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ABSTRACT

In this thesis, I use recent advances in statistics and econometrics in an effort to
re-test some well-known theoretical propositions, examine whether these new techniques
support the theory, provide models that are better fitted to describe and forecast economic
time-series. The Purchasing Power Parity theory is tested using the Fisher and Seater
(1993) and King and Watson (1997) methodologies and strong evidence in support of
PPP is found. I use the general class of ARCH/GARCH processes to model financial
times series in an ARIMA framework and the best fitted models outperform traditional
ARIMA models in terms of the forecast variance. Finally, I test the balanced growth
theory and try to estimate a money demand function using the Johansen and Juselius
(1993) methodology. I do not find evidence in support of the balanced growth theory and
a stable money demand function, and these results are not sensitive to different monetary

aggregates that are constructed according to recent index number theory.
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CHAPTER 1

INTRODUCTION



[3°]

During the last decade we have seenr major innovations that affected with one or
another way all areas of statistics, econometrics and applied economics. Following the
1970°s and 1980°s that can be referred to as the decades of theory development, the
1990°s were highlighted by major developments in statistics and econometrics. Thus, we
observe the development and implementation of new techniques that resolve many of the
problems and impediments in the use of classical econometric procedures. In time series
analysis, whenever researchers used the classical econometric models to describe the
relationship between certain economic variables, to test different hypotheses or to
forecast future values of these variables, implicitly assumed that the assumptions these
models make, regarding specific properties of the data in hand, were met. Some of the
basic assumptions are that the first moments of the series in question must be stationary
or in other words that the mean and variance of the series must be constant. Testing
economic times series for these properties, has led us to the conclusion that most series
do not satisfy either one or both of these assumptions. Therefore, the empirical results
that are based on these techniques are invalid. The solution to this problem is the use of
econometric methods specifically designed for series that fail to satisfy the assumptions
of the classical econometric models or the transformation of the time series data in such a
manner that they conform to the assumptions.

From the techniques that were developed in the past decade to deal with non-
stationary and heteroscedastic data, [ will employ in this thesis some of the most recent
developments and apply them in some areas of economic theory, in an effort to see
whether the implementation of these procedures provides evidence in support of the

previous literature. I will show in this thesis that the use of these methodologies lead to



some very interesting propositions and theory implications that were not obvious in the
previous literature.

In all three empirical cases, Chapters 2, 3, and 4, the stationarity properties of the
economic time series are of great importance for the techniques that are used. The issue
of homoscedasticity in the context of an ARIMA framework is raised in Chapter 3. The
traditional Box-Jenkings methodology where a constant variance is assumed, is proven
inadequate especially for forecasts and it is replaced by explicitly modeling the
conditional variance of the time series. In Chapter 4, I test the balanced growth theory of
development economics and at the same time try to test for the existence of a stable
money demand function. In doing so, I use both the simple sum monetary aggregates that
are very common in the literature, and also the Divisia and currency equivalent monetary
indices that are not common at all but they are more appropriate, from a theoretical point
of view, as the recent literature suggests. Using these different measures of monetary

aggregates we can see how sensitive the results are to the different methods of

aggregation.

Chapter 2 of this thesis, deals with the theory of Purchasing Power Parity (PPP).
Purchasing power parity and the law of one price is a core assumption in the field of

international economics.

Three different approaches have been used in the literature to test for PPP. The
first approach, following Engle and Granger (1987), is to test whether the relative price
ratio and the exchange rate are cointegrated. If they 2ve, then this is viewed as evidence in

support of PPP. Another similar approach is to use the Johansen (1988) multivariate
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maximum likelihood generalization of the Engle and Granger (1987) methodology.
Again, in this case whenever the domestic and foreign price levels and the exchange rates
are found to be cointegrated and the cointegrating vector satisfies certain conditions, this
is evidence in favor of PPP. Finally, the third approach is to test the real exchange rate for
stationarity. If the real exchange rate is mean reverting then PPP holds, but if the

hypothesis of a stochastic trend cannot be rejected, then PPP does not hold.

Thus, the common theme, according to these studies, is that when the relative
price level and the exchange rate are not level-stationary, cointegration is a necessary
condition for PPP to hold. In Chapter 2 of this thesis, I test for PPP employing more
recent techniques in time series analysis. Namely, I use the Fisher and Seater (1993) and
the King and Watson (1997) methodologies. These methodologies allow the testing of
long-run neutrality propositions taking advantage of recent advances in the theory of
nonstationary regressors. According to these methodologies tests for such long-run run
propositions can be constructed only if the variables in question satisfy certain

nonstationarity conditions. Most of the previous literature ignored these requirements.

Fisher and Seater (1993) used their methodology to test for long-run neutrality
and superneutrality of money, and King and Watson (1997) tested not only for long-run
neutrality and superneutrality of money but also the Fisher effect, and the long-run
Phillips curve. More recently, Serletis and Koustas (1998) use the King and Watson
(1997) methodology and long, low-frequency data to test the neutrality and
superneutrality of money propositions in ten OECD countries and Koustas and Serletis

(1999) use the same methodology to test the Fisher effect.



Testing long-run classical neutrality propositions, using the Fisher and Seater
(1993) and King and Watson (1997) methodologies, requires that the series are non-

stationary and do not cointegrate.

Thus, although in the previous literature whenever the relative price ratio and the
exchange rate were found to be non-stationary but not cointegrated, researchers
concluded that PPP does not hold. However, using the Fisher and Seater (1993) and King
and Watson (1997) methodologies, we may still find the long-run derivative or the long-
run multiplier respectively, to be equal to one and therefore conclude that PPP holds in
the long-run. That is, the absence of cointegration, that for the previous literature implied
that PPP does not hold, in this case simply directs us to different testing procedures. In
particular to the use of the Fisher and Seater (1993) and the King and Watson (1997)
methodologies, according to which cointegration is not a sufficient nor a necessary

condition for PPP to hold.

In Chapter 3, I use the Box-Jenkings methodology to model the historical
evolution, and produce in-sample forecasts for six energy futures prices, crude oil,
electricity, heating oil, natural gas, propane and unleaded gas, taking into consideration
the conditional variance of the disturbances. In contrast to the unconditional variance,
which refers to the variance of the population, or the variance of the sample, the
conditional variance is a function of past realizations of shocks that are known in the
present period. These past shocks tend to affect the volatility of the series in subsequent
periods, and modeling the conditional variance allows one to produce better estimates of

future volatility. Especially in financial time series data, it is more important to be able to



forecast the conditional variance of an asset’s returns than using the unconditional
variance. The later describes the volatility of the asset over its life-span, information that
may not be very useful to an investor if her holding period is relatively small. A forecast
of the variance of the asset a few periods ahead, given past history, will be more

appropriate.

The series that I use in Chapter 3, are found to be nonstationary and thus I apply
the best fitted ARIMA representation. In doing so, I find that one of the assumptions of
classical estimation and hypothesis testing procedures is violated in all six data series.
That is, the variance of the error term is not stationary over time, as it is required, but we
can observe volatility clustering, periods where the volatility of these futures variables is
high and other periods where it is low. Thus, the assumption of homoscedasticity does
not hold. Formally testing, according to Engle (1982), I find evidence of ARCH/GARCH
processes in the data, which means that the conditional variance of the disturbances can
be modeled and estimated, and use it to achieve a better fit and produce more accurate

forecasts.

The literature shows that, in general, models that take into account the conditional

heteroscedasticity tend to perform better than other models (homoscedastic,

autoregressive, or non-parametric), in short forecast horizons.

In the effort to model the conditional heteroscedasticity, several specifications of
the conditional variance are tested, with different lag structures for each one. I compare

the goodness of fit of the ARCH, GARCH, ARCH-M, and EGARCH models, proposed



by Engle (1982), Bollerslev (1986), Engle, Lilien and Robins (1987) an.d Nelson (1991)
respectively. I select the best model using likelihood ratio tests and the Akaike and

Swartz information critiria.

Finally the best fitted models are used for in-sample forecasts and the conditional
variance provides the 95% confidence band for these estimates. The five-day ahead
forecasts of the unconditional and the conditional standard deviations are then used for

comparisons.

In Chapter 4, I use a real business cycle model, to test for the balanced growth
theory and at the same time for the existence of a stable money demand function.
According to this theory, at the steady state of the economy, per capita output,
consumption and investment grow at the same rate over time and thus, the great ratios,
consumption — output and investment — output must be constant. This rmeans that these
three time series variables must satisfy certain restrictions in the steady state in order for
the balanced growth theory to hold. In particular, they must not be stationary, and the
order of integration of the three variables must be the same and they should also

cointegrate so that the great ratios remain stationary.

In the system that is estimated in this Chapter, the presence of a stable money
demand function is examined as well. As I discussed above, for the balanced growth
theory to hold, output must have a unit root. In order for a stable money demand function
to exist this also means that money, interest rates, and output must be imtegrated of the

same order and cointegrated. But what money measure should we use: to test for the



money demand function? The developments-in recent years in statistics and econometrics
are not only constrained on how time series data are used in econometric models, but also
these developments show how these data series must be constructed in order to actually

reflect and measure properly a specific variable.

Thus, the important breakthroughs in index number theory, show that some
economic data are not constructed properly and these problems in measurement may have
implications in tests of economic theory. One important variable that leading researchers
in index number theory have argued that is not measured correctly is money. The
derivation of different money measures, from the narrowest definitions to the most broad
ones, using simple sum techniques was proven to be wrong by the recent literature. Thus,
in order to avoid the critique that firstly William Barnett voiced and later more
researchers sided with, I use three different monetary aggregation procedures to
distinguish between simple-sum, Divisia and currency equivalent monetray aggregates.
Four different levels of aggregation for each of the three monetary aggregation
procedures are used, for a total of twelve different time series for the money variable. In
this fashion, [ will be able to test the sensitivity of the results to different definitions of
money. Whenever, a cointegrating relationship is found that is in accordance with the
theory, variable shocks to the system are applied, to test the dynamics and the stability of

the identified relations.

In Chapter 5, I present the conclusions that are drawn from this thesis.



CHAPTER 2
NEW INTERNATIONAL EVIDENCE ON THE THEORY OF

PURCHASING POWER PARITY
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2.1. INTRODUCTION

The theory of Purchasing Power Parity (PPP) is the core assumption in the
exchange rate models in international economics. In the case of fixed exchange rates it
explains why the domestic inflation rate must be equal to the foreign inflation rate, and
under a floating exchange rates regime provides a theory of exchange rate determination.
In the later case which is the most interesting today, PPP provides a benchmark for policy
makers and exchange traders.

The theory of purchasing power parity has been studied extensively recently using
new advances in econometrics. In general these studies, and especially the ones that
concern the floating exchange rates period, find little evidence in support of PPP. See for
example, Adler and Lehman (1983), Patel (1990), Grilli and Kaminski (1991), Flynn and
Boucher (1993), Serletis (1994), Serletis and Zimonopoulos (2000), and Dueker and
Serletis (1997). Other studies, such as Frenkel (1980), Diebold, Husted and Rush (1991),
Glen (1992), Perron and Vogelsang (1992), Phylaktis and Kassimatis (1994), and
Lothian and Taylor (1996), using different groups of countries or longer periods of time
or pairs of countries with big differences in their inflation rates, report evidence in
support of PPP.

In testing the theory of PPP, some studies have applied Engle and Granger (1987)
bivariate cointegration tests to the exchange rates and the relative price levels, as for
example, Pippenger (1993). Other studies have used Johansen’s (1988) maximum

likelihood extension to Engle and Granger’s methodology to test PPP in a multivariate
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framework - e.g. Johansen and Juselius (1992), Kugler and Lenz (1993) and Serletis
(1994).

Another test for PPP is to test whether the real exchange rate has a unit root. If it
does, then PPP is rejected - see for example, Phylaktis and Kassimatis (1994), Dueker
and Serletis (1997), and Serletis and Zimonopoulos (1997). Serletis and Zimonopoulos
(1997), examine the U.S. dollar and DM-based real exchange rates for 17 OECD
countries and find that the unit root hypothesis for the real exchange rate cannot be
rejected even when they allow for a possible change in the level, according to Perron and
Vogelsang (1992). This result persists even when they test the dollar-based real exchange
rate using the more general fractional integration tests.

In this paper I will test PPP using two recent approaches for testing long-run
propositions that use recent advances in the theory of nonstationary regressors. These
approaches show that meaningful tests can only be constructed if the variables satisfy
certain nonstationarity conditions. Most of the existing literature ignores these issues and
thus those tests are invalid. I will adopt the Fisher and Seater (1993) methodology in the
context of PPP. Fisher and Seater (1993) used the long-run multiplier to test for long-run
neutrality and superneutrality of money in an ARIMA framework. Also, I will use the
King and Watson (1997) nonstructural bivariate autoregressive methodology. King and
Watson test the neutrality and superneutrality of money, the Fisher Effect and the long-
run Phillips curve - see Serletis and Koustas (1998), and Koustas and Serletis (1998) for
some applications.

In section 2, I briefly discuss the theory of PPP, in section 3 I investigate the

integration and cointegration properties of the variables since this is crucial for testing
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PPP. In sections 4 and 5 I test PPP using-the Fisher and Seater (1993) and King and
Watson (1997) approaches, respectively. Finally in section 6 [ summarize the

conclusions.

2.2. THEORETICAL FOUNDATIONS OF PPP

Purchasing Power Parity is one of the best known relationships in international
economics. According to PPP, the relationship between the exchange rate and the

domestic and foreign price levels is given by:

P
= -, (2.1

-

where S, represents the exchange rate in terms of domestic currency per unit of the
foreign currency, P, is the domestic price level, P is the foreign price level and A is an
arbitrary constant. Thus, the data series that are needed to test PPP are the exchange rate

S, , and the price ratio P, / P". Taking the logarithms the above relation becomes:

s, =a+p,-p,, (2.22)

where lower-case letters denote the logarithms of A, S,, P,and P’.
The assumptions underlying PPP is that the price indices in the two countries
include the same goods with the same weights, and the goods are freely tradable in the

two countries. Freely means that there are no impediments to international trade such as



13

tariffs and quotas. Under these assumptions,-if PPP does not hold, it would be possible to
profit from arbitrage between the two countries. Although in the definition of PPP we
assume that all goods that are included in the price indices are freely traded, there are
some kinds of goods such as services that are non-traded. Another issue with respect to
PPP is that it is unlikely that it will hold continuously at every point in time. As Cassel,
who is recognized as the formulator of the PPP relationship, notes, a number of factors
such as the international capital mobility in terms of speculation against certain
currencies, and government interventions can cause the spot exchange rate to deviate
from the PPP benchmark in the sort-run. For these reasons, we recognize that PPP is
more likely to hold in the long-run.

In the effort to test PPP, many researchers have applied Engle and Granger (1987)
bivariate cointegration tests to the spot exchange rate and the relative price level series. In
these studies, when the two series are found to be cointegrated, this is viewed as evidence
that PPP holds. In the opposite case, where the exchange rate and the price ratio series do
not cointegrate the researchers conclude that PPP does not hold.

Following the Fisher and Seater (1993) reasoning on money neutrality applied to
PPP, I point out that evidence that the exchange rate and the relative price series do
cointegrate, is neither necessary or sufficient to accept PPP. Cointegration means that
even if the two series are non-stationary, there is a linear combination of the two variables
that is stationary. Cointegration alone does not tell us anything about PPP. We can reject
PPP in presence of cointegration if one of the following is true: the coefficient of the
relative price when it is the independent variable in the cointegrating equation is

statistically different than one, or when the source of the non-stationarity is not the
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relative price variable but the exchange rate: A Granger-causality test may be suitable to
test this.

On the other hand, rejection of cointegration does not mean that PPP does not
hold. Cointegration is a linear relationship between two variables and PPP pertains to the
long-run relationship of these variables. So it is possible that although the exchange rate
and the relative price do not cointegrate, there is a long-run effect of the relative price to
the exchange rate. The Fisher and Seater (1993) and King and Watson (1997) tests that I
employ in this paper, provide estimates of the long-run derivative of the relative price to
the exchange rate when the two series are not cointegrated. If this long-run derivative is
not statistically different than one then I conclude that PPP holds.

From this discussion it becomes obvious that cointegration tests have nothing to
say with respect to PPP per se and other long-run relationships. They only provide
direction to what is the appropriate method to use in testing these relationships.

Since for both the Fisher and Seater (1993) and the King and Watson (1997)
procedures the integration and cointegration properties of the data, as we have seen, are

of critical importance, I need first to investigate these properties of the data.

2.3. INTEGRATION AND COINTEGRATION TESTS

For both the Fisher and Seater (1993) and the King and Watson (1997) tests that I
am going to use to test PPP, the integration and cointegration properties of the data are of

great importance as it will be explained in the next two sections in the discussion of these
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testing procedures. The data that I use are the consumer price index ratios and the U.S.

dollar-based exchange rates for 16 OECD countries. The CPI ratios are constructed as:

»_ CPL
a CPIUS,: ’

(2.3.1)

where CPI is the consumer price index in the respective country, and CP[;s is the
consumer price index for the United States. The data are quarterly, ranging from the first
quarter of 1973 to the second quarter of 1997, and they are from the I.M.F. International
Financial Statistics publications. Data before 1973 would not be appropriate for this

analysis because of the fixed exchange rate system that was in effect in that period.

2.3.1. UNIT ROOT TESTS

In testing for stochastic trends (unit roots) in the autoregressive representation of
each individual time series, [ use two alternative unit root testing procedures to deal with
the fact that some times the data are not very informative about whether or not there is a
unit root. In the first and second column of panel A of Tables 2.1 and 2.2 I report the test
statistics for the augmented Dickey-Fuller (ADF) test' and the nonparametric (PP) test of
Phillips and Perron (1988). The tests statistics are calculated using SHAZAM 7.0. I use
the PP test since it is robust to a wide variety of serial correlation and time-dependent
heteroscedasticity. For both the ADF and the PP tests the optimal lag length is taken to be

as the highest significant lag order at the 95% significance level from either the

' See Dickey and Fuller (1981).
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autocorrelation function or the partial autocorrelation function of the first differenced

series up to a maximum of N , where N is the number of observations. The regression

equation for the augmented Dickey-Fuller test is:

P
AY, =y +ot+a, Y+ BAY_ +5,. (232)

i=1

As an alternative to using the lags to correct for serial correlation, the Phillips-Perron
method uses non-parametric correction. I first estimate equation (2.3.2) with p = 0 and
then the statistics are transformed to remove the effects of serial correlation on their
asymptotic distribution. For the formula of the transformation of the statistics see Perron
(1988, Table 1, p.308-9). The critical values are the same as in the Dickey-Fuller tests.
The Newey and West (1987) method is used to estimate the error variance from the

estimated residuals as:

N

1 , 2 & N
;Zle; +§Zl:m(s,p) Yee,. (233
= =

t=s+1

l-s
p+l’

where p is a truncation lag parameter and o(s, p) =

The critical value for the tests with a constant and time trend at the 5%

significance level is 6.25. Based on this critical value and the test statistics reported in
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panel A of Table 2.1, the null hypothesis of a unit root in the log levels cannot be rejected
for all exchange rate series. This is consistent with the Nelson and Plosser (1982)
argument that most macroeconomic time series have a stochastic trend. For the price
ratios series the data are less informative. Based on the test statistics reported in panel A
of Table 2.2, and the critical values, the null hypothesis of a unit root is rejected for the
United Kingdom, Belgium, and Japan, in the case of the ADF test, and for the United
Kingdom, France, Italy, Japan, Finland, Ireland, and Spain in the case of the PP test.
Since the data on the price ratios are not very informative regarding the existence of a
unit root for some of the series, for the testing I assume that all series have at least one
unit root. In this respect the results for the United Kingdom and Japan should be
interpreted with caution.

