THE UNIVERSITY OF CALGARY

ARTIFICIAL NEURAL NETWORK FLUX ESTIMATION FOR

FIELD ORIENTED CONTROL

BY

Allan K.P, Toh

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

July, 1994

© Allan K.P. Toh 1994

National Library Bibliothéque nationale
of Canada du Canada

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa, Ontario Ottawa (Ontario)

K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

Your file Volre rélérence

Qur file Notre rélérence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CINE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-315-99509-2

‘Canad'!a'

t

ALe AN K. P, TOH

Name

Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

&t tcrRonnies L erecrrre AL

olsl4a] UM1

SUBJECT TERM

Subject Categories
THE HUMANITIES AND SOCIAL SCIENCES
COMMUNICATIONS AND THE ARTS Psychologyc.ceeeeeereeeecuneerense 0525
Architecturec.overreverenererensenes 0729 Reading0535
Art HISIOrY .vveecserseserererennsnesnsenss 0377 Religious0527
Cinema 0900 Sciences ... 0714
Dance 0378 Secondary0533
Fine Arls .ovcveiveecenserseencnccennenenes 0357 Social Sciences ...0534
Information Science. ...0723 Sociology of ...cecvrerereessrrnensis 0340
Journdlism0391 Special 0529
Library Science0399 Teacher Trainingcccueesirsesens 0530
Mass Communications 0708 Technolc&gb\ ...0710
Music 0413 Tests and Measurements .. -
_? eech Communication 82122 Vocational

eater

LANGUAGE, LITERATURE AND

EDUCATION ‘ LINGUISTICS
Generalcoevererereverererseeserens Language
Adminisiration eneral 0679
Adu.h Ond Conﬁnulng . . Ancienf .::-.uun--.u--u.uuu-:::0289
ﬁgncullurol o1z Linguistics - 0290

vt : Modernuvuveeerereeerernienens 0291
Bilingual and Multiculturel 0282 Literature
BUSINESS vevveereniresersiscsnnae .0688 General 0401
Community Caliege rr "0275 e o401
Curriculum and Instruction0727 Comparaiive 0295
Early Childhood - Medjeval . 710297
Eilsronne:efdry Mﬁdem0298
Guidance and Counseling 0519 : ﬁn':gﬁgcn 82;?
Health 0680 ASIOR oo 110305
Higher i 8;‘218 Canadian (English}0352
History of Canadian (French}0355
Home Eco 0278 English 0593
indusiric . 0521 A Rty
Language an 8%5(9) Latin American0312
Mathematics : Middle Eastern0315
gi\\lijlsggophy g 0998 Romgnced. 0313
Physical 0523 Slavic and East European.....0314

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES
Agriculture
General ...ocecereeenrenerenneennes 0473
Agronomy0285
Animal Culture and
Nutritionc... .0475
Animal Pathology . 0476

Food Science and
Technolo%y

Forestry and Wil

Plant Culture .

Palyno w“
Phyysico(l)geography

Plant Pathology .0480 Physical Oceanography 0415
Plant Physiology .0817
Range Management 0777 HEALTH AND ENVIRONMENTAL
. Wood Technology ... 0746 SCIENCES - -
B'°|‘c’;9)' | Environmental Sciences 0768
Aenera Heahh Sciences
\nafomy ... eneralccccrorererneercneencrens 0566
Biostatistics Audiology 0300
Coflfn)' Chemot erapy 0992
Ee | Dentistry 0567
Eco c;gyI Education - 0350
anom_o ogy Hospital Ma 0769
L_ene! Cs - Human Development 0758
Mieropadr Immunology 0982
Mlclm °'|° o9 edicine an 0564
olecular Mental Health ... 0347
Neurosciencecorereeuenes 0317 NUTSINg ooeve.. 0569
Qeeanography v g41e L 0570
E)é§‘°.°97 st 0827 Obstetrics and Gynecology ..0380
AAIGHON ovvovceesereesirieneees Occupational Health an
Veterinary Sciencee.cuveuerer 0778 Therapy 0354
. Zhoo_ogy 0472 Ophthqﬁ'nology : .
Biophysics | . Pathology
General ... 0786 Pharmacology
Medical couvvrerrccriineae 0760 PhuerC{
EARTH SCIENCES Physical Therapy
Biogeochemistrycoverrreseserens 0425 Radiolo
Geochemistry ..ccueveresersescserenane 0996 Recreoli%)rll

PHILOSOPHY, RELIGION AND

SOCIAL SCIENCES
A d

Business Administration

Canadian Studies

Commerce-Business

Speech Pathology

Home Economics

PHYSICAL SCIENCES

Elementary Parficles an

Applied Sciences
Applied Mechanics
Computer Science

SUBJECT CODE

-2
Asia, Australia and Oceania 0332

Canadiancceveveerevrncerererns 0334
European..... ..0335
Latin American ..0336
Middle Eastern ..0333
United States0337
History of Sciencecccveereurene. 0585
aw 0398
Political Science
Generaloceerererezinveennne. 0615
International Law and
Relationscveevevevenceverenes 0616
Public Administration0617
Recreationcvueenens ..0814
Social Workc.ceeveevrerriniennnns 0452
Sociology
General ...eueeerieeivieeerrerenenas 0626
Criminology and Penology ...0627
Demography «...e...ceuezceeeunaces 0938
Ethnic and Racial Studies0631
Individual and Family
Studies ..0628

Relations0
Public and Social Welfare0630
Social Structure and

Development
Theory and Methods -
Transportationeecesennane
Urban and Regional Planning 0999
Women's Studiescoserirernarens 0453
Engineerin
General w..vcnerersrsssesesisenne 0537
Aerospace ..0538
Agricultura 0539
Automotive 0540

Biomedical

Marinecoveeee 0547
Materials Science ..0794
Mechanical0548

Metallurgy ..
Mining gy
Nuclear ...
Packaging ..
Pefroleum
Sanitary and Municipal
System Science............ ..0790
Geolechnology
Operations Research .

Plastics Technology0795
Textile Technologycvverererrenens 0994
PSYCHOLOGY

General ..o 0621
Behavioral

Clinical

Developmentalccccuvureerrecnns 0620
Experimental . .0623
Industril0624
Personality0625
Physiological . ..0989
Psychobiology . ..0349
Psychometricsceevervueereennes 0632
Social 0451

Nom

Dissertation Abstracts Infernational est organisé en catégories de sujets. Veuillez s.v.p. ¢

thése et inscrivez le code numérique approprié dans I'espace réservé ci-dessous.

hoisir le sujet qui décrit le mieux votre

UMI

SUJET

Catégories par sujets
HUMANITES ET SCIENCES SOCIALES

COMMUNICATIONS ET LES ARTS LECHUTE ..vvcvecrerenerrrsseaneseraneesaes 0535
Architecturecoeerenrsisciorscnnns 0729 Mathématiques .0280
Bequx-aris Musique ..oevennienenesens .0522
Bibliothéconomie Orientation et consultation0519
Cinéma Philosophie de I'éducation .0998
Communication verbdle 0459 Physique0523
Communications 0708 Programmes d’

.0378 enseignement
0377 Psychologie

se
Histoire de l'art ..

Journalisme 391 Sciences .. .0714
Musique . 413 Sciences soci .0534
Sciences d 723 Sociologie de I'éducation0340
Théatre covverreerernnes 465 Technologie ... vecriecserenanenes 0710
EDUCATION LANGUE, LITTERATURE ET

Générdlités ... LINGUISTIQUE

Administrafion Lanaues

Art éngralités 0679
Colléges communautaires 8253 Ar?::‘ferr:]nes -~ "0289
Commerceooeererernes ~0c88 Linguistique 8%8?

Economie domestique.....
Education permanente ...
Education préscolaire ...

- Modernes .
gg}g Litérature e
0480 Généralités

Education sanitaire - Anciennes) 8‘2182
Enseignement agricole............... 0517 Comparée. 10295
Enseignement bilingue et Medl’?’evcle. 10207
muy ficu turel FIE TRV POTTISIIERR Moderne 0298
Enseignement industriel . .0 Alricaine 0316
Enseignement primaire. Américaine '0591
Enseignement professionnel Anglaise ... "0593
Enseignement religieyx..... Asiatioue 10305
Enseggnement segopc{u:re . Canadienne [Anglaise) 0352
nseignement spécial Canadienne (Frangaise) 0355
Enseignement supérieur Germaniquec.ccuerscreneens 0311
Eyaluahon """""" Latino-américaine . .0312
INANCESp.e.e Moyen-orientdle .. .0315
Formation des enseignants ROMANE ...cverersirsnssarenes .0313
l[hstonre de F'educafion .. " Slave et est-européenne0314
angues et littératurecou.....
SCIENCES ET INGENIERIE
SCIENCES BIOLOGIQUES GBOIOGI vuvvvvsvrsremsrenennssssseserenen 0372
Agriculture Géophysique .. .0373
GENEralitésvuerreceerensenns 0473 Hydrologie0388
AGronomie.oressssensssinss 0285 inéralogiec.veceere .0411
Alimentation et technologie Océanographie physique . .0415
alimentaire ...c.ccovenereenins 0359 Paléobotaniquecucn. .0345
Culture corvcrnee, ..0479 Paléoécologie0426
Elevage et alimentation 0475 Paléontologe .. .0418
Explojtation des péturages ...0777 Paléozoologie . ..0985
Pathologie animale 0476 Palynologieeeoerermriniisernnnns 0427
Pathologie végétale ... 480

.0 .
0817 SCIENCES DE LA SANTE ET DE

Ph{siologie végétale ...
Syl .0478 L’ENVIRONNEMENT

viculture et faune ...

Bi ITeghnologie du bois e 0746 Economie domestiquecr.. 0386
10 %g,'e, lité 0306 Sciences de 'environnement0768
Aen;era_l 85 vvneecrersereserseesnes 9306 Scionces de la santé
B'mll °m'?s'”) " 0308 GEnéralitésooreeverererernes 0566
BEO ogie (olalistiques] 0307 Administration des hipitaux .. 0769
tologie MOIeculdine Alimentation et nufrition 0570
Botanique - 0309 AUiOlOgie c.uvrvvrrerene -0
Ce|||u|e‘03;3 Chimiot érupie
Ecologie . o322 DEntiSIerie corvrr oo .
G", omolog 0380 Développement humain
Li;ﬁ?g\gﬁa 0793 Enseignementc.......
Microbiolo R A—
Neurologie . 0317 Médecine du travail et
Qcéanograp 0416 ThErapie ..ovvecosevrecsrsseseneses
ﬁh)és_lo‘l_ogle : 83%? Médecine et chirurgie
S°. lation - Obstétrique et gynécologie ... 0380
cience vétérinaire . - 0778 Ophtalmologiecoriuenee. 0381
. Zhool_ogle 0472 Ornthophonie ... " 0460
lophysique Pathologie ... 0571
GEnéralitésconevuerseinrersrrans 0786 Pharmasie ... 572
Medicale ...corecmrririinninnnnen 0760 Pharmacologi 419
s e e
Biogeochimiecvveesserecessserernees 819132 Santé mentale 347
8?23."3“3‘ 0370 Santé publique 573
G? es'eh:""'};"':" Soins infirmiers 0569
éographie physiqueeeeceeue 0368 Toxicologie

PHILOSOPHIE, RELIGION ET
THEOLOGIE

Philosophie....... - 0422
Religion
énéralités

C|eégé 0319
Etudes bi 0321
Histoire des religions 0320
Philosophie de l% religion0322
Théologie ...cveuereirrecseresrseresers 0449
SCIENCES SOCIALES
Anthropologie
Archéol%gie 0324
Culturelle™....0326
Physiquecccoivvererernennnnnnene 0327
Droit 0398
Economie
Géndralitésccoererereccenns 0501

Commerce-Affaires...
Economie agricole

Economie du travail0510
Financescve-..0508
Histoire0509
Théorie 051

Etudes américaines .

Etudes canadiennes0385
Etudes féministesc.covererrernnes 0453
Folklore 0358
GEOGraphie ...c..esrmerersrissisessenens 0366
Gérontologiecconserisemrsnreens 0351
Gestion des affaires

Généralités

Administration 0454
Banques 0770
Compitabilit 0272
Marketing0338

Histoire
Histoire générale ..

SCIENCES PHYSIQUES

Sciences Pures

Chimie
Genéralités0485
Biochimie ...
Chimie agri

Chimie analyfique .0486
Chimie minérdle0488
Chimie nucléaire .. .0738
Chimie organique0490
Chimie pharmaceutique 0491
Phrsique0494
PolymCres .0495
Radiation0754
Mathématiquesocvniverenivinns 0405
Physique
7 Gendralitésoreererereieninns 0605
AcoUstiqUEoeveeeninieierennns 0986
Astronomie et
astrophysiqueceeiseuinas 0606
Electronique et électricité 0607
Fluides et plasma0759
Meétéorologie ...
Opliqueccoerireerersrreeneass
Particules {Physique
nucléaire)coveeeererirennene 0798
Physique atomique
Physique de ['état solide0611
Physique moléculaire0609
Physique nucléaire....0610
Radiation.......0756
Statistiques
Sciences Appliqués Et
Technologie
Informatiquecovceresiiireierenanes
Ingénierie
Généralites
Agricole
Automobile

CODE DE SUJET

Ancienne

Moderne.

Histoire des noirs

Africaine

Canadienne

Etats-Unis

Européenne ...
Moyen-orientale .
Latino-américaine

édiévale

Asie, Ausiralie et Océanie ... 0332

Histoire des sciences.....cccecuvennee 0585
Loisirs 0814
Planification urbaine et
régionaleecvcierernererenns 0999
Science politique
GEnéralitesovrvievereveveeeas 0615
Administration publique0617
Droit et relations
internationalescceuer 0616
Sociologie -
GENBralitéscccererrcseernnans 0626
Aide et bien-atre social 0630
Criminologie et
établissements
pénitentigires ... 0627
Demographie ..e.ecereceerssereres 0938
Etudes de I individu et
, dela famillecoeveveeneeee. 0628
Etudes des relations
interethniques et
des relations racidles 0631
Structure et développement
i 0700

Travail et relations

Tran

Travail socidl ...

industrielles .

sporis ...

Biomédicalecvemneenevercene 0541
Chaleur et ther

Modynamiqueoueeeess 0348
Condifionnement

(Emballage) ...oveureereenencene 0549
Génie aérospatial0538
Génie chimique0542
Génie civiloocvriieerieiin 0543

* Génie élecironique et

électrique ...ueaeerercniienenes 0544
Génie industriel . 0546
Génie mécanique .. 0548
Génie nucléaire 0552

Ingénierie des systd
Mecanique navale
Métallurgie ...
Science des mal
hnique du pétrole
hnique miniére .
hniques sanitair

Tec
Ted|
Tec

municipales ...05854
Technologie hydraulique0545
Mécanique appliquée .0346

GEOIChNOIOGIE covvveeerersererreerres

Matiéres plastiques

echnologie)cccvrunen
Recherche opérationnelle 0796
Textiles et fissus {Technologie)0794
PSYCHOLOGIE
GEnéralitssocveeeeevererrerererenns 0621

Personnalité ..

PS)'(. 10i JIUIUQ;U0349
PS)'L 10 uvd;u clinique 0622
Psychologie du comportement0384
Psychologie du développement .. 0620
Psy‘. 10 ugit—: expérimeniclle 0623
Psyn. 10 ugic industrielle 0624
Psychologie physiologique

Psychologie sociale

Psychometrieccvrerurnercnnnnnes

To: Whom it may concern

From: Allan K. P. Toh
Date: Friday, August 12, 1994
Subject: Font size in document (diagrams)

[realize that the labels and figure titles in some of my diagrams in this thesis will not turn
out when microfilmed, nevertheless, I would appreciate it if you will go ahead and
microfilm them anyway (since the axes labels are not important to the reader, but the
shape of the diagram is). Thank you.

Yours sincerely,

/V;{dg y/4 6'/?:

AT/AT

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies for acceptance, a thesis entitled “Artificial Neural Network Flux Estimation for
Field Oriented Control”, submitted by Allan K. P. Toh in partial fulfillment of the

requirements for the degree of Master of Science.

& Vpape

Supervisor, Dr. E. P. Nowicki
Dept. of Electrical and Computer Engineering

U

Dr. B. Nowrouzian
Dept. of Electrical and Computer Engineering

ggb)?\ﬂ (, Q.C&le\’:"f\

Dr. J. Salmon
Dept. of Electrical Engineering,
University of Alberta

Date : A ¢ ‘Q—ﬂ‘ 1994

il

Abstract

Field oriented control (FOC), sometimes referred to as vector control, is used in
inverter-fed induction motor drives to obtain high performance speed response. For field
oriented control it is necessary to know the instantaneous magnitude and position of the
rotor flux. The magnitude and position of the rotor flux is approximated based on flux
measurements in the direct FOC scheme and estimated in the indirect FOC scheme. In this
thesis, a novel flux estimator, the artificial neural network flux estimator, is presented.
The neural network is able to estimate accurately the rotor flux magnitude or position
(maximum absolute error is less than 0.03 p.u.) for line-start operation of an induction
motor as well as for field oriented control. A sensitivity study indicates that the neural
network is quite insensitive to variations in the rotor resistance (maximum absolute error
is about 0.10 p.u. if rotor resistance is increased to twice the nominal value). Its ability to
estimate flux response that lies outside of the neural network training data set is another
one of its strengths. This preliminary work indicates that the neural network flux estimator

is a practical alternative to other flux estimation methods.

iii

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Dr. E.P. Nowicki,
for his guidance, support, understanding and most of all his constant encouragement and
confidence in me throughout my thesis program.

I would also like to thank Mr. Farhad Ashrafzadeh for his invaluable suggestions,
constructive criticism and expert knowledge in the area of induction motors, which greatly
accelerated my research work.

Many thanks are extended to the professors and supporting staff, especially the
secretaries in the Department of Electrical and Computer Engineering, the University of
Calgary, for all their help during my course of study here.

I wish to thank all my friends, fellow students and people whose names are
impossible to be all listed here for all their support and insights.

I would also like to thank my wife, Stella, for her undersfanding, patience and
enduring love without which I would not have finished this thesis program. Finally, I thank

God for guiding me through this work.

v

Dedication

To my loving wife

Stella

TABLE OF CONTENTS

APPROVAL PAGE i

ABS T RACT . iii

ACKNOWLEDGMENTS o iv

DEDICATION . v

TABLE OF CONTENTS .. vi

LISTOF FIGURES ix

LIST OF SYMBOLS ... i xiii
Chapter 1

Introduction 1

1.1 Field oriented Control i, 2

L2 Neural Networkso i 4

1.3 Thesis/Chapter Outline ciiiiiiniuini... 7
Chapter 2

Field Oriented Control and Flux Estimation00 9

20 Introduction 9

2.2 Field Oriented Control Theorycciiii... 9

2.2.1 Principle of Variable Transformation 14

2.2.2 Synchronous rotating frame model ...l 18

2.3 Direct and Indirect Field Oriented Control 23

2.3.1 Direct Field Oriented Control 00 i, 23

2.3.2 Indirect Field Oriented Control 25

2.3.3 Generalized Field Oriented Control System 26

24 Flux estimation 29
Chapter 3

Artificial Neural Networks 34

vi

3.1 Intreduction to Artificial Neural Networks 34

3.2 History of Artificial Neural Networks 37

3.2.1 Rosenblatt’s Perceptroncoiiiiiiiiiiin... 38

3.2.2 Minsky and Papert’s Perceptron P 39

3.2.3 Widrow’s Adaptive Linear Element 40

3.2.4 Kohonen’s Network it 40

3.2.5 Back-propagation Networks, 41

3.3 The Back-propagation Approach .. 42

3.4 The Generalized DeltaRule .. 47

3.4.1 Output Layer Weight Updates 50

3.4.2 Hidden Layer Weight Updates 53

3.5 Training Considerations 54

3501 Network Size 54

352TrainingData 56

3.5.3 Complexity of Learning 56

3.5.4 Termination Criterion ... 57
Chapter 4

Implementation of Field Oriented Control 59

4.1 Introduction 59

4.2 System Description 59

4.2.1 Rotor Flux Control iiiiiin. 60

4.2.2 CurrentControllerst 63

423 PIController Tuning i iiiiiiiiiiiiinin.. 63
Chapter 5

Training the Neural Network 69

S Imtroduction 69

S.2 Generatingdata 69

5.3 Normalizationof Data 73

S.4 Selection of network architecture 73

5.5 Training the NEEWOTK ..o 74
Chapter 6

Neural Network Testing and Parameter Sensitivity 75

6.1 Neural Network TestResults .. 75

6.2 Parameter Sensitivity 79

vii

Chapter 7

DISCUSSION 86
7.1 Effects of Non-Historic DataInput 86
7.2 Alternative Inputs to the Neural Network 87
7.3 Multiple Networks versus Single Network 87
Chapter 8
Conclusion and Future Work 89
8.1 Conclusions 89
8.2 Future Work 90
Reference, PERRER 91
Appendix A
A.1 Induction Motor Model 95
A.2 Results of Load and Voltage Disturbances 96
A3 Motor Parameterso.iiiiiiii 102
A.4 Induction Motor Model Program Listing 103
Appendix B _
B.1 Field Oriented Control of Induction Motor Program Listing 115

viii

Figure 1.1
Figure 2.1(a)
Figure 2.1(b)

Figure 2.2

Figure 2.3

Figure 2.4(a)

Figure 2.4(b)

Figure 2.5
Figure 2.6

Figure 2.7

Figure 2.8
Figure 2.9
Figure 2.10
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4

Figure 3.5

List of Figures

. Schematic of a processing element (PE)ccccoociiiin
. Separately excited dc MOtOTccoooeiiiiiiiiiiiin i
. Field oriented control of induction motorccccceeveiiiiiiiniiinnnnn,

: Per-phase equivalent circuit and phasor diagram for

the INAUCHON TOLOT ..vvveer ettt e e n e s eaea s

© AXES trANSTOTMALIONS ..ovveriieeiriee et e et e e e e e e e e s ereearas

: D-Q equivalent circuits at synchronously rotating reference

frame : ¢° - aXiS CIFCUItcoceevuiiiiiiiiiiciicic e

: D-Q equivalent circuits at synchronously rotating reference

frame ; d° = XIS CITCUIE oovvvveeeeee e e et eeee s eeeeeeterr s s eesabaeneeeerres

- Direct field oriented CONIOLovoovoveeoeeeeoe oot ee e,
. Induction machine model for indirect FOCccooviiieiiiiiiiiiiiininn.

