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Abstract 

The network sensor location problem (NSLP) addresses the location of traffic sensors to 

observe/estimate the link, route or OD flows in a traffic network. While counting sensors 

such as loop detectors still have an extensive application for traffic monitoring purposes, 

they suffer from a considerable rate of failure. In this study, I focus on two well-known 

problems in the NSLP known as the full link flow observability problem and the origin-

destination estimation problem while considering the failure of sensors.  

The full link flow observability problem is to identify the minimum set of traffic sensors 

to be installed in links in a road traffic network. The sensors are used to both monitor the 

flow of observed links and to provide flow information for the link flow inference of 

unobserved links. Unavoidably, the traffic sensors deployed in a traffic network are subject 

to failure which leads to missing the link flow observation of observed links as well as the 

inability to infer the link flow of unobserved links. This study aims to identify the minimum 

set of links in a traffic network to be instrumented with two different types of counting 

sensors (basic and advanced sensors) to reach full link flow observability while minimizing 

the effect of sensor failure on the link flow inference of unobserved links. Mathematically, 

I formulate two objective functions including min-max and min-sum functions. The first 

function attempts to minimize the maximum effect of sensor failure on the link flow 

inference of unobserved links while the second one minimizes the expected number of 

unobserved links where the flow cannot be inferred due to the failure of sensors. I select 

the genetic algorithm (GA) as a well-known heuristic to solve the proposed optimization 

model. The results recommend minimizing the number of sensors required for the link flow 

inference of each unobserved link as well as installing advanced sensors on links involved 
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in the link flow inference of multiple unobserved links. I also develop a new objective 

function to reflect that links in a traffic network can be either minor or major roads with 

different levels of importance. The results suggest installing more advanced sensors on the 

major roads as well as minimizing the number of major roads included in the set of 

unobserved links. Concerning the availability of route flow information in a network, I 

consider the effect of this information on evaluating the sensor deployment in a network. 

To maintain full link flow observability of a traffic network if any sensor fails, I study the 

location and type of additional sensors introduced as redundant sensors, which are more 

than the minimum required for full link flow observability. Finally, I discuss the 

applicability of the proposed model for the partial observability problem in which the full 

link flow observability conditions are not satisfied.  

In addition to the link flow observability problem, this study also focuses on the OD 

estimation problem considering the failure of sensors. The OD estimation problem is to 

find the location of the minimum number of sensors to estimate the flow of OD pairs in a 

traffic network. Traffic sensors can observe the summation of OD demand flows traversing 

a link and through OD estimation techniques such as maximum entropy, I can estimate the 

OD demand flows. Contrary to the flow observability problem, the failure of a sensor, does 

not necessarily lead to missing the chance of estimating the OD demand of one or more 

OD pairs but can affect the OD demand flow information gain from OD demands.  

In this study, I identify the location of counting sensors aiming to minimize the possible 

adverse effect of sensor failure on the OD estimation process. The input data required for 

the OD estimation may consist of the prior information of the OD trips that can be used to 

make the OD trip estimation as close as possible to the actual vehicular trips generated 
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between each OD in the road network. However, the sensors, similar to other measurement 

apparatus, are subject to failure and this failure can affect the reliability of the OD trip 

information especially under congested traffic conditions. In this paper, I address the sensor 

location problem (NSLP) to identify the most reliable location set of sensors in a road 

traffic network with consideration of the possibility of sensors failure. I introduced two 

objective functions including maximization of expected OD demand flow information gain 

on both observed link and each OD pair. I then employed the weighted sums method 

(WSM) and an ε-constraint to incorporate these two objective functions. With respect to 

the available budget constraint, different types of sensors are considered to identify 

different location sets of sensors with different levels of reliability for the OD estimation. 

The results applied to different road traffic networks indicate the improvement in the 

reliability of information obtained from the selected sensor location sets.  
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CHAPTER 1:  INTRODUCTION 

 

1.1 Background 

Identifying the location of sensors in a traffic network, known as the network sensor 

location problem (NSLP), is a critical component of transportation network modeling. 

Sensors provide essential information on the trip distribution and the corresponding 

spatiotemporal characteristics of traffic patterns in vehicular networks. However, like all 

sensors these traffic sensors are subject to failure; thereby the reliability and quality of 

information provided by sensors is highly dependent on the failure rate of sensors (Zhu et 

al., 2017). According to historical records, the failure rate of counting sensors1 exceeds 25% 

for all types of sensor deployments (Federal Highway Administration, 2006), yet the repair 

cost of these sensors may be too high for traffic agencies considering their limited budgets 

(Danczyk et al., 2016). Moreover, information loss is another consequence of sensor failure 

that imposes an implicit cost to a traffic management system.  

This thesis studies NSLP with consideration of sensors failure for two sub-problems: 

1) full observability problem and the sensor location problem.  

 

1.1.1 Introduction to the sensor location problem for flow observability 

For a fully observable traffic network, the flow of all links can be either directly 

observed (i.e., flow of observed links by sensors) or indirectly inferred (i.e., flow of 

                                                 

1  For the remainder of the chapter, “counting sensors” are called “sensors”. Otherwise, the type of sensors is 

specified 
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unobserved links based on information obtained from the flow of observed links). The failure 

of sensors not only impedes observing the flow of observed links but also results in missing 

link flow information associated with unobserved links since the flows of these links are 

inferred using the link flow information obtained from observed links. However, the sensor 

configuration can efficiently mitigate the adverse effect of sensor failure on information loss 

in a network. Therefore, there is an urgent need for a sensor configuration that minimizes the 

effect of sensor failure as a source of uncertainty in current traffic management applications.  

The current literature in the traffic flow observability/estimation problem identifies 

the three most important sources of uncertainty associated with traffic flow data as follows: 

1) the variability of prior Origin-Destination (OD) demand; 2) measurement errors of traffic 

counts; and 3) the possibility of missing the flow information due to the failure of sensors 

(Danczyk et al., 2016).  

The variability of prior OD demand is mainly related to the flow estimation problem 

as it deals with the reliability of information required to be used for traffic flow estimation. 

For instance, Fei et al. (2007) and Fei and Mahmassani (2011) employed the Kalman filtering 

technique to find the sensor locations that maximize information gains through the observed 

data and minimize the errors of estimated OD demands. Zhou and List (2010) optimized the 

locations of automatic vehicle identification (AVI) sensors by maximizing the gain of 

observed information in an uncertain environment. Wang et al. (2012) minimized the 

variance in the posterior route flow estimation while considering the available information 

on route flows and the reliability of this information. In a similar study, Wang and 
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Mirchandani (2013) addressed the optimum locations of sensors based on the reliability of 

prior route flow information.  

Sensor measurement error, as another source of uncertainty, has been studied in 

recently published works related to the flow observability problem. For instance, Castillo et 

al. (2010) addressed the scanning errors while locating vehicle identification (Vehicle-ID) 

sensors in a traffic network. More recently, Xu et al. (2016) discussed the full link flow 

observability problem and proposed a robust approach that determines the links to be 

equipped with sensors in a traffic network regarding the flow measurement variance 

stemmed from sensors.  

To the best of my knowledge, the failure of sensors has received less attention in flow 

observability/estimation research, with the exception of two studies (Li and Ouyang, 2011 

and Danczyk et al., 2016). Li and Ouyang (2011) examined the location of vehicle-ID sensors 

in a network to maximize the information gain from OD routes considering the possibility of 

sensor failure, while Danczyk et al. (2016) addressed the installation of counting sensors on 

a freeway to minimize the overall freeway performance monitoring errors resulting from the 

failure of sensors. However, the consideration of sensor failure on the link flow 

observation/inference of links in a fully observable network is absent in current studies 

related to the flow observability problem.  

Before proceeding, a formal definition of the terminology used in this chapter is 

provided below: 

Observed and unobserved links: If a link is equipped with a sensor, then that link is named 

an observed link; otherwise it is an unobserved link. 
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Link flow observation and link flow inference: If the flow of a link is monitored by a sensor 

installed on that link then the flow of that link will be observed. This process is called link 

flow observation. On the other hand, if the flow of a link is inferred, using the link flow 

information obtained from observed links, it is then called link flow inference. In summary, 

the process of link flow observation and link flow inference occur for observed links and 

unobserved links, respectively.  

Missing link flow inference: Link flow inference of an unobserved link will be missed if 

failure occurs for at least one of the sensors installed on the observed link(s) required for the 

link flow inference of that unobserved link.  

1.1.2 Introduction to the sensor location problem for OD estimation  

Origin-Destination (OD) demand reflects the OD pattern distribution in a traffic 

network, which is typically divided into traffic analysis zones (TAZs). OD demand cannot 

be observed directly, so traffic surveys have traditionally been conducted to derive the 

demand between OD pairs or between TAZs. As an original approach for OD data collection, 

traffic surveys are labor-intensive and time-consuming tasks. Technology advancements 

have brought new proposed traffic detection methods for OD demand estimation. Among 

these methods is a well-known OD demand estimate that uses traffic counts (Cascetta and 

Postorino, 2001).  

Traffic count information is still viable in current traffic management applications 

(Salari et al., 2019), but the counting sensors that provide this information are subject to 

considerable failure rates that adversely affect the quality and the reliability of the 

information the sensors can deliver (Zhu et al., 2017). Danczyk et al. (2016) indicate that the 

https://www.sciencedirect.com/science/article/pii/S0191261505000755#bib6
https://www.sciencedirect.com/science/article/pii/S0191261505000755#bib6
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explicit cost of repairing failed sensors might be too high for traffic management agencies’ 

restricted budgets. Sensor failure also imposes implicit cost to these agencies due to lost 

information.  

The location of sensors in a traffic network can determine the possibility and quality 

of OD demand estimates between each OD pair in a network. Their locations can also 

positively affect the intensity of traffic flow that can be directly observed by sensors deployed 

on links. A robust sensor configuration can reduce the possibility of missing OD data 

necessary for demand estimation and can prevent OD traffic flow information loss due to the 

failure of a sensor. Creating a sensor configuration that can minimize the effect of sensor 

failure on the OD estimation process is the main motivation behind this study.  

The NSLP literature is replete with research that focuses its efforts on sensor location 

optimization to improve OD demand estimations. For instance, Lam and Lo (1990) 

prioritized OD coverage and traffic volume criteria in their sensor locations. Yang et al. 

(1991) developed a maximum possible relative error (MPRE) measurement to identify the 

maximum deviation of estimated OD demands from the true values. As an extension to the 

work by Yang et al. (1991), Bianco et al. (2001) attempted to reduce the value of the MPRE 

by developing a greedy heuristic algorithm. In another study, Yang et al. (2006) developed 

algorithms to extend the applicability of the MPRE criteria to the screen line-based counting 

sensor location problem.  

Inspired by Lam and Lo (1990) and Yang et al. (1991), Yang and Zhou (1998) 

defined the most comprehensive set of rules to date for sensor deployment in a traffic 

network to estimate OD demand: 
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OD covering rule: Solutions to OD estimation must guarantee that all OD pairs are 

observed. This means that for any OD flow there must be at least one sensor to 

directly observe the flow of that OD. 

Maximal flow fraction rule: The proportion of each OD flow directly observed by a 

sensor with respect to other OD demands should be maximized. 

Maximal flow interception rule: Sensor locations should maximize the total flow 

observed by sensors. 

Link independence rule: Information extracted from the sensors should be linearly 

independent.  

Yang and Zhou (1998) employed these rules to obtain an efficient greedy algorithm that 

minimizes the MPRE metric. In their set of rules, the OD covering rule is the primary 

criterion that guarantees that the solution space is bounded and that the MPRE metric does 

not have infinite values. The implementations of the OD covering rule and the link 

independence rule do not rely on prior information such as OD flows and route fractions, but 

the maximal flow fraction and maximal flow interception rules cannot be implemented if no 

prior traffic pattern information has been determined. Larsson et al. (2010), Cipriani et al. 

(2006), and Yang et al. (2006) proposed complementary rules to those laid out by Yang and 

Zhou (1998): 

Route covering rule: Solutions to OD estimation should cover all the routes 

connecting each OD pair. 
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Maximal OD demand fraction rule: For each OD demand, the fraction of demand 

directly observed by sensors with respect to the total demand of the same OD should 

be maximized. 

Maximal net OD flow captured rule: The best sensor configuration is the one that 

maximizes the net OD flow observed by sensors. The term net in this definition 

excludes the double-counting of OD flows by sensors. 

Maximal net route flow captured: Given a number of sensors, the best location of 

sensors is the one that maximizes the net route flow captured by sensors. 

Gentili and Mirchandani (2012) used synthetic examples to test the eight rules 

outlined above to determine whether there was a noticeable dominance of any rule over the 

others in different contexts. They concluded that no rule could always dominate the others 

under distinctive scenarios. Different solution algorithms have been developed based on 

these rules. For instance, Chun (2001) considered the information existing in prior OD 

matrices and assumed specific weights for OD demand to extend the maximum flow 

intercepting rule. In a similar study, Ehlert et al. (2006) introduced the second-best solution 

for sensor configuration given a set of preinstalled sensors in a network.  

There has recently been a considerable number of studies that focus on maximizing 

the expected information gain for OD demand estimation and link or route flow observability 

given a certain number of sensors. Viti et al., (2014) introduced a new metric to assess route 

flow observability based on different sensor configurations that lead to partial observability. 

Their primary goal was to maximize the route and link flow information gains in a partially-

observable network. Rinaldi and Viti (2017) extended that research by proposing an exact 
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and approximate route set generation model that employs graph theory and the maximum 

clique problem to identify a resilient counting sensor location that maximizes the information 

gain from a set of deployed sensors.  

Other studies address information gain from an OD demand estimation perspective. 

For instance, Zhou and List (2010) developed an information-theoretic model that locates 

both automatic vehicle identification (AVI) and counting sensors to maximize the expected 

information gain for the OD demand estimation problem. Yang et al. (2018) and Yang and 

Fan (2015) attempted to improve the quality of deterministic and stochastic travel demand 

estimation by employing daily sensor observations. To better solve the dynamic path travel 

time problem, Xing et al. (2013) proposed a heterogeneous sensor assignment model and a 

novel measure to evaluate the quality of travel time prediction. Gomez et al. (2015) 

developed a fuzzy-based, bi-level optimization model to estimate real-time OD demand via 

counting sensors and floating car data. In another study, Yang and Fan (2015) proposed a 

model that considered inconsistency in the prior OD demand matrix and analyzed the error 

bounds of OD demand estimation. They considered both topological and operational 

relationships in a traffic network.  

Sensor failure is a significant factor that impacts the expected information gain from 

a network. I identified a limited number of studies that account for sensor failure with regards 

to flow observability and OD demand estimation. In one of the few studies in this area, Li 

and Ouyang (2011) identified the optimal locations of AVI sensors in traffic to maximize the 

route flow information gain with consideration for sensor failure. Danczyk et al. (2016) 

studied the deployment of counting sensors on a freeway to minimize overall freeway 



 

9 

 

performance monitoring errors with respect to sensor failure. Salari et al. (2019) addressed 

the full and partial link flow observability problem to minimize the adverse effect of sensor 

failure on the link flow inference process. Consideration for sensor failure in stochastic OD 

demand pertaining to the OD demand estimation problem is absent in the current literature. 

 

1.2 Proposed Methodology and Research Contributions 

This research contributes to the body of knowledge by considering the impact of sensor 

failure for two well-known problems in NSLP: 1) the full link flow observability problem 

and 2) the origin-destination estimation problem. I investigate the effects of sensor failure in 

identifying sensor locations for both problems. Consideration for sensor failure is often 

overlooked in the literature even though sensor failure can significantly affect the reliability 

and robustness of the NSLP. The large size and the frequently high congestion levels of 

actual transportation networks further exacerbate the problem.  

The contribution of this study can be summarized in two distinctive categories: flow 

observability and flow estimation. The contributions of this research to each category are 

outlined below. 

Contributions to the NSLP for flow observability: The model developed for this 

research offers several contributions. First, I develop a new mathematical optimization model 

for sensor configuration that considers the probability of sensor failure in reaching full link 

flow observability. Second, I considered the possibility of installing non-identical sensors 

with different failure probabilities and costs on links with different levels of importance in a 

network. I also consider the effect of high heavy vehicle loads (HVLs) on the failure 
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probability of sensors and the corresponding sensor positioning within a network. Third, I 

discuss the loss of this information due to the failure of sensors with respect to the availability 

of route flow information and I add a new consideration for sensor positioning evaluation. 

Fourth, I propose a new approach for locating redundant sensors in a traffic network to 

minimize the effect of sensor failure on the full link flow observability based on the 

suggested layout of sensors. Finally, I address the economic impediments to reaching full 

link flow observability by evaluating the effectiveness of the proposed model for partial link 

observability in a network.  

Contributions to NSLP for OD flow estimation: In this work, I attempt to address 

the existing gap in the literature through three main contributions. First, I identify the location 

of sensors for OD demand estimation purpose by proposing a mathematical model that 

considers the effect of sensor failure on the OD demand information gain from links 

instrumented with sensors. I achieve this by developing a measure that considers the 

maximum possible OD demand information gain for each observed link and for each OD 

pair in the event of sensor failure. Second, I consider the failure rate as a function of time 

and study the OD demand information gain from OD pairs at useful life and wear-out phases 

of sensors. The consideration of time-dependent failure rate of sensors provides traffic 

authorities with the chance to monitor OD demand information gain through the life phases 

of deployed sensors. Third, with respect to sensor failure, I revise the rules for sensor 

deployment to maximize the OD demand information gain for installation of any extra 

sensors in a network.  
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1.3 Thesis organization  

This thesis consists of four chapters that are laid out as follows: 

Chapter Two describes the optimization of traffic sensor locations for complete link 

flow observability in a traffic network with consideration for sensor failure. This chapter 

begins with a comprehensive overview of the flow observability problem, followed by 

examples that better demonstrate the main idea behind my proposed model. This chapter also 

covers problem formulation, illustrative examples, discussion of the applicability of the 

proposed model for partial observability, and conclusions.  

Chapter Three describes an analytical model that finds the optimal location of 

counting sensors for OD estimation purposes. This chapter includes the formulation of the 

proposed model and several examples that demonstrate its applicability. The chapter 

concludes with insightful findings from the results.  

  Chapter Four summarizes the findings of this research and concludes the work 

described in this dissertation. The contributions of this research to the greater body of 

literature are described. Potential applications and future research are recommended. 
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CHAPTER 2:  OPTIMIZATION OF TRAFFIC SENSOR LOCATION FOR 

COMPLETE LINK FLOW OBSERVABILITY IN TRAFFIC NETWORK 

CONSIDERING SENSOR FAILURE2 

 

2.1 Classification of the flow observability problem  

In the literature, Gentili and Mirchandani (2012) classified the network sensor 

location problem into two categories: (i) the sensor location flow estimation problem and (ii) 

the sensor location flow observability problem. The sensor location flow estimation problem 

concerns finding the optimum location of sensors to minimize traffic flow estimation errors, 

while the sensor location flow observability problem attempts to determine the location that 

requires the least number of sensors to make full or partial traffic flow observability possible. 

The solutions obtained in the flow observability problem are mainly based on network 

topological information, i.e., information on links connectivity and enumeration of routes. 

However, the flow estimation problem usually requires additional information, including the 

historical traffic flows in a network, since this type of problem attempts to use this historical 

information to estimate current traffic flow data (cf. Chootinan et al. (2005), Chen et al. 

(2007), Ehlert et al. (2006), Gentili and Mirchandani (2018), Hadavi and Shafahi (2016), and 

Zhan et al. (2018) for a further review of the literature related to the sensor location flow 

estimation problem). 

                                                 

2 This content of this chapter is published in Salari et al. (2019) 
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The sensor location flow observability problem includes studies that attempt to 

maximize/minimize the objective functions related to traffic flow observations. As an 

example of a multi-objective problem, Viti et al. (2014) addressed the observability problem 

to maximize the traffic flow information gain obtained from sensors and to minimize the 

number of sensors to be located on links. There are also some studies which attempt to satisfy 

one or more predetermined objectives, known as goal-oriented problems. In one such study, 

Yang and Bell (1998) defined a mathematical model that determines the number of sensors 

to be located on nodes to observe a given fraction of the traffic flow. In a more recent work, 

Fu et al. (2017) used matrix arithmetic to obtain the full link observability as the goal of their 

model in the presence of the link-path incidence matrix. 

Many of the studies which addressed the flow observability problem cannot be 

assigned to either category, as they usually mix multi-objective and goal-oriented problems 

to simultaneously pursue several aims, as well as to meet some predefined goals often 

defined as constraints in their formulations. As a way of illustration, He (2013), Hu et al. 

(2009), Ng (2012), and Xu et al. (2016) investigated the minimum number of sensors that 

should be installed on links with the assumption of no prior information (i.e., information on 

turning ratio at an intersection, link choice proportions, and the route choice behavior of 

users) to observe or infer the flow of all links in a traffic network. For instance, Hu et al. 

(2009) employed an algebraic approach to identify the location of sensors on links for full 

link flow observability assuming the existence of the link-path incidence matrix to represent 

a network. In another work, He (2013) used the topological tree characteristics of solutions 
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to determine the minimum set of links to be equipped with sensors for the full link 

observability.  

The sensor location flow observability problem can also be categorized according to 

traffic flow observation types. Based on the classification introduced by Castillo et al. (2013), 

there are four types of observability problems: link flow observability, OD flow 

observability, route flow observability, and general case flow observability.  

(1) Link flow observability: In this category, the aim is to determine which subset of links or 

nodes should be instrumented with sensors to enable link flow inference of unobserved links. 

The link flow observability problem itself can be divided into two subproblems concerning 

the location of sensors, which can either be on nodes (Bianco et al., 2001, 2006; Morrison 

and Martonosi, 2015) or on links (Bianco et al., 2014; Hu et al., 2009; Ng, 2012, 2013; Xu 

et al., 2016). Both of these subproblems deal with a linear system of equations and attempt 

to obtain the unknown values related to unobserved link flows using independent equations.  

(2) OD flow observability: Observing the ongoing flow between each OD pair is the purpose 

of OD flow observability problem. The OD flow information can be obtained counting link 

flows or route flows (See Castillo et al., 2008a; Mínguez et al., 2010). It is possible that the 

OD flow observability using link flow information has infinite solutions, known as an under-

specified problem. To overcome under-specification, some researchers suggest using 

additional information including the prior information of OD-pair flows and network 

properties (Castillo et al., 2008b).  

(3) Route flow observability: In relatively large networks, there is usually more than one path 

or route between each OD pair. Obtaining information about the flow of each route is the 
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goal of the route flow observability problem. Route flow knowledge can also provide OD 

flow and link flow information by using flow conservation equations. Studies addressing the 

route flow observability problem can be classified based on the types of sensors employed 

in their target network. For instance, some studies attempt to obtain route flow information 

using sensors (Hu et al., 2009; Rinaldi and Viti, 2017) while others use different techniques 

and types of sensors to acquire this information. For instance, plate scanning techniques 

which give information about the flow of a route or part of a route using license plate 

recognition (LPR) sensors is an alternative to the link counts technique (Castillo et al., 2013).  

(4) General case flow observability: This case happens when the flow of interest is not 

limited to one of the three categories described above. In fact, the goal of general flow 

observability could be to observe the flow of links, routes and OD flows simultaneously 

(Castillo et al., 2010; Fei et al., 2013). For instance, Castillo et al. (2010) developed a matrix 

tool for general observability in traffic networks.  

Castillo et al. (2013) introduced the link flow observability problem as the simplest 

one among other observability problems. Although, recently, there have been many more 

studies addressing the link flow observability problem in the literature. This trend is due to 

the fact that this type of observability problem requires the least prior information of a traffic 

network while other types of problems depend on additional information which might not be 

available for large-scale networks. For instance, information about the number of OD pairs 

and the number of paths in a network must be available to solve OD flow observability or 

route flow observability problems, respectively. However, as the size of a traffic network 

increases, it becomes more challenging to obtain these pieces of information (Ng, 2012). 
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Another reason for the current focus on the link flow observability problem is that most of 

the studies addressing the flow observability problem are designed to be employed for the 

strategic planning of a traffic network (Xu et al., 2016). Since it is difficult for urban planners 

to obtain the prior information required for other types of observability problems at the 

planning stage, planners prefer to rely on the least amount of prior data. 

