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Abstract

In the core of system biology, it is believed that molecules within the cell act collaboratively

in an organized behavior. Researchers are studying the interactions and mainly concentrate

on identifying malfunctioning molecules as potential disease biomarkers. Thus, a network has

become an important means to represent biological systems, and network approaches have

shown substantial promise due to the simplicity in data representation and associated rich

analytical apparatus. Generally speaking, the workflow of a computational system biology

study means: 1.) Investigating certain elements of biological networks and their interactions,

which depends on the purpose of the study. 2.) Collecting experimental high-throughput and

genome-wide data and integrating computational methods to analyze the data and validate

findings. In this thesis, we frame the investigations by first asking a system biology question,

and then provide computational means to answer the question.

My thesis consists of three major interrelated components, as the title suggests, we first

study the network structure by a novel strategy of bridging together social and biological

networks based on our argument that there exist a strong analogy between humans and

molecules. As social network analysis is gaining popularity in modeling real world problems,

the task of applying the social network model concepts and notions to biological data is

still one of the most attractive research problems to be addressed. We design computational

means to find community structures and design efficient algorithms to dynamically analyze

gene boundaries using geometric convexity. Our approach contributes to the new branch of

applying social network mechanisms in biological data analysis, leading to new data mining

strategies implied by witnessing social behaviors in gene expression analysis.

Further into the topology study of biological networks, we investigate the relationship

between the multi-scalability of community structures of metabolic networks and the distri-

butional effect of network motifs, i.e., the inference problem. We observe several patterns
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through studying three organisms, including the effect of directionality of networks, homo-

geneity of motif-enriched communities, and motif type-specific distributions across scales.

We also provide methods to quantify motif influence under the community context. Overall,

our work suggests that the theoretic evolvability of modularity tightly correlates with motif

distributional effect and vice versa. In this regard, we design computational tools to analyze

community structure of very large networks of arbitrary types. The Multi-scale Community

Finder (MCF) is the first tool in this area.

Finally we arrive at the question of how to design efficient bio-markers for complex

diseases, e.g., cancer. First, it is important to understand the complexity of cancer. We

believe that to understand individualized gene behavior across patients, relational status of

genes needs to be considered because complex disease phenotype is often caused by cascaded

failures of genetic interactions in cancer cells. We implement a framework to quantify the

molecular heterogeneity of tumors from gene-gene relational perspective using co-expression

networks and interactome data. Next, we present a method to reverse engineer integrative

gene networks. The main advantage of our method is the integration of different quantitative

and qualitative data sets in order to reconstruct a multiplex network, without necessarily

imposing data constraints, such as each genomic datum needs to have the same number of

entities. Another advantage of our method is that from the integrated networks, predictions

can be made by propagating beliefs from seed nodes representing known knowledge. Thus,

we combine data integration and network-based prediction into a single framework. We

demonstrate our method through case studies using breast cancer data. Our approaches

present promising results and new ways of thinking and mining complex genomic datasets.

Overall, this thesis presents a comprehensive study of biological networks and the novel

application of computational means to implement the biomarker detection problem in the

era of big genomic data. Finally it is important to highlight the fact that our study considers

the challenges due to data heterogeneity and the diversity in the sources producing the data.
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Chapter 1

Introduction

“A big challenge for computer scientists who are considering getting involved in Systems

Biology, in addition to the requirement of good level of biological foundation, is to keep open-

minded and be creative in the design of modern methodologies to make a contribution to

biological and computer science domain.” – Eberhard O. Voit

1.1 Networks and System Biology

System biology emerged as a new interdisciplinary area, thanks to unprecedented technolog-

ical and scientific progress in the last century. As the name suggests, system biology aims to

study the behavior of biological systems and ultimately to predict the behavior of a system

by understanding elementary constituents (i.e., biological entities) and a wide variety of indi-

vidual interactions between them [79, 80], examples include protein-protein interactions and

metabolic pathways [54, 51]. As such, the area of system biology provides exciting opportu-

nities for biologists, mathematicians, and computer scientists to unify their methodologies

and the understanding of biological processes from both theoretic and experimental aspects.

The motivation of studying biological systems as a whole roots in the fact that biological

states and behaviors are often extremely complex so that the reductionist approach makes

it difficult if not impossible to pinpoint dynamic predictors from collective biological entities

[110]. The hope is to use systemic approaches, via globally representing and analyzing

biological interactions in the system, to obtain further knowledge of system properties and

dynamics.

In the core of system biology, network has become an important medium to represent

biological systems, and network approaches have shown substantial promise to achieve the
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aforementioned goals with its simplicity in data representation and associated rich analytical

apparatus. A network consists of vertices (a.k.a nodes) and edges (a.k.a links) that connect

nodes, which effectively abstract biological entities and their interactions in a connected map

[41]. For example, genetic regulations can be represented by networks of interacting genes

and proteins. In computer science and mathematics, networks are also known as graphs,

emphasizing the underlying data structure [42, 135]. Although system biology studies can

focus on various biological systems to answer specific questions like how does the modular

structure in gene regulatory networks predict cellular states, “network science” provides

theoretic tools and therefore becomes the driving force of system biology. For this reason,

“network biology” focuses on the study of networks in system biology, i.e., their topological

structure, dynamics, and visual analytics, etc.

Biological networks serve as a powerful representation in modeling many areas of biolog-

ical data such as cancer: cancer as a complex disease can be better understood by analyzing

communities of heterogenous datasets [157, 159, 28, 27], as community mining in computa-

tional literature empowers the analysis of the evolution of nodes and further unravels the

mystery of cancer as a dynamic process in multi-dimensional contexts. More importantly,

many network principles like the social network theories can bring fresh angles of viewing

biological networks [26, 19, 48], i.e., the perspective of viewing genes or proteins as actors

that can influence others inside cells under different environments.

Biological networks can represent various types and levels of molecular organizations in a

cell [54, 74]. Different types of biological networks include protein interaction network [183],

metabolic network [51], co-expression network [185], and transcriptional network [100], etc.

Each type is driven by a large amount of data accumulated to facilitate the analysis of

functional significance and topological properties of the cellular system in question. In this

thesis, we studied various types of biological networks for different purposes.

2



1.2 Background

1.2.1 Community Structure in Networks

Network science serves as a theoretical engine overall and community detection techniques

become the main focus for the dynamic modularity analysis that can reveal functional sig-

nificance. Cancer biology, on the other hand, is an application domain for which dynamic

behaviors are to be interpreted. In this section, we shall discuss the background and related

work by these two components, with recent highlights of the connection between network

science and system biology.

A community is a concept originated from social networks, i.e., group organizations can

often be found in a society such as friendship networks and families [111], and communities

are subunits of graphs. Even though community structures are analyzed in many applications

such as biological and social networks, the current literature lacks a precise definition [41]. A

common topological property of communities is that links between communities are sparse

whereas much densely connected nodes are expected within communities. The degree to

which this topological property is quantified depends largely on the context. It is worth

mentioning that the prerequisite for communities to manifest is that the graph needs to be

sparse, or n >> m, where m is the number of edges in the graph and n is the number of

nodes.

Communities are common to both social and biological networks. Further, many concepts

and techniques can be applied to both networks [48, 26], so one should note their differences.

A social network is an abstract representation of social structures consisting of individuals

and connections or ties among individuals, such as collaboration network where individuals

are scientists and two individuals are connected if they have a joined publication. The

analysis of abstract structures of social networks sheds light on the understanding of real

social behaviors. Biological networks on the other hand, are mostly constructed indirectly,

such as experimentally validated interactions between two proteins in the PPI network,
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or gene-gene interactions inferred from gene expression profiles. Apart from the obvious

connection between social and biological networks that both are graph-based structures,

various biological networks are analogous to social networks. For example, in PPI networks,

proteins can be viewed as individuals and interactions can be viewed as social connections.

The advantage of such perspective is that properties or behaviors in the language of social

networks can also be “mapped” to biological networks, for example, it is found that both

PPI networks and collaboration networks share the “scale-free” property [68, 10].

One of the most important properties shared by both social and biological networks is

the community structure, i.e., both types of networks tend to have clustered structures.

This suggests that further analysis and interpretations of communities can be useful to

investigating disease and genomic data. However, social networks possess properties that

other types of networks do not have, for example, social networks tend to have assortative

mixing patterns and high levels of clustering [119].

1.2.2 The View of Cancer

Cancer is a complex disease. Over the past decade, researchers had gained substantial

understanding of the genetic causes and impacts of cancer, leading to clinical prognosis and

therapeutics endeavors. In particular, the molecular and phenotypic basis of cancer have

been comprehensively investigated, with the hope to discover common disease patterns in

terms of biomarkers [39, 145]. Unfortunately, as all cancers are different from patient to

patient, the work has not been successfully parallelized with biological development and

medical practice on cellular level. Researchers either lack the data, e.g., genetic interactions

in mammalian cells or the means to find hidden links in the data, i.e., associations between

changes and causes under different cellular contexts and external factors.

Cancer research is revolutionized by the advent of advanced sequencing technologies:

cancer genomes are being analyzed by various research communities around the world. Un-

derstanding in oncogenicity along with other aspects of cancer has been tremendously ad-
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vanced. However, with the vast amount of data ever available, the conclusions seem to be

dispersive. In other words, data is not well integrated in understanding the biological sys-

tems in question. With this mindset, system biology has gained popularity in many areas

of computational biology for analyzing genomic data [79, 80]. The system level thinking

prompts the network thinking, which serves as the core in modeling complex data and the

interconnections explicitly or implicitly stored in them.

Speaking of the network thinking of cancer, cells interact with each other in tissue com-

partments, respond to extracellular cues, and produce outputs that ultimately determine

their fate, i.e., cell chooses to suicide (programmed cell death or apoptosis) or further divide

(mitosis). What is complicated in the process is the dynamics in the cancer development:

how cells change and respond under specific environments, how do processes reach a bal-

anced or stable state, and what are the consequences if such states are perturbed. In order

to understand cancer as an evolutionary and context-dependent process, effective computa-

tional methods need to be in place. In this thesis, network-based approaches are proposed

to model the complexity of cancer.

The simple view of cancer consists of two sets of genes: oncogenes and tumor suppressor

genes (TSGs), they act as accelerator and decelerator towards and against cancer, respec-

tively [55]. Cancer is a genetic disease that undergoes evolutionary processes: while cells

undergo different phases in cell cycle regulation, different genes exert their functions in con-

certed manner, e.g., their products bind, activate, and signal other cellular functional units.

If harmonious states were disrupted, cells turn cancerous. This is depicted in Figure 1.1.

With the loss of cell cycle control, cancers share a common phenotype: dedifferentiated

(cells that are less specialized in functioning), uncontrollable cell growth (mitosis is non-

stoppable or cells do not commit programmed cell death) and proliferation (dysfunction of

cell-cell interactions causing tumorigenesis) [167].

Proto-oncogenes are initiators of cancer: they are genes that turn healthy/normal cells
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Figure 1.1: The overview of cancer in cellular environment

into cancerous state. Oncogenes are mutated proto-oncogenes. It is worth noting that

proto-oncogenes are not at all times execrable; as a matter of fact some genes are useful in

normal cell cycle regulation. The proteins produced usually stimulate mitosis, inhibit cell

differentiation, and halt apoptosis, all of which are essential for normal development of multi-

cellular organs and tissues. When mutated to oncogenes, the protein levels that drive these

functions are elevated, causing dysfunctions in cells by breaking the balancing force between

mitosis and apoptosis. Because of the critical role of proto-oncogenes and oncogenes, they

can be clinical drug targets.

Tumor suppressors on the other hand, act in the opposite way: they typically prevent

cells from reaching cancerous state. The first TSG was found in 1986 in retinoblastoma.

Different from dominant nature of oncogenes, TSGs are usually recessive: a normal cell

has two copies of a gene, called alleles. The famous “two hit hypothesis” states that the

inactivation of one allele does not turn cells to cancerous, but the “second” hit, i.e., the
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inactivation of second allele may affect the fitness of the cell, leading to uncontrollable cell

growth and proliferation.

From the above discussion, we can see that the dysfunction or deregulation of the

cell cycle are caused by mutations. Mutations are fundamentally the evil of all cancers

[153, 17, 50, 175]. In the simplest sense, the evolutionary aspect of cancer can be viewed as

a mutation-selection process, genes mutate in cells, occupy cellular compartments with in-

creased reproduction rate. Some mutations confer growth advantage and are termed “driver”

mutations whereas others that are not selected are called “passenger” mutations. Mutations

are evolving infrastructures of cancer and they have received a great interest in recent re-

search communities, thanks to the cost efficient sequencing technologies [129].

1.2.3 Network Construction

The simplest model of a social network consists of a set of actors (interchangeably called

individuals) linked by certain type of relationship. For instance, in pharmacology the actors

could be drugs, and two actors are connected if it is not possible for them to appear together

in the same prescription. Analyzing such network will lead to communities of drugs never

used together. The links may reflect either binary relationships (a missing link indicates the

absence of relationship) or weighted connections to indicate the strength or degree of the

relationship (which may be negative or positive). It is also possible to have more than one

set of actors. For instance, drugs and diseases may be two sets of actors such that a link

between a drug and a disease indicates the usage of the drug for treating the disease. The

network could be analyzed to discover the most important drugs used in treating most of

the diseases. The number of actors’ groups in the model specifies the degree of the mode for

the social network. The two versions described above are known as one-mode and two-mode

social networks. It is possible to derive two one-mode networks from a two-mode network by

applying a process known as folding, which operates directly on the adjacency matrix of the

two-mode network [87]. Folding is simply the multiplication of a matrix by its transpose.
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Since gene expression data has become a main source to quantitatively measure the

abundance of mRNA transcripts, many “reverse engineering” methods are proposed to re-

construct regulatory networks [32, 9]. However, such network reconstruction methods bring

a new challenge: how to integrate different sources of biological datasets which may in-

clude multiple gene expression profiles, interaction networks, or literature-based evidence of

gene-gene associations?

1.2.4 The Complexity of Community Structures

Given the networks (obtained either directly or indirectly), the goodness of community struc-

tures gives rise to the “right” decomposition of the complexity of biological processes. To

exemplify, consider the cell cycle control mechanism, different cyclins and cyclin-dependent

kinases regulate cellular activities both separately and collaboratively, turning cells to highly

flexible (responding to signals from extracellular environment) yet harmonious (controlled

division and growth) state. Decomposing these functional units in protein interaction net-

works therefore provides a guide to the wide variety of activities/events in the cell [138, 71].

The problem is not that simple, because cancer is an evolutionary process. This is

to say that patients do not get cancer overnight, the damage to the multi-cellular tissues

somehow accumulates, i.e., through deleterious mutations in the case of smoking in causing

lung cancer. For this reason, snapshot of how protein clusters look like at a particular time

provides little value towards prognosis [108, 17, 121].

The static mining approach is useful for understanding structural properties of commu-

nities, e.g., hubs and cliques, but less useful in the constantly changing cellular environment.

With this in mind, the static mining strategies need to be extended with time resolutions, a

new parameter in modularity-maximization based community mining [5, 31, 113, 85].

Speaking of community evolution alone, one can target on two scales. The first is the

global scale, i.e., how do communities evolve as a whole in the network background that

represents biological process (cell cycle regulation) over time [125, 57]. For example, do
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certain communities shrink, expand or stay unchanged relative to others? The second is

the local scale, i.e., how do communities evolve if individual nodes are removed or muted

by accumulative mutations in future generations? Further, what role does the specificity of

genes (i.e., oncogene or TSG) play in community dynamics?

1.3 Goals of the Thesis

There are two major challenges in bioinformatics research: the first is data complexity,

which means data can be noisy, incomplete and subject to different experimental protocols

and laboratory conditions. On top of this, the dynamic nature of cellular processes adds

another major obstacle in many endeavors. For example, current protein interaction network

data is far from complete and accurate. It is apparent that such interactome data cannot

be directly used for network-based biomarker detection. The system biology approaches

typically study variables of interests while keep others constant. This leads to the second

major challenge of how to achieve predictability given the data complexity. Although system

biology approaches are promising in parallel development of experimental technologies and

protocols, we are still facing data complexity problems and as a consequence, inconsistent

conclusions are inevitable.

In this thesis, we noticed the inherited limitations of system biology approaches and

probed to address the data complexity and the predictability issues in two directions:

1. We used social network analogies. Since many network approaches originate

from social network findings, we could treat genes as social actors and analo-

gously think social interactions as regulatory relationships between genes and

their products. The data abstractions are very similar between biological and

social networks, for example, in co-expression networks, we could observe im-

portant structural properties like scale-free and hub effects. Following this di-

rection of thinking, we analyzed boundary genes from co-expression networks
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in Chapter 2, and in Chapter 3, we further studied the structural relationship

between motifs and community scales, which is universal in both social and

biological networks. We further developed a software called ”Multi-scale Com-

munity Finder (MCF)” for detecting community structures in large networks.

2. To deal with predictability issues in biological systems, especially in the con-

text of cancer, we followed the principled design approach. Given system-wide

assumptions, we designed biomarkers based on structural heterogeneity in gene

co-expression networks in Chapter 5. The principled designed approach re-

duces the data complexity. We followed up in Chapter 6 to design a method

to evaluate the predictive performance of network-based markers by consid-

ering nodal connectedness. In the proposed method, we made the proximity

assumptions in the network.

To handle data complexity and predictability simultaneously, in Chapter 7 we studied

an approach to infer gene networks by integrating multiple sources of biological data, such

as pathway data and multiple gene expression profiles. By the integrative reconstruction,

we aimed to effectively reduce data complexity and improve predictive accuracy. As demon-

strated in the case studies and the comparison with benchmark data sets, we were able to

achieve better predictability using integrative networks.

1.4 Contributions

This thesis presents several contributions in the area of computational system biology. Over-

all, we have provided computational means to analyze high-throughput data sets and differ-

ent biological networks.

We have dealt with data complexity. The computational challenge in mining high-

throughput data has become a bottleneck for researchers. On one hand, the advance in
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profiling technologies opened up many possibilities to quantitatively analyze the data, on

the other hand, the meta-analysis of such data has, in some way, led to inconsistent con-

clusions. For example, the inconsistent predictive performance reported for different gene

sets with different patient cohorts is one example. The underlying reason is that biological

data is far from comprehensive and ideal; therefore making many claims difficult, if not

impossible, to prove. For instance, gene expression data sets for cancer metastasis are the

“snapshot data” in the dynamic cellular environment. The conclusions solely based on such

data sets inevitably inherit the nature of inconsistencies. In this thesis, we approached the

data complexity from social and network perspective.

On top of the data complexity challenges, we aimed to address the predictability prob-

lem, which means to make designed predictions as if the data complexity was partially

resolved. For example, we designed biomarkers based on co-expression heterogeneity and

made network-based predictions using integrative networks. Despite system biology lim-

itations, the thinking driven by the (over-)simplified model could offer fruitful lessons in

biological problems. In other words, there is a tradeoff between making assumptions to re-

duce the complexity and making consistent and comprehensive conclusions. We next detail

the contributions of each chapter.

In Chapter 2, we adapted the social network model to study genes and investigated

the social inspiration by concentrating on boundary genes in expression data, because they

resemble boundary nodes in social communities. We proposed three procedures for mining

dynamic social communities. Our approach contributes to the new branch of the social

thinking in biological systems.

In Chapter 3, we studied the relationship between multi-scale community structures

of metabolic network and motif distributions. We used three model organisms to address

the relationship between community scalability and motif distributional effect in metabolic

networks. We investigated the question of “who drives whom”, at least topologically, and
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further provided methods to quantify the motif distributional effect. Our study deepens

the understanding of organizational principles in biological networks. The tool we used to

analyze network communities was described in Chapter 4, which is the first tool, to the

best of our knowledge, to deal with different types of large network in detecting community

structures.

In Chapter 5, we contribute to the study of breast heterogeneity by designing biomarkers

based on relational heterogeneity in co-expression networks. We found that different cat-

egories of genes stratified by the level of co-expression heterogeneity behave differently in

terms of predictive performance. Our study exemplified the way to design efficient biomark-

ers using biological and clinical principles.

Given the biomarkers as the output of designed principle, like the ones based on the

relational heterogeneity information from Chapter 5, we asked the basic question: how to

evaluate the markers in the network context. Most existing methods only provide simple

aggregation but ignore the connectedness in the network topology. In Chapter 6, we pro-

vided a method to quantify the predictive performance of network-based markers using an

optimization method, and further added the line of evidence that most of the network-based

markers are not robust.

In Chapter 7, we aimed to reconstruct integrative networks. We provided a method

with a single parameter for the integration. The framework is flexible and can deal with

different types of biological data. We showed the effectiveness and efficiency of the integrative

reconstruction using benchmark datasets and breast cancer data. The outcome of the study

showed the possibility of reducing the data complexity for more effective network-based

predictions.

1.5 Organization of the Thesis

Generally speaking, the workflow of a computational system biology study means:
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• Investigating certain elements of biological networks and their interactions,

which depends on the purpose of the study (i.e., what problems are we trying

to address using the chosen networks? ).

• Collecting experimental high-throughput/genome-wide data and using com-

putational methods to analyze the data and validate findings.

In the following chapters, we shall frame the investigations by first asking a system

biology question, and then provide computational means to answer the question. Since

system biology crosses a plethora of subfields in biological and medical sciences, we focus

on community structures (a.k.a modular patterns) and the use of topological properties and

information in biological networks to study complex diseases in this thesis. As examples, we

studied community/modularity based methods to decompose and analyze breast cancer data

and investigated methods to infer gene regulatory networks that integrate multiple sources

of genomic data.

As social network analysis is gaining popularity in modeling real world problems, the

task of applying the social network model concepts and notions to biological data is one

of the most attractive research problems to be addressed. In Chapter 2, we focus on

a particular set of genes that reside on the community boundaries in gene co-expression

networks. Stemmed from community mining problem in social networks, peripheries of

communities (i.e., boundaries) can be used to aid certain biological analysis. The proposed

method consists of three parts:

1. Finding communities of gene co-expression networks through clustering.

2. Analyzing stability of community structures by Monte Carlo method.

3. Designing of dynamic adoption of boundaries using geometric convexity.

We validate our findings using breast cancer gene expression data from various studies.

Our approach contributes to the new branch of applying social network mechanisms in
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biological data analysis, leading to new data mining strategies that associate social behaviors

to biological network analysis.

In Chapter 3, we study the relationship between multi-scale community structures and

network motifs using metabolic networks. Metabolism is a set of fundamental processes that

play important roles in a plethora of biological and medical contexts. It is understood that

the topological information of reconstructed metabolic networks, such as modular organiza-

tion, has crucial implications on biological functions. Recent interpretations of modularity

in network settings provide a view of multiple network partitions induced by different res-

olution parameters. Here we ask the question: How do multiple network partitions affect

the organization of metabolic networks? Since network motifs are often interpreted as the

superfamilies of evolved units, we further investigate their impact under multiple network

partitions and investigate how does the distribution of network motifs influences the or-

ganization of metabolic networks. We study Homo sapiens, Saccharomyces cerevisiae and

Escherichia coli metabolic networks, and analyze the relationship between different commu-

nity structures and motif distribution patterns. Further, we quantify the degree to which

motifs participate in the modular organization of metabolic networks.