. General control scheme for indirect field oriented control of an

INAUCHION IOTOT ©oeeee ettt e e e e e e e e e e e e reveiireeseaes

: Rotor speed feedback schemecccoocevviiiiiiiiii
. Phasor diagram for indirect field oriented controlc.cee..
: Decoupling controlccoiiiiiiiii
. Biological Nerve Cell ..ot
. Schematic of a processing element (PE) ...,
 The Perceptronc..cccooeiiiiiiericecie et s
. A typical back-propagation neural network ...

. Three layer back-propagation networkcccccoiniiiniiiinn

ix

Figure 4.1

Figure 4.2(a) :
Figure 4.2(b)
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7

Figure 4.8

Figure 4.9

Figure 5.1(a)
Figure 5.1(b)
Figure 5.2(a)
Figure 5.2(b)
Figure 6.1
Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

: General control scheme for indirect field oriented control of an

induction motor (same as Fig. 2.7)ccccococveveeemeeeeeeeeeeeens 61
FOC drive system employed to test the ANN flux estimator 62
PI rotor flux controllersc.cocooooviiiiiiiiiiciee e, 63

. Electromagnetic torque with field oriented control implemented 64
. Rotor speed with field oriented control implemented 64
. Rotor flux magnitude with field oriented control implemented 65
: Sin (¢) with field oriented control implementedccoc....... 66
: Cos (¢) with field oriented control implementedccccoo....... 66

: Ids in stationary reference frame with field oriented

control implementedc.oocooiiiiiii e 67

: Igs in stationary reference frame with field oriented

control implementedc.ocoooiiiiiiiiiie e 67
: Training data set for sin ()ccooeviiiiiiiiicceeeee e 71
: Training data set for sin (¢) (continued)ccocevvevvereeeeen. 72
. Training data set for flux magnitude ¥,c.coooovieiiiinn, 72
. Training data set for flux magnitude ‘¥, (continued) 73
: Neural network output for sin (¢) vs test data for TL = 0.25 p.u. 76

. Neural network output for cos (¢) vs test data for TL = 0.25 p.u. 77

: Neural network output for sin (¢) vs test data for TL = 0.25 p.u.

(expanded VIEW)c.oooieriiiiiiiieceeec e 77

: Neural network output for flux magnitude vs test data for

TL =025 Pl e 78

. Neural network output for sin (¢) vs test data for TL = 2.0 p.u.

(outside training range)c..ccoeovvveiieeeeeeeeeeeeeeeeeee e, 78

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

Figure 6.11

Figure 6.12

Figure 6.13

Figure 6.14

Figure 7.1

Figure A.1
Figure A.2
Figure A.3
Figure A 4
Figure A.5
Figure A.6

Figure A.7

. Rotor speed for line start operation
. Electromagnetic torque for line start operation
. Flux magnitude for line start operation
. Ids vs time in the stationary reference frame
. Igs vs time in the stationary reference frame
. Idr vs time in the stationary reference frame

. Iqr vs time in the stationary reference frame

. Neural network output for flux magnitude vs test data for

TL = 2.0 p.u. (outside training range)ococveeveveeeeveeereeenn,

: Neural network output for sin (¢) vs test data for 50% increase

in rotor resistance (PI controller adjusted)cccoooovioveeviiei..

. Neural network output for flux magnitude vs test data for 50%

increase in rotor resistance (PI controller adjusted)

: Neural network output for sin (¢) vs test data for 100% increase

in rotor resistance (PI controller adjusted)c.ccooveevvvevirvrnnn..

. Neural network output for flux magnitude vs test data for 100%

increase in rotor resistance (PI controller adjusted)c.......

: Neural network output for sin (¢) vs test data for 20% increase

1N TOLOT TESISTATICE ...eeeeeeeeeeieeeeeee e e e oo

. Neural network output for flux magnitude vs test data for 20%

INCrease iN rOtOr TESISLANICEovvveeeeeee oo

. Neural network output for sin (¢) vs test data for 30% increase

1N TOROT TESISLATICReeeeeeeeeeeeeeeeee e e

: Neural network output for flux magnitude vs test data for 30%

INCTEASE 1N TOLOT TESISEANCE ..ovevvveeeeeeeeeeeee oo,

: Neural network output for flux magnitude vs test data

WIthout hiStoric dataooovvereie e

....................................
....................................

xi

Figure A.8

Figure A.9
Figure A.10

Figure A.11

: Electromagnetic torque for various load and fault

conditions (HNe Start)ccoooieviiiiciiiiiiieeeeeeeee e, 100
. Stator current for various load and fault conditions (line start) 101
. Rotor speed for various load and fault conditions (line start) 101

: Rotor flux magnitude for various load and fault conditions

(@ SEATL) ..ot 102

xii

~
~

M T P

L) ~ 3 o

N

NSNS NN

o

=

~

= B~

@

DASKSISOTC R

Q.§ﬁ.
IS

s
Ed

R A

Y

List of Symbols

Artificial neural network

Total error

Field oriented control

Proportionality constant

Armature current

Field current

Stator current (rms)

Moment of inertia

Armature inductance (dc motor)

Magnetizing inductance

Rotor inductance

Stator inductance

Rotor leakage resistance

Stator leakage resistance

Number of poles

Processing Element

Rotor resistance

Stator resistance

Three phase to two axes (phase) transformation matrix
Electromagnetic Torque

Load Torque

Rotor time constant

Stationary to synchronously rot. ref. frame transformation matrix
Inputs to PE

Induced emf (rms)

Terminal Voltage

Stator voltage from physical three phase

Stator voltage in stationary d-q frame

Stator voltage in synchronously rotating d-q frame

Stator peak voltage

Weight of PE

Direct axis component in field frame

Quadrature axis component in field frame

Direct axis component in synchronously rotating reference frame
Quadrature axis component in synchronously rotating reference frame
Direct axis component in stationary reference frame
Quadrature axis component in stationary reference frame
Armature voltage (dc motor)

Activation function in hidden layer j

Activation function in output layer & ‘
Instantaneous d-axis rotor current in field oriented reference frame

Xiii

TE T S
(-3

&

D RS

Instantaneous d-axis stator current in field oriented reference frame
Instantaneous g-axis rotor current in field oriented reference frame
Instantaneous g-axis stator current in field oriented reference frame
Instantaneous d-axis rotor current in synchronously rot. reference frame
Instantaneous d-axis stator current in synchronously rot. reference frame
Instantaneous g-axis rotor current in synchronously rot. reference frame
Instantaneous g-axis stator current in synchronously rot. reference frame
Instantaneous d-axis rotor current in stationary reference frame
Instantaneous d-axis stator curren in stationary reference frame
Instantaneous g-axis rotor current in stationary reference frame
Instantaneous g-axis stator current in stationary reference frame
Command d-axis rotor current

Command d-axis stator current

Command g-axis rotor current

Command g-axis stator current

J " output in hidden layer with p as the input vector

Net input to the j ” hidden layer

Net input to the k£ " output layer

k ™ output in output layer with p as the input vector

Armature resistance (dc motor)

Field resistance (dc motor)

Laplace operator

Instantaneous d-axis rotor voltage in field oriented reference frame
Instantaneous d-axis stator voltage in field oriented reference frame
Instantaneous g-axis rotor voltage in field oriented reference frame
Instantaneous g-axis stator voltage in field oriented reference frame
Instantaneous d-axis rotor voltage in synchronously rot. reference frame
Instantaneous d-axis stator voltage in synchronously rot. reference frame
Instantaneous g-axis rotor voltage in synchronously rot. reference frame
Instantaneous g-axis stator voltage in synchronously rot. reference frame
Instantaneous d-axis rotor voltage in stationary reference frame
Instantaneous d-axis stator voltage in stationary reference frame
Instantaneous g-axis rotor voltage in stationary reference frame
Instantaneous g-axis stator voltage in stationary reference frame

Phase a stator voltage

Phase b stator voltage

Phase c stator voltage

Weight between i ” input layer unit and j * hidden layer unit

Weight between j ” hidden layer unit and & * output layer unit

i ™ component of the & * training vector

Desired output

Momentum coefficient

Error term of the & " unit (neuron) with p as the input vector

Xiv

pk
6):

y)

L VDD DEI RN

S S8

M SRS 6 S
3 § ° A

*

°
-

N

t
<o
<

65

S

-0
£

Output layer (k) error term with p as the input vector
Hidden layer (j) error term with p as the input vector
Difference between actual and correct output

Positive constant

Learning coefficient

Field angle

Synchronously rotating frame angle (o t)

Rotor angle (o,t)

Slip angle (o_t)

Bias weight in hidden layer

Bias weight in output layer

Stator (synchronously rotating frame) frequency

Rotor electrical speed

Rotor mechanical speed

Slip frequency

Air gap flux (ac motor)

Air gap flux (dc motor)

d-axis rotor flux linkage in field oriented reference frame
g-axis rotor flux linkage in field oriented reference frame
d-axis stator flux linkage in field oriented reference frame
g-axis stator flux linkage in field oriented reference frame
d-axis air gap flux linkage

g-axis air gap flux linkage

Rotor flux

Rotor flux (estimated)

Rotor flux (command)

d-axis rotor flux linkage in synchronously rot. reference frame
g-axis rotor flux linkage in synchronously rot. reference frame

d-axis rotor flux linkage in stationary reference frame
g-axis rotor flux linkage in stationary reference frame

XV

Chapter 1

Introduction

In order to attain the high standards of performance obtainable by dc motor
systems used in servo drive applications, field oriented control (FOC) was developed for
induction motors in the early seventies. Field oriented control, is employed to keep the
rotor flux constant during the normal operation of the induction motor (especially during
speed transients). The squirrel cage induction motor fed from a pulse width modulation
(PWM) inverter is becoming a popular choice for industrial applications in the KW to MW
range. However, because of the nature of the motor’s construction, the rotor windings are
not accessible to extract the necessary flux information needed for FOC. This has led to
two major techniques for obtaining the required flux information, namely the direct FOC
and the indirect FOC. Historically, direct FOC implies a direct measurement of the air-gap
flux, whereas in indirect FOC the flux quantities are estimated without the use of any
magnetic field sensors.

The indirect FOC method of estimating rotor flux quantities is the focus in this
thesis. There are several methods for indirect FOC, all of which require the knowledge of
some combination of stator currents, stator voltages and rotor speed to determine the flux
magnitude and angle. The drive system is usually modeled using differential equations
which are solved in real-time to achieve indirect FOC.

In this thesis, a novel approach is adopted to calculate the rotor flux magnitude

and angle. This approach requires only one set of input variables (i.e. stator currents), and

2

does not require any mathematical modeling (in the execution phase). It is based on the
use of the artificial neural network (ANN). The ANN “learns by example” and exhibits
high accuracy, good performance and robustness. An introduction of field oriented control

and artificial neural networks is presented in the latter part of this chapter.

1.1 Field oriented Control

Given an induction motor with a balanced three-phase supply, the two axis or d-q
theory [1] is normally used for dynamic modeling. In this theory, time-varying parameters
are eliminated and the variables and parameters are expressed in orthogonal or mutually
decoupled direct (d) and quadrature (q) axes. It is convenient to represent the axes in
either the stationary or one of several rotating reference frames. In the stationary reference
frame the d-q axis is fixed on the stator and is denoted by & and ¢, respectively. On the
other hand, the d-q axes can be rotating at synchronous speed (referenced for example to
the stator or rotor flux) or fixed on the rotor. For the synchronous rotating reference
frame fixed on the stator magnetic field, the d-¢ axes are commonly denoted by &* and ¢°.
For the field oriented frame (i.e. the synchronously rotating reference frame fixed on the
rotor flux) no superscripts are used. The d-¢ dynamic model of a machine can be expressed
in either a stationary or a rotating reference frame. In a stationary reference frame, the
reference & and ¢’ axes are fixed on the stator. The advantage of a synchronously rotating
frame model is that sinusoidal variables are transformed into d.c. quantities for
steady-state conditions. In induction motor drive systems, the dynamic performance is a

complex one because of the coupling effect between the stator and rotor phases, where

coupling coefficients vary with rotor position. In particular, in the operation of a variable
speed induction motor drive system where field oriented control is not used, when an
incremental torque is demanded, the values of the rotor flux linkage components on both
d and q axes are changed to a new level with a slow transient (e.g. on the order of one
second for a 30 HP motor). Meanwhile, the electromagnetic torque produced has a
damped oscillation with a transient time depending on the rotor electrical time constant
(e.g. about 0.4 s for 30 HP motor) [2].

In 1972, F.Blaschke presented a new technique that decouples motor flux and
torque [3]. K. Hasse [4] together with Blaschke established the Field Oriented Control
theory in which a straightforward linear c.:ontrol law can be established between motor
primary current and torque. In order to accomplish this, they fixed the d-axis in the rotor
synchronous reference frame, which indicates the orientation of the flux linkage to
coincide with the total rotor flux linkage of the machine [5,6]. This is done such that all
magnetization of the motor is along the d-axis. The torque components of the stator
currents are along the g-axis which is orthogonal to the motor flux. The torque can be
controlled in proportion to the stator current component along the g-axis while
maintaining the magnetization constant.

In this way, in field oriented control, sometimes called vector control, an induction
motor is controlled like a separately excited d.c. motor. Under field oriented control, one
can obtain a fast torque response, just as in the case of a d.c. drive system. The final result
is that the a.c. drive system has the performance of a d.c. drive system, but it employs the

simple and rugged squirrel cage induction. Inherent in the field oriented control is the

4 -

problem of flux estimation in the rotor. Originally, rotor flux was calculated using Hall
effect sensors in the machine. The problem is that the Hall effect sensor output drifts with
temperature and it is difficult to compensate. Another method of measurement is to mount
flux coils in the air gap and the corresponding induced voltage may be integrated to obtain
the flux information [1]. Both methods require mounting external devices in the induction

machine and this is not favored by designers.

1.2 Neural Networks

The neural network has a history that spans some five decades [7], but not until
the late nineteen eighties did neural networks emerge as ;a practical computational
technology. Today neural networks can be applied to solve problems that are difficult for
conventional computers or human beings. Neural networks are being adopted for use in a
wide variety of commercial, industrial and military applications. They range from
applications such as pattern recognition, identification, classification, speech and vision to
complex real-time adaptive control systems, and from small scale associative searching to
large scale system optimization and scheduling. In most of these applications, the neural
network, with its self organizing ability and its inherent nature of being an adaptive
process, can be developed within a reasonable time-frame. Often such neural networks can
out perform the conventional technologies (this even includes expert systems). When
embedded in a hardware implementation, a neural network exhibits a high fault tolerance
to system damage. More important, it also offers high overall data throughput rates due to

its parallel processing capabilities. With the many different hardware options available,

5
including VLSI realization, the introduction of neural networks into existing and recently
developed systems can be obtained at a reasonably low cost. Neural networks come in
many different types, each of which has different characteristics and abilities related to
their learning methods, dynamics and structure. In this thesis, we shall explore the use of
neural networks in estimating the rotor flux of an induction machine.

The Neural network (or neural net), has its origins inspired by our biological
neural systems and it is an implementation of an algorithm inspired by research into the
brain. The neural network technology encompasses a wide variety of applications. It learns
from a given set of data, thereby performing classifications, function estimation and
complex contro! sequences. Among these neural nets, the more common and the best
known ones are the MLPs (Multi-Layer Perceptron networks) [8][9], the Hopfield
networks [10], the Kohonen self-organizing maps [11] and the Back-propagation
networks [7][9]. In general, all neural nets share the following advantages when compared

to the conventional technologies :

¢ (Capable of real-time non-linear operations

¢ Inherently adaptive in learning

¢ Self-organizing

® Capable of generalization

® Implementable easily in existing technologies, e.g. VLSI

® Highly fault tolerant

The artificial neural network can be viewed as a dense interconnection of many
non-linear computational elements called neurons, sometimes known as processing
elements (PEs). This network of neurons is then capable of high speed non-linear
computation due to its parallel structure. Non-linearity is built into each individual neuron

(or PE) which sums N weighted inputs and passes the result through a non-linearity,

Weights
U
! wlj
Processing
U, Element Output = f(net)
Inputs —— W,

net=2W, [,
!

_U'.’__W _/

nj

Figure 1.1 Schematic of a Processing Element (PE)

known as the activation function, to give an output. The general schematic of a PE is
shown in Fig. 1.1. By Organizing the processing elements into different layers and by
connecting them \z;lith -proper weights, networks can be created that are capable of
performing tasks that are highly non-linear. The three common types of activation function
are hard limiter, threshold logic element and sigmoidal non-linearity. In order for the
network to “learn” to perform a task, the network is required to go through a “training”

process using some form of training algorithm. The input weights of each neuron are

7

typically adapted during the training operation to improve performance. For the network
to “learn” we mean that the weights in each processing element are adapted so that the
overall network is able to generate the desired output when given a valid input. Hence,
neural networks are a self-learning means of emulating the input/output relationships of
very non-linear systems [12]. From what has been said so far, we see that a neural net

model is specified by its net topology, its neuron characteristics and its training rules.

1.3 Thesis/Chapter Outline

This thesis is composed of eight chapters. They are organized in the following
manner

Chapter 2 is dedicated to the review of the d-g (two axes) theory, matrix
transformations and field oriented control principles .

Chapter 3 serves as a brief review of the basic concepts of artificial neural
networks. A brief history on different ANNs is given as well as a detail mathematical
derivation of the generalized delta rule used to update weights.

Chapter 4 discusses the implementation of a field oriented control drive system,
using models obtained in Chapter 2. The FOC is implemented with the help of very simple
PI controllers.

Chapter 5 introduces the training/learning procedure of the ANN flux estimator.
The multi-layer artificial neural network using error back-propagation is chosen for this
thesis. A discussion on the method used for training and the selection of training

parameters is also presented.

8

Chapter 6 presents the results of ANN flux estimator tests, including test data that

is outside the training data set. Some parameter sensitivity tests are also performed here,
e.g. load torque tests and rotor resistance variation tests.

Some discussions are presented in Chapter 7, followed by conclusions and

suggestions for future work in Chapter 8.

Chapter 2

Field Oriented Control and Flux Estimation

2.1 Introduction

To construct a high performance induction motor drive system, it is desirable to
establish a relationship between the motor electromagnetic torque, i.e. the controlled
variable, and the control variables such as motor voltages or currents. This permits the
motor flux to be controlled at the optimal constant level to achieve a fast speed response.
This is the underlying objective of field oriented control. A review of the two-axes (d-q)

theory and field oriented control principles is given in this chapter.

2.2 Field Oriented Control Theory

In field oriented control, an a.c motor is controlled like a separately excited d.c.
motor [1]. Using Fig. 2.1, the analogy can be made clearer whereby Fig. 2.1(a) depicts the
separately excited d.c. motor equivalent circuit, and Fig. 2.1(b) illustrates field oriented
control of an induction motor. In a d.c. machine, neglecting the armature demagnetization
effect and field saturation, the electromagnetic torque is given by

T.=K,¥J,=KI], @1
where: K',, K, = Proportionality constants

I, = Armature or torque component of current

a

I. = Field or flux component of current

¥, = Air gap flux

10
In a d.c. machine, the control variables /, and /, can be considered as orthogonal or
decoupled vectors. In normal operation, the field current I is set to maintain the rated
field flux and torque is changed by changing the armature current. Since the current L or

<I_f__ L,

E L, Ve

Armature Circuit Field circuit

(a) Separately excited d.c. motor

i Inverter and Control I.M.

(b) Field oriented control induction motor

Figure 2.1 Induction motor and d.c. machine analogy
the corresponding field flux is decoupled from the armature current I, the torque
sensitivity remains maximum in both transient and steady-state operations. This mode of
control can be extended to an induction motor, if the machine operation is considered in a
synchronously rotating reference frame where the sinusoidal variables appear to be d.c.

quantities. In Fig. 2.1(b), the command variables to the inverter and control block are i

11

and i° . The currents 7, and i

o are, respectively, direct-axis component and

as
quadrature-axis component of the stator current, where both of these quantities are in the
rotor synchronous rotating reference frame. In field oriented control, i, is analogous to
the field current /. and 7, is analogous to the armature current /, of a d.c. machine.
Torque then can be expressed as previously given as Eqn. (2.1),

for a d.c. machine :

T,=K, ¥, =K[] (2.2)

and for a induction motor in the rotor synchronous rotating frame :

A
T, =K, ¥,i, =K\ij, (2.3)
where : . K',,K,, K., K, = proportionality constant

v, ’1/>m = Air gap flux
The principle of field oriented control can be illustrated by means of a phasor
diagram. The equivalent circuit and phasor diagram are shown in Fig. 2.2, where I_is the
magnetizing current and I, is the torque current corresponding to the given phasor I, and
I, represents the per-phase stator current of an induction machine. Hence in the complex
plane,
I =1 cos® (2.4)
I, =1 sin® (2.5)
The rotor leakage inductance of the machine is assumed to be negligible [13].
In field oriented control theory, a control law can be established such that I_ is

maintained constant, and thereby making the rotor flux constant. As for I, it is controlled

12

R, L,
I,
L| L. I SRS
(a)
F;FZAL AXIS
A] IsZ
Itl Isl
62
0, I
4% P >
IMAGINARY AXIS
(b)

Figure 2.2 Per-phase equivalent circuit and phasor diagram for the induction motor

13
in proportion to the torque required. Under field oriented control, the stator current
phasor in Fig. 2.2(b) becomes I, for a given small torque and I, when the torque is larger.