The tests for unit roots on the first differences of the log levels are not very
informative for some of the series as well, as we can see from the results in panel B of
Tables 2.1 and 2.2. Although with the PP test all series are found to be integrated of order
one, using the ADF test some of the first differenced log levels appear to be non-
stationary. It is unlikely that these macroeconomic series would have a higher order of

integration than one, thus the decision here is to assume that all series are I(1).

2.3.2. COINTEGRATION TESTS

As mentioned by King and Watson (1997), long-run multiplier tests are inefficient
in the presence of cointegration. To test the null hypothesis of no cointegration (against
the alternative of cointegration) I use the Engle and Granger (1987) two-step procedure.

This involves regressing one variable against the other to obtain the (OLS) residuals €.
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s, =By +B it +B,p, +é€,. (2.3.4)

A test of the null of no cointegration (against the alternative of cointegration) is based on
testing for a unit root in the regression residuals é . For this testing I use both an ADF and
a PP test. Then I redo the testing using in (2.3.4) p, as the dependent variable.

Table 2.3 summarizes the cointegration tests and reports the test statistics for the
ADF test in panel A, and the PP test in panel B. The number of augmenting lags is
chosen as discussed before. Based on these test statistics and the critical values at the 5%
significance level, I conclude that the exchange rate and the price ratio do not cointegrate
for all countries. Only for the case of Japan when p is used as the dependent variable
there is evidence of cointegration but the null of no cointegration is accepted when p is
the independent variable.

Hence, the conditions necessary for the long-run multiplier tests to be meaningful
[that is, exchange rate and price ratio series are I(1) and do not cointegrate] hold for all
countries while the results for the United Kingdom and Japan should be interpreted with

caution.

2.4. THE FISHER AND SEATER METHODOLOGY

Important macroeconomic hypotheses are dealing with the long run effects of
some variables to other variables. The neutrality and supemeutrality of money as well as

the long run Phillips curve are some examples. In this paper, I examine the long run
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properties of PPP. I want to test whether changes in the relative price levels have an one
to one effect on the nominal exchange rate.

Testing such hypotheses proved not to be trivial. Lucas (1972) and Sargent (1971)
give examples where it is impossible to test long-run neutrality using reduced form
econometric methods. In their examples they use rational expectations, short-run non-
neutrality and stationary variables. The effect of using such variables is that these data
can not be used to test for long-run neutrality since they do not sustain changes that are
necessary for long-run effects. Lucas and Sargent with respect to this problem concluded
that in order to test for long-run relationships it is important to construct complete
behavioral models. Building on these arguments McCallum (1984) showed that low
frequency band spectral estimators calculated using reduced form models suffered from
the same problems that Lucas and Sargent exposed. In general, economists have not yet
reached a consensus on the various long-run propositions. This of course is the result of
the disagreement on the appropriate behavioral model for such research.

The results of the Lucas and Sargent critique are mainly driven from the
stationarity property of the model’s variables. In models where the variables are not
stationary and follow integrated processes we can test the long-run properties without
identifying a complete behavioral model. This is concluded in Sargent (1971) and it is
discussed in detail in Fisher and Seater (1993). Even with non-stationary variables, long-
run neutrality cannot be tested using a reduced form model. We must use the model’s
“final form”, which shows the response of the model’s variables to structural shocks.

The econometric analysis of simultaneous equations models of the reduced form

of a structural model cannot be identified econometrically. This is because we need a
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priori restrictions to identify the structural disturbances. I must clarify here what I mean
by the different forms of the model. By the “reduced form” model I mean a set of
regression equations in which each endogenous variable is expressed as a function of
lagged values of itself and other exogenous variables. By “final form” I mean a set of
equations where the endogenous variables are a function of current and lagged values of
shocks and exogenous variables. Finally, by “structural model” I mean a set of
simultaneous equations where the endogenous variables are a function of other
endogenous variables, exogenous variables, lags of the variables and structural

disturbances’.

2.4.1. THE LONG-RUN DERIVATIVE

Fisher and Seater (1993), define the long-run neutrality (LRN) and long-run
superneutrality (LRSN) propositions in terms of a bivariate ARIMA model and use it to
provide evidence on the LRN and LRSN properties of money.

Here I will use the same methodology to test the long-run Purchasing Power
Parity assumption. In particular, I am going to test whether exogenous permanent changes
in the price ratio have a one-to-one permanent effect on the spot exchange rate.

Because PPP is a relationship that it is assumed to hold in the long-run, it does not
depend on the short-run dynamics and structure of the economy. Thus, we can use tests
for PPP that are structure-free. In doing this, the integration properties of the price ratio

and the spot exchange rate will be very important.

2 See also Geweke (1986), Stock & Watson (1988), King, Plosser, Stock & Watson (1991) and Gali (1992).
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Following Fisher and Seater (1993), I use a bivariate, stationary ARIMA
representation:
a(L)A” p, = b(L)A"s, +u, 2.4.1)

d(L)As, =c(L)A" p, +w, (2.4.2)

where p, =In(P,/ P") and s, =In(S,). P, is the domestic price level at time period t
and P’ is the foreign price level. Let A=(1-L). <x> represents the order of
integration of variable x, so that if x is /(y) according to the terminology of Engle and
Granger (1987), then < x>=7 and also < Ax >=<x>—1. Lrestrict ¢, =d, =1, and b,

and ¢, are not restricted. The errors #, and w, are assumed to be independently and

identically distributed with mean zero and variances 6> and o2, respectively.
When both the exchange rate and the price ratio are integrated of order one and

< 5 >=< p >=1, the long-run derivative of s with respect to p can be written as:

0s,,, / Ou

LRD, , =lim——L  (2.4.3)

3
ke apu-k / aul

if llm op,../ou, #0.1f ,Eimap,,,k / 8u, =0 then there are no permanent changes to the

price ratio and the long-run response of the exchange rate to a permanent change in the
price ratio is not defined. The sequence in the numerator measures the effect through time
of an exogenous price change and the sequence in the denominator measures the effect of

the exogenous change on the price ratio itself. So the LRD measures the long-run
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elasticity of the exchange rate with respect to the price ratio. Thus, if PPP holds in the
long-run, I expect that LRD, , =1. According to Fisher and Seater (1993), from the

solution of (2.4.1)~(2.4.2) we have:

a(L) =d(L)/[a(L)d(L) —b(L)e(L)]

Y(L) = e(L) /[a(L)d(L) —b(L)c(L)]-

Thus, we can evaluate the limits as;

limp, ., / &u, =6(1),

where (L) = (1- L)"” «(L) .Similarly,

lim s,,,, / 3u, =T(1),

where T'(L) =(1- L)y (L).

If the order of integration of the price ratio is not zero, then the LRD is defined

and we can write:

=Dy (D)l
LRD, , = o (2.4.4)




23

From (2.4.4) we can see that the value of the LRD depends on the order of
integration of the two variables. When <p>-<s>21, then LRD, ,=0. When
< p>—<s>=0 then from the solution to (2.4.1) - (2.4.2) and (2.4.4) we have:

LRD,, =y())/a(ly=c(D)/d(l). (2.4.5)

2.4.2. TESTING FOR PPP USING THE LRD

The case where <s>=< p>=1, is a very interesting case because we can test
PPP. Because both the price ratio and the spot exchange rate are integrated of order one,
there are permanent changes to both s and p. In the case where < s >=< p >=2 we have
permanent changes to the growth rates of both s and p. Equation (2.4.4) implies that
LRD,,,,=LRD, ,. This is an interesting implication because it means that tests on how
the growth rate of the price ratio affects the growth rate of the exchange rate can be
directly interpreted as tests of how a permanent change to the level of the price ratio
affects the level of the exchange rate. The important implication of this is that if we find
empirical evidence that supports the assumption of Relative PPP it can be directly
interpreted as evidence for Absolute PPP when <s>=<p>=2.

When we have permanent innovations in both the price ratio and the exchange
rate, or in other words when < s>=< p >=1, Fisher and Seater show that the LRD is
given by equation (2.4.5). In this case, PPP holds if LRD, ,=1, so that an exogenous
permanent change to the price ratio has a permanent effect on the exchange rate. Under
the Fisher and Seater identification scheme with exogenous p, ¢{1)/d(l) can be interpreted

as: Pmbk where b, is the coefficient from the equation:
—
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k k
2 A5 =a, +b, [Z AP p j] +e,. (2.4.6)

Jj=0 Jj=0
where < s >=< p >=1. Equation (2.4.6) can also be written as:
As, +As, | +...+As,_, =a, +b,(Ap, +Ap,_ +...+Ap,_ ) te, =

S =S FSy St F85 =5,

=a, +b(p,—p4+P P2t -t tDP ) teE, =
S, =S8,k =4 +bk (Pl —'p{—k—l) H fork= 1: :K (2'47)

We can use the data to estimate equation (2.4.7) and obtain estimates of b, for

different values of & and construct the corresponding confidence band.

2.4.3. THE EMPIRICAL ESTIMATION

Estimating equation (2.4.7) for each of the 16 countries, and for values of &
ranging from 1 to 30 as in Fisher and Seater (1993), I get the results that are shown in
Figures 2.1 to 2.16. In each graph, on the horizontal axis we have %, the number of lags
for the corresponding regression. On the vertical axis we have the coefficient of the

relative price b,, which is also the LRD,,. For every estimate of b,, I also graph the

upper and lower values for the 95% confidence interval for 5, using Newey and West’s
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(1987) procedure. These confidence intervals are constructed from a t-distribution with
T / k degrees of freedom, where T is the number of observations. The degrees of freedom
are T/k instead of T-k since this is the number of non-overlapping observations®. If
long-run PPP holds, then b4, should be equal to 1. Thus, on the graph I also include the
line for which &, =1. Hence, there is evidence that supports long-run PPP if the 5, =l line
is contained in the confidence bands for the different values of k.

According to the above, we can see from Figures 2.1 to 2.16 that the null
hypothesis that b, =1, cannot be rejected for any k &[1,30] for Belgium, Denmark,
Greece, Italy, the Netherlands, Norway, Spain, and Switzerland. Thus, I find strong
evidence that PPP holds for these countries in the floating exchange rate period. For
Austria, b, =1 can not be rejected for 1 < & <20 for higher values of £ I reject the nuil.
For Finland the null is only rejected for 20 <k <27, for Germany it is rejected for
k=24, for Ireland and Japan is rejected only for 6<k <12 and 17<k<21
respectively. For the UK. the null is rejected for 17 < £ <27. Finally for the case of
Canada and France, we reject the null that b, =1, for almost all .

Hence, from these results I conclude that there is evidence that PPP holds for all

countries investigated with the exception of Canada and France.

2.5. THE KING & WATSON METHODOLOGY

In this section, I use the reduced form of the model under different a priori
assumptions that identify the model and I pay attention to the long-run properties of the

model under each identifying assumption. I identify the model using a wide range of

3 See, for example, Hansen and Hodrick (1980).
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assumptions in order to see the sensitivity ef the results to the identifying assumptions.
The robustness of the results to different sample periods is also investigated. I present the

results both numerically and graphically.

2.5.1 ECONOMETRIC ISSUES

Consider a model which is linear in both the observed variables and the structural
shocks. In particular, if the first differences of the nominal exchange rate and the relative

price level are stationary the model’s final form can be written as:

ASI = l"l'.v -*-e.m(L)s:I +e.\‘p(L)8f (2‘5'1)

where €] is a vector of shocks other than the relative price level that affects the nominal
exchange rate. €’ is a shock that permanently affects the price level (relative). And also,

the other terms are defined similarly to (2.5.3).

0,,(L)e? =>.67 ", (2.5.3)
The lag polynomials 6, (L), 8,(L), ©,,(L) and 6 ,(L) incorporate the rich dynamics
of the model. The long-run test of PPP that I want to conduct is summarized in the

question: does an unexpected and permanent change in the relative price level p, cause a

permanent one-for-one change to the nominal exchange rate s? If yes, then the Purchasing

Power Parity assumption holds in the long-run. In equations (2.5.1) and (2.5.2) €’ is the
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exogenous change in the price level. Thus, the permanent effect of £/ to the price level

will be: Zeipsf =0,,(1)e?. Similarly, the permanent effect of €/ to the nominal

exchange rate will be: ZGS;,sf’ =0,,(1)e7. Thus, the long run elasticity of the nominal

exchange rate with respect to permanent exogenous change in the price level is:

8,
0,0

Yo (2:5.4)

Thus, if PPP holds, Yo =1 This means that the permanent shock to the relative

price level has a permanent long-run effect on the nominal exchange rate. It is important

to note here that we can test this long-run property that v, =1 only when the price level

variable is not stationary. The reason is that if the relative price level is stationary, a

shock to the price level has no permanent effect in the level of p and so 6 ,,(1) =0. In

this case, the long-run elasticity of equation (2.5.4) is not defined. This is why Lucas and
Sargent reached the conclusion that we need a complete behavioral model to test the
long-run neutrality of money. In the case of money, we want to test whether permanent
changes in the money supply will have a permanent effect on output. Of course, if the
data for the money supply are stationary and there are no permanent changes, we cannot
use these data to test for long-run neutrality. For the case of the long-run PPP, if there are
no permanent changes in the historical data of the relative price level, I cannot use these

data to test for the effects of a permanent change in the price level to the exchange rate.
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On the other hand, if the relative price level is not stationary and it contains a unit root,

then 6 ,,(1) # 0 and the long-run elasticity of equation (2.5.4) is well defined.

2.5.2. THE KING AND WATSON TESTING PROCEDURE

The reduced form of the model as it is described by equations (2.5.1) and (2.5.2)
cannot be used to estimate the parameters using available data. I must first address
econometric identification issues. King and Watson, approach this problem in an
“unusual” way. Rather than using an a priori set of identifying assumptions and solve for
the model’s parameters, they employ an eclectic approach. They investigate the long-run
relationships by imposing a wide range of identifying restrictions. This approach provides
evidence of the robustness of any conclusion to different identifying assumptions.

First, I'assume that (g},€f) is a vector of unobserved mean zero and serially
independent random variables such that equations (2.5.1) and (2.5.2) can be interpreted as
vector moving average model. The estimation strategy begins by inverting the moving
average model to form a vector autoregressive model (VAR). The VAR which is assumed
to be of finite order is then analyzed as dynamic linear simultaneous equations model®.

The estimation using this procedure requires two additional sets of assumptions.
The first, in order to transform the vector moving average model into a VAR and the
second to econometrically identify the parameters of the VAR. These two sets of

assumptions are closely related: the moving average model can only be inverted if the

VAR includes enough variables to reconstruct the structural shocks. Thus, if (g]',e7) is

an n x 1 vector, then there must be n variables in the VAR. But the identification of an n-
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variable VAR requires n x (n-I) a priori testrictions. This means that the necessary
number of identifying restrictions increases with the square of the number of structural
shocks. King and Watson assume that # = 2, so that only bivariate VAR’s are required.
This is a fairly standard assumption and it is employed by many other researchers in the
study of neutrality propositions. This also helps tractability: when » = 2 then only 2
identifying restrictions are necessary. The drawback of this approach is that some of the
resuits may be contaminated by omitted variables bias.

To derive the set of observationally equivalent models, let X, = (As, Ap,) and so

equations (2.5.1)-(2.5.2) become:
X, =6(L)¢e,, (2.5.5)

where €, = (g €7) represents the 2 x 1 vector of structural disturbances. Assume that

[6(2)[ has all of its zeros outside the unit circle so that we can invert to obtain the VAR:

(L)X, =¢, (2.5.6)

where a(L) = Zaj L’ with o’ a 2 x 2 matrix. It is important here to note that since the
j=0

invertibility of (L) requires that (1) has a full rank, this implies that s, and p, are both
integrated processes and that they are not cointegrated. Unstacking the matrix form model

I get:

4 See Blanchard and Watson (1986), Bernanke (1986), Sims (1986) and also Watson (1994) for a survey.
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k -k
As, =A,Ap, + ) alAp,  + > alAs,_ +e] (2.5.7)
j=1

j=l

k k
Ap, = A As, + Zla",pAp,_j + zlja;,,As,_ ,+Ef (2.5.8)
= Jj=

which is written under the assumption that the VAR in equation (2.5.6) is of order k.
Equations (2.5.7)-(2.5.8) are a set of dynamic simultaneous equations. If £_ = E(g,g;),

then the reduced form of (2.5.6) is:

k
X, =) ®X,, +e, (2.5.9)
i=l
where @, =-o;'a; and ¢, =a;'e,. The matrices ; and I, are determined by the set
of equations:
ay'a; =-®,, i=1,..k (2.5.10)
a;'Z.ay' =2, = E(eel) . (2.5.11)

When there are no restrictions on coefficients on lags in equation (2.5.9), equation
(2.5.10) imposes no restrictions on o, . It serves to determine «; as a function of o, and

@, . Equation (2.5.11) determines both o, and Z, as a functionof X,. Since %, (a2x2

symmetric matrix) has only three unique elements, only three unknown parameters in o,
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and £_ can be identified. Equations (2.5.7)-(2.5.8) place 1’s on the diagonal of «,, but
only three of the remaining parameters var(g/), var(g;), cov(ef,g;), A, and A, can
be identified. Following the standard practice in structural VAR analysis [ assume that

the structural shocks are not correlated. I place no restriction on the contemporaneous

correlation of s and p so non-zero values for A ,, and A, allow both s and p to respond to

e? and €* shocks within the period. With the assumption that cov(e?,&;) =0, only one
additional identifying assumption is required in order to get the parameter estimates.

