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ABSTRACT 

In this thesis, I use recent advances in statistics and econometrics in an effort to 

re-test some well-known theoretical propositions, examine whether these new techniques 

support the theory, provide models that are better fitted to describe and forecast economic 

time-series. The Purchasing Power Parity theory is tested using the Fisher and Seater 

(1993) and King and Watson (1997) methodologies and strong evidence in support of 

PPP is found. I use the general class of ARCWGARCH processes to model financial 

times series in an ARZMA framework and the best fitted models outperform traditional 

ARIMA models in terms of the forecast variance. Finally, I test the balanced growth 

theory and try to estimate a money demand function using the Johansen and Juselius 

(1 993) methodology. I do not find evidence in support of the balanced growth theory and 

a stable money demand function, and these results are not sensitive to different monetary 

aggregates that are constructed according to recent index number theory. 
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CHAPTER 1 

INTRODUCTION 



During the last decade we have seen major innovations that affected with one or 

another way a11 areas of statistics, econometrics and applied economics. Following the 

1970's and 1980's that can be referred to as the decades of theory development, the 

1990's were highiighted by major developments in statistics and econometrics. Thus, we 

observe the development and implementation of new techniques that resolve many of the 

problems m d  impediments in the use of classical econometric procedures. In time series - 

analysis, whenever researchers used the classical econometric models to describe the 

relationship between certain economic variables, to test different hypotheses or to 

forecast future values of these variables, implicitiy assumed that the assumptions these 

models make, regarding specific properties of the data in hand, were met. Some of the 

basic assumptions are that the first moments of the series in question must be stationary 

or in other words that the mean and variance of the series must be constant. Testing 

economic times series for these properties, has led us to the conclusion that most series 

do not satisfy either one or both of these assumptions. Therefore, the empirical results 

that are based on these techniques are invalid. The solution to this problem is the use of 

econometric methods specifically designed for series that fail to satisfy the assumptions 

of the classical econometric models or the transformation of the time series data in such a 

manner that they conform to the assumptions. 

From the techniques that were developed in the past decade to deal with non- 

stationary and heteroscedastic data, I will employ in this thesis some of the most recent 

deveIopments and apply them in some areas of economic theory, in an effort to see 

whether the implementation of these procedures provides evidence in support of the 

previous literature. I wilt show in this thesis that the use of these methodologies lead to 



some very interesting propositions and theory implications that were not obvious in the 

previous literature. 

In all three empirical cases, Chapters 2,3, and 4, the stationarity properties of the 

economic time series are of great importance for the techniques that are used. The issue 

of homoscedasticity in the context of an ARIMA framework is raised in Chapter 3. The 

traditional Box-Jenkings methodology where a constant variance is assumed, is proven 

inadequate especially for forecasts and it is replaced by explicitly modeling the 

conditional variance of the time series. In Chapter 4, I test the balanced growth theory of 

development economics and at the same time try to test for the existence of a stable 

money demand function. In doing so, I use both the simple sum monetary aggregates that 

are very common in the literature, and also the Divisia and currency equivalent monetary 

indices that are not common at all but they are more appropriate, fiom a theoretical point 

of view, as the recent literature suggests. Using these different measures of monetary 

aggregates we can see how sensitive the results are to the different methods of 

aggregation. 

Chapter 2 of this thesis, deals with the theory of Purchasing Power Parity (PPP). 

Purchasing power parity and the law of one price is a core assumption in the field of 

international economics. 

Three diEerent approaches have been used in the literature to test for PPP. The 

first approach, following Engle and Granger (1987), is to test whether the relative price 

ratio and the exchange rate are cointegrated. If they ze ,  then this is viewed as evidence in 

support of PPP. Another similar approach is to use the Johansen (1988) multivariate 



maximum likelihood generalization of the Engle and Granger (1987) methodology. 

Again, in this case whenever the domestic and foreign price levels and the exchange rates 

are found to be cointegrated and the cointegrating vector satisfies certain conditions, this 

is evidence in favor of PPP. Finally, the third approach is to test the real exchange rate for 

stationarity. If the real exchange rate is mean reverting then PPP holds, but if the 

hypothesis of a stochastic trend cannot be rejected, then PPP does not hold. 

Thus, the common theme, according to these studies, is that when the relative 

price level and the exchange rate are not level-stationary, cointegration is a necessary 

condition for PPP to hold. In Chapter 2 of this thesis, I test for PPP employing more 

recent techniques in time series analysis. Namely, I use the Fisher and Seater (1993) and 

the King and Watson (1997) methodologies. These methodologies allow the testing of 

long-run neutrality propositions taking advantage of recent advances in the theory of 

nonstationary regressors. According to these methodologies tests for such long-run run 

propositions can be constructed only if the variables in question satisfy certain 

nonstationarity conditions. Most of the previous literature ignored these requirements. 

Fisher and Seater (1993) used their methodology to test for long-run neutrality 

and superneutrality of money, and King and Watson (1997) tested not only for long-nm 

neutrality and superneutrality of money but also the Fisher effect, and the Iong-run 

Phillips curve. More recently, Serletis and Koustas (1998) use the King and Watson 

(1997) methodology and long, low-frequency data to test the neutrality and 

superneutrality of money propositions in ten OECD countries and Koustas and Serletis 

(1999) use the same methodology to test the Fisher effect. 
- 



Testing long-run classical neutrality propositions, using the Fisher and Seater 

(1993 j and King and Watson (1997) methodologies, requires that the series are non- 

stationary and do not cointegrate. 

Thus, although in the previous literature whenever the relative price ratio and the 

exchange rate were found to be non-stationary but not cointegrated, researchers 

concluded that PPP does not hold. However, using the Fisher and Seater (1993) and King 

and Watson (1997) methodologies, we may still find the long-run derivative or the long- 

run multiplier respectiveIy, to be equal to one and therefore conclude that PPP holds in 

the long-run. That is, the absence of cointegration, that for the previous literature implied 

that PPP does not hold, in this case simply directs us to different testing procedures. In 

particular to the use of the Fisher and Seater (2993) and the King and Watson (1997) 

methodologies, according to which cointegration is not a sufficient nor a necessary 

condition for PPP to hold. 

In Chapter 3, I use the Box-Jenkings methodology to model the historical 

evolution, and produce in-sample forecasts for six energy fbtuxes prices, crude oil, 

electricity, heating oil, natural gas, propane and unleaded gas, taking into consideration 

the conditional variance of the disturbances. In contrast to the unconditional variance, 

which refers to the variance of the population, or the variance of the sample, the 

conditional variance is a function of past realizations of shocks that are known in the 

present period. These past shocks tend to affect the volatility of the series in subsequent 

periods, and modeling the conditional variance allows one to produce better estimates of 

future volatility. Especially in financial time series data, it is more important to be able to 



forecast the conditionai variance of an asset's returns than using the unconditional 

variance. The later describes the volatility of the asset over its life-span, information that 

may not be very useful to an investor if her holding period is relatively small. A forecast 

of the variance of the asset a few periods ahead, given past history, will be more 

appropriate. 

The series that I use in Chapter 3, are found to be nonstationary and thus I apply 

the best fitted ARIMA representation. In doing so, I find that one of the assumptions of 

classical estimation and hypothesis testing procedures is violated in all six data series. 

That is, the variance of the error term is not stationary over time, as it is required, but we 

can observe volatility clustering' periods where the volatility of these htures variables is 

high and other periods where it is low. Thus, the assumption of homoscedasticity does 

not hold. Formally testing, according to Engie (1982), I find evidence of ARCWGARCH 

processes in the data, which means that the conditional variance of the disturbances can 

be modeled and estimated, and use it to achieve a better fit and produce more accurate 

forecasts. 

The literature shows that, in general, models that take into account the conditional 
I 

heteroscedasticity tend to perform better than other models (homoscedastic, 

autoregressive, or non-parametric), in short forecast horizons. 

In the effort to model the conditional heteroscedasticity, several specifications of 

the conditional variance are tested, with different lag structures for each one. I compare 

the goodness of fit of the ARCH, GARCH, ARCH-M, and EGARCH models, proposed 



by Engle (1982), Bollerslev (1986), Engle, Lilien and Robins (I  987) amd Nelson (1 99 1) 

respectively. I select the best model using likelihood ratio tests and the Akaike and 

Swartz information critiria 

Finally the best fitted models are used for in-sample forecasts and the conditional 

variance provides the 95% confidence band for these estimates. The five-day ahead 

forecasts of the unconditional and the conditional standard deviations axe then used for 

comparisons. 

In Chapter 4, I use a real business cycle model, to test for the balanced growth 

theory and at the same time for the existence of a stable money demand hc t ion .  

According to this theory, at the steady state of the economy, per  capita output, 

consumption and investment grow at the same rate over time and thus, the great ratios, 

consumption - output and investment - output must be constant. This means that these 

three time series variables must satisfy certain restrictions in the steady state in order for 

the balanced growth theory to hold. In particular, they must not be stabionary, and the 

order of integration of the three variables must be the same and they should also 

cointegrate so that the great ratios remain stationary. 

In the system that is estimated in this Chapter, the presence of a stable money 

demand h c t i o n  is examined as well. As I discussed above, for the balanced growth 

theory to hold, output must have a unit root. In order for a stable money demand function 

to exist this also means that money, interest rates, and output must be ktegrated of the 

same order and cointegrated. But what money measure should we use to test for the 



money demand function? The developments-in recent years in statistics and econometrics 

are not only constrained on how time series data are used in econometric models, but also 

these developments show how these data series must be constructed in order to a c M y  

reflect and measure properly a specific variable. 

Thus, the important breakthroughs in index number theory, show that some 

economic data are not constructed properly and these problems in measurement may have 

implications in tests of economic theory. One important variable that leading researchers 

in index number theory have argued that is not measured correctly is money. The 

derivation of dBerent money measures, fiom the narrowest definitions to the most broad 

ones, using simple sum techniques was proven to be wrong by the recent literature. Thus, 

in order to avoid the critique that firstly William Bamett voiced and later more 

researchers sided with, I use three different monetary aggregation procedures to 

distinguish between simple-sum, Divisia and currency equivalent monetray aggregates. 

Four different levels of aggregation for each of the three monetary aggregation 

procedures are used, for a total of twelve different time series for the money variable. In 

this fashion, I will be able to test the sensitivity of the results to different definitions of 

money. Whenever, a cointegrating relationship is found that is in accordance with the 

theory, variable shocks to the system are applied, to test the dynamics and the stability of 

the identified relations. 

In Chapter 5, I present the conciusions that are drawn from this thesis. 



CHAPTER 2 

NEW INTERNATIONAL EVIDENCE ON THE THEORY OF 

PURCHASING POWER PARITY 



2.1. INTRODUCTION 

The theory of Purchasing Power Parity (PPP) is the core assumption in the 

exchange rate models in international economics. In the case of fixed exchange rates it 

explains why the domestic inflation rate must be equal to the foreign inflation rate, and 

under a floating exchange rates regime provides a theory of exchange rate determination. 

In the later case which is the most interesting today, PPP provides a benchmark for policy 

makers and exchange traders. 

The theory of purchasing power parity has been studied extensiveIy recently using 

new advances in econometrics. In general these studies, and especiaIly the ones that 

concern the floating exchange rates period, find little evidence in support of PPP. See for 

example, Adler and Lehman (I983), Pate1 (1990), Grilli and Kaminski (1991), Flynn and 

Boucher (1 993), Serletis (1 994), Serletis and Zimonopoulos (2000), and Dueker and 

Serletis (1997). Other studies, such as Frenkel(1980), Diebold, Husted and Rush (1991), 

Glen (1992), Perron and Vogelsang (1992), Phylaktis and Kassimatis (1994), and 

Lothian and Taylor (1996), using different groups of countries or longer periods of time 

or pairs of countries with big differences in their inflation rates, report evidence in 

support of PPP. 

In testing the theory of PPP, some studies have applied Engle and Granger (1 987) 

bivariate cointegration tests to the exchange rates and the relative price Ievds, as for 

example, Pippenger (1993). Other studies have used Johansen's (1988) maximum 

likelihood extension to Engle and Granger's methodology to test PPP in a multivariate 



fitmework - e.g, Johansen and Juseiius (1992), Kugler and Lenz (1993) and Serletis 

(1 994). 

Another test for PPP is to test whether the real exchange rate has a unit root. If it 

does, then PPP is rejected - see for example, Phylaktis and Kassimatis (1994), Dueker 

and Serletis (1 997), and Serletis and Zimonopoulos (1 997). Serletis and Zimonopoulos 

(1997), examine the U.S. dollar and DM-based real exchange rates for 17 OECD 

countries and find that the unit root hypothesis for the real exchange rate cannot be 

rejected even when they allow for a possible change in the level, according to Person and 

Vogelsang (1992). This result persists even when they test the dollar-based real exchange 

rate using the more general hctional integration tests. 

In this paper I will test PPP using two recent approaches for testing long-run 

propositions that use recent advances in the theory of nonstationary regressors. These 

approaches show that meaningfbl tests can only be constructed if the variables satis@ 

certain nonstationarity conditions. Most of the existing literature ignores these issues and 

thus those tests are invalid. I will adopt the Fisher and Seater (1993) methodology in the 

context of PPP. Fisher and Seater (1993) used the Iong-run multiplier to test for long-run 

neutrality and superneutraiity of money in an AEtIMA framework. Also, I will use the 

King and Watson ( 1 997) nonstructural bivariate auto regressive metho dology . King and 

Watson test the neutrality and superneutrality of money, the Fisher Effect and the long- 

run Phillips curve - see Serletis and Koustas (1998), and Koustas and Serletis (1998) for 

some applications. 

In section 2, I briefly discuss the theory of PPP, in section 3 I investigate the 

integration and cointegration properties of the variables since this is crucial for testing 



PPP. In sections 4 and 5 I test PPP using -the Fisher and Seater (1 993) and King and 

Watson (1997) approaches, respectively. Finally in section 6 I summarize the 

conclusions. 

2.2. THEORETICAL FOUNDATIONS OF PPP 

Purchasing Power Parity is one of the best known relationships in international 

economics. According to PPP, the relationship between the exchange rate and the 

domestic and foreign price levels is given by: 

where S, represents the exchange rate in terms of domestic currency per unit of the 

foreign currency, P, is the domestic price level, P,' is the foreign price level and A is an 

arbitrary constant. Thus, the data series that are needed to test PPP are the exchange rate 

S, , and the price ratio P, I 4'. Taking the logarithms the above relation becomes: 

where lower-case letters denote the logarithms of A, S, , P, , and 4'. 

The assumptions underlying PPP is that the price indices in the two countries 

include the same goods with the same weights, and the goods are freely tradable in the 

two countries. Freely means that there are no impediments to international trade such as 
- 



tariffs and quotas. Under these assumptions,-XPPP does not hold, it would be possible to 

profit f?om arbitrage between the two countries. Although in the definition of PPP we 

assume that all goods that are included in the price indices are fieely traded, there are 

some kinds of goods such as services that are non-traded. Another issue with respect to 

PPP is that it is unlikely that it will hold continuously at every point in time. As Cassel, 

who is recognized as the formulator of the PPP relationship, notes, a number of factors 

such as the international capital mobility in terms of speculation against certain 

currencies, and government interventions can cause the spot exchange rate to deviate 

from the PPP benchmark in the sort-run. For these reasons, we recognize that PPP is 

more likely to hold in the long-run. 

In the effort to test PPP, many researchers have applied Engle and Granger (1987) 

bivariate cointegration tests to the spot exchange rate and the relative price level series. In 

these studies, when the two series are found to be cointegrated, this is viewed as evidence 

that PPP holds. In the opposite case, where the exchange rate and the price ratio series do 

not cointegrate the researchers conclude that PPP does not hold. 

Following the Fisher and Seater (1993) reasoning on money neutrality applied to 

PPP, I point out that evidence that the exchange rate and the relative price series do 

cointegrate, is neither necessary or sufficient to accept PPP. Cointegration means that 

even if the two series are non-stationary, there is a linear combination of the two variables 

that is stationary. Cointegration alone does not tell us anything about PPP. We can reject 

PPP in presence of cointegration if one of the following is true: the coefficient of the 

relative price when it is the independent variable in the cointegrating equation is 

statistically different than one, or when the source of the non-stationarity is not the 



relative price variable but the exchange rate: A Granger-causality test may be suitable to 

test this. 

On the other hand, rejection of cointegration does not mean that PPP does not 

hold. Cointegration is a linear relationship between two variables and PPP pertains to the 

long-run relationship of these variables. So it is possible that although the exchange rate 

and the relative price do not cointegrate, there is a long-run effect of the relative price to 

the exchange rate. The Fisher and Seater (1993) and King and Watson (1997) tests that I 

employ in this paper, provide estimates of the long-run derivative of the relative price to 

the exchange rate when the two series are not cointegrated. If this long-run derivative is 

not statistically different than one then 1 conclude that PPP holds. 

