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Abstract 

Field oriented control (FOC), sometimes referred to as vector control, is used in 

inverter-fed induction motor drives to obtain high performance speed response. For field 

oriented control it is necessary to know the instantaneous magnitude and position of the 

rotor flux. The magnitude and position of the rotor flux is approximated based on flux 

measurements in the direct FOC scheme and estimated in the indirect FOC scheme. In this 

thesis, a novel flux estimator, the artificial neural network flux estimator, is presented. 

The neural network is able to estimate accurately the rotor flux magnitude or position 

(maximum absolute error is less than 0.03 p.u.) for line-start operation of an induction 

motor as well as for field oriented control. A sensitivity study indicates that the neural 

network is quite insensitive to variations in the rotor resistance (maximum absolute error 

is about 0.10 p. u. if rotor resistance is increased to twice the nominal value). Its ability to 

estimate flux response that lies outside of the neural network training data set is another 

one of its strengths. This preliminary work indicates that the neural network flux estimator 

is a practical alternative to other flux estimation methods. 

ill 
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Chapter 1 

Introduction 

In order to attain the high standards of performance obtainable by dc motor 

systems used in servo drive applications, field oriented control (FOC) was developed for 

induction motors in the early seventies. Field oriented control, is employed to keep the 

rotor flux constant during the normal operation of the induction motor (especially during 

speed transients). The squirrel cage induction motor fed from a pulse width modulation 

(PWM) inverter is becoming a popular choice for industrial applications in the KW to MW 

range. However, because of the nature of the motor's construction, the rotor windings are 

not accessible to extract the necessary flux information needed for FOC. This has led to 

two major techniques for obtaining the required flux information, namely the direct FOC 

and the indirect FOC. Historically, direct FOC implies a direct measurement of the air-gap 

flux, whereas in indirect FOC the flux quantities are estimated without the use of any 

magnetic field sensors. 

The indirect FOC method of estimating rotor flux quantities is the focus in this 

thesis. There are several methods for indirect FOC, all of which require the knowledge of 

some combination of stator currents, stator voltages and rotor speed to determine the flux 

magnitude and angle. The drive system is usually modeled using differential equations 

which are solved in real-time to achieve indirect FOC. 

In this thesis, a novel approach is adopted to calculate the rotor flux magnitude 

and angle. This approach requires only one set of input variables (i.e. stator currents), and 
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does not require any mathematical modeling (in the execution phase). It is based on the 

use of the artificial neural network (ANN). The ANN "learns by example" and exhibits 

high accuracy, good performance and robustness. An introduction of field oriented control 

and artificial neural networks is presented in the latter part of this chapter. 

1.1 Field oriented Control 

Given an induction motor with a balanced three-phase supply, the two axis or d-q 

theory [1] is normally used for dynamic modeling. In this theory, time-varying parameters 

are eliminated and the variables and parameters are expressed in orthogonal or mutually 

decoupled direct (a) and quadrature (q) axes. It is convenient to represent the axes in 

either the stationary or one of several rotating reference frames. In the stationary reference 

frame the d-q axis is fixed on the stator and is denoted by a! and q, respectively. On the 

other hand, the d-q axes can be rotating at synchronous speed (referenced for example to 

the stator or rotor flux) or fixed on the rotor. For the synchronous rotating reference 

frame fixed on the stator magnetic field, the d-q axes are commonly denoted by d, and qe• 

For the field oriented frame (i.e. the synchronously rotating reference frame fixed on the 

rotor flux) no superscripts are used.The d-q dynamic model of a machine can be expressed 

in either a stationary or a rotating reference frame. In a stationary reference frame, the 

reference a! and cf axes are fixed on the stator. The advantage of a synchronously rotating 

frame model is that sinusoidal variables are transformed into d.c. quantities for 

steady-state conditions. In induction motor drive systems, the dynamic performance is a 

complex one because of the coupling effect between the stator and rotor phases, where 
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coupling coefficients vary with rotor position. In particular, in the operation of a variable 

speed induction motor drive system where field oriented control is not used, when an 

incremental torque is demanded, the values of the rotor flux linkage components on both 

d and q axes are changed to a new level with a slow transient (e.g. on the order of one 

second for a 30 HP motor). Meanwhile, the electromagnetic torque produced has a 

damped oscillation with a transient time depending on the rotor electrical time constant 

(e.g. about 0.4 s for 30 HP motor) [2]. 

In 1972, F.Blaschke presented a new technique that decouples motor flux and 

torque [3]. K. Hasse [4] together with Blaschke established the Field Oriented Control 

theory in which a straightforward linear control law can be established between motor 

primary current and torque. In order to accomplish this, they fixed the d-axis in the rotor 

synchronous reference frame, which indicates the orientation of the flux linkage to 

coincide with the total rotor flux linkage of the machine [5,6]. This is done such that all 

magnetization of the motor is along the d-axis. The torque components of the stator 

currents are along the q-axis which is orthogonal to the motor flux. The torque can be 

controlled in proportion to the stator current component along the q-axis while 

maintaining the magnetization constant. 

In this way, in field oriented control, sometimes called vector control, an induction 

motor is controlled like a separately excited d.c. motor. Under field oriented control, one 

can obtain a fast torque response, just as in the case of a d.c. drive system. The final result 

is that the a.c. drive system has the performance of a d.c. drive system, but it employs the 

simple and rugged squirrel cage induction. Inherent in the field oriented control is the 
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problem of flux estimation in the rotor. Originally, rotor flux was calculated using Hall 

effect sensors in the machine. The problem is that the Hall effect sensor output drifts with 

temperature and it is difficult to compensate. Another method of measurement is to mount 

flux coils in the air gap and the corresponding induced voltage may be integrated to obtain 

the flux information [1]. Both methods require mounting external devices in the induction 

machine and this is not favored by designers. 

1.2 Neural Networks 

The neural network has a history that spans some five decades [7], but not until 

the late nineteen eighties did neural networks emerge as a practical computational 

technology. Today neural networks can be applied to solve problems that are difficult for 

conventional computers or human beings. Neural networks are being adopted for use in a 

wide variety of commercial, industrial and military applications. They range from 

applications such as pattern recognition, identification, classification, speech and vision to 

complex real-time adaptive control systems, and from small scale associative searching to 

large scale system optimization and scheduling. In most of these applications, the neural 

network, with its self organizing ability and its inherent nature of being an adaptive 

process, can be developed within a reasonable time-frame. Often such neural networks can 

out perform the conventional technologies (this even includes expert systems). When 

embedded in a hardware implementation, a neural network exhibits a high fault tolerance 

to system damage. More important, it also offers high overall data throughput rates due to 

its parallel processing capabilities. With the many different hardware options available, 
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including VLSI realization, the introduction of neural networks into existing and recently 

developed systems can be obtained at a reasonably low cost. Neural networks come in 

many different types, each of which has different characteristics and abilities related to 

their learning methods, dynamics and structure. In this thesis, we shall explore the use of 

neural networks in estimating the rotor flux of an induction machine. 

The Neural network (or neural net), has its origins inspired by our biological 

neural systems and it is an implementation of an algorithm inspired by research into the 

brain. The neural network technology encompasses a wide variety of applications. It learns 

from a given set of data, thereby performing classifications, function estimation and 

complex control sequences. Among these neural nets, the more common and the best 

known ones are the MLPs (Multi-Layer Perceptron networks) [8][9], the Hopfield 

networks [10], the Kohonen self-organizing maps [11] and the Back-propagation 

networks [7][9]. In general, all neural nets share the following advantages when compared 

to the conventional technologies: 

• Capable of real-time non-linear operations 

• Inherently adaptive in learning 

• Self-organizing 

• Capable of generalization 

• Implementable easily in existing technologies, e.g. VLSI 

• Highly fault tolerant 



6 

The artificial neural network can be viewed as a dense interconnection of many 

non-linear computational elements called neurons, sometimes known as processing 

elements (PEs). This network of neurons is then capable of high speed non-linear 

computation due to its parallel structure. Non-linearity is built into each individual neuron 

(or PE) which sums N weighted inputs and passes the result through a non-linearity, 

Weights 

Figure 1.1 Schematic of a Processing Element (PE) 

known as the activation function, to give an output. The general schematic of a PE is 

shown in Fig. 1.1. By Organizing the processing elements into different layers and by 

connecting them with proper weights, networks can be created that are capable of 

performing tasks that are highly non-linear. The three common types of activation function 

are hard limiter, threshold logic element and sigmoidal non-linearity. In order for the 

network to "learn" to perform a task, the network is required to go through a "training" 

process using some form of training algorithm. The input weights of each neuron are 
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typically adapted during the training operation to improve performance. For the network 

to "learn" we mean that the weights in each processing element are adapted so that the 

overall network is able to generate the desired output when given a valid input. Hence, 

neural networks are a self-learning means of emulating the input/output relationships of 

very non-linear systems [12]. From what has been said so far, we see that a neural net 

model is specified by its net topology, its neuron characteristics and its training rules. 

1.3 Thesis/Chapter Outline 

This thesis is composed of eight chapters. They are organized in the following 

manner: 

Chapter 2 is dedicated to the review of the d-q (two axes) theory, matrix 

transformations and field oriented control principles. 

Chapter 3 serves as a brief review of the basic concepts of artificial neural 

networks. A brief history on different ANNs is given as well as a detail mathematical 

derivation of the generalized delta rule used to update weights. 

Chapter 4 discusses the implementation of a field oriented control drive system, 

using models obtained in Chapter 2. The FOC is implemented with the help of very simple 

P1 controllers. 

Chapter 5 introduces the training/learning procedure of the ANN flux estimator. 

The multi-layer artificial neural network using error back-propagation is chosen for this 

thesis. A discussion on the method used for training and the selection of training 

parameters is also presented. 
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Chapter 6 presents the results of ANN flux estimator tests, including test data that 

is outside the training data set. Some parameter sensitivity tests are also performed here, 

e.g. load torque tests and rotor resistance variation tests. 

Some discussions are presented in Chapter 7, followed by conclusions and 

suggestions for future work in Chapter 8. 
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Chapter 2 

Field Oriented Control and Flux Estimation 

2.1 Introduction 

To construct a high performance induction motor drive system, it is desirable to 

establish a relationship between the motor electromagnetic torque, i.e. the controlled 

variable, and the control variables such as motor voltages or currents. This permits the 

motor flux to be controlled at the optimal constant level to achieve a fast speed response. 

This is the underlying objective of field oriented control. A review of the two-axes (d-q) 

theory and field oriented control principles is given in this chapter. 

2.2 Field Oriented Control Theory 

In field oriented control, an a.c motor is controlled like a separately excited d.c. 

motor [1]. Using Fig. 2. 1, the analogy can be made clearer whereby Fig. 2.1(a) depicts the 

separately excited d.c. motor equivalent circuit, and Fig. 2.1(b) illustrates field oriented 

control of an induction motor. In a d.c. machine, neglecting the armature demagnetization 

effect and field saturation, the electromagnetic torque is given by 

T=K,LFJ=K'/j,. (2.1) 

where: K, K = Proportionality constants 

'a = Armature or torque component of current 

= Field or flux component of current 

¶Pg = Air gap flux 
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In a d.c. machine, the control variables 'a and If can be considered as orthogonal or 

decoupled vectors. In normal operation, the field current I is set to maintain the rated 

field flux and torque is changed by changing the armature current. Since the current ifor 

Armature Circuit 

.* 

'ds 

IIE r Lir 

Lm 

r 

vi 

Field circuit 

(a) Separately excited d.c. motor 

'qs 
Inverter and Control 

(b) Field oriented control induction motor 

Figure 2.1 Induction motor and d.c. machine analogy 

the corresponding field flux is decoupled from the armature current I, the torque 

sensitivity remains maximum in both transient and steady-state operations. This mode of 

control can be extended to an induction motor, if the machine operation is considered in a 

synchronously rotating reference frame where the sinusoidal variables appear to be d.c. 

quantities. In Fig. 2.1(b), the command variables to the inverter and control block are 
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and t. The currents i and 1qs are, respectively, direct-axis component and 

quadrature-axis component of the stator current, where both of these quantities are in the 

rotor synchronous rotating reference frame. In field oriented control, id, is analogous to 

the field current ifand qs is analogous to the armature current 'a of a d.c. machine. 

Torque then can be expressed as previously given as Eqn. (2. 1), 

for a d. c. machine: 

Te=Kt 1'gIa=K'I1j (2.2) 

and for a induction motor in the rotor synchronous rotating frame: 

A 

7=K7V. i = K IT T1qs1ds (2.3) 

where: K', , K, K'7, K7 = proportionality constant 

= Air gap flux 

The principle of field oriented control can be illustrated by means of a phasor 

diagram. The equivalent circuit and phasor diagram are shown in Fig. 2.2, where Im is the 

magnetizing current and I is the torque current corresponding to the given phasor 1, and 

I represents the per-phase stator current of an induction machine. Hence in the complex 

plane, 

Im I, Cos O (2.4) 

I = I sin 9 (2.5) 

The rotor leakage inductance of the machine is assumed to be negligible [13]. 

In field oriented control theory, a control law can be established such that Im is 

maintained constant, and thereby making the rotor flux constant. As for I, it is controlled 
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L,  

 (øOO)  

REAL AXIS 
A 

(a) 

(b) 

Lm 

> 
IMAGINARY AXIS 

Figure 2.2 Per-phase equivalent circuit and phasor diagram for the induction motor 
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in proportion to the torque required. Under field oriented control, the stator current 

phasor in Fig. 2.2(b) becomes I for a given small torque and 's2 when the torque is larger. 

The amplitude, I,, and the phase angle, 8, of the stator current phasor is given by the 

expression: 

(2.6) 

(2.7) 

From the equivalent circuit: 

Lmlm(Oe = (2.8) 

where: = 2itf; f is the stator excitation frequency. 

The angular slip frequency is then given by: 

Rr It 
(Os! = 

J 
(2.9) 

There are three key variables in field oriented control of induction motors, namely, 

the stator excitation frequency (synchronous frequency), the amplitude, and the phase 

angle of the stator current phasor. These quantities should be controlled so as to satisfy 

Eqns. (2.6), (2.7) and (2.9). Note that a drive system employing field oriented control will 

not necessarily solve Eqns. (2.6), (2.7) and (2.9) explicitly, but it must do so implicitly. 

In a drive system where the speed is adjustable, the machine normally constitutes 

an element within a feedback loop [1], hence we need to take into consideration its 

dynamic behavior. The dynamic performance of an a.c. machine is complex because of the 

coupling effect between the stator and rotor phases, where the coupling coefficients vary 
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with rotor position. The machine can be described by differential equations with 

time-varying coefficients. 

2.2.1 Principle of Variable Transformation 

Given an induction motor with a balanced three-phase supply, the d-q axis or two 

axis theory is normally used for dynamic modeling. In this theory, time varying 'parameters 

are eliminated and the variables and parameters are expressed in orthogonal or mutually 

decoupled direct (a) and quadrature (q) axis components in the synchronous rotating 

frame reference. It is convenient to represent the axes in either the stationary or one of 

several rotating reference frames. In the stationary reference frame the d-q axis is fixed on 

the stator and is denoted by d and q, respectively. On the other hand, the d-q axes can be 

rotating at synchronous speed (referenced for example to the stator or rotor flux) or fixed 

on the rotor. For the synchronous rotating reference frame fixed on the stator magnetic 

field, the d-q axes are commonly denoted by f and qC For the field oriented frame (i.e. the 

synchronously rotating reference frame fixed on the rotor flux) no superscripts are used. 