The amplitude, I, and the phase angle, 8, of the stator current phasor is given by the

expression:

Is = 1/13, +1? (2.6)

O =tan™! (L (2.7)
I
From the equivalent circuit:
R,
Liln®, = Tlt (28)
where : o, = 2xf,; f, is the stator excitation frequency.

The angular slip frequency is then given by:
Rr I t

Os1 = Z,_,,-E (2.9)

There are three key variables in field oriented control of induction motors, namely,
the stator excitation frequency (synchronous frequency), the amplitude, and the phase
angle of the stator current phasor. These quantities should be controlled so as to satisfy
Eqns. (2.6), (2.7) and (2.9). Note that a drive system employing field oriented control will
not necessarily solve Eqns. (2.6), (2.7) and (2.9) explicitly, but it must do so implicitly.

In a drive system where the speed is adjustable, the machine normally constitutes
an element within a feedback loop [1], hence we need to take into consideration its

dynamic behavior. The dynamic performance of an a.c. machine is complex because of the

coupling effect between the stator and rotor phases, where the coupling coefficients vary

14

with rotor position. The machine can be described by differential equations with

time-varying coefficients.

2.2.1 Principle of Variable Transformation

Given an induction motor with a balanced three-phase supply, the d-q axis or two
axis theory is normally used for dynamic modeling. In this theory, time varying parameters
are eliminated and the variables and parameters are expressed in orthogonal or mutually
decoupled direct (d) and quadrature (g) axis components in the synchronous rotating
frame reference. It is convenient to represent the axes in either the stationary or one of
several rotating reference frames. In the stationary reference frame the d-q axis is fixed on
the stator and is denoted by & and ¢, respectively. On the other hand, the d-q axes can be
rotating at synchronous speed (referenced for example to the stator or rotor flux) or fixed
on the rotor. For the synchronous rotating reference frame fixed on the stator magnetic
field, the d-q axes are commonly denoted by & and ¢°. For the field oriented frame (i.e. the
synchronously rotating reference frame fixed on the rotor flux) no superscripts are used.

The equations developed in this section and the following section are based on
[1]. The principle of variable transformation is shown in Fig. 2.3, where there are three
physical phases as, bs, cs, (fixed relative to the stator datum), the stationary reference
frame axes 4 and ¢’ and the rotating reference frame axes & and ¢°. The angle x is
arbitrary between the phase as-axis and the stator datum i.e. dP-axis. The mathematical
transformation for stator voltages, designated as Vs, (or currents) from the physical three

phase and d’-q’ two phase frame fixed on the stator is given by :

15

Vsig =T Vs, , (2.10)
where : Vsid = [V Vil @.11)
V85 = [Vas Vi VeI (2.12)

cos(x) cos(x—%F) cos(x—

7=2| sin(®) sinx-%) sin(x- L& (2.13)
1 1 1
2 2 2
bs-axis A
'\me
°-axis
fe=an.t _
pd-axis
o j\x Stator Datum
T aas-axis
L
cs-axis d°-axis
' .
d’-axis

Figure 2.3 Axes transformations

16

conversely
Vs, =T Vs;2? (2.14)
cos(x) sin(x) 1
where T'=| cosx—-%) sin(x-Z&) 1 (2.15)
4n : 4
cos(x—3) sin(x—F 1

It is convenient to set x = 0, so that the d *-axis coincides with the as-axis. With

x =0 we have :

i} e
! 2 2
.2 5 (2.16)
= O s —
3 2 2
1 1 1
| 2 2 2|
[0 1]
and N I A (2.17)
I =| 7 2
1B
L 2 2]

The transformation between the o’-¢° stationary reference frame and the d-q
rotating reference frame is given by :
Vs, =U Vs’ (2.18)
where : Vs, = [Vg, Vel (2.19)

Vs = [V, Vil (2.20)

17

cosB., -—sinf,
U= (2.21)
sin@, cosO,

conversely

Vsl =U" Vs, (2.22)

cosB. sinf.
where : U'= (2.23)
—sinB, cosO,
and 0, is the angle of the stator synchronously rotating frame (i.e. 6, = o f).
A similar type of operation can be done for the stator currents. Now, assume for example,
that the phase voltages are balanced and sinusoidal. Then by simplifying Eqns. (2.10) and

(2.14) in the synchronously rotating reference frame we have (zero-sequence components

in T & T have been neglected) :

Vos = vfp (224)
Vos = "';—VZS - —‘/2§_st (225)
1, , 3
Ves = —Evfls + T\’ds (226)
and vf]s = %Vas - %v bs — %’V cs = Vas (227)
vy, = —vas + '_l—vcs (2.28)
5T '

For a balanced, fixed voltage three-phase supply let

Vas = VnCOS(® 1) (2.29)

18~

Vis = Vincos(@ef — ‘—2:-,)75 (2.30)
_ 2n
st — sn,COS(COet + ? (2.3 1)
where : V., is the stator peak voltage

Substituting Eqn. (2.29), (2.30) and (2.31) into (2.27) and (2.28) we obtain:

Vas = VsmCos(w) (2.32)

Vs = —VimSin(@.1) (2.33)
Again, substituting Eqn. (2.32) and (2.33) into (2.18) we have :

Ve, = Vo : (2.34)
Vg =0 (2.35)
Note that the sinusoidal variables appear as dc quantities in the stator synchronously

rotating reference frame for steady-state operation (c.f. Appendix A). This is the primary

advantage of using the d-q axis theory.

2.2.2 Synchronous rotating frame model
From the d-g equivalent circuit in Fig. 2.4, the stator voltages in the stator

synchronously rotating reference frame are given by :

Vo =RI+ e + 0¥, (2.36)
dt
Vo, =Ri, + Pas o e (2.37)

dt e qs

19

Rs _qs__> Lh= Ls' Lm Llr= Lr' Lm ‘-_qr Rl‘
T ()
o‘)echds (me" wr)‘yedr
v ¥ oy °
gs qs Y qr V qr
N ///
AN // ’
\ V%
N
' @
ibds icdr
R g ‘Lk= Ls- Lm Lll= Lr- Lm —— R‘-

©¥°, / (@~ 0)¥,
) Lm lP'-‘
Vcds ¥ ds g dr Vcdr
\\\ Vi /
N /
AN Vs
~ \ '/
)

Figure 2.4 D - () equivalent circuits at synchronously rotating reference frame :

(a) q°- axis circuit; (b) d°- axis circuit

With the substitution of @, = 0 in the above two equations, the stator equations in the

stationary & - ¢° frame results. For a stationary rotor, the rotor voltage equations for a

doubly fed machine will be similar to Eqns. (2.36) and (2.37) :

e

B o
v;r =Rr12r+—7d—tg—+(l)elyzr (238)

20

. d¥; .
Vi = Rofgy + —L 0¥, (2.39)
With the rotor moving at a speed of @, the d - g axes fixed on the rotor move at a speed

of w, — , relative to the synchronous rotating reference frame. Hence for the

synchronous rotating reference frame Eqns. (2.38) and (2.39) can be re-written as :

e

Ve, = Ryit, + th’— +(e— @)Y, (2.40)
ve :Rrisr'l‘i—ly_d—r'_(me_o)r)lyer (2.41)
dr dt q

The following equations are the flux linkage expressions derived from the equivalent

circuit.
Wos = Lisige + L(iG +15,) | (2.42)
¥ = LurtGe + Ln(igs +15,) (2.43)
W5 = Lisigs + Ligs +i5,) (2.44)
W, = Lyil + Lu(iG +i5,) (2.45)

where : ¥, = d"-Axis rotor flux linkage
¥, = d-Axis stator flux linkage
¥, = ¢-Axis rotor flux linkage

¥, = ¢°-Axis stator flux linkage

L,

s

Stator leakage inductance
L, = Rotor leakage inductance

L

m

]

Magnetizing inductance

21

]

Instantaneous d*-axis rotor current

~.
LY
]

s = Instantaneous d"-axis stator current

Instantaneous g*-axis rotor current

I

Instantaneous g°-axis stator current
Using Eqns. (2.36), (2.37), (2.40) and (2.41), the model of electrical dynamics in terms of

voltages and currents in matrix form is as follows :

vge]s Rs + SL_g (DeLs SLm w eLm i;s

Vﬁs — ~WeLs Rs+5L; ~Welpy SL I Zs (2.46)
vsr SLm (O)e _mr)L;n Rr +SLr ((oe _(Dr)Lr i;r

v:’r “‘((De - (Dr)Lm SLm "‘((De - (’)r)Lr Rr + SLr i;,.

where : s = the Laplace operator

i

v, = Instantaneous d"-axis stator voltage

v, = Instantaneous d’-axis rotor voltage
V. = Instantaneous ¢"-axis stator voltage
V', = Instantaneous g’-axis rotor voltage
R, = Rotor resistance

R, = Stator resistance

®, = Stator frequency (rad/s)

®, = Rotor electrical speed (rad/s)

t~
I

Stator inductance

h
i

Rotor inductance
For a squirrel cage motor or single fed machine, the voltages v, and v°, should be zero.

For a steady-state solution of the above equation, all s-related terms should be zero.

22
During steady-state, all variables in the synchronously rotating reference frame appear as
d.c. quantities with sinusoidal excitation.

Electrical rotor speed can be related to torque as follows :

T Com 2 (Dr

2.47
Ie=l =9 a (247)
where : T, = Load torque
J = System inertia
Developed torque in terms of d°-¢° components is given by :
e = "()(‘Pdm .qr miteir) (248)
In terms of fluxes and currents using relations found in Eqn. (2.10) to (2.13) :
T = 3(2) (¥ait, - ¥init) (2.49)
()(lPdqus lIlqs’ds (2.50)
3
= ’2‘()Lm(lqsldr Ids qr) (2,5])

Combining Eqns. (2.46), (2.47) and (2.51) we have the complete model of the
electromechanical dynamics of an induction machine.

It should be mentioned that the dc model obtained is based on the assumptions
noted above. Non-sinusoidal and /or unbalanced excitation wave forms will not yield a dc
model! However, in the case of “square-wave” Current Source Inverter-Induction Motor
(CSI-IM) drives, the currents of the inverter are balanced with a modified rectangular
waveform. This kind of non-sinusoidal waveform can be analyzed into its Fourier
components and a reference speed can be chosen for each component. Regarding the issue

of harmonics, these harmonics are only weakly coupled to the motor shaft via

23

electromagnetic interactions. Hence, the study of the machine’s electromechanical
properties is only slightly affected by neglecting these harmonics. Moreover, modern
switch-mode induction motor drives, employing bipolar junction transistor (BJT), or
insulated gate bipolar transistor (IGBT), or gate turn-off (GTO) devices, apply nearly
sinusoidal three-phase currents to the induction motor. Therefore this model is quite valid

for most modern drive application.

2.3 Direct and Indirect Field Oriented Control
As noted in Chapter 1, there are two methods to obtain the magnitude and
position of the rotor flux, namely :
1) the direct method, where the rotor flux is determined, based on direct
measurement of air-gap or stator flux; and

2) the indirect method, where the rotor flux is calculated using motor flux models.

2.3.1 Direct Field Oriented Control

Direct method flux sensing consists of two sensing devices that are placed
orthogonal to each other as shown in Fig. 2.5. Two methods are discussed here namely,
the Hall sensing and the sensing coils methods.

In the Hall sensing method, the Hall effect sensors are placed in the air gap of the
stator of the induction motor, and signals representing the local flux density are produced
by integrating the measurements of substantial number of suitably placed transducers. One

disadvantage of this method is that a complex adjustable filter is needed since strong slot

24

harmonics with speed dependent frequency are superimposed on the fundamental signal
[14]. Another disadvantage with Hall effect sensors is due to its semiconductor nature, i.e.
they are subject to sever thermal and mechanical stress and requires a modified motor. For
the above reasons the Hall sensing technique is not an economical solution for many

general applications.

ILM.
. Sensors
Field Oriented a /—
Control ib /
and
Inverter ic . \
T \ Y c ‘Pd m
Flux
Calculation ” Fam

Figure 2.5 Direct field oriented control

In the sensing coils method, sensing coils are physically installed in the induction
machine’s stator, the voltages across the sensing coils are proportional to the flux change
which is then integrated to represent the main flux of the motor. The sensing coils have
certain qualities that eradicate the problems faced by the Hall sensors, that being, the
sensing coils have avoided using active semiconductor components within the motor and

at the same time since the sensing coils behave like low pass filters, undesirable slot

25
harmonics are filtered out. One major disadvantage of this technique is that the flux cannot
be sensed at zero speed, hence making it unsuitable for position control.

Both the above methods require special modifications to be made to the motor

therefore making standard production induction motors expensive to retrofit.

2.3.2 Indirect Field Oriented Control

To circumvent the limitations imposed by the direct method, the indirect method
is used. To acquire the rotor flux of a standard induction motor, the equations of the
motor flux model are solved in real time using measurable stator currents and rotor speed

as driving functions. Fig. 2.6 shows a block diagram on how this is to be done.

A
.e
s Lm b
S TR +1
Ty
iegs 3P Lm Te * \ P 1 (Dfa
22 Lr X 27 T ‘

Figure 2.6 Induction machine model for indirect FOC

A

The advantage of this technique is that it does not require any form of flux sensing device
to be placed inside the induction motor. Moreover, flux can be obtained even down to

zero frequency making it attractive for position control. However, the major setback of

26

indirect field oriented control is the variations of rotor time constant T, where T, - L/R.
Since the rotor time constant Ty is dependent on rotor resistance and rotor resistance
varies substantially due to temperature variations and skin effect, the rotor time constant
will affect the accuracy of the flux magnitude and angle estimation. The result will be a

deterioration in the quality of control and system performance.

2.3.3 Generalized Field Oriented Control System

In Fig. 2.7, the generalized field oriented control system is presented. Note that
the dashed lines indicates a signal that may or may not be required whereas a solid line
indicates a signal that is required for field oriented control. Note also that the d-q axes
without a supergcript ‘e’ refer to the field oriented frame (i.e. the synchronously rotating
reference frame fixed on the rotor magnetic field). In the diagram there are two inputs, the
torque command T, (established by speed or position feedback) and flux command, ",
(usually constant). The torque reference, v'qs or i'q., and magnetizing reference input, v’
or i",, are produced by separate controllers. These voltages or currents require the matrix
U™, which is the matrix used to convert the synchronously rotating reference frame to a
stationary reference frame. Their output is consequently used to convert the two-phase
quantities to the physical three-phase quantities via the matrix T"'. For a similar reason, in
the feedback path the physical three-phase variables are transformed back into two-phase
quantities from a stationary to synchronously rotating reference frame. The above
mentioned process is essentially a very complex one, due to the number of coordinate

changes from one type of phase to another and from a stationary to a rotating reference

27
frame and vice versa. It has been made practical by the advent of microprocessors and
digital signal processors.

Note that a number of systems are represented in Fig. 2.7. To begin with, the flux
magnitude, field angle and torque calculation block may require phase voltages or phase
currents or rotor speed or almost any combination of these variables [15]. Second, the
controllers block can generate field oriented d-q voltages, or alternatively d-g currents.
Following rotating to stationary frame and two-phase to three-phase transformations,
these become the voltaée, or alternatively current, phase commands for the inverter.
Though it may be convenient to use a voltage source inverter (VSI) for voltage phase
commands and a current source inverter (CSI) for current phase commands, this is not
necessarily the case. For example, current phase commands can be applied to a VSI with
current feedback implemented for the inverter itself.

With the introduction of a rotor speed feedback signal, one has a wide range of

choices for the speed controller implementation. A typical scheme is shown in Fig. 2.8 [1].
In the diagram, the magnitude of rotor flux linkage, v, and slip frequency, , can be
calculated using Eqns. (2.64) and (2.65), respectively. The slip frequency angle, 6, can be
obtained by integrating ® . Angle 0, is the slip angle which is required to adjust the
inclination of the d-axis, so that the magnetization of the motor is along this axis. The real

rotated electrical rotor angle, 6, is then added to 6, to give the instantaneous rotor flux

position angle.

Figure 2.7 General control scheme for indirect field oriented control of an induction motor.

T - it . s 5
¢ vV, Or i, Rotatin Veor 1 . .
v, Controllers | . . IStationary Frame|s .. ;= | Transformation [777 Inverter
v e Or 1 d v ds or 1 ds
——_——’ —————’s U'l : T'l
A F 3 A
Tc: W: lds l‘b ¢
: A Stationary
E to
i 7
: 1 Rotating Frame Z
: U “
: ¢ isds isqs
i i
: DA 3¢ to 2 .
! : n
: v, . Transformation [w7y o
' 1 ds T
: T Flux Magnitude, [~ """"""1
S —— Field Angle and
Torque Calc. V'
""""" 3¢ to 2¢
Transformation |__ _th _______ H/
¢ - - Y idi _____ T
1)

Tacho.
Gen.

8C

29

iqs LmRr SNy Ol | 1 B4 O
Lr - s +

ids Lm 1
1+sTR §

Figure 2.8 Rotor speed feedback scheme

2.4 Flux estimation

The objective of this thesis is to be able to estimate the rotor flux magnitude and
angular position as accurately and as quickly as possible (at least as accurately and as
quickly as required for field oriented control). Only the indirect method of field oriented
control will be discussed in this thesis. With the help of the phasor diagram given in
Fig. 2.9 the procedure of obtaining a conventional rotor flux estimation and the principle

of indirect field oriented control is explained. In Fig. 2.9, note that the &-¢° axes are fixed

on the stator while the &°-¢” axes rotate at synchronous angular velocity ®_ as shown. The

30

g°-axis is at the angular position 6, with respect to the g*-axis at any instance. The angle 0,

is given by :
0.=0,+0y (2.52)
=(0r+ o)t
= Wel
where : ©, = Rotor angular position, ® t

8, = Slip angular position, ®_t
(‘oc = 0‘)r + msl
The rotor flux ¥, is made up of the air gap flux and the rotor leakage flux and it is aligned

to the d-axis. The following equations are written based on the synchronously rotating

reference frame d” - ¢° equivalent circuits (i.e. c.f. Fig. 2.4) :

d¥e,
dtq +Ryis + (e —0,)¥5 =0 (2.53)
dt"f +RiG — (@~ 0,)¥E =0 (2.54)

from Eqns. (2.43) and (2.45) :

Wer = Lrigy+ L (2.55)
Wi = Lrig + Lmif, (2.56)
Rearranging we have :
. l e Lm ¥
I;r = '—r\qu - _qus (257)

.e 1we Lmee
Iy = L—r\Pdr - 'L—r-lds (258)

31

By substituting (2.57) and (2.58) into (2.53) and (2.54) the rotor currents can be removed:

Electrical axis

Mechanical axis
.y chanical axi

I)q

Figure 2.9 Phasor diagram for Indirect Field Oriented Control

dlIler R,. e Lm .0 e
a LY R oY =0 (2.59)
_seiL Rrge Lmp e _ e —
TG PrRi% — 0¥, =0 (2.60)
where : Wy=0, -0,

When ¥ =0, ¥, will be aligned with the d"-axis in the synchronously rotating

reference frame (i.e. angle = 0, hence the field angle ¢ now equals the synchronous angle

0,). Let this be the case for steady-state operation with zero torque load, neglecting stator

32°
and rotor losses. This, therefore is a definition for the position of the & axis. This is shown
in Fig. 2.10.

This figure illustrates the critical difference between 8, the position of the stator
flux in the stationary frame and ¢, the position of the rotor flux in the stationary frame. In
the literature, there is occasionally some confusion between these two quantities. One
purpose of field oriented control is to determine the value of ¢, the field angle, at all times,
as required for coordinate transformations (i.e. for U and U™ matrix in Fig. 2.7). Note that
¢ = 6, + B. To re-emphasize, during steady-state, zero load torque operation, f = 0
neglecting any losses. During steady-state, constant load torque operation, B is a small
negative constant quantity (typically between 0° and -30°). Let us now define the d axis by
the following conditions (note no superscript is used to denote the field oriented axes) :

d‘yqr

Yo=—4

=0

Y=Y, = const

a¥ dr
dt

With decoupling control Eqn. (2.59) and (2.60) becomes :

=0

Ly R;.. .
W5t = '(ITr'(L—r)Iqs (2.61)
erlPr _ .
Rr di +"Pr "'Lmldx (262)
'& = &Lmids - &\P;

or dr L, L, " (2.63)

33

or fgs = ! -ZSTR\P;' (264)
Substituting (2.64) into (2.61) we have :
_ 1+sTr i‘ﬁ
05 = “Tr s (2.65)
where : I,=L/R,
s =d/dt

From Eqn. (2.63), we see that rotor flux is a simple first order differential equation which
is dependent on the d-axis current of the stator in the synchronously rotating reference
frame .

Note that one can derive equations similar to Eqns. 2.55 and 2.56 in the field

oriented frame. They are simply :
Wor=Lyigr+Liigs (2.66)

\Pdr = Lridr +Lmids (267)

These last two equations are very relevant to the approach that we have chosen to obtain

field oriented control, as is discussed in Chapter 4.

de
d
o

Figure 2.10 Decoupling control

34

Chapter 3

Artificial Neural Networks

3.1 Introduction to Artificial Neural Networks

The human brain is the most complex computing device known to man. The
brain’s powerful thinking, remembering and problem solving capabilities have inspired
many scientists to attempt computer modeling of its operations.

The neuron is the fundamental cellular unit of the entire nervous system and in
particular of the brain. Each neuron is a simple processing unit which receives and
combines signals from many other neurons through input elements called dendrites. If the
combined signal is strong enough, it activates the firing of the neuron, which produces an
output signal; the path of the output signal is along a component of a cell called the axon.
The sigmoid arrives at the synapse of the neuron for distribution to the detrites of other
neurons. Note that the signals are transferred by an electrochemical process (i.e. some of
the steps are electrical in nature and some are chemical in nature).

