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Abstract: The demands for accurate positioning and navigation applications in complex indoor
environments such as emergency call positioning, fire-fighting services, and rescue operations are
increasing continuously. Indoor positioning approaches apply different types of sensors to increase
the accuracy of the user’s position. Among these technologies, Bluetooth Low Energy (BLE) appeared
as a popular alternative due to its low cost and energy efficiency. However, BLE faces challenges
related to Received Signal Strength Indicator (RSSI) fluctuations caused by human body shadowing.
This work presents a method to compensate RSSI values by applying Artificial Neural Network
(ANN) algorithms to RSSI measurements from three BLE advertising channels and a wearable camera
as an additional source of information for the presence or absence of human obstacles. The resulting
improved RSSI values are then converted into ranges using path loss models, and trilateration is
applied to obtain indoor localization. The proposed artificial system provides significantly better
localization solutions than fingerprinting or trilateration using uncorrected RSSI values.

Keywords: advertising channels; BLE; trilateration; artificial intelligence; localization; human
body shadowing

1. Introduction

The position estimation of a target in outdoor environments is widely solved by em-
ploying Global Navigation Satellite Systems (GNSSs). The received GNSS signals are weak
or not reliable inside the buildings. In the past few years, GNSS has developed to serve
in indoor areas. In [1], the authors present an overview of GNSS-based indoor location
technologies. The paper discusses the attenuation of the GNSS signals under various condi-
tions such as a wooden structure building, single-family residence, and large sports facility.
GNSS signals are attenuated indoors by 10–30 dB compared to the outdoors depending on
the building material. Considering the fact that people spend most of their time in indoor
environments where GNSS signals are not usable in a satisfactory manner, the demand for
reliable indoor localization applications has rapidly increased. Numerous Indoor Position-
ing Systems (IPSs) based on a wide range of technologies have been studied [2]. Among the
technologies, Radio Frequency-based (RF) indoor positioning is prevalent, freely available
in the indoor areas, and in most cases, supported by current mobile devices. However,
RF technologies have limitations, including vulnerability to signal interference, multipath
and signal attenuation, requirements for clock synchronization between transmitters and
receivers, or requirements for calibration.

RF positioning systems rely on three different specific physical characteristics of radio
signals: (i) the power of the propagated signal, (ii) the propagation time, and (iii) the direc-
tion of the propagation wave and are often classified into three corresponding categories:
(i) Received Signal Strength Indicator (RSSI), (ii) Time of Flight (TOF), and (iii) Angle of
Arrival (AOA) methods [3].
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Approaches that employ RSSI measurements are considered the simplest, since they
do not necessitate any hardware modifications, system timing coordination, or synchro-
nization between transmitters and receivers. Although the RSSI method is one of the
most widespread approaches, there are still some challenges that need to be addressed.
In general, RSSI position accuracy is poor because the signal strength can be affected by
multipath, interference, and shadowing caused by various factors such as the presence of
obstacles, the number of reflective surfaces, and the overall dynamics of the environment.

RSSI-based ranging and fingerprinting are two common methods that rely on the RSSI
measurements for positioning. Positioning that utilizes fingerprinting has the potential to
achieve high accuracy, provided sufficiently dense training data are available; however, this
process is time consuming and does not adapt well to environmental changes. RSSI-based
ranging needs a path loss model to estimate ranges from the RSSI values and then applies
trilateration to compute a position. A general overview of the wireless ranging positioning
methods is available in [4].

Wi-Fi technology is the most commonly employed in RF-based indoor positioning;
however, in recent years, the smart device market has increasingly relied on Bluetooth
for short-range device-to-device communication, which makes this technology a viable
alternative for indoor positioning [5,6]. The availability of existing Wi-Fi infrastructures in
indoor environments makes it one of the best signals of opportunity for indoor localization.
However, the placement of access points is not necessarily optimal for localization. In [7],
the BLE-based localization was compared with the Wi-Fi localization. Their results show
that BLE is more accurate than Wi-Fi by about 27% with the same number and location
of access points. Another comparison between BLE and Wi-Fi fingerprinting is presented
by [8]. They show that BLE fingerprinting has a tracking accuracy of less than 2.6 m 95%
of the time by using a dense distribution (1 beacon per 30 m2) and less than 4.8 m using
a lower density distribution (1 beacon per 100 m2). Meanwhile, Wi-Fi can achieve about
8.5 m 95% of the time in the same environment. They conclude that increasing the number
of beacons decreases the positioning error, but after 8–10 beacons, there was no further
improvement.

Bluetooth has received more attention since 2010 when the Bluetooth Special Interest
Group (SIG) introduced the Bluetooth Low Energy (BLE) standard with the Bluetooth
core specification version 4.0. BLE is a very low power, low cost, low complexity, and low
maintenance technology [9]. Depending on the connection interval, battery-powered BLE
modules are able to last for 1–2 years [10].

While Bluetooth was originally developed to replace cables connecting personal
electronics, BLE beacons were meant to broadcast highly localized information to passing
Bluetooth devices. The transmission power of BLE beacons is adjustable, and they reliably
transmit data up to 30 m [11]. BLE operates at a frequency band of 2.4 GHz, which
is divided into 40 channels with 2 MHz spacing [12]. In addition, BLE has been used
widely in different applications such as building emergency management and occupancy
estimation [13], occupancy movement tracking patterns in office spaces [14], model-based
localization and movement tracking [15], and smart grid applications and home energy
management [16].

Out of these 40 channels, three advertising channels (labeled 37, 38, and 39) are
reserved to continuously broadcast advertising messages. Initially, the proposed application
for the BLE beacons was proximity marketing, which advertises marketing messages
to mobile devices close to a particular position in shopping centers, museums, hotels,
stadiums, exhibition halls, etc. Examples of these marketing messages include relevant
information, related news, and special offers.

RSSI values can be obtained from these three channels by users in the range of the
BLE beacons. Since each channel has a different channel gain and multipath, the RSSI
values from each of the advertising channels differ [8]. Most existing research works have
considered the RSSI values from all three channels together to achieve the aggregate sig-
nal [5,6,17–19], which contains more fluctuations when compared to each of the individual
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channels. To achieve more accurate results, others have considered RSSI values from
separate channels, although these studies have used complicated algorithms [20] or extra
hardware [21,22]. In [23], the BLE version 5.x is used, which is capable of advertising on
three primary channels and a single auxiliary packet on one of the data channels. This
extended advertisement allows measuring RSSI on all 40 channels. Their results showed
that using the Geo-N algorithm, the mean localization error difference between 40 chan-
nels and three channels is improved by 0.47 m and 0.35 m, with and without channel
information, respectively. This improved the accuracy at the cost of a larger number of
measurements collected across 40 different channels and consequently a longer required
time for the localization to be calculated. The application of BLE with three advertising
channels provides the advantage of redundancy between the RSSI values in addition to
time-efficient measurements and data collection.