In Chapter 4, we present a tool to find community structures of different types of

networks. Multi-scale Community Finder (MCF) is a tool to profile network communities

(i.e., clusters of nodes) with the control of community sizes. The controlling parameter is

referred to as the scale of the network community profile. MCF is able to find communities

in all major types of networks including directed, signed, bipartite, and multi-slice networks.

The fast computation promotes the practicability of the tool for large-scaled analysis (e.g.,

protein-protein interaction and gene co-expression networks).

In Chapter 5, we study cancer heterogeneity using breast cancer data. It is well known

that cancer is a highly heterogeneous disease, and the predictive capability of targeted gene

signature approach suffers from the inter-tumor heterogeneity. Here we propose a framework
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to quantify the molecular heterogeneity of tumors from gene-gene relational perspective using

co-expression networks and interactome data. We believe that to understand individualized

gene behavior across patients, relational status of genes needs to be considered because

complex disease phenotype is often caused by cascaded failures of genetic interactions in

cancer cells. We quantify gene-gene relational heterogeneity from a benchmark dataset

using co-expression networks inferred from microarray data, and show that genes related

to breast cancer metastasis can be stratified to different classes based on their relational

status obtained from pairwise comparisons of co-expression networks. Further we use the

relational heterogeneity information to predict patient survival and found that relationally

heterogeneous gene set is less predictive than relatively conserved cancer genes and weekly

co-expressed genes in terms of metastasis. We explore heterogenous gene sets using inter-

actome data and identified densely connected components that are causal to inter-tumor

heterogeneity, and independently validate our approach with two patient cohorts. Our re-

sults demonstrate the efficiency of using heterogeneity information to design network-based

markers.

In Chapter 6, we argue that it is necessary to use the network structures to evaluate

performance of biomarkers. To address this, we aim to learn a weight coefficient for each

node in the network from the quantitative measure such as gene expression data. The weight

coefficients are computed from an optimization problem which minimizes total weighted

difference between nodes in a network structure; this can be expressed in terms of graph

Laplacian. After obtaining the coefficient vector for the network-based markers, we can

then compute the corresponding network predictor. We demonstrate the effectiveness of the

proposed method by conducting experiments using published breast cancer biomarkers with

three patient cohorts. Network-based markers are firstly grouped based on GO terms related

to cancer hallmarks. We compare the predictive performance of each network marker group

across gene expression data sets. We also evaluate the network predictor against the average

15



method for feature aggregations. The reported results show that predictive performance of

network markers is generally not consistent across patient cohorts.

In Chapter 7, we conclude the thesis by solving the inference problem, since rapidly

accumulating genomic data have posed a challenge to integrate multiple data sources and

to analyze the integrated networks globally. In this chapter, we present a method to reverse

engineer integrative gene networks. The main advantage of our method is the integration of

different quantitative and qualitative datasets in order to reconstruct a multiplex network,

without imposing data constraints, such as each genomic datum needs to have the same num-

ber of entities. The computation boils down to solving small quadratic programs based on

local neighborhood of nodes. Another advantage of our method is that from the integrated

networks, predictions can be made by propagating beliefs from seed nodes representing known

knowledge via weighted edges. Thus, we combined data integration and network-based pre-

diction into a single framework. We applied the method to DREAM5 dataset, and compared

the results with the community networks from the challenge. Further, we demonstrate our

method through case studies using breast cancer data, including the integration of metasta-

sis gene expression data with interactome data and biological pathway data. Network-based

predictions are compared between interactome-integrated and pathway-integrated networks.

Overall, our method has the potential to be applied in many settings of network system

biology.

16



Chapter 2

A Closer Look at “Social” Boundary Genes Reveals

Knowledge to Gene Expression Profiles

1 As social network analysis is gaining popularity in modeling real world problems, the task

of applying the social network model concepts and notions to biological data is one of the

most attractive research problems to be addressed. Here we focus on a particular set of genes

that reside on the community boundaries in gene co-expression networks. Stemmed from

community mining problem in social networks, peripheries of communities (i.e., boundaries)

can be used to aid certain biological analysis. The proposed method consists of three parts:

1) Finding communities of gene co-expression networks through clustering. 2) Analyzing

stability of community structures by Monte Carlo method. 3) Designing of dynamic adoption

of boundaries using geometric convexity. We validate our findings using breast cancer gene

expression data from various studies. Our approach contributes to the new branch of applying

social network mechanisms in biological data analysis, leading to new data mining strategies

that associate social behaviors to biological network analysis.

2.1 Introduction

Recently, researchers have started to realize the effectiveness of social network analysis mech-

anisms in understanding group behaviors and network dynamics. For example, Centola [19]

has demonstrated that social behaviors (how individuals adopt health recommendations)

spread in a counter-intuitive fashion, i.e., information exchanged through social interactions

1The content of this chapter is based on the following article:
Gao, S., Zeng, J., ElSheikh, A., Naji, G., Alhajj, R., Rokne, J., & Demetrick, D. (2011). A Closer Look

at “Social” Boundary Genes Reveals Knowledge to Gene Expression Profiles. Current Protein and Peptide
Science, 12 (7), 602-613.
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Figure 2.1: Boundary nodes in communities. Dashed circles represent virtual communities
inferred from data. Darkened lines represent connections or links between boundary nodes.
Orange colored represent boundary nodes interacting with other communities in the network

spread faster in clustered-lattice networks. We argue that this type of social network analysis

should motivate biologists to model the behavior and evolution of human genome in a wide

variety of approaches and perspectives, with the hope to account for less well-characterized

phenomena such as genetic variations [84]. The reason why following the social notions is

reasonable is certainly underlined by formal theoretical models [58]. Accordingly, our work

described in this chapter adopts social network mechanisms to model gene expression data

and to understand the behavior of genes. The motivation for this work is that although

clustered gene co-expression modules are well understood [92], the behavior of certain sub-

sets from those modules is less understood. In the literature, there is substantial research on

the construction and interpretation of co-expression networks, but only little work has been

done on the elucidation of the boundary subset. More importantly, the behavioral aspects

of the boundary genes in co-expression context are not thoroughly discussed.

In this chapter, we adapt the social network model to study genes; and hence, we in-
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vestigate social inspiration by concentrating on boundary genes in microarray expression

data since they resemble boundary nodes in social communities. The boundary of a social

community is a set of individuals that reside on its borders and is separate from neighbor

communities. Intuitively, compared to interior nodes boundary nodes are more volatile in

that individuals residing on them are more likely to leave the local community and join a

neighbor community instead. Further, the boundary nodes are less interactive compared

with other nodes in the community. Therefore, mining community boundaries can lead to

profound implications in social network analysis.

In this work, we hypothesized that the same behavior applies to gene expression pro-

files in which co-expression modules are analogous to communities and boundary genes are

analogous to unstable individuals. We introduce clustering based methods to find boundary

gene set in dynamic settings using statistical methods. To visualize the boundary, we benefit

from the fact that boundaries can be represented as convex hulls in a geometric setting in

the clustering process. The idea is illustrated in Figure 2.1, the darkened lines are geometric

boundaries of a convex hull and we are interested in the behavior of the boundary nodes,

i.e., genes and their strength of connections in gene expression data.

2.2 Related Work

To describe the literature pertaining to this study, we categorize related works according to

the mining workflow (see the experimental study section) into three categories as follows.

2.2.1 Clustering of Gene Expression Data

Since clustering plays a fundamental role in data mining by partitioning the observations

into subsets, its importance in grouping gene expression profiles has been intensively studied

[69, 143]. The unsupervised nature of the clustering process allows subjective interpretations

of the result, which is a double-edge sword in data analysis [34], because the lack of domain
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specific calibrations may lead to undesirable results. To account for this, different computa-

tional methods and metrics are employed in clustering; see reference [69] for a comprehensive

review. In this chapter, we use clustering as a pre-processing step in building co-expression

networks from gene expression data sets, as the clusters represent the functional modules of

similarly expressed genes [18].

2.2.2 Social and Cellular Networks

To better understand the interactions between genes, networks can be built by inferring

from the gene expression data. This reverse engineering approach prompts a global view

of structural knowledge [103, 102]. The notion of social networks (originally stemmed from

sociology and anthropology) permits behavioral studies between nodes, e.g., genes in cellular

networks, such as learning mechanisms, as well as community mining that is analogous to the

concept of modularity in cellular networks [48, 136]. Within the context of gene expression

profiles, co-expression modules are often analyzed in conjunction with networks [92, 20]. The

connection between gene clusters and co-expression modules is apparent, and the latter is

used in the context of gene expression analysis.

2.2.3 Boundary Mining

To mine the boundary of clusters, several methods have been proposed in several directions:

the work described in [15] discusses the stability of clusters in association with cluster bound-

aries; on the other hand, the works described in [59, 150, 123] focus on the estimation of the

boundaries from the clustering results; and the work described in [161] introduces a method to

visualize high-dimensional clusters, therefore implicitly depicted cluster boundaries. In this

chapter, we identify community boundaries and investigate their social behaviors through

randomized clustering process and Monte Carlo methods. Boundaries are represented as

convex hulls in a geometric perspective having benefits in terms of visualization and accu-

racy. Our approach contributes to a new branch of social community mining by effectively
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identifying and representing social boundaries under dynamic settings. Although we have

focused on gene expression data in this chapter, the discussed approach in general enough

and can be applied to study other types of molecules within the body as well as to tackle

various real world applications. For instance, in terrorism networks our approach can be

used to find crucial nodes in terrorist organizations.

2.3 Background

2.3.1 Social Network

Social network mining and analysis is a relatively new field that combines sociology per-

spectives and data analysis techniques [87]. The emerging interest attributes to the fact

that many real world problems can be modeled as social networks. For instance, different

genes and their functions can be modeled as two-mode social networks in drug development.

After a social network is constructed, one of the important tasks is to identify social com-

munities [119]. A community can be described as a group of individuals who share similar

interests. The sociological implication is that individuals within the same community tend

to preferably interact with each other more frequently.

Mathematically, a social network can be defined as a graph G = (V, E), where V =

{v1, v2, ..., vn} represents individuals (interchangeably called actors) and E = {e1, e2, ..., em}
represents links or interactions between individuals in V . Communities can often be identified

using sub-graph extraction and similarity based methods [179]. However, static graph-based

methods do not account for the dynamic nature of social networks in real world problems,

i.e., the question of how does communities structure change and evolve over time is a more

complex problem. Therefore, we concentrate on the behavior and design of the dynamics

of social network analysis, which would lead to more practical models for various real world

problems [156], and consequently raises the need for more powerful computational methods

and analytical means.
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2.3.2 Convex Hull Construction

In the Euclidean space, let C be a set in a vector space; C is said to be convex if for any

x, y ∈ C and any t ∈ [0, 1], the point (1− t)x + ty is also in C. The convex hull for a set of

points X in a real vector space is the minimal convex set containing X. Formally, the convex

hull of a set of points X in n dimensions is the intersection of all convex sets containing X.

For N points p1, p2, ..., pN the convex hull H(X) of set X is defined as:

H(X) = {
∑N

j=1
λ

j
p

j
|λ

j
≥ 0,

∑N

j=1
λ

j
= 1}

In computational geometry, convex hull often refers to the boundary of the minimal convex set

containing a given non-empty finite set of points in the plane. Since convex hull computation

is a fundamental problem in computation geometry, numerous efficient algorithms have been

proposed in the literature. Theoretically, convex hull construction can be implemented in

multi-dimensional spaces; however, in real practice, 2D and 3D convex hulls are the most

commonly used and discussed in the literature. Recent dominant algorithms for finding

convex hull in 2D and 3D have the complexity O(nlogn) [133]. The reason we are interested

in convex hulls is the fact that they geometrically represent boundaries of a set which can

be viewed as community boundaries. In other words, if we define p1, p2, ..., pN as nodes or

individuals in a set X, then H(X) describes the boundary of X or confines X. A question

following the above argument could be articulated as follows: how to define such X in

the first place in order to compute H(X)? We handle this partitioning process by using a

clustering method [118].

2.4 Methods

Our proposed method for mining community boundaries can be divided into two phases.

In the first phase, we cluster the gene expression data where each cluster is viewed as

a community. In the second phase, we construct convex hulls that represent community
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boundaries. The procedure is described in Algorithm 1. Algorithm 1 estimates the optimal

number of clusters by first constructing hierarchical clustering tree from different linkage

functions. To determine the best linkage function, we compute correlation coefficients among

a pool of options, such as average, complete, single linkages, etc. and the optimal linkage is

given by the maximal correlation coefficient of the hierarchical tree from the pool. The best

number of clusters is given by the highest average silhouette value with the optimal linage

function.

Algorithm 1 Find Community Boundaries

Input: Data set D, rows are genes and columns are samples.
Output: Convex hulls representing community boundaries.

1. Compute pair-wise distance of genes in D, and compute agglomerative clustering tree
using different linkage functions.
2. Pick the linkage function with the highest correlation coefficient.
3. Find the optimal number of clusters using silhouette value; cluster D.
4. Repeat: If cluster i has less than 3 objects, or objects are co-linear, mark those objects
as obsolete, and terminate the convex hull construction for cluster i.

i ← i + 1
Until: all clusters are examined

5. Construct convex hulls for each non-obsolete cluster.
6. Record total boundary distances for each community in a vector.

The silhouette value measures average silhouette width for each cluster as well as overall

silhouette width for the entire dataset. The silhouette value is computed as:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
where a(i) is average dissimilarity of the ith object to all other objects in the same cluster;

b(i) is the minimum average dissimilarity of the ith object to all objects in other clusters,

and −1 ≤ s(i) ≤ 1. Having s(i) close to 1 implies the sample is well clustered; on the other

hand, having s(i) close to −1 implies that the sample is poorly clustered.

Pair-wise distance is an important measure in the clustering process, and the choice

depends on the data domain. For analyzing gene expression profiles, three measures are

frequently used: Euclidian distance, Pearson correlation and mutual information. Each has
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advantages and disadvantages compared to others in the literature, e.g., [18, 123]. In this

chapter, we use the Pearson correlation as a measure of similarity to avoid the computational

cost from mutual information. Algorithm 1 essentially uses clustering to identify community

structures and further construct convex hulls to describe community boundaries. This initial

construction process will be used in adapting changes in dynamic social networks as discussed

in the following subsections.

2.4.1 Monte Carlo Based Method in Stabilizing the Community Structure

An important question raised due to the clustering method is: how to ensure that the

community structures extracted are stable? In practice, this concern is crucial because

the communities are sometimes formed based on a subset of representative samples that

are subject to bias and noise with different clustering methods like k-means and SOM.

Therefore, the ideal boundaries should be “stabilized” so that objects on the boundaries are

not biased to the clustering method, i.e., they should be robust subject to bias and noise.

For example, a community of patients having the same set of expressed genes might be

subject to sampling error and/or measurement noise, and this consequently destabilizes the

community structures.

Algorithm 2 Monte Carlo Simulation to Stabilize Community Structures

Input: Clusters formed from Algorithm 1; simulation error bound ε; selection threshold τ .
Output: Convex hulls representing stabilized community structures.

1. Generate Gaussian noise variables ∼ N(0, σ2); and compute T = 1
N

N−1∑
0

x[n] for one

realization of noise, where N is the number of samples.
2. Repeat step 1 to obtain a set of M realizations, denoted as T = {T1, T2, ..., TM}.
3. Count the number of realizations that exceed a threshold, called γ.
4. The number of trials needed to estimate the probability of number of Ti’s that exceed

γ is at least [Q−1(α/2)]
2
(1−P )

ε2P
, where Q(.) is the right-tail probability and ε is the absolute

error bound defined by the user.
5. Construct convex hulls M times (to replace step 4 of Algorithm 1).
6. For M set of convex hulls in cluster i, find the most frequent vertices that define the
boundaries, demarcated by a threshold τ .
7. Output selected vertices that define the community structures for cluster i.
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To resolve this issue, we resort to the computerized Monte Carlo simulation. The Monte

Carlo method allows us to estimate the probability of random events described by statistical

randomization [3]. In this chapter, we use the Monte Carlo simulation to determine the

number of trials needed to stabilize the convex hulls if randomization is involved in the

clustering process. Practically, if the number of simulations satisfies pre-defined conditions

in Monte Carlo methods, the “common” vertices of convex hulls from those trials can be

used to construct stabilized communities. In other words, statistical measures and their

properties can eliminate the effect of noisy components from imperfect measurements. In

view of the aforementioned reasoning, we present Algorithm 2 that uses the Monte Carlo

simulation to stabilize the community structures in noisy environments.

The proof of step 4 in Algorithm 2 is given by [75]. The noise is assumed to be Gaussian

in this Monte Carlo simulation, which is common in real circumstances. The choice of

ε and τ is configured by users; one such possible configuration is ε = 0.01(1%), and for

100(1− α)% = 95%(α = 0.05) of time that the community structures are stable.

Algorithm 3 Determine Dynamic Boundaries

Input: Convex hulls representing community boundaries at time t1, a set of new individuals
V = p1, p2, ..., ps.
Output: Adjusted convex hulls representing changed community boundaries at time t2 in-
cluding V .

1. For each pi, 1 ≤ i ≤ s, in set V , if it falls within the boundary of existing convex hulls,
the community structure does not change; otherwise go to step 2.
2. For each object pi in set V , find the line segment l of a convex hull from
H(X1), H(X2), ..., H(Xk′) in Algorithm 1 that minimizes ‖p− l‖, then l is the line segment
that should be replaced by two new line segments connecting the new individual.
3. Delete the edge l whose left endpoint is lL and right endpoint is lR, and add two edges
joining lL, pi and lR, pi, respectively. Denote the new convex hull H(Xl∗).
4. Replace H(Xl) with H(Xl∗), forming new community structures.
5. Update total boundary distances di∗ associated with H(Xl∗) in vector D =
[d1, d2, ..., di∗, ..., dk′ ].

As Algorithm 3 is the simulation to stabilize the communities’ structures, the Gaussian

noise can be seen as a predisposition that affects the robustness of communities. In step 4,

if x[n] is the Gaussian noise, then variable T follows Gaussian distribution with standard
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deviation σ2/N and mean 0; T is a vector of M realizations, the intended meaning of

P (T > γ) is the probability of the number of Ti’s that exceed γ.

2.4.2 Ad Hoc Design of Dynamic Adaption of Boundaries

Given the convex hulls, constructed from Algorithm 1, describing community boundaries, the

distance vector Db can be used as cost vectors or weights of the virtual links between nodes

on the boundaries. Db can be calculated as the sum of distances between convex hulls and

the element in Db denotes the current weight that the cluster convex hull represents. The use

of Db is to gauge the change of distance after introducing new nodes into the communities

as demonstrated in Figure 2.2.

We can use this information for changing the social networks at the later stages. We

formally define the problem as follows: Given a sequential time ordering t0, t1, ..., tn convex

hulls at t0 and distance vector Db; for each time stamp ti, 1 ≤ i ≤ n, new individuals join the

social network sequentially in vector form Nti = [nti1, nti2, ..., xtik]. Determine community

memberships for nti1, nti2, ..., xtik.

The basic idea for determining community membership of a new node or individual

is to use the distance metric to gauge the nearest boundaries between the new node and

the constructed convex hull. This is illustrated in Figure 2.2. At time t1, convex hulls

are constructed from Algorithm 1, and from Figure 2.2 A we see that two communities are

formed. At time t2, a new individual represented as a point in Euclidean space is introduced,

and from Figure 2.2 B it is clear that the new point is “closer” to the triangle community on

the left. Therefore, the new individual is included in the triangle community. The boundary

of the changed community with the new member is adjusted by adding two edges (in light

green) and deleting one, i.e., new convex hull H(Xi∪ [{new point}]) is updated from H(Xi).

Note that if the new point falls within boundaries of the convex hull, the communitys

boundaries remain unchanged, i.e., H(Xi ∪ [{new point}]). The procedure is depicted in

Algorithm 3. It is worth noting that ‖p− l‖ in step 2 is the perpendicular distance between
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Figure 2.2: Dynamic hull construction representing changing communities: A) convex hulls
from Algorithm 1 at t1. B) adjusted convex hulls with a new point at t2

a point p and the boundary line segment l. Another advantage of our proposed approach

in determining dynamic community boundaries is that there is room for outlier detection,

i.e., what if some individual does not belong to any existing community? In order to answer

this question, we need to define a positive value as the threshold, ε, and we say that pi is

non-joinable to the existing communities if |di∗ − di| ≤ ε; such pi is problematic because

it may itself form a new community or it is abnormally unusual (outlier). In either case,

further processing needs to be done; however, in most circumstances, community structures

are likely to be stable given enough time.

The ad hoc design of the dynamic adaption of boundaries is not context dependent since

as illustrated in Figure 2.2, the geometric meaning of the graph is being simplified. In the

context of gene expression data set, each point maps to a gene expressed in the microarray

consisting of different samples (measurements of expression levels). The biological meaning

of the addition of new nodes corresponds to the effect of newly considered genes to the
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Figure 2.3: Work flow in finding boundary genes

functional modules represented by communities. As we lack the data to demonstrate this

process at the moment, it is left as future work and the design is ad hoc.

2.5 Experiments

2.5.1 Data Sets and Tools

To demonstrate the applicability and effectiveness of the proposed approach, we have used

the five gene expression datasets investigated in [159] to study the impact of social boundary

genes in human breast cancer. These gene expression data sets were obtained from the Gene

Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/), and they are briefly

described in Table 2.1.

To carry out the experiments, we preprocessed and visualized the gene expression data
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Table 2.1: Breast cancer gene expression data sets from GEO

GSE Accession No. Description Number of Samples
GSE5116 17β-estradiol (E2) transformation 12
GSE5764 Ductal and lobular carcinomas 30
GSE6548 Activity of ESR1 and BMI1 8
GSE6885 Breast epithelial cell types (HMLER

and BPLER)
21

GSE8597 Estrogen receptors (ERs) targets in
MCF7 cells

16

sets with Genesis [154]; and we implemented the proposed approach using MATLAB 7. The

framework is described in Figure 2.3. In this chapter, we focus on the steps in the dashed

box concerning co-expression boundaries, and we discuss options for the enrichment analysis.

In our experiments, we focused on genes with most significant degree of variation measure

computed by the coefficient of variation (CV) statistic as:

Cv =
σ

µ

where σ is the standard deviation and µ is the sample mean. We ranked genes based on the

CV measure and used the top 3051 genes (CV-gene hereafter) for our study, as the Human

Genome U133 Plus 2.0 Array contains a large number of genes and the majority of which

are not ascribed to breast cancer phenotype. It is therefore reasonable to assume that genes

expressed with high degree of variation are more likely to be involved in tumorigenesis [33].

The proposed method is not gene set or expression profile specific since we are interested in

analyzing the impact and behavior of boundaries with unsupervised learning.