The brain consists of tens of billions of neurons densely interconnected. The axon
(output path) of a neuron splits up and connects to dendrites (input paths) of other
neurons through a junction referred to as a synaptic cleft. The transmission across this
junction is chemical in nature and the amount of signal transferred depends on the
presence of certain chemicals (neuro-transmitters) released by the axon and received by

the dendrites. This synaptic efficiency (or “strength”) is what is modified when the brain

35

learns. The synapse combined with the processing of the information in the neuron form
the basic memory mechanism of the brain.

The major structures of a typical nerve cell is shown in Fig. 3.1. The cell consists
of dendrites, the cell body, and a single axon. The axon of many neurons is surrounded by
a membrane called myelin sheath. Nodes of Ranvier interrupt the myelin sheath
periodically along the length of the axon. Synapses connect the axons of one neuron to

various parts of other neurons.

Nodes of Ranvier Myelin Sheath

Axon Hillock

Axon

Nucleus

/ Céll Body
Dendrites
Figure 3.1 Biological nerve cell
In an artificial neural network, the unit analogous to the biological neuron is
referred to as the “processing element.” A processing element (PE) has many input paths
(dendrites) and combines, usually by simple weighted summation, the values of these input
paths. The result is an internal activity level for the processing element. The combined

input is then modified by a transfer function. This function can be a threshold function

36
which passes information only if the combined activity level reaches a certain level, or it
can be a continuous function of the combined input. The output value of the transfer
function is generally passed directly to the output path of the processing element. The
output paths of a processing element can be connected to the input paths of other

processing elements through connection weights which correspond to the synaptic

Weights
U,
W,
Processing
Inputs U, W Element (net)
ij

net=2X W, U,
1

U, " Vel

nj

Figure 3.2 Schematic of a processing element (PE).

strength of neural connections. Since each connection has a corresponding weight, the
signals on the input lines to a processing elements are modified by these weights prior to
being summed. Thus, the summation function is a weight summation. In itself, this
simplified model of a neuron is not very interesting, however the interesting effects result
from the ways neurons are interconnected. In this chapter, a thorough review and

background of artificial neural networks is provided.

37
3.2 History of Artificial Neural Networks

In 1943, a neurobiologist, Warren McCulloch and a statistician, Walter Pitts,
published a watershed paper titled “A Logical Calculus of Ideas Imminent in Nervous
Activity.” This paper was an inspiration that helped to launch three diverse fields. One of
" these was early digital computers, as John von Neumann saw the paper as a blueprint for
“electronic brains.” Marvin Minsky, one of the most prominent researchers in Artificial
Intelligence, became enthralled with the idea of macroscopic intelligence from this paper,
which later led to his interest in black-box macroscopic intelligence, the birthplace of
expert systems. Frank Rosenblatt, a compatriot of Minsky at the Bronx High School of
Science, became intrigued with the computations of the eye and this interest led him to
invent the perceptron [16].

In 1956, artificial intelligence pioneers Marvin Minsky, John McCarthy, Nathanial
Rochester and Claude Shannon organized the first conference on artificial intelligence. It
was at this conference that researchers from all over the world gathered to discuss the
potential use of computers in simulation of “every aspect of learning or any other feature
of intelligence.” It was at this landmark conference that the fields of neural computing and
artificial intelligence were launched. Nathanial Rochester of IBM Research, presented a
neural network model that he had been building. Using several hundred simulated neurons
and interconnections, Rochester constructed a system to explore how such a network
would respond to environmental stimuli. The results of this model consisted of piles of
network generated numerical data, which Rochester did not know how to interpret. This

was the first known software simulation of neural computing networks.

38

3.2.1 Rosenblatt’s Perceptron

In 1957, Frank Rosenblatt at Cornell, published the first major research project in
neural computing. The development of an element called a “perceptron.” Rosenblatt’s“
perceptron sparked a great amount of research interest in neural computing.

The perceptron is a pattern classification system which could identify both abstract
and geometric patterns. The first perceptron was capable of learning and was robust in
that its operation was only degraded after damage to component parts. In addition, the
perceptron was capable of making limited generalizations and could properly categorize
patterns despite noise in the input.

The perceptron was primarily airﬁed at optical pattern recognition. The grid of
400 photocells, corresponding to light sensitive neurons in the retina, received the primary
optical stimuli. These photocells were connected to associator units as shown in Fig. 3.3,
that collected electrical impulses from the photocells. Connections between the associator
units and the photocells were made by randomly wiring the associators to the cells. If the
input from the cells exceeded a certain threshold, the associator units signaled response
units to produce output.

Since it was a developméntal device, the perceptron also had certain limitations.
One of these would be emphasized by Minsky and Papert, who discovered that the
perceptron was unable to represent the basic Exclusive OR (XOR) function. This is the
result of the linear nature of the perceptron. One of the most significant changes made
since Rosenblatt’s work in the 60’s has been the development of multi-layer systems which

can learn and categorize complex class categories. This is typically achieved by using a

39

non-linear transfer function, but can also arise from normalization and competition.

Sensory
Input

Output

Photocells Randomly connected

i) Summer
associated units

Figure 3.3 The perceptron

3.2.2 Minsky and Papert’s Perceptron

In the mid 1960°s, Marvin Minsky and Seymour Papert, both of MIT’s Research
Laboratory of Electronics, began work on an in-depth critique of the perceptron. The
book Perceptrons, published in 1969 (and re-published recently), is a detailed
mathematical analysis of an abstract version of Rosenblatt’s perceptron. The main result of
this book was Minsky and Papert’s conclusion that the perceptron cannot handle inputs
that are visually non-local. The conclusion this work reported to the world—that the

perceptron and neural computing were basically “not interesting” subjects to

40

study—drastically decreased the amount of funds and therefore research in neural

computing at the time.

3.2.3 Widrow’s Adaptive Linear Element

In 1959, Bernard Widrow, at Stanford, developed an adaptive linear element

called, “adaline” (Adaptive Linear Neuron), based on simple neuron-like elements. The
Adaline and a two layer variant, the “madaline” (Multiple Adaline) were used for a variety
of applications including speech recognition, weather prediction, character recognition and
adaptive control. Widrow used the adaptive linear element algorithm to develop adaptive
filters that eliminated echoes on phone lines. This was the first time a neural computing

system was applied to a major real-world problem.

3.2.4 Kohonen’s Network

Teuvo Kohonen of Helsinki Technical University in Finland has been doing
fundamental work in adaptive learning and associative memories since the early 1970’s.
He is responsible for the description and analysis of a large scale of adaptation rules: rules
in which weights are modified in a manner only dependent on the previous weight value
and the post and pre-synaptic values.

Another contribution that Kohonen made is the principle of competitive learning
in which processing elements compete to respond to an input stimulus and the winner

adapts itself to respond more strongly to that stimulus. Such learning is ﬁnsupervised in

41

that the internal organization of the network is governed only by the input stimuli. The
competitive learning paradigm was the result of a general study of self-organizing maps
which was motivated by various physiological observations about how information

received at the sensory organs is mapped topologically onto one and two dimensional

areas of the brain.

3.2.5 Back-propagation Networks

The back-propagation network, the most popular network for current applications
of artificial neural networks was first formalized in 1974 by Werbos [17], and later by
Parker [18] and Rumelhart and McClelland [9]. One of the major research groups of
recent years has been the PDP (Parallel Distributed Processing) group, started by
Rumethart, McClelland and Hinton in 1982.

Back-propagation is a technique for solving the credit assignment problem posed
by the Minsky and Papert in Perceptrons [16]. A perceptron network is able to train the
output units to learn to classify patterns of inputs, provided that the classes are “linearly
separable.” More complex non-linearly separable classes can be separated with a
multi-layer network. However, if the output is in error, how does one determine which
processing element or inter-connection to adjust? This is the credit assignment problem.
Back-propagation solves this problem by assuming all processing elements and

connections are somewhat to blame for the erroneous response.

42
3.3 The Back-propagation Approach

Conceptually, a back-propagation network is made up of interconnected nodes
arranged in at least three layers. The input layer is passive; it merely receives the input
vectors (data patterns) passing into the network. The number of input nodes consequently
equals the number of measured data values (vector components) presented to the network.
In contrast, both the hidden and output layer actively process data. The output layer,
produces the network result as its name suggests. In a back-propagation network, the
result is a set of output vectors, one value per output node.

The hidden layer has no direct connection to the input or the output. Introducing
this intermediate layer permits back-propagation to model non-linear functions with
greater complexity. Choosing the number of hidden layer nodes almost invariably involves
experimentation.

A single node has many input values but only one output value. Each input is a
single data value presented to the node, usually through a connection from a preceding
layer. An extra input known as the bias for the processing element acts as the reference
level. On a serial computer, the microprocessor emulates one node at a time. On a parallel
computer, each such element typically maps to a single physical processor. Associated
with each connection is an adjustable parameter called a weight. Basically, a node
calculates the weighted sum of its input, then passes the sum through a function to
produce a result. The transfer function is typically a Sigmoid, a monotonic S-shaped
curve. The attenuation at the upper and lower limbs of the sigmoid constrains the sum

with fixed limits.

43

The back-propagation algorithm’s strength is its ability to change the values of its
weights in response to errors. It does this automatically during training, hence, training
requires a series of input patterns tagged with their desired output patterns. During
training, the network passes each input pattern through the hidden layer to the output
layer to generate a result for each output node (see Figs. 3.4(a) to 3.4(f)). It then
compares the desired and the actual results. The differences are the output layer errors,
which the network passes back to the hidden layer using the same weighted connections.
This backward propagation of errors gives the algorithm its name. Subsequently, each
hidden node calculates the weighted sum of the back-propagated errors to find its
contribution to the known outpﬁt errors.

After each output and each hidden node find its error value, it adjusts its weight to
reduce its error. The equation that changes the weights—called the delfa rule—is
designed to minimize the network’s sum-squared error. The network’s overall accuracy is
improved by the aggregate corrections during training. When the network can process
input patterns with sufficient accuracy, the weights are saved to preserve what it has
learned.

After training, the network should be tested with known data that was not used in
the training data set. The network’s accuracy with patterns outside the training set is

called generalization and indicates its reliability in an application.

44

— P Y ‘ <-) Network Nodes

® Comnection Weights

—— Connections

Input layer Hidden Layer Output Layer

Figure 3.4(a) A typical Back-propagation neural network. During training, the input
layer propagates a pattern to all hidden nodes. These calculate a weighted
sum of inputs and are passed through a transfer function.

() Network Nodes

® Connection Weights

——» Connections

Input layer Hidden Layer QOutput Layer

Figure 3.4(b) The hidden nodes propagate their results to all output nodes. Each output

node then calculates a weighted sum and passes it typically through the
same transfer function to generate an actual result.

- (.ﬁ) Network Nodes

® Connection Weights

—— Connections

see

- ()—-—» Desired - Actual = Error

Input layer

Hidden Layer Output Layer

Figure 3.4(c) Each output node subsequently subtracts its actual result from its desired

result, which yields the output error.

—_ <V) (~) Network Nodes

., E

® Connection Weights
—(_ X |

—» Connections

Input layer

Hidden Layer

QOutput Layer

Figure 3.4(d) The output nodes calculate the derivatives of the error vector components

with respect to the weights, subsequently passing these derivatives back

to the hidden layer. The back-propagation of error gives this neural
network its name.

45

46

() Network Nodes

Fd

—

® Connection Weights

~——p Connections

Input layer Hidden Layer Output Layer

Figure 3.4(e) Each hidden node calculates the weighted sum of the error derivatives to
find its contribution to the output error.

: ;(\, .)__’ (A) Network Nodes

® Connection Weights

——— Connections

Input layer Hidden Layer Output Layer

Figure 3.4(f) Each hidden layer node and output layer node changes its weight
according to a predetermined mathematical criterion, i.e. the least mean
squares algorithm, to reduce its error.

47

When training and testing are completed, the network is ready to process
unknown data. Applying a pattern to the input produces a corresponding pattern at the
output. The network therefore acts as a model of a function, matching input patterns to
output patterns. It learns this association solely from the training data, even if the equation

describing the function is non-linear, unknown or both.

3.4 The Generalized Delta Rule

In this section, a formal mathematical description of the back-propagation
operation is presented. A detailed derivation of the generalized delta rule (GDR), which is
the learning algorithm for the network is also discussed [19]. Fig. 3.5 serves as a reference
diagram for most of the discussions. The back-propagation network is a layered,
feedforward network that is fully interconnected by layers. Therefore, there are no
feedback connections and no connections that bypass one layer to go to another directly.

A mapping network is defined as one that is able to compute some functional

relationship between its input and its output. For simple functions like the mapping of o to

sin (o) where the functional relationship is known, a neural network is not required.
However, to perform a complicated mapping where the functional relationship is not
known in advance but where some correct mappings are known, a neural network is most
applicable. In this situation the ability of neural network to discover its own algorithms is

extremely useful.

43

Y Yi Ym
1 f:(“et;k.)T T

’ netgk)

oo < e

J

Figure 3.5 Three layer back-propagation network. The bias weights, ®"j and ®°, and the
bias units are optional. The bias units provide a fictitious input value of 1 on
a connection to the bias weight. The bias weight can be treated like any
other weight.

Input vectors pairs P are as follows: (x,,y,), (X,,¥,),.., (Xp¥p), Which are examples
of a functional mapping y = ¢(x). To train the network so that it will learn the
approximation o, where o = y' = ¢'(x), where the “ ' ” denotes the differential operator.
Learning in a neural network means finding an appropriate set of weights. The learning
technique used here will be a generalization of the least mean squares (LMS) rule. Due to

possible non-linearity mapping function, as well as its multidimensional nature, the

49

iterative version of the simple least-squares method called a steepest-descent technique is
employed.

If an input vector x; = (X,,,X,....X,y)' is applied to input layer (Fig. 3.5), the input

units propagate the values to the hidden layers units. The net input to the j ™ hidden unit is

n X n h

net,, =El W;iXpi +0; 3.1)

where w,”" is the weight on the connection from the i input unit, and 8 is the- Bias term.

The h superscript refers to quantities on the hidden layer. Assuming that the activation of

this node is equal to the net input; then the output of this node is

iy =1 (nety)) (3.2)
The equations for the output nodes are
£° __é 0. eo
net =4 Wil pi + 0 (3.3)
op = fr(nety;) (3.4)

where the “0” superscript refers to quantities on the output layer.

The procedure for training the network is as follows:

1) Apply an input vector to the network and calculate the corresponding

output values.

2) Compare the actual outputs with the correct outputs and determine a

measure of the error.

3) Determine in which direction, positive or negative, to change each

weight in order to reduce the error.

50

4) Determine the amount by which to change each weight.
5) Apply the corrections to the weights.

6) Repeat items 1 through 5 with all the training vectors until the error for

all vectors in the training set is reduced to an acceptable value.

For a network with no hidden layers and a linear output, the weight-change law is called

the LMS rule or Delta rule given by :
w(t+ 1) = w(l); + 2uerxy (3.5)

where K =is a positive constant
X,; = is the i component of the & training vector
g, = is the difference between the actual output and the correct
value, g, = (d, -y,
A similar equation results when the network has more than two layers, or the output

functions are non-linear.

3.4.1 Output Layer Weight Updates

Error at a single output unit is defined as §,,= (v,, - 0,,), where the subscript “p”
refers to the p™ training vector, and “#” refers to the £ output unit. The actual output is
o, and desired output is y,,. The total squared error is minimized by the gradient delta rule

and is given by :

g
M=

Ep=%2.,85 (3.6)

T

51
For convenience in calculating derivatives later, the factor of 1/2 in Eqn. (3.6) has

been added. To determine the direction in which to change the weights, the negative of the
gradient of E, VE,, with respect to the weights, w,, is calculated. Equation (3.6)
becomes :

Ep =3 20k = 0p)’ 3.7
and

ofs Olnety)
= — , — .)
awg, = 0 o) BnetS) ows,

(3.8)

the partial derivatives are determined by the chain rule. The derivative of f; will not be

evaluated, but instead will be written as jZ’(net;k) . The last term in Eqn. (3.8) is :

a(gi%k) _ (a:z,‘;- :i:, Wi +e;;) = iy (3.9)
for negative gradient from Eqns. (3.8) and (3.9) :

~%E§=(ypk—opk)fz’(net;k)ipj- (3.10)
The update of output layer weights are then determined by the following :

Wit +1) =wi(t) + Apwi(?) (3.11)
such that

Apwi(t) = M = 0pi)f5, (et)igy (3.12)

where 1 is called the learning-rate parameter. In general it is difficult to determine the
best value of . A general rule is to make the learning rate for each node inversely
proportional to the average magnitude of vectors feeding into the node. There are several
methods to adapt the learning rate as a function of the local curvature of the weight space

surface [9, 20, 21, 22]. The value of 1 is usually a positive number and less than one.

52
The function j}j./ is obtained by differentiating f;. Thus the function f; must be

differentiable. With that in mind, there are two forms of output functions that are of
interest here. They are :

Je(nety) = net}, (3.13)

Se(nety)=(1+ e ety (3.19)
Eqn. (3.13) defines a linear output unit and equation (3.14) defines a sigmoid, or logistic
function. To determine which output function to use depends on the type of output
representation required. If the output units are to be binary, then the sigmoid output
function would be appropriate. In additional to being output limiting the sigmoid is also

quasi-bistable but differentiable. ‘
In Eqn. (3.13), jzl =1; in Eqn. (3.14), fz' =fr(1 —f)=o0m(1 —0p) For the
two cases, we have :
wig(t+1) = wi(6) + NYpr — 0pr)ip (3.15)
for the linear output, and
Wl + 1) = WD) + Yk = 0p)0 k(1 — 0k)iy (3.16)
for the sigmoidal output.

The weight update equations are summarized by defining :
!
S = ok — 0pk)% (netpy)

= 8pify (nety) (3.17)
and hence the weight update equation :

Wigt + 1) = wi() +md iy (3.18)

53

3.4.2 Hidden Layer Weight Updates

A similar type of calculation is performed for hidden layer weight updates as in the
output layer weight updates. A major difference between the output weight updates and
the hidden layer weight updates is that in the output layer weight updates, the actual
output is known whereas in the hidden layer weight updates the correct outputs of the
hidden layer is not known in advance. To verify that the total error E, is related to the

output values on the hidden layer we need to look at Eqn. (3.7) :

E,= % %(ka —0pi)?
= 5 20k —filnetp))?
k
= 3 20 ~fiE Wiy + 07
‘ J
From Eqgns. (3.1) and (3.2), it is shown that 7 . depends on the weights on the hidden layer.
n

The gradient of E, calculated with respect to the hidden layer weights are as follows :
ok, 0

55 24 ’é'w"ﬁ(ypk —op)?
Bop. Onety) oi, Onet))
==V g — O ppe)—2 P pi P 319
OO et Gy ey awh
by using Eqn. (3.6)-(3.18) in the above we have :
aE / 0 o
JZ = —%:(ypk - Opk)f]?— (netpk)wkif;"(netzj)xpi (320)
Ji

Updating the hidden layer weights in proportion to the negative of Eqn. (3.20) we get :
Apu{,’.’,- = nfj’ (netzj)xp,-%:(ypk = ope)fy, (netp ywy; 3.21)

where 1 again is the learning rate.

By using Eqn. (3.17) i.e. the definition of &, we can write :

pr};- _ Tyj'l(neiz,-)xpi%: 8;szl. (322)

54

It is important to note that every weight update on the hidden layer depends on all the

error terms, & , on the output layer. In other words, the known errors on the output
layer are propagated backwards to the hidden layer to determine the appropriate weight
changes on that layer. The hidden layer error term can be defined as :

8y =1} ’("etﬁf)§ 8wy (3.23)
to become analogous to those for the output layer :

Wi+ 1) = wi(t) + ndpx; (3.24)

3.5 Training Considerations

The neural network is capable of forming arbitrarily close approximations to any
continuous non-linear mapping using the back-propagation algorithm. However, there are
a few practical considerations. The first is choosing the network size. The second is the

training data selection and, lastly, the complexity of learning.

3.5.1 Network Size

The neural network is able to map any non-linear continuous function provided
that the size of the network grows in proportion to the complexity of the function [23]. In
general, it is not known what network size works best for a given problem, since each
problem demands different capabilities from the network. Nevertheless, choosing a correct
network size is important, too small a network size will not be able to form a good model
of the problem. On the other hand, too large a network may be “overly capable” [24], i.e.

the network may be able to give several solutions that are consistent with the training data

35

but are likely to be poor approximations to the actual problem. Ideally, we would like a
network size that best matches the capability of the network to the structure of the
underlying problem, in other words we would like a network whose size best captures the
structure (or intricacies) of the underlying problem. Generally, because there is no prior
knowledge of the problem, a methodical trial and error approach is adopted to find the
optimal network size of the problem. The following guidelines are used in determining
network size,

1) Start with the smallest possible network and then gradually increase the size
until performance levels off. Alternatively, start with a large network and then apply a
pruning technique that destroys weights and/or nodes that do not contribute to the
solution [25].

2) For a fully connected neural network no more than four-layers are required to
perform a particular task, i.e. one input layer, one output layer and two hidden layers. It
has been suggested that the number of hidden layer nodes should not be more than the
number of training samples, it is almost always the case that the number of hidden layer
nodes are much less than the number of training samples [26]. Otherwise, the network will
simply “memorize” the training samples resulting in poor generalization of the problem.

The main idea is to use as few hidden layers nodes (units) as possible. This is

because each additional node adds to the load on the central processing unit (CPU) during

simulations.

56

3.5.2 Training Data
Generally, the larger the number of training data samples the better the data is
capable of describing the underlying problem. The training data’s objective is to be able to
generalize the entire underlying problem with the given amount of data samples.
Generalization is a measure of how well the network performs on the actual problem once
training (learning) is complete. The back-propagation neural network is good at
generalization. Given several different input vectors, all belonging to the same class, a
back-proportion neural network is capable of learning key significant similarities in the
input vectors, while irrelevant data is ignored. In order for the network to perform
adequately, the training data pl‘O\"ided must cover the entire input range of operation.