Signal fading may either be due to the interference from multipath propagation or
shadowing from obstacles, and it is often neglected in the available models. However,
to properly model radio propagation for RSSI-based ranging, all the obstacles between
the transmitter and receiver should be considered. A common signal attenuation source
is the human body, which can shadow or fully obscure the signal path. A human body
can be detected by many different approaches and technologies such as vision, distortion,
irregularities in the signal, etc. The three BLE advertising channels follow the same pat-
tern during a human body blockage. When a human body blocks the signal, all three
channels drop, and when a human body leaves the area, all three channels return to
their former values simultaneously [24,25] as opposed to multipath fading that affects the
channels individually.

Human body detection plays a critical role in calculating the human body shadowing
effect. An efficient combination of camera measurements and the RSSI model is used in [26],
which trains RSSI range models to adapt to the conditions of a particular environment for
target tracking. However, here, the information from vision is used to detect people for
compensation shadowing effects and not for tracking purposes.

In computer vision research, objects such as human bodies can be detected in two
main categories: (i) hand-crafted features [27] and (ii) learning-based methods [28]. The
first category relies more on pre-designing descriptors including Haar [29], Local Binary
Pattern (LBP) [30], Histogram of Orientated Gradients (HOG) [31], Scale-Invariant Feature
Transform (SIFT) [32], etc. The drawback of the hand-crafted methods is the requirement
to extract features manually from the raw data by using specialized algorithms. In con-
trast, learning-based methods can automatically learn from the raw data often with less
computational time and more reliable performance. Deep learning-based methods are one
of the most powerful classes of object detection algorithms [33]. A Convolutional Neural
Network (CNN) is a type of deep learning technique that has been widely used in human
body detection in challenging indoor environments [34]. Among all the deep learning
approaches, the highest accuracy of human detection belongs to the RetinaNet method [35].

To obtain occupancy information, there are other techniques based on using a BLE
beacon network. The authors in [36] applied an SVM algorithm for occupancy estimation
using BLE beacons for emergency management. Using a network of BLE beacons to record
the RSSI values of neighboring devices to infer the occupant’s zone-level location was
proposed in [37]. Another regression model and decision trees (random forest) based on
BLE beacon networks were adopted in [38]. All these approaches require the occupants
to carry permanently connected devices which have limitations in privacy concerns, with
users forgetting to turn on the Bluetooth of their devices and the fact that they had to carry
the sensor with them all the time. In our approach, however, the only person that needs to
wear the device is the user, and other occupants do not need to be involved at all.

RSSI values can be mathematically related to the range by empirical or Artificial
Intelligence (AI) algorithms [39]. AI models have been considered a powerful tool to
learn from the observed data in real environments and model the complex relationships
between the input and output values. Empirical models perform well in terms of processing
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time and memory efficiency, although they are less compatible with sudden changes in
the propagation environment [40,41]. Flexible neural network solutions can be used to
model the relationship between the predicted and measured RSSI values and have been
demonstrated in [42–44]. Their advantage over threshold-based detection methods is in
their ability to adapt based on the observed data rather than on analytical and theoretical
models of a system [45,46]. Moreover, previous studies [20–22] that used BLE RSSI values
from separate channels did not investigate using AI approaches to correct the RSSI for
human body blockages. In our previous work [24], we demonstrated that using the three
advertising channels with Artificial Neural Networks (ANNs) to detect human obstructions
provided more accurate results than when using all the available RSSI observations in the
aggregate. However, other available sensors on mobile devices provide the opportunity to
collect more information about the propagation environment. This information can prepare
more accurate input parameters with proper weight for ANNs.

The potential applications of this work can be the support of the firefighters’ move-
ments or the tracking of the emergency staff, using the BLE signal with an AI-based
algorithm, which is augmented by the vision information.

This study is the first demonstration of the combination of BLE RSSI, wearable camera,
and ANN to detect and correct RSSI values for human body obstructions. The potential
applications of this work can be the support of the firefighters’ movements or the tracking of
the emergency staff, using the BLE signal with an AI-based algorithm, which is augmented
by the vision information. The objective of this paper is to investigate the application of
simple BLE trilateration positioning in real indoor environments in which human bodies
are present and can affect the signals using an ANN to correct the observed RSSI mea-
surements. The proposed neural network algorithm is implemented to detect and correct
for the presence of human obstacles using observations from the three BLE advertising
channels and vision information captured with a wearable camera as an additional source
of information. The results of this method are then compared to our previous RSSI-only
ANN results [24], fingerprinting, and trilateration using uncorrected RSSI values.

The remainder of this paper is organized as follows. Section 2 provides the relevant
background of each of the technologies. Section 3 describes their integration. Data collection
is described in Section 4, and the results are discussed in Section 5.

2. Methods Employed

This section reviews the methods used in this paper that are combined in Section 3,
specifically BLE, ANN, path-loss models, and vision techniques.

2.1. Bluetooth Low Energy

BLE is a recent wireless communication technology that is emerging as a standard
for indoor positioning based on a 40-channel frequency hopping scheme. For discov-
ery services, BLE uses three advertising channels: 37 (2402 MHz), 38 (2426 MHz), and
39 (2480 MHz). Figure 1 depicts how the BLE channels are positioned in the frequency
band. The first channel, 37, is centered at the frequency of 2402 MHz, while the last one, the
39, is centered at 2480 MHz. Channels from 0 to 36 are assigned for data transmission. It
should be noted that the three advertising channel numbers are not sequential and include
the lowest and highest center frequencies.
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BLE can operate in two modes. The first communication mode is the traditional
connection-based mode, which needs to pair the transceivers with the connection interval.
The second communication mode is the connection-less mode, in which the transmitter is
broadcasting to a receiver and the transmitters are unaware of the number of the advertising
packets received by the receiver. One of the most important features of the broadcaster is
the advertising interval or the rate at which the advertising packets are sent. On the other
hand, scan intervals and scan windows represent the rate that the scanner turns on and the
time it keeps on scanning per each scanning interval. The scan interval and scan window
sizes have a deep impact on power consumption. Most importantly, the transmitter sends
advertising packets on all three channels sequentially at a relatively high rate while the
receiver scans one channel at a time at a lower rate.

The duration of the advertising interval and scanning windows can cause multiple
measurements of one channel in some periods of scanning. Remaining asleep during
broadcast intervals helps the BLE system to achieve an optimal power consumption;
however, a shorter broadcast interval increases the number of broadcasted packets and the
accuracy of their readings at the expense of additional power consumption.

As each channel has a slightly different carrier frequency, each BLE advertising channel
will have distinct propagation characteristics owing to varying channel gain and multipath
fading. In Figure 2, when the channels are considered separately (the first 50 samples),
small fluctuations are visible in each, while the fluctuations appear larger when considering
them in the aggregate mode (the next 50 samples).