The equations developed in this section and the following section are based on 

[1]. The principle of variable transformation is shown in Fig. 2.3, where there are three 

physical phases as, bs, cs, (fixed relative to the stator datum), the stationary reference 

frame axes d' and q' and the rotating reference frame axes d and qe• The angle x is 

arbitrary between the phase as-axis and the stator datum i.e. a!-axis. The mathematical 

transformation for stator voltages, designated as Vs, (or currents) from the physical three 

phase and d-q two phase frame fixed on the stator is given by: 



where: 

es-axis 

15 

VSdSqS = T VSPh (2.10) 

VSdSqS = ["eqs' vSdsl (2.11) 

VS Ph = [vu, v, vjT (2.12) 

COS(X) cos(x - ') cos(x - ) - 
sin(x) sin(x - ) sin(x - 4) 

2 2 

bs-axis Ps 

d'-axis 

ds_axis 

Figure 2.3 Axes transformations 

e_a,us 

(2.13) 

we 

q'-axis 

Stator Datum 

Aas-axis 
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conversely 

VSPh = T' VSdSqS (2.14) 

where T 1 = 

cos(x) sin(x) 1 

cos(x - ) sin(x - ) I 
cos(x - ) sin(x - I 

(2.15) 

It is convenient to set x = 0, so that the d -axis coincides with the as-axis. With 

x = 0 we have: 

and 

I 

TI 

71_I = 

I I 
2 2 

1 1 1 
2 2 

1 0 1 

1 I1 
2 2 

1 
2 2 

1 

(2.16) 

(2.17) 

The transformation between the d-cf stationary reference frame and the d-q 

rotating reference frame is given by: 

where: 

VSdq = U VSdV (2.18) 

VSdq = [Vqs Vdj (2.19) 

VSdSqS = [\TSq ds1 (2.20) 



where: U—I = 

17 

- cos 0, —sines - 

(2.21) 
- sin 0, cos8 - 

conversely 

VSdSqS = U VS q (2.22) 

COSOe sin 0,. 

—sin Oe cosee 

(2.23) 

and ee is the angle of the stator synchronously rotating frame (i.e. O, = O,t). 

A similar type of operation can be done for the stator currents. Now, assume for example, 

that the phase voltages are balanced and sinusoidal. Then by simplifying Eqns. (2.10) and 

(2.14) in the synchronously rotating reference frame we have (zero-sequence components 

in T & T' have been neglected) 

and 

Vas = VS 

,Js 
Vb = —:)'s - 

VCS = + 
2 ds 

= Vas - 1'bs - cs = )'as 

balanced, fixed voltage three-phase supply let 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

I'as = Vsmcos(o)et) (2.29) 



Vhs = Vs,nCO5(()et) 

VCS = VsrnCOS(o)et+) 

where: Vsm is the stator peak voltage 

Substituting Eqn. (2.29), (2.30) and (2.31) into (2.27) and (2,28) we obtain: 

VSqs = VsmCO5(0)et) (2.32) 

v = V8,nSlfl((Oet) (2.33) 

Again, substituting Eqn. (2.32) and (2.33) into (2.18) we have: 

V, rz 
Vqs - V sm 

v,5 =0 

(2.34) 

(2.35) 

Note that the sinusoidal variables appear as dc quantities in the stator synchronously 

rotating reference frame for steady-state operation (c.f. Appendix A). This is the primary 

advantage of using the d-q axis theory. 

2.2.2 Synchronous rotating frame model 

From the d-q equivalent circuit in Fig. 2.4, the stator voltages in the stator 

synchronously rotating reference frame are given by: 

V =Ri? -d'I  + 0we ds 
e qs S qs 

di 

= Rf, + di ° e ' qs 

(2.36) 

(2.37) 
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(a) 

(b) 

Figure 2.4 D - Q equivalent circuits at synchronously rotating reference frame: 

(a) qe_ axis circuit; (b) axis circuit 

With the substitution of co, = 0 in the above two equations, the stator equations in the 

stationary d - q frame results. For a stationary rotor, the rotor voltage equations for a 

doubly fed machine will be similar to Eqns. (2.36) and (2.37): 

d,. 
l'rRrjr+ di +o)e' (2.38) 
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dr  
Vir = Rr1r + di O)eJ-'qr (2.39) 

With the rotor moving at a speed of o), the d - q axes fixed on the rotor move at a speed 

of Co.  - relative to the synchronous rotating reference frame. Hence for the 

synchronous rotating reference frame Eqns. (2.38) and (2.39) can be re-written as: 

d4 
V r = RrI r + di + (0)e - CO'YI'jr 

dr 
Vrr=RrIir+ di (0)e(OrY1'r 

(2.40) 

(2.41) 

The following equations are the flux linkage expressions derived from the equivalent 

circuit. 

where: 

'I' L,s!s+L,n(j s+jeqr) (2.42) 

= Lirl r +L rn (/ j, +i qr (2.43) 

- L,i 3 +L,(i + ie r) (2.44) 

= Lirl r + L,(i + 'r) (2.45) 

= cf-Axis rotor flux linkage 

cf-Axis stator flux linkage 

lX1JCqr = qeAxis rotor flux linkage 

= qe_Axis stator flux linkage 

L,3 = Stator leakage inductance 

L1,. = Rotor leakage inductance 

Lm = Magnetizing inductance 



21 

Pdr = Instantaneous cf-axis rotor current 

jCds  = Instantaneous cf-axis stator current 

ie 
qr 

ie qs 

= Instantaneous qe_axis rotor current 

= Instantaneous qe_axis stator current 

Using Eqns. (2.36), (2.37), (2.40) and (2.41), the model of electrical dynamics in terms of 

voltages and currents in matrix form is as follows: 

Ve 
qs 
e 

Vds 
ale 

qr 
e 

Vdr - 

R +sL8 

0)eLs 
sL,,, 

(QeLs 
R3 +sL3 

(0 e - COr)J-.,n 

sL, 

SLm 
0)eLm 

Rr+SLr 

CO eL in 
SL' 

(We - (Or)Lr 
(0)e (Or)Lr Rr+SLr - 

where: s = the Laplace operator 

V d, =  Instantaneous cf-axis stator voltage 

Vedf = Instantaneous cf-axis rotor voltage 

VCqs = Instantaneous q°-axis stator voltage 

VCqr = Instantaneous qe_axis rotor voltage 

Rr Rotor resistance 

R3 = Stator resistance 

co e = Stator frequency (rad/s) 

CO r = Rotor electrical speed (rad/s) 

L5 = Stator inductance 

Lr = Rotor inductance 

For a squirrel cage motor or single fed machine, the voltages veqr and VCdr should be zero. 

For a steady-state solution of the above equation, all s-related terms should be zero. 
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During steady-state, all variables in the synchronously rotating reference frame appear as 

d.c. quantities with sinusoidal excitation. 

Electrical rotor speed can be related to torque as follows: 

,dO)m 2 do),TeTL=J dt T' _W7 (2.47) 

where: TL = Load torque 

I = System inertia 

Developed torque in terms of cfqe components is given by: 

= }() (Pj,1r - h1ICqmjr) (2.48) 

In terms of fluxes and currents using relations found in Eqn. (2.10) to (2.13): 

T =  l(E) (11miCqs - ''m's) (2.49) 

=3(E  (2.50) 

3 ();\ 
= e •e (2.51) 

Combining Eqns. (2.46), (2.47) and (2.51) we have the complete model of the 

electromechanical dynamics of an induction machine. 

It should be mentioned that the dc model obtained is based on the assumptions 

noted above. Non-sinusoidal and /or unbalanced excitation wave forms will not yield a de 

model! However, in the case of "square-wave" Current Source Inverter-Induction Motor 

(CSI-IM) drives, the currents of the inverter are balanced with a modified rectangular 

waveform. This kind of non-sinusoidal waveform can be analyzed into its Fourier 

components and a reference speed can be chosen for each component. Regarding the issue 

of harmonics, these harmonics are only weakly coupled to the motor shaft via 
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electromagnetic interactions. Hence, the study of the machine's electromechanical 

properties is only slightly affected by neglecting these harmonics. Moreover, modern 

switch-mode induction motor drives, employing bipolar junction transistor (BJT), or 

insulated gate bipolar transistor (IGBT), or gate turn-off (GTO) devices, apply nearly 

sinusoidal three-phase currents to the induction motor. Therefore this model is quite valid 

for most modern drive application. 

2.3 Direct and Indirect Field Oriented Control 

As noted in Chapter 1, there are two methods to obtain the magnitude and 

position of the rotor flux, namely: 

1) the direct method, where the rotor flux is determined, based on direct 

measurement of air-gap or stator flux; and 

2) the indirect method, where the rotor flux is calculated using motor flux models. 

2.3.1 Direct Field Oriented Control 

Direct method flux sensing consists of two sensing devices that are placed 

orthogonal to each other as shown in Fig. 2.5. Two methods are discussed here namely, 

the Hall sensing and the sensing coils methods. 

In the Hall sensing method, the Hall effect sensors are placed in the air gap of the 

stator of the induction motor, and signals representing the local flux density are produced 

by integrating the measurements of substantial number of suitably placed transducers. One 

disadvantage of this method is that a complex adjustable filter is needed since strong slot 
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harmonics with speed dependent frequency are superimposed on the fundamental signal 

[14]. Another disadvantage with Hall effect sensors is due to its semiconductor nature, i.e. 

they are subject to sever thermal and mechanical stress and requires a modified motor. For 

the above reasons the Hall sensing technique is not an economical solution for many 

general applications. 
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Figure 2.5 Direct field oriented control 

In the sensing coils method, sensing coils are physically installed in the induction 

machine's stator, the voltages across the sensing coils are proportional to the flux change 

which is then integrated to represent the main flux of the motor. The sensing coils have 

certain qualities that eradicate the problems faced by the Hall sensors, that being, the 

sensing coils have avoided using active semiconductor components within the motor and 

at the same time since the sensing coils behave like low pass filters, undesirable slot 
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harmonics are filtered out. One major disadvantage of this technique is that the flux cannot 

be sensed at zero speed, hence making it unsuitable for position control. 

Both the above methods require special modifications to be made to the motor 

therefore making standard production induction motors expensive to retrofit. 

2.3.2 Indirect Field Oriented Control 

To circumvent the limitations imposed by the direct method, the indirect method 

is used. To acquire the rotor flux of a standard induction motor, the equations of the 

motor flux model are solved in real time using measurable stator currents and rotor speed 

as driving functions. Fig. 2.6 shows a block diagram on how this is to be done. 

.e 
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Figure 2.6 Induction machine model for indirect FOC 

The advantage of this technique is that it does not require any form of flux sensing device 

to be placed inside the induction motor. Moreover, flux can be obtained even down to 

zero frequency making it attractive for position control. However, the major setback of 
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indirect field oriented control is the variations of rotor time constant TR where TR = L,IRT. 

Since the rotor time constant TR is dependent on rotor resistance and rotor resistance 

varies substantially due to temperature variations and skin effect, the rotor time constant 

will affect the accuracy of the flux magnitude and angle estimation. The result will be a 

deterioration in the quality of control and system performance. 

2.3.3 Generalized Field Oriented Control System 

In Fig. 2.7, the generalized field oriented control system is presented. Note that 

the dashed lines indicates a signal that may or may not be required whereas a solid line 

indicates a signal that is required for field oriented control. Note also that the d-q axes 

without a superscript 'e' refer to the field oriented frame (i.e. the synchronously rotating 

reference frame fixed on the rotor magnetic field). In the diagram there are two inputs, the 

torque command T* (established by speed or position feedback) and flux command, y* 

(usually constant). The torque reference, V*q or i and magnetizing reference input, v 

or are produced by separate controllers. These voltages or currents require the matrix 

U', which is the matrix used to convert the synchronously rotating reference frame to a 

stationary reference frame. Their output is consequently used to convert the two-phase 

quantities to the physical three-phase quantities via the matrix V. For a similar reason, in 

the feedback path the physical three-phase variables are transformed back into two-phase 

quantities from a stationary to synchronously rotating reference frame. The above 

mentioned process is essentially a very complex one, due to the number of coordinate 

changes from one type of phase to another and from a stationary to a rotating reference 
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frame and vice versa. It has been made practical by the advent of microprocessors and 

digital signal processors. 

Note that a number of systems are represented in Fig. 2.7. To begin with, the flux 

magnitude, field angle and torque calculation block may require phase voltages or phase 

currents or rotor speed or almost any combination of these variables [15]. Second, the 

controllers block can generate field oriented d-q voltages, or alternatively d-q currents. 

Following rotating to stationary frame and two-phase to three-phase transformations, 

these become the voltage, or alternatively current, phase commands for the inverter. 

Though it may be convenient to use a voltage source inverter (VSI) for voltage phase 

commands and a current source inverter (CSI) for current phase commands, this is not 

necessarily the case. For example, current phase commands can be applied to a VSI with 

current feedback implemented for the inverter itself. 

With the introduction of a rotor speed feedback signal, one has a wide range of 

choices for the speed controller implementation. A typical scheme is shown in Fig. 2.8 [1]. 

In the diagram, the magnitude of rotor flux linkage, Wr and slip frequency, co, can be 

calculated using Eqns. (2.64) and (2.65), respectively. The slip frequency angle, 0,, can be 

obtained by integrating o,. Angle is the slip angle which is required to adjust the 

inclination of the d-axis, so that the magnetization of the motor is along this axis. The real 

rotated electrical rotor angle, Or is then added to 0 to give the instantaneous rotor flux 

position angle. 
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Figure 2.7 General control scheme for indirect field oriented control of an induction motor. 
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Figure 2.8 Rotor speed feedback scheme 

2.4 Flux estimation 

The objective of this thesis is to be able to estimate the rotor flux magnitude and 

angular position as accurately and as quickly as possible ( at least as accurately and as 

quickly as required for field oriented control). Only the indirect method of field oriented 

control will be discussed in this thesis. With the help of the phasor diagram given in 

Fig. 2.9 the procedure of obtaining a conventional rotor flux estimation and the principle 

of indirect field oriented control is explained. In Fig. 2.9, note that the cf-q axes are fixed 

on the stator while the de-q' axes rotate at synchronous angular velocity co ,, as shown. The 
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q'-axis is at the angular position Oe with respect to the q-axis at any instance. The angle O 

is given by: 

where: 

Oe 0r + OR 

=(0)r+(Dsi)t 

(Oel 

Or = Rotor angular position, cot 

= Slip angular position, ot 

(2.52) 

'rsI 

The rotor flux T, is made up of the air gap flux and the rotor leakage flux and it is aligned 

to the d-axis. The following equations are written based on the synchronously rotating 

reference frame ci' - cf equivalent circuits (i.e. c. f. Fig. 2.4) 

dT'qr +Rrjr + ( - (OrY'1'vr = 0 
di 

dr 
di +Rrldr (0) - ()r)'I'qr e = 0 

from Eqns. (2.43) and (2.45): 

Rearranging we have: 

r1 1 L 4 ?nl e -'rr qs 

tjje _r •e r 
dr - J-'r1 dr '-"fl'ds 

- j....XfJe __e 
'qr r r 1qs 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2.58) 
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By substituting (2.57) and (2.58) into (2.53) and (2.54) the rotor currents can be removed: 

Electrical axis 
qe 

,Mechanical axis 

Figure 2.9 Phasor diagram for Indirect Field Oriented Control 

qJe 

qr + &.IJe &JLR jC +O)sI'ijrO di r qr T rqs (2.59) 

+ &qie L, . 
di Lr dr_r1 r1ds 0)S1 r o (2.60) 

where: 

When Peqr = 0, T. will be aligned with the cf-axis in the synchronously rotating 

reference frame (i.e. angle 13 = 0, hence the field angle 4 now equals the synchronous angle 

Let this be the case for steady-state operation with zero torque load, neglecting stator 
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and rotor losses. This, therefore is a definition for the position of the d axis. This is shown 

in Fig. 2.10. 

This figure illustrates the critical difference between 8, the position of the stator 

flux in the stationary frame and 4), the position of the rotor flux in the stationary frame. In 

the literature, there is occasionally some confusion between these two quantities. One 

purpose of field oriented control is to determine the value of 4), the field angle, at all times, 

as required for coordinate transformations (i.e. for U and U' matrix in Fig. 2.7). Note that 

4) = + P. To re-emphasize, during steady-state, zero load torque operation, 13 = 0 

neglecting any losses. During steady-state, constant load torque operation, 0 is a small 

negative constant quantity (typically between 0° and -30°). Let us now define the d axis by 

the following conditions (note no superscript is used to denote the field oriented axes): 

dPqr 
qr— 0 

di — 

'Ydr = T r = consi 

1dr 0 
di 

With decoupling control Eqn. (2.59) and (2.60) becomes: 

or 

(0,1 = L,,, Rr 
Tr Lr 

Lrd'Yr 
+ 'f'r = 

—&L !LW znld - 

di Lr L,. 