[ can assume either that A ,, =0 or that A , = 0. These assumptions would imply

that there are no contemporaneous effects of the relative price level and the exchange rate

to each other. I can assume that PPP holds, and set y,, =1, or I can assume that y ,, =0

which is consistent with no long-run effect of the exchange rate to the relative price level.
Here, I employ the eclectic approach that King and Watson proposed, where
instead of focusing on a single identifying restriction, [ report results for a wide range of
identifying restrictions. This approach is more informative in terms of the robustness of
inference about the relationship between the relative price level and the nominal
A

exchange rate. In particular [ iterate each of the parameters A and v, within

px? sp? Y ps?
a reasonable range each time obtaining estimates of the remaining three parameters and
their standard errors. These standard errors then are used to construct confidence intervals

for the estimated long-run elasticity y,. This approach is similar to what Sims (1989)

and Blanchard (1989) have used for robustness calculations in VAR models.
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2.5.3. THE ESTIMATION PROCEDURE

Under each alternative identifying restriction, I construct the Gaussian maximum
likelihood estimates using instrumental variable estimation.

When A a5 1S assumed known and it is used to identify the model, equation (2.5.8)

can be estimated by ordinary least squares (OLS) by regressing:

k
Ap, =X, As, onto {AS,-iaAPr-i},-=|

Then equation (2.5.7) cannot be estimated using OLS because one of the explanatory
variables, Ap,, is potentially contemporaneously correlated with the error term €; and

the OLS estimates would be biased and inefficient. To overcome this potential problem

use instrumental variables and the instruments are: {As,_,. »Ap,_; }k , and the residuals from

i=

the estimated equation (2.5.8). These residuals are appropriate as instruments because of

the assumption that the residuals from the two equations are uncorrelated or
cov(e/,g;)=0.

The parameter of interest here is the long-run multiplier v, and this is equal to:

a, (1)
~Bss

Y= 2.5.12)

—

k k
where a,(1) =) a/, and B, = Zl:a.{r .
=

Jj=0
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When A, is assumed known, I only have to estimate equation (2.5.7). This is

because the parameter of interest is vy, . Using OLS I regress:

As, ~ X Ap, onto {AS,-,- 8D, }k

i=1"

Then v, is calculated according to (2.5.12).
When a value for v, is used to identify the model, I can use a similar procedure.

First I rewrite equation (2.5.8) as:

k-1 k-1
Ap, = a, (DAs, +B,,Ap,_, + 2. LA, ; + ) LN p, ; +€f (2.5.13)
Jj=0 i=l

k
where 3,, = Y&, . Equation (2.5.13) replaces the regressors:
j=

(Asl ’AS:-I LA 7Ast—k’Apr—|’ se- ,AP,-k)

in equation (2.5.8) with the set of equivalent regressors:

(AS{’Apl—l ’Azsl ,AZS,_I E i ,AZS,_,H_I :Azpt—l 3 e ’Azpr—kH) M
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. T . a (D)
In equation (2.5.13) the Ilong-run multiplier is 7, =1 B
re

so that

&, (1) =7 p —B,,Y s - Substituting this in equation (2.5.13) and rearranging I get:

k-1 k-1
Apl _YprAsr = Bpp (Apl-l ""YI“AS,)'FZCX,;_‘.AZSI_J- +Zla-[,7pA2pl—j +Sf -
J=

j=0

(2.5.14)

Equation (2.5.14) can be estimated using instrumental variables by regressing:

Apr —Y prSI onto (Ap:—l - p.\'A‘S( ’Azsl ’Azsl-l L ’Azsl-lu—l ’Alpl-l LR 7Azpl—k+l ) ?
k . - .
using {As,_,.,zi\p,_,.}'_=l as instruments. [ use instrumental variables in order to address the

issue of potential contemporaneous correlation between As, and the error term.

Equation (2.5.7) can now be estimated by instrumental variables using the
residuals of the estimated equation (2.5.14) with {As,_,,Ap,_ }. .

When a value for v, is used to identify the model, this process is reversed.

2.5.4. THE ESTIMATION RESULTS

Following the procedures described in the previous section, I use a wide range of

identifying parameter restrictionson A .., A, v ., and v . Table 2.4 and Figures 2.17-
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2.32 summarize the results. Table 2.4 (columns 2-4) shows the point estimates for A ,,

A, and y, when I assume that PPP holds in the long-run, or equivalently when I

p?
impose vy, =1. The numbers in the parentheses represent the corresponding standard
errors. Columns 5-7, show the intervals for each identifying parameter values for which
PPP is rejected at the 95% confidence level. In Figures 2.17-2.32, [ present the point

estimates and the 95% confidence bands for the long-run multiplier y _,, for a wide range

ap?

of plausible values of the other three parameters. In panel A, [ iterate values for A, the

ps?
contemporaneous effect of the exchange rate on the relative price. In panel B, I use a

range of plausible values for A _, the contemporaneous effect of the relative price on the

sp2
exchange rate. Clearly if PPP held at all times instantly, then this parameter would be

equal to 1, and if the relative price has no effect on the exchange rate it would be equal to

0. For the estimation I use a range of values of ~1<A_, <2 to address even the case

where the contemporaneous effect of the relative price to the exchange rate may be
negative. Finally, in panel C, I iterate the values for the long-run multiplier of the
exchange rate on the relative price, y,. The range of values that are used is
—5<y , <5. The estimates of y,, and the corresponding confidence bands are shown
for ranges of the identifying parameters that standard errors are relatively small and do
not explode.

The results from Figures 2.17-2.32, suggest that there is evidence that PPP holds
in the long-run for all 16 OECD countries that I test here, since their 95% confidence

bands for y,, include the value 1 for all different values of the identifying restrictions
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presented in the graphs. The only exceptions for certain intervals, are Canada, Ireland and

Norway: for Canada, the 95% confidence band of the long-run multiplier v, does not
include y,, =1 for the range 02 <A , <03 in panel A, and for the range 02 <y, <04
in panel C. For Ireland, the 95% confidence band lies above y_ =1 for
—0.7<A, <-02 in panel A and vy ,, £—0.7 in panel C. Finally for Norway the values
for which PPP is rejected in the long-run is for A, =0.1 in panel A and the interval

03<y, <04 inpanel C.

2.6. CONCLUSIONS

In this paper I have tested for PPP, the hypothesis that a change in the relative
prices between two countries has a one-for-one effect on the exchange rate. I used
quarterly data for the floating exchange rates period 1973:1 to 1997:2, for 17 OECD
countries from the IMF publications International Financial Statistics. For the testing I
used a bivariate log-linear ARIMA framework as described in Fisher and Seater (1993),
and the non-structural bivariate autoregressive methodology of King and Watson (1997),
paying particular attention to the integration and cointegration properties of the data,
since meaningful tests critically depend on such properties for both testing procedures.
The results show that there is strong evidence that PPP holds in the long-run for all
countries except for Canada and France when the Fisher and Seater (1993) methodology
is used, and for all countries except small intervals of the identifying parameters for
Canada, Ireland and Norway when the King and Watson (1997) procedure is employed.

Hence, in this paper, I contradict the results of other researchers that rejected PPP when



37

the exchange and the relative price series were not cointegrated. In both the
methodologies that I use, non cointegration is used to specify the appropriate restrictions

that are used to test for PPP.



'GT°9 S1[9A3] 92UBDPIUTIS 046 YNM PUdL} SWI} B PUB JULISUOD B YIIM DN[BA [BOLLID 1S9) Jd PUB 4V YL :SHLON

SOIISIIE)S 1S9,

S]oA3j] 90] Jo saoualIp 111 ‘g

SONSHERIG 189,

S|oAd] 807 'Y

STTAVIUVA ALVY IONVHOXA dHL NI SL'TASAY LSAL 1.OOYH LINN

't A14vL

(1 6v'SE 10 6LC £5°S T:L661 - 1'EL61 N
(D1 8T v 81°L Sh'E LT'E 7:L661 - 'EL61 puepZIMS
(N S1'Z¢ 81°E 80'1 96'0 T:L661 - 1'EL61 uredg
(N1 8" b b9'€ 8€'T w'e 7:L661 - 1:EL61 KemioN
(D1 16'0b 8€'9 81'C £€9'C Z:L661 - 1:€L61 SpuBIAIAN
(D1 50'GE 88'9 70'€ b9'T Z:L661 - 1'EL61 uedef
(D1 86'€€ s 6'1 €8’ 7:L661 - 1:EL61 Arey
Q) 90'S¢E bb's 127 197 TL661 - 1'EL6] puejal]
(D1 0S'0 €L'S b0'l 01'T Z:L661 - 1:EL6] 909310
(1 LS by z5'9 Sr'T LET TL661 - 1'EL6] Auewian
(D1 LO'LE 58y X 81l T'L661 - 1'EL61 aouely
(D1 L6'0€ 8T’y L8'1 A T:L661 - 1:€L61 puejuig
(D1 6€'8¢ 16'9 pe'l 18'1 T:L661 - 1:EL61 Jrewusq
(n bT ey sy el 02T TiL661 - 1:EL61 epeue)
(D1 ¥9'8¢ 1L's o'l ¥T'T 7:L661 - 1'EL61 wnifjeg
(D1 00'vb L§'9 £5°T 98'C T:L661 - LEL6I eLsny
uoIsIda( dd aav dd 1av pouaq ajdweg Anuno)



'GT'0 S [9A3] 90URIYIUTIS 046 YA PUDI) SWI) B PUB JUBISUOD B )M IN[BA [EONILD 159) dd PU® AV YL ‘STLON

(D1 $0'0¢ LL'S 6111 8€'6 T:L661 - 1:€L61 N
(1 8b'L1 6b'€ olr's 86'S T:L661 - 1'EL61 puepaziImMg
(1 2R LT9 78Tl 0Ly T:L661 - 1'EL61 uiedg
(N 6691 £b's LS'0 L6l T:L661 - 1'EL61 AemioN
(01 £9°7C bb'9 05°0 b'T T:L661 - 1:€L61 SpuBpSYIIN
(D1 09'$T 79'¢ 61'12 6L°01 T:L661 - 1'€L6] ueder
(D1 L1'TT 8€'L o1yl 86°C T:L661 - 1'€L61 Apey
(i 98'7€ 18y LUEL 16'€ T:L661 - 1'€L61 pue|ai]
(N br'99 £7'T 190 92T T:L661 - 1'€L61 909210
(i 9L'0T SL'S 06t £0°€ T:L661 - 1'EL6I Auewran
(M 0891 $6'C 0011 LE'T T:L661 - 1'EL6] Q0uBLy
(1 60°0T 79°¢ 19'C1 6Ly T:L661 - 1:EL61 puejuig
(D1 16'TS 09°S €8's 86'1 T'L661 - 1:€L61 Yrewag
(D1 zTLl A LS'T e T:L661 - 1:ELGI epeue)
(D1 €101 6V'8 €s'l bS'9 T:L661 - 1:€L61 wnigeg
(D1 0E v €8’y 851 A T:L661 - 1:EL61 LISy
uoisia( dd Aay dd aav pouag 9jdweg Anuno)
SONISIIRIG 159 ], SO1IS11BIS 159,

S[9AQ] S0 Jo saoualyp 181§ ‘g

STTAVIIVA JONd FAILVTIY FHL NI SL'INSAY LSAL LOOY LINN

S[oA9] 80 'Y

rTa1avlL



"uoneIZaIuIod O St

s1soy10dAy [jnu Sy, "8/’ €= SI [9A9] IDUIPYUOD 9,66 YA PUDI) W3 B PUB JUBISUOD B Y)IM ONJBA [BO1ILID 159} JJ pu
dQV 9y, 7 pue [ sojqe], ut poniodal s)ynsal oY) uo paseq ‘x Jo uonesfajul Jo JopIo sy} sjussadal <x> 'SALON

A4 79’1~ LL'T b8z [ I N
$8'0- 88'Z- £€°C- e [ 1 pUBLISZ)IMS
10°'1- 89'1- 09'1- bb'1- I I uredg
Lo 96'1- 8€'Z- e I I AemioN
b6'0- LYz £L'C- £€'T- | l SpuefIaYIaN
$6'p- 651 1Sy~ £8'C- I [ uede(
LI'1- 0s'z- 660" 06'1- I i Ay
1€ we b1 e [ | pueaif
ov'1- p0'C- L1~ £€'C- I 1 909210
680 80T £6'1~ (A4 | 1 Auewisn
£y'1- (A~ LT1- LO'T | | aouelg
8v' (- €TT 6£T- LET I I puejuyy
£€8'1- 07T bT'1- 90'Z- 1 | Jewua(
20 L1~ 99'1- 80'C- | | epeue)
LS'1- ve'T- b9'€- 60'C- I | wnigjog
60 €E'T- 26'T- 8v'z- I l elshy

d s d S <d> <S> Anuno)
9]qeLIBA JUdpUAdA(] d[qenieA tuspuada JapiQ) uoneigaug

3], dd 1891 AV

SLTNSTY LSAL NOILVYOALNIOD

£Ta14vVL



'sasayiuased ur uMoys a1 S3BWILISI AY) JO SIOLID PIEPURIS "SIQRLIBA JUBAJ[S ) JO sTe| XIS apnjoul S[ppow ||y ‘SHLON

- - - (ost0)zeoo  (ezi'g) Lol (¥2o0) beoo- N
- - - (9€1'0) $80°0-  (62L'6) 0508 (S10°0) 090°0~ puelIRZIMg
- - - (§170)9200- (psL ) ec'e  (pv0'0) Sk1'0- uredg
[0 ‘0] - - (cro)esto- Wiz et (610°0) 14070~ KemION
- - - (091°0) 6£0'0-  (691'9)969'9  (810°0) 0LO0- spuepaylaN
- - - (621°0) 100'0- (gzz€)seL’ce  (S10°0) 650°0- uedef
- - - (czrroyoveo  (zere) Lzz'l-  (910°0) 000 Aei
[0 “s-] - [20-‘L07] (b810)zob'0 (1881 911'e-  (¥£0°0) L600 puejal]
- - - (cozo) ebi'o  (oLe1) €19'0  (L€0°0) 890°0- 909210
- - - (#91°0) Lz0'0-  (L£9°S) 8160 (L10°0) 900 fuewien
- - - (zirroyeszo  (6L6'L)o1L'e-  (010°0) $€0°0 souely]
- - - (8010)Thi0-  (gT8€)06sT  (610°0) 8E00- puefuiy
- - - (89z'0) 8100 (TIS'2) L66°1  (210°0) €00~ Jrewua(
[+'0 ‘20l - (€0 ‘0] (svro)oezo-  (6v¥'1)ss8'0  (1£0°0) 8+0°0- epeue)
- - - (coroyorro  (9Lev)oLsy  (210°0) ¥€0°0- wnigfeg
- - - (0s1'0) 220’0 (b0€'s) €889  ($20'0) ¥20°0- BLISNY
o) s& ol \ o) a& Cy \ Anuno)

[EAIOJUI 9OUIPYUOD 04G6 UL | = 4 JO uondaloy

=71 Buisodul sajewnsg

ddd ONISOJINI SYALANVEVL FHL A0 SINTVA AALVINLLSE

LAZCHEAAP



A X
6 2 S¢c € 12 61 L sL el W6 L § € | 6 [ S € 1z 61 L Sl € W 6 L § € |}

- - - ,

.
- ’,
-

" ts . 164

SIBWUR(] 10 (YT ‘7 NSy epeue)) Joj (T "€°7 2Ind1y

A A
62 [2 S € ¢ 61 L S €l Il 6 L § ¢ | 62 Jz sz € 12 60 ZL S € Il 6 L S ¢ 1

!\

A
T

[}
1
'
t
[}
1
L}
]
-+

~
N
_
g

—
t

1
|

1

]

1

1
A
Ay
i

N O W T O N~ O

wnidag 10} (YT '7°7 d4ns1y esny I0J (YT 1°Z d1n3iy



62 lZ ST €2

b
62 lz Sz €2 1z 6 Ll st o€t WL &6 L S € |
P —.
. g0
rr _
/1..:': \\\lulnx\ :-.Q
B - 50
/ - w
/I\ll\\\ 1~
1]
A -1
/
L\
~e el el +z

909310 10} (1] '8°7 N8

b

lc 6l L1 st el L 6 L S £ |

TE€
T §E
B LR & £
1 §Y
+g

90uel1y 10 (TN '9°7 N3]

- - -

6 L SZ ¢EC

i¢ 6l

b

L stoel W 6 L § E I

62 L2 ST €

ic 6}

Le

Aueuwnn) 10§ (Y] 'L°7 2nSiy

b

L st el L 6 L 0§ € |

puejul 10J (YT '§°T N1y



6 ¢ SC € 12 s L1 SL g WL 8 L S € |

.
N - 9-
, .
,/-,,,,/,--l te T
..... f----vAo
N e e -1
‘ Ly
SPUBLISWIAN 9y} 10} (YT “ZI'Z 24nSuyg
b
62 Lz ST € 12 6L L SL el L 6 L S € |
- 0
el Lo
L e |
. 1819
1z
S T e \\\ 15z

AJerp 1oy @Y7 01° dam3iq

A
62 /2 S € Iz 6L L S € I 6 L § € |
. V1
I
O
x
\uO
v S TS — —— }
R z
Le
ueder 10) YT 11°Z 24Ny
A
6 L2 Sz € 1z 61 L1 SL € W 6 L S € |