 

2.2 Motivating example 

Consider the example of the “Fishbone network” which was first introduced by Hu 

et al. (2009) as a hypothetical example. This network has 18 directed links and four centroid 

nodes, i.e., nodes 1 and 2 as origin nodes and nodes 9 and 10 as destination nodes (See Figure 

2.1). The other nodes, including nodes 3, 4, 5, 6, 7, and 8, are non-centroid nodes.  
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Figure 2.1 – Fishbone network 

 

According to Ng (2012), to reach the full link flow observability in a network, I need 

to equip a minimum of 
 

100
 
 
 
 

J I

J
percent of links with sensors, where J  and I
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represents the set of links and non-centroid nodes in a network, respectively3. This means 

that at least 66.67 % of the links, i.e., 12 links, of the Fishbone network should be equipped 

with sensors to make this network fully observable. Note that the flow of the other six links, 

i.e., unobserved links, can be inferred using the link flow information of observed links, i.e., 

sensor-equipped links, while according to Ng (2012), different sets of links can be considered 

as the set of observed links in a network. The layouts introduced in Figure 2.2 are two of the 

many possible layouts to reach full link flow observability in the Fishbone network. 
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Figure 2.2 – Two possible layouts to reach full link flow observability in Fishbone network 

                                                 

3 To determine the minimum number of links to be equipped with sensors, Ng (2012) specifies an upper 

bound for the set of all possible links whose flow can be inferred to reach full link flow observability in a 

network.   
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According to Figure 2.2, there are six unobserved links as well as 12 observed links in each 

of layouts A and B. Figure 2.2 also introduces the linear system of equations required to infer 

the flow of unobserved links in each layout using the link flow information of observed links. 

Sensors installed in observed links similar to any other measurement apparatus are subject 

to failure and their failure can affect the link flow inference of unobserved links. This means 

that in an equation existing in either of the linear systems introduced in Figure 2.2, the flow 

of an unobserved link cannot be inferred if at least one of the sensors installed on the 

observed links in that equation breaks down. Considering the failure probability of sensors 

located on the observed links, I can calculate the probability of missing/not inferring the link 

flow of unobserved links.  

For instance, the probability of missing the link flow inference of the unobserved link 

4 in layouts A and B is determined in Table 2.1. 

Table 2.1 – Probability of missing the link flow inference of the unobserved link 4 

Layout Link flow inference equation 

Possibility of missing the link flow inference 

(Identical sensors) 

A 4 8 10 6l l l l    31 (1 )p   

B 4 14 16 6 8 12 13l l l l l l l       61 (1 )p   

 

In Table 2.1, p  is the failure probability of a sensor and it is assumed all sensors are 

identical having the same probability of failure and functioning independently. According to 

the last column of Table 2.1, the unobserved links which need a smaller number of observed 

links for their link flow inference tend to have a lower chance of missing their link flow 



 

19 

 

inference due to the failure of sensors. For instance, the chance of missing the link flow 

inference of unobserved link 4 in layout A is lower than the chance of missing the link flow 

inference of the same link in layout B. Therefore, a possible layout that requires fewer 

observed links for the link flow inference of each unobserved link is a preferred layout 

assuming all sensors are identical.  

Until now, I have only considered the probability of missing link flow inference for 

a given set of unobserved links. In addition, I am also interested in exploring the effect of a 

sensor’s failure on the link flow inference of unobserved links. For instance, I compare the 

failure effect of the sensor installed on observed link 9 in layouts A and B (See Table 2.2). 

According to Table 2.2, the observed link 9 appears in four different equations of the linear 

system related to layout A while this observed link exists in three different equations of the 

linear system related to layout B. This means that the flow of 4 unobserved links (links 1, 

13, 16 and 17) in layout A cannot be inferred if the sensor installed on link 9 breaks down. 

However, the flow of only three unobserved links (links 1, 15, and 17) cannot be inferred if 

the sensor installed on link 9 in layout B stops functioning. Considering the failure 

probability of the sensor installed on link 9, I can also find the expected number of 

unobserved links for which flow cannot be inferred due to the failure of the sensor located 

on link 9 in each layout. The last column of Table 2.2 represents this expected value assuming 

that the sensors installed on link 9 in both layouts A and B are identical. According to this 

column, the lower the number of appearances of an observed link in different equations 

required for the link flow inference of unobserved links, the lower the expected number of 
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unobserved links for which flow cannot be inferred due to the failure of the sensor installed 

on that observed link.  

Table 2.2 – Failure effect of the sensor installed on link 9 in layouts A and B 

Layout Equations including link 9 

Set of unobserved links requiring link 

9 

Expected number of 

unobserved links  

(Identical sensors) 

A 

1 5 9 7

13 9 11 14 15

16 9 10 11 12 15

17 9 10 11 12 18

l l l l

l l l l l

l l l l l l

l l l l l l

  


   


    
     

  1,13,16,17  4 p  

B 

1 5 9 7

15 9 11 14 13

17 9 11 14 16 13 18

l l l l

l l l l l

l l l l l l l

  


   
      

  1,15,17  3p  

 

In Tables 2.1 and 2.2, I assumed that the sensors are identical, each having similar 

failure probability. In this study, I am also interested in examining the possibility of installing 

different types of sensors, i.e., non-identical sensors, with dissimilar failure probability. The 

probability of missing the link flow inference of unobserved links due to the failure of 

identical or non-identical sensors, as well as the effect of each sensor failure on the link flow 

inference of unobserved links, motivated me to determine the location of sensors in a network 

to minimize the adverse effect of sensor failure.  

 

2.3 Link flow inference: Locating sensors on links 

Inferring link flows based on the traffic flow information of links instrumented with 

sensors is referred to as the link flow inference. Node-based and route-based methods are 

two main techniques to infer link flows. Node-based approaches use the flow conservation 
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rule for non-centroid nodes to infer link flows, while route-based methods are based on link-

path incidence equations. Ng (2012) suggested the use of a node-based approach to avoid the 

path enumeration problem. Therefore, in this work, I also employ this approach to infer link 

flows. The flow conservation rule for a set of links connected to a node can be shown as 

follows: 

( ) ( )

0                                      
 

   j j i

j In i j Out i

l l BF  (2.1) 

 

Where jl  represents the ongoing flow on the link j . ( )In i , ( )Out i and iBF  are the set of links 

with a head at node i , a tail at node i , and the balancing flow at node i , respectively. For a 

non-centroid node, the BF should be equal to zero. Therefore, for each non-centroid node, 

the above equation changes to Equation (2.2). 

( ) ( )

0                                       
 

    j j

j In i j Out i

l l i I  (2.2) 

 

For a traffic network consisting of I  non-centroid nodes and J  links, Equation (2.2) can 

be written as the following system of linear equations: 
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where T is the node-link incidence matrix, which is defined for non-centroid nodes. For this 

linear system, ijt  is equal to +1 if j  is an incoming link to node i . Otherwise, if j  is an 

outgoing link from node i , then ijt  equals -1, and it equals 0 if j  is neither an incoming nor 

an outgoing link to/from node i . The number of non-centroid nodes, I , and the number of 

links, J , respectively comprise the number of equations and variables of this system. A 

linear system has a unique solution when the number of equations equals the number of 

unknown variables and all equations are linearly independent. Thus, in the linear system of 

Equation (2.3), I can determine the value of a maximum number of I  unknown variables 

when the remainder variables, J I , are known, and all I  equations of this system are 

independent. The flow conservation rule using a node-based approach for a traffic network 

can also be written as follows (Ng, 2012): 

  0
u

u o

o
T

L

l
T T

l

 
 

 
 

(2.4) 

where 
oT  and 

uT  are the sub-matrices of T  relating to observed and unobserved links, 

respectively. The linear system of Equation (2.4) can also be shown as follows: 

10  u u o o u u o oT l T l l T T l     (2.5) 

 

According to Equation (2.5), the node-link matrix corresponding to unobserved links, 
uT , 

should be an invertible matrix with the rank of I  to make it possible to infer the flow of 

unobserved links, 
ul , while according to Ng (2012), the matrix 

uT  is not necessarily unique. 
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In what follows, I introduce one of the methods for constructing the matrix of unobserved 

links.  

2.4 The concept of new links 

Initially introduced by Castillo al. (2014), the new link method is further developed 

by Xu et al. (2016) as a means to build the matrix of unobserved links. According to this 

method, each link assigned to a set of new links related to a non-centroid node should be a 

link connected to that node and shouldn’t already be assigned to other sets of new links. In 

other words, the set of new links associated with a non-centroid node includes all links 

connected to that node excluding the links which are already allocated to other sets of new 

links. To create the sets of new links, I usually start from the first non-centroid node and 

continue constructing these sets for all other non-centroid nodes. It is possible that some sets 

of new links become empty sets in a network, as the links connected to those nodes are 

already assigned to the sets of new links associated with other non-centroid nodes. The 

following equations show the rules to be followed in constructing the set of new links: 

i
i I

J H


  

'                               , 'i iH H i i I    

(2.6) 

(2.7) 

where J  and I  are the set of links and non-centroid nodes in a network, respectively. 
iH  and 

'i
H represent the set of new links assigned to the non-centroid nodes i and 'i . According to 

Equation (2.6), the union of all sets of new links should be equal to the set of links. Moreover, 

Equation (2.7) guarantees that there is no intersection between any set of new links in a 

network. As a way of illustration, Table 2.3 shows the set of new links for the network 

depicted in Figure 2.1 
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Table 2.3 – Set of links for the Fishbone network  

 

Non-centroid node Connected links Set of new links to nodes 

3 1,5,7,9  1,5, 7,9  

4 2,3,5,6,7,8,11,12  2,3, 6,8,11,12  

5 4,6,8,10  4,10  

6 9,11,13,14,15  13,14,15  

7 10,12,13,14,16  16  

8 15,16,17,18  17,18  

 

The second column of Table 2.3 shows the links connected to each non-centroid node 

in the node-link incidence matrix belonging to the network in Figure 2.1 The last column of 

this table shows the sets of new links assigned to each non-centroid node. As can be seen for 

each set, the link(s) allocated to a non-centroid node are not assigned to any other non-

centroid node. Xu et al. (2016) proposed that “the maximum set of unobserved links to be 

inferred from observed links can be found by selecting any single new link assigned to each 

non-centroid node”.4 Note that the term “maximum” indicates that depending on the topology 

of a network, the number of sets of new links can be less than the number of non-centroid 

nodes (i.e., some sets of new links associated with non-centroid nodes become empty sets). 

The links selected from each non-empty set of new links are then used to create the matrix 

                                                 

4 For the proof, please refer to Castillo et al. (2014) or Xu et al. (2016).  
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of unobserved links, i.e., 
uT , while the structure of sets of new links prevents the selected 

links from inducing a cyclic graph and becoming a non-invertible matrix.  

2.5 The effect of sensor failure on the link flow inference of unobserved links 

In this section, I investigate the importance of sensor failure in determining the set of 

observed links in a network to reach full link flow observability. To do so, I explore the 

objective function(s) required to minimize the effect of sensor failure on the link flow 

inference of unobserved links. According to the motivating example, two contributing factors 

in determining the set of observed links, considering the failure of sensors, include the 

probability of missing the link flow inference of unobserved links as well as the effect of 

sensor failure on the link flow inference of unobserved links. I further discuss these two 

factors with respect to situations in which the sensors are identical or not. The probability of 

failure of identical sensors is assumed to be the same regardless of their cost and their 

employed technology. This assumption can be beneficial when there are not enough 

historical records about the failure of different type of sensors. However, if this information 

is available, I should be able to develop a more specific model considering non-identical 

sensors having different probabilities of failure. Note that in both scenarios, I assume that 

the sensors are installed independently and there is no correlation between the failure of any 

pair of sensors.  
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2.5.1 Probability of missing the link flow inference of unobserved links 

2.5.1.1 Identical sensors 

The probability of missing the link flow observability of any observed link is equal 

to the probability of failure of the sensor installed on that link. However, for an unobserved 

link, the failure of at least one of the sensors installed in the observed links required for the 

link flow inference of that unobserved link can prevent the link flow inference of that link. 

According to Equation (2.5), the flow of unobserved links can be inferred by multiplying the 

matrix 1

u oT T  by the matrix of observed links, i.e., 
ol . The elements of the matrix 1

u oT T  can 

help me to identify the observed links that should be used for inferring the flow of an 

unobserved link. For instance, I can consider that the observed link "j  should be used to infer 

the flow of the unobserved link 'j  if the element
' ''j j

a  of row 'j  and column ''j  of the matrix 

1

u oT T  is a non-zero value. The maximum probability of missing the link flow inference of 

an unobserved link can be obtained using Equation (2.8): 

' ''
'

''

2

1 max 1 (1 )
j j

j J
j J

Y a p




 
    

 
  (2.8) 

 

where p represents the failure probability of identical sensors. Moreover, I squared the 

element of the matrix 1

u oT T  in Equation (2.8) to cancel the effect of negative signs for 

counting the number of observed links in each row of the matrix 1

u oT T . Equation (2.8) is 

helpful in identifying the unobserved links that have a higher chance of missing their link 

flow inference. When all sensors are identical, the probability of missing the link flow 
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inference of an unobserved link depends on the number of observed links which need to be 

used to infer the flow of that unobserved link. In other words, the higher the number of 

observed links required for the link flow inference of an unobserved link, the higher the 

probability of missing the link flow inference of that link. I can identify the unobserved 

link(s) that need the maximum number of observed links for the link flow inference by 

counting the number of non-zero elements in each row of matrix 1

u oT T . 

In addition to determining the maximum possibility of missing the link flow inference 

of an unobserved link, I can also calculate the expected number of unobserved links whose 

flow cannot be inferred due to the failure of sensors installed on the observed links. 

' ''

' ''

2

2 1 (1 )
j j

j J j J

Y a p
 

 
    

 
   (2.9) 

 

By minimizing 
2Y , I can reduce the expected number of unobserved links for which 

link flow cannot be inferred as a result of sensor failure. To obtain the average number5 of 

observed links required for the link flow inference of each unobserved link, I can use the 

following equation: 

' ''

'' '

2

,

3 '

j j
j j J

a

Y
j





 (2.10) 

 

                                                 

5 In this work, the term “average number” refers to the arithmetic mean of a variable. 
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where 
'j  is the number of unobserved links in a network. If a particular layout of sensors 

leads to a lower value of 
3Y  compared to other layouts, then I expect this layout also has a 

lower value of 
2Y  which means that this layout also has a lower expected number of 

unobserved links for which flow cannot be inferred due to the failure of sensors. The reason 

for this is the fact that 3Y  calculates the average number of observed links required to infer 

the flow of an unobserved link, and when sensors are assumed to be identical, the probability 

of missing the link flow inference of an unobserved link depends on the number of observed 

links needed to infer the flow of that link. Therefore, a lower value of 3Y indicates that, on 

average, a smaller number of observed links are required for the link flow inference of 

unobserved links, and correspondingly, the lower the probability of missing the link flow 

inference of an unobserved link. However, if two layouts have the same value of 
3Y , they 

could still have a dissimilar value of 
2Y . I provide an example in Appendix I to discuss this 

situation in more detail. 

2.5.1.2 Non-identical sensors 

Unlike identical sensors, non-identical sensors can have different probabilities of 

failure depending mainly on their employed technology. The maximum probability of 

missing the link flow inference of an unobserved link in the presence of non-identical sensors 

can be calculated as follows: 

' '' ''
'

''

'' 2

1 max 1 (1 )fj j fj
j J

f F j J

Y a y p


 

 
    

 
  (2.11) 
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where 
"fjy is a binary variable to determine if the sensor type f  is installed on the observed 

link ''j  or not, and
fp  represents the failure probability of the sensor type f . Equation (2.11) 

is of importance in detecting the unobserved link that has the highest chance of missing the 

link flow inference. In addition to the calculation of the maximum probability of missing the 

link flow inference, I can calculate the expected number of unobserved links whose flow will 

be missed due to the failure of non-identical sensors: 

' '' ''

' ''

'' 2

2 1 (1 )fj j fj
f Fj J j J

Y a y p
 

 
    

 
   (2.12) 

 

where in Equation (2.12), the higher value of ''

2Y  indicates that the flow of a higher number 

of unobserved links cannot be inferred if one or more sensors installed on observed links 

break down.  

2.5.2 Effect of a sensor failure on the link flow inference of unobserved links 

2.5.2.1 Identical sensors 

To discuss the effect of a sensor’s failure on the link flow inference of unobserved 

links, I need to identify the appearance of observed links in different equations used to infer 

the flow of unobserved links. To determine the number of appearances of an observed link 

in these equations, I need to count the non-zero values of the column vector associated with 

that observed link in the matrix 1

u oT T . Equation (2.13) calculates the maximum expected 

number of unobserved links for which their flow will be missed due to the failure of a sensor 

installed on an observed link: 
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' ''
''

'

2

4 max
j j

j J
j J

Y p




  
     

  
  (2.13) 

   

In Equation (2.13), ' ''

'

2

j j
j J




 
  
 
  counts the number of non-zero elements in the column 

vector associated with the observed link ''j and it can show the number of appearances of the 

observed link ''j  in different equations used for the link flow inference of unobserved links. 

I also can count the number of non-zero elements in each column vector of the matrix 1

u oT T  

to obtain the maximum number of observed links that is used in different equations required 

for the link flow inference. This way I can determine the maximum number of unobserved 

links for which their flow cannot be inferred due to the failure of a sensor installed on an 

observed link. The average number of unobserved links whose flow cannot be inferred due 

to the failure of a sensor can be calculated as: 

2

' "

', "

5 ''

j j

j j J
Y

j




 
 
 




 

(2.14) 

 

where in Equation (2.14), 
''j is the number of observed links in a network. Comparing 

Equations. (2.14) and (2.10), I can conclude that by minimizing the average number of 

observed links used to infer the flow of an unobserved link, I can also minimize the average 

number of unobserved links where link flow cannot be inferred due to the failure of a sensor.  
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2.5.3 Non-identical sensors 

For non-identical sensors, the expected number of unobserved links for which their 

flow cannot be inferred due to the failure of a sensor depends not only on the number of 

appearances of an observed link in different equations used for the link flow inference of 

unobserved links but also on the failure probability of the sensor installed on that observed 

link. The maximum expected number of unobserved links where their flow cannot be 

inferred due to the failure of a sensor is calculated as: 

'' ' ''
''

'

" 2

4 max ffj j j
j J

f F j J

Y y p 


 

  
     

  
   (2.15) 

where in Equation (2.15), the observed link with the highest impact on the link flow inference 

of unobserved links can be identified.  

 

2.6 Mathematical formulation 

In this section, I present the constraints and objective functions required to determine 

the type and the location of sensors on links in a traffic network. To deal with the objective 

functions introduced in the previous section, I suggest using min-max and min-sum methods. 

my mathematical formulation is introduced as follows: 

Subscript: 

i = non-centroid node of a traffic network 

j = links of a traffic network 

'j = unobserved links of a traffic network 

r = routes of a traffic network 
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''j = observed links of a traffic network 

f  = type of the sensor to be located on a link 

 

Sets: 

I  = set of non-centroid nodes:  1, .., I  

J  = set of links in a traffic network:  1, .., J  

R  = set of routes in a traffic network:  1, .., R  

M  = set of major roads, M J  

F  = set of the sensor type to be located on links:  1, .., F  

iH = set of new links assigned to node i  

H = set includes all sets of new links  1, .., H 6 

 

Parameters: 

T  = node-link incidence matrix ( I J
T

 ) 

fp  = probability of failure of sensor type f  

fc  = cost of sensor type f  that can be located on a link 

jw = relative importance of link j  

                                                 

6 Based on the definition of the set of new links, the inequality H I is always valid. 
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ijh = a binary parameter that shows if link j  is assigned to the set of new links associated 

with the node i , i.e., 1ijh   if ij H  

jrq = a binary parameter that shows if route r  traverses link j  or not. 1jrq   if route r  

traverses link j  and 0jrq   otherwise  

  = Budget constraint 

 

Decision variables: 

ijx  = binary variable indicating whether link j which is assigned to the node i  as a new link 

is an unobserved link ( 1ijx  ) or not ( 0ijx  ). 

jo = binary variable determining if link j  is an observed link or not. 

fjy  = binary variable indicating whether the sensor type f  is installed on link j  ( 1fjy  ) and 

( 0fjy  ) otherwise. 

uT  = variable associated with a set of column vectors structured by selecting a link from 

each set of new links and putting the column vector related to that link from node-link 

incidence matrix in uT . The binary variable 
jo  associated with each link selected to be in uT  

should be equal to zero.  

 

2.6.1 Objective functions and constraints regarding identical roads 

 

To install sensors in a network, I can assume all links are equally significant and find 

the preferred location of sensors so as to minimize the effect of sensor failure on the link 
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flow inference. The reason for introducing the min-max functions is to minimize the 

maximum effect of sensor failure on the link flow inference of unobserved links. Depending 

on whether sensors are identical or not, I can define different min-max objective functions 

to identify the location of sensors. Equation (2.16) introduces two possible objective 

functions assuming that sensors are not identical.  

' '' ''
'

''

'' ' ''
''

'

2

1

2

2

min max 1 (1 )                     I

min max                            II   

fj j fj
j J

f F j J

ffj j j
j J

f F j J

Z a y p

Z y p 


 


 

   
          


   
        

    



 

 )2.16( 

          

 

 

 

Equation (2.16-I) minimizes the maximum probability of not inferring the flow of an 

unobserved link due to the failure of sensors, while Equation (2.16-II) minimizes the 

maximum effect of a sensor’s failure on the link flow inference of unobserved links. Equation 

(2.16) can be used for identical sensors by considering that   ,fp p f   and excluding the 

binary variable from the equation that determines the type of sensor installed on an observed 

link. The min-sum objective function is introduced here to minimize the average number of 

unobserved links whose link flow inference will be affected by a sensor’s failure. To be more 

specific, I introduced Equation (2.17) to minimize the expected number of unobserved links 

whose flow cannot be inferred due to the failure of sensors. 

' '' ''

' ''

2

3 min 1 (1 )             fj j fj
f Fj J j J

Z a y p
 

  
      

  
   (2.17) 
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Similar to Equation (2.16), Equation (2.17) can be used for identical sensors, assuming all 

sensors have the same probability of failure and by removing the binary variable 
fjy  from 

the equation. The following constraints relate to the above mentioned objective functions: 

 

          s.t.,

 

 

1                                                   
i

ij ij

j H

h x i I


  
 

(2.18) 

1                                               ij j

i I

x o j J


     )2.19(

 

                        fj j

f F

y o j J


    )2.20(

 

f fj

j J f f

c y 
 

  )2.21(

 

 

Constraint (2.18) allows a link to be an unobserved link in the set of links assigned 

to the node i , if that link is already available in the set of new links associated with node i . 

Constraint (2.19) identifies the set of observed links in a network that should be equipped 

with sensors. According to the constraint (2.20), if a link is considered as an observed link 

in any set of new links, then the flow of that link should be observed by a sensor installed on 

that link. Constraint (2.21) imposes the budget constraint required for installing sensors in a 

network, while the budget should be sufficient to allow installation of the minimum number 

of sensors required for full link flow observability.  
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2.6.2 Objective functions and constraints considering major roads 

In real networks, all links are not of the same importance –some are major roads, 

such as highways or major arterials, and others are minor roads such as collectors. Regarding 

the failure of sensors, I am interested in incorporating the relative importance of links in 

finding the optimal location of sensors. On one hand, if the number of links required to be 

instrumented with sensors exceeds the number of major links in a network, then traffic 

sensors can be manually assigned to all major roads, i.e., major roads become observed links, 

and the rest of the observed links can be selected from the remaining links in the set of links. 

