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ABSTRACT 

 

Subsurface sensors, such as inclinometers and tools used to take measurements while 

drilling, are important to the mining and petroleum industries. The current sensor systems are 

susceptible to shock, vibrations, and magnetic disturbances. To overcome these challenges, we 

propose a subsurface sensor fusion system with two sets of redundant inertial measurement units 

(IMU) to protect against magnetic and shock disturbances that affect the performance of 

magnetometers and gyroscopes. Orientation information is obtained by multiple micro-electro-

mechanical system (MEMS) based inertial sensors, which consist of three-axis accelerometers, 

gyroscopes, and magnetometers.  

In this thesis we obtain angular displacements using two different approaches to improve 

sensor robustness to magnetic and shock disturbances; also, we discuss the pros and cons of these 

two different approaches. The first approach is the supervised learning filter (SLF) approach, and 

the second is the supervised learning-Kalman filter (SL-KF) approach. In SLF, azimuth angle 

errors obtained from different sensors (magnetometers, accelerometers, and gyroscopes) are 

compared under magnetic and shock disturbance conditions; then, we employ an adaptive neuro 

fuzzy inference system (ANFIS) to calculate the error models of the sensors. Based on these 

sensors’ error models,  the proper weights of the azimuth angles obtained from different sensors 

are computed and applied to the azimuth angles to output a final azimuth angle. However, to 

achieve the best results of SLF, we assume that at least one magnetometer is not affected by 

interferences at the same time interval (two magnetometers are separated by a distance D, and D 
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can prevent both magnetometers from being affected by a magnetic disturbance at the same time). 

Therefore, SL-KF combines SLF with a KF to further reduce the effect of disturbances on sensors. 

SLF computes the corrected rotational angles and angular velocities that are subsequently fed into 

a global filter KF, which performs further corrections. 

The present subsurface positioning (directional drilling) relies on angular displacements 

and values of measurement depth (drill string length) to estimate a well path. However, these 

methods have limitations to apply in working conditions (for example drill string length maybe 

inaccurate caused by steel expands with increased temperature and stress). To deal with the drill 

string length inaccuracy problem, instead of using real external measurement signals (drill string 

length), we use correction signals designed based on the dual acceleration difference (DAD) 

method to correct the positions.  

The proposed ideas of angular and position estimations are evaluated by experimental 

results. From the angular evaluation, based on a 59 second root mean square (RMS) calculation, 

the error of the proposed SLF approach is about 0.26 degrees, assuming one magnetometer is not 

disturbed by magnetic disturbances. When all sensors are disturbed by shock and magnetic 

disturbances, compared with SLF, the proposed SL-KF approach increases the performance by up 

to 56% using a 59 second RMS calculation. From the position evaluation, the proposed dual 

acceleration method reduces the error magnitudes caused by disturbances from meters to 

millimeters. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Background and Motivations  

Subsurface sensing evaluates the performance of subsurface industry activities. These 

activities include reservoir status monitoring with inclinometers, enhanced oil recovery (EOR), 

carbon capture and storage (CCS), hydraulic fracking (HF), and measurement while drilling 

(MWD) during horizontal drilling operations. The sensors used in subsurface industry activities 

must provide the proper angles and positions.  

For angle measurements, traditional technologies often use gas or liquid bubble-based 

sensors to estimate tilting states [Hwang 2017]. This type of measurement uses gravity when the 

instrument tilts. The bubble moves to maintain its alignment with the gravity vector allowing the 

pitch and roll angles to be obtained and scaled with the alignment. Inertial accelerometers are 

another means of measuring rotation angles between sensor coordinates and the Earth’s gravity 

coordinates [Luinge 2002; Sprager et al., 2015].  These gravity-based orientation measuring sensor 

systems (such as bubble-based sensors or inertial accelerometers) depend on the angles between 

the gravity field and the instruments rotation plane [Trimpe et al., 2010].  

The drawback of these devices is that the Earth’s gravity field makes it difficult to measure 

the azimuth (yaw) directions that are generated on the plane that is horizontal to the ground 

[McElhinney et al., 2000]. Magnetometers (compasses) can measure full orientations, including 

azimuth, but they are very noisy and easily affected by magnetic disturbances [Ren et al., 2014]. 

A hybrid multi-sensor system that combines a magnetometer with a gyroscope can increase the 

accuracy of the azimuth since the gyroscope’s signal is not affected by magnetic disturbances. The 
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combination of these two sensors removes the noise inherent in magnetic signals and reduces the 

integral calculation drift caused by the near-direct current (DC) component of gyroscope signals 

[Borenstein et al., 2009]. 

For travel path positioning measurements, when estimating a moving position, 

accelerometers measure acceleration and then double integrate it to compute the moving distance. 

Velocity can also be determined during this integral calculation [Axelsson et al., 2012]. Similar to 

the drawback of gyroscopes, the DC components and noise from the acceleration measurements 

can cause drift during the integral calculation [Latt et al., 2011].  

Multi-sensor fusion systems are becoming popular because of their enhanced measurement 

accuracy and reliability in terms of tracking and target identification. Another benefit is their 

improved robustness against failure. Sensor fusion systems take measurements of an environment 

from multiple sources and combine those measurement data to produce the best possible 

performance.  

For example, inertial measurement systems (IMUs) are built using a self-contained 

navigation technique in which measurements are provided by gyroscopes, magnetometers, and 

accelerometers. IMUs utilize these three types of signals to estimate the orientations and positions 

of an object. Because of its low cost, IMUs are used in many multi-sensor information fusion 

(MSIF) applications. Combined with other sensors, such as global positioning systems (GPS), 

cameras, radar, and lasers, MSIF can be used for dead reckoning, automotive tracking, human 

motion detection, indoor navigation, etc. External sensors are implemented as references in many 

inertial motion capture systems to reduce the drift of acceleration integral calculations [Ilyas et al., 

2016]. Many studies have focused on the performance of a combination of IMUs and external 
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sensors in systems such as ultrasonic sensors, laser range sensors, cameras, GPS, and radar 

[Hellmers et al., 2013; Kim et al., 2015; Girard et al., 2011].  

However, the above-mentioned methods do not reduce the influence of unknown magnetic 

disturbances caused by iron materials or other magnetic resources, since, for underground sensing, 

external sensor corrections (GPS, etc.) are difficult to obtain. It is therefore not feasible to measure 

the Earth's magnetic field in the presence of iron materials, which include casings, drill pipes, and 

iron ores that are present in the subsurface. Although the effect of this magnetic interference can 

be reduced by utilizing long, non-magnetic drill collars, this solution is expensive due to the 

relatively high cost of these non-magnetic materials. In addition to magnetic disturbances, IMUs 

also suffer from shock impacts that are caused during the drilling work process. These shocks 

reduce the performance of gyroscopes. 

The sensor system currently used in the industry, MWD, does not favor gyroscopes [Shor 

et al., 2015]; applying gyroscopes in cases of rapidly rotating objects with large accelerations has 

drawbacks [Larin et al., 2012]. The measurement ranges of the MEMS gyroscopes included in the 

IMUs we are using are only hundreds of degrees/second [Iozan et al., 2016; Cao et al., 2017]. 