From this discussion it becomes obvious that cointegration tests have nothing to 

say with respect to PPP per se and other long-run relationships. They only provide 

direction to what is the appropriate method to use in testing these relationships. 

Since for both the Fisher and Seater (1993) and the King and Watson (1997) 

procedures the integration and cointegration properties of the data, as we have seen, are 

of critical importance, I need first to investigate these properties of the data. 

2.3. INTEGRATION AND COINTEGRATION TESTS 

For both the Fisher and Seater (1993) and the King and Watson (1997) tests that I 

am going to use to test PPP, the integration and cointegration properties of the data are of 

great importance as it will be explained in the next two sections in the discussion of these 



testing procedures. The data that I use are the consumer price index ratios and the US. 

dollar-based exchange rates for 16 OECD countries. The CPI ratios are constructed as: 

CPI, 
P' = CPI,, ' (2.3.1) 

where CPI is the consumer price index in the respective country, and CPI,, is the 

consumer price index for the United States. The data are quarteriy, ranging from the first 

quarter of 1973 to the second quarter of 2997, and they are from the I.M.F. International 

Financial Statistics publications. Data before 1973 would not be appropriate for this 

analysis because of the fixed exchange rate system that was in effect in that period. 

2.3.1. UNIT ROOT TESTS 

In testing for stochastic trends (unit roots) in the autoregressive representation of 

each individual time series, I use two alternative unit root testing procedures to deal with 

the fact that some times the data are not very informative about whether or not there is a 

unit root. In the first and second column of panel A of Tables 2.1 and 2.2 1 report the test 

statistics for the augmented Dickey-Fuller (ADF) test1 and the nonparametric (PP) test of 

Phillips and Perron (1988). The tests statistics are calculated using SHAZAM 7.0. I use 

the PP test since it is robust to a wide variety of serial correlation and time-dependent 

heteroscedasticity, For both the ADF and the PP tests the optimal lag length is taken to be 

as the highest significant lag order at the 95% significance level from either the 

' See Dickey and Fuller (198 1). 



autocorrelation function or the partial autocorreiation function of the first differenced 

series up to a maximum of n, where N is the number of observations. The regression 

equation for the augmented Dickey-Fuller test is: 

As an alternative to using the lags to correct for serial correlation, the Phillips-Penon 

method uses non-parametric correction. I first estimate equation (2.3.2) with p = 0 and 

then the statistics are transformed to remove the effects of serial correlation on their 

asymptotic distribution. For the formula of the transformation of the statistics see Perron 

(1988, Table 1, p.308-9). The critical values are the same as in the Dickey-Fuller tests. 

The Newey and West (1 987) method is used to estimate the error variance fiom the 

estimated residuals as: 

1-s 
where p is a truncation lag parameter and o (s, p)  = - 

p + l *  

The critical value for the tests with a constant and time trend at the 5% 

significance level is 6.25. Based on this critical value and the test statistics reported in 



panel A of Table 2.1, the null hypothesis of a unit root in the log levels cannot be rejected 

for all exchange rate series. This is consistent with the Nelson and Plosser (1982) 

argument that most macroeconomic time series have a stochastic trend. For the price 

ratios series the data are less informative. Based on the test statistics reported in panel A 

of Table 2.2, and the critical values, the nuil hypothesis of a unit root is rejected for the 

United Kingdom, Belgium, and Japan, in the case of the ADF test, and for the United 

Kingdom, France, Italy, Japan, Finland, Ireland, and Spain in the case of the PP test. 

Since the data on the price ratios are not very informative regarding the existence of a 

unit root for some of the series, for the testing I assume that all series have at least one 

unit root- In this respect the results for the United Kingdom and Japan should be 

interpreted with caution. 

The tests for unit roots on the first differences of the log levels are not very 

informative for some of the series as well, as we can see from the results in panel B of 

Tables 2.1 and 2.2. Although with the PP test all series are found to be integrated of order 

one, using the ADF test some of the first differenced log levels appear to be non- 

stationary. It is unlikely that these macroeconomic series would have a higher order of 

integration than one, thus the decision here is to assume that all series are I(1). 

2.3.2. COINTEGRA TION TESTS 

As mentioned by King and Watson (1997), long-run multiplier tests are inefficient 

in the presence of cointegration. To test the null hpothesis of no cointegration (against 

the alternative of cointegration) I use the Engle and Granger (1987) two-step procedure. 

This involves regressing one variable against the other to obtain the (OLS) residuals ê  . 



A test of the null of no cointegration (against the alternative of cointegration) is based on 

testing for a unit root in the regression residuals 2. For this testing I use both an ADF and 

a PP test. Then 1 redo the testing using in (2-3.4) p, as the dependent variable. 

TabIe 2.3 summarizes the cointegration tests and reports the test statistics for the 

ADF test in panel A, and the PP test in panel B. The number of augmenting lags is 

chosen as discussed before. Based on these test statistics and the critical values at the 5% 

significance level, I conclude that the exchange rate and the price ratio do not cointegrate 

for all countries. Only for the case of Japan when p is used as the dependent variable 

there is evidence of cointegration but the null of no cointegration is accepted when p is 

the independent variable. 

Hence, the conditions necessary for the long-run mdtiplier tests to be meanin@ 

[that is, exchange rate and price ratio series are I(1) and do not cointegrate] hold for a l l  

countries while the results for ~e United Kingdom and Japan should be interpreted with 

caution. 

2.4. THE. FISHER AND SEATER METHODOLOGY 

Important macroeconomic hypotheses are dealing with the long run effects of 

some variables to other variables. The neutrality and superneutrality of money as well as 

the long run Phillips curve are some examples. In this paper, I examine the long run 



properties of PPP. I want to test whether changes in the relative price levels have an one 

to one effect on the nominal exchange rate, 

Testing such hypotheses proved not to be trivial. Lucas (1 972) and Sargent (1 97 1) 

give examples where it is impossible to test long-run neutrality using reduced form 

econometric methods. In their examples they use rational expectations, short-run non- 

neutrality and stationary variables. The effect of using such variables is that these data 

can not be used to test for long-run neutrality since they do not sustain changes that are 

necessary for long-run effects. Lucas and Sargent with respect to this problem concluded 

that in order to test for long-run relationships it is important to construct complete 

behavioral models. Building on these arguments McCallurn (1984) showed that low 

frequency band spectral estimators calculated using reduced form models suffered from 

the same problems that Lucas and Sargent exposed. In general, economists have not yet 

reached a consensus on the various long-run propositions. This of course is the result of 

the disagreement on the appropriate behavioral model for such research. 

The results of the Lucas and Sargent critique are mainly driven fiom the 

stationarity property of the model's variables- In models where the variables are not 

stationary and follow integrated processes we can test the long-run properties without 

identifying a complete behavioral model. This is concluded in Sargent (1971) and it is 

discussed in detail in Fisher and Seater (1993). Even with non-stationary variables, long- 

run neutrality cannot be tested using a reduced form model. We must use the model's 

"find ford', which shows the response of the model's variables to structural shocks. 

The econometric analysis of simultaneous equations models of the reduced form 

of a structural model cannot be identified econometrically. This is because we need a 



priori restrictions to identi& the structural disturbances. I must clarify here what I mean 

by the different forms of the model. By the "reduced form" model I mean a set of 

regression equations in which each endogenous variable is expressed as a function of 

lagged values of itself and other exogenous variables. By "final form'' I mean a set of 

equations where the endogenous variables are a h c t i o n  of current and lagged values of 

shocks and exogenous variables. Finally, by "structural model" I mean a set of 

simultaneous equations where the endogenous variables are a fimction of other 

endogenous variables, exogenous variables, lags of the variables and struch.mil 

disturbances'. 

2.4. I. THE LONG-RUN DERIVATIVE 

Fisher and Seater (1993), define the long-run neutrality (LRN) and long-m 

superneutrality (LRSN) propositions in terms of a bivariate ARIMA model and use it to 

provide evidence on the LRN and LRTN properties of money. 

Here I will use the same methodology to test the long-run Purchasing Power 

Parity assumption. In particdar, I am going to test whether exogenous permanent changes 

in the price ratio have a one-to-one permanent effect on the spot exchange rate. 

Because PPP is a relationship that it is assumed to hold in the long-run, it does not 

depend on the short-run dynamics and structure of the economy. Thus, we can use tests 

for PPP that are structure-fkee. In doing this, the integration properties of the price ratio 

and the spot exchange rate will be very important. 

See also Geweke (I986), Stock & Watson (1988), King, Plosser, Stock & Watson (1991) and Gali (1992). 



Following Fisher and Seater (19%), 1 use a bivariate, stationary ARIMA 

representation: 

where p, = ln(P, / P, ' )  and s, = ln(S,) . P, is the domestic price level at time period t 

and P,' is the foreign price level. Let A - (1 - L)  . c x > represents the order of 

integration of variable x, so that if x is i(y ) according to the terminology of Engle and 

Granger (1 987), then < x >= y and also < dr >=< x > - 1. I restrict a, = do = 1, and b, 

and c, are not restricted. The errors u, and w, are assumed to be independently and 

identically distributed with mean zero and variances at and 02,, respectively. 

When both the exchange rate and the price ratio are integrated of order one and 

c s >=< p >= 1, the long-run derivative of s with respect to p can be written as: 

LRD ,, = lim ""', / , (2.4.3) 
k- / a ~ ,  

if lim apt,, / &, + 0. Tf lim dp,,, / au, = 0 then there are no permanent changes to the 
k-+a k+a, 

price ratio and the long-m response of the exchange rate to a permanent change in the 

price ratio is not defined. The sequence in the numerator measures the effect through time 

of an exogenous price change and the sequence in the denominator measures the effect of 

the exogenous change on the price ratio itself. So the LRD measures the long-run 



elasticity of  the exchange rate with respect t o  the price ratio. Thus, if PPP holds in the 

long-run, I expect that LRD,, = I .  According to Fisher and Seater (1993), fiom the 

solution of (2.4.1)-(2.4.2) we have: 

Thus, we can evaluate the limits as: 

limap,,, / aU, = e(l), 
k--*a 

where 0(L) = (1 - L) a( L) .Similarly, 

where T( L) - (1 - L) '-<" y ( L )  . 

If the order of integration of the price ratio is not zero, then the LRD is defined 

and we can write: 



From (2.4.4) we can see that the value of the LRD depends on the order of 

integration of the two variables. When c p > - < s >2 1, then LRD,, = 0. When 

< p > - < s >= 0 then from the solution to (2.4.1) - (2.4.2) and (2.4.4) we have: 

LRD ,, =y(l) la(l)=c(l)Id(l) .  (2.4.5) 

2.4.2. TESTING FOR PPP USING THE LRD 

The case where < s >=< p >= I ,  is a very interesting case because we can test 

PPP. Because both the price ratio and the spot exchange rate are integrated of order one, 

there are permanent changes to both s and p. In the case where < s >=< p >= 2 we have 

permanent changes to the growth rates of both s and p. Equation (2.4.4) implies that 

LRD,,,, = LRD,,p. This is an interesting implication because it means that tests on how 

the growth rate of the price ratio affects the growth rate of the exchange rate can be 

directly interpreted as tests of how a permanent change to the level of the price ratio 

affects the Ievei of the exchange rate. The important implication of this is that if we fmd 

empirical evidence that supports the assumption of Relative PPP it can be directly 

interpreted as  evidence for Absolute PPP when < s >=< p >= 2. 

When we have permanent innovations in both the price ratio and the exchange 

rate, or in other words when < s >=< p >= 1, Fisher and Seater show that the LRD is 

given by equation (2.4.5). In this case, PPP holds if LRD,, =1, so that an exogenous 

permanent change to the price ratio has a permanent effect on the exchange rate. Under 

the Fisher and Seater identification scheme with exogenous p, cfl)/d(l) can be interpreted 

as: Lim 6, where b, is the coefficient from the equation: 
k+co 



where < s >=< p >= 1. Equation (2.4.6) can also be written as: 

We can use the data to estimate equation (2.4.7) and obtain estimates of bk for 

different values of k and construct the corresponding confidence band. 

2.4.3. THE EMPIRICAL ESTIMA T\ON 

Estimating equation (2.4.7) for each of the 16 countries, and for values of k 

ranging fiom 1 to 3 0 as in Fisher and Seater (1993), I get the results that are shown in 

Figures 2.1 to 2.16. In each graph, on the horizontal axis we have k, the number of lags 

for the corresponding regression. On the vertical axis we have the coefficient of the 

relative price bk , which is also the LRD, . For every estimate of bk , I also graph the 

upper and lower d u e s  for the 95% confidence interval for b, using Newey and West's 



(1987) procedure. These confidence intervals are constructed fiom a t-distribution with 

TI  k degrees of fieedom, where T is the number of observations. The degrees of freedom 

are TI  k instead of T-k since this is the number of non-overlapping observations3. If 

long-run PPP holds, then bk should be equal to 1. Thus, on the graph I also include the 

Line for which b, =I. Hence, there is evidence that supports long-run PPP if the bk =l line 

is contained in the confidence bands for the different values of k. 

According to the above, we can see from Figures 2.1 to 2.16 that the null 

hypothesis that 6, = 1, cannot be rejected for any k ~ [ l ,  301 for Belgium, Denmark, 

Greece, Italy, the Netherlands, Norway, Spain, and Switzerland. Thus, I fmd strong 

evidence that PPP holds for these countries in the floating exchange rate period. For 

Austria, b, = I can not be rejected for 1 5 k s 20 for higher values of k I reject the null. 

For Finland the null is only rejected for 20 5 k 5 27, for Germany it is rejected for 

k 2 24, for Ireland and Japan is rejected only for 6 1 k _< I 2  and 17 1 k < 21 

respectively. For the U.K. the null is rejected for 17 i k S 27. Finally for the case of 

Canada and France, we reject the null that 6, = 1, for almost all k. 

Hence, fiom these results I conclude that there is evidence that PPP hoIds for all 

countries investigated with the exception of Canada and France. 

2.5. THE' KING & WATSON METHODOLOGY 

In this section, I use the reduced form of the model under different a priori 

assumptions that identify the model and I pay attention to the long-run properties of the 

model under each identifying assumption. I identi@ the model using a wide range of 

See, for example, Hansen and Hodrick (1 980). 



assumptions in order to see the sensitivity of the results to the identifying assumptions. 

The robustness of the results to different sample periods is also investigated. I present the 

results both numerically and graphically. 

2.5. I ECONOMETRIC ISSUES 

Consider a model which is linear in both the observed variables and the snctural 

shocks. In particular, if the fist differences of the nominal exchange rate and the relative 

price level are stationary the model's final form can be written as: 

where E: is a vector of shocks other than the relative price level that affects the nomind 

exchange rate. E: is a shock that permanently affects the price level (relative). And also, 

the other terms are defined similarly to (2.5.3). 

0, (L)&p = xe;p&E, (2.5.3) 

The lag polynomials 8, (L) , 9, ( L )  , 8, ( L )  and 9, ( L )  incorporate the rich dynamics 

of the model. The long-run test of PPP that I want to conduct is summarized in the 

question: does an unexpected and permanent change in the relative price level p, cause a 

permanent one-for-one change to the nominal exchange rate s? If yes, then the Purchasing 

Power Parity assumption holds in the long-run. In equations (2.5.1) and (2.5.2) E P  is the 



exogenous change in the price level. Thus, the permanent effect of E,P to the price level 

will be: O ~ ~ E P  = 0 pp (1)~: . Similarly, the permanent effect of E,P to the nominal 

exchange rate will be: B$S,P = O,p (1)~: . Thus, the long run elasticity of the nominal 

exchange rate with respect to permanent exogenous change in the price level is: 

Thus, if PPP holds, y ,  = I .  This means that the permanent shock to the relative 

price level has a permanent long-run effect on the nominal exchange rate. It is important 

to note here that we can test this long-run property that y,  = 1 only when the price level 

variable is not stationary. The reason is that if the relative price level is stationary, a 

shock to the price level has no permanent effect in the level of p and so 8,(1) = 0.  In 

this case, the long-run elasticity of equation (2.5.4) is not defined. This is why Lucas and 

Sargent reached the concIusion that we need a compIete behavioral model to test the 

long-run neutrality of money. In the case of money, we want to test whether permanent 

changes in the money supply will have a permanent effect on output. Of course, if the 

data for the money supply are stationary and there are no permanent changes, we cannot 

use these data to test for long-run neutrality. For the case of the long-run PPP, if there are 

no permanent changes in the historical data of the relative price level, I cannot use these 

data to test for the effects of a permanent change in the price level to the exchange rate. 



On the other hand, if the relative price level is not stationary and it contains a unit root, 

then 8,  (1) # 0 and the long-run elasticity of equation (2.5.4) is well defined. 