2.2. Distance Model and Trilateration

The power density of the signal attenuates as it propagates through space as well
as objects. The most commonly used distance model is a standard log-distance path
loss model:

RSSI = RSSI(d0)− 10n log10(
d
d0

) + Xσ (1)

where RSSI(d0) represents the RSSI value at the reference distance d0, Xσ and n represent
the observation error and path loss exponent value, respectively, and d is the distance
between the transmitter and the receiver. In free space, n is 2, while it is often greater
because of the other sources of attenuation and can be less than 2 in waveguides. Usually,
parameter d0 is fixed to 1 m, and RSSI(d0) becomes the average measured RSSI when
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the receiver is 1 m away from the transmitter. The path loss exponent n, which is related
to the wireless environment along with RSSI(d0), can be determined either by fitting a
line to training measurements or by choosing a standard value. Theoretically, n should be
constant; however, in reality, the BLE transmit power has time-varying characteristics, and
the path loss exponent is dependent on the environment.
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Trilateration algorithms use the distance dm, estimated from the received RSSI values
from all transmitter nodes to compute the position of the single intersection. For overde-
termined trilateration with errors, non-linear parametric least squares are the standard
method used to find a solution that minimizes the mean squared error of the residuals.

If m transmitters with known coordinates (xTx1 , yTx1),
(
xTx2 , yTx2

)
, . . . , (xTxm , yTxm)

are deployed, and the receiver has an unknown location (xRx, yRx), the m distances are
related to the unknown positions as:

dm =
√
(xTxm − xRx)

2 + (yTxm − yRx)
2 (2)

It should be noted that knowing the position of the transmitters is not required in the
fingerprinting technique, which is one of the advantages of this method.

In this work, we are considering 2D positioning only and have constrained the height
of the receiver and have corrected observed distances for their vertical components. The
state vector x is given by:

x = [xRx yRx]
T (3)

where xRx and yRx are the 2D position components in the horizontal plane (East and North).
The observation model is:

z = h(x) + v (4)

where z = [d1, . . . , dm]
T are the distance estimates from the propagation model, v is

the vector of measurement errors which is modeled as a Gaussian distribution, with a
covariance matrix R = E

(
v, vT), and h(x) is a vector where each element is an instance

of Equations (3) and (5). To linearize the non-linear measurement model, a Taylor series
is applied:

Hm =
[
−(xTxm−xRx)

dm

−(yTxm−yRx)
dm

]∣∣∣
x=x0

(5)

where x0 is the point of expansion. The result is the design matrix H that contains infor-
mation regarding the geometry of the measurements. The misclosure vector (δz) is the
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difference between the true measurements (z) and the measurements estimated from the
current states (x0):

δz = H.δx + v (6)

The least-squares solution for the error in x0, which is applied to the original state
vector to correct it to the next solution x1, is given by:

δx =
(

HT R−1H
)−1

HT R−1δz (7)

To make this distinction more explicit, the initial state estimations are then updated
as follows:

x1 = x0 + δx (8)

since the model is non-linear, iteration is used to converge to a final solution x̂, which yields
no further improvement with additional iteration.

2.3. Neural Network Algorithms

ANNs consist of several simple and highly interconnected processing neurons set up
in layers. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) neural networks are
two of the basic and well-known types of neural networks with a wide range of applications
in many areas of estimation and decision making, including indoor positioning. The
multilayer perceptron model uses a linear weighted function for each neuron. Multilayer
perceptron models have at least one hidden layer and can handle non-linear terms. Since
the relationship between RSSI and distance is non-linear and a single layer cannot model
non-linear terms accurately, an MLP is considered.

RBF neural networks use a radial basis activation function. The activation of a hidden
unit is identified by the distance between the input vector and a prototype vector. Hidden
neurons are dynamically generated during the training procedure to achieve the desired
performance. The number of basis functions is equal to or less than the number of input
data sets. In this research, a supervised learning method with an error backpropagation
algorithm is employed. In the backpropagation algorithm, at first, the input vector is
propagated with constant weights and biases through a forward pass, and the output is
produced. Then, synaptic weights and biases are adjusted by using the error signal that
propagates backward to minimize the cost function of the neurons in the output layer.

MLP networks consist of a single input layer, at least one hidden layer, and a single
output layer. The output of each neuron is described by the following:

y = ϕ

(
n

∑
k=0

wk xk

)
(9)

where n ∈ N is the number of neuron inputs, xk , wk ∈ R are the input value and its weight,
respectively; at the kth neuron, y is the neuron output and ϕ(x) is an activation function.
Figure 3 illustrates the structure of an MLP neuron network and a single neuron model
inside an MLP. Each activation function receives the sum of the weighted inputs plus a bias
term (T).

The activation function is a mathematical gate in between the inputs and outputs of a
neuron which can be a step function (i.e., output is active if the input value is greater than
a threshold value), a linear function (i.e., the output is the input times some constant factor)
or a non-linear function.
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The non-linear functions allow the model to map the complex relationships between
the inputs and outputs, which are essential for the learning and modeling of complicated
real data. The most common non-linear activation function is Logistic (also known as the
Logistic Sigmoid):

ϕlog (Uk ) =
1

1 + exp(−Uk )
(10)

RBF is an ANN technique that identifies the activation of a hidden unit by the distance
between the input vector and a prototype vector during the training (Figure 4). Each neuron
in the hidden layer consists of a radial basis function, and the output layer is a weighted
sum of the outputs from the hidden layer. The hidden and output layers apply a non-linear
and a linear transformation, respectively. The training procedures in the RBF networks can
be significantly faster than the training procedures in the MLP networks [47].
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There are two stages in the training procedure of an RBF network. The first stage
involves the determination of the mean value and distance from the center of the activation
function using the input data by unsupervised training methods. In the second stage, the
output layer weight vector is determined. In RBF, the hidden layer uses a set of Gaussian
functions, known as radial basis functions, which is given by:

ϕ(x, µ) = exp

(
− (x− µ)2

2d2

)
(11)

where µ is the center of the Gaussian function (i.e., the mean value of (x)), and d is the
distance from the center of the Gaussian function. The output of each hidden unit is
based on the distance of the input from the center of the Gaussian radial function ϕ(x, µ).
Subsequently, data points closer to the center of the radial basis function have more effect on
the results. This effect can be adjusted by controlling the distance (d). Parameters (d) and (µ)
are defined and adjusted separately at each RBF unit during the training procedure. Layer 3
or the output layer is a weighted linear combination of the outputs from the hidden layer:

output = ∑
i
(ϕiWi) (12)

2.4. Human Body Detection

The human body is one of the non-negligible sources of propagation loss. The human
body shadowing effect can be caused by the user of the device as well as other people close
to the device. In this paper, we propose to use both the RF signals and the vision information
to determine the number of people blocking a signal. Specifically, the method introduced
in our previous work [24] using ANN to detect and correct human body shadowing using
three channels of RSSI measurements is augmented with additional input information
obtained from a wearable camera.

