/; .' 0 ^  00;  �/

.' 0;  �/
and  0 `CL  00

The first rule SI is clearly that a normative code is closed when the conditions for the

applications of norms are weakened. Eq says that the code is closed by substituting equivalent

obligations in norms. AND says that obligations can be combined under the same conditions.

Finally, MCT, or Mediated Cumulative Transitivity, says that logical consequences of contexts

of fulfillment of obligations can be recycled to generate other norms. But it is restricted since

there already has to be a norm .�;  �/ in the norms with, at least, ' 0 ^  00 `CL � .

Now Stolpe’s ideas connect to ours, but his concerns with how norms qua pairs of conditions

and obligations can be chained together differ. In our system the situation is more complex since

it includes institutional facts, and some of those facts define what the duties are. Now in our

system a conditional duty is expressed as 1) �. � �.: ŒR xstit� ' � ŒR xstit� V //, although

we have not discussed this (we only did it for non-conditional duties). If  `Ixp � , then as long

as `Ixp � b  1 ^ : : : ^  n for some subset f 1; : : :  n g of the code � that 1 is a part of, then

�. � �.: ŒR xstit� � � ŒR xstit� V // will also be an institutional duty. So this will be weaker

than adding arbitrary logical consequences, but it doesn’t capture the spirit of what Stolpe is

after.

His concern is with the use that gets made of the conditions of norms in triggering the

obligations of other norms in the system, i.e., the use made of ' from .';  / in determining

what other norms to include in PN .
4> is a symbol for the logical constant that is always true.
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But is the worry about Ross’s paradox from Carmo and Jones (2002) a worry for our system?

The answer is yes, but in our case it isn’t a problem. For Stolpe the problem is that O.' _  /

will be violated when both ' and  are false, even when that obligation issues from O', and  

undermines fulfillment of '. Ross’s paradox turns on the ability to add anything to an obligation.

Not just anything can be added to a duty in our system, it must be something whose content is in

the system already. But that doesn’t mean problematic things can’t be added to duties. So once

�. � �.: ŒR xstit� ' � ŒR xstit� V // is in �, �. � �.: ŒR xstit�.' _ �/ � ŒR xstit� V //

will be in � as well, and the fulfillment of � could undermine the fulfillment of '.

But in our system the reasoning that led to ‘I should burn the letter since I haven’t mailed

it, that way I will disobey fewer duties’ doesn’t hold. The approach that we take to practical

reasoning with respect to institutional norms is that what one should do, with respect to the

institution, is avoid violations. Now if A is in a situation s where :˙ ŒA xstit� ', (i.e., A can’t

mail the letter) then [s3h0E.s; h0;A/ � JV K, so burning the letter won’t ameliorate things for

A. In fact maybe what A should do is mail it in the next state; if it is burnt, then no mailing can

happen in the future. So burning could make things worse since it would lead to the inevitability

of another violation state.

For us, not fulfilling a duty is being in a violation state. However, once a violation state has

been reached, that doesn’t mean that just anything will make the situation better. An agent being

in a violation state is a property of implementations of codes, not the codes themselves. That is

partly why we see a distinction between the ought of ‘what should I do’ and institutional duty.

The distinctions that we make between institutional duty and the ought of practical reason, and

between a code and its implementation take away the bite of Ross’s paradox even given Carmo

and Jone’s revamping of the worry.

9.1.3 Grossi’s Formalization of Searle

In Davide Grossi’s doctoral thesis Designing Invisible Handcuffs (Grossi, 2007), he offers a

formal account of Searle’s conception of institutions:
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“Institutions” are systems of constitutive rules. Every institutional fact is underlain

by a (system of) rule(s) of the form “X counts-as Y in context C ” (Searle, 1969,

pp.51-52).

So clearly his project is very similar to ours, but there are some crucial differences. What we

will do first is discuss Grossi’s theory in this section and then compare our project to his in the

next. We have taken some inspiration from Grossi’s work, so we are looking to notice some

points where the projects differ, particularly with respect to the notion of in forceness and our

interpretation of Searle.

Grossi’s goal is to give a semantics for counts-as statements ‘X counts-as Y in context C ’.

A dog counts-as a mammal in every context, for instance. But also in certain places a person’s

hands count-as weapons in the context where the person in question is a trained boxer. Such

a classification does not hold in every context, e.g., where there are boxers but not weapons

laws. Or in the context where a person has hands, but is not a boxer. The count-as statements

are expressions of subsumption of the X concept under the Y concept in a context C . But

in propositional languages these conceptual classifications must take the form of a relation

between sentences. So we must change each count-as statement in to one of the form: ‘'-states

count-as  -states in the context C ’. Although, the examples above are not of that form we can

use the usual circumlocutions to capture what needs to be expressed. If we are to think about

particular cases, e.g., where ' is ‘Jim is waving his hands in such and such circumstances’ and

 is ‘Jim is directing traffic’, then ' �  says ‘If Jim is waving his hands in such and such a

way, in such and such a context and Jim is a police officer, then Jim is directing traffic’. So our

sentence about Jim would represent: ‘Jim waving his hands in such and such a way counts-as

Jim directing traffic in the context where he is a police officer and such and such’. But these

kinds of count-as sentences could be interpreted as having the form ‘ ‘' �  ’ is true in C ’,

where C is to pick out some context. Sentences of the form ‘ ‘' �  ’ is true in C ’ are called

count as statements, and the ' �  part is called a subsumption statement.
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To give a semantics for counts-as sentences we need to interpret (1) contexts, and (2) the

subsumption statements. Grossi, building on an idea of Stalnaker, uses possible worlds models

M D hW;R; vi. Contexts, in a possible worlds model, are simply a set of possible worlds, i.e.,

a subset of the domain W . To interpret the subsumption statements Grossi interprets material

conditionals as true throughout a context.

So now we have the two components required by 1 and 2 above. A context C is represented

by a subset of the domain WC � W , and the subsumption statements are material conditionals

' �  . To say that ‘' counts-as  in C ’ is to say that ' �  is satisfied throughout WC

in M. To refer to these contexts we use a set of context variables Ctx. To express that a

sentence is true throughout a context, i.e., some subset of possible worlds, Grossi introduces

unary sentence operators ŒC� one for each context variable C in a set of context variables Ctx.