This assignment can be justified by the fact that the chance of missing the link flow inference 

of an unobserved link is usually higher than the chance of missing the link flow observability 

of an observed link. The rest of the links required to complete the set of observed links can 

be selected from the minor roads in a network while using the min-max or min-sum objective 

functions introduced in Equation (2.16) and Equation (2.17), respectively. On the other hand, 

if the number of links required to be equipped with sensors is less than the number of links 

in the set of major roads, then either of Equation (2.16) or (2.17) can still be used as the 

objective function of the model while enforcing that all members in the set of observed links 

should be from the set of major roads. The following are the objective function and 

constraints that consider major roads in instrumenting links with sensors for the two 

situations described above: 

 

 (2.22) 
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(2.23) 

 

 

                 if 0j u

j J

o J H T


    (2.24) 

 

As I explained above, the objective function selected to be used in both situations can 

be either Equation (2.16) or Equation (2.17). Constraint (2.23-I) is associated with the case 

where the number of major links is less than the number of observed links required to reach 

full link flow observability, while, constraint (2.23-II) is formulated for the case where the 

number of major roads is greater than the number of observed links required to guarantee 

full link flow observability. Constraint (2.24) ensures that the number of links is equal to the 

number of links minus the total number of sets of new links. According to this constraint, the 

observed links should be selected in a way that the node-link incidence matrix related to 

unobserved links has a non-zero determinant. This non-zero determinant condition needs to 
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be satisfied, because by enforcing that the set of observed links be from the set of major 

roads, it is possible that more than one link in a set of new links is selected as the unobserved 

link which means the concept of new links explained in Section 2.4 cannot be applied.  

Moreover, equipping all major roads with sensors could also lead to a situation where 

it is not possible to construct the matrix of unobserved links to be invertible. I provide an 

example in the small Fishbone network in Appendix II to elaborate on this situation in more 

detail. To avoid the occurrence of the above-mentioned situation, I could update the sets of 

new links by removing the major links to be instrumented with sensors from the sets of new 

links in such a way as to avoid a set of new links becoming an empty set. Employing this 

approach, I can still use the concept of new links to generate initial feasible solutions. 

However, as Equation (2.23) is no longer applicable to this approach, I need to relax this 

constraint as well as update the objective function to cause more major links to become 

observed links in the optimum solution. A possible way to achieve this objective is to assign 

weights to links to signify their relative importance considering different factors including 

the capacity of links and so on. The updated objective function is provided below: 

   "

1

2

5 ' ' " "

' "

min 1 1             jw
j j j fj f

j J f F j J

Z w a y p
  

  
      

  
   (2.25) 

 

where in Equation (2.25), ''j
w  and 'j

w , ( ''

'' '

'0 , 1, ,jj
w w j j J    ) are the weights assigned to a 

link in a traffic network to emphasize the relative importance of the link, with higher values 

of the weight for a link indicating greater significance of that link. In Equation (2.25), if a 

link is unobserved, then its relative weight is equal to
'jw . In this way, the objective function 
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assigns the links with lower weights as unobserved links to minimize the value of 
3Z . 

Moreover, if the link becomes an observed link, then its weight is represented as 
'''

1

j
w

 as the 

power of the term   2

' " "1 j j fj fa y p ,   ' '' ''

2 '' '0 1 1  , ,fj j fj
a y p j j J f F      , to maximize this 

term and to prompt the model to assign the links with higher weights as observed links. 

Considering Equation (2.25) as the objective function, then I should set Equations. (2.18-

2.21) as the constraints of the model. Equation (2.25) is also useful for the situation where it 

is easier to incorporate the relative importance of links compared to each other, instead of 

separating the links into two distinctive sets of major roads and minor roads. Employing 

Equation (2.25) as the objective function and Equations. (2.18-2.21) as the constraints, I also 

can directly construct the set of unobserved links from the original sets of new links, not the 

updated ones. 

 

2.7 Full link flow observability considering route flow information  

Although access to route flow information in the strategic planning phase of a 

network is not always feasible, this type of information can provide urban planners with 

useful knowledge to reduce the number of sensors required to be installed in a network (Fu 

et al., 2016). Note that my aim in this section is not to separately investigate the full/partial 

route flow observability problem considering the failure of sensors, but to discuss how the 

existence of route flow information will lead to a better evaluation of the solutions to reach 

full link flow observability, which is the main focus of this work. Depending on the 
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uniqueness of information that can be obtained from link flow observation, routes can be 

divided into three distinctive sets: 

 1R : All links traversed by this type of route are not traversed by any other route. 

2R : There is at least one link in the set of links traversed by route type 2 which is not traversed 

by any other route.  

3R : All links traversed by route type 3 are also traversed by other routes.  

Note that the definition of route types, i.e.,  sets 1R , 2R  and 3R  , is analogous to that 

provided by Rinaldi and Viti (2017). They also categorized routes into three categories; 

namely, non-redundant routes (NR), redundant while informative routes (RI), and purely 

redundant (PR) routes. The definition of categories NR, RI and PR routes are very similar to 

sets 1R , 2R  and 3R , respectively. One important difference is that Rinaldi and Viti (2017) 

defined a route as belonging to NR category if the links traversed by it were not previously 

crossed by any other route, whereas in my definition, a route is classified as type 1 if the 

links traversed by that route are not crossed by any other route. I proposed this definition for 

1R as it makes it easier to interpret the failure effect of sensors installed on links. Equation 

(2.26) represents the characteristics of sets 1R , 2R  and 3R : 
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According to Equation (2.26), there is no intersection between any pair of sets 1R , 2R  and 

3R . Moreover, Equation (2.26-IV) declares that the union of sets 1R , 2R  and 3R  equals R  

which is the set of all routes in a network.  

The flow of a link in a network can consist of the summation of flow of routes from 

sets 1R , 2R  or 3R . The following equation demonstrates the relationship between flow of 

routes which traverse link j : 

1 2 3

=j r

r R R R

v e


  (2.27) 

  

Where re  is the ongoing flow of route r . In Equation (2.27), if r , where 1 2r R R , is the 

only route traversing link j , then by instrumenting link j  with a sensor, I can obtain the flow 

of this route. In a different situation, if 2 3r R R  and there is more than one route crossing 

link j , then I may still find the exact flow of all or some routes traversing link j  by equipping 

this link with a sensor while also using the route information obtained from other routes in 

1R  and 2R . This latter situation is discussed by Castillo et al. (2014) and Rinaldi and Viti 

(2017) when they addressed the fact that a route in the set of 3R may still contribute to 

increasing the gain in route information by using sensor-equipped link information. In other 

words, these authors pointed out that considering link-route incidence matrix, the column 

vector related to the route 'r  in 3R  may be independent from the union of column vector of 

routes in 1 2R R . Rinaldi and Viti (2017) identify those routes in 3R  in a network to ensure 

there is no other route that can contribute to partial/full route flow observability. In my work, 
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I suggest installing a sensor on at least one link from the set of links traversed by each route 

in 1R :  

11                                                                   jr j

j J

q o r R


    (2.28) 

 

In Equation (2.28), 
jrq  is a binary parameter that shows whether route r  traverses link j  or 

not. The value of this parameter can be obtained from the link-route incidence matrix. 

Moreover, for the set of links traversed by a route in 2R , I recommend equipping the link 

which is not traversed by other routes with a sensor: 

 

'

'

2
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              ,jr jjr
r R r

q q o j J r R


 
     
 
 
  (2.29) 

 

According to Equation (2.29), if a link is traversed by a route in 2R , and is not traversed by 

any other route in R , then that link should be equipped with a sensor.  Finally, by using the 

results of the model developed by Rinaldi and Viti (2017), I can recognize which routes in 

3R  are contributing to route flow observability and install a sensor on at least one of the links 

traversed by these routes:  

'31                            jr j

j J

q o r R


    (2.30) 

Where 
'3R is the set of routes in 3R which are independent from all routes in 1R and 2R . 

According to Equation (2.30), at least one of the links available in the set of links traversed 

by a route in 
'3R  should be instrumented with a sensor. 
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I should note that I may not be able to reach full link flow observability employing 

Equations. (2.28), (2.29) and (2.30) as hard constraints. This situation could arise when the 

set of links which create a cyclic graph are selected to be instrumented with sensors according 

to these three constraints7. To avoid this possibility, I suggest finding the location of sensors 

to reach full link flow observability in the first level optimization and then maximizing the 

information gain of routes, i.e., minimizing the probability of missing the route flow 

observability in the second level by using the pool of optimum solutions obtained in the first 

level as feasible solutions for the second level optimization. I also can combine both 

objective functions, including minimizing the effect of sensor failure on link flow inference 

of unobserved links, as well as minimizing the effect of this failure on route flow 

observability of routes in a single level optimization, using weighted sums method (WSM) 

or ε-constraint. However, I prefer two-level optimization as the feasible solution used in the 

second level guarantees to position sensors in a way to have minimum failure effect on link 

flow inference of unobserved links. The objective function and the constraint of the second 

level can be defined as: 

 
'1 2 3

6

fj jry q

f

j J f Fr R R R

Z p
 

 
  

 
   (2.31) 

s.t. 

         Equations. (2.18-2.21)  

                                                 

7 Please refer to Appendix II where I discuss a similar situation in which instrumenting all major links with 

sensors leads to the creation of a cyclic graph. 
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 (2.32) 

Equation (2.31) attempts to minimize the expected number of routes in 1R , 2R , and 
'3R  for 

which route flow observability will be missed due to the failure of sensors. According to this 

equation, the flow of a route will be missed if all sensors installed on links traversed by this 

route break down. In other words, the higher the number of sensor-equipped links traversed 

by a route, the lower the probability of missing that route flow observability. In the second 

level optimization, Equations. (2.18-2.21) are employed to ensure full link flow 

observability. Moreover, Equation (2.32) ensures that, depending on the objective function 

used in the first level optimization, i.e., 4Z  or 5Z , the optimum solution of the second level 

is also the optimum solution of the first-level optimization model.  

 

2.8 Redundant sensors in a traffic network 

After identifying the location of sensors, I can also investigate the preferred location 

of redundant sensors – the minimum number of extra sensors needed to maintain the full link 

flow observability of a network if one or more of the sensors installed on observed links fails 

to observe the link flows. These redundant sensors provide us with two main benefits for 

traffic monitoring purposes: 1) most importantly, they can maintain full link flow 

observability when sensor failure occurs in the system; thus, adding to the robustness of the 

network observability and 2) to a lesser degree, they can participate in reducing the link flow 

inference error when there is no failure among sensors in a network. I developed the idea of 

redundant sensors in this work to account for the possibility of sensor failure when the initial 
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location of sensors is determined using the optimization model introduced in Section 2.6. 

The following steps outline the procedure required for finding the type and location of 

redundant sensors:  

Step 1. Determine the initial location of sensors  

According to this step, I need to determine the optimum location of sensors to reach full link 

flow observability. The objective function and the constraint introduced in Section 2.6 can 

be employed to find the location of sensors.  

Step 2. Consider all combinations of failure among sensors  

This step mainly deals with the possible failure of sensors already installed on links according 

to Step 1. For instance, if I assume layout A introduced in the motivating example as the 

optimum location of sensors determined in Step 1, then in Step 2, I need to find each possible 

combination of failure between these installed sensors. According to layout A, in which there 

are 12 sensors installed in the Fishbone network, I need to consider 212-1 combinations of 

failure among sensors. However, considering all failure combinations presents its own 

combinatorial complexity and might not be feasible for relatively large networks. To deal 

with this situation, I suggest considering the failure combinations among sensors that are 

most susceptible to failure while sensors are assumed to be Non-identical. Moreover, as 

already discussed, I suggest examining the failure of only those sensors installed on major 

roads as these roads are more important for traffic monitoring purposes.  

Step 3. Find the location of redundant sensors for each combination of failures 

Step 3 attempts to find the location of redundant sensors for each combination of sensor 

failure determined in Step 2. To find the location of these extra sensors, I use the objective 
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functions and the constraints introduced in Section 2.6. However, I need to add the following 

constraints as well: 

i The redundant sensors cannot be installed on a link which already has failed sensors.  

ii The location of sensors, excluding the redundant sensors, should follow what I already 

determined in Step 1.  

For instance, considering layout A introduced in the motivating example (i.e., Fishbone 

network), I know that one of the possible combinations of failure is the situation in which 

sensors installed on links 3 and 5 stop functioning. Considering this scenario, according to 

Step 3, I need to find the location of extra sensors in the Fishbone network to reach full link 

flow observability using the optimization model introduced in Section 2.6. The new 

constraints that should be considered include the fact that redundant sensors cannot be 

installed on links 3 and 5 anymore (constraint i) and that the rest of the sensors, excluding 

the redundant sensors, should follow the sensor positioning introduced in layout A 

(constraint ii). Note that depending on the network topology, I can disregard some of the 

combinations of failures among sensors determined in Step 2 as the link flow observability 

is impossible in those situations. 

Step 4. Sensor assignment 

In this step, I use the results obtained from Step 3 which specify the location of redundant 

sensors for each combination of sensor failure. In Step 4, I assigned sensors to links based 

on the frequency of being selected in Step 3. This means that the links that have been selected 

more often to be instrumented with redundant sensors will be equipped with more advanced 

sensors. The sensor assignment, however, is subject to budget constraints which limit the 
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type of sensors to be installed on links as well as the number of links to be equipped with 

sensors.   

 

2.9 Solution algorithm 

The optimization problem presented in Section 2.6 is a nonlinear problem. The 

nonlinearity arises in the objective functions introduced in Equations. (2.16) and (2.17) 

[presented altogether in Equation (2.22)], Equation (2.25) and (2.31). Moreover, due to the 

existence of binary decision variables 
fjy  and 

jo , it becomes an integer optimization 

problem. The combinatorial complexity introduced in the problem is due to the fact that there 

is no general and explicit function to express the relationship between the sensor location 

scheme and the number of observed links required for link flow inference of unobserved 

links (Castillo et al., 2014; Xu et al., 2016). Moreover, with respect to redundant sensors, 

there is a scalability concern introduced in Step 2 that motivates us to employ an efficient 

solution algorithm to solve the proposed problem. 

To solve the proposed optimization problem, I employed the progressive genetic 

algorithm (GA) initially developed by Guan and Aral (1999) which is designed for 

optimization problems with nonlinear equality and inequality constraints. The output of the 

GA is the location of observed links in a traffic network to reach full link flow observability, 

as well as the type of sensors to be installed at these locations in the case of non-identical 

sensors. Note that I implemented the proposed GA using MATLAB R2014 software on a 

personal computer with 3.4 GHz Intel CoreTM i7-6700 processor and 16 Gb of memory.  
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Figure 2.3 provides the flow chart of the employed algorithm. According to the 

figure, the algorithm initiates when the required inputs, chromosome representation 

approach, and population sizes, are defined. Note that all parameters introduced in Section 

2.6 will be the input of the GA in the initialization procedure. Moreover, in the initialization 

procedure, I built three different initial populations introduced as 1 2 3, &P P P  with distinctive 

sizes depending on the size of a network to find the best number of iterations and also to 

assure I reached the best possible solution. This step is followed by chromosome evaluation, 

i.e., sorting, using fitness functions. The fitness function introduced as FitnessZ  is used in a GA 

to guide the simulation procedure toward optimal solutions. Crossover and mutation 

procedures are then employed to reproduce more premium chromosomes and to keep the 

diversity of feasible solutions, respectively. In the next steps, the number of iterations 

introduced as “MaxItr” is determined by evaluating the points for each initial population in 

which the fitness function reaches a plateau.  
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Figure 2.3 – Flowchart of algorithm 

 

Table 2.4, below describes the parameter settings related to the proposed GA. The lower and 

upper bounds of the possible range of crossover rate are higher than for mutation rate as I 

will give the chromosomes with higher fitness value a higher chance of reproduction. Note 

that I provide explanations related to the number of iterations in Section 2.9.4. 

Table 2.4 – Settings related to the proposed GA 

 

Parameters Description 

Initial population size 

Three different population sizes. Population size varies depending on the 

size of network 

Mutation rate Discrete uniform distribution. Range: [0.2, 0.7] 

Crossover rate Discrete uniform distribution. Range: [0.4,0.9] 
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Number of iteration 

(MaxItr) 

4× the maximum repetition among different populations 

 

In the following section, I provide in-depth details related to GA structure, as well as the 

approach used to deal with nonlinearity of objective functions.  

 

2.9.1 Chromosome generation and representation  

In the designed GA, a chromosome length equals the number of links in a network. 

The cells associated with the randomly selected links from each set of new links, which are 

considered as the unobserved links, should be set to zero. For the remaining cells of the 

chromosome, a type of sensor is randomly selected and the number given in each cell 

represents the sensor type that should be installed on that link. For instance, if the thj  cell of 

a chromosome is equal to f , it means that the sensor type f  should be installed on link j . 

For the initial population, I used the concept of new links to avoid an exhaustive search in 

generating feasible solutions, while allowing more than one link to be selected from each set 

of new links in subsequent populations to keep the diversity of possible solutions. The 

feasibility of solutions is then evaluated considering the budget constraint introduced in 

Equation (2.21) as well as determining if the matrix of unobserved links, i.e., uT , is an 

invertible matrix.  
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2.9.2 Fitness function 

In the proposed GA, Equations. (2.16), (2.17), (2.25) or (2.31) can be used as the 

fitness function. However, the nonlinearity in these objective functions can contribute to 

running time of the proposed algorithm. So, I attempted to linearize these functions in order 

to decrease the running time as much as possible. This process of linearization is explained 

for Equation (2.17), while a similar approach can be chosen to linearize other objective 

functions. One of the variables that contributes to the nonlinearity of Equation (2.17) is 
' ''j j

a

, which could be -1, 0 or 1. In Equation (2.17), 
' ''j j

a  is taken to the power of 2 which reduces 

the possible values for this variable to be either 0 or 1. I introduced a new binary variable, 

' ''j j
 , that takes the value of 1 if ' '' 1

j j
a   and 0 otherwise. Equation (2.17) can be rewritten 

using this new binary variable: 

' '' ''

'

3

"

min 1 (1 )             fj j fj
f F j Jj J

Z y p
 

  
     

  
   (2.33) 

  

Where in Equation (2.33), the term ' '' ''

"

(1 )fj j fj
f F j J

y p
 

  includes the multiplication of two binary 

variables, i.e., ' ''j j
  and ''fj

y , that can be replaced with a new binary variable 
' ''j j f

 . By 

including the variable 
' ''j j f

 , I also need to consider the following constraints: 

' '' ' ''

' ''                                            , ,
j j f j j

j j J f F      (2.34) 

 

' '' ''

' ''                                              , ,
j j f fj

y j j J f F    
 

)2.35(
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'' ' '' ' ''

' ''1                               , ,
fj j j j j f

y j j J f F      
 

)2.36(
 

 

Equations. (2.34) and (2.35) restrict the value of 
' ''j j f

 to be zero when either of ''fj
y or ' ''j j

  is 

zero. Moreover, according to Equation (2.36), 
' ''j j f

  is equal to 1 when both ''fj
y and ' ''j j

  are 

1. The new form of Equation (2.33) will be as follows: 

' ''

'

3

"

min 1 (1 )             fj j f
f F j Jj J

Z p
 

  
     

  
   (2.37) 

 

The next step is to linearize the multiplications terms in ' ''

''

(1 )fj j f
f F j J

p
 

 . I employed the log 

function to linearize this term and replaced the linearized form in Equation (2.37): 

 

 

 

' '' ' ''

''''

' ''

' ''

'

'

3

Log (1 ) Log 1       

 min 1 Log 1

f fj j f j j f
f Ff F j Jj J

fj j f
f Fj J j J

p p j J

Z p

 



 

 

 
       

 

  
      

  

 

  

 (2.38) 

 

Equation (2.38) represents the linear form of Equation (2.17) which means that the minimum 

value of '

3Z also guarantees the minimum value of 3Z . Note that I employed the linear form 

of objective functions to solve the illustrative examples.  
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2.9.3 Mutation and crossover procedures 

The single-point crossover procedure is applied to the proposed GA to increase the 

chance of reproduction of the chromosomes that stand in a higher rank considering the fitness 

function. Moreover, the mutation procedure is employed to keep the genetic diversity in the 

generation of a population. In both the mutation and crossover procedures, the chromosomes 

are allowed to select links as unobserved links which do not necessarily originate from the 

set of new links.  

 

2.9.4 Stopping criteria  

The generational process in GA is repeated until a termination condition is reached. 

The common terminating conditions are satisfying predefined criteria, reaching a fixed 

number of repetitions, reaching the budget cap, and reaching no improvement in the fitness 

function through successive iterations. In this work, among all the above mentioned 

conditions, I consider the number of repetitions to terminate the GA. Based on this condition, 

the GA stops when it reaches the number of repetitions determined as an input. Note that I 

repeated the GA with different initial populations and defined the number of repetitions as 

four times the maximum repetition among different populations in which the highest-ranking 

solution reaches a plateau such that successive iterations no longer produce better results. 

This approach is a useful method to avoid exhaustive iterations when there is a low 

probability of reaching a better solution. 
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2.10 Illustrative examples 

This section includes three illustrative cases to examine the applicability of the 

proposed model for various networks with different topologies and sizes. The first example 

is the Fishbone network which is already introduced in the motivating example in Section 

2.2. The second case, the Sioux Falls network, belongs to the city of Sioux Falls in the state 

of South Dakota, United States, and is a well-known network in transportation research 

which has been studied by many scholars (e.g. Ng, 2012; Xu et al., 2016). Finally, to further 

demonstrate the applicability of the proposed model, I studied the network of the city of 

Irvine, California in the United States. In this network, I cover the majority of roads in Irvine, 

especially the central section and west side of the city. This network has been used as a 

benchmark for solving many problems including the traffic counting location problem 

(Chootinan et al., 2005; Xu et al., 2016; Zhou and List, 2010), AVI location problem (Fei et 

al., 2007; Zhou and List, 2010) and OD estimation problem (Chen et al., 2009; Chootinan 

and Chen, 2011).  

In this work, I assumed that two types of sensors can be installed in a network. Table 

2.5 shows the probability of failure and cost of two types of sensor. The two sensor types 

have a different probability of failure depending on the employed technology and price range. 

The Traffic Detector Handbook identified different sources of failure for loop detectors 

which is one commonly used type of counting sensor (Klein et al., 2006). According to this 

handbook, wire breakage due to pavement failure is one of the primary reasons for loop 
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detector failure8. This handbook, as well as the book entitled “Effects of heavy-vehicle 

characteristics on pavement response and performance” by Gillespie (1993), emphasized the 

effect of heavy vehicles on pavement failure. As my focus in this work is on the failure of 

counting sensors, which also include loop detectors, I took into consideration whether or not 

a link is often traversed by heavy vehicles. The Federal Highway Administration (FHWA) 

also defined 15 classes of vehicle among which classes 2 through 13 can be considered as 

heavy vehicle classes including buses and 2-7 axle trucks (Hallenbeck et al., 2014). The 2015 

Urban Mobility Scorecard report (2015) stated that heavy vehicles from classes 3 to 13 

constitute up to 7% of traffic load in urban areas in the United States. This percentage shows 

the maximum load of heavy vehicles which can contribute to pavement failure. In this work, 

for the sake of simplicity, I assumed that if the percentage of heavy vehicles passes a certain 

threshold of traffic load (i.e., 3.5%), then the probability of sensor failure on that roadway 

increases correspondingly. This threshold was selected following the logic that if the HVL 

exceeds 50% of the maximum loads of heavy vehicles (i.e., 7%), then sensor failure increases 

accordingly.  

 

 

 

 

 

                                                 

8 Based on a survey of more than 15,000 loop installations in the state of New York. 
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Table 2.5 – Data related to the sensors used for the illustrative networks 

 

Sensor type 

Parameter values 

Probability of failure 

Cost per sensor (× 100$)9 

HVL <3.5% TL1 HVL >3.5% TL 

1 (Basic) 0.5 0.8 120 

2 (Advanced) 0.3 0.6 180 

 1 TL stands for total traffic load in the urban area 

 

2.10.1 Full link flow observability: Fishbone network 

The minimum number of sensors required to be installed on the links of the Fishbone 

network is 12 to reach full link flow observability as already discussed in the motivating 

example. If all 12 sensors are selected from sensor type 1, which has a lower cost compared 

to sensor type 2, then the total budget required for installing these 12 sensors is 1440$. This 

means that the budget cannot be less than 1440$ in order to reach full link flow observability. 

However, if the budget cap is more than 1440$ then some of the sensors to be installed on 

observed links can be selected from the sensor type 2 category which has a higher cost but 

offers a lower probability of failure.  

