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Abstract

Patching applications remains one of the most effective techniques for defending against

exploitation of vulnerabilities and is a basic defensive mechanisms against attacks. However,

it entails unwanted complications for the user, such as restarting the application after it

gets patched. Restarting the application influences the user to stop updating applications

and operating systems, making out of date software that presents an attractive target for

exploitation. Even though many authors address this issue by proposing frameworks and

tools for applying these patches on the fly, most modern systems and applications do not

implement this technique. One of the biggest challenges for mainstreaming this technique

is the fact that patches not only change source code but also the state or semantics of the

application.

This thesis proposes a mechanism that aids the activity of hot patching applications

by updating its data semantics while dynamically applying a patch. More precisely, the

mechanism updates the data structures of an application according to what a patch entails

by making sure that the application’s state is updated according to the new semantics

introduced by the patch. For this, we present a proof of concept of a framework that is

capable of patching the data semantics (i.e., data structure modifications according to a

security patch) of an application.

This thesis explores the question of what makes a patch feasible for hot–patching ac-

cording to how it modifies the semantics of an application. We also study the application

of machine learning algorithms to predict patches that were considered to be feasible for

hot–patching based on an empirical study. We also explain the design and implementation

of a proof of concept capable of hot–patching data structures of applications.

As in many other scientific studies, we found that there is a subset of patches that we

are not able to use for hot–patching because of the operations they are introducing. By
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studying this subset of patches, we learned that certain data operations introduce changes

in the control flow that can create conflicts when hot–patching. We explain what type of

operations defined a patch to be infeasible – according to our heuristics – and we hot–patched

the statements that we found to be feasible. Our system is capable of hot–patching different

types of data structures according to the aforementioned feasible operations with a very low

performance overhead.

At the end, we present the evaluation and results of our investigation. We learned that

13 out of 75 security patches that modify data structures are not feasible to implement

using our heuristics, making them difficult to update because of the semantics the patch

introduces. On the other hand, we found 38 out of 75 security patches feasible to implement

by using our set of data operations and the remaining 24 were not modifying data semantics.

In conclusion, we found that, if patch developers are aware of the type of statements that

introduce conflicts when hot–patching, they could make hot–patching a feasible activity.
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Chapter 1

Introduction

Patching remains one of the best practices for securing our computer systems. However,

many users and organizations tend to avoid it because it implies restarting their systems or

applications, and thus making it a tedious, slow, and inconvenient activity. Restarting an

application after updating it has remained an issue since the beginning of modern computer

systems, to the point where the Defense Advanced Research Agency (DARPA) offers two

million dollars for the development of an automated network defense system that patches

vulnerabilities on the fly [18]. But, why do we need to patch applications in the first place?

No software is perfect. Most software has bugs, therefore most software has vulnerabil-

ities. Attackers take advantage of these vulnerabilities [61], and often use them to exploit

users running those vulnerable applications. Both vendors and an active security community

constantly look for these vulnerabilities and fix them by modifying the vulnerable part of

the source code. A detailed report is then sent to the developer of the application including

a description of the vulnerability and a fix in the form of a patch.

By analyzing related work and bugs, errors, and failures that patches caused, we believe

that one of the biggest obstacles for hot patching (i.e., updating without restarting the

application) is the modification of memory–resident data structures. The central question

we address in this thesis is: can hot-patching data structures become feasible through the

design of a principled mechanism to update data structures according to a patch? To answer

this question, we divided this thesis into three main research focus areas: analysis of patches,

machine learning on patches, and DPL as a real, operational software patching framework.

To understand how patches modify data structures, we first analyzed 75 security patches

of different open-source projects, each patch having unique characteristics. An empirical
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study of these patches helps us understand how these patches modify applications (more

specifically, the application’s data structures).

We then study a mechanism that, given a patch, applies machine learning algorithms

to predict if the framework is capable of hot–patching the application according to how the

patch modifies data structures. We finish this thesis by presenting an operational proof

of concept for a framework that patches the data structures of applications according to

security code patches that were predicted as feasible by our machine learning algorithm.

1.1 Limitations of Patching

Patching and keeping applications up to date remains one of the best defenses to secure

computer systems. However, users tend to avoid patching applications because of the need

of restarting the system after updating.

The question is, even though many authors [29, 60, 46, 49] are addressing hot–patching

by introducing many different frameworks, why does hot–patching remain a research topic

rather than a commonly deployed system capability? Patching an application is a hard task

that may cause conflicts, and most developers do not study all of the potential conflicts

when developing a patch. Therefore, it is difficult to predict the behaviour of a patched

application, when we do not know the semantics the patch entails. Patches sometimes bring

unexpected behaviour to applications 1; many patches cause conflicts once applied, resulting

in a cascading series of patches [1, 14, 21, 47]. In this thesis we study how to address the

conflict of patching data structures on an application within a live process address space.

One of the main challenges of hot–patching a program is updating the context or se-

mantics that the source code of the patch modifies. The purpose of restarting or rebooting

the system is to restore the state of the program, this is, however, a disruptive activity

that interrupts the workflow of end–users. There are many applications (e.g., web–servers)

1A Norton patch [41] and a McAfee update [45] both presented unexpected behaviour which required
users to patch the already patched application. These cases are called cascade–patching.
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that cannot afford being restarted. For these applications, availability is important. We are

studying in this thesis how to recover and update these semantics, more specifically the ones

related to data structures. For doing this we randomly sampled 75 security patches and,

after an empirical evaluation of this dataset, we discovered that we are able to update 50.7%

of the dataset, we are not able to update 17.3%, and the remaining 32% are not modifying

any data structure and thus not modifying the data semantics of the program.

1.2 Learning to Data Patch

When compared to software, patches are simpler to analyze and reverse-engineer because

they are a subset of a larger set of statements representing the software. However, they also

rise some challenges, such as deduction of the context of the patch’s statements, that we

need to understand in order to achieve a successful live–update.

One of the most difficult challenges of hot-patching an application is understanding the

context or semantics of the statements we want to patch. Patches operate on a group of

statements that need to be updated because of vulnerabilities they bring to the application.

However, they do not specify the new semantics that the patches bring to the application.

For the purpose of gaining a broad understanding of how patches modify the operational

semantics of existing data structures, we analyze a set of seventy-five patches from a variety

of open-source projects. After analyzing the set of patches, we were able to conclude that the

statements of the patch that modify data structures can be translated to a set of primitive

operations similar to those encountered in database operations. This is related to one of our

hypotheses in Section 1.5.1, which states that these primitive operations are regular enough

to model in a principled fashion.

Based on this observation, we define this set of operations as read, write, compare, search

and one of the objectives of this thesis is to understand how we can translate statements

encountered in patches into these operations, and then dynamically apply them using our
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Figure 1.1: An example of a patch for the algorithm ApplicationExample that modifies the
condition from “elements need to be below 10” to “elements need to be above 10”. The
+ statements in the patch are the ones we are introducing to the application.We focus
on patching the new data semantics security patches are introducing and this is one type of
operation we found in our dataset analysis. We defined the operation as an if–case modifying
a data structure.

system presented in Chapter 6.

1.2.1 Key Challenge: Updating Data Structures

One of the techniques to dynamically apply a security patch into an application is called

Dynamic Software Updating (DSU). DSU has been extensively studied in the past by several

authors [60, 49, 46, 44, 19, 56, 13]. However, it has not been completely achieved or imple-

mented in current systems. Most commonly used operating systems and applications need to

be restarted after updating. In this thesis, we address the issue of updating data structures

in the application according to a security patch. Imagine a very simple application, such

as one that updates elements in a list according to their values, as an example refer to the

Algorithm proposed bellow.

1: procedure ApplicationExample
2: int list [10] // statement representing a list of elements
3: for (i = 0; i<10; i++) // lookup elements in the list
4: if (list[i] < 10)
5: list[i] = 0; // make the element in the list equal to 0 if the value is less than 10
6: end procedure

Let us suppose that we found a vulnerability related to elements with values below 10.

We want to apply a patch that modifies lines 4 and 5 of the application’s source code. For

that, we can issue a patch that modifies the source code as in Figure 1.1.
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We are not only patching an arbitrary piece of source code, but also changing the se-

mantics of some data structure in the program. The patch can also be read as “from now

on, whenever list[i] is bigger than 10, make list[i] equal to 0.” This example help us start

analyzing how patches modify data structures. The critical research question we focus in this

thesis is an examination of these modified semantics and whether they can be automatically

applied to existing data in the program’s memory space.

In the example, we need to meet a condition (the element to be compared to 10) in

order to modify list[i], which is an element of a list. Previous hot patching frameworks

would focus on updating the source code of the application, but there is something more

happening in context: the modification of data structures. If we only update the patch code

of the program, the list will remain with its previous states or data values. We want list to

be updated according to what the patch implies with its new data semantics.

We want to data patch list and update it according to the new semantics the patch in

Figure 1.1 entails. More precisely, to analyze the data semantics of list we compare the

list[i] element to the value 10 then, if the case is valid (i.e., if the value is 10), modify the

value of list[i] to be equal to 0, otherwise leave it as is. This combination of operations is

what we define in this thesis as a data patch.

Our purpose is to add a feature to security patches that makes hot–patching easier to

achieve. Since we focus on hot–patching data structures, we designed a relational–algebraic

language capable of updating these data operations by using our four operators search,

read, write, and compare. One attribute that was challenging to retrieve was the address

of memory–allocated data structures, we achieved this by using Pin [37], and the DWARF

info [66]. We think it would be ideal (i.e., making hot–patching a feasible activity) to

implement a mechanism capable of tracking the type of memory allocation results in a

programming language like C. A data patch for Figure 1.1 constructed using our language

would be as follows:
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1: procedure Primitive Operations Translation of Patch1
2: search: list
3: read: list[i]
4: compare: list[i] > 10
5: if (list[i] > 10) then: write(0) into list[i]
6: else: do nothing
7: end procedure

Figure 1.2: Example of a source code patch. The - sign represents the old statement that
we are modifying, the + sign the new statements. In this case, the new statement represents
the declaration of a new variable. The second new statement represents the modification of
an existing variable.

Note that in the previous example we used the operations introduced in Section 1.2.

We define a language with primitive operations {read, write, search, compare}, which are

operations often used in databases. By updating the state of the data structures in the

system, we move a step forward into achieving hot-patching. We are advancing the field of

hot-patching by focusing on one of the main obstacles for dynamically updating applications,

which is resolving conflicts obtained by updating data structure semantics. Some examples

of the patches that we are able to hot–patch their data semantics are shown in Figure 1.2

and Figure 1.3. Also, in Figure 1.4, we illustrate the process of hot–patching data structures

using DPL.

One of the main advantages of using a database approach, when defining our set of

operators for constructing a data patch, is having basic and primitive operations in our

language that follows principles of relational–algebraic databases (such as MySQL). This is a
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Figure 1.3: Example of a source code patch. Similarly to Figure 1.2, the + statements are
new statements for the application. In this case we are modifying the value of a variable by
following a condition (i.e., if the condition meets, then modify the variable). We also change
the control flow of the program when returning NULL.

basic concept for language theoretic security [2], where using a well-defined language assures

its security.

1.3 Thesis Scope

Having to restart an application after updating is not a new problem, but it still remains

a very important, and difficult one. When we hot–patch an application, we are not only

introducing new source–code but also adding or changing control flow and data semantics;

this can introduce conflicts into the new state of the application. We think the solution we

present in this thesis is novel, and is directed to solve the conflicts introduced when changing

the data semantics of an application after dynamically updating it with a security patch.

We must also clearly state what is the range of operations that our system is capable of

updating. The purpose of the system proposed in this thesis is to execute our design and

demonstrate how it is capable of updating data structures from a running application. The

techniques that this thesis presents can be used to help advance the field of hot–patching,

or dynamic software updating, by introducing a new technique focused on updating the new

data semantics introduced by a patch.

Our system is not yet capable of updating complex applications (e.g., the ones which

security patches we are studying) because of technical limitations. However, the purpose of
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Figure 1.4: An illustration of how DPL patches an application by getting as an input the
DPL object and the application to be patched. By the end, the application’s data structures
are updated according to the data patch without interrupting the process.
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our proof of concept is to demonstrate the three main steps in this thesis: importing data

structures from an application, patching or modifying the data structures, and exporting

them back to the application to update its state. We demonstrate this by using different

experiments we explain in Chapter 7, and use these steps to hot–patch data structures of a

small test suite we present in Chapter 8.

The approach that we take on this investigation integrates elements from systems se-

curity, hot–patching, database systems, machine learning theory, dimension–reduction, and

assembly-level languages.

1.4 Motivation

The issue of restarting applications after being patched has been studied by different authors

over the last decade [38, 35, 57, 49, 60, 46, 56, 13]. There are a lot of studies on dynami-

cally updating applications (i.e., without restarting them) under different names (e.g., Hot

Patching [49], Dynamic Software Update [19, 60], Self-Healing [44]). However, at least to

our knowledge, there is no framework that is capable of correctly patching an arbitrary

application, therefore restarting applications after patching them remains an issue.

We assert that some developers of these frameworks do not take into consideration many

conflicts that arise from hot–patching an application. In this thesis we are not studying how

to dynamically modify or update source code, we are focusing on how the data semantics

of an application are modified once applying a patch. This is the main motivation of this

thesis.

In other words, we study the conflicts that security patches may introduce, with particular

attention to how such patches interact with the existing state of data in an application.
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1.5 Thesis Statement

The main purpose of this thesis is to advance research in the hot-patching field further

by introducing a new technique to study the data semantics that a patch introduces to

an application. Dynamically patching existing security–related flaws presents two related

problems: (1) triaging the data semantics of the code patch, and (2) patching the line code

and data in the application.

Thesis statement: It is feasible to construct a model of common data–patching operations

and apply combinations of those operations to real applications in order to update statements

that are modifying data structures to fix flaws related to software vulnerabilities.

We study how statements that modify data structures introduce new data semantics

to the application. Based on these studies, we design and implement a framework that

successfully patches the data semantics of an application when dynamically applying a data–

patch.

1.5.1 Hypotheses

We are focusing on dynamically updating what is considered to be one of the main conflicts

occurred when hot-patching: the data semantics being out of date. To do so, we need to

understand how a patch modifies data structures and be able to update them with our

system. The set of hypotheses we will be studying in this thesis is:

Hypothesis A: Security patches, typically, modify a small set of statements related to

data structures.

Hypothesis B: We can classify statements that are modifying data structures into dif-

ferent categories that we define as data operations.

Hypothesis C: We can use these data operations to dynamically update existing data

structures according to how security patches modify data semantics.
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Hypothesis D: DPL has enough computational power to update the data semantics of

a set of programs written in the C programming language.

1.6 General Research Questions

Based on the previous hypotheses, we decided to answer the following research questions:

1. By studying our set of 75 security patches, can we generalize statements mod-

ifying data structures by selecting a set of common data operations?

2. How many security patches are we able to express using our set of data oper-

ations?

3. Are we able to automate the task of selecting patches that are feasible to

translate to our set of data operations?

4. Can we design, and implement a system for updating applications according

to our set of data operations?

5. What is the performance and overall evaluation of the aforementioned system?

This, however, is not our final set of research questions. In further chapters we expand this

set of research questions by adding specific research questions that we think our experiments

address.

1.7 Contributions

To the best of our knowledge, there are no measurements of how data is modified by a

patch. Our work provides evidence to support that we can classify patches according to

feasibility and difficulty of applying them to an application by taking into consideration

data modifications. We also study if we are able to apply machine learning techniques
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to our dataset and present results according to our evaluation. Besides, we present an

implementation of a proof of concept for DPL, a framework capable of hot–patching data

structures of an application according to how a security patch modifies them. This proof

of concept is able to patch basic running applications using the heuristics explained in this

thesis. We explain the design of each application in Table 8.6 of Chapter 8.

1. We provide a set of data operations that describe common statements, rep-

resented in security patches, to modify data structures. We call these data

operations Data Modification Machines (DMMs) and they work as a classifi-

cation for different types of data modification statements we encountered in

our study of security patches.

2. We manually classify 75 security patches of different open–source projects

(including Apache HTTPD, Samba, and Asterisk) into feasible or infeasible

patches depending on whether or not they are translatable to our language of

data operations. We found 38 of these patches to be feasible and 13 infeasible

to implement using our set of DMMs. The remaining 24 patches do not modify

data structures when applying them to an application.

3. We automate the task of classifying security patches by using machine learning

algorithms (Support Vector Machines) to predict if a security patch is feasible

to translate into our set of data operations.

4. We propose a proof of concept for a system capable of dynamically updating

data structures of different C applications according to a security patch.

5. We present an analysis, and implement our set of data operations using the

DPL system. We also provide a description of how DPL patches the data

structures of an application according to 5 different security patches. Our sys-
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tem successfully uses our DMMs to hot–patch the data structures of simple C

applications, according to security patches, with a low performance overhead.

6. As a corollary, we propose different applications for DPL including its func-

tionalities as a hot–patching framework, and a data structure modifier. In the

future, we plan to deploy DPL as a system for patch developers to test if a

patch could introduce conflicts when being hot–patched.

1.8 Thesis Overview

The remaining of this thesis is presented as follows:

In Chapter 2, we present the related work of the thesis and provide background material

of what our work is addressing. This includes related work in hot patching, data structure

modifications or recovery, and machine learning techniques applied over source code.

In Chapter 3, we provide a design of our approach for solving our main research question.

This section is divided into three different subsections explaining the design of the three main

components of this thesis. These components are: manual analysis of patches, applying

machine learning on patches, and DPL proof of concept.

In Chapter 4, we present the manual analysis of security patches. This manual analysis

consists of translating patches to a primitive language, then to a graphical representation

of this language, and finally to a feature vector that works as an input for our machine

learning algorithm. We also manually classify the patches as feasible or infeasible and attach

a respective classification label (i.e., feasible or infeasible) to each feature vector.

In Chapter 5, we present a machine learning approach for classifying patches as feasible

or infeasible. By using support vector machines, we provide them the feature vectors defined

in Chapter 4 as an input and get the feasibility of the patch as an output. Finally, we present

the results of the SVM prediction for this classification.

In Chapter 6, we explain the implementation of a framework for DPL capable of per-
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forming the import and export routines, the Data Structure Recovery (DSR), and the live

modification of data structures according to the data patch object.

In Chapter 7, we present an evaluation to demonstrate the capabilities of the DPL System.

The test suite demonstrates different data modification statements that were studied when

analyzing the set of patches.

In Chapter 8, we discuss the results of the manual analysis and translation of patches,

machine learning techniques applied to patches, and the evaluation of the DPL system.

At the end, we conclude this thesis, and present suggestions for future work.

14



Chapter 2

Background and Related Work

The technique of patching applications without stopping a process has been extensively stud-

ied in the past years. Even though there has been progress in the last decade, it has not

been deployed for commercial applications or systems yet. Several authors [] have addressed

this issue by developing frameworks for dynamically patching an application in many differ-

ent programming languages. Other authors focus on hot–patching kernels, a more specific

approach than hot–patching applications since some authors implement kernel modules to

do the task automatically [4, 5]. Patching applications without restarting the process after it

has been updated is a technique studied by authors under different names. Common names

for this technique are dynamic software updating (DSU), self–healing, and hot–patching.

Besides these techniques as related work, DPL is also related to other concepts of com-

puter science such as machine learning algorithms, databases, and Binary Instrumentation.

This chapter starts by giving an overview of the background concepts we think are necessary

for understanding subsequent chapters. We then analyze different research that is related to

the objectives of this thesis and explain at the end how our heuristics differ from others.

2.1 Security Patches

Applying security patches is a common defensive practice for modern software systems. They

offer a quick fix for vulnerabilities encountered in already deployed software applications.

This eases the process of updating an entire application by isolating the piece of source code

that has the vulnerability. Our framework consists of a manual workflow where we construct

a data patch object according to the source code we analyze, and an automatic workflow

where we import, update, and export the data structures of different programs.
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For this thesis, we consider the isolation of operations that security patches provide as

one of the main advantages for hot–patching data structures. As an example of an isolation

of operations provided by a patch, we can refer to Figure 2.1 which shows a security patch

that fixes a vulnerability in the open–source project Samba. This security patch focuses on

fixing a particular if–case from the application that brings a vulnerability that allows local

users to modify the membership of Unix groups. Many security patches studied in Chapter

4 take this approach – patching a constrained operation – when fixing vulnerabilities. Our

hypothesis A in Section 1.5.1 looks for a mechanism to translate these operations into a set

of data operations, taking advantage of the constrained scope security patches modify on

software systems.