During the training process, the training vector pairs selected should be selected randomly

from the data space if possible.

3.5.3 Complexity of Learning

After determining the correct network size and proper training data set, it turns
out that finding the correct weights for a network is an inherently difficult problem. The
learning algorithm employed for this thesis work (back-propagation) is based on gradient
search techniques, and is slow in finding local weight solutions to a problem. To explain
its slow speed in learning (not to be confused with the speed of execution) we need to
characterize the error surface which is being searched. For multilayered networks the
surfaces can be quite severe [27], these surfaces tend to have large areas of flatness as well

as extreme steepness and not much in between. It is difficult to determine if a solution has

57
been reached since the transient flat areas “look” very much like minima, i.e. gradient is
very small. The selection of the value of n (the learning rate) has a'signiﬁcant effect on
system performance. Usually, 7 is a small value of 0.05 to 0.25—to ensure that the
network settles to a solution. A small value of 1 will cause the network to have a large
number of iteration to achieve a solution. Increasing the value of n as network error
decreases will often speed up convergence. Too large of an increase in n may cause
instabilities when it reaches the steeper portions of the error surface.

Another way to speed up convergence is to add a momentum term in the weight
change Eqn. (3.18). When calculating the weight change value A,w , a fraction of the
previous change is added to the weight change :

Wit +1) = wi () + Moy + adwi(t-1) (3.25)
where 0 < o < 1. This term makes the current search direction an exponentially weighted

average of past directions, and helps keep weights moving across flat sections of the error

surface after they have descended from steep portions.

3.5.4 Termination Criterion

The termination criterion is determined firstly by the magnitude of the gradient,
i.e. the learning algorithm can be terminated when the gradient is sufficiently small, since
by definition the gradient will be zero at the minimum. Secondly, termination may come as

output error falls below a certain threshold. Finally, the learning process may stop at the

58

completion of a fixed number of iterations, which will not guarantee that a minimum is

reached.

59

Chapter 4

Implementation of Field Oriented Control

4.1 Introduction

In this chapter, the design of a field oriented control drive system is discussed.
The control scheme for the FOC chosen is based on the availability of a voltage source
inverter in the power electronics lab of the University of Calgary and thus would facilitate
the future implementation of this drive system.

With the successful computer simulation of an induction machine model (see
appendix A), a field oriented control system can be designed and simulated. For this thesis
work the major blocks involved in this process are the induction motor model, a PWM
voltage source inverter, a single proportional-intergral (P.1.) controller for rotor flux, two
P.L controllers for d-q field currents and the possible use of a P.I. controller for speed
control (many of the initial neural network flux estimator tests were carried out without
the need for speed feedback). Note that the P.1. controllers are chosen only because of the
simplicity of their simulation. This is quite sufficient for testing of the artificial neural

network flux estimator, as discussed in the next chapter.

4.2 System Description
Recall the discussion on the generalized field oriented control system in
(section 2.3.3). For convenience, Fig. 2.7 is reproduced here in Fig. 4.1. With the

objective of one day implementing a high performance speed controlled field oriented

60"
control induction motor drive, a block diagram of a drive system is given in Fig. 4.2(a)
(limiters not shown). The entire system depicted in Fig. 4.2(a), has been coded in C (see
Appendix B). This program was used to generate all training data (c.f. Chapter 5) and test
data (c.f. Chapter 6) for the artificial neural network flux estimator. Note that we have
chosen to generate the d-q voltages in the field oriented frame (with simple P.I.
controllers) from the field oriented i, and i .- feedback quantities. These voltages are then
rotated (using U') and then transformed (using T"') for direct application to a voltage

source inverter.

4.2.1 Rotor Flux Control

As seen in Fig. 4.2(a), the coordinate transformation can be obtained only with an
accurate knowledge of the field angle ¢ . Further, in field oriented control, as the motor
speed starts to increase, it is desirable for the rotor flux to reach maximum flux as fast as
possible and be maintained at that flux magnitude throughout its operating range (field
weakening is not considered here). In order to achieve this required fast response, a PI
rotor flux controller has been employed shown in Fig. 4.2(b), which is a subsection of
Fig. 4.2(a).

In this chapter all results presented are based on flux magnitude and field angle
calculations as determined using the Eqns. 2.46, 2.66 and 2.67. Note that this will be done

by the neural network flux estimator in the eventual implementation of the system depicted

in Fig. 4.2(a).

e Or i v, or i . .
Controllers | . . : . B . V77N Inverter
Vigor i, Stationary FrameVds or i, Transfon;matlon

U-l > T.

A ry A y
e: Wr ids]qs ¢
i A Stationary
E to P
' A Rotating Frame pZ
: U 7
! 7y 7 7 3
E 3 q) l-ds lsqs
t i o
: T 3 to 20 :
' . X
: v, Transformation P 4L S
! - isds T
: T Flux Magnitude,[* """~ """
et s EETTEEPEEEE, Field Angle and
Torque Calc. viE
DA 30 to 20 v
Transformation oh
e 7
Ve T
€- - oo

7'y

ON

] Tacho.

Gen.

Figure 4.1 General control scheme for indirect field oriented control of an induction motor. (same as Fig. 2.7)

[9

PI controllers

Figure 4.2(a) FOC drive system employed to test the ANN flux estimator.

d-q currents controllers
l. ““““““““““““““ 1
t Voo ; s
Vo v, [Rotating |V '8
oG S o [%k | el Volage
L | v,| stationary |y, | Transformation [T Source
' J > T Inverter
t, ! U
g ! ;
[[. ! (l)
S Stationary
fo
1 Rotating Frame Y2
U 2
3 A l-s
¢ i‘ds ! L
. iy
Flux Magnitude [¢--%---1 3pt0 20
and Transformation by 17 L
Field Angle calc.| m (
l¢ - E.‘l.‘. — T

63

‘V‘r + ¥ Ps Vollage controller,| ! & v,
2 ’ . inverter Flux Estimator R
— i and N Model
N 1

machine —

P'1 Flux Controller

Figure 4.2(b) PI rotor flux controller
4.2.2 Current Controllers

For FOC to be successful, the correct stator currents must be produced, i.e. the
d-q axes are decoupled. Therefore, for drive systems using a voltage source inverter (as in
this case) it is necessary to have current controllers to regulate the stator voltages in order
to impress the desired currents. In the proposed FOC, current control is performed in the
field oriented reference frame, where /*,, is obtained from the rotor flux controller and

where i* 4 18 controlled independently (c.f. Fig. 4.2(a)).

4.2.3 PI Controller Tuning

The procedure to tune the individual PI controllers is straight forward. Firstly, the
current controllers are tuned and then the rotor flux PI parameters are tuned. In the case
of the current controllers, the proportional control coefficient is tuned first until the drive
system just begins to become unstable (to determine a conservative choice), then the
integral coefficient is tuned to have the best steady state error. The same procedure is
adopted for the rotor flux controller tuning. The results of optimal tuning for these PI

controllers can be seen in Figs. 4.3-4.5 (for 30 hp motor).

Te (pw.)

o (p.u)

15.0

10.0

5.0

0.0

-5.0

-10.0

-15.0

-20.0

0.0

10

0.5 1.0 1.5
Time (s)

Figure 4.3 Electromagnetic torque with field oriented control
implemented.

20

[/ J: J ——

05 1'.0 15
Time (s)
Figure 4.4 Rotor speed with field oriented control implemented.

20

64

65

1.2

1.0 P - ®
0.8 s s ot e
L)
g
& 06 s s s 1 et e s et s et o
B
0.4 i SRR SR .
02 R ——
0.0 t t i t
0.0 05 1.0 15 20
Time (s)

Figure 4.5 Rotor flux magnitude with field oriented control
implemented.

As seen from Fig. 4.3, the electromagnetic torque (T,) reaches steady-state quite
quickly (in less than 0.03 s), although, there is an oscillatory transients during switching.
The rotor speed curve seen in Fig. 4.4 is produced by letting I*qs = 6.0 p.u for 0.2 s, and
then letting I'qs = -6.0 p.u. for 0.4 s and so on. As seen from Fig. 4.5, the rotor flux
magnitude is able to reach 1.0 p.u. in less than 0.01 s with FOC implemented, whereas
without FOC it took 1.5 s to reach a value of 1.0 p.u. (c.f Appendix A).

The field angle ¢ is responsible for the precise location of the rotor flux field in
field oriented control of the induction motor. This is crucial to the success of FOC, as this
field angle is used in the rotation matrix to convert variables in the synchronously rotating
frame into their counterparts in the stationary reference frame and vice versa. Figs. 4.6

and 4.7 show sin(¢) and cos(¢) for the induction motor, respectively.

sin($) (p.u)

cos($) (p-u.)

1.2

1.0

0.8

0.6

04

0.2

0.0

-0.2

0.4

0.6

-0.8

g0 P

-1.2

66

05 1.0 15 20
Time (s)
Figure 4.6 Sin(¢) with field oriented control implemented.

U

0.0

0.5 1.0 15 20
Time (s)
Figure 4.7 Cos(¢) with field oriented control implemented.

The d-q axes currents in the stationary reference frame are shown in Figs. 4.8 and 4.9.

Ids (p.u.)

Igs (pn)

20.0
LT Y1 Y AR I
0.0 4| 4%
-10.0
-20.0 i
0.0 05 10 15 2.0
Time (s)
Figure 4.8 Ids in stationary ref. frame with field oriented control
implemented.
200
10.0
0.0
-20.0
00 05 1.0 15 2.0
Time (s)

Figure 4.9 Igs in stationary ref, frame with field oriented control
implemented.

67"

68

As shown in this chapter, the dynamic performance of the drive system is greatly

improved with the introduction of field oriented control (c.f. Appendix A).

69

Chapter 5

Training the Neural Network

S.1 Introduction
Before the proposed neural network can be used as a flux estimator in the field

oriented control of an induction motor, it first must be trained. In essence, the neural
network must learn the correct mapping from input to output under a wide range of
operating conditions. The training process can be broken down into these five steps :

1) Generate data

2) Normalize data

3) Select the neural network architecture

4) Train the network

5) Test the network

Steps (1)-(4) are discussed in this chapter as applied to one particular neural network used

to generate sin(9), cos(¢) and ¥, . Step (5) is discussed in Chapter 6.

5.2 Generating data

There are essentially two types of input data namely, the input training data set
and input fest data set. The input training data set is the data set that the neural network
learns by, and the test data set is the data set by which the neural net is judged. The input
training data is an important part of the training (learning) process because the data set is

the only information it will see in order to learn its task for a given set of inputs. It also has

70

to encompass the entire operating range (space) in order for the neural network to
properly estimate the desired output. The neural network will not give good estimates for
unknown input data that lies outside of the input data training set, as it is not good at
extrapolating outside of the operating space.

In addition, historical input training data is also very important during training.
This is not always the case, as it only applies to input data that are periodic (6§cillatory).
An example would be a sinusoid where at different time instances the sinusoidal output
returns the same magnitude, posing a problem for the neural network to differentiate
between points on the curve.

The input vector of the neural network consists of the d-q axis stator currents, 7,
and i, and their delayed values 7 (t- 1), i,(t-2), .., i,(t-5), I(t-1),i(t-2),..,
i,(t - 5), and the delayed values of sin(¢), cos(¢) and flux magnitude ¥, , sin(¢p — 1),
sin(¢p — 2), ..., sin(¢p —4), cos(¢ — 1), cos(dp —2), ..., cos($p — 4), Yt-1), P(-2), ..,
W (t - 4). Where one unit delay equals the sampling period which we have set to 1 ms. The
output (target) vector is sin(¢), cos(¢) and ¥,. The number of inputs to the neural network
is determined by the number of delays (historic data). For the network studied in this and
the next chapter, there are 24 inputs and 3 outputs. Note that in the proposed neural net,
delays have been set to a maximum of five unit delays. It has been observed that higher
values of delays did not improve the accuracy of the estimation of the desired values
significantly. The number of hidden layers and the neurons in each hidden layer are
subjected to the complexity of the mapping, computer memory and computation time. For

the present neural network, 20 neurons are used for the first hidden layer, 15 neurons for

71

the second hidden layer, and three output neurons. The training data sets for sin(¢) and ¥,
are shown in Figs. 5.1 and 5.2, respectively (cos (¢) is similar in nature to sin (¢), hence
not shown). The data sets have been generated using our FOC program listed in
appendix B. A total of 8,000 samples for each training data set covering load torque
values of 0.0, 0.5, 1.0 and 1.5 p.u. is presented to the neural network for training. The
training sequence starts with a load torque of 0.0 p.u., and a rotor speed of 0.0 p.u. The
speed ramps up linearly to 0.5 p.u. (it takes approximately 200 samples (0.2 s) to do this).
The speed then ramps down linearly from 0.5 p.u. speed to -0.5 p.u. (taking approximately
400 samples (0.4 s) to reach -0.5 p.u. speed). The ramp up and then ramp down action
(see Fig. 4.4) is repeated for '2000 sample points (i.e. 2.0 s). The load torque is then
increased to 0.5 p.u,, 1.0 p.u. and 1.5 p.u. and the procedure is repeated for the

remaining 6,000 points.

08 4.

0.6

0.4

0.0 41

sin (@) (p.w)

-0.2 -

-0.4

o - R

<08 41 |- ! | S

-1.2 + t t
1L.OE+0 1.0E+3 2.0E+3 A0E+3 4.0E+3

Number of samples

Figure §.1(a) Training data set for sin (¢)

0.6 4400 -

04 4

0.2 4

02 4
0.4 4 [

06 4

sin(§) (pu)

-0.8

TL=1{0 pu

——

-1

-1.2
4.0E+3

5.0E+3

6.0E+3

Number of samples

7.0E+3

Figure 5.1(b) Training data set for sin (¢) (continued)

8.0E+3

=i0.0 p.w

TL=0.5 p.w.

08 4

W¥: (p.u)

0.4 4

02 4

—

00

LOEH

1.0E+3

2.0E+3

Number of samples

3.0E+3

Figure 5.2(a) Training data set for flux magnitude

4.0E+3

72

73

TL=1.0 pu TL=15p.u
1.0 +- 4 }
08
]
& 06
L4
04 4
02
0.0
40E+3 5.0E+3 6.0E+3 7.0E+3 8.0E+3
Number of samples

Figure 5.2(b) Training data set for flux magnitude (continued)

5.3 Normalization of Data

Once the input data are generated, the next step is to normalize all the data so that
each value falls within the range from -1 to +1. This is to prevent the neurons from being
driven too far into saturation. Once saturation is reached, changes in the input value result
in little or no change in the output. Hence limits the performance of the neural network.
The software used for training (Neural Works) will perform the required normalization

automatically.

5.4 Selection of network architecture
The architecture used for the present case is a four-layer network, i.e. one input

layer, two hidden layers and an output layer. The input layer simply acts as a buffer,

74 -
feeding information from the input vector through the interconnection weights to the first
hidden layer. This layer (i.e. the input layer) consist of 24 neurons made up of the
stationary d-q currents with their delayed values, followed by the fed-back values of flux
magnitude, sin (¢) and cos (¢) with their respective delayed values. The first hidden layer
contains 20 neurons and the second 15. The choice of 20 neurons for the first hidden layer
and 15 neurons for the second hidden layer are obtained through trial and error. The
output layer consisting of three neurons made up of flux magnitude, sin (¢) and cos (¢)

where they are recovered and denormalized.

5.5 Training the network

To train the network, the historical input data and output training patterns are
shown to the network repeatedly until the root-mean-squared (RMS) error tolerance is
met (i.e. the input data goes through the entire data set repeatedly until the RMS error is
met). The algorithm used in training has been discussed in Chapter 3. In short this process
involves the presentation of input data, passing it forward through the network, and
back-propagating the error for each observation in the historical training set until the
output values converges to a solution.

The training parameters used for the proposed ANN flux estimator are as follows:
learning rate m = 0.01, momentum term o = 0.5, the learning tolerance RMS error
(termination criterion) = 0.005, maximum number of iterations = 1,000,000. Initial

weights were randomly selected.

75

Chapter 6

Neural Network Testing and Parameter Sensitivity

6.1 Neural Network Test Results

After training the neural network with the appropriate data sets, it is time to test
the network to see if indeed it is able to estimate the flux magnitude as well as the sine and
cosine of the field angle ¢. In this chapter, the neural network is put through a series of
tests that involves different load torque conditions and variation in rotor resistance.

Some test results are shown in Figs. 6.1-6.6. Fig. 6.3 shows an expanded (zoomed
in) view of Fig. 6.1, illustrating the high accuracy of the neural network in estimating the
field angle. The other test results presented (i.e. Figs. 6.2 and 6.4-6.10) achieve similar
accuracy. The neural network output plots are invariably always plotted coincident with
the test data (hence hard to see), because the network can estimate the desired result so
well.

The results shown in Figs. 6.1-6.4 are for test data generated with a constant load
torque of 0.25 p.u., which is not part of the training data set, although, it is still within the
scope of the training data range (recall from the previous chapter that the neural network
was trained for torque load conditions of 0.0, 0.5, 1.0 and 1.5 p.u.). The test results for a
constant load torque of 0.75 p.u. (which is also different from the training data set but still
within the training range) are similar to that of the 0.25 p.u. load torque case (not shown
here). Results shown in Figs. 6.5 and 6.6 are for test data that are outside the range of the

training data, i.e. the torque load is 2.0 p.u. Note in these two figures that the ANN flux

76
estimator (somewhat surprisingly) estimates very accurately the field angle and flux
magnitude despite a load condition outside the training data set.

For Figs. 6.5 onwards, cos($) is not plotted since it is similar in nature to sin ().
In addition the range of these plots (i.e. Figs. 6.5-6.14.) have been expanded to aid in

distinguishing the neural network output from the test data.

Test data
1o Neuralnet output /¢

0.8

0.6 Hd- {41

0.4

0.2

0.0

202 4.

sin (§) (p.w)

-0.4

-0.6

-0.8

-1.2 I
1.0E+0 5.0E+2 1.0E+3 1.5E+3 2.0E+3

Time (ms)

Figure 6.1 Neural network output for sin(¢) vs test data for TL=0.25 p.u.

sin (4)' (p.w)

cos(§) (p.u)

-0,

S
2

0.8

0.6

0.4

0.2

0.0

-0.2

0.4

-0.6

-0.8

-1.2

(iR

Neliml net.output

Test data

1.0E+0

60

Figure 6.2 Neural network output for cos(d) vs test data for TL=0.25 p.u.

S.0E+2

1.0E+3

Time (ms)

L.5E+3

2.0E+3

Neural network output

Test data

-0.70
0.9E+3

0.95E+3

LOE+3

Time (ms)

LUSE+3

L1E+3

Figure 6.3 Neural network output for sin () vs test data for TL = 0.25 p.u.

(expanded view)

77

Flux Magnitude (p.u.)

sin(¢) (p.w)

| ; A

14y for :
) 7 SN L “

T

Neural net.output!” Testdata :
038

0.6 4

0.4 4

024

1.0E+0 5.0E+2 1.0E+3 1.5E+3 2.0E+3

Time (ms)

Figure 6.4 Neural network output for flux magnitude vs test data for
TL = 0.25 p.u.

Test data

Neural pet.outp/ut

1.0E+0 1.0E+2 20E+2 3.0E+2 4.0E+2 50E+2
Time (ms)

Figure 6.5 Neural network output for sin ($) vs test data for TL = 2.0 p.u.
(outside training range)

78

79

Test data _

_;)\k:

Neural net.output

1.0E+0 1.0E+2 2.0E+2 3.0E+2 4.0E+2 5.0E+2
Time (ms)

Figure 6.6 Neural network output for flux magnitude vs test data for
TL=2.0 p.u. (outside training range).

6.2 Parameter Sensitivity

Note that estimation of the rotor flux magnitude and the field angle depends on
the value of machine parameters (naturally the network must be trained for a particular
machine). The rotor resistance variation, especially, becomes dominant due to temperature
variation and the skin effect.

The following results verify that the neural network is capable of achieving
accurate results even with rotor resistance variations present. The rotor resistance was
increased 50% and 100% (i.e. R=1.5 p.u. and R=2.0 p.u.) above the nominal value and
the results of sin (¢) and flux magnitude are shown in Figs. 6.7-6.10, respectively. The
results of cos (¢) are similar to that of sin ($) and are not shown here. In achieving these

results, the flux PI controller had to be adjusted to give the desired results. To achieve

80

these results in practice, some type of adaptive control would be used with or in place of

the PI controllers.

sin (@) (p.u.)

'i‘cst data

Neura]%net.output

12 ¢
1.0E+0 1.0E+2 20842 3.0B+2 4.0E+2 S.0E+2
Time (ms)
Figure 6.7 Neural network output for sin (¢) vs test data for 50% increase
in rotor resistance (PI controller adjusted).
1.2 -
. Ncurfal net.output
3 Test data
08 ¢ | :
& 0 4
>
04
0.2 H
-'
0.0 ; t f
1.0E+0 1.0E+2 20E+2 3.0E+2 4.0E+2 SOE+2

Time (ms)

Figure 6.8 Neural network output for flux magnitude vs test data for S0%
increase in rotor resistance (PI controller adjusted).

81°

0.6 ofernfaesia sainriens

0.4

0.2

0.0

sin (9) (p.w)

-0.2

20.4 vt oo v e i f L

-0.6

bt b 3

Netflral net.output” -Test data

-1.2

1.0E+0 1.0E+2 2.0E+2 3.0E+2 4.0E+2 5.0E+2

Time (ms)

Figure 6.9. Neural network output for sin (¢) vs test data for 100%
increase in rotor resistance (PI controller adjusted).

Neural net.output

0.8 +

vr (p.ll.)

04 1

02 N

00 t ;
LOE+0 LOE+2 2.0E+2 3.0E+2 4.0E+2 5.0E+2

Time (ms)

Figure 6.10 Neural network output for flux magnitude vs test data for
100% increase in rotor resistance (PI controller adjusted).

