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Abstract 

This thesis investigates different approaches to non-convex system identification. 

Two algorithms are proposed in this document: a multi-stage identification algorithm 

and a separable identification algorithm. The multi-stage algorithm is a generalized 

approach which can be applied to any non-convex identification problem. The sep-

arable approach is a problem-specific technique requiring the identification problem 

to be convex in some of its parameters. 

The problem of power system load modeling is investigated by using the proposed 

multi-stage and separable algorithms. Identification of human ankle dynamics is also 

explored by utilizing the proposed separable identification approach. 

The proposed methodologies are verified by using artificial and real system data 

and are subsequently compared with published results. The numerical results pre-

sented demonstrate the effectiveness of the proposed algorithms. 
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Chapter 1 

Introduction 

1.1 Overview 

The importance of accurate models in different fields of science and engineering can 

not be overstated. In fact, proper system identification is an essential component 

in a wide spectrum of applications such as biomedical systems, telecommunications, 

power systems, and control engineering. However, system identification can present 

a challenging task when pertaining to non-convex problems. If the system to be 

identified can not be represented as a linear regression, Finite Impulse Response 

(FIR) filter, or other simplistic models, then the identification problem becomes non-

convex [39]. Since there are no "closed form" solutions for non-convex problems, they 

have been a source of continual research and exploration for years. In this thesis, 

the problem of non-convex system identification, in the context of power system load 

modeling and identification of human ankle dynamics, is explored. 

The significance of accurate load models in power system analysis has been exten-

sively documented [48]. The impact of load models on system stability including the 

system's dominant eigenvalues, voltage stability, and inter-area oscillations has been 

extensively studied in the literature, for example [1,5,25,53]. Also, as more power 

systems are operated with less stability margins, the importance of accurate load 

models increases. Because of the size and stochastic nature of loads, they are one of 

the most difficult elements in power systems to model. The challenge in power sys-

1 



2 

tern load identification is, in fact, twofold. First, a model that can accurately depict 

the load behaviour has to be chosen [44], then, an appropriate parameter estimation 

technique needs to be applied to the model of choice. 

Creating mathematical representations for physiological systems from first prin-

ciples and physical laws is often a difficult, if not impossible, task. As a result, 

system identification techniques are often the only tool for gaining insight into the 

structure and operation of physiological systems. An example of the application of 

system identification to physiological systems is the task of modeling human ankle 

dynamics. Accurate modeling of the dynamics of any joint, and specifically the ankle 

dynamics, can significantly improve the analysis of its posture and movement [60]. 

In this thesis, proposed identification algorithms are applied to a well-established 

power system load model and an ankle dynamics model. The two identification algo-

rithms, a multi-stage approach and a separable identification technique, are proposed 

to estimate the parameters of non-convex systems. The multi-stage algorithm is a 

generalized approach that can be applied to any non-convex identification problem. 

The separable algorithm is a problem-specific technique which requires the identifi-

cation problem to be convex in some parameters and non-convex in others. 

The multi-stage and separable algorithms are applied to power system load model 

identification problem and the results are presented in this thesis. Also, the results 

from applying the multi-stage algorithm to the ankle dynamics identification prob-

lem are presented. To provide a foundation, background information on system 

identification is also included. 
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1.2 Literature Survey 

Global optimization routines are sufficiently reliable, albeit very time consuming, 

tools for identifying non-convex systems. In other words, these routines will find the 

global optimum if given boundless time to operate. An example of this approach is 

found in [63] where the mechanical properties of lung tissue are examined. For this 

non-linear system, nonparametric time domain models and frequency domain models, 

and parametric block-structured models are studied. The global optimization routine 

is then utilized in order to identify the parametric block-structured models. 

If global optimization is not acceptable, or practical, then a local optimization 

approach has to be utilized. Different variations of gradient descent algorithms are 

typically used for optimization, and the success of these routines depends on "good" 

initial values [39]. However, a number of alternative approaches to non-convex op-

timization also exist in the literature. For example, Separable Least Squares (SLS) 

optimization is used in [11] to identify Linear Time Invariant systems and the non-

linear Wiener model. The authors show that the SLS approach to optimization can 

be numerically better conditioned - but not necessarily more efficient - than its 

Gauss-Newton counterpart. The authors also apply the proposed technique to iden-

tify the parameters of an industrial dryer and a high-purity distillation column. To 

obtain the initial estimates for the optimization routine, the authors use the subspace 

algorithms presented in [55]. 

For a few specific structures within the family of non-convex system identification 

problems, the optimal model can be directly obtained without resorting to global op-

timization techniques. For example, it is shown in [7] that an iterative identification 
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approach for Hammerstein models can converge to the global minimum. The authors 

demonstrate that the iterative technique - which oscillates between identifying the 

linear and non-linear parameters of the Hammerstein model - is generally convergent. 

In [64], the authors show that Hammerstein models with monotonic non-linearity can 

also be identified directly (and without the iterative approach of [7].) The authors 

demonstrate that if the system non-linearity is monotonic, then the identification 

task is reduced to a simple quadratic programming problem. 

1.2.1 Power System Load Model Identification 

Due to the complex nature of the load modeling problem, a variety of different 

solutions have been proposed in the literature. These approaches can be divided into 

two broad categories: component-based modeling, and measurement-based modeling. 

The component based approach, applies system identification to each individual load, 

whereas in the measurement-based approach identification is applied to signals from 

the aggregated system (i.e. at the substation level). 

Examples of component-based techniques are presented in [29,52]. In [52], an 

aggregated induction machine model is investigated. To derive the aggregate model, 

the parameters of all the induction motors connected to a single transmission line 

are required. The parameters of each individual machine are obtained by performing 

a number of tests on it. Once the individual machine data are collected and exam-

ined, a heuristic index value determines which machines are aggregated together in 

the final model. In [29], a different aggregated induction model is introduced for 

loads connected to a single substation. Parameters of individual motors and load 

composition data at each bus are required for this approach. These data are input 
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to an eigenvalue based classification scheme that determines the model values for the 

aggregated induction motor. 

The measurement-based approach has also been utilized extensively on a number 

of different load models and parameter estimation techniques. Load models can be 

broadly categorized as any combination of non-linear/linearized and static/dynamic 

sets of equations. Estimation techniques can also be broadly categorized as sys-

tem identification-based, exhaustive search, or neural networks-based methods. The 

remainder of this section presents a survey of the existing load model classes and 

estimation methods. 

Static Models 

Identification of static load models has received due attention in the academic liter-

ature. In [42], the most common static models, ZIP and exponential, are identified 

using a Weighted Least Squares approach. The authors acknowledge that the power 

system loads are dynamic (time-varying) in nature and, therefore, the model param-

eters have to be re-estimated for each new measurement. As a result, the weighting 

technique is utilized to reduce the impact of older measurements. In [18], the expo-

nential static load model is identified by using a number of different gradient descent 

algorithms: the Newton Method, the BFGS (Broyden, Fletcher, Goldfarb, Shanno) 

Method, and modifications of each approach. 

Dynamic Models 

A non-linear dynamic load model is proposed in [25,30] which aims to represent the 

aggregate effect of numerous load devices. The model contains non-linear differential 

equations and can represent steady-state and transient behavior of power system 



6 

loads. 

Exhaustive Search Methods 

In [34], the load model of [30] is linearized and then an exhaustive search algorithm, 

namely the Adaptive Simulated Annealing techniques, is utilized to determine the 

parameters of the linear model. Since the accuracy of the linearized model is shown 

to be less than ideal, the authors of [34] apply the Adaptive Simulated Annealing 

technique to find the parameters of the original non-linear dynamic load model. 

The results are consequently presented in [33]. Another application of exhaustive 

search to load modeling appears in [46]. In this paper, an iterative direct search 

process, called the Nelder Mead Simplex Search, is employed to find the parameters 

of a linearized (and frequency-dependent) dynamic load model. To obtain the mea-

surements for this technique "Lock Tests" were performed on the system. In these 

tests, a small generator is tripped while a few other generators are locked at a given 

operating point (and hence unable to respond to the drop in frequency). 

System Identification-based Methods 

Examples of application of system identification techniques to load modeling can 

be found in [8, 14,57,61]. In [57], an RC circuit in parallel with an induction ma-

chine is used as the equivalent load model. The model is initially linearized, before a 

Newton-based gradient descent algorithm is used to determine its parameters. In [8], 

the non-linear dynamic load model of [30] is simplified to a polynomial linear regres-

sion model. Then, a Recursive Least Squares algorithm is employed to find the load 

parameters. This specific least squares algorithm was chosen so that the old mea-

surement value are de-weighted and the most recent measurements are given more 
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significance. In [61], static load models along with a least squares curve fitting tech-

nique are used to predict the load behavior. Finally, in [14], a Quasi-Newton gradient 

descent algorithm, namely Levenberg-Marquardt, is used to identify the parameters 

of a number of different load models. In this paper, two different variations of the 

load model of [30], as well as a linear first order induction motor model, are studied. 

Neural Networks-based Methods 

Genetic Algorithms (GA) and Neural Networks-based approaches have also been used 

in identifying the parameters of static and dynamic load models. In [3], an Adap-

tive Neural Network technique is used to cluster a group of polynomial load models 

to arrive at an aggregated model, and the results are compared with conventional 

static load models. The clustering algorithm represented in the paper also involves 

a training process for the neural network. A Genetic Algorithms-based approach for 

power system load identification is presented in [28]. First, the authors introduce a 

composite static-dynamic load model based on previously established models. Then, 

a GA is applied to the proposed model to determine which parameters are significant 

before evaluating them. The algorithm consists of an arbitrary number of iterations 

- generations in GA terminology - of model evaluations for discovering the optimal 

set. In [58], the standard polynomial load model is identified by using a modified 

Genetic Algorithm routine. The authors use the stochastic search capability of a 

GA to examine a number of potential parameter sets before selecting a feasible an-

swer. In [45], Fuzzy inference systems and Artificial Neural Networks techniques are 

combined together to produce the Adaptive-Network-Based Fuzzy Inference System 

(ANFIS) for load modeling. In this paper, no specific structure is assumed for the 
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load since the ANFIS, along with a hybrid learning algorithm, determines an ap-

propriate polynomial model based on the measurement data. Finally, in [67], the 

load model of [30] is identified by using a GA-based algorithm. The authors use 

a randomly generated initial point and the major difference between the proposed 

approach and the standard GA technique is that the mutation component of the 

technique is based on Evolutionary Programming (EP). 

1.2.2 Ankle Dynamics Identification 

The current techniques for identifying the ankle dynamics model can be categorized 

into three different groups: Separable Least Squares approach, NARMAX approx-

imation, and iterative identification technique. The NARMAX model is a general 

parametric representation for modelling nonlinear systems [37,38]. 

In [32,41], the authors propose an iterative approach for identifying the ankle 

model parameters. In these papers, the identification task is separated into two 

parts: the intrinsic dynamic component and the reflex pathway component. The 

proposed approach consists of iterative identification of each of these two parts un-

til the problem converges. The inherent delays in the system make this approach 

to identification of the ankle dynamics possible. In other words, since the intrin-

sic component dies down before the reflex pathway has influenced the output, the 

identification of the two components can be separated. 

In [59], a Separable Least Squares optimization is used to identify the ankle 

model. In this approach, the parameters of the model are divided into two groups: 

linear and non-linear. Then, it is shown that for a given non-linear set, identification 

of the linear parameters is reduced to a simple, and convex, linear regression. To 
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find the optimal non-linear parameters, a gradient descent optimization, namely 

the Levenberg-Marquardt, is used. The initial values for the Levenberg-Marquardt 

optimization are obtained from the approach presented in [32,41]. 

In [36], the ankle dynamics are converted into a NARMAX model and are identi-

fied using an Extended Least Squares method. This transformation into the linear-in-

the-parameters NARMAX model requires a few approximations within the system. 

The author shows that the NARMAX model can successfully model the output of 

the ankle dynamics model; however, the proposed approach finds a new set of pa-

rameters, namely the NARMAX parameters, which are not the same as those of the 

physical system. 

1.3 Research Motivation and Objectives 

The objective of this thesis is to develop algorithms that can be utilized in the 

identification of non-convex systems. The motivation and objectives are explored in 

detail in the context of the following problems: identification of power system load 

models and identification of human ankle dynamics. 

1.3.1 Power System Load Model Identification 

Emerging challenges with power system stability, and the general need for more 

accurate power system models, have emphasized the importance of accurate load 

models. The current methodologies in power system load model identification in-

clude a number of different approaches and techniques, as explored in the previous 

section. However, the existing methods are either very time consuming or limited in 
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some significant fashion. In fact, many utilities rely on worst case, lumped-bus load 

models such as the constant MVA [23]. The shortcomings of existing load modeling 

techniques are as follows: 

i) The component-based approach has the disadvantage of requiring information 

that is not generally available. In fact, the sheer volume of information required 

for this approach, as well as load ownership and confidentiality issues, make it 

very difficult, if not impossible, to implement the component-based approach. 

ii) Shortcomings of the Neural Network applications include slow convergence, 

difficulties in setting of the learning parameters, and training failure due to local 

minima. Genetic algorithms are stochastic in nature, which implies that they 

are not guaranteed to converge, even to a local minimum. Also, if high precision 

is needed, length of binary coded strings in GA will increase dramatically, 

thereby reducing the efficiency of the algorithm. 

iii) Finally, static load models fail to accurately represent power system behavior 

during and after contingencies. 

This thesis proposes new identification algorithms for power system load identi-

fication that can overcome the aforementioned shortcomings in the current method-

ologies. More specifically, this thesis aims to develop new algorithms that can model 

power system loads both accurately and efficiently. 

1.3.2 Ankle Dynamics Identification 

The existing ankle dynamics identification techniques consist of approaches which 

require "good" initial values, [32,41,59], or do not identify the true parameters of 
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the ankle model, [36]. The objective of this thesis is to develop an algorithm that 

can identify the true parameters of the ankle model without dependence on initial 

values. 

1.4 Implementation Methods 

Unless otherwise stated, all procedures presented in this thesis are written by the au-

thor and implemented by using the MATLAB programming language and numerical 

computing environment. Existing MATLAB functions were utilized when solving 

linear and non-linear systems of equations and non-linear least squares curve-fitting. 

To solve a system of linear equations, which involves the computationally intensive 

task of matrix inversion, the \ (left division) operator is used [19]. Since the \ 

operator in MATLAB uses an LU factorization technique [20] which requires fewer 

floating-point operations and is significantly faster than a direct matrix inversion 

approach. 

To solve a system of non-linear equations, the fsolve function in MATLAB is 

employed [19], and for non-linear least squares curve fitting problems, the lsqcurvefit 

function in MATLAB is utilized [15,16]. 