We will come back to the context variables after giving the conditions for satisfaction. The

language is specified as follows:

' ´ ? j p j :' j ' _ ' j ' ^ ' j ' � ' j ŒC�'

So a context frame for a set of context variables Ctx is F D hW; fWC gC2Ctxi and a model

M D hF; vi where v W At ! P.W /. We can then define the truth conditions for M and

w 2 W .

� M; w 
 p iff w 2 V.p/;

� M; w 6
 ?;

� M; w 
 :' iff M; w ± ';

� M; w 
 ' �  iff M; w 6
 ' or M; w 
  ;

� M; s 
 ŒC�.'/ iff 8x 2 WC; M; x 
 '

The C are to range over the contexts in a context fame. The operator ŒC� is used to pick out

the subset WC, i.e., the context that corresponds to C. Notice that if a ŒC�-sentence—a sentence
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whose primary connective is ŒC�—is satisfied somewhere, it is so everywhere. Thus, M; w 


ŒC�.' �  / implies M 
 ŒC�.' �  /, i.e., 8w 2 W;M; w 
 ŒC�.' �  /.

Notice that if ' �  is a classical tautology, then ' �  will be true throughout WC for

each C, so ' states are classified as  states throughoutWC, a fortiori. Each count as statement

is given relative to a model, since it will depend on the model whether ŒC�.' �  / is true

throughout WC.

Grossi’s account of genuine count as statements is captured by proper classification count-

as sentences. These sentences are those that are true throughoutWC, but false somewhere in the

model. The intuition is that proper institutional classifications are not metaphysical necessities,

but particular to our institutions. To express that relationship requires an operator that quantifies

over the whole domainW . This is a unary operator� with the following satisfaction condition:

M; w 
 �'”8w0 2 W; M; w0 
 '

This is simply the universal modality on the model M. So a proper classifying count-as sentence

is true in M when ŒC�.' �  /^:�.' �  / is true in the model. We denote the proper count-

as conditional as ' )C  .

According to Grossi, however, the “real” constitutive norms are not just proper classifica-

tions, but proper classifications that are part of a set of sentences. This is because constitutive

norms must be considered relative to a system or code of norms. Moreover this set of sen-

tences must define a context. A set of sentences � defines a context WC in a model M, when

M; w 
 � iff w 2 WC . So for any w0 … WC , M; w0 ± � , i.e., at least one of the members

of � fails at each world outside of WC . The rationale behind a set defining a context is because

for a count-as statement ŒC�.' �  / to be a constitutive count-as, it must be a member of some

code. The way to guarantee this semantically is for WC to be defined by the code.

Grossi then shows how to define regulative norms in terms of count as statements. Using

Anderson’s (1958) reduction of deontic logic to modal logic and an adaptation of it from Meyer

(1988), Grossi reduces regulative norms to constitutive norms. We will recall the description

of the reduction from section 5.1.3 and the special symbol V that is used to denote the set of
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violation or “bad” states, in some sense. In regular modal logic under Anderson’s reduction, ' is

forbidden at w 2 W iff �.' � V / is true at w. Obligation is then represented as �.:' � V /.

This is a forbidden-not-to-be version of obligation. It states that all :' states are violation

states. So Grossi contextualizes this definition: ' is forbidden relative to the code � in M iff

' )C V is true in M and J�K D WC.

In Grossi’s formalism we can then express ‘' counts-as a violation in the context picked out

by C’ as ŒC�.' � V /. Regulative rules—at least on Searle’s account—regulate existing states

or actions:

Where the rule is purely regulative, behaviour which is in accordance with the rule

could be given the same description or specification (the same answer to the ques-

tion “What did he do?”) whether or not the rule existed, provided the description or

specification makes no explicit reference to the rule. But where the rule (or system

of rules) is constitutive, behaviour which is in accordance with the rule can receive

specifications or descriptions which it could not receive if the rule did not exist

(Searle, 1969, p. 35).

The regulative norms say what can and cannot be done in respect to the normative system

or code, but the actions or states of affairs could still have the same description without the

count-as statements contained in a system of rules. Walking on the grass can be described

as walking on the grass even in the absence of any rules that prohibit walking on the grass.

More formally, a '-state is a '-state even after a norm is introduced that classifies '-states as

violations. But classifying '-states as violation could not exist without some constitutive norms.

But then regulative norms can be represented as constitutive norms by providing classifications

according to whether actions or states are in violation of the norms. So norms on Grossi’s

account define the logical space in which they hold, i.e., constitutive norms define the context

in which they hold. However, it is lacking an important ingredient thus far for norms: an account

of in forceness.
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9.1.4 Some Interpretation of Grossi’s Work

Grossi contends that we can treat, at least extensionally, all norms as constitutive count-as state-

ments. So although it may not be that all norms really are constitutive count-as statements, the

logic of count-as statements is not effected when they are analyzed as such. But if this were a

definition of norms, then norms are really linguistic entities, which is Searle’s view. So Grossi

is taking a more philosophically neutral position on the matter.

The semantics of norms is given as a special kind of proposition, propositions about what

count-as what and what counts-as a violation. One of the novel results of Grossi’s thesis is

that regulative rules can be treated as constitutive rules. But how can Grossi’s formalism be

interpreted with respect to the notion of a norm being in force? And can Grossi’s formalism

provide a logic of norms? To get clear on these questions the former will be discussed first.

Grossi says that

. . . when statements “Œ'� counts-as Œ � in the context ŒC � of normative system �”

are read as constitutive rules, what is meant is that the classification of Œ'� under

Œ � is considered to be an explicit promulgation of the normative system � defining

ŒC �. (Grossi, 2007, p. 81)

Grossi is saying that we are to interpret the truth of constitutive count-as statements as the

constitutive norm being in force. The relation of a context model to the actual world is not

clear in Grossi, we must do our best to give a reading of it. Suppose that a local legislator in

some other possible world w has promulgated all of the count-as statements in � . Presumably

these count-as statements would now be in force. But that would mean that the sentences in

this set are all true in w. That means that there is a context which they define, but the actual

world does not have to be a member of the worlds in the context to make all of the count-as

statements true since they are contextualized. Indeed, ' )C  will be true at every world if it

is true anywhere. By definition of the set � being a set of constitutive count-as statements, for

some ' )C  2 � , ' �  must be false at the actual world since the actual world isn’t in the
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context defined by � . Intuitively, then, at the actual world we don’t count '-states as  -states.