Consequently, each gyroscope is limited by a maximum angular velocity constrained by design 

structures, especially for MEMS gyroscopes [Tsai et al., 2010]. Also, various shock impacts affect 

the performance of MEMS gyroscopes. Although the requests for size, weight, reliability, and 

power consumption can be satisfied because advanced materials technologies can build miniature 

sensing elements, such as fiber-optic coils, the costs are unacceptable [Gebre-Egziabher et al., 

2004].  

Therefore, using redundant accelerometers to obtain rotation information is becoming 

popular [Wang et al., 2014; Bhuiyan et al., 2013]. Without assistance from gyroscopes, the 
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minimum number of accelerometers needed to extract three-dimensional (3D) rotational 

information is six. Further, using six accelerometers creates an additional integration for the 

inertial mechanization and requires a non-coplanar array geometry [Nilsson et al., 2016]. 

Therefore, the configuration of two IMUs and three accelerometers on the x, y, and z axes of each 

IMU satisfies the minimum requirements to obtain rotational information with only 

accelerometers.    

Because it is difficult to utilize external location correction sensors such as GPS [Tarokh 

2007], one of the challenges in displacement tracking is the lack of information resources, similar 

to the case of using only accelerometers without the assistance of extra correction sensors. The 

noise, DC components, and shocks contained in acceleration signals cause a long-term double 

integral calculation of acceleration drift in displacement estimations. A new fusion method with 

improved robustness against magnetic disturbances that can perform with relatively high accuracy 

in terms of position estimation is of the utmost interest. 

Traditional underground path position estimation methods, including the minimum 

curvature method (MCM) and spline curve methods such as the advanced spline-curve (ASC) 

method. The MCM is the most common model from the defined algorithms used to compute 

wellbore trajectory. The orientation angles (inclination and azimuth) and pipe length are inputs of 

the MCM and ASC. The MCM assumes that the arc between survey stations is a constant curvature. 

However, high resolution surveys show that this assumption is not true because of the negative 

influence of the sliding/rotational pattern drilling [Lentsch et al., 2012]. Since MCM tends to create 

an artificially low tortuosity by mathematically smoothing the well path between survey stations, 

MCM miscalculates the true vertical depth (TVD) and underestimates torque and drag (T&D). To 

overcome these limitations, researchers developed the ASC model to provide realistic results and 
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accurately calculate the spatial course of the well path [Abughaban et al., 2016]. ASC methods are 

accurate [Amorin et al., 2010; Sampaio 2007], but the accuracy of both MCM and ASC methods 

depend on their inputs: orientation angles and measured depth. Therefore, MSIF technologies that 

can improve the accuracy of orientation angles and travel path positions are necessary.  

MSIF design methodology is used in various methods that generally use either a stochastic 

approach or an artificial intelligence (AI) process. In stochastic methods, a Kalman Filter (KF), an 

Extended Kalman Filter (EKF), or an Unscented Kalman Filter (UKF) are the basis of the data 

fusion design. KFs remove the uncertainties of sensors and output accurate information, but their 

computations are complicated and need a priori noise information for co-variance matrices 

designs.  

A particle filter (PF), also known as a Monte-Carlo filter, is another methodology that can 

solve hidden Markov chain and nonlinear filtering problems. Similar to EKFs and UKFs, PFs are 

also suitable candidates for nonlinear filter design. In AI approaches, artificial neural networks 

(ANNs), fuzzy logic (FL), or adaptive network-based fuzzy inference systems (ANFIS) are 

typically used to judge the weights of different sensors under precise rules and to improve the 

performance of methods (such as KFs) that are designed based on probability [Chavez-Garcia et 

al., 2016; Chavez-Garcia 2014; Jeon et al., 2014; Brigante et al., 2011; Dong et al., 2009; Bancroft 

et al., 2011].  

To address the above-mentioned problems of subsurface sensing, this study provides 

several multi-sensor fusion approaches to decrease the effect of shock and magnetic disturbances 

on the sensors. The fusion structure is based on the supervised learning method and KF. Also, the 

dual acceleration difference method is applied to generate a correction signal for the output 

computation of KF. 
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1.2 Research Objectives 

The goal of this study is to develop a sensor fusion system that minimizes the effect of 

unknown magnetic and shock disturbances on subsurface orientation and travel path position 

estimations. This technology reduces wellbore orientation errors caused by magnetic and shock 

interferences. The proposed sensor fusion system is also minimally affected by shocks when 

estimating position based on redundant acceleration information. This fusion system can be 

applied in wellbore positioning, and it can show the states of underground reservoirs using precise 

rotational measurements.  

Different kinds of sensors can be fused to obtain better performance compared to the 

performance of individual sensors on their own. Therefore, utilizing redundant sensor information 

in this research is considered to improve detection performance. We have two primary objectives. 

First, to develop a better fusion method to estimate the orientation angles of a sensor system which 

will be used for underground sensing. This fusion estimation technique can be applied to 

contaminated magnetic environments and shock working conditions. The second objective is to 

build a robust position fusion system to prevent underground position estimations from being 

affected by magnetic and shock interferences.  

 The methodology of the first objective utilizes a simple sensor structure comprised of a 

rigid beam element and two sets of redundant IMUs that move in translational and rotational 

directions. Using this method, a robust azimuth orientation estimation under unknown magnetic 

and shock disturbances is achieved. For the second objective, orientation angles obtained from the 

proposed method are then combined with acceleration signals to determine positions. Diverse 

interference types that commonly occur in the environment are studied under different operational 

conditions to evaluate the performance of this method. 
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1.2.1 Hardware Design of Proposed Sensor System 

Due to a lack of information on position tracking under conditions without GPS, it is 

necessary to develop a virtual simulation environment to test sensor performance under actual 

application conditions. This research checks several different conditions in the real subsurface 

sensing field, including various position tracking simulations, and simulates working conditions 

that experience magnetic and shock disturbances.    

A base prototype of the sensor configuration is developed. This prototype system includes 

two sets of IMUs positioned on a rigid body of related electrical circuits designed for long-distance 

sensing conditions, such as long-distance signal transferring, data conversion modules, etc. A high-

precision 3D calibration test rig is also built to generate orientation (inclination and azimuth) and 

translational motions to simulate a subsurface tracking situation. The prototype of the sensor is 

tested for different conditions, such as rotational, translational, 2D, and 3D movements.  

 

1.2.2 Robust Angular Fusion-minimizing Magnetic and Shock Disturbances for Azimuth 

Orientation Estimation  

The first objective is to build a robust angular fusion system to minimize unknown 

magnetic distortions and shock impacts and to prevent underground azimuth and position 

estimations from being affected by magnetic and shock interferences. Two fusion structures are 

considered to address this problem, including the stochastic fusion (KF), which consists of 

gyroscopes and magnetometers, and an intelligent fusion based on ANFIS. Simulations and 

experiments that use a 3D calibration tool and on-campus GPS are conducted to investigate the 

effectiveness of each method. 
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Subsurface angle estimations are affected by un-known magnetic disturbances and shock 

impacts. The shocks negatively affect gyroscopes and are obstacles to achieve accurate estimations 

of continuous wellbore surveys. We propose using a supervised learning filter (SLF), which 

includes different error models of different kinds of IMU sensors (accelerometer, gyroscope, and 

magnetometer) with ANFIS, when the IMU sensor experiences shock and magnetic disturbances. 