1.5 Thesis Structure 

The remainder of this thesis is structured as follows: 

Chapter 2 provides an overview of some of the system identification and pa-

rameter estimation concepts that are fundamental to the algorithms 
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presented in this thesis. Background information is presented for 

the mathematical formulation of the system identification problem, 

along with the non-linear model structure used throughout the the-

sis (NARMAX). A few identification tools - least squares techniques 

and gradient descent optimization - are also discussed in detail. Fi-

nally, the load model and the ankle model explored in this thesis are 

presented. 

Chapter 3 proposes a multi-stage identification algorithm and applies it to dif-

ferent identification problems. The proposed algorithm employs the 

following stages: 

1. The non-convex identification problem is approximated with a 

linear-in-the-variables counterpart. 

2. The optimal parameters for the new, convex problem are ob-

tained. 

3. These parameters are used as starting points in an optimization 

routine for the original, non-convex problem. 

The algorithm is then applied to the problem of power system load 

model identification. It is shown to avoid the problems associated 

with local minima while being significantly more efficient than global 

search routines. Results are presented for artificial systems, as well 

as real (field) data. The multi-stage algorithm is also applied to the 

ankle dynamics identification problem. The algorithm is shown to 
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successfully determine the parameters of a simulated ankle joint. 

Chapter 4 applies a separable identification algorithm to the power system load 

identification problem. This approach is a problem-specific technique 

and requires the problem to be convex in one or more parameters. 

Once the convexity of the power system load modeling problem is 

demonstrated in a subsection of its parameters, the proposed algo-

rithm is applied to the problem. Once again, the proposed algorithm 

is shown to avoid the problems associated with local minima while 

being significantly more efficient than global search routines. Also, 

results are presented for artificial and real systems. 

Chapter 5 summarizes the content of this thesis and provides conclusions. The 

significant components of the thesis are reviewed and the main con-

tributions are highlighted. 



Chapter 2 

System Identification and Parameter Estimation 

2.1 Introduction 

In order to establish a foundation for the topics presented in this thesis, background 

information is provided in this chapter. More specifically, this chapter presents 

the non-linear models employed in this thesis, the identification methods used in 

the proposed algorithms, and the formulation of the system identification problem. 

Lastly, the power system load model and the ankle dynamics model which will be 

identified in this thesis are introduced. 

In general, a system is an entity in which the interaction of different variables 

(system parameters) results in detectable signals. These signals can be divided into 

three categories: input, disturbance, and output. Inputs typically refer to signals 

that can be influenced by the observer, disturbances refer to inputs that can not 

be controlled by the observer, and outputs refer to signals of interest produced by 

the system in response to the input and disturbances [39]. A simplified graphical 

representation of a system is shown in Figure 2.1, where u is the input to the system, 

w is the disturbance, and y is the output. 

A system model combines the observable signals from a system in some pattern. It 

indicates the relationship between the system's variables and its observable signals. 

Models range in a variety of classifications, including but not limited to: mental, 

graphical, and mathematical [39]. However, in this document, model will only refer 

14 
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W 

U Y 

Figure 2.1: A simple representation of a system with input u, disturbance w, and 
output y 

to mathematical (or analytical) models. 

Mathematical models use mathematical expressions such as difference or differ-

ential equations to represent the relationship between the system's variables and its 

observable signals. These expressions can be further categorized to indicate the type 

of difference or differential equation used. Some common examples include linear 

and non-linear, or discrete-time and continuous-time [39]. For example, 

y(t) + ay(t - 1) = bou(t) + biu(t - 1) (2.1) 

is a discrete-time, linear, difference equation model, where a, b0, and b1 are the 

system parameters, and u and y are the system input and output, respectively. The 

mathematical representation of disturbances is intentionally left out of the model in 

(2.1), as it will be discussed later in Section 2.3. 

An example of a continuous-time, differential equation model is: 

i(t) = aox(t) + aiu(t) 

y(t) = box(t) + biu(t) (2.2) 
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Prior knowledge 

Experiment Design 

Data Model Set Selection Selection of Fit Criterion 

Model Calculation 

Model Validation 
NO 

OK 

Figure 2.2: The general system identification loop 

where a0,1 and b0,1 are the system parameters, x is an internal state variable and u 

and y are the system input and output, respectively. 

System identification refers to the process in which the input and output mea-

surements are recorded and analyzed in order to arrive at a system model. It should 

be noted that parameter estimation is a subset of the broader system identification 

problem. The typical system identification loop is shown in Figure 2.2 [39]. The 

following is a brief discussion of the components of this loop. 

The main goal in the Experiment Design block is to arrive at the most suitable 

choices regarding the input and output signals. More specifically, the observer will 

investigate the choice of signals to be measured, their sampling rates, their times of 

measurement, and other similar aspects, in order to obtain the set of input/output 
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data that are most pertinent and beneficial to identifying the system. Clearly, all 

the decisions have to be made within the constraints of the problem at hand. Also, 

one can encounter scenarios in which the choice of data can not be manipulated by 

the observer and the only available data are obtained from the normal operation of 

the system. 

During Model set selection, different model collections are investigated in order to 

determine the most suitable candidate set. This is often the most difficult part of the 

identification process. A combination of a priori knowledge, engineering intuition, 

and formal properties of models need to be combined in order to determine which 

set of models will be examined. 

Selection of fit criterion determines how the candidate models will be assessed in 

order to obtain the most suitable model. Typically, a model's ability to reproduce 

measured data is the main criterion in evaluating the candidate models. 

In Model Calculation, the selection of fit criterion along with the data set obtained 

from the Experiment Design phase, is applied to the candidate model set. Then, the 

signals predicted by the candidate models are calculated using an appropriate tool. 

Finally, Model Validation compares the predicted and measured signals in order 

to determine the effectiveness of the candidate models [39]. 

2.2 Mathematical Formulation 

In general, a model structure is a parametrized mapping from the measured data to 

the predicted outputs. In mathematical terms, 
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= f (0, {u(1) u(N), y(l) • y(N)J) (2.3) 

where 4 is the model parameter set, u and y are the measured input and output, 

respectively, N is the number of measured samples of u and y, and P is the predicted 

output. For example, if (2.1) is the true representation of a system, then 

(t, ) = q51y(t - 1) + 02U(t) + ç3u(t - 1) (2.4) 

is a candidate model to predict the output of the system. In the ideal case, the 

system identification process will find the candidate parameter set 3 = [01 02 031 

to be equal to [—a b0 b1]. In other words, the aim is to find the candidate parameter 

set 3 such that 

= arg min VN() (2.5) 

where VN(4) is a measure of the difference between the predicted output (4) and 

the measured output y. One of the most common tools for solving the optimization 

problem of (2.5) is the Least Squares method, which will be presented in Section 2.5. 

2.3 Noise 

The term noise is traditionally used to designate unwanted signals that tend to dis-

turb the operation of a system and over which the observer has little or no control. 

Measurement noise and process noise are the two most significant sources of dis-

turbance (or contamination.) Examples of measurement noise include quantization 
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U Z 

Figure 2.3: A simple representation of a system with input u, noise v, and output y 

errors in Analog-Digital conversion, interference from thermal noise, and intrusion 

of unwanted frequency components such as 60 Hz or AM radio [13,24]. Examples 

of process noise include unmeasured inputs to the system such as turbulence when 

identifying the dynamics of an aircraft [39]. Also, modelling errors are often treated 

as noise. For example, the error introduced by linearizing a non-linear system can 

be treated as additive noise. 

In general, noise is included in the system model as an output additive signal, as 

shown in Figure 2.3, where v can represent a variety of disturbances and/or modeling 

errors. System input, uncontaminated output, and measured output are represented 

by u, y, and z respectively. 

Regardless of their origin, all types of noise have a common property: it is very 

difficult, if not impossible, to specify their magnitude as a function of time in pre-

cise terms. Therefore, common practice is to model the noise as an independent, 

identically distributed (iid) sequence with zero mean that has been filtered by a lin-

ear system. A sequence of independent, identically distributed random variables is 

also called white noise and is typically represented as e(t). For example, if the sys-

tem represented in (2.1) is contaminated with additive white noise, the input-output 

relationship becomes: 
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z(t) = y(t) + e(t) 

= az(t - 1) + bou(t) + biu(t - 1) + e(t) (2.6) 

and the equation for predicted output, (2.4), becomes: 

2(t, 4)) = qiz(t - 1) + 02U(t) + q3u(t - 1) (2.7) 

Once the output is contaminated, the true system output, y(t), is no longer 

available. Therefore, the contaminated signal, z(t), is used as the system output for 

identification purposes. Consequently, the generic model structure of (2.3) has to be 

modified to: 

2(4)) = f(4) {u(i) . . . u(N), z(i) z(N)j) (2.8) 

2.4 Models for Non-linear Systems 

Non-linear systems can be described by a number of different models. Two common 

categories of models are: Wiener-Hammerstein models and parametric non-linear 

models, the most general of which is the NARMAX model. The Hammerstein model 

is acknowledged in the derivation of the discrete-time power system load model, 

and is introduced in Section 2.4.1. The NARMAX model will be used extensively 

throughout this document and is introduced in Section 2.4.2. 
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f(.) 

f(u(t)) 

Linear System 

y(t) 

Figure 2.4: The Hammerstein model for non-linear systems 

2.4.1 Hammerstein Models 

Hammerstein models belong to the block-oriented group of models for non-linear 

systems, which consist of interconnections of Linear Time Invariant (LTI) systems 

and static (memoryless) non-linearities [39]. A system is time-invariant if a delay or 

advance of the input signal results in an identical shift on the output signal. In other 

words, the characteristics of such system do not change with time [24]. A system 

is memoryless if the output only depends on the present input (and not the past or 

future values). 

A Hammerstein structure contains a static non-linearity f(.) at the input, fol-

lowed by a linear system, as shown in Figure 2.4. A simple example for the static 

non-linearity of Figure 2.4, f(•), is a polynomial (of degree 1): 

f(u(t)) = a0 + aiu(t) + a2u2(t) + .. + aju'(t) (2.9) 

2.4.2 NARMAX Models 

The Non-linear Auto Regressive Moving Average with eXogenous inputs (NARMAX) 

is a general parametric form for modeling non-linear systems. A NARMAX model 

uses a non-linear difference equation to describe the relationship between the system 

inputs and outputs [9], which can be represented mathematically as: 
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z(t) = ft[z(t —1),... ,z(t - n.) , t(t),... ,'u(t— n),e(t —1),... ,e(t—n)] +e(t) 

(2.10) 

where ft is a non-linear mapping, 1 is the non-linearity order, u, z, and e are the 

input, output and additive noise sequences, respectively. The maximum input lag, 

the maximum output lag, and the maximum error lag are shown as n, ,n, and 

e, respectively. In other words, n indicates how many past values of the input 

are required to correctly model the current output. In this document, fl is only 

represented by a polynomial of degree 1. 

As an example, a polynomial NARMAX model with n, = nz = me = 1 

(maximum lag on the signals is 1) and 1 = 2 (maximum polynomial degree is 2) is 

represented as: 

z(t) = a0 + aiz(t - 1) + a2u(t) + a3u(t - 1) + a4e(t - 1) + a5z(t - 1)'u(t - 1) + 

a6z(t - 1)e(t - 1) + a7u(t - 1)e(t - 1) + a8z2 (t - 1) + a9u2(t) + 

a10u2(t - 1) + a11e2(t - 1) + a12u(t)u(t - 1) + a13u(t)e(t - 1) + e(t) 

and in the vector format as: 
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T 

1 

z(t - 1) 

U(t) 

u(t - 1) 

e(t - 1) 

z(t - 1)u(t - 1) 

Z(t) 
z(t-1)e(t-1) 

= 

u(t-1)e(t— 1) 

z2(t— 1) 

U 2 (t) 

u2(t— 1) 

e2(t— 1) 

'a(t)u(t - 1) 

u(t)e(t - 1) 

which contains 14 (potential) parameters to be 

obtained as follows: 

a0 

a1 

a2 

a3 

a4 

a5 

a6 

a7 

a8 

a9 

a10 

all 

a12 

a13 

+e(t) (2.11) 

identified. The terms in (2.11) are 

1. Since the maximum lag is 1 (n ne = 1), the following signals have 

to be represented in the NARMAX model: 

u(t), u(t - 1), y(t - 1), and e(t - 1) (2.12) 

2. Since the maximum polynomial degree is 2 (1 = 2), all possible cross-product 

terms of P t and 2nd order involving the signals in (2.12) have to be accounted 
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for in the NARMAX model. 

It can be seen that the number of potential terms in a NARMAX model can rapidly 

increase when the order of the model increases. The maximum number of parameters 

in a NARMAX model, p, is calculated from [9] 

where 

p= 

Po = 1 

Pi = Pi_i(u+Thz+fle+1)  
i 

(2.13) 

For example, a model with n = n, =  n = 4 and 1 = 2 has p = 106, i.e. 106 

parameters. It should be noted that NARMAX models based on real systems might 

have fewer parameters than the maximum number, p. 

2.5 Identification Methods 

2.5.1 Linear Regression and Ordinary Least Squares 

Linear regression model structures are a convenient tool for representing the be-

haviour of basic linear and non-linear systems [39]. These structures refer to linear 

or non-linear parametric systems that can be described as: 

z(t) = x(t)T-o + e(t) (2.14) 
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where z(t) is the output, x(t) is a data dependent vector containing system measure-

ments, 4 are the system parameters, and e(t) is the additive noise. It should be 

noted that x(t) is also called the regressor vector. 

For example, the system represented in (2.6) has a linear regression model struc-

ture for which the regressor vector, x(t), and the parameter vector, 0, are 

z(t-1) 01 

X(t) = u(t) and = 1'2 

u(t-1) _3 

a 

b0 

b1 

(2.15) 

Since most system measurements are taken at more than one time point, the 

relationship in (2.14) can be extended to a sequence of measurements: 

z=X+e (2.16) 

where z is a vector of output measurements, X is a matrix of system measurements 

(regressor matrix), and e is a vector of additive noise. For example, if the input 

and output measurements of the system in (2.6) are recorded for the time interval 

t = {O ... N}, the regressor matrix becomes: 
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z(-l) u(0) 'u(—l) 

Z(0) u(1) u(0) 

z(1) u(2) u(1) 
(2.17) 

z(N —2) u(N - 1) u(N —2) 

z(N-1) u(N) u(N —l) 

The goal of the system identification process is to find the parameter set, 4), 

that would minimize the prediction error - the difference between the measured 

output and that predicted by the model. For the generic system of (2.16), the 

system identification process will consist of finding a parameter set, 3, and the 
corresponding predicted output, ., that are "as close as possible" to the real system 

parameters, 4), and the measured output, z. For the generic system of (2.16), the 

predicted output is: 

(2.18) 

where 3 is a set of predicted system parameters. Therefore, the optimal parameter 
set, 4)* should meet the following criterion: 

where 

= arg min VN (4)) (2.19) 
41 

112 
VN(cb) = IIz - 

(2.20) 
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and IlxM2 is the 2-norm (Euclidean norm) of x. 