2.5.2. THE KING AND WATSON TESTING PROCEDURE 

The reduced form of the model as it is described by equations (2.5.1) and (2.5.2) 

cannot be used to estimate the parameters using available data. I must first address 

econometric identification issues. King and Watson, approach this problem in an 

"unusual" way. Rather than using an a priori set of identifying assumptions and solve for 

the model's parameters, they employ an eclectic approach. They investigate the long-run 

relationships by imposing a wide range of identifLing restrictions- This approach provides 

evidence of the robustness of any conclusion to different identifying assumptions. 

First, I- assume that (E: ,E:) is a vector of unobserved mean zero and serially 

independent random variables such that equations (2.5.1) and (2.5.2) can be interpreted as 

vector moving average model. The estimation strategy begins by inverting the moving 

average model to form a vector autoregressive model (VAR). The VAR which is assumed 

to be of finite order is then analyzed as dynamic linear simultaneous equations modep. 

The estimation using this procedure requires two additional sets of assumptions. 

The first, in order to transform the vector moving average model into a VAR and the 

second to econometrically identify the parameters of the VAR. These two sets of 

assumptions are closely related: the moving average model can only be inverted if the 

VAR includes enough variables to reconstruct the structural shocks. Thus, if (E:, E:) is 

an n x I vector, then there must be n variables in the VAR. But the identification of an n- 



variable VAR requires n x (n-I) a priori -restrictions. This means that the necessary 

number of identifying restrictions increases with the square of the number of structural 

shocks. King and Watson assume that n = 2, so that only bivariate VAR's are required. 

This is a fairly standard assumption and it is employed by many other researchers in the 

study of neutrality propositions. This also helps tractability: when n = 2 then only 2 

identifying restrictions are necessary. The drawback of this approach is that some of the 

resdts may be contaminated by omitted variables bias. 

To derive the set of observationally equivalent models, let X, = (Ast  Ap,) and so 

equations (2.5.1)-(2.5.2) become: 

where E, = (E: E P  ) represents the 2 x 1 vector of structural disturbances. Assume that 

[e(z)I has all of its zeros outside the unit circle so that we can invert to obtain the VAR: 

OD 

where a( L) = a J LJ with a a 2 x 2 matrix. It is important here to note that since the 
j -0 

invertibility of (L) requires that (1) has a full rank, this implies that st and p, are both 

integrated processes and that they are not cointegrated. Unstacking the matrix form model 

I get: 

- -- - 

See BIanchard and Watson (1986), Bernanke (1986), Sims (1986) and also Watson (1994) for a survey- 



which is written under the assumption that the VAR in equation (2.5.6) is of order k. 

Equations (2.5.7)-(2.5.8) are a set of dynamic simultaneous equations. If Z, = E(E ,E: ) , 

then the reduced form of (2.5.6) is: 

where 0 = -a ;'a and e, = a ;I&, . The matrices ui and Z , are determined by the set 

of equations: 

When there are no restrictions on coefficients on lags in equation (2.5.9), equation 

(2.5.10) imposes no restrictions on a,. It serves to determine ai as a h c t i o n  of a, and 

. Equation (2.5.1 1) determines both a, and X, as a function of Z, . Since Z, (a 2 x 2 

symmetric matrix) has only three unique elements, only three unknown parameters in a, 



and Z, can be identified. Equations (2.5.7)~(2.5.8) place 1 's on the diagonal of a, , but 

only three of the remaining parameters var(~,P ) , var(a :) , cov(~,P, E :) , 1 ps and h , can 

be identified. Following the standard practice in structural VAR analysis I assume that 

the structural shocks are not correlated. I place no restriction on the contemporaneous 

correlation of s and p so non-zero values for A, and h,  allow both s and p to respond to 

E~ and E' shocks within the period. With the assumption that cov(s,P,~:) = 0, only one 

additional identifying assumption is required in order to get the parameter estimates. 

I can assume either that 1, = 0 or that h, = 0. These assumptions wouid imply 

that there are no contemporaneous effects of the relative price level and the exchange rate 

to each other. I can assume that PPP holds, and set y , = 1, or I can assume that y , = 0 

which is consistent with no long-run effect of the exchange rate to the relative price level. 

Here, I employ the eclectic approach that King and Watson proposed, where 

instead of focusing on a single identifying restriction, I report results for a wide range of 

identifying restrictions. This approach is more informative in terms of the robustness of 

inference about the relationship between the relative price level and the nominal 

exchange rate. In particular I iterate each of the parameters h , , 1, , y , , and y .Tp within 

a reasonable range each time obtaining estimates of the remaining three parameters and 

their standard errors. These standard errors then are used to construct confidence intervals 

for the estimated long-run elasticity y, . This approach is similar to what Sims (1989) 

and Blanchard (1989) have used for robustness cdculations in VAR models. 



2.5.3. THE ESTIMATION PROCEDURE 

Under each alternative identifying restriction, I construct the Gaussian maximum 

likelihood estimates using instrumental variable estimation. 

When h ,  is assumed known and it is used to identify the model, equation (2.5.8) 

can be estimated by ordinary least squares (OLS) by regressing: 

onto 

Then equation (2.5.7) cannot be estimated using OLS because one of the explanatory 

variables, Apt, is potentially contemporaneously correlated with the error term E: and 

the OLS estimates wouId be biased and inefficient. To overcome this potential problem 1 

k 
use insmenta l  variables and the instruments are: {btsi , @t-i ] i=, and the residuals 

the estimated equation (2.5.8). These residuals are appropriate as instruments because of 

the assumption that the residuals from the two equations are uncorrelated or 

COV(E:,E:) = 0. 

The parameter of interest here is the long-run multiplier y , and this is equal to: 

where a, (1) = a; and p, = a: . 
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When h, is assumed known, I only have to estimate equation (2.5.7). This is 

because the parameter of interest is y , . Using OLS I regress: 

k 
as, - h . v p ~ r  onto { h f - i  9 e l - i  } iel * 

Then y .rp is calculated according to (2.5.12). 

When a value for y r r  is used to identify the model, I can use a similar procedure. 

First I: rewrite equation (2.5.8) as: 

k-I k-l 

AP[ = a P s ( l ) ~ [  +P,AP,-, + C z i r ~ ~ ~ , - ~  +C'ip~2~t-j  +'P (2.5.13) 
j = O  j= 1 

k 

where ppp = . Equation (2.5.13) replaces the regressors: 
j= l 

in equation (2.5.8) with the set of equivalent regressors: 



- In equation (2.5.13) the long-run multiplier is y , - a,(l) 
, so that 

I -  P, 

a, (1) = y , - P , y , . Substituting this in equation (2.5.13) and rearranging I get: 

k- l  k-I 

Equation (2.5.14) can be estimated using instrumental variables by regressing: 

2 2 2 2 & r - y y b ,  onto ( ~ , - 1 - ~ p ~ r & t y A ~ i , ~ S i - ~ , - . . , ~ ~ t - ~ + ~ ~ ~ 2 ~ ~ - ~ ~ - - - ? * P ~ - ~ + ~ ) ~  

k 
using {Astsi ,Apip,,}i=l as instruments. I use instrumental variables in order to address the 

issue of potential contemporaneous correlation between Asr and the error term. 

Equation (2.5.7) can now be estimated by instrumental variables using the 

k 
residuals of the estimated equation (2.5.14) with (As,-,_, , 

[=I • 

When a value for y , is used to identify the model, this process is reversed. 

2.5.4. THE ESTIMA TION RESULTS 

Following the procedures described in the previous section, I use a wide range of 

identifying parameter restrictions on h,  , A,, y , , and y , . Table 2.4 and Figures 2.17- 



2.32 summarize the results. Table 2.4 (columns 2-4) shows the point estimates for bps, 

A,, and y, when I assume that PPP holds in the Long-run, or equivalently when I 

impose y, = I .  The numbers in the parentheses represent the corresponding standard 

errors. Columns 5-7, show the intervals for each ident img parameter values for which 

PPP is rejected at the 95% confidence level. In Figures 2.17-2.32, 1 present the point 

estimates and the 95% confidence bands for the long-run multiplier y , , for a wide range 

of plausible values of the other three parameters. In panel A, I iterate values for A,, the 

contemporaneous effect of the exchange rate on the relative price. In panel B, I use a 

range of plausible values for h,, the contemporaneous effect of the relative price on the 

exchange rate. Clearly if PPP held at all times instantly, then this parameter would be 

equal to 1, and if the relative price has no effect on the exchange rate it would be equal to 

0. For the estimation I use a range of values of - 1 s h, 5 2 to address even the case 

where the contemporaneous effect of the relative price to the exchange rate may be 

negative. Finally, in panel C, I iterate the values for the long-run multiplier of the 

exchange rate on the relative price, y p s .  The range of values that are used is 

- 5 5 y , 5 5. The estimates of y , and the corresponding confidence bands are shown 

for ranges of the identifying parameters that standard errors are relatively small and do 

not explode. 

The results from Figures 2.17-2.32, suggest that there is evidence that PPP holds 

in the long-run for all 16 OECD countries that I test here, since their 95% confidence 

bands for y, include the value 1 for all different values of the identifying restrictions 



presented in the graphs. The only exceptions for certain intervals, are Canada, Ireland and 

Norway: for Canada, the 95% confidence band of the long-m multiplier y, does not 

include y , = 1 for the range 02 < 7c, 9 0.3 in panel A, and for the range 02 S y , 5 0.4 

in panel C. For Ireland, the 95% confidence band lies above y, = 1 for 

-0.7 i h, 5 -02 in panel A and y , 5 -0.7 in panel C. Finally for Norway the values 

for which PPP is rejected in the long-run is for h,  = 0.1 in panel A and the interval 

0 3  5 y , 1 0.4 in panel C. 

2.6. CONCLUSIONS 

In this paper I have tested for PPP, the hypothesis that a change in the relative 

prices between two countries has a one-for-one effect on the exchange rate. I used 

quarterly data for the floating exchange rates period 19733 to 1997:2, for 17 OECD 

countries fkom the IMF publications International Financial Statistics. For the testing I 

used a bivariate log-linear AEUMA framework as described in Fisher and Seater (1993), 

and the non-structural bivariate autoregressive methodology of King and Watson (1997), 

paying particular attention to the integration and cointegration properties of the data, 

since meaningfid tests critically depend on such properties for both testing procedures. 

The results show that there is strong evidence that PPP hoids in the long-run for all 

countries except for Canada and France when the Fisher and Seater (1993) methodology 

is used, and for all countries except small intervals of the identifying parameters for 

Canada, Ireland and Norway when the King and Watson (1997) procedure is employed. 

Hence, in this paper, I contradict the results of other researchers that rejected PPP when 



the exchange and the relative price series were not cointegrated. In both the 

methodologies that I use, non cointegration is used to specify the appropriate restrictions 

that are used to test for PPP. 





















Figure 2.19. PPP Tests for Canada 
A. 95% Confidence intervals for y,, as a function of A , ,  

B. 95% Confidence intervals for y, as a function of h, 

C. 95% Confidence intervals for y, as a hllction of y,, 

Figure 2.20. PPP Tests for Denmark 
A. 95% Confidence intervals for y,, as a filnction of A,, 

B. 95% Confidence intervals for y,, as a function of h, 

C. 95% Confidence intervals for y, as a function of y,, 



s 
d 
cr 
0 
E 
0 .- 
u 
U 

5 
Lu 
cll 
Lu 

3 r: 
L 

(E! 
cll - 
t 
Q) 
Y 

C . - 
a, 
0 
C 
0) 
a 
G 
r 

S 













CHAPTER 3 

MODELING AND FORECASTING VOLATILITY 

IN ENERGY MARKET FUTURES 



3.1. INTRODUCTION 

The conventional econometric models that are used to describe the evolution of a 

time series over time and to produce reliable forecasts for the future assume that the 

variance of the series in question is constant over time, or in other words that the errors 

are homoskedastic. Many economic time series do not demonstrate a constant variance 

over time, but we observe volatility clustering, periods during which volatility is 

relatively high and other periods where volatility is low. Traditional econometric 

modeling and forecasting techniques would estimate the variance from the sample in 

hand and use it to describe the properties of the time series in question as well as for 

producing forecasts. Recent developments in the field of econometrics allow us to 

distinguish between the unconditional and the conditional variance of a time series. The 

unconditional variance refers to the population variance or the variance of the whole 

sample in hand, while the conditional variance depends on past realizations of shocks that 

are known at the present period. 

In many cases it is important to be able to forecast the conditional variance of a 

series. For example, when an investor is trying to decide whether or not to hold an asset 

for one period, she is interested in both the expected rate of return of the asset and its 

expected variance in order to optimize her poafoIio. In this case the unconditiond 

variance-i-e. the population variance of the series-is of little importance to her if she plans 

to hold the asset for only one period. The conditional variance, based on the information 

set R, which includes the past realizations of the conditional variance and prices will be 

more appropriate for this decision. Models that use the conditional variance for 



estimation and forecasts, can better take into account the observed heteroskedasticity and 

other non-linear processes in the error term. 

In recent years, the most important innovation in modeling the volatility in 

economic time series, was the work by Engle (1982) who introduced the autoregressive 

conditional heteroskedasticity or ARCH, to model the conditional variance. 

In this paper 1 use the Box-Jenkins methodology to model the time series properties 

of six energy market htures prices. These are crude oil, electricity, heating oil, natural 

gas, propane, and unleaded gas. These series are characterized by periods of high 

volatility and periods of relative tranquility as it is shown beiow, which is typical of 

ARCH processes in the error structure. Thus, I also employ and compare the ARCH, 

GARCH, ARCH-M, and EGARCH methodologies introduced by Engle (1982), 

Bollerslev (1986), Engle, Lilien and Robins (1987), and Nelson (1991) respectively in 

order to model the conditional variance of the series. These models are then used for in- 

sample forecasts of the mean and the conditional variance for each of the six series. 

In section 2 I describe the data that are used in this paper, in section 3 I discuss the 

methodology that will be used, in section 4 is the empirical estimation of the best fitted 

models, in section 5 I praduce in-sample forecasts for the six series and finally in section 

6 I conclude. 

3.2. THE DATA 

The data for this paper are daily closing prices for energy commodities htures- 

Six series are studied and the samples are as follows: crude oil from 30-3-83 to 23-1-98, 

electricity from 1-4-96 to 23-1-98, heating oil fiom 2-6-80 to 23-1-98, naturai gas f?om 3- 



4-90 to 23-1-98, propane fiom 21-8-87 to 23-1-98 and unleaded gas from 3-12-84 to 23- 

1-98, 

For all six series I use the logs of the levels and since the estimation and forecasts 

as I will show later require the first differences of the logged series, in Table 3.1 I present 

the summary statistics for the first differences of the data. We can see that the null 

hypothesis of normality according to the larque-Berra statistic is rejected for all series. In 

Figures 3.1-3.6 I graph the logs of the six energy series. From these figures we observe 

that the low moments for these series do not seem to be constant over time. Specifically, 

the mean does not seem to be constant over time and thus I will test for the presence of 

stochastic trends to these data series. The variances also do not seem to be constant as we 

observe periods of high volatiiity and relative tranquility in the respective graphs. This 

points to the direction of ARCWGARCH effects in the data and I will formally test in 

section 4 for the presence of such processes, after the identification of the most 

appropriate autoregressive model. 

3.3. MODELING VOLATILITY IN ECONOMICS TIME SERIES 

The assumption in conventional econometrics is that the variance of the error term 

is constant, or in other words that the disturbances are homoskedastic. However, 

observing the actual series we can find periods of relative tranquility and other periods 

where there is unusually large volatility. Thus, the assumption of homoskedasticity is not 

appropriate. In terms of economic forecasts, it may be very important to forecast the 

conditional variance of a series: for an asset holder who plans to hold the asset for some 

short period of time, the unconditional (or the long-run) variance is of little importance. 



The unconditional variance provides information about the volatility and risk of the asset 

over its lifetime. An estimate of the variance of the underlying asset for the investor's 

holding period, given past history, would be more appropriate. 

3.3- 1- ARCH PROCESSES 

Engle (1982) using a model of the U.K. inflation shows that large and small 

forecast errors tend to appear in clusters. This suggests that the variance of the forecast 

error has a form of heteroskedasticity that depends on previous values of the error term. 

He called this type of heteroskedasticity autoregressive conditional heteroskedasticity 

(ARCH). This form of heteroskedasticity applies to either ARMA, ARLMA or regression 

models. Engle (1982) proposed the following form of an ARCH process: 

where v, is a white noise process with the property that at =I and also that v ,  and E,-, 

are independent of each other and a,, a, are constants such that a, > 0 and 0 < a, < 1. 