2.1.1 Common Vulnerabilities and Exposures

Releasing software is a complex, hard, and – many times – a hasty activity; human beings

are not perfect, therefore developers make mistakes when releasing their software. These

mistakes could lead to vulnerabilities that attackers target. Some examples of these vul-

nerabilities are zero-day vulnerabilities [8] that many security engineers have found in early

releases of applications, operating systems, and service packs. Many open source projects

obtain feedback from security engineers or other developers about possible vulnerabilities

that were found in their source code. This feedback helps for creating a security patch

to fix these vulnerabilities. We define a security patch as a piece of source code de-

signed to fix a security issue, by modifying the application’s functionality, or the

application’s semantics. Figure 2.1, illustrates a few concepts from the patch:

• As its name says (CVE-2008-3789), he patch was deployed in 2008.

• It addresses the vulnerability CVE-2008-37891 explained in Figure 2.2.

1CVE stands for: Common Vulnerabilities and Exposures, and it is a database of publicly known infor-
mation security vulnerabilities and exposures.[64]
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Figure 2.1: An example of a security patch developed for Samba to fix vulnerability
CVE-2008-3789. As the Figure illustrates, it focuses on fixing a particular if case. This
is what we called an isolation offered by security patches.
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Figure 2.2: Example of a CVE entry. This CVE explains the vulnerability that the patch in
Figure 2.1 is fixing.

• It is modifying 7 lines of source code where 2 lines are empty spaces, 2 lines

are comments and 3 lines are statements.

• Of the statements being modified, it is possible that the variable db path gets

modified by the chmod function. Our system doesn’t handle this type of

operation because it depends on how the external function could potentially

modify the variable. However, we considered these statements when analyzing

data modification statements in Chapter 4.

Other terms that are related to security patches are vulnerability and exposure. Quot-

ing from the Common Vulnerabilities and Exposures (CVE) [64] website:

An information security “vulnerability” is a mistake in software that can be directly used by a hacker

to gain access to a system or network.

CVE considers a mistake a vulnerability if it allows an attacker to use it to violate a reasonable

security policy for that system (this excludes entirely “open” security policies in which all users are

trusted, or where there is no consideration of risk to the system).

An information security “exposure” is a system configuration issue or a mistake in software that allows

access to information or capabilities that can be used by a hacker as a stepping-stone into a system

or network.

CVE considers a configuration issue or a mistake an exposure if it does not directly allow compromise

but could be an important component of a successful attack, and is a violation of a reasonable security

policy
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2.1.2 Limitations of Security Patches

Many times, when deploying a security patch, developers aim to fix conflicts related to the

semantics of the application – making security patches hard to deploy without restarting the

system to a known state.

In this thesis, we focus on how the new semantics a patch brings to an application modify

components such as data structures declared in the application. This makes the application

to be out of date with the new state of the application after applying a patch. With this,

we can refer back to our thesis statement in Chapter 1 and focus on updating the data

structures to be in harmony with the new semantics entailed by a patch.

2.2 Components of DPL as a System

This thesis explains the design, implementation, and evaluation of the Data Patching Lan-

guage (DPL) System. DPL is a system that hot–patches data structures according to a

novel construct we call a data patch. DPL achieves hot–patching by attaching to a process

using the Pin dynamic binary instrumentation library [37]. After attaching to the process,

DPL parses the debugging information entries (DWARF [66]) of the application and imports

every data structure into a database. For storing the data structures into the database, DPL

uses a MySQL API offered for the C language. Then, DPL exports the data structures back

to the application and permits the process to continue running, therefore the process does

not need to be restarted. DPL achieves a dynamic update of the data structures of the

application while minimizing downtime or service disruption.

In this thesis, we assume that the information of the data structures (e.g., size, type,

name, value) is available either in the ELF [62] or a net service that the developers provide

for recovering the data structures of their application.

19



2.2.1 DWARF information

DWARF is an Application Binary Interface (ABI) standard that offers a detailed description

of the debugging information of a particular application. With DWARF information, DPL

obtains the address, data, name, and type of every data structure declared in the application.

An advantage of using DWARF is that it labels the data structures according to the scope

where they were declared. Therefore, we are also able to organize data structures according

to the functions where they were declared. This organization is convenient for dividing data

structures according to their scope in the application inside our database.

We worked with the Version 4 of the DWARF information. The API we used for parsing

the DWARF information is libdwarf [66].

2.2.2 Pin: Dynamic binary instrumentation

Another component of DPL is an interface that communicates with the Pin [37] library. Pin

is a dynamic binary instrumentation framework that offers a library and runtime compiler

to allow the creation of different tools to dynamically manipulate an application. This

manipulation includes the analysis of the architecture, and the injection of arbitrary source

code into the application. The C source code we inject into the application is related to the

heuristics used to hot–patch data structures that we explain in Chapter 6.

2.3 Related Work

DPL as a framework is related to several topics from computer science including shape–

analysis, hot–patching, self–healing, and binary instrumentation. As stated in the previous

chapter, DPL consists of three steps: the import routine which stores every data structure

of the application into a database, the modification of data structures using a data patch

object, and the export routine that updates the data structures. These steps are further

explained throughout the thesis, more specifically in Chapter 6.
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This section highlights how DPL relates to many other sub–fields of computer science

and how our approach differs from previous approaches aiming to successfully implement a

framework for hot–patching applications.

2.3.1 Self–healing mechanisms and Langsec

The concept of hot–patching can be compared with software self–healing because we are

dynamically updating (i.e., healing) a process, or application. Software self-healing has been

an active area of research in the last decade. A fundamental paper that studied the philo-

sophical aspects of software self–healing and its implications, was presented by Locasto [36]

in 2007. This paper denotes one of the fundamental problems of security in computer sci-

ence, which is that program designs lack a complete description of how to handle errors.

Which brings us to the concept of LANGSEC [2], that is also related to this thesis because

by analyzing a description of an application (the DWARF info [66]) we were able to

handle errors (i.e., update applications according to the description). Another principle

defined in LANGSEC is the analysis of arbitrary computation in order to handle errors.

Arbitrary computation is one of the key problems when trying to update data structures

according to a security patch. It brings computation that we, or a machine, are not able

to predict correctly. We think that by applying the concepts of LANGSEC we are able to

improve our system, and other hot–patching systems by maintaining a discipline that tells

us about situations we cannot deal with.

Other approaches analyze the hardware architecture [54], or emulate sensors that detect

anomalies in source code [48, 52, 55, 65, 43], or hot–patch OS kernels [5, 11]. However, none

of these methods has been completely achieved or implemented in modern systems. We are

not aiming to develop a final product capable of being deployed as a framework for hot–

patching. The approach we are taking in this thesis is to attack one of the main obstacles for

achieving hot–patching, which is data structures being out of date with the new semantics

after patching an application.
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Even though our system has limitations, we are planning to deploy it as a test system for

patch developers in the future. This way, patch developers can study how a patch modifies

data semantics and tune the patch to be feasible to implement in a hot–patching framework.

This follows the principles of langsec because our system will evaluate computation that has

not been tested on large systems to see how semantics get modified and handle it to obtain

a secure and safe environment (i.e., the patch being feasible and safe to hot–patch).

2.3.2 Hot Patching and DSU

The technique of patching or updating an application without interrupting it or having to

restart it afterwards is known by many different names including hot patching and dynamic

software updating (DSU). There is a plethora of work [29, 60, 46, 49, 4] on this technique

and many authors are trying to address it by proposing different frameworks or tools. These

frameworks approach hot–patching the source code of an application according to a security

patch. Many authors of these frameworks have stated that dealing with complex statements

such as shared–library updates, data structure modifications, type definitions, and changes

to function prototypes makes hot–patching difficult to achieve [4, 49]. After analyzing our set

of 75 security patches, we concluded that many of these patches modify the aforementioned

types of statements. In this thesis we focus on one of these types: statements that are

modifying data structures.

One common mechanism to address hot–patching is by proposing frameworks such as

[4, 6, 12, 39] to target OS Kernels. Arnold et al. [4] presented Ksplice, a system capable of

hot–patching the kernel according to security patches and, in some cases, by introducing new

lines of code to the security patch. They studied conflicts that security patches present when

modifying data structures and concluded that patch developers can correct most security

vulnerabilities without making any semantic changes to persistent data structures. They

also found it inevitable to add new lines of code when data structures are modified by a

patch. The purpose of the new lines of code is to specify the semantics of these statements,
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for example in some cases modifying a field of a data structure implies modifying many

instances of that data structure, therefore Arnold et al. include these semantics as new lines

of code for the patch. However, it is hard for patch–developers to fix every vulnerability

without eventually changing a data structure. This is why we study the problem of hot–

patching data structures on its own.

Da Silva et al. [5] uses a different approach by implementing a dynamic update framework

into an already existing operating system (K42). They were able to dynamically update

large data structures by using a technique called lazy update [29], where data structures

were patched at runtime as needed. However, the scalability of their framework is different

than ours, since theirs was directly implemented according to a specific OS. We used our

framework to hot–patch more general small applications that have in–memory resident data

structures inside. Therefore, we decided to update all data structures at once instead of

using a lazy update.

Other authors, such as Candea et al. [10] address this issue by issuing micro-reboots

which is another mechanism for hot-patching, it updates components of the application

without interrupting the rest of the application. On the other hand, many different au-

thors [25, 42, 3, 26] address hot patching by targeting applications. These scientific papers

approach hot–patching by implementing a framework capable of dynamically updating source

code. However, none of these frameworks are able to correctly patch the new data semantics

introduced by the patch. Many authors have issues trying to update local variable modi-

fications or more complex data modification statements. We address many types of data

modification statements in this thesis, including local variable modifications.

Even though there is a plethora of work on the field of hot patching, it still remains to

become a mainstream technique. Many operating systems still need to be restarted after

an update due to inconsistencies in their states. This is why many authors [42, 27, 24, 9]

address hot patching in an update-point approach (i.e., by updating the application only
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at certain points of its execution) and only updating when the code and data to be

patched are not being executed. DPL can be executed at any point while running the

application, but it still has some technical limitations that makes the task of patching an

arbitrary application difficult to achieve. Nonetheless, we have to remember that DPL was

designed and implemented to aid hot patching by studying how to correctly patch data

structures without getting inconsistent states.

2.3.3 Genetic Programming

There is also some work on genetic programming [65, 22] on where a program understands

how to dynamically patch itself by evolving its source code to fix the error. However, this

approach is very different from previous approaches because of the lack of a security patch.

Applying genetic programming for hot–patching applications assumes that the application

is capable of hot–patching itself. But the case studies for these approaches are very limited

for successfully achieving hot–patching in an arbitrary application.

We think that collaboration between patch and application developers is the key for

successfully deploying security patches that are hot–patchable.

2.3.4 Data Structure Modifications and Shape Analysis

The main approach of this thesis is to update data structures according to security patches.

The C programming language offers a rich and complex environment with many ways to

declare data structures. There are many techniques (e.g., different techniques for creating a

linked list or a tree) and many scopes (e.g., global variables, dynamically allocated variables)

to declare variables. DPL’s task is to correctly deduce and parse every data structure declared

in the application. There are many approaches to deduct these data structures and these

mechanisms are going to be explained in this subsection. To see the heuristics used for this

thesis we can refer to Chapter 2 and 6.

Cozzie et al. [17] were capable of, by having a memory image of an application, detect and
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deduce its data structures. One of the main problems that they found, when implementing

their system Laika, is that they could not define an ending point for pointers, therefore they

estimated an ending point for the structures pointed. We were able to find ending points

for pointers by having the properties of the data structure (given by DWARF) they pointed.

The biggest similarity between Cozzie’s work and mine was the use of a memory image for

deducing data structures. We used Pin in a similar fashion to store the data structures

into my database. Other shape analysis work can be found in Corbett’s research [16] and

Manevich et al. [40], which aims to study a higher-level approach than Cozzie’s by studying

the set of allocation instructions that modify the heap of the application – although Corbett’s

work was more focused on object-oriented concepts offered by Java.

Shape analysis is a broadly studied concept, some of the most prominent work dates back

in 1996 when Ghiya et al. [23] and Steensgaard [58] started studying how pointers that

point to the heap can be used for deducing the type of data structure they are pointing to

by using recursion.

The concept of analyzing structures using pointers, to deduce the type of data structure

and its values, is used in the field of shape analysis. For DPL, we analyze pointers by

using the DWARF information [20] and dereferencing the addresses of the members of the

data structures. By the end of this thesis, we are able to deduce linked lists and other data

structures defined in our test cases and we are able to store these data structures into different

tables in the database. Other work in data structure analysis is by Chilimbi et. al. [15] where

they study, from the point of view of programmers, how to improve the locality of pointer–

based data structures. This is a challenge we also encounter in our research, because there

are many ways to define data structures in C, and thus many ways to parse the debugging

information of data structures.
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2.3.5 Machine Learning Techniques on Source Code

Applying machine learning techniques to the problem of patching is, to the best of my

knowledge, something new to the machine learning field. There are many machine learning

techniques that have been applied in the security field before (especially in the intrusion

detection field), but we could not find any implementations of machine learning over patches.

We decided to use Support Vector Machines (SVMs) using R [31] as our algorithm because it

is a common technique used by other approaches for learning from source–code [50, 59, 63].

However, classifying source code with a signature-based approach is similar to how our

SVM classifies a patch. Having an intermediate language is used for applying machine

learning techniques on virus analysis [50, 59] and similarly with spam analysis [63], where

spam is classified according to a pre-determined set of keywords and virus analysis with a

signature based approach. The similarities between spam and viruses with our work is that

they also use intermediate language to express source code. This is the main reason why

we decided to use SVM as our machine learning algorithm for classifying our dataset. By

having an intermediate representation of our patches, we get 15 different features explained

in Chapter 4. We then represent these features as a 15-Dimensional vector that works as

input to our SVM.

2.4 Unaddressed Challenges

A limitation we find in current DSU/hot–patching systems [60, 46, 49] is that they go straight

to the point by designing and implementing some heuristics for hot–patching source–code.

We found this to be a very difficult principle to follow when trying to achieve hot–patching.

We think of hot–patching as an art, or technique that requires some previous analysis – this

is why we decided to first study our set of patches and then create our framework. The

detailed analysis of our patches explained in Chapter 4 helped us to address some challenges

that we think most hot–patching frameworks do not meet. Some of these challenges are:
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Implement General Data Operations for Translating Source–Code Statements

Our empirical study in Chapter 4 helped us understand the semantics of operations

related to data modifications introduced by a patch. We classified these operations into

several groups of statements according to the operations they are addressing to patch.

As an example, many security patches modify if cases by introducing new variables,

changing their if–conditions, or modifying existing variables inside the scope of the if–case.

We classified these operations as a particular data operation that modifies the heuristics of

if–cases. These data operations were called Data Modification Machines (DMMs) and are

explained in Chapter 4. We finally implemented our set of DMMs in Chapter 7.

Automatically Classify Security Patches

According to the results of several authors [25, 42, 3, 4], some patches are going to be

harder to hot–patch than others. Moreover, some patches are going to be infeasible to hot–

patch because of the complexity of the operations being updated. We decided to automate

the classification of patches as feasible or infeasible to hot–patch according to the type of

statements they are modifying. These classification helped us understand what type of

data modification statements create more conflicts when hot–patching an application, and

constrained us to a set of feasible patches to experiment with our DPL System.

Hot–patching Data Structures

The main challenge that our DPL System addresses is the task of dynamically updat-

ing the data structures of an application according to a security patch. This updates the

application to a new state according to the data semantics introduced by the patch. We

implemented a framework named Data Patching Language System (DPL System) that is

capable of instrumenting over an application to dynamically update its data structures. To

the best of our knowledge, there are no other implementations of hot–patching data seman-

tics of an application making it our main contribution in this thesis.
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Chapter 3

Design Overview

In this chapter, we explore the design of the workflow in this thesis: our empirical study of

security patches, automating their classification as feasible or infeasible, and implementing

our proof of concept for the DPL system. Our empirical study consists of a manual analysis

of our set of 75 security patches. With it, we study the operations involved in applying a

security patch to an application. We analyze the set of patches in order to understand how

data structures were modified by a security patch, and how to apply those changes using the

DPL system. After studying the patches, we created our concept of data operations (which

we called DMMs in Chapter 4), we also started manually classifying patches as feasible if

we are able to translate them to our language, or infeasible otherwise. At this point, we

started questioning if it was possible to automate this classification of security patches by

using machine learning techniques. We decided to use Support Vector Machines (SVMs) for

doing the task of classifying patches according to what the machine learns from our manual

classification. Finally, we used a subset of the patches predicted as feasible for hot–patching

data structures on simple application. These experiments are presented in Chapter 7.

3.1 Workflow and Experiments

The workflow of our analysis of patches consists of seven main stages. We provide a brief

enumeration of this workflow here and follow it with a high–level explanation of the ma-

jor steps. This workflow consists of a procedure that begins with the analysis of patches,

continues with the application of SVM and PCA [30], and ends up with getting results by

applying the testing dataset to our SVM. Finally, we discuss the workflow involved in the

design of our DPL system.
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We first gathered 100 different patches from open source projects such as Apache, HTTPD,

Asterisk, and Samba. Most of these patches are in the C programming language and were

released between 2001 and 2012. We discarded 25 patches because they represented non–

security patches or contained a number of combined updates whose joint size would have

frustrated manual analysis. The analysis of the security patches does not only consist of

counting the number of lines introduced by the patch, but also consists of a detailed analysis

of the type of statements the patch is introducing. This analysis includes recognizing the

statements that are modifying data structures and translating them to our language. If we

are capable of translating the patch into our four data–operations then we are able to update

its data semantics. Otherwise, we are not able to update them using our language.

Then, we manually translated each patch of the training and testing datasets into their

graph representation, according to the heuristics defined in Chapter 4. We then translate

each graph into a vector that represents all of the attributes, or features, from each graph.

This is considered to be our initial feature vector. We also present the definition of Data

Modification Machines (DMMs) as a group of operations resulted of classifying data opera-

tions according to how they modify data structures.

We apply PCA over the initial feature vectors to see their correlation. PCA gives us

the most independent features which are then considered to be our final feature vector.

We manually traced each of the 75 patches to classify them according to our definition of

feasibility. This consisted of a careful and detailed analysis of each statement in the patch.

By having a final feature vector of all the patches in the training and testing datasets,

we gave the training feature vectors as input to our SVM in the form of a matrix. Each

vector includes a label classifying it as “feasible” or “infeasible” according to step 5. We

then apply our testing dataset, without any labels, as a feature vector matrix. Our SVM

gives a prediction on feasibility according to what it learned. Three different experiments

were studied over this set of patches.
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Experiment 1: We select 50 patches that represent our learning data and 25 that

represent our testing data. We decided to use these numbers so the majority of the patches

is in the learning dataset. We then did the opposite in our second experiment and compared

both results. We manually categorize each patch as feasible or infeasible, and apply the

learning dataset to a Support Vector Machine (SVM) algorithm. We then provide the testing

dataset to the SVM and get the prediction results according to what the SVM learned about

the dataset.

Experiment 2: Similarly to Experiment 1, we also provided a learning and testing

dataset to the SVM. This time we use different combinations of the dataset by randomly

selecting 30 data points as the learning dataset and 45 data points as the training dataset

in five iterations. The majority of the patches is this time in the testing dataset.

Experiment 3: This experiment consisted of a leave–one–out cross–validation approach.

Our intent with this experiment is to evaluate each patch as a testing dataset and use the

rest of the patches as learning dataset. The results for this experiment were consistent with

Experiments 1 and 2.

After getting the results from our SVM, we gathered the patches that our SVM predicted

correctly (i.e., was predicted to be feasible by both our analysis of patches and the SVM) and

use them for our experimental methodology – the experimental methodology is explained in

Chapter 7.

The implementation of our proof of concept for the DPL System consists of four main

stages. These stages or steps define the process of hot–patching data structures using our

system:

The first step is the creation of a Pin tool that is capable to attach to a running process

and inject arbitrary C/C++ code. Inside the Pin tool, we designed a communication with

a MySQL database by using the MySQL C API. The second step of the design of the

framework is the importation of every variable and data structure from the running process
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to the database. This was divided into:

• Global Variables: Every globally declared variable and data structure was

included in a table called “Global Variables”.

• Local Variables: Every variable that is currently on the stack was included in

a table called “Local Variables”.

• Dynamically Allocated Variables: Every variable that was dynamically allo-

cated (by using a memory allocation function from C), was included in a table

called “Dynamic Variables”.

• Data Structures: Every instance of a data structure, such as a linked list,

detected by our framework was included in a table named as the structure.

Examples for how we stored these data structures in our database are presented

in Chapter 6.

Then, we update the database using a set of SQL statements in the form of a data patch

object to be consistent with the semantics introduced by the patch. Finally, we export all the

data structures and variables back to their respective addresses according to the database

metadata. After updating the variables inside the program, the Pin tool detaches from the

application and the process was updated according to the data patch without being restarted

or interrupted. We then experiment with DPL by modelling the DMMs and some of the

security patches predicted as feasible by the SVM.