Using the definition of Euclidean norm [2], (2.20) can be written as: 

VN(q) = - ;e (.0)) T ( •(0)) ) 
- 

Next, substituting the value for ;e(0) from (2.18) gives: 

VN(q5) =  1(("—X•)T(.Z_X•) 

(2.21) 

= 1 (Z7'Z - zTX - (X3)Tz + (X)T(X)) (2.22) 

Now, the problem of (2.19) can be regarded as an unconstrained optimization in the 

parameter space. Therefore, the optimal point, , should meet the First Order 

Necessary Condition [10]: Setting the derivative of (2.22) (with respect to q5) to zero 

gives the relationship for the optimal parameter set, , as 

XTXcb*_XTz= 0 

= (XTX)'XTz 

(2.23) 

(2.24) 

This is the (Ordinary) Least Squares method for solving linear regression problems. 

2.5.2 Extended Least Squares 

If the regressor matrix X contains lagged values of the disturbance term, e(t), an Or-

dinary Least Squares approach can not be used for parameter estimation, as demon-
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strated with the following example: in the NARMAX model of (2.11): 

z = Xq5+e 
T 

e(t —1) 

z(t-1)e(t-1) 

u(t - 1)e(t - 1) 

e2(t-1) 

- u(t)e(t - 1) 

(2.25) 

the regressor matrix contains 5 columns involving lagged values of e(t). Since distur-

bance measurements, e, are not available, they are replaced with prediction error, €, 

where: 

€(t, ) = z(t) - (t, 4) (2.26) 

Therefore, all the columns in X that involve e(t) are replaced with €(t, ). Conse-

quently, the regressor matrix is a function of q5: X is replaced with X (4), and the 

input-output relationship of (2.25) now becomes: 
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z = X(q5)q5+e 
T 

z(t-1)6(t—1,cb) 

(2.27) 

62(t-1,4) 

- u(t)€(t— 1,q5) 

Based on (2.27), the predicted output is obtained from: 

= (2.28) 

The relationships of (2.27) and (2.28) look familiar to those of a linear regression 

problem, (2.16) and (2.18). However, due to the non-linear effect of ç& on the regressor 

matrix, the parameter estimation problem is no longer a linear regression and can 

not be solved by using the ordinary least squares approach. In fact, the new problem 

is called a pseudo-linear regression and the Extended Least Squares (ELS) approach 

is used to solve it [9,22]. 
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A summary of the ELS algorithm is as follows: 

1. A reduced regressor matrix is formed by removing the columns of the re-

gressor matrix X(q5) that do not involve the error terms, f(4). Next, the 

corresponding parameter vector, , is defined by removing the parameters as-

sociated with the error terms from 0. For example, for the NARMAX model 

of (2.11) and (2.27), k and çb are: 

T 

x = 

Then the following linear regression problem 

a0 

a1 

a2 

a3 

a5 

a8 

a9 

aio 

a12 

is solved using ordinary Least Squares to find the optimal values for : 

= (f•J)-'5cT 

(2.29) 
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2. Next, the residuals, €, are calculated as: 

€=z-5Cc3 

3. The iteration number, k, is set to 1. 

4. X (c/._.) is formed by using (4k.1) as an estimate of the prediction error 

terms. For example, for the NARMAX model of (2.27), the regressor matrix 

for the kth iteration of the ELS algorithm, X(k_l), is given by: 

T 

X(k1) = 

z(t— 1)e(t— 1,k_1) 

u(t— 1)€(t— 1,4'k_l) 

e2(t— 1,Q5k_1) 

(2.30) 

5. X(Ok-I)Ok = z is solved using linear regression to determine the optimal 

values for lk, '-e-
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6. New set of residuals is calculated as: = z - 

7. Set k=k+1. 

8. If the problem has converged, exit. Otherwise, go to Step 4. The convergence 

criterion is based on the change of 4) between two sequential iterations, i.e. if 

II4)k - 4)k-1IIOO is sufficiently small. (In this document, a value of 10-6 was 

chosen.) Even though the convergence of the ELS technique is not guaranteed, 

it has always converged to an optimal solution in the author's experiments as 

well as numerous examples in the literature [9,50,65,66]. 

A flowchart of the ELS technique is shown in Figure 2.5. 

2.5.3 Levenberg-Marquardt Algorithm 

As previously shown in (2.20), the cost function in system identification is defined 

as: 

1 
VN(4)) = _IIz_(4)) 21 h12 112 2 

1 

2 

(2.31) 

If the predicted output relationship, (4)), can be represented in the linear re-

gression format: . = X4), or pseudo-linear regression format: . = X(4))4), then 

the Ordinary Least Squares and Extended Least Squares techniques can be used, 

respectively, to minimize the loss function and obtain the optimal parameter set. 

The linear and pseudo-linear regression models are also known as (pseudo) linear-
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The reduced regression matrix, ., and 
the corresponding parameter vector, , 

are formed. 

is obtained from ordinary Least Squares: 

= z 

I 
An estimate for predicton errors is obtained from: 

k=1 

X(cbk_l) is created by using (4k_.1) 

Ik is obtained from ordinary Least Squares: 

X(cbk_l)4k=z 

k = k + 1 

A new estimate for prediction errors is obtained from: 

= z - X(k..l)qk 

Converge ? 
NO 

YES 

Done. 

Figure 2.5: Summary of the Extended Least Squares technique 



34 

in-the-parameters. If a system model does not fit into this category, then a different 

optimization routine has to be utilized to minimize the cost function. 

Typically, an iterative optimization routine is used for models that are non-linear 

in the parameters. The main principle behind iterative optimization is to start with 

an initial vector of parameter estimates, 4o, and iteratively update the estimates 

according to: 

4'k + /Lkdk (2.32) 

where ak is the kt1 step size and dk is the ktl direction vector. The step size and 

the direction vector are chosen such that: 

VN(k+1) ≤ VN() (2.33) 

There are a large number of potential values for the search direction and step size 

that could satisfy the condition in (2.33). One of the simplest, and most popular, 

approaches is to update the parameter vector in the direction of steepest descent (of 

the cost function), i.e.: 
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dk 
OVN(çb) 

N 
51 - (z(t) - 1(t, 0))2) Ak 2N t=1 

5\ 
(Z(t) - 2 (9-*' (t, ))  q)  ) 

(2.34) 

(2.35) 

where J is the Jacobian matrix, i.e. the partial derivatives of the estimated outputs 

with respect to the parameters. For example, in a model with m parameters and N 

measurements, the Jacobian is defined as the following N x m matrix: 

8(t=O4) a(t=O,4) - 

84(1) q5(m) 

J= (2.36) 

(t=N,cb)  
0q5(1) (m) - 

The inherent problem with gradient descent optimization is that the narrowest 

curvature on the error surface controls the step size, while the most gradual curvature 

controls the convergence rate [43]. To overcome this problem, the step size needs to 

be increased in the directions with low curvature and decreased in the directions with 

high curvature. As a result, the curvature of the error surface (the second derivative 

with respect to the parameters) needs to be used to modify the step direction. Using 

the surface curvature to adjust the step direction can also be justified mathematically: 

performing the Taylor Series expansion on the error surface, about the point 4k 

(parameter values at the kt1 iteration) gives: 
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f5VNI \T 1 
VN(k+o)=VN(k)+ç-- q5k) 5+5T190 2! (  

49 
) 5+••• (2.37) 

The Hessian is now defined as a matrix containing the second partial derivatives of 

the error surface with respect to the parameters: 

82VN ((k) a2VN(4')  

8çb(1)O(m) 

(2.38) 

82VN()  
- 

Removing the higher order terms in (2.37) and using (2.35) and (2.38) results in: 

VN(k + (5) VN(k) - +6T H6 (2.39) 

Minimizing the expression for VN in terms of 5 would produce: 

0 = 

5 = H 1JT€ (2.40) 

which is the gradient descent step of (2.35) with the addition of the Hessian to 

account for curvature of the error surface. This new step direction is called the 

Newton Step. 

Considering one term of the Hessian matrix, more specifically, entry(j ,i) in H as 
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defined in (2.38): 

H(j,i) 
a2VN(4) 

= 

5 ,'5V(4) 

= 5(j) 5(i) 

where can be obtained by using (2.35), so that: 

H(j,i) = a 5(j) (J, (:, i),E) 

1 a22() IjT(. i)JT(:,j) T 

N (5(j)5(i)) € 

(2.41) 

(2.42) 

The second term in (2.42) is computationally expensive (due to the second order 

derivatives) and will be insignificant close the optimal point (since the prediction 

error, €, will be very small). As a result, the Gauss-Newton Method uses the first 

term in (2.42) to obtain an approximation to the Hessian: 

(2.43) 

which converts the Newton step from (2.5.3) to: 

= (JTJ)_lJT (2.44) 

resulting in the following parameter update method: 
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= O k + [Ik (JTJ)JT € (2.45) 

where Pk is chosen adaptively. 

The main problem in the Gauss-Newton optimization routine is that the approxi-

mate Hessian of (2.43) can become singular or poorly-conditioned [43]. To overcome 

this problem, the Levenberg-Marquardt (LM) approach is introduced, which adds a 

diagonal regularization term to the approximate Hessian of the Gauss-Newton ap-

proach [40]. Therefore, the approximate Hessian for the LM approach is defined 

as: 

E= '(JTJ+,iI) (2.46) 

where Ak is the size of the diagonal ridge and I is the Identity matrix. The parameter 

update vector is therefore given by: 

k+1 = 4k + (jTj + I2kI)_lJT E (2.47) 

The ridge size in the LM algorithm, ph, is chosen adaptively, based on the distance 

from the optimal solution. The method presented in [40] is used in this work to choose 

/k (Ak is halved after a successful attempt, i.e. a reduction in the cost function, and 

doubled after a failed attempt). 
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2.6 Practical Applications 

In this section, two models that will be studied in this document are presented: a 

power system dynamic non-linear load model and a parallel pathway model of ankle 

dynamics. 

2.6.1 Power System Load Models 

One of the standard dynamic load models, which has been shown to accurately 

represent the steady-state non-linear behavior of the load along with load recovery 

and overshoot [25], and has been recommended by the IEEE Power System Stability 

Subcommittee [12], is defined as follows 

(t) = 

Pd(t) = 

_E) +P [VL(t)] N P8 P[VL(t)]NPt 

T12 V0 V0 
x(t) IVL(t)lNPt 

TV °LvJ 

- . _) VL(t) Ns VL(t) Nq 

Tq °[ 0] - °[ 0] 
- 

Qd(t) -  •(t) + Qo [ VL (t) ] Nq1 

Tq 

(2.48a) 

(2.48b) 

(2.49a) 

(2.49b) 

where Pd and Qd are, respectively, the active and reactive power demand of the load 

at time t, x(t) and z(t) are internal state variables, T and Tq are the time constants 

for x(t) and z(t), N 3 and Npt are the steady-state and transient voltage indices for 

active power, and Nqs and Nqt are the steady-state and transient voltage indices for 

reactive power, respectively. It is assumed that the nominal values, P0 and V0 are 
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known. Therefore, the load voltages, VL(t), can be normalized as V(t) := VO 

For the remainder of this document, only the active power load model will be 

studied. It can be seen from (2.48) and (2.49) that the reactive power model has the 

same structure as the active power component. Therefore, the same algorithm that 

is used for identifying the active power model can be used to identify the reactive 

power as well. 

Using standard system identification nomenclature, and assuming the nominal 

values are known, the parameters of interest in the active power model (2.48) are: 

0 = [N 3 N pt Tv'] = [01 02 03] (2.50) 

Using the notation in (2.50) and defining y(t) = Pd(t), (2.48) can be re-written 

as: 

,t (t) = —03x(t) + .P0V91 (t) - p 01/02 (t) 

Y(t) = 03x(t)+P0V02 (t) 

Introducing the following algebraic simplification: 

(2.51) 

W1(t) := f1(V) := P0V01(t) - P0V02(t) (2.52a) 

W2(t) := f2(V) := P0V 92 (t) (2.52b) 

allows (2.51) to be re-written as: 
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(t) = —03x(t)-f-wi(t) 

Y(t) = Osx(t)+w2(t) 

(2.53a) 

(2.53b) 

Since digital computers are used in all of the data processing, and since the 

measurements are taken at discrete time intervals, the continuous-time model of 

(2.53) needs to be recast in discrete-time. In order to discretize the system using a 

zero order hold (ZOH) [54], the system input must remain constant between samples 

(i.e. either if the sampling rate is very high compared to the system dynamics, 

or when the system input is provided by a digital controller [39]). For the load 

model considered in this document, the sampling rate is high relative to the system 

dynamics. Using the ZOH assumption, the continuous time model (2.53) can be 

discretized as follows [54]: 

x(k + £) = e_03tx(kt) +  —03e - e w1(k) 
93 

y(H) = O3x(k)+w2(k) 

(2.54a) 

(2.54b) 

where k is the time index and £ is the sampling period. 

The following simple manipulations are done to write the output, y(.), directly 

in terms of the input u(.), i.e., to eliminate the internal state variable x(.). Using 

the forward time shift operator q, (2.54a) can be written as: 
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1 -  qx(k1) = e° x(ke) + e_03e w 1(ke) 
03 

which can be further simplified to: 

- 1 - (q - e_03t)x(kt)   
- 03 w1(kt) 

Isolating x(W) gives: 

x(W) = 1 - e_03€ 
03(q -  e-039 W1 

Finally, substituting (2.55) in (2.54b) produces: 

r(W) = 1 - q - e_o3ew1() + W2 (W) 

(2.55) 

(2.56) 

The discrete-time dynamic load model of (2.56) was derived in [33] where the 

authors used an Adaptive Simulated Annealing approach to estimate the model 

parameters. 

For the algorithms presented in this document, it is advantageous to represent 

the block structure version of (2.56), which is shown in Figure 2.6 (with w1(k) and 

w2(k) defined by (2.52)). 

The lower branch in the model represents the second term in the right hand side 

(RHS) of (2.56), w2 (Ic€), which is a memoryless non-linearity applied to the input. 

More specifically, the output of this branch is an exponential in the instantaneous 

value of the input (f2(V) = P0V°2). 