But ' )C  is true at the actual world anyway, thus it is in force at the actual world. And that

is counterintuitive.

This presents a problem between the relation of norms that are in force and the truths of

the actual world. What Grossi was after was a model of how norms are imposed on the world,

but this model doesn’t seem to capture this view. Related to this problem, not every context

model contains every possible context. So it may be possible for a set of sentences � to be true

throughout a subset of the domain of some context model, and false in the right places, but the

set of sentences would not be in force because the subset of the domain of the model that �

defines is not one of the contexts of the frame on which the model is based. I.e., � might be

a set of uncontexualized sentences, might define a set of worlds in a model M, but that set of

worlds J�K isn’t one of the WC in the model. So we can’t interpret a code as in force in just any

model, it has to have the right kind of contexts so that it can interpret � as in force.

Also, since Grossi assumes that a set of constitutive count-as statements is the set of ex-

plicitly promulgated constitutive count as statements it cannot be deductively closed, otherwise

there would have to be implicit norms as well. But maybe that can be put aside. More impor-

tantly, as per our discussion in section 3.2 the context should really just be W , not a proper

subset. This is because W is supposed to represent all of the ways the world might be, and

when a code is in force, it is imposed on all of the ways the world could be. That is at odds

with the interpretation of proper classifications. A proper classification must be true throughout

the context that is defined by its set of constitutive norms, but it must also be false somewhere.

When W is the context, then those two conditions are impossible to satisfy.

So let’s suppose, for the sake of argument, that proper count-as statements that follow from

sets of proper count-as statements that have been explicitly promulgated are also norms in force,

but as long as the set of statements define a context. A proper count-as might just happen to be

true throughout a context defined by � , but since it is not in � it fails to be constitutive. Thus, if

only constitutive count-as statements are to be considered in force, this account gives an austere
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logic of norms, i.e., just the explicitly promulgated count as statements. So the consequence

relation would be trivial. I.e., C.�/ D � .

Grossi’s theory does have some virtues. There are no new semantic entities entering into

Grossi’s formalism. There are contexts, and count-as sentences that are interpreted as condi-

tionals, but no new semantic value for norm-formulations. So it has a parsimonious effect on the

semantics of norms. Also, if we (contra Grossi) interpret proper count-as statements as norms

also in force, that is, the explicit count-as that are promulgated and what follow from them are

in force, then we might get a non-trivial logic of norms. Let’s look at this notion precisely.

First, we should notice that the only institutional facts in Grossi’s system are count as state-

ments. But generally speaking there are other institutional facts that might not have the simple

form of a subsumption statement: free standing Y terms (recall section 3.2). Our system allows

for institutional facts of general forms. So let’s suppose further that a general institutional fact '

can be included in a code. Also we have to realize that a code shouldn’t be represented in terms

of a set of contextualized formulas, i.e., formulas of the form ŒC�' for ' a boolean formula. It

should be just a set of purely Boolean formulas, the contextualized version is used to represent

whether a norm is in force in a model. Also, if a code was represented by a set of contextual-

ized formulas, then it couldn’t be false anywhere in a model. Now we can offer a definition for

normative consequence for Grossi’s system: �GN (‘G’ for ‘Grossi’).

A code of pure Boolean formulas � can normatively entail another pure Boolean formula

 : � �GN  iff in all models in which the context determined by � , also makes  true, but  is

false somewhere, and each member of � is false somewhere in the model. This is in line with

Grossi’s interpretation of proper count as statements: they are true throughout a context, but

false somewhere. Or, in any model in which � determines the context C, and no w 2 W XWC

satisfies all of � , each w 2 WC makes  true and  is false somewhere. We can put this more

formally as:

Definition 9.1.2. � �GN  , iff for every M, s.t.

1. if 8x 2 W.x 2 WC iff M; x 
 �/, and
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2. for each 
 2 � there is w 2 W such that M; w ± 
 , then

3. WC � J KM, and

4. 9w0 2 W such that M; w0 ±  .

So we can now see that our interpretation of Grossi’s system makes his rather different from

our own. First, it is impossible to have any tautology be an institutional fact since tautologies

are never false at any world in any model. But what is more interesting is that we can take

any set of pure boolean formulas � and any classical consequence of � ,  , that is neither a

tautology nor logically stronger than any member of � , and show that � ²GN  .

Proposition 9.1.1. If � is consistent, and � �CL  , where ²CL  � 
 for each 
 2 � , and

²CL  , then � ²GN  .

Proof. We will build a model M out of classically maximally consistent sets. LetWC be the set

of �CL-maximally consistent sets � such that � � �. Note that there are such maxi sets since

� is consistent. Since � �CL  , WC � J K, where J K is the set of maximally consistent sets

that contain  .

For each 
 2 � , f:
;  g is classically consistent since none of the members of � is entailed

by  . So it can be extended to a maxi set, �
 .

Define W D WC [
˚
�
 W 
 2 �

	
, and v.p/ D f� 2 W W p 2 � g. But then we would

have a model where 1, 2, and 3 from definition 9.1.2 are met, but 4 isn’t. Therefore � ²GN

 .

So Grossi’s norm consequence, or our reconstruction of it, is weaker than ours. There are

no norm consequences that are strictly weaker than the individual norms in a code on Grossi’s

system.