To illustrate the effect of using different similarity measures to CV-gene, graphical data

terrains are depicted in Figure 2.4 & Figure 2.5. The Euclidean distance pair-wise links are

sparse, and the peaks representing high expression levels are all pervading compared with

the data terrain with the Pearson Correlation.

This sheds light on our investigation of the clustering process in finding co-expressions

between genes since we are interested in condensed co-expression modules where a compact
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Figure 2.4: Data Terrain Euclidean Distance

set of boundary genes interact with majority of other genes to higher degree, hence possibly

exert more functionality to biological processes for which the impact of gene-gene interactions

underlying diseases is not overt.

2.5.2 Co-Expression Modules and Boundary Genes

In order to find co-expression modules based on the breast cancer gene expression profile, we

cluster the data set as described in Algorithm 1. We choose the best number of clusters or

modules to form. We use the hierarchical clustering method to build the agglomerative tree.

This leads to the choice of the linkage function and, consequently, the optimal clustering

that gives the maximal average silhouette measure.

Figure 2.6 shows the mean and coefficient of variation (CV) measures of silhouette value
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Figure 2.5: Data Terrain Pearson Correlation

with different number of clusters representing breast gene co-expression modules. The av-

erage linkage function is used in Figure 2.4 with cophenetic correlation coefficient 0.8196;

other choices include complete, single, ward and weighted linkages by specifying the coeffi-

cient measure as 0.7807, 0.2733, 0.5926 and 0.7806, respectively. As shown in Figure 2.6,

the mean and CV measures tend to fluctuate less with the number of clusters greater than

∼ 45, rendering a rather stable pattern of near-horizontal lines. This observation suggests

that the number of co-expression modules that accounts for the cancerous state is steadily

demarcated. Further, the mean and coefficient of variation measures of silhouette value co-

incide and show that the optimal number of clusters with CV-gene is 26 with mean and CV

as 0.4089 and 1.1967, respectively. The most significant normalized gene clusters are shown

in Figure A.1.
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Table 2.2: Boundary genes for the six most significant co-expression modules; repeated genes
are bolded and genes with mutations are underlined

Significant
Modules

Number
of Genes

Boundary Genes Significance

Module 5 166 IL12RB1,LHFPL5,MIPOL1,AKR1CL2,
EARS2,CD80,C6orf114,DTWD1,
ZNF655,CNOT6L,CPA6,MPP4,COBL,
CXorf52,DKFZp761H2121,SVEP1,
GPR128,LUZP1,C1S

p < 0.005

Module 18 180 GLYATL2,NHEDC1,FBXL14,ITIH5,
SCML4,POLR2B,ZNF586,GIMAP1,
ZNF663,SEPSECS,ST7OT1,GPR128,
ABCC13,C20orf12,TMLHE,EARS2

p < 0.005

Module 10 186 SCML4,CNOT6L,C12orf66,IGFBP5,
AKR1CL2,SETMAR,C3orf15,
FAM154B,ZNF441,TRNT1,ZNF641,
MRAP,C1orf210,SVEP1

p < 0.005

Module 4 201 LOC253039,SCML4,TIGD4,C1S,
AFG3L1,MUC19,GAPT,C9orf96,MRAP,
LILRA5,WBP2NL,CPA6,C3orf23,TERF2

p < 0.005

Module 8 212 FLJ30672,C1S,LOC100134445,ZNF585A,
TTBK2,PDE4D,CASC2,CXorf52,C1orf210,
ZNF385B,FLJ42709,ATP6V1C2,
ZAP70,DKFZp761H2121,
RFX6,VSTM2A,ADAMTS9

p < 0.005

Module 13 386 VSTM2A,PRPSAP1,WDR78,FLJ37035,
SETMAR,PARD3B,ITPKB,LOC283861,
TERF2,CNR1,ZNF837,LUC7L,STAP1, ZNF831

p < 0.005
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Figure 2.6: Mean and Coefficient of Variation(CV) values against number of clusters

The expression profiles from Figure A.1. show similar behavioral patterns of gene mod-

ules, depicted by pink contours containing high-expressed (peaks) and low-expressed genes

(horizontal lines). Since contours of significant gene co-expression modules are similar, the

quality assessment of co-expression modules can be reduced by a set of representative genes

sampled from each cluster. As aforementioned, the boundary genes from social perspective

that confine the gene co-expressions modules can be used to achieve this interpretation. The

boundaries can be geometrically portrayed by convex hulls in Algorithm 2. The boundary

genes are listed in Table 2.2.

The significance of boundary gene set is assessed with hypergeometric distributions, in

other words, the probability of being a boundary set of genes in each co-expression module.

Interestingly, Table 2.2 shows that boundary genes from different co-expression modules

can overlap (bolded). The most repeated genes are C1S (modules 5, 4, 8), and SCML4

(modules 18, 10, 4). The repetition of boundary genes means that co-expression modules

share common genes residing on their borders. The most repeated genes such as C1S and

SCML4, therefore, may serve as indicators of co-expression modules in association with

cancer phenotype under investigation and further signaling pathway [73] or a gene ontology

enrichment analysis [6] can be conducted. For example, the repeated C1S gene participates
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Figure 2.7: Correlation comparison between entire gene module and boundary genes, the
y-axis is the proportion of correlated genes

in the complement and coagulation cascades pathway in KEGG database that is a defense

system against pathogens (see Figure A.2 in Appendix 1) in biological processes relate to

membrane organization in GO, while there is no pathway found for less-characterized SCML4

gene whose protein product Sex comb on midleg-like protein 4 functions by forming protein

complexes to regulate transcription activity and belongs to the group of histone modification

proteins.

As a further exploration, since cancer arises from somatic mutations [175, 153], we map

the boundary genes to somatic mutations in COSMIC database [7, 182], and observe that

most boundary genes are not catalogued with genetic mutations. However, genes with muta-

tions tend not to be shared on co-expression boundaries and they tend to aggregate in mod-

ules (module 8 in Table 2.2). This knowledge can be further used to assess co-expression

modules by extracting the boundary as a gene set and evaluate the probability based on

assumed distribution as described in [182].
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2.5.3 Connectivity of Boundary Genes and Pathway Discussions

To examine the co-expression levels of boundary genes, we compare the boundary genes with

the corresponding co-expression modules. This is done because the relationship between a

certain gene set and its genetic context (which is the co-expression network) is an important

aspect in assessment. We compute the correlation coefficient statistic:

cov(gi, gj)√
cov(gi)cov(gj)

where gi and gj are expression levels of gene i and gene j, respectively, and cov(.) is the

covariance between gi and gj.

The boundary genes from the breast cancer data set show substantially lower correlation

proportions in terms of expression levels measured (∼17% for boundary genes against ∼95%

for the entire co-expression module), which is worth further investigation from biological

perspective. The computational method based on co-expressions hinges on the fact that

observations (i.e., gene expression levels) residing on the boundary are least relevant to

the centroids representing most influential genes. This finding is in agreement with the

social intuition that boundary individuals of communities are weekly linked. However, the

underlying biological reason for the boundary genes being weekly connected in significant

co-expression modules as a general trend in reference to perturbation data analysis such as

CV-gene is unclear.

There is a variety of approaches to assess the clusters, for instance, to map the genes to

pathways and compute the probability as a measure of significance, which is used in Table

2.2 above in the similarly vein with hypergeometric distributions [182]. The mapping is

done by querying a pathway database such as KEGG (http://www.genome.jp/kegg/) or

PANTHER (http://www.pantherdb.org/). Alternatively, Gene Ontology (http://www.

geneontology.org/) can be used to assess the components of boundary genes in biolog-

ical processes in pursuit of further common ontological intersections, if any [47]. Recent

35



Figure 2.8: Communities snapshots by first 20 Monte Carlo simulations; horizontal and
vertical axes are polar coordinates

approaches in computation system biology provide further flexibility of this task. In the

work described in [104] topological pathways are converted to compact graphs for mining

and analysis. As one of the future works, we intend to elucidate boundary gene set with

topological information using system biology approaches.

2.5.4 Stability of Clusters

In this section, we experiment with the yeast time series data set to demonstrate the stability

effect of clusters. The data set can be found at the following repository: http://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE28. The data set contains 6400 genes expressed

at 7 different time stamps. In this experiment, we treat genes as nodes in the social network.

The focus of this experiment is to show community structure stabilization with randomized
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clustering methods using Monte Carlo methods. As a preprocessing step, we deleted all genes

with unknown expression levels including empty values that might be caused by measurement

errors. The total number of genes is 6276 after preprocessing. We used the correlation pair-

wise measure to cluster the data set. The correlation is defined as:

dcorr = 1−
(xs − 1/n

∑
j

xsj)(xt − 1/n
∑
j

xtj)
′

√
(xs − 1/n

∑
j

xsj)(xs − 1/n
∑
j

xsj)′
√

(xt − 1/n
∑
j

xtj)(xt − 1/n
∑
j

xtj)′

where xs and xt are row vectors representing the expression of genes at different time stamps.

We generate community structures by Monte Carlo trials as discussed, and the first 20 sample

communities are shown in Figure 2.8. By using a sufficiently large number of trials, the gene

community structures stabilize or converge. We do not eliminate duplicates from different

communities because the occurrences of genes are given by a large number of Monte Carlo

trials in which randomized likelihood is computed (Algorithm 2). Therefore, the order of

genes that define communities implies ranking of likelihoods. For example, gene i appears

before gene j, this means that gene i has higher likelihood of being a boundary gene than

gene j does. The statistics can be kept along with the computations so that unique genes

can be found by a simple ranking.

2.6 Chapter Discussion and Conclusions

Our motivation of this study is to provide a new perspective in the analysis of gene expression

data by looking at the community boundaries inspired by theoretical network science [48, 12],

and the results were analyzed via cancer data sets and mutation data. Other biological

analysis problems can be further aided using this strategy and thinking.

The workflow described in Figure 2.3 does not tie to specific type of biological networks

such as gene regulatory networks (GRN) or protein-protein interaction (PPI) networks. One

of the reasons we instantiated the study with gene co-expression network is that pair-wise
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comparisons between expression level of genes can be easily computed quantitatively, as op-

posed to the computation using GRN and PPI networks. For example, in PPI networks,

proteins are linked with physical reactions observed, and therefore the global network struc-

ture such as scale-free properties or functional modularity are of more interests to biologists

[68]. Having said so, we realized that GRN and PPI networks can be inferred computa-

tionally from gene expression data sets [147, 178]. However, as our study focuses on the

strategic analysis summed to boundary genes, the interposition of network inference is out

of the scope of the chapter (in fact, the topic is intensively discussed in bioinformatics). As

aforementioned, we have included in the chapter the proposed method and real experiments

to demonstrate some use of the workflow by linking gene expression data analysis to cancer

mutations, and this direction is studied by recent publications using gene co-expression net-

works [159]. Our new probe is the detailed look at boundary genes that are not discussed

in this regard, being one of many possible practicabilities. We regard this as an important

future direction to pursue. The second reason we only focused on the gene co-expression

network in this study is the following: with reference to the workflow presented in Figure

2.3, in GRN of PPI networks, perhaps the key point in terms of mining strategy pertains

to graph clustering or partitioning in order to find communities, and this is another popular

topic heavily studied [41]. Finding boundary vertices in graphs is a much harder task in

terms of computation, whereas in gene co-expression networks quantitative measures are at

front end [56]. Topology of graphs affects boundaries to a great extent, therefore to find

boundary vertices, constraints need to be imposed or proximity measures can be utilized

such as centrality ranking.

As demonstrated by the study and experiments, there is much room to further explore

this boundary-based approach. For example, the separation of communities can also be

measured using the boundaries and it is possible to combine two closely-related communi-

ties in real settings if time series data is used. As discussed, probabilistic framework can
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also be developed to elucidate boundaries with pathway information. Overall, the bound-

aries of community structures can lead to profound implications in networks with different

application domains.
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Chapter 3

Multi-scale modularity and motif distributional effect

in metabolic networks

1

We study the relationship between multi-scale community structures and network motifs

using metabolic networks. Metabolism is a set of fundamental processes that play important

roles in a plethora of biological and medical contexts. It is understood that the topological

information of reconstructed metabolic networks, such as modular organization, has crucial

implications on biological functions. Recent interpretations of modularity in network settings

provide a view of multiple network partitions induced by different resolution parameters. Here

we ask the question: How do multiple network partitions affect the organization of metabolic

networks? Since network motifs are often interpreted as the superfamilies of evolved units,

we further investigate their impact under multiple network partitions and investigate how

does the distribution of network motifs influences the organization of metabolic networks.

We study Homo sapiens, Saccharomyces cerevisiae and Escherichia coli metabolic networks,

and analyze the relationship between different community structures and motif distribution

patterns. Further, we quantify the degree to which motifs participate in the modular organi-

zation of metabolic networks.

1The content of this chapter is based on the following articles:
Gao, S., Chen, A., Rahmani, A., Jarada, T., Alhajj, R., Demetrick, D., & Zeng, J. (2013). MCF: A tool

to find multi-scale community profiles in biological networks. In Submission.
Gao, S., Addam, O., Chen, A., Rahmani, A., Zeng, J., Tan, M., Alhajj, R., Rokne, J., & Demetrick,

D. (2013). Multi-scale Modularity and Motif Distributional Effect in Metabolic Networks. In Proceedings
of 5th International Conference on Bioinformatics and Computational Biology. International Society for
Computers and Their Applications.
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3.1 Introduction

Compared with other major types of cellular networks (e.g., transcription networks that cap-

ture genetic regulatory mechanism, and signaling networks that depict signal transductions

in a cellular environment under different contexts such as diseases and extracellular stim-

uli), metabolic networks are well studied biological systems with rich data resources such as

bio-chemical databases [67, 134, 152]. During the past decade, substantial work has been

devoted to the understanding of the metabolism using reconstructed metabolic networks.

Researchers have studied how the topological information of metabolic networks implies or

relates to important cellular processes and biological functions [88, 177, 11]. From this per-

spective, topological hallmarks of complex networks, including clustering coefficients [134],

hierarchical organization [51, 142], and local interaction patterns [165, 126] have been heavily

investigated. By viewing networks as abstract representations of systems, topological prop-

erties such as clustering coefficient and skewed degree distributions are regarded as network

phenomena underpinned by complex networks rather than casual individual patterns. In

particular, modular and hierarchical organization is one of the well understood characteris-

tics of metabolic networks; and it has been further demonstrated that metabolic networks

exhibit functional cartography in organization [134, 51, 38, 188].

The analytical backbone for studying modularity and organization of networks boils down

to community detection problems in graphs, which is one of the most important trends in

network mining and analysis [41].

In a sparse network such as the metabolite-centric network considered here, the task

of finding clusters of nodes (a.k.a. communities and modularity) is often considered as

a one-step process based on network topological information. However, it is necessary to

control the sizes of communities in different network partitions since community detection is

subject to resolution limits (which means certain small node groups cannot be detected as

communities) leading to multiple ways of tracking functional compositions for different sizes
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Figure 3.1: A) The reconstructed metabolic network for the E. coli data; each color of
the nodes represents a community. B) Distribution of metabolite links in functional classes
with resolution parameter 0.5 for the E. coli network. C) Distribution of metabolite links in
functional classes with resolution parameter 1.5 for the H. sapiens network. D) Distribution
of metabolite links in functional classes with resolution parameter 2.5 for the S. cerevisiae
network
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of node groups (Figure 3.1 (B-D)). The reason for controlling the resolution of community

structures underlies the complex relational structure of large networks. In other words, the

modular structure offers little value to understanding the network organization if we are

dealing with a small number of nodes. However, this is not the case when we consider large-

scale metabolic networks that include entire metabolic activities of different organisms. Here

we want to understand how different community structures can be mined and controlled

in complex networks. For this purpose, we consider a Markov process in computing the

modularity that was shown to be robust and flexible in the network settings. Under this

context, we study different community structures (known as multi-scalability of network

communities) via a parameter that controls the process, called scale or resolution (γ) of the

associated community structure. Figure 3.1 (A) shows a reconstructed metabolic network

and its natural community structure from one-step clustering process (i.e., with γ = 1).

In terms of the metabolic networks studied in this chapter, the multi-scale organization

of the community structures provides insight into the cellular mechanisms of how certain

metabolites are grouped together, and in what physical proximity (i.e., the relationship

with cellular compartmentalization) they exist and function. Furthermore, by considering

different levels of metabolic organizations, we are able to computationally track the degree

to which scale fluctuations affect functional cartography [165, 126, 113]. For example, Figure

3.1 (B–D) shows the multi-scalability effect and distribution of the functional classes given

by links within the communities of metabolic networks in different partitions. Each bar

of the histogram represents the largest number of links in a community that belongs to a

functional class.

Network motifs are frequently occurring subgraphs compared with an ensemble of random

networks. They are seen as the superfamilies of evolved units [109, 131, 74]. It is suggested

that network motifs such as feed-forward loops (FFL) and single-input modules (SIM) act as

fundamental units that drive evolving networks. Based on z -scores, motifs are classified into
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motifs (z -score>0) and anti-motifs (z -score<0) [109]. In a sense, both modular structure

and network motifs are viewed as evidence of the evolving organization in complex cellular

networks. However, the relationship between these two entities is not well understood; “who

drives whom” at least topologically remains an open question. For example, Goemann et

al. used a pair-wise disconnectivity measure to evaluate network motifs from the topolog-

ical information of transcriptional networks [49] in the entirety, rather than peeking into

community-dependencies of motifs. Interestingly, although it is hypothesized that network

motifs to some extent play evolutionary roles, it has been disputed whether various types of

motifs have tight connections to biological functions. From these arguments, it is suggestive

that although motifs reflect network evolution, the way of interpreting them is perhaps more

important. In other words, the existence of network motifs and their functional roles are

context dependent—an implication of concern in recent research efforts [66, 81]. We sus-

pect that the complexity of modular structures in metabolic networks is connected to such

contextual dependency [82]. In this chapter, to instantiate our findings we investigate the

coupling effect between these two seemingly parallel causes with metabolic networks of three

organisms, namely (Homo sapiens, Saccharomyces cerevisiae and Escherichia coli).

In a nutshell, given a reconstructed metabolic network we investigate multiple network

partitions with different resolutions and we study their effect on how network motifs are

distributed. We first show how the direction of edges affects multiple network partitions and

motif distributions. Further, with different network partitions, we analyze the distribution

patterns of motifs in individual communities. We then focus on specific motif types in

metabolic networks and communities that contain them in order to understand the effect of

motif and anti-motif distributions. To deepen the analysis, we compare the physical cellular

compartments with different community profiles and quantify their pair-wise variations. We

finally use two different methods to quantify the degree to which motifs are dependent in

different community structures. This allows us to rank network motifs in the presence of
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community background.

3.2 Materials and methods

3.2.1 Construction of metabolic networks

Metabolic networks are constructed using BiGG [146], which is a curate database for ex-

ploring biochemical information of metabolism. We constructed metabolite-centric networks

in our study. The choice of metabolite-centric networks originated from the existing lit-

erature [67, 51], they are natural representations of the biochemical reactions available in

studying metabolism. In a metabolic network, nodes i and j represent metabolites and

two nodes are linked if they participate in some biochemical reactions where i is substrate

(product) and j is product (substrate). The advantage of the network representation mainly

lies on the global view of complex metabolic systems, and the ease of studying mesoscopic

properties and organization of networks. There are two issues concerning the construction

process:

1. Reversibility information of biochemical reactions: In the BiGG database if a

reaction is reversible, then nodes are connected by bidirectional edges; other-

wise nodes are linked with unidirectional edges.

2. Topological reductions of a metabolic network: In order to enhance the struc-

tural compactness in multi-scale modularity analysis, we implemented the

process described in [187, 134, 166]. We excluded the following 15 common

metabolites, i.e., cofactors: ATP, ADP, AMP, NAD, NADH, NADP, NADPH,

NH3, CoA, O2, CO2, Orthophosphate, Glutamate, Pyrophosphate, and H.

To make sure that the constructed networks are not defragmented, we checked

connected components of networks before and after the removal of metabolites,

and only 3 nodes in total became isolated after the removal. The overall con-
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nectivity of the constructed networks is therefore not substantially affected. To

obtain organism specific metabolic networks, we first find genes that encode en-

zymes in that organism (enzyme-gene network and enzyme-reaction network);

then, two binary matrices corresponding to enzyme-gene and enzyme-reaction

networks are multiplied to get the organism specific network [98].

3.2.2 Dynamic multi-scale modularity profiling

Compared with other views of graph clustering such as Normalized Cut [151], this formula-

tion of community detection allows probabilistic and dynamic interpretations [139, 36, 31].

The transition matrix P of random walks can be computed by P = D−1A, where A is the

adjacency matrix of the network with Aij = 1; if there is an edge between nodes i and j,

i, j ∈ V , 0 otherwise, and diagonal matrix D = diag(di), with 1 ≤ i ≤ |V | and di =
∑

j Aij

denoting the degree of node i ∈ V . The probability of arriving at node j after t steps p
(t)
ij

can be obtained by:

p
(t)
ij = (P t)ij (3.1)

It is easy to show that the stationary distribution πi of the Markov chain for the undirected

network when t →∞ is di

/∑
i∈V di, satisfies the condition πP = π.

Traditionally, the modularity Q of a network can be seen as a quality measure [116, 51]

that takes the form: Q =
∑

ij (Cintra − Cexp), where i, j ∈ V , Cintra is the fraction of

intra-community links and Cexp is the expected fraction of intra-community links. The

computation of expected weights relies on the choice of the null model through which the

graph dynamics, e.g., normalized Laplacian dynamics ∂pi

∂t
=

∑
j

1
dj

Aijpj − pi over Eq.(3.1)

can be used. The stationary distribution or steady state of the normalized Laplacian dy-

namics is given by p∗i = di

/∑
i∈V di. The dynamic view of modularity offers many useful

insights in interpreting the connection between theoretic processes and network topologi-

cal information [139, 31, 113]. Assuming that random walkers start from a steady state in
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undirected networks, the null model can be derived as the likelihood of two independent

random walkers remaining in the same community after time t. The modularity is then

defined as: Q = 1
2m

∑
ij

(
Aij − p∗i p

∗
j

)
. The problem with this modularity maximization is that

it is subject to a resolution limit, meaning that it is possible that some small communities

cannot be found by optimizing the above equation [42]. This calls for the attention to the

fact that simply optimizing Q may lead to incomplete community structures. For this reason

the control of resolution in finding communities interplays with many features of modularity

analysis [36]. Taking the control of resolution into account, modularity can be written as:

Q =
1

2m

∑
ij

(
Aij − γp∗i p

∗
j

)
, (3.2)

where γ is the resolution parameter [113]. Eq. 3.2 is a combinatorial view for choosing

different ways of membership assignments to optimize the modularity. In other words, we

are seeking the best way to assign community membership to nodes in the network in order

to achieve the highest Q measure, and such search is often based on some heuristic. The

second term γp∗i p
∗
j in Eq. 3.2 refers to the expected fraction of intra-community links; by

varying the parameter γ the expected fraction is re-weighted hence changing the overall

modularity measure (Q). One recent interpretation for scales of modularity, is inverse time

(γ ∝ 1
t
) relating to the stability of communities structures [85, 31].