The top branch of the model represents the first term in the RHS of (2.56). 
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V(W) 
- e-93t 

f2 () 
W2 (ks) 

Figure 2.6: The block structure version of the discrete-time dynamic load model 

This branch consists of two components: the first element is another memoryless 

non-linearity on the input, 

wj(k.e) = f1(V) = - P0v92. 

The second part of the branch,_:039 , is a first order filter, with a gain of 1— 

and a pole at This branch is a Hammerstein structure 

To account for measurement errors, independent Gaussian noise, e(t), is added 

to the output signal, resulting in the following input-output relationship: 

-  

z(k) = 1  w1(ke) + W2 (U) + e(U) 
q - O3t 

where z is the contaminated signal, i.e., z(ke) = y(k) + e(k). 

2.6.2 Parallel Pathway Model of Ankle Dynamics 

(2.57) 

The mechanical behaviour of a joint is defined by the relationship between the po-

sition of that joint and the torque acting about it [41]. In other words, this rela-

tionship indicates how a given joint interacts with its associated limbs and its en-



44 

U(s 

V(s) 

Is2 + Bs + K 
WL(s) 

delay 

Static Nonlinearity 
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Figure 2.7: Continuous-Time model of ankle dynamics showing the relationship be-
tween the angle and the net torque of the ankle 

vironment [31,41). The relationship can be categorized into two main components: 

intrinsic and reflex. The intrinsic component is based on the mechanical properties 

of the joint, passive tissue, and active muscle fiber. The reflex component is caused 

by the sensory response to stretch. [41] 

A parallel pathway model for the ankle, developed by the researchers at Neuro-

muscular Control Laboratory at McGill University, is represented in Figure 2.7 [32]. 

This model represents the relationship between the position (angle) of the ankle, 

U(s), and the net ankle torque, Y(s). The block-structured model is divided into 

two components: the linear (upper) path and the non-linear component (lower path). 

In the upper path, the intrinsic stiffness of the ankle is represented as a second 

order system, resulting in the linear contribution to the ankle torque, Wi, (s). In this 

second order system, I, B and K represent inertia, viscosity, and elasticity of the 

ankle joint, respectively. 

In the lower path, the reflex stiffness of the ankle is represented as a group of four 

components, resulting in the non-linear contribution to the ankle torque, WNL(S). 

The components of this path, in order, are: a derivative block, which converts the 

ankle angle U(s) to ankle velocity V(s), a delay block, a static non-linearity, and a 
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low-pass filter which models muscle activation. 

The static non-linearity is a half-wave rectifier, with the following definition: 

l 
X(t) = o, (2.58) 

v(t—/), v(t—/)>0 

The muscle activation filter includes the following parameters: g, C, and w, which 

represent the filter gain, damping parameter, and natural frequency, respectively [32]. 

The ankle dynamics model can now be summarized as: 

Y(s) = WE(S) + WNL(S) (2.59) 

given: 

WE(S) = (Is' + Bs + K) U(s) 

WNL(S) =   gw2 e'X(s) 
82 + 2Cws + w2 

(2.60) 

where X(s) is the rectified version, (2.58), of the ankle velocity V(s). 

The proposed algorithm, described in Section 3.4, will introduce mathematical 

formulation and the discrete-time conversion for the ankle dynamics. 

2.7 Summary 

In this chapter, the problem of system identification is formulated in a mathemat-

ical framework. Then, Hammerstein and NARMAX models are presented and dis-
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cussed. A few optimization routines, namely Ordinary Least Squares, Extended 

Least Squares, and Levenberg-Marquardt, are also introduced. These routines will 

be utilized in the proposed algorithms in Chapters 3 and 4. Finally, the power system 

load model and the ankle dynamic model are presented. 



Chapter 3 

Multi-stage System Identification 

3.1 Introduction 

Once an appropriate system model structure has been established, the next step in 

the system identification process is estimating the model parameters. If the esti-

mation problem is non-convex, finding the optimal parameters can be a challenging 

task due to the presence of local minima in the solution space. A global search of 

the solution space for finding the optimal parameters is very time-consuming, and 

the quality of a local search is dependent on the initial values. In this chapter, a 

new, multi-stage algorithm is proposed to help overcome the difficulties associated 

with non-convex system identification. The proposed algorithm is then applied to 

the problem of power system load identification and ankle dynamics identification in 

order to examine its validity. 

3.2 Non-convex System Identification 

The main principle of the proposed algorithm is to replace the non-convex identi-

fication problem with an approximate, but convex, counterpart. The parameters 

from the approximate model are then used as initial values for finding the optimal 

parameters of the original, non-convex problem. 

The main steps in the proposed algorithm are as follows: 

47 
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1. The non-linear system is approximated as a linear-in-the-parameters model: 

(2.18) or (2.28). 

2. Ordinary Least Squares or Extended Least Squares are used to identify the 

optimal parameters of the model introduced in Step 1. 

3. The optimal parameters from Step 2 are mapped to the parameters of the 

original non-linear system. 

4. A local optimization routine is performed on the non-linear system to find its 

optimal parameters. The values found in Step 3 are used as initial values for 

the optimization process. 

3.3 Power System Load Model Identification 

Multi-stage system identification is used to overcome difficulties associated with non-

linear and/or non-convex problems. The output of the discrete-time non-linear model 

(2.57) is a non-linear function of the model parameters (01, 02, 03) and the resulting 

optimization is non-convex. Therefore, a multi-stage approach is proposed, where the 

initial stages are utilized to determine starting values for the non-linear optimization 

routine that determines the optimal physical parameters. 

3.3.1 Proposed Multi-stage Identification Algorithm 

Using the approach of Section 3.2, the main steps for identifying the power system 

load model are: 
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1. The memoryless non-linearities in the discrete-time model are approximated 

with polynomials to ease the parameter estimation process (NARMAX formu-

lation). 

2. Inut and output measurements are used to determine the parameters of the 

NARMAX approximation. 

3. The NARMAX parameters are mapped to estimated physical (actual) param-

eters of the aggregate load model 

4. The estimated physical parameters are used as initial values in a local opti-

mization routine (Levenberg-Marquardt algorithm). The goal of the routine is 

to minimize the difference between the measured output and that predicted by 

the model. 

The remainder of this section gives details of all the stages in the proposed algo-

rithm. 

Stage 1: NARMAX formulation of the proposed model 

In the first stage, the non-linear and non-convex physical load model is approx-

imated with a linear-in-the-variables model. The parameter values for the approxi-

mated model can be found using a pseudo-linear regression approach [9,22]. Specif-

ically, a NARMAX formulation, which is linear-in-the-variables, is introduced as an 

approximation to the discrete-time model of (2.57) [37,38]. 

To utilize a NARMAX formulation, the exponential terms in the model need to 

be approximated with a basis expansion [38]. For this thesis, 2,d order polynomials 

are chosen to approximate the input non-linearities (this approach will be justified 



50 

V 

CO + ciV + C2 V2 

d0 + d1V + d2 V2 

Wi bq 1 

1 + aq' 

W2 

Figure 3.1: The polynomial approximation to the discrete-time dynamic load model, 
used to derive the NARMAX representation. 

in Section 3.3.4. Other expansions were not considered because of difficulties that 

would arise in Stage 3 when mapping from the basis parameters to the physical 

parameters.) More specifically, Wi (ks) and w2(k) are approximated as: 

tDi(t) = eo+c1V+c2V2 

t02 (t) = d0 + d1V + d2 V2 

Throughout the remainder of this section, the ̂  notation is used to indicate estimates, 

and t is implied to be in discrete time. 

The resulting block structured model is shown in Figure 3.1, where b represents 

the gain of the 1st order filter, a is the pole location for the filter, and e is the white 

Gaussian noise added to the output. 

From Figure 3.1, the output z(.) is written as the summation of the signal of the 

upper branch (tDi(t) after the first order filter), the signal of the lower branch (tO2 (t)) 

and the white Gaussian noise e. Mathematically, this can be written as: 



51 

z(t) = ((a + 1)d0 + bc0) + d1V(t) + d2V2(t) + (be, + adi) V(t - 1) + 

(be2 + ad2) V2(t - 1) - az(t - 1) + ae(t - 1) + e(t) (3.1) 

which is pseudo-linear in the parameters and is a NARMAX formulation [37,38]. 

The vector of parameters to be identified is /', which contains the polynomial 

coefficients and filter coefficients: 

= [a b Co Ci C2 do d1 d2] 

Stage 2: NARMAX parameter estimation 

To simplify the identification process, the model of (3.1) is rewritten in the 

pseudo-linear form. Similar to (2.27), the error terms, e(t), in the regressor matrix 

are replaced with prediction errors , 6(t), since the error terms can not be measured. 

The pseudo-linear input-output relationship is: 

z(t) = x(t, 4)Tq5 + e(t) (3.2) 

where 
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1 (a+1)d0+bc0 

V(t) d1 

V2(t) d2 

x(t, 4)) = V(t - 1) 4) = bc1 + ad1 

V2(t-1) bc2+ad2 

z(t-1) —a 

a 

For a set of n measurements, the regressor matrix, X, is defined as: 

x = 

(3.3) 

(3.4) 

- x(t,4))T j 

Since x(t, 4)) depends on the model parameters, due to the inclusion of €(t— 1, 4)), the 

model is not strictly linear in terms of all the parameters. Thus, an Ordinary Least 

Squares algorithm can not be used to determine the parameter values from input 

and output measurements. To overcome this difficulty, an Extended Least Squares 

(ELS) algorithm [62] can be used to estimate the parameters of the NARMAX model, 

4) [39]. The Extended Least Squares method is presented in Section 2.2. 

With obtained using ELS, 4) from (3.3) is used to compute estimates of the 

parameter values, (the elements of the vector '4'), as follows: 
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where the brackets indicate the entry of the vector t. 

The only parameters that can not be explicitly determined are c0 and d0, both 

of which only appear in the value of [1]. They are therefore estimated in the next 

stage as part of the mapping algorithm. 

Stage 3: Mapping between polynomial coefficients and physical parame-

ters 

Using a least squares curve-fitting approach [17], the values obtained for the poly-

nomial coefficients, ', are mapped into initial estimates of the physical parameters, 

0. 

The relationship between the first order filter associated with the physical model 

and the NARMAX approximated system can be used to form an initial estimate of 

In the physical model of Figure 2.6, the first order filter is defined as   in 

the NARMAX model, the first order filter term: 
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bq'  

1+aq' 

can be rewritten as: 

b 

q + a 

Equating the denominator of the physical system and (3.5) gives: 

q + a = q -  CM 

a= 

- log(—à) 
03 —  £ 

(3.5) 

where log represents the natural logarithm (base e). 

Next, the terms in 3 determined in Stage 2 are used to estimate 01, 0, c0, and 
d0 using a curve-fitting approach. The steps in this process are as follows: 

1. Since the polynomial d0+d1V+d2V2 was used in the lower branch of Figure 3.1 

to approximate V 02, V 02 -  d0 is fitted to c'1V + d2V2 using a non-linear least 

squares algorithm to obtain the estimates of 02 and d0. 

2. Using the value of d'0 calculated in the above step (and the values of a and 

determined in Stage 2), the value of c0 is determined using the first element of 

vector 4 from (3.3), i.e. 

[1] = (ao+l)do+bco (3.6) 



55 

3. In the upper branch of Figure 3.1, the polynomial c0 + c1V + c2V2 was used 

to estimate V°' - VO2. Since 02 and the coefficients c0, c1, and c2 have been 

estimated, +6V+6 2V2  + V 02 is fitted to V°' in order to obtain an estimate 

for 0. 

Initial estimates of all the physical parameters have now been determined. 

Stage 4: Levenberg-Marquardt Algorithm 

In the final stage, the estimates of the physical parameters = [Oj O2 03], found 

via Stages 1 through 3, are used as initial estimates for a Levenberg-Marquardt 

routine that determines their optimal values. 

To perform the optimization routine, the equations for the Jacobian need to be 

derived. One row of the Jacobian is defined as: 

10(t) 5(t) 0(t)1 

O0 502 003 ] 

To derive the Jacobian terms, the expression for (t, 0) from (2.57) is used to deter-

mine the derivatives: 

OQ(t, 0)  

01 

5(t, 0)  

02 

0(t, 0)  

03 

- 1 
 P0V°'(t) log V (t) 

= 

1 - q  P 
q—e03 0V02 (t) log V(t) 

=  

= 1 - q 2 V01 (t) 
- V 02 (t)) (3.7) 

(q - 3  

A flow chart summarizing all the stages in the multi-stage identification process 

for the dynamic load model is shown in Figure 3.2. It should be noted that this algo-
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NARMAX Approximation to the load model: 

z(t) = x(t, 4,)T4, + c(t) 

z(t,c&) = 

V(t) 
V2(t) 

V(t-1) = 

V2(t—l) 
z(t —1) 

e(t-1,çb) - 

(a+l)d,,+bc0 
(Ii 
d2 

be1 + adi 
bo2+ad2 

—a 
a 

Stage 1 

Pseudo-linear regression to obtain NARMAX parameters, 

Mapping from NARMAX parameters, , to Polynomial & Filter coefficients, t' 

= (a b co Cj c2 do d1 d2] 

Mapping from Polynomial & Filter coefficients to Physical parameters, e 

Levenberg-Marquardt Optimization with the inital estimates obtained for 0 

Stage 2 

Stage 3 

Stage 4 

Figure 3.2: Summary of the multi-stage identification process for the non-linear 
dynamic load model 

rithm can not guarantee convergence to the global optimum. However, as shown in 

the following section, it converges to the global optimum for the problems considered 

in the thesis. 

3.3.2 Simulated System Results 

To study the proposed approach, a simulated system is used. The parameters of 

the model in (2.57), [01 02 03], are set to [1.2 1.7 0.4] (Based on the parameters 

given in [33].) The input signal, V, has a uniform distribution between 0.9 and 1.1, 

which is reasonable since those values are the typical limits on per-unit voltage. The 
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Sample Mean 
ASA Multi-Stage 

Sample Std Dev (x10 2)  actual 
ASA Multi-Stage value 
7.77 
2.02 
6.27 

01 1.222 
02 1.7040 
03 0.3611 

1.205 
1.695 
0.421 

5.70 
2.04 
7.17 

1.2 
1.7 
0.4 

Table 3.1: Parameter statistics for ASA and the Multi-stage approach from 30 Monte 
Carlo runs with N = 1000 points. 

additive white Gaussian noise is set to be .Af(0, 0.0015) - Normal distribution with 

0 mean and variance of 0.0015 - for an SNR of approximately 25 dB. The values for 

the sampling period (i), nominal voltage (V0), and nominal power (P0) are set to 1 

second, 1 volt, and 1 watt, respectively. 