Considering now the properties of the {E,) sequence we can see that it has a mean of 

zero and its elements are not correlated. Taking the unconditional expectation of E, we 

have: 

EE, = E[v ,  (a, +a,~:- , )"~]  

= Ev, E ( a ,  + a,s:,)"* = 0 



since Ev, = 0 . ALSO since Ev ,v,, = 0 it follows that 

The unconditional variance is: 

EE: = E[V: (Q~ + a l ~ : - , ) ]  

= E V : E ( ~ ,  + a , ~ : , )  

= a ,  +U,EE;, 

and since EE: = EE:-,, because the unconditional variance is identical, we have 

EE: =ao /(I -aI). (3.1 -4) 

The above proofs show that the unconditional mean and variance of the disturbance are 

unaffected by the ARCH process given by equation (3.1.1). Similarly the conditional 

mean of E,  is: 

2 112 E ( q  I E,-, ,...) = Ev, E ( a ,  + aI~, -I)  = 0 . (3.1.5) 

Thus, so far the introduction of the ARCH process in (3.1 -1) does not seem to affect the 

mean, variance and the conditional mean of the error term and all autocovariances are 

zero. Now we consider how the ARCH process affects the conditional variance. Since 

et = 1, the variance of E, conditional on the past history E,-, , E,_, , . . . is 
- 



In (3.1.6) we can see that the conditional variance depends on the realized and known 

2 
E,-, . The higher the disturbance in the previous period is the higher the conditional 

variance will be. The conditional variance of equation (3.1 -6) follows an autoregressive 

process which is denoted as ARCH(1). Because the conditional variance must always be 

positive, we have to put restrictions on the coefficients a. and a, which have to be 

positive. Also in order for (3 -1 -6) to be convergent we need that 0 c a, c 1 . 

The important features of the ARCH process are that both the conditiond and the 

unconditional mean of the error term are zero, the unconditional variance is constant, and 

the errors are not serially correlated since for s +; 0, EE,E,, = 0. But the errors are not 

independent fiom each other. The ARCH process introduces a correlation of the errors 

through their second moments. This makes the errors conditionally heteroskedastic and 

the underlying time series an AECH process as well. If the process that generates a 

random variable y can be described as 

then the t+l period forecast of y will be 



To explain the dynamics of this simple model, when the error term in (3.1 -7) has an 

ARCH process as described in (3.1.1), consider an unusualIy high (in absolute terms) 

shock to v, . This will produce a high disturbance sf+, and a high variance for the error. 

The higher 4 ,  is the more y will depart &om its mean, thus increasing its variance. The 

higher 4, is, the more persistent the deviation &om the mean will be and the higher the 

variance of y. Specifically, the conditional mean and variance of y will be: 

and 

V~~(YI I Yf- ,  d l - 2  ,---I = E,-, (Y, - 4 0  - 41Y,-l l2 

= 4 - 1  ( s f  

2 =a ,  f a , ( & , - [ )  - 

So the conditional variance of y, has a minimum value of a, and it is positively related 

to a, and 

The above autoregressive process for the error term is called an ARCH process of 

order one, or an ARCH(1) process, since it includes only one lagged value of E,. Engle 

(1982) considers the more general case of q Iags for the error term: 



In this case the error term E, is modeled asan autoregressive process of order q, so that 

all shocks from E,-, to E,, have a direct effect on E, . 

3.3.2. THE GARCH MODEL 

Bollerslev (1986) extended Engle's work and allowed the conditional variance to 

be an ARMA process. In this case the error term is 

where 

Again in this case v, is assumed white noise and since it is not correlated with past 

values of E, , the conditional and unconditional means of E, are still zero. The conditional 

variance now is given by h, in equation (3.1.1 1). This is the generalized ARCH(p,q) 

model that is denoted GARCH@,q). The GARCH@,q) model allows for both moving 

average and autoregressive components in the conditional variance. It is clear that a 

GARCH(0,l) model is equivalent to the ARCH(I) model. In order for the GARCH 

conditional variance to be finite the characteristic roots of the distributed lag polynomials 

in (3.1.1 1) must d l  lie within the unit circle. If we represent the GARCH@,q) process as 

where 



a ( ~ ) = a , ~ + a ; ~ ' .  t . . . t a q L q ,  

P(L) =P,L+p,LZ +... t P , L P  

and L is the lag operator. Then Bollerslev (1986) shows that the GARCH process is 

stationary if a(1) + P(1) < 1 . Here, a(l) and P(1) are the polynomials a(L) and P(L) 

evaluated at L=l : 

a(l) = a, + a2 + ... + a,. 

The more general GARCH model can help us capture the same dynamics of the variance 

from using a high order ARCH process. The advantage of this is that we have to impose 

fewer restrictions and it is easier to identify and estimate. 

3.3.3. TESTING FOR ARCH AND GARCH PROCESSES 

Engle (1982) proposes a test for ARCH disturbances in both autoregressive and 

regression models. In the case of an AR estimation, first we estimate the appropriate 

AR(n) : 

Then we obtain the square of the fitted errors 2:. We regress these squared errors on a 

constant and q lagged values, so that we estimate: 

- 2 -2 if = a,, + a,q-, + a2ik2 + ... +a,&,-, . (3.1.13) 



Ifthere are no ARCH or GARCH effects then the coefficients a, to a, must all be equal 

to zero and the explanatory power of the equation must be very low, which is translated 

into a low lZ2. If the sample has T observations of disturbances then the statistic T R ~  

will be distributed under the null of no ARCH or GARCH errors as a X: distribution. If 

T R ~  is sufticiently large we will reject the null of no ARCH errors. 

Specifying the appropriate conditional variance in the case of rejecting the null of 

no ARCH errors as 

we then obtain the residuals of equation (3.1.14) and we regress them on a constant and 

hl-, . Again the statistic T R ~  has a X 2  distribution with one degree of freedom under the 

null of no GARCH process. 

3.3.4. THE ARCH-M MODEL 

Engle, Lilien, and Robins (1987) use the ARCH model to allow for the mean of a 

sequence to depend on its conditional variance. These models are called ARCH-M 

models and they are best suited for the modeling of asset returns. Engle, Lilien, and 

Robins use a model of excess returns described as 

Yt = P I  -1 (3.1.15) 

where y, is the excess return fiom holding a long-term asset relative to the one period 

treasury bill or the risk free rate, , is the risk premium that the typical risk averse 



investor needs in order to willingly hold the risky asset, and E, is the unforecastable 

error. In period t-1 the expected excess return on the r i s e  asset must be equal to the risk 

premium so that 

(3-1-16) 

In financial economics, the risk of an asset is measured by the variance of its returns. 

Engle, Lilien, and Robins, assume that the risk premium in equation (3.1 -15) is an 

increasing function of the conditional variance of the dorecastable error E, . So now 

p, =p+8h,,  6>0 (3.1.17) 

where h, is the conditional variance of E, that follows an ARCH(@ process of the form 

In this fashion the conditional mean of the y, sequence depends on the conditional 

variance of the shocks h, . If the conditional variance is constant, then the ARCH-M 

model has a constant risk premium. 

The form of the ARCH-M model is determined similarly to the ARCH and 

GARCH models with the use of the Lagrange multiplier test (LM). The test statistic T R ~  



for the LM test is distributed under the null of no ARCH-M effects as a X 2  with degrees 

of fieedorn equal to the imposed restrictions. 

3.3.5. THE EGARCH(p,q) MODEL 

The ARCH and GARCH models are somewhat restrictive in the sense that they 

allow the conditional variance to be &ected only by the size of past shocks and not their 

sign. Another problem with the models that we have seen thus far is that in the estimation 

of such processes we must impose additional restrictions to the unconditional variance 

parameters so that the unconditional variance remains always positive and finite. ARCH 

and GARCH models assume that the conditional variance is a h c t i o n  only of the 

magnitude of the lagged residuals and not their signs i-e. only the size and not the sign of 

lagged residuals determines the conditional variance. This assumption is restrictive and 

these models are not well suited to capture the so-called "leverage effect", first noted by 

Black (1976). BIack noted that for equities, it is often observed that downward shocks to 

assets' prices are followed by higher volatilities than upward shocks of the same 

magnitude. Because of these concerns Nelson (199 1) introduced a more general form for 

the unconditional variance the exponential GARCH(p,q) or EGARCH(p,q): 

In this setting, the conditional variance is expressed in logarithmic form so that it will 

always be positive and also the fourth term on the right hand side allows for the sign of 



the residuals to affect the conditional variance and in doing so it can capture the 

"leverage effect". 

3.4. EMPIRICAL ESTIMATION 

In this section I will first examine the stationarity properties of the series using the 

augmented Dickey-Fuller (ADF) and the Phillips-Peron (PP) tests for unit roots. Then I 

spec- the appropriate autoregressive model for each of the six series and estimate the 

conditional variance as an ARCH, GARCH and EGARCH process. Then I compare these 

alternative models for the conditional variance and select the best model for each series 

that will be later used for forecasting. 

3.4.1. TESTING FOR STOCHASTIC TRENDS IN THE DATA 

It is important at this stage to examine the stationarity properties of the data and 

test for the presence of stochastic trends or unit roots. A stationary series has a constant 

mean and shocks to the series will not have permanent effects on the mean of the series. 

In this case the variable is mean reverting or stationary. In a series that has a stochastic 

trend or a u@t root, a shock to the series at period t will have permanent effects. Such a 

series will have a non-stationary variance which will tend to infinity as t + co . For 

forecasting purposes this series will not revert to a constant mean even in very long 

horizons and the width of the confidence intervals of the forecasts will increase without 

bound as the forecast horizon increases. 

In testing for stochastic trends (unit roots) in the log levels of the original data, I 

use two alternative testing procedures as an attempt to deal with the fact that some of the 

series may not be very informative about the existence or not of a unit root. In columns 3 



to 5, of panels A and B of Table 3.2, I present the results of augmented Dickey-Fuller 

(ADF) tests' to the levels and first differences of the data. In columns 6 to 8, I present the 

alternative non-parametric Phillips-Perron (PP) tests of Phillips and Perron (1988) for the 

existence of a unit root. The ADF tests are conducted using the following regression: 

nr 

Alogz, =a, +a,t +a2 logz,-, + C ~ i ~ l o g z , - i  + E l  7 

i=l 

where z, is the series under consideration and m is selected large enough such that E, is 

white noise. The null hypothesis of a unit root is rejected if a, is negative and 

significantiy different than zero. The critical values are not the usual t-statistics but are 

those given by Fuller (1976). The problem with this testing is that the order of the 

autoregression is not known. One way to overcome this is to use some information 

criterion to select the best model. However since the samples that I have in hand are 

quite large, I follow Said and Dickey (1984) who showed that the ADF test is 

asymptotically valid if the order of the autoregression is increased to T " ~ ,  where T is the 

sample size. 

An alternative way to using the augmenting lags to correct for serial correlation is the 

Phillips-Peron testing procedure that uses non-parametric correction. The PP test involves 

estimating (3.4.1) with m=O and then the statistics are transformed to correct for serial 

correlation in their asymptotic distribution. For the transformation formula see Phillips 

and Peron (1 988, Table 3.1, p. 308-9). The critical values for this test are the same as in 

I See Dickey and Fuller (1 98 1). 



the Dickey-Fuller tests. The Newey and West (1987) method is used to estimate the error 

variance from the estimated residuals as: 

where p is the truncation lag parameter which is set in the estimation according to the 

1-s 
Newey and West suggested value, and o (s, p) = - 

p + l '  

In panel A of Table 3.2, we have the results of the unit root tests. With respect to 

the ADF test, for the crude oil, electricity and heating oil series the null hypothesis of a 

unit root cannot be rejected at the 5% significance level. For the natural gas, propane and 

unleaded gas series the null of a unit root is rejected at the same significance level. 

According to the PP test, the null hypothesis of a unit root cannot be rejected for any of 

the six series. Thus, for three of the series I get conflicting results fiorn the two tests with 

respect to the existence of a unit root. Having in mind the Nelson and Plosser (1982) 

argument that most macroeconornic time series have a unit root, I conclude in column 9 

of panel A, that all series have a stochastic trend. 

Next, I test the first differences of the log series for the presence of a unit root. 

The results are shown in panel B of Table 3.2. In this case, the nuIl hypothesis of a unit 

root is rejected for ail six series, and with both tests. I conclude that the fist differences 

of the logs are stationary. 



3.4.2. AR MODEL SPECIFICATION - 

Having concluded in the previous section that all six energy fitures have a unit root, i 

will now use the first differences of the log series to select the best fitting autoregressive 

model (AR) for each of the series: 

where y, is the log of the series in question and m is the order of the autoregression. To 

select the number of AR lags in (3.4.3) for each series, I estimate (3.4.3) using m=l and 

progressively increase the number of autoregressive lags until E, is not serially 

correlated. To test for autocorrelation in the residuals, I use the Ljung-Box Q-statistic. 

Then, 1 estimate several models with higher AR orders and choose the number of 

autoregressive lags, rn, that minimize the Akaike and Swartz infomation criteria, AIC 

and SIC respectively. Whenever the two information criteria select different orders of 

autoregression for a series, the fact that these models are nested, allows me to perform a 

likelihood ratio test (LR) to select the optimum number of lags. As an extra step, after 

selecting an AR(m) order according to the above, I overfit the model including additional 

lags and then perform both a LR and an F-test to determine whether these lags improve 

significantly the fit of the AR process. 

Following this procedure, I find that for the crude oil, both the AIC and the SIC 

select an AR(10) model for which the probability of the Ljung-Box Q-statistic is 0.056. 

The LR-test for AR(10) against an AR(15) produces an LR statistic equal to 5.73. This is 



distributed under the null that AR(10) is coriecf as a x2  with 5 degrees of fkeedom. The 

probability of 5.73 is 0.333. Also an F-test of the null that $,, = ... = +,, = 0 is equal to 

FLsl = 1.14 with a probability of 0.336. So I conclude that the correct AR specification for 

crude oil is an AR(10). 

Similarly, for electricity and unleaded gas both the AIC and SIC select an AR(4) and 

AR(10) model respectively, with the LR and F-statistics on overfitted models being 

statistically insignificant. For the heating oil the AIC selects an AR(14) while the SIC 

selects an AR(l1). The likelihood ratio test between the two AR specifications provides a 

test statistic of 9.27 which has a probability of 0.02587. Thus, it is statistically significant 

at the 5% level. The F-test that the coefficients of the lags 12 through 14 are all equal to 

zero yields an F-statistic equal to 3.08 with probability 0.02623. Thus, I select the AR(14) 

model. For natural gas AIC and SIC select 23 and 14 lags respectively, with the LR and 

F-test rejecting the adequacy of the AR(14) and selecting the AR(23). Finally for 

propane, the AIC and the SIC select 13 and 1 1 lags respectively and additional tests show 

that the AR(13) is the appropriate model. These results are summarized in Table 3 -3. 

3.4.3. ESTIMATING THE APPROPRIATE ARCH MODEL 

Having already estimated the appropriate autoregressive model for each of the six 

series, we now need to formally test the residuals of those autoregressive models for the 

presence of ARCH processes. Visually inspecting the autocorrelation and partial 

autocorrelation functions of the residuals of the autoregressions, we do not find any 

evidence of autocorrelation and the Ljung-Box Q(36) statistic is not significant for any 

of the series. From this we conclude that we have succeded in removing any linear 

dependence in the residuals in the previous section. However the ~ ~ ( 3 6 ) ~  which 
- 



represents the Q-statistic for the squared residuals is highly significant. This implies that 

there is higher order dependence in the residuals. The res statistic is designed to pick non- 

linearities and the presence of conditional heteroscedasticity. Thus, now we have 

evidence for non-linearities in the data and conditional heteroscedasticity. I need to 

formally test for the presence of ARCH/GARCH processes in the residuals. Engle (1982) 

proposes the following Lagrange multiplier test for ARCH disturbances: I obtain the 

residuals fiom the autoregressions and I square them. Then, I regress these residuals 

against a constant and q lagged vaiues of the squared residuals, so I. estimate: 

If there are no ARCH or GARCH effects then the estimated coefficients a, through a, 

should be equal to zero. Thus, this regression will have little explanatory power and the 

coefficient of determination lZ2 will be very low. If the sample size is T, under the null 

hypothesis of no ARCH errors, the test statistic T R ~  converges to a X: distribution. If 

is sufficiently large, rejection of the null hypothesis that the coefficients of the 

Lagged squared residuals are all equal to zero is equivalent to rejecting the null hypothesis 

of no ARCH errors. In Table 3.4, I present the results from the Lagrange multiplier tests 

for each series. I use one, two, five and ten lags. As it is obvious Erom the test statistics 

and the corresponding probabilities, I reject the null of no ARCH processes in the 

residuals for all series and all lag structures, with the exception of the electricity where 

the test statistic appears to be insignificant at lags one and two. For higher lag orders, five 



and ten, we reject the null of no ARCH errors for electricity as well. Thus, I conclude that 

for all six series there exist ARCH processes in the residuals. 

With the above testing methodology we can detect the existence of conditional 

heteroscedasticity in the errors, but we cannot identify the specific order of the ARCH. 