(2.61) 

(2.62) 

(2.63) 
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or 
• 1 +STR  
lds =  'Pr (2.64) L,  

Substituting (2.64) into (2.61) we have: 

(Os! = 
1 +sTR  lqs 

TR lds 
(2.65) 

where: TR = L/RT 

s =d/dt 

From Eqn. (2.63), we see that rotor flux is a simple first order differential equation which 

is dependent on the d-axis current of the stator in the synchronously rotating reference 

frame. 

Note that one can derive equations similar to Eqns. 2.55 and 2.56 in the field 

oriented frame. They are simply: 

kj.J qr = L rlqr + Lmlqs 

lydr = Lrldr + Lmid, 

(2.66) 

(2.67) 

These last two equations are very relevant to the approach that we have chosen to obtain 

field oriented control, as is discussed in Chapter 4. 

Aqs 

TIS dr 

Figure 2.10 Decoupling control 
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Chapter 3 

Artificial Neural Networks 

3.1 Introduction to Artificial Neural Networks 

The human brain is the most complex computing device known to man. The 

brain's powerful thinking, remembering and problem solving capabilities have inspired 

many scientists to attempt computer modeling of its operations. 

The neuron is the fundamental cellular unit of the entire nervous system and in 

particular of the brain. Each neuron is a simple processing unit which receives and 

combines signals from many other neurons through input elements called dendrites. If the 

combined signal is strong enough, it activates the firing of the neuron, which produces an 

output signal; the path of the output signal is along a component of a cell called the axon. 

The sigmoid arrives at the synapse of the neuron for distribution to the detrites of other 

neurons. Note that the signals are transferred by an electrochemical process (i.e. some of 

the steps are electrical in nature and some are chemkal in nature). 

The brain consists of tens of billions of neurons densely interconnected. The axon 

(output path) of a neuron splits up and connects to dendrites (input paths) of other 

neurons through a junction referred to as a synaptic cleft. The transmission across this 

junction is chemical in nature and the amount of signal transferred depends on the 

presence of certain chemicals (neuro-transmitters) released by the axon and received by 

the dendrites. This synaptic efficiency (or "strength") is what is modified when the brain 
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learns. The synapse combined with the processing of the information in the neuron form 

the basic memory mechanism of the brain. 

The major structures of a typical nerve cell is shown in Fig. 3.1. The cell consists 

of dendrites, the cell body, and a single axon. The axon of many neurons is surrounded by 

a membrane called myelin sheath. Nodes of Ranvier interrupt the myelin sheath 

periodically along the length of the axon. Synapses connect the axons of one neuron to 

various parts of other neurons. 

Nodes ofRanvier 
Myelin Sheath 

Axon Hillock 

Figure 3.1 Biological nerve cell 

In an artificial neural network, the unit analogous to the biological neuron is 

referred to as the "processing element." A processing element (PE) has many input paths 

(dendrites) and combines, usually by simple weighted summation, the values of these input 

paths. The result is an internal activity level for the processing element. The combined 

input is then modified by a transfer function. This function can be a threshold function 
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which passes information only if the combined activity level reaches a certain level, or it 

can be a continuous function of the combined input. The output value of the transfer 

function is generally passed directly to the output path of the processing element. The 

output paths of a processing element can be connected to the input paths of other 

processing elements through connection weights which correspond to the synaptic 

Weights 

Inputs 

Figure 3.2 Schematic of a processing element (PE). 

strength of neural connections. Since each connection has a corresponding weight, the 

signals on the input lines to a processing elements are modified by these weights prior to 

being summed. Thus, the summation function is a weight summation. In itself, this 

simplified model of a neuron is not very interesting; however the interesting effects result 

from the ways neurons are interconnected. In this chapter, a thorough review and 

background of artificial neural networks is provided. 
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3.2 History of Artificial Neural Networks 

In 1943, a neurobiologist, Warren McCulloch and a statistician, Walter Pitts, 

published a watershed paper titled "A Logical Calculus of Ideas Imminent in Nervous 

Activity." This paper was an inspiration that helped to launch three diverse fields. One of 

these was early digital computers, as John von Neumann saw the paper as a blueprint for 

"electronic brains." Marvin Minsky, one of the most prominent researchers in Artificial 

Intelligence, became enthralled with the idea of macroscopic intelligence from this paper, 

which later led to his interest in black-box macroscopic intelligence, the birthplace of 

expert systems. Frank Rosenblatt, a compatriot of Minsky at the Bronx High School of 

Science, became intrigued with the computations of the eye and this interest led him to 

invent the perceptron [16]. 

In 1956, artificial intelligence pioneers Marvin Minsky, John McCarthy, Nathanial 

Rochester and Claude Shannon organized the first conference on artificial intelligence. It 

was at this conference that researchers from all over the world gathered to discuss the 

potential use of computers in simulation of "every aspect of learning or any other feature 

of intelligence." It was at this landmark conference that the fields of neural computing and 

artificial intelligence were launched. Nathanial Rochester of IBM Research, presented a 

neural network model that he had been building. Using several hundred simulated neurons 

and interconnections, Rochester constructed a system to explore how such a network 

would respond to environmental stimuli. The results of this model consisted of piles of 

network generated numerical data, which Rochester did not know how to interpret. This 

was the first known software simulation of neural computing networks. 
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3.2.1 Rosenblatt's Perceptron 

In 1957, Frank Rosenblatt at Cornell, published the first major research project in 

neural computing. The development of an element called a "perceptron." Rosenblatt's 

perceptron sparked a great amount of research interest in neural computing. 

The perceptron is a pattern classification system which could identify both abstract 

and geometric patterns. The first perceptron was capable of learning and was robust in 

that its operation was only degraded after damage to component parts. In addition, the 

perceptron was capable of making limited generalizations and could properly categorize 

patterns despite noise in the input. 

The perceptron was primarily aimed at optical pattern recognition. The grid of 

400 photocells, corresponding to light sensitive neurons in the retina, received the primary 

optical stimuli. These photocells were connected to associator units as shown in Fig. 3.3, 

that collected electrical impulses from the photocells. Connections between the associator 

units and the photocells were made by randomly wiring the associators to the cells. If the 

input from the cells exceeded a certain threshold, the associator units signaled response 

units to produce output. 

Since it was a developmental device, the perceptron also had certain limitations. 

One of these would be emphasized by Minsky and Papert, who discovered that the 

perceptron was unable to represent the basic Exclusive OR (XOR) function. This is the 

result of the linear nature of the perceptron. One of the most significant changes made 

since Rosenblatt's work in the 60's has been the development of multi-layer systems which 

can learn and categorize complex class categories. This is typically achieved by using a 
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non-linear transfer function, but can also arise from normalization and competition. 

Sensory 
Input 

Object 

Photocells Randomly connected 

associated units 

Figure 3.3 The perceptron 
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3.2.2 Minsky and Papert's Perceptron 

In the mid 1960's, Marvin Minsky and Seymour Papert, both of MIT's Research 

Laboratory of Electronics, began work on an in-depth critique of the perceptron. The 

book Percepirons, published in 1969 (and re-published recently), is a detailed 

mathematical analysis of an abstract version of Rosenblatt's perceptron. The main result of 

this book was Minsky and Papert's conclusion that the perceptron cannot handle inputs 

that are visually non-local. The conclusion this work reported to the world—that the 

perceptron and neural computing were basically "not interesting" subjects to 
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study—drastically decreased the amount of funds and therefore research in neural 

computing at the time, 

3.2.3 Widrow's Adaptive Linear Element 

In 1959, Bernard Widrow, at Stanford, developed an adaptive linear element 

called, "adaline" (Adaptive Linear Neuron), based on simple neuron-like elements. The 

Adaline and a two layer variant, the "madaline" (Multiple Adaline) were used for a variety 

of applications including speech recognition, weather prediction, character recognition and 

adaptive control. Widrow used the adaptive linear element algorithm to develop adaptive 

filters that eliminated echoes on phone lines. This was the first time a neural computing 

system was applied to a major real-world problem. 

3.2.4 Kohonen's Network 

Teuvo Kohonen of Helsinki Technical University in Finland has been doing 

fundamental work in adaptive learning and associative memories since the early 1970's. 

He is responsible for,, the description and analysis of a large scale of adaptation rules: rules 

in which weights are modified in a manner only dependent on the previous weight value 

and the post and pre-synaptic values. 

Another contribution that Kohonen made is the principle of competitive learning 

in which processing elements compete to respond to an input stimulus and the winner 

adapts itself to respond more strongly to that stimulus. Such learning is unsupervised in 
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that the internal organization of the network is governed only by the input stimuli. The 

competitive learning paradigm was the result of a general study of self-organizing maps 

which was motivated by various physiological observations about how information 

received at the sensory organs is mapped topologically onto one and two dimensional 

areas of the brain. 

3.2.5 Back-propagation Networks 

The back-propagation network, the most popular network for current applications 

of artificial neural networks was first formalized in 1974 by Werbos [17], and later by 

Parker [18] and Rumeihart and McClelland [9]. One of the major research groups of 

recent years has been the PDP (Parallel Distributed Processing) group, started by 

Rumeihart, McClelland and Hinton in 1982. 

Back-propagation is a technique for solving the credit assignment problem posed 

by the Minsky and Papert in Percepirons [16]. A perceptron network is able to train the 

output units to learn to classify patterns of inputs, provided that the classes are "linearly 

separable." More complex non-linearly separable classes can be separated with a 

multi-layer network. However, if the output is in error, how does one determine which 

processing element or inter-connection to adjust? This is the credit assignment problem. 

Back-propagation solves this problem by assuming all processing elements and 

connections are somewhat to blame for the erroneous response. 
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3.3 The Back-propagation Approach 

Conceptually, a back-propagation network is made up of interconnected nodes 

arranged in at least three layers. The input layer is passive; it merely receives the input 

vectors (data patterns) passing into the network. The number of input nodes consequently 

equals the number of measured data values (vector components) presented to the network. 

In contrast, both the hidden and output layer actively process data. The output layer, 

produces the network result as its name suggests. In a back-propagation network, the 

result is a set of output vectors, one value per output node. 

The hidden layer has no direct connection to the input or the output. Introducing 

this intermediate layer permits back-propagation to model non-linear functions with 

greater complexity. Choosing the number of hidden layer nodes almost invariably involves 

experimentation. 

A single node has many input values but only one output value. Each input is a 

single data value presented to the node, usually through a connection from a preceding 

layer. An extra input known as the bias for the processing element acts as the reference 

level. On a serial computer, the microprocessor emulates one node at a time. On a parallel 

computer, each such element typically maps to a single physical processor. Associated 

with each connection is an adjustable parameter called a weight. Basically, a node 

calculates the weighted sum of its input, then passes the sum through a function to 

produce a result. The transfer function is typically a Sigmoid, a monotonic S-shaped 

curve. The attenuation at the upper and lower limbs of the sigmoid constrains the sum 

with fixed limits. 
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The back-propagation algorithm's strength is its ability to change the values of its 

weights in response to errors. It does this automatically during training, hence, training 

requires a series of input patterns tagged with their desired output patterns. During 

training, the network passes each input pattern through the hidden layer to the output 

layer to generate a result for each output node (see Figs. 3.4(a) to 3.4(f)). It then 

compares the desired and the actual results. The differences are the output layer errors, 

which the network passes back to the hidden layer using the same weighted connections. 

This backward propagation of errors gives the algorithm its name. Subsequently, each 

hidden node calculates the weighted sum of the back-propagated errors to find its 

contribution to the known output errors. 

After each output and each hidden node find its error value, it adjusts its weight to 

reduce its error. The equation that changes the weights—called the delta rule—is 

designed to minimize the network's sum-squared error. The network's overall accuracy is 

improved by the aggregate corrections during training. When the network can process 

input patterns with sufficient accuracy, the weights are saved to preserve what it has 

learned. 

After training, the network should be tested with known data that was not used in 

the training data set. The network's accuracy with patterns outside the training set is 

called generalization and indicates its reliability in an application. 
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Figure 3.4(a) A typical Back-propagation neural network. During training, the input 
layer propagates a pattern to all hidden nodes. These calculate a weighted 
sum of inputs and are passed through a transfer function. 
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Figure 3.4(b) The hidden nodes propagate their results to all output nodes. Each output 
node then calculates a weighted sum and passes it typically through the 
same transfer function to generate an actual result. 
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Figure 3.4(c) Each output node subsequently subtracts its actual result from its desired 
result, which yields the output error. 
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Figure 3.4(d) The output nodes calculate the derivatives of the error vector components 
with respect to the weights, subsequently passing these derivatives back 
to the hidden layer. The back-propagation of error gives this neural 
network its name. 
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Figure 3.4(e) Each hidden node calculates the weighted sum of the error derivatives to 
find its contribution to the output error. 
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Figure 3.4(f) Each hidden layer node and output layer node changes its weight 
according to a predetermined mathematical criterion, i.e. the least mean 
squares algorithm, to reduce its error. 
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When training and testing are completed, the network is ready to process 

unknown data. Applying a pattern to the input produces a corresponding pattern at the 

output. The network therefore acts as a model of a function, matching input patterns to 

output patterns. It learns this association solely from the training data, even if the equation 

describing the function is non-linear, unknown or both. 

3.4 The Generalized Delta Rule 

In this section, a formal mathematical description of the back-propagation 

operation is presented. A detailed derivation of the generalized delta rule (GDR), which is 

the learning algorithm for the network is also discussed [19]. Fig. 3.5 serves as a reference 

diagram for most of the discussions. The back-propagation network is a layered, 

feedforward network that is fully interconnected by layers. Therefore, there are no 

feedback connections and no connections that bypass one layer to go to another directly. 

A mapping network is defined as one that is able to compute some functional 

relationship between its input and its output. For simple functions like the mapping of a to 

sin (a) where the functional relationship is known, a neural network is not required. 

However, to perform a complicated mapping where the functional relationship is not 

known in advance but where some correct mappings are known, a neural network is most 

applicable. In this situation the ability of neural network to discover its own algorithms is 

extremely useful. 
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Output Layer k 

Hidden Layer j L  
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Figure 3.5 Three layer back-propagation network. The bias weights, O' and ®°k and the 
bias units are optional. The bias units provide a fictitious input value of 1 on 
a connection to the bias weight. The bias weight can be treated like any 
other weight. 

Input vectors pairs P are as follows: (x1,y1), (x2,y2),..., (Xp,yp), which are examples 

of a functional mapping y = 4(x). To train the network so that it will learn the 

approximation o, where 'o = y' = '(x), where the" '" denotes the differential operator. 

Learning in a neural network means finding an appropriate set of weights. The learning 

technique used here will be a generalization of the least mean squares (LMS) rule. Due to 

possible non-linearity mapping function, as well as its multidimensional nature, the 



49 

iterative version of the simple least-squares method called a steepest-descent technique is 

employed. 

If an input vector x, = (xPI,xP2, ... ,x.PN)t is applied to input layer (Fig. 3.5), the input 

units propagate the values to the hidden layers units. The net input to thej th hidden unit is 

net, = +() (3.1) 

where is the weight on the connection from the i' input unit, and OJh is the bias term. 

The h superscript refers to quantities on the hidden layer. Assuming that the activation of 

this node is equal to the net input; then the output of this node is 

ipt =j(net 1) (3.2) 

The equations for the output nodes are 

netPk E w1i1 + 8 

Opk =j(netP°k) 

where the "o" superscript refers to quantities on the output layer. 

The procedure for training the network is as follows: 

(3.3) 

(3.4) 

1) Apply an input vector to the network and calculate the corresponding 

output values. 

2) Compare the actual outputs with the correct outputs and determine a 

measure of the error. 