For fast community detection, we adopted the Louvain method which is a heuristic

based approach for finding communities structures [16]. The Louvain method involves the

calculation of change in modularity,4Q, in searching for the best improvement of modularity

in each iteration. Since we constructed directed metabolic networks, we derived 4Q for

directed networks using the Louvain method.

3.2.3 Network motifs as evolutionary units

The significance of a network motif i is measured by the z-score:

Zi =
Nreali− < Nrandi >

std(Nrandi)
,
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where Nreali is the count of the occurrences of subgraph i in the network; < Nrandi > and

std(Nrandi) are the mean and the standard deviation of the number of times subgraph i

occurs in randomly generated networks, respectively. There were disputes about the origin

of motifs in networks, i.e., whether they arise due to functional reasons or topological in-

formation [66, 82, 81]. We think that motifs need to be calibrated within the community

context. Therefore, our contribution is different from the recent works described in [163, 49].

For fast motif detection and detailed statistics, we used the FANMOD package [174].

3.3 Results

In this section, we discuss the relationship between multi-scale community profiles and motif

distributional effect. In this chapter, we only study 3-node and 4-node motifs found by the

FANMOD software (i.e., connected subgraphs of size 3 and 4).

3.3.1 Motifs tend to distribute synchronously regardless of directionality

We first investigate the interplay between network directionality and multi-scalability of

community structures because the direction of edges in networks affects community detection

in computational methods. In particular, null models are different for directed and undirected

networks in computing the modularity measure (Q) in the Markov process [85, 113]. To do

this, we first collect motifs in the directed networks while optimizing the modularity with

different scales (γs). We then repeat the process with directed networks but by ignoring the

direction of edges (by treating the directed edges as undirected edges and by eliminating

redundant links. For example, the directed edges A → B and A ← B are replaced by an

undirected edge A–B) when optimizing Q using the null model associated with undirected

networks. To collect network motifs, we first apply a motif detection algorithm to discover all

motifs in the network, then we run the community detection algorithm with various values

of the resolution parameter (γ) to produce a set of community profiles, each corresponds to
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a different value of γ. For each community formation Pγ induced by the parameter γ, we

count the total number of motifs belonging to individual communities of Pγ . We say a motif

m belongs to a community C if and only if all the nodes of m belong to C.

Figure 3.2: Motif distributional effect. Mean z−score for the total number of motifs with
increasing resolutions parameter (γ), grouped by motif category (top), organism (middle)
and directionality (bottom)

Here we aim to check how the directionality of motifs (regardless of motif types) as a

factor affects the distribution of motifs in different community profiles. In Figure 3.2 , we

show the mean z-score of the total number of 3-node and 4-node motifs with increasing γ.

As γ increases, generally we expect the number of motifs to drop monotonically because the
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number of communities increases with increasing scale (γ), resulting in more motifs getting

cut. Figure 3.2 shows that the total number of directed and undirected 3-node and 4-node

motifs decreases with similar patterns. This suggests that directionality plays a minor role in

motif distributional effect. We note that in Figure 3.2 (top) the mean z -score of the 3-node

motifs decreases faster than the 4-node motifs when the resolution parameter is below 0.3;

however, this is reversed when the resolution parameter is between 0.3 and 1.7.

We then check to what extent different motif occurrences are over or less represented

in different network partitions. In other words, communities in different partitions form

the background and network motifs are entities of interest in the presence of such back-

ground [190]. In a sense, the motif occurrences are decided at the class level, which is the

level of magnitude of the z -scores (similar to quantifying the degree to which a subset of

genes out of the background set are reverent to different biological processes). Suppose we

have M motifs in the metabolic network of organism o, and assume N out of the M motifs

have been observed in the counting process as described above, Ms of the M motifs are

significant in terms of the z -score (i.e., z -score exceeds the predefined threshold), and Ns of

the N motifs are significant in terms of the z -score. We computed the p-value to quantify

the statistical significance of motifs, which is a probability of at least Ns motifs have z -score

above threshold, if we were to select Ms motifs at random in the metabolic network. The

p-value is given by:

po(Ms, Ns,M, N) =
∑

Ns≤x≤min{Ms,N}

(
N
x

) (
M−N
Ms−x

)

(
M
N

)

where
(

a
b

)
is the binomial coefficient. We observed subtle p-value differences. This indicates

that the enrichment effect of motifs under different partitions is slightly different but not

exactly the same. For example, with γ = 2.3, the p-values for the S. cerevisiae and the E. coli

metabolic networks are ≤ 0.0001, whereas the p-value is 0.0002 (z-score threshold is set to

|z| > 3, Bonferroni correction applied) for the H. sapiens metabolic network with the same

γ.Interestingly, this finding is counter-intuitive compared with Figure 3.2 (middle) where the
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z-score for the number of motifs decreases monotonically for all organisms. The results lead

to an interpretation that different community formations endorse different network motifs.

In other words, motif significance is contextualized by the scale of community structures

provided that two algorithms (community detection and motif finding) are independent.

This interpretation offers an alternative evidence on the role of motifs that is different from

those which argue that motifs arise solely based on the topology of networks [66, 81, 82]. As

the occurrences of motifs in different community profiles show (Figure 3.2 ), it is suggested

that only a proportion of significant motifs (based on the z-score) arise from the network

topology; for others to play functional roles, they need to be considered in communities with

certain resolution.

Another observation is that the occurrences of directed motifs tend to juxtapose with

the occurrences of undirected motifs (Figure 3.2 (bottom)). This suggests that community

profiling is robust against motif occurrences in general. With the view that motifs are

favorably chosen by communities, the directionality of metabolic networks is nevertheless

irrelevant in “hosting” different network motifs. Although the number of motifs tends to be

larger in undirected networks, which attributes to topological properties (types of directed

motifs is larger than undirected motifs), their distribution patterns are similar. As a result,

considering one type of networks, either directed or undirected, suffices for analyzing motif

occurrences in subsequent sections.

Comparison with random networks

We performed the simulation study to check how likely are motifs to be generated, given

a certain partition. Given a metabolic network, we first obtain the community profile with

a resolution parameter; we then generate degree-distribution-preserving random networks

for each community in the partition. Treating communities as subnetworks, we simulate

the global random network by preserving degree distributions of individual subnetworks.

We observed that as community profiles are coarsened and individual communities become
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relatively dense, motifs are found to have different significance values (some of them are no

longer significant from the motif finding algorithm). For example, for motif 238 in the yeast

metabolic network, the z -score decreases from 51.47 to 19.89 (resolution = 2.5) and to 22.99

(resolution = 3.0), whereas for motif 102, the z -score decreases from 5.57 to 3.43 (resolution

= 2.5) and 4.5 (resolution = 3.0). This suggests that motifs are likely explained by different

network partitions.

Reversely, given that we have a number of motifs, we create random networks that

approximate this particular profile of motifs and compare the average modularity value with

the original network. We first start with the same number of different motifs in the original

network, and randomly connect the nodes of motifs with random directions so that the total

degree distribution approximates the original network. This process was repeated 10 times for

each resolution parameter. We observed that the average modularity generally deceases when

the resolution parameter increases for the simulated random networks. For example, for the

yeast metabolic network, the average modularity value was 0.41 (resolution parameter = 2.0)

compared to 0.56 in the original network, whereas with resolution parameter 2.5 the average

modularity value was 0.39 compared to 0.54 in the original network. This again suggests the

cause-and-effect relationship between network partitions and motif distributions.

3.3.2 Communities enriched with most motifs show homogeneity across scales

In light of the above lessons, we assume that motifs drive evolving networks, perhaps not

globally but locally. We then raise the question: to what degree do motifs drive network

partitions? Communities at different resolutions can be interpreted as the primary orga-

nization principle of metabolic networks, whereas motifs can be regarded as the secondary

organization principle that depends on network partitions. Here we define intra- and inter-

community motifs as follows: intra-community motifs are subgraphs where all edges oc-

cur within a community, and inter-community motifs are subgraphs with edges straddling

different communities.
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Figure 3.3: Motif enrichment effect. The relationship between the number of communi-
ties in different partitions and the occupancy ratio (in terms of largest communities across
partitions) q for 3-node and 4-node motifs in the directed networks of the three organisms

To answer the aforementioned question, we analyzed the relationship between the com-

munity profiles and the number of occurrences of 3-node or 4-node motifs in one single

community under the given resolution. For 3-node motifs we define

q3 =
number of 3-node motifs in the largest community in a partition

total number of 3-node motifs in the network

; q4 can be defined similarly for 4-node motifs. The q ratio can be interpreted as the rate

of occupancy of 3-node/4-node motifs in the largest community of a network partition. The

ratio ranges from 0 to 1, with 0 being the situation where motifs are not found in the
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community structure induced by γ, and for 1 motifs are all found in a community with the

same resolution. Figure 3.3 shows that under different community structures 4-node motifs

have the higher occupancy rate than 3-node motifs in three organisms. Since the q-ratio

measures the proportion of occurrences of 3-node/4-node motifs in the largest communities of

different partitions, their decreasing patterns against the number of communities reflect that

the occurrences of network motifs are related to modular structures for varying resolution

parameters. This observation consequently mirrors the fact that subsets of metabolites

participating in various chemical reactions and regulating cellular activities tend to self-

organize in community structures.

We also notice that individual distributions of 3-node and 4-node motifs are distinct in

the three organisms. For example, in the S. cerevisiae network there is a sudden drop at

s ≈ 40, and the same effect is observed in the E. coli network around s ≈ 60. With relatively

coarsened communities in S. cerevisiae and E. coli, the the q ratio reveals a pattern of a

steady increase followed by a sharp descend at s ≈ 48 and s ≈ 61, respectively. However,

this pattern is not observed in the H. sapiens network, possibly due to the higher complexity

of mammalian cellular mechanisms and relatively incomplete collection of ORFs.

3.3.3 Type-specificity of motifs reveals different distributional patterns

We now turn to type-specific motifs and study their distributional effect in communities

across scales, and here we focus on 3-node motifs. We categorized 3-node motifs by their

z-scores [109, 49, 163] into motifs (where z-score > 0), and anti-motifs (where z-score < 0,

Figure 3.4 (A & B)).

We observed that both motifs and anti-motifs occur in communities from different parti-

tions as seen from Figure 3.4 (C & D). In order to check how motifs and anti-motifs occur in

different community profiles (i.e., with different resolution parameters), we plotted the num-

ber of occurrences of motifs and anti-motifs by considering all community profiles (γ ranges

from 0.1 to 3). We excluded communities with less than 20 nodes. From Figure 3.4 (C)
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Figure 3.4: Motif significance in communities. A) z-scores (z) of motifs (z > 0) and
anti-motifs (z < 0) in the directed S. cerevisiae network. B) Motif and Anti-motif graphs
and their IDs. C) Distribution of motifs in boxplots for the directed S. cerevisiae network.
D) Distribution of anti-motifs in boxplots for the directed S. cerevisiae network. The y-axis
refers to the total number of communities a motif belongs to
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& (D), we have observed that motifs tend to occur less than anti-motifs across community

profiles, and the distribution does not correlate with the z -score. For example, motif 14 has

z -score 2.03, but occurs in more communities (when varying the resolution parameters) than

that of motif 238 with substantially higher z -score (= 51.47, Figure 3.4 (A, C & D)).

To investigate type-specific distribution of motifs across different network partitions, we

have used the two-sided χ2 test with the null hypothesis H0 stated as: motifs of different types

are similarly distributed, i.e., similar statistical proportions in different network partitions.

We observed that both anti-motifs and motifs give two-sided p-value < 0.0001 on average,

with the exception of relatively small or large γ’s. This suggests that both under and

over-fragmentation (p = 0.002, γ ≤ 0.6 and 0.0013, γ ≥ 2.5, respectively) results in the

disappearances of the distribution pattern of significant motifs.

3.3.4 Compartmentalized view and multi-scalability

Given a metabolic network, it is interesting to know which metabolites belong to which

compartments because compartments of metabolites give rise to a physical partition of

the network. We have used the compartmentalized data of metabolites from the BiGG

database [146]. For example, for the Homo sapiens Recon 1 data set, there are eight com-

partments: Peroxisome, Extraorganism, Golgi Apparatus, Cytosol, Nucleus, Endoplasmic

Reticulum (ER), Mitochondria, and Lysosome. We manually partitioned the reconstructed

network with each of the compartments as one community, therefore, creating a physical

partition of the metabolites, denoted as Pc. Pc can be seen as the reference community

formation that corresponds to the physical metabolic organization in the cells. In the case

that metabolite i belongs to several compartments, we simply assign i to the community

(compartment) to which it has the largest number of links.

A natural question is: How does the physical compartmentalization of metabolites com-

pare with the multi-scale community structures? To answer this, we compare Pc with other

community formations induced by γ, 0.1 ≤ γ ≤ 3 using variation of information (V I) [106],
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Figure 3.5: Comparing partitions with different scales. Normalized variation of information
for both directed and undirected networks of the three organisms

which is shown to be a true metric in comparing partitions. The normalized V I can be

written as

V Inorm(Pγ, Pc) =
H(Pγ|Pc) + H(Pc|Pγ)

log N

, where H(Pγ|Pc) is the conditional entropy associated with the partition with resolution

parameter γ for the given the physical partition, N is the total number of nodes in the

network, and V Inorm(Pγ, Pc) ranges from 0 to 1: the smaller the value of V Inorm, the more

agreement exists between Pγ and Pc.

Figure 3.5 shows that as the scale increases, V Inorm for both directed and undirected

metabolic networks increases logarithmically, which means that coarsened community pro-

files render greater uncertainty in terms of information theoretic measures in general; as the

Markov time approaches infinity, the community formation gets closer to the compartmen-

talized view of metabolic networks. It is argued by Delvenne et al. that the stability of

community structures increases when the Markov time approaches infinity, and this conclu-

sion coincides with the observation from Figure 3.5: more stable community structures give
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less uncertainty compared with the compartmentalized view of metabolic networks, which

in turn are enriched with more motifs (Figure 3.2) [31].

This fact suggests that functional cartographies provided by particular network partitions

cannot guarantee to comprehensively depict physical metabolite organizations. Therefore,

control of the resolution is needed for the analysis of metabolic networks in general. Taken

together with the motifs distributional effect previously discussed, the variation of partitions

justifies why different motifs as superfamilies of evolved networks are presented more or less

in communities across different partitions, as motifs exist in community contexts which are

more or less sensitive to the variation of information.

3.3.5 Quantifying the context-dependency of motifs in multiple scales

Figure 3.6: Motif influence probability. The probability plot of motif influences with multiple
scales using the average and merge method for the S. cerevisiae metabolic network. The red
dashed reference line is for judging whether the data follows a normal distribution

Given patterns of motif distribution in a community structure, we seek a measure to

quantify the influence of motifs in community context. There are several terminologies in

characterizing similar measures such as participation coefficient of nodes within a community
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structure [51], social influence of actors in social networks [77] and disconnectedness index [49]

for groups of nodes. Here, we discuss two methods to quantify the context-dependency of

motifs based on participation coefficients [51].

1. Average method: We average the participation coefficients of participating

nodes to represent the influence of motifs. Formally, suppose we have a

motif instance Mi = (Vi, Ei), with participating vertices {v1
i , v

2
i , ..., v

k
i } ⊂

Vi, the influence of motifs in a community structure is defined as: ℘avg =

(Pv1
i
+ Pv2

i
+, ..., +Pvk

i
)
/
k, where Pv1

i
is the participation coefficient of node v1

i ,

defined as Pvi
= 1 −

k∑
c=1

(
lic
li

)2

, where lic is the total degree of node i to all

nodes in community c and li is the total degree of node i [51].

2. Merge method: We view a motif as a single node in metabolic networks while

preserving all links of participating vertices, that is, we replace {v1
i , v

2
i , ..., v

k
i }

by a new node vnew
i and all participating edges of the motif are made incident

to vnew
i . The participation value of the motif is defined as: ℘merge = Pvnew

i
,

where Pvnew
i

is the participation coefficient as defined in the average method.

In the merge method, when two motifs share a node, we make two separate

new nodes to represent each motif and link them by an edge.

The average method takes the inter-connectivity of participating vertices of motifs into con-

sideration, whereas the merge method totally ignores it. Figure 3.6 shows the influence of

motifs in the S. cerevisiae network. The merge method gives a higher probability of mo-

tifs in general (maximum ∼ 0.96 for ℘merge). In contrast, the average method gives the

highest probability of ∼ 0.79 for ℘avg. This indicates that the inter-connectivity patterns of

motifs within their corresponding communities affect the magnitude of participation coeffi-

cients overall. This suggests that the directionality between participating nodes of motifs is

topologically important. From Figure 3.6, there is a noticeable set of motifs having lower

participation probability in both methods (below ∼ 0.05), indicating that some participating
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Figure 3.7: Links between community and function. Top: relationship between the percent-
age of genes in the KEGG pathway and different community formations. Bottom: standard
deviation of the percentages of genes in the KEGG pathway with different community for-
mations. CMP: compartmentalized partition

metabolites have substantially lower individual participation coefficients than others. How-

ever, low participation does not imply the same magnitude of functional significance of motifs

as some biochemical compounds function to maintain cellular activity at low levels, such as

Glucose with different biosynthesis rates and its transporter in nucleotide biosynthesis [70].

3.3.6 Linking communities with biological functions

In order to link communities with functions, we quantified the connection between commu-

nities at different network partitions with gene function overlaps using the tool DAVID [61]
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(http://david.abcc.ncifcrf.gov/). DAVID performs functional annotation of genes, en-

richment analysis, and gene functional classification. For each organism, we chose five largest

communities with five different resolutions (with γ = 0.5, 1, 1.5, 2.5 and the compartmental-

ized formation), and we summarized the degree of overlapping between genes in individual

communities and in the KEGG pathways (Figure 3.7 (top & bottom)).

It is interesting to observe that the compartmentalized partition of the S. cerevisiae

metabolic network gives the highest standard deviation and wider range of pathway overlap-

ping compared with the other two organisms. At different community partitions, the degree

of community-function overlapping is organism-specific, for example, E. coli shows higher

degree of overlapping across partitions, however, the over-fragmentation (γ = 2.5) for H.

sapiens causes more scattered overlapping than that of others (Figure 3.7 (top)). In general

at moderate γ’s, the functional overlapping tends to vary less (Figure 3.7 (bottom)).

3.4 Chapter Discussion and Conclusions

We observed that 8 out of 10 motifs with the highest ℘avg are feed-forward loops (FFL) in

the E. coli metabolic network. The metabolites that appear most in FFLs are Glycerol 3-

phosphate, bicarbonate, hexadecanoate and 2-Acyl-sn-glycero-3-phosphoethanolamine. These

metabolites take part in important functions such as fatty acid biosynthesis, central metabolism,

amino acid metabolism, nucleotide metabolism and lipopolysaccharide biosynthesis. The

other two motifs with the highest ℘avg are like single input modules (SIM) without autoreg-

ulation. Though the network motifs for H. sapiens are similar to that of E. coli, with the

FFLs being the largest in count, a new one which is like a FFL without the effect of the input

on output is also observed. The most frequently occurred metabolites are chondroitin sulfate

E, acyl carrier protein, N-Acetyl-D-galactosamine, Malonyl coenzyme A and Propionyl coen-

zyme A. These appear in glycan, lipid, carbohydrate, and amino acid metabolism of human.

The network motifs in the S. cerevisiae metabolic network are similar to H. sapiens, but on
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the contrary to others, FFLs are not the largest in number. The most frequently appearing

metabolites are water, malonyl coenzyme A, octanoyl-CoA, bicarbonate, deodecanoate and

dodecanoyl-CoA. The functions these metabolites take part in are relatively less diverse,

with mostly lipid and amino acid metabolism.

As the network structure has become a popular means to model complex relationships

in biological systems (examples include genome-wide co-expression studies, gene regulatory

networks, and protein-protein interaction networks etc.), modular structure is deemed im-

portant organization principles. Recent developments in complex graph clustering methods

have implicated the practical applications with biological networks in different settings. In

this chapter, we focused on multiple network partitions induced by different resolutions and

performed comprehensive analysis to examine the relationship between multi-scale modular-

ity and motif distributional effect in the metabolic networks using three model organisms.

We observed several interesting patterns involving the effect of directionality of network in

distributing 3-node and 4-node motifs, homogeneity of motif-enriched communities, and mo-

tif type-specific distribution across various partitions. We also provided a general method

to quantify the community context of motifs. Overall, our work suggests that network par-

titions are tightly connected to motif distributional effect, and this added to the line of

evidence that both modularity and network motifs could potentially evolve from modularly

varying environments.

62



Chapter 4

MCF: a tool to find multi-scale community profiles in

biological networks

1 We present a tool to find community structures of different types of networks. Multi-

scale Community Finder (MCF) is a tool to profile network communities (i.e., clusters of

nodes) with the control of community sizes. The controlling parameter is referred to as

the scale of the network community profile. MCF is able to find communities in all major

types of networks including directed, signed, bipartite, and multi-slice networks. The fast

computation promotes the practicability of the tool for large-scaled analysis (e.g., protein-

protein interaction and gene co-expression networks).

4.1 Introduction

A network has become a popular means to model complex relationships in biological sys-

tems. Examples include genome-wide co-expression studies, gene regulatory networks, and

protein-protein interaction networks, etc [11, 120, 107, 158, 172]. Often, these networks re-

quire clustering analysis, in which groups of densely connected nodes are identified (see [41]

for a detailed review). In fact, modular structure is deemed important characteristic in bio-

logical networks [138, 142]. Unlike traditional clustering methods, communities (i.e., clusters)

in network representation are subject to resolution limit, which means some smaller com-

munities cannot be detected by simply optimizing the modularity measure [41]. This may

cause inaccurate or misleading functional annotations of groups of nodes based on modular

1The content of this chapter is based on the following article:
Gao, S., Chen, A., Rahmani, A., Jarada, T., Alhajj, R., Demetrick, D., & Zeng, J. (2013). MCF: A tool to

find multi-scale community profiles in biological networks. Computer methods and programs in biomedicine,
112 (3), 665-672.
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structures of networks. Considering this, statistical methods were developed to deal with

multi-scale community profiles [85, 5, 113] in complex networks. In particular, Mucha et

al. proposed a systemic approach to unfold multi-scale multiplex community structures.

In multiplex networks that involve multiple time or context dependent networks slices, the

same controlling parameter (referred to as the scale of the community profile) in single-slice

networks is generalized to multi-slice networks [113]. Such advance in community detection

is useful in studying many biological problems, including the study of time-coursed data and

integrative network analysis of high-throughput data [89], as well as social networks [122].