3.2 Manual Analysis of Patches

The main goal of this thesis is to characterize what makes a patch feasible, according to

our definition of feasibility in Section 4.3, and use the feasible patches to evaluate our proof

of concept. The mechanism we use to characterize these patches is by analyzing a dataset
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of patches and stating how many patches out of the dataset modify the heuristics of data

structures. This would tell us a percentage of patches that could result in conflicts when

using a hot–patching framework if the data structures of the application are not updated

after applying the patch.

We can see this analysis as an empirical study that helps to understand how patches

modify data structures, which statements or operators are commonly used to modify them,

and to obtain a set of statements that represent algorithms that we can use to update

data structures. We define this set of algorithms as the set of Data Modification Machines

(DMMs), and they are explained in Table 4.1.

With this analysis of patches, a first research question arises: How many of these patches

are we able to express in the form of a data patch?

We could also see a data patch as a group of statements that uses primitive algebraic

operations such as read, write, compare, and search1 to correctly patch the data with the

new semantics that the patch implies. We can define a patch to be feasible to implement as a

data patch when we are able to express the data modification operations using the previously

mentioned set of operations. We also want to study if there are any other variables that

define feasibility on a patch, such as its control flow, lines of code modified, or other variables

that we suspect define feasibility on a patch. We aim to automate the process of defining

feasibility on a patch, therefore we conclude that one automation mechanism can be applying

machine learning algorithms to the dataset.

3.2.1 Translation of Source Code into Graph Language

Several authors[50, 59, 63] have addressed the application of machine learning techniques

over source code by using an intermediate language. A common technique is to translate

source code to a graph language, such as an abstract syntax tree (AST), and then apply a

1We can think of these operations as the ones we are capable to perform over data in a database, which
is going to be used by DPL.
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machine learning algorithm to the graph. However, ASTs did not fit well enough with our

purposes. We wanted the nodes of the trees to represent different types of statements and

to be able to generalize statements according to their purpose. Each type of node is further

explained in Table 4.1 of Chapter 4.

We decide to use SVMs as a machine learning algorithm because it is the most commonly

used algorithm over source code and intermediate graph language. However, SVMs need a

feature vector as an input. For getting this vector we followed several steps by answering

the following questions:

1. How many and which features can we get from a graph? ASTs have many

features that can be considered for our purposes. These features are further

explained in Chapter 4.

2. Can we hot–patch data structures according to the control flow of the graph?

Because each node represents the heuristics of how data needs to be patched,

and the leaves of the trees represent the data modifications, we can think of

the control flow of the graph as the control flow of data operations in a patch.

3. From the set of features, which features are the most independent and tell us

more about the graph? For answering this question, we used a dimension-

reduction technique called Principal Component Analysis (PCA).

3.2.2 Features of a Patch

We chose what we considered to be the most important features for the patch graphs, which

included their cyclomatic complexity, computational cost, and number of primitive opera-

tions, among others. We also included features of a patch according to its data modifications,

and our four data operations. These features include the number of write, search, read and

compare operations, function calls returning variables, and the number of operations inside

a loop.
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Each graph represents the control flow of a patch according to its data modifications.

The leaves in each graph are the data modifications, and each subtree represents the way

these data modifications are stated by the patch. We can think of this feature vector as the

complexity of a patch, which is related to the control flow of its data modifications.

3.2.3 Feasible and Infeasible

We categorize patches as “feasible” or “infeasible” depending on the ability to update the

data structures of the application to be consistent with the new semantics introduced by the

patch. In other words, if we are able to translate a set of operations that are modifying data

structures, into a data patch then we consider the patch to be feasible to implement by our

definition of feasibility.

Feasibility in our work is defined as being able to correctly update every data

structure in an application according to the new semantics implied by the patch.

However, if we are not able to update the data structures according to the patch, we think

that hot patching it would be infeasible because of inconsistent states of data structures.

For our studies, we defined feasibility to be a binary decision of yes it is feasible or no

it is not, this decision is resulted after analyzing a patch. If a patch is found to be feasible

then it means that the application does not have any conflicts within its data structures

after hot patching the patch. In other words, we are able to update the data structures of

the application according to what we parsed from the patch.

For a statement to be feasible we need to be able to translate it into simple data manip-

ulation operations. We defined this set as {search, read, compare and write }. However, we

are not able to express every statement using these operators. We need more computational

power than what these statements offer in order to express every possible statement in a

patch. However, we can model many functions and operators that do not involve arbitrary

computation.

Most of the patches we found to be “infeasible” were because of expected user input,
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radical changes of the control flow (e.g., calling a function that calls another function), loops

that recursively call functions and modify a variable according to the return value of the

function or undecidable computation (e.g., modifying the if case condition but not the data

within the if case scope). The concept of feasibility is further explained in Section 4.3.

3.2.4 Labeling

We must first label each member of our training dataset as feasible or infeasible. We manually

study each patch in our training dataset and analyze its feasibility. This is done by trying

to model each patch’s data modification logic using relational algebraic operations.

This labeling activity is a prime example of the difficult and time–consuming nature of

patch analysis and classification. This limited our research to some extent; translating each

patch into its feature vector form could be automated, but the process of labeling a patch

for the supervised learning process and verifying the results of our testing dataset cannot be

automated. This process requires us to trace the source code of each patch in the training

data set and see if we are able to express every function and library call. This is a non-

deterministic process, and there is no known algorithm to determine this. The process of

preparing our data to work as input for the SVM is explained in Figure 3.1.

3.3 Applying Machine Learning on Patches

The process of classifying a patch as interesting2 is a manual process that requires careful

study of the patch that we want to apply. Moreover, not every patch with statements that

modify data structures can be patched. This brings us to classify patches as feasible or

infeasible, according to the feasibility of updating data structures in the application to be

2A patch is interesting to our framework when there is a need to update the data structures of the
application after applying the patch.
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Figure 3.1: Diagram for the process of analyzing and classifying patches.

synchronized with the patch. By using machine learning techniques, we could automate the

process of classifying a patch as feasible or infeasible. For future work, we plan to include

more researchers to study these patches as a cross–validation technique to compare their

results with our results.

To classify patches, we first need a way to represent patches as input for a machine and

choose the best machine learning technique for classifying. Other authors [51] have used

machine learning techniques, such as Support Vector Machines (SVMs), over source code

by having an intermediate representation of the source code as graphs. We take a similar

approach by translating the control flow of a patch into a graph, where the leaves of each

subtree represent data modifications. We then extract the features of each graph into a

feature vector for our SVM.

After translating each patch into its vector form and labelling it, we use it to train

our SVM. We obtain a hyperplane and study a possible relationship between features and

feasibility. The rest of the patches work as a testing dataset and they were used to see how
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well the hyperplane classifies a patch.

3.3.1 Applying PCA over data

After translating the patches into their ultimate form (a feature vector), we get a 15-

dimensional vector which brings a lot of noise and could bring false positives and false

negatives to our results, the 15 features are explained in Chapter 4. Also, a 15-dimensional

feature vector is hard to map into a vector space, that is why we decided to apply a dimension

reduction technique called principal component analysis (PCA).

PCA is a statistics technique that reduce the size of a set of features according to their

co-dependence. More precisely, by having our set of 15 different features, we can map them

to a set of lower features that highlights the most independent set of features. When applying

PCA, we mapped our 15-dimensional vector to a 4-dimensional. This not only reduces the

noise and bad results of our dataset, but also makes easier and faster the process of obtaining

the four features for having a feature vector of a patch.

3.3.2 Using Support Vector Machines

SVMs are a supervised machine learning technique (i.e., we used labeled data to train the

machine, specifying whether or not the patch was feasible). The training dataset defines a

hyperplane that separates feasible from infeasible patches.

The focus of our study is whether there exists a relationship between the set of features

for each graph and our definition of infeasibility for a patch. More precisely, after applying

our SVM and defining a hyperplane – which is the relationship of the feature vectors of

our training data – and getting positive and negative data points by labeling the data set

with feasible or infeasible, we want to study a possible relationship between the features

and feasibility, and see if the machine can classify arbitrary patches by taking their feature

vectors as input.
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Why should we use machine learning algorithms? To investigate the applicability of trans-

forming security patches into a form suitable for hot patching, a first approach might man-

ually analyze each patch and attempt to express it as a “data patch.” This is a tedious

and error-prone process which consists of tracing the control flow of each patch. An auto-

mated approach could take advantage of the speed and scale of machine learning techniques

to classify these patches by first having a small subset of patches already classified with a

corresponding label of “feasible” or “infeasible.”

After studying seventy-five different patches, we came to the conclusion that, in order

to correctly label these patches, a careful and long manual study needs to be made. This

process could be shortened if we find some mechanism to express a patch as an input for a

machine learning algorithm, this way obtaining the label for the patch as an output.

3.4 DPL Tool

The final step, after analyzing the patches and programming the SVM to classify them

according to feasibility, is the creation of a tool capable of hot–patching the data structures

of an application. The purpose of DPL is to address the conflicts created by modifying

data structures with a patch. Therefore, DPL is used to update the data structures of an

application according to the new semantics introduced by the patch.

If we go back to Figure 1.1, the DPL tool is capable of updating variable according to the

value of the condition on the if case. DPL is integrated with three different libraries: Pin,

MySQL, and DWARF, which are explained in Chapter 7. The DPL tool is implemented

using four different procedures which are explained in the following subsections.

3.4.1 Pin Library

Pin is a dynamic binary instrumentation library that enables the creation of dynamic pro-

gram analysis tools [37], we decided to work with Pin because of the advantages it offers
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when instrumenting an application. Pin offers a rich, and easy to interact, API that let us

inject arbitrary C and C++ code into a running application. Besides this, we can also get

the state of the computer architecture the application is running on when attaching to the

process.

3.4.2 Data Updating

DPL framework updates data by following three steps. The first step of DPL is to import all

of the data from the application we want to patch. We call this the import routine. After

the tool imports all of the variables by using the debugging information from the application,

every data structure that is currently active on the stack is stored into a MySQL database.

After the import routine finishes, the data patch object is applied and everything is

updated according to the patch. The data patch object consists of a set of SQL queries that

aid DPL to update the data structures, and which are issued to the MySQL database for

updating the stored variables.

After updating the data structures, everything is exported back to the application and

updated accordingly. This process is called the export routine and it is the final step of a

three steps process.

DPL framework works with two other APIs for data patching. The first API is the

DWARF API, which offers the debugging information of the application in the form of DIEs

(Debugging Info Entries). One limitation of DPL is that, if we want to patch an application,

we need to have the debugging information. We can obtain it, however, by compiling the

application with the -g flag on GCC.

The second API used by DPL framework is the MySQL C API. This API communicates

our framework with the database on where every data structure is stored for being updated.

The API queries the database for both the importation and exportation routines. More

specifically, it let us store data into the database by using the CREATE and INSERT

INTO commands, and it also let us retrieve data structures from the database by using the
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SELECT FROM command and handling the results with a respective function. Another

advantage that the MySQL C API offers is letting us modify variables from the database for

the exportation routine. For example, if we want to modify a particular variable, we can use

the SET command and modify the data of it. Then, by having the address of the variable

as metadata, the DPL framework is able to export back the data to the address we want to

modify.

3.4.3 Data Patch Object

If we go back to Figure 1.1, we can express this not only in primitive operations, but in a

set of SQL statements that is capable of patching the data inside the database according to

the patch.

A DPL object, with an SQL translation for the patch in Figure 1.1, would be as follows:

procedure DPL Translation of Patch1
SET data = 0 WHERE name = “variable” IF name = “condition” AND data > 10

end procedure

As we can see, we are able to interpret a security patch using 6 operations from our

language as a data patch consisted of a single SQL statement. In order to apply the data

patch, we first pass it as a parameter to DPL. Then, DPL executes the SQL statements by

using the MySQL API over the database. After applying the data patch to the database,

MySQL updates the variables inside the database according to the patch.

Now, for more complex patches, let us refer back to Figure 1.2 and Figure 1.3 from

Chapter 1. We can see that in Figure 1.2, there are two major data modifications (i.e.,

The data structure being smboff2 and first declared and then modified). By following our

heuristics we can now translate these source code instructions into primitive operations, as

such:

Declaration of smb off2: Create(smb off2)

Modification of smb off2: Search(smb off2) then Modify(smb off2)
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These statements refer to two different set of algebraic operations which we called DMMs.

We explain the concept of DMMs in Chapter 4.
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Chapter 4

Analysis of Patches

This chapter explains the details of our translation procedure from a set of C language

statements to a graph description language. We then study the properties of the graph and

find if there exists a relationship with feasibility. We can see this chapter as an empirical

study of 75 different patches and as the ground truth for our experimentation in further

chapters.

4.1 Intermediate Language for Machine Learning

Previous work on applying machine learning techniques in source code [59] takes a similar

translation approach, and other graph techniques are also used for virus detection [33]. Since

feature vectors are suitable as input to SVMs, we needed to translate the statements in source

code patches to some intermediate representation. We chose a graph–based representation

to serve two purposes (besides having a rich natural set of features to extract). First, it was

natural to model the relationships of patch statements as elements of a syntax tree. Second,

we could mark up the tree with annotations describing the primitive relational algebraic

operations (i.e., search, compare, read and write) to compute the total cost of each patch

when translated to our language. We then use total cost of computation as a feature of a

vector.

To create the graph, we model a patch as a collection of data modification statements

interacting with the new heuristics of the patched application. Each statement is represented

as a node in our graph description language. The control flow, represented as subtrees,

explains how these statements interact with each other. The leaves of the graph represent

data modifications and each subtree represents a different data modification statement.
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Translating Patches into Graphs:

The process for translating security patches into graphs consists of the following steps:

1. Express statements that are modifying data structures using our set of relational–

algebraic operations (i.e., search, write, read, compare).

2. Use the syntax presented in Table 4.1 to express a statement or operation

modifying data as a node.

3. Connect the nodes according to the scope of the operation (e.g., an if case

proceded by data modification would be a circle proceded by a dot).

4. At the end, the graph expresses every data modification inside a security patch.

The leaves of the graphs are the data modification statements (i.e., operations

1, 2, 3, and 4 in Table 4.1).

After following these steps we have a graph that represents how data modification state-

ments interact with each other inside a security patch. We use the attributes of these graphs

(e.g., number of nodes, longest path) as part of our set of features for our SVM.

4.2 Our data–patching language

The features of a graph – at least before applying our SVM – do not define feasibility but

rather they define the control flow of data modifications in a patch. In order to define the

feasibility of a patch, we must manually analyze the patch and classify it as feasible or infea-

sible depending on whether we are able, or not, to express data modifications using relational

algebraic operations. These primitive relational algebraic operations are our language for

translating patches into data patches and they are used as an intermediate language for

producing the set of SQL statements. Each operator can be described in the following way:
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1. Search: It is a primitive operation that finds a variable/data structure in-

stance/member of a data structure in a database. We are able to use opera-

tions such as search(name of var) or search(type of var). Because we also have

metadata such as the address, type, size and value, we are also able to express

some operators such as sizeof() or addressof() – the & operator on C – and

functions such as strlen() and free() 1.

2. Write: It is a primitive relational algebraic operation that stores a value in an

already–searched variable or data structure. It is usually called after searching

for a particular variable. Our heuristics also allow passing parameters such as

the size, type and address as metadata of the variable.

3. Read: Similarly to the operation write, this operation is commonly used after

searching for a variable. It allows the application to read the value of a variable

and apply some heuristics on it. Most of the time, patches use read operations

to compare variables to values or write values in variables to new variables.

4. Compare: The compare operation is usually used in branches and loops. It

denotes a comparison between a variable and a value or another variable.

4.3 Feasible and Infeasible Patches

Not all statements are translatable to these operations. We need more computational power

than what these statements offer in order to express every possible statement in a patch.

However, we can model many functions and operators that do not involve arbitrary compu-

tation. Some examples of what we consider to be infeasible statements in a patch are:

1. Arbitrary function calling: We are not able to express function calls if

the data returned by the function depends on an input value. The behavior

1This function is the equivalent of eliminating the value on a particular address, more precisely, by giving
the address make the value of the variable to be NULL.
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of some functions are easy to predict by reading the manual page, as long as

they are functions from the C library.

2. Undecidability: Some statements are undecidable because it is impossible

to construct an algorithm with a correct response to the outcome of the state-

ment.

3. Function and library calls: We are able to model most of the function and

library calls, however this requires us to manually trace the source code to

model it.

4. Macros: We are not able to deduce macros defined by the developer. How-

ever, by looking at the source code, we are able to know the value of the macro

and substitute it in our data patch.

5. Loops: We are able to express loops using iterations, but this is computation-

ally expensive. Languages with a relational algebraic approach, such as SQL,

however, also offer procedural languages to define loops and other operations,

expanding our set of operations.

6. Variables that are not currently in scope: These variables are not able

to be modified because they do not exist in that particular moment. However,

these variables do not affect the heuristics of the program, therefore we do not

need to patch them.

4.4 Data Modification Machines

We can define a data modification machine as the combination of statements that ultimately

modify some data structure. It is intuitive to think of data modifications as operations in a

database, thus we can express them as a collection of simple relational algebraic operations.
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We show how to represent different data modifications using primitive operations such as

search, read, write and compare. We also define a graph description that represents each

machine.

Data modifications are the main operation we look for when translating patches into

graphs. It can be seen as the leaves of the graphs and it is the most basic operation our

model can do. We represent these machines as a • in graphs and as the operations search and

write in our language. The computational cost of this operation is of 2. The computational

cost is calculated by counting the number of operations it takes to achieve the task (i.e.,

search + write).

Variable declaration – some patches add new variables to the application by declaring,

and sometimes initializing, them as part of the new semantics of the patch. This operation

can also be represented in our model by the operation write. Because there is no need for

searching for a variable that does not exist, the computational cost of this operation is only

1.

Branches – We are also able to express relational operations as comparisons when read-

ing or writing data. Therefore, we are also able to model if and else cases. For the purposes

of this work we care for branches with data modifications inside.

We can express loops using iterations of primitive operations, however this could be

computationally expensive. As it was stated before, some relational algebraic languages

offer a procedural language that allows us to model loops, so we do not think of loops as a

limitation.

We can express a limited number of other operators that can potentially modify data

structures. These operators include:

1. String Length: By getting the size of a character array. We are not able to

deduce character pointers.

2. Addressof, typeof, sizeof: Metadata of each variable.
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3. Free: By setting the value of the variable on a particular address to NULL.

4. Function returning values: For this operation, we assume that the function

will return correctly.

4.5 Constructing Graphs From Patches

In order to build a graph from a patch, we first represent the control flow of the patch

according to its data modifications. Graphs are represented as trees, and the leaves of

these trees are specific data modifications. In Table 4.1, we can see some of the graphical

representation of the types of data modifications that are taken into consideration. We

model patches as a collection of machines that interact with each other to fulfill the purpose

of patching data.

Algorithm 1 Patch example in pseudocode

1: procedure DataPatch1
2: int var = −1
3: if var < 10 then
4: if var2 < 10 then
5: var2 = 8
6: elsefinish
7: end if
8: elsefinish
9: end if
10: if var < 5 then
11: if var2 < 2 then
12: free(var2)
13: var2 = 10
14: elsefinish
15: end if
16: elsefinish
17: end if
18: end procedure

Let us first introduce a patch as simple pseudocode in Algorithm 1, since the patches

themselves contain a lot of metadata and variables that could confuse the reader.
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Figure 4.1: Graph representation of the control flow of data modifications for Algorithm 1.

In the Algorithm 1 example, the pseudocode expresses a patch that has four different

data modifications. The statements 2, 5, 12, and 13 are modifying some variables in the

application. Once patched, the new state of the application will have four new values in

some variables that have been updated from their previous state. However, if we carefully

analyze this patch, we can see that there are only two variables being modified: var and

var2. This patch, in the end, will have two variables modified according to the conditions

implied by the branches.

The first subtree is a simple data declaration (i.e., write): this data modification is

Machine 3 in Table 4.1. The second subtree is a combination of two if cases and a data

modification, which is an expansion of Machine 5. This machine expresses an if case plus

a data modification, but in our example we have two if cases instead. Finally, the third

subtree consists of the same expansion of Machine 5 plus a data modification (Machine 1

in Table 4.1). The combination of all these machines defines a data patch. We express the

combination of these operations graphically in Figure 4.1.

We present another example of a different patch in Algorithm 2. In this example, we have
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Figure 4.2: Graph representation of the control flow of data modifications for Algorithm 2.

four different data modifications over four different variables. Before the data modifications,

however, there is an if case with three conjunctions. In our language this can be expressed as

four different if cases and whenever all of them are met we will get to modify the variables.

The Algorithm 2 is translated into its graph description language and expressed in Figure 4.2.

As illustrated, there are four different leaves representing the data modifications, which are

also four Machine#1 instances of Table 1.