3) Determine in which direction, positive or negative, to change each 

weight in order to reduce the error. 
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4) Determine the amount by which to change each weight. 

5) Apply the corrections to the weights. 

6) Repeat items 1 through 5 with all the training vectors until the error for 

all vectors in the training set is reduced to an acceptable value. 

For a network with no hidden layers and a linear output, the weight-change law is called 

the LMS rule or Delta rule given by: 

w(t + 1), = w(i), + 2lt8kXk, (3.5) 

where = is a positive constant 

x is the 1th component of the kh training vector 

= is the difference between the actual output and the correct 

value, 8k = (dk - .Yk) 

A similar equation results when the network has more than two layers, or the output 

functions are non-linear. 

3.4.1 Output Layer Weight Updates 

Error at a single output unit is defined as = - oPk), where the subscript "p" 

refers to the pth training vector, and "k" refers to the kth output unit. The actual output is 

°pk and desired output is Ypk• The total squared error is minimized by the gradient delta rule 

and is given by: 

= L 6pk (3.6) 
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For convenience in calculating derivatives later, the factor of 1/2 in Eqn. (3.6) has 

been added. To determine the direction in which to change the weights, the negative of the 

gradient of E, VE , with respect to the weights, w is calculated. Equation (3.6) 

becomes: 

and 

EP _!(vpk_opk)2 2 
k 

aEp aj  ô(net.) 
awo = (Ypk - Opk)ki  a(net;k) aw 

(3.7) 

(3.8) 

the partial derivatives are determined by the chain rule. The derivative of j will not be 

evaluated, but instead will be written as j'(netP°k) . The last term in Eqn. (3.8) is: 

ô(netP°k) - ( a 4 - 

- --- j - 
(IWkj '...UWkj.p1 I 

for negative gradient from Eqns. (3.8) and (3.9): 

aE / 

= (Ypk - ok)J (netpk)1P1 
•-' ki 

The update of output layer weights are then determined by the following: 

w,(t +1) = w,(t) + Ay 

such that 

(3.9) 

(3.10) 

(3.11) 

L\w,(t) = ll(Ypk oPk)f(netPk)iPf (3.12) 

where rj is called the learning-rate parameter. In general it is difficult to determine the 

best value of il . A general rule is to make the learning rate for each node inversely 

proportional to the average magnitude of vectors feeding into the node. There are several 

methods to adapt the learning rate as a function of the local curvature of the weight space 

surface [9, 20, 21, 22]. The value of i is usually a positive number and less than one. 
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The function fk. is obtained by differentiating j. Thus the function fk. must be 

differentiable. With that in mind, there are two forms of output functions that are of 

interest here. They are: 

j(nei) = nei 

f(net) = (1 + e)' 

(3.13) 

(3.14) 

Eqn. (3.13) defines a linear output unit and equation (3.14) defines a sigmoid, or logistic 

function. To determine which output function to use depends on the type of output 

representation required. If the output units are to be binary, then the sigmoid output 

function would be appropriate. In additional to being output limiting the sigmoid is also 

quasi-bistable but differentiable. 

In Eqn. (3.13), f' = 1; in Eqn. (3.14), f' =j(1—f)=opk(1—o,,,) For the 

two cases, we have: 

for the linear output, and 

for the sigmoidal output. 

w(i + 1) = w,(/) + 11(ypk - Opk)ip, 

W 

The weight update equations are summarized by defining: 

öpk (Ypk - Opk)J (neik) 

(3.15) 

(3.16) 1(t + 1) = W O (f) + 11(Ypk - Opk)Opk(1 



53 - 

3.4.2 Hidden Layer Weight Updates 

A similar type of calculation is performed for hidden layer weight updates as in the 

output layer weight updates. A major difference between the output weight updates and 

the hidden layer weight updates is that in the output layer weight updates, the actual 

output is known whereas in the hidden layer weight updates the correct outputs of the 

hidden layer is not known in advance. To verify that the total error E is related to the 

output values on the hidden layer we need to look at Eqn. (3.7): 

EP = Pk - Opk)2 

k 

= (Ypk —j(nelk))2 

= (pk- —fk,(F, Wjlpi + 
k j 

From Eqns. (3.1) and (3.2), it is shown that i1 depends on the weights on the hidden layer. 

The gradient of EP calculated with respect to the hidden layer weights are as follows: 

Ypk _0pk)2 

3Opk a(net;k) air., (ne43) 

= (Ypk - O pk)a(to) a(net) 8w 
k ii 

by using Eqn. (3.6)-(3. 18) in the above we have: 

- oPkt 1e/;kw ' (netZ)xpi 

fi 

(3.19) 

(3.20) 

Updating the hidden layer weights in proportion to the negative of Eqn. (3.20) we get: 

= ne4j)xpi(ypk - oPk)j(ne1;k)w 

where 11 again is the learning rate. 

By using Eqn. (3.17) i.e. the definition of we can write: A. 

Tif '(ne1 j)xp ökW, 

(3.21) 

(3.22) 
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It is important to note that every weight update on the hidden layer depends on all the 

error terms, °k , on the output layer. In other words, the known errors on the output 

layer are propagated backwards to the hidden layer to determine the appropriate weight 

changes on that layer. The hidden layer error term can be defined as: 

oh =j '(net OpkWkj p1 1 

to become analogous to those for the output layer: 

wj(i + 1) = w(t) + riO,x1 

(3.23) 

(3.24) 

3.5 Training Considerations 

The neural network is capable of forming arbitrarily close approximations to any 

continuous non-linear mapping using the back-propagation algorithm. However, there are 

a few practical considerations. The first is choosing the network size. The second is the 

training data selection and, lastly, the complexity of learning. 

3.5.1 Network Size 

The neural network is able to map any non-linear continuous function provided 

that the size of the network grows in proportion to the complexity of the function [23]. In 

general, it is not known what network size works best for a given problem, since each 

problem demands different capabilities from the network. Nevertheless, choosing a correct 

network size is important, too small a network size will not be able to form a good model 

of the problem. On the other hand, too large a network may be "overly capable" [24], i.e. 

the network may be able to give several solutions that are consistent with the training data 



55 

but are likely to be poor approximations to the actual problem. Ideally, we would like a 

network size that best matches the capability of the network to the structure of the 

underlying problem, in other words we would like a network whose size best captures the 

structure (or intricacies) of the underlying problem. Generally, because there is no prior 

knowledge of the problem, a methodical trial and error approach is adopted to find the 

optimal network size of the problem. The following guidelines are used in determining 

network size, 

1) Start with the smallest possible network and then gradually increase the size 

until performance levels off. Alternatively, start with a large network and then apply a 

pruning technique that destroys weights and/or nodes that do not contribute to the 

solution [25]. 

2) For a fully connected neural network no more than four-layers are required to 

perform a particular task, i.e. one input layer, one output layer and two hidden layers. It 

has been suggested that the number of hidden layer nodes should not be more than the 

number of training samples, it is almost always the case that the number of hidden layer 

nodes are much less than the number of training samples [26]. Otherwise, the network will 

simply "memorize" the training samples resulting in poor generalization of the problem. 

The main idea is to use as few hidden layers nodes (units) as possible. This is 

because each additional node adds to the load on the central processing unit (CPU) during 

simulations. 
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3.5.2 Training Data 

Generally, the larger the number of training data samples the better the data is 

capable of describing the underlying problem. The training data's objective is to be able to 

generalize the entire underlying problem with the given amount of data samples. 

Generalization is a measure of how well the network performs on the actual problem once 

training (learning) is complete. The back-propagation neural network is" good at 

generalization. Given several different input vectors, all belonging to the same class, a 

back-proportion neural network is capable of learning key significant similarities in the 

input vectors, while irrelevant data is ignored. In order for the network to perform 

adequately, the training data provided must cover the entire input range of operation. 

During the training process, the training vector pairs selected should be selected randomly 

from the data space if possible. 

3.5.3 Complexity of Learning 

After determining the correct network size and proper training data set, it turns 

out that finding the correct weights for a network is an inherently difficult problem. The 

learning algorithm employed for this thesis work (back-propagation) is based on gradient 

search techniques, and is slow in finding local weight solutions to a problem. To explain 

its slow speed in learning (not to be confused with the speed of execution) we need to 

characterize the error surface which is being searched. For multilayered networks the 

surfaces can be quite severe [27], these surfaces tend to have large areas of flatness as well 

as extreme steepness and not much in between. It is difficult to determine if a solution has 
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been reached since the transient flat areas "look" very much like minima, i.e. gradient is 

very small. The selection of the value of TI (the learning rate) has a significant effect on 

system performance. Usually, 11 is a small value of 0.05 to 0.25—to ensure that the 

network settles to a solution. A small value of ri will cause the network to have a large 

number of iteration to achieve a solution. Increasing the value of i as network error 

decreases will often speed up convergence. Too large of an increase in ri may cause 

instabilities when it reaches the steeper portions of the error surface. 

Another way to speed up convergence is to add a momentum term in the weight 

change Eqn. (3.18). When calculating the weight change value LPW, a fraction of the 

previous change is added to the weight change: 

w,(i+ 1) =wAY (O+1ö°kiPJ+a/Pw,(i — 1) (3.25) 

where 0 <a < 1. This term makes the current search direction an exponentially weighted 

average of past directions, and helps keep weights moving across flat sections of the error 

surface after they have descended from steep portions. 

3.5.4 Termination Criterion 

The termination criterion is determined firstly by the magnitude of the gradient, 

i.e. the learning algorithm can be terminated when the gradient is sufficiently small, since 

by definition the gradient will be zero at the minimum. Secondly, termination may come as 

output error falls below a certain threshold. Finally, the learning process may stop at the 
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completion of a fixed number of iterations, which will not guarantee that a minimum is 

reached. 
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Chapter 4 

Implementation of Field Oriented Control 

4.1 Introduction 

In this chapter, the design of a field oriented control drive system is discussed. 

The control scheme for the FOC chosen is based on the availability of a voltage source 

inverter in the power electronics lab of the University of Calgary and thus would facilitate 

the future implementation of this drive system. 

With the successful computer simulation of an induction machine model (see 

appendix A), a field oriented control system can be designed and simulated. For this thesis 

work the major blocks involved in this process are the induction motor model, a PWM 

voltage source inverter, a single proportional-intergral (P.1.) controller for rotor flux, two 

P.I. controllers for d-q field currents and the possible use of a P.1. controller for speed 

control (many of the initial neural network flux estimator tests were carried out without 

the need for speed feedback). Note that the P.I. controllers are chosen only because of the 

simplicity of their simulation. This is quite sufficient for testing of the artificial neural 

network flux estimator, as discussed in the next chapter. 

4.2 System Description 

Recall the discussion on the generalized field oriented control system in 

(section 2.3.3). For convenience, Fig. 2.7 is reproduced here in Fig. 4.1. With the 

objective of one day implementing a high performance speed controlled field oriented 
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control induction motor drive, a block diagram of a drive system is given in Fig. 4.2(a) 

(limiters not shown). The entire system depicted in Fig. 4.2(a), has been coded in C (see 

Appendix B). This program was used to generate all training data (c.f. Chapter 5) and test 

data (c.f. Chapter 6) for the artificial neural network flux estimator. Note that we have 

chosen to generate the d-q voltages in the field oriented frame (with simple P.I. 

controllers) from the field oriented i and i qS feedback quantities. These voltages are then 

rotated (using U") and then transformed (using T') for direct application to a voltage 

source inverter. 

4.2.1 Rotor Flux Control 

As seen in Fig. 4.2(a), the coordinate transformation can be obtained only with an 

accurate knowledge of the field angle 4 . Further, in field oriented control, as the motor 

speed starts to increase, it is desirable for the rotor flux to reach maximum flux as fast as 

possible and be maintained at that flux magnitude throughout its operating range (field 

weakening is not considered here). In order to achieve this required fast response, a P1 

rotor flux controller has been employed shown in Fig. 4.2(b), which is a subsection of 

Fig. 4.2(a). 

In this chapter all results presented are based on flux magnitude and field angle 

calculations as determined using the Eqns. 2.46, 2.66 and 2.67. Note that this will be done 

by the neural network flux estimator in the eventual implementation of the system depicted 

in Fig. 4.2(a). 
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4.2.2 Current Controllers 

For FOC to be successful, the correct stator currents must be produced, i.e. the 

d-q axes are decoupled. Therefore, for drive systems using a voltage source inverter (as in 

this case) it is necessary to have current controllers to regulate the stator voltages in order 

to impress the desired currents. In the proposed FOC, current control is performed in the 

field oriented reference frame, where /*ds is obtained from the rotor flux controller and 

where is controlled independently (c.f. Fig. 4.2(a)). 

4.2.3 P1 Controller Tuning 

The procedure to tune the individual P1 controllers is straight forward. Firstly, the 

current controllers are tuned and then the rotor flux P1 parameters are tuned. In the case 

of the current controllers, the proportional control coefficient is tuned first until the drive 

system just begins to become unstable (to determine a conservative choice), then the 

integral coefficient is tuned to have the best steady state error. The same procedure is 

adopted for the rotor flux controller tuning. The results of optimal tuning for these P1 

controllers can be seen in Figs. 4.3-4.5 (for 30 hp motor). 
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Figure 4.3 Electromagnetic torque with field oriented control 
implemented. 
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Figure 4.5 Rotor flux magnitude with field oriented control 
implemented. 

As seen from Fig. 4.3, the electromagnetic torque (Ta) reaches steady-state quite 

quickly (in less than 0.03 s), although, there is an oscillatory transients during switching. 

The rotor speed curve seen in Fig. 4.4 is produced by letting I*qs = 6.0 p.0 for 0.2 s, and 

then letting I*qs -6.0 p.u. for 0.4 s and so on. As seen from Fig. 4.5, the rotor flux 

magnitude is able to reach 1.0 p.u. in less than 0.01 s with FOC implemented, whereas 

without FOC it took 1.5 s to reach a value of 1.0 p.u. (c.f. Appendix A). 

The field angle 4 is responsible for the precise location of the rotor flux field in 

field oriented control of the induction motor. This is crucial to the success of FOC, as this 

field angle is used in the rotation matrix to convert variables in the synchronously rotating 

frame into their counterparts in the stationary reference frame and vice versa. Figs. 4.6 

and 4.7 show sin(4) and cos(4) for the induction motor, respectively. 
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The d-q axes currents in the stationary reference frame are shown in Figs. 4.8 and 4.9. 

20.0 

10.0 -. 

0.0 

10.0   

-20.0 

20.0 

10.0 

0.0 

-10.0 

-20.0 

I 
I 

00 
-   

0.5 1.0 1.5 2.0 

Time (s) 

Figure 48 Ids in stationary ref. frame with field oriented control 
implemented. 
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Figure 4.9 Iqs in stationary ref. frame with field oriented control 
implemented. 
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As shown in this chapter, the dynamic performance of the drive system is greatly 

improved with the introduction of field oriented control (c.f. Appendix A). 
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Chapter 5 

Training the Neural Network 

5.1 Introduction 

Before the proposed neural network can be used as a flux estimator in the field 

oriented control of an induction motor, it first must be trained. In essence, the neural 

network must learn the correct mapping from input to output under a wide range of 

operating conditions. The training process can be broken down into these five steps: 

1) Generate data 

2) Normalize data 

3) Select the neural network architecture 

4) Train the network 

5) Test the network 

Steps (1)-(4) are discussed in this chapter as applied to one particular neural network used 

to generate sin(4), cos(4) and Tr . Step (5) is discussed in Chapter 6. 

5.2 Generating data 

There are essentially two types of input data namely, the input training data set 

and input test data set. The input training data set is the data set that the neural network 

learns by, and the test data set is the data set by which the neural net is judged. The input 

training data is an important part of the training (learning) process because the data set is 

the only information it will see in order to learn its task for a given set of inputs. It also has 
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to encompass the entire operating range (space) in order for the neural network to 

properly estimate the desired output. The neural network will not give good estimates for 

unknown input data that lies outside of the input data training set, as it is not good at 

extrapolating outside of the operating space. 

In addition, historical input training data is also very important during training. 