-5

pue[aJ] 10§ (TYT '6°7 dn31g



A 4
62 [z ST €z lg 6L LV Sl o€l M B8 L S € 6 lc s¢ e 12 6 L st el WL 6 L S £ |

/A-:::;::., \\\\\,.|r|:,r|s,.p.
Ill"l!ll!lllk\\\\\ '.sm.on
r 0
150 .9
ST l

T

Tl Sl
Sel 12
78T
A N A ﬂ

) Y 10y YT 91°T danBiy PUB[ISZIMS 10J (1T 'S1°T d4n31y

1 A
6 & sc e lz 6L L ostoEb W6 L s € 62 Lz sz €2 12 6k L Sk e W 6 L S5 £ |

q
o
iq

-
- Z
B t _
.-
-7 . -—————
4 -
\\\ WN IIII \nx m.—
.- S e ,
PR AN -
L {e Illllrl.. LT 1z

wedg 10] (YT ‘$1°7 2An31y KemiIoN I10J (YT ‘€17 In31y



sdy sd)
zo B '} 'z ‘e b -
8 e v cr . A T A
. ._‘ CN|
.. + G- ‘o |||||-|n....|-1....||x||q.Ow.
\ - % lllllllllllllll 4 0
‘. 7 e TT——
//: SRR o | B :/::;-:: ol
\I,J[ :::1:::-:::: ._‘ON
s TTeeeal w‘om
.............................. 7 O—. - OQ
sdj, Jo uonounj e se ds, 10] S[EAI9IUI SOUBPIUOD) %56 D sdp Jo uonouny e se dsp 10J S[eAI)UI SOUBPHUOY) 9466 "D
Qm& Qm.&
. bl A 90 20 20 90 I- g'l Al 1 9'0 z0 zo- 9'0- B
s 6
OO b-
.................. + b 1
llllllllllllllllll L " 4 Nl
2 .dﬁk =N
10 10
.......................................... 4z U ggetpegeee g
.............. 1,
Ly lg
s& Jo uonouny e se ds), 10J S[BAI9IUI 3JUAPHYUOD) %SG 'd 3 Jo uonouny e se dsp, J10J SJBAIIUI QDUIPYUOD) %6 d
mn_.,ﬁ ma&
20 90~ L- ¥ @l- 2T 9T € be 8¢ b ot & o 0 Vo 20 €0 #0- S0 90 L0 g0 60
. - ?n
._ 4 Nu
\
R e . 10 -
,( ¢ 3
»/ ¢
-~ < . e m
..... 1g Lo

*dy JO uonOUNY B SB " 10} S[RAISIUI IDUIPHUO]) %4CE 'V

wnig[ag 10J s1S9], ddd "81°7 21nS1y]

*ly Jo uonouny e se 1 10§ S[eAISIUT AUSPYUOY) %4C6 YV

eLysSny 10§ S1S9], ddd "L1°7 Sy

dsj,



Figure 2.19. PPP Tests for Canada

A. 95% Confidence intervals for y,, as a function of A,
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B. 95% Confidence intervals for y,, as a function of A,
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Figure 2.20. PPP Tests for Denmark

A. 95% Confidence intervals fory,, as a function of A,
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B. 95% Confidence intervals for y,, as a function of A,,
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CHAPTER 3

MODELING AND FORECASTING VOLATILITY

IN ENERGY MARKET FUTURES
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3.1. INTRODUCTION

The conventional econometric models that are used to describe the evolution of a
time series over time and to produce reliable forecasts for the future assume that the
variance of the series in question is constant over time, or in other words that the errors
are homoskedastic. Many economic time series do not demonstrate a constant variance
over time, but we observe volatility clustering, periods during which volatility is
relatively high and other periods where volatility is low. Traditional econometric
modeling and forecasting techniques would estimate the variance from the sample in
hand and use it to describe the properties of the time series in question as well as for
producing forecasts. Recent developments in the field of econometrics allow us to
distinguish between the unconditional and the conditional variance of a time series. The
unconditional variance refers to the population variance or the variance of the whole
sample in hand, while the conditional variance depends on past realizations of shocks that
are known at the present period.

In many cases it is important to be able to forecast the conditional variance of a
series. For example, when an investor is trying to decide whether or not to hold an asset
for one period, she is interested in both the expected rate of return of the asset and its
expected variance in order to optimize her portfolio. In this case the unconditional
variance-i.e. the population variance of the series-is of little importance to her if she plans

to hold the asset for only one period. The conditional variance, based on the information
set €, which includes the past realizations of the conditional variance and prices will be

more appropriate for this decision. Models that use the conditional variance for
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estimation and forecasts, can better take into account the observed heteroskedasticity and
other non-linear processes in the error term.

In recent years, the most important innovation in modeling the volatility in
economic time series, was the work by Engle (1982) who introduced the autoregressive
conditional heteroskedasticity or ARCH, to model the conditional variance.

In this paper I use the Box-Jenkins methodology to model the time series properties
of six energy market futures prices. These are crude oil, electricity, heating oil, natural
gas, propane, and unleaded gas. These series are characterized by periods of high
volatility and periods of relative tranquility as it is shown below, which is typical of
ARCH processes in the error structure. Thus, I also employ and compare the ARCH,
GARCH, ARCH-M, and EGARCH methodologies introduced by Engle (1982),
Bollerslev (1986), Engle, Lilien and Robins (1987), and Nelson (1991) respectively in
order to model the conditional variance of the series. These models are then used for in-
sample forecasts of the mean and the conditional variance for each of the six series.

In section 2 I describe the data that are used in this paper, in section 3 I discuss the
methodology that will be used, in section 4 is the empirical estimation of the best fitted
models, in section 5 I produce in-sample forecasts for the six series and finally in section

6 I conclude.

3.2. THE DATA

The data for this paper are daily closing prices for energy commodities futures.
Six series are studied and the samples are as follows: crude oil from 30-3-83 to 23-1-98,

electricity from 1-4-96 to 23-1-98, heating oil from 2-6-80 to 23-1-98, natural gas from 3-
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4-90 to 23-1-98, propane from 21-8-87 to 23-1-98 and unleaded gas from 3-12-84 to 23-
1-98.

For all six series I use the logs of the levels and since the estimation and forecasts
as I will show later require the first differences of the logged series, in Table 3.1 I present
the summary statistics for the first differences of the data. We can see that the null
hypothesis of normality according to the Jarque-Berra statistic is rejected for all series. In
Figures 3.1-3.6 I graph the logs of the six energy series. From these figures we observe
that the low moments for these series do not seem to be constant over time. Specifically,
the mean does not seem to be constant over time and thus I will test for the presence of
stochastic trends to these data series. The variances also do not seem to be constant as we
observe periods of high volatility and relative tranquility in the respective graphs. This
points to the direction of ARCH/GARCH effects in the data and I will formally test in
section 4 for the presence of such processes, after the identification of the most

appropriate autoregressive model.

3.3. MODELING VOLATILITY IN ECONOMICS TIME SERIES

The assumption in conventional econometrics is that the variance of the error term
is constant, or in other words that the disturbances are homoskedastic. However,
observing the actual series we can find periods of relative tranquility and other periods
where there is unusually large volatility. Thus, the assumption of homoskedasticity is not
appropriate. In terms of economic forecasts, it may be very important to forecast the
conditional variance of a series: for an asset holder who plans to hold the asset for some

short period of time, the unconditional (or the long-run) variance is of little importance.
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The unconditional variance provides information about the volatility and risk of the asset
over its lifetime. An estimate of the variance of the underlying asset for the investor’s

holding period, given past history, would be more appropriate.

3.3.1. ARCH PROCESSES

Engle (1982) using a model of the UK. inflation shows that large and smail
forecast errors tend to appear in clusters. This suggests that the variance of the forecast
error has a form of heteroskedasticity that depends on previous values of the error term.
He called this type of heteroskedasticity autoregressive conditional heteroskedasticity
(ARCH). This form of heteroskedasticity applies to either ARMA, ARIMA or regression

models. Engle (1982) proposed the following form of an ARCH process:

€, =V,4/qo +0,EL, (3.1.1)

where v, is a white noise process with the property that o2 =1 and also that v, and ¢,
are independent of each other and o, , o, are constants such that oy >0 and O<a, <1.
Considering now the properties of the {€,} sequence we can see that it has a mean of

zero and its elements are not correlated. Taking the unconditional expectation of g, we

have:

Ee, = E[v, (o, +a18'2-t)1/2]

=Ev,E(o, +a,g2,)"? =0 (3.1.2)
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since Ev, =0. Also since Ev,v, ; =0 it follows that

Eee, =0 i=0. (3.1.3)

The unconditional variance is:
Ee! = E[v; (ot +a,87)]
= EVIE(o, +8;,)

2
=a, +o, L5,

and since Es,2 = Ee,z_, , because the unconditional variance is identical, we have

Ee? =o, /(1-a,). 3.1.4)
The above proofs show that the unconditional mean and variance of the disturbance are
unaffected by the ARCH process given by equation (3.1.1). Similarly the conditional

mean of g, is:

E(e, |€,_,6,5,) = Ev,E(ay +,g2,)"? =0. (3.1.5)

Thus, so far the introduction of the ARCH process in (3.1.1) does not seem to affect the
mean, variance and the conditional mean of the error term and all autocovariances are

zero. Now we consider how the ARCH process affects the conditional variance. Since

o’ =1, the variance of ¢, conditional on the past history €,_,, €,,, ... is
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E(€2 1€, ,€,_ps) =0y + 0, E> (3.1.6)

-1

In (3.1.6) we can see that the conditional variance depends on the realized and known

g2,. The higher the disturbance in the previous period is the higher the conditional

variance will be. The conditional variance of equation (3.1.6) follows an autoregressive

process which is denoted as ARCH(1). Because the conditional variance must always be
positive, we have to put restrictions on the coefficients o, and o, which have to be
positive. Also in order for (3.1.6) to be convergent we need that 0 <, <1.

The important features of the ARCH process are that both the conditional and the

unconditional mean of the error term are zero, the unconditional variance is constant, and
the errors are not serially correlated since for s #0, Eg,g,_, = 0. But the errors are not

independent from each other. The ARCH process introduces a correlation of the errors
through their second moments. This makes the errors conditionally heteroskedastic and
the underlying time series an ARCH process as well. If the process that generates a

random variable y can be described as

yl =¢’0 +¢|yl—l +8! (3'1'7)

then the t+1 period forecast of y will be

Eryl+l =¢O +¢lyl . (3'1'8)
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To explain the dynamics of this simple model, when the error term in (3.1.7) has an

ARCH process as described in (3.1.1), consider an unusually high (in absolute terms)
shock to v,. This will produce a high disturbance ¢,,, and a high variance for the error.
The higher ¢, is the more y will depart from its mean, thus increasing its variance. The

higher ¢, is, the more persistent the deviation from the mean will be and the higher the

variance of y. Specifically, the conditional mean and variance of y will be:

E_y =0 +y, (3.1.9)
and
Var(y, | ¥iois Vica ) = E (0, =00 =01 7)°
=E_ ()’
=a, +o,(g, ).

So the conditional variance of y, has a minimum value of o, and it is positively related
to o, and ¢, .

The above autoregressive process for the error term is called an ARCH process of

order one, or an ARCH(1) process, since it includes only one lagged value of €,. Engle

(1982) considers the more general case of q lags for the error term:

q
€, =v,\/c>t0 +) ] . (3.1.10)

Jj=t
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In this case the error term €, is modeled as an autoregressive process of order q, so that

all shocks from ¢, to g,_, have a direct effecton ¢, .

3.3.2. THE GARCH MODEL

Bollerslev (1986) extended Engle’s work and allowed the conditional variance to

be an ARMA process. In this case the error term is

where

q r
hy=a,+Y ol +> Bk ;. (BLID

j=l J=1

Again in this case v, is assumed white noise and since it is not correlated with past
values of ¢,, the conditional and unconditional means of €, are still zero. The conditional

variance now is given by A, in equation (3.1.11). This is the generalized ARCH(p.q)

model that is denoted GARCH(p,q). The GARCH(p.q) model allows for both moving
average and autoregressive components in the conditional variance. It is clear that a
GARCH(0,1) model is equivalent to the ARCH(1) model. In order for the GARCH
conditional variance to be finite the characteristic roots of the distributed lag polynomials

in (3.1.11) must all lie within the unit circle. If we represent the GARCH(p,q) process as

h, = a, +a(L)s? +BL)A,,

where
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(L) =a L+, [* +...+a L,
B(L)=B,L+B,L? +...+B,LF
and L is the lag operator. Then Bollerslev (1986) shows that the GARCH process is

stationary if o(l)+B(1) <1. Here, a(l)and B(l) are the polynomials «(L) and B(L)

evaluated at L=1:

all)=o, +o, +..+a,.

The more general GARCH model can help us capture the same dynamics of the variance
from using a high order ARCH process. The advantage of this is that we have to impose

fewer restrictions and it is easier to identify and estimate.

3.3.3. TESTING FOR ARCH AND GARCH PROCESSES
Engle (1982) proposes a test for ARCH disturbances in both autoregressive and
regression models. In the case of an AR estimation, first we estimate the appropriate
AR(n):
Yo =a,+ayy,,, +a,y,, +..+a,y,_, +€,. (3.1.12)
Then we obtain the square of the fitted errors 2. We regress these squared errors on a

constant and q lagged values, so that we estimate:

& =a, +a ] +afl, ..+ El,. (3.1.13)
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If there are no ARCH or GARCH effects then the coefficients o, to a, must all be equal
to zero and the explanatory power of the equation must be very low, which is translated
into a low R?. If the sample has T observations of disturbances then the statistic 7R?
will be distributed under the null of no ARCH or GARCH errors as a xf, distribution. If
TR? is sufficiently large we will reject the nuil of no ARCH errors.

Specifying the appropriate conditional variance in the case of rejecting the null of

no ARCH errors as

q
h=og+Y ok, (3.1.14)

J=1

we then obtain the residuals of equation (3.1.14) and we regress them on a constant and
h,_,. Again the statistic TR? has a ¢’ distribution with one degree of freedom under the

null of no GARCH process.

3.3.4. THE ARCH-M MODEL

Engle, Lilien, and Robins (1987) use the ARCH model to allow for the mean of a
sequence to depend on its conditional variance. These models are called ARCH-M
models and they are best suited for the modeling of asset returns. Engle, Lilien, and

Robins use a model of excess returns described as

y, =H, +¢€, (3.1.15)
where y, is the excess return from holding a long-term asset relative to the one period

treasury bill or the risk free rate, p, is the risk premium that the typical risk averse
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investor needs in order to willingly hold the risky asset, and €, is the unforecastable

error. In period t-1 the expected excess return on the risky asset must be equal to the risk

premium so that

Er—lyr =H,- (3‘116)

In financial economics, the risk of an asset is measured by the variance of its returns.

Engle, Lilien, and Robins, assume that the risk premium in equation (3.1.15) is an

increasing function of the conditional variance of the unforecastable error €,. So now
p, =B+3h, 5>0 3.1.17)

where A, is the conditional variance of €, that follows an ARCH(q) process of the form

q
B =0ty + Y o &} (3.1.18)

—j -
Jj=1

In this fashion the conditional mean of the y, sequence depends on the conditional

variance of the shocks #4,. If the conditional variance is constant, then the ARCH-M
model has a constant risk premium.
The form of the ARCH-M model is determined similarly to the ARCH and

GARCH models with the use of the Lagrange multiplier test (LM). The test statistic TR*
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for the LM test is distributed under the null of no ARCH-M effects as a x> with degrees

of freedom equal to the imposed restrictions.

3.3.5. THE EGARCH(p,q) MODEL

The ARCH and GARCH models are somewhat restrictive in the sense that they
allow the conditional variance to be affected only by the size of past shocks and not their
sign. Another problem with the models that we have seen thus far is that in the estimation
of such processes we must impose additional restrictions to the unconditional variance
parameters so that the unconditional variance remains always positive and finite. ARCH
and GARCH models assume that the conditional variance is a function only of the
magnitude of the lagged residuals and not their signs i.e. only the size and not the sign of
lagged residuals determines the conditional variance. This assumption is restrictive and
these models are not well suited to capture the so-called “leverage effect”, first noted by
Black (1976). Black noted that for equities, it is often observed that downward shocks to
assets’ prices are followed by higher volatilities than upward shocks of the same
magnitude. Because of these concerns Nelson (1991) introduced a more general form for

the unconditional variance the exponential GARCH(p,q) or EGARCH(p,q):

C,_; (o3

i=l t—j -

I q
logo; =w, + Y B, logoy, +Z(ocj
j=l

e _. e, _;
= +yj—':i-J (3.1.19)

In this setting, the conditional variance is expressed in logarithmic form so that it will

always be positive and also the fourth term on the right hand side allows for the sign of
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the residuals to affect the conditional variance and in doing so it can capture the

“leverage effect”.

3.4. EMPIRICAL ESTIMATION

In this section I will first examine the stationarity properties of the series using the
augmented Dickey-Fuller (ADF) and the Phillips-Peron (PP) tests for unit roots. Then [
specify the appropriate autoregressive model for each of the six series and estimate the
conditional variance as an ARCH, GARCH and EGARCH process. Then I compare these
alternative models for the conditional variance and select the best model for each series

that will be later used for forecasting.

3.4.1. TESTING FOR STOCHASTIC TRENDS IN THE DATA

It is important at this stage to examine the stationarity properties of the data and
test for the presence of stochastic trends or unit roots. A stationary series has a constant
mean and shocks to the series will not have permanent effects on the mean of the series.
In this case the variable is mean reverting or stationary. In a series that has a stochastic
trend or a unit root, a shock to the series at period t will have permanent effects. Such a
series will have a non-stationary variance which will tend to infinity as ¢+ — . For
forecasting purposes this series will not revert to a constant mean even in very long
horizons and the width of the confidence intervals of the forecasts will increase without
bound as the forecast horizon increases.

In testing for stochastic trends (unit roots) in the log levels of the original data, I
use two alternative testing procedures as an attempt to deal with the fact that some of the

series may not be very informative about the existence or not of a unit root. In columns 3
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to 5, of panels A and B of Table 3.2, I present the results of augmented Dickey-Fuller
(ADF) tests' to the levels and first differences of the data. In columns 6 to 8, I present the
alternative non-parametric Phillips-Perron (PP) tests of Phillips and Perron (1988) for the

existence of a unit root. The ADF tests are conducted using the following regression:

Alogz, =y +o 2+, logz, +Z|3,.Alogz,_,. +€,, (34.1)

i=1

where z, is the series under consideration and m is selected large enough such that g, is

white noise. The null hypothesis of a unit root is rejected if a, is negative and
significantly different than zero. The critical values are not the usual t-statistics but are
those given by Fuller (1976). The problem with this testing is that the order of the
autoregression is not known. One way to overcome this is to use some information
criterion to select the best model. However since the samples that I have in hand are
quite large, I follow Said and Dickey (1984) who showed that the ADF test is
asymptotically valid if the order of the autoregression is increased to 7", where T is the
sample size.