Based on these error models, proper weights of these different IMU sensors are calculated. Finally, 

these weights correct the azimuth angles obtained from the sensors. In addition, SLF can be 

combined with a KF to further reduce the impact of magnetic and shock disturbances.  

The sensor fusion algorithms are evaluated using experimental data. The results show that 

SLF and it’s variant, SL-KF, are good candidates to determine accurately orientation angles and 

remove unknown magnetic and shock disturbances. 

 

1.2.3 Robust Position Fusion-minimizing Magnetic and Shock Disturbances for Movement 

Displacement Estimation  

The second objective is to build a fusion method that can be used for subsurface position 

tracking without external location correction sensors such as GPS. Also, this fusion method should 

be able to deal with insufficient or inaccurate external position correction situations, such as errors 

in drill string correction (errors caused by steel stretch). In addition, shock robustness should be 

included in this method.     

To satisfy the above requirements, we develop a position measurement system using 

redundant sets of accelerometers and polar coordinates. A KF is used to reduce the effect of shock 

disturbances on position estimations; a dual acceleration difference method is applied to design 

the proper covariance matrices of a KF. First, errors in the process and measurements are computed 
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by comparing the process and measurements with the reference values calculated using the dual 

acceleration difference method. Then the errors are inputted into the covariance matrices (Q & R). 

Based on the proper covariance matrices, the KF computes the correct weights of the predicted 

and observed values for the final output. According to the experiment, the dual acceleration 

difference KF (DAD-KF) reduces the effect of shocks on the position. 

 

1.3 Organization of Thesis 

Chapter 2 is a literature survey on sensor fusion and inertial sensors. Existing multi-sensor 

fusion systems and their industrial applications are described. This chapter also discusses current 

sensor fusion concepts and approaches.  

Chapter 3 outlines the experimental procedure and setup. This chapter presents the 

proposed sensor design for subsurface application, which considers long-distance digital data 

transfer and has a unique structure of sensor configuration. Then the processes of building high-

precision calibrations (2D and 3D) for magnetometers and the process of dynamic acceleration 

compensation for accelerometers are discussed. The compensated and calibrated results are also 

presented. Finally, a testing rig and its control system are described.  

Chapter 4 focuses on detailed methodologies of the proposed sensor fusion for determining 

orientation angles. The importance of orientation angle fusion is briefly discussed; then an overall 

perspective on the proposed technique is provided. In addition, this chapter shows how a SLF can 

reduce the effect of magnetic and shock interferences. Chapter 4 includes the details of error model 

building with ANFIS amd describes how the SL-KF hybrid increases KF’s robustness to unknown 

magnetic and shock disturbances. Lastly, the proposed fusion methods are evaluated by conducting 

experiments, and the limitations and assumptions of the experimental results are discussed.  
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Position estimations are shown in Chapter 5. A dual acceleration difference method is 

proposed to compute the correction values for a KF’s covariance matrices design (Q & R matrices). 

The purpose of the design is to increase the robustness of the KF to shock disturbances for position 

estimations. The lab-scale test shows the proposed DAD-KF is not affected by shocks. Also, a 

two-level positioning method is proposed and tested using a drilling simulation field positioning 

test to determine if the method is suitable for application in industry. 

Chapter 6 provides a summary of this research and the future work. 
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CHAPTER 2. LITERATURE SURVEY 

 

Subsurface sensing is crucial to subsurface industry activities. The current subsurface 

sensing research focuses on MEMS inertial sensors since the sensors have the advantages of being 

small and light-weight, can be cheaply manufactured, and require less power [Eldesoky et al., 

2017]. The IMUs used in subsurface sensing usually contain accelerometers, gyroscopes, and 

magnetometers. 

Each type of sensor has different limitations. Multiple Sensor Fusion Systems (MSFSs), 

technology that automatically analyzes and integrates information obtained from different sensors 

based on certain algorithms, was recently developed to achieve more accurate estimations than a 

single sensor or information source alone can provide [Lu et al., 2014; Dong et al., 2009; Aydin et 

al., 2018]. Information integration technologies complement and optimize different information 

from sensors to achieve the most realistic output possible. These technologies minimize 

weaknesses in individual sensors that may produce poor readings, which can include disturbances, 

noises, and other uncertainties [Luo et al., 2011]. 

Compared to a single sensor sensing system, a MSFS is more complicated and has a higher 

cost, but these disadvantages are minimal compared to the advantages [Cappello et al., 2015]. A 

MSFS improves a system’s robustness because different sensors can compensate for one other 

even if some sensors perform poorly under harsh conditions. It also performs better in terms of 

noise reduction and accuracy. MSFS, along with redundant data, can provide more information to 

help obtain a clearer result. [Gao et al., 2018]. 

In this chapter, section 2.1 reviews the recent trends in subsurface sensing technology. 

Particular attention is paid to two applications: inclinometers and directional drilling surveys. 
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Section 2.2 introduces physical structures and challenges and compensations of the MEMS-based 

IMUs. In section 2.3, multiple sensor algorithms and development trends based on IMUs in many 

application fields are reviewed, including KFs and their variations and intelligent filters. Section 

2.4 summarizes this chapter. 

 

2.1 Subsurface Sensing Technologies  

Subsurface injection operations(SIO) and directional drilling surveys are the two key 

applications in the subsurface sensing field. Inclinometers for subsurface sensing are usually used 

to measure the inclinations caused by subsurface movement. In addition, they are often applied to 

monitor subsurface deformation due to reservoir injection. SIO includes CCS, water flooding, 

steam injection, and waste disposal. Similar monitoring requirements are seen in shale gas or oil 

operations that involve hydraulic fracking [Warpinski 2013]. In these applications, detecting  

leakages and ground movements is needed, and if necessary, corrective actions can be undertaken 

to prevent catastrophic failures occurring. Direct monitoring of reservoirs is, however, difficult. 

Instead, heaving information is usually collected near the surface, and stress and volumetric 

expansion of the reservoir and leakage information can be indirectly acquired from the heaving 

data [Vasco 2000]. The reverse method is usually applied to determine the reservoir information 

according to the inclinometer measurements.  

Directional drilling survey obtains the drilling trajectory orientations and positions. A 

complete knowledge of the wellbore direction and orientation during the drilling process is 

essential to guarantee proper directional drilling procedure [ElGizawy et al., 2009]. Therefore, 

directional drilling survey technologies, which include discrete and continuous surveys, are 

necessary to estimate the borehole positions or 3D space of a well path. The discrete wellbore 
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survey is an accurate method, but it requires a series of halts in the drilling process to give static 

conditions for obtaining the directional measurements, such as the inclination and azimuth 

[Buchanan et al., 2013]. In contrast, for continuous surveys, the halts are not necessary because  

directional steering parameters, such as the gravity tool face, are added [Stockhausen et al., 2016]; 

however, moving noise is challenging. Currently, the azimuth error range of continuous surveys 

is approximately from 3 degrees to 20 degrees [Xue et al., 2016; Edvardsen et al., 2014].   