This is not always the case, as it only applies to input data that are periodic (oscillatory). 

An example would be a sinusoid where at different time instances the sinusoidal output 

returns the same magnitude, posing a problem for the neural network to differentiate 

between points on the curve. 

The input vector of the neural network consists of the d-q axis stator currents, i 

and iq, and their delayed values !dS(t - 1), IdS(t - 2), ..., /dS(t - 5), lqs(t - 1), 1qs(t - 2), 

lqs(t - 5), and the delayed values of sin(4), cos() and flux magnitude "er' sin(4 - 1), 

sin( - 2), ..., sin( - 4), cos(4 - 1), cos(4 - 2), ..., cos(4 - 4), 'I'r(t - 1), 'Pr(t - 2), 

k11r(t - 4). Where one unit delay equals the sampling period which we have set to I ms. The 

output (target) vector is sin(), cos(4) and 'Vi. The number of inputs to the neural network 

is determined by the number of delays (historic data). For the network studied in this and 

the next chapter, there are 24 inputs and 3 outputs. Note that in the proposed neural net, 

delays have been set to a maximum of five unit delays. It has been observed that higher 

values of delays did not improve the accuracy of the estimation of the desired values 

significantly. The number of hidden layers and the neurons in each hidden layer are 

subjected to the complexity of the mapping, computer memory and computation time. For 

the present neural network, 20 neurons are used for the first hidden layer, 15 neurons for 
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the second hidden layer, and three output neurons. The training data sets for sin(4)) and 

are shown in Figs. 5.1 and 5.2, respectively (cos (4)) is similar in nature to sin (4)), hence 

not shown). The data sets have been generated using our FOC program listed in 

appendix B. A total of 8,000 samples for each training data set covering load torque 

values of 0.0, 0.5, 1.0 and 1.5 p.u. is presented to the neural network for training. The 

training sequence starts with a load torque of 0.0 p.u., and a rotor speed of 0.0 p.u. The 

speed ramps up linearly to 0.5 p.u. (it takes approximately 200 samples (0.2 s) to do this). 

The speed then ramps down linearly from 0.5 p.u. speed to -0.5 p.u. (taking approximately 

400 samples (0.4 s) to reach -0.5 p.u. speed). The ramp up and then ramp down action 

(see Fig. 4.4) is repeated for 2000 sample points (i.e. 2.0 s). The load torque is then 

increased to 0.5 p.u., 1.0 p.u. and 1.5 p.u. and the procedure is repeated for the 

remaining 6,000 points. 
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Figure 5.1(a) Training data set for sin (4) 



72 

1.2 I 
1_...j 

0.8 

0.6 

0.4 

0.2-. 

,-' 0 
.e. 
.9 .0.2 -, 

.0.4 H 
-0.6 

-0.8 - 

1.2 

TL= 10 

1J fl I' 

lIt.........IPX 

1•• 

ii. 

TL= L5 p.u. 

4.OE+3 5.OE+3 6.OE+3 7.OE+3 8.OE+3 

1.2 

1.0 

0.8 

Number of samples 

Figure 5.1(b) Training data set for sin (4)) (continued) 

a0.6-

0.4 

0.2 

TL .O.O P.U. 

-t  

TL=O.5 p.u. 

0.0   

1.OE+0 1.01+3 2.OE+3 3.OE+3 

Number of samples 

Figure 5.2(a) Training data set for flux magnitude 

4.OE+3 



73 

1.2 

1.0 

0.8 

0.4 

0.2 - 

0.0 

TL=1.op.u. TL=1.5p.u. 

.f---- 

4.OE+3 5.OE+3 6.OE+3 

Number ofsaniples 

Figure 5.2(b) Training data set for flux magnitude (continued) 

7.OE+3 8.OE+3 

5,3 Normalization of Data 

Once the input data are generated, the next step is to normalize all the data so that 

each value falls within the range from -Ito +1. This is to prevent the neurons from being 

driven too far into saturation. Once saturation is reached, changes in the input value result 

in little or no change in the output. Hence limits the performance of the neural network. 

The software used for training (Neural Works) will perform the required normalization 

automatically. 

5.4 Selection of network architecture 

The architecture used for the present case is a four-layer network, i.e. one input 

layer, two hidden layers and an output layer. The input layer simply acts as a buffer, 
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feeding information from the input vector through the interconnection weights to the first 

hidden layer. This layer (i.e. the input layer) consist of 24 neurons made up of the 

stationary d-q currents with their delayed values, followed by the fed-back values of flux 

magnitude, sin (4)) and cos (4)) with their respective delayed values. The first hidden layer 

contains 20 neurons and the second 15. The choice of 20 neurons for the first hidden layer 

and 15 neurons for the second hidden layer are obtained through trial and error. The 

output layer consisting of three neurons made up of flux magnitude, sin (4)) and cos (4)) 

where they are recovered and denormalized. 

5.5 Training the network 

To train the network, the historical input data and output training patterns are 

shown to the network repeatedly until the root-mean-squared (RMS) error tolerance is 

met (i.e. the input data goes through the entire data set repeatedly until the RMS error is 

met). The algorithm used in training has been discussed in Chapter 3. In short this process 

involves the presentation of input data, passing it forward through the network, and 

back-propagating the error for each observation in the historical training set until the 

output values converges to a solution. 

The training parameters used for the proposed ANN flux estimator are as follows: 

learning rate r = 0.01, momentum term cc = 0.5, the learning tolerance RMS error 

(termination criterion) = 0.005, maximum number of iterations = 1,000,000. Initial 

weights were randomly selected. 
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Chapter 6 

Neural Network Testing and Parameter Sensitivity 

6.1 Neural Network Test Results 

After training the neural network with the appropriate data sets, it is time to test 

the network to see if indeed it is able to estimate the flux magnitude as well as the sine and 

cosine of the field angle . In this chapter, the neural network is put through a series of 

tests that involves different load torque conditions and variation in rotor resistance. 

Some test results are shown in Figs. 6.1-6.6. Fig. 6.3 shows an expanded (zoomed 

in) view of Fig. 6. 1, illustrating the high accuracy of the neural network in estimating the 

field angle. The other test results presented (i.e. Figs. 6.2 and 6.4-6.10) achieve similar 

accuracy. The neural network output plots are invariably always plotted coincident with 

the test data (hence hard to see), because the network can estimate the desired result so 

well. 

The results shown in Figs. 6.1-6.4 are for test data generated with a constant load 

torque of 0.25 p.u., which is not part of the training data set, although, it is still within the 

scope of the training data range (recall from the previous chapter that the neural network 

was trained for torque load conditions of 0.0, 0.5, 1.0 and 1.5 p.u.). The test results for a 

constant load torque of 0.75 p.u. (which is also different from the training data set but still 

within the training range) are similar to that of the 0.25 p.u. load torque case (not shown 

here). Results shown in Figs. 6.5 and 6.6 are for test data that are outside the range of the 

training data, i.e. the torque load is 2.0 p.u. Note in these two figures that the ANN flux 
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estimator (somewhat surprisingly) estimates very accurately the field angle and flux 

magnitude despite a load condition outside the training data set. 

For Figs. 6.5 onwards, cos(4)) is not plotted since it is similar in nature to sin  

In addition the range of these plots (i.e. Figs. 6.5-6.14.) have been expanded to aid in 

distinguishing the neural network output from the test data. 
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Figure 6.6 Neural network output for flux magnitude vs test data for 
TL--2.0 p.u. (outside training range). 

6.2 Parameter Sensitivity 

Note that estimation of the rotor flux magnitude and the field angle depends on 

the value of machine parameters (naturally the network must be trained for a particular 

machine). The rotor resistance variation, especially, becomes dominant due to temperature 

variation and the skin effect. 

The following results verify that the neural network is capable of achieving 

accurate results even with rotor resistance variations present. The rotor resistance was 

increased 50% and 100% (i.e. R=1.5 p.u. and Rr=2.0 p.u.) above the nominal value and 

the results of sin (4) and flux magnitude are shown in Figs. 6.7-6.10, respectively. The 

results of cos (4) are similar to that of sin (4) and are not shown here. In achieving these 

results, the flux P1 controller had to be adjusted to give the desired results. To achieve 



80 

these results in practice, some type of adaptive control would be used with or in place of 

the P1 controllers. 
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Figure 6.7 Neural network output for sin (4)) vs test data for 50% increase 
in rotor resistance (P1 controller adjusted). 
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As can be seen from Figs. 6.7-6.10, the neural network is able to accurately track 

the test data even with a 100% rotor resistance variation. The maximum absolute error is 

about 0.10 p.u. for each case. 

It is worthwhile to determine under what conditions the neural network flux 

estimator will not perform well. The following tests are done with fixed P1 controller 

coefficient values, optimized for the nominal rotor resistance (i.e. Rr = 1.0 p.u.). The rotor 

resistance is then changed by 20% and 30% (P1 controller coefficients unchanged). It is 

observed in Figs. 6.11 and 6.12 that during the flux transient, the neural network is still 

able to track the test data for a rotor resistance variation of 20%. However, as seen in 

Fig. 6.12 the neural network is able to track the steady-state test data (checked to 2.0 s of 

operation) but with an oscillatory error (at about the synchronous frequency) 
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of approximately 0.02 p.u. peak absolute error. As seen in Figs. 6.,13 and 6.14, for a 30% 

increase in rotor resistance, the P1 controllers with fixed coefficients can no longer 

regulate the flux magnitude. As seen, despite this very abnormal operation, the neural 

network can still estimate the flux magnitude with a 0.2 p.u. maximum absolute error. 
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Figure 6.12 Neural network output for flux magnitude vs test data for 
20% increase in rotor resistance. 

Note that we have not yet placed the flux estimator into the field oriented control 

feedback loop. We have only applied test data generated with exact calculations of the 

flux magnitude and the field angle (c.f. Chapter 4). So behavior of the field oriented 

controller with fixed P1 coefficient values and neural network flux estimation is unknown 

at this time for large variations in rotor resistance (i.e. greater than 20%). Nonetheless, we 

have shown that the robustness (i.e. load condition and parameter insensitivity) of the 

neural network is very good, even though the neural network was trained for a fixed value 
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of rotor resistance. The ability for the neural network to generalize the given input data to 

generate desired outputs is indeed one of its strengths. Further, the results presented in 

this chapter indicates that the artificial neural network flux estimator should work very 

well under all normal conditions, provided that the controller has some adaptive ability for 

rotor resistance and other parameter variations. 
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Chapter 7 

Discussion 

7.1 Effects of Non-Historic Data Input 

Employing a training data set without historic (past/delayed) values has an adverse 

effect on the outcome of the neural network's ability to generalize data. As can be seen in 

Fig. 7. 1, the neural network has great difficulty in tracking the desired flux magnitude 

without the use of historic inputs. The more historic data the better the neural network 

will perform, although, there are limitations to how many historic (delayed) steps the 

neural network requires until no significant improvements are observable. For the network 

studied in Chapters 5 and 6, delays ranging from one to five sample periods proved to be 

optimum. 
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7.2 Alternative Inputs to the Neural Network 

In this thesis, the inputs to the neural network come in the form of stator cf-cf 

currents (i.e. the motor phase currents i, 'b and i are just transformed into the stationary 

frame i and Fq, form prior to application to the neural network). Alternatively, one might 

wish to apply the three-phase motor currents i, 1b and i directly to the neural network. 

When using the three-phase currents as inputs (with historic data), the neural network is 

still able to estimate the flux magnitude and field angle accurately, however the results are 

slightly less accurate than those for which ?ds and are inputs [29]. One explanation for 

this is that the "information" (i.e. changes in the operation of the induction motor) 

reflected in the phase currents ii,, 'b and L, is not as "detailed/accurate" (i.e. not able to 

identify subtle changes in the operation of the induction motor) as is contained in the 

stator d_qv currents i and (q . 

7.3 Multiple Networks versus Single Network 

A single neural network has been used for all three outputs (sin (4), cos (4) and 

flux magnitude 'r)• Although the nature of the outputs sin (4) and cos (4) (Figs. 4.6 and 

4.7) are similar in nature, they are quite different from the nature of the flux magnitude "r 

output (Fig. 4.5). Nonetheless, the network is still able to estimate these outputs without 

difficulty. However, when a separate network is used to estimate sin (4) and cos () and 

another network is used to estimate flux magnitude T, , the accuracy of the neural 

network flux estimator for each case is improved. The accuracy improves only slightly 

when compared to the single network case, hence, this does not warrant the use of two 
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separate networks which would require more resources and computational power to 

perform the work that a single network can do. 
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Chapter 8 

Conclusions and Future Work 

8.1 Conclusions 

For this thesis, the work of implementing field oriented control (FOC) for an 

induction motor using an artificial neural network flux estimator is split up basically into 

two parts, the field orientation part and the artificial neural network part. 

Field oriented control requires complex matrix transformations to perform 

coordinate transformations from ac quantities of the induction motor to dc quantities of 

the d-q model used by the controller, and vice versa. These transformation are laid out in 

Chapter 2. The proposed FOC drive system is discussed in Chapter 4. This drive system is 

intended for implementation with an existing pulse width modulator (PWM) voltage 

source inverter. Its purpose in this thesis is simply the generation of training and test data 

for the artificial neural network flux estimator. 

Artificial neural network theory is discussed in Chapter 3. The proposed artificial 

neural network flux estimator, studied in Chapters 5 and 6, contains four layers: one input 

layer (24 neurons), two hidden layers (25 neurons for the first hidden layer and 15 neurons 

for the second hidden layer) and one output layer containing 3 output neurons (namely 

sin (4), cos () and flux magnitude 'r)• The inputs to the flux estimator are the cf-q stator 

currents. The neural network's ability to accurately estimate the flux magnitude and the 

field angle under a variety of load and parameter variation conditions, has been verified by 

the test cases presented in Chapter 6. 
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The advantages that the neural network has over conventional methods of 

estimating flux are: 

• It has fast processing speed 

• It is robust (i.e. fault tolerant) 

• It is adaptive (i.e. extrapolates well) 

• It is an alternative technique to mathematical programming 

• It requires less memory 

The primary disadvantage of the neural network flux estimator is the (potentially) 

long training process involving a large degree of trail and error investigation. 

8.2 Future Work 

Some suggestions for future work are: 

1) the design of an adaptive controller to compensate for rotor 

resistance variations 

2) the incorporation of motor non-linearities in the induction motor 

model 

3) the physical implementation of the ANN flux estimator 

4) the study of the ANN flux estimator with other inputs (e.g. stator 

voltages and rotor speed) 
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Appendix A 

A.! Induction Motor Model 

The implementation of field oriented control is based on the induction motor 

model discussed in this appendix. The dynamic behavior of the induction machine has an 

important effect upon overall performance of the system of which it is a part of. In order 

to study the dynamic behavior of the induction machine, a computer simulation of the 

induction motor was developed. The computer simulation is based on [28]. The program 

is written in C. The induction motor simulator is capable of performing detailed analysis of 

different loading conditions and/or voltage disturbances. It is able to do this in the rotor 

reference frame, stator reference frame or the synchronously rotating reference frame. 

The machine model is based on the two-axis electrical equations discussed in 

Chapter 2. In practical simulations, the variations of parameters due to saturation and eddy 

current effects will have to be taken into account. In the present case, no attempts have 

been made to include these parameter variations because the principle objective is to 

illustrate the basic operation of the machine in different loading conditions and when a 

fault occurs at the terminals of the machine. The numerical integration employed here is 

based on the Runge-Kutta algorithm. The integration step length is chosen on the basis of 

achieving an accurate solution during the run-up period while maintaining an economical 

simulation. Values of 0.001 s to 0.0025 s can be used without incurring instability, in the 

present case a value of 0.001 s is chosen. 
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A.2 Results of Load and Voltage Disturbances 

The results are based on the induction motor model in the stator reference frame. 

The following plots are for a free acceleration of a 10 hp induction motor for line start 

conditions. As observed from Fig. A. 1, it takes the induction motor approximately 1.0 s to 

reach a speed of 1.0 p.u. without field oriented control. See section A.3 for the motor 

parameters. 
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Figure A.1 Rotor speed for line start operation. 