To analyze the time performance of the proposed algorithm, the Adaptive Simu-

lated Annealing (ASA) technique [26], used in [33], was also implemented. The ASA 

technique is a global search mechanism that is statistically guaranteed to find the 

optimal solution if it is given infinite time. 

The same initial parameter set as [33], [0.5 2.0 1.7], is used as the starting point 

for the ASA technique. 

Table 3.1 demonstrates the parameter statistics when 30 Monte Carlo runs are 

used on an artificial data set containing 1000 points. The sample mean and standard 

deviation from both approaches (ASA and multi-stage) are presented in the table. 

It can be seen that both techniques can successfully estimate the parameters of the 

simulated system. The parameters obtained from ASA have an error percentage less 

than 9.8% and those from the proposed algorithm fall within 5.3% of the simulated 

values. Also, all simulated values are within one standard deviation of the estimated 

parameters. 
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The main difference between the two approaches is in their respective time per-

formances. As expected, ASA is very time consuming since it requires extensive 

searching. Thus, the proposed algorithm presents a major advantage over ASA in 

terms of computational burden. To obtain the parameters reported in Table 3.1, 

ASA required 1897.5 seconds while the multi-stage identification technique required 

only 13.8 seconds, under identical conditions (on an AMD Athlon based PC). 

The proposed algorithm was further tested on different sets of theoretical param-

eters: [1.5 2.0 0.2], [2.0 1.5 0.5], [2.1 1.8 0.4], [1.0 1.7 0.3], [1.5 1.6 1.1], 

and [1.2 2.7 0.3448] were used as theoretical 0 values. In all cases, the simulated 

values were within one standard deviation of the estimated parameters, the mean of 

the estimated parameters had an error percentage less than 6.8% for the proposed 

algorithm and less than 10.1% for the ASA approach, and the proposed approach 

was - on average - more than 14 times faster than ASA. 

To examine the proposed algorithm, an identification-validation test is performed 

using simulated data. A set of 8000 data points is created using the same parameters 

as those introduced at the beginning of Section 3.3.2. The data set is split into two 

components: The first 5000 data points are used in the identification process (The 

proposed algorithm is applied to these data in order to estimate the parameters). The 

second 3000 data points are used in the validation process (The estimated parameters 

from the identification process are used to construct the predicted output for this set 

of data). The residuals are calculated for both data sets: Eid for the identification 

set, and va for the validation set. The mean squared values of the residuals are: 
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id = 1.5329 x i0 = 1.5010 >< i0 

Since the errors for the two sets are very similar, it can be concluded that the 

proposed algorithm is successful in accurately predicting the model parameters. 

3.3.3 Asymptotic Behaviour 

In this section, the asymptotic behaviour of the parameter estimates is investigated 

to verify that the proposed algorithm produces consistent estimates. The objective 

was to determine whether or not 

lim var (N) = 0 
N—oo 

In other words, do the estimated parameters converge (to the optimal values) 

as the number of data samples increases? In particular, the Cramer-Rao Lower 

Bound (CRLB) [39] is used to assess the quality of the estimated parameters and 

consequently, the quality of the identification. The CRLB is the theoretical lower 

bound on the variance attainable for unbiased parameter estimates; the closer the 

variance of the estimates are to the CRLB, the more consistent the parameters 

are [39]. The CRLB is computed using the inverse of the Fisher Information Matrix, 

M. For independent, identically distributed (iid) Gaussian noise [47], M is defined 

as [39]: 

M = 1(jTj) 
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Figure 3.3: The variance (var) and the Cramer-Rao Lower bound (CRLB) of the 
parameter estimates (01, 02, 03) obtained from 5000 Monte Carlo runs of the proposed 
approach. 

where a2 is the noise variance and J is the Jacobian matrix of the estimated outputs, 

as defined in (3.7) 

Figure 3.3 shows the variances of the estimated parameters as the number of 

samples, N, is increased from 100 to 1000. The Cramer-Rao Lower Bound for each 

experiment is also shown on the graph. The estimates are obtained from 5000 Monte 

Carlo simulations at each value of N. 

For N > 400, the parameter variances are close to the Cramer-Rao Lower Bound, 

and the clear trend is that the variances show asymptotic behavior and will continue 

to approach the CRLB. 



61 

3.3.4 Model Structure Verification 

In order to examine the validity of the approximations made during Stage 1 of the 

proposed algorithm, a number of experiments were performed. The goals of these 

experiments were twofold: 

1. To examine the validity of approximating V0 with a 2nd order polynomial 

2. To ensure that the NARMAX model of Stage 2 contains all the terms required 

to represent the load model, i.e. no terms were left behind due to the approx-

imation process. 

Verification of polynomial Approximation 

To convert the discrete-time non-linear model of (2.57) into a pseudo-linear regression 

model (Stage 2), the exponential terms were replaced with more suitable functions, 

specifically second order polynomials. However, the order of these polynomials needs 

to be verified. Thus, the exponentials in the physical model are approximated by 

both a 2nd order and a 5' order polynomials. 

To confirm the feasibility of using a 2' order polynomial to approximate the 

exponential terms, a series of curve-fitting tests were performed on simulated input 

data, similar to that of Section 3.3.2 (V: uniform [0.9 1.1]). The two exponential 

terms in the original dynamic load model, V02 and V° - V 02 were evaluated within 

the permissible ranges for 01 and 02 [1]: 

0.5 ≤ 02 ≤ 2.5 (3.8) 
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Figure 3.4: The 2-norm of residuals from approximating V02 with 2,d and 5111 order 
polynomials 

Figure 3.4 shows the 2-norm of the residuals from the curve-fitting process. It 

can be seen that the 2-norm from the 2nd order polynomial is slightly higher than 

that of the 5 1h order polynomial, but the results are acceptable, considering the very 

small scale of the residuals (10-6). The norm is also bounded for 02 ≤ 2. The relative 

size of the error for both cases is very small and irrelevant when the effects of even 

a small amount of noise are considered. 

Results shown in Figure 3.4 indicate the modeling error in the approximation 

process. In other words, the exponential term is assumed to be noise-free. However, 

in a typical setting, the measurements are contaminated with noise. Therefore, the 

approximation process is repeated with white Gaussian noise added to the expo-

nential terms. Figure 3.5 shows the 2-norm of the residuals from the curve-fitting 

process, with a signal-to-noise ratio (SNR) of 30 dB. Figure 3.6 shows the mean and 

variance of the residuals from the same process. Plots for the V01 - VO2 exponential 



63 

2.4 

2.3 

tT 2.2 

2.1 

1 5  

8 

0 

88 

8 
a a 

8 

a 

80 

60 a8 a 
0 0 00 • 

0 0 

0 8 

0 

a,; 

0 

0 

• Z' order 
0 5th order 

a 

0 
a 

1.5 2 25 

02 

Figure 3.5: The 2-norm of residuals when approximating V02 with 2nd and 5th order 
polynomials (SNR = 30 dB) 

term showed similar characteristics. 

The above discussion clearly shows that with noise added in the model, a higher 

order polynomial does not provide any advantages over the 2nd order polynomial 

approximation. 

Verification of the Overall Model Structure 

Structure detection, in general, is the process of selecting a subset of candidate pa-

rameters that accurately reflect the input-output relationship of a system. Bootstrap 

is one of the techniques used in the structure detection process. 

To demonstrate the concept of structure detection, a simple example, based on 

the NARMAX model of (2.11), is used: A NARMAX model is to be identified and 

the user's knowledge of the true system is only limited to the order of the polynomials 

and the maximum lag on the signals. If the order of the polynomials is 2, (1 = 2), and 
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Figure 3.6: Mean and variance of residuals when approximating V 2 with 2nd and 
5th order polynomials (SNR = 30 dB) 

the maximum lag on the signals is 1 (n =n,=n,= 1), the complete NARMAX 

model - as previously shown in (2.11) - is: 
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T - 

Z(t) = 

a0 

a1 

a2 

a3 

a4 

a5 

a6 

a7 

a8 

ag 

a10 

all 

a12 

a13 

+e(t) (3.9) 

However, the true system is likely to contain only a few of the 14 parameters shown 

in (3.9). If the real system, which is unknown to the user at the start of the structure 

detection process, is represented by: 
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T 

Z(t) = 

1 

z(t - 1) 

U(t) 

u(t - 1) 

z(t-1)e(t-1) 

u(t-1)e(t-1) 

u2(t) 

a0 

a1 

a2 

a3 

a6 

a7 

a9 

+e(t) (3.10) 

then, parameters a4, a5, a3 and a10 - a13 which exist in the model of (3.9) but 

are not true parameters of the system, are called spurious. In other words, if the 

identification process is successful, the value of the spurious parameters should be 

zero. The challenge in the structure detection problem lies in detecting these spurious 

parameters. One possible approach for solving this problem is to construct the 

regressor matrix as defined in (3.9), then perform parameter estimation and record 

the optimal parameters. Repeating this procedure in a Monte Carlo simulation will 

allow the user to study the distribution of all the parameters and to determine if 

they are spurious or not. More specifically, if 0 lies in the 99% confidence interval of 

an estimated parameter, then it is deemed spurious, and can thus be removed from 

the system model. 

In this Section, the load model structure is investigated using the sub-optimal 

Bootstrap structure detection technique [35]. More specifically, the process of ap-

proximating the non-linear load model with a 2' order NARMAX model is scru-

tinized. To perform this task, a 2nd order polynomial NARMAX model and a 5th 

order polynomial NARMAX model are used to identify the non-linear power system 
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load. Then, the parameters of the proposed NARMAX model from each scenario 

are examined to determine their significance. 

The Bootstrap method is a powerful numerical tool that can be used for com-

puting parameter statistics. The technique requires very few assumptions; namely, 

that the errors are independent, identically distributed (iid) with zero mean. The 

Bootstrap simulates a Monte Carlo analysis, but it presents a major advantage over 

that technique since it only requires one set of measurements. In most practical 

situations, one can only obtain a single (or very few) set of measurements. The 

Bootstrap technique randomly reassigns the observations and re-computes the esti-

mates. This process is repeated numerous times, and each iteration is treated as a 

repeated experiment [35]. 

To reduce the number of candidate terms, all non-linear and cross terms involving 

the residuals are omitted from the set of candidate parameters [35]. As a result, the 

process is now referred to as sub-optimal structure detection. Hence, if the the 

proposed model, (3.1), is the true model, its sub-optimal regressor matrix is: 

1 

V(t) 

V2(t) 

V(t — l) 

V2(t—l) 

- z(t-1) - 

Now, if a 2Thd order NARMAX model (with all the candidate parameters corre-

sponding to nu = n = = 1 and 1 = 2) is used to estimate the parameters, the 
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initial sub-optimal regressor matrix is: 

'If full (t) = 

1 

V(t) 

V2(t) 

V(t —1) 

V(t)V(t - 1) 

V2(t-1) 

z(t - 1) 

V(t)z(t - 1) 

V(t - 1)z(t - 1) 

z2(t-1) - 

For a 5th order NARMAX model, the initial sub-optimal regressor matrix will 

contain a very large number of terms, which will include additional (3rd, 4th, and 5th 

order) terms involving the input u(t), delayed input u(t - 1), and delayed output 

z(t-1). 

Once the sub-optimal regressor matrices are set up, the least squares technique 

is used to estimate an unbiased parameter set for the model structure [39]. 

To obtain parameter statistics, namely to determine which parameters are sig-

nificant and which ones are spurious, the Bootstrap technique is used. A parameter 

is deemed spurious if 0 lies in its 99% confidence interval. The goal of this task is 

to study the statistics of all candidate parameters and then eliminate those that are 

not necessary for describing the input-output relationship of the model. 

For a measurement set of 40000 samples (from the artificial system described in 
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Figure 3.7: Parameter distributions for the 2nd order NARMAX model 

Section 3.3.2), the sub-optimal Bootstrap structure detection technique is applied to 

the 2nd and 5th order NARMAX models. 500 Bootstrap iterations are used to deter-

mine the parameter estimates. Figures 3.7 and 3.8 show the parameter distributions 

for the 2,d and 5th order NARMAX models, respectively. 

As shown in Figure 3.7, for cross-product terms (u(t)u(t - 1), u(t)z(t - 1), u(t - 

1)z(t - 1)) and non-linear delayed output term (z2(t - 1)), the parameter estimates 

can not be distinguished from zero. (i.e 0 lies in the 99% confidence interval of the 

estimates). Therefore, the parameters corresponding to these terms can be consid-

ered to be spurious, which is in agreement with the proposed model. In other words, 

eliminating the u(t)u(t - 1), u(t)z(t - 1), u(t - 1)z(t - 1), and z2(t - 1) terms from 

Wfu(t) produces the proposed regressor matrix, W(t). The parameters correspond-
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Figure 3.8: Parameter distributions for the 51h order NARMAX model 



71 

ing to the aforementioned terms display the same characteristics in the 511 order 

NARMAX model, shown in Figure 3.8. 

It should also be noted that the DC term can not be distinguished from zero since 

the measurements do not contain any DC value. (The mean of input and output 

sequences are subtracted from them before the structure detection scheme). 

The results in Figure 3.8 also indicate that a higher order polynomial is not 

required to approximate the exponential terms in the model. It can be seen that 0 

lies in the 99% confidence interval for the parameters corresponding to u3 (t), u3 (t - 

1), U4 (t), U4 (t - 1), u5(t),and u5 (t - 1). Therefore, those terms can also be eliminated 

from the regressor matrix as well. 

3.3.5 Field Data Results 

To further test the proposed technique, field data from a Swedish paper mill were 

applied to the model. The load voltage was varied by the mill generators in a smooth 

manner through a ±3% range while load voltage and current were measured. Active 

and reactive power demand were calculated off-line [33]. 

The cost function for the field data with one of the parameters fixed (02 = 2.345) 

is shown in Figure 3.9. It can be seen that the solution space for this problem 

is non-convex and non-linear. As a result, optimization routines may converge to 

sub-optimal local minima, resulting in inaccurate parameter estimates. 

The results of Figure 3.9 emphasize the importance of the multi-stage approach 

since the initial estimates from the NARMAX model (stages 1 and 2) allowed the 

Levenberg-Marquardt algorithm to find the optimal solution. The results were veri-

fied by an extensive search of the solution space. It should be highlighted that some 
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Figure 3.9: Error surface for field data with 02 fixed at 2.345. 01 and 03 are the 
varying parameters, and VN is normalized 2-norm of the prediction errors 

approaches may fail to find this solution because of poor starting points. For exam-

ple, the approach presented in [33] may become trapped in a local solution depending 

on the initial condition. Although, theoretically, given infinite time, it should always 

find the global optimum. 

Once the parameters of the real system are estimated, the predicted output is 

constructed using the dynamic load model. The residuals, €, have a mean of 2.7x iO 

and a variance of 1.998 x iO. 