Algorithm 2 Patch 2 example

1: procedure DataPatch2
2: if var < 10 and var2 = 0 and var3 > 10 and var4 6= 0 then
3: var1 = 1
4: var2 = 2
5: var3 = 3
6: var4 = 4
7: elsefinish
8: end if
9: end procedure
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4.5.1 Features and their relationship with graphs

By having a graphical representation of a patch, we are able to illustrate the control flow of

the data modification statements. Figure 4.1 and Figure 4.2 express two different patches

and how data modification statements are defined. As illustrated in Table 4.1, the leaves of

each graph are the data modification statements (• and �). These statements represent some

modification of a variable or data structure. If we refer back to Figure 4.1 we can notice

that the leaves are the • representing the use of an assignment operator (e.g., var = 0) or

the � representing a function or operator from C modifying a variable (e.g., free(var)).

This is why the purpose of the graph representation language is to illustrate the control

flow of data modifications. More precisely, if we see an instance of a • know, based on the

roots of the leaves, how to translate that statement into a data modification machine. As

an example, if we refer to Figure 4.2 we can see that in order to modify data using the • on

the leaves, we need to first compare different parameters with four different if cases.

The purpose of the features of a graph is to characterize three different aspects that the

translation tells about the patches, that of the control flow of the patch, how data is being

modified (e.g., which operators should we use over a database), and features related to the

graph (e.g., number of subtrees, number of edges, cyclomatic complexity). Another feature

is the “percentage of data operations”, which does not refer to how feasible the patch is to

be implemented but how many of the statements of the patch are we able to express using

basic database operations – some patches have a percentage of data operations of 40% and

we are still able to patch them, as long as the statements that we are not able to express are

not modifying any data.

Why did we choose these features?

For our experiments, we have three different type of features: graph representation,

control flow and data operation features. We considered the latter two based on the approach

of classifying patches by Stavrou et al. [57]. Recall that the complexity of a patch is the feature
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vector resulted by the translation process. For example, by having a feature vector we can

measure its complexity by mapping it to its vector space. The following set of features were

chosen according to a particular hypothesis about measuring the complexity of a patch.

4.5.2 Feature Vectors

In order to classify patches, we first define some of the attributes that we considered to be

important in the graph representation from a patch. We analyze each graph and create a

feature vector that consists of different attributes mapped to a feature space. The feature

vector is a representation of the complexity of a patch according to the attributes of its

graphical representation. This complexity informs the difficulty of translating a patch to a

data patch. For a detailed analysis of the features, we can refer to Table 7.2.1

The features that we considered for each feature vector are: number of operations (e.g.,

2 searches, 3 writes, 2 reads = 7 operations); node degree (i.e., number of nodes); longest

path of the graph; number of searches, compares and writes; maximum number of inside

and outside degrees for a node; number of operations in a cycle; functions that return val-

ues; functions on where parameters are passed; number of connected components (i.e., exit

nodes); number of edges; cyclomatic complexity; and percentage of expressibility.2 Cyclo-

matic complexity [28] is defined via the formula:

Cyclomatic Complexity = |E| − |V |+ |N | (4.1)

where E is the set of edges in the graph, V is the set of nodes, and N is the set of exit nodes.

2We considered percentage of expressibility as the percentage of statements that we are able to express
using primitive operations.
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We define the feature vector for Algorithm 1 as:

FV =[20, Number of Operations,

16, Node Degree,

5, Longest Path,

8, Number of Searches,

4, Number of Compares,

3, Number of Writes,

1, Maximum input degree of a node,

2, Maximum output degree of a node,

0, Number of operations inside a loop,

0, Number of functions that return values,

1, Number of functions that pass parameters,

3, Number of subtrees,

15, Number of edges,

2, Cyclomatic Complexity,

100] Percentage of expressibility.

−−→
FV = [20, 16, 5, 8, 4, 3, 1, 2, 0, 0, 1, 3, 15, 2, 100]

The resulting vector has a number of features; this large group of features are seldom

uncorrelated, and most classifiers work well with a smaller set of features or linear combi-

nation of features. This challenge raises the question of how to choose the most significant

set of features. As detailed in the next section, we applied PCA over the set of features to

obtain the most independent features.
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4.6 Summary

The purpose of the manual analysis of patches is to understand how patches modify data by

studying the statements that assign values to data structures. We were able to categorize

different statements according to how they modify data and mapped them to basic database

operations such as: read, write, search and compare. We also translated the C source code of

a patch into an intermediate graphical representation that illustrates the control flow of the

patch; the leaves of the graph are data modification statements, and the subtrees represent

the control flow of how the patch manages the statements.
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Table 4.1: Data modifications machines (DMMs) are described in this Table. We define
a DMM to be a group of statements that, by interacting with each other, modify data
structures.
Machine Name Format Example Operations Computational

Cost
Node
Label

1 Simple
Data Mod.

var name
= value

data = 10; search(data) and
write(10) into data

2 •

2 Simple
Data Mod.

var name
=
var2 name

data =
data2;

search(data),
search(data2)
in local vars and
write(data2) into
data

3 � → •

3 Declaration
New Var.

type
var name;

int data; write(int, data)
into local vars

1 �

4 Declaration
New Var.

type
var name
= value;

int data =
10;

write(int, data,
10) into local vars

1 �

5 If case +
Data mod.

if
(var <
value)
then
var =
value;

if(data <
10) then
data2 = 0;

search (data)
in local vars,
read(data),
compare(data<10),
search(data2),
write(0) into
data2;

5 �1 ←©→
•

6 If case +
Else case
+ Data
mod.

if
(var <
value)
then
var =
value;
else
var =
diff value;

if(data <
10)
then
data2 = 0;
else
data2 = 10

search data
in local vars,
read(data),
compare(data<10),
if it is then
search(data2),
write(0) into
data2; else
search(data2),
write(10) into
data2;

5 • ← © →
•

7 Data Mod-
ifications
using
Operators
and Func-
tions
using
metadata

sizeof(var)
free(var)

if
(sizeof(var)
> 4)
then
free(var);

search(var.size),
read (var.size),
compare(var.size
> 4),
search(NULL)
into var

Depends on
the operator

�
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Feature Type Features Explanation
Control Flow Number of Operations

# Loop Operations
# Functions that Return
Variables
# Functions that Pass Pa-
rameters

We chose these features be-
cause one of our hypothesis
is that the control flow of a
patch define its complexity.

Data Operations # Searches
# Compares
# Writes
% Data operations out of
statements

Another hypothesis is that
the amount of data modi-
fication statements, on the
patch, define how hard it is
to hot patch it.

Graph Repre-
sentation

Node Degree
Longest Path
Max. In Degree
Max. Out Degree
# Subtrees
# Edges

The third hypothesis is that
the complexity of the graph
defines the complexity of a
patch.

Table 4.2: Different types of features for our feature vector.
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Chapter 5

Applying SVMs

This chapter contains an exposition of our experimental methods and how we use SVMs.

There exist a wide variety of machine learning approaches, and it is not immediately

apparent which technique is most suited to the task of classifying patches as suitable or

unsuitable candidate to hot patch. Classifying source code is not an easy task and there are

many options (neural networks, bayesian classifiers, genetic algorithms, etc. [32]). However,

we decided to use SVMs because of the related work we described in Chapter 2 on classifying

source code with machine learning techniques.

SVMs are supervised learning techniques that analyze data and recognize patterns, this

way classifying data according to our needs. It is a supervised learning technique because

in order to get an output we first need to provide labeled data as input. In this chapter we

present the methodology behind our SVM classification.

5.1 Feature Vector Calibration

After undertaking a manual classification, graph and feature vector translation, and labelling

of our dataset, we now have seventy five different input vectors for our SVM. However, before

applying any machine learning algorithms, we must first standardize our dataset and reduce

the dimension of our feature vectors. This reduction will help us to get better results when

applying our SVM algorithm. For normalizing our dataset, we use a standard formula shown

below. To reduce the dimensionality of our feature vectors, we use principal component

analysis (PCA). Even though in SVMs, typically, the dimension of the feature space is much

higher than the input space, we decided to reduce the dimensionality of the feature space

using PCA to get a distribution of what are the most independent features in our dataset.
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5.1.1 Standardizing Data

Each feature vector has many attributes that are correlated with each other, this is the

type of data that PCA takes as input. PCA gets possible correlated variables as input and

maps them to a smaller dimensional subspace. In this way, PCA decides which features

are the most independent and reduces our dimensionality to be less than or equal to the

current number of features, in this case fourteen. However, before applying PCA we must

first normalize the dataset. When we have values within the same range it is easier to see

which features are really correlated with each other. Because the values are of mixed ranges,

we decide to normalize the values of our dataset to be between {-1, +1} using this formula:

2(x)

max(x)
− 1 (5.1)

In the previous formula, the denominator max(x) is an integer value larger than zero.

5.1.2 Applying PCA

We applied PCA using a free software programming language called R[31] that is used

for statistical computing. More specifically, we used the library “stats” and the function

“princomp()” that takes as a parameter our data matrix.

We emphasize that PCA and SVM are not related or duplicate procedures here; we are

purposefully using one (PCA) to impact the way the other (SVM) will work. We want to

build an SVM that relies on the most independent features in the feature vector across all

patches in the training set. Applying dimension reduction is a technique that helps us to get

a better understanding of our data in terms of dependency, thus making it not only easier to

get feature vectors in the future, but also to work with a smaller dimensional matrix which

gives a smaller Gramian matrix for our SVM.

According to the correlation plot in Figure 5.1, there is a large correlation between the

features: number of writes, number of searches, computational cost (i.e., number of primitive
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operations), cyclomatic complexity, number of edges and number of nodes. There is also some

correlation between the number of compares and some other features related to relational

algebraic operations used. According to Figures 5.1, 5.2, and 5.3 – and the definition of PCA

– we should consider the least correlated variables: number of cyclic operations, maximum

of input degrees, percentage of feasibility, and the longest path from the graph.

This means that, according to PCA and the correlation of our features, we can map the

vector
−−→
FV to

−−−−−−→
PCA FV 1 as follows:

−−→
FV = [20, 16, 5, 8, 4, 3, 1, 2, 0, 0, 1, 3, 15, 2, 100]

can be mapped to:

FV =[5, Longest Path,

1, Maximum input degree of a node,

0, Number of operations inside a loop,

100] Percentage of expressibility,

5.1.3 Experimental Methodology

We divided our data into training and testing sets to apply cross-validation. Our training

dataset consists of 50 patches in their four-feature vector representations. Each vector was

labeled with a Y/N according to a manual classification of feasibility. Recall that there

is no functional relationship between a patch being infeasible and it being expressible in a

relational algebraic language. The feasibility of a patch depends on if we are able to express

all of its data modifications using our set of primitive operations.

1Data, in this example, is not normalized.
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We first train our machine using the ksvm function in R and our training dataset. We

used five different kernel functions – for the kernel trick [53] in our SVM – to get different

results when using our SVM. These functions were:

• Linear kernel: it is given by the inner product < x, y > plus a constant. Its

formula is:

k(x, y) = xTy + c

• Polynomial kernel: This is a common function used when data is normalized

(like in our case), its formula is:

k(x, y) = (αxTy + c)d

• Radial Basis kernel: This function can be adjusted using a parameter sigma.

In this case we used the one suggested by R, but we can also tune this param-

eter and get different results. Its formula is:

k(x, y) = exp(−σ‖x− y‖2)

• Anova kernel: It is a type of radial basis function that performs in multidi-

mensional regression problems. Its formula is:

k(x, y) =
n∑
k

= 1exp(−σ(xk − yk)2)d

• Laplacian kernel: It is another type of radial basis function, however it is one

of the less sensitive function for changes in the sigma value. Its formula is:

k(x, y) = exp(−‖x− y‖
σ

)

We train the SVM using the R programming language [31] with the commands shown

below. We first import data from a CSV file and then train our machine using data train

(50 patches with labels Y/N).
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> data_train <- read.csv("svm_train.csv", header = TRUE)

> data_test <- read.csv("svm_test.csv", header = TRUE)

> model_ksvm = ksvm(Label~., data_train, type = "C-svc",

kernel = "polydot", prob.model = TRUE)

We then use the predict function to classify our testing data, and we also classify our

training dataset without the labels to see how well we are able to predict feasibility.

> predict(model_ksvm, data_test[,-5])

[1] Y N Y N Y Y N Y Y N Y Y Y N N N N Y Y N N Y Y Y Y

Levels: N Y

> predict(model_ksvm, data_train[,-5])

[1] Y Y Y Y Y Y N N N Y Y Y Y Y N

N N Y N N Y Y N Y Y N Y N N Y Y N Y Y Y N Y N

[39] N N N N Y Y Y Y Y N N N

Levels: N Y

We have to remember that data is classified according to how we trained the SVM, thus

the results may vary depending on how many data points and which features we use for

training. We decided to divide our dataset into two parts: the training and the testing

dataset. As explained before, the training dataset was first normalized and finally analyzed

by PCA. After this analysis, we get a gram matrix representing that works as input for our

SVM.

5.2 Summary

At the end of the last chapter, we were able to get a feature vector that represents a mea-

surement of our definition of complexity of a patch. However, because we wanted to be as

broad as possible when choosing the features, we needed to apply a dimension-reduction
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technique in order to map the 15-Dimensional Feature Vector into a lower dimension that

made the process of applying a learning algorithm easier to achieve. We also applied a

statistical technique called Principal Component Analysis (PCA) to reduce the dimension

of the vector and then use the new vector as input to our SVM. The results for the SVM

classification are presented in Chapter 7.

In the next Chapter, we are going to implement our DPL framework. we designed and

implemented a proof of concept for DPL to hot–patch different statements encountered in

our analysis of security patches.
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Figure 5.1: This figure illustrates the correlation of all the features. The dark colors indicate
more correlation. In this case we only considered the pink squares as the correlated variables,
making the first four features the most independent and the ones to consider as the final
features.
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Figure 5.2: Variances of the features. According to Kaiser’s criterion[67], we should only
consider the components which variances are over 1, which are the first four features.

Figure 5.3: The figure shows the correlation of all the features as vectors. The closer the
vectors are, the more correlated.
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Chapter 6

DPL: A Data Patching Language System

In this chapter, we describe DPL, a system for hot–patching data structures on an application

according to a security patch. The system was designed as a proof of concept for augmenting

the validity of the empirical studies presented in Chapter 4. The implementation of DPL

consists of over 2500 lines of code as a Pin tool [37] and is integrated with the MySQL and

DWARF APIs. It also consists of three main stages that are explained in this chapter and

was used to experiment with patching (i.e., applying security patches) or modifying data

structures (e.g., altering a linked list, adding or eliminating nodes of a data structure).

Main Objective of DPL

The main objective of DPL is, by passing an object in the form of a data patch to a

running process, to update the data structures of a running application according to that

data patch. After attaching to the process, this entails DPL to use the data patch for

updating the data structures of the application in order to be consistent with the new data

semantics the patch introduces to the application.

6.1 Design Overview

We can see DPL as a three–step mechanism. The first step consists of the import of every

data structure in the application into a database. The second, consists of the application of

the data patch object or the execution of SQL statements, result from the trans-

lation of a patch into our language, over the database. The third and final step is

the export of the modified tables, representing different types of data structures, back to the

application.

In this section we explain how the three steps of DPL interact with each other. The
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application of the data–patching stage is briefly explained here and can be complemented

with Section 6.3.

6.1.1 Import Routine

As stated before, our mechanism to update data structures is using a relational–algebraic

approach language following the principles of database operations. We decided to use SQL

as a query language to update the data structures from the application because it offers a

rich enough language to express most of the data modification statements. One advantage

that working with SQL offers is that we are able to expand its language by using a procedural

query language, therefore expanding our set of operators.

The import mechanism consists of the analysis of a memory image of the application

that we want to patch to import every instance of data structure types into a MySQL

database. We then stored these data structures into different tables according to their type.

As Figure 6.1 expresses, we separate data structures according to their scope as global,

local or dynamically allocated, the latter being mostly pointers that pointed to a particular

data structure. We recursively recovered the dynamically allocated structures by using the

pointer as the root of the structure and, after getting the members of the structure, use the

size of each member to recover their values.

Parsing these pointers and extracting the data structures to store them into the database

was the most challenging task of the implementation of DPL and is related to the concepts

applied by shape analysis techniques [16, 17] explained in Chapter 2.

6.1.2 Patching data structures

Applying a data patch consists of a translation of the data semantics of a security patch into

a set of SQL statements and the metadata of the variables we want to patch. For our proof of

concept, we also included the address of the function that is patching the previous function,

but the patching of source code is going to be automated in future work. DPL applies the
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Figure 6.1: This figure illustrates the three different types of variables that get stored into
the MySQL database by DPL. After being stored, we run the DPL data patch – or set of
SQL statements – over the database in order to update them.
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data patch object after importing every data structure into the database. We can see a

data patch as the combination of different DMMs for translating a patch.

6.1.3 Export Routine

DPL exports and updates only the tables that were modified by the data patch object. The

data patch object contains a set of statements in SQL that includes the tables we want

to update. After updating the tables, we can extract the values and addresses that were

updated from the database. Then, we can reference the address and assign a value by using

the advantages C as a programming language offers to our system (e.g., allocation of memory,

pointer referencing and dereferencing). The data structures are then updated according to

the data patch. An example of how we assign a new value to a data structure is:

* address = new_value;

Metadata for deducing data structures

In order to be able to patch data structures in the running application, we need some

metadata from each data structure. This helps both the import and export mechanisms to

identify easily the data structures we want to update. The elements that we consider as

metadata for updating data structures are:

• Address: In order to update the value of a variable we need its starting address.

Because we are working with the C language, we can dereference an address

to get the value stored on it. It is also possible to update the value inside the

address using the unary operator ∗. By doing a ∗address = new value we are

able to assign a new value for the data structure.

• Data: It is important to know the value of the data stored in a variable.

Sometimes we need to also compare variables in order to patch them (e.g.,

when we have an if case proceded by a data modification). The data is stored
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as a hexadecimal values in our database and can denote a character or a

number (float, double or int).

• Name: When modifying a data structure, we need to have a character array

with the name of the variable. This is stored into the database and then,

when issuing a modify or read statement, can be used to look for a particular

variable.

• Byte Size: To be able to modify a variable, we also need to know the size

of the variable to know its ending address (by adding the size to its starting

address). The DWARF info offers the size for the data structures declared

in the application, and if we have a pointer to a data structure we are able

to dereference the pointer by using the DWARF info of the structure as a

guide. However, character pointers were treated as single characters because

the DWARF info does not offer its size.

For the purposes of data patching, we decided to store variables in our database according

to their scope, and type. It was also easier to parse the DWARF info according to the scope

of the variable, because it is organized by subprogram (i.e., function).

6.2 Storing data structures according to their type

DPL separates data into two different groups: according to their scope, or to their type. If

the data structure we want to update is a primitive data type (i.e., int, float, double, char,

or void) the structure gets stored according to its scope. If the data structure is of a more

complex type (i.e., declared as a struct in C), then it gets stored according to its type. Arrays

or lists are also considered to be of primitive types and are stored according to their scope.

In this section we explain the two different classifications we do for separating data

structures. The first one with primitive types that are separated according to the scope
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Figure 6.2: Example of a variable that is considered to be global when storing it in the
database. The variables global variable and global structure are considered to be global be-
cause they are not declared within the scope of a function. DPL stores global variable into
a table called GLOBAL VAR, and global structure into STRUCTURES.

of their declaration. The second classification with more complex types that are separated

according to the semantics of the structures (e.g., a linked list is stored in a table named as

the type of the list). DPL classifies this information after parsing the DWARF information

of the application.

6.2.1 Primitive types

Data structures declared as primitive types are classified according to their scope. By using

the DWARF info, we are able to deduce if a data structure is of a primitive type based on

the offset, inside the DWARF info, of its type. In Chapter 2, we explained how data types

are declared in the DWARF info and which offsets are related to primitive types. In this

section, we explain when variables are considered to be global or local and how the DPL

system classifies them.

Global Variables

Global variables are those variables that are declared outside the scope of any function.

In Figure 6.2, we can see an example of what we consider to be global variables in C when

importing data to the database.

Global variables, with primitive types, are treated independently by DPL framework and

put together in a single table called “GLOBAL VARS”. On the other hand, more complex

data structures, declared as global variables, are treated as structures and put into a different
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table according to their type.

If we refer back to Figure 6.2, we can see that there are two global variables being

declared. The first one is global variable, a variable of type int and with a value of 10. The

second variable is an instance of a data structure of type STRUCTURE2, with a name of

global structure and with no data stored inside it.

If we refer to the table below, we can see how global variables are stored in the database.

This table contains every global variable declared as a primitive type (e.g., int, char, float,

and double). In this case, we are only working with one global variable with a primitive

type global variable. Its metadata consists of a type int, a size of 4 bytes, with an address of

0x804a028 (which is within the range of global variable addresses 0x804...), and a decimal

value of 10.