An alternative way to using the augmenting lags to correct for serial correlation is the
Phillips-Peron testing procedure that uses non-parametric correction. The PP test involves
estimating (3.4.1) with m=0 and then the statistics are transformed to correct for serial
correlation in their asymptotic distribution. For the transformation formula see Phillips

and Peron (1988, Table 3.1, p. 308-9). The critical values for this test are the same as in

! See Dickey and Fuller (1981).
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the Dickey-Fuller tests. The Newey and West (1987) method is used to estimate the error

variance from the estimated residuals as:

N

1 5 2 P N
WZ:. el + *ﬁ;m(s,p) See, ., (3.42)

1=+l

where p is the truncation lag parameter which is set in the estimation according to the

l-s
p+1

Newey and West suggested value, and o(s, p) =

In panel A of Table 3.2, we have the results of the unit root tests. With respect to
the ADF test, for the crude oil, electricity and heating oil series the null hypothesis of a
unit root cannot be rejected at the 5% significance level. For the natural gas, propane and
unleaded gas series the null of a unit root is rejected at the same significance level.
According to the PP test, the null hypothesis of a unit root cannot be rejected for any of
the six series. Thus, for three of the series I get conflicting results from the two tests with
respect to the existence of a unit root. Having in mind the Nelson and Plosser (1982)
argument that most macroeconomic time series have a unit root, I conclude in column 9
of panel A, that all series have a stochastic trend.

Next, I test the first differences of the log series for the presence of a unit root.
The results are shown in panel B of Table 3.2. In this case, the null hypothesis of a unit
root is rejected for all six series, and with both tests. I conclude that the first differences

of the logs are stationary.
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3.4.2. AR MODEL SPECIFICATION -

Having concluded in the previous section that all six energy futures have a unit root, I
will now use the first differences of the log series to select the best fitting autoregressive

model (AR) for each of the series:

Ay, =9, +Z¢iAyr—i +g,, (3.4.3)

i=l

where y, is the log of the series in question and m is the order of the autoregression. To
select the number of AR lags in (3.4.3) for each series, I estimate (3.4.3) using m=1 and
progressively increase the number of autoregressive lags until €, is not serially
correlated. To test for autocorrelation in the residuals, [ use the Ljung-Box Q-statistic.
Then, I estimate several models with higher AR orders and choose the number of
autoregressive lags, m, that minimize the Akaike and Swartz information criteria, AIC
and SIC respectively. Whenever the two information criteria select different orders of
autoregression for a series, the fact that these models are nested, allows me to perform a
likelihood ratio test (LR) to select the optimum number of lags. As an extra step, after
selecting an AR(m) order according to the above, I overfit the model including additional
lags and then perform both a LR and an F-test to determine whether these lags improve
significantly the fit of the AR process.

Following this procedure, I find that for the crude oil, both the AIC and the SIC
select an AR(10) model for which the probability of the Ljung-Box Q-statistic is 0.056.

The LR-test for AR(10) against an AR(15) produces an LR statistic equal to 5.73. This is
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distributed under the null that AR(10) is correct, as a %> with 5 degrees of freedom. The
probability of 5.73 is 0.333. Also an F-test of the null that ¢,, =...=¢,; =0 is equal to
Frs1 = 1.14 with a probability of 0.336. So I conclude that the correct AR specification for
crude oil is an AR(10).

Similarly, for electricity and unleaded gas both the AIC and SIC select an AR(4) and
AR(10) model respectively, with the LR and F-statistics on overfitted models being
statistically insignificant. For the heating oil the AIC selects an AR(14) while the SIC
selects an AR(11). The likelihood ratio test between the two AR specifications provides a
test statistic of 9.27 which has a probability of 0.02587. Thus, it is statistically significant
at the 5% level. The F-test that the coefficients of the lags 12 through 14 are all equal to
zero yields an F-statistic equal to 3.08 with probability 0.02623. Thus, I select the AR(14)
model. For natural gas AIC and SIC select 23 and 14 lags respectively, with the LR and
F-test rejecting the adequacy of the AR(14) and selecting the AR(23). Finally for
propane, the AIC and the SIC select 13 and 11 lags respectively and additional tests show

that the AR(13) is the appropriate model. These results are summarized in Table 3.3.

3.4.3. ESTIMATING THE APPROPRIATE ARCH MODEL

Having already estimated the appropriate autoregressive model for each of the six
series, we now need to formally test the residuals of those autoregressive models for the
presence of ARCH processes. Visually inspecting the autocorrelation and partial
autocorrelation functions of the residuals of the autoregressions, we do not find any
evidence of autocorrelation and the Ljung-Box Q(36) statistic is not significant for any
of the series. From this we conclude that we have succeded in removing any linear

dependence in the residuals in the previous section. However the Q?(36), which
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represents the Q-statistic for the squared residuals is highly significant. This implies that
there is higher order dependence in the residuals. The Q?-statistic is designed to pick non-
linearities and the presence of conditional heteroscedasticity. Thus, now we have
evidence for non-linearities in the data and conditional heteroscedasticity. I need to
formally test for the presence of ARCH/GARCH processes in the residuals. Engle (1982)
proposes the following Lagrange multiplier test for ARCH disturbances: I obtain the
residuals from the autoregressions and I square them. Then, I regress these residuals

against a constant and q lagged values of the squared residuals, so I estimate:

q
€7 =a,+ > aEl,. (3.4.4)

i=l

If there are no ARCH or GARCH effects then the estimated coefficients «, through a,

should be equal to zero. Thus, this regression will have little explanatory power and the

coefficient of determination R* will be very low. If the sample size is T, under the nuil
hypothesis of no ARCH errors, the test statistic TR? converges to a xi distribution. If

TR? is sufficiently large, rejection of the nuil hypothesis that the coefficients of the
lagged squared residuals are all equal to zero is equivalent to rejecting the null hypothesis
of no ARCH errors. In Table 3.4, I present the results from the Lagrange multiplier tests
for each series. I use one, two, five and ten lags. As it is obvious from the test statistics
and the corresponding probabilities, I reject the null of no ARCH processes in the
residuals for all series and all lag structures, with the exception of the electricity where

the test statistic appears to be insignificant at lags one and two. For higher lag orders, five
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and ten, we reject the null of no ARCH errors for electricity as well. Thus, I conclude that
for all six series there exist ARCH processes in the residuals.

With the above testing methodology we can detect the existence of conditional
heteroscedasticity in the errors, but we cannot identify the specific order of the ARCH.
To find the order of the ARCH(q) that best fits the data, [ estimate an ARCH(q) model
for each of the series, with q = 1,2, ...,9. Then I report the AIC and SIC from each
estimated model to help for the selection of the optimal order of ARCH. This estimation
is performed using maximum likelihood estimation (ML). The advantages of the ML are
that (a) it allows for joint estimation of the mean and variance equation. (b) we can use
likelihood ratio tests of restrictions of the model. (¢) consistency of the ML estimator for
the parameters of the variance does not require the existence of fourth or higher moments
of the data which is typically required for the consistence of the least squares (LS)
estimator.

To identify q in the variance equation, I use the likelihood ratio test (LR). Under

the null hypothesis that q is correct, the LR test statistic:

LR(g) =2[max L(8,,,) —max L(8, )] (3.4.5)

where 0, is the parameter vector with q lags in the ARCH term, is asymptotically

distributed as a x> with 1 degree of freedom. So, if the LR statistic is significant this
means that the q+1 lag specification in the ARCH is more appropriate than q, and I

choose the value of q for which the LR test statistic is not significant at 1%. In Table 3.5,
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I present the LR test statistic. The critical value at the 1% significance level with 1 degree
of freedom is 6.63.

According to this, the LR test statistic becomes insignificant at the 9% lag for
crude oil, so the optimal lag length is 8. For electricity, the LR statistic becomes
insignificant at the 4™ lag, so we may choose 3 lags for the order of ARCH, but when we
continue adding lags, the statistic becomes again significant at the 9™ Jag. To select
between the ARCH(3) and ARCH(9) processes I perform an LR test between q=3 and
q=9. The LR tests statistic is equal to 9.73 and the critical value at the 1% level with 6
degrees of freedom is 16.81. So we accept the null hypothesis that ARCH(3) is the
correct specification. For heating oil, the LR statistic is significant at all lag lengths, so I
conclude that the correct length of ARCH lags is greater than 9. In the natural gas, we
have a case similar to electricity. The 3™ and 6" lags appear to be appropriate since the
LR statistic becomes insignificant at the 4" lag but it is significant again at the 6" lag.
Again I employ a LR test between ARCH(3) and ARCH(6) which produces a tests
statistic of 26.58, with a critical value at the 1% level with 3 degrees of freedom of 11.34.
So, I reject the null and I select the ARCH(6) as the correct specification q. For propane
all lags are highly significant and I conclude that the correct lag length q is greater than 9.
Finally, the unleaded gas LR test suggests both the 3" and 6" lags for the g, and again a
LR test between the two lag structures, ARCH(3) and ARCH(6), has a statistic of 83.57
with a critical value of 11.34. So, I conclude that the ARCH(6) is the most appropriate
model.

I also use the value of the minimized AIC and SIC to select the best ARCH lag.

When the number of observations is large, as in our samples, SIC penalizes additional
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parameters much more than AIC, leading to more parsimonious models. Geweke and
Meese (1981) show that asymptotically SIC correctly identifies an ARMA model, while
AIC tends to overfit the model. There is no proof however that the ARCH model satisfies
the conditions for this result.

In Table 3.6, I summarize the order of ARCH that is selected according to the LR

tests, the AIC and SIC.

3.4.4. FITTING AN APPROPRIATE GARCH MODEL

As we have seen, Bollersiev’s (1986) GARCH model is a generalization of the pure
ARCH model. The conditional variance is not assumed to depend only on the lagged
values of squared residuals, but it is allowed to depend on lagged values of itself-an
autoregressive component is introduced. In the previous section, I concluded that the
appropriate lag structure for the ARCH representation of the conditional variance is
relatively long with lags from 6 to greater than 9 with the exception of electricity where

the best fitting model was an ARCH(3). In a GARCH(1,1) model:

h =a, +a18:2-| +BiA, s (3.4.6)

if B,<I1, then the GARCH(1,1) model is actually equivalent to an ARCH model with

infinite lags since from (3.4.6) we have

2
B, =o,(1+B, +B] +..) +a (e, +Bigl, +Blel;,.-),
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so that we get -

h= o, Y Biel, (3.4.7)

1 i=0

If we set o, =1 and use only a finite number of lags then we have an ARCH model with

geometrically declining weights:

q
h =Gy + ) Biel, . (3.4.8)
i=1

Thus, it is possible that a GARCH(1,1) representation will fit the energy data better. The
added advantage of a GARCH(1,1) model is the more parsimonious representation which
requires the estimation of only two additional parameters while with the ARCH models
we found that many more parameters have to be estimated.

For every energy series I estimate the models GARCH(p,q) withp=1,2and q =
1,2. So, four different GARCH models are estimated for every series. These models are
not all nested, so [ cannot use a likelihood ratio test to select the best GARCH
representation. Nonetheless, since all four models belong to the general class of
GARCH(p,q) models I can use the AIC, SIC or the adjusted R” for model selection. The
problem with the adjusted R criterion is that it is valid only if the correct model is within
the ones tested and it will select the true model only 50% of the time. Because of these
restrictions, I will rely on the AIC (1974) and SIC (1978) to select the best GARCH
model. In Table 3.7, I present the AIC, SIC, adjusted R?, and the value of the maximized

log-likelihood function for four different GARCH models of the six energy variables. All
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three criteria select the GARCH(1,1) as the best model except for natural gas where all

three criteria select the GARCH(2,1) as the best fitting model.

3.4.5. FITTING AN EGARCH(1,1) MODEL

To address the restrictions of the ARCH and GARCH problems as it was discussed
earlier I use Nelson’s (1991) exponential GARCH(1,1) or EGARCH(1,1), also inspired
by Engle’s (1982) ARCH model. Now the conditional variance depends on both the size

and the sign of lagged residuals and I model the conditional variance as

81—1

logs? =w, +Blogc}, +a +ys’—". (3.4.9)

(o)

-~ -1

The log transformation insures that ¢’ remains non-negative for all t. In this case the
impact of the most recent residual is now exponential rather than quadratic. In Table 3.8,
[ present the AIC, SIC, adjusted R? and the maximized log-likelihood statistics from the

estimation of an EGARCH(1,1) model for each of the six energy series.

3.4.6 MODEL SELECTION

Thus far, I have selected the best ARCH and GARCH specification and estimated an
EGARCH(1,1) model for the six energy series. The next step is to choose which of the
three different model specifications best fits the data. Comparing the ARCH and GARCH
models, these models are not nested, and thus, I cannot use a likelihood ratio test to select

the best model. But both ARCH(q*) and GARCH(p*,q*)* models belong to the larger

2 Where p* and q* represent the optimal lags as they were estimated in sections 4.3 and 4.4.
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GARCH(p,q) class, so I can use the AIC, SI€ and adjusted R? to select between the two.

In Table 3.9, I present the AIC, SIC and the value of the maximized log-
likelihood function for the ARCH(q*) and GARCH(p*,q*) models. For the cases of the
heating oil and propane where the likelihood ratio test does not become insignificant even
at the ninth lag, [ use the statistics from the ARCH(9) model. Clearly for all six series the
GARCH representation is superior to the ARCH according to both AIC and SIC. So for
all series the selected model is a GARCH(1,1) with the exception of natural gas where it
is GARCH(2,1). This result is somewhat expected as the long lag structures of the best
fited ARCH models imply that a GARCH(!,1) may be more appropriate as explained
previously.

Having concluded that the GARCH(p*,q*) specification is superior to the
ARCH(q*), the next step is to compare the GARCH(p*,g*) models with the
EGARCH(1,1) that I have already estimated. The AIC and SIC in Tables 3.8 and 3.9,
both select the GARCH(p*,q*) models for all energy series except for the natural gas

where the EGARCH(1,1) model is selected.

I also present the diagnostics on the standardized residuals from the

GARCH(p*,q*) and EGARCH(1,1) models. These are calculated as:

(3.4.10)

g,
&, —ﬁ,
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where €, are the residuals from the estimated model and 4, is the estimated conditional

variance. If the model is correctly specified then £, will have a mean of zero, variance
one, and be iid. The diagnostics for the standardized residuals, mean, variance,
skeweness, kurtosis and the Jarque-Berra statistic for normality, are presented in Table
3.10. The lower the Jarque-Berra statistic is, the closer the corresponding standardized
residuals are to normality.

In order for the unconditional variance to exist in each of the estimated models,

we need a,, o,, and B,, all to be greater or equal to zero so that the unconditional

.

4
variance is always positive. Also, the unconditional variance is finite if &, +» B, <l in

i=1
the GARCH models and B <l in the EGARCH model. In Table 3.11, I present in panels
A and B, the estimated coefficients on the conditional variance for both the

GARCH(p*,q*) and the EGARCH(1,1) models respectively, and I test the hypotheses

p*
that o, + ZB ;=1 and B=L1. It is clear from columns eight and nine on panel A, that only

i=l
in the cases of the electricity and unleaded gas we can reject the null hypothesis of an

infinite unconditional variance. In the other four series we cannot reject the null

p.
hypothesis that o, + ZB ; =1, and thus the unconditional variance for these series will not

i=l
be stationary. From column eight in panel B, we can see that the null hypothesis of a non-
stationary unconditional variance is rejected for all series except electricity. According to
these test results, only three of the previously selected models appear adequate, and these
are the GARCH(1,1) models for electricity and unleaded gas, and the EGARCH(1,1)

model for natural gas. The GARCH(1,1) models for crude oil, heating oil, and propane
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produce infinite unconditional variances so that the EGARCH(1,1) model is selected
instead.

Thus, I have concluded that the best model for electricity and unleaded gas is a
GARCH(1,1) and for crude oil, heating oil, natural gas, and propane is an EGARCH(1,1)-

It would be interesting at this point to see whether the inclusion of the conditional
variance in the mean equation has any effect on the mean of the series. Thus, I estimate
the corresponding GARCH(p*,q*)-M model for electricity and unleaded gas, and an
EGARCH(1,1)-M model is estimated for the rest of the series. In the second column of
Table 3.12, I present the type of model that is estimated for each of the series, the third
column presents the number of AR lags that are included in the mean equation, while in
columns three to five I report the estimated coefficient of the conditional variance, b, the
corresponding t-statistic, and the probability respectively. The coefficient of the
conditional variance, b, is not statistically significant for five out of the six series at the
conventional 5% significance level, so I conclude that the inclusion of the conditional
variance in the mean equation does not improve the fit of the model for these five series.
However, the coefficient b, for the case of propane appears to be statistically significant
at the 5% level, with a t-statistic of —2.266648 and a probability of 0.0235. Thus, the
EGARCH(1,1)-M model for propane is selected over the EGARCH(1,1).

Summarizing model selection, I have selected a GARCH(l,1) model for
electricity and unleaded gas, an EGARCH(1,1) for crude oil, heating oil, and natural gas,
and an EGARCH(1,1)-M for propane. In Table 3.13, I present the estimated coefficients
for the conditional variances of these models and in Figures 3.7 to 3.12, [ graph the

conditional variances. For electricity and unleaded gas that are estimated using a
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GARCH(1,1) model, all coefficients of the conditional variance appear to be statistically
significant. For the series that an EGARCH(1,1) model was selected, crude oil, heating
oil and natural gas, all coefficients are statistically different than zero except for the
parameter y that is insignificant for all three series. The same is true for propane which is
estimated using an EGARCH(1,1)-M model. All parameters are highly significant except
for the last coefficient, v, which again appears insignificant. Since the fourth term in the
EGARCH and EGARCH-M models is designed to capture the effects of the sign of the
lagged residuals to the asset’s variance, and the coefficient of this term, y, appears
insignificant, this means that the variance of the changes in the assets’ prices does not
depend on the sign of the residuals. Thus, there is no leverage effect.

The estimated p s or the lagged conditional variances in the conditional variance
equation for all six series although different than one as tested earlier, are very close to
one. This means that the conditional variance will exhibit high persistence and the effects
of the shocks will fade away very slowly.

The Box-Pierce Q(36) and Q?(36) statistics show that we fail to reject the null
hypotheses that there are no linear or non-linear processes in the residuals that we haven’t
accounted for. Only the Q*(36) statistic for natural gas is statistically significant,
implying that there are still some non-linear processes in the errors that the best fitted

model, an EGARCH(1,1), cannot pick-up.

3.5. FORECASTING

In the previous section [ selected the best model for each of the six energy series.

In this section I will use these models to produce in sample forecasts and compare the



82

forecasted values with the actual realized futures prices. To do this I will exclude the last
22 observations from the estimation, since the data I use are daily futures closing prices,
and the 22 observations represent approximately one month’s trading days. Then I use the
remaining observations to re-estimate the best fitted model for each series and use these
models to generate in-sample forecasts for the last 22 observations. The exclusion of the
last 22 observations leaves me with 3701 observations for crude oil, 434 for electricity,
4410 for heating oil, 1942 for natural gas, 2600 for propane and 3278 for unleaded gas.