Figure 2.4 illustrates the results related to the min-max objective function introduced 

in Equation (2.16-I) that attempts to minimize the maximum probability of missing the link 

flow inference of unobserved links. As explained in Section 2.5.1.1, when the sensors are 

assumed to be identical, this objective function is equivalent to minimizing the maximum 

                                                 

9 From Table 2.5 on, cost mentioned in this work should be multiplied by 100. 
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number of observed links required for the link flow inference of an unobserved link. The 

vertical axis represents the maximum number of observed links that need to be used for the 

link flow inference of an unobserved link in the Fishbone network. In this figure, I examine 

the proposed GA for three different populations having a dissimilar number of chromosomes 

in their initial pool of solutions. According to Figure 2.4, the first population that has a 

smaller initial population size, i.e. the lower number of chromosomes in the initial pool, takes 

a larger number of iterations, 88 iterations, to reach to the optimal solution obtained from the 

second and third populations with fewer iterations. According to the stopping criteria 

described in Section 2.8.4, I multiplied the maximum number of iterations among all three 

populations by four to reach a plateau to determine the number of iterations required to 

terminate the proposed GA. In this case, as this maximum value belongs to the first 

population, I multiplied 88 by 4 to obtain the number of sufficient iterations required for 

minimizing the maximum number of observed links used for the link flow inference of an 

unobserved link in the Fishbone network. Figure 2.5 illustrates the results related to all three 

populations when the number of iterations is set to 352. I repeated the equivalent procedure 

introduced in Figures 2.4 and 2.5 for determining the sufficient number of iterations while 

using different objective functions in the following tables and figures. 
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Figure 2.4 – The maximum number of observed links required for link inference of an unobserved link 

in the Fishbone network using different initial populations 
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Figure 2.5 – The maximum number of observed links required for link inference of an unobserved link 

in the Fishbone network using the required number of iterations 
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sensor is three according to the highlighted result associated with the second layout. The 

third layout suggested for the Fishbone network in Table 2.6 is based on the objective 

function introduced in Equation (2.17), and the results of 
1Z  and 

2Z related to the first and the 

second layouts, respectively are set as the constraints. The results of the third layout 

demonstrate improvements in the average number of observed links for the link flow 

inference of each unobserved link as well as the average number of unobserved links whose 

link flow inference depends on an observed link when the constraints related to 
1Z  and 

2Z  

are satisfied. Note that the results presented in Table 2.6 using the GA algorithm are achieved 

in 5 to 7 seconds.  

Table 2.6 – Suggested layouts for the Fishbone network using identical sensors 

 

Layout No. Objective function Set of unobserved links 

No. of observed links1 

No. of unobserved 

links2 

Avg Max Avg Max 

1 1Z   2,7,8,11,14,17  3.83 5 1.92 4 

2 2Z   2, 7,10,12,13,16  4.16 7 2.08 3 

3 

3Z , 

s.t. 

1

2

5

3

Z

Z






 

 3,6,7,11,12,17  3.67 5 1.83 3 

1 Number of observed links required for the link flow inference of an unobserved link 

2 Number of unobserved links whose link flow inference depends on an observed link 

 

Figure 2.6 illustrates the number of observed links required for the link flow inference 

of each unobserved link in different sets of unobserved links for each layout introduced in 
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Table 2.6. According to this figure, unobserved links 2 and 11 require the maximum number 

of observed links, i.e., five observed links, for their link flow inference in the first layout of 

Table 2.6. However, in the second layout of this table, the maximum number of observed 

links required for the link flow inference of the unobserved link 12 increases to seven. The 

main source of this difference in the maximum number of observed links for the link flow 

inference of an unobserved link in the first and in the second layouts relates to the objective 

functions defined for these layouts. In the first layout, the objective function is consistent 

with minimizing the maximum number of observed links in each equation used for the link 

flow inference of unobserved links, while in the second layout, the objective function tends 

to minimize the maximum number of unobserved links whose link flow inference depends 

on an observed link. For the third layout, the maximum number of observed links in an 

equation cannot exceed five observed links as it is defined as a constraint for this layout and 

according to Figure 2.6, only unobserved link 3 requires five unobserved links for its link 

flow inference. For a particular layout, if there is no bar for a given link in the horizontal axis 

of Figure 2.6, then it means that this link is not an unobserved link in that layout. For instance, 

there is no blue or orange bar for link 6 in Figure 2.6, which means that link 6 is not an 

unobserved link in layouts 1 and 2.  
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Figure 2.6 – The number of observed links required for link inference of each unobserved link 
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in the horizontal axis of this figure, then it conveys that this link is not an observed link in 

that layout. For instance, there is no blue or orange bar for link 2 in Figure 2.7, which means 

that link 2 is not an observed link in layouts 1 and 2.  

 

Figure 2.7 – The number of unobserved links requiring each observed link for their link flow inference 

 

Table 2.7 presents the location of sensors in the Fishbone network and the type of 

sensors to be installed in these locations for three different budgets using the min-sum 

objective function. In this table, I defined three different budgets of 1500$, 1700$, and 

2000$. I assumed that the model shouldn’t install more sensors (i.e., more than 12 sensors) 

as the budget increases, but rather allow the employment of more advanced sensors in the 

network. This is a valid assumption considering the significant installation cost of sensors in 

a network. I also assumed the heavy vehicle traffic loads are not high enough to affect the 

sensors’ performance. According to this table, as the budget cap increases, the expected 

number of unobserved links whose flow cannot be inferred due to the failure of sensors 

decreases because the model can install more advanced sensors (i.e., sensors with lower 
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failure probability) in the network. For instance, when the budget increases from 1500$ to 

2000$, the number of links instrumented with sensor type 2 increases from only one link to 

eight links. Table 2.7 also compares the relationship between the types of sensor installed on 

an observed link with the number of appearances of that link in equations used for the link 

flow inference of unobserved links. According to this comparison, the model tends to install 

type 2 sensors on the observed links with a higher rate of appearance in different equations 

in order to minimize the expected number of unobserved links where their flow cannot be 

inferred due to the failure of a sensor. For instance, when the budget cap is set as 1700$, 

links 10, 17, and 18, which appear for the link flow inference of three unobserved links, i.e., 

are present in three different equations, are instrumented with sensor type 2. All links 

equipped with sensor type 1 have appeared in the link flow inference equations for the 

maximum of two unobserved links. Note that the results provided in Table 2.7 employing 

the proposed GA algorithm are obtained in 5 to 9 seconds. 
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Table 2.7 – Sensor deployment in the Fishbone network for three different budget caps 

 

Budget 

(× 100$) 

Set of observed links equipped with sensors 

OF1 

No. of appearance of observed links in separate equations 

Type 1 Type 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1500  1,3, 4, 7,8,9,10,13,14,15,18   16  5.38 2 - 1 2 - - 1 1 2 2 - - 2 2 3 3 - 1 

1700  1, 2, 4,5,8,9,12,14   10,16,17,18  5.08 2 1 - 2 1 - - 1 2 3 - 2 - 1 - 2 3 3 

2000  3,13,14,17   1,4,5,6,9,10,15,16  4.70 2 - 1 2 1 1 - - 2 2 - - 2 2 3 3 1 - 

1 OF stands for objective function and it represents the expected number of unobserved links whose flow cannot be inferred due to the failure of sensors 
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2.10.2 Full link flow observability considering major roads: Sioux Falls network 

I investigated the effect of considering major roads on the sensor positioning to reach 

full link flow observability in the Sioux Falls network. The right side of Figure 2.8 provides 

a map of the Sioux Falls network. This network is surrounded by highway 90 at the top, and 

highways 29 and 229 on the left and right sides, respectively. These highways are red-

colored, so they can be easily distinguished from the minor roads in the network. I considered 

these highways as the major roads in this network and assigned a higher weight to them. The 

left side of Figure 2.8 demonstrates the graphical illustration of this network and employs a 

color-coding analogous to the right side of the figure to differentiate the major from the minor 

roads. Moreover, similar to Xu et al. (2016), I did not specify centroid nodes for the Sioux 

Falls network. This omission of centroid nodes can be justified by long-term counting as 

indicated by Ng (2013). Ng (2013) argued that centroid nodes can be ignored when traffic 

count information is collected over an entire day since the origin and destination nodes are 

interchangeable in the case of daily counts. In other words, a person who leaves home to go 

to work will return home later. According to this assumption, there are 24 non-centroid nodes 

in the Sioux Falls network, as well as 76 links which connect these non-centroid nodes. I 

provide a table that includes the sets of new links associated with the Sioux Falls network in 

Appendix III. According to Appendix III, out of 24 non-centroid nodes, 23 have non-empty 

sets of new links, and based on the instruction provided in the concept of new links, from 

each non-empty set of new links, one link should be selected as an unobserved link. This 
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means that 23 out of 76 links are selected to not be equipped with sensors in the Sioux Falls 

network and that the rest of the links should be instrumented with sensors.  
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Figure 2.8 – Graphical illustration of the Sioux Falls network 

 

To begin with, I construct the set of initial solutions using the original sets of new 

links using Equation (2.25) as the objective function and Equations (2.18-2.21) as the 

constraints, while the weight value of major roads is set as 1 and the rest of the roads are 

given a weight of 0.5. Table 2.8 shows the original sets of new links associated with the non-

centroid nodes of the Sioux Falls network. Note that the results using this approach are 

presented under “Scenario 1”.  
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Considering manual assignment of sensors to major roads, I updated the set of new 

links under two different scenarios named “Scenario 2” and “Scenario 3”. In Scenario 2, I 

removed the links in the set of major roads from each set of new links and assigned sensors 

to these links (Please see the column labeled Scenario 2 in Table 2.8). This elimination of 

major roads results in seven sets out of 23 sets of new links becoming empty sets. Therefore, 

to construct the set of unobserved links, I need to select more than one link from some of the 

sets of new links which could result in the matrix of unobserved links becoming a singular 

matrix. To avoid the creation of a singular matrix, the non-zero determinant condition for the 

matrix of unobserved links enforced in Equation (2.24) needs to be satisfied. Note that in 

applying Scenario 2, I ran the proposed GA to generate the initial population, but the GA 

didn’t manage to reach any feasible solution in which the matrix of unobserved links is 

invertible. This outcome occurred despite using different sizes for the initial population and 

a considerable number of attempts10 to generate the initial population, up to 510 attempts.  

According to Scenario 3, I attempted to remove the major roads from the sets of new 

links in a way to avoid these sets becoming empty sets (Please see the column labeled 

Scenario 3 under ‘Updated sets of new links’ in Table 2.8). Therefore, under this scenario, I 

can still use the concept of new links to generate feasible solutions. Using the updated sets 

of new links in Scenario 3, I could select up to 17 links from the set of major roads to be 

instrumented with sensors in initial solutions (Please see the last column labeled Scenario 3 

in Table 2.8). However, the number of major links to be equipped with sensors can increase 

                                                 

10 The phrase “number of attempts” refers to the number of times the GA attempted to generate the initial 

population. 
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in the subsequent feasible solutions generated by the GA. I then employed the objective 

function and the constraints introduced in Section 2.6.2 to minimize the expected number of 

unobserved links whose flow cannot be inferred due to the failure of sensors. Note that for 

all scenarios, I assumed that the budget is enough to afford 24 sensors of type 2 and 29 

sensors of type 1. 

Table 2.8 – Original and updated sets of new links related to the Sioux Falls network 

 

Node Connected links 

Sets of new links Updated sets of new links 

Major roads removed from the 

sets of new links 

Scenario 1 Scenario 2 Scenario 3 Scenario 2 Scenario 3 

1 1,2,3,5  1, 2,3,5  -  1  
1,2,3,5 2,3,5 

2 1,3,4,14  4,14  -  4  
4,14 14 

3 2,5,6,7,8,35  6, 7,8,35   6,8   6,8  
7,35 7,35 

4 6,8,9,10,11,31  9,10,11,31   9,10,11,31   9,10,11,31  
- - 

5 9,11,12,13,15,23  12,13,15, 23   12,13,15, 23   12,13,15, 23  
- - 

6 4,12,14,15,16,19  16,19  -  16  
16,19 19 

7 17,18,20,54  17,18, 20,54  -  17  
17,18,20,54 18,20,54 

8 

16,17,19,20,21,22, 

24,47 
 21, 22, 24, 47   21, 22, 24, 47   21, 22, 24, 47  

- - 

9 13,21,23,24,25,26  25, 26   25, 26   25, 26  
- - 

10 

25,26,27,28,29,30,32,4

3,48,51 

27, 28, 29,30,

32, 43, 48,51

 
 
 

 
27, 28, 29,30,

32, 43, 48,51

 
 
 

 
27, 28, 29,30,

32, 43, 48,51

 
 
 

 

- - 
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11 

10,27,31,32,33,34,36,4

0 
 33,34,36, 40   33,34,36, 40   33,34,36, 40  

- - 

12 7,33,35,36,37,38  37,38  -  37  
37,38 38 

13 37,38,39,74  39, 74  -  39  
39,74 74 

14 34,40,41,42,44,71  41, 42, 44, 71   41, 42, 44, 71   41, 42, 44, 71  
- - 

15 

28,41,43,44,45,46,57,6

7 
 45, 46,57, 67   45, 46,57, 67   45, 46,57, 67  

- - 

16 

22,29,47,48,49,50, 

52,55 
 49,50,52,55   49,50,52,55   49,50,52,55  

- - 

17 30,49,51,52,53,58  53,58   53,58   53,58  
- - 

18 18,50,54,55,56,60  56, 60  -  56  
56,60 60 

19 45,53,57,58,59,61  59, 61   59, 61   59, 61  
- - 

20 

56,59,60,61,62,63, 

64,68 
 62, 63, 64, 68   63, 68   63, 68  

62,64 62,64 

21 62,64,65,66,69,75  65, 66, 69, 75   65, 69   65, 69  
66,75 66,75 

22 

46,63,65,67,68,69, 

70,72 
 70, 72   70, 72   70, 72  

- - 

23 42,70,71,72,73,76  73, 76   73, 76   70, 72  
- - 

24 39,66,74,75 - - -   

 

Figure 2.9 demonstrates the objective function value, i.e., Equation (2.25), using the 

proposed GA under Scenarios 1 and 3 in 1,410 iterations. For each scenario, I defined three 

different initial populations with distinctive population sizes. Figure 2.9 shows that both 
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scenarios converge to nearly similar results, while the larger population sizes perform 

slightly better in minimizing the objective function. 

 

 

Figure 2.9 – Results of implementing Scenarios 1 and 3 with different populations for the Sioux Falls 

network 

 

To investigate the effect of considering major roads on the layout of sensors, I used 

Equations. (2.17) and (2.25) as the objective functions to observe the possible differences in 

suggested layouts of sensors in the Sioux Falls network. Figure 2.10 illustrates two optimum 

layouts of sensors in this network using different objective functions. In layout A, the 

objective function is as Equation (2.17) to minimize the expected number of unobserved 

links where their flow cannot be inferred due to the failure of sensors. In layout B, a similar 
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goal is pursued using Equation (2.25) but also incorporates the relative importance of major 

roads in finding the location of sensors while using the original sets of new links to generate 

initial solutions. Figure 2.10 demonstrates that in layout B, the GA assigns more advanced 

sensors, i.e., sensors with a lower probability of failure, to the major roads. It also minimizes 

the number of major roads to be included in the set of unobserved links. The reason for this 

minimization is due to the fact that the probability of missing the link flow inference of an 

unobserved link is usually higher than the probability of missing the link flow observation 

of that link as an observed link if more than one link is required for the link flow inference 

of that link. Note that the results of sensor deployment depicted in Figure 2.10 by employing 

the proposed GA are achieved in 15 to 25 seconds.  
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Figure 2.10 – Two optimum layouts of sensors with and without consideration of major roads 
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Figure 2.11 evaluates the number of major links equipped with sensor type 2, i.e., 

advanced sensor, for the suggested layouts using Equations (2.17) and (2.25) in each iteration 

of GA. The initial populations with respect to major roads are generated under Scenarios 1 

and 3. In initial populations, 7 links (Scenario 1) and 17 links (Scenario 2) from the set of 

major roads are instrumented with the sensor type 2. However, the number of links equipped 

with sensor type 2 converges to the same value under these scenarios as the iterations 

proceed. According to this figure, through 1,410 iterations, the layouts provided by the 

consideration of major roads using Equation (2.25) attempt to assign on average more sensors 

of type 2 to the major roads. For instance, for the last 900 iterations, out of 24 major roads in 

the Sioux Falls network, on average 20 links are instrumented with sensor type 2 using 

Equation (2.25) for both Scenarios 1 and 3, while this average drops to 16 links when the 

concept of major roads is not applied.  
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Figure 2.11 – Number of major links instrumented with sensor type 2 in Sioux Falls network 

 

Figure 2.12 shows the number of major roads to become unobserved links in layouts 

generated by the proposed GA under Scenarios 1 and 3 with either the consideration of major 

roads or not. According to this figure, the number of major roads included in the set of 

unobserved links when the major links are considered is 25% lower in the last 800 iterations 

compared to the situation when all links are assumed to be identical.  
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Figure 2.12 – Number of major links to be included in the set of unobserved links 

 

2.10.3 Full link flow observability considering major roads and heavy vehicle loads: Sioux 

Falls network 

To assess the effect of considering major roads on the layout of sensors, I 

implemented the proposed model in the Sioux Falls network using Equation (2.25) as the 

objective functions as well as the updated probability of failure of sensors under high load 

of heavy vehicles introduced in Table 2.5. I considered the roads going to the depot areas 

located in the northwest and southwest sections of Sioux Falls as the roads with high HVL 

(i.e., HVL > 3.5% TL). Figure 2.13 illustrates the optimum layout of sensors, introduced as 

layout C, in this network using 24 sensors of type 2 and 29 sensors of type 1. This 

combination of sensors is similar to the one I used in Section 2.10.2. In Figure 2.13, there 
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are 20 links under high loads of heavy vehicles, indicated by the red double backslashes.  In 

the layout shown, more than 50% of links (i.e., 11 links) with high HVL are equipped with 

the sensor type 2 and in general, 70% of links (14 links) with high HVL are instrumented 

with sensors.  
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Figure 2.13 – Optimum layout of sensors with consideration of major roads and heavy vehicle loads 

 

Table 2.9 evaluates the effect of considering the high HVL on sensor positioning in 

the Sioux Falls network. In this table, layout B (introduced in Figure 2.10) only considers 

the major roads, while layout C (depicted in Figure 2.13) considers both the major roads and 

roads with high HVL (i.e., HVL > 3.5% TL) in the Sioux Falls network. Comparing observed 

links in layouts B and C in Table 2.9, I see there is a 16.7% increase in deployment of sensor 
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type 2 on the major links with high HVL in layout C. This means that in considering the 

effect of HVL on sensor failure, the proposed model attempts to install more advanced 

sensors on the major links which are also subject to high HVL, in an effort to decrease the 

adverse effect of high HVL on the link flow observability of observed links and on the link 

flow inference of unobserved links. Moreover, there is a considerable increase (i.e., 50%) in 

the number of sensors of type 2 deployed on non-major links with high HVL in layout C 

compared to layout B. This increase indicates that the model makes a similar effort to 

instrument links with high HVL with more advanced sensors when these links are not among 

major links. Eventually, exploring unobserved links in each layout, I found that the number 

of unobserved links from the set of major links with high HVL decreases in layout C. This 

is due to the fact that the probability of missing the link flow inference of an unobserved link 

is usually higher than the probability of missing the flow observation of an observed link; 

therefore, the proposed model attempts to minimize the number of major links with high 

HVL in the set of unobserved links. Note that the runtime for achieving the results presented 

in Table 2.9 is 17 to 19 seconds depending on the size of the initial population for the Sioux 

Falls network in the proposed algorithm. 

Table 2.9 – Sensor deployment considering major links with and without high HVL in Sioux Falls 

network 

 

Layout 

Observed links Unobserved links 

Major links and HVL>3.5% TL HVL>3.5% TL 

Major links and HVL>3.5% TL HVL>3.5% TL 

Type 1 Type 2 Type 1 Type 2 

B 0 6 8 0 2 4 

C 0 7 3 4 1 5 
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2.10.4 Full link flow observability in large networks: Irvine network 

In this section, I evaluated the performance of the proposed model for a relatively 

large network. To do so, I selected the Irvine network shown in top part of Figure 2.14 and 

also is graphically demonstrated in this figure. The major roads, which mainly comprise the 

north-south and east-west bound highways, are highlighted in red in the graphical illustration 

of this figure. The extracted network consists of 162 non-centroid nodes, 496 links, 39 traffic 

analysis zones (TAZs), and 28 external stations, i.e., there are 67 centroid nodes (28+39)11. 

In Figure 2.14, 112 out of 496 links are marked as major roads. 

 

                                                 

11 These data were extracted from the Orange County Transportation Analysis Model 
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Major link         

Minor link         

 

Figure 2.14 – The real map (source google map) and graphical illustration of Irvine network 
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For the Irvine network, I compared the results of implementing the proposed model 

to the results obtained by Xu et al. (2016). Xu et al. (2016) reduced the flow variance 

measurement of unobserved links by minimizing the number of observed links required for 

flow variance measurement of each unobserved link. In their approach, they attempt to 

minimize the number of unobserved links connected to each non-centroid node in order to 

minimize the number of observed links required for flow variance measurement of each 

unobserved link. As the number of observed links required for variance measurement of 

unobserved links can be also employed to infer the flow of unobserved links, Xu et al.’s 

(2016) approach, despite its differences, can be compared to the model proposed in this work. 

However, to make a comparison, I need to assume that all sensors are identical and that there 

is no major road in the network. Figure 2.15 shows the average number of observed links 

required to infer the flow of unobserved links, i.e., Equation (2.10). According to the 

algorithm procedure explained in Section 2.9, I implemented the proposed model with three 

different population sizes and 9,136 iterations12. The horizontal axis in Figure 2.15 depicts 

the runtime in seconds. According to this figure, the maximum time it takes to reach the 

optimum value i.e., minimum of the average number of observed links needed to infer the 

flow of each unobserved link, among all populations, is 8,207 seconds (2.27 hrs). In Figure 

2.15, I also marked the time it takes the proposed model to reach the optimum value of 

Equation (2.10) obtained by Xu et al. (2016). According to Figure 2.15, the maximum time 

it takes the proposed model to reach this value is 750 seconds. In comparison with Xu et al.’s 

                                                 

12 The number of iterations was obtained according to the method outlined in Section 9.1.1 
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(2016) work, the proposed model can successfully decrease the average number of observed 

links required to infer the flow of unobserved links, although, I was not able to compare the 

runtime with Xu et al. (2016) as it was not reported in their work.  

 

 

Figure 2.15 – Results of implementing the proposed model with Equation (2.10) as the objective 

function in the Irvine network 

 

Table 2.10 shows some of the potential differences in sensor positioning in the Irvine 

network using the proposed model and the model developed by Xu et al. (2016). This table 

indicates the number of unobserved links connected to each non-centroid node in the Irvine 

network for both Xu et al. (2016) and the proposed model. As presented in Table 2.10, Xu et 

al. (2016) used two objective functions, the min-max and min-sum functions. Their min-sum 

objective function attempts to minimize the summation of the number of unobserved links 

Optimum value by Xu et al. (2016) 
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connected to each non-centroid node and their min-max function minimizes the maximum 

number of unobserved links connected to a non-centroid node. Considering the number of 

unobserved links connected to each non-centroid node, I can observe that compared to Xu et 

al. (2016), the proposed model increases the number of non-centroid nodes connected to only 

one unobserved link. In addition, the number of non-centroid nodes linked to four 

unobserved links is considerably larger in the results associated with the proposed model. 

This analysis leads us to the conclusion that the objective functions introduced in Xu et al. 

(2016) can be modified to focus only on the non-centroid nodes connected to one unobserved 

link instead of all non-centroid nodes which may attach to more than one unobserved link.  

Table 2.10 – Number of unobserved links connected to each non-centroid node 

 

Model 

Objective 

function 

# of unobserved links connected to non-

centroid node(s) 

one two three four 

Xu et al. (2016) 

Min-max 64 78 20 0 

Min-sum 86 56 19 1 

Proposed model 

Equation (2. 