Visual human body detection is a computer vision problem that deals with the detec-
tion of a human body in a digital image. Deep learning algorithms have become popular
due to their powerful ability in detection tasks. Deep learning frameworks often use one-
stage or two-stage detectors. In two-stage detectors [34], a proposal generator generates
potential objects as a set of rectangle bounding boxes to extract features from each proposal.
Region classifiers predict the category of the proposed region. However, one-stage detec-
tors [35] predict directly each location of the feature maps. In order to estimate the number
of people in an image, a robust one-stage object detector, RetinaNet, was employed and
adapted [35].

In this method, a combination of Feature Pyramid Network (FPN) and ResNet was
used as the backbone architecture (Figure 5). Two subnets of classification and box re-
gression were used. These two subnets are used for the classification and bounding box
regression to perform convolution, respectively. The backbone’s responsibility is to com-
pute a convolutional feature map over an entire input image.
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3. System Design

The general overview of the proposed algorithm is demonstrated in Figure 6. A
set of m transmitters is deployed in fixed positions. The person carrying the mobile
receiver to be positioned is also wearing a camera. The camera images are processed by an
implementation of the RetnaNet algorithm to determine the count of detected humans in
the image. To create a memory of the previously obtained values of the RSSI measurements,
a common method is to use a sliding window of past sequence values as inputs to the ANN.
Static memory is then provided for the network to map inputs to outputs, depending on
the prior information. The sliding window technique gives the opportunity of learning
sequential patterns of the past N values of the RSSI from the three BLE advertising channels.
The method is, in fact, looking for abrupt changes in the RSSI due to obstructions that are
distinct from gradual changes that are a result of changes in range. This neural network
method is trained to notice the sudden simultaneous fluctuation of all three channels as
an obstacle. However, a sudden fluctuation of only two advertising channels would not
be considered an obstacle. Moreover, a deep learning algorithm is used for estimating the
population density of the captured images by an expert user’s camera.
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Sliding windows of the past N values of this count and the past N values of the RSSI
values from the three BLE advertising channels are then given as input to the ANNs, which
are each responsible for computing corrected RSSI values that can then be used to generate
three ranges (one based on each BLE channel) to that transmitter. These ranges are then
used to trilateration the user position.

The ANNs are trained by collecting a large set of RSSI values and imagery at a number
of known locations with and without additional people present to block some of the signals.
More details of the system, data collection, and databased are presented in Figure 7. The
deep learning algorithm RetnaNet, used in the image processing block, is not a part of the
main ANN system and is trained separately.
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Figure 7. Schematic diagram of the proposed approach.

Here, we are assuming the camera is worn by an expert user, for example, a first
responder, as opposed to a normal user who would likely not have a wearable camera
and would have to rely on RSSI measurements only. The problem of visual detection of
occlusion through the user from behind has not been addressed in this study; however,
more redundancy on the RSSI values in AI inputs and considering all APs together make
the system able to detect the blockages and correct that situation. The number of people
identified in the imagery is then passed to the ANNs along with the BLE RSSI values. The
ANNs are then tasked to output corrected BLE RSSI as would be observed if no additional
people were present to block the signal.

The step-by-step algorithm for correcting the RSSI measurements is explained briefly
as follows:

1. Obtain the RSSI values for each channel corresponding to each of the transmitters
when no people are blocking any signals.

2. Repeat Step 1 with 1 or 2 people blocking some of the signals.
3. For training, the inputs are selected from Steps 1 and 2 randomly, while the outputs can

be only selected from Step 1, since they represent the RSSI values with no blockages.
Most (70%) of the measurements in Steps 1 and 2 are used to train the ANN system.

4. Evaluate and test with 30% of all measurements from Steps 1 and 2.
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For separating training and testing data sets, there is no fixed rule [27]; however, the
data could be split between training, testing, and validation in the ratio of 70%, 15%, and
15%, respectively. As with all AIs, the prediction of the neural networks highly depends
on how well they learn the concepts from the training data and apply them to the testing
samples. Reduction in the generalization ability can occur from overtraining, while the
expansion in generalization ability can cause undertraining. To avoid this issue, a partition
of the data is required to be specified for the validation data set as it plays a vital role
alongside the training and testing data sets.

Figure 8 illustrates the schematical difference between the sampling rate in the RSSI
values in three channels and the captured images. More details of the camera specifications
are discussed in the next section. The sliding windows update at the rate of the RSSI
measurements and the count obtained from the vision block is fed to the ANNs at the same
rate even though the frame rate of the camera is lower. This means that the current count is
repeated in the sliding window until a new image is required.
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In [24], the Mean Square Error (MSE) of training (system output vs. desired response)
was compared as a function of window size to choose an optimal sliding window. Although
the processing time increases, the training error decreases as the window size is increased.
The training errors were stable around a window size of 10. For comparison purposes, the
same value is adopted here.



Sensors 2022, 22, 4320 13 of 25

4. Experimental Setup

Two different BLE development kits were selected. (i) The DWM1001-DEV (Decawave Ltd.,
Dublin, Ireland) modules that include an nRF-52832 (Nordic Semiconductor, Trondheim,
Norway) BLE radio, a LIS2DH12 (STMicroelectronics NV, Amsterdam, Netherlands) ac-
celerometer, and a DW1000 UWB chip (Decawave Ltd., Dublin, Ireland) was chosen as
the transmitter because of its low power consumption, small size, very low cost, battery-
operated power, and easy deployment on walls. Each transmitter was configured to send
the BLE advertising information at an interval of 20 ms.

(ii) The nRF52840 development kit (Nordic Semiconductor, Trondheim, Norway)
which includes the nRF-52840 (Nordic Semiconductor, Trondheim, Norway) BLE radio,
four buttons and four LEDs for the user interaction, a flash memory, PCA10056 chip, and
a Near Field Communication (NFC) antenna was selected as a receiver. It is included
in the PCA10056 development board that provides onboard debugging as well as the
programming solution. The nRF52840 development kit was selected as the receiver because
it could provide full chip-level access to BLE and debug interfaces to develop and configure
a data-logging application. The receiver was configured to measure the RSSI values on all
advertising channels with a scanning interval of 50 ms.

To test the system in a complicated and large environment, experiments were carried
out in a larger electronics lab on the 3rd floor of a multi-story university building. The
dimensions of this room were approximately 8 m by 16 m (Figure 9). This lab contained
numerous workbenches, shelves, and storage cabinets.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 25 
 

 

4. Experimental Setup 
Two different BLE development kits were selected. (i) The DWM1001-DEV 

(Decawave Ltd., Dublin, Ireland) modules that include an nRF-52832 (Nordic Semicon-
ductor, Trondheim, Norway) BLE radio, a LIS2DH12 (STMicroelectronics NV, Amster-
dam, Netherlands) accelerometer, and a DW1000 UWB chip (Decawave Ltd., Dublin, Ire-
land) was chosen as the transmitter because of its low power consumption, small size, 
very low cost, battery-operated power, and easy deployment on walls. Each transmitter 
was configured to send the BLE advertising information at an interval of 20 ms. 