Also, it takes about 1.0 s for the induction motor to reach steady state for the case of 

electromagnetic torque and flux magnitude as shown in Figs. A.2 and A.3. 
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Figure A.2 Electromagnetic Torque for line start operation. 
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Figure A.3 Flux magnitude for line start operation. 
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The d-q currents in the stationary reference frame are shown as follows. 
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Figure A.4 Ids vs time in the stationary reference frame. 
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Figure A.5 Iqs vs time in stationary reference frame. 
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Figure A.7 Iqr vs time in stationary reference frame. 
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The following simulated sequence is performed on a 30 hp induction motor (see section 

A.3 for the motor parameters). The simulated sequence of normal and abnormal operation 

is given firstly by the free acceleration of the motor from a direct on-line start, followed by 

a load application of 1.0 p.u. for 0.5 s. At t = 2.5 s, then a terminal short-circuit is applied 

to the motor followed by its removal at t = 3.0 s. The response curves of the 

electromagnetic torque, stator current, rotor speed and rotor flux magnitude are shown in 

Figs. A. 8-A. 11, respectively. 
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Figure A.8 Electromagnetic torque for various load and fault conditions 
(line start). 

The above simulation was performed on the Sun-sparc station, it took 

approximately 30 s to complete. 
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0.8 

0.4 

0.2 

0 It I I I 

Fault removal 

$ I I 

00 0.5 1.0 1.5 2.0 2.5 30 3.5 40 

Time (s) 

Figure A.! 1 Rotor flux magnitude for various load and fault conditions 
(line start). 

A.3 Motor Parameters 

The following motor parameters are for 2-pole machines. 

Parameters 10 hp 30 hp 

Line frequency 60 Hz 50 Hz 

Stator resistance, R, 0.0453 p.u. 0.0147 p.u. 

Rotor resistance, R 0.0222 p.u. 0.0287 p.u. 

Stator reactance, X 0.0775 p.u. 3.2340 p.u. 

Rotor reactance, Xr 0.0322 p.u. 3.2484 p.u. 

Leakage reactance, Xm 2.0420 p.u. 3.1568 p.u. 

Inertia constant, H 1.0000 P.U. 1.0167 p.u. 



103 

A.4 Induction Motor Model Program Listing 

The following is a program listing of the induction motor in the stationary 

reference frame (stator frame). 

The Following program is to give an Estimate of the Rotor Flux in an Induction 
Machine with D-Q axis on Stationary ref. frame. The method used to accomplish this is 
Runge-Kutta Numerical method (modified). 

Author: Toh, K.P. Allan 
Date : April 28th 1994 
Updated: May 24th 1994 

#include <stdio. h> 
#include <stdlib.h> 
#include <math.h> 
#define pi 3.14159265359 

void MB(double ALI_me[5][5], double R_me[5][5], double G_me[5][5], 
ouble H_me[5][5], double WE me, double XS—me, double XM_me, 
ouble XRme, double RS—me, double RR—me, double XRR_me, 
double RRR_me, mt N_me); 

void RK(int N_rk, double dx_rk, mt nes_rk, double Y_rk[8], double E_rk[8], 
double v_rk[8], double ALI_rk[5][5], double G_rk[5][5], 
double H_rk[5][5], double R_rk[5]{5}, double am_rk, double *TMrk, 
double VT_rk, double *TE rk, double WE_rk, double WF_rk, mt tq_rk, 
mt inrun_rk, mt k_rk, double XS_rk, double XM_rk, double XR_rk, 
double VDSS_rk, double VQSS_rk, double t_rk, double *Wpjtrk, 
double *CHIRrk); 

void AUX(double c_aux[8], double PC_aux[8], double vaux[8], 
double ALI_aux[5] [5], double G_aux[5] [5], double H_aux[5][5], 
double R_aux[5][5], double am_aux, double *TM aux, double VT_aux, 
double *TE aux, double WE_aux, double WF_aux, mt tq_aux, 
mt inrun_aux, mt k_aux, double XS_aux, double XM aux, double XR_aux, 
double VDSS_aux, double VQSS_aux, double t_aux, double *J1J aux, 
double *CHI R aux); 

void MIv1(double A_mm[5]{5], double B_mm[5][5], double C_mm[5][5], 
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mt N_mm); 

void main() 

{ 

double c[8], PC[8], v[8], R[5][5], G[5][5], H[5][5], ALI[5][5]; 
double XS, XM, XR, RS, R.R, XRR, RRR, ah, freq, dx, slip, WRR; 
double am, TM, VT, TE, WE, WIZ, WF, VT1, VT2, TM1, TM2, VTT, AIM; 
double Ls, Lm, Lr, t, CHI—R, VA—REF—MAX, WR_REF, WE—REF, 
KP, KPP, KI; 
double WR_ERR, WR_ ERR _INTEG, TE_REF, IQS_REF, 

IDS 
_REF, WSL_REF; 

double THETAE_REF, IQSS_REF, IDSS_REF, IA REF, IB_REF, IC REF, 

double IA, IB, IC, IA_ERR, lB_ ERR , IC_ERR, VA_REF, VB_REF, VC—REF; 
double VAO, VBO, VCO, VDSS, VQSS, IDSS, IQSS, KVSI, W_R, WR_rad_s; 
mt inrun, ndis, itype, iter, ir, tq, k, N, i, j, nes; 

char infile[10]; 
FILE *outptrl, *outptr2, *jnptr; 

printf("Enter DATA FILENAME please :\n"); 
scan("%s t1, infile); 
printf(t1Reading & Processing, Please Wait.. 
inptr = fopen(infile, "r"); 

outptrl = fopen("Results.m", "w"); 
outptr2 = fopen(ttVLm", "w"); 

Input Data Stream Sequence 
INRUN : No. of iterations before application of disturbance 
NDIS : The ending iteration number of the disturbance being applied 
ITYPE : Type of Disturbance, 

1= Voltage Disturbance 
2= Load Disturbance 
3= No Disturbance 

ITER Total No. of iterations 
JR : Type of starting/initial conditions, 

0= Motor Start 
1= Read Initial States 

TQ : Load type, 
O= Free Acceleration 
1= Constant Load Torque 
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2= Load Proportional to square of speed 
XS Total stator reactance 
XM Mutual reactance 
XR : Total rotor reactance 
RS : Stator resistance 
RR : Rotor resistance 
AR : Inertia constant 
XRR Rotor reactance (run mode) 
RRR Rotor resistance (run mode) 
DX : Integration step interval 
FREQ : Supply frequency 
VT : Inverter DC bus Voltage 
TM : Load torque 
VT 1 : Voltage disturbance value 
TM1 : Torque disturbance value 
VT2 : Removal of disturbance voltage value (i.e resume value) 
TM2 : Removal of torque disturbance value (i.e resume value) 

Variable Dictionary 

c[1] = ids, c[2] = iqs, c[3] = idr, c[4] = iqr 
c[5] = theta slip, c[6] = w_slip 
v[ I] = vds, v[2] = vqs, v[6] = load torque(TM) 
CHI_r = rotor flux magnitude 

fscanf(inptr,"%d", &inrun); 
fscanginptr,"%d", &ndis) 
fscanf(inptr, "%d", &itype); 
fscanginptr, "%d", &iter); 
fscanginptr, "%d", &ir); 
fscanginptr, "%d", &tq); 
fscanf(inptr, "%lf', &XS); 
fscanf(inptr, "%l?', &XM); 
fscanginptr, "%lf', &XR); 
fscanginptr, "%lf', &RS); 
fscanf(inptr, "%lf', &RR); 
fscanginptr, "%lf', &ah); 
fscanf(inptr, "%lf', &XRR); 
fscanginptr, "%lf', &RRR); 
fscanf(inptr, "%lf', &dx); 
fscanginptr, "%lf', &freq); 
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fscanf(inptr, "%lf', &VT); 
fscanf(inptr, "%lf', &TM); 

am = ah/(pi*freq); 
WE = 2.0*pi*freq; 
WF = 2.0*pi*freq; 

VA—REF _MAX =1.0; 
WE REF = 314.0; 
WRR=0.0; 
VDSS = 0.0; 
VQSS = 1.0; 

Initial States Read in 
Order in which the states are read in: 

d-axis stator current 
q-axis stator current 
d-axis rotor current 
q-axis rotor current 

if(ir= 1) { 
for(i=1; i<=7; i++) 
fscanginptr, "%lf', &c[i]); 

for(j=1;j<=7;j++) 
fscanf(inptr, "%lf', &v[j]); 

} 

INITIAL CONDITIONS *****/ 

if(ir0) { 
for(i=1; i<7; i++){ 

c[i] = 0.0; 
V[i] = 0.0; 

I 
I 
v[1] = VDSS; 
v[2]VQSS; 
c[6] = WE; 

/ Dynamic Cycle *****/ 

fscanf(inptr,"%lf', &VTI); 
fscanginptr,"%lf', &TM1); 
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fscanf(inptr, "%lf', &VT2); 
fscanginptr, "%lf', &TM2); 

for(k = 1; k <= iter; k++) 

/" Perform Matrix inversion  

ME(ALI, R, G, H, WE, XS, Xlvi, XR, RS, RR, XRR, RRR, 1); 

Disturbance Application 

if (k == inrun) 
if(itype == 1) VT = VT1; 

else if(itype == 2) TM = TM I; 

/**** C Disturbance Removal *****/ 

if (k == ndis) 
if(itype = 1) VT = VT2; 

else if (itype = 2) TM = TM2; 

Perform (modified) Runge-Kutta 

t = dx*k; 

RK(7, dx, 1, c, PC, v, ALl, G, H, R, am, &TM, VT, &TE, WE, WF, 
tq, inrun, k, XS, XM, XR, VDSS, VQSS, t, &WRR, &CHI_R); 
Ls = XS/WE; 
Lm = XMJWE; 
Lr = XR/WE; 

Caic. Rotor speed, Terminal Voltage and Current  

WR = WRR*pi/150; 
slip = (WE - W_R)* 100.0/WE; 
VTT = sqrt(v[2]*v[2] + v[1]*v[1}); 
AIM = sqrt(c[2]*c[2] + 

1* Change from RPM to rad/sec *1 

/*****  Print out Time, Terminal Voltage, Slip, Torque, Current, 
Rotor speed and Flux Mag. 

frintgoutptr1, "%lftt %lf\t %lf\t %lf\t %lf\t %lf\t %lf\n", 
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t, VTT, slip, TE, AIM, W_R/WE, CHI_R); 

fprintgoutptr2, "%lf\t %lft %lft %lft %lf\t %lf\t %lf\t %lftn't, 
t, IA, IB, IC, c[1], c[2], c[3], c[4]); 

} / k-loop */ 

} /*flj of main() *1 

Subroutine: ME 
This subroutine performs matrix inversion 

void ME(double ALI_me[5][5], double R_me[5][5], double G_me[5][5], 
double H_me[5][5], double WE_me, double XS—me, double XM_me, 
double XR_me, double RS—me, double RR—me, double XRR_me, 
double RRR me, mt N_me) 

{ 
double ALS, ALM, ALR, u; 
mt i,j; 

1* * * * * Convert Reactances to Inductances 

ALS = XS_ me/WE _me; 
ALM = XM_me/WE_me; 
ALP. = XR_me/WE_me; 
for(i = 1; i <= 4; i++)( 

for(j = 1;j<=4;j++){ 
ALI_me[i]U] = 0.0; 
Rme[i][j] = 0.0; 
G_me[i][j} = 0.0; 
H_me[i][j] = 0.0; 

:1 
} 

Input [RI matrix 

R_me[1][1} = RS—me; 
R_me[2][2] = RS—me; 
R_me[3][3] = P.R_me; 
R_me[4][4] = RR_me; 
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/ * * * * Input [G] matrix 

G_me[3][2] = XM_me; 
G_me[3][4] = XR_me; 
G_me[4][1] = -XM_me; 
G_me[4][3] = -XR_me; 

/* ****  Input [H] matrix 

H_me[1][2] = XS—me; 
H_me[1][4] = XMme; 
Hme[2][1] = -XS—me; 
H_me[2][3] = -XM_me; 
H_me[3][2] = XM_me; 
H_me[3][4] = XR_me; 
H_me[4][1] = -XM_me; 
H_me[4]{3] = -XR_me; 

Running Parameters *****/ 

if (N_me == 2) { 
ALR = XRR_me/WE_me; 
Rme[3][3] = RRR_me; 
R__me[4][4] = RRR_me; 

} 
* * * * Input [L] matrice 

ALI_me[1][1] = ALR; 
ALI_me[1][3] = -ALM; 
ALI_me[2][2] = ALR; 
AL! me[2][4] = -ALM; 
ALI_me[3][1] = -ALM; 
ALI_me[3][3] = ALS; 
AL! me[4] [2] = -ALM; 
ALI_me[4][4] = ALS; 

/***** C CALCULATE [L]"1 matrice 

u = ALS*ALR - ALM*ALM; 

for(i=1;i<=4;i++){ 
for(j= 1;j<=4;j++){ 
ALI_me[i][j] = ALI_me[i][j]/u; 

) 
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) 

return; 
} 1* end of subroutine ME / 

Subroutine: RK 
This subroutine RK uses the Runge-Kutta algorithm to calculate 
[x]t vector (Merson Modified) 

void RK(int N_rk, double dxrk, mt nes_rk, double Y_rk[8], double E_rk[8], 
double v_rk[8], double ALI_rk[5]{5], double G_rk[5][5], 
double H_rk[5][5], double R_rk[5][5], double amrk, double *TMrk, 
double VT_rk, double *TE_rk, double WE_rk, double WF_rk, mt tqk, 
mt inrun_rk, mt k_rk, double XS_rk, double Xlv1_rk, double XR_rk, 
double VDSS_rk, double VQSS_rk, double t_rk, double *Wprk, 
double *CHIRrk) 

{ 

double A[8], B[8], C[8], D[8], h, Z; 
mt i; 
h = dxrk/3.0; 
for(i = nes_rk; i <= Nrk; i++) D[i] = Y_rk[i]; 

AUX(Y_rk, E_rk, v_rk, ALI_rk, G_rk, H_rk, Rrk, am_rk, TM_rk, VT_rk, 
TE_rk, WE_rk, WF_rk, tq_rk, inrun_rk, k_rk, XS_rk, XM_rk, XR_rk, 
VDSS_rk, VQSS_rk, t_rk, WRR_rk, CHI_R_rk); 

for(i = nes_rk; i <= N_rk; i++) 
A[i] = h*E rk[i]; 

Yrk[i] = D[i] + A[i]; 

) 

AUX(Y_rk, E_rk, vrk, ALI_rk, G_rk, H_rk, R_rk, am_rk, TM_rk, VT_rk, 
TE_rk, WE_rk, WF_rk, tq_rk, inrun_rk, k_rk, XS_rk, )M_rk, XR_rk, 
VDSSrk, VQSS_rk, trk, WRR_rk, CHI_R_rk); 

for(i = nes_rk; i <= N_rk; i++) { 
B[i] = h*E_rk[i]; 
Y_rk[i] = D[i] + (A[i] + B[i])*0.5, 

} 
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AUX(Y_rk, E_rk, vrk, ALI_rk, G_rk, Hrk, R_rk, am_rk, TM_rk, VT_rk, 
TE_rk, WErk, WF_rk, tq_rk, inrun_rk, k_rk, XS_rk, XM_rk, XR_rk, 
VDSS_rk, VQSS rk, t_rk, WRR_rk, CHI_R_rk); 

for(i = nes_rk; i <= N_rk; j++) { 
B[i] = h*E_rk[i]; 
Y_rk[i] = D[i] + (A[i] + B[i]*3.0)*O.375; 

} 

AUX(Y_rk, Erk, v_rk, ALI_rk, Grk, H_rk, R_rk, amrk, TM_rk, VTrk, 
TE_rk, WErk, WF_rk, tqjk, inrun_rk, k_rk, XS_rk, XM_rk, XR_rk, 
VDSS_rk, VQSS_rk, t_rk, WRR_rk, CHI_R_rk); 

for(i = nes_rk; i <= N_rk; i++) { 
C[i] = h*E_rk[i]; 