Despite the static view of multi-scaled community profiles in controlling community sizes,

recent interpretation of the scale parameter as inverse time in the random walk process can

be regarded as a factor that impacts the stability of community structures across partitions,

i.e., time intervals for certain communities to emerge or disappear [31, 85, 139]. This view-

point provides many theoretical properties of graph clustering dynamics based on statistical

mechanics [135]. Taken together, a tool that extends traditional graph clustering methods

to allow the multi-scale capability is needed.

Existing tools for finding network communities (a.k.a., graph clusters) such as ‘jClust’ [127]

and ‘GLay’ [155] only implement graph clustering methods without consideration of multiple

scales. ‘igraph’ includes a primary version multi-scale community detection method for only

undirected networks [25]. To cover the gap and satisfy the need, we developed a fast tool,

Multi-scale Community Finder (MCF), based on modularity improvement heuristic in find-

ing multi-scale community structures in all major types of networks, including (un)directed,

signed, bipartite, multi-slice networks, etc. We implemented two different methods for con-

trolling scales of networks from recent studies.
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Figure 4.1: Illustration of the Louvain method, colored regions represent communities

4.2 Methods and Implementation

4.2.1 The Louvain Method

MCF is based on the existent ‘Louvain’ method [16], which is a heuristic based approached

based on the improvement of modularity measure in each iteration. Louvain method begins

by considering each node being in its own group, and then the method moves nodes to the

neighboring groups that give the most increase in modularity. The second stage generates a

new network by aggregating the nodes in the groups into one node, and combining the links.

These two steps are repeated until the modularity score stops increasing; the modularity

score provides information on the strength of the groupings produced based on the structure

of the network (Figure 4.1).

The main advantage of the Louvain method is the fast computation time. We chose

the “Louvain” method mainly to efficiently deal with large-scaled analysis of biological net-

works, e.g., the gene co-expression networks that may contain thousands of links and the

rapidly growing protein interaction data. We compared the computational time with New-

man method [116], detailed in Table 4.1. We observed that when dealing with large networks,

MCF tends to find communities faster than Newman method.

MCF can take both single-sliced and multi-sliced networks as input. In both cases, we

extend the ‘Louvain’ method to adapt for different types of networks by deriving modularity
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Table 4.1: Comparison of MCF with Newman method, computational time is measured in
seconds

No. of nodes No. of links MCF(sec) Newman(sec)

10 20 2.34 2.3
100 952 2.54 2.56
1000 9610 3.53 4.1
10000 96028 26.26 30.2
100000 1048435 7024.18 8182.32

update computations (see the Appendix 2 for details), since each network type has its own

physical properties in computing modularity measure. For example, we incorporated two

methods to find communities in bipartite networks in MCF.

4.2.2 Multi-slice Modularity

The multi-slice network community detection implementation is based on the recent method

described in [113]. In multiplex networks, each network slice is subject to a scale parameter,

and users are expected to provide link strength of node i between slice s and slice r, assuming

there is some evidence of evolutionary connection of node replica in different slices. This

external link can be derived in different manner, depending on applications or can be simply

set to constant value as demonstrated in [113]. For example, when examining time-series

data, each protein functional class known a priori can be artificially set to have one inter-slice

strength.

To deal with multi-scaled computations, we implemented two methods, which are shown

to be equivalent in theory. In Arenas et al.’s method, the adjacency matrix is modified by

adding weights to diagonal entries [5], so the method requires the weight as an additional

input. In Lambiotte et al.’s method, the scale parameter is needed to control community

scales [85]. Arenas et al.’s method requires priori examination of the adjacency matrix, which

may be difficult for users to accomplish. We have included tutorial files along with sample

data sets for MCF in the project website (Figure 4.2, see http://bsdxd.cpsc.ucalgary.
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Figure 4.2: MCF for multi-slice networks. Single-sliced networks of different types are similar
under single-slice tab

ca/MCF).

Finally, it is worth noting that MCF is not intended for comprehensive community de-

tection like ‘jClust’ and ‘GLay’. Rather it is specialized for multi-scaled community finding

using a fast and robust heuristic method for large graph data analysis.

Overall, MCF is a novel tool which implements an efficient method to find communities

in all major types of networks. The tool is useful for large-scale network analysis in finding

communities with controlled sizes.
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Chapter 5

Quantifying gene co-expression heterogeneity in cancer

towards efficient network biomarker design

1

We study cancer heterogeneity using breast cancer data. It is well known that cancer is a

highly heterogeneous disease, and the predictive capability of targeted gene signature approach

suffers from the inter-tumor heterogeneity. Here we propose a framework to quantify the

molecular heterogeneity of tumors from gene-gene relational perspective using co-expression

networks and interactome data. We believe that to understand individualized gene behavior

across patients, relational status of genes needs to be considered because complex disease phe-

notype is often caused by cascaded failures of genetic interactions in cancer cells. We quantify

gene-gene relational heterogeneity from a benchmark dataset using co-expression networks in-

ferred from microarray data, and show that genes related to breast cancer metastasis can be

stratified to different classes based on their relational status obtained from pairwise compar-

isons of co-expression networks. Further we use the relational heterogeneity information to

predict patient survival and found that relationally heterogeneous gene set is less predictive

than relatively conserved cancer genes and weekly co-expressed genes in terms of metastasis.

We explore heterogenous gene sets using interactome data and identified densely connected

components that are causal to inter-tumor heterogeneity, and independently validate our ap-

proach with two patient cohorts. Our results demonstrate the efficiency of using heterogeneity

information to design network-based markers.

1The content of this chapter is based on the following article:
Gao, S., Sarhan, A., Alhajj, R., Rokne, J., Demetrick, D., & Zeng, J. (2014) Quantifying gene co-expression

heterogeneity in cancer towards efficient network biomarker design. In Submission.

68



5.1 Introduction

Cancer is commonly regarded as a complex disease caused by intertwining or cascaded failures

of gene products in diversified environments. In recent years, some endeavors of understand-

ing genomic characteristics of cancer or other complex diseases focus on integrative methods

with interaction networks [11], thanks to the rapidly evolving array based technologies (to

reverse engineer gene-gene/gene-DNA networks) and protein hybridization protocols (to map

protein-protein interactions in large scale). Networks provide unique advantages in modeling

multiplex relationships between genes, proteins, and disease types etc. In fact, the notion of

‘Network Medicine’ has become a promising direction to identifying disease biomarkers and

functional modules [23, 64, 124]. In cancers, identifying pairwise disordered relationships

between genes and proteins naturally fits the goals of network modeling, that is, to study

relationships and find connection patterns between nodes in a global map. To this end, many

integrative methods using network data have been proposed to track differential regions of

network (i.e., subnetworks) predictive of disease phenotype [94]. In targeted gene-signature

strategies, many gene sets are believed to provide predictive power to cancer diagnosis and

prognosis. Chen et al. proposed to reconcile different gene sets that are poorly overlapped

using protein interaction networks [21].

In most integrative methods, a fundamental assumption is that networks reflect accurate

connectedness of data. This became a critical concern in protein interaction networks due to

different experimental protocols and noises [30]. For gene co-expression networks, where two

genes are connected if correlated, link inaccuracies mostly arise due to data heterogeneity,

given that the measuring method of co-expression level remains unchanged. Since cancer is a

highly heterogeneous disease, which means tumors may exhibit different genomic landscapes,

the task of finding a common target for disease prevention is extremely difficult and most

gene signatures found with data heterogeneity are non-robust [93]. To this end, an ensemble

of networks from the same source and a comparison mechanism for these networks are needed
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to reduce the amount of data heterogeneity.

The flood of gene expression data sets from disease patients, on the other hand, has pro-

vided many possibilities for studying gene expression patterns, such as finding differential

expressed genes between case and control samples, or genes related to metastasis for predict-

ing patient survival [170]. In most models, the relational patterns between genes are largely

overlooked in co-expression settings. In other words, the linked structure of network is not

integrated into methods to identify disease markers. This gap impedes our understanding

of disease patterns, whilst in fact diseases are caused by a compendium of disordered links

between functional units [35, 157]. Here we developed a method to quantify gene-gene re-

lational differences using co-expression networks and used such information to identify key

links and subnetworks related to disease phenotype.

The main strategy of this chapter is to compare different network replica of disease

samples from gene expression profiles and integrate the co-complexity to protein-protein

interaction (PPI) networks. The computational backbone we used is graph matching. Graph

matching can be interpreted as finding nodal correspondences between a pair of networks

and has been used in biological network settings such as aligning protein interaction networks

of different species [76, 184]. Here, pairs of networks are inferred from gene expression data

and we are to identify if gene A in one network matches gene B in the other network. By

matching, we are able to quantify differential co-complex associations between gene pairs

and to find conserved subnetworks (i.e., frequently matched regions) that are robust against

inter-tumor heterogeneity.

To exemplify and see why the matching of two networks is challenging, let us consider the

two small networks in Figure 5.1, where we have two small networks abstracted as graphs,

G and G′. G′ differs from G by having two additional edges (darkened links). G and G′ can

be seen as two gene co-expression networks inferred from a disease data set, i.e., D′ is the

replica of D. The orange lines are result of matching computation. For example, we found
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Figure 5.1: An example of comparing two networks G with nodes {A,B,C,D,E} and G′

with nodes {A′, B′, C ′, D′, E ′}. Orange dash lines represent correspondences of nodes, thick
edges in G′ represent change of connections between G and G′. In co-expression networks,
nodes represent genes and edges represent gene-gene correlations

that node C matches C ′ because their connection status in two networks are not changed

relative to unmatched nodes D and D′ (D′ has two additional edges). Note that since nodes

are connected in networks (ignore isolated nodes), altering connection status of one node

affects the rest of nodes in the network (such as A and B), but to different degree. In small

networks like G and G′ in Figure 5.1, it is easy to track the matching patterns of nodes,

however, when dealing with medium or large size networks, tracking the relational changes

of all nodes becomes a challenging task. In fact graph matching is known as a NP-hard

problem [184].

In this chapter we study gene co-expression networks in breast cancer metastasis. Breast

cancer is known to be a heterogeneous disease and tumor heterogeneity affects prognosis and

individualized treatments [130]. Therefore, accurate predictions of patient survival become

important, for example, to avoid over-treating patients with chemotherapy who would be

better off without it. We detail our objectives as follows:

1. To identify gene-gene relational differences across heterogeneous cancer sam-
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ples, and to provide a computational method to quantify the co-complexity of

expression patterns. By this, we could be able to identify heterogeneous or un-

stable biological processes and functions associated with cellular phenotypes.

2. To map genes with different relational heterogeneity to interaction networks

and to infer associated subnetworks. On the roadmap of designing and search-

ing efficient network biomarkers, these subnetworks could lead to better targets

for cancer prognosis and therapeutics.

5.2 Methods

5.2.1 Network setting and encoding graph features

Suppose we have two graphs G = (V,E) and G′ = (V ′, E ′) with same number of nodes, n,

the task is to find correspondences between node vi in G and vi′ in G′, i.e., if vi matches

vi′ . We first computed different graph features for G and G′ and assembled feature maps

by concatenating column-wise individual feature vectors, that is, f = [f1|f2|...|fk] and f ′ =

[f ′1|f ′2|...|f ′k], where k is the number of features, fi and f ′i are ith feature vectors of graph G and

G′, respectively. We used 8 graph features: node degree, clustering coefficient, within-module

degree, participation coefficient, node betweenness, subgraph centrality, average shortest

path and eccentricity [40, 51, 117]. Each row in fi and f ′i is a descriptor of nodal properties;

therefore the feature map essentially encodes important topological information of nodes in

a graph. Based on the feature map, we can derive the affinity matrix for graph matching

problem.

5.2.2 Topology matching of nodes in two networks

The matching of two graphs is represented by a permutation matrix P , with all elements

being 1’s or 0’s and an additional property that each row and column has exactly a single

1; Pii′ = 1 if node i in G (denote as vi
G) matches node i′ in G′ (denote as vi′

G′), and only
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one match is allowed for each node. Graph matching problem involves pair-wise constraints,

which means if we have two candidate matches between vi
G and vi′

G′ , vj
G and vj′

G′ the

compatibility of two simultaneous matching (i.e., the connection pattern between node i and

j in graph G, and between node i′ and j′ in graph G′ are the same or similar) is encoded in

the pair-wise affinity matrix M with dimension |E| × |E ′| by |E| × |E ′|, where |.| denote the

cardinality of a set. Finding the optimal P for graph matching is known to be a NP-hard

problem. When matching two gene networks, the problem is simplified to labeled graph

matching, in which we know the labels of the nodes (i.e., gene symbols in networks). To find

optimal matching between two networks in labeled settings, we aim to find correspondences

between nodes by using high dimensional graph features between two networks previously

described. M is computed by column-wise Euclidean distance between feature matrices f

and f ′, the permutation matrix is then computed by finding argmax(xT Mx), with x being

the indicator of clusters of nodes with pairwise matching constraints [90]. The matching

problem in the quadratic form is formulated as an eigenvalue problem and is known as

the spectral method in graph matching, which is essentially a heuristic method (by using

principle eigenvectors). When dealing with large graphs like biological networks, spectral

method is more efficient than other optimization-based methods.

5.2.3 Data preprocessing and network construction

Breast cancer data sets used were retrieved from NCBI GEO database (http://www.ncbi.

nlm.nih.gov/geo/) with the following IDs: GSE2034 (Wang data), GSE1456 (Pawitan

data), and GSE6532 (Loi data). To avoid data bias, only Affymetrix chips of the same plat-

form (HG-U133A/B) are used. Gene expression data were analyzed with MAS5.0 algorithm,

log2 transformed and then median-centered across arrays.

Gene co-expression networks have become a popular means and a system-wide proxy in

modeling complex gene-gene relationships. Here we constructed co-expression networks by

using the rank-based method [141]. Briefly, Pearson correlation coefficient is first computed

73



for gene A with all others genes, and then ranked based on the magnitude of correlation.

Ranked-based method reconstruction is shown to be more robust and accurate in large

scale co-expression networks. We used the correlation threshold 0.7 and maximal number of

neighbors (top ranked genes) 10 in our study.

5.2.4 Network data and inference

The protein interaction data is obtained from Reactome [24], KEGG [73] and IntAct databases

[78]. Network inference algorithm is based on the ‘neighboring approach’: finding linker

nodes to connect the gene set of interests by allowing different number of genes external to

the set in the protein interaction network [4]. The p-value for the significance of inferred

networks is estimated as the probability of obtaining the network with the same or larger

number of nodes from random gene sets with the same number of mapped genes (from the

gene set of interests to the reference network).

5.3 Results

5.3.1 Quantifying co-expression heterogeneity of breast cancer patients

We performed genome-wide survival screening by univariate Cox regression on Wang data

set [170] with total 286 patients, among which 93 tumors metastasized during follow-up

visits within 5 years of surgery therefore were categorized as ‘metastatic’ and 183 tumors

showed no evidence of distant-metastasis and were categorized as ‘non-metastatic’ in the

experiment. 10 patients were censored at the last follow-up. We obtained 1102 probes

related to patient survival (p-value < 0.05) and we added 324 genes known related to breast

cancer from Network of Cancer Genes 3.0 (NCG) database (which maps to 468 probe sets)

[29]. We stratified patients by Estrogen receptor (ER) status, and then constructed the rank-

based gene co-expression networks on 1000 bootstrapped samples with genes from survival

screening and NCG with duplicated probes removed. We represented genes at the probe
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Figure 5.2: Hierarchical clustering results of 1000 pairwise co-expression network matching
using city block distance. For each pairwise network matching, a gene is assigned value 1 if
matched, 0 if unmatched and -1 if genes are isolated in either network

level in co-expression networks in order to infer more accurate relational status.

Figure 5.2 shows three distinctive clusters for genes in pairwise co-expression network

matching, corresponding to different relational heterogeneity levels. We obtained three gene

classes based on this information: Co-expression Conserved Genes (CCGs), Co-expression

Heterogeneous Genes (CHGs) and Isolated Genes (IGs), containing 49, 55 and 24 genes,

respectively. We summarized matching results for each cluster in Table 5.1, which shows

that genes in each cluster do not exhibit monotonic behavior, i.e., they could be matched,
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Table 5.1: Summary for average number of matched, mismatched and isolated genes in each
gene cluster based on 1000 pairwise matching of co-expression networks for ER+ patients.
The maximal number for each gene cluster is bolded

Avg. Matched Avg. Mismatched Avg. Isolated

CCG 830 119 51
CHG 271 656 73
IG 245 125 630

mismatched or isolated in different pairs of co-expression networks. These results suggest

that:

1. Relational gene expression patterns of breast cancer patients are highly het-

erogeneous. Therefore, co-complexity information is an important factor that

may improve the predictive power of patient survival.

2. Modular patterns of gene networks (or gene clusters in general) obtained by

simply applying graph clustering algorithms are non-robust in developing can-

cer biomarkers because of the inter-tumor heterogeneity of gene-gene asso-

ciations (Table 5.1), an added line of evidence from Li et al. who showed

that most gene signatures from ‘one-step clustering process’ are non-robust in

predicting patient survival [93].

5.3.2 Heterogeneous gene sets are predictive of patient survival

To show that gene classes based on relational heterogeneity level, CCG, CHG and IG, have

impact on the prediction of patient survival, we define the Relational Heterogeneity Score

(RHS)for each patient as follows:

RHSCHG =
∑|CHG|

i=1
IERwixi +

∑|CHG|
i=1

(1− IER)wixi

where |CHG| is the number of genes in CHG, IER is 1 if the tumor is ER positive as measured

in the original experiment, wi is the Cox’s regression coefficient in the survival screening for
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the corresponding probe i with expression value xi on a log2 scale. RHS for CCG and IG

can be defined similarly. RHS essentially measures the level of heterogeneity of patients for

genes that are found to be relationally different in co-expression networks.

We first calculate RHSCHG, RHSCCG, andRHSIG individually for each patient and then

apply logistic regression to predict distant metastasis of tumors; it is interesting to observe

that CCG and IG are more predictive in the regression model (with coefficients 0.40 and

0.48, p-values 0.0447 and 0.0001, respectively) than CHG. This suggests that although being

relationally heterogeneous in co-expression networks, genes that are more relationally con-

served in breast cancer are more predictive of disease outcome. These genes are interpreted

as ‘all-time’ genes whose change of interaction dynamics is crucial in breast cancer prognosis.

In addition to CCG being predictive of metastasis, we surprisingly find that IG has similar

predictive power; however, IGs are more probable (> 60%) to be isolated in co-expression

networks (Table 5.1) therefore are not expected to affect functional interactions. Here we

provide two explanations:

1. Co-expression data is not entirely the casual factor for breast cancer metas-

tasis. Interaction dynamics at the protein network level could be more pre-

dictive in a sense to account for inter-tumor heterogeneity, i.e., genes that are

subject to various physical interactions or associations (rather than statically

co-expressed in reverse engineerings view) must be considered and PPI data

needs to be integrated into the prediction model in search of network markers.

2. 2. In the ensemble of co-expression networks, we imposed strong correlation

threshold (> 0.7) and considered at most 10 correlated partners for each gene.

Therefore, IGs are obtained in a strong correlation setting. The apparent

predictability of IG for patient survival suggests that weakly co-expressed genes

or transient interacting proteins are crucial ‘stabilizers’ to the disease [30].

Since a gene can possibly be matched, mismatched or isolated in the ensemble of pairwise
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Table 5.2: Classification table for combined and non-combined CCG, CHG, and IG for ER+
patients in the logistic regression model. Combined statistics are in parenthesis

Actual group Metastatic
or not

Predicted group
Metastatic or not

Percent correct %

No Yes
No 112(109) 17(20) 86.82(84.50)
Yes 33(38) 47(42) 58.75(52.50)
Percent of cases correctly
classified

76.08(72.25)

matching, we test if the combined gene class, i.e., the union of CCG, CHG, and IG, provide

better classification performance than that of individual gene classes in the regression model

(Table 5.2), with combined RHS defined as the sum of RHSCHG, RHSCCG, andRHSIG. We

observed that the combined gene class gives an impaired classification performance in general

for both metastatic and non-metastatic patients (area under the ROC curve, AUC = 0.756,

95% CI 0.692-0.813) compared with individual gene classes (AUC = 0.780, 95% CI 0.718-

0.835). When we combined only CCG and IG, we found that the classification accuracy

slightly dropped in each patient group with total percent of cases correctly classified 73.68%

(AUC = 0.779, 95% CI 0.716-0.833). This in turn suggests that CHG may play a role to

predict cancer metastasis. The reason for CHG being less significant than CCG and IG in

terms of predictive power can be caused by the nature of relational heterogeneity: when

adding up RHS of relationally conserved genes, the magnitude of RHS reflects the level of

conserveness. In contrast, with CHG the weighted score is less predictable in terms of the

magnitude.

5.3.3 Comparison with existing gene signatures

To further explore the effect of gene-gene relational heterogeneity in predicting patient sur-

vival, we compared the performance of CCG, CHG and IG with the 76-gene signature orig-

inated from the same data set for ER+ tumors (which contains 60 genes). We divided the
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total 209 ER+ tumors into high, intermediate, and low risk groups based on the Relapse

Score (RS) of the 60-gene signature (RS60 predictor) and previously defined RHS for the

logistic regression based predictor (RHS predictor) of CCG, CHG and IG.

Table 5.3: Gene Ontology (GO) annotations of RHS classes. FDR: false discovery rate

Term p-value FDR

CCG GO:0051726-regulation of cell cycle 0.0022 0.0022
GO:0042325-regulation of phosphorylation 0.00933 13.23

IG GO:0051249-regulation of lymphocyte activation 8.63E-05 0.13
GO:0002694-regulation of leukocyte activation 1.35E-04 0.20
GO:0050865-regulation of cell activation 1.65E-04 0.25
GO:0050863-regulation of T cell activation 8.61E-04 1.28
GO:0042493-response to drug 0.004941 7.13
GO:0002684-positive regulation of immune system process 0.006468 9.23

CHG GO:0005829-cytosol 9.26E-05 0.11
GO:0005198-structural molecule activity 3.64E-06 0.00
GO:0007155-cell adhesion 8.05E-04 1.24
GO:0022610-biological adhesion 8.13E-04 1.25
GO:0005578-proteinaceous extracellular matrix 1.14E-05 0.01
GO:0031012-extracellular matrix 1.97E-05 0.02

The risk stratification for each predictor is created from simple quintiles of RS and RHS.