82

As can be seen from Figs.6.7-6.10, the neural network is able to accurately track
the test data even with a 100% rotor resistance variation. The maximum absolute error is
about 0.10 p.u. for each case.

It is worthwhile to determine under what conditions the neural network flux
estimator will not perform well. The following tests are done with fixed PI controller
coefficient values, optimized for the nominal rotor resistance (i.e. R. = 1.0 p.u.). The rotor
resistance is then changed by 20% and 30% (PI controller coefficients unchanged). It is
observed in Figs. 6.11 and 6.12 that during the flux transient, the neural network is still
able to track the test data for a rotor resistance variation of 20%. However, as seen in
Fig. 6.12 the neural network is able to track the steady-state test data (checked to 2.0 s of

operation) but with an oscillatory error (at about the synchronous frequency)

1.2

sin(¢) (p.w)

LT

Neural net.output Test data
12 :
1.0E+0 1.0E+2 20B6+2 3.0E+2 4.0E+2 50E+2

Time (ms)

Figure 6.11 Neural network output for sin ($) vs test data for 20%
increase in rotor resistance.

83

of approximately 0.02 p.u. peak absolute error. As seen in Figs. 6.13 and 6.14, for a 30%
increase in rotor resistance, the PI controllers with fixed coefficients can no longer
regulate the flux magnitude. As seen, despite this very abnormal operation, the neural

network can still estimate the flux magnitude with a 0.2 p.u. maximum absolute error.

;l'egst data

1.0 + v AS mal A —-.#',—:—?_—; ‘\"',/L“L.,
08 1 Neuralinet.output
? t
S 06
>
04 4
0.2
0.0
1.0E+0 1.OE+2 2.0E+2 3.0E+2 4.0E+2 5.0E+2

Time (ms)

Figure 6.12 Neural network output for flux magnitude vs test data for
20% increase in rotor resistance.

Note that we have not yet placed the flux estimator into the field oriented control
feedback loop. We have only applied test data generated with exact calculations of the
flux magnitude and thg field angle (c.f. Chapter 4). So behavior of the field oriented
controller with fixed PI coefficient values and neural network flux estimation is unknown
at this time for large variations in rotor resistance (i.e. greater than 20%). Nonetheless, we
have shown that the robustness (i.e. load condition and parameter insensitivity) of the

neural network is very good, even though the neural network was trained for a fixed value

84

12
Lo Testdata .. _Neural net.olitput
| | ﬂ]
038 e AT
o
0.4
g 02
&
—_ 00 [N S | S TN W
°
A g3
.é 0.2 e o
-0.4 :
0.6 N . ‘ L 150 U U SO S 0 10 SRR I PNV SO 08 JUUON O GUUURN 1 SUNOUR 0 U o SO 1Y SN N OO
) . | H- i
1.0 y V . U d .
1.2
1.0E+0 1.0E+2 2.0E+2 3.0E32 4,0E+2 5.0E+2
Time (ms)
Figure 6.13 Neural network output for sin (¢) vs test data for 30%
increase in rotor resistance.
1.4 5
AR KRS] INPARMTY o - LAY
;
/; uﬁ . Test data
\
 Neural net.putput
1.0E+0 1.0E+2 20642 3.05+2 4.0E+2 5.0E+2

Time (ms)

Figure 6.14 Neural network output for flux magnitude vs test data for
30% increase in rotor resistance.

85

of rotor resistance. The ability for the neural network to generalize the given input data to
generate desired outputs is indeed one of its strengths. Further, the results presented in
this chapter indicates that the artificial neural network flux estimator should work very
well under all normal conditions, provided that the controller has some adaptive ability for

rotor resistance and other parameter variations.

86

Chapter 7

Discussion

7.1 Effects of Non-Historic Data Input

Employing a training data set without historic (past/delayed) values has an adverse
effect on the outcome of the neural network’s ability to generalize data. As can be seen in
Fig. 7.1, the neural network has great difficulty in tracking the desired flux magnitude
without the use of historic inputs. The more historic data the better the neural network
will perform, although, there are limitations to how many historic (delayed) steps the
neural network requires until no significant improvements are observable. For the network
studied in Chapters 5 and 6, delays ranging from one to five sample periods proved to be

optimum.

1.2

B Test data

1.0 1k}

0.8 4
Neural net.output

0.4 4

02 ¢

0.0 t t }
1.0E+0 5.0E+2 . 1.0E+3 1.5E+3 2.0E+3

Time (ms)

Figure 7.1 Neural network output for flux magnitude vs test data without
historic data,

87

7.2 Alternative Inputs to the Neural Network
In this thesis, the inputs to the neural network come in the form of stator &-¢°
currents (i.e. the motor phase currents 7, i, and i_are just transformed into the stationary
frame 7°, and ¥ form prior to application to the neural network). Alternatively, one might
wish to apply the three-phase motor currents i, i, and /_ directly to the neural network.
When using the three-phase currents as inputs (with historic data), the neural network is
still able to estimate the flux magnitude and field angle accurately, however the results are
slightly less accurate than those for which 7, and #_ are inputs [29]. One explanation for
this is ;chat the “information” (i.e. changes in the operation of the induction motor)

reflected in the phase currents i,, i, and i_is not as “detailed/accurate” (i.e. not able to

a ’
identify subtle changes in the operation of the induction motor) as is contained in the

5 '
stator &’-¢” currents /°, and 7° .

7.3 Multiple Networks versus Single Network

A single neural network has been used for all three outputs (sin (¢), cos (¢) and
flux magnitude ¥)). Although the nature of the outputs sin (¢) and cos (¢) (Figs. 4.6 and
4.7) are similar in nature, they are quite different from the nature of the flux magnitude ¥,
output (Fig. 4.5). Nonetheless, the network is still able to estimate these outputs without
difficulty. However, when a separate network is used to estimate sin (¢) and cos (¢) and
another network is used to estimate flux magnitude ¥, , the accuracy of the neural
network flux estimator for each case is improved. The accuracy improves only slightly

when compared to the single network case, hence, this does not warrant the use of two

88

separate networks which would require more resources and computational power to

perform the work that a single network can do.

89

Chapter 8

Conclusions and Future Work

8.1 Conclusions

For this thesis, the work of implementing field oriented control (FOC) for an
induction motor using an artificial neural network flux estimator is split up basically into
two parts, the field orientation part and the artificial neural network part.

Field oriented control requires complex matrix transformations to perform
coordinate transformations from ac quantities of the induction motor to dc quantities of
the d-g model used by the controller, and vice versa. These transformation are laid out in
Chapter 2. The proposed FOC drive system is discussed in Chapter 4. This drive system is
intended for implementation with an existing pulse width modulator (PWM) voltage
source inverter. Its purpose 'in this thesis is simply the generation of training and test data
for the artificial neural network flux estimator.

Artificial neural network theory is discussed in Chapter 3. The proposed artificial
neural network flux estimator, studied in Chapters 5 and 6, contains four layers : one input
layer (24 neurons), two hidden layers (25 neurons for the first hidden layer and 15 neurons
for the second hidden layer) and one output layer containing 3 output neurons (namely
sin (9), cos (¢) and flux magnitude ¥',). The inputs to the flux estimator are the &*-¢ stator
currents. The neural network’s ability to accurately estimate the flux magnitude and the
field angle under a variety of load and parameter variation conditions, has been verified by

the test cases presented in Chapter 6.

90

The advantages that the neural network has over conventional methods of

estimating flux are :

® It has fast processing speed
¢ Itisrobust (i.e. fault tolerant)

¢ It is adaptive (i.e. extrapolates well)

It is an alternative technique to mathematical programming

It requires less memory

The primary disadvantage of the neural network flux estimator is the (potentially)

long training process involving a large degree of trail and error investigation.

8.2 Future Work
Some suggestions for future work are :

1) the design of an adaptive controller to compensate for rotor
resistance variations

2) the incorporation of motor non-linearities in the induction motor
model

3) the physical implementation of the ANN flux estimator

4) the; study of the ANN flux estimator with other inputs (e.g. stator

voltages and rotor speed)

91

Reference

[1] B. K. Bose, “Power electronics and AC drives,” Prentice Hall, 1986.

[2] J. Zhang, “Field oriented control of induction motor speed,” Msc.. Thesis, Dept. of
Electrical Engg., The University of Calgary, Calgary, AB., Canada, August 1985.

[3] F. Blaschke, “4 new method for the structure decoupling of AC induction machines,”
Second IFAC Symposium on Multi-Variable Technical Control Systems, Pt 3,
pp.11-13, Oct. 1971.

[4] K. Hasse, “Zum Dynamischen Verhalten der Asynchronmaschine bei Betrieb mit
variabler Staenderfrequenz und Staender-spannung” (“On the dynamic behavior of
induction machines driven by variable frequency and voltage sources™), ETZ-4 Bd 89
H.4, pp.77-81, 1968.

[5] R. Gabriel, W. Leonhard and C. Nordby, “Field oriented control of a standard
AC-motor using microprocessors,” IEEE Trans. Ind. Appl., Vol. 1A-16, No. 2, pp.
186-192, Mar./Apr., 1980.

[6] H. Nakano, H. Akagi, I. Takahash and A. Nabae, “A new equivalent circuit of
induction motor based on the total linkage flux of the secondary windings,” Electrical
Engg. in Japan, Vol. 103, No. 2, pp. 68-73, 1983.

[7]1 R. P. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP
Magazine, Apr. 1987.

[8] R. Rosenblatt, “Principles of neurodynamics,” New York, Spartan Books, 1959.

[9] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations

by error propagation,” in D.E. Rumelhart & J.L. McClelland (Eds,), “Parallel

92
distributed processing: explorations in the microstructure of cognition,” Vol. 1:
Foundations. MIT Press, 1986.

[10] J. J. Hopfield, “Neural networks and physical systems with emergent collective
computational abilities,” Proc. Natl. Acad. Sci. USA, Vol. 79, 2554-2558, Apr.1982.

[11] T. Kohonen, “Self‘ organization and associative memory,” Springer-Verlag, Berlin,
1984,

[12] A. Maren, C. Harston, R. Pap, “Handbook of neural computing applications,”
Academic Press Inc., San Diego, CA, 1990.

[131 T. H. Barton, T. Grant, V. Thiagarajan and J. Zhang, “ The field oriented control of
induction motor drives,” Research Work Report, Dept. of Electrical Engg., The
University of Calgary, Calgary, Alberta, Aug. 1984.

[14] R. Gabriel and W. Leonhard, “Microprocessor control of induction motor,” Int.
Semiconductor Power Converter Conf., pp. 385, 1982

[15] P. L. Jansen, R. D. Lorenz, "A physically insightful approach to the design and
accuracy assessment of flux observers for field oriented induction machine drives,"
IEEE Trans. Ind. Appl., Vol. 30, No. 1, pp. 101-110, Jan/Feb. 1994

[16] Neural Inc, “Neural computing,” Neural Ware, 1993.

[17] P. Werbos, “Beyond regression: new tools for prediction and analysis in the
behavioral sciences,” PhD thesis, Harvard, Cambridge, MA, Aug. 1974,

[18] D. B. Parker, “Learning logic,” Technical Report TR-47, Centre for Computational

Research in Economics and Management Science, MIT, Cambridge, MA, Apr. 1985

93

[19] J. A. Freeman, D. M. Skapura, “Neural Network : algorithms, applications and
programming techniques,” Reading, Mass., Addison-Wesley, 1991.

[20] S. Becker, Y. le Cun, “Improving the convergence of back-propagation learning with
second-order methods,” Technical Report CRG-TR-88-5, U. of Toronto, Toronto,
Canada, 1988.

[21] E. D. Dahl, “Accelerated learning using the generalized delta rule,” In Proceedings of
the IEEE Ist International Conference on Neural Networks, Vol. 2, pp.523-530, San
Diego. CA, 1987.

[22] R. A. Jacobs, “Increased rates of convergence through learning rate adaptation,”
Neural Networks, 1(4):295-308, 1988.

[23] C. Cybenko, “Approximations by superposition of a sigmoidal function,” Math.
Contr., Signal, Syst., Vol. 2, 1989, pp. 303-314.

[24] E. B. Baum, D. Haussler, “What size net gives valid generalization?” Neural
Computation, 1:151-160, 1989.

[25] Y. le Cun, J. S. Denker, S. A. Solla, “Optimal brain damage,” In D. Touretzky,
editor, Advances in Neural Information Processing Systems 2, pp.168-177. Morgan
Kaufmann, 1990.

[26] S. C. Huang, Y. F. Huang, “Bounds on the number of neurons in multilayer
perceptrons,” [EEE Transactions on Neural Networks, 2(1):47-55, 1991.

[27] D. Hush, J. M. Salas, B. Horne, “Error surface for multi-layer perceptrons,” IEEE

Transaction on Systems, Man and Cybernetics, 22(5), 1992.

94

[28] J. R. Smith, A. J. Tait, “Electrical drive simulator for teaching purposes,” IEE
Proceedings, Vol. 135, Pt. A, No. 1, Jan. 1988.

[29] A. K. P. Toh, E. P. Nowicki, F. Ashrafzadeh, “A flux estimator for field oriented

control of an induction motor using artificial neural network,” Conf. Record of IEEE,

IAS Annual Meeting, 1994,

95
Appendix A

A.1 Induction Motor Model

The implementation of field oriented control is based on the induction motor
model discussed in this appendix. The dynamic behavior of the induction machine has an
important effect upon overall performance of the system of which it is a part of. In order
to study the dynamic behavior of the induction machine, a computer simulation of the
induction motor was developed. The computer simulation is based on [28]. The program
is written in C. The induction motor simulator is capable of performing detailed analysis of
different loading conditions and/or voltage disturbances. It is able to do this in the rotor
reference frame, stator reference frame or the synchronously rotating reference frame.

The machine r;lodel is based on the two-axis electrical equations discussed in
Chapter 2. In practical simulations, the variations of parameters due to saturation and eddy
current effects will have to be taken into account. In the present case, no attempts have
been made to include these parameter variations because the principle objective is to
illustrate the basic operation of the machine in different loading conditions and when a
fault occurs at the terminals of the machine. The numerical integration employed here is
based on the Runge-Kutta algorithm. The integration step length is chosen on the basis of
achieving an accurate solution during the run-up period while maintaining an economical
simulation. Values of 0.001 s to 0.0025 s can be used without incurring instability, in the

present case a value of 0.001 s is chosen.

96

A.2 Results of Load and Voltage Disturbances

The results are based on the induction motor model in the stator reference frame.
The following plots are for a free acceleration of a 10 hp induction motor for line start
conditions. As observed from Fig. A.1, it takes the induction motor approximately 1.0 s to

reach a speed of 1.0 p.u. without field oriented control. See section A.3 for the motor

parameters.

1.2
1.0 +
0.8+

£l

& 061

3
0.4 4
0.2 4
0.0 } } t t t : t t : } t t ! t

0.0 0.5 1.0 1.5

Time (s)

Figure A.1 Rotor speed for line start operation.

Also, it takes about 1.0 s for the induction motor to reach steady state for the case of

electromagnetic torque and flux magnitude as shown in Figs. A.2 and A 3.

Te (p.u.)

wr (p.u.)

-0.5

-1.0 +

-1.5

4.0

35

3.0

25

20

15 -

1.0 4

0.5 -

00 ¢

00

Time (s)

Figure A.2 Electromagnetic Torque for line start operation.

15

97

0.8 4

0.6 +

0.0

0.0

0.5 1.0
Time (s)

Figure A.3 Flux magnitude for line start operation.

The d-q currents in the stationary reference frame are shown as follows.

Ids (p.u.)

Igs (p.u.)

80

6.0

4.0

20

0.0

0.0 05 1.0 1.5
Time (s)

Figure A.4 Ids vs time in the stationary reference frame.

8.0

6.0

4.0

20

0.0

-6.0

-8.0

-10.0 + + + +
0.0 0.5 10 1.5

Time (3)

Figure A.5 Iqs vs time in stationary reference frame.

98

Idr (p.w.)

Igs (p.w)

10.0

8.0 4

6.0

40 4

2.0 4

0.0

0.0

10.0

8.0

6.0 4

4.0

20

0.0

-4.0

-6.0

0.5 1.0

Time (s)

Figure A.6 Idr vs time in stationary reference frame.

0.0

05 I ' l ' 10
Time (s)

Figure A.7 Iqr vs time in stationary reference frame.

1.5

99

100

The following simulated sequence is performed on a 30 hp induction motor (see section
A.3 for the motor parameters). The simulated sequence of normal and abnormal operation
is given firstly by the free acceleration of the motor from a direct on-line start, followed by
a load application of 1.0 p.u. for 0.5 s. Att= 2.5 s, then a terminal short-circuit is applied
to the motor followed by its removal at t = 3.0 s. The response curves of the
electromagnetic torque, stator current, rotor speed and rotor flux magnitude are shown in

Figs. A.8-A.11, respectively.

5.0

Fault removal
4.0

3.0 3-phase terminal short-
circuit fault application

20 \
\,
1.0 LR =

~~
2 0ol
& 00
& Run-up complete S
1.0 7 o
1.0 p.u. Load application
-2.0 1
-3.0 1
-4.0 -
-5.0}:Il:::::::::.:::}l.'.ll: e}
0.0 0.5 1.0 1.5 20 25 3.0 35 4.0

Time (s)

Figure A.8 Electromagnetic torque for various load and fault conditions
(line start).

The above simulation was performed on the Sun-sparc station, it took

approximately 30 s to complete.

Is (pu)

or (p.u)

90
80
! Fault removal
701 3-phase terminal short-
circuit fault application
6.0
50
40
304
1.0 p.u. Load
20 ¢ Run-up application
complete
1.0 4
0.0 +—t +—t ettt +
00 05 1.0 15 20 25 30 35 40
Time (s)
Figure A.9 Stator current for various load and fault conditions
(line start).
1.2
Run-up complete
1
1.0 p.u. Load /
08 | application /
/ Fault removal
3-phase terminal short-
06 circuit fault application
0.4
0.2 4
] T—— - ——— ' ; et '
0.0 05 1.0 15 20 25 30 35 40
Time (s)

Figure A.10 Rotor speed for various load and fault conditions (line
start).

101

1.2

Run-up
complete

¥: (p.w)

1.0 p.u. Load

" "7

3-phase terminal short-
circuit fault application

A

- application
Fault removal

/
7/
rd

20
Time (s)

25

3.0

3.5 4.0

Figure A.11 Rotor flux magnitude for various load and fault conditions

A.3 Motor Parameters

(line start).

The following motor parameters are for 2-pole machines.

Parameters 10 hp 30 hp

Line frequency 60 Hz 50 Hz

Stator resistance, R, 0.0453 pu. |0.0147 p.u.
Rotor resistance, R, 0.0222 pu. |0.0287 p.u.
Stator reactance, X, 0.0775 p.u. 3.2340 p.u.
Rotor reactance, X, 0.0322 p.u. 3.2484 p.u.
Leakage reactance, X |2.0420 p.u. 3.1568 p.u.
Inertia constant, H 1.0000 p.u. 1.0167 p.u.

102

103

A.4 Induction Motor Model Program Listing

The following is a program listing of the induction motorin the stationary
reference frame (stator frame).

[3 ke ok s e sfe o ok ke ok ok ok sk e e sk sk ok ok sk o e ok sk sk ke e e ok ke ok o ok sk ke ok e ke ok sk ke ok ok ok ke st ok sk ok ok ok sk sk s ok sk e ok ok ok e ok ok o ok 3k

The Following program is to give an Estimate of the Rotor Flux in an Induction
Machine with D-Q axis on Stationary ref. frame. The method used to accomplish this is
Runge-Kutta Numerical method (modified).