In Figures 3.13-3.18 I present the graphs of the forecasts. The solid line represents
the realized value, the thick dashed line represents the forecasted values, and the other
two dashed lines represent the +2 standard deviations confidence bands for the
forecasts. These standard deviations are estimated from the forecasted conditional
variances. In Table 3.14 I present some statistics for the forecasts’ evaluation. These

statistics are: the root mean squared error (RMSE),

1 T
RMSE = /?geiu, (3.5.1)

where e, , = ¥, — V.., and y,,, is the actual value of variable y at period t+1 and y,,,,

is the forecast for y,,, at period t. The mean absolute error (MAE) is defined as:

1 T
MAE = FZ|e,+l_,| : (3.5.2)

1=t

and the mean absolute percent error is:
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1 T -
MAPE =_1_;Z|pr+l.(

1=l

(3.5.3)

where p,,,, = (Vi = Vias )/ Vi - Finally Theil’s inequality coefficient is defined as:

1< )
F;(ynl _y1+l,r)
i e 15,

;Zy;l + %—Zy,;l,,

t=] =t

(35.4)

As we can see from Figures 3.13-3.18, the actual value of the closing price for the
six futures contracts falls within the *2conditional standard deviations band of the
forecast for all forecasted values except for observation 3710 for crude oil and
observation 4419 for heating oil where in both cases the realized closing price was below
the predicted confidence band. Thus, the model appears to be able to predict well in the
short forecasting horizon of 22 periods in the future or approximately one month.

The most important result from modeling and estimating the conditional
heteroscedasticity for forecasting is that conditional forecasts are far more superior than
unconditional forecasts. This is because the forecast error using the conditional forecasts
is smaller than the error from unconditional forecasts. To see this improvement in the
forecasts in Table 3.15 I present the unconditional forecast standard deviations for the six
series in columns 3 and 7, and in columns 4 and 8 the conditional standard deviation for
one to five days ahead forecasts. In these one week ahead forecasts the unconditional

standard deviation is always greater than the conditional one and we can verify the
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theoretical superiority of the conditional forecasts. Thus, using the conditional
heteroscedasticity to model the error sequence we are able to construct narrower
forecasting confidence bands. Using such models, an investor optimizing his portfolio

can use a more precise measure of risk for the corresponding assets.

3.6. CONCLUSIONS

In this paper, I tried to model the time series behavior of six energy market
variables, the closing futures prices for crude oil, electricity, heating oil, natural gas,
propane, and unleaded gas. Testing these series with two different unit root tests, the
ADF and the Phillips — Peron, I showed that all six series have a stochastic trend. The
non-stationarity of the series, in their logarithmic forms, suggested the use of their first
differences as the appropriate variables for the rest of the analysis. I modeled the data as
AR(p) processes where the order of the autoregression, p, was selected in such a way as
to remove serial correlation. Having accounted for any linear dependencies in the data, I
proceeded to test for non-linear processes in the errors. The clustering of volatility
episodes that was observed in the data, implied a non-constant conditional variance and
the existence of a time-varying heteroskedasticity. The application of more formal tests to
the residuals confirmed the existence of ARCH processes in the errors. Different models
of conditional heteroskedasticity that have been proposed recently in the literature were
applied and tested and I selected for each series the model that provided the best fit.
These best fitted models were then used to produce in-sample forecasts for one month
ahead. Confidence bands were also constructed based on the forecasted conditional
variance of the series. The actual values of the six energy market futures series were

within the predicted +/-2 standard deviations bands for all forecasted values but two.



85

Finally, using the conditional heteroscedasticity, we saw that we can provide forecasts
with smaller forecast errors than with the usual unconditional forecasts, verifying the

theoretical superiority of such forecasts.



SUMMARY STATISTICS FOR DAILY ENERGY PRICES (IN LOGS)

TABLE 3.1

Variable Sample Size  Mean  Standard, Dev, Min Max Skewness Kurtosis J-B Prob *
Crude Oil 3722 -0.000163 0.019 -0,384071 0.123525 -2,106 47.409 0.000
Electricity 455 0.000955 0.043 -0.297022 0.267433 ~-1.105 18.680 0.000
Heating Oil 4431 -0.000133 0.019 -0.350938 0.128019 -1.907 36.303 0.000
Natural Gas 1962 0.000129 0.028 -0.230920 0209216 -0.121 13.864 0,000
Propane 2621 0.000003 0.021 -0.378558 0.113597 -3.334 57.593 0.000
Unleaded Gas 3299 -0.000116 0.019 -0.298099 0.147865 -1.060 23.400 0,000

* The null hypothesis is that the series is normally distributed,

——————



UNIT ROOT TEST RESULTS IN THE ENERGY VARIABLES

TABLE 3.2

Panel A. Tests on the log levels

Augmented Dickey-Fuller Tests

Phillips-Peron Tests

Variable Sample Size ADF Statistic Aug, Lags 5% Crit. Value PP Statistic  Tranc. Lags 5% Crit. Value  Decision
Crude Oil 3723 2,95 16 -3.41 -2.77 8 -3.41 1(1)
Electricity 456 -1.87 8 -3.42 -2.04 5 -3.42 1(1)
Heating Oil 4432 -3.15 16 -3.41 -2.85 9 -3.41 I(1)
Natural Gas 1963 -3.65 13 -3.42 -3.20 7 -3.42 I(1)
Propane 2622 -4.04 14 -3.42 -3.17 8 -3.41 (1)
Unleaded Gas 3300 -3.44 15 -3 41 -3.36 8 -3.41 I(1)
Panel B. First differeneces of log levels
Augmented Dickey-Fuller Tests Phillips-Peron Tests
Variable Sample Size ADF Statistic Aug. Lags 5% Crit. Value PP Statistic  Tranc, Lags 5% Crit, Value  Decision
Crude Oil 3723 -13.68 16 -3.41 -59.16 8 -3.41 1(0)
Electric Power 456 -7.69 8 -3.42 -20.78 5 -3.42 1(0)
Heating Oil 4432 -14.91 16 -3.41 -63.83 9 -3.41 1(0)
Natural Gas 1963 -10.18 13 -3.42 -42,02 7 -3.42 1(0)
Propane 2622 -11.19 14 -3.41 -42.58 8 -3.41 1(0)
Unleaded Gas 3300 -13,92 15 -3.41 -53.57 8 -3.41 1(0)




TABLE 3.3

SELECTION OF THE APPROPRIATE AR LAG STRUCTURE

AlClag Valueof SIClag Valueof LR Test F-Test Optimal AR Box-Pierce
Variable Selection min AIC Selection min SIC  Statistic Prob.  Statistic  Prob, lag structure  Q(36) statistic
Crude Oil 10 -7.890061 10 -7.871631 5.731* 0.333 1.142% 0.336 10 0.056
Electricity 4 -6.296094 4 -6.250512  7.942* 0.242 1.303* 0.255 4 0,270
Heating Oil 14 -7.993264 11 -7.975843 9273 0.026 3.084 0.026 14 0.751
Natural Gas 23 -7.158198 14  -7.110738 35,700 0.000 3.954 0.000 23 1.000
Propane 13 -7.788038 11 -1.75791 12.688 0.002 6.286 0.002 13 0.883
Unleaded Gas 10 -7,905428 10 -7.885032  2.385%* 0.794  0.475* 0.795 10 0,256

* These tests involve overﬁtn'l-lg the model selected by AIC and SIC and test the null hypothesis that the additiona]Tan do not improve the fit,



TABLE 3.4

LAGRANGE MULTIPLIER TESTS FOR THE EXISTENCE OF ARCH ERRORS

9
2 _ 2
€, =0, +Za,s,_,
i=1

Variable Lags q TR? Probability Variable Lags g TR Probability
Crude Oil 1 29,551 0.000 Natural Gas 1 10,008 0.002
2 40,503 0.000 2 19.022 0.000
5 103.492 0.000 5 22.237 0.001
10 129.781 0.000 10 42,579 0.000
Electricity 1 1.864 0.173* Propane 1 15.667 0.000
2 2,038 0.361% 2 38919 0.000
5 21376 0.001 5 67.156 0.000
10 22919 0.011 10 106.194 0.000
Heating Oil 1 16,980 0,000 Unleaded Gas 1 30,001 0.000
2 36.713 0.000 2 55.447 0.000
5 152,802 0.000 5 114,478 0.000
10 195.868 0.000 10 149.314 0.000

* Not significant at the 5% level.



TABLE 3.5

LR TESTS ON ARCH MODELS

k 9
Ay, =0, +2.0,0,  +&,8, |1, ~N(©O,h)h =a, +Zaj8‘2_,
J=1 Jj=1

Likelihhod Ratio Test Statistic*

ARCH Lags (q) Crude Oil  Electricity  Heating Oil Natural Gas  Propane  Unleaded Gas

1 - - - - - -

2 272,47 N/A 188.66 62.35 244.69 91.06
3 307.98 40,17 174,60 7.68 205.33 71.53
4 154.78 N/A 119.90 0.12 65.30 410
5 94,76 3.44 55.94 6.61 68.63 61.80
6 37.82 298 18.90 19.83 96.10 17.66
7 56.02 1.79 32.18 2.00 17.27 4.43
8 27.30 N/A 25,60 4,51 33.68 4.62
9 1.12 11.88 53.26 3.54 10.22 0.56

* The critical value at the 1% level with 1 degree of freedom is 6.63. N/A the statistic is not available because it was not
possible to achieve convergence.
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TABLE 3.7 (continued)

SELECTION OF A GARCH(p ,,q) MODEL

NATURAL GAS
AIC SIC Adj. R? LogL
GARCH(1,1) -7.120578 -7.043018 -0.016461 4315.93
GARCH(1,2) -7.136701 -7.056269 0.000305 4350.53
GARCH(2,1) -7.139357* -7.058925* 0.002957* 4347.11
GARCH(2,2) -7.125997 -7.042692 -0.00994 4346.70
PROPANE
AIC SIC Adj. R’ Log L
GARCH(1,1) -7.748555* -7.710316* 0,038354* 7458.71
GARCH(1,2) -7.747228 -7.70674 0.037444 7459.76
GARCH(2,1) -7.745172 -7.704683 0.035462 7459.82
GARCH(2,2) -7.744157 -7.701419 0.03485 7460.08
UNLEADED GAS
AIC SIC Adj. R° Log L
GARCH(1,1) -7.899914* -7.873955* 0.009027* 8719.59
GARCH(1,2) -7.899014 -7.871202 0.008435 8720.41
GARCH(2,1) -7.899218 -7.871405 0,008637 8718.38
GARCH(2,2) -7.898503 -7.868836 0.008228 8716.06

* These values select the corresponding GARCH model,



k
Ay, =0, + 2 0,0y, +€,8, |1, ~N(O,h)logh =w, +Blog h,_, +ai
7

TABLE 3.8

EGARCH(1,1) ESTIMATION RESULTS

€., €

[y
x| s

Variable AR Lags AIC SIC Adj. R® LogL

Crude Oil 10 -7.881207 -7.856075 0.005018 10379.48
Electricity 4 -6.256332 -6.174285 -0.002188 829.12

Heating Qil 14 -7.983285 -7.955784 0.011444 12178 42
Natural Gas 23 -7.141221 -7.060788 0.004813 4376.44
Propane 13 -7.742823 -7.702334 0.033194 7467.93
Unleaded Gas 10 -7.898934 -7.871122 0.008356 8729.82
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TABLE 3.10

DIAGNOSTICS FOR THE STANDARDIZED RESIDUALS

Crude Oil Electricity Heating Oil
GARCH EGARCH GARCH EGARCH GARCH EGARCH
Mean -0.0094  -0.0038 -0.0234 0.0460 -0.0114 -0.0143
Maximum 5.0233 4.6039 5.5839 7.5145 6.0003 5.7813
Mimimum -7.2476 -8.4565 -7.4431 -5.1797 -6.4480 -7.3329
St.Deviation  0.9998 0.9999 1.0623 1.0059 0.9999 1.0000
Skewness -0.2267  -0.2531 -1.0274 0.2462 -0.2241 -0.2577
Kurtosis 5.1469 5.6720 14.7192  16.5143 5.2640 5.5161
J-B 744.657 1143.902 2660.179 3436.584 980.303 1214.010
Prob. 0.000 0.000 0.000 0.000 0.000 0.000
Observations 3712 3712 451 451 4417 4417
Natural Gas Propane Unleaded Gas
GARCH EGARCH GARCH EGARCH GARCH EGARCH
Mean -0.0296 -0.0141 -0.0016 -0.0194 0.0041 0.0020
Maximum 8.0347 7.9754 4.1877 3.9657 7.6249 7.3023
Mimimum -9.5053 -7.9805 -9.0128 -8.1872 -6.3123 -7.0083
St.Deviation  0.9994 0.9996 1.0001 1.0006 1.0000 0.9997
Skewness 0.1165 0.4144 -0.6607  -0.6502 -0.2137 -0.2797
Kurtosis 14.1987 13.3137 8.1516 7.6465 6.0113 6.1758
J-B 10136.530 8649.484 3073.656 2529.885 1267.761 1425.062
Prob. 0.000 0.000 0.000 0.000 0.000 0.000
Observations 1939 1939 2608 2608 3289 3289
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TABLE 3.12

TESTING GARCH-M AND EGARCH-M MODELS

k
Ay{ =0 +bht +Z(P1Ayr-j +E,,8, I'Ir-l ~ N(Oahr)
Jj=1

Estimated AR Lags  Coefficient
Variable Model k b { -statistic Probability
Crude Oil EGARCH-M 10 -0.098486 -0.096007 0.9235
Electricity * GARCH-M 4 -0.305768 -0.877635 0.3806
Heating Oil EGARCH-M 14 -2.333717 -1.740436 0.0819
Natural Gas EGARCH-M 23 0.268995 0.244248 0.8071
Propane EGARCH-M 13 -2,920799 -2.266648 0.0235
Unleaded Gas GARCH-M 10 1.615091 0.901249 0.3675

* Instead of the conditional variance the conditional standard deviation is used here.
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TABLE 3.14

FORECAST EVALUATION STATISTICS

Model Used for Forecasted Theil's
Variable the Forecast Observations RMSE MAE MAPE  Inequality Coef.
Crude Oil EGARCH(1,1) 3702-3723 0.012 0.009 87.696 0.962
Electricity GARCH(1,1) 435-456 0.022 0,020 125.203 0.900
Heating Oil EGARCH(1,1) 4411-4432 0.013 0,010 101.458 0.978
Natural Gas EGARCH(1,1) 1942-1963 0,025 0.021 100.872 0.765
Propane EGARCH(1,1)-M  2601-2622 0.018 0.013 90,956 0.934

Unleaded Gas GARCH(1,1) 3279-3300 0.012 0.010 96.679 0.948




TABLE 3.135

UNCONDITIONAL AND CONDITIONAL STANDARD DEVIATIONS IN WEEK AHEAD FORECASTS

Forecast ~ Forecast Forecast

Variable Day o \[h_r Variable Lags q

Crude Oil 1 0.014189  0.014174 Natural Gas 1 0,032508  0,032078
2 0.014256  0.014235 2 0.032647  0.032226
3 0.014319  0.014295 3 0.033149  0,032370
4 0.014382  0.014356 4 0.032854  0.032510
5 0.014448 0.014416 5 0.033086  0.032646

Electricity 1 0.048451  0,048416 Propane 1 0.020552  0.020514
2 0.048473 0048414 2 0,020779  0.020565
3 0.048463  0.048412 3 0.020836  0,020615
4 0.048612  0.048410 4 0.020912  0.020665
5 0.049110  0.048408 5 0.020952  0.020713

Heating Qil 1 0.012351  0.012335 Unleaded Gas 1 0.015196 0.015162
2 0.012444  0.012423 2 0.015299  0.015235
3 0.012531  0.012510 3 0.015367  0.015307
4 0.012629  0.012596 4 0.015443  0.015377
5 0.012716  0.012682 5 0.015509  0.015446



Figure 3.1. Logged Prices for Crude Oil -
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Figure 3.2. Logged Prices for Electricity
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Figure 3.3. Logged Prices for Heating Oil -
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Figure 3.4. Logged Prices for Natural Gas
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Figure 3.5. Logged Prices for Propane
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Figure 3.6. Logged Prices for Unleaded Gas
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Figure 3.7. Conditional Variance for Crude Qil
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Figure 3.9. Conditional Variance for Heating Oil
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Figure 3.11. Conditional Variance for Propane
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Figure 3.10. Conditional Variance for Natural Gas
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Figure 3.13. In-Sample Forecasts and 95% Confidence Intervals
for Crude Oil.
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Figure 3.14. In-Sample Forecasts and 95% Confidence Intervals
for Electricity.
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Figure 3.15. In-Sample Forecasts and 95% Confidence Intervals
for Heating Oil.
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Figure 3.16. In-Sample Forecasts and 95% Confidence Intervals
for Natural Gas.
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Figure 3.17. In-Sample Forecasts and 95% Confidence Intervals
for Propane.
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Figure 3.18. In-Sample Forecasts and 95% Confidence Intervals
for Unleaded Gas.
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CHAPTER 4
BALANCED GROWTH, MONEY DEMAND, AND MONETARY

AGGREGATES: A COINTEGRATION APPROACH



109

4.1. INTRODUCTION

In development economics, the balanced growth theory suggests that in the steady
state per capita consumption, investment and output all grow at the same rate so that the
consumption - output and the investment - output ratios are constant. These two ratios are
also known as the great ratios. Thus, according to the theory, consumption, investment
and output must be non-stationary and for the great ratios to be constant, they must be
cointegrated.

In their (1988) paper, King et al. have used a simple real business cycle model
proposed by Fynn Kydland and Edward Prescott (1982) to test the balanced growth
theory where total factor productivity evolves according to a random walk with drift
procedure. Following King et al. (1988), in this paper I use recent developments in
econometries to test the balanced growth theory and at the same time the existence of a
stable money demand function. The data that are used are quarterly U.S. observations
from 1960:1 to 1997:4 for real per capita personal consumption expenditures, real per
capita private fixed investment, real per capita private GNP, 3-month treasury bill interest
rates and per capita real money balances. To examine the sensitivity of the results to
different money measures and overcome what Alec K. Chrystal and Ronald MacDonald
(1994) called William Barnett's critique on the appropriate money measures I use in this
paper twelve different money measures: the commonly used simple-sum M1, M2, M3
and L measures and also Divisia M1, M2, M3, and L, and currency-equivalence M1, M2,
M3 and L.

The Johansen and Juselius (1992) multivariate maximum likelihood cointegration

tests are applied to three different systems, the first including only the real variables, the
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second includes the nominal variables and the third all five variables. For the systems
that there is evidence of the existence of cointegrated vectors according to what the
theory predicts I estimate those vectors and impose additional assumptions, Finally, I
simulate shocks to the whole system and to specific variables of interest and get the
impulse responses of the estimated cointegrating vectors and of individual variables.