To sum up, there are some very good ideas in Grossi’s work. We can account for constitutive

norms, and capture regulative norms as special kinds of constitutive norms. However, there are

some failures for the application that we have in mind. There are some complications with
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how Grossi’s models relate to “the world”. The missing element is a coherent story about

how norms relate to the world, i.e., when the norms are in force. What is missing is a proper

representation of the actual world in the models. His models should be thought of as hovering

over the world, defining the logical space of how things look relative to different codes. But

then interpreting how that relates to the world is left unresolved by Grossi. Also, from our

philosophical position Grossi’s interpretation of norm consequence is too demanding. As we

can see from the result above. The problem for norm consequence comes from the need for the

content of an institutional fact to be false somewhere in the model. On our view, what is in force

at a world is a relation that concerns what is true at that world. Whether something is in force

depends on whether it was imposed on that world, not whether it isn’t true somewhere else.

9.2 Philosophical Evaluation

In this section we want to answer two questions of philosophical interest in relation to this

project:

1. How general is the logic of institutions and does the system generalize to normative sys-

tems broadly construed?

2. We have ignored defeasibility: why and is that right?

9.2.1 Applicability to other Institutions and Systems of Norms

How general is this account of institutions, and does it generalize to normative systems broadly

construed? For other institutions there are a few cases to consider. First are cases of institutions

that derive their existence from law. These institutions are simply another part of law. But there

are institutions that don’t, e.g., universities. Of course, it will take empirical investigation to

make sure that Searle’s theory applies to all things we might consider social institutions. But that

isn’t our project; our project follows a methodology where we take a particular philosophical

position and see where it can go.
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On the other hand there are other types of normative systems. The norms of morality and

etiquette may not be institutions like the law. Of course, whether they are depends on the

philosophy of those normative systems. Etiquette may rely on common recognition, but it

doesn’t come about through declarations. Indeed, it has been argued that institutions don’t

work the way Searle thinks they do, but we aren’t considering that here. The basic idea for

the logic would still work in the same way: the logic for the conditions of in forceness is the

foundation of the logic of norms. What we offer here is one account of what that logic is and,

more importantly, why it is that way. If a notion of entailment could be made sense of for

the relation of common recognition, then that could be a notion of normative consequence for

etiquette.

The logic developed here is limited in its scope of application. It can only be applied to

normative systems that function in the way Searle’s account of institutions works. But it might

not work for all accounts of how institutions work. And how widely Searle’s system applies is

beyond the scope of the current project.

9.2.2 Norms: Interpretation and Defeasibility

Interpretation of norm formulations is always a bit of a problem, the legal profession is built

around it. Part of the problem stems from the ambiguity that exists in any natural language. Of

course logical formalism is supposed to remove any ambiguity and only express “what is really

meant”. But that may be problematic with norms. Some theorists (e.g., Hart) assert that norms

are opened textured, i.e., there are certain cases that will defy classification. Any concept is

always too wide and too narrow, thus human interpretation must always play a part in what a

norm “really means”. So to ignore this would be in error. In formalization there must always

be some idealization of natural language and human reasoning. The approach we have taken is

to say the logic developed applies to the norms after the interpretation is done, i.e., it applies to

a particular master system rather than to a master book. The idealization that we have made is

that we can pick a particular master system at all.
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A deontic logic, to be an accurate representation of actual normative reasoning, must include

some version of defeasible obligation. The reason can be illustrated by the following story.

Suppose that Tammy is a student at the, fictional, university U of C, and there is a norm in the

code of conduct of U of C that says that each student has a duty to go to every class that she/he

has registered for. So Tammy has a duty to go to every class she has registered for. However, if

there were a death in Tammy’s family, and the funeral and a class coincided, it would not follow,

intuitively, that she has a duty, in this instance, to go to that class. The duty to pay respect at the

funeral of a family member can override the institutional duty to go to class, and thus absolves

Tammy of her duty to attend class in this circumstance.5

So we have to be able to account for this kind of situation in the formalism. On the one hand

we do recognize this kind of situation, but we dismiss it. We always interpret a master system

as what is being represented by the formulas. This means that we are looking at norms that

have all exceptions explicitly represented. At the real University of Calgary, there are norms

that allow students to defer exams because of a death in the family. This is represented as an

explicit exception to the norms. The point is that nothing can be implicit in the formulas.

The need for defeasibility arises when trying to capture or represent common sense reason-

ing. Common sense reasoning is always done from an epistemically limited position. But we

have assumed that there isn’t such a limited position. Again, we could add this kind of de-

feasibility to better represent actual common sense reasoning, but we haven’t done that.6 Our

goal was to capture norm consequence, and from an objective standpoint where we only con-

sider the norms in force of an institution, with all exceptions represented, we only look at what

institutional facts follow, duties among them.

Other authors have argued that defeasibility isn’t necessary in the representation of deontic

reasoning, cf. Hurtig (2007). But we take a weaker stance since we just argue that for insti-

tutional norm consequence, defeasibility is irrelevant. Also, we are not saying that what the

5This phenomena is connected to the idea of a prima facie duty from Ross (1930).
6Systems of these kinds exist in the work of Prakken (1997), Hage (1997), Governatori and Rotolo (2004) and

Horty (1994).
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norms of the institution say ought to be done is what ought to be done. That is a further ques-

tion about the priority of institutional duties, e.g., legal duties, over other sorts of duties. We

are simply asking what institutional facts follow from the the set of explicit institutional facts in

force for that institution. What duties there are in general is another question, and what duties

an agent has in a particular situation is a question about the relationship between the particu-

lar implementation of that institution, and what other facts (brute and institutional) there are

in that situation. That latter question is one of practical reasoning which we have left largely

undeveloped.

So now that we have discussed some of the philosophical issues, we can look at some

questions to do with the formalism.

9.3 Logical Evaluation

In this section we look at how aphilosophical our formal system is, and we summarize the future

directions of this research based on the current project.

9.3.1 Future Directions

Our future work is to focus on formalizing consequence relations that correspond to differ-

ent conceptions of in forceness, further explore the notion of normative consistency developed

above, and properly delve into the semantics of ‘ought’ within this framework. In relation to

other conceptions of in forceness, we want to explore how to reason about institutions conceived

in a game-theoretic manner. This is to look at institutions from the perspective of economics.