Author: Toh, K.P. Allan
Date : April 28th 1994
Updated : May 24th 1994

***/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define pi 3.14159265359

void ME(double ALI_me[5][S], double R_me{5][5], double G_me[5][5],
ouble H_me[5][5], double WE_me, double XS_me, double XM_me,
ouble XR_me, double RS_me, double RR_me, double XRR_me,

double RRR_me, int N_me);

void RK(int N_rk, double dx_rk, int nes_rk, double Y_rk[8], double E_rk[8],
double v_rk[8], double ALI_rk[5][5], double G_rk[5][5],

double H_rk[5][5], double R_rk{5][5], double am_rk, double *TM_rk,
double VT _rk, double *TE_rk, double WE_rk, double WF_rk, int tq_rk,

int inrun_rk, int k_rk, double XS _rk, double XM _rk, double XR rk,

double VDSS_rk, double VQSS_rk, double t_rk, double *WRR rk,

double *CHI_R_rk),

void AUX(double c_aux[8], double PC_aux[8], double v_aux[8],

double ALI aux[5][5], double G_aux[5][5], double H_aux[5][5],

double R_aux[5][5], double am_aux, double *TM_aux, double VT _aux,
double *TE_aux, double WE_aux, double WF_aux, int tq_aux,

int inrun_aux, int k_aux, double XS_aux, double XM_aux, double XR_aux,
double VDSS_aux, double VQSS_aux, double t_aux, double *WRR_aux,
double *CHI_R _aux);

void MM(double A_mm[5][5], double B_mm{5][5], double C_mm[S][S],

104

int N_mm),

void main()

{

double c[8], PC[8], v[8], R[5][5], G[51[5], H[5][5], ALI[5][5];

double XS, XM, XR, RS, RR, XRR, RRR, ah, freq, dx, slip, WRR;

double am, TM, VT, TE, WE, WR, WF, VT1, VT2, TM1, TM2, VTT, AIM;
double Ls, Lm, Lr, t, CHI_R, VA_REF_MAX, WR_REF, WE_REF,

KP, KPP, KI;

double WR_ERR, WR_ERR_INTEG, TE_REF, IQS_REF,

IDS_REF, WSL _REF,

double THETAE_REF, IQSS_REF, IDSS_REF, IA_REF, IB_REF, IC_REF;
double IA, IB, IC, IA_ERR, IB_ERR, IC_ERR, VA_REF, VB_REF, VC_REF;
double VAO, VBO, VCO, VDSS, VQSS, IDSS, IQSS, KVSL, W R, WR rad_s;
int inrun, ndis, itype, iter, ir, tq, k, N, i, j, nes;

char infile[10];
FILE *outptrl, *outptr2, *inptr;

printf("Enter DATA FILENAME please :\n"),
scanf{"%s", infile);

printf("Reading & Processing, Please Wait...\n");
inptr = fopen(infile, "r");

outptrl = fopen("Results.m", "w");
outptr2 = fopen("VLm", "w");

/***

Input Data Stream Sequence
INRUN : No. of iterations before application of disturbance
NDIS : The ending iteration number of the disturbance being applied
ITYPE : Type of Disturbance,

1= Voltage Disturbance

2= Load Disturbance

3= No Disturbance
ITER : Total No. of iterations
IR : Type of starting/initial conditions,

0= Motor Start

1=Read Initial States
TQ :Load type,

0= Free Acceleration

1= Constant Load Torque

XS : Total stator reactance

XM : Mutual reactance

XR : Total rotor reactance

RS : Stator resistance

RR : Rotor resistance

AH : Inertia constant

XRR : Rotor reactance (run mode)
RRR : Rotor resistance (run mode)
DX : Integration step interval

2= Load Proportional to square of speed

FREQ : Supply frequency

VT

: Inverter DC bus Voltage

TM : Load torque

VTI

: Voltage disturbance value

TM1 : Torque disturbance value

VT2 : Removal of disturbance voltage value (i.e resume value)
TM2 : Removal of torque disturbance value (i.e resume value)

c[1] =ids, c[2] =Iigs, c[3] =idr, c[4] =iqr

Variable Dictionary

c[5] = theta slip, c[6] = w_slip

v[1] = vds, v[2] = vgs, v[6] = load torque(TM)

CHI_r = rotor flux magnitude
***/

fscanf(inptr,"%d", &inrun);
fscanf(inptr,"%d", &ndis),
fscanf(inptr,"%d", &itype);
fscanf(inptr,"%d", &iter);
fscanf(inptr,"%d", &ir),
fscanf(inptr,"%d", &tq);
fscanf(inptr,"%If", &XS);
fscanf(inptr,"%If", &XM);
fscanf(inptr,"%lIf", &XR);
fscanf(inptr,"%If", &RS);
fscanf(inptr,"%If", &RR);
fscanf(inptr,"%lf", &ah);
fscanf(inptr,"%lIf", &XRR);
fscanf(inptr,"%lIf", &RRR),
fscanf(inptr,"%lIf", &dx);
fscanf(inptr,"%lIf", &freq);

105

fscanf(inptr,"%If", &VT);
fscanf(inptr,"%lIf", & TM);

am = ah/(pi*freq);

WE = 2.0*pi*freq;

WEF = 2.0*pi*freq;
VA_REF_MAX = 1.0;
WE_REF = 314.0;

WRR =0.0;
VDSS =0.0;
VQSS =1.0;

[R ok ke ok ke o o ok ok ke sk ke ok ok e o ok s ok ke sk sk ok sk ok ok ok sk ok o ok ok ok sk ok ok ook ok sk sk ok sk ok sk ok sk ok ok sk

Initial States Read in

Order in which the states are read in;
d-axis stator current
g-axis stator current
d-axis rotor current

g-axis rotor current
**/

if(ir==1) {
for(i=1; i<=7, i++)
fscanf{(inptr,"%lf", &c[i]);
for(=1; j<=7, j++)
fscanf(inptr,"%lIf", &v[j]);
}

[¥***x INITIAL CONDITIONS ***¥%/

if (ir == 0) {
for(i=1; i<=7, i++){
cl[i] = 0.0;
v[i] = 0.0;
}
}
v[1] = VDSS;
v{2] = VQSS;
c[6] = WE;

[¥**%% Dynamic Cycle *****/

fscanf(inptr,"%If", &VT1);,
fscanf(inptr,"%lIf", &TM1);

106

107

fscanf{inptr,"%lIf", &VT2);
fscanf(inptr,"%lf", &TM2),

for(k = 1; k <= iter; k++) {
[¥***% Perform Matrix inversion *****/
ME(ALL R, G, H, WE, XS, XM, XR, RS, RR, XRR, RRR, 1);
/**** Disturbance Application *****/
if (k == inrun)
if (itype ==1) VT = VT1;
else if (itype == 2) TM = TM1;
[¥¥** Disturbance Removal ***%*/
if (k == ndis)
if (itype == 1) VT = VT2;
else if (itype == 2) TM = TM2,;
[*¥¥** Perform (modified) Runge-Kutta **#**/
t = dx*k;
RK(7, dx, 1, ¢, PC, v, ALIL, G, H, R, am, &TM, VT, &TE, WE, WF,
tq, inrun, k, XS, XM, XR, VDSS, VQSS, t, &¥WRR, &CHI_R);
Ls = XS/WE,
Lm = XM/WE,;
Lr = XR/WE;
[*¥¥%% Cale. Rotor speed, Terminal Voltage and Current **#*#¥ioiokoky
W_R = WRR*pi/15.0; /* Change from RPM to rad/sec */
slip = (WE - W_R)*100.0/WE;
VTT = sqrt(v{2]*v[2] + v[1]*V[1]);
AIM = sqrt(c[2]*c[2] + c[1]*c[1]);

[*¥**% Print out Time, Terminal Voltage, Slip, Torque, Current,
Rotor speed and Flux Mag. HHAAkK

fprintf{outptrl, "%lf\t %lf\t %elf\t Yolf\t %olf\t Yolf\t %olf\n",

108

t, VTT, slip, TE, AIM, W_R/WE, CHI_R),

fprintfloutptr2, "%lf\t %lf\t %lf\t %lf\t %6lf\t Yolf\t %6lf\t Yolf\n",
t, IA, IB, IC, c[1], c[2], ¢[3], c[4]);

} /* k-loop */

} /*End of main() */

[3 okt v sk sk o ok ok s o s se s s ok o o ok ok o ok ok ok ok ok ok ke sk ke s s o ol s e ok e ok sk ok s ok o ok sk sk sk sk ke sk ke sk sk ook ok ok ok

Subroutine : ME
This subroutine performs matrix inversion
***/
void ME(double ALI_me[5][5], double R_me[5][5], double G_me[5][5],
double H_me[5][5], double WE_me, double XS_me, double XM_me,
double XR_me, double RS_me, double RR_me, double XRR _me,
double RRR_me, int N_me)

{
double ALS, ALM, ALR, u;

int i, j;
[*¥**¥** Convert Reactances to Inductances ****%*/

ALS =XS_me/WE_me;
ALM =XM_me/WE_me;
ALR =XR_me/WE_me;
for(i=1;i<=4; it++){
for(j =1, j <= 4; j++){
ALI mefi][j]=0.0;
R_me[i][j]=0.0;
G_me[i][j] = 0.0;
H_me[i][j] = 0.0;

[¥**%* Input [R] matrix *****/

R_me[1][1]=RS _me;
R_me[2][2] =RS_me;
R_me[3][3] =RR_me;
R_me[4][4] =RR _me;

[2**%* Input [G] matrix *¥***/

G_me[3][2] = XM_me;
G_me[3][4] = XR_me;
G_me[4][1] = -XM_me;
G_me[4][3] =-XR_me;

[Input [H] matrix **#%4/

H_me[1][2] = XS_me;
H_me[1]{4] = XM_me;
H_me[2][1] =-XS_me;
H_me[2][3] = -XM_me;
H_me[3][2] = XM _me;
H_me[3][4] = XR_me;
H_me[4][1] = -XM_me;
H_me[4][3] =-XR_me;

[¥**%% Running Parameters *****/

if (N_me == 2) {
ALR = XRR_me/WE me;
R_me[3][3] = RRR_me;
R_mef4][4] = RRR_me;

}

[¥**** Input [L] matrice *****/

ALI me[1][1] = ALR,
ALI me[1][3]=-ALM,
ALI_me[2][2] = ALR,
ALI_me[2][4] = -ALM,;
ALI_me[3][1] =-ALM,;
ALI_me[3][3] = ALS;
ALI_me[4][2] = -ALM,;
ALI_me[4][4] = ALS;

[xxxxx CALCULATE [L]'-1 matrice *****/

u=ALS*ALR - ALM*ALM;
for(i=1;i<=4; i++) {
forG=1;j<=4;j+) {
ALI_mefi][j] = ALI_me[i][j}/u;
}

109

110

}

return;
} /* end of subroutine ME */

/***

Subroutine : RK

This subroutine RK uses the Runge-Kutta algorithm to calculate

[x]t vector (Merson Modified)
***/
void RK(int N_rk, double dx_rk, int nes_rk, double Y_rk[8], double E_rk[8],
double v_rk[8], double ALI rk[5][5], double G_rk[5][5],
double H_rk[5][5], double R_rk[5][5], double am_rk, double *TM_rk,
double VT_rk, double *TE_rk, double WE_rk, double WF_rk, int tq_rk,
int inrun_rk, int k_rk, double XS_rk, double XM_rk, double XR rk,
double VDSS_rk, double VQSS_rk, double t_rk, double *WRR rk,
double *CHI_R_rk)

{

double A[8], B[8], C[8], D{8], h, Z;

int i;

h=dx_rk/3.0;

for(i = nes_rk; i <= N_rk; i++) D[i} =Y _rk[i];

AUX(Y_rk, E 1k, v_rk, ALI rk, G_rk, H_rk, R_rk, am_rk, TM_rk, VT rk,
TE_rk, WE_rk, WF_rk, tq_rk, inrun_rk, k_rk, XS rk, XM _rk, XR 1k,
VDSS_rk, VQSS_rk, t_rk, WRR_rk, CHI_R_rk);

for(i = nes_rk; i <=N_rk; i++) {
A[i] = h*E_rk[i];
Y _rk[i] = D[i] + A[i];

}

AUX(Y_rk, E_rk, v_rk, ALI 1k, G_rk, H_rk, R_rk, am_rk, TM_rk, VT rk,
TE_rk, WE_rk, WF_rk, tq_rk, inrun_rk, k_rk, XS _rk, XM_rk, XR_rk,
VDSS_rk, VQSS_rk, t_rk, WRR_rk, CHI_R_rk);

for(i=nes_rk; i <=N_rk; i++) {
B[i] = h*E_rk[i];
Y _rk[i] = D[i] + (A[i] + B[i])*0.5;

111

AUX(Y_rk, E_rk, v_1k, ALI_rk, G_rk, H_rk, R_rk, am_rk, TM_rk, VT 1k,
TErkWErkWFrktqumrunrkkrkXSrkXMrkXRrk
VDSS_rk, VQSS_rk, t_rk, WRR_rk, CHI_R_rk);

for(i = nes_rk; i <=N_rk; i++) {
B[i] = h*E_rk[i];
Y_rk[i] = D[i] + (A[i] + B[i]*3.0)*0.375;

AUX(Y_rk, E_tk, v_rk, ALI_rk, G_rk, H_rk, R rk, am_rk, TM_rk, VT rk,
TE rk, WE_rk, WF_rk, tq_rk, inrun_rk, k_rk, XS _rk, XM _rk, XR rk,
VDSS_rk, VQSS_rk, t_rk, WRR_rk, CHI R _r1k);

for(i=nes_rk; i <=N_rk; i++) {

C[i] = h*E_rk{i];

Y_rk[i] = D[i] + (A[i] - B[i]*3.0 + C[i]*4.0)*1.5;
}

AUX(Y_rk, E_rk, v_rk, ALI 1k, G_rk, H_rk, R_rk, am_rk, TM_rk, VT _rk,
TE_rk, WE_rk, WF_rk, tq_rk, inrun_rk, k_rk, XS_rk, XM_rk, XR_rk,
VDSS_rk, VQSS. rk, t_rk, WRR_rk, CHI_R _rk);

for(i = nes_rk; i <= N_rk; i++) {

Z =Dli];

D[i] = h*E _rk{i];

Y_rk[i] = Z + (A[i} + C[i]*4.0 + D[i])*0.5;
}

return,

} /* end of subroutine RK */

/**

This subroutine AUX is used by the Runge-Kutta algorithm

to calc. [x]t vector, i.e. igs, ids, iqr, idr
***/
void AUX(double c¢_aux[8], double PC_aux[8], double v_aux[8],

double ALI_aux[5][5], double G_aux[5][5], double H_aux[5][5],

double R_aux[5][5], double am_aux, double *TM_aux, double VT _aux,

double *TE_aux, double WE_aux, double WF_aux, int tq_aux,

int inrun_aux, int k_aux, double XS_aux, double XM_aux, double XR_aux,

double VDSS_aux, double VQSS_aux, double t_aux, double *WRR_aux,

double *CHI_R_aux)

112

{

double A[8][8], B[8][8], F[5][S], Z[S1[5], it[2][5], it_G[2][5];
double ALS, ALM, ALR, W, WR, WD, it G I, T accel, I[5][2];
inti,j, [

double temp, CHI_dr, CHI qr;

[***¥% Convert Reactances to Inductances *****/

ALS=XS aux/WE_aux;
ALM = XM_aux/WE_aux;
ALR = XR aux/WE_aux;
W =c_aux{6],

WR =WE_aux - W;

v_aux[1] = -VT_aux*(double)sin((double) WE_aux*t_aux);
v_aux[2] = VT_aux*(double)cos((double)WE_aux*t_aux),

v_aux[6] = *TM_aux;
fori=1;1<=4; i++) {
for(= 13 <=4 j++) {
Fl[i](]1 = *WRR_aux*pi/15.0*G_aux[i][j/WE_aux + R_aux[i][j];
}
}

MM(ALI aux, F, Z, 4);
fori=1;i<=7,it+) {
for(j=1;j <=7, j++) {
if ((i<5) && (j<5)) {
Ali[] = -Z[i]0L
BIil[j] = ALI_aux[i][j];

}
else A[i][j] = BIi][j]=0.0;
}
}
A[5][6]=1.0;

A[6][1] = -v_aux[1])/am_aux + ¢_aux[1]*R_aux[1][1}/am_aux;
A[6][2] = -v_aux[2])/am_aux + c_aux[2]*R_aux[2][2}/am_aux;
A[7][1] = ALM*R_aux[3][3]/ALR;

A[7][7] = -R_aux[3][3)/ALR;

B[6][6] = 1.0/am_aux;

for(i=1;i<=7; i++) {
PC_aux[i] = 0.0;
for=1;j <=7, j++)
PC_aux[i] = PC_aux[i] + A[i][j]*c_aux[j] + B[il[j]*v_aux[j];
}

[¥*¥*** Calc. TE = it*[G]*], it = I-transpose ******/

for(I=1;1<=4; H+) {
it G[1][1] = 0.0;
for(j = 1;j <= 4; j++) {
it[11j] = c_aux[j];
it_G[1][1] =it_G[1][1] + it[1][]*G_aux[j][1];
}
}

it G 1=0.0;
for(=1;j<=4; j++) {

IGI[1] = c_aux[jl;

it G I=it G I+it G[1]G]* IGI[1);
}

*TE_aux =it G_I;
if (tq_aux ==0) T_accel = *TE_aux - *TM_aux;
if (tq_aux ==2) {
WD = (*WRR_aux*pi/15.0)/(WE_aux);
*TM_aux = 1.1*WD*WD;
}

if (tq_aux == 1)
*TM_aux = 1.
}

T_accel = *TE_aux - *TM_aux;

{
O.

b

[****%% Calc. of WR using Euler's approx. (step size = 0.001) *****%/
*WRR_aux = *WRR_aux + ((T_accel)/am_aux)*0.001; /* in RPM */
[¥**x% Calc. Flux Magnitude **%***/

CHI_dr = ALR*(c_aux[3]) + ALM*(c_aux[1]);
CHI_gr = ALR*(c_aux[4]) + ALM*(c_aux{2]);

113

114

*CHI_R_aux = sqrt((CHI_dr*CHI_dr) + (CHI_qr*CHI_qr));
return,

} /* end of subroutine AUX */

/***

This subroutine MM is used by AUX subroutine to multiply matrices to obtain
[L]"-1(Wr[G] + [R])

**/
void MM(double A_mm[5][5], double B_mm[5][5], double C_mm[5]{5], int N_mm)

{

inti,j,l;
for(i=1;i<=4;i++) {
forl=1;1<=4; ++) {
C_mm([i][l] = 0.0;
for(j = 1; j <= 4; j++) {
C_mm(i]{I] = C_mm(i][1] + A_mmfi][j]*B_mm{j]{1];
}

}
}

refurn,

} /* end of subroutine MM */

115

Appendix B

B.1 Field Oriented Control of Induction Motor Program Listing

The following is a program listing in C of the FOC drive system with PI controllers
incorporated (uses machine model from appendix A.4).

[St okt sk b ol e ok s o ok ok ok ok ok ok ok s e sk e sk ke ok ke ok e ok ke s o e s e o s obe sk ok sk ok ok ok o ke ok e ok ke ok e ok sk ok sk ok sk ok ok ok ook o ok ok ok o ok ok

The Following program is to give an Estimate of the Rotor Flux Magnitude and
Angle in an Induction Machine with the D-Q axis on Synchronous Rotating Ref. frame.
The induction motor model is based on the stationary (stator) ref. frame, the numerical
method used to accomplish this is Runge-Kutta method (modified).

Using motor model fixed on STATOR (stationary reference frame). The sine and
cosine of angle ¢ (i.e the field angle) will be calculated. This program incorporates Field
Oriented Control for the induction motor.

Author: Toh, K.P. Allan
Date : April 28th 1994
Updated : June 16th 1994

***/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define pi 3.14159265359

void ME(double ALI_me[5][5], double R_me[5][5], double G_me[5][5],
double H_me[5][5], double WE_me, double XS_me, double XM_me,
double XR_me, double RS_me, double RR_me, double XRR_me,
double RRR_me, int N_me),

void RK(int N_rk, double dx_rk, int nes_rk, double Y _rk[5], double E_rk[5],
double v_rk[5], double ALI rk[5][5], double G_rk[5][5],

double H_rk[5][5], double R_rk[5][5], double am_rk, double *TM_rk,
double VT_rk, double *TE_rk, double WE_rk, int tq_rk,

int inrun_rk, int k_rk, double XS_rk, double XM_rk, double XR_rk,

double *Vds_sta_rk, double *Vqs_sta_rk, double t_rk, double *WRR_rk,
double *Ids_syn_rk, double *Iqs_syn_rk, double *Idr_syn rk,

double *Iqr_syn_rk, double *CHI_r_rk, double *CHI_dr sta_rk,

double *CHI_gr_sta_rk, double *Sin_Phi_rk, double *Cos_Phi_rk);

void AUX(double c¢_aux[5], double PC_aux[5], double v_aux[5],

double ALI_aux[5][5], double G_aux{5][5], double H_aux[5][5],

double R_aux[5][5], double am_aux, double *TM_aux, double VT _aux,
double *TE_aux, double WE_aux, int tq_aux, int inrun_aux, int k_aux,
double XS_aux, double XM_aux, double XR_aux, double *Vds_sta_aux,
double *Vqgs_sta_aux, double t_aux, double *WRR_aux,

double *Ids_syn_aux, double *Iqs_syn_aux, double *Idr_syn_aux,
double *Iqr_syn_aux, double *CHI_r_aux, double *CHI_dr_sta_aux,
double *CHI_gr_sta_aux, double *Sin_Phi_aux, double *Cos_Phi_aux);

void MM(double A_mm([5][5], double B_mm[5][5], double C_mm[5][5],
int N_mm);

void main()

{

double c[5], PC[5], v[5], R{S1[5], G[51[5], H[5][5], ALI[5][5];

double XS, XM, XR, RS, RR, XRR, RRR, ah, freq, dx, WRR,;

double am, TM, VT, TE, WE, WR, VT1, VT2, TM1, TM2, VTT, AIM,;
double Ls, Lm, Lr, t, CHI_r, KP, KPP, KI, WE_base;

double Igs_syn_REF, Ids_syn REF, WSL_REF,;

double Iqs_sta_REF, Ids_sta REF;

double VAO, VBO, VCO, Vds_sta, Vgs_sta, Ids_sta, Igs_sta, W_r;
double Ids_syn, Igs_syn, Idr_syn, Iqr_syn, Vds_foc, Vqgs_foc, PHI,
double Sin_Phi, Cos_Phi, Ids_foc, Iqs_foc, CHI_dr_sta, CHL qr_sta;
double Igr_sta, sin_err, cos_err, Sin_Phi_AUX, Cos_Phi_AUX, Ids ERR,;
double Ids_ERR_INTEG, Iqs_ERR_INTEG, Ids_foc REF, Iqs_foc REF,
double Vgs_foc_lim, vds_foc, vgqs_foc, CHI_r_ERR_INTEG, CHI_REF;
double KP_CHI, KI_CHI, CHI base, Idr_sta, Iqs_ERR;

double Ids_foc_lim, Vds_foc_lim, CHI_r ERR, WR_ERR_INTEG;
double WR_ERR, WR_REF, KP_ WR, KI_WR, Igs_foc_lim;

int inrun, ndis, itype, iter, ir, tq, k, N, i, j, nes;
char infile[10];
FILE *inptr, *outptrl, *outptr2;

printf("Enter DATA FILENAME please :\n"),
scanf("%s", infile);

116

117

printf("Reading & Processing, Please Wait...\n");
inptr = fopen(infile, "r");

outptrl = fopen("Results.m", "w");

outptr2 = fopen("VLm", "w");

[/ sk 3k sk ok ok ok ok ke ok ok s o ok ok s ok ok o ok sk ok ok ok ke sk ok o ok ok ke ok e 3 e ok o ke ok e ofe K sk ok sk e sk ok s sk ok s ok ok ok ok o ok ok ok ok ok ok sk ke sk ok ok ok

Input Data Stream Sequence

INRUN : No. of iterations before application of disturbance
NDIS : The ending iteration number of the disturbance being applied
ITYPE : Type of Disturbance,