The structure of this paper is as follows: in Section 4.2, I discuss the theoretical
background and show how the theory will be tested, in Section 4.3, [ present the data that
are used and the methods for testing for stochastic trends in the data. Section 4.4 deals
with the econometric framework of the Johansen and Juselius (1992) maximum
likelihood cointegration test and it's application to the three systems. In Section 4.5, the
cointegrating relations that are identified in the previous section are shocked in order to
see how the cointegrated vectors and individual variables respond to various stochastic

shocks to the system's variables. Finally, Section 4.6, summarizes the conclusions.

4.2. THEORETICAL BACKGROUND

The model that underlies the analysis in this paper is a simple real business cycle
model where we have permanent productivity shocks. It is of the general class of models
described by Fynn Kydland and Edward Prescott (1982) and King et al. (1988). The
economy’s production function is described by a constant returns to scale Cobb-Douglas

production function of the form:

Y, =%K°N; (4.2.1)
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where Y, is the output at period t, X, is the capital stock and N, represents labor. In this

model is assumed that total factor productivity A, follows a logarithmic random walk of

the form:

log(%,) =, +log(h, ) +E, (4.2.2)

where the innovations represented by the sequence {£,}are assumed independently and
identically distributed with a mean of O and a variance o’. The interpretation of the
evolution of productivity according to (4.2.2) is that the productivity grows at every
period by an average rate of u, and the {£,} sequence represents shocks or deviations of
productivity from this average. Thus, the first two terms on the right-hand-side of (4.2.2)
represent the deterministic part of the productivity evolution and the last term represents
the stochastic innovations.

In a standard neoclassical model as that by Solow (1970), where we only have
deterministic trends, we find that in the steady state per capita consumption, investment
and output all grow at a constant rate of p, /0. This common deterministic trend implies
that the great ratios, the ratio of consumption over output and investment over output are
constant in every period in the steady state. But when we add the stochastic term in the
evolution of productivity, the realizations of £, will permanently affect the evolution of

productivity at all future periods:

EI log(kl+$‘) = El-l (7"14-.;-) + gl * (4'2'3)
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In this setting, a positive productivity shock at period t will raises the expected long-run

growth path, introducing a common stochastic trend in the logarithms of consumption,
investment and output. The stochastic trend is log(A,)/0 and its growth rate is
(n, +&,)/0 which is the analog of the deterministic model’s common growth rate
1, /6. Because all there variables here, consumption, investment and output have a

common stochastic trend the grate ratios C,/Y, and /,/Y, must be stationary stochastic
processes.

These theoretical results can be tested in a cointegration framework where X, isa
vector of the logarithms of consumption, investment and output at period t, denoted by

¢,, I, and y,. All three variables are non-stationary and integrated of order 1, or I(1),

t? %t

because the productivity as we have seen follows a random walk. The balanced growth
hypothesis in this case implies that the difference between any two of the components of
X, will be a stationary variable or [(0) according to the Engle and Granger (1987)
terminology. The two cointegrating vectors will be a={1,0,-1] and B =[0,1,-1].

In this model, the dynamic adjustments that the economy has to make after a
productivity shock £, and the speed of adjustment will depend on the specific
characteristics and parameters of this economy regarding tastes, preferences and
technology. The real business cycle theory has studied the changes that happen to the
economy in terms of a) the investment technology, with respect to the issues of
adjustment costs, inventory changes and time-to-build, b) the production technology,

with respect to variable capacity utilization, indivisibilities of labor and employment
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adjustment costs c) the issue of preferences; the non-separability of leisure and durable
goods and d) the issue of serial correlation in the productivity growth. From this research
two important properties emerge. First, the fact that there exist transitory dynamics as the
economy adjusts consumption, investment and work effort while moving towards a new
steady state. In this period of adjustment the great ratios are expected to change
temporarily. Second, there exists a common stochastic trend in consumption, investment
and output due to the stochastic trend in productivity. These two issues can be examined
in terms of cointegration tests between consumption, investment and output and in the
case that there is empirical evidence that cointegration does exist, the short-run

adjustment dynamics can be studied using vector error correction models (VECM). In
other systems where X, is augmented to include both the real variables, consumption,
investment and output and nominal variables such as money balances, the price level and
the nominal interest rate, now X,=[c,,i,,m, — p,,y,,R,] and if m, — p,, and R, are I(1)
then according to the theory I would expect to find three cointegrating vectors, the two
grate ratios: o=[1,0,0,-1,0], B=[0,1,0,-1,0] and the money demand relation y=[0,0,1,-
Ys> Y- In this case m, — p, represents the logarithm of real money balances and R, is
the nominal interest rate. According to the theory I expect y,=-1 and y, to be small and
positive. These coefficients in the cointegrating vector for the money demand imply a
one-to-one positive relation between real money balances and output and a small negative
relation between real money balances and the nominal interest rate.

In this paper I will use the latest developments in the field of non-stationary

variables and cointegration to test whether the data support the above cointegrating
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relations predicted by theory and if there is evidence for cointegration I will test whether

the coefficients in the cointegrating relations are of the expected magnitude.

4.3. THE DATA AND TESTS FOR STOCHASTIC TRENDS

The data that are used in this paper are quarterly U.S. observations from 1960:1 to
1997:4. The variables are: real per capita personal consumption expenditures seasonally
adjusted, c, real per capita private fixed investment seasonally adjusted, i, real per capita
private GNP seasonally adjusted, y, defined as total GNP minus government
expenditures. The real money balances variable is defined as per capita real money
balances. The twelve different measures of money that are used in this paper are the
Simple-Sum M1, M2, M3 and L denoted as S1 S2, S3 and SL respectively, the Divisia
M1, M2, M3 and L denoted as D1 D2, D3 and DL and Currency Equivalence M1, M2,
M3 and L measures denoted by C1, C2, C3, and CL. The interest rates that I use are 3-
month treasury bill auction averages when a simple-sum or a currency-equivalence
monetary aggregate is used. In the systems that involve the Divisia M1, Divisia M2,
Divisia M3 and Divisia L monetary aggregates [ use the more appropriate “user costs” of
money, denoted by UC1, UC2, UC3, and UCL.

All variables are in logarithms with the exception of the nominal interest rates and
the user costs of money. The real variables are produced using the GNP deflator as a

price index.

4.3.1. Testing for Stochastic Trends in the Data

To test the cointegration properties of the data I need the variables to be non-

stationary or I(1) in the Engle and Granger (1988) terminology. In Figure 4.1, I graph the
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logarithms of consumption, investment and-output. Clearly all three variables show the
characteristic upward trends and cyclical effects. In Figures 4.2-4.5, I graph the per capita
real money balances from the narrowest definitions of the three monetary aggregates
Simple Sum, Divisia and Currency equivalence M1, to the broadest measures L. Finally
in Figure 4.6, I graph the great ratios c-y and i-y.

In order to test for cointegration I need consumption, investment, output, the
twelve different measures of money and the interest rates and user costs to be non-
stationary processes of the same order of integration. Also, according to the theory of
balanced growth, I would expect that if consumption, investment and output have
common stochastic trends, the great ratios must be stationary. Thus, evidence of non-
stationarity of the great ratios is evidence against balanced growth theory.

For these reasonms, it is important at this stage to examine the stationarity
properties of the data and test for the presence of stochastic trends or unit roots. A
stationary series has a constant mean and shocks to the series will not have permanent
effects on the mean of the series. In this case the variable is mean reverting or stationary.
Equivalently, a trend-stationary series follows a deterministic trend and any shocks to the
variable will fade away and the variable will return to the original deterministic trend. In
a series that has a stochastic trend or a unit root, a shock to the series at period t will have
permanent effects. Such a series will have a non-stationary variance which will tend to
infinity as t —» .

In testing for stochastic trends (unit roots) in the log levels of the original data, [
use two alternative testing procedures as an attempt to deal with the fact that some of the

series may not be very informative about the existence or not of a unit root. In columns 2
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and 3, of Table 4.1, I present the results of augmented Dickey-Fuller (ADF) tests' to the
levels and first differences of the data respectively. In columns 4 and 5, [ present the
alternative non-parametric Phillips-Perron (PP) tests of Phillips and Perron (1988) for the

existence of a unit root. The ADF tests are conducted using the following regression:

Alogz, = o, +ot+o,logz, , +  B,Alogz, ; +€, , (4.3.1)

i=i

where z, is the series under consideration and m is selected large enough such that g, is

white noise. The null hypothesis of a unit root is rejected if o, is negative and
significantly different than zero. The critical values are not the usual t-statistics but are
those given by Fuller (1976). The problem with this testing is that the order of the
autoregression is not known. One way to overcome this is to use some information
criterion to select the best model. In this paper I use a lag order of m = 4 and the resulting
Durbin-statistics show that any autocorrelation has been successfully removed. An
alternative way to using the augmenting lags to correct for serial correlation is the
Phillips-Peron testing procedure that uses non-parametric correction. The PP test involves
estimating (4.3.1) with m = 0 and then the statistics are transformed to correct for serial
correlation in their asymptotic distribution. For the transformation formula see Phillips
and Peron (1988, Table 1, p. 308-9). The critical values for this test are the same as in the
Dickey-Fuller tests. The Newey and West (1987) method is used to estimate the error

variance from the estimated residuals as:

! See Dickey and Fuller (1981).



117

! i 24 2 Zp .p)3 432
S g, +— (s, tCp-x -,
N & T 200 p)’;e € (4.3.2)

where p is the truncation lag parameter which is set in the estimation according to the

i—=s
p+1°

Newey and West suggested value, and (s, p) =

According to the ADF tests, in panel A of Table 4.1, I find evidence that the three
real variables, the nominal interest rate, the user costs, S2, Cl, C2, and C3 are all I(1),
while the rest of the monetary aggregates appear to be I(2). The consumption-output ratio
and CL appear to be I(0) or stationary. The PP tests, in panel B of Table 4.1, show that
all variables are I(1) with the exception of CL and the consumption-output great ratio
which are I(0). Thus, in some cases the data are not very informative about their
stationarity properties and in column 6 of Table 4.1 I report the decisions that are made
regarding their order of integration. Whenever the ADF and the PP tests produce
conflicting results, I treat the respective variables as I(1) for the purposes of this paper.
Finally CL is found to be I(0) using both tests, so in the estimations where CL is included

the resuits must be observed with caution.

4.4. MAXIMUM LIKELIHOOD COINTEGRATION TESTS

In this section [ will use the Johansen and Juselius (1992) maximum likelihood
cointegration tests to test for cointegration in three different systems. The first is the c, 7,
y system where according to the theory I expect to find two cointegrating relations,
namely the consumption-output and the investment-output great ratios. The second

system that includes, m-p, y, and R, is estimated with each one of the twelve monetary
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aggregates. In this system I expect to identify one cointegrating vector that corresponds to
the long-run money demand function. Finally in the third system I include all five
variables, c, i, m-p, y and R expecting three common stochastic trends, the two great

ratios and the money demand function.

4.4.1. The Econometric Framework

I follow Johansen and Juselius (1992) and for a system of p variables, I consider

the following p-dimensional vector autoregressive model:

k
X, =Y ILX,_ +p+e, (4.4.1)

i=l

where X, is a vector of the variables that are included in the estimated system and €, is
an independently and identically distributed p-dimensional vector of innovations with
zero mean and covariance matrix ®©. If II=-(/-II, —...~II,) is the pxp total

impact matrix [ consider the hypothesis of the existence of a maximum of r<p

cointegrating relations as

H,(r):II=op' (4.4.2)
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where o andp are pxr matrices of full rank. The B matrix is a matrix of cointegrating
vectors such that B'X, is stationary even though X, is itself non-stationary”. The o

matrix is a matrix of error correction parameters.
The maximum likelihood estimation and the likelihood ratio test of this model has

been investigated by Johansen (1988). According to Johansen and Juselius (1992) I

transform equation (4.4.1) by subtracting X, , from both sides and collecting the terms
on X, . Then I add and subtract (IT, ~1).X,_, and repeat this procedure and collect terms

to get:

k-1

AX, =S TAX, , +ap'X,_, +g, (t=1...T) (4.4.3)

! r
i=1

where

T=—(—-1II,—...—1,), (i=1,...,k-1). (4.4.4)

In equation (4.4.3) the matrix IT is restricted as IT = af}' but the parameters vary
independently. Thus, the parameters I,...,[,_; can be eliminated by regressing AX, and
X, on lagged differences AX, ,...,AX,_,,,. These regressions produce the residuals

R, and R, and residual product moment matrices

2 See Engle and Granger (1987).
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T -
Sy =T Y R,R, (i.j=0,k). (4.4.5)
1=l

The estimate of B is calculated® by solving the eigenvalue problem

S — SkoSa Sio| =0 (4.4.6)

-~

for eigenvalues ?:, >...>A, >0, eigenvectors V =(¥,...,v,) normalized by

r

V'SyV = I . The maximum likelihood estimators are given by

B=(,....0,), G =S,B and Q=8,, —G&'. (4.4.7)

The maximized likelihood function is calculated from

LA =)0 = Saal [TA=40), (4.4.8)

i=|
and the likelihood ratio test of the hypothesis H,(r) is given by the trace test statistic or

A

trace *

-2WnQ[H,(r)| H,|=-T iln(l -%,). (4.4.9)

i=r+l
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An alternative test which is called the maximum eigenvalue test or A_, is based on

comparing H,(r —1) with H,(r):

—2InQ[H,(r-)| H,(")]=-TIn(1—1,,,). (4.4.10)

The critical values for these tests are given by Osterwald and Lenum (1990).

To select the appropriate lag order for each model in the corresponding VAR, I
estimate VAR(k) models with k from 1 to 20 and select the order of the VAR that
minimizes the Akaike Information Criterion (AIC). Using this criterion I select 3 lags for
the ¢, i, y system, for the m-p, y, R system 6 lags are selected using the simple sum and
currency equivalence monetary aggregates, while in using the Divisia aggregates I select
a VAR(4) for Divisia M1 and a VAR(3) for the broader Divisia aggregates. The selection
of the order of the VAR is important because the cointegration tests are quite sensitive to

the order of the VARSs.

4.4.2. Testing the ¢, i, y system

The first system that I am going to examine using the previously described
Johansen methodology is the trivariate consumption, investment, and output system. I
have already concluded in Section 4.3.1 that all three variables are non-stationary and
I(1) so that I can use the cointegration analysis to test the theoretical proposition of
balanced growth. According to the theory, the two great ratios, the consumption-output

and investment-output ratios are expected to be stationary. Thus, if the theory is correct, I

* See Johansen (1988).
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expect to find evidence of two cointegrating vectors. If the order of the variables in the
system is X,=[c,,i,,y,]’ then the two cointegrating vectors are expected to be:
a=[1,0,-1] and B=[0,1,-1] for the consumption and investment great ratios
respectively, so that although the three variables are non-stationary there exists a linear
combination of them that is stationary. The estimated A_, and A, test statistics and

the corresponding null hypotheses that are calculates using an order 3 VAR are shown in
Table 4.2. None of the two statistics is statistically significant at the 5% level. Thus, there
is no evidence of any cointegrating relations in this system although theory predicts two.
Having in mind the unit root tests on the two great ratios, [ was expecting to find one
cointegrating relation. We have seen that the c-y variable that corresponds to the
consumption-output great ratio was found to be stationary implying a long run
relationship between the two I(1) variables. The trivariate cointegration test does not

provide evidence for any cointegrating relations between the three variables.

4.4.3. The m-p, y, R System

The next system I am going to test is X,=[m — p,y,R]. In this case I expect to
find one cointegrating relationship according to theory, [1,B,,B,], which corresponds to
the long-run money demand function. If such a cointegrating vector exists I expect
B, =—1 and B, >0 and small. This is because according to the theory output, y, must be
positively related to the real money balances, m-p, and the relation must be one-to-one.

Also, the interest rate elasticity, p,, of real money balances must be negative and

relatively small.
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Here, for the real money balances variable, m-p, I use three different monetary
aggregates: simple sum, Divisia, and currency equivalence. For all three aggregates I use
four levels of aggregation, M1, M2, M3, and L, so that I test a total of 12 money
measures. The variables are named such that S1 corresponds to the simple sum Ml
measure, D1 refers to the Divisia M1 measure, Cl1 is the currency equivalence M1 and so
on. For the nominal interest rate variable, R, in the case of the Divisia aggregates, | use
the user cost of money which is a more appropriate measure of the opportunity cost of

holding money for these aggregates. The results of the Johansen maximum likelihood

cointegration tests are shown in Table 4.2. According to the A, and A statistics [

trace

find some evidence of cointegration at the 5% level, only when S1, S2, and D1 measures
are used. In the other cases I accept the null hypothesis of no cointegration. Then, [
impose some just-identifying restrictions for cointegration rank of r = 1 to identify the
cointegrating vectors. [n Table 4.3 [ summarize the Johansen cointegration tests. The way
these tests are constructed, a time trend is included in the cointegrating vectors. If the
money demand function exists as predicted by the theory, there should be no trend in the
cointegrating vectors. Thus, I test the null hypothesis that the time trend in each of the
three cointegrating vectors is equal to zero, or that in the cointegrating vector [m-p,y,R.t],
where t is the time trend, 8, =0. As we can see from Table 4.3, the null hypothesis that
the time trend in the three cointegrating vectors is equal to zero, cannot be rejected at the
5% level. So, I impose next the over-identifying restriction that f, =0 and the
cointegrating vectors are identified as in Table 4.4. The coefficients of the real money
balances are normalized to 1. I observe that with the exception of the interest rate

coefficient in the simple sum M2 cointegrating vector, all other coefficients have the
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correct signs. The coefficient on the interest rate or the user cost is positive and small as it
is predicted by the theory, but the coefficients for the output elasticity of real money
balances appear to be different than —1. Testing the overidentifying restriction that
B, = -1, in column 5 of Table 4.3, [ reject the null hypothesis for all three cointegrating

vectors. Thus, I conclude that the coefficients on output are significantly greater than —1

so that the elasticity of real money balances to output is less than 1.