The notion of normative inconsistency developed above is rather minimal. We want to look

closer and compare our notion of inconsistency to those discussed by Hamblin (1972). At the

moment, our notion of consistency is similar to his notion of “minimal consistency”. For the

semantics of ‘ought’, we are interested in deriving an account of ought that is axiological, but

doesn’t introduce an unanalysed notion of value. We want to derive the account of value from

the existence and non-existence of violations in a history.
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We would also like to apply this formalism in relation to designing codes with certain goals.

We want to look at properties of models as goals, i.e., the intent behind making a certain norm.

Generally these are called policies. Using our formalism we would like to find ways to construct

codes so that models that realize those codes will have those properties.

9.3.2 Aphilosophicality

The logic developed in chapter 6 was based on a philosophical position given in section 4.4.

Our system bases norm entailment on strong implication, and it could undermine much of this

project, if it turned out to be a faulty foundation for the work. The reason that many formal

logicians try to make their work aphilosophical is to insulate the formal theories developed

from shifting philosophical grounding. We would like to take this section to point out where

our theory is fixed to the philosophical foundations developed in part I.

The primary way that our account is connected to the Searlean account of institutions is via

the conception of norms. It is only with a conception of norms like Searle’s that something like

Anderson’s reduction of institutional duty can be defended. Of course, we are not saying that

Searle’s theory is the only way to defend this conception of norms. Any Searle-independent

philosophical theory using this conception of norms would permit our logic. What this view

couldn’t withstand is a theory that said that there must be some basic and irreducible account of

obligation used to express norms for institutional codes. That would undermine a great deal of

the work in part 2. The other issue to worry about is the notion of norm consequence we used,

and related to that the notion of in forceness.

As long as the extension of the norm consequence relation remains untouched, the logic will

work. However, if a new notion of in forceness is used, and so the extension of norm conse-

quence is changed, that will cause some disruption. As long as the relata of norm consequence

are the same, but just a different set of pairs are related, we can mediate the damage caused.

The work in chapter 8 will remain untouched pretty much under any change to the extension

to norm consequence. For the results concerning consistency, `N isn’t used, it is all defined
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relative to a `�xp consequence relation since it depends on the idea of a code being followable

relative to an implementation, and that has little to do with the norm consequence, i.e., `N . So

any change to norm consequence will not affect the idea norm consistency.

Although our methodology is to take the fork in the road, the particular extension of the fork

doesn’t play a huge role in the applications of the technical work. But that is the best that we

could hope for in this kind of project.

9.4 Conclusion

We’ve come to the end of the story. In the end we have answered our two questions: ˛) Is

a logic of institutional norms possible?, and ˇ) Given that a logic of institutional norms is

possible, what does it look like? Our answer to ˛ came from the discussion in part I, and the

answer to ˇ came from chapter 6, particularly section 6.5.

The answer to ˛ was given by taking a substantial theory of institutions, then showing how

to conceive of a logic for that theory. Again, we return to the methodology briefly outlined in

the introduction. We don’t want to say: yes, this is THE logic of norms! Nor even THE logic

of institutional norms. That isn’t how we are thinking about the project of philosophical logic.

However, we do want to say that this is the logic of institutional norms on Searle’s conception.

Nevertheless, as long as Searle’s theory has a chance at being correct, our discussion shows that

a logic of institutional norms is possible, epistemically speaking.

For question ˇ, we get a sense of what the consequence relation is like for norms on Searle’s

view from chapter 4. But we get a formal characterization of it from chapter 6. Thus we have

a mathematically precise way to investigate what the logic looks like. Although we didn’t look

closely at the consequence relation, our formal characterization gives us the ability to formulate

precise questions about the relation and evaluate arguments about what follows from the norms

of an institution. As an added bonus we have a few other interesting fallouts from the discussion.

The highlights of this essay have been the representation of the distinction between institu-

tions and the world and the discussion about normative consistency. The distinction between
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the institutional facts and the brute facts via a code� and its implementation I .�/ is an impor-

tant distinction that if often left unrepresented in logical systems. Normative consistency hasn’t

been given much direct attention in recent years, but is becoming more important with the rise

in computer science of artificial institutions. So this will be a fruitful line for future inquiry.

A final comment to bring things to a close. The quotation from The Little Prince above

shows us how not to run an institution, but more important is the expression: it’s funny because

it’s true. Indeed, it captures the idea that there is a strong distinction between brute facts and

institutional facts. But the only facts that we can have the kind of control over via our ability to

represent the world are the institutional facts. As Searle’s theory is wont to show, our command

over the institutional world is absolute, but our command over the brute world is by luck. The

best philosophical theories are justifiable by a joke.
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Appendix A

Languages, Models, and Logics

A.1 Languages

Lxstit:

' ´ p j :' j ' ^ ' j �' j ŒA xstit� ' j X'

Where p 2 AtB .

L:

' ´ p j :' j ' ^ ' j �' j ŒA xstit� ' j X' j P'

Where p 2 AtB [ AtI

LB :
' ´ p j :' j ' ^ ' j �' j ŒA xstit� ' j X' j P'

Where p 2 AtB

LB�:
' ´ p j :' j ' ^ ' j �' j ŒA xstit� ' j X' j P'

Where p 2 AtB [ at.�/

LI :

' ´ p j V j .' ^ '/ j :.'/ j .' � '/ j .' _ '/ j .' � '/ j X' j P' j ŒR xstit� '

Where R � Rol, and p 2 AtB [ AtI

LIb:

' ´ p j V j .' ^ '/ j :.'/ j .' � '/ j .' _ '/ j .' � '/ j X� j P� j ŒR xstit� � j � b � 0

Where p 2 AtI [ AtB R � Rol, and �; � 0 2 LI .

A.2 Models

A regular L-frame is a triple F D hS;H;Ei such that:

1. S ¤ ¿, are the static states.

2. H ¤ ¿ is a set of orders hh;<hi such that for each h 2 H
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(a) h � S and hh;<hi is isomorphic to Z with its usual order, and

(b) if s 2 h \ h0, then f s0 W s0 <h s g D f s0 W s0 <h0 s g. Since each order is iso-
morphic with Z, there is a unique successor and predecessor for each s 2 h,
we refer to these by lub.s; h/ and glb.s; h/ respectively. We can generalise these
concepts in the following way: glb.s/ D f s0 W 9h glb.s; h/ D s0 g and lub.s/ D
f s0 W 9h lub.s; h/ D s0 g. These give the set of successors and predecessors of s,
respectively.