(10) 

113 23 22 4 

 

In Table 2.11, I implemented the proposed model in the Irvine network, considering 

three different sensor assignment scenarios for major roads in the network. In the first 

scenario, I assigned weights to links and solved the model employing Equation (2.25). On 

the other hand, in the second and third scenarios, similar to what I implemented in Table 2.8 

for the Sioux Falls network, I tried to manually assign advanced sensors in the initial 
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population of the proposed GA. Similar to the results obtained for the Sioux Falls network, 

I could not generate a feasible initial population using Scenario 2. However, I can 

successfully implement Scenarios 1 and 3 and the results are presented in Table 2.11. As 

shown in Table 2.11, out of 112 major links, 92 (82.1%) are equipped with a more advanced 

sensor, i.e., sensor type 2, and only 11.6 % of all major links are in the set of unobserved 

links. Comparing the runtime for Scenarios 1 and 3, I observed that the manual assignment 

of sensors, while not very practical for large networks, could lead to lower runtime. The 

reason behind the reduction in runtime under Scenario 3 may relate to the higher number of 

major links equipped with more advanced sensors in the initial population of Scenario 3 

compared to Scenario 1, which facilitates the convergence speed to the optimum solution. 

Table 2.11 – Sensor installation in the Irvine network considering major roads  

 

Scenario 

# of major links 

Runtime Observed links 

Unobserved links 

Type 1 Type 2 

Scenario 1 

7 92 13 

7460 

Scenario 3 7133 

 

2.10.5 Full link flow observability with route flow information: Fishbone network 

In Section 2.7, I suggested a two-level optimization model to consider the effect of 

route flow information on the assessment of sensor layouts which lead to full link flow 

observability. According to Section 2.7, the optimum solutions for full link flow 

observability should be obtained in the first level optimization. The second level optimization 

then minimizes the information loss from all routes that provide unique information about 
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route flows, while guaranteeing full link flow observability and not worsening the objective 

function value reached in the first level optimization. In this section, I used the Fishbone 

network to showcase how the two-level optimization model can be implemented, while 

setting the budget cap as 1700 and assuming the load of heavy vehicles is less than 3.5 % of 

total traffic load. Following the budget constraint and HVL assumption, Table 2.7 

demonstrates only one of the possible optimum layouts of sensors in the Fishbone network. 

I reapplied the proposed model to find one other possible optimum layout of sensors which 

results in the same objective function value. Figure 2.16 depicts two optimum sensors layouts 

in the Fishbone network in which green and blue arrows represent the links equipped with 

sensor types 1 and 2, respectively. In this figure, layout C is the sensor layout introduced in 

Table 2.7 and layout D is another possible layout of sensors, with the objective function value 

for both layouts equal to 5.08. Note that for the Fishbone network, the number of possible 

optimum layouts which constitute the pool of feasible solutions in the second level 

optimization was more than two. However, I displayed only two possible layouts to easily 

describe the procedure for finding the sensor layouts that not only minimize the effect of 

sensor failure on link flow inference of unobserved links, but also minimize the effect of 

sensor failure on route flow information gain.  
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Figure 2.16 – Two optimum layouts of sensors in Fishbone network 

 

Table 2.12 represents four ODs and eight identified routes13 between these ODs in 

the Fishbone network. All of these routes belong to sets 2R  and 
'3R  introduced in Section 

2.7. Routes 1, 5 and 8 belong to 2R  as the set of links  9 ,  6,10 and  4,8 are only traversed 

by these routes, respectively, while the other routes belong to
'3R . All of these routes can 

contribute to information gain, as the column vectors pertaining to these routes in the link-

route incidence matrix are linearly independent. Table 2.12 also presents the links traversed 

by each route and instrumented with sensors in layout C or D. The last column of the table 

shows the probability of missing the route flow observability of each route if sensor 

positioning follows layout C or D. For instance, route 4 traverses links 1, 5, 11, 15, and 18. 

Among these links, the set of links  1,5,18  and  1,15  are equipped with sensors in layouts 

C and D, respectively. The probability of missing the route flow observability of route 4 

depends on the number of sensor-instrumented links traversed by this route as well as the 

                                                 

13 For simplicity, in Table 2.12 I introduce only some of all the possible routes between each OD as the set of identified 

routes 
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sensor type installed on these sensor-equipped links. In layout C, as both links 1 and 5 are 

equipped with sensor type 1, and link 18 is instrumented with sensor type 2, then the 

probability of missing the route flow observability of route 4 equals 0.07514 ( 20.5 0.3 0.075  ). 

In layout D, this probability equals 0.15, as links 1 and 15 are instrumented with sensor types 

1 and 2, respectively ( 0.5 0.3 0.15  ). Adding the probability of missing the route flow 

observability of all routes in layouts C and D, I can obtain the objective function value of the 

second level optimization introduced in Equation (2.31). By doing so, I observe that although 

having the same objective function value in the first level, the objective function for layouts 

C and D differs in the second level of the two-level optimization model. In fact, the expected 

number of routes for which flow will be missed due to the failure of sensors in layout C 

equals 0.86225, and is higher than the similar expected value for layout D. This means layout 

D offers more robust sensor positioning compared to layout C if the link-route incidence 

matrix information is available.  

Table 2.12 – Identified routes between each OD and links traversed by these routes in the Fishbone 

network 

 

OD 

Set of involved links in each 

route 

Set of observed links in each layout 

Possibility of missing 

route flow observability 

C D 

C D 

Type 1 Type 2 Type 1 Type 2 

1-9 

Route 1:  1,9,15,17   1,9   17   1,9   15,17  0.075 0.0225 

Route 2:  2,12,14,15,17   2,12,14   17   2,14   15,17  0.0375 0.0225 

                                                 

14 This probability is calculated assuming that heavy vehicle load (HVL) is less than 3.5% of total traffic load 
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Route 3:  1,5,11,15,17   1, 5   17   1   15,17  0.075 0.045 

1-10 

Route 4:  1,5,11,15,18   1, 5   18   1   15  0.075 0.15 

Route 5:  2,6,10,16,18   2   10,16,18   2,6   10,16  0.0135 0.0225 

2-9 

Route 6:  3,11,15,17  -  17  -  15,17  0.5 0.09 

Route 7:  3,12,14,15,17   12,14   17   14   15,17  0.075 0.045 

2-10 Route 8:  4,8,12,16,18   4,8,12   16,18   4   16  0.01125 0.15 

   0.86225 0.5475 

2.10.6 Redundant sensors: Fishbone network 

The concept of redundant sensors is mainly developed in this work to investigate the 

location of additional sensors in a network to maintain the full link flow observability when 

certain sensors already installed on observed links stop functioning. According to the 

stepwise approach introduced in Section 2.8, I first need to determine the initial location of 

sensors in a network to be able to consider the combination of failures among them in the 

second step. In the third step, the location of redundant sensors should be selected for each 

combination of failure. Finally, in the fourth step, taking into account budget constraints, the 

sensors are assigned to the locations identified in the third step. 

To make it easier to demonstrate how the concept of redundant sensors can be applied 

to a network, I only consider the Fishbone network to be equipped with redundant sensors. 

The initial location of sensors is assumed to be according to the third layout determined in 

Table 2.7. I also assume that all the redundant sensors are identical and can be independently 

installed in a network. 
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Table 2.13 shows the set of observed links according to the third layout of Table 2.7 

as well as the failure probability of the sensors installed on these links. This table also shows 

the location of redundant sensors while considering the failure of only one sensor among all 

sensors located on observed links. To obtain the location of redundant sensors, I used 

Equation (2.17) but dropped the binary variable 
fjy  and the parameter 

fp  as I assumed all 

sensors are identical. In total, six links can be nominated for installing the redundant sensors, 

including links 2, 7, 8, 11, 12 and 18, as these links were not initially instrumented with 

sensors according to the third layout of Table 2.7. 

Links suggested for installing redundant sensors in Table 2.13 are based on the 

assumption that out of twelve links instrumented with sensors, the sensor installed in only 

one of these links breaks down. The information provided in Table 2.13 can also be used to 

determine the expected number of times a link will be selected for installing the redundant 

sensors. For instance, link 18 is selected to be equipped with redundant sensors if the sensors 

installed in link 15, 16 or 17 stop working. The probabilities of failure of the sensors installed 

in these links, i.e., links 15, 16 and 17, are 0.3, 0.3, and 0.5, respectively. Therefore, the 

expected number of times that link 18 is selected to be instrumented with a redundant sensor 

is the summation of 0.3,0.3, and 0.5 which is equal to 1.1.  

Table 2.13 – Possible location of redundant sensors with only one sensor failure among all sensors 

installed on observed links 

 

Set of observed links 

Sensor failure 

New observed link 

link location probability 

 1,3,4,5,6,9,10,13,14,15,16,17  

1 0.3 7 

3 0.5 2 
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4 0.3 8 

5 0.3 7 

6 0.3 8 

9 0.3 7 

10 0.3 8 

13 0.5 12 

14 0.5 12 

15 0.3 18 

16 0.3 18 

17 0.5 18 

 

In line with the third step introduced in Section 7, Table 2.14 shows the set of links 

selected to be equipped with redundant sensors for a different combination of failures. This 

tables also determines, for each combination of sensor failure, the percentage of links missing 

full link flow observability even with redundant sensors installed in the Fishbone network. 

For instance, considering a two sensor failure out of twelve installed sensors, I can observe 

that in one out of the 66 possible combinations of failure, the full link flow observability is 

impossible even with the installation of redundant sensors. This situation occurs when 

sensors installed on links 13 and 14 are assumed to break down and these links become 

unobserved links. As links 13 and 14 are bidirectional links, the column vector associated 

with these links is linearly dependent. Therefore, the corresponding matrix of unobserved 

links is not invertible and the system of linear equations for the link flow inference of 

unobserved links is not determined. Table 2.14 also indicates that as the number of failures 

increases, the chance of missing the full link flow observability increases correspondingly. 



 

90 

 

According to the fourth column of Table 2.14, for a certain number of failures, there might 

be more than one set of links to be equipped with redundant sensors. For instance, when it is 

assumed that three of twelve sensors installed on observed links break down, then two sets 

of links, including sets  2, 7,18  and  2,8,18 , have an equal chance of being selected as the 

set of links to be instrumented with redundant sensors. The last column of Table 2.14 

demonstrates the expected number of times each set of links will be selected.  

Table 2.14 – Results related to redundant sensors in the Fishbone network 

 

Combination of 

sensor failures 

Total possible 

combinations 

% missing full link 

observability 

Set of links to be 

equipped with 

redundant sensors 

Expected 

number of 

selections 

One failure 
12

12
1

 
 

 
 0%  18  1.1 

Two failures 
12

66
2

 
 

 
 

1

66
 (1.5 %)  7,18 , 8,18  0.99 

Three failures 
12

220
3

 
 

 
 

14

220
(6.4%)  2,7,18 , 2,8,18  0.77 

Four failures 
12

495
4

 
 

 
 

82

495
(16.6%)  2,7,8,18  0.74 

Five failures 
12

792
5

 
 

 
 

278

792
(35.1%)  2,7,8,12,18  0.67 

Six failures 
12

924
6

 
 

 
 

601

924
(65%)  2,7,8,11,12,18  0.63 
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In addition to finding the expected number of selections for each set of links to be 

equipped with redundant sensors in Table 2.14, I show the expected number of selections for 

individual links considering different combinations of failure in Figure 2.17. 

In Figure 2.17, I show the expected number of selections for links, including links 2, 

7, 8, 11, 12 and 18, to be instrumented with redundant sensors considering different 

combinations of failure. The horizontal axis of this figure shows different combinations of 

failure and the vertical axis represents the expected number of selections associated with 

each individual link. For instance, according to Table 2.14, in the case of two failures, each 

of sets  7,18  and  8,18  have the highest expected number of selections, i.e., 0.99, compared 

to other sets to be instrumented with redundant sensors. For individual links, the expected 

number of selections of link 18 is 5.995 and the highest among other links in the case of two 

failures. The difference in this expected number of selections can be explained by the fact 

that link 18 might be available in other sets with an expected number of selections that is not 

as high as it is for sets  7,18  and  8,18 . Therefore, the last column of Table 2.13 does not 

count the total number of times that link 18 is selected to be equipped with redundant sensors 

except for the cases when one failure or six failures occur. In these cases, the expected 

frequency of selection in Figure 2.17 and in the last column of Table 2.14 match as they 

include only one link (i.e., in case of one failure) or all links (i.e., in the case of six failures) 

that can be instrumented with redundant sensors.  

According to Figure 2.17, link 18 has the highest expected number of selections in 

each combination of failure. Therefore, according to the fourth step introduced in Section 7, 

if budget constraints allow, link 18 should be the first link to be equipped with redundant 
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sensors. Links 8 and 7 are in the second and the third ranks, respectively when comparing 

the total expected number of selections for all combinations of failure. Note that the expected 

frequency of selection for a certain link through the different combination of failures 

represents an irregular pattern, i.e., increasing or decreasing pattern, as it depends on the 

location of initial sensors, the number of failed sensors, as well as their probability of sensor 

failure.  

 

 

Figure 2.17 – Expected number of times a link is selected to be instrumented with sensors 

 

 

2.11 Discussion on the effectiveness of the proposed model for partial link flow 

observability  

 

Full link flow observability can be considered as the ideal case for link flow 

observability in a network as the flow of all links of that network can be directly observed or 

indirectly inferred. However, in the real world, it might not be economically possible to 
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install enough sensors to reach full link flow observability. Instead, the partial link flow 

observability problem addresses the situation where there is a smaller number of sensors than 

the number required to reach full link flow observability. Researchers have introduced 

various definitions of partial flow observability and more specifically, the partial link flow 

observability in a network (Viti et al. 2014). Castillo et al. (2011) defined the partial link 

flow observability problem as the problem of finding a subset of links in a network that 

should be equipped with sensors in order to make it possible to infer the link flow of a certain 

number of unobserved links. For instance, in the Fishbone network, the number of 

unobserved links equals six. A problem which attempts to find the location of sensors in a 

way to infer the flow of five or a smaller number of unobserved links, is a partial link flow 

observability problem. Gentili and Mirchandani (2012) defined the number of unobserved 

links for which flow can be inferred using the information obtained from observed links as 

h, and indicated that partial link flow observability can be studied under different values of 

h, i.e., different levels of observability. There are other studies that address partial link flow 

observability when there is a given number of sensors (He, 2013; Ng, 2012). Moreover, to 

tackle the partial link flow observability problem from a different perspective, Hu et al. 

(2009) and Ng (2013) address the problem of finding the minimum number of sensors 

required to reach full link observability when there are already some sensors installed in a 

network. Concerning the definition proposed by Gentili and Mirchandani (2012), I can also 

address partial link flow observability using the proposed model. Specifically, as I studied 

the full link flow observability problem in a network considering the possible failure of 

sensors, my focus was to minimize the chance of decrease in the level of h if sensor failure 
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occurs. For instance, Equation (2.17) defined in Section 2.6 minimizes the effect of a sensor 

failure on link flow inference of unobserved links. In other words, this objective function 

attempts to assign more advanced sensors on links which appear in more equations required 

for link flow inference of unobserved links. Accordingly, the chance of reduction in the value 

of h decreases as more advanced sensors, which have lower failure rates, are installed on 

links with a higher appearance in equations used for link flow inference of unobserved links. 

For illustration, I selected the sensor location in the Fishbone network associated with layout 

C introduced in Figure 2.16, to illustrate the possible decrease in the level of h if the sensor 

installed on an observed link stops functioning. According to Figure 2.18, the failure of 

sensors installed on links 10, 16, 17 and 18 could have the highest impact on the level of 

observability as their failure can decrease the level of observability from h=6 to h=3. As I 

can observe in Figure 2.18, the model assigned more advanced sensors (i.e., sensor type 2) 

on these links to minimize the adverse effect of sensor failure on the level of observability.  
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Figure 2.18 – The effect of a sensor failure on the level of observability 

 

From a different perspective, the partial link flow observability concerns maximizing 

the observability level for a given number of sensors. Using the proposed model, I can still 

maximize the observability level, but also minimize the adverse effect of sensor failure on 

link flow inference of unobserved links. The concept of new links can help me to determine 

the number of sensors required to reach full link flow observability in a network. Specifically, 

using the concept of new links, I can determine the number of sensor deficiencies that leads 

to not enough sensors to reach full link flow observability in a network. As my proposed 

model is designed to guarantee full link flow observability using an adequate number of 

sensors, I can adjust the deficiency in the number of sensors required to reach full link 

observability in a network with some buffer sensors that have a failure probability of 1-ε 

where ε is a very small value. Buffer sensors are not available sensors but they make it 
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possible to employ the model to determine the location of available sensors. I employed the 

Fishbone network to show how the model can be employed for partial link flow 

observability. Table 2.15 presents the results of sensor location suggested by the model when, 

for simplicity purposes, all available sensors are assumed to be identical. 

I used Equation (2.17) to find the location of sensors, removing the binary variable 

fjy  and the parameter fp  from this equation as I assumed all sensors are identical. In the 

table, I considered different numbers of available sensors, all of which are less than the 

number of required sensors, i.e., 12 sensors, to reach full link flow observability. Table 2.15 

also evaluates the average number of appearances of observed links instrumented with either 

available or buffer sensors in equations used for the link flow inference of unobserved links. 

According to this table, the average number of appearances of available sensors is always 

higher than the buffer sensors. In the last column of the table, the effect of available sensors 

on the level of observability, i.e., h, is studied. In this column, I considered the appearance 

of observed links equipped with buffer sensors in equations required for the link flow 

inference of unobserved links. If, among the observed links required for the link flow 

inference of an unobserved link, there is at least one observed link instrumented with buffer 

sensors, I considered that the flow of that unobserved link cannot be inferred. Comparing the 

first and the last column of Table 2.15, I see that the model attempts to minimize the effect 

of a decrease in available sensors on the level of observability. For instance, when there are 

three deficient sensors in the number of sensors required to reach full link flow observability 

in the Fishbone network (i.e., there are nine available sensors), the level of observability 
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decreases to h=4, which means that the flow of only two unobserved links cannot be inferred, 

compared to the full link observability condition where h=6. 

Table 2.15 – Different levels of partial link flow observability considering buffer sensors in the Fishbone 

network  

 

# of available 

sensors 

Set of links equipped with 

buffer sensors 

Avg. appearance of observed 

links equipped with 

buffer sensors 

Avg. appearance of observed 

links equipped with 

available sensors 

Level of 

observability 

(h value) 

11  1  1 1.9 5 

9  2, 4, 6  1.3 2 4 

7  2,12,14,16,18  1.8 2 2 

 

In Section 2.7 of this study, I discussed the possibility of using the route flow 

information for evaluating the sensor deployments that lead to full link flow observability. 

A similar approach can be employed in the model to consider taking advantage of route flow 

information for the partial observability problem. This means that considering the available 

sensors and buffer sensors, the model should minimize the effect of available sensor failure 

on the link flow inference of unobserved links (first level optimization), while attempting to 

also minimize the effect of sensor failure on route flow information gain of independent 

routes, i.e., routes in 
'1 2 3R R R . Although it is beyond the scope of this work, I believe that 

combining the problem of partial link flow observability, as well as route flow observability, 

into a single level optimization model, taking into account the failure of sensors, represents 

an interesting topic for future research.  
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2.12 Discussion 

. This chapter investigated how the effect of sensor failure on the link flow inference 

of unobserved links can be considered in identifying the set of observed links in a traffic 

network. Two types of sensors (i.e., basic and advanced) with different failure probabilities 

were studied. Methodologically, I considered two contributing factors in determining the 

location of sensors, namely the probability of missing the link flow inference of unobserved 

links due to the failure of sensors, as well as the effect of sensor failure on the link flow 

inference of unobserved links. These two factors are defined as the objective functions in the 

form of min-max and min-sum functions. I also combined these functions by considering the 

min-sum function as the objective function while setting a cap for the maximum value of the 

min-max function. I then proposed GA as a well-known heuristic to solve this problem. To 

generate the initial solution in the proposed GA, I suggested using the concept of new links 

to avoid the exhaustive search for constructing the sets of unobserved links. I applied the 

developed model for three numerical examples including the Fishbone, Sioux Falls, and 

Irvine networks. The results related to the Fishbone network indicated that the combined 

objective function formulation leads to better local optimal solutions compared to the 

situation when the min-sum and min-max functions are employed separately. I further 

explained how the effect of the above-mentioned factors can be cohesively addressed by 

minimizing the number of observed links required for the link flow inference of each 

unobserved link when the sensors are assumed to be identical. However, in the case of non-

identical sensors, the installation of more advanced sensors is required to compensate for the 

larger number of observed links required for the link flow inference of that unobserved link. 
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To take into consideration the fact that all links are not equally significant in a network, I 

also differentiated between major and minor roads to be instrumented with non-identical 

sensors in a traffic network. I suggested two different approaches to equip major and minor 

roads with sensors in reaching full link flow observability. The first was to manually equip 

links in the set of major roads with sensors while also studying the cases where the manually 

instrumented major links with sensors result in the matrix of unobserved links becoming a 

singular matrix. The second approach was to keep the constraints already applied to the 

identical sensors in place while updating the objective function to consider the major roads 

by incorporating the weights to signify the relative importance of major roads. The results of 

considering the major roads in identifying the location of sensors in the Sioux Falls network 

implied that the model attempts to assign more advanced sensors to major roads and to not 

include these roads in the set of unobserved links. As HVL can influence the failure rate of 

sensors, I also considered the effect of HVL on major and minor roads in determining the 

location of sensors in a network. The results of this assessment in the Sioux Falls network 

suggest that the model attempts both to install more advanced sensors on major roads 

traversed by a large number of heavy vehicles and to minimize the number of major links 

with high HVL in the set of unobserved links. The model achieved this goal without affecting 

the number of major roads with or without HVL in the set of observed links.  

I studied the full link flow observability problem in the Irvine network to assess the 

applicability of the model in a large scale network. For this network, I compared the results 

obtained with the proposed model to those reported for one of the existing models in the 
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literature, and showed the merit of the current model in handling large size networks as well 

as decreasing the impact of sensor failure on link flow inference of unobserved links.  

The route flow information gain was another topic that I discussed in this work. After 

introducing different types of routes based on the mutual links traversed by these routes, I 

proposed a two-level optimization model that can evaluate different sensor layouts which 

can lead to full link flow observability and minimize the impact of sensor failure on link flow 

inference of unobserved links. The results related to the Fishbone network demonstrated that 

sensors failure in two different layouts, having similar sensor failure impact on link flow 

inference of unobserved links, can have dissimilar effects on route flow observability. 

I investigated the location of redundant sensors, i.e. additional sensors which are not 

initially required for full link flow observability of a traffic network, but which can be 

installed in a network to maintain the link flow inference of unobserved links in the event of 

sensor failure. To find the location of redundant sensors, I considered all possible 

combinations of failure among sensors installed in road links within the network. The results 

indicated that although considering all combinations of failure among sensors to determine 

the optimum location of redundant sensors is computationally expensive, there are a 

substantial number of combinations that prevent full link flow observability and therefore 

should not be considered in finding the location of redundant sensors.  

In the final part of the study, I discussed the possibility of employing the proposed 

model for the partial link flow observability problem. After providing different definitions 

of partial link flow observability, I used the Fishbone network to show that the sensor 

positioning suggested by the proposed model attempts to minimize the chances of decreased 
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levels of link observability in a network. I also proposed the idea of buffer sensors to address 

the situation where the number of available sensors is not large enough to reach full link flow 

observability. The results of using buffer sensors for different numbers of sensors available 

in the Fishbone network demonstrated that the model attempts to install buffer sensors on 

links with the least number of appearances in equations needed for link flow inference of 

unobserved links.  
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CHAPTER 3:  MODELING THE EFFECT OF SENSOR FAILURE 

BEHAVIOR ON THE LOCATION OF COUNTING SENSORS FOR 

ORIGIN-DESTINATION (OD) MEAN ESTIMATION  

 

3.1 A brief literature review of sensor location for OD estimation purposes  

As described in Chapter 2, the NSLP can be divided into two main branches: flow 

observability and the flow estimation problem (Gentili and Mirchandani, 2012). Models that 

address the flow observability problem identify the locations of sensors such that the target 

flow can be uniquely determined. Flow estimation models define certain conditions for the 

locations of sensors in a traffic network to obtain the best estimation of the target flows. 