To find the order of the ARCH(@ that best fits the data, I estimate an ARCH(@ model 

for each of the series, with q = 1,2, . . .,9. Then I: report the AIC and SIC from each 

estimated model to help for the selection of the optimal order of ARCH. This estimation 

is performed using maximum likelihood estimation (ML). The advantages of the MI, are 

that (a) it allows for joint estimation of the mean and variance equation. (b) we can use 

likelihood ratio tests of restrictions of the model- (c) consistency of the ML, estimator for 

the parameters of the variance does not require the existence of fourth or higher moments 

of the data which is typically required for the consistence of the least squares GS) 

estimator. 

To identify q in the variance equation, I use the likelihood ratio test (LR). Under 

the null hypothesis that q is correct, the LR test statistic: 

where 0, is the parameter vector with q lags in the ARCH term, is asymptotically 

distributed as a x2  with 1 degree of freedom. So, if the LR statistic is significant this 

means that the q+l lag specification in the ARCH is more appropriate than q, and I 

choose the value of q for which the LR test statistic is not significant at 1%. In Table 3.5, 



I present the LR test statistic. The critical value at the 1% significance level with I degree 

of freedom is 6.63. 

According to this, the LR test statistic becomes insignificant at the 9& lag for 

crude oil, so the optimal lag length is 8. For electricity, the LR statistic becomes 

insignificant at the 4" lag, so we may choose 3 lags for the order of ARCH, but when we 

continue adding lags, the statistic becomes again significant at the 9" lag. To select 

between the mCH(3) and ARCH(9) processes I perform an LR test between q=3 and 

q=9. The LR tests statistic is equal to 9.73 and the critical value at the 1% level with 6 

degrees of freedom is 16.81. So we accept the null hypothesis that ARCH(3) is the 

correct specification. For heating oil, the LR statistic is signiticant at all lag lengths, so I 

conclude that the correct length of ARCH lags is greater than 9. In the natural gas, we 

have a case similar to electricity. The 3rd and 6* lags appear to be appropriate since the 

LR statistic becomes insignificant at the 4Lh lag but it is significant again at the 6* lag. 

Again 1 employ a LR test between ARCH(3) and ARCH(6) which produces a tests 

statistic of 26.58, with a critical value at the 1% level with 3 degrees of fieedorn of 11 -34. 

So, 1 reject the null and I select the ARCH(6) as the correct specification q. For propane 

all lags are highly significant and I conclude that the correct lag length q is greater than 9. 

Finally, the unleaded gas LR test suggests both the 3rd and 6" lags for the q, and again a 

LR test between the two lag structures, ARCH(3) and ARCH(@, has a statistic of 83.57 

with a critical value of 11.34. So, I conclude that the ARCH(@ is the most appropriate 

model. 

I also use the value of the minimized AIC and SIC to select the best ARCH lag. 

When the number of observations is large, as in our samples, SIC penalizes additional 



parameters much more than AIC, leading to more parsimonious models. Geweke and 

Meese (1981) show that asyrnptoticaliy SIC correctly identifies an ARMA model, while 

AIC tends to overfit the model. There is no proof however that the ARCH model satisfies 

the conditions for this result. 

In Table 3.6, I summarize the order of ARCH that is selected according to the LR 

tests, the M C  and SIC. 

3.4.4. FITTING AN APPROPRIATE GARCH MODEL 

As we have seen, Bollerslev's (1 986) GARCH model is a generalization of the pure 

ARCH model. The conditional variance is not assumed to depend only on the lagged 

values of squared residuals, but it is allowed to depend on lagged values of itself-an 

autoregressive component is introduced. In the previous section, I concluded that the 

appropriate lag structure for the ARCH representation of the conditional variance is 

relatively long with lags fiom 6 to greater than 9 with the exception of electricity where 

the best fitting model was an ARCH(3). In a GARCH(1,l) model: 

if p, <I, then the GARCH(1,l) model is actually equivalent to an ARCH model with 

infinite lags since from (3 -4.6) we have 



so that we get 

If we set a, = 1 and use only a finite number of lags then we have an ARCH model with 

geometrically declining weights: 

Thus, it is possible that a GARCH(1,L) representation will fit the energy data better. The 

added advantage of a GARCH(1,L) model is the more parsimonious representation which 

requires the estimation of only two additional parameters while with the ARCH models 

we found that many more parameters have to be estimated. 

For every energy series I estimate the models GARCH@,q) with p = 1, 2 and q = 

1,2. So, four different GARCH models are estimated for every series. These models are 

not all nested, so I cannot use a likelihood ratio test to select the best GARCH 

representation. Nonetheless, since all four models belong to the general class of 

GARCH(p,Q) models I can use the N C ,  SIC or the adjusted R~ for model selection. The 

problem with the adjusted R~ criterion is that it is valid only if the correct model is within 

the ones tested and it will select the true model only 50% of the time. Because of these 

restrictions, I will rely on the AIC (1974) and SIC (1978) to select the best GARCH 

model. In Table 3.7, I present the AIC, SIC, adjusted R~, and the value of the maximized 

log-likelihood function for four different GARCH models of the six energy variables. All 



three criteria select the GARCH(1,l) as the best model except for natural gas where all 

three criteria select the GARCH(2,l) as the best fitting model. 

3.4.5. FITTING AN EGA RCH(1,I) MODEL 

To address the restrictions of the ARCH and GARCH problems as it was discussed 

earlier I use Nelson's (1 99 1) exponential GARCH(1,l) or EGARCH(l,l), also inspired 

by Engle's (1982) ARCH model. Now the conditional variance depends on both the size 

and the sign of Iagged residuals and I model the conditional variance as 

log 0: = w, + p log 0:-, +./%I +Y-- ;:, 

The log transformation insures that cr: remains non-negative for all t. In this case the 

impact of the most recent residual is now exponential rather than quadratic. In Table 3.8, 

I present the AIC, SIC, adjusted R~ and the maximized log-likelihood statistics fiom the 

estimation of an EGARCH(1,l) model for each of the six energy series. 

3.4.6 MODEL SELECTION 

Thus far, I have selected the best ARCH and GARCH specification and estimated an 

EGARCH(1,l) model for the six energy series. The next step is to choose which of the 

three different model specifications best fits the data Comparing the ARCH and GARCH 

models, these models are not nested, and thus, I cannot use a likelihood ratio test to select 

the best model. But both ARCH(q*) and GARCH(~* ,~*)~  models belong to the larger 

Where p* and q* represent the optimal lags as they were estimated in sections 4.3 and 4.4. 
- 



GARCH@,q) class, so I can use the AIC, SIG and adjusted R~ to select between the two. 

In Table 3.9, I present the AIC, SIC and the value of the maximized log- 

likelihood h c t i o n  for the ARCH(q*) and GARCH(p*,q*) models. For the cases of the 

heating oil and propane where the likelihood ratio test does not become insignificant even 

at the ninth lag, I use the statistics fiom the ARCH(9) model. Clearly for all six series the 

GARCH representation is superior to the ARCH according to both AIC and SIC. So for 

ail series the selected model is a GARCH(1,l) with the exception of natural gas where it 

is GARCH(2,l). This result is somewhat expected as the long lag structures of the best 

fitted ARCH models imply that a GARCH(1,I) may be more appropriate as explained 

previously. 

Having concluded that the GARCH(p*,q*) specification is superior to the 

ARCH(q*), the next step is to compare the GARCH(p*,q*) models with the 

EGARCH(1,l) that 1 have already estimated. The AIC and SIC in Tables 3.8 and 3.9, 

both select the GARCH@*,q*) models for all energy series except for the natural gas 

where the EGARCH(1,l) model is selected- 

I also present the diagnostics on the standardized residuals from the 

GARCH(p*,q*) and EGARCH(1,l) models. These are calculated as: 



where 2, are the residuals from the estimated model and h, is the estimated conditional 

variance, If the model is correctly specified then 5, will have a mean of zero, variance 

one, and be iid. The diagnostics for the standardized residuals, mean, variance, 

skeweness, kurtosis and the Jarque-Berra statistic for normality, are presented in Table 

3.10. The lower the Jarque-Berra statistic is, the closer the corresponding standardized 

residuals are to normality. 

In order for the unconditional variance to exist in each of the estimated models, 

we need a,, a,, and p,, all to be greater or equal to zero so that the unconditional 

P* 

variance is always positive. Also, the unconditional variance is finite if a, t Cpi -4 in 
i=l 

the GARCH models and P <I in the EGARCH model. In Table 3.1 1, I present in panels 

A and B, the estimated coefficients on the conditional variance for both the 

GARCH@*,q*) and the EGARCH(1,l) models respectively, and I test the hypotheses 

P . 
that a, + pi =1 and p =I. It is clear from columns eight and nine on panel A, that only 

h l  

in the cases of the electricity and unleaded gas we can reject the null hypothesis of an 

infinite unconditional variance. In the other four series we cannot reject the null 

P* 

hypothesis that a, + pi  =I, and thus the unconditional variance for these series will not 
i=l 

be stationary. From column eight in panel B, we can see that the null hypothesis of a non- 

stationary unconditional variance is rejected for all series except electricity. According to 

these test results, only three of the previously selected models appear adequate, and these 

are the GARCH(I,l) models for electricity and unleaded gas, and the EGARCH(1,l) 

model for natural gas. The GARCH(1,l) models for crude oil, heating oil, and propane 



produce infinite unconditional variances so that the EGARCH(1,l) model is selected 

instead. 

Thus, I have concluded that the best model for electricity and unleaded gas is a 

GARCH(1,l) and for crude oil, heating oil, natural gas, and propane is an EGARCH(1,I)- 

It would be interesting at this point to see whether the inclusion of the conditional 

variance in the mean equation has any effect on the mean of the series. Thus, I estimate 

the corresponding GARCH(p+,q*)-M model for electricity and unleaded gas, and an 

EGARCH(1,l)-M model is estimated for the rest of the series. In the second column o f  

Table 3.12, I present the type of model that is estimated for each of the series, the third 

column presents the number of AR lags that are included in the mean equation, while in 

columns three to five I report the estimated coefficient of the conditional variance, b, the 

conesponding t-statistic, and the probability respectively. The coefficient of the 

conditional variance, b, is not statistically significant for five out of the six series at the 

conventional 5% significance level, so I conclude that the inclusion of the conditional 

variance in the mean equation does not improve the fit of the model for these five series. 

However, the coefficient b, for the case of propane appears to be statistically significant 

at the 5% leveI, with a t-statistic of -2-266648 and a probability of 0.0235. Thus, the 

EGARCH(1,l)-M model for propane is selected over the EGARCH(1,l). 

Surnrnarizing model selection, I have selected a GARCH(1,l) model for 

electricity and unleaded gas, an EGARCH(1,l) for crude oil, heating oil, and natural gas, 

and an EGARCH(1, 1)-M for propane. In Table 3.13, I present the estimated coefficients 

for the conditional vaiances of these models and in Figures 3.7 to 3.12, I graph the 

conditional variances. For electricity and unleaded gas that are estimated using a 



GARCH(1 ,I) model, all coefficients of the conditional variance appear to be statistically 

significant- For the series that an EGARCH(1,l) model was selected, crude oil, heating 

oil and natural gas, all coefficients are statistically different than zero except for the 

parameter y that is insignificant for all three series. The same is true for propane which is 

estimated using an EGARCH(1,l)-M model. All parameters are highly significant except 

for the last coefficient, y , which again appears insignificant. Since the fourth term in the 

EGARCH and EGARCH-M models is designed to capture the effects of the sign of the 

lagged residuals to the asset's variance, and the coefficient of this term, y ,  appears 

insignificant, this means that the variance of the changes in the assets' prices does not 

depend on the sign of the residuals. Thus, there is no leverage effect. 

The estimatedp s or the Zagged conditional variances in the conditional variance 

equation for all six series although different than one as tested earlier, are very close to 

one. This means that the conditional variance will exhibit high persistence and the effects 

of the shocks will fade away very slowly. 

The Box-Pierce Q(36) and ~ ~ ( 3 6 )  statistics show that we fail to reject the null 

hypotheses that there are no linear or non-linear processes in the residuals that we haven't 

accounted for. Only the ~ ~ ( 3 6 )  statistic for natural gas is statistically significant, 

implying that there are still some non-iinear processes in the errors that the best fitted 

model, an EGARCH(1, I), cannot pick-up. 

3.5. FORECASTING 

In the previous section I selected the best model for each of the six energy series. 

In this section 1 will use these models to produce in sample forecasts and compare the 



forecasted values with the actual realized htures prices. To do this I will exclude the last 

22 observations fkom the estimation, since the data I use are daily futures closing prices, 

and the 22 observations represent approximately one month's trading days. Then I use the 

remaining obsewations to re-estimate the best fitted model for each series and use these 

models to generate in-sample forecasts for the last 22 observations. The exclusion of the 

last 22 observations leaves me with 3701 observations for crude oil, 434 for electricity, 

4410 for heating oil, 1942 for natural gas, 2600 for propane and 3278 for unleaded gas. 

In Figures 3.13 -3.18 I present the graphs of the forecasts. The solid line represents 

the realized value, the thick dashed line represents the forecasted values, and the other 

two dashed lines represent the t 2  standard deviations confidence bands for the 

forecasts. These standard deviations are estimated fiom the forecasted conditional 

variances. In Table 3.14 I present some statistics for the forecasts' evaluation. These 

statistics are: the root mean squared emor (RMSE), 

where e,,,, = y,+* - y,,,,, , and y,+, is the actual value of variable y at period t+l and y,+,, 

is the forecast for y,,, at period t. The mean absolute error (MAE) is defined as: 

and the mean absolute percent error is: 



where = (Y,+, - Y,+,./ ) ~ I + L  Finally Theil's inequality coefficient is defined as: 

As we can see from Figures 3.2 3-3.18, the actual value of the closing price for the 

six futures contracts falls within the 2 2  conditional standard deviations band of the 

forecast for all forecasted values except for observation 3710 for crude oil and 

observation 4419 for heating oil where in both cases the realized closing price was below 

the predicted confidence band. Thus, the model appears to be able to predict well in the 

short forecasting horizon of 22 periods in the future or approximately one month, 

The most important result fiom modeling and estimating the conditional 

heteroscedasticity for forecasting is that conditional forecasts are far more superior than 

unconditional forecasts. This is because the forecast error using the conditional forecasts 

is smalIer than the error &om unconditional forecasts. To see this improvement in the 

forecasts in Table 3.15 I present the unconditional forecast standard deviations for the six 

series in columns 3 and 7, and in columns 4 and 8 the conditional standard deviation for 

one to five days ahead forecasts. In these one week ahead forecasts the unconditional 

standard deviation is always greater than the conditional one and we can verify the 



theoretical superiority of the conditiond forecasts. Thus, using the conditional 

heteroscedasticity to model the error sequence we are able to construct narrower 

forecasting confidence bands. Using such models, an investor optimizing his poafolio 

can use a more precise measure of risk for the corresponding assets. 

3.6. CONCLUSIONS 

In this paper, I tried to mode1 the time series behavior of six energy market 

variables, the closing futures prices for crude oil, electricity, heating oil, natural gas, 

propane, and unleaded gas. Testing these series with two different unit root tests, the 

ADF and the Phillips - Peron, I. showed that all six series have a stochastic trend- The 

non-stationarity of the series, in their logarithmic forms, suggested the use of their first 

differences as the appropriate variables for the rest of the analysis. I modeled the data as 

AR(p) processes where the order of the autoregression, p, was selected in such a way as 

to remove serial correlation. Having accounted for any linear dependencies in the data, I 

proceeded to test for non-linear processes in the errors. The clustering of volatility 

episodes that was observed in the data, implied a non-constant conditional variance and 

the existence of a time-varying heteroskedasticity. The application of more formal tests to 

the residuals confirmed the existence of ARCH processes in the errors. Different models 

of conditional heteroskedasticity that have been proposed recently in the literature were 

applied and tested and I selected for each series the model that provided the best fit. 

These best fitted models were then used to produce in-sample forecasts for one month 

ahead. Confidence bands were also constructed based on the forecasted conditional 

variance of the series. The actual values of the six energy market futures series were 

within the predicted +/-2 standard deviations bands for all forecasted values but two. 



Finally, using the conditional heteroscedasticity, we saw that we can provide forecasts 

with smaller forecast errors than with the usual unconditional forecasts, verifying the 

theoretical superiority of such forecasts. 