+------+-----------------+-----------+------------------+----------+-----------+-------+

| ID | name | type_name | type | bytesize | address | value |

+------+-----------------+-----------+------------------+----------+-----------+-------+

| 1591 | global_variable | int | DW_TAG_base_type | 4 | 134520872 | 10 |

+------+-----------------+-----------+------------------+----------+-----------+-------+

Local Variables

Local variables are defined as the variables that are declared in the scope of a function. In

Figure 6.6, we can see an example of how local variables can be declared in the C language.

In the case of local variables, we patch them as long as they are currently active on the

stack. When attaching DPL to a running program, we extract every local variable, with a

primitive type, that is currently active on the stack and store them into the “LOCAL VAR”

table.

The DWARF debugging standard offers information about where the local variables are

located in the stack by giving the position of the variable inside the stack. As an example,

a DIE for a variable declared as local inside the application is illustrated in Figure 6.4. The

DW AT location tells that the variable is local and that we need to add 44 bytes to the

register breg4 (esp in x86) for getting the address where that local variable is stored. After
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Figure 6.3: This particular function returns the address of a particular DIE by parsing the
DWARF info of the application.

Figure 6.4: Example of a Debugging Information Entry (DIE) of a variable called mts.
AT name contains the name of the variable, AT decl line the line where it was declared,
AT type the DIE position for its type (90 is the position for integer types), and the
AT location which specifies the position of the variable inside the stack.

dereferencing that address, we are able to get the value for that particular variable, and we

can use the metadata that the DIE offers for storing the address, type, name, and size of that

variable. We used the function presented in Figure 6.5 to get the value of a size by passing

its address and size. To get the address of local variables we use the function illustrated in

Figure 6.3.

+--------+--------+----------+------------+------------+

| name | offset | bytesize | data | address |

+--------+--------+----------+------------+------------+

| length | -36 | 4 | 7 | 3217882940 |

| struc_ | -28 | 4 | 0 | 3217882948 |

| top | -24 | 4 | 0 | 3217882952 |

| instan | -44 | 8 | 30705 | 3217882932 |

| i | -20 | 4 | 10 | 3217882956 |

| cms | 4 | 4 | 3 | 3217882980 |

| mts | 0 | 4 | 4 | 3217882976 |

| jos | -28 | 4 | 1110882386 | 3217882996 |

| tiburc | -24 | 4 | 1119917179 | 3217883000 |
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Figure 6.5: We use this function for dereferencing and getting the value of a particular
variable by passing its address and size.

Figure 6.6: Example of variables that are considered to be local when storing them in the
database. The local variables in this example are length, tiburcio, and jos; mts, and rts are
parameters of the function and are also in the scope of the add() function. Even though
technically they are not local variables they are considered as local variables by DPL.

Figure 6.7: This figure illustrates a structure we declared for storing all of the local variables
we get from the stack. We then use this structure for storing the local variables of the
application in our database.
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| length | -20 | 4 | 20 | 3217883004 |

| rts | 4 | 4 | 10 | 3217883028 |

| mts | 0 | 4 | 10 | 3217883024 |

+--------+--------+----------+------------+------------+

6.2.2 More complex types of structures

We define a complex type of structure to be a structure declared with a type different than

a primitive type. These types are declared as a structure using the struct type in C and

sometimes can be defined as a type by using the typedef operator. Their purpose is to

construct more complex structures such as linked lists, trees, hash tables, or many other

types.

For explaining the data structure recovery (DSR) process, we work with two different

structures. The first structure is of type STRUCTURE2 from Figure 6.2, and the second

structure is of type LINKED from Figure 6.10. The variable of type LINKED is struct li,

which is a dynamically allocated linked list with two members.

After attaching to the process and extracting every variable and data structure from the

program, DSR rebuilds the active data structures by using our set of heuristics over the

database. We can identify complex data structures on the application by using the DWARF

info. The DWARF info uses a pre-determined offset for primitive types (e.g., 90 for int, and

162 for char) and nests a complex structure according to its type. For example, if we want

to recover a LINKED structure, then we will have to look for the entry of struct li in the

DWARF info and its type will be pointing to the offset of LINKED. Then, the children of

the type LINKED will be its members (i.e., y, p and next) and the members will have a

primitive type of int1. More precisely, we can summarize this process as:

1. The first feature the DSR process looks for is which data structures are declared

as struct. It also looks for which structures were defined by using the typedef

struct operator in C. All variables declared using these operators are considered

1Except for next, which is a pointer to another structure of type LINKED.
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to be structs. To detect if a data structure is not of a primitive type, and thus

a more complex type, we use the function illustrated in Figure 6.9. Then, if

the data structure is a more complex type, we use the function in Figure 6.8

to get its type.

2. Next, DSR separates structures from pointers-to-structures. This is done by

parsing the DWARF info and looking for the �DW AT PTR attribute. When-

ever DSR finds a pointer to a structure, it stores the pointer separately and

parses the structure according to its type. In the linked list example, the

pointer to a structure would be next.

3. After having each structure defined as a data structure, we need to store them

into the database. Since every structure has different members, we need a

table for each type of structure. We cannot store these structures according

to their scope because we need to specify the type and value of each member

of the structure.

4. The first step for storing the structures into the DB is to store the instances of

each structure into an INSTANCES table of the DB. The INSTANCES table

has every instance of any data structure declared in the program, the type

of the structure is represented with its DWARF info attribute offset and its

name. In the case of the type LINKED, its instance is struct li and its type

LINKED.

5. We also need to parse the members of the data structures and store them into a

different table. This table is called MEMBERS and it has stored the members

of every instance of a data structure type. In the case of the type LINKED,

it has 3 members and the number of instances depends on the number of

elements on the linked list (i.e., how many times a new structure with type
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Figure 6.8: The figure illustrates how to get the type of a structure by giving its DIE. The
DWARF info has a nesting according to how the type is declared.

LINKED gets allocated).

6. If we would like to modify the members from the data structure global structure

from Figure 6.2, we would need to modify the addresses for each member

separately. DPL integrates with DSR by querying the DB and modifying the

addresses according to the size of the member.

6.3 Data Patch Object

A data patch object is a plain-text file consisted of two sections. The first section relates to

the patching of source code, it consists of a header for including the address of the function

we want to patch. The second section consists of a set of SQL statements that are issued

to the database in order to update the data structures encountered in the application. An

example of a data patch object is illustrated in Figure 6.11.

How to translate source code into a data patch object?

The translation consists of parsing the set of SQL queries, send them to the database

and update the values of the data structures that are being modified by the patch according
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Figure 6.9: This figure illustrates a function that returns a true or false depending if the
DIE being passed if a structure or not.

Figure 6.10: An example of a dynamically allocated linked list in C. The members of the
structure are y, which values depends on the variable i, p, which value is of 12, and next,
which is a pointers that points to the next element of the linked list.
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Figure 6.11: This figure illustrates how to construct a data patch object. In Chapter 7 we
use this model for constructing a data patch object for a C application, according to the
modifications we want to issue.

to the queries.

We can construct a data patch object of the security patch example in Figure 6.12. For

this, let us answer the following questions: How does the patch modify data structures?

What can we learn about the patch in terms of data modifications?

• Identify the data modification statements: According to the analysis of our

data corpus, we are able to identify over 60% of our security patches modify

data structures. To identify data modification statements, we should look for

assignment operators (e.g., =,+ =,− =, ∗ =).

• Identify any other data modification statements (e.g., functions): There are

many ways to modify data structures other than using assignment operators.

One example is the free() function, commonly used to free a variable that

was previously allocated.

• Understand the operations involved in the data modification: It is common

to have a data modification expressed as a set of statements. Sometimes

assignment operations are dependent on other operations like comparisons

(e.g., if cases conditions), returned values from functions, etc.

• Select the proper data modification machine to patch the statement: If we look
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back at Table 4.1 from Chapter 4, we can match a data modification machine

with a statement – or set of statements – that we want to patch.

The purpose of this section is to understand how the procedure for creating a data patch

works and how we can translate C source code into SQL statements. The translation process

of a patch into a data patch object is as follows:

1. The first step is to gather all of the statements that the patch updates. If we

refer to Figure 6.12 we can conclude that the statements can be expressed in

pseudocode as:

if an element of a structure is equal to APR_SUCCESS then:

modify the element to be equal to APR_GENERAL;

2. Next, it is crucial to know which statements are modifying data and how we

can express them in primitive operations. This translation, in pseudocode, is

as follows:

search for element

compare it to 1, if it is equal then

modify element to be 0;

3. Now, because our framework is communicating with a database, we need to

translate the statements to SQL syntax. This operations can be translated

into the following SQL syntax:

SELECT member = rx FROM inctx IF rx.data = 1

THEN SET VALUE rx.data = 0;
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Figure 6.12: Example of a patch for Apache HTTPD. The patch modifies 4 different state-
ments of the application, however only two of them are related to data structures. It is worth
mentioning that in this case there is an additional if case that is also related to the data
semantics of the patch (i.e., the first if case, declared before the patch modifications). We
can express the two statements modifying data by using Machine#5 of Table 4.1 on Chapter
4.

6.4 Implementation

DPL uses a dynamic binary instrumentation tool framework called Pin that allows the

creation of tools for the binary instrumentation of a program. DPL is a Pin tool consisted

of around 2500 lines of code (including white spaces and comments). We implemented DPL

in a 32-bit architecture with Ubuntu as an OS.

DPL analyzes the routines and instructions of the running application and executes the

heuristics explained in this chapter by injecting its respective code. This code consists of

the update of data structures following three main stages: import routine, data structure

updates, and export routine.

6.4.1 Pin: A Dynamic Binary Instrumentation Tool

Pin lets developers create tools for injecting arbitrary C/C++ code in an application after

stopping the process on a particular moment. The advantage of using Pin is that, in that

particular moment, we can inject binary code into the application. Pin follows the principles

of forensic analysis by letting us analyze the context of the application in the moment we

stopped it. After analyzing the context of the application and injecting the binary code, Pin

detaches from the process and continues its execution.
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Figure 6.13: Diagram explaining how the DPL tool works, the process consists of three main
stages: the importation routine that stores every data structure into a SQL database, the
data patch that modifies the data structures by querying the database and the exportation
routine that updates every data structure, according to the changes of the data patch, to
the application.
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Figure 6.14: This figure illustrates how we get the context of the registers eip, esp, and
ebp when using the DPL framework. This routine gets called by the function illustrated in
Figure 6.16

Attaching to a running process is done via Pin by using the function PIN Attach(PID)

from the Pin API Library. The Pin API offers a communication between the DPL framework

and the running process. We are able to get the state of the computer architecture when

running the process that we are analyzing. Pin allows getting the context of the x86 registers

and thus the local variables by using the ebp and esp registers as a guide. Besides getting the

context of the CPU’s architecture, we can also inject new code in the application. The new

code is developed for the import and export of data structures to a MySQL database. One

of the main advantages of Pin is that we can do all of this without restarting the running

process.

The first step to run the DPL framework is to attach to the running application we want

to patch. For attaching to a running process, we run the following command by calling our

DPL framework:

./pin -pid NUMBER -t DPL.so

Where, ./pin is the Pin tool library, the −pid argument gets a process ID number as an

input, and the −t argument gets the Pin tool (of type .so) we want to use as an input, which

is our DPL framework tool.

To illustrate the process of how the communication between our DPL framework and the

Pin API works, we can refer to Figure 6.14, and Figure 6.15.
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Figure 6.15: This is the main function for our Pin tool. It initializes the Pin API, reads the
data patch object and then sets up the registers to begin the import routine.

Figure 6.16: When this function gets called, it initializes a routine for analyzing the context
of the architecture DPL is running on. This routine is capable of setting the routines that
get the context of the registers for getting the local variables of the application.
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6.4.2 DWARF info

The debugging information of an application can be parsed by using a standardized format

called DWARF. This format offers the debugging information of every function and data

structure inside the program, including: the offset of each variable from the registers EBP

and ESP; the name, byte size, address (location) of each variable; and the types that were

declared in the program.

We can see the DWARF info as a summary of the context of the application, including

its subprograms and variables. Each variable, type and functions are represented in the form

of an entry called debug information entry (DIE), and each DIE has a number of attributes

that represent the metadata of a variable. The type of a particular variable is an attribute

of its DIE and it is expressed as its offset inside the DWARF info. For example, if we refer

to Figure 6.17, we see that the first DIE has an offset of 〈1240〉. The list of attributes, that

were used in DPL, can be described as such:

• DW TAG formal parameter: Variables that are tagged with this attribute are

parameters of a function.

• DW TAG variable: A variable was declared when its DIE is tagged with this

attribute.

• DW AT name: This attribute refers to the name of the variable.

• DW AT type: This attribute refers to the type of the variable. In the case of

the DIE in offset 1240, its type points to a different DIE. However, the DIEs

that are declared as primitive types (e.g., int, char, float) point directly to

their respective DIE type.

• DW AT location: Refers to the address of the variable. In this case, because

the variable was locally declared, DW OP fbreg 4 means that the variable is

4 spaces above the address of the register ESP in the stack.
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Figure 6.17: Example of a set of DIE frames inside the DWARF information.

Getting variables using DWARF:

When using DW AT location we can encounter several cases that are divided according to

the scope of the variable inside the program. The three types of variables that we encountered

in DWARF while using our test suite are:

• Global variables: We can get the virtual address of a global variable directly

by getting its DW AT location, which will return an address in the global

address space (i.e., an address located after 0x8040000).

• Local variables defined in the main function: These variables have follow dif-

ferent heuristics than regular variables because they have a DW AT location

offset instead of an address. The offset is defined by having a DW OP breg4

+ offset tag. The DW OP breg4 is the ebp register in 32-bit architectures and

its offset is how many bytes away are the variables from EBP on the stack. By

using a function that goes through the stack, we are able to get the address of

a variable by using this information.

• Local variables defined in other functions: Similarly to the previous types of

variables, we can get the address of one of these variables by getting its location

tag and using it as an offset. In this case, these variables return a location
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type of DW OP fbreg + offset, which can be translated to esp plus an offset.

We followed a different procedure for getting the dynamically allocated variables that is

more related to pointer arithmetic. When a structure type was found, we used a lookup

routine to find the type of its members. If a tag of DW TAG pointer type was found as the

type of one of its members, then we used recursion over this type to rediscover the structure.

Challenges of DWARF:

Most issues that we had while working with DWARF were mostly related to the way

the API is documented. Here are a list of challenges that were found while working with

DWARF:

• How to get the size of an array: The mechanism that DWARF uses for defining

the size of an array of elements is different from getting the byte size of a

variable. Figure 6.18 illustrates how we can obtain the size of an array when

using DWARF.

• What most DW OP regs mean in a particular architecture: Another issue

we encountered while parsing the DWARF info is the DW OP declarations

as DW AT location types. This field tells how the registers were declared

according to the architecture of our machines.

• The way DWARF handles types of data structures took some time to under-

stand because they are nested inside the DWARF info according to the type

of the structure.

6.4.3 Patching the source code

Because the main focus of DPL is patching data structures, we simplified the task of hot–

patching source code by following the technique from Miller et al. [7]. The way we patch

85



Figure 6.18: Function used for getting the size of an array using the DPL tool. The first step
is to get the DIE child of the variable declared as an array, then we get all of its attributes
and if an attribute is of type 47 (type for arrays in DWARF) then we look for the array size
and return it.

source code is by following the jmp heuristics of x86 and jumping to a new function that

represents the code we want to patch. In other words, we minimized the task of hot–patching

source code by pointing the function that we wish to patch to a new address that contains

the new piece of code.

Most of the security patches analyzed in Chapter 3 constrain themselves to modify a

single function. One test case for hot–patching source code consisted of an application with

a new function that includes the source code of the patch. By pointing or jumping the old

function to the new function’s address we are able to include the new source code in the

running application.

6.4.4 Summary of DPL System

In Chapter 7, we simulate five different security patches using a test suite that consists of

running a basic program and a patch for that program (representing what the security patch

is supposed to update). In order to patch the source code, we use a technique that jumps to

a new function on each test case. The data patch consists of an SQL script and a function

address that patches the source code of the application by jumping to a new address. The

entire workflow of the DPL tool is explained in Figure 6.13. We can also summarize this

workflow as follows:

1. Attach to a running application by giving its Process ID (PID).
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2. Create a MySQL database to store every data structure from the application.

3. Pass the data patch to DPL as a parameter and update the database according

to it. The data patch consists of a set of SQL statements that result from the

translation of the patch into a data patch.

4. Export all the data structures back to the application by updating their ad-

dresses.

5. Detach from the process and continue running it.

6.5 Applications for DPL

Developers can use DPL in many different ways. These other applications of DPL include,

but are not limited to, the following set:

1. A framework for developers to test their patches and possible conflicts with

data structures.

2. For modifying complex data structures on the run (e.g., convert a linked list

to a binary tree) – This is part of DPL’s future work.

3. For having an organized database with information of every active local, global

and dynamically allocated data structure.

6.6 Limitations of DPL

Limitations for DPL are considered as sources of error, or sources of false negatives or false

positives. We also enumerate some limitations of the DPL System The following are the set

of limitations for the DPL model:
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1. When DPL is not able to express patch semantics in our language, it might

imply that:

• The patch may contain certain elements that have an unpre-

dictable impact on data semantics (e.g., input, or unbounded

computation).

• The patch may be complex and difficult to categorize or classify.

• The patch may be broken.

2. For our machine learning experiments we had a limited dataset and the cali-

bration of our SVM might not have been good enough to predict with a 100%

of accuracy.

3. Manual error or human error in manual classification and in the assessment of

patch characteristics.

4. The translation of C source code to SQL statements might be considered a

limitation. For future work, we plan to deploy a module for automating this

task.

5. DPL is limited to the power of SQL as a language for expressing data modifi-

cations.

6. We need to compile every application we want to analyze with DPL by using

the -g flag on GCC to get the debugging symbols.

7. Users that want to run DPL on their system need to install Pin and our Pin

tool.
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Chapter 7

Evaluation Methodology

In this chapter we evaluate the analysis, design, and implementation of our proof of concept

for the DPL system, as well as our empirical study and automation of classifying security

patches. This chapter’s approach is to evaluate our hypotheses, as well as to answer the

research questions stated in Chapter 1. With the experiments presented in this chapter, we

want to evaluate various aspects of this thesis independently and describe their relationship

with other aspects of our investigation.

In this evaluation of our current system, we are interested in studying: what type of

security patches are feasible to be patched using DPL’s heuristics, how many types of data

modification statements we can patch, what types of application we can patch using our

proof of concept, and how DPL can patch larger and more complex applications.

7.1 Evaluating our Empirical Study

In Chapter 4 we analyzed our dataset of 75 security patches of different open–source ap-

plications. We considered this to be our empirical study and it gives an understanding of

how security patches update data semantics of data structures by using different groups of

statements. We classified these groups of statements according to how they modify data,

constructing this way our set of data modification machines (DMMs). With this empirical

study, we mean to evaluate two of our hypotheses. We were also able to expand our set of

research questions by automating the process of classifying a patch as feasible or infeasible.

For this automation we used a machine learning algorithm called support vector machine

(SVM). The hypotheses we are revisiting in this section are:
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Hypothesis A: Security patches modify a small set of statements related to data struc-

tures therefore we can classify data structure modifications into different categories that we

defined as a set of data operations..

Hypothesis B: We can classify security patches according to the feasibility of hot–

patching their data semantics.

7.1.1 Analysis of Patches

Our dataset consists of 75 patches that we classified into three categories: patches that are

infeasible because we cannot express their statements (e.g., they expect arbitrary computa-

tion such as user input and library calls), patches that are not interesting for our purposes

because do not modify data structures (i.e., they have a 0% of data modification statements),

and patches that are considered to be feasible.

After manually analyzing and studying our dataset of 75 patches, we concluded that

there are similar operations modifying data structures in 38 out of the 75 patches. Of the

remaining patches, 24 are not modifying any data structures, and the rest are infeasible to

be implemented by using our DPL system. After analyzing the patches, we confirmed our

hypothesis that most of the patches have very small and constrained statements, agreeing

also with Arnold et al. [4]. Some of these statements modify data structures using similar

operations. We concluded that we were able to express these statements in a more general

form by classifying them according to their heuristics for modifying data structures, this way

demonstrating our Hypothesis A. This classification of data operations is expressed as our

set of DMMs explained in Chapter 4, more specifically in Table 4.1.

For Hypothesis B, we decided to automate the classification of security patches, according

to their feasibility for hot–patching data structures, by using machine learning algorithms.

We decided to use SVMs as our machine learning algorithm, and thus we needed to represent

our security patches in a feature–vector form. We translated the security patches into an

intermediate graphical language to get a feature vector. We then applied PCA to map our 15–
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dimensional feature vector into a 4–dimensional one, this way having a better understanding

of what are the most crucial features of a security patch. According to PCA, the most

independent features are:

• Longest path of the graph: There is a relationship between control flow and

graph representation for this feature. The longest path of a graph is considered

to be the number of nodes from the root to the leaves of the longest subtree

of a graph. If we refer back to Figure 4.1, the longest path would be of 5 from

the starting node to the free() operator.