(ii) The nRF52840 development kit (Nordic Semiconductor, Trondheim, Norway) 
which includes the nRF-52840 (Nordic Semiconductor, Trondheim, Norway) BLE radio, 
four buttons and four LEDs for the user interaction, a flash memory, PCA10056 chip, and 
a Near Field Communication (NFC) antenna was selected as a receiver. It is included in 
the PCA10056 development board that provides onboard debugging as well as the pro-
gramming solution. The nRF52840 development kit was selected as the receiver because 
it could provide full chip-level access to BLE and debug interfaces to develop and config-
ure a data-logging application. The receiver was configured to measure the RSSI values 
on all advertising channels with a scanning interval of 50 ms. 

To test the system in a complicated and large environment, experiments were carried 
out in a larger electronics lab on the 3rd floor of a multi-story university building. The 
dimensions of this room were approximately 8 m by 16 m (Figure 9). This lab contained 
numerous workbenches, shelves, and storage cabinets. 

 
Figure 9. Lab area test environment. 

The 2D plan of the lab area is illustrated in Figure 10, in which 34 reference points 
with known locations were established. Four DWM1001-DEV modules with known loca-
tions served as the BLE transmitters (orange squares). A GOPRO HERO 7 high-resolution 
(4000 × 3000 pixel) digital camera (GoPro, Inc., San Mateo, CA, USA) and the receiver were 
carried by the test subject in the lab area. Both (camera and receiver) were kept at the same 
height. The camera was set to record images at a 1.0-s sampling rate. 

The goal was to evaluate the system in the complicated lab and compare it with the 
proposed system in [24], fingerprinting and trilateration using uncorrected RSSI, as well 
as assess the proposed system in non-trained locations in the lab. This was completed by 
conducting two test scenarios. During the first scenario, the neural network was trained 
and tested using 34 reference points, while in the second scenario, the trained network 
from the first scenario was used to test the proposed system in additional locations in the 
same lab that were not occupied during the training phase. 

In the first scenario, the receiver and camera were moved through the 34 reference 
points (blue circles in Figure 10) to collect 215 RSSI samples at each reference point in the 
absence of a human body as an obstacle, 70 RSSI samples were collected with one human 
body obstacle and 70 more RSSI samples with two human bodies obstructing at least one 

Figure 9. Lab area test environment.

The 2D plan of the lab area is illustrated in Figure 10, in which 34 reference points with
known locations were established. Four DWM1001-DEV modules with known locations
served as the BLE transmitters (orange squares). A GOPRO HERO 7 high-resolution
(4000 × 3000 pixel) digital camera (GoPro, Inc., San Mateo, CA, USA) and the receiver were
carried by the test subject in the lab area. Both (camera and receiver) were kept at the same
height. The camera was set to record images at a 1.0-s sampling rate.

The goal was to evaluate the system in the complicated lab and compare it with the
proposed system in [24], fingerprinting and trilateration using uncorrected RSSI, as well
as assess the proposed system in non-trained locations in the lab. This was completed by
conducting two test scenarios. During the first scenario, the neural network was trained
and tested using 34 reference points, while in the second scenario, the trained network
from the first scenario was used to test the proposed system in additional locations in the
same lab that were not occupied during the training phase.
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In the first scenario, the receiver and camera were moved through the 34 reference
points (blue circles in Figure 10) to collect 215 RSSI samples at each reference point in the
absence of a human body as an obstacle, 70 RSSI samples were collected with one human
body obstacle and 70 more RSSI samples with two human bodies obstructing at least one
signal at each reference point. Most (70%) of the collected data was randomly selected for
training the system, and 30% was reserved for testing. The training output was the RSSI
values on each reference point with no person in the room, even the user. Based on the
dynamics of the test environment, the image sampling rate was one image per second,
and 16 images were captured at each point. Note that the objective is to detect people in
low rate imagery rather than to track them in high rate video, which is the subject of a
large body of research [48,49]. In this work, we assume that both observation types were
continuously available at their respective observation rates, and we did not account for the
case where the image data cease to be available.

The second scenario was intended to evaluate the already trained network from the
first scenario in some unknown and untrained locations referred to as blind test points.
Five blind test points were randomly selected in the same lab (yellow circles in Figure 10),
and 200 RSSI measurements were collected at each with random appearances of people
during each occupation. All gathered data in the second scenario were used for testing
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without a training phase for these blind points. A total of 150 images were collected for the
second scenario (30 images at each point).

5. System Verification

The test scenarios included both line-of-sight (LOS) and non-line-of-sight (NLOS)
blockages, but only LOS blockages were included in the training. Two additional tests were
conducted to assess how NLOS blockages could affect the RSSI values as a function angle
with respect to the LOS. In the first test, a human obstacle started in the LOS and then
moved to four additional positions at angles between 45◦ and 180◦ off the LOS. In this test,
the transmitter and receiver were separated by 2 m, and the blocking human was located
1 m from the transmitter; the first angle in the LOS and the remaining four angles were
at NLOS positions, as shown in Figure 11. The maximum effect to the body shadowing
was observed at 0◦, but an effect could also be observed at 45◦, while 90◦, 135◦, and 180◦

showed very little effect. The mean and standard deviations of all histograms in Figure 11
are summarized in Table 1.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 25 
 

 

then moved to four additional positions at angles between 45° and 180° off the LOS. In 
this test, the transmitter and receiver were separated by 2 m, and the blocking human was 
located 1 m from the transmitter; the first angle in the LOS and the remaining four angles 
were at NLOS positions, as shown in Figure 11. The maximum effect to the body shadow-
ing was observed at 0°, but an effect could also be observed at 45°, while 90°, 135°, and 
180° showed very little effect. The mean and standard deviations of all histograms in Fig-
ure 11 are summarized in Table 1. 

 
Figure 11. The RSSI samples received from the three advertising channels and aggregate signals in 
comparison with different blockage angles. 

Table 1. Mean and standard deviation of the RSSI measurements. 

Angle from LOS (Degrees) Channel Mean RSSI (dBm) Standard Deviation 
(dBm) 

0 

Aggregate −55.9 2.7 
Channel 37 −52.7 0.4 
Channel 38 −56.2 0.6 
Channel 39 −58.7 1.7 

45 

Aggregate −55 3.6 
Channel 37 −46.8 1 
Channel 38 −55 0.4 
Channel 39 −49.8 1.9 

Figure 11. The RSSI samples received from the three advertising channels and aggregate signals in
comparison with different blockage angles.



Sensors 2022, 22, 4320 16 of 25

Table 1. Mean and standard deviation of the RSSI measurements.