Identifying the location and the number of sensors for accurate determination of OD demand 

is a seminal step in the OD estimation process (Bianco et al., 2001; Hu et al., 2009).  

Based on the four types of sensors defined by Gentili and Mirchandani (2012) 

(counting sensors, path-ID sensors, image sensors, and vehicle-ID sensors) and the target 

flows (i.e., link, route, and OD flows), twelve distinctive categories can be considered for 

the sensor location OD estimation problem (Hadavi and Shafahi, 2016). The list below 

illustrates examples of the popular categories and the key related literature while some of 

these categories have received more attention in the literature than others:  

– Estimation of OD flows employing traffic count information (Yang et al., 1991; Yang 

and Zhou, 1998; Doblas and Benitez, 2005; Gan et al., 2005; Eiseman et al., 2006), 

–  Estimation of link flow using traffic counts (Hu et al., 2009; Castillo et al., 2013), 
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–  Estimation of link flow based on observations provided by image sensors (Bianco et al., 

2006),  

– Estimation of path flows using path ID sensors information (Gentili and Mirchandani, 

2005),  

– Estimation of OD flows employing vehicle ID sensors observations (Castillo et al., 2008; 

Hadavi and Shafahi, 2016; Minguez et al., 2010, Zhou and List, 2010), and  

– Estimation of path flows based on the traffic information provided by vehicle ID sensors 

(Castillo et al., 2008; Hadavi and Shafahi, 2016; Minguez et al., 2010). 

 

Other studies also discuss the use of a combination of sensors (e.g. both vehicle ID sensors 

and counting sensors) to identify sensor locations and to estimate target flows (Zhou and 

List, 2010). Readers can refer to Viti et al. (2014) and Hadavi and Shafahi (2016) for a more 

extensive literature review on traffic sensor location identification for estimation purposes. 

This study employs traffic counts as a source of information for OD estimation, 

which requires a thorough review of studies that focus on using traffic count information to 

address the sensor location OD estimation problem.  

Chootinan et al. (2005) formulated a bi-objective traffic counting location problem 

for OD trip estimation. Their proposed model simultaneously employs two contradictory 

criteria, minimal resource utilization and maximum coverage, to strike a balance between the 

estimation quality and the coverage cost. Yang et al. (2006) proposed mixed-integer 

programming to determine the number of OD pairs whose flow can be specified for a given 

number of sensors. Their proposed formula was able to determine the minimum number of 

sensors required to specify the OD demands of all OD pairs. In a similar, more recent study, 
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Owais et al. (2019) presented a robust sensor location model that determined the ideal 

number of sensors and identified their locations while attempting to reduce the maximum 

possible relative error (MPRE) boundary for an estimated OD matrix.   

In general, different measurement indicators are used to evaluate the performance 

of OD estimation methods. By considering the target OD flows as an OD matrix, Yang et al. 

(1991) recommended the use of the MPRE index, which evaluates the reliability of an OD 

estimation. Yang and Zhou (1998) used the MPRE index to formulate four rules for sensor 

location. Gen et al. (2005) recommended the use of the expected relative error (ERE), which 

evaluates the expected value of the relative OD estimation error instead of the MPRE, which 

measures the quality of the OD estimation. More specifically, the MPRE measures the 

maximum distance between the estimated OD vector and any feasible OD vector in the 

feasible OD space, while the ERE is the expected distance between the estimated OD vector 

and a random feasible OD vector. Other studies have proposed other metrics to evaluate the 

quality of OD estimations. For instance, Bierlaire (2002) recommended the use of total 

demand scale (TDS) to measure the quality of OD estimation. Ehlert et al. (2006) developed 

a linear integer model to identify the locations of counting sensors. Their proposed 

formulation introduces an index of importance for each OD pair and then maximizes the 

summation of these indices for the covered pairs in the objective function. Ehlert et al. (2006) 

declared that the LP sub-problem provides an upper bound and can be easily employed for 

medium- and large-sized networks.  
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3.2 Example of the motivation behind this research  

A small example helps to represent the motivation behind this research. The toy 

network illustrated in Figure 3.1 has two origins, nodes 1 and 2, and two destinations, nodes 

5 and 6. Each origin point can end at one of the possible destinations. Figure 3.1 represents 

the flow and path between each OD pair.  

1

2

3 4

5

6

1

2

4

3

5

 

Figure 3.1 – Toy network 

Table 3.1 shows the four origin-destinations, their true OD information15, and the 

links traversed by each OD flow in Figure 3.1, respectively. Table 3.1 also shows two 

possible sensor set locations. Links 1 and 2 should be instrumented with sensors in the first 

sensor location set, while links 3 and 4 are equipped with sensors in the second location set. 

For every sensor-equipped link in each location set, the summation of estimated OD demands 

that traverse that link should be equal to the summation of true OD demands that use the 

same link assuming no measurement error in the sensors’ observations.  

For example, link 1 in the first sensor location set is instrumented with a sensor and 

OD demands 1-516 and 1-6, which traverse this link, have true OD demands of 2 and 4, 

respectively. Therefore, for link 1, the summation of estimated OD demand of ODs 1-5 and 

                                                 

15 True OD information refers to information that can be used to evaluate the quality of OD estimations. 
16 OD 1-5 represents OD that originate from node 1 and destined to node 5. 
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1-6 should be equal to the summation of the true OD demand of these ODs, which is, in this 

case, 4+2=6. Based on this explanation, the last two columns of this table show the estimated 

OD demand for each OD pair based on whether the sensor location set follows either the first 

or the second location set.  

I employed two known methods, mean square error (MSE) and mean absolute error 

(MAE), to calculate the OD estimation error. MSE (MAE) calculates the summation of the 

squared (absolute value) differences between the true and estimated OD demand for each 

OD pair. With respect to these error measurement methods, the first and the second sets of 

sensors have equal OD estimation errors of 4 (see the last row in Table 3.1).  

 

Table 3.1 – True/estimated OD information related to different sensor location sets on the toy network 

presented in Figure 3.1 

 

Origin-destination 

(OD) 

True OD 

demand17 

 

Route 

Estimated OD demand for 

sensor location set on the link18 

 

1st set: 1, 2  2nd set: 3, 4  

1-5 2 1-3-4 3 1 

1-6 4 1-3-5 3 5 

2-5 4 2-3-4 3 5 

                                                 

17 The unit for OD demand is (passenger car unit (pcu)/hour (hr)). 
18 These estimated values are presented for the sake of this example. No specific method is employed to use 

these values. 
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2-6 6 2-3-5 7 5 

OD estimation error (MSE/MAE) 41 4 

1For the first location set, this value calculated as follows:  

        
2 2 2 2

3 2 3 4 3 4 7 6 4MSE           

 3 2 3 4 3 4 7 6 4MAE           

 

This work focuses on exploring the effects of sensor failure on sensor deployment 

scenarios for OD estimation purposes. In other words, I would like to investigate the possible 

advantages of different sensor locations with consideration of sensor failure, especially while 

these location sets lead to identical OD estimation errors like the situation described for the 

first and the second location sets of sensors in Table 3.1.  

Table 3.2 shows the estimated OD demand flow information that would be missed if 

a sensor fails. The table assumes that all sensors are identical and have a similar probability 

of failure. Note that the missing OD demand flow information refers to a situation where 

it is not possible to estimate the OD demand of a given OD pair. For an arbitrary OD pair, 

this situation occurs when all the sensors observing the flow of the OD pair break down (refer 

to the OD covering rule by Yang and Zhou (1998)). I can use the first sensor location set as 

an example, where the sensors are installed on links 1 and 2. The expected flow information 

loss of OD 1-5 will be 3p  where 3 is the estimated demand between origin 1 and destination 

5 and p is the probability of not being able to estimate the flow of this OD, which occurs 

when the sensor installed on link 1 fails.  
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Two sensor location sets are presented in Table 3.2. When I compare them, I favor 

the second location set over the first as it results in less total expected OD demand flow 

information loss in the event of sensor failure. For any value of p , 1p  , the summation of 

the expected OD demand loss for the second location set is less than the same value for the 

first sensor location set:
216 6 10p p p  .  

Table 3.2 – Expected OD demand loss for each OD pair for each set of sensors 

Origin-destination 

(OD) 

Expected demand loss 

(Assumption: Identical sensors) 

1st set:  1, 2  2nd set:  3, 4  

1-5 3p  2p  

1-6 3p  5p  

2-5 3p  25p  

2-6 7 p  5p  

 

Table 3.2 provides useful information about the missing OD demand probability for 

individual OD pairs. This information can be used for traffic monitoring applications where 

some OD demands are of more interest to traffic management authorities than others.  

In addition to calculating expected OD demand flow information loss for an OD pair 

due to the failure of sensors that observe that OD pair’s flow, I can also determine the 

aggregate OD demand flow information loss due to the failure of a sensor deployed on a 

sensor-equipped link. Table 3.3 shows the expected OD demand loss for each sensor-

equipped link in either the first or the second sensor location set. According to Table 3.3, 
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for instance, OD pairs 1-5 and 1-6 traverse link 1. The expected OD demand that will be 

missed (cannot be estimated) due to the failure of the sensor installed on this link is 6p , 

where p is the failure probability of the sensor installed on this link and 6 is the summation 

of the estimated OD demand of OD pairs 1-5 and 1-6 according to the OD demand estimation 

provided by the first sensor location set. 

Table 3.3 presents the expected OD demand flow information loss when sensors are 

considered individually (see the column entitled “Expected OD demand flow information 

loss on links”) and as part of the first and second location sets (see the column entitled 

“Expected OD demand flow information loss on location set”). The expected OD demand 

loss on links 3 and 4, for example, is 16p and 6p , respectively. The expected OD demand 

flow information loss for the second sensor location set, which includes sensors on links 3 

and 4, is 10p , which is not equal to the summation of the expected OD demand flow 

information loss of the links in that location set. The failure of the sensor installed on link 4 

in the second sensor location set doesn’t affect the OD demand estimation because the total 

demand can be captured by the sensor deployed on link 3. If the sensor installed on link 3 

breaks down, then only the OD demand of OD pairs 1-6 and 2-6 will be missed because OD 

pairs 1-5 and 2-5 can still be captured by the sensor installed on link 4. According to Table 

3.2, the summation of the estimated OD demand for ODs 1-6 and 2-6 is 10. Therefore, the 

expected OD demand flow information loss for the sensor deployed on link 3 in the second 

sensor location set is 10p . A failure of the sensor installed on link 4 doesn’t affect the OD 

estimation process, making the OD demand flow information loss for the second sensor 

location set 10p .  
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The column in Table 3.3 entitled “Expected OD demand flow information loss on 

location set” calculates the summation of expected OD demand loss of each sensor in a 

location set under the assumption that all other sensors in that location set are in working 

condition. Based on this assumption, OD demand flow information loss due to the failure of 

a specific sensor can be mitigated as the flow of ODs can still be captured by other sensors 

in that location set. This calculation is based on the assumptions that all installed sensors 

have equal failure rates over identical lifetimes and that incidence of failure is an independent 

event among sensors.  

The information provided in Table 3.3 is crucial for identifying links with the highest 

expected OD demand flow information loss in a traffic network so that those links can be 

equipped with more advanced sensors that have a lower probability of failure. For instance, 

although the second sensor location set in Table 3.3 has a lower expected OD demand flow 

information loss than the first set, link 2 in the first location set has an identical impact on 

OD demand flow information loss as link 4 has in the second location. Table 3.3 also shows 

the unique OD demand flow information gain provided by each sensor. In the first location 

set of sensors, each sensor provides unique OD demand flow information, whereas the sensor 

installed on link 4 doesn’t contribute to unique information in the second location set because 

all information available by this sensor is also captured elsewhere. When adding additional 

sensors to a network, this consideration is important for maximizing the OD demand flow 

information gain.  
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Table 3.3 – Total expected flow loss due to the failure of each sensor in the toy network of Figure 3.1 

 

Observed 

link 

OD demands 

traversing a 

link 

Expected OD demand flow 

information loss on links 

(identical sensors) 

 

Expected OD demand flow 

information loss on location set 

(identical sensors) 

 

1st set:  1, 2  2nd set:  3, 4  1st set:  1, 2  2nd set:  3, 4  

1 

1-5 

1-6 

6p  -- 

16p  10p  

2 

2-5 

2-6 

10p  -- 

3 

1-5 

1-6 

2-5 

2-6 

-- 16p  

4 

1-5 

2-5 

-- 6p  

  

The distinct OD demand flow information loss comparisons presented in Tables 3.2 

and 3.3 refer to different viewpoints, including OD-oriented or link-oriented viewpoints that 

consider sensor failure for OD demand estimation purposes. In the real world, the failure rate 

of sensors is not necessarily identical and the flow between each OD pair exhibits a more 

random behavior than a deterministic one.  

With respect to the above-mentioned viewpoints, the deployment of non-identical 

sensors, and the random behavior of OD demands, I propose a new formulation that identifies 
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more reliable sensor locations in a traffic network to minimize the impact of sensor failure 

on the OD estimation process. 

 

3.3 Failure rate and mean lifetime 

Reliability engineering and survival analysis of systems are primarily concerned with 

the system’s lifetime functionality, which is usually represented as one or more positive 

random variables. By using a random variable to represent the system’s lifetime, I can 

thoroughly characterize the system by its distribution function. The culmination of a system’s 

lifetime is shown by death, or a terminating event usually known as the failure incident. 

Knowledge pertaining to the failure behavior of an operating system in a sufficiently small 

time interval is important to survival analysis of the system. Identifying the failure rate, or 

the frequency with which a system or a component of a system fails expressed per unit of 

time is the core component in determining a system’s failure behavior. The failure rate of a 

system or component varies over its life cycle. For example, the failure rate of an 

automobile’s engine in its tenth year of service might be greater than the failure rate in its 

first year of service.  

3.3.1 Failure rate basics 

Let 0S   be a continuous lifetime random variable with the following cumulative 

distribution function: 

 Pr        s 0
( )

0,                    s 0

S s
F s

  
 


 (3.1) 
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Unless it is clearly specified, I assume this distribution is proper (
1(1)F   and (0) 0F  ) and 

the support of ( )F s is [0, ) . I can express s  as the time to failure (destruction) of the system, 

but other interpretations are also possible. Inter-arrival times in a sequence of ordered 

incidents or the amount of monotonically-accumulated damage on the failure of a mechanical 

system are other example instances of the end of a system’s lifetime.  

This study denotes a system’s expected lifetime  E S  as   and assumes   to be 

finite:    . I also assume that ( )F s  is a continuous function, so the probability density 

function (PDF) ( )f s , which is a derivative of s  (
' ( ) ( )F s f s ), exists everywhere at s . The 

PDF can be calculated as: 

   
0

Pr ( )
( ) lim s

s S s s F s s F s
f s

s s
 

      
 

 
 (3.2) 

The PDF can then be used to find the expected lifetime of a system: 

 
0 0

(x) dx ( ) ( ) dx

s s

E S xf sF s F x
   

      
   
   (3.3) 

Now I can define the notion of an operating system’s failure rate. Considering a time 

interval ( , ]s s s  , I am interested in the probability of system failure within this interval 

knowing that the failure didn’t occur prior to time s . This probability can be also interpreted 

as the risk of failure in ( , ]s s s   given the stated condition: 
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   

 

 

0 0

0

Pr | Pr
( ) lim lim

Pr

( ) ( )
lim

( ) ( )

s s

s

s S s s S s s S s s
s

s S s s

F s s F s f s

F s s F s

    

 

        
  

  

  




 (3.4) 

 

Where ( )s  is the failure rate at time s  when 0s  . With a sufficiently small s , I can also 

approximate that  Pr | ( )s S s s S s s s      , which gives a significant interpretation of 

( )s s   as an approximate conditional probability of failure at time interval ( , ]s s s  .  

3.3.2 Bath-tub curve : 

The bath-tub curve is, in fact, a well-known ubiquitous characteristic of all living 

things. As a way of illustration, the human life expectancy and a manufactured product’s 

failure times may have many common features in their failure rate profiles as depicted in the 

bath-tub curve. The bath-tub curve can be segmented in three distinct time phases, including 

wear-in, useful life and wear-out phases, while each phase corresponds to a distinctive failure 

mode. The vertical dashed line used in the bath-tub curve shown in Figure 3.2 separates these 

time phases (Aarset, 1987).  
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Figure 3.2 – Bath-Tub curve (Aarset, 1987)  

The wear-in also is known as the infant mortality is usually short with a decreasing 

failure rate. The useful life (youth) phase usually inherits a longer period compared to the 

other two phases among the most apparatus. If it survives the wear-in phase, a device exhibits 

a constant failure rate in the useful life phase. Eventually, the wear-out (aging) phase is the 

period that material fatigue, corrosion, embrittlement, etc. occur and result in device failure. 

At this phase, a device needs an increased regular inspection, special maintenance, and 

necessary replacement, if required.  

3.4 The effect of sensor failure on the OD demand estimation process 

In this section, I investigate the significance of sensor failure on the OD estimation 

process for a traffic network. I began by distinguishing between the effect each sensor’s 

failure would have on the OD demand estimation of ODs that traverse each sensor-equipped 

link, as well as the effect of sensor failure on OD demand estimation for each OD pair. I 
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discuss these considerations with the assumption that the sensors are not necessarily identical 

and have dissimilar failure behavior. I assume in this work that sensors are deployed 

independently, so there is no correlation between the failure of any pair of sensors.  

I assume that a traffic network consists of J  OD pairs and M  links, where J and 

M  denote the set of OD pairs and links within the network. Let the binary variable ,k lx  

indicate whether link l  is instrumented with sensor type k ( k K ), where 
, 1k l

k K

x


  denotes 

that this link is equipped with a sensor and therefore considered observed, and 0  means the 

link is not equipped with a sensor. To represent all traffic counting locations in the network, 

I define set M  as a subset of M , where 
,| 1k l

k K

M l M x


 
   
 

 . Set M  is a function with 

respect to the binary variable ,k lx : (X)M M , where ,..., , ...

T

k l

k K

X x


 
  
 

 . The random variable

lv  represents the stochastic traffic flow on the sensor-equipped link, i.e., observed link, l  and 

 
( 1)l n

v is a column vector that denotes the observed traffic flow on the same link that can 

vary from day to day. The number of rows in the column vector, n , represents the number of 

measurements on link l  where  i
lv  is the ith element of this vector, denoting the ith 

measurement of traffic flow during the peak hour period on link l .  

I can calculate the sample mean peak hour traffic flow on link l  using the information 

obtained from the column vectors of observed traffic flows using the following equation: 

 

1

1
( )                                                                                                      



  
n

i

l l

i

E v v l M
n

 (3.5) 
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If I represent estimated OD demand for OD pair j during the same peak hour period ( jQ ) as 

a multivariate random variable in which ( ) j jE Q q  where jq  is the estimated mean OD 

demand, then Equation (3.6) is an alternative way to calculate lv : 

,         l l j j

j J

v t Q l M


    (3.6) 

 

Where ,l jt is the proportion of traffic flow from OD j  that uses link l . In this research, I 

assume that ,l jt  is not a fixed parameter for each link and OD demand19. The sample mean 

of peak hour traffic flow associated with link l  ( ( )lE v ) can be newly represented using 

Equation (3.7): 

, ,( ) =        l l j j l j j

j J j J

E v E t Q t q l M
 

 
   

 
   (3.7) 

 

Equations (3.6) and (3.7) are both expressed for sensor-equipped links. The sample mean of 

traffic flows obtained via link traffic counts provides vital information about the traffic flow 

pattern traversing each link.  

 

3.4.1 Expected OD demand flow information loss of OD pair 

The failure of sensors installed on an observed link can adversely affect the OD 

demand estimation of each OD pair in a traffic network. Studying the effect of sensor failure 

                                                 

19 In the following sections, I discuss the calculation procedure of the link choice proportion function 
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on each OD pair is important, as the flows between some OD pairs might be more important 

for traffic management authorities than the flows between others. The following equation 

expresses the expected OD demand flow information loss for each OD pair in a traffic 

network: 

 
, , , ,  

( ) ( )
=      ,

( ) ( )

l j k l l j k l

l M l M

x x

L L k k

j j j

k K k Kk k

f s f s
E Q E Q q j J s S

F s F s

 

 

 

                                 

   (3.8) 

 

Where the index variable L in  L

jE Q  refers to the OD demand loss of OD pair j . The 

equation 
, .l j k l

l M

x


  is the power of 
( )

( )

k

k

f s

F s

 
 
 
 

. It calculates the number of observed links that 

are equipped with sensor type k  and traversed by OD pair j , where ,l j  is the link-OD 

incidence matrix that signifies whether OD j  traverses link l  ( , 1l j  ) or not ( , 0l j  ).  

There is no loss in the estimated demand ( jq ) in this equation when the multiplication of 

( )

( )

k

k

f s

F s

 
 
 
 

is approximately zero, which means the failure of that sensor has a minimal effect on 

the estimated mean OD demand.  

3.4.1.1  Relative OD demand flow information gain for each OD pair 

In a traffic network, the true OD mean can be used to evaluate the quality of estimated 

values for each OD demand. The ideal information gain for each OD pair is when the 

estimated mean OD equals the true OD mean. Any absolute deviation between these two 

values can be considered information loss for that OD pair. The probability of failure of the 

sensors installed on links traversed by an OD pair can affect the OD demand information 
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gain as the higher the failure rate, the lower the information gain for that OD pair. The relative 

OD demand flow information gain proposed below incorporates both the OD estimation error 

and the failure of sensors installed on links traversed by each OD pair: 

, ,  

*

, max *

*

( ) 1
1                                 ,

( )  
1

l j k l

l M

x

k

j s j

k K k j j

j

f s
q j J s S

F s q q

q










 
 

    
        

          
  
  

  (3.9) 

 

Where max 20 ( max 0  ) is the maximum failure rate that can be achieved in the possible range 

of s  while, dividing 
( )

( )

k

k

f s

F s
 by max results in a positive value between 0 and 1. Moreover, the 

maximum possible information gain equals true mean OD demand ( *  jq ) for OD pair j  at 

time s . It is possible to reach this maximum gain where the estimated mean OD demand 

equals the true mean OD demand ( *  0j jq q  ) and the probability of missing to estimate 

OD demand j  is approximately zero (
, ,  

( )
0

( )

l j k l

l M

x

k

k K k

f s

F s








 

 
 
 

 ).  

 In this equation, 

*

*

 j j

j

q q

q


 is always greater than or equal to zero, where * 0jq  . 

Consequently, 
*

*

1

 
1

j j

j

q q

q

 
 
 
 

 ranges between 0 and 1 (see Figure 3.3). Moreover, 

                                                 

20 When the failure rate is defined as a value between 0 and 1, then max  will be 1. 



 

120 

 

*

*

1

 
1

j j

j

q q

q

 
 
 
 

 relates to the relative calculation of OD demand flow information gain with 

respect to the true mean OD demand of OD pair j , while 

*

*

 j j

j

q q

q


 signifies the relative 

difference between the estimated and true mean OD demand flow information gain with 

regards to the quantity of OD demand related to each OD pair.  

 

 

Figure 3.3 – The graph of the function 
1

1
xf

x



 

 

To elaborate more on relative information gain, let me build upon my example toy 

network from Section 3.2. Assume that there are two estimated OD demands for OD pairs 

1-6 and 2-6 as shown in Table 3.4, which also calculates the relative information gain with 

respect to each estimated demand using the equations outlined above. Table 3.4 shows that 

the larger the difference between the true and estimated mean OD demand for each OD pair, 

𝑓𝑥 =
1

1 + 𝑥
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the closer the value gets to zero and consequently the less the OD demand flow information 

is gained. Table 3.4 also shows that the equal absolute difference between the true and 

estimated OD demand doesn’t necessarily lead to equal OD demand flow information gain 

for different OD pairs, as this value depends on the true OD demand value of each OD pair. 

For instance, the absolute difference for the first OD demand estimations of each OD pair 

are equal, but these estimations lead to different OD demand flow information gains because 

they have different true OD demand values and the 

*

*

 j j

j

q q

q


 value is different for each. 