Directional drilling surveys require orientation angle sensors to provide azimuth, 

inclination angles for the drill, drill string length, and calculation methods such as MCM [Yuan et 

al., 2015] and ASC [Abughaban et al., 2016]. These angle sensors are part of the MWD tool, which 

in current technology is installed several feet behind the drill bit [Noureldin et al., 2002]. Finally, 

combining the orientation angles and drill string length allows for borehole positions to be 

calculated using MCM and ASC. Therefore, the accuracy of the orientation angles and drill string 

length significantly influences borehole positioning. 

IMU sensors measure orientation angles, but unfortunately, the sensors are affected by  

magnetic and shock disturbances, which occur when drilling takes place. Drill string length is less 

affected by magnetic and shock disturbances; however, the length values are not accurate due to 

the string steel stretch error, which is caused by drill string weight and the subsurface thermal 

evvironment. Also, the magnitude of the error may be up to 2.5/1000 meters [Henderson 2009; 

Lowdon 2014].    

 

2.1.1 Inclinometer  

Inclinometers have undergone rapid evolution in recent years. Current inclinometers 

contain high-precision instruments with a sensitivity that can detect tilting angles. Typically, an 
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inclinometer is a metal cylinder with a length of roughly 1 or 2 meters and a diameter of 15 

centimeters. It contains a tiltmeter (on an orthogonal axes) and precision electronics [Hisz et al., 

2013]. One example is the bubble inclinometer, where a gas bubble contained within a conductive, 

liquid-filled glass casing is used to detect the Earth's gravitational field [Roberts et al., 1993]. As 

the instrument tilts, the bubble moves to maintain its alignment with the gravity vector. Precision 

electronic products detect changes in resistivity, which are caused by the motion of the gas bubble, 

between electrodes mounted on the glass sensor. 

 

Figure 2.1.1 Structure of a tiltmeter 

 

Other kinds of inclinometer systems have also been proposed. One example is the thermal 

inclinometer designed based on the analysis of a thermal profile [Johann et al., 2006]. This system 

demonstrates that temperature difference has a proportional relationship to the tilting angle. 

Another proposed system is the magneto-resistive inclinometer. In this system, a tilting motion 

causes magnets to move, which in turn changes the magnetic flux. The resistance change of the 

magneto-resistive elements then reflects the tilted angle [Jogschies et al., 2015].  
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Figure 2.1.2 Structure of a bubble type tiltmeter 

 

These types of inclinometers all have limited reliability. As a result, inertial sensors, 

particularly MEMS inertial sensors, are becoming an increasingly attractive alternative; the main 

areas of current inclinometer research are MEMS inertial sensors [Kok et al., 2017]. In this type 

of system, an inertial navigation system (INS) uses a self-contained navigation technique in which 

measurements are provided by gyroscopes, magnetometers, and accelerometers; fusing these three 

kinds of signals allows the orientations and positions of an object to be estimated. 

Inclinometers are used to measure the tilting of an object. It typically includes a tilt meter 

and related electronics with different variants such as bubble, thermal, or inertial sensors. The 

current inclinometer research focuses on MEMS inertial sensors because of the feature of self-

contained navigation.    
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2.1.2 Directional Drilling Survey Sensors 

During the last two decades, directional drilling processes have been the subject of 

intensive research because oil companies and drilling contractors are interested in these 

technologies. If one first drills into an oil-bearing formation at an angle and then follows the 

formation horizontally, the productivity and longevity of a producing well can be significantly 

increased. Also, a directional drilling system should include directional drilling survey equipment 

and a steerable system in addition to the conventional drilling assembly [Noureldin 2002]. A 

directional drilling assembly consists of a bit, stabilizers, a motor section, and MWD as shown in 

Figure 2.1.3. The non-magnetic drill collar holds the surveying equipment.  

 

 

 

 

Figure 2.1.3 Structure of a directional drilling tool [Modified from ROTATE DRILLING 

MOTOR 2019] 

 

The directional drilling procedure begins with drilling a vertical hole to an appropriate 

depth using conventional rotary drilling [ElGizawy 2009]. Drilling survey systems are typically 
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used to provide the position and orientation of the bottom hole assembly for the drilling process. 

Current directional drilling survey systems are based on magnetic surveying technology [Song et 

al., 2018] where the magnetic surveying part of the drilling survey system is a special non-

magnetic drill collar consisting of three-axis accelerometers and three-axis magnetometers [Xue 

et al., 2014]. This method does not consistently perform well because of magnetic interference, 

which are randomly located and difficult to predict [Kaur et al., 2011]. Such magnetic disturbances 

can be caused by drill string components that may contain magnetic interference, geomagnetic 

influences, downhole ore deposits, etc. [Zhang et al., 2016]. In addition, harsh working conditions, 

such as shocks, are encountered in directional drilling; therefore, gyroscopes are not favored since 

they are easily and negatively influenced by the shocks. Moreover, the large sensor size is a 

significant limitation of directional drilling survey applications. MEMS-based IMUs are a good 

alternative solution to this problem since MEMSs are very small and can easily meet size 

requirements [Hirama 2015]. The drawback of MEMS sensors is their limited practical application 

due to low precision.  

Directional drilling is crucial to the petroleum industry. However, the current technologies 

used in directional drilling suffer from size limitations, magnetic and shock disturbances, and drill 

string length errors caused by steel stretches. MEMS IMUs are good alternatives in terms of 

addressing the size limitation and they can endure severe shocks. For example, a shock test with 

severe shock forces of 1400 g over 0.017s at a frequency of 3400 Hz for 4 hours proved the MEMS 

IMUs can be fully functional in drilling applications [ElGizawy 2009]. However, the fusion 

robustness to the magnetic and shock disturbances also to the stretch errors are still needed to be 

considered.   

 



18 

 

2.1.3 Challenges of MEMS for Subsurface Sensing 

Using MEMS IMUs for current drilling survey system needs to consider the sampling time 

range. Current drilling industry practices use 30, 90, 120, and 180 Hz under drilling working 

conditions since the drilling characteristics are obvious at low frequencies [Tang 2016]. For 

MEMS sensors, the sampling time can be set up to 800 Hz [Analog Device]. 

The most traditional method to determine orientation angles uses a combination of 

accelerometers and magnetometers. Also, the angular rates measured from gyroscopes are 

employed to remove noises that are embedded in the accelerometers and magnetometers [Kao et 

al., 2008]. A hybrid multi-sensor system that combines a magnetometer with a gyroscope can 

increase the accuracy of the azimuth angles because a gyroscope’s signal is unaffected by known 

magnetic disturbances. A combination of these two sensors with a KF removes the noise inherent 

in known magnetic signals and reduces the integral calculation drift caused by the DC component 

of gyroscope signals [Borenstein et al., 2009; Liu et al., 2018]. However, the magnetic disturbances 

are unknown, and traditional KFs cannot filter out unknown disturbances in many situations.  

Geo-referencing is a possible method to identify the magnetic disturbances. For example, 

the earth’s magnetic field is distorted by ambient ferromagnetic objects, so to judge whether a 

magnetometer is influenced by magnetic disturbances or not, researchers propose using parameters 

from the Earth’s magnetic field model, such as Geomagnetism Canada, to compare with the 

measurements from magnetometers [Liu et al., 2018; Liu et al., 2019]. However, this method 

requires information from the Earth’s magnetic field, which is difficult to obtain during field 

applications. The traditional method is fused with MEMS gyroscopes to reduce heading errors 

because information on angular speeds measured using gyroscopes can be utilized to determine 

rotation angles through simple integral calculations [Kok et al., 2017; Tan et al., 2018]. In this 
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situation, gyroscopes are employed to correct heading errors since the integral calculation is not 

influenced by magnetic disturbances [Fan et al., 2017; Zhang et al., 2011].  