Figure 5.3 shows the result of the comparison between RS60 and RHS predictor. We observed

that although two predictors were derived from different approaches, the proportions of non-

metastatic and metastatic patients are comparable (left column of Figure 5.3). Kaplan-Meier

curves for tumors based on the relational heterogeneity level and risk group further support

this observation (right column of Figure 5.3). The only notable difference is patients with

low gene-gene heterogeneity profile tend to have relatively lower survival probability than

patients with low metastasis risk (orange curves, right column of Figure 5.3). This is caused

by post-processing of gene signatures: Wang et al. used ROC analysis to find the optimal

gene signature predictive of metastasis. Our aim is to view the predictor and the proximity

with others from the co-complexity perspective. In fact when performed the same analysis

the differences in survival curves are negligible (data not shown).
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Figure 5.3: Proportions of metastatic and non-metastatic patients groups and correspond-
ing Kaplan-Meier survival curves with 5 year distant metastasis as endpoint for gene-gene
heterogeneity information (RHS predictor, first row) and Wang’s 60 gene signature (RS60
predictor, second row) for ER+ tumors

5.3.4 Functional analysis of CCH, CHG and IG

From the above analysis, we see that inter-tumor heterogeneity based gene classes are pre-

dictive of patient survival, at least comparable with existing gene signatures. We performed

functional annotation of gene classes used in the RHS predictor (Table 5.3). Relationally

conserved and isolated genes (CCG and IG) related to metastasis correspond to hallmarks of

cancer (e.g., cell cycle regulation) and post-translational modification processes (e.g. phos-

phorylation). In contrast, GO terms related to relationally heterogeneous genes (CHG) are

more diversified. The heterogeneous property of the CHG genes from network matching coin-

cides with diversified functional complexity of the markers. This also provides an explanation
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for the fact that CHG alone is not as predictive as CCG and IG. Taking this observation

into account, we assume that in order to track inter-tumor heterogeneity and make efficient

cancer prognosis, the gene-gene relational heterogeneity information is subsumed under the

framework of targeted gene signature approaches. This assumption provides a challenging

opportunity to design efficient network biomarkers from the relational perspective of genomic

entities.

Figure 5.4: Subnetworks inferred using heterogeneity classes. A) CHG subnetwork with
maximum 3 linker nodes allowed. CHG genes and added nodes are colored differently. B-D)
Significant subnetworks from cross-checking with TCGA data. Black circles are genes in our
study. Color of neighboring genes reflects percentage of cases being altered in TCGA breast
cancer cases. B) IG subnetwork. C) CCG subnetwork. D) CHG subnetwork
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5.3.5 Mapping to Interactome for network markers

We further study the role of heterogeneity genes in PPI networks to identify useful markers

from the interactome data. To do this, we first map CHG, CCG and IG to PPI networks.

While there are many network inference methods for this task, we used the ‘connected

neighbor’ approach (see Methods). Here we aim to identify densely connected subnetworks

from the heterogeneity gene sets. Our working assumption is that if genes exhibit different

level (as quantified by co-expression matching) of inter-tumor heterogeneity, the connected

portion of them in PPI networks may be the hinge to depict or represent key casual disordered

interactions related to disease phenotype.

Table 5.4: Inferred Interactions from different maximal number missing genes allowed for
CCG, IG and CHG separately.

No. of Inferred Interactions
M1 M2 M3 p-value

CCG 1 2 3 < 0.1
IG - - 6 < 0.1

CHG 2 9 57 < 0.1

We vary the maximal number of missing genes (denoted as Mi for i missing genes needed)

to connect CHG, CCG and IG individually in the PPI network (Table 5.4). Only CHG class

can be extracted from PPI network (Figure 5.4. A), considerably different from CCG and

IG. This result suggests that metastatic genes that do not show co-expression inter-tumor

heterogeneity (or most of the time being isolated) tend to be separated far away in terms

of shortest paths in the PPI network and likely to act as standalone effectors in causing

cancer metastasis. Interestingly, this challenges the view that cascading behavior leads to

disease outcome. Table 5.4 shows that even though CCG and IG are predictive of patient

survival (Figure 5.3), the primary cause is not cascading interactions but the detrimental

effect in producing essential all-time proteins. We further checked the CCG, CHG and IG

with TCGA data for breast invasive carcinoma and obtained significant subnetworks with
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Figure 5.5: Top left : Kaplan-Meier survival curves for Pawitan cohort . Top right: Ka-
plan-Meier survival curves for Loi cohort. Bottom: ROC curves for CHGNET and Wang’s
60 gene signature

neighboring genes being altered most frequently across tumors, as shown in Figure 5.4. B -

D.

To test the predictability of markers based on the relational heterogeneity and network

neighbors, we performed survival analysis on two independent patient cohorts (Figure 5.5

Top left and right). We combined low risk and intermediate risk groups into one risk group

and used the same method of risk grouping as previously described. Figure 5.5 is only based

on CHG and its network neighbors (Figure 5.4 A), denoted as CHGNET. Without known
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conserved or ‘all-time’ genes and regardless of biased marker selection based on GO terms

(such as cell cycle and apoptosis genes), CHGNET provides reasonable performance to pre-

dict patient survival. When combined with known markers, the predictability is consistently

improved. For example, we combined Wangs RS60 predictor with CHGNET and compared

with the original RS60 for ER+ tumors, AUC was increased (Figure 5.5 Bottom).

5.4 Chapter Discussion and Conclusions

In a sense, we followed the working assumption (that has become increasing evident) that

fast accumulating interactome data can be used to aid efficient biomarker design, and we

demonstrated as a principle from inter-tumor heterogeneity perspective to target it. We

speculate that there may be other biological initiatives to design biomarkers using the same

framework we developed here.

A caveat should be brought up front: Although integration has become a major theme

and challenge in the biomarker problem, the underlying reason should be carefully exam-

ined. In PPI networks, the relative betweenness of CHG class is small compared with an

ensemble of randomly simulated networks (p-value cutoff 0.005, 500 random networks) [46].

In contrast, CCH and IG genes that are relatively more predictive of patient survival (Figure

5.3) do not show significant differences in betweenness in PPI networks. When comparing

pairwise betweenness of CCG, IG and CHG with same p-value cutoff, no differences are

found. These results suggest that topology of interactome data (which is subject to noise)

alone is insufficient for obtaining good markers. Therefore, the integration of biological data

to predict complex disease phenotype should be guided by a practical valid principle.

84



Chapter 6

Evaluating predictive performance of network

biomarkers with network structures

1

We argue that it is necessary to use the network structures to evaluate performance of

biomarkers. To address this, we aim to learn a weight coefficient for each node in the network

from the quantitative measure such as gene expression data. The weight coefficients are

computed from an optimization problem which minimizes total weighted difference between

nodes in a network structure; this can be expressed in terms of graph Laplacian. After

obtaining the coefficient vector for the network-based markers, we can then compute the

corresponding network predictor. We demonstrate the effectiveness of the proposed method by

conducting experiments using published breast cancer biomarkers with three patient cohorts.

Network-based markers are firstly grouped based on GO terms related to cancer hallmarks.

We compare the predictive performance of each network marker group across gene expression

data sets. We also evaluate the network predictor against the average method for feature

aggregations. The reported results show that predictive performance of network markers is

generally not consistent across patient cohorts.

6.1 Introduction

Networks provide unique advantages in modeling multiplex relationships between genes,

proteins, and diseases. In recent years, network-based approaches became promising in the

disease biomarker detection problem. A notion of ‘network medicine’ has received consider-

1The content of this chapter is based on the following article under revision:
Gao, S., Afra, S., Alhajj, R., Zeng, J.,Rokne, J. & Demetrick, D. (2014) Evaluating predictive performance

of network biomarkers with network structures. In Submission.
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able spotlights centered at the principle that genes and gene products act highly interactively

to cause complex diseases [11, 64, 23]. For example in cancers, identifying pair-wise disor-

dered relationships between genes and proteins naturally fits the goals of network modeling,

that is, to study relationships and find connection patterns between nodes and modules in a

global map [94, 149]. To this end, many integrative methods using network data have been

proposed to track differential regions of network (i.e., subnetworks) predictive of disease phe-

notype [94]. In this direction, a fundamental assumption is that networks reflect accurate

connectedness of data. This became a critical concern in protein interaction networks due to

different experimental protocols and noises [30]. For gene co-expression networks, where two

genes are connected if correlated, link inaccuracies mostly arise due to data heterogeneity.

Many methods are proposed to quantify the interconnectedness and the topological over-

lapping of networks [181, 91, 60]. Here our aim is to use nodal connectedness to evaluate

network-based markers (by aggregating genes into network predictors) against certain out-

come such as clinical variables. Indeed, network modules (a.k.a. subnetworks) were deemed

a fundamental medium to understand and to naturally represent biological pathways and cel-

lular processes [23, 53, 55]. For this reason, many believe that network modules could provide

useful directions for finding key components attributable to disease phenotypes. Although

obtaining network markers had been the major focus since van’t Veer’s pioneer work in the

network-based thinking [164], (for example, Chuang et al. derived biomarkers to predict

breast cancer metastasis [23]), little work have been done to evaluate the predictive power of

the derived network markers, that is, to evaluate the predictability of a gene set against some

phenotype given the connectedness of constitutive genes or gene products. In this chapter,

we introduce a lightweight, parameter-free method for evaluating network-based markers,

called Interconnectedness Network Score (INS), using clinical outcome and gene expression

data.

The motivation of designing an effective method to gauge the predictive power of network
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Figure 6.1: Overall workflow of INS for evaluating predictive level of network-based mark-
ers/modules
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biomarkers is demanding. After extensive efforts for finding targeted disease biomarkers, for

example from our previous results [44, 45], one needs to retrospectively check to see how

predictive derived network markers are against clinical outcome, especially to compare the

predictive results with singleton markers (i.e., individual genes that are known related to

the diseases). The usual approach to aggregate the network connectedness is by averaging

gene expressions of constitutive genes in a network [23, 171, 22, 97], and then using Receiver

Operating Characteristic (ROC) to measure the performance of the network-based markers.

This way each network module is essentially transformed to a pseudo-feature. The upside

of such aggregation is that we can utilize standard ROC curves to interpret the predictive

level (in this context, predictability refers to the performance of classifiers); the downside

of it is that when averaging, the connectedness information of network modules is lost.

For example, consider two network markers with different nodal connectedness as shown in

Figure 6.1, with simple average aggregation the derived new features are indistinguishable

between graph structures of two network modules (because both derived features equal to

average gene expressions over nodes A, B, C and D). Therefore the question here we ask is

how to derive effective features that better describe network markers/modules given their

graph structures?

Here we design a method to derive module-based network features (Figure 6.1). The

main idea is to learn a weight coefficient for each node in the network modules from the

quantitative measure such as gene expression data. The weight coefficients are computed

from an optimization problem [13, 140], since each pair of nodes connected by an edge in a

network module has different strength of associations (computed as edge weights), and we

are seeking a coefficient vector that preserves network connectedness. This is obtained by

minimizing the total weighted difference between coefficients associated with nodes (Figure

6.1, Step 2), which can be written in terms of graph Laplacian (see Material and Methods).

After obtaining the coefficient vector for the network marker, we can then compute the
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corresponding network predictor (Figure 6.1, Step 3). The method effectively takes network

proximity into consideration, therefore the derived network predictors are more reliable for

plotting ROC curves.

To demonstrate the method, here we evaluate published breast cancer biomarkers with

four patient cohorts, network markers are firstly grouped based on GO terms related to

cancer hallmarks. We compare the predictive performance of each network marker group

across gene expression data sets. We also evaluate the network predictor against the average

method for the feature aggregation aforementioned.

6.2 Material and Methods

6.2.1 Learning network coefficients

Input: Suppose we have a collection of m networks that are indicative of certain cellular

phenotype, Θ = {A1,A1, ...,Am}, where Ap, 1 ≤ p ≤ m is the adjacency matrix of network

p in Θ with Ap := [a]ij = 1 if node i and j are connected, 0 otherwise. We have a gene

expression data set R := [r]gs for which we want to evaluate the predictive power of network

markers in Θ, where [r]gs is the expression value of gene g in sample s, and denote the clinical

variable (e.g., metastasis outcome) as o = (o1, o1, ..., o|s|) where |s| denotes the number of

samples in R.

Output: Let the coefficient vector for network Ap with k nodes be c = (c1, c2, ..., ck). Our

goal is to derive c for Ap whose pair-wise magnitude preserves the neighborhood connectivity

of Ap.

To preserve the local connectivity by coefficient vector c, the problem reduces to minimize

∑
ij

(ci − cj)
2wij (6.1)

where wij is the weight between node i and j in Ap. W := [w]ij refers to the weighted

adjacency matrix for Ap [13]; wij represents the weight (a similarity measure) between gene
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i and j if connected. We used the heat kernel to compute wij. Putting Eq. 6.1 in matrix

form (see ref. [13] for details),

∑
ij

(ci − cj)
2wij = 2cT(D−W)c = 2cTLc (6.2)

Where D is the diagonal matrix with D := [d]ii =
∑

j wij, L is the graph Laplacian

L : = D−W. The problem is then reduced to finding:

arg min
cTDc=1

cTLc (6.3)

The constraint cTDc = 1 removes the arbitrary scaling factor to the solution, which is

given by the second smallest eigenvector of the generalized eigenvalue problem:

Lc = λDc

Coefficient vector c represents the relative importance of nodes due to the network topol-

ogy measured by wij that is, if two nodes are far apart in the network, wij incurs a heavy

penalty from Eq. 6.1 After solving for c, we obtained the coefficient vector which is subse-

quently used to weigh gene expression levels of constituent genes. After re-weighing (Step 3

of Figure 6.1 ), we obtained corresponding network predictors.

6.2.2 Breast cancer biomarkers

Breast cancer biomarkers were retrieved from the Cell Circuits database (http://www.

cellcircuits.org) [99]. We search Gene Ontology terms (p-value < 0.001) related to

cancer hallmarks from Chuang et al.’s work [23, 55] , and collect network markers for each

GO group [93]. Totally we obtained 62 network-based biomarkers from 7 GO groups (Table

6.1). Gene symbols are mapped using UniProt ID Mapping (http://www.uniprot.org/)

(The UniProt Consortium) and DAVID (http://david.abcc.ncifcrf.gov/) [61].
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Table 6.1: GO terms searched and number of network markers obtained

GO Term GO ID Number of Network
Modules (gene groups)
(p < 0.001)

Apoptosis GO:0006915 9
Cell adhesion GO:0007155 4
Cell cycle GO:0007049 28
Immune response GO:0006955 3
Phosphorylation GO:0016310 8
Response to external stimulus GO:0009605 7
Cell growth GO:0016049 3

6.2.3 Gene expression data preprocessing and normalization

Gene expression data sets were retrieved from NCBI GEO database (http://www.ncbi.

nlm.nih.gov/geo) with the accession ID GSE2034 (n = 286) [170], GSE1456 (n = 159)

[128] and GSE6532 (n = 327) [96]. All three data sets use HG-U113A platform, we did so in

order to avoid bias in cross-platform validation. Gene expression data were processed with

MAS5.0 algorithm, and subsequently log2 transformed and median-centered across samples.

6.3 Results

6.3.1 Nodal connectedness affects predictive performance

We used DREAM5 (Dialogue for Reverse Engineering Assessments and Methods) gene ex-

pression data sets, described in detail in [100]. The input data includes a compendium of

805 microarray experiments for E.coli, consisting of 4511 genes (including 214 decoy genes).

To see if the nodal connectedness affects the predictive performance against genetic pertur-

bations, we used the gold standard benchmark provided by the DREAM5 challenge. The

benchmark data includes experimentally validated 2066 transcriptional interactions retrieved

from RegulonDB. We created two sets of network modules: the first set includes network

modules with at least one hub gene and its immediate neighbors (hub set). The hub gene
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Table 6.2: Predictive performance of two different set of network modules

Average AUC 95% Confidence Interval
Hub Set 0.67 0.614 - 0.701

Random Set 1 0.43 0.393 - 0.472
Random Set 2 0.51 0.481 - 0.545
Random Set 3 0.41 0.382 - 0.455
Random Set 4 0.54 0.481 - 0.575
Random Set 5 0.53 0.480 - 0.561
Random Set 6 0.47 0.422 - 0.511
Random Set 7 0.39 0.347 - 0.426
Random Set 8 0.43 0.393 - 0.472
Random Set 9 0.49 0.455 - 0.531
Random Set 10 0.37 0.362 - 0.445

is identified as nodes with degrees greater than average node degree of benchmark network

plus 2 standard deviations of the total node degree distribution; the second set includes

randomly selected network modules without any hub genes (random set). We collected 26

network modules from the first set with average network size 6 and we randomly selected

the same number of nodes to form the second set. If a network module from the random

set has size less than 6 we randomly add neighbors from one of the constituent genes. We

compare the ROC curves for these two sets of network modules (Table 6.2). Hub set modules

have higher average AUC than random set modules, which indicates that network topology

affects the predictive performance.

6.3.2 Retro-perspective validation using Wang’s data

We use the retrieved network markers to predict metastatic and non-metastatic samples in

Wang’s cohort where the network markers were derived from [23]. We tested the predictive

performance over the entire range of sensitivity and specificity values of network markers

against Wang’s data set, and compared the AUC with average aggregation. In apoptosis

(Figure 6.2), cell growth, immune response, and response to external stimulus groups, our

method reports better performance over the average method (6 out of 9, 2 out of 3, 3
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Figure 6.2: ROC curves for the apoptosis GO term against Wang’s data, 6 out of 9 markers
show better predictive performance with our method (in grey), other groups show similar
trend except Cell Cycle group
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Figure 6.3: Area Under the Curve (AUC) for 62 network markers in three different patient
cohorts
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out of 3, 7 out of 7 network markers with higher AUC). Other GO groups (cell adhesion,

phosphorylation) show similar performance for both methods (see supplementary material).

This suggests that by taking the network connectivity into account, predictive performance

can be improved in classifying breast cancer metastasis.

Interestingly, in the cell cycle group only 1 out of 28 markers shows higher AUC with

our method. The implication is that edge connectedness in the network markers are not

predictive of metastasis in general for this group of markers, because totally ignoring it

(using average aggregation) leads to better classification performance.

For apoptosis makers shown in Figure 6.2, 95% CIs show moderate overlapping between

INS (average upper bound and lower bound are 0.463 and 0.561 respectively, binomial exact

test) and simple average method (average upper bound and lower bound are 0.423 and 0.488

respectively, binomial exact test) for network-based markers with better performance using

INS. Similar effects are observed in other GO groups. From the above study with E. coli data,

the INS method shows consistent better performance. It is worth noting that our aim is not

to propose a method that produces better predictive performance using existing network-

based markers, as the way of identifying network-based markers differs, the predictive results

differ; this is the similarly true when evaluating gene signatures: there is a big pool of gene

signatures but very few of them produce consistent predictive performance [93]. For example

using Chuang’s data we observed that 6 out of 9 markers show better performance for the

apoptosis group, this is likely due to the inconsistent predictive performance for individual

network-based markers from Chuang’s data. In fact, from Chuang’s method, the network-

based markers are derived from a greedy approach, which does not find the optimal solution

in general.

6.3.3 Cross validation with other gene expression data sets

To cross check the predictive performance of network biomarkers, we compare the ROC

curves for each GO group with Loi and Pawitan’s cohort [128, 96] using network predictors.
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From Figure 6.3, we did not observe unique trend for all GO groups. For example, in the

Apoptosis group 6 out of 9 markers are more predictive in Wang’s cohorts, whereas in the

Cell Cycle group Wang’s cohort are not as predictive as the other two cohorts (6 out of 28

markers have higher AUC compared with Loi and Pawitan’s cohort). The results show that

network biomarkers are not consistently predictive across patient cohorts, facing the same

dilemma of the gene set approach where most gene sets are not robust in predicting cellular

phenotypes [93].

6.4 Chapter Discussion and Conclusions

Although network approaches have become promising in predicting disease phenotypes like

breast cancer recurrence, the way of making them predictive is problematic. On one hand,

most work have focused on obtaining the network modules and the argument that those

are more predictive than the gene set approach; on the other hand, when evaluating the

predictive performance of network markers, simple aggregation is employed and therefore

network connectedness is totally ignored. Here we offer a simple approach in taking network

connectedness into account when evaluating network biomarkers against clinical variables.

Using this method, we showed that the network markers are not consistently predictive when

compared with the simple aggregation approach. The crucial problem is that methods that

identify network markers generally do not include network connectedness as the factor when

“scoring” subnetworks. Similar to most of the gene signatures, network markers do not show

robust predictive performance across gene expression profiles in different GO groups, making

them non-robust when predicting breast cancer metastasis.

With the aforementioned, the conclusion is not solely due to absence of nodal connected-

ness in evaluating network modules, but rather in identifying truly predictive network-based

markers. Our focus in this chapter is to evaluate network-based markers when considering

network topology. Our observations that network-based markers are not consistently pre-
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dictive across patient cohorts reflect the fact that network-based markers are far from being

predictive in clinical studies.
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Chapter 7

Multiplex network reconstruction: integrating multiple

sources of genomic data to predict network-based

knowledge

We present a method to reverse engineer integrative gene networks. The main advantage

of our method is the integration of different quantitative and qualitative datasets in order to

reconstruct a multiplex network, without imposing data constraints, such as each genomic

datum needs to have the same number of entities. The computation boils down to solving

small quadratic programs based on local neighborhood of nodes. Another advantage of our

method is that from the integrated networks, predictions can be made by propagating beliefs

from seed nodes representing known knowledge via weighted edges. Thus, we combined data

integration and network-based prediction into a single framework. We applied the method to

DREAM5 dataset, and compared the results with the community networks from the challenge.

Further, we demonstrate our method through case studies using breast cancer data, includ-

ing the integration of metastasis gene expression data with interactome data and biological

pathway data. Network-based predictions are compared between interactome-integrated and

pathway-integrated networks. Overall, our method has the potential to be applied in many

settings of network system biology.

7.1 Introducction

As networks are becoming ubiquitous in modeling complex biological systems, we are still

facing two major challenges underlying (computational) system biology: the integration of

various types of genomic data and the prediction of unknown knowledge using networks
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Figure 7.1: Integration of multiple genomic data sets to reconstruct gene networks and
network-based predictions to extract relevant subnetworks by graph learning

[169, 64, 11]. These two problems are closely related: in order to make accurate network-

based predictions, one must integrate different sets of evidence from rapidly accumulating

biological data and knowledge. For example, in the network biomarker detection problem,

the aim is to find compact network modules predictable to disease outcome or cellular phe-

notypes [64, 11, 23, 21]. To achieve this goal, a number of genomic information can be useful,

including sequencing data, gene expression profiles, known protein-protein interactions and

gene regulations etc., and non-genomic evidence like literature-based data mining for unrav-

eling hidden regulatory relationships between genes and their products. Such intertwined

problem calls for a robust and integrative method to reconstruct cellular networks that are

able to reflect different types of evidence between nodes. We refer to a network with multiple

link types between nodes as the ‘multiplex network’ [113], which is very natural in system

biology settings to model complex data.

Here we propose a flexible method to reconstruct multiplex networks. We first categorize

the pertaining data sets into two types: quantitative and qualitative data, where the for-

mer includes gene expression profiling (RNA-Seq data or Affymetrix Genome-wide Arrays

for instance) and the latter contains pathway and biological process data, protein-protein

interactions, GO term similarities, etc. Then we construct the local neighborhood of each

node (i.e., the ‘center node’) by minimizing the reconstruction error in terms of distance

or similarity measures from its nearest neighbors inferred from quantitative data [144, 168].