• Number of maximum input degree of a node: There is also a relationship

between control flow and graph representation for this feature. This feature

tells us what is the maximum input degree a node has in the graph. The

inputs are considered to be, for example, return values that modify a variable,

or variables that are modified inside a loop or a branch. In Figure 4.1, the

maximum value for an input node degree is 1, but if the value from a data

modification within an if case is modified by the returning value of a function,

then that node would have a degree of 2.

• Percentage of data operations: This feature is related to data operations

of a patch. It tells, out of the statements of the patch, how many statements

modify data structures? For example, if a patch has 10 statements and 3 of

them modify data structures, then the value of this feature is 30%.

• Loop operations: This feature is related to the control flow of the patch. It

tells how many operations are within a loop (e.g., for case, while loop).

After getting a final 4–dimensional feature vector, we applied a SVM algorithm to classify

patches according to the feasibility of implementing them using the DPL system.
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7.1.2 Applying SVMs for Predicting Feasibility

For studying Hypothesis B, we analyzed how our SVM classifies patches according to these

features, and if it classifies security patches correctly according to our definition of feasibility.

For doing it, we experimented with our dataset in two different ways. First, we divided our

dataset into a training dataset (2/3 of our data, or 50 patches) and a testing dataset (1/3 of

our data, or 25 patches). We feed the training dataset to our SVM and predicted the testing

dataset, and then we also use the training dataset as a separate testing dataset, without

labels.

On the second experiment, we randomly selected 5 subsets of our dataset (30 patches)

and defined them as our training data, and the remaining 45 patches as our testing dataset.

We had 5 different combinations of our dataset and predicted the labels for our testing

dataset by using the same heuristics as before (that is, by using 5 different kernels). Our

purpose was to divide our dataset in two different approaches, (1) learning from the majority

of our dataset (2/3), and (2) training with the majority of our dataset (3/5). We finally did

a leave–one–out approach as a cross–validation technique, the results for this experiment are

presented in Figure 8.8.

We used a function in the R language to train and test our SVM [31]. After applying

PCA over our data, we get our original space mapped to a 4-dimensional space. We decided

to choose the features from our PCA analysis. One of the lessons from applying PCA is that

the 4 features that were chosen as the most independent are each from a different feature

category. As a reminder, the three categories chosen for our features were: control flow, data

operations and graph representation.

For the 4-dimensional space, we use the library kernlib in R to classify the dataset in a 4-

dimensional plane. The kernlib package offers us the option to provide a sigma value for the

radial basis kernel function, which does a better job calibrating our SVM. This experiment

helped us understand Hypothesis B, and its results are discussed in the next chapter.
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7.2 Using DMMs for Security Patches

DMMs are a key part of our research. They are the result of studying over 75 security patches,

and they provide a classification for statements that modify data structures. However, DMMs

by themselves are only a description of a group of statements that modify data structures

using a certain procedure (e.g., validating first an if case, or inside a while loop). They do

not provide any description of how to patch data structures using the DPL system. For them

to be implemented in our system, they first need to be translated into SQL statements.

For using our set of DMMs for dynamically updating data structures, we need to map

our set of DMMs to the group of statements that is modifying data structures in our set of

patches. We want to demonstrate that DPL is capable of patching data structures according

to our translation of DMMs and security patches into SQL statements. For this, we developed

a small application and attached to it using DPL to modify the data structures according

to the patch.

We want to demonstrate that the data modification machines from Chapter 4 define a

set of operations for expressing different patches as data patches. More precisely, that most

of the statements from a patch, related to data modifications, can be expressed by using our

set of DMMs. This bring us to our third hypothesis:

Hypothesis C: We can use these data operations to dynamically update security patches

according to how they modify data semantics.

It is worth mentioning that some statements were not translatable to SQL, such as the

values being returned from other libraries’ functions, or macros that modify data structures.

For the first set of statements, we can model these functions in our test suite by mimicking

their respective functionality. We can also trace the value of a certain macro and express it

inside our data patch object.
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7.2.1 Patching our Data Modification Machines

Let us revisit Table 4.1. This table illustrates the definition of different DMMs. We can

also express our DMMs as C source code and as a set of SQL statements. The purpose

of this subsection is to illustrate how each DMM works and how to patch them by using

DPL. By the end, we were able to patch these data modification machines by querying the

database and following the heuristics defined in Chapter 6. The advantage of defining DMMs

is that we can combine them in many different ways to express data modifications in security

patches. The most basic machines are explained below:

Machine #1: Simple Data Modification

Simple data modification (SDM) statements appear in patches as new pieces of source

code that change the value of an already existing variable. The fact that it changes an

already existing variable is important, since it differentiates them from Machine #2. SDM

is the most important machine of our set of machines, because it defines a data operation

machine (i.e., all DMMs have a SDM in their set of operations that define them as a DMM).

Example in C Example in SQL
variable = 0; UPDATE LOCAL VARS

SET Value = 0 WHERE
Name = “variable”

Table 7.1: An example of statements that use DMM#1 in security patches expressed in C
source code and how they get translated into SQL statements.

Machine #2: Declaration of a New Variable

Declaring a new variable is a statement commonly found in security patches; it can

also be defined as the creation of a new variable by declaring its type, name and values –

the metadata DPL’s database uses. It differs from SDMs by substituting the search basic

operation for a create operation.

Since these DMMs are creating new variables, and not modifying existing ones, we need

to handle them in a different way that DMM#1. For this, we added a default address
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Example in C Example in SQL
int variable = 0; INSERT INTO LO-

CAL VARS
VALUES(“variable”,
“int”, 4, “0xDEADBEEF”,
0)

Table 7.2: An example of statements that use DMM#2 in security patches expressed in C
source code and how they get translated into SQL statements.

(0xDEADBEEF) to the address field. When the DPL System gets a variable with this

address it allocates memory space for it (according to the size of the variable) and then

stores the respective value if necessary.

Machine #3: If case followed by data modification

This is one of the most common DMMs we encountered when analyzing security patches.

It consists of an if case followed by a data statement such as a data declaration or data mod-

ification. We can express this statement by using a search, compare and modify/create

statements. Two different cases are given in Table 7.3 and Table 7.4, the first one for data

modification and the latter for data declaration.

Example in C Example in SQL
if(case > 0)
var = 10;

IF Name = “case” AND
Value = 0 UPDATE LO-
CAL VARS
SETValue = 10 WHERE
Name = “var”

Table 7.3: An example of statements that use DMM#3 in security patches expressed in C
source code and how they get translated into SQL statements.

Machine #4: If/Else case followed by Data Modification

Similarly to Machine#3, this DMM includes an extra statement for comparing values

if the case is not met. That is, if we get to the else case then we would have to use an

additional search and compare operation. Two different cases are given in Table 7.5 and

Table 7.6, the first one for data modification and the latter for data declaration.
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Example in C Example in SQL
if(case > 0)
int var = 10;

IF Name = “case” AND
Value = 0 UPDATE LO-
CAL VARS
VALUES(“var”, “int”, 4,
“0x804939”’, 10)

Table 7.4: An example of statements that use DMM#3 in security patches expressed in C
source code and how they get translated into SQL statements. This time, instead of a simple
data modification we declared a new variable.

Example in C Example in SQL
if(case > 0)
var = 10;
else
var = 20;

IF Name = “case” AND
Value = 0 UPDATE LO-
CAL VARS
SETValue = 10 WHERE
Name = “var”
ELSE
UPDATE LOCAL VARS
SETValue = 20 WHERE
Name = “var”

Table 7.5: An example of statements that use DMM#4 in security patches expressed in C
source code and how they get translated into SQL statements.

Machine #5: Data Modifications using operators and functions

Many operators and functions from the C language can be expressed by using our meta-

data. As an example, we can express functions like free() by making the value of a particular

address equal to zero, or the operator sizeof() by asking the database the size of a particular

variable. These are also operators that can be encountered when analyzing patches.

Machine #6: Loops followed by Data Modification

The last DMM is focused on updating data structures that are being modified according

to a loop condition. This was the only machine that we were not capable of updating with

our primitive operators, and the standard query language. For updating this particular

DMM, we had to expand our language to include the loop operator, and use PL/SQL[34]

which is an extension to SQL. PL/SQL supports procedural programming and allows the

use of loops inside MySQL.
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Example in C Example in SQL
if(case > 0)
int var = 10;
else
int var = 20;

IF Name = “case” AND
Value = 0 UPDATE LO-
CAL VARS
VALUES(“var”, “int”, 4,
“0x8049394”, 10)
ELSE
UPDATE LOCAL VARS
VALUES(“var”, “int”, 4,
“0x8049394”, 20)

Table 7.6: An example of statements that use DMM#4 in security patches expressed in C
source code and how they get translated into SQL statements. This time, instead of a simple
data modification we declared a new variable.

Examples in C Examples in SQL
var2 = sizeof(var1); SELECT Size FROM

’LOCALVARS
′

WHEREName =′ var1 ′

THEN
UPDATELOCAL VARS
SETValue =′ size ′WHERE
Name =′ var2 ′

Table 7.7: An example of implementing the sizeof() operator with our System. After getting
the size of the variable with the DWARF info, and storing it into the database, we can model
this operator by asking for the size of a particular variable to the MySQL database.

Examples:

This demonstrates that our set of data modification machines can be expressed as set of

SQL statements representing a data patch, and thus can be implemented by using the DPL

system.

7.2.2 Using DMMs to Update Data Semantics According to Security Patches

After implementing the DMMs expressed in Section 4.4, we study how these DMMs can

be implemented for patching data structures of our set of security patches. We chose five

different patches for this purposes and created a test suite that emulates the source code

that is being updated by the security patch in the application.

For our proof of concept, we developed a test suite for 5 security patches in Table 7.2.2
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Example in C Example in SQL
while(case)
var = var + 1;

WHILE CONDITION DO:
UPDATE LOCAL VARS
SETValue = ’var’s value
+1’ WHERE Name =
’var’

Table 7.8: This Table illustrates how to implement a loop operation using our DPL System.
In order to do this, we needed to extend the Standard Query Language to Procedural Query
Language to include this kind of operations. We also extended our language to include a loop
operator. This is the only DMM that has not been tested using our DPL implementation
yet.

Name Release Year Application Vulnerability
CAN-2004-0751 2004 Apache

HTTPD
Denial of Service

CVE-2007-4138 2007 Samba Grants root access
CAN-2004-0748 2004 Apache

HTTPD
Denial of Service

CVE-2006-3403 2006 Samba Denial of Service
AST-2012-005-10 2012 Asterisk Heap Buffer Overflow

Table 7.9: Security Patches used to demonstrate the capabilities of DPL as a hot–patching
system

and 5 applications that mimic the behaviour of the function being patched. We first decided

to use a security patch for each application (3 security patches), but we thought it would

be a small dataset for evaluating this experiment. Therefore, we then decided to choose

5 security patches, two from Apache HTTPD, two from Samba, and one from Asterisk.

By selecting patches this way, we showcase how we are able to demonstrate that our set

of DMMs work with different softwares. We also decided to study security patches fixing

different vulnerabilities (denial of service, root access, and heap overflow) from different years

(from 2004 to 2012).

We then express the security patch as a data patch object and applied them to the

application by using the DPL system. The results for these experiments include the set of

DMMs used for each patch, and a performance evaluation when updating the data structures

using DPL. The results are discussed in the next chapter.
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7.3 Patching Data Structures of Applications with DPL

There are many ways to implement data structures in the C programming language, and

thus many ways to parse the debugging information. This is why patching applications, that

are updated by the security patches presented in Table 7.2.2, is difficult to achieve using

DPL. By now, DPL is a proof-of-concept that works well for demonstrating the heuristics

we have defined throughout this thesis, and applying our concept of DMMs. In this section

we demonstrate how DPL updates data structures of running applications in our test suite.

We are also interested in evaluating the computational power of DPL in order to analyze

how we can patch more complex applications by using the system.

Hypothesis D: DPL has enough computational power to patch data semantics of a set

of C applications.

With this hypothesis we want to demonstrate that, by using our heuristics, our system

is capable of dynamically updating an application by following these steps: getting the data

structures that are currently live, or in–memory, in the application and storing them in the

database, modifying the data structures according to the security patch, and exporting the

modified data structures back to the application.

7.3.1 Patching C Applications

Our first experiment for modifying data structures was creating a simple hello world appli-

cation with a global variable to be patched. The application was programmed to display

two messages using two different functions. Each message displays the value of the global

variable variable and, as illustrated in Figure 7.2, the variable is not being altered by the

source code of the application.

We use a sleep of 10 seconds for attaching our DPL system before calling the subroutine

bye(). Then, after attaching to the application, DPL uses its instrumentation routines for

importing the data structures to the database. In Figure 7.5 we show the result from the
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mysql> select * from GLOBAL_VAR;

+-----+----------+--------------+---------------------+----------+-----------+------------+

| ID | name | type_name | type | bytesize | address | value |

+-----+----------+--------------+---------------------+----------+-----------+------------+

| 187 | variable | int | DW_TAG_base_type | 4 | 134520856 | 8 |

| 230 | var2 | int | DW_TAG_base_type | 4 | 134520864 | 76 |

| 248 | var3 | unsigned int | DW_TAG_base_type | 4 | 134520868 | 78 |

| 266 | var4 | long int | DW_TAG_base_type | 4 | 134520872 | 2832 |

| 309 | var6 | char | DW_TAG_base_type | 1 | 134520888 | 97 |

| 327 | var7 | char | DW_TAG_pointer_type | 1 | 134520892 | 64 |

+-----+----------+--------------+---------------------+----------+-----------+------------+

8 rows in set (0.00 sec)

Figure 7.1: Some of the types of variables that we are able to recover and patch. For the
characters, we get their ASCII value and for the character pointers (var7) we only get the
first character.

Figure 7.2: Source code used for patching a hello world program using the DPL system.

import routine and how it effectively stores the global variable we want to patch into its

respective table. Then, we use the data patch object illustrated in Figure 7.4 for patching

the global variable.

The result is shown in Figure 7.3, the first function runs the print message with the

variable’s original value and the second function the new value. After finishing the sleep

command, the second function gets called printing out the variable’s new value. DPL is

capable of importing, patching, and exporting every data type from the C language.

7.3.2 Patching More Complex Data Structures

DPL is capable of hot–patching more complex data structures than the primitive data types

of the C programming language. We decided to use the linked list implementation, illustrated

in Figure 7.7, for this experiment. The linked list consists of two integer elements, rc and p,
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Figure 7.3: This Figure shows the output of the hello world program. The first statement
prints out the variable before hot–patching it. The second statement states that our DPL
System is attached to the process. The third statement shows the new value we want to
introduce followed by the address of the variable. Finally, we output a message with the new
value of the same variable. The source code for this program is illustrated in Figure 7.2, and
its data patch object in Figure 7.4

Figure 7.4: Data patch object example for the hello world program in Figure 7.2.

mysql> select * from GLOBAL_VAR;

+-----+----------+-----------+------------------+----------+-----------+-------+

| ID | name | type_name | type | bytesize | address | value |

+-----+----------+-----------+------------------+----------+-----------+-------+

| 137 | variable | int | DW_TAG_base_type | 4 | 134520856 | 8 |

+-----+----------+-----------+------------------+----------+-----------+-------+

1 row in set (0.00 sec)

Figure 7.5: Example of table in our database after importing a global data structure.
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mysql> select * from PTR_STRUCT;

+---------+-----------+--------+-----------+----------+

| name | data | offset | address | type_tag |

+---------+-----------+--------+-----------+----------+

| rc | 9 | 778 | 146358580 | 36 |

| p | 12 | 790 | 146358584 | 36 |

| rc | 8 | 778 | 146358540 | 36 |

| p | 12 | 790 | 146358544 | 36 |

| rc | 7 | 778 | 146358500 | 36 |

| p | 12 | 790 | 146358504 | 36 |

| rc | 6 | 778 | 146358460 | 36 |

| p | 12 | 790 | 146358464 | 36 |

| rc | 5 | 778 | 146358420 | 36 |

| p | 12 | 790 | 146358424 | 36 |

| rc | 4 | 778 | 146358380 | 36 |

| p | 12 | 790 | 146358384 | 36 |

| rc | 3 | 778 | 146358340 | 36 |

| p | 12 | 790 | 146358344 | 36 |

| rc | 2 | 778 | 146358300 | 36 |

| p | 12 | 790 | 146358304 | 36 |

| next | 0 | 802 | 146358308 | 15 |

| st_head | 0 | 816 | 146358312 | 15 |

| next | 146358296 | 802 | 146358348 | 15 |

| st_head | 0 | 816 | 146358352 | 15 |

| next | 146358336 | 802 | 146358388 | 15 |

| st_head | 0 | 816 | 146358392 | 15 |

| next | 146358376 | 802 | 146358428 | 15 |

| st_head | 0 | 816 | 146358432 | 15 |

| next | 146358416 | 802 | 146358468 | 15 |

| st_head | 0 | 816 | 146358472 | 15 |

| next | 146358456 | 802 | 146358508 | 15 |

| st_head | 0 | 816 | 146358512 | 15 |

| next | 146358496 | 802 | 146358548 | 15 |

| st_head | 0 | 816 | 146358552 | 15 |

| next | 146358536 | 802 | 146358588 | 15 |

| st_head | 0 | 816 | 146358592 | 15 |

+---------+-----------+--------+-----------+----------+

Figure 7.6: This figure illustrates the results of importing the linked list implementation in
Figure 7.7. DPL was able to recover every field of the linked list declared in the application,
as well as their respective values and addresses.

and one struct pointer, next. We dynamically allocated the linked list and then recovered

all of its fields and stored them in a table called PTR STRUCT, illustrated in Figure 7.6.

As Figure 7.6 shows, we were able to recover the two integer members of the linked

list and their respective values, and addresses. We are also able to modify any value of a

particular member, and export the value back to the application by referencing the member’s

address field.

Recovering and modifying dynamically allocated data structures is one of the most chal-

lenging tasks DPL is capable of achieving. By working with the values and addresses of the

variables, we are able to make a particular node equal to NULL, or modify the value of a

particular node.
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Figure 7.7: An example of a linked list implementation that was correctly patched by the
DPL System.

7.3.3 Analysis for Patching More Complex Applications

DPL, unfortunately, has some limitations. One of DPL’s limitations is the lack of compat-

ibility with multi-threaded applications, and the complexity of getting data structures for

large-pieces of source code that interact with other C libraries. DPL has some technical lim-

itations which include variables being returned from library calls, working with macros from

other libraries, and character pointers. As mentioned before, we also need the debugging

symbols for every program we are patching using DPL.

However, the heuristics that DPL would use with a larger application remain the same.

Therefore, applying a patch to Firefox, Asterisk, Samba, or an even bigger software (e.g.,

operating systems, web servers, or other frameworks) consists of the same steps we follow

for our Test Suite. The difference would remain in the mechanism we use to import the data

structures to the database, and a bigger complexity when getting the local, and dynamic

allocated variables. Figure 7.8 illustrates the process for updating any application, including

the applications we are not able to patch because of technical limitations. If we want to be

able to patch larger, and more complex applications, we would need to improve the second

step of the diagram in Figure 7.8.

For future work, we want to study how to implement DPL in these applications. We are
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Figure 7.8: This figure illustrates the process of hot–patching any application by following 4
different steps. The first step (1) is to give the application to be patched, and a translation
of a security patch to a data patch object as input parameters to DPL. After this (2), DPL
imports every data structure into the database that is in communication to DPL, this is the
most challenging routine of DPL and the one that is limiting our set of experiments. We are
planning to improve this routine and be able to import data structures from any application,
including the ones from our security patch examples. Then (3), the data patch object
is applied to the database as MySQL statements, modifying this way the data structures
that were previously imported. Finally (4), the data structures are exported back to the
application, and thus patched according to the security patch.
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studying implementing DPL on mobile applications in the near future. We think that this

field is constantly becoming more popular, and one of its main disadvantages is the need of,

not only restarting, but completely paralyzing an application while it updating it.

7.4 Research Questions

After analyzing our set of security patches in Chapter 4, applying a SVM algorithm in

Chapter 5, and evaluating our set of experiments in this chapter we expanded our initial set

of research questions to include the following:

1. How well does the machine learn to predict results according to the heuristics

we use? By getting the resulted set of labels we match them with the manual

labels we used for our analysis of the dataset.

2. What defines a patch to be feasible according to our SVM? Finally, we reply

to this question by analyzing what the SVM defined as feasible and what the

patches labeled as feasible or infeasible have in common.

3. Can we express our set of data operations in our current system? We an-

swered this question by translating our set of DMMs into SQL statements in

Section 7.2.1.