3.4 Ankle Dynamics Model Identification 

In this section, multi-stage system identification is used, again, to overcome dif-

ficulties associated with non-linear and non-convex problems. The output of the 
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discrete-time version of the ankle dynamics model (shown in Figure 2.7) is a non-

linear function of the model parameters (I, B, K, g, (, and w) and the resulting 

optimization is non-convex. Therefore, a multi-stage approach, similar to that of 

Section 3.3, is proposed, where the initial stages are utilized to determine starting 

values for the non-linear optimization routine which determines the optimal physical 

parameters. 

3.4.1 Proposed Multi-stage Identification Algorithm 

Using the proposed multi-stage algorithm of Section 3.2, the main steps for identi-

fying the ankle dynamics model are: 

1.. The ankle model from Section 2.6.2 is converted to a NARMAX model. 

2. The NARMAX formulation, along with the input and output measurements, 

are used to determine the NARMAX parameters, b0 - b11, and the discrete 

delay value, r. 

3. The NARMAX parameters are mapped to estimated physical (actual) param-

eters of the ankle dynamics model. 

4. The estimated physical parameters are used as initial values in a local opti-

mization routine (Levenberg-Marquardt algorithm). 

The remainder of this section gives details of all the stages in the proposed al-

gorithm. Stage 1 of the proposed multi-stage algorithm is based on the NARMAX 

formulation of the ankle model presented in [36]. 
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Stage 1: NARMAX formulation of the ankle model [36] 

To derive the NARMAX formulation of the model, it needs to be recast in 

discrete-time. Two different tools are used for the conversion: Newton's Backward 

Formula and the Bilinear Transform. 

Newton's Backward Formula, which is the discrete-time approximation to a 

derivative, is defined as [6]: 

- du(t) u(kT) — u(kT — T)  

d(t)  T 

where T is the sampling rate and k is the data point index. 

The Bilinear Transform is defined as [4,27]: 

5= I 
2 iz-1 

T\z+1 

(3.11) 

(3.12) 

Newton's Backward Formula is used to convert the first derivative in the linear 

path of the model. This provides a reasonable approximation to the continuous-time 

derivative given that the signal is limited to low frequencies. For this identification 

process, the input signal is, in fact, band-limited to lower frequencies. 

The muscle activation filter in the non-linear path (2++2) is converted to 

discrete-time using the Bilinear Transform. The second order all-zero system rep-

resenting intrinsic stiffness in the linear path (Is2 + Bs + K) is converted by using 

Newton's Backward since the Bilinear Transform would result in an unstable discrete 

equivalent. 

As well, the following steps are taken to complete the transformation of the 

continuous-time model of Figure 2.7 to a NARMAX model: 



75 

i) The continuous-time delay is converted to discrete-time as: 

T I 

where A is the continuous-time delay and T is the sampling period. 

(3.13) 

ii) The half-wave rectifier in the non-linear path of the model is approximated 

with a second-order polynomial: 

CO + c1x(kT) + c2x2(kT) 

using a least square fit. 

iii) Measurement and modeling noise is represented as output additive noise: 

z(kT) = y(kT) + e(U) 

Therefore, the resulting NARMAX representation of the ankle dynamics is ob-

tained (for the remainder of this section, t is implied to be at discrete-time intervals): 

z(t) = b0 + biz(t - 1) + b2z(t - 2) + b3'u(t) + b4'u(t - 1) + b5u(t - 2) + b6u(t - 3) + 

b7u(t - 4) + bsvi(t) + b9v2(t) + bioe(t - 1) + bii e(t - 2) (3.14) 

where the regressors vi(t) and v2 (t) are defined as: 
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vi(t) = u(n—'r)+u(n—r-1)—u(n—'r-2)—u(n—T-3) 

V2 (t) = u2(n—'r)+3u2(n—'r-1)-i-3u(n—'r-2)-i-u2(n—r-3)-

2u(n - 'r)'u(n - ,F-  1) - 4u(rt - - 1)u(n - - 2) - 

2u(n - - 2)u(n - T - 3) 

(3.15) 

(3.16) 

The relationship between the discrete-time NARMAX coefficients b0 - b11 and 

the continuous-time parameters is as follows [36]: 

b0 

b1 

b2 

b3 

b6 

b7 

b8 

bg 

b10 

b11 

4cogw2T2 
4+w2T2+4CwT 

8-2w2T2  
4+w2T2+4cwT 

4wT-4—OT2 
4+w2T2+4CwT 

I B 
72 T 

-21 - B /  8-2w2T2  
- 4+w2T2+4CT) ( + + K) 

I /  8-2w 2T2  \ '-21 B) 
4+w2T2+4wT)T2 - 

/4wT_4_w2T2' (-L 
4+w2T2+4CwT1 + B + K) 

/  8-2w2T2  \ I I \ (4wT-4—W 2T2 \ 1-21 B 
4+w2T2+4(wT) T) - I4+w2T2+4WT) - 

4wT-4—cj2T2 ( I 
4+w2T2+4CwT T2 

ciqw2T2 
(4+w2T2+4wT)T 

c2g)2T2  
(4+w2T2+4wT)T2 

8-2w2T2 
4+w2T2+4cwT 

4(wT-4—w2T2  
4+w2T2+4CwT 

(3.17) 
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Stage 2: NARMAX parameter estimation 

The input-output relationship of the model, as defined in (3.14), can be re-written 

as: 

Z(t) = x(t, )T4 + e(t) (3.18) 

where 

U(t) bo - 

u(t - 1) 
bi 

x(t, ) = - 2) 75 = (3.19) 
'u(t-3) 

b10 

bil 

V2 (t, r) 

c(t— 1, 0) 

€(t-2,q5) 

where V1 (t, r) and V2 (t, r) are defined in (3.15), and the error terms e(t) in the regres-

sor vector are replaced with residual terms e(t). Also, for a set of n measurements, 

the regressor matrix, X, is defined as in (3.4). 
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Once again, an Extended Least Squares method is used since the regressor matrix 

depends on the model parameters. Also, since the regressor matrix depends on the 

discrete delay i, which is unknown at this stage, the ELS procedure needs to be 

repeated with a number of different values of r in order to determine the optimal 

delay value. Once the ELS process is performed with all possible candidate values 

for r, the trial with the lowest estimation error will indicate the optimal delay value. 

Stage 3: Mapping between NARMAX coefficients and physical parame-

ters 

With the value of r determined from the previous stage, the input signals to 

the half-wave rectifier block, V(t - r), can be determined by differentiating and 

delaying the input signal u(t). Consequently, the output of the rectifier block, X(t) 

can be determined as well. Once V(t - ,r) and X(t) are calculated, a non-linear least 

squares curve-fitting algorithm can be used to estimate c0, c1, and c2, the polynomial 

coefficients used in approximating the half-wave rectifier with a 2nd order polynomial 

in the NARMAX formulation. 

With [1c. . . b1J obtained using ELS, the relationships defined in (3.17) can be 

used to map the NARMAX parameters to physical parameters. This process is as 

follows: 

1. The following set of equations, originating from the 2nd and 3rd elements of 

(3.17), is solved using a non-linear least squares algorithm to determine the 

estimates for w and C (ie. c.Z' and respectively): 
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8 - 2 2T2 

4+ LZ'2T2 + 4T 

4T —4— WT2  

4+ 2T2 + 4T 

2. An estimate for I is evaluated by manipulating 3rd and 811 elements of (3.17) 

to obtain: 

—T2 .71 
b2 

3. With ct', ç, and I determined in steps 1 and 2, the following set of equations 

- from the 4th and 5' elements of (3.17) - is solved using a non-linear least 

squares algorithm to determine the estimates for B and K (ie. f3 and k 

respectively): 

-21 E  8-2 2T2  I E 
0 =  •4 - T2 T (4 + C•2P + 4•c•oT ) (y2- + T + k 

4. Finally, § can be calculated from Cosince all the other values for the 18t element 

in (3.17) have been determined. 
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Stage 4: Levenberg-Marquardt Algorithm 

In the final stage, the estimates of the physical parameters 6 = [I B K § cZ' ], 

found via Stage 3, are used as initial values for a Levenberg-Marquardt routine that 

determines their optimal values. 

Figure 3.10 shows the discrete-time version of the ankle dynamics model that is 

used for the Levenberg-Marquardt algorithm. The input-output relationship for this 

model is: 

Z(t) = B +K) - (21 +)q1+q2)u(t)+ 

(d3(1 + 2q' + q_2)\ 
1+ d1q' + d2q-2 ) X(t) + e(t) (3.20) 

where the filter coefficients in the non-linear path (d1, d2, and d3) are defined as: 

- 

d1= 4+4CwT+w2T2 

d2= 

d3= 

4— 4CwT + w2T2 
4+ 4çwT + w2T2 

g 2T2 

4+4wT+w2T2 
(3.21) 

The components of each block in Figure 3.10 are obtained by using the steps 

detailed in Stage 1 of Section 3.4.1. The input to the non-linear path, X(t) is also 

available once Stage 1 of the algorithm is completed. More specifically, once the value 

of the discrete delay r is determined, the measured input u(t) can be manipulated 
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Figure 3.10: Discrete-Time model of ankle dynamics 

to obtain X(t). 

To perform the optimization routine, the equations for the Jacobian need to be 

derived. One row of the Jacobian for this problem is defined as: 

[52(t) 02(t) 02(t) 02(t) 02t) 52(t)1 

SI SB OK Og 0w oc] 
These terms are determined by using 2(t) = z(t) —e(t) and the relationship in (3.20): 

52(t) 

01 
52(t) 

SB 
02(t) 

OK 
52(t) 

Og 

52(t) 

Ow 

02(t) 

Sc 

= - 2q' + q_2)t(t) 
T2- ( 

= (1_q 1) u(t) 

U(t) 

(  w 2 T 2 1 + 2q 1 + q2  
4+4(wT+w2T2) 1+d1q' +d2q2 x( 

4gwT2((2 + ((,)T)q2 - 4q + (2— wT))(q2 + 2q +1) 

2 X(t) 
((4 + 4CwT + w2T2)q2 + (2w2T2 - 8)q + (4 4(wT + w2T2)) 

—4gT3w3 (q4 + 2q3 - 2q - i) 
=  2 X (t) 

((4 + 4cwT + w2T2)q2 + (2w2T2 - 8)q + (4— 4cwT + w2T2)) 
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Parameter Description Value unit 
I Inertia 
B Viscosity 
K Elasticity 
g Reflex Stiffness Gain 
W Natural Frequency 

Damping Parameter 

0.015 
0.800 
150 
10 

40.0 
1.00 

Nm/s2 /rad 
Nm/rad/s 
Nm/rad 
Nm/rad/s 

Table 3.2: Simulated ankle parameters 

3.4.2 Simulated System Results 

To examine the validity of the proposed algorithm, an artificial system is set up and 

its response is simulated. Then, the parameters of the artificial system are estimated 

using the multi-stage algorithm, and the predicted output is compared with the 

simulated output. 

The input sequence for the simulated system (ankle angle) is uniformly dis-

tributed, white, zero-mean, and band-limited to the operating range of ±0.40 ra-

dians. It is then low-pass filtered before being applied to the system, the parameters 

of which are shown in Table 3.2. Finally, white Gaussian noise is added to the output 

to account for measurement and modeling errors. 

In the first experiment, a system with N = 4000 samples is simulated, and the 

sampling period is set to be 0.005 seconds. Then, the parameters of the simulated 

model are estimated using the proposed algorithm, and the predicted output is cre-

ated accordingly. Figure 3.11 shows the simulated and predicted output for a 1 

second interval of the experiment. To quantify the prediction accuracy, the percent 

variance accounted for (% VAF) is calculated according to [60]: 
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Figure 3.11: Simulated and predicted output values for the dynamic ankle model 

%VAF = (I var(z -  100 
var(z) j 

With a VAF of over 99%, the predicted output matches the simulated values very 

closely. 

In the second experiment, a cross-validation technique is used to test the pro-

posed algorithm. Five different sets of simulated measurements are created using 

the parameters of Table 3.2, where each set contains N = 2000 samples. Then, 4 of 

the 5 sets - collectively referred to as the Identification Set - are used to identify the 

model parameters by utilizing the proposed algorithm. These estimated parameters 

are then used to construct the predicted output for the remaining set - referred to 
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Identification Set 

Validation Set 

2,3,4,5 1,3,4,5 1,2,4,5 1,2,3,5 1,2,3,4 

1 2 3 4 5 

I 0.0150 0.0150 0.0150 0.0150 0.0150 

B 0.8006 0.7993 0.8058 0.7983 0.7994 

K 149.6455 149.4522 149.2154 149.8292 149.4456 

g 10.2871 10.3488 9.8537 10.3547 10.4648 

w 37.0749 36.8096 43.3814 36.6511 35.9920 

0.9643 0.9688 1.0681 0.9632 0.9605 

7SiE 6 d 9.0157 11.3722 9.3039 12.1113 13.9574 

8.7246 12.0398 10.5766 11.8180 14.3728 

Table 3.3: Estimated parameters and residuals obtained from the Cross-Validation 
experiment 

as the Validation Set. The residuals are calculated for both data sets: 6jd for the 

identification set, and ev,, for the validation set. The results of the cross-validation 

experiment are shown in Table 3.3. Since the error for the two sets are very similar, 

it can be concluded that the algorithm was successful in predicting the output of the 

validation set. 

In the final experiment, Monte Carlo simulation is used to test the proposed 

algorithm. In this experiment, a single set of artificial input/output data is created. 

Then, during each run of the Monte Carlo simulation, the output set is contaminated 

with white Gaussian noise to obtain an SNR of 30 dB. Table 3.4 demonstrates the 

parameter statistics when 1000 Monte Carlo runs are used on an artificial data set 

containing 4000 points. The parameters obtained from the proposed algorithm have 

an error of less than 6%, and the theoretical values fall within two standard deviations 

of the estimated parameters. 
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Parameter I B K g w 

Mean 0.0150 0.7937 150.0190 10.5329 37.7334 0.9642 

standard deviation 0.0000 0.0034 0.3970 0.2054 1.2755 0.0046 

Table 3.4: Ankle model parameters from 1000 Monte Carlo trials with SNR = 30 
dB 

3.5 Summary 

A multi-stage identification algorithm is proposed in this chapter. The algorithm 

is then utilized to identify the parameters for models of non-linear dynamic power 

system loads and human ankle dynamics. The proposed algorithm is composed of 

two main blocks. In the first block, initial estimates of the actual parameters are 

obtained by fitting a simplified model. In the second block, these initial estimates are 

used in a Levenberg-Marquardt optimization approach to find the parameter values 

for the non-linear system. 