4.4.4. The c, i, m-p, y, R System

In this section I include all five variables in the same system so that now X, =[c,

i, m-p, y, R]. The cointegration tests are done using all twelve money measures.
According to the theory I expect to find in this system three cointegrating relations, the
two great ratios, and the money demand function. However, I have seen from the unit
root tests that the investment-output great ratio, i-y, is non-stationary, so the one-to-one

relation may not exist. Applying the Johansen methodology to test for cointegration in
this system I get the results in Table 4.5. According to the A_, and A, . test statistics, [

cannot reject the null hypothesis of no cointegration or r = 0 for the cases of D2, D3, and

C1. For all the other cases I find evidence of one cointegrating vector, with the exception
of Divisia M1 where the A _ test provides evidence of 3 cointegrating vectors, while the
Aace test provides evidence for 2. According to Johansen (1991), this ambiguity is due to
the low power in cases when the cointegration relation is quite close to the non-stationary
boundary. However, since the A

race tESt takes into account all of the smallest eigenvalues

it tends to have more power than the A, test. Thus, in the case of Divisia M1, I assume

that there exist two cointegrating vectors. In column 3 of Table 4.6, I present the number
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of cointegrating vectors for each money measure. The next step is to identify the
cointegrating vectors. Whenever r = 1 is selected, it is more likely that the one
cointegrating vector is the long-run money demand function since from the trivariate c, i,
y system I did not find any evidence of cointegration. Also, since we have seen that the c-
y great ratio is stationary it is more likely that the consumption-output great ratio will be
picked up by the Johansen cointegration test. Thus, for the cases where r = 1, I test the
overidentifying restrictions that B, =B, =B, =0 and B, =f, =B, =B =0, that
identify the long-run money demand function and the consumption-output great ratio
respectively as the cointegrating vector. From Table 4.6, columns 4 and 5 we can see that
I accept both hypotheses in the case of S1, but I reject them both for all the other money
measures. The identified cointegrating vectors for S1 are shown in Table 4.7 in columns
2 and 3. Thus, although I find some evidence of one cointegrating vector in the S1 case,
the tests cannot conclude whether that vector is one of the two cointegrating relations that
I expect (consumption-output ratio or the money demand function), [ fail to reject both
null hypotheses.

The rejection of both cointegrating regressions for the other money measures
means that the one cointegrating vector that the Johansen test detects is not the money
demand or consumption great ratio that the theory predicts. For the case of Divisia M1,

where we have two cointegrating vectors, I impose and test the overidentifying restriction
that B, =p. =Ps =0 that identifies the consumption-output great ratio. This is
distributed under the null as a x* with 3 degrees of freedom. In column 6 of Table 4.6,

we see that the null hypothesis cannot be rejected at the 5% level, and I find evidence that

one cointegrating vector is the ¢-y ratio. In order to test jointly that the two identified
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cointegrating vectors are the c-y great ratio and the money demand function as predicted
by the theory, I test the joint hypothesis that B} =B, =B. =B2 =B2 =0. We can see in
column 7 of Table 4.6 that the probability is 0.394 and I cannot reject the null hypothesis.
The identified cointegrating vectors are shown in columns 4 and 5 of Table 4.7. The
coefficient of y is expected to be equal to —1 in both cointegrating vectors. In the
consumption-output cointegrating vector, in column 2 of Table 4.7, the coefficient of y is
equal to —1.3860. The coefficient of y in the money demand cointegrating vector is equal
to —0.4662. Although the coefficients are negative they do not seem to be jointly equal to

—1 as I would expect in this system. The overidentifying restriction that the coefficients

on income are both —1, or testing that B, =B} =-1, is strongly rejected and the

probability is 0.000. The coefficient of the user cost of money UCI, is positive and small

in size as expected, p2=0.0031.

4.5. IMPULSE RESPONSES OF THE COINTEGRATING SYSTEMS

For the cases that I have found some evidence of cointegration will be interesting
to see how these cointegrating relations and the variables of the respective systems
respond to various shocks.

In the m-p, y, R system, I have identified the money demand function as a
cointegrating relation when I use simple sum M1, M2, and Divisia M1 as money
measures. In Figures 4.7-4.9 we can see the persistence profile of system-wide shocks to
the cointegrating vector for the S1, S2 and D1 cases respectively. We observe that a
positive shock to the system is quite persistent on the cointegrating vector and it is only

absorbed after about 20 quarters for all three monetary aggregates. In Figures 4.10-4.11 [
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present the impulse response of the cointegrating vectors to shocks to specific variables
of the system. In Figure 4.10 I shock real per capita output and in panels A, B and C we
can see the impulse responses for the case of S1, S2, and D1 respectively. For S1 in panel
A, the positive shock produces a positive response to the cointegrating relation for the
first 6 quarters and then it becomes negative. The effect of the shock to when I use S2
and D1 is quite different since the shock produces a negative response of the
cointegrating vector for the first quarters before it is absorbed. When the equation that is
shocked is that of the real money balances we see that this shock is absorbed in about 25
quarters for all three money measures but the shock has a negative effect to the
cointegrating vector when D1 is used.

In the five variable system, the only case where I both found cointegrating
relations and I was able to identify the expected by the theory cointegrating vectors, was
when Divisia M1 was used as the monetary aggregate. In Figure 4.12 we see that a
positive system-wide shock produces a positive shock to both identified cointegrating
vectors. The biggest part of the shock is absorbed in the first 12 quarters but then the
speed of adjustment to the respective long-run relations is very slow.

In Figure 4.13 I present the impulse response of the two cointegrating relations to
a shock in the real per capita output. The consumption-output great ratio is below its
long-run equilibrium for a period of about 10 quarters and then it slowly adjusts. The
money demand relation does not show such a big impact but it oscillates around the long-
run equilibrium, while both relations show long persistence. In Figures 4.14 and 4.15 we

see that shocks to the real Divisia M1 money balances and the user cost of money affect
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the money demand cointegrating relation more that the consumption-output great ratio
and both cointegrating vectors tend although slowly, to return to their long-run equilibria.

Finaily, it is interesting to see what are the effects of different shocks to the
system’s variables. In Figures 4.16 and 4.17 I present the impulse responses of those
variables to one standard deviation shocks to real per capita output and real money
balances. The output shock produces a positive response to all the other variables at the
impact period but this positive effect dies out and becomes permanently negative after
about 8 periods, with the exception of money balances that seems to be negative from the
beginning. In the case of an one standard deviation shock to the money demand equation,
we can see in Figure 4.17 that investment and output respond positively in the first 10
quarters, then the effect becomes negative for about 8 quarters but they return the positive
territory and stay there permanently. The impulse response of consumption to the one
standard deviation shock to the real money balances is positive for all periods.

The impulse responses in Figures 4.16 and 4.17 are consistent with what I
expected from economic theory and econometrics of non-stationary variables. We see
that for both the real per capité output and the real balances shock, the most volatile
variable of the system is investment. Also, consumption appears to be least volatile
variable which is consistent with the permanent income hypothesis. Individuals spread
the effects of the shocks over many periods decreasing the volatility of per capita real
consumption.

Finally from Figures 4.7-4.17 we see that in general although slowly the
cointegrating relations tend to revert to their long run equilibria, while the specific

variables seem to be permanently affected by shocks to the system. This is of course is
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expected as in section 4.3.1 I have concluded that the variables are I(1) or non-stationary.
The important property of integrated variables is that a shock will permanently affect

their levels-they do not revert to a constant mean or a deterministic trend.

4.6. CONCLUSIONS

According to the balanced growth theory, as we have seen, the great ratios are
expected to be stationary. In this paper, using a simple real business cycle model of the
general class proposed by Kydiand and Prescott (1982) and where total factor
productivity evolves according to a random walk with drift process, I tested the
stationarity of the great ratios. Evidence against the stationarity of the great ratios is
evidence against the balanced growth theory. The necessary but not sufficient condition
for a number of series to be cointegrated is that all the series in question are integrated of
the same order of integration. Applying the Dickey-Fuller (1981) and Phillips-Perron
(1988) tests for unit roots I concluded that all series have a unit root or they are I(1)
according to the Engle and Granger (1988) terminology, with the exception of CL, the
currency equivalence L money measure, and c-y, the consumption — output great ratio
which were found to be stationary or I(0).

In Section 4.4.2, I use the real variable system {c, i, y] and apply the Johansen and
Juselius (1992) maximum likelihood cointegration testing procedure. Although, the
theory predicts two cointegrating vectors, I do not find evidence for any such vectors, not
even the c-y great ratio that was found to be stationary as we have seen before.

In Section 4.4.3, where I use the system [m-p, y, R], I expected to find one
cointegrating vector, the money demand function. There is evidence of one cointegrating

relationship only when S1, S2 and D1 are used as monetary aggregates. The coefficients
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of the interest rates on the identified cointegrated vectors are as expected small and
positive, with the exception of S2 where it is negative. The coefficients on output are all
negative as money demand theory suggests but the elasticity of real money balances with
respect to output is significantly greater than —I.

In the system where I include all five variables [c, i, m-p, y, R], in Section 4.4.4,
the theory predicts three cointegrated vectors, the two great ratios and the money demand
function. The ML cointegration tests show no cointegrated vectors when D2, D3, and Cl
are used as monetary aggregates, two when D1 is used and one with all other measures.
In the case of D1, the joint hypothesis that the two cointegrating vectors are the money
demand function and the consumption — output great ratio cannot be rejected and when
these two vectors are identified, the coefficient of the user cost of money is small and
positive as predicted, the coefficients of output have the correct sign but are different than
-1.

Thus, the cointegrating vectors that I both identified and they are consistent with
the theory are the money demand function in the [m-p, y, R] system when M1, M2 and
D1 is used, and in the [c, i, m-p, y, R] svstem, the consumption-output great ratio and the
money demand function when D1 is used The impulse responses of those cointegrating
vectors to system wide shocks and to shocks to specific variables of interest in general
are consistent with the theory. The cointegrating vectors show long persistence but they
return to their long-run equilibria. The specific series are permanently affected by the
shock as it is expected for non-stationary variables.

Summarizing, the only cases where I find evidence of cointegrating vectors that

are predicted by the theory is when simple sum M1, simple sum M2 or Divisia Ml
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monetary aggregates are used. Thus, the theery is not supported at all by these data when
broader measures of money are used, and there is some evidence that the theory is correct
when the narrowest of the money measures are used. The results appear not to be
sensitive to the different monetary aggregates, as in simple sum, Divisia or currency

equivalent, but to how broad the specific money measure is.
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TABLE 4.2 (continued)

JOHANSEN ML COINTEGRATION TESTS

Null Hypothesis A max A trace Null Hypothesis A max A trace
System DL, y, UCL System C3, y, R
r= 24,8582 39.7429 r=0 16.8667 35.9516
r <= 9.2373 14,8848 r <=l 12,2802 19.0849
r<=2 5.6475 5.6475 r<=2 6.8046 6.8046
System Cl, y, R System CL, y, R
19.8895 37.1179 17.1228 35,8469
r=0 13.2308 17.2284 r=0 12,2366 18.7241
r<=] 3.9976 3.9976 r <=l 6.4875 6.4875
r&=2 r <=2

System C2, y, R

r=0 16.3343 34,9992
r <=1 11.6640 18.6650
r<=2 7.0010 7.0010

* Statistically significant at the 5% level,



TABLE 4.3

MULTIVARIATE HYPOTHESIS TESTING

Hy: Trend =0
System VAR order Coint. Vectors (Prob.)

c, Ly 3 0 -
System m-p. y. R

Monetary Hy: Trend =0
Aggregate VAR order Coint. Vectors (Prob.)

S1
S2
S3
SL
D1
D2
D3
DL
Cl
C2
C3
CL

0.460
0.172

AW UWWEAEOOGO OO
C O OO OOOMNOCO M
1




TABLE 4.4

ESTIMATES OF COINTEGRATED VECTORS

Monetary Aggregate
Variable Sum M1 Sum M2 Divisia M1
m-p 1.0000 1.0000 1.0000
(normatized) (normalized) (normalized)
y -03118 -0.5938 -0.4513
(0.0540) (0.1381) (0.0766)
R 0.0387 -0.0224 0.0032
(0.0044) (0.0079) (0.00001)

I

Note: the numbers in parentheses are standard errors.



TABLE 4.5

JOHANSEN ML COINTEGRATION TESTS

Null Hypothesis A M ace Null Hypothesis A A e
Systemec, i, S1,y, R Systeme, i, SL,y, R
r=90 31.5090 92.4096* r=0 39.5728* 93.3766*
r <=1 28.2196 60.9006 r <=1 21.9276 53.8038
r<=2 19.6582 32.6811 r<=2 16,8483 31.8762
r<=3 10.3509 13.0229 r<=3 8.7745 15.0279
r<=4 2.6720 2.6720 r<=4 6.2534 6.2534
Systemc, i, S2,y, R Systeme, i, D1, y, UCI
r= 33.8207 90.6507* r= 33.3307 101.6186*
r<=1| 23.8877 56.8300 r <= 31.4833 68.2879*
r<=2 19.4602 32.9423 r<=2 25.9482* 36.8046
r<=3 9,8658 13.4821 r<=3 8.0636 10.8563
r<=4 3.6163 3.6163 r<=4 2,7928 2.7928
Systemc, i, S3,y, R Systemc, i, D2, y, UC2
r=0 33.0894 88.8732* r=20 36.2285 83,1006
r<=1 22.1154 55.7838 r<=1 22.3939 46.8721
r<=2 20.1947 33,6684 r<=2 12.0365 24 4782
r<=3 9,5318 13.4738 r <=3 7.2629 12.4417
r<=4 3.9419 3.9419 r<=4 5.1788 5.1788

* Statistically significant at the 5% level,
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TABLE 4.6

MULTIVARIATE HYPOTHESIS TESTING IN THE ¢, i, m-p, y, R SYSTEM

Hypotheses Testing
Monetary
Aggregate VAR order r Bi=B,=Bs=0 B=P,=p=B;=0 B)=P;=ps=0 B=P=P=F=p=0
S1 6 1 0,088 0.596
S2 6 1 0.045 0.017
S3 6 1 0.009 0.021
SL 6 1 0.002 0.001
Dl 6 2 - - 0618 0.3%4
D2 6 0 - -
D3 6 0 - -
DL 6 1 0.000 0.001
Cl 6 0 - -
C2 6 1 0.000 0.002
C3 6 1 0.000 0,001
CL 6 1 0.000 0.001

Note: r is the number of cointegrating vectors, The numbers in hypothesis testing are probabilities.For the Divisia monetary
aggregates R refers to the corresponding user costs.
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Figure 4.1. The Logarithms of Consumption Investment and Output
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Figure 4.3. Simple-Sum M2, Divisia M2 and Currency Equivalent M2
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Figure 4.5. Simple-Sum L, Divisia E and Currency Equivalent L
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Figure 4.7. Cointegrating Vector with simple sum M1

Persistence Profile of the effeat of a systemwide shoock to CU(s)

1.6082
1.0184
.43651 [~
—. 14536 PR O S S ST S ST TN T AT SN S NS S S S ST SN S S SN S S S NN N R S S N S S ST NS SN N S T N S ST S S T S S R N
a 13 - 26 39 Se
cui

Figure 4.8. Cointegrating Vector with simple sum M2
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Figure 4.9. Cointegrating Vector with Divisia M1

Persistence Profile of the effect of a system-wide shock to CU’(s)
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Figure 4.10. Cointegrating Vector IR to y
A.m-p = simple sum M1
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Figure 4.11. Cointegrating Vector IR to m-p
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Figure 4.12. Persistence of C.V.'s to System-Wide Shocks
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Figure 4.13. Impuise Response of C.V.'s to Output Shocks
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Generalized Impulse Responsels) to one S.E.

Figure 4.14. Impulse Response of C.V.'s to Real Money Balances Shocks
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Figure 4.15. Impulse Response of C.V.'s to User Cost of Money Shocks
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Figure 4.16. Impulse Responses to Output Shocks

Generalized Impulse Response(s> to one S.E. shock in the equation for ¥
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Figure 4.17. Impuise Responses to Real Money Balances Shocks

Generalized ImpPulse Response(s) to one S.E. shock in the equation for DL
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CHAPTER 5

CONCLUSION
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In Chapter 2 of this thesis, I have tested the absolute purchasing power parity
theory in 17 countries using the Fisher and Seater (1993) and King and Watson (1997)
testing methodologies. Although, in the literature, little evidence is found in support of
PPP, the results using the long-run derivative and the long-run muitiplier in Chapter 2 of
this thesis, provide strong evidence that PPP holds in the long run. Most of the
researchers that deal with the theory of PPP, perceive the lack of cointegration between
the relative price ratio and the exchange rate as a point where testing has to stop, since
this is treated as evidence that PPP does not hold and the testing stops at that point. In this
thesis, after testing for the time series properties of the series, [ tested for cointegration. In
the case where the series would have been found to have a common stochastic trend, PPP
testing would have taken a different direction. I would examine whether the coefficients
of the cointegrating vector satisfy the requirements for PPP to hold, that is, the coefficient
on the relative price ratio should be equal to 1, and also test causality, such that
innovations in the relative price, cause the innovations in the exchange rate, if PPP holds.
Rejecting cointegration, [ was able to use the Fisher and Seater (1993) and King and
Watson (1997) tests. Cointegration is not a necessary nor a sufficient condition for PPP to
hold.

In Chapter 3, I model the historical evolution of six energy futures prices, in an
effort to produce in sample forecasts of the mean and volatility of these series. Visual
inspection of the series and formal testing, made evident the presence of volatility
clustering and a time-varying heteroscedasticity. The selection of the optimum lag
structure in the autoregressive representation of the series, ensured that no linear

dependencies were present in the error term. The best fitted model for the conditional
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variance was then selected to account for nonlinear processes in the disturbance terms.
The actual values of the series were lying within the 95% confidence band constructed
with the conditional variance. I also showed that the forecast errors and the forecast
variance are smaller using the conditional variance in short-term forecasts, than using the
unconditional one. This of course happens because the unconditional variance is
characterized by long memory relatively to the conditional one. The unconditional
variance puts the same weight to shocks that happened many periods in the past, while
conditional variance weights more heavily recent realizations of the variable in question.
In Chapter 4, I test the balanced growth theory and the existence of a stable
money demand function. This is done using three different monetary aggregation
procedures, the simple sum, Divisia, and currency equivalent. It is interesting to see if the
results of these tests are sensitive to the monetary aggregate that is used. Most of the
variables of the system are found to be nonstationary, and thus, the Johansen and Juselius
(1992) maximum likelihood cointegration test is used to identify in the system the
cointegrating vectors that are predicted by the balanced growth and monetary theory.
Cointegrating vectors that are predicted by the theory are only identified when the simple
sum M1, simple sum M2, and Divisia M1 monetary aggregates where used. According to
these ﬁndinés, the results appear not to be sensitive to the monetary aggregate that is used
but to the level of aggregation. The narrowest money specifications seem to better

support the theory.
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