However, there are several problems with gyroscope using; compared to surface sensing 

activities (for example, detecting indoor or outdoor vehicle movements), subsurface movements 

are much slower. For this reason, magnetometers may be exposed to ferromagnetic objects for a 

long time; therefore, the drift caused in the gyroscope integral calculation will not be ignored [Lee 

et al., 2016].  

In addition to integral calculation drift, gyroscope applications in the cases of rapidly 

rotating objects with large accelerations experience difficulties [Larin et al., 2012] since each 

gyroscope is limited by a maximum angular velocity constrained by design structures, especially 

for MEMS gyroscopes [Tsai et al., 2010]. MEMS gyroscopes in the IMUs we are using are unable 

to function accurately under the harsh conditions caused by the large rotational accelerations that 

occur during drilling processes since a typical MEMS gyroscope measurement range is only 

hundreds of degree/s [Iozan et al., 2016; Cao et al., 2017]. Since MEMS gyroscopes are limited 

by a maximum angle velocity constrained by design structures [Tsai et al., 2010], the harsh 

working conditions caused by the large rotational accelerations and shock impacts during drilling 

survey processes can damage the structure of the MEMS gyroscopes. In addition, MEMS 

gyroscopes are subjected to various shock impacts [Li et al., 2014], and these shocks and vibrations 

can cause significant drift during the data integral calculation process [Du et al., 2018]. Further, 

the costs make this technology prohibitive, even though the advanced materials technologies can 

build miniature sensing elements, such as fiber-optic coils, to satisfy the requirements for size, 

weight, reliability, and power consumption [Gebre-Egziabher et al., 2004]. Therefore, industry 

practices do not favor gyroscopes [Shor et al., 2015]. 
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Consequently, researchers explored the possibility of using redundant accelerometers to 

replace gyroscopes to obtain the rotation information [Wang et al., 2014; Bhuiyan et al., 2013]. 

However, the redundant accelerometer method also has limitations [Nilsson et al., 2016]: a 

minimum of six accelerometers are necessary to extract 3D rotational information and the 

configuration of the six accelerometers needs a non-coplanar array geometry. Therefore, two 

redundant sets of IMUs with a known distance D satisfy the minimum requirements for obtaining 

rotational information using only accelerometers since there are three accelerometers on the x, y, 

and z axes of each IMU (totaling six accelerometers), and they are not coplanar. 

 

2.2 MEMS-Based Inertial Measurement Units (IMU)  

IMUs can provide basic orientation and position information for subsurface monitoring. 

An IMU generally consists of a proof mass that is suspended by a series of springs and/or beams 

that allow the mass to oscillate around a set zero point. The sensor is then able to measure the 

motion of the body to which it is attached by relating the displacement of the proof mass to the 

dynamic characteristics of the internal components. Modern day inertial sensors used for 

navigation purposes primarily consist of accelerometers, gyroscopes, and magnetometers that 

measure linear acceleration, angular velocity, and azimuth direction respectively. 

 

2.2.1 Accelerometers 

A simplified accelerometer model is shown in Figure 2.1.4. Inertial forces are measured 

along the axis of motion of a suspended proof mass within the accelerometer. The mass is attached 

to both a spring and a dashpot element. Motion causes the proof mass to move from its set null 

point. The inertial sensor then transmits this information to the system’s user typically through the 
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use of magnetic coils. An electric current is passed through the coils to apply a restoring force to 

the proof mass as a response to outside inertial forces. The amount of current required to maintain 

the zero position of the mass is directly proportional to the magnitude of the inertial force applied 

to the accelerometer.  

 

     [Principle, modified from Woodman, 2007]  [MEMS Structure, modified from Qazizada, 2016] 

Figure 2.1.4 Mechanical accelerometer  

  

Inertial forces, commonly referred to as the specific force, account for the local gravity 

field and the actual acceleration of the object. An accelerometer measures the acceleration of a 

body with respect to free fall rather than to its total acceleration. For example, if the accelerometer 

is placed at rest on a table with the sensitive axis oriented in the same direction as the local gravity 

vector, the accelerometer measures the magnitude of the local gravity vector. However, if the 

accelerometer is then dropped from the table so that it is in free fall, the sensor measures 

approximately 0 g. Similarly, if the accelerometer is suddenly lifted from the table, the sensor 
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measures the upward acceleration in addition to the gravity vector. The accelerometer does not 

necessarily measure gravity itself, but rather its acceleration relative to gravity.  

 

2.2.2 Gyroscopes 

A gyroscope provides information on a body’s rotation with respect to the inertial reference 

frame. There are two types of commercially-available gyroscopes: gimbal and strapdown 

[Woodman 2007]. A gimbal sensor has a platform that is kept aligned with the navigational frame. 

As the body to which the gimbal system is attached rotates through the inertial frame, the gimbals 

rotate in such a way that the angular momentum vector of the spinning disc does not change its 

orientation. In contrast, the platform of a strapdown gyroscope is kept aligned with the body frame. 

The gimbal sensor is more accurate and requires less computational work than a strapdown 

gyroscope, but its larger size and higher cost mean that the strapdown sensor is more common. In 

this research, we use strapdown sensors. The inertial sensors are mounted rigidly on the device in 

strapdown systems, allowing output quantities to be measured in the body frame rather than the 

global frame.  

MEMS gyroscopes make use of the Coriolis effect, which states that when the body frame 

of an object traveling along a linear path is rotated with respect to an inertial frame, a force is 

applied to the body in a direction perpendicular to the motion and in the same plane as the motion. 

In a frame of reference rotating around angular velocity 𝜔 , a mass moving with velocity 𝜈 

experiences the force [Woodman 2007]: 

 

             𝐹𝑐 = −2𝑚(𝜔 × 𝜈) (2.1) 
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 [Coriolis force, modified from Woodman 2007]     [MEMS Structure, modified from Shkel, 2001] 

Figure 2.1.5 Mechanical gyroscope  

  

This type of sensor is also known as a vibratory gyroscope, and an example is the tuning 

fork gyroscope. A tuning fork is made to vibrate at a certain known rate. As the gyroscope is 

rotated, the Coriolis acceleration applies a force on the plane perpendicular to the plane of 

vibration. This perpendicular force can then be sensed through various methods to deduce the 

angular rate. While the gyroscope is rotating the Coriolis force causes a secondary vibration to be 

induced along the perpendicular sense axis, as shown in Figure 2.1.5. MEMS gyroscopes contain 

vibrating elements to measure the Coriolis effect. The angular velocity can be calculated by 

measuring this secondary rotation.  

The gyroscopes can provide smooth angular velocity signals. However, their DC 

components cause drifts in the integral computation. Also, shocks and vibrations can easily affect 

their measurements [Du et al., 2018]. In addition, the reliability of gyroscopes is affected by harsh 

working conditions, such as during directional drilling [Zhou et al., 2014].  
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2.2.3 Magnetometers 

The Earth’s magnetic field is measured by magnetometers. Magnetometers rely on 

mechanical motion from the Lorentz force acting on a current-carrying conductor in the magnetic 

field. Most commercially-avaible magnetometers are fluxgate sensors [Sherrett et al., 2013], as 

shown in Figure 2.1.6.  