The integration of other data sets, either quantitative or qualitative, is done by setting sim-
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ple weight constraints on the links against the objective of minimizing reconstruction errors

(Figure 7.1). This way, we solve a small quadratic programming problem (as the objective

is quadratic) for constructing a small subnetwork corresponding to a central node and its

nearest neighbors [144, 140]. By posting supporting evidences from different data sources

as constraints, the optimization problem effectively eliminates links established solely based

on a single data set, e.g., false positive co-expressed genes lacking biological meaning [89],

hence accentuates the links only supported by evidence. After all center nodes are considered,

subnetworks can be combined into an integrative single network.

There are three main advantages of our proposed multiplex network reconstruction.

Firstly, the process is flexible with different data types. We view data sources as different

types of evidences, and convert it to the constraint in the optimization problem by simply

stating that supported links outweigh unsupported links. This way, we do not impose that

evidential data sets have exactly the same set of nodes (such as genes in the context of con-

structing a regulatory network), as assumed by others [86, 112]. Secondly, the integration

of constraints can be contextualized. For example, if we were to integrate gene expression

profiles with protein-protein interaction (PPI) data, one could use protein interactions ob-

served in PPI data to support co-expressed links, or one could relax the supporting strength

by allowing non-direct neighbors if shortest path between co-expressed gene products falls

below certain threshold in the PPI network. Thirdly, the local neighborhood assembly allows

for efficient learning and prediction on the network. This is because each central node is a

linear combination of its neighbors, and each individual neighbor in turn links to its own

neighbors in the same way and so forth; therefore information is relied in the network (that

is also sparse). Such reconstruction enables network-based predictions by propagating par-

tially known information of nodes to the whole network. This is known as semi-supervised

learning [191].

To demonstrate the applicability and effectiveness of the proposed methodology, here we

100



first apply the network reconstruction algorithm to DREAM5 dataset, and further study

breast cancer metastasis using the integrative reconstruction method through three case

studies:

1. Integrating interactome data and gene expression profiles.

2. Analyzing integrated pathway co-occurrence networks and identifying differ-

ential genes between metastatic and non-metastatic networks.

3. Comparing network-based predictions made from integrated networks (i.e.,

pathway-integrated and interactome-integrated) using seed nodes and extract-

ing relevant subnetworks with different data sources.

7.1.1 Related Work

Recent existing works for integrative network construction can be divided into two cate-

gories. 1.) In statistical-based approaches, Lo et al. modeled the external knowledge in the

form of prior distributions and then applied supervised framework to train and calibrate the

distribution [95]. This way, a directed acyclic graph (DAG) is constructed for gene regula-

tory network. Haibe-Kains et al. integrated literature data from PubMed with expression

profiles and interpreted gene interactions using MeSH terms and Gene Ontology (GO) [53].

To infer a predictive network, seeded Bayesian inference with similar prior modeling is em-

ployed [33]. For charting interaction maps with a large number of genes, regression-based

technique was used to improve the performance of network construction [53, 33]. As the

authors pointed out, integration with prior information suffers from large networks and is

computationally expensive [53]; on the other hand, in regression-based methods it is difficult

to determine the number of candidate regulators for each gene. In addition, some regulariza-

tion [180, 186] or filtering techniques [62, 65, 114, 148] are often needed . 2.) In kernel-based

approaches, different types of genomic data sets are represented in the form of networks

resulting from kernel computations, and the pool of different networks are combined to get
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an integrative network. For example, GeneMANIA analyzes gene lists using genomics and

proteomics evidence in network settings and computes weights for each data source for their

relative importance [173]. The computation framework is described in [112], which involves a

regression model to learn weights of different networks by minimizing the least square error

between the target network and the composite network. In general, combining networks

can be modeled as a multiple kernel learning problem [105] with each kernel encoding rela-

tionships between data points [86, 160]. The computational challenge of these methods is

to solve optimization problems like Semi-Definite Programming (SDP) that are often costly

[105]. Another constraint of the kernel-based method is that it requires the same set of nodes

in each network [86], and genomic data must be represented with kernels in the first stage.

Such limitation makes the integration of some genomic evidence difficult (if not impossible),

because not all genomic data can be kernelized (e.g., the similarity between genes in different

PubMed abstracts is hard to define and interpret) and are of the same dimension.

7.2 Material & Methods

7.2.1 Local Neighborhood Construction

We introduce the network reconstruction method based on local neighborhood of individual

nodes as follows. Given a quantitative data set consisting of n data points {x1, x2, . . . ... . . . , xn}
, we aim to find the reconstruction weight wi. of each node i by minimizing the cost function

[144]:

ε(wij) =

∥∥∥∥xi −
∑

j:xj∈η(xi)
wijxj

∥∥∥∥
2

(7.1)

Where xi is a vector containing quantitative measure of a data point (e.g., gene expres-

sion across samples); η(xi) refers to the neighbors of gauged by some metric (e.g., mutual

information); ||.|| denotes the Euclidean norm. Assuming that data points reside on a linked

structure (i.e., manifold), the cluster assumption states two data points connected by paths
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that pass through high-density region are likely to be in the same class. The reconstruc-

tion error ε(wij) seeks optimal weight assignments wij between data point i and its nearest

neighbors in the structure. Additional constraints to the objective function of Eq.7.1 include

∑
j:xj∈η(xi)

wij = 1 and wij ≥ 0 [144, 168, 140].

To integrate other data sets, the idea is to give prominence to links that are advocated

by other qualitative evidence in terms of edge weights. Formally, we impose an additional

constraint for wij as follows.

∑
d

∑
j:xj∈η(xi)

ws
ij ≥

√
k

∑
d

∑
k:xk∈η(xi)

w∼s
ik ,k ≥ 1 (7.2)

Where ws
ij refers to links between node i and j that are supported by qualitative datum d;

w∼s
ik refers to links that are not supported by d;

√
k is a scaling factor. By Eq. 7.2, we are

forcing data points to reflect different types of evidence in the underlying network by edge

weights. Put together the optimization problem is formulated as follows.

minimize ε(wij) =

∥∥∥∥xi −
∑

j:xj∈η(xi)
wijxj

∥∥∥∥
2

subject to
∑

j:xj∈η(xi)
wij = 1, wij > 0

∑
d

∑
j:xj∈η(xi)

ws
ij >

√
k

∑
d

∑
k:xk∈η(xi)

w∼s
ik

k > 1

It is worth noting that in general wij 6= wji, i.e., the reconstructed network W = [wij] is

not symmetric, because nodes i and j are not necessarily mutual nearest neighbors to each

other. To make W symmetric, one can simply replace W by W+W T

2
.
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7.2.2 Quadratic Programming, Fast Assembly and Integration

The above optimization problem can be written as a quadratic program as follows.

ε(wij) =

∥∥∥∥xi −
∑

j:xj∈η(xi)
wijxj

∥∥∥∥
2

=

∥∥∥∥
∑

j:xj∈η(xi)
wij(xi−xj)

∥∥∥∥
2

=
∑

j,k:xj ,xk∈η(xi)
wijwik(xi − xj)

T (xi − xk)

=
∑

jk
wijwikGjk (7.3)

Where in Eq. 7.3, we used the fact
∑

j:xj∈η(xi)
wij = 1; and Gjk is the local (neighbor-

hood) gram matrix defined as Gjk = 〈xi − xj, xi − xk〉, 〈.〉 denotes inner product. Thus the

reconstruction weights can be written in quadratic programming formulation.

minimize ε(wij) =
∑

j,k:xj ,xk∈η(xi)
wijGjkwik

subject to
∑

j:xj∈η(xi)
wij = 1, wij ≥ 0

∑
d

∑
j:xj∈η(xi)

ws
ij ≥

√
k

∑
d

∑
k:xk∈η(xi)

w∼s
ik

k > 1

Each data point xi incurs a quadratic program, and so we need to solve n small quadratic

programming problems, because η(xi) is relatively small compared with n. Another bene-

fit of such local reconstruction is that each quadratic programming problem can be solved

independently of others, thus parallel computation methods can be used to efficiently recon-

struct the network. Such computational strategy is a crucial factor for reverse engineering

of gene networks in practice [2]. In our experiments, we used MATLAB Parallel Computing

Toolbox R© (http://www.mathworks.com). It is worth mentioning that our focus is differ-

ent from Aluru et al.’s work where they emphasized the parallel computation of the metric

in terms of mutual information, while we focused on the parallel assembly process of local

neighborhoods and the otherwise costly integration process.
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7.2.3 Data Preprocessing and Normalization

Breast cancer data sets were retrieved from NCBI GEO database (http://www.ncbi.nlm.

nih.gov/geo) with the accession ID GSE2034 [170]. Gene expression data were processed

with MAS5.0 algorithm, and subsequently log2 transformed and median-centered across

samples.

To gather metastasis related genes, we performed genome-wide survival screening by

univariate Cox regression (p-value < 0.05) on gene expression data with metastatic and

non-metastatic patients [23, 93]. For genes known related to breast cancer, we collected 324

genes from Network of Cancer Genes 3.0 (NCG) database [29]. Differentially expressed genes

between metastatic and non-metastatic samples were gathered by using two-sample t-test

(p-value < 0.05). We eliminated redundant genes from different collections for analysis.

7.2.4 DREAM5 Dataset

We used the well-established Dialogue for Reverse Engineering Assessments and Methods

(DREAM5) dataset to evaluation our method [100] (http://wiki.c2b2.columbia.edu/

dream/index.php/D5c4). The challenge is designed to reverse-engineer complete transcrip-

tional regulatory networks from gene expression data. The dataset consists of four networks:

E. coli, S. cerevisiae, in silico, and S. aureus, and the first three are used for evaluation

[100]. To compare the results, we used the same Precision-Recall (PR) statistic and gold

standards (i.e., true regulatory edges) to evaluate the predictive performance as describe in

the original publication.

7.2.5 Biological Pathway and Protein Interaction Data

We collected biological pathway and protein-protein interaction data from multiple databases

using ConsensusPathDB [72] (http://cpdb.molgen.mpg.de). ConsensusPathDB integrates

a wide range of network and complex interaction data for Homo sapiens, including 31 data

sources and literature curated interactions. For the interactome data, we mapped gene
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symbols to Entrez Gene IDs to avoid naming ambiguity using Gene ID Conversion tool in

DAVID (http://david.abcc.ncifcrf.gov) [61], and we excluded the self-interactions.

7.2.6 Distance Metric for Computing Nearest Neighbors

One remaining question to find the reconstruction weight is to choose a distance metric for

computing the neighborhood of data points, η(xi), i ∈ [1, n]. To measure the strength of

association between two points or variables, many metrics can be used. Popular choices are,

among others, Pearson’s correlation coefficient [89, 37, 1] and information-theoretic method

like mutual information [2, 132, 101]. Although simple and fast to compute, Pearson’s

correlation fails to identify non-linear associations between variables, therefore leading to

inaccurate reconstruction of gene regulatory networks; mutual information on the other hand,

captures non-linear associations but is computational expensive. Another computational

overhead arises due to the fact that mutual information is not able to distinguish direct

interactions from indirect ones subject to Data Processing Inequality (DPI), resulting in a

separate computational overhead to filter out indirect links [2, 101].

Here we wish to use a distance metric to leverage the need of identifying non-linear

associations and reducing the DPI computational overhead between data points. For this

purpose, we chose the mutual information based measure and further make it a distance

metric, which means that it has to satisfy the triangle inequality, non-negativity, symmetry,

and indiscernability criteria. To this end, the mutual information-based distance between

data point xi and xj, d(xi, xj) is defined as:

d(xi, xj) = H(xi, xj)− I(xi; xj) = H(xi|xj) + H(xj|xi) (7.4)

Where H(xi, xj) is the joint entropy, I(xi; xj) is the mutual information between xi and xj;

H(xi|xj) is the conditional entropy of xi given xj. d(xi, xj) is a distance metric satisfying

metric properties, for example triangle inequality, i.e., d(xi, xk) ≤ d(xi, xj) + d(xj, xk) for

another point xk . This effectively reduces the cost of post-processing DPIs.
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7.2.7 Computing d(xi, xj) by Freedman-Diaconis Binning

Denote xi,s as the measure of data point i in sample s and number of samples |s|. Since

quantitative data sets are often continuous-valued, estimation of xi,s is difficult for com-

puting I(xi; xj). To address this, we apply the homeomorphic transformations [2, 83] by

binning the vector xi =
〈
xi,1, xi,2, ..., xi,|s|

〉
using Freedman-Diaconis method [43]. The

bin width h of Freedman-Diaconis method is calculated as h = 2IQR(xi)
/|s|1/3, where

IQR refers to interquartile range of vector xi. The number of bins is then computed as

nbin = dmax xi −min xie/h , where d.e is the ceiling function. After binning, xi becomes

xbin
i = 〈xi,1, xi,2, ..., xi,k〉. By plotting data points on the manifold using the distance metric

(Eq. 7.4), the reconstruction process effectively meets the cluster assumption, i.e., local

neighborhoods are patched with important interactions (those observed from other data

sources and whose endpoints are quantitatively close).

7.2.8 Prediction based on Reconstructed Network

After network reconstruction, the next task is to predict relevant network regions or subnet-

works given certain partial knowledge. Such setting is not uncommon in biological problems

like predicting novel disease-causing genes from regulatory networks, because the knowledge

of disease related markers are being renewed rapidly. We cast the network prediction into

the graph-based semi-supervised learning framework [191, 189, 14], which entails the follow-

ing question: Given a small number of known labels (hence ‘semi-supervised’) of nodes (i.e.,

genes known related to disease) what can we infer about other nodes in the network map

(hence ‘graph-based’)?

Formally, given a set of data points χ = {x1, ..., xl, xl+1, ..., xn}, where first l points, i.e.,

x1, ..., xl points are labeled as y1, ..., yl and the rest (xl+1, ..., xn) are unlabeled, the aim is

to score the unlabeled points such that higher score implies higher relevance to the labeled
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points in the network. The objective function Q(f) to be minimized consists of two terms:

Q(f) =
∑l

i=1
‖yi − fi‖2 + λfT Lf (7.5)

The first term is the loss function and measures how well do points vary from known labels

(i.e., consistency), if xi ∈ {xl+1, ..., xn} then the corresponding label is 0; the second term

measures the smoothness, which means that labels of nearby points in the network should not

vary much weighted by regularization parameter λ . L is the graph Lapacian with L = D−W ,

where D is the diagonal matrix with node degrees on the diagonal and W is the matrix

containing reconstructed weights from quadratic programming, fT denotes the transpose of

vector f . Eq. 7.5 is a regularized least square problem and can be solved efficiently with

analytical solutions [189, 137]. By minimizing Q(f) we compute predicted scores in vector f .

It is worth noting that such learning mechanism relies on the underlying network structure:

in the way of computing W each node is a linear combination of its neighbors, which enables

the propagation of predicted scores and regularization of smoothness on the graph. In our

experiment we set λ = 0.1 .

7.2.9 Complexity Analysis

The mutual information computation runtime (including the binning process) is bounded

by O(n |s|) where |s| is the number of samples and n is the number of nodes. The cost

for finding the reconstruction weights is O(|s|nk3) [144], where k is the number of nearest

neighbors. n and |s| are denoted the same as the above. The integration of data sources is

linear in terms of their cardinalities (e.g., number of interactions in PPI data).

7.3 DREAM5 Experiments

7.3.1 Effect Of Number Of Nearest Neighbors k

In our integrative network reconstruction model, the only required parameter is the number of

nearest neighbors k. We here investigate the choice of k by using networks of three organisms
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Figure 7.2: Precision-Recall curves for three networks with different values of k

from DREAM5 dataset. Intuitively, the choice of k depends on the underlying regulatory

relationship between genes in “true” network structures, which by far is not accurately

known. We use the provided gold standards of three organisms (E. coli, S. cerevisiae, and

in silico networks) from the challenge to evaluate the effect of k in network reconstruction.

We interrogate the Precision-Recall (PR) curves for the three networks for a various

settings of k, shown in Figure 7.2. We observed that while increasing k improves the Area

Under the Precision-Recall (AUPR) curve to a certain level, the margin of such improvement

decreases. This suggests that on average the number of regulators for the network (i.e., the

average node degree in gene regulatory networks) controlled by k is likely to approximate the

unknown “true” network by an upper bound, characterized by complex cellular regulatory

mechanisms of different species.

7.3.2 The Effect Of Integration And Comparison With Community Networks

To demonstrate how the network reconstruction method effectively improves the prediction

of regulatory networks, we first construct the neighborhood networks as based networks

for each microorganism from mutual information based distance described previously, and

then choose the best performing inference algorithms from each category (regression, mutual

information, correlation, Bayesian networks, miscellaneous methods, and Meta predictors,
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Figure 7.3: A) Effect of integrating other network data. B) Comparison with rank-based com-
munity networks from [100] using randomly sampled 20 inference algorithms from DREAM5
dataset. C) Overall scores from using grouped evidence sets from 5 algorithm categories and
ungrouped evidence sets

see [100] for details) as the evidence sets. We integrate each evidence set (randomly ordered)

incrementally, and observed that the overall score increased from Figure 7.3 A. We stress

that, the network reconstruction method we studied here does not merely serve the purpose

of integrating multiple networks (such as the rank-based method described in [100]), rather

it is a general method in that biologist could select relevant evidence sets, such as pathway

co-occurrence evidence from curated databases, as shown in the following case studies.

To compare integrative networks using our reconstruction method with the rank-based

community networks, we treat top 100 predicted edges in randomly sampled 20 inference

methods as evidence sets and build integrative network incrementally (Figure 7.3 B). The

flexibility of such network reconstruction relies on the fact that one can arbitrarily combine

the evidence sets for different analysis. For example, in the above comparison, we could

reconstruct the network 20 times, each time adding one evidence set. Alternatively, one can

choose to group evidence sets by the type of inference algorithms (Figure 7.3 C), with each
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Figure 7.4: Number of protein-protein interactions recalled from network reconstructions

group containing the union of predicted edges from the pertaining methods.

7.4 Case Study: Integrating Gene Expression Data with Interactome Data

We collected 122410 non-self interacting protein interactions from various sources, and 4237

unique probe sets from Wang cohort [170] from differential expression, NCG database, and

genome-wide survival screening (see Material & Methods) for Estrogen receptor positive

(ER+) tumors. We reconstructed integrated networks by combining gene expression data

(quantitative data) and protein interaction data (qualitative data).

To see whether the computed links using the mutual information based distance cor-

rectly recall the protein-protein interactions during the integrated reconstruction, we chose

k = 3, 5, 10, 15 for nearest neighbors and recorded the number of protein interactions being

integrated (Figure 7.4). The number of protein interactions recalled from the interactome

data increases with the number of nearest neighbors selected. This is not surprising because

protein interaction data are often noisy and collected from various sources and experimen-

tal protocols. Consequently some of the observed interactions are actually irrelevant in the

context of some specific phenotypes like cancer [176], and therefore they should be excluded

in the reconstructed network for prediction.
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Figure 7.5: Topological structure of extracted network modules using ClusterONE algorithm.
Thickness of edges is visualized using reconstruction weight. Overlapped nodes are colored
green and non-overlapped nodes are colored orange

To further analyze the integrated network, we performed the clustering analysis using

ClusterONE algorithm [115]. ClusterONE identifies overlapped clusters by iteratively max-

imizing the cohesiveness of networks. We extracted 19 clusters (Figure 7.5) containing total

314 genes (p-value < 0.05) with edges weights being wij from the network reconstruction.

We observed that edges connecting dense regions are less weighted. This suggests that edges

in dense regions are more likely to have external qualitative evidence (e.g., protein-protein

interactions) supporting them. We further performed Gene Ontology (GO) (http://www.

geneontology.org) analysis for the integrated network with ontology term level ranging

from 7 to 15 (Kappa score = 0.6). For ER+ cancers, we found that the regulation of

lymphocyte proliferation, positive regulation of lymphocyte differentiation and activation,

peptidyl-tyrosine phosphorylation terms are most enriched by the clustering profile (Figure

A.3), along with known cancer-related pathways such as ERK1/ERK2 cascade. The asso-

ciation graph between specific GO terms for the significant clusters is shown in Figure A.3
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Figure 7.6: Thirty-five genes mapped to differential network, node labeled with gene symbols,
node size is proportional to degree

7.5 Case Study: Mining Pathway Co-occurrence Data

7.5.1 Differential Network Analysis

In this case study, we integrate genes expression data with biological pathways. The qual-

itative evidence is that two genes are supportively connected if they co-occur in the same

pathway. We mapped 324 NCG cancer genes to 431 probe sets and collected 4387 biological

pathways (see Material & Methods). In cancer studies, we are often interested in comparing

different phenotypic networks. Here, we constructed integrated networks using metastatic

and non-metastatic patient samples with Wang’s data [170]. Let Wmetastatic and Wnon-metastatic

denote the weighted adjacency matrix from the reconstruction method. We reconstructed

the differential network as Wdiff = Wmetastatic − Wnon - metastatic. Wdiff contains the weight

difference between edges in metastatic and non-metastatic networks, therefore by analyzing

this differential network, we could find genes discriminative between two phenotypes. Table

7.1 summarizes the overall topological statistics of 3 filtered networks (w > 0.01). Wmetastatic

recalls 848 co-occurrences between node neighbors, whereas Wnon-metastatic recalls 750 co-

occurrences. This suggests that discriminative weights are assigned in different phenotypic

networks reconstructed with our method.
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7.5.2 Identifying Differential Network Genes for Breast Cancer Metastasis

We computed the weighted node degree di of |Wdiff| :=
∣∣∣[Wdiff]ij

∣∣∣, where |.| refers to the

absolute value. di is the absolute total weight difference of node i between Wmetastatic and

Wnon-metastatic. We found 35 genes with di > average weighted degree (Figure A.4), which

are weighted hubs in the differential network [11, 157]. These genes are the ones that vary

the most between metastatic and non-metastatic networks in terms of edge weights. We

extracted a subnetwork with 35 genes from the differential network (Figure 7.6). GNAS,

ADCY3 and PLD2 are found in GnRH signaling pathway, which is coupled to G-proteins

to activate phospholipase C in human. The downstream of GnRH signaling pathway trans-

activates the epidermal growth factor receptor (EGFR) and activates the mitogen-activated

protein kinases (MAPKs). Our results suggest that GnRH signaling maybe the source of cel-

lular instability (as evidenced from differential network analysis) that triggers breast cancer

metastasis. RPS6 and STK11 participate in mTOR signaling pathway that integrates intra-

and extra- cellular signals to regulate cell growth and proliferation. STK11 acts as a hub in

the extracted subnetwork. In contrast, RPS6 only interacts with STK11 and WDR59.