TABLE 3.1 

SUMMARY STATlSTlCS FOR DAILY ENERGY PRICES (IN LOGS) 

Variable Sam~le Size Mean Standard. Dev. Min Max Skewness Kurtosis J-B Prob.* 

crude Oil 3722 -0.000 163 0.0 19 -0,38407 1 0.123525 -2.106 47,409 0,000 
Electricity 455 0.000955 0.043 -0.297022 0.267433 -1.105 18,680 0,000 
Heating Oil 443 1 -0.000133 0.019 -0.350938 0,128019 - 1.907 36,303 0,000 
Natural Gas 1962 0,000 129 0.028 -0.230920 0,2092 16 -0,121 13.864 0,000 
Propane 2621 0,000003 0.02 1 -0,378558 0.1 13597 -3.334 57.593 0,000 
Unleaded Gas 3299 -0,000 1 16 0.019 -0.298099 0,147865 -1.060 23,400 0,000 

- -- 

* The null hypothesis is that the series is normally distributed, 



TABLE 3.2 

UNIT ROOT TEST RESULTS IN THE ENERGY VARMBLES 

Panel A. Tests on the log levels 

Augmented Dickey-Fuller Tests Phillips-Peron Tests 
Variable Sample Size ADF Statistic Aug. Lags 5% Crit. Value PP Statistic Tranc. Lags 5% Crit. Value Decision 

Crude Oil 3 723 -2.95 16 -3.4 1 -2.77 8 -3.41 
Electricity 456 -1.87 8 -3.42 -2.04 5 -3.42 

I(]) 

Heating Oil 4432 -3,15 16 -3.41 -2.85 9 -3,4 1 
Natural Gas 1963 -3,65 13 -3 -42 -3.20 7 -3,42 

1(1) 

Propane 2622 -4.04 14 -3.42 -3.1 7 8 -3.41 
I(I) 

Unleaded Gas 3300 -3,44 15 -3,4 1 -3,36 8 -3.41 
I(] 
I(1) 

Panel B. First differeneces of log levels I 

Augmented Dickey-Fuller Tests Phillips-Peron Tests 
Variable Sample Size ADF Statistic Aug. Lags 5% Crit. Value PP Statistic Tranc. Lags 5% Crit. Value Decision 

Crude Oil 3 723 -13.68 16 -3,41 -59.16 8 -3.41 
Electric Power 456 -7.69 8 -3,42 -20.78 5 

I(0) 
-3.42 

Heating Oil 4432 - 14,9 1 16 -3.4 1 -63.83 9 -3.41 
I(0) 

Natural Gas 1 963 -10,18 13 -3.42 -42.02 7 -3 -42 
KO) 

Propane 2622 -1 1.19 14 -3,4 1 -42.58 8 -3,4 1 
KO) 

Unleaded Gas 3300 -13.92 15 -3.4 1 -53.57 8 -3.41 
I(0) 
1(0) 



TABLE 3.3 

AIClag Valueof 
Variable Selection rnin AIC 

SELECTION OF THE APPROPRLATE AR LAG STRUCTURE 

SIC lag Value of 
Selection min SIC 

LR Test 
Statistic 

F-Test 
Prob. Statistic 

Optimal AR Box-Pierce 
Prob, lag structure Q(36) statistic 

Crude Oil 10 -7.890061 
Electricity 4 -6.296094 
Heating Oil 14 -7.993264 
Natural Gas 23 -7.158198 
Propane 13 -7,788038 
Unleaded Gas 10 -7,905428 

* These tests involve overfitting the model selected by AIC and SIC and test tile null hypotl~esis that tile additional lags do not improve the fit. 
I 



TABLE 3.4 

LAGRANGE MULTIPLmR TESTS FOR THE EXISTENCE OF ARCH ERRORS 

Variable Lags q T R ~  Probability Variable Lags q T R ~  Probability 

Cn~de Oil 1 2 9 3  1 0,000 Natural Gas 1 10.008 0,002 
2 40,503 0.000 2 19,022 0,000 
5 103.492 0,000 5 22.237 0.00 1 
10 129.781 0.000 10 42.579 0,000 

Electricity 1 1.864 0.173* Propane 1 15.667 0.000 
2 2.038 0.361* 2 38.91 9 0,000 
5 21,376 0.00 1 5 67,156 0,000 

I 

10 22.9 19 0.01 1 10 106.194 0.000 

Heating Oil I 16.980 0,000 Unleaded Gas I 30.001 0.000 
2 36.713 0.000 2 55,447 0,000 
5 152,802 0,000 5 1 14.478 0.000 
10 195.868 0,000 10 149.314 0,000 

* Not significant at the 5% level. 



TABLE 3.5 

LR TESTS ON ARCH MODELS 

Likelihhod Ratio Test Statistic* 

ARCH Lags (q) Crude Oil Electricity Heating Oil Natural Gas Propane Unleaded Gas 

- - 

* The critical value at the 1% level with 1 degree of freedom is 6.63. N/A the statistic is not available because it was not 
possible to achieve convergence. 







TABLE 3.7 (continued) 

SELECTION OF A GARCH@ ,(I) MODEL 

NATURAL GAS 
AIC SIC Adj. R~ Log L 

GARCH(1,I) -7.120578 -7.04301 8 -0,016461 43 15.93 
GARCH(1,2) -7,136701 -7.056269 0,000305 4350.53 
GARCH(2, I )  -7,139357* -7.058925* 0.002957* 4347.1 1 
GARCH(2,2) -7.125997 -7.042692 -0,00994 4346.70 

PROPANE 
AIC SIC Adj. R' Log L 

GARCH(1,I) -7.748555* -7.7103 16* 0,038354* 7458.71 

UNLEADED GAS 
AIC SIC Adj. R' Log L 

GARCH(1, I ) -7.8999 14* -7.873955* 0.009027* 8719.59 

- - 

* These values select the corresponding GARCH model. 



TABLE 3.8 

EGARCH(1,l) ESTIMATION RESULTS 

Variable AR Lags AIC SIC Adj. R' Log L 

Crude Oil 10 -7.881207 -7,856075 0.0050 18 10379.48 
Electricity 4 -6.256332 -6,174285 -0.002 188 829.12 
Heating Oil I4 -7.983285 -7.955784 0,011444 12 178,42 
Natural Gas 23 -7.141221 -7.060788 0.0048 13 4376,44 
Propane 13 -7.742823 -7.702334 0,033194 7467.93 
Unleaded Gas 10 -7.898934 -7.871 122 0.008356 872932 





TABLE 3-10 

DIAGNOSTICS FOR THE STANDARDIZED RESIDUALS 

Crude Oil Electricity Heating Oil 
GARCH EGARCH GARCH EGARCH GGRCH EGARCH 

Mean -0.0094 -0.0038 -0,0234 0.0460 -0.0 114 -0.0143 
Maximum 5 -023 3 4.6039 5.5839 7.5 145 6.0003 5.78 13 
M , i m h ~ m  -7.2476 -8.4565 -7-443 1 -5.1797 -6.4480 -7.3329 
St.Deviation 0.9998 0.9999 1.0623 1.0059 0.9999 1 .OOOO 
Skewness -0.2267 -0.253 1 -1 -0274 0.2462 -0.2241 -0-2577 
Kurtosis 5.1469 5.6720 14.7192 16-5143 5.2640 5-5161 

J-B 744,657 1 143.902 2660.179 3436.584 980.303 1214.010 
Prob. 0.000 0.000 0.000 0.000 0.000 0.000 

Observations 3 7 12 3712 45 1 45 1 4417 4417 

Natural Gas Propane Unleaded Gas 
GARCW EGARCH GARCH EGARCH GARCH EGARCH 

Mean -0.0296 -0.0 141 -0.0016 -0.0194 0.004 1 0.0020 
Maximum 8,0347 7.9754 4.1877 3 -9657 7.6249 7.3023 
Mimimum -9.5053 -7.9805 -9.0128 -8.1872 -6.3 123 -7.0083 
St-Deviation 0.9994 0,9996 1,000 1 1.0006 1 .OOOO 0.9997 
Skewness 0.1165 0.4144 -0.6607 -0.6502 -0.2137 -0.2797 
Kurtosis 14.1987 13.3 137 8.1516 7.6465 6.0 113 6.1758 

J-B 10136.530 8649,484 3073.656 2529.885 1267.761 1425.062 
Prob. 0,000 0.000 0.000 0.000 0.000 0.000 

Observations 193 9 1939 2608 2608 3289 3289 





TABLE 3.12 

TESTING GARCH-M AND EGARCH-M MODELS 

Estimated AR Lags Coefficient 
Variable Model k b f -statistic Probability 

Crude Oil EGARCH-M 10 -0,098486 -0,096007 0.9235 
Electricity * GARCH-M 4 -0.305768 -0.87763 5 0,3806 
Heating Oil EGARCH-M 14 -2.333717 - 1,740436 0.08 19 
Natural Gas EGARCH-M 23 0.268995 0,244248 0,807 1 
Propane EGARCH-M 13 -2,920799 -2.266648 0.023 5 
Unleaded Gas GARCH-M 10 1.615091 0.90 1249 0.3675 

* Instead of the conditional variance the conditional standard deviation is used here. 
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TABLE 3.14 

FORECAST EVALUATION STATISTICS 

Model Used for Forecasted 
Variable the Forecast Observations 

T heil's 
RMSE MAE MAPE Ineaualitv Coef. 

Crude Oil EGARCH(1, I) 3 702-3723 
Electricity GARCH(I , 1) 435-456 
Heating Oil EGARCH(1, I) 44 1 1-4432 
Natural Gas EGARCH(1,l) 1942- 1963 
Propane EGARCH(1, I)-M 260 1-2622 
Unleaded Gas GARCH(1, I ) 3279-3300 



TABLE 3.15 

UNCONDITIONAL AND CONDITIONAL STANDARD DEVIATIONS IN WEEK AHEAD FORECASTS 

Forecast Forecast 
Ji;; 

Forecast 
Variable Day 0 Variable Lags 

Crude Oil 1 0.014189 0.014174 Natural Gas I 0,032508 0.032078 
2 0,014256 0,014235 2 0,032647 0,032226 
3 0.0 143 19 0.0 14295 3 0.033 149 0,032370 
4 0,014382 0,014356 4 0.032854 0,0325 10 
5 0.014448 0.014416 5 0.033086 0.032646 

Electricity 

Heating Oil 

1 0.04845 1 0,0484 16 Propane 1 0,020552 0.0205 I4 
2 0.048473 0.0484 14 2 0,020779 0.020565 
3 0.048463 0,0484 12 3 0,020836 0,0206 15 
4 0,048612 0,048410 4 0,0209 12 0.020665 I 

5 0,0491 10 0.048408 5 0,020952 0.02071 3 

1 0.01235 1 0.012335 Unleaded Gas 1 0.015196 0,015162 
2 0.0 12444 0.0 12423 2 0,015299 0,015235 
3 0.01253 1 0,012510 3 0.01 5367 0,015307 
4 0,012629 0.0 12596 4 0,015443 0,015377 
5 0.01 271 6 0.0 12682 5 0.01 5509 0,015446 



Figure 3.1. Logged Prices for Crude Oil - 

Figure 3.2. Logged Prices for Electricity 



Figure 3.3. Logged Prices for Heating Oil - 

Figure 3.4. Logged Prices for Natural Gas 



Figure 3.5. Logged Prices for Propane 

Figure 3.6. Logged Prices for Unleaded Gas 



Figure 3.7. Conditional Variance for  Crude Oil Figure 3.8. Conditional Variance for Electricity 

Figure 3.9. Conditional Variance for Heating Oil Figure 3.10. Conditional Variance for Natural Gas 
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Figure 3.1 1. Conditional Variance for Propane Figure 3.1 2. Conditional Variance for Unleaded Gas 

0.01 2 - 0.010 - 

0.010 - 
0.008 - 

0.006 - 

0.004 - 

0.000 



Figure 3.13- In-Sample Forecasts and 95% Confidence Intervals 
for Crude Oil. 

3692 3696 3700 3704 3708 3712 3716 3720 
0 bservation 

Figure 3.14. In-S ample Forecasts and 95% Confidence Intervals 
for Electricity. 
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Figure 3.15. In-Sample Forecasts and 95% Confidence Intervals 
for Heating Oil. 
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Figure 3.16. In-Sample Forecasts and 95% Confidence Intervals 
for Natural Gas. 
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Figure 3.17. In-Sample Forecasts and 95% Confidence Intervals 
for Pro~ane. 
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Figure 3.18. In-Sample Forecasts and 95% Confidence Intervals 
for Unleaded Gas, 

0.06 - 

0.04 - 

0.02 - 

0 - 

-0.02 - 
-0.04 - 

-0.06 - 

-0.08 - 

-0.08 
3269 3273 3277 3281 3285 3289 3293 3297 

0 bservation 

, / \  

I \ --, , t - - - -  _ _ _ e - _ _ _ _ - - _ _ - - _ _ _ _ - - - - - - - - -  
\ I 

'. t - .  

\ I \  I ,  \ I 

\ . I I - , \ ----. -- -  
\ - -__ - - - - - - - -  - - - - - - -  

\ \  1 . 

2591 2595 2599 2603 2607 2611 2615 2619 
0 bsewation 



CHAPTER 4 

BALANCED GROWTH, MONEY DEMAND, AND MONETARY 

AGGREGATES: A COINTEGRATION APPROACH 



4.1. INTRODUCTION 

In development economics, the balanced growth theory suggests that in the steady 

state per capita consumption, investment and output all grow at the same rate so that the 

consumption - output and the investment - output ratios are constant. These two ratios are 

also known as the great ratios. Thus, according to the theory, consumption, investment 

and output must be non-stationary and for the great ratios to be constant, they must be 

cointegrated- 

In their (1988) paper, King et d. have used a simple real business cycle model 

proposed by Fynn Kydland and Edward Prescott (1982) to test the balanced growth 

theory where total factor productivity evolves according to a random walk with drift 

procedure. Following King et al. (1988), in this paper I use recent developments in 

econometrics to test the balanced growth theory and at the same time the existence of a 

stable money demand kc t ion .  The data that are used are quarterly U.S. observations 

from 1960:l to 1997:4 for real per capita personal consumption expenditures, real per 

capita private fixed investment, real per capita private GNP, 3-month treasury bill interest 

rates and per capita red money balances. To examine the sensitivity of the results to 

different money measures and overcome what Alec K. Chrystal and Ronald MacDonald 

(1994) called William Barnett's critique on the appropriate money measures I use in this 

paper twelve different money measures: the commonly used simple-sum M1, M2, M3 

and L measures and also Divisia M 1, M2, M3, and L, and currency-equivalence M 1, M2, 

M3 and L. 

The Johansen and Juselius (1992) multivariate maximum likelihood cointegration 

tests are applied to three different systems, the first including only the red variables, the 

- 



second includes the nominal variables and the third all five variables. For the systems 

that there is evidence of the existence of cointegrated vectors according to what the 

theory predicts I estimate those vectors and impose additional assumptions, Finally, I 

simulate shocks to the whole system and to specific variables of interest and get the 

impulse responses of the estimated cointegrating vectors and of individual variables. 

The structure of this paper is as follows: in Section 4.2, 1 discuss the theoretical 

background and show how the theory will be tested, in Section 4.3, I present the data that 

are used and the methods for testing for stochastic trends in the data Section 4.4 deals 

with the econometric framework of the Johansen and Juselius (1992) maximum 

likelihood cointegration test and it's application to the three systems. In Section 4.5, the 

cointegrating relations that are identified in the previous section are shocked in order to 

see how the cointegrated vectors and individual variables respond to various stochastic 

shocks to the system's variables. Finally, Section 4.6, summarizes the conciusions. 

4.2. THEORETICAL BACKGROUND 

The model that underlies the analysis in this paper is a simple real business cycle 

model where ~ v e  have permanent productivity shocks. It is of the general cIass of models 

described by Fym Kydland and Edward Prescott (1982) and King et al. (1 988). The 

economy's production function is described by a constant returns to scale Cobb-Dougias 

production fimction of the forrn: 



where is the output at period f K, is the eapital stock and N, represents labor. In this 

model is assumed that total factor productivity h, follows a logarithmic random walk of 

the form: 

where the innovations represented by the sequence (5,) are assumed independently and 

identically distributed with a mean of  0 and a variance o'. The interpretation of the 

evolution of productivity according to (4.2.2) is that the productivity grows at every 

period by an average rate of p, and the (5,) sequence represents shocks or deviations of 

productivity from this average. Thus, the first two terms on the right-hand-side of (4.2.2) 

represent the deterministic part of the productivity evolution and the last term represents 

the stochastic innovations, 

In a standard neoclassical model as that by Solow (1970), where we only have 

deterministic trends, we find that in the steady state per capita consumption, investment 

and output all grow at a constant rate of p, / 8. This common deterministic trend implies 

that the great ratios, the ratio of consumption over output and investment over output are 

constant in every period in the steady state- But when we add the stochastic term in the 

evolution of productivity, the realizations of 5, will permanently affect the evolution of 

productivity at all future periods: 



In this setting, a positive productivity shock at period t will raises the expected long-run 

growth path, introducing a common stochastic trend in the logarithms of consumption, 

invesment and output. The stochastic trend is log(h,)/O and its growth rate is 

(pL + 6, ) /0  which is the analog of the deterministic model's common growth rate 

px /e .  Because dl there variables here, consumption, investment and output have a 

common stochastic trend the grate ratios C, I Y, and I, l Y, must be stationary stochastic 

processes. 