 

  

Figure 2.1.6 Fluxgate sensor [modified from Moreland 2002] 

 

Under normal conditions, assuming the sense coil is symmetrical, the coil does not detect 

the field generated by the toroid because the coil is balanced. An additional external magnetic field 

can cause an imbalance in the toroid’s hysteresis, which results in a net field that is detected by 

the sense coil. Traditional mechanical inertial sensors are able to provide accurate measurements 

but at a higher cost; the low-cost market has become increasingly populated by MEMS sensors. 

All springs, masses, dampers and other components traditionally found in mechanical sensors are 

now constructed within the same piece of material.  

A MEMS magnetometer provides stable geomagnetic strength measurements even though 

the readings are noisy. Further, magnetic disturbances distort the stable sensor readings of a 
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magnetometer. The errors caused by magnetic disturbances are classified into two types: hard iron 

and soft iron. Therefore, proper calibrations and occasionally a filter designed for data processing 

is necessary to maintain the performance of a magnetometer.   

 

2.2.4 Challenges and Compensations 

IMUs face many challenges such as gimbal lock caused by a Cartesian rotation system, 

drift caused by a gyroscope after the integral calculation, and drift caused by accelerometers after 

the double integral calculation. Researchers have developed many methods to address these 

challenges. This section reviews a selection of these methods. 

Gimbal Lock Compensation (Quaternions) 

In 3D, one degree of freedom is lost when there are three gimbal mechanisms where the 

axes of two of the gimbals are in a parallel configuration. This situation is called a gimbal lock. 

Quaternion-based computation is critical to sensor fusion because it can solve the gimbal lock 

problem.  

A quaternion is a four-dimensional complex number ( 𝑞̃ = [𝑞1 𝑞2 𝑞3 𝑞4]) that is used to 

represent the orientation of a rigid body or coordinate frame of three-dimensional space, where 𝑞1 

is the real part and 𝑞2  , 𝑞3  and 𝑞4 , are three imaginary parts of the quaternion. An arbitrary 

orientation of frame B relative to frame A can be achieved through a rotation of angle 𝛼 around an 

axis 𝑅̂ defined in frame A (Figure 2.1.7). The following equation shows the relation between 

quaternions and a rotation angle: 
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Figure 2.1.7 Quaternion frame (frame B) vs. Cartesian frame (frame A) 

 

𝑞̃ = [𝑞1 𝑞2 𝑞3 𝑞4] = [𝑐𝑜𝑠 (
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where 𝑅𝑥𝐴, 𝑅𝑦𝐴, and 𝑅𝑧𝐴 define the components of the unit vector 𝑅̂ in 𝑥, 𝑦 and 𝑧 axes of frame 

A [Groÿekatthöfer et al., 2012].  

Quaternions are more compact and faster to compute than matrix representations of Euler 

angles. They are often calculated from angular rates obtained from gyroscopes because those 

measurements can be expressed using four-element row vectors in the body frame using the 

quaternion representation [Madgwick 2010]. Quaternions are typically used to map matrices, also 
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known as rotation matrices [Diebel 2006]. The kinematics rotation matrix of quaternion is given 

as follows:  

 

      𝑞̇̃ =
1

2

[
 
 
 
 
0 −𝜔𝑥 −𝜔𝑦 −𝜔𝑧
𝜔𝑥 0 𝜔𝑧 −𝜔𝑦
𝜔𝑦 −𝜔𝑧 0 𝜔𝑥
𝜔𝑧 𝜔𝑦 −𝜔𝑥 0 ]

 
 
 
 

                                                            (2.3) 

 

Here, 𝜔𝑥, 𝜔𝑦, 𝑎𝑛𝑑 𝜔𝑧 are angular velocities obtained from gyroscopes [Feng et al., 2017].  

Linear interpolation of quaternions is used for sensor fusion between quaternions obtained 

from gyroscopes and quaternions derived from accelerometers and magnetometers [Wozniak et 

al., 2015]. This interpolation is based on features of the gravitational and magnetic fields. There 

are three steps: 1) update quaternions with a micro-rotation of the angular velocity vector from a 

gyroscope; 2) normalize the vector of gravity and the geomagnetic fields obtained from an 

accelerometer and a magnetometer, and then derive the diagonal vectors to compute the 

quaternions received from accelerometers and gyroscopes; and 3) fuse these two quaternions with 

linear interpolation [Wozniak et al., 2015].  

The gradient descent method of the quaternion is developed parallel to the linear 

interpolation. This method is executed by the error function derived from the square of the errors 

obtained from accelerometers and magnetometers. The error function is then minimized with a 

gradient descent method [Chova et al., 2015]. 

The quaternion sensor fusion (QSF) design requires the angular rotation representation to 

be in quaternion form. Consequently, Euler angles (𝛽𝑝𝑖𝑡𝑐ℎ, 𝛽𝑟𝑜𝑙𝑙, 𝛽𝑦𝑎𝑤) must be transformed into 
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quaternions; the following equations (2.4) is used for this transformation. [Groÿekatthöfer et al., 

2012]: 

 

𝑞̃ = [

𝑞1
𝑞2
𝑞3
𝑞4

] =

[
 
 
 
 
 
 cos (

𝛽𝑦𝑎𝑤

2
) 𝑐𝑜𝑠 (

𝛽𝑝𝑖𝑡𝑐ℎ

2
) 𝑐𝑜𝑠 (

𝛽𝑟𝑜𝑙𝑙

2
) + sin (

𝛽𝑦𝑎𝑤

2
) 𝑠𝑖𝑛 (

𝛽𝑝𝑖𝑡𝑐ℎ

2
) 𝑠𝑖𝑛 (

𝛽𝑟𝑜𝑙𝑙

2
)

cos (
𝛽𝑦𝑎𝑤

2
) 𝑐𝑜𝑠 (

𝛽𝑝𝑖𝑡𝑐ℎ

2
) 𝑠𝑖𝑛 (

𝛽𝑟𝑜𝑙𝑙

2
) − sin (

𝛽𝑦𝑎𝑤

2
) 𝑠𝑖𝑛 (

𝛽𝑝𝑖𝑡𝑐ℎ

2
) 𝑐𝑜𝑠 (

𝛽𝑟𝑜𝑙𝑙

2
)

cos (
𝛽𝑦𝑎𝑤

2
) 𝑠𝑖𝑛 (

𝛽𝑝𝑖𝑡𝑐ℎ

2
) 𝑐𝑜𝑠 (

𝛽𝑟𝑜𝑙𝑙

2
) + sin (

𝛽𝑦𝑎𝑤

2
) 𝑐𝑜𝑠 (

𝛽𝑝𝑖𝑡𝑐ℎ

2
) 𝑠𝑖𝑛 (

𝛽𝑟𝑜𝑙𝑙

2
)

−cos (
𝛽𝑦𝑎𝑤

2
) 𝑠𝑖𝑛 (

𝛽𝑝𝑖𝑡𝑐ℎ

2
) 𝑠𝑖𝑛 (

𝛽𝑟𝑜𝑙𝑙

2
) + sin (

𝛽𝑦𝑎𝑤

2
) 𝑐𝑜𝑠 (

𝛽𝑝𝑖𝑡𝑐ℎ

2
) 𝑐𝑜𝑠 (

𝛽𝑟𝑜𝑙𝑙

2
)]
 
 
 
 
 
 

       (2.4) 

 

Equations 2.5-2.7 shows the transformation from quaternions to Euler angles. 