Table 7.1: Topological comparisons between metastatic, non-metastatic and differential net-
works

Metastatic Non-metastatic Differential

network clustering coefficient 0.575 0.471 0.36
number of edges 1564 1618 1301
avg. shortest path 2.344 2.421 2.468
avg. no of neighbors 7.258 7.508 6.137
network density 0.017 0.017 0.015
network heterogeneity 2.846 2.563 2.857
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7.6 Case Study: Network-based Predictions using Partial Knowledge

In the above two case studies, we integrated gene expression data (quantitative evidence) with

protein interactome and pathway data (qualitative evidence). We now use the integrated

networks to predict relevant network-based markers using the semi-supervised framework

(see Material & Methods). To check if the network-based predicted markers are distinct

by integrating different qualitative evidence, i.e., protein interaction data (NCG+PPI) and

pathway data (NCG+PATH), we use the same NCG genes in Wang’s cohort as in the

previous case study, with k = 10 (number of nearest neighbors) to reconstruct NCG+PPI

and NCG+PATH networks. The semi-supervised learning requires labels (representing a

priori known knowledge) of nodes. We refer to these labeled nodes as seed nodes. Obviously,

one can define seed nodes based on different views, for example, using several experimentally

verified disease genes as seed nodes. For our purpose here, we simply use weighted hubs

(defined as nodes with degrees > average node degree of a network + 2 standard deviations

of the total node degree distribution) as the seed nodes for prediction.

NCG+PPI and NCG+PATH networks recall 175 and 645 supported edges in the network

reconstruction, respectively, this suggests that different data sources used in the integration

substantially affect the result of predicted markers; therefore network-based prediction of

markers should be accompanied by purpose-specific contexts. Figure 7.7 shows subnetworks

extracted with 10 seed nodes and top 20 predicted nodes for NCG-PPI and NCG+PATH.

7.7 Chapter Discussion and Conclusions

The optimization problem has close relationship with dimensionality reduction: the objective

function (Eq. 7.1) is often used to find reconstruction weights for mapping the data points

to a low-dimensional coordinate system [162]. The optimal weights wij are invariant to

translation, rotation and rescaling, and can be used to further approximate low-dimensional

representation of data points.
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The working assumption of the reconstruction process described is that each center node

can be represented as a linear combination of its neighboring nodes as measured by certain

metric. This linearity assumption is fundamental in many regression models widely used in

multivariate predictions. In the reconstruction process, the assumption simplifies the op-

timization problem to quadratic programming problems which can be efficiently solved, in

contrast to kernel-based methods that involve much harder SDP. Compared with existing

works, the method described in this chapter does not require complex prior modeling like in

the statistical-based approaches and mitigates the limitations of kernel-based approaches by

allowing flexible genomic data representation (i.e., partial or incomplete). Given different

types of genomic evidence, we aim to recover a weighted network that best depicts associ-

ations between nodes in high dimensional spaces. Further, the nearest-neighbor fashion of

relaying strength of associations can be used in efficiently making predictions and extracting

subnetworks in multiplex networks.

The only parameter for the integrated reconstruction and subsequent network-based pre-

diction is the number of nearest neighbors, k. Although we simply chose k empirically

in this chapter based on AUPR and the nature of integrated datasets, flexibility can be

sought to fit customized settings. For example, one could use different k for each node

based on their ranked importance for a phenotype, which can be deemed as another way

of integrating known knowledge. More importantly, such refinement does not incur addi-

tional computational cost for network reconstruction, because nearest neighbors of each node

are independently computed and then assembled into a multiplex network. In general, our

method of posing data integration as constraints is flexible and computationally efficient.
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Figure 7.7: Subnetworks with 10 seed nodes and top 20 nodes in terms of predicted scores.
Left: NCG+PPI. Right: NCG+PATH. Node size is proportional to degree
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Chapter 8

Conclusion and Future Directions

In the past, it has become increasingly evident that networks are ubiquitous in the real world:

from social networks to the increasing potential of network biology and medicine. Linked

structure (possibly hidden) from data fundamentally renovates the method of computation

modeling and knowledge discovery so as to comprehend big data and their embedded rela-

tionships.

8.1 Conclusions

The network serves as an effective data media that inspires network medicine and network

biomarker detection. The rationale embraces the underlying biological mechanism in how

biological entities interact in a complex but concerted way to carry out biological functions.

Cancer, in particular, appears to be a mysterious endpoint encompassing disease therapeu-

tics, diagnostics and many other bio-medical branches. The cellular complexity naturally

caters for network approaches of understanding how genes and their products communicate

and interact in a scalable fashion: a network consisting of thousands of nodes can be ef-

fectively used to describe a disease cellular state. The genetic causations can therefore be

better understood by the network map.

In Chapter 2, we have analyzed social communities from another angle, i.e., we identify

the boundaries of social communities through convex hull constructions, and demonstrate

the usability of the method through breast cancer genes expression data sets. We argue

that social mechanisms can be applied to biological data, and from the experiments we can

conclude that boundary genes are less interactive in co-expression modules and more volatile

in community memberships subject to noise. The fragility can be resolved by Monte Carlo
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trials. Three algorithms are proposed for mining dynamic social communities. Our approach

contributes to the new branch of mining social communities by identifying and representing

social community boundaries. The proposed approach is also well suited to dynamic settings.

In Chapter 3, we regarded the metabolic networks as dynamic entities with evolving

properties and explored how this new perspective can further refine our understanding of

the underlying biochemical functions given the topologies of the reconstructed metabolic net-

works. We investigated the relationship between the multi-scalability of community struc-

tures of metabolic networks and the distributional effect of network motifs. We observed

several patterns through studying three organisms, including the effect of directionality of

networks, homogeneity of motif-enriched communities, and motif type-specific distributions

across scales. We also provide methods to quantify motif influence under the community

context. Our work suggests that the theoretic evolvability of modularity tightly correlates

with motif distributional effect.

In Chapter 4, we developed a tool based on the “Louvain” method to detect community

structures for arbitrary network types. The heuristic-based method tremendously reduces

the computational time when detecting community in very large networks.

In Chapter 5, we proposed a method to quantify relational heterogeneity from gene co-

expression networks. We first stratified genes based on the level of relational heterogeneity

and showed that such classification is predictive of patient survival in breast cancer metasta-

sis. We further explored the network markers obtained from highly relational heterogeneous

gene set and demonstrated the improved performance to predict patient survival. Such de-

sign of disease network biomarkers may offer some new opportunities for targeted cancer

treatment and personalized medicine, because inter-tumor heterogeneity is posed as an un-

solved challenge for many cancers and further understanding of distinct molecular features

from interaction dynamics is a key to design network biomarkers.

In Chapter 6, we provided a method to evaluate network-based markers. The conclusion
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that network-based markers are not consistently predictive across patient cohorts are not

surprising. Given that most gene signatures are not robust in presence of cellular complexity,

experimental noise, and incomplete data collection, the added dimension, i.e., from single

genes that form gene signatures to interacting genes that form a much more complex network

modules, further confounds predictive signals. For this reason, network-based personalized

medicine are not clinically deployed, although the network-based thinking is pervasive. Our

approach in evaluating network-based markers is an added line of evidence.

In Chapter 7, we designed an algorithm to efficiently reconstruct gene-gene networks by

integrating multiple sources of genomic data. The method does not impose data constraints,

and more importantly, we improved the performance of network-based predictions using

reconstructed networks. Sub-networks can be subsequently extracted. In a sense, we reduced

the data complexity and achieved better predictive performance by a single computational

framework.

Overall, network approaches have become useful and effective in system biology studies.

In this thesis, we discussed several computational approaches to deal with data complexity

and to improve the predictability using different biological networks.

8.2 Future Directions

The network promise comes with two notable challenges to the computational infrastructure,

among others.

1. With a flood of biological data sets abreast with the advance of experimental

protocols, flexible integration of heterogeneous data is a problem that is largely

undealt with due to case-to-case variation, specificity, and complexity. Our

future goal is to resolve such a challenge by building an effective solution to

integrate the huge pool of data into network representation. The flexibility and

efficiency boil down to a centralized design to manage acquisition, validation,
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storage and distribution of data in a consistent, editable environment.

2. In general, effective apparatus to mine the big network data is lacking, which

prevents the network realizing its practical value. A well-designed analytical

engine to query and perform large-scale, multiplex network analysis of data

is far from efficient and flexible for heterogeneous, and possibly noisy, cancer

data. A graph-based data mining capability, including a network analytical

engine and services, thus becomes a key function requirement in the network

data repository. My target is, therefore, to engineer graph data storage with

an analytical engine. Existing graph databases provide a starting point to

achieve this goal; however, it is limited to data storage and data retrieval.

Although in recent years network approaches to medicine and biomarker detection has

shed light on solving the mystery of cancer, the urge to perform integrative, scalable and

differential network analysis is bottlenecked by state-of-the-art information provisions and

hosting. Only when such a bottleneck is addressed, can robust and reproducible network

methods be advanced and practically deployed. In the system biology paradigm, the design

and implementation of the information solution is essential in answering cancer biology

questions.

In the future study, we plan to explore the differential network biology approach in com-

plex disease analysis [94, 63]. So far, the network-based markers are derived from static

network structures, and as noted previously, such assumption is not realistic in most circum-

stances. As an important step further, we could derive differential networks, which contain

nodal and link differences between two phenotypic networks in question. In fact, the notion

of “differential network biology” is applied successfully in previous literature to study net-

work responses to DNA damage [8]. In the context of cancer biomarkers, let us consider the

illustration in Figure 8.1.
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Given two networks, possibly inferred from genomic data sets or obtained from known

networks such as human signalling pathways after overlaying high-throughput data (Figure

8.1 A & B), differential links could be identified between two phenotypic networks (Figure

8.1 B) by thresholding interaction strengths. Using those differential links (Figure 8.1 C),

we could prioritize sub-networks that are relevant to the the disease phenotype (Figure 8.1

D). Clearly again, data complexity and predictability are two sides of the same coin.

We conclude the thesis with George E. P. Box’s remark, “All models are wrong, but some

are useful.” We felt the same way in modeling complex computational biology problems.

There are huge challenges in the years to come, including data management, predictive

models and technological advances, etc. However, given the success of the system biology,

we believe that multi-disciplinary studies and efforts become promising than ever to solve

complex problems in the filed of biological and medical research.
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Figure 8.1: An example of differential network biological approaches; thickness of links rep-
resents association/interaction strengths; orange links represent interactions that are pruned
iteratively (from left to right in D).
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Appendix A

Supplementary Figures

Figure A.1: Six most significant gene co-expression clusters
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Figure A.2: C1S from KEGG
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Figure A.3: GO summary of genes in extracted modules (top) and term-term associations
(bottom) for the integrated PPI network (Kappa Score = 0.6)

Figure A.4: Most varied genes in Wdiff in terms of weighted node degree.
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Appendix B

Modularity Gain Computation

Here we provide the details for modularity gain (∆Q) computation with resolution parameter

(γ) for all major types of networks (Fig. B.1).

B.1 Calculating modularity gain

In order to be able to apply the Louvain method to maximize the modularity measure, we

need to calculate the gain in modularity (∆Q) resulting from moving node x from its current

community U to any other community V . For all types of networks we more or less take the

following approach:

First, we break ∆Q into two terms ∆Qadd and ∆Qremove, where ∆Qadd is the change in

modularity caused by adding x to V while ∆Qremove represents the change in modularity

caused by removing x from U . Thus, we have:

∆Q = ∆Qadd + ∆Qremove (B.1)

We further define:

∆Qadd = Qjoint(x, V )−Qdisjoint(x, V ) (B.2)

and

∆Qremove = Qdisjoint(x, U)−Qjoint(x, U) (B.3)

where Qdisjoint(x,G) is the modularity of node x and community G when x is not assigned

to G and Qjoint(x,G) is the modularity when x is assigned to G. Therefore, to get ∆Q we

need to work out the joint and disjoint modularities of x and U and V .
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In the following subsections we apply this approach to calculate the modularity gain in

different types of networks. We only present ∆Qadd computations as ∆Qremove computations

are symmetric.

B.2 Undirected Network

The formulation of Modularity (Q) for undirected graphs is as follows:

Q =
1

2m

∑
i,j

[
Aij − γ

kikj

2m

]
δ(gi, gj) (B.4)

where Aij represents the weight of the edge between i and j, ki =
∑

j Aij, γ is the resolution

parameter, gi is the community to which vertex i is assigned, δ(a, b) is 1 if a = b and 0

otherwise, and m = 1
2

∑
ij Aij.

Following the approach presented for calculating the modularity gain, we have:

Qdisjoint(x, V ) =
1

2m
(Axx +

∑
inside(V ))

− γ

4m2

(
k2

x +
∑
i∈V

ki

∑
j∈V

kj

)

=
1

2m
(Axx +

∑
inside(V ))

− γ

4m2

(
k2

x +
∑

tot(V )2) (B.5)

where
∑

inside(G) =
∑

i,j∈G Aij, and
∑

tot(G) is the sum of the weights of the links incident

to nodes in G. For Qjoint(x, V ), we have:

Qjoint(x, V ) =
1

2m

(
Axx + 2kx,in(V ) +

∑
inside(V )

)

− γ

4m2

(
(kx +

∑
tot(V ))2)

=
1

2m

(
Axx + 2kx,in(V ) +

∑
inside(V )

)

− γ

4m2
(k2

x +
∑

tot(V )2 + 2kx

∑
tot(V )) (B.6)

where kx,in(G) is the sum of the weights of the links from x to nodes in C.
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According to Equations B.2, B.5, and B.6:

∆Qadd =
1

m

(
kx,in(V )

)− γ

2m2
(kx

∑
tot(V )) (B.7)

Using the notation presented above, we redefine the modularity as the summation of the

modularities of clusters:

Q =
1

2m

NM∑
1

[∑
inside(G)− γ

2m

∑
tot(G)2

]
(B.8)

where NM is the number of communities. One advantage of Equation B.8 over Equation B.4

is that it gives us a more efficient way of calculating Q when we already have
∑

inside and

∑
tot of all communities.

B.3 Directed Network

Equation B.9 defines the modularity measure for directed networks.

Qdirected =
1

m

∑
i,j

[
Aij − γ

kout
i kin

j

m

]
δ(gi, gj) (B.9)

where Aij is the weight of the directed edge from i to j, kout
i =

∑
j Aij, and kin

j =
∑

i Aij.

Following the gain calculation approach, we have:

Qdisjoint(x, V ) =
1

m
(Axx +

∑
inside(V ))

− γ

m2

(
kin

x kout
x +

∑in
tot(V )

∑out
tot (V )

)
(B.10)

where
∑in

tot(G) =
∑

i∈G kin
i . For Qjoint(x, V ), we have:

Qjoint(x, V ) =
1

m

(
Axx +

∑
inside(V ) +

∑
i∈V

Aix +
∑
i∈V

Axi

)

− γ

m2

(
kin

x kout
x +

∑in
tot(V )

∑out
tot (V )

+kin
x

∑out
tot (V ) + kout

x

∑in
tot(V )

)
(B.11)
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Now we work out ∆Qadd based on Equations B.2, B.10 and B.11.

∆Qadd =
1

m

(∑
i∈V

Aix+
∑
i∈V

Axi

)
− γ

m2

(
kin

x

∑
i∈V

kout
i +kout

x

∑
i∈V

kin
i

)
(B.12)

Akin to the undirected networks, we can redefine ∆Q for directed networks.

Q =
1

m

NM∑
1

[∑
inside(G)− γ

m

∑in
tot(G)

∑out
tot (G)

]
(B.13)

B.4 Signed Network

Modularity in signed networks is defined as:

Q =

positive

1

2m

∑
ij

[
A+

ij − γ
k+

i k+
j

2m+

]
δ(gi, gj)

−

negative

1

2m

∑
ij

[
A−

ij − γ
k−i k−j
2m−

]
δ(gi, gj) (B.14)

where m = m+ + m−.

To calculate ∆Qadd in a signed graph we consider the positive and negative parts of

Equation B.14 separately and work out ∆Qadd for each part in a similar way to an undirected

graph.

∆Qadd =∆Q+
add −∆Q−

add

=
1

m
k+

x,in(V )− γ
1

2(m+)m
k+

x

∑+
tot(V )

− 1

m
k−x,in(V ) + γ

1

2(m−)m
k−x

∑−
tot(V ) (B.15)

B.5 Bipartite Network

In this subsection, we study two different definitions of modularity for bipartite networks

and work out modularity gain in both cases.
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B.5.1 First Method

The first formulation of Modularity (Q) for two-mode networks is as follows:

Q =
1

2m

∑
i,j

[
Aij − γbij

kikj

m

]
δ(gi, gj) (B.16)

where bij is one if i and j belong to different modes and 0 otherwise.

For Qdisjoint(x, V ), we have:

Qdisjoint(x, V ) =
1

2m

∑
inside(V )

− 1

2m2

∑Mx

tot (V )
∑¬Mx

tot (V )

where Mx is the mode to which x belongs while ¬Mx is the other mode, and
∑M

tot(G) is

the sum of the weights of the links incident to nodes of mode M in G. For Qjoint(x, V ), we

have:

Qjoint(x, V ) =
1

2m

(
2kx,in(V ) +

∑
inside(V )

)

− 1

2m2

(
kx +

∑Mx

tot (V )
) ∑¬Mx

tot (V )

Now we get ∆Qadd from Equation B.2.

∆Qadd =
1

m
kx,in(V )− 1

2m2
kx

∑¬Mx

tot (V ) (B.17)

The following equation defines modularity as a summation over all communities.

Q =
1

2m

NM∑
1

[∑
inside(G)− 2γ

m

∑M1

tot (G)
∑M2

tot (G)

]
(B.18)

B.5.2 Second Method

Guimerá et al. [52] consider the nodes in a bipartite network as a number of actors and

teams. They define the bipartite modularity of partition P as:

MB(P) =

NM∑
s=1




∑
i6=j∈s

cij

∑
a

ma (ma − 1)
−

∑
i6=j∈s

titj

(∑
a

ma

)2


 (B.19)
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where ti is the total number of teams to which actor i belongs, ma is the number of actors

belonging to team a, and cij is the actual number of teams in which i and j are together.

Here, we use MB(P) interchangeably with Q which is the general notation of modularity.

The disjoint modularity of actor x and community V is as follows:

Qdisjoint(x, V ) =
1∑

a

ma (ma − 1)

( ∑

i6=j∈V

cij

)

− 1(∑
a

ma

)2

( ∑

i6=j∈V

titj

)

For Qjoint(x, V ), we have:

Qjoint(x, V ) =
1∑

a

ma (ma − 1)

( ∑

i6=j∈V

cij + 2
∑
i∈V

cxi

)

− 1(∑
a

ma

)2

( ∑

i6=j∈V

titj + 2
∑
i∈V

txti

)

Finally, we work out ∆Qadd based on Equation B.2.

∆Qadd =
2∑

a

ma (ma − 1)

(∑
i∈V

cxi

)
− 2(∑

a

ma

)2

(∑
i∈V

txti

)
(B.20)

The authors of [52] also give a formulation for modularity in directed networks by trans-

forming them into a undirected bipartite networks. The calculation of modularity gain

presented here is also valid in such case.

B.6 Multi-slice Network

The formulation of Modularity (Q) in multi-slice networks is defined by the following equa-

tion:

Q =
1

2µ

∑
ijsr




intra-slice(
Aijs − γs

kiskjs

2ms

)
δsr +

inter-slice

δijCjsr


δ(gis, gjr) (B.21)
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where, at time slice s, Aijs represents the weight of the edge between i and j, kis =
∑

j Aijs,

2ms =
∑

ij Aijs, and gis is the community to which vertex i is assigned at time slice s. Cjsr

is the weight of the inter-slice edge linking node j at time slice r to the same node at time

slice s. 2µ =
∑

jr κjr, where κjr is defined by κjr = kjr + cjr in which kjr =
∑

i Aijr and

cjr =
∑

s Cjsr [113].

In order to simplify the calculation of ∆Qadd in multi-slice networks, we break it into

∆Qintra and ∆Qinter based on the intra- and inter-slice portions of Equation B.21. ∆Qintra

is calculated in a manner similar to ∆Q in an undirected single-slice network and ∆Qinter is

given by:

∆Qinter =
∑

s

Cxstδ(gxs, V )

Thus we have:

∆Qadd =
1

2µ




intra-slice(
2kx,in(Vt)− γt

mt

(kxt

∑
tot(Vt))

)
+

inter-slice∑
s

Cxstδ(gxs, V )


 (B.22)

where kx,in(Vt) is the sum of the weights of the intra-slice links from xt to nodes in V , and

∑
tot(Vt) is the sum of the weights of the intra-slice links incident to nodes in V at time slice

t.

Equation B.21 can be rewritten in community format as follows:

Q =
1

2µ

NM∑
1

[∑
s

(∑
inside(Gs)− γs

2ms

∑
tot(Gs)

2

)
+

∑inter
inside(G)

]
(B.23)

where
∑inter

inside(G) =
∑

i∈G

∑
rs Cirs.
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Figure B.1: Different types of networks which MCF can handle. From left to right: bipartite
network, directed network, signed network (negative links in red).
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Graham R Bignell, et al. A comprehensive catalogue of somatic mutations from a

human cancer genome. Nature, 463(7278):191–196, 2010.

[130] Kornelia Polyak. Heterogeneity in breast cancer. The Journal of clinical investigation,

121(10):3786, 2011.

[131] Robert J Prill, Pablo A Iglesias, and Andre Levchenko. Dynamic properties of network

motifs contribute to biological network organization. PLoS Biol, 3(11):e343, 2005.

[132] P. Qiu, A. J. Gentles, and S. K. Plevritis. Reducing the computational complexity of

information theoretic approaches for reconstructing gene regulatory networks. Journal

of computational biology : a journal of computational molecular cell biology, 17(2):169–

76, 2010.

[133] Helmut Ratschek and JON ROKNE. Exact and optimal convex hulls in 2d. Interna-

tional Journal of Computational Geometry & Applications, 10(02):109–129, 2000.

[134] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A. L. Barabási. Hierarchical

organization of modularity in metabolic networks. Science, 297(5586):1551–1555, 2002.

149



[135] Jörg Reichardt and Stefan Bornholdt. Statistical mechanics of community detection.

Physical Review E, 74(1):016110, 2006.

[136] Luke Rendell, Robert Boyd, Daniel Cownden, Marquist Enquist, Kimmo Eriksson,

Marc W Feldman, Laurel Fogarty, Stefano Ghirlanda, Timothy Lillicrap, and Kevin N

Laland. Why copy others? insights from the social learning strategies tournament.

Science, 328(5975):208–213, 2010.

[137] Ryan M. Rifkin and Ross A. Lippert. Notes on regularized least-squares. Technical

report, MIT, 2007.

[138] Alexander W Rives and Timothy Galitski. Modular organization of cellular networks.

Proceedings of the National Academy of Sciences, 100(3):1128–1133, 2003.

[139] Martin Rosvall and Carl T. Bergstrom. Maps of random walks on complex networks

reveal community structure. Proc Natl Acad Sci, 105(4):1118–1123, 2008.

[140] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally

linear embedding. Science, 290(5500):2323–2326, 2000.

[141] Jianhua Ruan, Angela K Dean, and Weixiong Zhang. A general co-expression network-

based approach to gene expression analysis: comparison and applications. BMC sys-

tems biology, 4(1):8, 2010.
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