1= Voltage Disturbance

2= Load Disturbance

3= No Disturbance
ITER : Total No. of iterations
IR : Type of starting/initial conditions,

0= Motor Start

1= Read Initial States
TQ :Load type,

0 = Free Acceleration

1 = Constant Load Torque

2 = Load Proportional to square of speed

XS : Total stator reactance
XM : Mutual reactance
XR : Total rotor reactance
RS . Stator resistance

RR : Rotor resistance

AH :Inertia constant

XRR : Rotor reactance (run mode)

RRR : Rotor resistance (run mode)

DX :Integration step interval

FREQ : Supply frequency

VT :Inverter DC bus Voltage

TM : Load torque

VT1 : Voltage disturbance value

TM1 : Torque disturbance value

VT2 : Removal of disturbance voltage value (i.e resume value)
IM2 : Removal of torque disturbance value (i.e resume value)

Variable Dictionary

c[1] = ids, c[2] =igs, c[3] = idr, c[4] =iqgr

118

c[5] = theta slip, c[6] = w_slip
v[1] = vds, v[2] = vqs, v[6] = load torque(TM)
CHI_r = rotor flux magnitude

***/
fscanf(inptr,"%d", &inrun);
fscanf(inptr,"%d", &ndis);
fscanf(inptr,"%d", &itype);
fscanf(inptr,"%d", &iter);
fscanf(inptr,"%d", &ir),
fscanf(inptr,"%d", &tq);
fscanf(inptr,"%If", &XS);
fscanf{inptr,"%If", &XM);
fscanf(inptr,"%If", &XR);
fscanf(inptr,"%lf", &RS);
fscanf(inptr,"%If", &RR);
fscanf(inptr,"%If", &ah);
fscanf(inptr,"%lf", &XRR);
fscanf(inptr,"%If", &RRR),
fscanf(inptr,"%If", &dx);
fscanf(inptr,"%lf", &freq);
fscanf(inptr,"%lIf", &VT);
fscanf(inptr,"%lIf", &TM),

[¥*** CHI_base is different for differnt m/c ****/

/*CHI_base = 393.7007874; */ /* 10 hp */
CHI_base = 323.2062055, /*30 hp */

[*¥*** Tnitial States ****/

am = ah/(pi*freq);
WE = WE_base = 2.0*pi*freq;
WRR = 0.0;
CHI_r=0.0;
CHI_REF =1.0;
WR_REF = 310.0;
Vds_foc_lim=1.0;
Vgs_foc_lim = 1.0,
Ids_foc_lim=6.0;
Igs_foc REF =6.0;
Vds_sta=0.0;

Vgs_sta=0.0;
[**** P I controllers coefficients ****/

KP =0.8;

KI =400.0;

KP WR=0.1;
KI_WR =0.05;
KP_CHI =100.0;
KI_CHI = 100.0;

[33k s ke sk sk b ok ok ok ke ok o ok sk ok o ke ok ok ok o ok o ke o ok ok ok e sk oe sk o sk e sk sk ok ok ok ke ok sk ke sk ok ok ok

Initial States Read in

Order in which the states are read in:
d-axis stator current

g-axis stator current

d-axis rotor current

g-axis rotor current
**/

if(ir=1) {
for(i=1; i<=4; i++)
fscanf{inptr,"%If", &c[i]);
for(j=1; j<=4; j++)
fscanf(inptr,"%If", &v[jl);
}

[x**%% INITIAL CONDITIONS ***#%/

if (ir==0) {
for(i=1; i<=4; i++){
c[i] = 0.001;
v[i] = 0.001;
}
}

[***** Dynamic Cycle *****/

fscanf(inptr,"%If", &VT1),
fscanf(inptr,"%lf", &TM1);
fscanf{inptr,"%If", &VT2),
fscanf(inptr,"%lf", & TM2);

119

for(k = 1; k <=fter; k++) {
[H¥kxx Perform Matrix inversion **%%%/
ME(ALL R, G, H, WE, XS, XM, XR, RS, RR, XRR, RRR, 1);
/**** Disturbance Application *****/
if (k ==inrun) -
if (itype == 1) VT = VT,
else if (itype == 2) TM = TM1,
/¥*** Disturbance Removal ****%*/
if (k == ndis)
if (itype == 1) VT = VT2;
else if (itype == 2) TM = TM2,
/**** Perform (modified) Runge-Kutta *****/
t = dx*k;
RK(4, dx, 1, ¢, PC, v, ALIL, G, H, R, am, &TM, VT, &TE,
WE, tq, inrun, k, XS, XM, XR, &Vds_sta, &Vqs_sta, t, &WRR,
&lds_syn, &Iqs_syn, &Idr_syn, &Iqr_syn, &CHI_r, &CHI dr_sta,
&CHI_qr_sta, &Sin_Phi_AUX, &Cos_Phi_ AUX);
Ls = XS/WE,
Lm=XM/WE;
Lr=XR/WE;

[**** Change variable name **#**/

Ids_sta=c[1];
Igs_sta = c[2];
Idr_sta = c[3];
Iqr_sta =c[4];

[***** Calc. Terminal Voltage, Current, sine & cos of field angle (phi) *****/

120

W_r=WRR*pi/15.0; /* Change from RPM to rad/sec */

VTT = sqrt(v[2]*v[2] + v[1]*V[1]);

121
AIM = sqrt((c[2]*c[2] + c[1T*c[1]));

WR=W_r;
Sin_Phi = CHI_qr_sta/(CHI r);
Cos_Phi = CHI_dr_sta/(CHI 1),

[****% Perform Stationary to FOC Co-ordinate change ****%*/

Ids_foc =1Iqs_sta*Sin_Phi + Ids_sta*Cos_Phi,
Igs_foc =1Iqs_sta*Cos_Phi - Ids_sta*Sin_Phi;

[**¥*%* Calc. of P.I. Controller Command Signals for CHI_r *****/

CHI_r_ERR = (CHI_REF - CHI_r*CHI base);
CHI_r_ERR_INTEG = CHI_r_ERR_INTEG + CHI_r ERR*dx;
Ids_foc REF =KP_CHI*CHI_r_ERR +KI_CHI*CHI r_ERR _INTEG;

3

[¥**x* Adding Current limiter for Ids foc ref, *****/

if (Ids_foc_REF > Ids_foc_lim) Ids_foc REF = Ids_foc_lim,
[*¥***%* Calc. of P.I. Controller Command Signals for Wr ****%/
WR_ERR = (WR_REF - WR);

WR_ERR_INTEG = WR_ERR_INTEG + WR ERR*dx
Igs_foc_REF = KP_WR*WR_ERR + KI_WR*WR_ERR_INTEG;
[¥***x* Adding Current limiter for Igs foc ref, *#¥#¥/

if (Igs_foc_REF > Iqs_foc_lim) Igs_foc_REF =Ids_foc_lim;
[***%% Calc. of P.I. Controller Cmd Sig. for Vds & Vqs FOC ***#%/
Ids_ERR = (Ids_foc_REF - Ids_foc);

Igs_ERR = (Igs_foc_REF - Igs_foc);

Ids ERR_INTEG =Ids_ERR_INTEG + Ids ERR*dx;
Igs_ERR_INTEG = Iqs_ERR_INTEG + Iqgs_ ERR*dx;

Vds_foc = KP*Ids_ERR + KI*Ids ERR_INTEG;
Vgs_foc = KP*Igs_ERR + KI*Igs ERR INTEG;

122

[¥**%% Adding Voltage limiter *****/

if (Vds_foc > Vds_foc_lim) Vds_foc = Vds_foc_lim;
if (Vgs_foc > Vgs_foc_lim) Vgs_foc = Vgs_foc_lim;

[¥**%% Perform FOC. Ref frame to Stat. Ref frame transfin *****/

Vds_sta = Vds_foc*Cos_Phi - Vgs_foc*Sin_Phi;
Vgs_sta = Vqs_foc*Cos_Phi + Vds_foc*Sin_Phi;

[¥o*%* Print out Time, Terminal Voltage, sin (phi), Torque, Current,
Rotor speed and Flux Mag. Rl

fprintfloutptrl, "%lf\t %lf\t %lf\t Yolf\t %elf\t %olf\t Yolf\n",
t, VIT, Sin_Phi, TE, AIM, W_r/WE_base, CHI_r*CHI_base);

fprintfloutptr2, "%lf\t elf\t %elf\t Yolf\t Yolf\t %lfit %lf\t Yolfin",
t, Vds_sta, Vqs_sta, Ids_foc_REF, Ids_foc, Igs_foc, Sin_Phi, CHI_r_ERR);

} /* k-loop */
} /*End of main() */

/***

Subroutine : ME
This subroutine performs matrix inversion

***/

void ME(double ALT_me[5][5], double R_me[5][5], double G_me[5][5],
double H_me[5][5], double WE_me, double XS_me, double XM _me,
double XR_me, double RS_me, double RR_me, double XRR_me,
double RRR_me, int N_me)

{

double ALS, ALM, ALR, u;
int i, j;

[**¥*** Convert Reactances to Inductances *****/

ALS =XS_me/WE_me;
ALM =XM me/WE_me,

ALR =XR_me/WE_me;
for(i = 1; i <= 4; i++){
for(j=1;j <=4; j++){
ALI_mefi][j] = 0.0;
R_me[i][j]=0.0;
G_me[i][j]=0.0;
H_me[i][j] = 0.0,
}
}

[¥**% Input [R] matrix *****/

R_me[1][1] =RS me;
R_me[2][2] =RS_me;
R_me[3][3] =RR_me;
R_me[4][4] = RR_me;

[¥¥*** Input [G] matrix in reactance **¥%%/

G_me[3][2] = XM_me;
G_me[3][4] = XR_me;
G_me[4][1] = -XM_me;,
G_me[4][3] = -XR_me;

[¥¥*** Input [H] matrix in inductance **¥**/

H_me[3][2] = XM_me/WE_me;
H_me[3][4] = XR_me/WE_me;

H_mef[4][1] = -XM_me/WE_me;
H_mef[4][3] = -XR_me/WE_me;

[*¥**% Running Parameters *****/

if (N_me==2) {
ALR = XRR_me/WE_me;
R_me[3][3] =RRR_me;
R_me[4][4] = RRR_me;

}

[¥¥*%% Input [L] matrice *****/

ALI me[1][1]= ALR,;

123

124

ALI me[1][3]=-ALM;
ALI mef2][2] = ALR,;
ALI_me[2][4] = -ALM;
ALI_me[3][1] = -ALM,;
ALI me[3][3] = ALS;
ALI_me[4][2] = -ALM,;
ALI me[4][4] = ALS;

[**#ik CALCULATE [L]-1 matrice *****/

u=ALS*ALR - ALM*ALM;
for(i=1;i<=4;i++) {
forG=1;j <= 4; jt+) {
ALI_me[i}[j] = ALI_mef{i][j}/u;
}
}

return;
} /* end of subroutine ME */

/***

Subroutine : RK

This subroutine RK uses the Runge-Kutta algorithm to calculate [x]t vector
(Merson Modified)

***/

void RK(int N_rk, double dx_rk, int nes_rk, double Y_rk[5], double E_rk[5],
double v_rk[5], double ALI_rk[5][5], double G_rk[5][5],

double H_rk[5][5], double R_rk{5][5], double am_rk, double *TM_rk,
double VT_rk, double *TE_rk, double WE _rk, int tq_rk,

int inrun_rk, int k_rk, double XS _rk, double XM _rk, double XR rk,

double *Vds_sta_rk, double *Vqs_sta_rk, double t_rk, double *WRR_rk,
double *Ids_syn_rk, double *Iqs_syn_rk, double *Idr_syn_rk,

double *Iqr_syn_rk, double *CHI_r_rk, double *CHI_dr_sta_rk,

double *CHI_qr_sta_rk, double *Sin_Phi_rk, double *Cos_Phi_rk)

{

double A[5], B[5], C[5], D[5], h, Z;

int 1;

h=dx rk/3.0;

for(i = nes_rk; i <= N_rk; i++) D[i] = Y_rk[i];

125

AUX(Y_rk, E_rk, v_rk, ALI_rk, G_rk, H_rk, R_rk, am_rk, TM rk, VT rk,
TE_rk, WE_rk, tq_rk, inrun_rk, k_rk, XS_rk, XM_rk, XR_rk,

Vds_sta_rk, Vgs_sta_rk, t_rk, WRR_rk, Ids_syn_rk, Igs.syn rk,
Idr_syn_rk, Iqr_syn_rk, CHI_r_rk, CHI dr_sta_rk, CHI gr_sta_rk,
Sin_Phi_rk, Cos_Phi_rk);

for(i = nes_rk; i <= N_rk; i++) {
Afi] =b*E_rk[i};
Y_rk[i] = D[i] + A[i];

}

AUX(Y_rk, E_rk, v_rk, ALI_rk, G_rk, H_rk, R_rk, am_rk, TM_rk, VT rk,
TE_rk, WE_rk, tq_rk, inrun_rk, k_rk, XS_rk, XM _rk, XR_rk,

Vds_sta_rk, Vgs_sta_rk, t_rk, WRR_rk, Ids_syn_rk, Iqs_syn_rk,
Idr_syn_rk, Iqr_syn_rk, CHI_r_rk, CHI dr_sta_rk, CHI_qr_sta rk,
Sin_Phi_rk, Cos_Phi_rk);

for(i = nes_rk; i <=N_rk; i++) {
B[i] = h*E_rk{i];
Y_rk[i] = D[i] + (A[i] + B[i])*0.5;

AUX(Y_1k, E_rk, v_rk, ALI_rk, G_rk, H_rk, R_rk, am_rk, TM_rk, VT rk,
TE_rk, WE_1k, tq_rk, inrun_rk, k_rk, XS_rk, XM_rk, XR 1k,

Vds_sta_rk, Vgs_sta_rk, t_rk, WRR_rk, Ids_syn_rk, Iqs_syn_rk,
Idr_syn_rk, Iqr_syn_rk, CHI_r_rk, CHI dr_sta_rk, CHI gr_sta rk,
Sin_Phi_rk, Cos_Phi_rk);

for(i = nes_rk; i <= N_rk; i++) {

B[i] = h*E_rk{i];

Y_rk[i] = D[i] + (A[i] + B[i]*3.0)*0.375;
}

AUX(Y_rk, E_rk, v_rk, ALI_rk, G_rk, H_rk, R_rk, am_rk, TM_rk, VT 1k,
TE_rk, WE_rk, tq_rk, inrun_rk, k_rk, XS _rk, XM_rk, XR_rk,

Vds_sta_rk, Vgs_sta_rk, t_rk, WRR_rk, Ids_syn_rk, Iqs_syn_rk,
Idr_syn_rk, Iqr_syn_rk, CHI_r_rk, CHI dr_sta_rk, CHI qr_sta rk,
Sin_Phi_rk, Cos_Phi_rk);

for(i = nes_rk; i <=N_rk; i++) {
Cli] = h*E_rk{i];
Y_rk[i] = D[i] + (A[i] - B[i]*3.0 + C[i]*4.0)*1.5;

126

AUX(Y_rk, E 1k, v_rk, ALI_rk, G_rk, H_rk, R _rk, am_rk, TM_rk, VT rk,
TE _rk, WE_rk, tq_rk, inrun_rk, k_rk, XS _rk, XM_rk, XR rk,

Vds_sta_rk, Vgs_sta_rk, t_rk, WRR_rk, Ids_syn_rk, Igs_syn rk,
Idr_syn_rk, Iqr_syn rk, CHI_r_rk, CHI_dr_sta_rk, CHI_qr_sta_rk,
Sin_Phi_rk, Cos_Phi_rk);

for(i = nes_rk; i <= N_rk; i++) {

Z =DIi};

DJi] = h*E_rk[i];

Y_rk[i] = Z + (A[i] + C[i]*4.0 + D[i])*0.5;
}

return;
} /* end of subroutine RK */

/**

This subroutine AUX is used by the Runge-Kutta algorithm to calc. [x]t vector,

i.e. igs, ids, iqr, idr
***/

void AUX(double c_aux[5], double PC_aux[5], double v_aux[5],

double ALI_ aux[5][5], double G_aux[5][5], double H_aux[5][5],

double R_aux[5][5], double am_aux, double *TM_aux, double VT _aux,

double *TE_aux, double WE_aux, int tq_aux,

int inrun_aux, int k_aux, double XS_aux, double XM _aux,

double XR_aux, double *Vds_sta_aux, double *Vgs_sta_aux, double t_aux,

double *WRR_aux, double *Ids_syn_aux, double *Igs_syn_aux,

double *Idr_syn_aux, double *Iqr_syn_aux, double *CHI r_aux,

double *CHI_dr_sta_aux, double *CHI_qr_sta_aux, double *Sin_Phi_aux,

double *Cos_Phi_aux)

{

double A[5][5], 3[5][5], F[5]05), Z[5][5], #t[2][5], it_G[2]{5];
double ALS, ALM, ALR, W, WR, WD, it G I, T accel;

inti,j, I

double CHI_dr_syn, CHI_qr_syn, CHI_dr_sta, CHI gr_sta, I[S][2];
/¥*¥%¥*x Convert Reactances to Inductances *****/

ALS =XS aux/WE_aux;
ALM = XM_aux/WE_aux;

ALR =XR_aux/WE_aux;
[¥**%* Voltages in STATOR Ref. frame*****%/

v_aux[1] = *Vds_sta_aux;
v_aux[2] = *Vqs_sta_aux;
for(i=1;i<=4;i++) {
for(j = 1;j <= 4; j++) {
Fil] = *WRR_aux*pi/15.0*H_aux[i][j] + R_aux]i][j];
}
}

MM(ALI aux, F, Z, 4);
for(i=1;i<=4; i++) {
for(=1;j <=4, j++) {
AflG] = -Z[i][5];
B[i][j] = ALI_aux[i][j];
}
}

for(i=1; i <=4; i++) {
PC_aux[i] =0.0;
for(= 1;j <= 4; jt+)
PC_aux]i] = PC_aux[i] + A[i][j1*c_aux[j] + B[i][j]*v_aux[j];
) :

[***** Converting frame fixed on STATIONARY (Stator) frame to .

frame fixed on SYNCHRONOUS ROTATING
frame valid for fix WE_aux only. HAkR AR/

Ids_syn_aux = ¢_aux[1](double)cos((double)WE_aux*t_aux) +
¢_aux[2]*(double)sin((double)WE_aux*t_aux);

Iqs_syn_aux = -c_aux[1](double)sin((double)WE_aux*t_aux)+
¢_aux[2]*(double)cos((double)WE_aux*t_aux);

Idr_syn_aux = c_aux[3](double)cos((double)WE_aux*t_aux) +
c_aux[4]*(double)sin((double)WE_aux*t_aux),

Iqr_syn_aux = -c_aux[3](double)sin((double)WE_aux*t_aux)+
c¢_aux[4]*(double)cos((double)WE_aux*t_aux);

127

128
[¥¥*%% Cale. TE = it*[G]*], it = I-transpose ******/
for(1=1;1<=4; I++) {
it_G[1][1] = 0.0;
for(=1;j <= 4;j++) {
it[11[] = c_aux[j];
it_G[1][1] = it_G[1][1] + it[1][j]*G_aux[j]{1];
}
}

it G 1=0.0;
for(=1,j <=4; j++) {

IF1[1] = c_aux[j];

it_ G I=it_ G_I+it G[1][]* IGI1T;
}

*TE aux=it_G_I,
if (tq_aux ==0) T_accel = *TE_aux - *TM_aux;
if (tq_aux ==2) {

WD = (*WRR_aux*pi/15.0)/(WE _aux),

*TM_aux = 1.1*WD*WD;
)

if (tq_aux==1) {
*TM_aux = 1.0;

'I?_accel =*TE_aux - *TM_aux;

/¥*¥*** Calc. of WR using Euler's approx. (step size = 0.001) ******/

*WRR_aux = *WRR_aux + ((T_accel)/am_aux)*0.001; /* in RPM */

[¥*¥*¥** Calc. d-q Flux Magnitude in Syn. frame **##k*/

CHI_dr_syn = ALR*(*Idr_syn_aux) + ALM*(*Ids_syn_aux),
CHI_gr_syn = ALR*(*Iqr_syn_aux) + ALM*(*Igs_syn_aux);

[X¥¥%% - Cale, d-q Flux Magnitude in Stationary frame ******/

CHI_dr_sta_aux = ALR(c_aux[3]) + ALM*(c_aux[1]);
CHI_qr_sta_aux = ALR(c_aux[4]) + ALM*(c_aux[2]);

129

[¥*¥** Rotor Flux Magnitude *****/

*CHI_r_aux = sqrt((*CHI_dr_sta_aux*(*CHI_dr_sta_aux)) +
(*CHI_gr_sta_aux*(*CHI_qr_sta_aux)));

/**** Rotor Flux Angle (Field Angle, Phi) *****/

*Sin_Phi_aux = *CHI_gr_sta_aux/(*CHI_r_aux);
*Cos_Phi_aux = *CHI_dr_sta_aux/(*CHI_r_aux),

return,
} /* end of subroutine AUX */

/** % ok ok %k k ok

This subroutine MM is used by AUX subroutine to multiply matrices to
obtain [L]*-1(Wr[G] + [R])

s ok o o ok ok e oe ok ok sk ok ok ok 3f¢ sk e sk ok 3 ok 3 2k sk 3k sk 2k ok ok sk i ok ake sk ofe sk ok sk ok sk ok sk ok sk ok vk ok 3k 3k ok ok ok oK sk ok 3k sk ok ok ok ¢ ********/

void MM(double A_mm[5][5], double B_mm[5][5], double C_mm[5][5],

int N_mm) -

{

inti, j, I;
for(i=1,1<=4; i++) {
for(1=1;1<=4; 4++) {
C_mm[i][l] = 0.0;
for(j =1, j <= 4; j++) {
C_mm[i]{l] = C_mml[i][l] + A_mm[i][j]7*B_mm][j][I];
}
}
}

return;
} /* end of subroutine MM */