 

𝛽𝑟𝑜𝑙𝑙 = 𝑎𝑟𝑐𝑡𝑎𝑛(2𝑞3𝑞4 + 2𝑞1𝑞2, 2𝑞1
2 + 2𝑞4

2 − 1)                                  (2.5) 

𝛽𝑝𝑖𝑡𝑐ℎ = −𝑎𝑟𝑐𝑠𝑖𝑛(2𝑞2𝑞4 − 2𝑞1𝑞3)                                               (2.6) 

𝛽𝑦𝑎𝑤 = 𝑎𝑟𝑐𝑡𝑎𝑛(2𝑞2𝑞3 + 2𝑞1𝑞4, 2𝑞1
2 + 2𝑞2

2 − 1)                                 (2.7) 

 

Gyroscope Drift Compensation (Complementary Filter) 

Combined with accelerometers, a complementary filter is a powerful, easily-applied 

method of removing the drift that results from gyroscope integral calculation. As shown in Figure 

2.1.8, the complementary filter is a combination of low-pass and high-pass filters. The most 

important feature is the light calculation load, which allows the complementary filter to be 

implemented on cheap, simple equipment without the performance deteriorating significantly 

[Quoc et al., 2015].  
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Figure 2.1.8 Structure of complementary filter for tilt angle estimation 

 

Nonlinear systems require complementary nonlinear filters [Zlotnik et al., 2018]. A 

complimentary nonlinear filter combines accelerometer output for low-frequency motion 

estimations and an integrated gyroscope output for high-frequency estimations to estimate motion 

[Koksal et al., 2019]. Using an object's angle rate and acceleration combined with the relation 

between angular rate and angle in the different dynamic model, the complementary filter can 

adequately estimate the motions of the object [Bourke et al., 2008].  

In addition, a combination of a discrete low-pass filter and a complementary nonlinear filter 

has been proposed to estimate attitudes. The complementary filter, which is introduced in 

Vasconcelos (2009), estimates attitudes in Euler angles without quaternion designs.  

Euler Angle Compensation (Azimuth of Magnetometer) 
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Figure 2.1.9 Euler angle coordinates 

 

Using gravity signals, we can compute the pitch and roll angles. The azimuth angle is 

determined by calculating the magnetometer outputs. With the accelerameter outputs, which are 

gravitational acceleration components (𝑔𝑥, 𝑔𝑦, 𝑔𝑧), the pitch and roll angles can be obtained using 

the following [Yuan et al., 2015]: 

 

{
 
 

 
 𝜃𝑦 = 𝑡𝑎𝑛−1 (

𝑔𝑥

√𝑔𝑦
2+𝑔𝑧

2
)

𝜃𝑥 = 𝑡𝑎𝑛−1 (
𝑔𝑦

√𝑔𝑥
2+𝑔𝑧

2
)
                                                          (2.8) 

 

where 𝑔𝑥, 𝑔𝑦, and 𝑔𝑧 are gravity measurements on the axes of x, y and 𝑧 of an accelerometer. 

The outputs of the accelerometer are read as total accelerations, including the dynamic 



31 

 

accelerations of movement and gravity. As the SMS moves in subsurface environments, its body 

system is in a situation of low dynamics or moves at a constant velocity. There are no sharp 

accelerations or decelerations in our tests. 

The inclination and roll angles are used to compensate for rotation, including for the 

azimuth angle computation using a magnetometer. Only the horizontal elements of the 

geomagnetic field intensity contribute to the azimuth calculation. After roll and inclination rotation, 

the magnetometer frame is at an angle to the geomagnetic field frame. The rotational relationship 

between the values (𝐵𝑠𝑥, 𝐵𝑠𝑦, 𝐵𝑠𝑧) measured by a magnetometer in the sensor coordinates and the 

magnetic values (𝐵𝑥, 𝐵𝑦, 𝐵𝑧) in the Earth’s coordinates is expressed as follows: 

 

[

𝐵𝑥
𝐵𝑦
𝐵𝑧

] = [

𝑐𝑜𝑠𝜃𝑦 0 −𝑠𝑖𝑛𝜃𝑦
𝑠𝑖𝑛𝜃𝑥𝑠𝑖𝑛𝜃𝑦 𝑐𝑜𝑠𝜃𝑥 −𝑠𝑖𝑛𝜃𝑥𝑐𝑜𝑠𝜃𝑦
𝑠𝑖𝑛𝜃𝑥𝑐𝑜𝑠𝜃𝑦 −𝑠𝑖𝑛𝜃𝑥 𝑐𝑜𝑠𝜃𝑥𝑐𝑜𝑠𝜃𝑦

] [

𝐵𝑠𝑥
𝐵𝑠𝑦
𝐵𝑠𝑧

]                        (2.9) 

 

Equation 2.9 shows the roll and pitch compensation matrix that converts the magnetometer frames 

to geomagnetic magnetic frames. The gyroscope also needs a similar rotation compensation. The 

computations of pitch and roll with gravity elements, which are measured by the accelerometer, is 

a crucial step for angular estimations. 

The Earth's magnetic field (EMF), as measured at any point on the Earth's surface, is a 

combination of several magnetic values generated by various sources. We can describe the 

geomagnetic field by measuring intensity and two angles (declination and inclination) or three 

orthogonal components (X, Y, and Z towards geographic north, east, and vertically down, 
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respectively). Magnetometers measure the vector components of the magnetic field. With the 

features of EMF, the azimuth can be obtained using magnetometers. 

The geomagnetic field 𝐵(𝐵𝑥, 𝐵𝑦, 𝐵𝑧) has a fixed component 𝐵ℎ  on the horizontal plane 

pointing to the Earth's magnetic north. This component can be calculated using the magnetic sensor 

sensing axes 𝐵𝑠𝑥 and 𝐵𝑠𝑦. The azimuth angle is then calculated using equation 2.10 [Mansuclal 

2010]: 

 

𝜃𝑧 = 𝑡𝑎𝑛−1 (𝐵𝑠𝑦 𝐵𝑠𝑥⁄ )                                                              (2.10) 

 

Equation 2.10 outputs an azimuth angle and is only correct if the sensor measurements of 

𝐵𝑠𝑥 and 𝐵𝑠𝑦 are on a horizontal plane parallel to the Earth’s surface. In the situation that the sensor 

is tilted, the values of 𝐵𝑠𝑥 and 𝐵𝑠𝑦 are not correctly measured and the azimuth computed by the 

above equation includes an error term [Mansuclal 2010]. Equation 2.10 also implies that the 

estimated magnetic azimuth is affected by any disturbance or perturbation in the horizontal field 

components. Consequently, local magnetic elements control the magnetic azimuth estimation 

process [Ali, 2013].  