These theoretical results can be tested in a cointegration b e w o r k  where X, is a 

vector of the logarithms of consumption, investment and output at period t, denoted by 

c, , i, and y, . All three variables are non-stationary and integrated of order 1, or I(1), 

because the productivity as we have seen follows a random walk. The balanced growth 

hypothesis in this case implies that the difference between any two of the components of 

X, will be a stationary variable or I(0) according to the Engle and Granger (1987) 

terminology. The two cointegrating vectors will be a =[1,0,-I] and P =[O, 1 ,- 11. 

In this model, the dynamic adjustments that the economy has to make after a 

productivity shock 5,  and the speed of adjustment will depend on the specific 

characteristics and parameters of this economy regarding tastes, preferences and 

technology. The real business cycle theory has studied the changes that happen to the 

economy in terms of a) the investment technoiogy, with respect to the issues of 

adjustment costs, inventory changes and time-to-build, b) the production technology, 

with respect to variable capacity utilization, indivisibilities of labor and employment 



adjustment costs c) the issue of preferences; the non-separability of leisure and durable 

goods and d) the issue of serial correlation in the productivity growth. From this research 

two important properties emerge. Firsf the fact that there exist transitory dynamics as the 

economy adjusts consumption, investment and work effort while moving towards a new 

steady state. In this period of adjustment the great ratios are expected to change 

temporarily. Second, there exists a common stochastic trend in consumption, investment 

and output due to the stochastic trend in productivity. These two issues can be examined 

in terms of cointegration tests between consumption, investment and output and in the 

case that there is empirical evidence that cointegration does exist, the short-run 

adjustment dynamics can be studied using vector error correction models (VECM). In 

other systems where X, is augmented to include both the real variables, consumption, 

investment and output and nominal variables such as money balances, the price level and 

the nominal interest rate, now X, =[c, ,i,, m, - p,, y,, R,] and if m, - p,, and R, are i(l) 

then according to the theory I would expect to find three cointegrating vectors, the m o  

grate ratios: a =[1 ,O,O,- I ,O], =[0,1,0,- 1,0] and the money demand relation y =[0,0,1,- 

y 4 ,  y, 1. In this case rn, - p, represents the logarithm of real money balances and R, is 

the nominal interest rate. According to the theory I expect y, = - 1 and y, to be small and 

positive. These coefficients in the cointegrating vector for the money demand imply a 

one-to-one positive relation between real money balances and output and a small negative 

relation between real money balances and the nominal interest rate. 

In this paper I will use the latest developments in the field of non-stationary 

variables and cointegration to test whether the data support the above cointegrating 



relations predicted by theory and if there is evidence for cointegration I will test whether 

the coefficients in the cointegrating relations are of the expected magnitude. 

4.3. THE DATA AND TESTS FOR STOCHASTIC TRENDS 

The data that are used in this paper are quarterly U.S. observations from 1960: 1 to 

1997:4. The variables are: red  per capita personal consumption expenditures seasonally 

adjusted, c, red per capita private fixed investment seasonally adjusted, i, real per capita 

private GNP seasonally adjusted, y, defined as total GNP minus government 

expenditures. The real money balances variable is defined as per capita real money 

balances. The twelve different measures of money that are used in this paper are the 

Simple-Sum MI, M2, M3 and L denoted as S1 S2 ,  S3 and SL respectively, the Divisia 

MI, M2, M3 and L denoted as Dl  D2, D3 and DL and Currency Equivalence MT, M2, 

M3 and L measures denoted by CI, C2, C3, and CL. The interest rates that 1 use are 3- 

month treasury bill auction averages when a simple-sum or a currency-equivalence 

monetary aggregate is used. In the systems that involve the Divisia MI, Divisia M2, 

Divisia M3 and Divisia L monetary aggregates I use the more appropriate "user costs" of 

money, denoted by UC1, UC2, UC3, and UCL. 

All variables are in logarithms with the exception of the nominal interest rates and 

the user costs of money. The real variables are produced using the G W  deflator as a 

price index. 

4.3.1, Testing for Stochastic Trends in the Data 

To test the cointegration properties of the data I need the variables to be non- 

stationary or I(1) in the Engle and Granger (1988) terminology. In Figure 4.1, I graph the 



logarithms of consumption, investment and-output. Clearly all three variables show the 

characteristic upward trends and cyclical effects. In Figures 4.2-4.5,1 graph the per capita 

real money balances £iom the narrowest definitions of the three monetary aggregates 

Simple Sum, Divisia and Currency equivalence M1, to the broadest measures L. Finally 

in Figure 4.6, I graph the great ratios c-y and i-y. 

In order to test for cointegration I need consumption, investment, output, the 

twelve different measures of money and the interest rates and user costs to be non- 

stationary processes of the same order of integration. Also, according to the theory of 

balanced growth, I would expect that if consumption, investment and output have 

common stochastic trends, the great ratios must be stationa-ry. Thus, evidence of non- 

stationarity of the great ratios is evidence against balanced growth theory. 

For these reasons, it is important at this stage to examine the stationarity 

properties of the data and test for the presence of stochastic trends or unit roots. A 

stationary series has a constant mean and shocks to the series will not have permanent 

effects on the mean of the series. In this case the variable is mean reverting or stationary. 

Equivalently, a trend-stationary series follows a deterministic trend and any shocks to the 

variable will fade away and the variable will return to the original deterministic trend. In 

a series that has a stochastic trend or a unit root, a shock to the series at period t will have 

permanent effects. Such a series will have a non-stationary variance which will tend to 

f i t y a s  t + a .  

In testing for stochastic trends (unit roots) in the log levels of the original data, I: 

use two alternative testing procedures as an attempt to deal with the fact that some of the 

series may not be very informative about the existence or not of a unit root- In columns 2 



and 3, of Table 4.1, I present the results of augmented Dickey-Fuller (ADF) testsL to the 

levels and first differences of the data respectively. In columns 4 and 5, I present the 

alternative non-parametric Phillips-Perron (PP) tests of Phillips and Perron (1 988) for the 

existence of a unit root. The ADF tests are conducted using the following regression: 

where z, is the series under consideration and rn is selected large enough such that E, is 

white noise. The null hypothesis of a unit root is rejected if a, is negative and 

significantly different than zero. The critical values are not the usual t-statistics but are 

those given by Fuller (1976). The problem with this testing is that the order of the 

autoregression is not known. One way to overcome this is to use some information 

criterion to select the best model. In this paper I use a Iag order of m = 4 and the resulting 

Durbin-statistics show that any autocorreIation has been successhliy removed. An 

alternative way to using the augmenting lags to correct for serial correlation is the 

Phillips-Peron testing procedure that uses non-parametric correction. The PP test involves 

estimating (4.3-1) with m = 0 and then the statistics are transformed to correct for serial 

correlation in their asymptotic distribution. For the transformation formula see Phillips 

and Peron (1988, Table 1, p. 308-9). The critical values for this test are the same as in the 

Dickey-Fuller tests. The Newey and West (1987) method is used to estimate the error 

variance £?om the estimated residuals as: 

See Dickey and Fuller (198 1). 



where p is the truncation lag parameter which is set in the estimation according to the 

I-s 
Newey and West suggested value, and o (s, p) = - 

p t l '  

According to the ADF tests, in panel A of Table 4.1, I find evidence that the three 

real variables, the nomind interest rate, the user costs, S2, C1, C2, and C3 are all 1(1), 

while the rest of the monetary aggregates appear to be I(2). The consumption-output ratio 

and CL appear to be I(0) or stationary. The PP tests, in panel B of Table 4.1, show that 

all variables are I(I) with the exception of CL and the consumption-output great ratio 

which are I(0). Thus, in some cases the data are not very informative about their 

stationarity properties and in column 6 of Table 4.1 I report the decisions that are made 

regarding their order of integration. Whenever the ADF and the PP tests produce 

conflicting results, I treat the respective variables as 1(1) for the purposes of this paper. 

Finally CL is found to be I(0) using both tests, so in the estimations where CL is included 

the results must be observed with caution. 

4.4. MAXIMUM LIKELIHOOD COINTEGRATION TESTS 

In this section I will use the Johansen and Juselius (1992) maximum likelihood 

cointegration tests to test for cointegration in three different systems. The f i s t  is the c, i, 

y system where according to the theory I expect to find two cointegrating relations, 

namely the consumption-output and the investment-output great ratios. The second 

system that includes, rn-p, y, and R, is estimated with each one of the twelve monetary 



aggregates. In this system I expect to iden- one cointegrating vector that corresponds to 

the long-run money demand function. Finally in the third system I include all five 

variables, c, i, m-p, y and R expecting three common stochastic trends, the two great 

ratios and the money demand fimction- 

4.4.1. The Econometric Framework 

I follow Iohansen and Juseselius (1992) and for a system o f p  variables, I consider 

the following p-dimensional vector autoregressive model: 

where X, is a vector of the variables that are included in the estimated system and E ,  is 

an independently and identically distributed p-dimensional vector of innovations with 

zero mean and covariance matrix @ . If II = -(I - n, - . . . - n, ) is the p x p total 

impact matrix I consider the hypothesis of the existence of a maximum of r<p 

cointegrating relations as 



where a andP are p x r matrices of full rank. The P matrix is a matrix of cointegrating 

vectors such that P'X, is stationary even though X, is itself non-station&. The cc 

matrix is a matrix of error correction parameters. 

The maximum likelihood estimation and the likelihood ratio test of this model has 

been investigated by Johansen (1 988). According to Johansen and Juselius (1992) I 

transform equation (4.4.1) by subtracting X,-, &om both sides and collecting the terms 

on X,-, . Then I add and subtract (n, - 1)X,-, and repeat this procedure and collect terms 

to get: 

where 

In equation (4.4.3) the matrix n is restricted as II = ap' but the parameters vary 

independently. Thus, the parameters TI,. . . , rk-, can be eliminated by regressing AX, and 

XI ,  on lagged differences AX,-, , . . . , M,,,, . These regressions produce the residuals 

R,, and R, and residual product moment matrices 

See Engle and Granger (1987). 



The estimate of P is calculated3 by solving the eigenvalue problem 

for eigenvalues i, > . . . > K p  > 0,  eigenvectors V = (C, .. . .. i,,) normalized by 

~'s,P = 1 . The maximum likelihood estimators are given by 

& = s,,p * 

and n=S, -&&I.  

The maximized likelihood hc t ion  is calculated £?om 

and the likelihood ratio test of the hypothesis HI (r) is given by the trace test statistic or 

A,,, : 



An alternative test which is called the maximum eigenvalue test or A,, is based on 

comparing If, (r - 1) with H,  (r) : 

The critical values for these tests are given by Ostenvald and Lenurn (1990). 

To select the appropriate lag order for each model in the corresponding VAR, I 

estimate VAR(k) models with k from 1 to 20 and select the order of the VAR that 

minimizes the Akaike Momation Criterion (AIC). Using this criterion I select 3 lags for 

the c, i, y system, for the m-p, y, R system 6 lags are selected using the simple sum and 

currency equivalence monetary aggregates, while in using the Divisia aggregates I select 

a VAR(4) for Divisia MI and a VAR(3) for the broader Divisia aggregates. The selection 

of the order of the VAR is important because the cointegration tests are quite sensitive to 

the order of the VARs. 

4.4.2. Testing the c, i, y system 

The first system that I am going to examine using the previously described 

Iohansen methodology is the trivariate consumption, investment, and output system. 1 

have already concluded in Section 4.3.1 that all three variables are non-stationary and 

I(1) so that I can use the cointegration analysis to test the theoretical proposition of 

balanced growth. According to the theory, the two great ratios, the consumption-output 

and investment-output ratios are expected to be stationary. Thus, if the theory is correct, I 

See fohansen (1988). 
- 



expect to find evidence of two cointegrating vectors. If the order of the variables in the 

system is Xt =[c, ,i, , y t ]  ' then the two cointegrating vectors are expected to be: 

a =[l,O,-I] and P = [O,l,-11 for the consumption and investment great ratios 

respectively, so that although the three variables are non-stationary there exists a linear 

combination of them that is stationary. The estimated X, and test statistics and 

the corresponding null hypotheses that are calculates using an order 3 VAR are shown in 

Table 4.2. None of the two statistics is statistically significant at the 5% level. Thus, there 

is no evidence of any cointegrating relations in this system although theory predicts two. 

Having in mind the unit root tests on the two great ratios, I was expecting to find one 

cointegrating relation- We have seen that the c-y variable that corresponds to the 

consumption-output great ratio was found to be stationary impIying a long run 

relationship between the two I(1) variables. The trivariate cointegration test does not 

provide evidence for any cointegrating relations between the three variables. 

4.4.3. The m-p, y, R System 

The next system I am going to test is X,=[m - p, y, R] . In this case I expect to 

find one cointegrating relationship according to theory, [I, P, , P ,I ,  which corresponds to 

the long-run money demand function. If such a cointegrating vector exists I expect 

p, = -1 and p, > 0 and small. This is because according to the theory output, y, must be 

positively related to the real money balances, rn-p, and the relation must be one-to-one. 

Also, the interest rate elasticity, P,, of real money balances must be negative and 

relatively small. 



Here, for the real money balances variable, m-p, I use three different monetary 

aggregates: simple sum, Divisia, and currency equivalence. For all three aggregates I use 

four levels of aggregation, MI, M2, M3, and L, so that I test a total of 12 money 

measures. The variables are named such that S1 corresponds to the simple sum M1 

measure, D l  refers to the Divisia M1 measure, C1 is the currency equivalence M1 and so 

on- For the nominal interest rate variable, R, in the case of the Divisia aggregates, I use 

the user cost of money which is a more appropriate measure of the opportunity cost of 

holding money for these aggregates. The results of the Johansen maximum likelihood 

cointegration tests are shown in Table 4.2. According to the X,, and 1,- statistics I 

find some evidence of cointegration at the 5% level, only when S 1, S2, and D 1 measures 

are used. In the other cases I accept the null hypothesis of no cointegration. Then, I 

impose some just-identifying restrictions for cointegration rank of r = 1 to identify the 

cointegrating vectors. In Table 4.3 1: summarize the Johansen cointegration tests. The way 

these tests are constructed, a time trend is included in the cointegrating vectors. If the 

money demand fbnction exists as predicted by the theory, there should be no trend in the 

cointegrating vectors. Thus, I test the ndl  hypothesis that the time trend in each of the 

three cointegrating vectors is equal to zero, or that in the cointegrating vector [m-p,y,R,t], 

where t is the time trend, p, = 0 .  As we can see fiorn Table 4.3, the null hypothesis that 

the time trend in the three cointegrating vectors is equal to zero, cannot be rejected at the 

5% level. So, I impose next the over-identifying restriction that f3, = O  and the 

cointegrating vectors are identifled as in Table 4.4. The coefficients of the real money 

balances are normalized to 1. I observe that with the exception of the interest rate 

coefficient in the simple sum M2 cointegrating vector, all other coefficients have the 



correct signs. The coefficient on the interest rate or the user cost is positive and small as it 

is predicted by the theory, but the coefficients for the output elasticity of real money 

balances appear to be different than -1. Testing the overidentifLing restriction that 

p, = -1, in column 5 of Table 4.3, 1 reject the null hypothesis for all three cointegrating 

vectors. Thus, I conclude that the coefficients on output are significantly greater than -I 

so that the elasticity of real money balances to output is less than 1. 

4.4.4. The c, i, m-p, y, R System 

In this section I include all five variables in the same system so that now X, = [c, 

i, m-p, y, R]. The cointegration tests are done using all twelve money measures. 

According to the theory I expect to find in this system three cointegrating relations, the 

two great ratios, and the money demand function. However, I have seen fiom the unit 

root tests that the investment-output great ratio, i-y, is non-stationary, so the one-to-one 

relation may not exist. Applying the Johansen methodology to test for cointegration in 

this system I get the results in Table 4.5. According to the A,, and A,,, test statistics, I 

cannot reject the null hypothesis of no cointegration or r = 0 for the cases of D2, D3, and 

C1. For all the other cases I find evidence of one cointegrating vector, with the exception 

of Divisia M1 where the h,, test provides evidence of 3 cointegrating vectors, while the 

A,,, test provides evidence for 2. According to Johansen (1991), this ambiguity is due to 

the Iow power in cases when the cointegration relation is quite close to the non-stationary 

boundary. However, since the A,,, test takes into account all of the srnalIest eigenvalues 

it tends to have more power than the A,, test. Thus, in the case of Divisia M 1, I assume 

that there exist two cointegrating vectors. In column 3 of TabIe 4.6, 1 present the number 



of cointegrating vectors for each money measure. The next step is to identi@ the 

cointegrating vectors. Whenever r = I is selected, it is more Likely that the one 

cointegrating vector is the long-run money demand firnction since £?om the trivariate c, i, 

y system I did not find any evidence of cointegration. Also, since we have seen that the c- 

y great ratio is stationary it is more likely that the consumption-output great ratio will be 

picked up by the Johansen cointegration test. Thus, for the cases where r = 1, I test the 

overidentifying restrictions that P , = f3, = P, = 0 and P, = P, = P, = P, = O , that 

identi@ the long-run money demand function and the consumption-output great ratio 

respectively as the cointegrating vector- From Table 4.6, coiumns 4 and 5 we can see that 

I accept both hypotheses in the case of S1, but I reject them both for dl the other money 

measures. The identified cointegrating vectors for S 1 are shown in Table 4.7 in columns 

2 and 3. Thus, although I find some evidence of one cointegrating vector in the S 1 case, 

the tests cannot conclude whether that vector is one of the two cointegrating relations that 

I expect (consumption-output ratio or the money demand hction), I fail to reject both 

null hypotheses. 