3. E W S �H �P.Ag/! P.S/ is called an h-effectivity function. The effectivity function
provides a set of states that, relative to a history h a group of agents is effective in ensuring
from a given state s. The function E must obey the following conditions:

(a) if s 62 h, then E.s; h;A/ D ¿
(b) if s0 2 E.s; h;A/, then s0 2 lub.s/

(c) if s 2 h, lub.s; h/ 2 E.s; h;A/
(d) E.s; h;¿/ D lub.s/, if s 2 h

(e) if s 2 h, then E.s; h;Ag/ D f lub.s; h/ g

(f) if A ¤ B, then E.s; h;B/ � E.s; h;A/
(g) if A \ B D ¿ and s 2 h \ h0, then there is h00 with s 2 h00 and E.s; h00;A/ and

E.s; h00;B/ are contained in E.s; h;A/ and E.s; h0;B/, respectively.

A universal regular frame is a regular frame such that
T
H ¤ ¿.

A neutral (NU) L-frame is a triple F D hS;H;E;�i such that:

1. S ¤ ¿, are the static states.

2. � is an equivalence relation on S

3. H ¤ ¿ is a set of triples h D hh; fh; bhi with h � S such that

H1 each hh; fh; bhi 2 H is an injective DDLF,

H2 if s 2 h and s0 2 h0 with s � s0, then for each n 2 N, bn
h
.s/ � bn

h0
.s0/.

4. DF D f .s; h/ 2 S �H W s 2 h g

5. Again lubF.s; h/ D fh.s/ and glbF.s; h/ D bh.s/ but now

6. lubF.s/ D f s
� 2 S W 9h0; s0 w/ s � s0 & fh0.s

0/ D s� g, and

7. glbF.s/ D f s
� 2 S W 9h0; s0 w/ s � s0 & bh0.s

0/ D s� g.

8. E W S �H �P.Ag/! P.S/ is called an h-effectivity function. The effectivity function
provides a set of states that, relative to a history h a group of agents is effective in ensuring
from a given state s. The function E must obey the following conditions:

(a) if s 62 h, then E.s; h;A/ D ¿
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(b) if s0 2 E.s; h;A/, then s0 2 lub.s/

(c) if s 2 h, lub.s; h/ 2 E.s; h;A/
(d) E.s; h;¿/ D lub.s/

(e) if s 2 h, then E.s; h;Ag/ D f s0 W s0 � lub.s; h/ g

(f) if A ¤ B, then E.s; h;B/ � E.s; h;A/
(g) For all A;B .s; h/; .s0; h0/; .s00; h00/ 2 DF, if A\B D ¿ and s0 � s � s00, then there

is .s000; h000/ 2 DF such that s000 � s with E.s000; h000;A/ and E.s000; h000;B/ contained
in E.s0; h0;A/ and E.s00; h00;B/, respectively.

An Lxstit, or L neutral model M, is an neutral xstit frame F with a valuation v W At ! P.S/
such that if s � s0 and s 2 v.p/, then s0 2 v.p/.

If we want to interpret this for LI or LIb, we remove the requirement of condition g, and
replace A with R and B with R0.

A.3 Logics

Axioms for `x

Assume that A;B � Ag p 2 At and '; 2 Lxstit,

(p) p � �p

S5 for�:

– �.' �  / � .�' � � /
– �' � '
– �' � ��'
– ' � �:�:'

KD for each ŒA xstit� ' and X :

– ŒA xstit�.' �  / � .ŒA xstit� ' � ŒA xstit�  /

– ŒA xstit� ' � : ŒA xstit�:'

– X.' �  / � .X' � X /

– X' � :X:'

(DetX) :X:' � X'

(¿=SettX) Œ¿ xstit� ' � �X'

(Ag=XSett) ŒAg xstit� ' � X�'

(C-mon) ŒA xstit� ' � ŒA [ B xstit� '

(Indep-G) ˙ ŒA xstit� ' ^˙ ŒB xstit�  � ˙.ŒA xstit� ' ^ ŒB xstit�  / where A \ B D ¿.
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Axioms for the Logic SI (`SI ):

Axioms for Classical Propositional Logic (CL)

CL1 ' � . � '/

CL2 .' � . � �// � ..' �  / � . � �//

CL3 .' ^  / �  

CL4 .' ^  / � '

CL5 .' �  / � ..' � �/ � .' �  ^ �//

CL6 ' � .' _  /

CL7  � .' _  /

CL8 .' �  / � ..� �  / � .' _ � �  //

CL9 . � :'/ � .' � : /

CL10 :. �  / � '

CL11 ' _ :'

CL12 .' ^ :'/ � ?

Axioms for Propositional Containment

PC1 A b A

PC2 .B b A/ � ..C b B/ � .C b A//

PC3 .pi b pj / � .pj b pi/

PC4 A b .A ^ B/

PC5 B b .A ^ B/

PC6 .B b A/ � ..C b A/ � ..C ^ B/ b A//

PC7 A b :A

PC8 :A b A

PC9 .pi b .A ^ B// � ..pi b A/ _ .pi b B//

PC10 ? b A

Rules

MP If `SI ' �  and `SI ', then `SI  

239



Axioms for `xp.

1. Axioms for classical logic

(p) p � �p, p 2 AtB [ AtI

S5 for�:

K �.� � � 0/ � .�� � �� 0/
T �� � �
4 �� � ���
B � � �:�:�

KD for each ŒA xstit� � , A � Ag, P and X :

KA ŒA xstit�.� � � 0/ � .ŒA xstit� � � ŒA xstit� � 0/

DA ŒA xstit� � � : ŒA xstit�:�

KX X.� � � 0/ � .X� � X� 0/

DX X� � :X:�

KP P.� � � 0/ � .P � � P� 0/

DP P� � :P:�

[(DetX)] :X:� � X�

[(DetP)] :P:� � P�

[(XP)] XP� � �

[(PX)] � � PX�

[(NP)] P�� � �P�

[(SettX)] Œ¿ xstit� � � �X�

[(XSett)] ŒAg xstit� � � X��

[(C-mon)] ŒA xstit� � � ŒA [ B xstit� �

[(Indep-G)] ˙ ŒA xstit� � ^˙ ŒB xstit� � 0 � ˙.ŒA xstit� � ^ ŒB xstit� � 0/ where A\B D ¿.