 

Table 3.4 – The OD demand information gain for two OD pairs in Figure 3.1 

 

Origin-

Destination 

True OD 

demand 

Estimated OD 

demand 

*

*

1

 
1

j j

j

q q

q

 
 
 
 

 

Relative OD 

demand flow 

information gain

 

1-6 4 

1st Estimation:  2 0.667 2.667 

2nd Estimation:  9 0.44 1.76 

2-6 6 

1st Estimation:  4 0.75 4.5 

2nd Estimation:  13 0.462 2.772 
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In Equation (3.9), ,j s  becomes a positive value for each OD pair j  at time s  (

*

,0      , ,j s jq s S j J     ) as 
*

*

1

 
1

j j

j

q q

q

 
 
 
 

 and 

, ,  

max

( )
1

( )

l j k l

l M

x

k

k K k

f s

F s









  
   

  
  

 range between 0 

and 1. I can use ,j s  to construct a new objective function that maximizes the relative OD 

demand flow information gain among all OD pairs at time s : 

  2

,max mins j s
j J

Z 


  (3.10) 

 

The objective function introduced in Equation (3.10) considers both the reliability of 

the OD estimate and the probability that sensors deployed on observed links and traversed 

by each OD pair at time s  will fail. To maximize the total minimum possible information 

loss related to OD demands over the sensors’ lifetimes, I can integrate Equation (3.10) with 

s  and maximize the resulting equation: 

 2 '

,

0

max

w

j s

j J

Z ds


  
    

  
   (3.11) 

Where w  is the time period used as the integration’s upper bound. In other words, Equation 

(3.11) is based on the assumption that the PDFs of all sensors are defined over an equal range 

of w 21. In the following section, I discuss the expected and relative information loss of each 

observed link due to sensor failure as well as estimation error. 

                                                 

21 Depending on the average lifetime of sensors, I can define w  in yearly or monthly periods. 
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3.4.2 Expected OD demand flow information loss on observed link 

In addition to considering the impact of sensor failure on the demand estimation loss 

of each OD pair in a traffic network, I am also interested in studying the effect of sensor 

failure on the estimation of OD demand while traversing an observed link. In other words, I 

investigate the effect of failure from each sensor on the total OD demand flow information 

loss during the OD demand estimation process in a traffic network. I achieve this by 

calculating the mean OD demand flow information loss for all OD pairs traversing each 

sensor-equipped link. Equation (3.12) calculates expected OD demand flow information loss 

related to the sample mean traffic flow on link l  at time s : 

 (3.12) 

, , , , , , , ,

( ) ( )
( )        ,     

( ) ( )

L L k k

l l j l j l j k l j l j l j l j k l j

j J k K j J k Kk k

f s f s
E v E t x Q t x q l M s S

F s F s
   

   

      
          

      
      

    

 

Where ( )kf s  is the PDF associated with the sensor type k , ,l j  is the binary parameter that 

determines whether OD pair j  traverses link l , and ,l j is a binary variable that determines 

if link l  is the only observed link that is traversed by OD pair j
22  

(  ', ,
'
'

1 max  , ,l j l j
l M
l l

j J l M 



     ). Multiplying ,l j and ,l j  allows me to consider the 

uniqueness of the OD demand that traverses each observed link in a network. According to 

Equation (3.12), the OD demand flow information traversing link l  cannot be estimated if 

                                                 

22 Note that ,l j  can be 1 for observed link l  and OD pair j  while this OD also traverses other links which 

are unobserved.  
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the sensor installed on this link breaks down. Although subset M  only considers links 

equipped with sensors, I must still include a binary variable ,k lx  to determine the type of 

sensor that is installed on link l . 

 

3.4.2.1 Relative OD demand flow information gain on an observed link 

 

The relative OD demand gain for an observed link focuses on the opposite of OD 

demand loss, which occurs due to possible simultaneous sensor failure and estimation error. 

The true mean OD demand for observed link l  must satisfy the following equation: 

*

,( )         l l j j

j J

E v t q l M


    (3.13) 

 

Equation (3.13) represents the relationship between the true mean OD demand and the mean 

traffic flow on observed link l . I need to incorporate ,l j  into Equation (3.13) to account for 

the unique OD demand flow information obtained on observed link l : 

' *

, ,( )         l l j l j j

j J

E v t q l M


    (3.14) 

 

 To obtain the relative OD demand gain on the observed link l  at time s , I use 

Equation (3.14) to consider the true OD demand gain, Equation (3.12) to consider the 

possible estimated OD demand loss on the link, and proposed Equation (3.15) that 

incorporates both the relative estimation error and the failure of sensors installed on this link: 
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*

, , , ,max *

*

( ) 1
1                                 ,

( )  
1

k

l s k l l j l j j

j J k K k j j

j

f s
x t q l M s S

F s q q

q

 
 

 
 
   
       

          
  
  

  (3.15) 

 

Where the closer the value to 
' ( )lE v , the more reliable the OD demand information obtained 

from the sensor installed on link l . The ideal condition is that this equation is equal to 
' ( ),lE v  

which means that the failure probability of the sensor installed on the link l  is zero 
( )

0
( )

k

k

f s

F s

 
 

 
 

and that the estimated mean OD demand on the link is equal to the true mean OD demand 

for each OD pair that uses this link ( * * 0j j j jq q q q    ). 

 Equation (3.15) assesses the relative total OD demand flow information gain on link 

l  for all unique OD flows that traverse that link. In my definition, the term relative refers to 

*

*

*

1

 
1

j

j j

j

q
q q

q

 
 
 
 
  
  

  
  

 in Equation (3.15), which addresses the relative OD demand information 

gain from the mean OD demand estimation for OD pair j  with respect to the true mean OD 

demand of this OD pair. As the true and estimated mean OD demands on link l  are positive 

values (
*& 0j jq q  ), 

*

*

 
1

j j

j

q q

q


  is therefore always a positive value ranging between 0 and 

1. Moreover, 
max

( )
1

( )

k

k

f s

F s

 
 

 
 

 is also a positive value in the same range. Therefore, ,l s  is 
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always positive for each observed link at time s , '

,0 ( )    , ,l s lE v s S l M     . Using ,l s , I 

can define an objective function that maximizes the minimum relative information gain on 

observed links at time s : 

1

,max mins l s
l M

j J

Z 




  
    

  
  (3.16) 

 

 The objective function introduced in Equation (3.16) considers both the reliability of 

the OD estimations that traverse each observed link and the failure probability of the sensors 

installed on the links at time s . To maximize the total relative information gain on the 

observed links over the sensors’ lifetimes, I can integrate Equation (3.16) with respect to s  

and then maximize the resulting equation: 

1 '

,s

0

max

w

l

j Jl M

Z ds


   
      

   
   (3.17) 

 

The objective functions introduced in Equations (3.10, 3.11, 3.16, and 3.17) can assist 

me in finding the appropriate formula for the sensor location problem. This will be discussed 

in the following section. 

 

3.5 Mathematical formulation: 

The two objective functions introduced in Sections 3.4.1.1 and 3.4.2.1 focus on 

maximizing both the relative OD demand flow information gain on each observed link and 

the OD demand flow information gain for each OD pair. I can use each of these functions 
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separately or combine them as a bi-objective function using the weighted sums method 

(WSM) and the ε-constraint method. According to the WSM, objective functions can be 

combined by using weights to signify the importance of each. The ε-constraint method 

maintains a singular objective function while treating other objective functions as constraints 

that define an upper bound/lower bound boundary depending on the natures of the objective 

functions.  

The bi-objective function and constraint(s) using the WSM are shown below: 

 

 
 ,s ,

0 01' 2 '

1 2 1 2' *

1 2

max max
( )  

. .,

1

w w

l j s
j Jl M j J

wsm

l j

j Jl M

ds ds

Z w Z w Z w w
E v q

s t

w w

 
 



        
                 

       
    
   

   

 

   

 

 

(3.18) 

 

Where 1 2&w w  are the weights that imply the importance of 1'Z  and 2 'Z , respectively. The 

value of these weights can be determined using expert judgment or considering the main 

focus of sensor installment. The sum of the weights should be equal to 1. In this equation, 

1'Z  and 2 'Z are divided by ' ( )l

l M

E v


 and *  j

j J

q


 because the objective functions employed by 

the WSM should be normalized.  

There are two possible illustrations of the objective function with respect to the ε-

constraint because either 1'Z or 2 'Z will be employed as an objective function and the other 

as a constraint: 
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I  II  

 

1

int ,s

0

1

,

0

max

. .,

max

w

constra l

j Jl M

w

j s

j J

Z ds

s t

ds

 









   
      

   

  
    

  

 

 

 
OR 

 2

int ,

0

2

,s

0

max

. .,

max

w

constra j s

j J

w

l

j Jl M

Z ds

s t

ds

 









  
    

  

   
      

   

 

 

 

 

(3.19) 

 

Where 1  and 2  are the lower bound boundaries for 1'Z and 2 'Z , respectively.  

Note that the values of 1  and 2 can possibly contribute to the infeasibility of the 

optimization problem. We, therefore, must meticulously determine these values to avoid 

having the optimization problems defined in Equation (3.19) become infeasible. I can do this 

by solving one of the optimization forms in Equation (3.19) and using the optimal value as 

the lower bound of the constraint while changing the objective function. In addition to the 

WSM- and ε-constraint-related constraints, other general constraints should be employed for 

both methods. These include the budget constraint (Equation (3.20)), the sensor deployment 

constraint (Equation (3.21)), the OD covering rule (Equation (3.22)), and the constraints 

associated with the relationship between the true and estimated mean OD demand on 

observed links (Equation (3.23)). 

,k l

l M k K

x 
 

  (3.20) 

, 1                        k l

k K

x l M


    (3.21) 
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, , 1       l j k l

k Kl M

x j J


    (3.22) 

 * *

, , ,  = =0           l j j l j j l j j j

j J j J j J

t q t q t q q l M
  

       (3.23) 

Where   is the budget constraint that restricts the number of sensors installed on links in 

Equation (3.20). The budget in this work also constrains the types of sensors that can be 

deployed on links, where a larger budget supports the installation of more advanced sensors 

with lower failure probabilities.  

According to Equation (3.21), at most one sensor can be installed on each link in a 

traffic network. Equation (3.22) addresses the OD covering rule, which signifies that the OD 

demand of each OD pair should be observed by at least one sensor. Equation (3.23) 

demonstrates that subtracting the sum of the true mean OD demand from the estimated OD 

demand should result in zero on each observed link l  ( l M  ). 

 

3.5.1 Further considerations for locating sensors in a traffic network: 

 

In this section, I discuss additional considerations that can be studied for identifying 

ideal sensor locations in a traffic network. I introduce these considerations based on the four 

rules provided by Yang and Zhou (1998) and Yang et al. (2006). Equation (3.22) from 

Section 4 satisfies the OD covering rule, while I can address sensor failure with a new 

equation that ensures that the probability of OD demand flow information loss for a certain 

OD pair due to the failure of sensors is less than a certain rate: 
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, ,

( )
     

( )

l j k l

l M

x

k

k K k

f s
j J

F s









 

   
 
 

  (3.24) 

 

Where the left-hand side of inequality in Equation (3.24) calculates the probability of OD 

demand loss for OD pair j  in the event of failure of the sensors installed on links that observe 

OD demand of this OD pair. The right-hand side of this inequality introduces a value 

threshold that OD demand flow information loss probability should not surpass. I can further 

extend Equation (3.24) to apply the constraint only for those OD pairs whose true OD 

demand is greater than a certain value (
Lq ): 

, ,

*( )
         

( )

l j k l

l M

x

Lk

j

k K k

f s
j J if q q

F s









 

    
 
 

  (3.25) 

This equation can be used to reduce the OD demand information loss for OD pairs with high 

demand rate. I can address the sensor location priority in a traffic network from three 

different viewpoints: 

Maximum flow fraction: Prioritizing the link locations that can capture the largest OD 

demand with the fewest OD pairs 

Maximum flow intercepting: Prioritizing the link locations whose sum of OD demands from 

all sensors maximizes the total captured OD demand  

Maximal net OD flow captured:  Prioritizing the link locations that minimize the OD demand 

information duplicity 
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This work’s defined objective functions, shown in Equations (3.10 and 3.11), attempt 

to maximize the OD demand flow information gain for each OD pair, which indirectly 

addresses the maximum flow fraction rule. A similar set of sensors can be used to create link 

locations that capture the largest demand over the fewest OD pairs, maximizing the OD flow 

fraction in exchange for a higher relative OD information gain. The proposed objective 

functions, Equations (3.16 and 3.17), minimize the possibility of missing the unique OD 

demand flow information gain on each observed link while observing the relative OD 

demand flow information gain. These functions also address the maximum flow intercepting 

rule as they attempt to shrink the unique OD demand flow information between observed 

links, thereby maximizing the intersection of captured OD demand flow between observed 

links.  

The maximal net OD flow captured rule was not addressed directly in the initial 

network sensor deployment, but it was considered in my proposed model by putting greater 

importance on link locations with more unique OD demand flow information; thereby 

placing more advanced sensors with less failure probability on these links. To employ 

additional sensors, I can consider the link independence rule by putting extra sensors on links 

that cover more unique OD demand flow, as shown in the following equation: 

'' '' '' ' ' ' '' '

'' '

, , , , , , , ,
                          & \       j jl j l j l j l j l j l j l k l k

j J j J k K k K

if t q t q x x l l M M   
   

         (3.26) 

 

Where the unobserved link ''l  is favored over link 'l for sensor installation as it covers less 

duplicate OD demand information.  
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3.5.2 Considerations for locating sensors in a traffic network with regard to the 

availability of route flow information 

The following rules primarily depend on the existence of route information, including 

the link-route incidence matrix and the route-OD incidence matrices. While the main focus 

of this work is focused on creating a link choice proportion matrix in a network, I can discuss 

the four latter rules if a traffic network’s route information is available. The route covering 

rule developed by Yang et al. (2006) and Cipriani et al. (2006) is an extension of the OD 

covering rule, which imposes the constraint that each route connecting each OD pair should 

be observed by at least one sensor.  

, , 1       l r k l

k Kl M

x r R


    (3.27) 

 

Where ,l r is the binary element of the link-route incidence matrix equal to 1 if route r  

traverses link l and otherwise equal to 0. Considering the possible failure of sensors, I can 

update Equation (3.27) to incorporate the expected information gain from route flows. I can 

set the constraint to create a threshold '  that either addresses the probability of missing each 

route’s flow (Equation (3.28)), or that only activates if the true route flow exceeds a certain 

value (Equation (3.29)): 

, ,

'( )
     

( )

l r k l

l M

x

k

k K k

f s
r R

F s









 

   
 
 

  (3.28) 

, ,

'( )
         

( )

l r k l

l M

x

Lk

r

k K k

f s
r R if d d

F s









 

    
 
 

  (3.29) 
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Where Ld is the boundary of route flows that activates this equation for each route r  if the 

flow of that route exceeds Ld . The maximal OD demand fraction rule implies that the ratio 

between the route flow on the link l  of OD pair j  and the total flow of that OD demand 

should be maximized. When route flow information is available, minimal changes can be 

made to the proposed to cover the maximal OD demand fraction rule. These changes include 

using a link-route incidence matrix and the route-OD incidence matrices in the objective 

function to maximize the route flow information gain for each OD pair. The updated 

objective function should also minimize the expected route flow loss for each OD pair 

concerning sensor failure.   

Similar in definition to the maximal OD flow captured rule, the maximal net route flow 

captured rule prioritizes sensor locations that capture the largest unique route flows. This 

rule does not consider double-counting23 of route flows by sensors installed on observed 

links.  

 

3.6 Solution algorithm: 

In this section, I describe the solution algorithm used in this work. This includes the 

explanation related to the random link choice proportion and the employed Genetic 

Algorithm (GA).  

                                                 

23 Double counting refer to as observing route flows more than once. 
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3.6.1 Description of OD estimation process with stochastic link choice proportion:  

I assumed the link choice proportion inherits a stochastic behavior and needs to be updated 

through the estimation process. For the estimation process, I used the maximum entropy 

method to estimate the OD demands from the observed link flows that obtain from the sensor 

assignment24. Note that depending on the type of priori OD available information, other OD 

estimation methods such as Bayesian estimation, generalized least square or maximum 

likelihood can be used instead of the maximum entropy (Cascetta, 2009). The choice of the 

functional form of the OD estimation method might affect the optimal sensor location results; 

more research needs to be conducted to investigate this impact. Moreover, using the 

stochastic user equilibrium (SUE), I employ the estimated OD demands to update link flows 

and the link choice proportion (Please see Figure 3.4). This information obtained from the 

SUE should be consistent with the observed link flows and link choice proportions. Thus, 

the link flows and link choice proportions should be updated iteratively until the difference 

between the estimated link flows obtained from the traffic assignment and observed link 

flows obtained from traffic counts is less than the tolerance rate which is set as 0.001. With 

the estimated OD values, I can calculate the OD demand information again from the current 

sensor assignment and update this assignment to maximize this information gain, if required.  

 

                                                 

24 For more information on the formulations related maximum entropy, please refer to Van Zuylen and 

Willumsen (1980)  
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Updated l ink flows

&

link choice proportions

 Sensor assignmentObserved link flows

OD demand estimation

Traffic assignment
(Stochastic user equilibrium)

OD demand information gain on Link/

OD pairs

maximize the OD demand information gain

Resultant OD estimation

Estimated OD demands

Update sensor assignment if 

OD demand information gain is not maximum 

 Initial sensor assignment

 

Figure 3.4 – Flowchart of the sensor assignment with OD demand estimation and stochastic link choice 

proportions 

 

3.6.2 Genetic Algorithm 

Figure 3.5 illustrates the flowchart of the proposed algorithm. Moreover, in what follows, I 

elaborate on the GA procedures in more detail: 
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Figure 3.5 – Algorithm Flowchart 

 

3.6.2.1 Chromosome generation and representation 

 

To represent the sensor location in a network, I defined each chromosome length to be 

equal to the number of links in a network while each cell can demonstrate if a link is 

instrumented with a sensor or not. For instance, if the 
thj  cell of a chromosome is equal to 
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1, it means that the sensor type 1 should be installed on the link j  while zero means that link 

j  is an unobserved link The population size in this solution algorithm is set to 30 in each 

iteration.  

3.6.2.2 Fitness function 

 

Objective functions, introduced as ZFitness in Figure 3.5, are the functions in Equations 

(3.18) and (3.19) are employed as the fitness function of the GA.  

 

3.6.2.3 Mutation and crossover procedures 

 

With respect to the fitness function, the crossover procedure is employed to increase 

the chance of reproduction of the chromosomes that stand in a higher rank. In addition to 

crossover, the mutation procedure is employed to guarantee diversity in the generation of the 

subsequent population.   

 

3.6.2.4 Stopping criteria 

Stopping criteria also known as the termination condition determines the stopping 

point of the generational process in GA. Reaching a fixed number of repetitions, meeting the 

budget cap, and making no improvement in the fitness function through successive iterations 

are the common terminating conditions. I used the number of iterations to terminate the 

proposed GA. This criterion enforces the GA to stop when it reaches a predefined number of 

iterations. To avoid exhaustive iterations while defining the number of iterations, I 
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implemented the GA with different initial populations and defined the number of iterations 

as four times the maximum iterations among different populations in which there is no 

improvement in the fitness function in the successive iterations.  

 

3.7 Numerical examples: 

In this section, I implement the proposed model for two illustrative examples including 

the Fishbone network and Sioux Falls network. Both of these networks have been widely 

employed in previous studies (Hu et al., 2014; Ng, 2012,2013; Salari et al., 2019; Xu et al., 

2016).  

Fishbone network: The Fishbone network is a relatively small-sized network with six non-

centroid nodes and four centroid nodes (Nodes 1 and 2 are origin nodes and nodes 9 and 10 

are destination nodes). This network has eighteen links that connect the origin nodes to 

destination nodes. The graphical illustration of this network is demonstrated in Figure 3.6. 
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Figure 3.6 – Fishbone network 

 

I provided the information related to OD nodes, routes between each OD pair and 

Prior/True OD flows in Table 3.6. According to this table, there are four OD pairs between 

origin nodes and destination nodes in this network. Table 3.6 also presents the prior OD 

demand information and the True OD demand flow for each OD pair. Note that the 
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information is randomly generated and is not from any real data source. The rest of the 

information related to this network including the link flows and link choice proportions are 

presented in Appendix IV.  

 

Table 3.6 Origin-Destination details of Fishbone network 

 

OD# OD nodes Routes OD demands 

Prior True 

1 1-9 1-9-15-17 

2-11-15-17 

200 300 

2 1-10 1-9-15-18 

2-7-9-15-18 

350 410 

3 2-9 3-12-14-15-17 

2-6-10-16-17 

250 320 

4 2-10 4-8-12-16-18 510 470 

 

Sioux Falls network: This network belongs to the city of Sioux Falls in the state of South 

Dakota, Unites States. This relatively mid-sized network consists of 76 links and 24 nodes. 

Consistent with Hao et al. (2019), I assumed that there exist 30 OD pairs in this network. 

Figure 3.7 represents a graphical illustration of this network. The information related to 

Origin-Destination nodes, prior OD demands, and true OD demands is provided in Appendix 

V. 
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Figure 3.7 – Sioux Falls network 

 

I assumed that there are two types of sensors introduced as basic and advanced sensors 

having different life-time distribution and cost. Table 3.7 provides detailed information 

related to these two types of sensors. According to this table, the basic sensor presents a 

higher failure rate per given period of time and is less expensive than the advanced sensor. 

Please note that while the lifetime distributions of sensors follow exponential distributions, 

their failure rates remain constant. In other words, the failure rates obtaining from Table 3.7 

belong to the useful life phase of sensors.  
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Table 3.7 – Information pertaining to two types of sensors 

 

Sensor type Parameter values 

Life-time distribution Cost per sensor (× 100$) 

1 (Basic) Exponential (  =2)25 120 

2 (Advanced) Exponential (  =5) 180 

 

3.7.1 The implementation of the GA Fishbone network 

I generated three different population sizes and implemented the model for 100 

iterations to observe the convergence rate behavior for different populations in the Fishbone 

network. Among the three populations, I explored the maximum number of iterations prior 

to the steady-state phase when no better solution obtained in subsequent iterations and 

multiplied this value by four. In Figure 3.8, I illustrate the convergence behavior of the 

proposed GA with three different population sizes when Equation (3.18) is used as the fitness 

function (
1 2 0.5w w  ) and it is assumed there exist four basic sensors to be installed in the 

network. According to this figure, the maximum number of iterations is set as 272 for the 

Fishbone network while I can see the GA reaches the maximum value before the 150th 

iteration for all three populations.  

 

                                                 

25 This is the time gap between two consecutive events 
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Figure 3.8 – Convergence of the proposed GA for the Fishbone network using three different 

populations 

 

3.7.2 Relative OD information gain on links/OD pairs: Fishbone network 

In Figure 3.9, I assessed the effect of the number of sensors on the relative OD demand 

information gain for each OD pair in Fishbone network assuming that all sensors are 

identical26. In this table, the number of identical sensors ranges from 2 to 8 sensors knowing 

that two sensors are the minimum number of sensors required to satisfy OD covering rule. I 

employed Equation (3.11) as the singular objective function to identify the location of 

sensors, i.e., equivalent to Equation (3.19-II) while there is no cap for the demand 

information gain on links). In Figure 3.9, each quadrant of the circle belongs to an OD pair 

which are differentiated with color-coding. For each quadrant, the outer boundary and the 

                                                 

26 It’s assumed all sensors are basic sensors. 
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colored dashed part are the true OD demand and the relative OD demand information gain 

values of that OD pair, respectively. This means that for each OD pair, the closer the dashed 

colored area to the boundary of the quadrant, the higher the relative OD demand information 

gain related to that OD pair. Moreover, according to this figure, as the number of sensors 

increases, on average, the level of OD demand information gain of the OD pairs increases 

subsequently (i.e., See the bottom row in Figure 3.9). For instance, as the number of sensors 

increases from 2 to 6, the relative OD information gain increases from 182.15 to 285.23 

which is a closer value to the maximum possible information gain on all OD pairs.  