The proposed technique was significantly faster than the ASA algorithm in esti-

mating the load model parameters. In both simulated experiments and experiments 

based on actual load data, the proposed technique found the global optimum. The 

proposed technique converged to the CRLB showing that it can consistently find 

the optimal parameters given sufficient data. The choice of NARMAX model for 

the power stem loads was examined by using polynomial verification and Bootstrap 

structure detection. The proposed algorithm was also successful in creating accurate 

estimates of the ankle dynamics. 



Chapter 4 

System Identification with Variable 

Decomposition 

4.1 Introduction 

As presented in Chapter 2, the main goal of most identification problems is to find 

the optimal parameter set, O such that: 

6* = arg min VN (0) (4.1) 

where N is the number of data samples (measurements). The cost function, VN (.) is 

given by: 

VN(0) = lk(°)II (4.2) 

where IIX 112 is the 2-norm of the vector x and € is the difference between the measured 

output z and the predicted output i, i.e. €(6) = z - 

Considering the following problem: 

min VN(0) 
OERm 

(4.3) 

where m is the number of parameters to be identified, if one can partition 6 into two 

sets: 

86 
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(4.4) 

where the identification problem is convex in Oc E R (for any valid choice of O) 

and non-convex in O, R (p + q = m), then the following sub-problem: 

= arg min VN(o, 9) (4.5) 
ER 

is easy to solve for every fixed O in the domain. One can replace the original 

rn-dimensional problem, (4.3), with the following q-dimensional problem: 

where 

min VN(9 ) 
O 0ERQ 

VN(9 (Ofl),O) 

and O(0) is the solution of (4.5) [21,49,56]. 

Considering the non-linear load model described in Chapter 2: 

(4.6) 

(4.7) 

1 - e0  
2(k.) = POq - e0 (Vol (U) - V°2(k)) + P 0 v 92 (k) (4.8) 

if the problem is shown to be convex with respect to 01 and 92, the 3-dimensional 

problem: 

min Vv(0) (4.9) 
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where 0 = [01 02 03], can be simplified into a 1-dimensional problem: 

where 

min 
i1 v;(03) 

VN(03) = VN(01,2(03),03) 

(4.10) 

(4.11) 

However, each evaluation of (4.10) needs the solution of the following 2-dimensional 

(convex) problem: 

01,2(03) = arg min VN(a, 03) (4.12) 
aER2 

In summary, if the problem is shown to be convex with respect to 01 and 02, then 

the solution space can effectively be considered a function of 03 only. In other words, 

if VN(01, 02) is convex for a fixed 03 then VN(0) of (4.2) can be transformed into 

Vr(03). As a result, a one dimensional search in 03 can be used to determine the 

optimal parameter set. 

The next step is to demonstrate the convexity of the solution space with respect 

to 01 and 02-

4.2 Convexity 

Two different approaches in establishing the convexity of the solution space with 

respect to 01 and 02 are presented in this section: 

1. showing that the Hessian is positive definite, and 
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2. using an exponential expansion method. 

4.2.1 Hessian 

One approach to show that the solution space is convex in 01 and 02 is to show that 

the Hessian of (4.5) is positive definite everywhere on the domain [10]. For this 

sub-problem, the Hessian is defined as: 

O2VN i92VN 
ao1 2 0010902 

O2VN 82V1r  

- 002001 0022 

The cost function, as defined in (4.2), is: 

VN= 

N 

N 

= 2 (z(t) —(6,t)) 

(4.13) 

(4.14) 

For the remainder of this section, the explicit time dependence is removed to clarify 

the presentation. For example, the summations presented in the following equations 

are over the record length (time). The elements of the Hessian (4.13), therefore, are: 
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52VN  

ao 2 - 

c2TT 
(1 VJ'J 

(1V 
ij2 2 - 

F(03)2P( V0')2 (logy)2 - I IV  F(0s)PoV01(logV)2. 

(z - F(03)P0(V°' - V 02) + P0V92) 

N 

(F(03)P0(V°2) log  - POVO2 log V) 2 + (F(03)p (V02) (log V) 2 

—(z - F(03)P0(V°' - V82) + P0V°2) P0V02 (log V)2) 

F(03)P0V°'(logV)2. (pi(03)p0(v62) - P0V82) 

where, F(03) is defined as: 

F(03) = 1 - 
q - 

(4.15) 

and was introduced to allow for a more compact representation. 

The Hessian is positive definite (and the sub-problem is convex) if and only if all 

of its eigenvalues are positive [10]. Since the Hessian for this sub-problem is a 2 x 2 

matrix (4.13), there are 2 eigenvalues to be determined. The symbolic expressions for 

the eigenvalues do not explicitly indicate that they are positive (since they are non-

trivial). Therefore, numerical examination is utilized in order to establish convexity. 

More specifically, for any fixed value of 0, the eigenvalues need to be determined for 

the entire parameter space of 01 and 02, which is [1]: 

0≤ 01 ≤3 

0.5 ≤ 02 ≤ 2.5 (4.16) 
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If the eigenvalues are shown to be positive over the entire parameter range, then the 

Hessian for the sub-problem will be positive definite. 

Figure 4.1 exhibits the eigenvalues for a sample data set: 0sim1ated = [1.2 2.2 0.2], 

N = 5000, input (V) uniformly distributed between 0.9 and 1.1, and SNR = 30 dB. 

With 03 fixed at the theoretical value of 0.2, 01 and 02 are changed in small increments 

within the permissible range and the eigenvalues are recorded at every step. It can 

be seen that the eigenvalues are positive over the entire range of 0] and 02 (and 

a fixed 03) as illustrated in Figure 4.1. The solution space for the aforementioned 

simulation, shown in Figure 4.2, is convex, as expected. 

So far, the convexity of the sub-problem for one theoretical data set (Osjm.lated 

= [1.2 2.2 0.2]) has been established. To extend this conclusion to the entire 

parameter space (permissible range for 0), 1190 numerical simulations for examining 

the eigenvalues were performed for different values of 03. All of these simulations 

provided equivalent results to those shown in Figures 4.1 and 4.2. 

Therefore, the convexity of the solution space in 01,2 is numerically established. 

4.2.2 Exponential Expansion 

Starting from the non-linear load model described in Chapter 2 (and removing the 

explicit time dependence for the sake of brevity) 

-03e 
= - e (v° - V02) + P0v82 

q - 

the nominal power Po is set to 1, and the first order filter 

(1-e°3)q' 

(4.17) 

is rewritten as 

For a fixed value of 03, the coefficients of the first order filter are constant. 
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Figure 4.1: Eigenvalues, A I and )'2, over the range of permissible 01 and 02 for 03 = 0.2 
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Figure 4.2: Solution space over the range of permissible 01 and 02 for 03 = 0.2 

Therefore, the load model can now be re-written as: 

—1 

aq (v°' - V02) + POVO2 
1+bq 1 

where a = 1 - e- 03t and b = _e_03€ are known constants for a given 03-

Re-writing the V° term as an exponential: 

VO = O log V 

and expanding the exponential term as a series [2] gives: 

(4.18) 

(4.19) 

V0 = 1 +0 log V + 02 log2 V + 103log3 V + (4.20) 

Substituting the exponential expansion into the model of (4.18) gives: 
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aq' = 1q_l(1+0ilogv+0i2log2V+0i3 log 3v+.•. 

_1-02logV _ 0221og2V _ 8231og3V _ ...)+ 

1+ 92 109V + 0221og2 V+ 02log V+ .. (4.21) 

Reintroducing t to indicate time dependence and re-arranging (4.21) in a vector 

format gives: 

(t) = 1 Xe 
1+bq 1 

1 

1+bq' 

a log V(t - 1) 

4log2 V(t — 1) 

a log3 V(t - 1) 

log V(t) - log V(t - 1) 

(log V2 (t) - log2 V(t - 1)) 

(log V3(t) - log3 V(t —1)) 

T 

02 

(02 )2 

(02) 

(4.22) 

which is a filtered linear regression, where X is the regressor matrix and ® is the 

parameter vector. Since the range of values for V is between 0.9 and 1.1, the higher 

order terms of the exponential expansion ( log2 V, log3 V, • .) quickly approach 

zero. 
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Figure 4.3: The first three terms in the regressor matrix after the exponential ex-
pansion of V° 

Figure 4.3 shows the first three terms in the regressor matrix X (regressor terms 

corresponding to 01). It can be seen that the higher order terms are relatively insignif-

icant. The same conclusion can be drawn about the regressor terms corresponding 

to 02. As a result, the relationship from (4.22) can be reasonably approximated as: 

T 
1 

1+bq1 (a log V(t - 1)) 

i+iq' (logV(t) - log V(t - 1)) 

01 

82 

(4.23) 

which is a linear regression in 01 and 02 only. Since the linear regression is convex in 

its parameters (01 and 02) [39], it can be seen that the predicted output is convex in 

01 and 02 for a fixed 03. Therefore, the convex optimization problem of (4.12) can 

be utilized. 
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4.3 Separation of Variables 

The parameter estimation problem can be separated into two parts: 

i) The 2-dimensional and convex problem of (4.12). This problem is solved using 

a Levenberg-Marquardt [40] algorithm, since it avoids the problems associated 

with singular or poorly-conditioned Jacobians. 

ii) The 1-dimensional problem of (4.10). Two different approaches are used for 

this problem: a basic line search, and a "rate of change" search. 

The proposçd algorithm is as follows: 

1. Starting from the lower end of the permissible range for 03, an initial value for 

03 is chosen: 

01 = 0.01 

where 0 is the kth value of 03 examined. (Throughout this section, superscripts 

indicate the iteration number for the algorithm.) 

2. With 03 fixed at 0, the Levenberg-Marquardt algorithm is used to determine 

the optimal 01,2. The resulting parameter set O and the corresponding cost 

VIVI are recorded. (The subscript * denotes the optimal parameter set, and the 

superscript 1 denotes the iteration number.) 

3. Next, 0 is defined as: 

02 = 0 + E (4.24) 

where 6 is a user-selected step size. In this research, a step size of 0.01 is used. 

The same procedure as Step 2 is repeated with 032 to obtain 01 and VA. 
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4. Next, it is required to search the parameter space of 03. Two different ap-

proaches were considered to accomplish this task: first, a simple line search 

approach is used, which solves for different O and VA at small intervals. Sec-

ond, a "rate of change" approach is utilized, which is based on the observation 

that fewer points need to be considered when the objective (VA) is not chang-

ing significantly with respect to 03 and more points should be considered when 

it is. These approaches are used to generate a set of solutions for the range of 

03. Details on the two approaches are given below: 

(a) Line Search: 03 is updated according to: 

Ok = 

where is the user selected step size defined previously. 

(b) Rate of Change (RoC) Search: In this approach, the slope of the objective 

function with respect to 03 is estimated using the secant from the two 

previous points, i.e. 

LVN - Ilk-1 
N'' - V 2 

M = 
z03 - 0k-1 - 0k-2 

3 3 

(4.25) 

where m is the approximation of the slope. 

Since more points should be considered when the slope is large, the step 

size for 03 should be inversely proportional to m. Therefore, the following 

update for 03 is used: 
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(4.26) 
M 

where K is a fixed scalar coefficient to control the step length. For this 

thesis, K = , where N is the number of data samples. This approach 

is similar to techniques used in continuation methods to trace bifurcation 

diagrams [51]. 

For each value of O (determined by either of the two above approaches), the 

Levenberg-Marquardt algorithm is used to determine the optimal 01 and 9. 

The resulting parameter set O and the corresponding cost, VA are recorded. 

5. The parameter set O that corresponds to the lowest cost is the optimal pa-

rameter set. 

A flow chart, summarizing all the stages in the proposed identification process 

for the dynamic load model is shown in Figure 4.4 

There is one potential pitfall for the RoC method: If the solution space is not very 

steep around the minimum point, the RoC might encounter difficulties in finding the 

true optimal parameter set. Figure 4.5 is used to demonstrate this problem. The 

RoC approach, as described here, starts from the left hand side of the solution space 

in Figure 4.5 and updates the 03 value based on the slope of the graph at each 

iteration. At point 0 (k 1h iteration of the technique), the slope of the graph is 

relatively small. Therefore, the RoC will utilize a relatively large value for the 0 

update step, resulting in point °r'. Consequently, the optimal point 0 is bypassed 
by the algorithm. 
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Start from the lowest permissible value for 03 

Fix 03 at current value 

Lcvenberg-Marquardt Optimization to find the optimal values for 
Oj and 03 at the current value of 03 

Record the current parameter set 0 
and the corresponding cost VN 

End of the range for 03? 

Update 93: 

Line Search or RoC 

NO 

YES 

Determinet the parameter set 0 with the lowest VN 

Done. 

Figure 4.4: Summary of the separable identification process for the non-linear dy-
namic load model 
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Figure 4.5: A hypothetical cost function over the range of 03 to demonstrate the 
pitfall of the RoC Method 

To avoid the aforementioned problem with the RoC, a third approach, named 

the Improved RoC, is implemented. This algorithm detects the critical points from 

the slope of the cost function. It will then perform a line search around these critical 

points. 

The steps for the improved RoC, are as follows: 

1. The separable identification algorithm of Figure 4.4 is performed by using the 

RoC method to do a line search with respect to 03. Since the derivative of VN 

is continuous with respect to 03, there must be a critical point between every 

pair of sequential points where the derivative changes sign. 

2. The area around each of these points is examined by using a line search method 

to find the minima. More specifically, if the sign of the slope of VN for the 

0 segment is different from that of the 0 : 07' segment, then a line 
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Start 

Start from the lowest permissible value for 0 

Fix 03 at current value 

Define the new range for 03 

around the critical point 

Levenberg-Marquardt Optimization to find the optimal values for 
01 and 02 at the current Va us of 03 

Record the curren parame er Set 0 
and the corresponding cost VN 

End of the range for 03 ? 

Update 03: 

RoC 

NO 

Update 03: 

Line Search 

YES 
End of RoC Component. Begin Line Search. 

Finished all critical points? 
NO Begin Line Search around the next critical poii t. 

YES 

Determinet the parameter set 0,l with the lowest Vjq 

Done. 

Figure 4.6: Summary of the Improved Rate of Change identification process for the 
non-linear dynamic load model 

search is performed between O' and or'. 

3. The parameter set from the line search that corresponds to the lowest cost is 

the optimal parameter set. 

A flow chart, summarizing all the stages in the Improved RoC process is shown 

in Figure 4.6. The bold lines in the chart indicate the new steps that are added to 

a normal RoC approach to obtain the Improved RoC. 
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A fourth approach, utilizing a Quasi-Newton Method [49] was developed. The 

steps for the Quasi-Newton RoC are as follows: 

1. The separable identification algorithm of Figure 4.4 is performed by using the 

RoC method to do a line search with respect to 03. Since the derivative of VN 

is continuous with respect to 03, there must be a critical point between every 

pair of sequential points where the derivative changes sign. 