Angle from LOS (Degrees) Channel Mean RSSI (dBm) Standard Deviation
(dBm)

0

Aggregate −55.9 2.7
Channel 37 −52.7 0.4
Channel 38 −56.2 0.6
Channel 39 −58.7 1.7

45

Aggregate −55 3.6
Channel 37 −46.8 1
Channel 38 −55 0.4
Channel 39 −49.8 1.9

90

Aggregate −49.9 2.7
Channel 37 −47.1 1.1
Channel 38 −53 0.3
Channel 39 −49.7 1.8

135

Aggregate −50.5 2.5
Channel 37 −47.2 0.86
Channel 38 −53.4 0.5
Channel 39 −50.8 0.5

180

Aggregate −50.3 2.7
Channel 37 −48.2 1.1
Channel 38 −53.7 0.5
Channel 39 −48.8 1.2

A second RSSI experiment was conducted to verify the influence of the shadowing
effect of the user and a second person when the user (and receiver) was not facing the
transmitter (NLOS). Results are presented in terms of the RSSI values on channels and
aggregate mode. Figure 12 shows two scenarios in which the transmitter and receiver are
2 m apart. In the first scenario (Figure 12a), the user (and receiver) was facing sideways
with respect to the transmitter. A second human body was then present for 30 s in front of
the receiver (but not in the line of sight). This second human left for one minute and then
returned to the same spot for 30 s. The second scenario (Figure 12b) represents the first
scenario with the user and receiver facing away from the transmitter. The information in
Figure 12 is summarized in Table 2. The results demonstrate a significant body shadowing
effect on all channels of the RSSI measurements even when the receiver does not face the
transmitter. However, this effect is less in the 180◦ rotation scenario.

Both ANNs include three layers: input, hidden, and output layers. The neurons in the
input and output layers are dependent on the configuration of the proposed system design.
In both ANN methods (MLP and RBF), the number of input nodes depends on the sliding
window length, 10 samples of vision, and 10 RSSI samples on each channel, requiring a
total of input 40 nodes.

RBF has one hidden layer, but MLP can have a variable number of the hidden layers.
MLP was investigated for one and two hidden layers with 1 to 100 neurons per layer. The
optimal number of the hidden neurons for the MPL could be determined by observing
Figure 13 in which the standard deviation of the output is plotted as a function of both
the number of layers and the number of neurons per layer. Two hidden layers provided
more accurate prediction solutions than one. There is also no improvement in the accuracy
beyond 30 neurons per layer. As a result, an architecture with two hidden layers and
30 neurons per hidden layer was adopted for MPL. The same number of neurons was
adopted for the single hidden layer using RBF.
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Table 2. Mean and standard deviation values of RSSI with and without the shadowing effect.

Angle from
LOS (Degrees) Channel Mean (dBm) Mean (dBm) STD (dBm) STD (dBm)

With People With No
People With People With No

People

90

Aggregate −62.7 −56.2 5.3 5.6
Channel 37 −68.2 −62.5 3.5 3.2
Channel 38 −61.6 −53.1 3.9 1.8
Channel 39 −58.1 −52.9 1.9 4.5

180

Aggregate −69.1 −61.9 6.7 6
Channel 37 −76.6 −67.8 4.6 4.7
Channel 38 −66 −59.9 3.5 3.4
Channel 39 −64.5 −58.1 3.5 4.2

In order to avoid overtraining, one can evaluate loss function per iteration for training,
test, and validation datasets. In this case, the loss function is the MSE as a function of the
number of training iterations. This shows that the network has arrived at the best learning
and the lowest error after a certain number of iterations. To validate the performance of the
proposed system, 12,070 samples of RSSI were collected from each transmitter on each of
the three channels (7310 line of sight, 4760 obstructed).

From 12,070 measurements, 8449 were employed to train the network, 1810 were
reserved for validation purposes, and the remaining 1811 non-training observations were
used to test the system performance. Figure 14 shows the training, validation, and testing
performance for observations from transmitter #1 in terms of the mean squared error
(in RSSI) as a function of the number of iterations. The model could converge within
39 iterations, and model weights were chosen based on this epoch.
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6. Experimental Results

With the ANNs properly configured, the ability of the proposed system to detect
humans is assessed in this section. Moreover, the range and positioning errors in both
scenarios are investigated.

6.1. Detecting Humans and Correcting RSSI

The ability of the vision system to correctly detect a human body in the image is
evaluated in terms of the number of missed detections and false alarms. Table 3 shows the
number of correctly or incorrectly detected people in the images using the deep learning
RetinaNet system.
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Table 3. Vision performance in terms of the correct detection, missed detection, and false alarm.

Status Samples Percent

Correct detection (obstruction) 188 92%
Missed detection 16 8%

False alarm 34 10%
No detection (no obstruction) 306 90%

As described earlier, 16 images were captured in each reference point in test case #1
for a total of 544 images (204 obstructed by one or two persons and 340 unobstructed).

The RetinaNet system was able to correctly classify 92% of the images where a human
body was present, whereas 8% were missed detections. When the human body was not
present, only 10% of these images were false alarms, and the remaining 90% were correctly
classified as unblocked situations.

To illustrate the ability of the proposed system to correct RSSI values, data from
transmitter 1 observed at reference point 26 are illustrated in Figure 15. The raw training
RSSI values are shown in the upper subplot, and raw and MLP corrected testing data are
shown in the lower subplot. From the initial samples, with no obstructions, the advantage
of considering the three advertising channels separately is obvious. With one and two
obstructing people present, the uncorrected RSSI values are lower and more variable in all
three channels. The output of the ANN (the corrected RSSI) clearly demonstrates its ability
to detect and correct the effect of the human body.
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6.2. Range and Position Estimation: Scenario #1 (at Training Locations)

The system is then evaluated in terms of range and positioning in the first scenario.
Figure 16 shows the distance errors, before and after correction, from transmitter 1 to each
of the 34 reference points.

Figure 17 summarizes these results for the distances from all four transmitters using
the standard deviation of the distance error. The proposed method (MLP and RBF plus
vision) is compared to not using vision for training or testing (the method from [24]),
and both are compared to using the uncorrected input RSSI by channel and in aggregate.
Similar to [24], empirical path loss models were used for their improved performance in
indoor environments as opposed to selecting a standard value for the path loss exponent.
As expected, smaller fluctuations in range values were observed after correction with
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MLP and RBF augmented by vision offering the best performance with MLP slightly
outperforming RBF.
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Figure 17. The standard deviation of the distance error before (input) and after the RSSI correction, us-
ing MLP and RBF with RSSI only (AI) [24] and using MLP and RBF with RSSI and vision information
(AI+ Vision).

The positioning errors in the east–west and north–south directions for the first test
scenario (Figure 10) are plotted in Figure 18. In addition to the MLP and RBF with and
without vision information [24], fingerprinting and trilateration using the uncorrected RSSI
measurements (here called classic) are shown for comparison.
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The positioning errors using uncorrected RSSI (blue line), are better than 10 m in
east–west, and 7.2 m in north–south for 90% of the estimates.

The fingerprinting algorithm (black line) produced results with 90% of the points
better than 6.8 m in east–west and 5.5 m in north–south.