Y_rk[i] = D[i] + (A[i} - B[i]*3.O + C[i]*4.0)*1.5; 

) 

AUX(Y_rk, Erk, v_rk, ALl rk, G_rk, H_rk, R_rk, am_rk, TM_rk, VT_rk, 
TE_rk, WE_rk, WF_rk, tqrk, inrun_rk, k_rk, XS_rk, XM_rk, XR_rk, 
VDSS_rk, VQSS rk, t_rk, WRR_rk, CHI_R_rk); 

for(i = nesrk; I <= N_rk; i++) 
ZD[i]; 
D[i] = h*E rk[i]; 
Y_rk[i] = Z + (A[i] + C[i]*4.O + D[i])*O.5; 

) 

return; 

) 1* end of subroutine RK *1 

This subroutine AUX is used by the Runge-Kutta algorithm 
to calc. [x]t vector, i.e. iqs, ids, iqr, idr 

void AUX(double c_aux[8], double PC_aux[8], double v_aux[8], 
double AL! aux[5] [5], double G_aux[5] [5], double Haux[5][5], 
double R_aux[5][5], double am_aux, double *TM aux double VT_aux, 
double *TE aux, double WE_aux, double WF_aux, mt tq_aux, 
mt inrun_aux, mt k_aux, double XS_aux, double XM_aux, double XR_aux, 
double VDSS_aux, double VQSS_aux, double t_aux, double *WlJ aux, 
double *CHIRaux) 
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{ 

double A[8][8], B[8][8], F[5][5], Z[5]{5}, it[2][5], it—G[2][5]; 
double ALS, ALM, ALR, W, WR, WD, it—G—I, T_accel, 1[5][2]; 
mt i, j, 1; 
double temp, CHI dr, CHI_qr; 

Convert Reactances to Inductances *****/ 

ALS = XS_aux/WE_aux; 
ALM = XM_auxfWE_aux; 
ALR = XRaux/WEaux; 
W = c_aux[6]; 
WR = WE_aux - W; 

v_aux[ 1] = VT_aux*(doub1e)sin((double)WE aux*t aux); 
v_aux[2] = VT_aux*(double)cos((double)WE_aux*t_aux); 

v_aux[6] = *TM aux; 
for(i = 1; i <= 4; i++) ( 
for(j1;j<=4;j++){ 
F[i]o]= *VjP,Jaux*pj/15O*Gaux[j]]fWEaux + R_aux[i][jJ; 
) 
} 

MM(ALI_aux, F, Z, 4); 
for(i = 1; i <= 7; i++) { 
for(j=1;j<=7;j++){ 

if( (i<5) && (j<5)) { 
A[i]o] 
B[i]o] = ALI_aux[i][j}; 

} 
else A[i[j] = B[i]U] = 0.0; 

} 
} 

A[5][6] = 1.0; 
A[6][1] = -v_aux[ 1]/am aux + c_aux[ 1]*R_aux[ I }[I ]/am aux; 
A[6][2] = -v_aux[2]/am aux + c aux[2] *R aux[2] [2]Iam_aux; 
A[7][1] = ALM*Raux[3][3]/ALR; 
A[7][7] = -R_aux[3][3]/ALR; 
B[6]{6] = 1.0/am aux; 
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for(i = 1; i <= 7; i++) 
PC_aux[i] = 0.0; 
for(j = 1;j <= 7;j++) 
PC_aux[i] = PC_aux[i] + A[i][j]*c aux[j] + B[i][j]*v_aux[j]; 

} 

/ Caic. TE = it*[G]*I, it = I-transpose ******/ 

for(l= 1; l<= 4; l++) { 
it—G[1][1] = 0.0; 
for(j=1;j<=4;j++){ 
it[1]0] = caux[j]; 
it—G[1][1] = it G[1][l] + it[1][j}*Gaux[j}[1]; 

} 
} 

it_G_I = 0.0; 
for(j= 1;j <=4;j++) 

10](1] = c_aux[j]; 
it_G_I = it_G_I + it_G[1][j] * 

} 

*TEaux = it—G—I; 
if(tqaux =0) T_accel = *TE_aux - *TMaux; 
if (tq_aux = 2) { 
WD = (*lJpJ?, aux*pj/15O)/(WE aux); 

*TMaux = 1.1*WD*WD; 

} 

if(tqaux == 1) { 
*TMaux = 1.0; 

) 

Taccel = *TE_aux - *TM aux; 

Caic. of WR using Euler's approx. (step size = 0.001) 

*rpJ aux = *WRR aux + ((T accel)fam aux)*0.0O1 ; / in RPM / 

Caic. Flux Magnitude ******/ 

CHI_dr = ALR*(c_aux[3]) + ALM*(caux[1]); 
CHI_qr = ALR*(c_aux[4]) + ALM*(caux[2]); 
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*CFllRaux = sqrt((CHI_dr* CHI dr) + (CHIqr*CHI_qr)); 

return; 

} /* end of subroutine AUX *1 

This subroutine MM is used by AUX subroutine to multiply matrices to obtain 
[L]t'-1(Wr[G] + {R}) 

void MM(double A_mm[5][5], double B_mm[5][5], double C_mm[5][5], mt N_mm) 

{ 

inti,j, 1; 
for(i = 1; i <= 4; i++) { 

for(l = 1; l<= 4; 1++) { 
C_mm[i]l] = 0.0; 
for(j=1;j<=4;j++){ 

C_mm[i][1] = C_mm[i][l] + A_mm[i][j]*B_mm[j][l]; 

) 
} 
} 

return; 

) 1* end of subroutine MM *1 
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Appendix B 

B.! Field Oriented Control of Induction Motor Program Listing 

The following is a program listing in C of the FOC drive system with P1 controllers 
incorporated (uses machine model from appendix A.4). 

The Following program is to give an Estimate of the Rotor Flux Magnitude and 
Angle in an Induction Machine with the D-Q axis on Synchronous Rotating Ref. frame. 
The induction motor model is based on the stationary (stator) reff, frame, the numerical 
method used to accomplish this is Runge-Kutta method (modified). 

Using motor model fixed on STATOR (stationary reference frame). The sine and 
cosine of angle 4) (i.e the field angle) will be calculated, This program incorporates Field 
Oriented Control for the induction motor. 

Author: Toh, K.P. Allan 
Date : April 28th 1994 
Updated : June 16th 1994 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#define p1 3.14159265359 

void ME(double ALI_me[5][5], double R_me[5][5], double G_me[5][5], 
double H_me[5][5], double WE—me, double XS—me, double XM_me, 
double XR_me, double RS—me, double RR—me, double XRR_me, 
double RRR_me, mt N me); 

void RK(int N_rk, double dx_rk, mt nes_rk, double Y_rk[5], double E_rk[5], 
double v_rk[5], double ALI_rk[5][5], double Grk[5][5], 
double H_rk[5][5], double R_rk[5][5], double am_rk, double *TM_rk, 
double VT_rk, double *TE_rk, double WErk, mt tq_rk, 
mt inrun_rk, mt k_rk, double XS_rk, double XMrk, double XR_rk, 
double *Vds stark, double *vqs stark, double t_rk, double *WpJ? rk, 
double *Ids syn rk, double *Iqs syn rk, double *Idrsynrk, 
double *Iqr syn rk, double *CHlrrk, double *CHldrstark 
double *CHI qr stark, double *Sin Phi rk, double *cosphirk); 
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void AUX(double c_aux[5], double PC aux[5], double v_aux[5], 
double ALl aux[5] [5], double G_aux[5] [5], double H aux[5] [5], 
double R_aux[5][5], double am_aux, double *TM aux, double VT_aux, 

_ double *TEaux double WEaux, mt tq_aux, mt inrun aux, mt k_aux, 
double XS_aux, double XM_aux, double XR aux, double *Vdsstaaux, 
double *vqs staaux, double t_aux, double *%,xJpJaux 
double *Ids syn aux, double *Iqs syn aux, double *Idrsynaux, 
double *Iqr syn aux, double *CHI raux, double *Cpjdrstaaux, 
double *CHI qr sta aux, double *Sin phi aux, double *cos Phi aux); 

void MM(double A_mm[5][5], double B_mm[5][5], double C_mm[5J[5], 
mt N_mm); 

void main() 

{ 

double c[5], PC[5], v[5], R[5][5], G[5][5], H[5][5], ALI[5][5]; 
double XS, XM, XR, RS, RR, XRR, RRR, ah, freq, dx, WRR; 
double am, TM,.VT, TE, WE, WR, VTI, VT2, TMI, TM2, VTT, AIM; 
double Ls, Lm, Lr, t, CHI_r, KP, KPP, KI, WE_base; 
double Iqs_syn_REF, Ids_syn_REF, WSL_REF; 
double Iqs_sta_REF, Ids _sta_ REF. ; 
double VAO, VBO, VCO, Vds_sta, Vqs_sta, Ids sta, Iqs_sta, W_r; 
double Ids_syn, Iqs_syn, Idr_syn, Iqr_syn, Vds_foc, Vqs_foc, PHI; 
double Sin—Phi, Cos—Phi, Ids_foc, Iqs_foc, CHI _dr_sta, CHI_qr_sta; 

_ double Iqrsta, sin—err, cos—err, Sin_Phi_AUX, Cos_Phi_AUX, Ids—ERR; 
double Ids_ERR_INTEG, Iqs_ERR_INTEG, Ids_foc_REF, Iqs_foc_REF; 
double Vqs_foc_Iim, vds_foc, vqs_foc, CHI_r_ERR_INTEG, CHI—REF; 
double KPCHI, KI_CHI, CHI—base, Idr_sta, Iqs_ERR; 
double Ids_foc_lim, Vds_foc_lim, CHI_r_ERR, WR_ ERR _INTEG; 
double WR_ERR, WR_REF, KP_WR, KI_WR, Iqs_foc_lim; 

mt inrun, ndis, itype, iter, ir, tq, k, N, i, j, nes; 

char infile[1O]; 

FILE *inptr, *outptrl, *outptr2; 

printf("Enter DATA FILENAME please :\n"); 
scangtt%s", infile); 
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printg'tReading & Processing, Please Wait.. 
inptr = fopen(infile, "r"); 
outptrl = fopen("Results.m", tiWit); 
outptr2 = fopen(ttVI.mhl, "w"); 

Input Data Stream Sequence 

INRUN : No. of iterations before application of disturbance 
NDIS : The ending iteration number of the disturbance being applied 
ITYPE : Type of Disturbance, 

1= Voltage Disturbance 
2= Load Disturbance 
3= No Disturbance 

ITER : Total No. of iterations 
IR : Type of starting/initial conditions, 

0= Motor Start 
1= Read Initial States 

TQ : Load type, 
0 = Free Acceleration 
I = Constant Load Torque 
2 = Load Proportional to square of speed 

XS : Total stator reactance 
XM : Mutual reactance 
XR Total rotor reactance 
RS Stator resistance 
RR Rotor resistance 
AH Inertia constant 
XRR : Rotor reactance (run mode) 
RRR : Rotor resistance (run mode) 
DX : Integration step interval 
FREQ : Supply frequency 
VT : Inverter DC bus Voltage 
TM : Load torque 
VT I : Voltage disturbance value 
TM1 : Torque disturbance value 
VT2 : Removal of disturbance voltage value (i.e resume value) 
IM2 : Removal of torque disturbance value (i.e resume value) 

Variable Dictionary 

c[1] = ids, c[2] = iqs, c[3] = idr, c[4] = iqr 
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c[5] = theta slip, c[6] = w_slip 
v[1] = vds, v[2] = vqs, v[6] = load torque(TM) 
CHI_r = rotor flux magnitude 

fscanf(inptr, "%d", &inrun); 
fscanf(inptr, "%d", &ndis); 
fscanf(inptr, "%d", &itype), 
fscanf(inptr, "%d", &iter); 
fscanf(inptr, "%d", &ir); 
fscanf(inptr, "%d", &tq); 
fscanf(inptr, "%lf', &XS); 
fscanginptr, "%lf', &XM); 
fscanf(inptr, "%lf', &XR); 
fscanf(inptr, "%lf', &RS); 
fscanf(inptr, "%lf' &RR); 
fscanf(inptr, "%lf', &ah); 
fscanf(inptr, "%lf', &XRR); 
fscanf(inptr, '%lf', &R.RR); 
fscanf(inptr, "%lf', &dx); 
fscanf(inptr, "%lf', &freq); 
fscanf(inptr, "%1f, &VT); 
fscanf(inptr, "%lf', &TM); 

CHI—base is different for differnt rn/c ****/ 

base = 393.7007874; *11* 10 hp *1 
CHI—base = 323.2062055; /* 30 hp *1 

/**** Initial States ****/ 

am = ah/(pi*freq); 
WE = WE—base = 2.0*pi*freq; 
WRRO.0; 
CHIr = 0.0; 
CHI REF 1.0; 
WR_REF = 310.0; 
Vds_foc_lim= 1.0; 
Vqs_foc_lim= 1.0; 
Ids_foc_lim = 6.0, 
Iqs_foc_REF = 6.0; 
Vds_sta = 0.0; 



119 

Vqs_sta = 0.0; 

/$3C P.I. controllers coefficients 

KP=O.8; 
KI = 400.0; 
KP_WR= 0.1; 
KIWR = 0.05; 
KP_CHI = 100.0; 
MCHI = 100.0; 

Initial States Read in 
Order in which the states are read in: 
d-axis stator current 
q-axis stator current 
d-axis rotor current 
q-axis rotor current 

if(ir= 1) { 
for(i=1; i<=4; i++) 
fscanginptr,"%lf', &c[i]); 

for(j=1; j<=4; j++) 
fscanf(inptr, '%lf', &v[j]); 

} 

I**** INITIAL CONDITIONS *****/ 

if(ir0) { 
for(i1; i<=4; i++){ 

c[i] = 0.001; 
V[i] = 0.001; 

} 
) 

Dynamic Cycle *****/ 

fscanf(inptr,"%lf', &VTI); 
fscanf(inptr,"%lft, &TMI); 
fscanf(inptr, 't%lf', &VT2); 
fscanf(inptr, "%lf', &TM2); 
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for(k = 1; k <= iter; k++) ( 

Perform Matrix inversion 

ME(ALI, R, G, H, WE, XS, XM, XR, RS, RR, )MR, RRR, 1) 

Disturbance Application *****/ 

if (k = inrun) 
if (itype == 1) VT = VT 1; 

else if (itype == 2) TM = TMI; 

Disturbance Removal *****/ 

if (k = ndis) 
if (itype = 1) VT = VT2; 

else if (itype = 2) TM = TM2; 

/' Perform (modified) Runge-Kutta 

t = dx*k; 

RK(4, dx, 1, c, PC, v, ALl, G, H, R, am, &TM, VT, &TE, 
WE, tq, inrun, k, XS, Xlvi, )CR, &Vds_sta, &Vqs_sta, t, &WRR, 
&Ids_syn, &Iqs_syn, &Idr_syn. &Lqr_syn, &CHT_r, &CHI_dr_sta, 
&CHI_qr_sta, &Sin_PhLAUX, &Cos_PhLAUX); 

LsXSfWE; 
Lm = XMIWE; 
Lr = XR/WE; 

Change variable name 

Ids_sta = 
Iqs_sta = 
Idr_sta = 
Iqr_sta = c[4]; 

Caic. Terminal Voltage, Current, sine & cos of field angle (phi) *****/ 

W_r = WRR*pi/15.0; / Change from RPM to rad/sec *1 
VTT = sqrt(v[2]*v[2] + v[1]*v[1]); 
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AIM = sqrt((c[2]*c[2] + 

WR = W_r; 
Sin _Phi = CHI_qr_stal(CHI_r); 
Cos—Phi = CHI_dr_sta/(CHI_r); 