2. A Quasi-Newton optimization, i.e. a local optimization algorithm, is initialized 

at the points identified in Step 1 t locate the minima. Details on this algorithm 

are given in [49]. 

4.4 Numerical Results 

In this section, the proposed algorithm is studied and its performance is investi-

gated using simulated and real (field) data. First, the three proposed approaches for 

finding the optimal 0 - namely, the line search, the rate of change (RoC), and the 

Improved RoC approach - are compared with each other. Then, the performance of 

the proposed algorithm is compared with published approaches, namely the Adap-

tive Simulated Annealing technique. Next, the sensitivity of the proposed algorithm 

to initial estimates and actual values of the parameters is studied. Because the pro-

posed algorithm is designed to find the global optimum, it should not be sensitive 

to initial or theoretical values. Finally, application of the proposed algorithm to real 

data is investigated. 
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Actual 

Value 

RoC 

Method 

Improved RoC 

Method 

Line Search 

Method 

01 

02 

03 

2.1 

1.1 

0.9 

2.1235 

1.0897 

0.8484 

2.081 

1.089 

0.934 

2.083 

1.089 

0.93 

VN 5.32 x 1O 5.19 x i0 5.19 X iO 

total time 11 sec. 22 sec. 130 sec. 

Table 4.1: Parameter Statistics and Time Performance of the RoC and Line Search 
Approaches for Finding 03 

4.4.1 Performance Comparison 

In this section, the RoC and Improved RoC approaches and the basic line search 

are compared with each other. The goal is to study the benefits and drawbacks of 

the three techniques, namely, the accuracy of the approaches versus their speed of 

completion. Since the basic line search method tends to examine more points than 

the RoC approach, it may be more accurate in finding the optimal parameters. Ac-

cordingly, the basic line search can be time-consuming. The Improved RoC provides 

a compromise between the other two approaches. 

To perform an initial comparison, 5000 data samples were created using the 

theoretical parameter set 0 = [2.1 1.1 0.9] and an SNR of 30 dB. The basic line 

search was performed by dividing the permissible range for 03, 0 < 03 ≤ 5, into 

intervals of 0.01 unit length and performing a Levenberg-Marquardt optimization at 

each point. The RoC and Improved RoC approaches were performed as described in 

Section 4.3. The statistics for the optimal parameters are shown in Table 4.1. 

It can be seen that the RoC approach presents a major advantage with respect 
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to execution time, without compromising the accuracy of the estimated parameters. 

Using the same set of data as those used for Table 4.1, Figures 4.7 and 4.8 show 

the values of 03 examined by each approach and their corresponding cost value. 

Figure 4.7 illustrates how the RoC approach considers more points when the slope is 

high and fewer points where the cost function does not change rapidly with respect 

to 03 (small slope). This allows for the better time performance of the RoC approach 

versus the line search. In the line search approach, 500 different values for 03 were 

examined since its domain was divided into uniform intervals of 0.01 unit length. 

However, the RoC approach only examined 43 points within the 03 domain since the 

distance between the tested points varied based on the rate of change. 

Figure 4.8 shows the points examined by the RoC and Improved RoC approaches 

around the optimal solution. The figure illustrates how the Improved RoC approach 

searches the solution space around the optimal point with a higher resolution than 

the normal RoC method. In this example, the Improved RoC approach evaluated 

43 additional points in comparison to the normal RoC. 

The accuracy of the RoC technique is tied to the value used for K. For example, in 

Table 4.1, the value found for 03 was 0.8484 when K = . When the RoC method 

was repeated with K = , the algorithm found 03 = 0.8837 after examining 84 

points, i.e. a 4 % improvement in the parameter error. 

The Quasi-Newton RoC approach found the optimal parameters in two iterations, 

with the same accuracy as the Improved RoC technique. The execution time for the 

Quasi-Newton approach, 35.43 seconds, was larger than the Improved RoC due to the 

computations required in the step size calculations [49]. However, this characteristic 

can not be assumed to be true for all situations. If the desired accuracy of the 
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Figure 4.7: Comparison of the values of 03 examined by the Line search and RoC 
approaches 

0 i0 

8.2 

6 

5.6 

5.4 

5.2 

0 

• RoC Search 

• Improved AbC only 

0.9 
03 

1.1 0.4 0.5 0.6 0.7 0.8 1.2 1.3 

Figure 4.8: Comparison of the values of 03, near the optimal solution, examined by 
the RoC and Improved RoC approaches. 
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solution was increased, the number of steps required for the Quasi-Newton method 

would not increase substantially, thereby improving it's relative efficiency. 

For the remainder of this chapter, the Improved RoC approach is used as the 

default approach for searching the parameter space of 03. This approach was chosen 

for its ease of implementation and accuracy. 

4.4.2 Simulated System Results 

To study the proposed approach, a simulated system, identical to that of Section 

3.3.2, is created. First, the results from applying the proposed approach are com-

pared to published results. Then, a cross-validation technique is used to examine 

the performance of the proposed approach. 

Similar to 3.3.2, the Adaptive Simulated Annealing (ASA) technique [26] is imple-

mented for comparison purposes. The same initial parameter set as [33], [0.5 2.0 1.7], 

is used as the starting point for the ASA technique. 

Table 4.2 demonstrates the parameter statistics when 30 Monte Carlo runs are 

used on an artificial data set containing 1000 points. (The number of samples and 

Monte Carlo runs were chosen to match those used in [33].) The sample mean 

and standard deviation from both approaches (ASA and separable approach) are 

presented in the table. It can be seen that both techniques can successfully estimate 

the parameters of the simulated system. The parameters obtained from ASA have 

an error of less than 9.8% and those from the proposed algorithm fall within 0.5% of 

the simulated values. Also, all simulated values are within one standard deviation 

of the estimated parameters. 

The main difference between the two approaches is in their respective time per-
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Actual Sample Mean Sample Std Dev( x 10-2) 
Value ASA Separable ASA Separable 

01 1.2 1.222 1.2083 7.77 4.7557 
02 1.7 1.7040 1.7034 2.02 1.8650 
03 0.4 0.3611 0.4014 6.27 7.5617 

Table 4.2: Parameter statistics for ASA and the separable approach from 30 Monte 
Carlo runs with N = 1000 points. 

formances. The proposed algorithm presents a major advantage over ASA in terms 

of computational burden. To obtain the parameters reported in Table 4.2, ASA 

required 1897.5 seconds while the separable identification technique required only 

191.6 seconds, under identical conditions (on an AMD Athlon based PC). 

To examine the proposed algorithm, a cross-validation test is performed using 

simulated data. The description of the cross-validation test is as follows: 

Five different sets of simulated measurements are created by using theoretical 

parameter set 0 = [2.1 1.1 0.9] and an SNR of 30 dB. Then, 4 of the 5 sets - 

collectively referred to as the Identification Set - are used to identify the model 

parameters by utilizing the proposed algorithm. These estimated parameters are 

then used to construct the predicted output for the remaining set - referred to as 

the Validation Set. The residuals are calculated for both data sets: Eid for the 

identification set, and e,,, for the validation set. The results of the cross-validation 

experiment are summarized in Table 4.3. 

Since the error for the two sets are very similar, it can be concluded that the 

algorithm was successful in predicting the output of the validation set. 
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Identification Set 

Validation Set 

2,3,4,5 1,3,4,5 1,2,4,5 1,2,3,5 1,2,3,4 

1 2 3 4 5 

01 2.0896 2.1008 2.0853 2.0865 2.0908 

02 1.0930 1.0912 1.0950 1.0926 1.0962 

03 0.9140 0.9024 0.9329 0.9085 0.9152 

7T>ltid (x10 3) 1.0107 1.0094 1.0179 1.0034 1.0050 

:;bEv2ai (X10 3) 1.0035 1.0099 0.9752 1.0345 1.0274 

Table 4.3: Estimated parameters and residuals obtained from the Cross-Validation 
experiment for the separable identification algorithm 

4.4.3 Sensitivity to Initial Values 

The Levenberg-Marquardt algorithm is a modified gradient descent approach. As 

a result, initial parameters are generally significant in the optimization process. To 

study the sensitivity of the proposed algorithm, the following simulation was per-

formed on artificial data: A set of 5000 data samples was created, and then con-

taminated with Gaussian noise to produce a 30 dB SNR. The proposed algorithm 

was used on the data set to determine the optimal parameter set. Each attempt, 

however, contained a different set of initial values. These values were chosen from 

uniform intervals inside the permissible range for 01 and 02. In this study, 215 pos-

sible combinations for starting values were considered. All attempts, regardless of 

the starting points for the Levenberg-Marquardt algorithm, converged to the same 

optimal parameter set. This characteristic was expected since the solution space was 

already shown to be convex with respect to 01 and 02. 
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4.4.4 Sensitivity to Theoretical Values 

To examine the robustness of the proposed algorithm, a number of different theo-

retical parameter sets were studied. The 3-dimensional surface containing the per-

missible values for 01, 02, and 03 was divided into a grid with uniform intervals at 

0.3 units. Then, each node from the grid was used to create a theoretical (artificial) 

measurement with 30 dB SNR. Each set of data was then applied to the proposed al-

gorithm to determine the optimal parameter set. Only the Improved RoC approach 

was used to search the parameter space. 

A total of 1190 trials were performed, and the mean, E, and standard deviation 

of the prediction errors are: 

E[VN] = 5.0859 x 10 std[VN] = 1.18 x 10 

It has been shown that the algorithm consistently found reasonable estimates for 

the optimal parameters. 

4.4.5 Application to Field Data 

To test the validity of the proposed technique, it was applied to field data from 

a Swedish paper mill [33]. The load voltage was varied by the mill generators in a 

smooth manner through a ±3% range while load voltage and current were measured. 

Active and reactive power demand were calculated off-line. 

Using these measurements, the proposed algorithm was utilized to determine the 

physical parameters of the load. These parameters were then used to construct the 

estimated active power demand of the factory. The measured and predicted output 
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are shown in Figure 4.9. 

To quantify the prediction accuracy, the percent variance accounted for (% VAF) 

is calculated according to [60]: 

%VAF = (i var(z -  100 
var(z) j 

With over 99% VAF and VN = 1.387 x iO, the predicted output matches the 

field measurements with very small error. 

4.5 Summary 

A separable identification algorithm for nonlinear dynamic power system loads is 

presented in this chapter. The proposed algorithm separates the model parame-

ters into convex and non-convex groups, thereby making the identification process 

significantly easier. 

The algorithm is shown to accurately determine the parameters of aggregated 

power loads. Simulated (artificial) systems and real (field) data were investigated 

and the optimal parameters were found in all cases. The algorithm was also shown 

to be independent (insensitive) to the value of system parameters and the choice of 

initial estimates over their entire permissible range. 
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Figure 4.9: Measured and predicted active power, and prediction error, for the field 
data 



Chapter 5 

Conclusions and Summary 

5.1 Overview 

This thesis investigates and examines algorithms for non-convex system identifica-

tion. In the context of power system load modeling and human ankle dynamics 

identification, the need for new algorithms is first established. More specifically, it 

is shown that the existing methods for power system load modeling are either very 

time consuming or limited in some significant aspect, while the existing methods for 

ankle dynamics identification require "good" initial values or do not identify the true 

parameters of the ankle model. 

Two algorithms for non-convex identification are proposed in this thesis: a multi-

stage identification algorithm and a separable identification algorithm. Then, these 

algorithms are applied to artificial and real power system loads in order to evaluate 

their performance. Also, the ankle dynamics model is identified by implementing 

the multi-stage algorithm. 

An overview of some of the system identification and parameter estimation con-

cepts is presented in Chapter 2. Mathematical formulation of the system identifica-

tion problem, along with the non-linear model structure (NARMAX) used through-

out the thesis, are discussed in detail. A few identification tools - least squares 

techniques and gradient descent optimization - are also demonstrated. Finally, the 

load model and the ankle model that are employed in this thesis are introduced. 

112 
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Chapter 3 presents the proposed multi-stage algorithm for non-convex optimiza-

tion problems. The algorithm is then applied to the problem of power system load 

modeling. More specifically, a non-linear, dynamic power system load is identified 

by using the proposed algorithm. The algorithm is also applied to the problem of 

identification of human ankle dynamics. Numerical results from artificial loads, real 

loads, and ankle dynamics simulations are included and discussed. 

Chapter 4 provides a separable identification algorithm for non-convex optimiza-

tion problems, which is subsequently applied to the non-linear, dynamic power sys-

tem load model of Chapter 3. Once again, artificial and real data are used to examine 

the validity of the algorithm. 

5.2 Contributions 

The main contributions of this thesis can be summarized as: 

1. A new multi-stage identification algorithm which can be applied to non-convex 

problems is introduced. More specifically, the power system load modeling 

problem and the ankle dynamics identification problem are investigated with 

the proposed algorithm. This technique approximates the non-linear model 

with a NARMAX equivalent, and then determines the optimal parameters for 

the NARMAX structure. Finally, these parameters are used as initial values 

for the non-linear optimization routine which can determine the optimal values 

of the original model. 

2. The solution space for the dynamic power system load identification problem is 

explored thoroughly, and its convexity with respect to two of its parameters is 
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established. Two different approaches are utilized to demonstrate the convexity 

of the solution space: 

1) showing that the Hessian is positive definite, and 

ii) expanding the exponential terms in the dynamic load model and reducing 

them to convex components. 

3. Using the convexity property, a separable identification algorithm is utilized 

to identify the dynamic power system load. The problem is decomposed into 

convex and non-convex identification components. The range of the non-convex 

parameter is traversed using a search algorithm (Line Search, Rate of Change 

Search, and Improved Rate of Change Search) while a convex optimization 

routine is performed at each point along the path. 

5.3 Conclusions 

The main conclusions of this thesis are: 

1. The multi-stage algorithm yields accurate results, and is capable of identifying 

the examined models within their permissible ranges of values. 

2. For identifying power system loads, the multi-stage algorithm is much more 

efficient than published techniques while maintaining an equivalent level of 

accuracy. The proposed algorithm can also successfully determine the optimal 

values of a real, aggregated load. 

3. The Bootstrap structure detection technique is successfully applied to the dy-

namic load model. The results indicate that approximating the dynamic load 
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model with a polynomial NARMAX model is a reasonable undertaking. 

4. The power system dynamic load model is shown to be convex in two of its 

parameters (01 and 92) while non-convex in the other parameter (03)-

5. The proposed separable algorithm achieves accurate results while converging 

much faster than a global search routine. As well, the algorithm is validated 

by simulated and field data. 
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