The positioning errors using RSSI corrected by the ANN system [24] without the vision
information (labeled AI) are shown for MLP (red dashed line) and RBF (green dashed line).
Most (90%) of the points are better than 4.7 m and 5 m in east–west, offering a reduction of
31% and 26% over fingerprinting, and 53% and 50% over classic trilateration, respectively.
Less improvement in the north–south position is observed with 90% of the points better
than 4.9 m and 5.4 m, a reduction of 11% and 2% over the fingerprinting, and 32% and 25%
over classic trilateration, respectively.

Adding the vision information results in a significant improvement. MLP (red solid
line) and RBF (green solid line, both labeled AI + Vision) provide east–west positions better
than 2.9 m and 3.5 m 90% of the time. These are 57% and 48% better than fingerprinting and
71% and 65% better than classic trilateration, respectively. The corresponding north–south
values, which are better than 2.4 m and 4.1 m 90% of the time, are an improvement of 56%
and 25% over fingerprinting and 67% and 43% over classic trilateration, respectively. All
four ANN methods perform well, but MLP outperforms RBF both with and without the
additional vision information. As a result, only MLP is tested in the second scenario.

6.3. Positioning Estimation: Scenario #2 (at Blind Test Points)

To evaluate the proposed system at untrained locations, five points in the lab envi-
ronment that were not occupied during the training were selected randomly for testing.
Figures 19–21 show the ability of the proposed algorithm at one of these locations.

Raw and corrected RSSI values are shown in Figure 19, while the position solutions for
each of the different methods are presented in Figure 20. The training reference points are
shown in Figure 21 as pink squares, while the blind point is the red square. The uncorrected
RSSI values provide very poor results as shown by black circles, while fingerprinting offers
positions near training data (red circles). In contrast, the MPL ANN method was able to
provide a reasonably precise position (blue circles).
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Figure 21 summarizes the positioning results for all five blind test points comparing
maximum and Root Mean Square Error (RMSE) using MLP with RSSI and vision, finger-
printing, and trilateration from uncorrected RSSI values. The RMSE was 6.11 m for the
uncorrected RSSI values, 3.49 m for fingerprinting, and 2.41 m for the proposed method.
The proposed method was able to effectively reduce the positioning error even in the
untrained points with a maximum positioning error of 5.1 m.

Considering the use of the trilateration positioning method and covering almost
128 m2 lab area size, we selected four transmitters for this study. The number of transmitters
by other groups has also been based on the size of their test areas. In [34], five transmitters
were used for 120 m2 with no furniture, and in [23], four transmitters were deployed for a
100 m2 office area. The preference to mount the transmitters on the walls, rather than the
corners, inside our test environment, was to provide a maximum propagation response in
a wider direction.

In [21], with three BLE advertising channels, an error of 4.6 m, 90% of the time, was
achieved in a conference room with a 16.50 m × 17.60 m size. Another study [20] with one
beacon per 9 m BLE deployment achieved 2.56 m 90% of the time in the corridor area with
no complex environment. In contrast, our results in a complex environment including large
cabinets, chairs, desks, metal shelves, and racks (Figure 9) with a 126 m2 area show a 2.4 m
RMSE position error when using the MLP algorithm.

7. Conclusions

In this paper, an artificial-based system has been proposed and implemented for detect-
ing and correcting human body blockages in BLE RSSI values, using separate advertising
channels and vision information. Sliding windows of RSSI from the three advertising chan-
nels and the number of people detected in wearable camera imagery were used as inputs
for two ANN algorithms that then output corrected RSSI values. For operational system
training, data should contain different time spans to improve the overall generalization.
While we had limited access to the testing location, an ideal system would include routinely
collected and updated training data.

The output-corrected RSSI values of both ANN methods were converted to ranges
using a simple log-distance model with empirical path loss exponents found from the
training data. The obtained ranges were used to compute location through trilateration.
The results showed significant improvement in the range and position accuracy compared
with the AI method in [24] that did not have access to vision information.

It is observed that the proposed method improves the localization solutions in compli-
cated lab environments. The AI algorithm augmented by the vision information results
provided 3.7 m position accuracy 90% of the time for the MLP algorithm, whereas the
artificial-based system demonstrated 6.7 m position accuracy 90% of the time. Nevertheless,
fingerprinting and classic algorithms offered 8.7 m and 12.3 m position accuracy in the
same situation.

For future work, several improvements could be made to the present work. First,
the proposed system should be trained and tested in more and more complicated areas
and dynamic scenarios. Then, the system should be tested in additional locations without
further training. Since real environments are more complicated than those tested in this
paper, with real traffic and multiple obstructions, training the ANN to identify multiple
human obstructions is one of the most important areas for future investigation. Identifying
the BLE beacons in the imagery, and determining whether the people in the imagery are in
LOS or not, should be also investigated. The application of an RGB-D camera to enable the
detection of all possible static and dynamic obstacles with exact distance from the users to
increase the accuracy of the system could be the subject of further research.
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23. Nikodem, M.; Szeliński, P. Channel Diversity for Indoor Localization Using Bluetooth Low Energy and Extended Advertisements.
IEEE Access 2021, 9, 169261–169269. [CrossRef]

24. Naghdi, S.; O’Keefe, K. Detecting and Correcting for Human Obstacles in BLE Trilateration Using Artificial Intelligence. Sensors
2020, 20, 1350. [CrossRef]

http://doi.org/10.5081/jgps.3.1.2
http://doi.org/10.1109/SOFTCOM.2014.7039067
http://doi.org/10.1016/j.sna.2018.01.015
http://doi.org/10.1016/j.inffus.2013.06.003
https://www.hindawi.com/journals/misy/2016/2083094/
http://doi.org/10.1155/2016/2083094
http://doi.org/10.1002/ett.2864
http://doi.org/10.1109/JSAC.2015.2430281
http://doi.org/10.1088/1742-6596/1343/1/012116
http://doi.org/10.3390/s17112484
http://doi.org/10.1109/JSAC.2015.2481203
https://dl.acm.org/doi/abs/10.1145/1410012.1410024
https://dl.acm.org/doi/abs/10.1145/1410012.1410024
http://doi.org/10.1109/ICCE-China.2017.7990996
http://doi.org/10.1016/j.sna.2011.08.015
http://doi.org/10.3390/s16050596
http://doi.org/10.3390/s17122927
http://doi.org/10.3390/s19163487
http://doi.org/10.1109/ACCESS.2021.3137849
http://doi.org/10.3390/s20051350


Sensors 2022, 22, 4320 25 of 25

25. Naghdi, S.; O’Keefe, K. Trilateration With BLE RSSI Accounting for Pathloss Due to Human Obstacles. In Proceedings of the 2019
International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, 30 September–3 October 2019; pp. 1–8.
[CrossRef]

26. Bernabe, A.d.; Dios, J.R.M.; Ollero, A. Efficient integration of RSSI for tracking using Wireless Camera Networks. Inf. Fusion 2017,
36, 296–312. [CrossRef]

27. Mikolov, T.; Karafiat, M.; Burget, L.; Khudanpur, S. Recurrent Neural Network Based Language Model. Chiba, Japan. Available
online: https://www.isca-speech.org/archive/interspeech_2010/i10_1045.html (accessed on 7 March 2020).