Perform Stationary to FOC Co-ordinate change 

Ids _foc = Iqs_sta* Sin _Phi + Ids _sta*Cos_Phi; 
Iqs_foc = Iqs_sta*Cos_Phi - Ids_sta* Sin_Phi; 

Caic. of P.I. Controller Command Signals for CHI_r 

CHI _r_ERR 
= (CHI—REF 

- CHI_r*CHI base); 
CHI _r_ERRINTEG CHI_r_ERRINTEG + CHI _rERR*dx; 
Id s_foe_REF = KP_CHI*CHI_r_ERR + KI_CHI*CHI_r_ERR_INTEG; 

/ Adding Current limiter for Ids foe ref. 

if(Idsjoc_REF> Ids_foc_lim) Ids_foc_REF = Ids_foc_lim; 

Caic. of P.I. Controller Command Signals for Wr 

WRERR = (WR—REF - WR); 
WR_ERR_JTNTEG = WR_ERR_rNTEG + wRERR*dx; 
Iqs_fo c_REF = KP_WR*WR_ERR + KI_WR*WR_ERR_1NTEG; 

/***** Adding Current limiter for Iqs foc ref. 

if (Iqs_foc_REF> Iqs_foc_lim) Iqs_foc_REF = Ids_foc_lim; 

Calc. of P.1. Controller Cmd Sig. for Vds & Vqs FOC 

Ids _ERR = (Ids_foc_REF - Ids _foc); 
Iqs_ERR = (Iqs_foc_REF - Iqs_foc); 
Ids _ERRINTEG = Ids ERR INTEG + Ids_ERR*dx; 
Iqs_ERRJNTEG = Iqs_ERR_rNTEG + Iqs_ERR*dx; 
Vds_foc = + KI*Ids_ERRINTEG; 
Vqs_foc = Kp*Iqs ERR + KI*Iqs_ERR_INTEG; 
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/***** Adding Voltage limiter *****/ 

if(Vds_foc> Vds oc lim) Vds_foc = Vds_foclim; 
if (Vqs_foc> Vqs_focjim) Vqs_foc = Vqs_foc_lim; 

Perform FOC. Ref frame to Stat. Ref frame transfin 

Vdssta = Vds_foc*Cos_Phi - Vqs_foc*Sin_Phi; 
Vqssta = Vqs_foc*Cos_Phi + Vds_foc*Sin_Phi; 

1* * * * * Print out Time, Terminal Voltage, sin (phi), Torque, Current, 
Rotor speed and Flux Mag. 

fprintgoutptrl, "%li\t %lf\t %lf\t %lf\t %lf\t %lf\t %lf\n", 
t, VTT, Sin—Phi, TE, AIM, W_r/WE_base, CHI_r*CHI_base); 

frintf(outptr2, "%lf\t %Ift %lf\t %lf\t %lf\t %lf\t %lf\t %lf\n", 
t, Yds_sta, Vqs_sta, Ids_foc_REF, Ids_foc, Iqs_foc, Sin—Phi, CFII_r_ERR); 

} 1* k-loop *1 

} /*End of main() *1 

Subroutine: ME 
This subroutine performs matrix inversion 

void ME(double ALI_me[5][5], double R_me[5][5], double G_me[5][5], 
double H_me[5][5], double WE_me, double XS—me, double XM_me, 
double XR_me, double RS—me, double RR—me, double XRR_me, 
double RRR_me, mt N_me) 

double ALS, ALM, ALR, u; 
mt i,j; 

/'' Convert Reactances to Inductances *****/ 

ALS = XS_ me/WE me; 
ALM = XM_me/WEme; 
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ALR = XR_ me/WE _me; 
for(i = 1; i <= 4; i++) ( 

for(j = 1;j <= 4; j++){ 
ALI_me{i}[j] = 0.0; 
R_me[i][j] = 0.0; 
G_me[i][j] = 0.0; 
H_me[i][j] = 0.0; 

} 
} 

/***** Input [R] matrix 

R_me[1][1] = RS—me; 
Rme[2][2] = RS—me; 
R_me[3][3] = RR_me; 
R_me[4][4] = RR_me; 

Input [G] matrix in reactance 

G_me[3][2] = XMme; 
G_me[3 ] [4] = XR_me; 
G_me[4][1] = -XM_me; 
G_me[4] [3] = -XR_me; 

Input [H] matrix in inductance *****/ 

H_me[3][2] = XM_me/WEme; 
H_me[3][4] = XR_meIWE_me; 
H_me[4][1] = -XM_mefWE_me; 
H _me[4][3] = -XRme/WE_me; 

Running Parameters *****/ 

if (N_me == 2) { 
ALR = XRR_me/WE_me; 
R_me[3][3] = RRRme, 
R_me[4][4] = RRRme; 

I 

Input [L] matrice 

ALI_me[1][1] = ALR; 
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ALl me[ 1][3] = -ALM; 
AL! me[2][2] = ALR; 
AL! me[2][4] = -ALM; 
ALI_me[3][1] = -ALM; 
ALl me[3][3] = ALS; 
ALl me[4][2] = -ALM; 
ALI_me[4][4] = ALS; 

CALCULATE [L]^-1 matrice 

u = ALS*ALR - ALM*ALM; 
for(i= 1;i<=4;i++) { 
for(j= 1;j<=4;j++){ 
ALl me[i]0] = ALI_me[i][jj/u; 

} 
) 

return; 
} /K end of subroutine ME *1 

Subroutine: RK 
This subroutine RK uses the Runge-Kutta algorithm to calculate [x]t vector 
(Merson Modified) 

void RK(int N_rk, double dxrk, mt nes_rk, double Y_rk[5], double Erk[5], 
double v— double ALI_rk[5][5], double G_rk[5][5], 
double H_rk[5][5], double R_rk[5][5], double am_rk, double *TM_rk, 
double VT_rk, double *TE rk, double WE_rk, mt trk, 
mt inrun_rk, mt krk, double XS_rk, double XM_rk, double XR_rk, 
double *Vds stark, double *vqs stark, double t_rk, double *WpJ rk, 
double *Ids syn rk, double *Iqs syn rk, double *Idrsynrk, 
double *!qr syn rk, double *CHlrrk, double *CHIdr stark, 

double *CHI qr stark, double * Sin_Phi_rk, double *Cosphirk) 

{ 

double A[5], B[5], C[5], D[5], h, Z; 
mt i; 
h = dx_rk/3.O; 
for(i = nes_rk; i <= N_rk; i++) D[i] = Yrk[i]; 
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AUX(Yrk, Erk, v_rk, ALI_rk, G_rk, H_rk, R_rk, am_rk, TM_rk, VT_rk, 
TE_rk, WE_rk, tqjk, inrun rk, k_rk, XS_rk, XM_rk, XR_rk, 
Vds_sta_rk, Vqs stark, t_rk., WRR_rk, Ids_synjk, Iqssyn_rk, 
Idr_syn_rk, Iqr_syn_rk, CHI_r_rk, CHI_drsta_rk, CHI_qr_sta_rk, 
Sin_Phi_rk, Cos_Phijk); 

for(i = nes_rk; i <= N_rk; i++) { 
A[i] = h*Erk[i]; 
Yrk[i] = D[i] + A[i]; 

} 

AUX(Y_rk, E_rk, v_rk, ALI_rk, G_rk, Hrk, Rrk, am_rk, TMrk, VT_rk, 
TE_rk, WE_rk, tqjk, inrun_rk, k_rk, XS_rk, XMrk, XR_rk, 
Vds_sta_rk, Vqssta_rk, t_rk, WRR rk, Ids_syn_rk, Iqs_syn_rk, 
Idr_syn_rk, Iqr_syn_rk, CHI_r_rk, CHI_drsta_rk, CHI_qr_sta_rk, 
Sin_Phi_rk, Cos_Phi_rk); 

for(i = nes_rk; i <= N_rk; i++) 
B[i] h*E_rk[i]; 
Y_rk[i] = D[i] + (A[i] + B[i])*O.5; 

} 

AUX(Y_rk, E_rk, v_rk, ALI_rk, G_rk, Hrk, Rrk, am_rk, TM_rk, VT_rk, 
TE_rk, WE_rk, tcijk, inrun_rk, k_rk, XS_rk, XM_rk, XR_rk, 
Vds_sta.j-k, Vqs_sta_rk, t_rk, WRR rk, Ids_syn_rk, Iqs_syn_rk, 
Idr_syn_rk, Iqr_syn_rk, CHI_r_rk, CHI_dr_staj _ k, CHIqrsta_rk, 
Sin_Phi_rk, Cos_Phi_rk); 

for(i = nes_rk; i <= N_rk; i++) { 
B[i] h*E rk[i]; 
Yrk[i] = D[i] + (A[i] + B[i]*3.0)*O.375; 

} 

AUX(Y_rk, E_rk, v_rk, ALI_rk, G_rk, H_rk, Rrk, am_rk, TM_rk, VT_rk, 
TErk, WE_rk, tq_rk, inrun rk, k_rk, XS_rk, XM_rk, XRrk, 
Vds_sta_rk, Vqs_sta_rk, t_rk, WRR rk, Idssyn_rk, Iqs_syn_rk, 
Idr_syn_rk, Iqr_syn_rk, CHI_rjk, CHIdr_stajk, CfH_qr_sta_rk, 
SinPhi_rk, Cos_Phijk); 

for(i = nes_rk; i <= N_rk; i++) { 
C[i] = h*Erk[i]; 

Y_rk[i] = D[i] + (A[i] - B[i]*3.O + C[i]*4.0)*1.5; 
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) 

AUX(Y_rk, E_rk, vrk, ALl rk, G_rk, H_rk, Rrk, am_rk, TM_rk, VT_rk, 
TE_rk, WErk, tq_rk, inrun_rk, krk, XSrk, XM_rk, XRrk, 
Vds_sta_rk, Vqs_sta_rk, t_rk, WRR_rk, Ids_syn_rk, Iqs_syn_rk, 
Idr_syn_rk, Iqr_syn_rk, CHI_r_rk, CHI_dr_sta_rk, CHT_qrsta_rk, 
Sin_Phi_rk, Cos_Phi_rk); 

for(i = nes_rk; i <= N_rk; i++) 
Z=D[i]; 
D[i] = h*E_rk[i]; 
Y_rk[i] = Z + (A[i] + C[i]*4.O + D[i])*O.5; 
) 

return; 
) 1* end of subroutine RK / 

This subroutine AUX is used by the Runge-Kutta algorithm to caic. [x]t vector, 
i.e. iqs, ids, iqr, idr 

void AUX(double c_aux[5], double PC_aux[5], double v_aux[5], 
double ALI_aux[5[5], double G_aux[5][5], double H_aux[5][5], 
double R_aux[5][5], double am_aux, double *TM aux, double VT_aux, 
double *TE aux, double WE_aux, mt tq_aux, 
mt inrun_aux, mt k_aux, double XS_aux, double XM_aux, 
double XR_aux, double *Vds sta aux, double *vqs sta aux, double t_aux, 
double *WpJ aux, double *Ids syn aux, double *Iqssynaux, 
double *Idr synaux, double *Iqr syn aux, double *CHI raux, 
double *CHI dr sta aux, double *Cffl qrstaaux, double *Sin Phi aux, 
double *Cos Phi aux) 

( 

double A[5][5], B[5][5], F[5][5], Z[5][5, it[2][5], it—G[2][5]; 
double ALS, ALM, ALR, W, WR, WD, it_G_I, T_accel; 
mt i,j, 1; 
double CHI_dr_syn, CHI_qr_syn, CHI_dr_sta, CHI_qr_sta, I[5][2]; 

/***** Convert Reactances to Inductances * * * * *1 
ALS = XS_aux/WEaux; 
ALM = XMauxlW_Eaux; 
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ALR = XR_aux/WEaux; 

Voltages in STATOR Ref frame* *****/ 

vaux[1] = *Vdsstaaux; 
v_aux[2] = *vqsstaaux; 
for(i = 1; i <= 4; i++) ( 

for(j = 1;j <= 4; j++){ 
F[i]U] = *Wfflaux*pj/15o*Haux[j][j] + R_aux[i][j}; 

} 
} 

MM(ALI_aux, F, Z, 4); 
for(i = 1; 1 <= 4; i++) ( 

for(j = 1; j <=4; j++) ( 
A[i]o] = -Z[i][j]; 
B[i}[j] = ALI_aux[i][j; 

J 
} 

for(i = 1; i <= 4; i++) { 
PC_aux[i] = 0.0; 
for(j 1;j<=4;j++) 
PC_aux[i] = PC_aux[i] + A[i]]*c_aux[j] + B[i][j]*v_aux[j]; 

) 

Converting frame fixed on STATIONARY (Stator) frame to 
frame fixed on SYNCHRONOUS ROTATING 
frame valid for fix WE_aux only. 

*Jdssyn aux = c_aux[ 1] *(doub le)cos((double) WE aux*t aux) + 
c_aux[2] *(double)sjn((double)V.JEaux*taux); 
*Iqssyn aux = -c aux[ 1] *(double)sin((double)V.jEaux*taux)+ 
c_aux[2] *(doubje)cos((double)WEaux*taux). 
*Idrsynaux = c_aux[3 ] *(double)cos((double)WE aux*t aux) + 
caux[4J *(double)sjn((double)WE aux*t aux); 
*Iqrsynaux = c_aux[3]*(double)sin((doub1e)WEaux*taux)+ 
caux[4} *(double)cos((doubje)WEaux*taux); 
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Caic. TE = it*[G]*I, it = I-transpose  

for(l= 1;l<=4;l++){ 
it_G[1][l] = 0.0; 
for(j = 1;j <= 4; j++) { 

it[1]0] = caux[j]; 
it_G[ 1 ][l] = it—G[1][11 + it[1 ][j]*G_aux[j] [1]; 

} 
} 

it_G_I = 0,0; 
for(j= 1;j <=4;j++){ 

I[j][1] = c_aux[j]; 
it_G_I = it_G_I + it_G[1][j] * 

} 

*TE aux = it—G—I; 

if(tq_aux =0) T accel = *TE aux - *TMaux; 

if (tq_aux = 2) { 
W13 = (*\aux*pj/15O)/(V/E aux); 
*TMaux l,1*WD*WD; 

} 

if(tq_.aux == 1) 
*TMaux = 1,0; 

) 
T_accel = *TE aux - *TM aux; 

/ Caic. of WR using Euler's approx. (step size = 0.001) ******/ 

*\AJpJ? aux = *WRR_aux + ((T_accel)/am_aux)*0.001; / in RPM *1 

Caic. d-q Flux Magnitude in Syn. frame 

CHI _dr_syn = ALR*(*Idr_syn_aux) + ALM*(*lds_syn_aux); 
CHI,qr_syn = ALR*(*Iqr_syn_aux) + ALM*(*Iqs_synaux); 

Caic. d-q Flux Magnitude in Stationary frame 

*CHI drstaaux = ALR*(c_aux[3]) + ALM*(caux[1]); 
*cHlqrstaaux = ALR*(c_aux[4]) + ALM*(caux[2]); 
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Rotor Flux Magnitude *****/ 

*CHl raux = sqrt((*CHIdr_sta_aux*(*CHI_dr sta aux)) + 
(*cHlqrstaaux*(*cHlqrstaaux))); 

Rotor Flux Angle (Field Angle, Phi) *****/ 

*Sin Phi aux  = *cHlqrstaaux/(*cr.jj raux); 
*Cos Phi aux = *CHI dr sta aux/( *CHlr aux); 

return; 
) /* end of subroutine AUX / 

This subroutine MM is used by AUX subroutine to multiply matrices to 
obtain [L]"1(Wr[G] + [R]) 

************************************************************* 

void MM(double A mm[5][5], double B mm[5][5], double C_mm[5]{5], 
mt N_mm) 

{ 

inti,j, 1; 
for(i= 1;i<=4;i++){ 

for(I = 1; 1 <= 4 1++) { 
C_mm[i][l] = 0.0; 
for(j1;j <=4;j++){ 
C_mm[i][1] = C_mm[i][l] + A_mm[i][j}*Bmrn][!]; 

} 
} 

return; 
} /* end of subroutine Mlvi *1 