2. Rules: MP and Nec| for | 2 f�; X; P; ŒA xstit� W A � Ag g

Axioms for `Ixp

1. Axioms for classical logic

(p) p � �p, p 2 AtB [ AtI
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S5 for�:

K �.� � � 0/ � .�� � �� 0/
T �� � �
4 �� � ���
B � � �:�:�

KD for each ŒR xstit� � , R � Rol, P and X :

KR ŒR xstit�.� � � 0/ � .ŒR xstit� � � ŒR xstit� � 0/

DR ŒR xstit� � � : ŒR xstit�:�

KX X.� � � 0/ � .X� � X� 0/

DX X� � :X:�

KP P.� � � 0/ � .P � � P� 0/

DP P� � :P:�

[(DetX)] :X:� � X�

[(DetP)] :P:� � P�

[(XP)] XP� � �

[(PX)] � � PX�

[(NP)] P�� � �P�

[(SettX)] Œ¿ xstit� � � �X�

[(XSett)] ŒRol xstit� � � X��

[(C-mon)] ŒR xstit� � � ŒR [ R0 xstit� �

2. Rules: MP and Nec| for | 2 f�; X; P; ŒR xstit� W R � Rol g

Axioms for `�xp are dependant on what language LB� is being used, notice that Indep-G is
there:

� Axioms for classical logic

(p) p � �p, p 2 AtB [ at.�/

S5 for�:

K �.� � � 0/ � .�� � �� 0/
T �� � �
4 �� � ���
B � � �:�:�
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KD for each ŒA xstit� � , A � Ag, P and X :

KA ŒA xstit�.� � � 0/ � .ŒA xstit� � � ŒA xstit� � 0/

DA ŒA xstit� � � : ŒA xstit�:�

KX X.� � � 0/ � .X� � X� 0/

DX X� � :X:�

KP P.� � � 0/ � .P � � P� 0/

DP P� � :P:�

(DetX) :X:� � X�

(DetP) :P:� � P�

(XPPX) XP� � � � PX�

(NP) P�� � �P�

(SettX) Œ¿ xstit� � � �X�

XSett ŒAg xstit� � � X��

(C-mon) ŒA xstit� � � ŒA [ B xstit� �

(Indep-G) ˙ ŒA xstit� � ^˙ ŒB xstit� � 0 � ˙.ŒA xstit� � ^ ŒB xstit� � 0/ where A \ B D ¿.

Axioms of `Ixp.

1. First we include all axioms for classical logic (Group CL axioms) where '; 2 LIb:

CL1 ' � . � '/

CL2 .' � . � �// � ..' �  / � . � �//

CL3 .' ^  / �  

CL4 .' ^  / � '

CL5 .' �  / � ..' � �/ � .' �  ^ �//

CL6 ' � .' _  /

CL7  � .' _  /

CL8 .' �  / � ..� �  / � .' _ � �  //

CL9 . � :'/ � .' � : /

CL10 :. �  / � '

CL11 ' _ :'

CL12 .' ^ :'/ � ?

2. We extend the axioms for propositional containment (group PC axioms) whereA;B;C 2
LI , s; s0 2 AtI [ AtB [ fV g and R [ f r; r0 g � Rol:
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PC1 A b A
PC2 .B b A/ � ..C b B/ � .C b A//
PC3 .s b s0/ � .s0 b s/
PC4 A b .A ^ B/
PC5 B b .A ^ B/
PC6 .B b A/ � ..C b A/ � ..C ^ B/ b A//
PC7 A b :A
PC8 :A b A
PC9 .s b .A ^ B// � ..s b A/ _ .s b B//

PC10 ? b A
PC11 A b .A _ B/
PC12 B b .A _ B/

PC12A .A _ B/ b .A ^ B/
PC13 A b .A � B/
PC14 B b .A � B/

PC14A .A � B/ b .A ^ B/
PC15 A b .A � B/
PC16 B b .A � B/

PC16A .A � B/ b .A ^ B/
PC17 > b A
PCX1 A b �A
PCX2 XA b A
PCX3 PA b XA
PCX4 �A b PA
PCX5 A b Œr xstit� A

PCX6 R b ŒR xstit� A

PCX7 ? b r
PCX8 .f r g b f r0 g/ � .f r0 g b f r g/
PCX9 f r g b R for r 2 R � Rol

PCX10 :.f r g b p/ ^ :.p b f r g/

3. We then extend the axioms for xstit (we call these the XPstit-group) by the following for
�; � 0 2 LIb,

(p) p � �p
S5 for�:
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K �.� � � 0/ � .�� � �� 0/
T �� � �
4 �� � ���
B � � �:�:�

KD for each ŒR xstit� � , R � Rol, P and X :

KR ŒR xstit�.� � � 0/ � .ŒR xstit� � � ŒR xstit� � 0/
DR ŒR xstit� � � : ŒR xstit�:�
KX X.� � � 0/ � .X� � X� 0/

DX X� � :X:�

KP P.� � � 0/ � .P � � P� 0/

DP P� � :P:�

(DetX) :X:� � X�

(DetP) :P:� � P�

(XP) XP� � �

(PX) � � PX�

(NP) P�� � �P�
(SettX) Œ¿ xstit� � � �X�
(XSett) ŒRol xstit� � � X��

(C-mon) ŒR xstit� � � ŒR [ R0 xstit� � where R0 [ R � Rol

4. Rules: MP and Nec| for | 2 f�; X; P; ŒR xstit� W R � Rol g

[Strong Implication] A set of sentences � strongly implies ' (� `S ') iff there are sentences

1; : : : ; 
n in � such that `CL 
1 ^ : : : ^ 
n � ', and there are 
 01; : : : ; 


0
m in � such that

`SI 

0
1 ^ : : : ^ 


0
m � .' b 
1 ^ : : : ^ 
n/

[Norm Consequence] � Norm Entails ' (� `N ') iff there are  01; : : : ;  
0
m 2 � s.t.