4. Can we use our current system for other purposes than hot patching? We

can also use DPL for different purposes, such as modification of complex data

structures such as the linked list presented in Section 7.3.2. For future work, we

can deploy DPL as a test suite for developers to test patches before deploying

them.
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Chapter 8

Results

This thesis consists of three different main components that, by interacting with each other,

ultimately make DPL capable of patching data structures. These components are the analysis

of patches, applying a machine learning algorithm and the implementation of the framework.

In this chapter we present the results for each component and how these results help us

to demonstrate the value of the DPL system. At the end we discuss how we could make

hot–patching a feasible activity according to our results and analysis.

8.1 Analysis of Patches

The results for this work are presented as a comparison between the manual classification of

patches and the SVM results. Figure 8.1 compares the manually classified testing data with

our SVM results.

After manually analyzing seventy-five different patches, we concluded that the C lan-

guage modifies data structures using the same set of operators, and that most of these data

modifications can be expressed by using simple operators such as read, write, compare and

search. Our proof of concept consists of a framework that connects to a SQL database and,

by using standard SQL queries, is able to express most of these data modification statements.

Kernel Function % Correct Classification Results
Polynomial 84% 42 out of 50
Radial Basis 88% 44 out of 50
Linear 84% 42 out of 50
Laplacian 88% 44 out of 50
Anova 84% 42 out of 50

Table 8.1: Results for the classification of our training data set with no labels.
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Figure 8.1: Comparison between manual classification and predictions of our SVM for our
testing dataset using every kernel function. The first set are the infeasible patches, then
the mismatched patches that we considered to be infeasible, and the third set is the feasible
patches.

The last two questions can be answered with our SVM results. Table 8.1 and Table 8.2

contain our results. According to this data, SVMs is a good technique to predict feasibility

of data patches. Using a polynomial kernel, our SVM predicted with 80% correctness the

feasibility of our testing dataset (20 good results out of 25). Furthermore, it predicted with

84% correctness the feasibility of our training dataset (42 good results out of 50). This

gives our SVM a 85% correctness for our entire dataset. Using the other kernels (radial

basis, linear, Laplacian and Anova) our SVM predicted with 92% correctness the testing

dataset (23 out of 25 good results). On the training dataset, however, the best results were

obtained using the radial basis and Laplacian kernel functions (44 good results out of 50)

with 88% correctness. We ended our set of experiments with SVM by taking a leave–one–out
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Figure 8.2: SVM classification to three different comparisons of two attributes using a radial
basis kernel function. The X points are the support vectors.

Kernel Function % Correct Classification Results
Polynomial 80% 20 out of 25
Radial Basis 92% 23 out of 25
Linear 92% 23 out of 25
Laplacian 92% 23 out of 25
Anova 92% 23 out of 25

Table 8.2: Results for Testing Data Set using our first experiment (1/3 of dataset).

approach as a cross–validation technique. A subset (50 patches) of this approach is presented

in Figure 8.8. The results for the prediction using a leave–one–out experiment are of 82%

correctness. These results are similar with the percentage of correctness of our first two

experiments.

The results on Tables 8.2 and 8.1, tells us the best kernel functions to use with our

dataset are radial basis and Laplacian. We have to emphasize that deciding feasibility of a

patch is a non-deterministic task, therefore there is no algorithm or pattern that could tell

us if a patch is feasible or not. However, by using our heuristics, we were able to classify

patches using a machine learning algorithm.
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Figure 8.3: SVM classification to three different comparisons of two attributes using a radial
basis kernel function. The X points are the support vectors.

Random Dataset Polynomial Radial Basis Linear Laplacian Anova
First Random Set 66.66% 66.66% 66.66% 66.66% 71.11%
Second Random Set 80% 75.55% 80% 75.55% 73.33%
Third Random Set 80% 75.55% 80% 77.77% 75.55%
Fourth Random Set 80% 75.55% 80% 77.77% 77.77%
Fifth Random Set 80% 74.66% 77.33% 74.66% 75.99%
Averages 77.33% 74.66% 77.33% 74.66% 75.99%

Table 8.3: Results for testing data set using our second experiment (3/5 of dataset).

8.1.1 Relationship between Feature Vectors and our Results

We thought that the best way to describe a patch was in the form of a feature vector that

includes a representation of three important attributes that we considered for our patches:

the control flow of the patch, the data operations, and our graphical representation, proposed

in Section 3, for a patch. By the end we had a vector with 15 different features and, after

applying PCA, we were able to map that vector into a 4-dimensional space.

Now, the question we are trying to address on this subsection is: what is the relationship

between these features and our SVM predictions? We can refer to Figure 8.1 and see that

there is a notable relationship between the feature “percentage of data statements” and
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Figure 8.4: SVM classification to three different comparisons of two attributes using a radial
basis kernel function. The X points are the support vectors.

the label given by ourselves and the SVM. For example, for our testing dataset, we have 13

infeasible patches, on which only 4 had data modification operations – the rest did not have

any data operations, and thus their data structures did not need to be updated. That leaves

us with 12 feasible patches which all had over 50% data operation statements. Most of the

12 feasible patches had a bigger value for the “maximum input degree” (i.e., values returned

from functions and stored in a variable) feature than the infeasible patches; this means that

the more complex the control flow is, the harder it is to hot patch data structures. Even

though we are able to express loops by expanding the computational power of our language,

there are also no cyclic operations (i.e., for or while loops) in what the SVM classified as

feasible patches. Another feature that is related to infeasibility is the longest path of a

statement (i.e., illustrated in Figure 4.1 in Chapter 4) which is also related to the control

flow of a patch. This feature tells us that the deepest the scope of an operation becomes

(e.g., an if case inside an if case) also introduces control flow changes that may result in

conflicts.

In conclusion, control flow changes increases the complexity of an application, and thus

increases the possibility of getting conflicts in data structures after hot–patching.
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Figure 8.5: SVM Classification to three different comparisons of two attributes using a linear
kernel function. The X points are the support vectors.

Answering the research questions that we posed above, we can conclude that we are able

to express every data modification in 38 out of 75 patches. However, at least 24 out of the

remaining 37 patches are uninteresting to us, because they are not creating new semantics

on data structures.

The attributes we decided to use for each graph were helpful for our SVM to decide

feasibility. There was no relationship between our set of features and the feasibility of a patch,

which tells us that we could deduce feasibility of a patch, according to data modifications,

by using our heuristics.

8.2 Discussion of the DPL System

One of the main limitations of DPL is understanding which patches are feasible to be imple-

mented, this is why we decided to use a machine learning approach to predict the feasibility

of a security patch. More than predicting the feasibility, we were analyzing which features

create more conflicts when hot–patching. We got to the conclusion that when patch devel-

opers call functions that return variables they will be creating a more complex control flow
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Figure 8.6: SVM Classification to three different comparisons of two attributes using a linear
kernel function. The X points are the support vectors.

on the patch, hence making it harder to achieve hot–patching.

Our DPL system is a proof of concept that is not capable of hot–patching the applications

from the security patches we studied. However, we created a test suite that was presented

in Chapter 7 In this section, we study different experiments we run on the DPL system.

8.2.1 Revisiting our data modification machines (DMMs)

In Section 4.4, we presented our concept of data modification machines which can be

described as a collection of statements, of a security patch, that modify a data structure of

the application. In Table 4.1, we present 7 different collection of statements that modify

data that were commonly found in security patches. We then defined this statements as our

set of DMMs. In the following table, we present the results for patching these DMMs using

DPL. We added a new DMM (DMM#6) for working with loops that are somehow modifying

a data structure. This is the only DMM that we were not capable of patching by using the

standard query language from MySQL. We needed to expand our language for dealing with

this particular machine by including a loop operator. We used an application with 138 lines

of source code which implemented several functions, a linked list, global variables, dynamic
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Figure 8.7: SVM Classification to three different comparisons of two attributes using a linear
kernel function. The X points are the support vectors.

variables, and local variables for testing our DMMs.

For DMM#2, we had to find our own heuristics for declaring new variables inside the

running application. For this, we added an address value of 0xDEADBEEF to the address

field of the variable we want to declare. For example, if we want to declare a new variable

of type int, with a value of 0, and name var in the running application, we issued a INSERT

INTO Table(name = “var”, type = “int”, value = 0, address = “0xDEADBEEF”). This

way, once we export the data structures back to the application, whenever we find an address

Machine Name Can we patch it?
DMM#1 Simple Data Modification Yes
DMM#1 Simple Data Modification (2) Yes
DMM#2 Declaration of New Variable Yes
DMM#2 Declaration of New Variable (2) Yes
DMM#3 If case + Data modification Yes
DMM#4 If case + Else case + Data modification Yes
DMM#5 Data Modifications using Operators Yes
DMM#6 Loops + Data Modification By expanding to PL/SQL

Table 8.4: This Table represents the different DMMs that we are able to use for hot–patching
data structures with DPL.
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Figure 8.8: This figure shows a heat map representation of 50 feature vectors of security
patches in our dataset. The darkness of each tile represents the complexity of the feature
(i.e., how large is the feature), darker tiles represent larger features. The last two columns
of the figure represent our manual classification (left) vs the SVM classification (right). The
correctness of the results was consistent with the correctness of our previous experiments.
Some patches (e.g., patch#5 in the figure) have complex features and confuse our SVM,
other patches (e.g., patch#10) have large number of cyclic operations that also confuse our
SVM.
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of 0xDEADBEEF, we allocate memory in the program for that variable.

The limitation we had when trying to implement DMM#6 is that simple SQL does not

support loop conditions in their standard language. For this, we had to use an extension

called PL/SQL [34] that supports loops. This extends our language set of operators to:

{search, compare, read, write, loop}. In Table 8.4, we present a description of the DMMs we

are able to apply dynamically using our system.

8.2.2 Patching real-life security patch models

Our implementation of DPL is a proof of concept on where we implemented what we consid-

ered to be the four routines for hot–patching data semantics. These routines are illustrated

in Figure 7.8. The purpose of the system designed in this thesis was to implement these

routines and study different cases that can occur when hot–patching the applications of the

security patches we analyzed. We concluded that, because we focused on hot–patching data

structures, we can define these cases as the different data modification operations we found

when analyzing how security patches modify data semantics. We found that we could define

the commonly–used statements for modifying data structures as a set of artefacts we called

DMMs. This set of DMMs is what we consider to be feasible statements. The purpose of

our set of DMMs is to avoid statements that introduce radical control flow changes such as

the ones found to be infeasible by our SVM.

Since DPL still has some technical limitations that makes hot–patching large software

infeasible, we decided to model the statements the security patch is patching inside one of

our test applications (Application #6 in Table 8.6). For doing this, we applied one by one

the data patch representation of the security patches to our application. The data patch

consisted of the DMMs SQL statements we need to use in order to patch the data structures

according to the security patch. The results for this, including a performance overhead,

and the DMMs that were used to achieve the task, are presented in Table 8.5. Since we

are mostly focusing on hot–patching data structures, and not source code, the heuristics we
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Name Machines used New Statements Patched? Performance
CAN-2004-0751 DMM#4 6 Yes 0.05 sec
CVE-2007-4138 DMM#1 1 Yes 0.03 sec
CAN-2004-0748 DMM#3 4 Yes 0.05 sec
CVE-2006-3403 DMM#3 5 Yes 0.05 sec

AST-2012-005-10 DMM#2 + DMM#4+ DMM#5 9 Yes 0.07 sec

Table 8.5: Results for applying our set of DMMs to Application#6 in Table 8.6. The
performance is measured as the time it takes to import, hot–patch, and export a variable
according to the DMMs. The performance is the average CPU execution time after running
the DPL system 5 times with the respective data patch. The CPU model we use is an
Intel(R) Core(TM) i7 CPU running at 2.00GHz in a 32–bit architecture, a cache size of 6144
Kb, and Ubuntu 2.6.32 as an operating system.

think are most important are the modification of the data structures in the form of a data

patch.

This experiment depends on the previous experiment presented in Section 8.2.1 and

shows that our DMMs are capable of hot–patching data structures according to a security

patch, and that our procedure for hot–patching can interact with source code representing

an application.

We first re–visited the security patches and defined the set of DMMs they needed to use

for hot–patching the application’s data structures. The performance overhead for patching

these security patches is very low, taking between 0.03 and 0.07 seconds. We applied these

patches to our main test case (Application #6 in Table 8.6) which consisted of 140 lines of

code and 8 different functions with several local variables declared in their scope. We tested

how DPL modifies the statements of each DMM by combining them in different ways to

update data structures of our application.

8.2.3 Modifying data structures with DPL

Another of our experiments is trying to update several data structures from different pro-

grams. The purpose of this experiment is to understand how more complex data structures
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could be hot–patched in more complex applications than the ones in Section 8.2.2.

We learned that patching dynamically–allocated variables is a hard task because, in the

example of our linked list implementation, it involves modifying a node from a large data

structure. Developers should remember, at all times, that many complex data structures

(e.g., trees, tables, lists) have different nodes represented as different data structures. When

a security patch need to modify a data structure, they need to take care of every node rep-

resenting that structure. For example, referring back to our example illustrated in Chapter

1, if the developers introduce a condition to modify the data structure (i.e., if case is met,

then modify data structure) they need to handle all the nodes already declared in that data

structure.

We argue that developers of security patches modify data structures forgetting that some

data structures are a collection of nodes. Therefore, if we would have to modify a data

structure, such as a linked list at runtime, our system needs to be capable of recovering all

the nodes of that data structure, modify them according to the statement, and export them

back to the application. With DPL, we are capable of doing that by using the metadata in

the database tables as a reference.

8.2.4 Performance Evaluation

We tested DPL over a test suite designed using six different applications that implemented

several data structures in different ways. The purpose of this test suite was to measure the

time it takes to hot–patch a data structure of one of these applications. A description of

each application is given in Table 8.6 along with the description of how we hot–patched them

using DPL. We also tested our DMMs by applying their respective SQL statements over our

Application #6. The results for this experiment are presented in Section 8.2.1.

The performance of the DPL system can be measured by how long it takes to import every

data structure, hot–patch them using a DMM, and export them back to the application. The

performance results were between the values of 0.01 and 0.07 seconds but they depend on
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the complexity of the application we are patching. The more data structures, variables,

subroutines, and lines of code that are defined, the longer it takes for DPL to finish its

procedure. This is because we have to import every data structure from the application,

making it a complex activity that depends on the complexity of the application more than

the DMMs that we are using to hot–patch its data structures.

8.3 Wrapping it up: Answering our Research Questions

At the beginning of this thesis, we stated a set of research questions that got expanded once

we started experimenting with our framework. The complete set of research questions is

answered in this section.

1. Can we summarize our empirical study of 75 security patches by

selecting a set of common data operations? The answer to this research

question is yes. We are able to model patches as data patches by using our

DMMs, which we defined as our set of common data operations.

2. How many patches can we express as data patches? We are able to

express 38 out of 75 patches as data patches. From the remaining 37 patches,

twenty–four patches are uninteresting to us because they do not modify the

semantics of any data structure. The remaining patches (13) were not feasible

to be expressed as data patches because of their complexity. This includes

calling functions from libraries, working with macros, and complex control

flow.

3. Are we able to automate the task of selecting patches that are trans-

latable to our set of data operations? Yes, we can automate this task.

We gave as input the training and testing datasets to a SVM algorithm and it

was able to learn about the feature vectors and predict feasibility.
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Application #Functions #Data Struc-
tures

Data Structures Hot–
patched

Performance

#1 2 Global: 6
Local: 6
Pointers: 2

We imported every data
structure successfully and
hot–patched a global vari-
able. Every variable was of
a primitive type (e.g., int,
float, char).

0.01 sec

#2 1 Global: 10
Local: 0
Pointers: 0

We modified the values of
the global variables inside
the function scope. We
attached with DPL and
successfully imported ev-
ery variable and then hot–
patched one of them.

0.01 sec

#3 1 Global: 0
Local: 2
Pointers: 0

We imported the two local
variables and modified one
of them using DPL.

0.01 sec

#4 1 Global: 2
Local: 0
Pointers: 0

We declared two global ar-
rays with values inside and
correctly imported them to
our database using DPL.
We then successfully hot–
patched one of the arrays.

0.01 sec

#5 3 Global: 1
Local: 1
Pointers: 0

We declared a global struc-
ture and a local structure
with two fields. We cor-
rectly hot–patched both of
them.

0.03 sec

#6 8 Global: 6
Local: 21
Pointers: 1

This was the most complex
application of our test suite
with around 140 lines of
source code. We correctly
imported every data struc-
ture declared inside the pro-
gram and hot–patched a
linked list implementation.

0.05 sec

Table 8.6: Description of the different applications we used for evaluating the performance
of DPL as a hot–patching system. The system specifications are the same as in Table 8.5
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4. How well does the machine learn to predict results according to the

heuristics we use? Our SVM matched our labelling results with over 80%

correctness for our testing dataset and over 84% for our training dataset, which

was treated as a new dataset by giving it to the SVM with no labels.

5. What defines a patch to be feasible according to our SVM? From

these results, we learned that there is a relationship between control flow and

a patch’s data structures being feasible to hot patch. The maximum input

degree describes, for example, a statement using variables returned by calling

a function. This makes hot patching data structures infeasible because we

cannot predict arbitrary computations that many functions do. One of our

assumptions, expressed in Chapter 4, is that the computation of these func-

tions will return successfully, but in reality it is hard to predict the behaviour

of calling a function. The cyclic operations are also related to the control flow

of the patch, and the patches that were found to be feasible did not have any

loops modifying data structures.

6. Can we model real − life security patches as data patch objects to

use with DPL?

Since DPL is not ready to be deployed as a system to patch a real–life software

yet, we needed to study its performance by modelling security patches used

for our empirical study. DPL was capable of patching the security patches by

focusing only on what it is patching and not other control flow or data flow

that could exist in the application. In other words, we were able to correctly

patch the data semantics of a security patch by focusing on the semantics of

the function being updated by the patch.

7. What type of data modification statements are we able to express

120



as a data patch consisted of SQL statements?

SQL (Standard Query Language) is a relational-algebraic language. We are

not able to express every DMM in Table 8.2.1 without expanding our set of

primitive operations (i.e., search, write, read, and compare) to allow loops.

However, if we use the procedural language that SQL offers[34], we would

be able to express every DMM, including loops and cyclic operations. This

expands our set of operators to: {search, write, read, compare, and loop}. The

loop operator takes as an input the condition for the loop case, and then does

the remaining operations according to the patch (e.g., loop(condition) then

search(variable) then modify(variable)).

8. How many of these statements (DMMs) are we able to patch when

using our heuristics?

We are able to patch every DMM defined in Table 4.1 when using the stan-

dard query language offered by MySQL, except for DMM#7. We were able to

patch this DMM, however, by expanding the SQL language to include proce-

dural statements. When we expand the language, we also expand our set of

operations by adding a new operator called loop.

9. Can we add new variables or new elements to a data structure?

We can use MySQL relational–algebraic approach to add new variables to the

program. For this, we added an address value of 0xDEADBEEF to the variable

entries on the database that we know we need to allocate in the program. For

example, if we want to declare a new integer variable in the program, we looked

for its respective entry on the database and added the value 0xDEADBEEF

on its address field. Then, when parsing the variables inside the database for

the export routine, if a variable has an address of 0xDEADBEEF we allocated
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memory space using our system to create the variable.

10. What is the performance and overall evaluation of our current sys-

tem?

Our system shows a very good performance evaluation. The average time for

executing a DMM to patch a data structure was between 0.01 and 0.05 seconds

depending on the application we are patching. A detailed description of our

performance evaluation is described in Section 8.2.4.

11. Can we use our current system for other purposes than hot patching?

By now DPL is very constrained because of technical limitations, we are only

able to hot–patch applications of our test suite. We have not learned how to

deal with more complex statements such as library calls, arbitrary computation

(e.g., user input), and macros. However, we plan to deploy DPL not only

as a hot–patching framework but a test suite that lets developers hot–patch

data structures of an application by following a security patch. This will

allow application developers to study if a security patch might bring unwanted

conflicts within the application’s data structures.

8.4 Discussion

After studying the different experiments we explained in the previous section, we got to

different observations that could aid the hot–patching research field. Our main observation

is that, when finding a vulnerability, most patch developers address the vulnerability by

patching the respective source code statements that introduce it. This, however, is not the

best approach if we want to create a security patch feasible to hot–patch. We, as a community,

need a better communication between patch developers and application developers in order

to test if the patch is feasible to hot–patch before deploying them. If patch developers
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are aware of the type of statements that introduce conflicts when hot–patching, we could

make hot–patching a feasible activity.

1. Patch developers should study better the statements that they introduced into

an application. Specially if those statements modify the control flow of the

application. We found that, by using our heuristics, variables that get assigned

a value returned by calling a function are the hardest statements to patch. It

was one of the features that remained after applying PCA (maximum node

input–degree), and the most important feature to classify a patch as feasible

or infeasible. Many authors [25, 42, 3, 4] agree that there are patches that are

infeasible to implement in their frameworks. We think this is because patch

developers do not take into consideration how the statements they introduce

change the semantics of an application. We hope that our research works as a

fundament for patch development and helps them to avoid selecting statements

that make the task of hot–patching infeasible.