 

 

Figure 3.9 – Sensor assignment on Fishbone network 

 

 

In Table 3.8, I investigate the relative information gain on links. In this table, I defined 

different combinations of two type of sensors to be located in the Fishbone network. I 

investigate the effect of the number of sensors on the link information gain while the 
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objective function is set as Equation (3.19-I). In the first row of this Table, I assumed there 

is one sensor from each type of sensors. Compared to the first row, the second and third rows 

of Table 3.8 present a different combination of basic and advanced sensors while the total 

number of sensors remain unchanged for these two rows. As I can observe in Table 3.8, as 

the number of the sensors increases from the first row to the second row, the relative 

information gain on each link increases, correspondingly (Please see the third column of 

Table 3.8). Moreover, compared with the second row, the number of advanced sensors 

increases in the last row of this table, and the relative information gain on link 17 increases, 

subsequently as the model can locate one of the advanced sensors on this link. In this table, 

I also evaluate the sensor assignment on the observed links. According to the fourth column 

of this table, in all three rows, the advanced sensor is installed on links that can provide the 

highest information gain. Eventually, as the last column of Table 3.8 demonstrates that the 

total information gain on links, equivalent to Equation (3.19-I), increases as the number of 

sensors or the number of advanced sensors increases.  

 

Table 3.8 Relative OD information gain on links in Fishbone network 

 

Sensor combination Set of observed links Relative information 

gain on link(s) 

Link(s) instrumented 

with  advanced sensor 

Total Information gain on 

links 

Equation (3.19-I) 

Basic Advanced 

1 1 {17,18} {0,243.78,632.63} {18} 876.41 

2 1 {5,17,18} {0,256.79,654.78} {18} 911.57 

1 2 {13,17,18} {0,390.05,632.64} {17,18} 1022.68 
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With a closer look at Table 3.8, it can be realized that in the second and last row of this 

table, links 5 and 13 become observed links, while in fact these links are not traversed by 

any OD pair. The sensor assignment to these links is due to that the variable ,l j  is zero for 

all links when links 17 and 18 are observed links. Therefore, the model has no preference for 

selecting links which are traversed by an OD pair over other links. This is an insightful 

finding that implicitly emphasizes the importance of defining two objective functions in the 

proposed model. In other words, if I incorporate both objective functions using Equation 3.18 

instead of employing a singular objective function, I can have a more relevant sensor 

assignment on links.  

I study the effect of incorporating two objective functions versus a singular function in 

Figure 3.10. In this figure, I assigned two advanced and two basic sensors to be installed on 

links of Fishbone network. The layout on the left side of Figure 3.10 demonstrates the 

position of the sensors when the objective function is set as Equation (3.19-I). On the right 

side layout of this figure, however, I employed Equation (3.18) and set the weights 1w and 

2w as 0.5. Concerning the use of Equation (3.19) as the objective function, the model assigns 

the advanced sensors to links 17 and 18 and the basic sensors are assigned to links 7 and 13, 

which are traversed by OD route presented in Table 3.6. In the layout on the right side of 

Figure 3.10, advanced sensors are assigned to links 18 and 15, while links 17 and 11 are 

instrumented with basic sensors. In this sensor, as the objective function considers both the 

information gain on links and for each OD pair, all the sensors are assigned to links which 

are traversed by OD routes. Moreover, the advanced sensors are assigned to links 18 and 15 
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which provide a higher value resulting from the combination of information gain on links 

and OD pairs.  
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Figure 3.10 – Sensor assignment on Fishbone network 

 

 

3.7.2.1 Time-dependent failure rate (wear-out phase): Fishbone network 

With respect to the general characteristic of the bath-tub curve, the failure rate of 

sensors at the wear-out phase exhibits a time-dependent and increasing behavior. To study 

the behavior of sensors at this phase, I assumed that the basic and advanced sensors 

introduced in Table 3.5 inherit time-dependent failure rate functions as 
4

I ( ) 2t t  and 

2

II ( ) 2t t  , respectively with a lifetime ranging from 0 to 1027 in the wear-out phase. I also 

assumed that after 10 years of age in the wear-out phase, either basic or advanced sensors 

will definitely fail. According to my assumption, the failure rate associated with basic 

sensors, i.e., I ( )t , demonstrates a steeper increasing failure rate compared to the same rate, 

i.e., 
II ( )t , for more advanced sensors.  

                                                 

27 This range is defined in year 
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For the sake of simplicity, I assumed there are two basic and two advanced sensors to 

be deployed in the Fishbone network while these sensors present an increasing failure rate 

behavior through time. I studied the relative OD information gain on links and for each OD 

pair with respect to the location of basic and advanced sensors. The model suggests installing 

the advanced sensors on link 15 and 18 which are traversed by two and three OD pairs, 

respectively. Moreover, basic sensors should be deployed on links 2 and 12. According to 

the sensor deployment, contrary to other OD pairs, the last OD pair demand only traverses 

across one route, yet two of the links, links 12 and 18, in its route are instrumented with 

sensors. The true OD demand of this OD pair has the largest value and can provide a 

significant benefit to the total OD demand information gain from sensors. Moreover, the 

second OD pair has the most benefit from the sensor deployment as there are three sensor-

equipped links, links 18,15 and 2, from the set of routes in this OD pair. In Figure 3.11, I 

showed the relative OD demand information gain for each OD pair through the lifetime of 

sensors in the wear-out phase. As the second and the last OD pairs provide the most 

information gain, the model attempts to keep the level of gain from these OD pairs higher 

compared to the other two OD pairs. For instance, comparing the OD demand information 

gain for OD pairs 1 and 4 in Figure 3.11, I observe that OD demand information gain for OD 

pair 4 drops to the fifty percent of the maximum OD demand gain at time 8.78 years while 

for OD pair 1, the fifty percent of maximum OD demand information gain occurs at time 8.3 

years.  
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Figure 3.11 – Relative OD demand information gain on OD pairs of Fishbone network 

 

3.7.3 The convergence of the GA Sioux Falls network 

To test the convergence rate per time of the GA, I implemented the proposed model for the 

Sioux Falls network. According to the procedure explained in Section 3.7.1, the GA is 

implemented for three different population sizes and the number of iterations is set as 933. I 

also employed Equation (3.18) as the objective function and set the weights as 
1 2 0.5w w 

. Figure 3.12 represents the convergence pace of the GA for three different populations. 

According to this figure, the steady-state phase with the highest value of the objective 

function, i.e., weighted sum value, is reached at the time 671 s,1218 s, and 2433 s for the 

third, first and second populations, respectively. Moreover, the GA managed to conclude the 

number of iterations, i.e., 933 iterations, between 7611 s and 7763 s (around 2.15 hrs) for all 

three populations. I also observed a gap between the maximum weighted-sum values 
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obtained from using different populations. This gap can stem from distinctive population 

sizes. Besides that, the randomness involved in the implementation of a GA which results in 

reaching the local optimal solution instead of the global solution is another considerable 

factor that can lead to the possible difference in locally optimal solutions.  

 

Figure 3.12 – Convergence pace of the GA for Sioux Falls network 

 

3.7.4 The effect of prior OD on the relative OD demand information gain:Sioux Falls 

network 

The quality of the prior OD can play a crucial role in the OD demand information gain as it 

directly affects the OD estimation process. In this section, I studied the effect of the deviation 

of the prior OD from the true OD on the OD demand information gain. I set three different 

levels of deviations introduced them as errors between the prior and the true OD while the 

2433s 

1218s 

671s 
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error is calculated as 

*

*
100

priorq q

q


 . This means that the higher the error percentage, the 

more the difference between the true and the prior OD values. Figure 3.13 showcases the 

relative OD demand information gain for 90%, 50% and 30% level of error. Moreover, for 

each OD pair, this figure represents the true OD demand as a yellow-highlighted horizontal 

bar that determines the maximum possible OD demand information. According to Figure 

3.13, as the level of error decreases, the level of relative OD demand information gain 

increases. As a way of illustration, for the fifth OD pair, the true OD demand value is 600 

pcu28/hr, the highest and lowest OD demand information gain are 509 pcu/hr and 121 pcu/hr 

which belong to the lowest and highest level of errors, respectively.  

 

Figure 3.13 – Prior OD effect on the OD demand information gain in Sioux Falls network 

                                                 

28 Passenger car unit 
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CHAPTER 4:  SUMMARY AND CONCLUSIONS 

 

This chapter presents concluding remarks and provides potential directions for new 

research. Sections 4.1 and 4.2 share an overall research summary and the findings related to 

Chapters 2 and 3. I suggest areas that may be of interest for future study in Section 4.3. 

 

4.1. Research findings on the flow observability problem 

The minimum set of sensor-equipped links in a traffic network for full link flow 

observability is not necessarily unique since a different set of observed links can lead to a 

different system of linear equations that can be used for link flow inferences of unobserved 

links. Different sets of observed links will result in different probabilities of inference loss 

of the unobserved links in a network in the event of sensor failure. I examined different 

locations for sets of sensors to assess the resulting flow information loss of unobserved links 

for each location set when a sensor fails.  

In Chapter 2, I introduced two contributing factors for determining sensor locations: 

the number of observed links required to make link flow inferences for unobserved links and 

the number of observed links included in the different linear equations for link flow 

inferences of unobserved links. my min-max and min-sum formulas stem from these two 

contributing factors. When I assume that the sensors are identical, the min-sum equation can 

minimize the number of observed links required for link flow inferences of unobserved links 
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and the min-max equation can find the minimum number of observed links necessary to 

make link inferences of the maximum number of unobserved links.  

I also challenged the assumption of similarity between sensors. I assumed a scenario 

with two types of sensors with different probabilities of failure. Assuming that the sensors 

are not identical, the two objective functions outlined in Chapter 2 attempt to minimize the 

value of the expected chance of missing the link flow inferences of unobserved links due to 

sensor failure through the min-sum of a sensor installed on an observed link. Based on the 

results, the proposed model attempts to assign more advanced sensors with lower failure rate 

to links that appear in more link flow inference equations.  

Chapter 2 discussed using the weighting method for consideration of major links. I 

differentiated between more-trafficked arterials and minor roads. The model was designed 

to minimize the number of major links in the set of unobserved links. More advanced sensors 

decreased the chance of missing flow observations of those links. I introduced redundant 

sensors that can be used as backups to reduce the possibility of missing full link flow 

observability if sensor failure occurs. I also used the proposed model, which was primarily 

designed for full flow observability, to address the problem of partial observability.  

Finally, Chapter 2 discusses the existing definitions of partial observability in the 

literature. It introduces the concept of buffer sensors, which I use to identify locations where 

the number of real sensors is insufficient for full link flow observability.  

 

4.1. Research findings on the flow estimation problem 
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In Chapter 3, I evaluated the effect of sensor failure on the OD estimation process. I 

introduced the concept of relative information gain during the OD estimation process for 

each OD pair and for observed, or sensor-instrumented, links. While I was defining the 

relative information gain, I stressed that in this case, contrary to the flow observability 

problem, sensor failure doesn’t necessarily result in missing the OD flow estimation. I 

addressed this aspect of the OD estimation problem in prioritizing the relative information 

gain on links.  

Based on the two types of information gain introduced in Chapter 3, I defined two 

objective functions to maximize the information gain on links and on OD pairs. The 

normalized versions of these two objective functions are combined to create a bi-objective 

function using the WSM. As an alternative representation of the mathematical formula, I 

used the ε-constraint method to employ either information gain on links or OD pairs as the 

primary objective function while the other function is used as a constraint. I defined two 

types of sensors to address the possibility of multiple types of existing counting sensors, each 

with distinctive costs and failure rates, benefitting from different technologies. For the sake 

of simplicity, I used the exponential distribution to model the age range of these sensors.  

I implemented the proposed model on a Fishbone network and reported the results in 

Chapter 3. Based on the model’s output, I learned that when the objective is defined based 

only on information gain on links or OD pairs, there is a possibility of obtaining misleading 

results. I demonstrated that the model may assign sensors to links that are not traversed by 

any OD routes. In such cases, I recommended using the combined version of the two 

objective functions.  
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The objective function that was used to determine the sensor assignments mattered. 

Depending on which function was used (either the combination of two functions with WSM 

or a singular objective function employing the ε-constraint method), the output was one of 

two different sensor assignments. When the objective function was set to maximize the 

information gain on links, the model assigned the advanced sensors to links with the highest 

impacts on relative information gain. 

 

4.1. Future extension 

There are numerous possible future directions for this research. I can combine the 

full link flow observability and the OD estimation problems to identify the location of 

sensors that satisfies both the full link flow observability and OD estimations with the 

consideration of sensor failure. I can then separately compare the recommended sensor 

locations with the locations recommended for OD estimation and the sensor locations for full 

link flow observability. Alternatively, I can use the concept of sensor failure for other types 

of sensors, including vehicle-ID and image sensors. More advanced sensors may not suffer 

from the same failure rates as the comparatively primitive loop detectors, but they can still 

fail to observe ongoing traffic due to other influencing factors such as weather. I can use that 

knowledge in future research.  

Another interesting extension of this study is considering possible future disruptions 

in traffic monitoring through connected vehicles. Connected vehicles are becoming 

information hubs that generate, process, send, and receive vast amounts of data while on the 

move. With these recent advancements in technology, traffic networks should be capable of 
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supporting all the communications required to enable cooperative data transfer between 

vehicles and infrastructure. Vehicle to vehicle (V2V) communication involves the data 

transfer between connected cars in a traffic network, while the vehicle to infrastructure (V2I) 

communication addresses the data exchange between an information collection center and 

connected vehicles. Figure 4.1 illustrates a possible V2V and V2I connection in a traffic 

network with yellow and gray arrows representing V2I and V2V communications, 

respectively. Simultaneous V2I communication between multiple connected vehicles is 

possible. This infrastructure can be connected to a traffic management center to transfer the 

traffic data obtained from V2I connections.  

 

Figure 4.1 – Illustration of data transfer with V2I and V2V communication 
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Considering that there are still other useful traffic information collection tools such 

as traffic sensors in current traffic management applications, I can study the effect of 

introducing new infrastructure, including the possible disruption to current traffic 

measurement methods like existing traffic sensors. One type of traffic sensor is automated 

vehicle identification sensors (AVIs), which are also known as vehicle-ID sensors. AVIs 

encompass license plate recognition (LPR) sensors. Recent technology advancements in the 

area of vehicular plate detection have allowed LPR sensors to create individualized vehicle 

path reconstructions for all vehicles they capture.  

Although they can provide essential information about the traffic flow patterns in a 

traffic network, a downside to LPR sensors is that they cannot detect the V2V connectivity 

and will, therefore, miss this new source of traffic information. By introducing new 

infrastructure into a traffic network to facilitate V2I connections, I can not only detect V2V 

connection through V2I, but also reduce the reliance on LPR sensors for traffic information. 

In fact, the new information sourced through V2I connections can reconstruct vehicle paths, 

which have traditionally been the purview of LPR sensors. Whether I am adding LPR sensors 

within the existing infrastructure or employing both LPR sensors and V2I infrastructure in a 

network, I will need to take a meticulous approach to minimize the cost of installing and 

maintaining the system while maximizing the traffic flow information gain from the traffic 

data collection resources.  
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Appendix I 

 

 For identical sensors, if two layouts have the same average number of observed links 

required for the link flow inference of an unobserved link, i.e., having equal value of 
3Y

introduced in Equation (2. 10), the expected number of unobserved links whose flow cannot 

be inferred due to the failure of sensors can be different, i.e., they have different values of 
2Y

introduced in Equation (2. 9). An example of this scenario would be for instance, if there are 

two layouts A and B for a network, and the summation of non-zero values of the matrix 

1

u oT T  for each row of layouts A and B are similar except for rows 'j  and ''j  in which: 

          

' '

'' '

'' ''

1
          

1

A B

j j A A

j jA B

j j

n n
n n

n n

  


 

  (I-2.1) 

In Equation (I-2.1), 
'

A

jn , 
'

B

jn  represent the summation of non-zero values of row 'j  in matrix 

1

u oT T  related to layouts A and B, respectively. These two layouts have the same value of 
3Y  

and the probability of missing the link flow inference is the same for all unobserved links 

except for the links 'j  and ''j . If I subtract the 
2Y  related to layout B, shown as  

2

B
Y , from the 

same value associated with layout A, shown as  
2

A
Y , then I reach the following equation: 
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In Equation (I-2.2),   ' '' 1
1

A A
j jn n

p
 

  is a value between 0 and 1, and therefore the 

inequality in which   ' '' 1
1

A A
j jn n

p p p
 

   is always valid and I can conclude that    
2 2

A B
Y Y . 

Therefore, layout B should be preferred over layout A as it has a lower value associated with 

the expected number of unobserved links for which their flow cannot be inferred due to the 

failure of sensors, while both layouts have an identical average number of observed links 

required for the link flow inference of unobserved links. 
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Fig II-1 Consideration of major roads in the Fishbone network 

 

In the Fishbone network, let’s assume that the red highlighted links, including links 1, 2, 3, 

4, 9, 10, 11, 12, 15, 16 and 18, are major roads in the network. According to the equation 

developed by Ng. (2012) and introduced in Section 2.2, 12 links in the Fishbone network 

should be equipped with sensors to reach full link flow observability. Therefore, the number 

of major roads is less than the number of links that should be instrumented with sensors, i.e., 

observed links. If I want to apply the manual approach introduced in Section 2.5.2 to equip 

the major roads with sensors, all major roads listed above should be considered as observed 

links, i.e., sensor-equipped links in this network and one of the links not included in the set 

of major roads should be instrumented with a sensor as well. In this case, among seven links, 

including links 5, 6, 7, 8, 13, 14, and 17, which are not in a set of major roads, six of them 

should be selected as the unobserved links. Knowing that links 13 and 14, 5 and 7, and 6 and 

8 are three sets of bi-directional links which can create cyclic graphs in a directed network29, 

I need to select all links from at least two of these three sets to have six links as unobserved 

                                                 

29 A network in which the links have directions 
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links in the Fishbone network. Therefore, unavoidably, the links selected to be in the set of 

unobserved links create a cyclic graph30. According to Bapat (2010), the column vectors of 

a matrix that create a cyclic graph are linearly dependent, and the matrix, while being a square 

matrix, is a singular one. In what follows, I provide a lemma and a proposition to indicate 

that the column vectors in the matrix of unobserved links should not induce a cyclic graph: 

 

Lemma 1 Let T  be a n m  node-link incidence matrix that represents a network having m  

links and n  non-centroid nodes. Any selections of column vectors of T  are linearly 

independent if and only if the corresponding links of those selected columns don’t induce a 

cyclic graph. 

 

Proof:  

If k  columns are selected from the matrix T , and p  columns of the k  columns, p k , 

induce a cyclic graph, then Bapat (2010) proved that those p  column vectors could be used 

to construct a matrix which is of the form 
0

B 
 
 

, where B  is the p p matrix with column 

sums zero and represents the cyclic graph formed by the columns 1,..., p . Therefore, B  is 

singular31 and the columns 1,..., p  are linearly dependent. This proof addresses the “only if” 

part of the Lemma 1. For the proof of the other part, please refer to Bapat (2010).  

                                                 

30 A cyclic graph or circular graph is a subset of links that construct a path known as a cycle such that the first 

node of the path corresponds to the last one (Pemmaraju and Skiena, 2003). 
31 The determinant of this matrix is zero and therefore is not invertible.  
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Based on the Lemma 1, further criteria should be met to assure the matrix of unobserved 

links, 
uT , obtained from the set of new links is an invertible matrix: 

 

Proposition 1: 

The links selected from each set of new links to form the matrix of unobserved links 
uT , 

should not induce a cyclic graph in order to be invertible. 

 

Proof:  

A square matrix that has linearly independent column vectors is invertible. Matrix 
uT  is a 

square matrix as already discussed by Xu et al. (2016). Moreover, based on the Lemma 1, 

the column vectors of 
uT are linearly independent if they do not form a cyclic graph. 

Therefore, the square matrix 
uT  which has linearly independent column vectors can be 

inverted and used to infer the flow of unobserved links. 
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Appendix III 

The following table presents the connected links and the sets of new links related to each 

non-centroid node in the Sioux Falls network. The table is borrowed from Table 2.5 in Xu 

et al. (2016). 

 

Table III-1–The sets of new links associated with the non-centroid nodes in the Sioux Falls network 

Non-centroid node Connected Links  New links  

1 1,2,3,5 1,2,3,5 

2 1,3,4,14 4,14 

3 2,5,6,7,8,35 6,7,8,35 

4 6,8,9,10,11,31 9,10,11,31 

5 9,11,12,13,15,23 12,13,15,23 

6 4,12,14,15,16,19 16,19 

7 17,18,20,54 17,18,20,54 

8 16,17,19,20,21,22,24,47 21,22,24,47 

9 13,21,23,24,25,26 25,26 

10 25,26,27,28,29,30,32,43,48,51 27,28,29,30,32,43,48,51 

11 10,27,31,32,33,34,36,40 33,34,36,40 

12 7,33,35,36,37,38 37,38 

13 37,38,39,74 39,74 

14 34,40,41,42,44,71 41,42,44,71 

15 28,41,43,44,45,46,57,67 45,46,57,67 

16 22,29,47,48,49,50,52,55 49,50,52,55 

17 30,49,51,52,53,58 53,58 

18 18,50,54,55,56,60 56,60 
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19 45,53,57,58,59,61 59,61 

20 56,59,60,61,62,63,64,68 62,63,64,68 

21 62,64,65,66,69,75 65,66,69,75 

22 46,63,65,67,68,69,70,72 70,72 

23 42,70,71,72,73,76 73,76 

24 39,66,74,75 - 
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Appendix IV 

Table I-1 demonstrates the link flow on each link of the Fishbone network. The flow on a 

link depends on the amount of OD flows that traverse that link. 

 

Table IV-1 – Link flows in the Fishbone network 

 

Link 

ID 

1 2 3 4 5 6 7 8 9 

Link 

flow 

585 125 325 465 320 105 195 225 460 

Link 

ID 

10 11 12 13 14 15 16 17 18 

Link 

flow 

405 420 215 270 240 850 650 620 880 

 

To use stochastic link choice proportion, I need to define the initial link choice proportion 

between OD demands. In Table I-2, the number of rows and columns represent the number 

of links and OD pairs in the Fishbone network, respectively. Each cell which is the 

intersection of a row (representative of a link) and a column (representative of an OD pair) 

demonstrates the proportion of the flow of an OD pair that uses that specific link.  
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Table IV-2 – Initial link choice proportion 

 

           OD 

 

Link 

1 2 3 4 

1 0.75 0.56 0 0 

2 0.25 0.44 0 0 

3 0 0 0.68 0.51 

4 0 0 0.32 0.49 

5 0.33 0.27 0 0 

6 0 0.14 0.21 0 

7 0.11 0 0.1 0.24 

8 0 0 0.09 0.2 

9 0.53 0.29 0.1 0.24 

10 0 0.14 0.44 0.28 

11 0.47 0.31 0.12 0.27 

12 0 0.26 0.34 0.2 

13 0.57 0.31 0 0 

14 0 0 0.1 0 

15 0.43 0.29 0.32 0.51 

16 0.24 0.71 0.68 0.49 

17 1 0 1 0 

18 0 1 0 1 
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Appendix V 

The origin and destination nodes and the true OD demands for Sioux Falls network are 

presented in Table V-1. According to Table V-1, there are 30 OD pairs in the Sioux Falls 

network while nodes 1,6,11,13,18,22 acts as both origin and destination nodes for different 

OD pairs. For the listed OD pairs, the true OD demand ranges between 240 pcu/hr (OD3, 

OD19&OD24) and 840 pcu/hr (OD9, OD10, OD15, OD18, OD20&OD28).Note that the 

origin and destination nodes and the true OD demand values are adopted from Fu et al. 

(2019).  
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Table V-1 – OD demand information in Sioux Falls network 

 

OD# OD nodes True OD demands 

(pcu/hr) 

1 1-6 480 

2 1-11 600 

3 1-13 240 

4 1-18 600 

5 1-22 600 

6 6-1 360 

7 6-11 600 

8 6-13 600 

9 6-18 840 

10 6-22 840 

11 11-1 360 

12 11-6 480 

13 11-13 480 

14 11-18 720 

15 11-22 840 

16 13-1 360 

17 13-6 600 

18 13-11 840 

19 13-18 240 

20 13-22 840 

21 18-1 480 

22 18-6 480 

23 18-11 600 

24 18-13 240 

25 18-22 840 

26 22-1 480 

27 22-6 360 

28 22-11 840 

29 22-13 720 

30 22-18 480 
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