NC1: � `Ixp ',

NC2: `Ixp ' b . 01 ^ : : : ^  0m/, and

NC3: ' 2 IC.LI /.
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Appendix B

Some Background

B.1 Kripke Models

A standard modal language generated by the grammar

' ´ p j ' ^ ' j :' j ' � ' j �'

where p 2 At the set of atomic sentences, can be interpreted on a Kripke model. Kripke models

consist of two things: Kripke Frames and valuations.

Definition B.1.1. A Kripke frame is a pair hW;Ri consisting of a non-empty set W and a

relation on W , i.e., R � W �W .

A Kripke model M D hW;R; vi is a Kripke frame along with a valuation v W At! P.W /.

The semantics is defined as follows:

� M; w 
 p iff w 2 v.p/;

� M; w 
 :' iff M; w ± ';

� M; w 
 ' ^  iff M; w 
 ' and M; w 
  ;

� M; w 
 ' �  iff M; w 6
 ' or M; w 
  ;

� M; w 
 �' iff for all w0 2 W , hw;w0i 2 R only if M; w0 
 '.

B.2 Boolean Algebras

Definition B.2.1. A boolean algebra hB; 1; 0;u;t;�./i is a set B with two binary operations

u (meet), and t (join) along with a unary operation �./. There are also two special elements 0

and 1. These operations obey the following equations for a; b; c 2 B:
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� a u �.a/ D 0, a t �.a/ D 1

� a u .b t c/ D .a u b/ t .a u c/, a t .b u c/ D .a t b/ u .a t c/,

� a u a D a, a t a D a,

� a t .a u b/ D a, a u .a t b/ D a,

� a u b D b u a, a t b D b t a.

We can also define a partial order on the set B by defining a � b iff a u b D a (or iff

a t b D b). The special element 1 is often referred to as the “top” and the 0 as the “bottom”;

this is so since 1 is the largest element relative to � and 0 is the smallest element in B in the

respective sense. These special elements also have the properties that a u 1 D a, a t 0 D a,

�.1/ D 0 and vice versa. There are also some things that follow about negation and other

connectives. In addition, we have

1. double negation: �.�.a// D a, and

2. the DeMorgan rules: �.a u b/ D �.a/ t �.b/, �.a t b/ D �.a/ u �.b/.

With the DeMorgan relationships it follows that if a � b, then �.b/ � �.a/.

B.3 Fusion of Logics

The fusion of logics is smallest logic extending all of the logics that are to be fused. Of course

formally speaking the concept is a lot more complicated. Since what is of interest to us in this

essay is the fusion of normal modal logics we will discuss that particular kind of fusion. The

idea was introduced as a general method of combining logics in Thomason (1984), and it was

extensively studied in Fine and Schurz (1996).

A modal logic consists of three things, first a modal language Li that consists of a set of

formulas constructed recursively from a signature of atomic sentences At, the set of boolean

connectives, and a unary modal operator: �i , in the usual way. Second, a Hilbert style ax-

iomatisation Ax that includes the K axiom for �i , the rule of modus ponens, and necessitation
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for �i . Third, there is a Kripke semantics for the logic which consists of a class of Kripke

frames Fi , such that each F 2 Fi is like hW;Ri, where R is a relation onW andW ¤ ¿. Here

we are working with a monomodal logic, i.e., only one modal operator, but we could extend the

definition so that it included multiple modal operators, the only difference is that there would

be, for each �i a corresponding Ri in each of the Kripke frames in F . Thus a modal logic Li

is a triple hLi ; Axi ; Fii as just described.

If we have two such logics, L1 and L2, then we can define the fusion of the two logics,

denoted by L1 ˚ L2, as the pointwise fusion of each “part” of the component logics. That is,

L1˚L2 D hL1 ˚ L2; Ax1 ˚ Ax2; F1 ˚ F2i. The fusion of languages is done as follows. First

note that each Li , i D 1; 2, contains the same boolean connectives and atomic sentences At.

We take the union of the signatures in the Lis and recursively generate a new language with

from At, the boolean connectives and the collection of the modal operators. So L1 ˚ L2 is

' ´ p j �1' j �2' j :' j ' � ' j ' ^ '

For example, if the languages were L1 Dboolean connectives, At and �1, and L2 Dboolean

connectives, At and�2, then we would get formulas like�1�2.p � q/ and�1.�2p_�1.q^

�2p0//.

Ax1 ˚ Ax2 is formed by taking the union of the sets of axiom schema.

Finally, the fusion of classes of Kripke semantics consists of “putting frames together”. That

is,

F1 ˚ F2 D f hW;R1; R2i W hW;R1i 2 F1 & hW;R2i 2 F2 g :

Note that we can only fuse frames that have the same domain. An example: if we had a F1

that is the class of frames where R1 is transitive and reflexive, and F2 is the class of frames

where R2 is serial, then F1 ˚ F2 is the class of frames hW;R1; R2i such that R1 is transitive

and reflexive, and R2 is serial.

Fusion models are then fused frames with a valuation on them, i.e., v W At ! P.W /, and

the usual semantics such that for M, a fusion model of L1 and L2, w 2 W , ' 2 L1 ˚ L2 and
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p 2 At,

� M; w 
 p iff w 2 v.p/,

� Boolean clauses are standard,

� M; w 
 �1' iff for all w0 2 W , hw;w0i 2 R1 only if M; w0 
 ', and

� M; w 
 �2' iff for all w0 2 W , hw;w0i 2 R2 only if M; w0 
 '.

It turns out that if Ax1 is sound (complete) wrt F1 and the same holds for Ax2 wrt F2, then

Ax1 ˚Ax2 is sound (complete) wrt F1 ˚ F2. Moreover, L1˚L2 will be decidable if both L1

and L2 are (see Fine and Schurz, 1996).
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