2. Another statement we found hard to hot–patch was the declaration of new

variables. That is, introducing variables that were not declared before hot–

patching the applications. The way we handled this was by taking advantage

of the relational–algebraic approach of SQL and our metadata obtained by the

DWARF info. These are elements that are not presented in other hot–patching

frameworks.

3. Finally, loops also change the control flow of a program. We are able to

implement loops in our relational–algebraic approach as long as we extend our

SQL language to include procedural queries. This increases the power of SQL

as a language for expressing data modifications.
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8.5 Future Work

The DPL system implementation is still a work in progress. We were able to demonstrate its

functionalities by hot–patching data structures of basic C applications. However, we want

to expand the set of applications we studied in this thesis by introducing more complex

applications such as the ones of the security patches studied in Chapter 4. The difficulty

of working with more complex applications is that, when we import the data structures to

the database, we need to parse and analyze the current state of the application. This is a

very complex task and its difficulty increases according to the complexity of the application.

We also want to increase our dataset to include more security patches for our patch analysis

process, and automate the translation of patches into feature vectors.
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Conclusions

Patches issued to fix vulnerabilities in an application not only change the source code of the

program but also the state of many of its components (e.g., data structures, control flow).

Dynamically patching applications is a technique that has not been mainstreamed yet due

to the complexity of updating the state of the application after being patched.

After analyzing a set of patches for different applications, we can conclude that patches

modify data in a similar fashion (i.e., using similar operations to modify different structures)

and that, if we can model these modifications by using a gadget or subprogram to illustrate

them, we can address many different patches by using a pre-defined set of subprograms. We

called these subprograms Data Modification Machines (DMMs) and their task is to update

data structures according to the control flow the patch implies for that particular operation.

We then applied machine learning techniques over the set of patches that were studied

and concluded that we can predict if a patch is feasible to be implemented, according to how

it modifies data structures, by having it mapped to a feature vector. Our SVM predicted with

over 75% success if a patch is feasible to be implemented using a hot patching framework

– a patch is not feasible to be implemented if, after it has been hot patched, we get an

inconsistent state in the application (e.g., out-of-date data structures). We think that the

results show that our approach for translating patches into feature vectors is valid and that

our machine can predict with over 75% if a patch is feasible or infeasible. We plan to improve

this ratio by introducing new features to our vector, and new security patches to our dataset.

Finally, we designed and implemented a proof of concept for a data structure hot patching

framework that communicates with a database and, by giving the application and a data

patch object with a set of SQL statements as an input, dynamically patches a small applica-

tion’s data state and source code. We concluded that we are able to represent every DMM,

except for the DMM related to loop operations which would need us to extend the SQL
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language with a SQL-Procedural language syntax, and patch data structures according to

how the patch modifies them. This is because operations like loops introduce more complex

control flow to the application, making us expand our language to include these operations.

For future work, we would need to expand the SQL language with a procedural lan-

guage in order to be able to represent every DMM. We also need to expand the dataset of

patches that were analyzed and include the option to work with multi–threaded applica-

tions. Finally, we would like to test our framework with bigger applications (e.g., Firefox or

Apache HTTPD) for patching them using our set of security patches. The biggest challenge

of hot–patching the data structures of an application as complex as Firefox or Samba is

that recovering data structures is not a trivial task. Therefore, we have to deal with more

data structures including some that we are not able to import to our database due to their

complexity. These types of data structures include: complex control flow (e.g., loops, re-

turn values) introduced into data structures, data structures modified by external libraries,

and data structures that are not in the main application (e.g., kernel data structures, data

structures defined in external libraries).

We concluded that, in order to minimize the complexity of hot–patching an applica-

tion, patch developers should take into consideration the new semantics their patches entail.

Therefore, we recommend patch–developers to minimize the control flow changes their patch

introduces by using statements that we define as feasible in this thesis.

126



Bibliography

[1] http://fetchmail.berlios.de/fetchmail-SA-2005-01.txt.

[2] LANGSEC: Language-theoretic Security, October 2013. http://www.langsec.org/.

[3] Gautam Altekar, Ilya Bagrak, Paul Burstein, and Andrew Schultz. Opus: Online

Patches and Updates for Security. In In 14th USENIX Security Symposium, pages

287–302. USENIX Association, 2005.

[4] Jeff Arnold and M. Frans Kaashoek. Ksplice: Automatic Rebootless Kernel Updates.

In Proceedings of the 4th ACM European Conference on Computer Systems, EuroSys

’09, pages 187–198, New York, NY, USA, 2009. ACM.

[5] Andrew Baumann, Jonathan Appavoo, Robert W. Wisniewski, Dilma Da Silva, Orran

Krieger, and Gernot Heiser. Reboots Are for Hardware: Challenges and Solutions

to Updating an Operating System on the Fly. In 2007 USENIX Annual Technical

Conference on Proceedings of the USENIX Annual Technical Conference, ATC’07, pages

26:1–26:14, Berkeley, CA, USA, 2007. USENIX Association.

[6] Andrew Baumann, Gernot Heiser, Jonathan Appavoo, Dilma Da Silva, Orran Krieger,

Robert W. Wisniewski, and Jeremy Kerr. Providing Dynamic Update in an Operat-

ing System. In Proceedings of the Annual Conference on USENIX Annual Technical

Conference, ATEC ’05, pages 32–32, Berkeley, CA, USA, 2005. USENIX Association.

[7] Andrew R. Bernat and Barton P. Miller. Anywhere, Any-time Binary Instrumentation.

In Proceedings of the 10th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis

for Software Tools, PASTE ’11, pages 9–16, New York, NY, USA, 2011. ACM.

[8] Leyla Bilge and Tudor Dumitras. Before We Knew it: An Empirical Study of Zero-Day

Attacks in the Real World. In Proceedings of the 2012 ACM Conference on Computer

127

http://fetchmail.berlios.de/fetchmail-SA-2005-01.txt
http://www.langsec.org/


and Communications Security, CCS ’12, pages 833–844, New York, NY, USA, 2012.

ACM.

[9] Chandrasekhar Boyapati, Barbara Liskov, Liuba Shrira, Chuang-Hue Moh, and Steven

Richman. Lazy Modular Upgrades in Persistent Object Stores. SIGPLAN Not.,

38(11):403–417, October 2003.

[10] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Armando Fox.

Microreboot – A Technique for Cheap Recovery. In Proceedings of the 6th Conference

on Symposium on Operating Systems Design & Implementation - Volume 6, OSDI’04,

pages 3–3, Berkeley, CA, USA, 2004. USENIX Association.

[11] Silvio Cesare. Runtime Kernel kmem Patching, 1998. http://vx.netlux.org/lib/

vsc07.html.

[12] Haibo Chen, Rong Chen, Fengzhe Zhang, Binyu Zang, and Pen-Chung Yew. Live Up-

dating Operating Systems Using Virtualization. In Proceedings of the 2nd International

Conference on Virtual Execution Environments, VEE ’06, pages 35–44, New York, NY,

USA, 2006. ACM.

[13] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew. Polus: A Powerful

Live Updating System. In Proceedings of the 29th International Conference on Software

Engineering, ICSE ’07, pages 271–281, Washington, DC, USA, 2007. IEEE Computer

Society.

[14] Dustin Childs. KB2839011 Released to Address Security Bulletin Up-

date Issue, 2013. http://blogs.technet.com/b/msrc/archive/2013/04/11/

kb2839011-released-to-address-security-bulletin-update-issue.aspx.

[15] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-conscious Structure

Layout. SIGPLAN Not., 34(5):1–12, May 1999.

128

http://vx.netlux.org/lib/vsc07.html
http://vx.netlux.org/lib/vsc07.html
http://blogs.technet.com/b/msrc/archive/2013/04/11/kb2839011-released-to-address-security-bulletin-update-issue.aspx
http://blogs.technet.com/b/msrc/archive/2013/04/11/kb2839011-released-to-address-security-bulletin-update-issue.aspx


[16] James C. Corbett. Using Shape Analysis to Reduce Finite-State Models of Concurrent

Java Programs. ACM Trans. Softw. Eng. Methodol., 9(1):51–93, January 2000.

[17] Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T. King. Digging for Data

Structures. In Proceedings of the 8th USENIX conference on Operating systems de-

sign and implementation, OSDI’08, pages 255–266, Berkeley, CA, USA, 2008. USENIX

Association.

[18] DARPA. Darpa announces cyber grand challenge. October 2013. http://www.darpa.

mil/NewsEvents/Releases/2013/10/22.aspx.

[19] A. Di Stefano, G. Pappalardo, and E. Tramontana. An Infrastructure for Runtime

Evolution of Software Systems. In Computers and Communications, 2004. Proceedings.

ISCC 2004. Ninth International Symposium on, volume 2, pages 1129–1135 Vol.2, 2004.

[20] DWARF Debugging Information Format Committee. Dwarf Debugging Information

Format Version 4, 2010. http://dwarfstd.org.

[21] Daniel Fleshbourne. iPhone Users Now Fear Security Patches,

Say Analysts. October 2007. http://www.neowin.net/news/

iphone-users-now-fear-security-patches-say-analysts?reply=583032.

[22] Stephanie Forrest, Steven A. Hofmeyr, and Anil Somayaji. Computer Immunology.

Communications of the ACM, 40:88–96, 1996.

[23] Rakash Ghiya and Laurie Hendren. Is it a Tree, a DAG, or a Cyclic Graph? A Shape

Analysis for Heap-Directed Pointers in C. In Proceedings of the 23rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’96, pages 1–15,

New York, NY, USA, 1996. ACM.

[24] Deepak Gupta, Pankaj Jalote, and Gautam Barua. A Formal Framework for On-line

Software Version Change. IEEE Trans. Software Engineering, 22(2):120–131, February

129

http://www.darpa.mil/NewsEvents/Releases/2013/10/22.aspx
http://www.darpa.mil/NewsEvents/Releases/2013/10/22.aspx
http://dwarfstd.org
http://www.neowin.net/news/iphone-users-now-fear-security-patches-say-analysts?reply=583032
http://www.neowin.net/news/iphone-users-now-fear-security-patches-say-analysts?reply=583032


1996. http://dx.doi.org/10.1109/32.485222.

[25] Christopher M. Hayden, Edward K. Smith, Michail Denchev, Michael Hicks, and Jef-

frey S. Foster. Kitsune: Efficient, General-Purpose Dynamic Software Updating for C.

SIGPLAN Not., 47(10):249–264, October 2012.

[26] Christopher M. Hayden, Edward K. Smith, Michael Hicks, and Jeffrey S. Foster. State

Transfer for Clear and Efficient Runtime Updates, 2011. http://dx.doi.org/10.

1109/ICDEW.2011.5767632.

[27] Michael Hicks and Scott Nettles. Dynamic Software Updating. ACM Trans. Program.

Lang. Syst., 27(6):1049–1096, November 2005.

[28] Graylin Jay, Joanne E. Hale, Randy K. Smith, David P. Hale, Nicholas A. Kraft, and

Charles Ward. JSEA, (3):137–143.

[29] Theodore Johnson and Padmashree Krishna. Lazy Updates for Distributed Search

Structure. In Proceedings of the 1993 ACM SIGMOD International Conference on

Management of data, SIGMOD ’93, pages 337–346, New York, NY, USA, 1993. ACM.

[30] I.T. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

[31] Alexandros Karatzoglou, David Meyer, and Kurt Hornik. Support Vector Machines in

R. Journal of Statistical Software, 15(9):1–28, April 2006. http://www.jstatsoft.

org/v15/i09.

[32] J. Zico Kolter and Marcus A. Maloof. Learning to Detect and Classify Malicious Exe-

cutables in the Wild. Journal of Machine Learning Research, 7:2721–2744, December

2006.

[33] Evgenios Konstantinou. Metamorphic Virus: Analysis and Detection. Masters Thesis

at Royal Holloway University of London, 2003.

130

http://dx.doi.org/10.1109/32.485222
http://dx.doi.org/10.1109/ICDEW.2011.5767632
http://dx.doi.org/10.1109/ICDEW.2011.5767632
http://www.jstatsoft.org/v15/i09
http://www.jstatsoft.org/v15/i09


[34] Kirk Lafler. In Proc SQL: Beyond the Basics Using SAS. SAS Publishing, 2004.

[35] Peng Li, Debin Gao, and Michael K. Reiter. Automatically Adapting a Trained

Anomaly Detector to Software Patches. In Proceedings of the 12th International Sym-

posium on Recent Advances in Intrusion Detection, RAID ’09, pages 142–160, Berlin,

Heidelberg, 2009. Springer-Verlag.

[36] Michael E. Locasto. Self-healing: Science, Engineering, and Fiction. In Proceedings of

the 2007 Workshop on New Security Paradigms, NSPW ’07, pages 43–48, New York,

NY, USA, 2008. ACM.

[37] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,

Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building Customized

Program Analysis Tools with Dynamic Instrumentation. In Proceedings of the 2005

ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

[38] Federico Maggi, William Robertson, Christopher Kruegel, and Giovanni Vigna. Pro-

tecting a Moving Target: Addressing Web Application Concept Drift. In Proceedings

of the 12th International Symposium on Recent Advances in Intrusion Detection, RAID

’09, pages 21–40, Berlin, Heidelberg, 2009. Springer-Verlag.

[39] Kristis Makris and Kyung Dong Ryu. Dynamic and Adaptive Updates of Non-Quiescent

Subsystems in Commodity Operating System Kernels. SIGOPS Oper. Syst. Rev.,

41(3):327–340, March 2007.

[40] R. Manevich, T. Lev-ami, M. Sagiv, G. Ramalingam, and J. Berdine. Heap Decomposi-

tion for Concurrent Shape Analysis. In Proceedings of the 15th international symposium

on Static Analysis, SAS ’08, pages 363–377, Berlin, Heidelberg, 2008. Springer-Verlag.

131



[41] Elinor Mills. Symantec Pulls Norton Patch After Error Reports. CNET News: Insecu-

rity Complex, August 2009. http://news.cnet.com/8301-27080_3-10317686-245.

html.

[42] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. Practical Dynamic

Software Updating for C. In Proceedings of the 2006 ACM SIGPLAN conference on

Programming language design and implementation, PLDI ’06, pages 72–83, New York,

NY, USA, 2006. ACM.

[43] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. Exterminator: Automatically

Correcting Memory Errors with High Probability. Commun. ACM, 51(12):87–95, 2008.

[44] David Oppenheimer, Aaron Brown, James Beck, Daniel Hettena, Jon Kuroda, Noah

Treuhaft, David A. Patterson, and Katherine Yelick. ROC-1: Hardware Support for

Recovery-Oriented Computing. IEEE Trans. Comput., 51(2):100–107, February 2002.

[45] Nilay Patel. Botched McAfee Update Shutting Down Corporate XP

Machines Worldwide. 2010. http://www.engadget.com/2010/04/21/

mcafee-update--shutting-down-xp-machines/.

[46] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan Bachrach,

Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou, Greg Sullivan,

Weng-Fai Wong, Yoav Zibin, Michael D. Ernst, and Martin Rinard. Automatically

Patching Errors in Deployed Software. In Proceedings of the ACM SIGOPS 22nd Sym-

posium on Operating Systems Principles, SOSP ’09, pages 87–102, New York, NY, USA,

2009. ACM.

[47] Bogdan Popa. Windows 8 update fails on KB2770917. November 2012. http://news.

softpedia.com/news/Window-8-Update-Fails-on-KB2770917-307875.shtml.

[48] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou. Rx: Treating

132

http://news.cnet.com/8301-27080_3-10317686-245.html
http://news.cnet.com/8301-27080_3-10317686-245.html
http://www.engadget.com/2010/04/21/mcafee-update--shutting-down-xp-machines/
http://www.engadget.com/2010/04/21/mcafee-update--shutting-down-xp-machines/
http://news.softpedia.com/news/Window-8-Update-Fails-on-KB2770917-307875.shtml
http://news.softpedia.com/news/Window-8-Update-Fails-on-KB2770917-307875.shtml


Bugs as Allergies – A Safe Method to Survive Software Failures. In Proceedings of the

Symposium on Systems and Operating Systems Principles (SOSP), 2005.

[49] Ashwin Ramaswamy, Sergey Bratus, Sean W. Smith, and Michael E. Locasto. Katana:

A Hot Patching Framework for ELF Executables. In The 4th International Workshop

on Secure Software Engineering (SecSE 2010), held in conjunction with ARES 2010,

pages 507 – 512.

[50] Christopher Richardson. Virus Detection with Machine Learning. In Master’s thesis

from the University of Bristol, 2009.

[51] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel Laskov.

Learning and Classification of Malware Behavior. In Proceedings of the 5th interna-

tional conference on Detection of Intrusions and Malware, and Vulnerability Assess-

ment, DIMVA ’08, pages 108–125, Berlin, Heidelberg, 2008. Springer-Verlag.

[52] M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and Jr. W Beebee. Enhancing

Server Availability and Security Through Failure-Oblivious Computing. In Proceedings

of the 6th Conference on Symposium on Operating Systems Design & Implementation -

Volume 6, OSDI’04, pages 21–21, Berkeley, CA, USA, 2004. USENIX Association.

[53] Bernhard Schlkopf. The Kernel Trick for Distances. In TR MSR 2000-51, Microsoft

Research, pages 5–3, 1993.

[54] Stelios Sidiroglou, Michael E. Locasto, and Angelos D. Keromytis. Hardware Sup-

port For Self-Healing Software Services. ACM SIGARCH Computer Architecture News,

33(1):42–47, March 2005.

[55] A. Smirnov and T. Chiueh. DIRA: Automatic Detection, Identification, and Repair

of Control-Hijacking Attacks. In Proceedings of the 12th Symposium on Network and

Distributed System Security (NDSS), February 2005.

133



[56] Craig A. N. Soules, Jonathan Appavoo, Dilma Da Silva, Marc Auslander, Gregory R.

Ganger, and Michal Ostrowski. System Support for Online Reconfiguration. In

USENIX Annual Technique Conference, pages 141–154, San Antonio, TX, June 2003.

[57] Angelos Stavrou, Gabriela F. Cretu-Ciocarlie, Michael E. Locasto, and Salvatore J.

Stolfo. Keep Your Friends Close: The Necessity for Updating an Anomaly Sensor

with Legitimate Environment Changes. In Proceedings of the 2Nd ACM Workshop on

Security and Artificial Intelligence, AISec ’09, pages 39–46, New York, NY, USA, 2009.

ACM.

[58] Bjarne Steensgaard. Points-to Analysis by Type Inference of Programs with Structures

and Unions. In 6th International Conference, Compiler Construction ’96, pages 136–

150. Springer-Verlag, 1996.

[59] Thomas Stibor. A study of detecting computer viruses in real-infected files in the n-gram

representation with machine learning methods. In Proceedings of the 23rd international

conference on Industrial engineering and other applications of applied intelligent systems

- Volume Part I, IEA/AIE’10, pages 509–519, Berlin, Heidelberg, 2010. Springer-Verlag.

[60] Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dynamic Software

Updates: a VM-Centric Approach. SIGPLAN Not., 44(6):1–12, June 2009.

[61] Symantec. Targeted Attack Exploits Ichitaro Vulnerabil-

ity. June 2013. http://www.symantec.com/connect/blogs/

targeted-attack-exploits-ichitaro-vulnerability-0.

[62] Tool Interface Standard TIS. Executable and Linkable Format Specification. 1993.

http://www.skyfree.org/linux/references/ELF_Format.pdf.

[63] Konstantin Tretyakov. Machine learning techniques in spam filtering. Technical report,

Institute of Computer Science, University of Tartu, 2004.

134

http://www.symantec.com/connect/blogs/targeted-attack-exploits-ichitaro-vulnerability-0
http://www.symantec.com/connect/blogs/targeted-attack-exploits-ichitaro-vulnerability-0
 http://www.skyfree.org/linux/references/ELF_Format.pdf.


[64] CVE Official Website. Common Vulnerabilities and Exposures (CVE),

http://cve.mitre.org/.

[65] Westley Weimer, Than Vu Nguyen, Claire Le Goues, and Stephanie Forrest. Automat-

ically Finding Patches Using Genetic Programming. In Proceedings of the 31st Interna-

tional Conference on Software Engineering, ICSE ’09, pages 364–374, Washington, DC,

USA, 2009. IEEE Computer Society.

[66] DWARF Debugging Information Format Workgroup. Dwarf debugging standard. 2013.

http://dwarfstd.org/.

[67] Keith A. Yeomans and Paul A. Golder. The Guttman-Kaiser Criterion as a Predictor of

the Number of Common Factors. In In The Statistician Vol. 31, No. 3, pages 221–229,

1982.

135

http://dwarfstd.org/