28. Simonyan, K.; Zisserman, A. Two-Stream Convolutional Networks for Action Recognition in Videos. In Advances in Neural
Information Processing Systems 27; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., Eds.; Curran
Associates, Inc.: New York, NY, USA, 2014; pp. 568–576.

29. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Kauai, HI, USA, 8–14 December 2001; p. I.
[CrossRef]

30. Ahonen, T.; Hadid, A.; Pietikainen, M. Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2006, 28, 2037–2041. [CrossRef]

31. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; pp. 886–893.
[CrossRef]

32. Chen, M.; Hauptmann, A. Mosift: Recognizing Human Actions in Surveillance Videos; Technical Report; Carnegie Mellon University:
Pittsburgh, PA, USA, 2009.

33. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. Available online: https://arxiv.org/abs/1704.04861v1 (accessed
on 7 March 2020).

34. Jiao, J.; Li, F.; Deng, Z.; Ma, W. A Smartphone Camera-Based Indoor Positioning Algorithm of Crowded Scenarios with the
Assistance of Deep CNN. Sensors 2017, 17, 704. [CrossRef]

35. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. 2017, pp. 2980–2988. Available online:
http://openaccess.thecvf.com/content_iccv_2017/html/Lin_Focal_Loss_for_ICCV_2017_paper.html (accessed on 7 March 2020).

36. Filippoupolitis, A.; Oliff, W.; Loukas, G. Occupancy detection for building emergency management using BLE beacons. In
International Symposium on Computer and Information Sciences; Springer: Cham, Switzerland, 2016; pp. 233–240.

37. Tekler, Z.D.; Low, R.; Gunay, B.; Andersen, R.K.; Blessing, L. A scalable Bluetooth Low Energy approach to identify occupancy
patterns and profiles in office spaces. Build. Environ. 2020, 171, 106681. [CrossRef]

38. Gutiérrez, M.E.B.; Sánchez, M.M.; Gallinas, R.B.; García, A.M.F. Capacity Control in Indoor Spaces Using Machine Learning
Techniques Together with BLE Technology. J. Sens. Actuator Netw. 2021, 10, 35. [CrossRef]

39. Kumar, D.P.; Amgoth, T.; Annavarapu, C.S.R. Machine learning algorithms for wireless sensor networks: A survey. Inf. Fusion
2019, 49, 1–25. [CrossRef]

40. Isabona, J.; Srivastava, V.M. A Neural Network based Model for Signal Coverage Propagation Loss Prediction in Urban Radio
Communication Environment. Int. J. Appl. Eng. Res. 2016, 11, 11002–11008.

41. Wolfle, G.; Landstorfer, F.M. Field strength prediction in indoor environments with neural networks. In Proceedings of the
Technology in Motion 1997 IEEE 47th Vehicular Technology Conference, Phoenix, AZ, USA, 4–7 May 1997; pp. 82–86. [CrossRef]

42. Gong, Y.; Cui, C.; Yu, J.; Sun, C. An Indoor Localization Algorithm Based on RBF Neural Network Optimized by the Improved
PSO. In Proceedings of the International Conference on Electronic, Information Technology and Intellectualization (ICEITI),
Guangzhou, China, 18–19 June 2016; DEStech Publications, Inc.: Lancaster, PA, USA, 2016; pp. 457–464. [CrossRef]

43. Schloter, P.; Aghajan, H. Wireless symbolic positioning using support vector machines. In Proceedings of the 2006 International
Conference on Wireless Communications and Mobile Computing, Vancouver, BC, Canada, 3–6 July 2006; Association for
Computing Machinery: New York, NY, USA, 2006; pp. 1141–1146. Available online: https://dl.acm.org/doi/abs/10.1145/1143
549.1143778 (accessed on 3 March 2020).

44. Takenga, C.M.; Ieee, S.M.; Kyamakya, K. Pre-Processing of Data in RSS Signature-Based Localization. In Proceedings of the 3rd
Workshop on Positioning, Navigation and Communication, Hannover, Germany, 16 March 2006.

45. Wu, B.F.; Jen, C.L.; Chang, K.C. Neural fuzzy based indoor localization by Kalman filtering with propagation channel mod-
eling. In Proceedings of the 2007 IEEE International Conference on Systems, Man and Cybernetics, Montreal, QC, Canada,
7–10 October 2007; pp. 812–817. [CrossRef]

46. Hu, Y.H.; Hwang, J.N. Handbook of Neural Network Signal Processing; CRC Press: Boca Raton, FL, USA, 2002.
47. Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995.
48. Hussin, R.; Juhari, M.R.; Kang, N.W.; Ismail, R.C.; Kamarudin, A. Digital Image Processing Techniques for Object Detection From

Complex Background. Procedia Eng. 2012, 41, 340–344. [CrossRef]
49. Joshi, K.A.; Thakore, D.G. A Survey on Moving Object Detection and Tracking in Video Surveillance System. Int. J. Soft Comput.

Eng. 2012, 2, 44–48.

http://doi.org/10.1109/IPIN.2019.8911816
http://doi.org/10.1016/j.inffus.2016.11.001
https://www.isca-speech.org/archive/interspeech_2010/i10_1045.html
http://doi.org/10.1109/CVPR.2001.990517
http://doi.org/10.1109/TPAMI.2006.244
http://doi.org/10.1109/CVPR.2005.177
https://arxiv.org/abs/1704.04861v1
http://doi.org/10.3390/s17040704
http://openaccess.thecvf.com/content_iccv_2017/html/Lin_Focal_Loss_for_ICCV_2017_paper.html
http://doi.org/10.1016/j.buildenv.2020.106681
http://doi.org/10.3390/jsan10020035
http://doi.org/10.1016/j.inffus.2018.09.013
http://doi.org/10.1109/VETEC.1997.596323
http://doi.org/10.12783/dtcse/iceiti2016/6173
https://dl.acm.org/doi/abs/10.1145/1143549.1143778
https://dl.acm.org/doi/abs/10.1145/1143549.1143778
http://doi.org/10.1109/ICSMC.2007.4413976
http://doi.org/10.1016/j.proeng.2012.07.182

	Introduction 
	Methods Employed 
	Bluetooth Low Energy 
	Distance Model and Trilateration 
	Neural Network Algorithms 
	Human Body Detection 

	System Design 
	Experimental Setup 
	System Verification 
	Experimental Results 
	Detecting Humans and Correcting RSSI 
	Range and Position Estimation: Scenario #1 (at Training Locations) 
	Positioning Estimation: Scenario #2 (at Blind Test Points) 

	Conclusions 
	References