The rejection of both cointegrating regressions for the other money measures 

means that the one cointegrating vector that the Johansen test detects is not the money 

demand or consumption great ratio that the theory predicts. For the case of Divisia MI, 

where we have two cointegrating vectors, I impose and test the overidentifying restriction 

that P : = P: = Pk = 0 that identifies the consumption-output great ratio. This is 

distributed under the null as a x2 with 3 degrees of fieedom. In column 6 of Table 4.6, 

we see that the null hypothesis cannot be rejected at the 5% level, and 1 £ind evidence that 

one cointegrating vector is the c-y ratio. In order to test jointly that the two identified 

- 



cointegrating vectors are the c-y great ratio and the money demand function as predicted 

by the theory, I test the joint hypothesis that P\ = P: = p i  = P: = = 0 .  We can see in 

column 7 of Table 4.6 that the probability is 0.394 and I cannot reject the null hypothesis. 

The identified cointegrating vectors are shown in columns 4 and 5 of Table 4.7. The 

coefficient of y is expected to be equal to -1 in both cointegrathg vectors. In the 

consumption-output cointegrating vector, in coiumn 2 of Table 4.7, the coefficient of y is 

equal to -1.3860. The coefficient of y in the money demand cointegrating vector is equal 

to -0.4662. Although the coefficients are negative they do not seem to be jointly equal to 

-1 as I would expect in this system. The overidentifying restriction that the coefficients 

on income are both -1, or testing that P: = f3: =-I, is strongly rejected and the 

probability is 0.000. The coefficient of the user cost of money UC1, is positive and small 

in size as expected, P: = 0.003 1. 

4.5. IMPULSE RESPONSES OF THE COJNTEGRATING SYSTEMS 

For the cases that I have found some evidence of cointegration will be interesting 

to see how these cointegrating relations and the variables of the respective systems 

respond to various shocks. 

In the rn-p, y, R system, I have identified the money demand function as a 

cointegrating relation when I use simple sum MI, M2, and Divisia M1 as money 

measures. In Figures 4.7-4.9 we can see the persistence profile of system-wide shocks to 

the cointegrating vector for the S1, 52 and Dl  cases respectively. We observe that a 

positive shock to the system is quite persistent on the cointegrating vector and it is only 

absorbed after about 20 quarters for all three monetary aggregates. In Figures 4.10-4.1 l I 



present the impulse response of the cointegrating vectors to shocks to specific variables 

of the system. In Figure 4.10 I shock real per capita output and in panels A, B and C we 

can see the impulse responses for the case of S 1, S2, and D 1 respectively. For S 1 in panel 

A, the positive shock produces a positive response to the cointegrating relation for the 

first 6 quarters and then it becomes negative. The effect of the shock to when I use S2 

and D 1 is quite different since the shock produces a negative response of the 

cointegrating vector for the fist quarters before it is absorbed. When the equation that is 

shocked is that of the real money balances we see that this shock is absorbed in about 25 

quarters for all three money measures but the shock has a negative effect to the 

cointegrating vector when D 1 is used. 

In the five variable system, the only case where I both found cointegrating 

relations and I was able to identify the expected by the theory cointegrating vectors, was 

when Divisia M1 was used as the monetary aggregate. In Figure 4.12 we see that a 

positive system-wide shock produces a positive shock to both identified cointegrating 

vectors. The biggest part of the shock is absorbed in the first 12 quarters but then the 

speed of adjustment to the respective long-run relations is very slow. 

In Figure 4.13 I present the impulse response of the two cointegrating relations to 

a shock in the real per capita output The consumption-output great ratio is below its 

long-run equilibrium for a period of about 10 quarters and then it slowly adjusts. The 

money demand relation does not show such a big impact but it oscillates around the long- 

run equilibrium, while both relations show long persistence. In Figures 4.14 and 4.15 we 

see that shocks to the real Divisia M1 money balances and the user cost of money affect 



the money demand cointegrating relation more that the consumption-output great ratio 

and both cointegrating vectors tend although slowly, to return to their long-run equilibria. 

Finally, it is interesting to see what are the effects of different shocks to the 

system's variables. In Figures 4-16 and 4.17 I present the impulse responses of those 

variables to one standard deviation shocks to real per capita output and r ed  money 

balances. The output shock produces a positive response to all the other variables at the 

impact period but this positive effect dies out and becomes permanently negative after 

about 8 periods, with the exception of money balances that seems to be negative fkom the 

beginning. In the case of an one standard deviation shock to the money demand equation, 

we can see in Figure 4.17 that investment and output respond positively in the fxst 10 

quarters, then the effect becomes negative for about 8 quarters but they return the positive 

territory and stay there permanently. The impulse response of consumption to the one 

standard deviation shock to the real money balances is positive for all periods. 

The impulse responses in Figures 4.16 and 4.17 are consistent with what I 

expected fiom economic theory and econometrics of non-stationary variables. We see 

that for both the real per capita output and the real balances shock, the most volatile 

variabIe of the system is investment. Also, consumption appears to be least volatile 

variable which is consistent with the permanent income hypothesis. Individuals spread 

the effects of the shocks over many periods decreasing the volatility of per capita real 

consumption. 

Finally fiom Figures 4.7-4.17 we see that in general although slowly the 

cointegrating relations tend to revert to their long run equilibria, while the specific 

variables seem to be permanently affected by shocks to the system. This is of course is 



expected as in section 43.1 I have concluded that the variables are I(1) or non-stationary* 

The important property of integrated variables is that a shock will permanently affect 

their levels-they do not revert to a constant mean or a deterministic trend, 

4.6. CONCLUSIONS 

According to the balanced growth theory, as we have seen, the great ratios are 

expected to be stationary. In this paper, using a simple real business cycle model of the 

general class proposed by Kydland and Prescott (1982) and where total factor 

productivity evolves according to a random walk with drift process, I tested the 

stationarity of the great ratios. Evidence against the stationarity of the great ratios is 

evidence against the baIanced growth theory. The necessary but not sufficient condition 

for a number of series to be cointegrated is that all the series in question are integrated of 

the same order of integration. Applying the Dickey-Fuller (1981) and Phillips-Perron 

(1988) tests for unit roots I concluded that all series have a unit root or they are I(1) 

according to the Engle and Granger (1988) terminology, with the exception of CL, the 

currency equivalence L money measure, and c-y, the consumption - output great ratio 

which were found to be stationary or I@). 

In Section 4.4.2, I use the real variable system [c, i, y] and apply the Johansen and 

Juselius (1992) maximum likelihood cointegration testing procedure. Although, the 

theory predicts two cointegrating vectors, I do not find evidence for any such vectors, not 

even the c-y great ratio that was found to be stationary as we have seen before. 

In Section 4.4.3, where I use the system [m-p, y, R], I expected to find one 

cointegrating vector, the money demand function. There is evidence of one cointegrating 

relationship only when S 1, S2 and D 1 are used as monetary aggregates. The coefficients 



of the interest rates on the identified cointegrated vectors are as expected small and 

positive, with the exception of S 2  where it is negative. The coefficients on output are all 

negative as money demand theory suggests but the elasticity of real money balances with 

respect to output is significantly greater than -1. 

In the system where I include all five variables [c, i, m-p, y, R], in Section 4.4.4, 

the theory predicts three cointegrated vectors, the two great ratios and the money demand 

hction.  The ML cointegration tests show no cointegrated vectors when D2, D3, and C1 

are used as monetary aggregates, two when Dl  is used and one with all other measures. 

In the case of D 1, the joint hypothesis that the two cointegrating vectors are the money 

demand h c t i o n  and the consumption - output great ratio cannot be rejected and when 

these two vectors are identified, the coefficient of the user cost of money is small and 

positive as predicted, the coefficients of output have the correct sign but are different than 

-1. 

Thus, the cointegrating vectors that I both identified and they are consistent with 

the theory are the money demand function in the [m-p, y, R] system when MI, M2 and 

D 1 is used, and in the [c, i, rn-p, y, R] system, the consumption-output great ratio and the 

money demand hc t i on  when D l  is used The impulse responses of those cointegrating 

vectors to system wide shocks and to shocks to specific variables of interest in general 

are consistent with the theory. The cointegrating vectors show long persistence but they 

return to their long-run equilibria. The specific series are permanently affected by the 

shock as it is expected for non-stationary variables. 

Summarizing, the only cases where I find evidence of cointegrating vectors that 

are predicted by the theory is when simple sum MI, simple sum M2 or Divisia M1 



monetary aggregates are used, Thus, the thesry is not supported at all by these data when 

broader measures of money are used, and there is some evidence that the theory is correct 

when the narrowest of the money measures are used. The results appear not to be 

sensitive to the different monetary aggregates, as in simple sum, Divisia or cmency 

equivalent, but to how broad the specific money measure is. 







TABLE 4.2 (continued) 

JOHANSEN MI, COINTEGRATION TESTS 

Null Hypothesis IIIUX I ~ C C  Null Hypothesis ~ X I X  ?L tm~, 

System DL, y , UCL System C3, y, R 

System C 1 ,  y, R 

System C2, y, R 

System CL, y, R 

* Statisticaily significant at the 5% level. 



TABLE 4.3 

MULTIVARIATE EYPOTHESIS TESTING 

&: Trend = 0 
System VAR order Coint. Vectors (Prob.) 

Monetary I&: Trend = 0 : P y  = -1  
Aggregate VAR order Coint. Vectors (Prob.) (Prob.) 



TABLE 4.4 

ESTIMATES OF COINTEGRATED VECTORS 

Monetary Aggregate 

Variable Sum MI Sum M2 Divisia M1 

I .oooo 1 .OOOC) 1 *oooo 
(normatized) (normalized) (normalized) 

Note: the numbers in parentheses are standard errors. 



TABLE 4.5 

JOHANSEN ML COINTEGRATION TESTS 

Null Hypothesis ,a, I, trace Null Hypothesis h III,X I mcc 

System c, i ,  S l ,  y, R System c, i, SL, y, R 

System c, i ,  S2, y,  R System c, i, Dl,  y, UC1 

System c, i , S3, y, R System c, i, D2, y, UC2 

* Statistically significant at the 5% level. 
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TABLE 4.6 

MULTIVARIATE HYPOTHESIS TESTING IN TEE c, i, mmp, y, R SYSTEM 

Hypotheses Testing 
Monetary 
~ ~ ~ r e ~ a i e  VAR order I' P, =P, = p 6  = O  j$=A=&=Pa=O P : = P : = P ~ = o  # = P ; = & = ~ = @ = O  

Note: r is the number of cointegrating vectors. The numbers in hypothesis testing are probabilities.For the Divisia monetary 
aggregates R refers to the corresponding user costs. 





Figure 4.1. The Logarithms of Consumption Investment and Output 

sum M ------- Divisia M I ----- CE M I  

Figure 4.2. Simple-Sum MI, Divisia M1 and Currency Equivalent M1 
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Figure 4.3. Simple-Sum M2, Divisia M2 and Currency Equivalent M2 

sum ~2 ------- Divisia M2 ----- C E  M2 

Figure 4.4. Simple-Sum M3, Divisia M3 and Currency Equivalent M3 

Sum ~3 ------- Divisia M3 ----- CE M3 



Figure 4.5. Simple-Sum L, Divisia L and Currency Equivalent L 

Sum L ------- Divisia L ----- CE L 

Figure 4.6. The y-c and i-c great ratios 

C-Y ------ i-y 



Figure 4.7. Cointegrating Vector with simple sum M1 
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Figure 4.8. Cointegrating Vector with simple s u m  MZ 
P e r s i s t e n o e  Profile OF t h e  e F F e a t  o i  a sys tem-wide  shook to CU'Cs> 



Figure 4.9. Cointegrating Vector with Divisia M1 
Persistence ProFile o f  t h e  e F F e c t  o f  a system-wide shock to CU'Cs> 



Figure 4.10. Cointegrating Vector IR to y 
A- rn-p = simple sum M1 
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Figure 4-12. Persistence of C.V.'s to System-Wide Shocks 
Persistence Profile of the e f F e c t  OF a sustem-wide shack to CU'Cs) 

Figure 4.13. Impulse Response of C.V.'s to Output Shocks 
Genera l  ired I m p u  lsc RcrponseCs) to one S.E- shock in the equation for Y 



Figure 4.14. Impulse Response of CV.'s to Real Money Balances Shocks 
t e n o r a l i r e d  I m p u l s e  Rosponse<s> t o  o n e  S .E .  shock i n  tho e q u a t i o n  F o r  01  

Figure 4.15. Impulse Response of C.V.'s to User Cost of Money Shocks 
G e n e r a l  i r ed  I m p u l s e  R e s p o n s e < s >  t o  one S - E .  shook i n  the equation F o r  U C I  



Figure 4.16. Impulse Responses to Output Shocks 
G e n e r a l  i r e d  Impulse R e s ~ o n s e < s >  to one S.E. shook i n  the equation f o r  Y 

Figure 4.17. Impulse Responses to Real Money Balances Shocks 
General ired Impulse ResponseCs) to one S.E. shock in the esuat ion For D 1  



CHAPTER 5 

CONCLUSlON 



In Chapter 2 of this thesis, I have tested the absolute purchasing power parity 

theory in 17 countries using the Fisher and Seater (1993) and King and Watson (1997) 

testing methodologies. Although, in the Literature, little evidence is found in support of 

PPP, the results using the long-run derivative and the long-run multiplier in Chapter 2 of 

this thesis, provide strong evidence that PPP holds in the long run. Most of the 

researchers that deal with the theory of PPP, perceive the lack of cointegration between 

the relative price ratio and the exchange rate as a point where testing has to stop, since 

this is treated as evidence that PPP does not hold and the testing stops at that point. In this 

thesis, after testing for the time series properties of the series, I tested for cointegration. In 

the case where the series would have been found to have a common stochastic trend, PPP 

testing would have taken a different direction. I. would examine whether the coefficients 

of the cointegrating vector satisfy the requirements for PPP to hold, that is, the coefficient 

on the relative price ratio should be equal to 1, and also test causality, such that 

innovations in the relative price, cause the innovations in the exchange rate, if PPP holds. 

Rejecting cointegration, I was able to use the Fisher and Seater (1993) and King and 

Watson (1997) tests. Cointegration is not a necessary nor a sufficient condition for PPP to 

hold. 

In Chapter 3, I model the historical evolution of six energy futures prices, in an 

effort to produce in sample forecasts of the mean and volatility of these series. Visual 

inspection of the series and formal testing, made evident the presence of voIatility 

clustering and a time-varying heteroscedasticity. The selection of the optimum lag 

structure in the autoregressive representation of the series, ensured that no linear 

dependencies were present in the error term. The best fitted model for the conditional 



variance was then selected to account for nonlinear processes in the disturbance terms. 

The actual values of the series were lying within the 95% confidence band constructed 

with the conditional variance. I also showed that the forecast errors and the forecast 

variance are smaller using the conditional variance in short-term forecasts, than using the 

unconditionai one. This of course happens because the unconditional variance is 

characterized by long memory relatively to the conditional one. The unconditional 

variance puts the same weight to shocks that happened many periods in the past, while 

conditional variance weights more heavily recent realizations of the variable in question. 

In Chapter 4, I test the balanced growth theory and the existence of a stable 

money demand function. This is done using three different monetary aggregation 

procedures, the simple sum, Divisia, and currency equivalent. It is interesting to see ifthe 

results of these tests are sensitive to the monetary aggregate that is used. Most of the 

variables of the system are found to be nonstationary, and thus, the Johansen and Juselius 

(1992) maximum likelihood cointegration test is used to iden@ in the system the 

cointegrating vectors that are predicted by the balanced growth and monetary theory. 

Cointegrating vectors that are predicted by the theory are only identified when the simple 

sum M1, simple sum M2, and Divisia M1 monetary aggregates where used. According to 

these findings, the results appear not to be sensitive to the monetary aggregate that is used 

but to the level of aggregation. The narrowest money specifications seem to better 

support the theory. 
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