 

2.3 Sensor Fusion Methodology 

Many issues must be addressed to design a sensor fusion system. Key considerations 

include the sensor types and the sensors’ accuracy, distribution, data association, and management 

[Kalandros et al., 2004]. Furthermore, it is important to design a sensing system that is specific to 

its target at the same time eliminating sensor uncertainty [Helm et al., 2010].  
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The varying environmental conditions and the limitations of the sensors themselves can 

contribute to the above-mentioned problems. Proper design of a sensor fusion should consider  

reducing noise and the uncertainties of the sensors, be modeled on external environments, and 

selecting the proper algorithm structure and design. Applicable knowledge bases used to develop 

sensor fusions are theories of control, signal processing, artificial intelligence, probability, and 

statistics [Luo et al., 2011]. 

There are many design methods of sensor fusion, most of which can be classified into two 

categories: a stochastic approach and artificial intelligence (AI) [Pettersson et al., 2005]. In 

stochastic methods, Kalman Filters (KFs) and their extensions [Extended Kalman Filters (EKFs) 

and Unscented Kalman Filters (UKFs)] are the foundations of the fusion design [Fang et al., 2017]. 

KFs successfully remove sensor uncertainties and produce accurate information; however, the 

design depends on a priori-information on covariance matrices [Basso et al., 2017].  

Another important filter is the particle filter (PF), also is called Monte-Carlo filter. PF 

methodology is utilized to solve hidden Markov chain and nonlinear filtering problems [Creal 

2011]. Similar to EKFs and UKFs, PFs are a good candidate for the design of a nonlinear filter.  

In AI approaches, artificial neural networks (ANNs) and fuzzy logic (FL) are typically used 

to judge the weights between different sensors under certain rules. They are utilized to improve 

the performance of methods designed based on probability and statistics, such as KFs [Chang et 

al., 2010].  

 

2.3.1 Kalman Filters 

Fusing an accelerometer and a gyroscope to obtain inclination angles or a magnetometer 

and a gyroscope to obtain azimuth angles removes drift in the integral calculation of the gyroscope 
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signal. The accelerometer and magnetometer signals are expected to be noisy; however, the noises 

do not cause the gravity and magnetic field readings from accelerometers and magnetometers to 

change over an extended period. The integral computation of a gyroscope's measurements is only 

accurate in a short time interval, but the signal from a gyroscope has a higher signal to noise ratio 

(SNR) than the signal from a magnetometer. Both advantages of these three kinds of sensors can 

be integrated using a KF to estimate orientation angles [Brigante et al., 2011]. The KFs can also 

fuse IMUs (usually accelerometers) with correction sensors, such as GPS and cameras. to estimate 

positions [Du 2010; Alatise et al., 2017; Kim et al., 2016]. A drawback of applying KFs in sensor 

fusion is the heavy computational load. However, the technical development of microcontrollers 

has removed this drawback. For example, KFs with around 30 Hz can be applied to a low power 

STM32L053 microcontroller with a processing time of 1.18 milli-seconds in a 32 MHz central 

processing unit (CPU), and the CPU usage is only 3.8% [Valade et al., 2017]. 

Adaptive Covariance Matrix Q & R Design 

The performance of a KF highly depends on the proper design of Q & R (covariance 

matrices). An automatically-tuning KF can improve robustness by calculating the covariance 

matrices of noise in real time using information obtained from the difference between predicted 

values and measurements [Akhlaghi et al., 2012]. Many adaptive covariance matrix design 

methods have been reported. For example, the covariance matrix associated with external 

acceleration is estimated to adaptively tune the KF gain [Widodo et al., 2016]; for better 

performance, the KF can be improved by updating the Q matrix in real time [Liu et al., 2015]; 

Using deep neural networks can also dynamically adapt the Q matrix of a KF during the training 
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process [Brossard et al., 2019]. The measurement noise covariance distribution can also be 

approximated through finite samples to update the R matrix [Assa et al., 2017].  

Quaternion KF 

The quaternion KF (QKF) can be designed to estimate project behaviors using quaternions 

for tracking orientation to avoid the gimbal lock problem and to provide efficient computation 

[Smith et al., 2006]. Also, a QKF can be customized to be used for various applications and to test 

different algorithms for increasing performance. For example, a QKF is used as a smoother for 

gyroscopes and accelerometers for orientation fusion [Makni et al., 2016]; Both quaternion and 

gyroscope biases are built into one error model to improve QKF’s accuracy [Madgwick 2010; 

Sadaghzadeh et al., 2014]; QKF is used to develop indoor position estimations [Hasan et al., 2013]. 

 

 

Figure 2.1.10 Structure of quaternion-based KF design 

 

For a QKF design, the basic idea is that the Euler angles are first converted into quaternions, 

and then the quaternions are fed into the KF as shown in Figure 2.1.10.  
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Extended and Unscented KF 

An EKF is a nonlinear filter [Li et al., 2017], but the Jacobian matrix is used instead of the 

nonlinear system model for calculating the covariance matrices [Julier et al., 1996]. An EKF is 

employed to estimate orientations due to its better nonlinear filtering performance [Khot et al., 

2006]. EKF can also be applied to fuse accelerometers and optical sensors to obtain a moving 

object’s positions [Hyun 2010]. In this article, accelerometer data is used to calculate displacement 

through double integral calculation. An optical navigation system is used to take continuous 

snapshots of the surface and compare the images to determine the distance traveled to reduce the 

drift caused by the integral calculation. The optical navigation sensor can be applied as an 

odometer [Hyun 2010]. Further, the frequent outages problem can be overcome using 

accelerometers with an EKF.  

Random sigma points are used instead of system models to further increase the nonlinear 

performance of a KF; this new KF is called an unscented KF (UKF). It is not necessary to compute 

the Jacobian matrix for a UKF, and therefore, the truncation errors are reduced [Zhou et al., 2019].  

A UKF can also be applied to determine the pitch and roll angle of high-speed objects such as 

projectiles [Wang et al., 2010]. In this research, the change in the range of motion is extensive and 

includes the rolling rate range of a rocket ranging from 1 r/s to 70 r/s. In addition, five 

accelerometers are employed for sensing. A UKF can also be applied for aerial vehicle positioning 

to fuse GPS and IMU [Zhang et al., 2005]. However, position estimations of environments with 

insufficient GPS is challenging. Combining vision information with IMUs can solve this problem. 

For example, a UKF is proposed to estimate the movement of a trolley using a forward-looking 

camera, a three-axis airspeed sensor and an onboard IMU [Gaedeke et al., 2014]. 
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Combination of KFs and Other Methods 

A KF design can be modified in many ways based on the application details. A filter 

structure, including pre-filter (complementary filter) and post-filter (KF), can be used to solve the 

problems of bandwidth and delay [Ghanbari et al., 2015]. Also, a KF can be combined with a 

direction cosine matrix (DCM) for a navigation application [Choukroun et al., 2008]. The DCM is 

an algorithm for motion and orientation estimations that updates a 3x3 matrix defined by the 

changing relative angles between the subject and ground reference frames [Ali 2013]. The 

algorithm works effectively only under low-speed situations without magnetic disturbances. 

Therefore, designing a KF to detect and remove errors from magnetometers [Feng 2017] can 

increase the DCM’s robustness to magnetic disturbances.  

A KF-based fusion design requires an accurate mathematical model of the object and 

knowledge of predefined errors. Many cases suffer from complex stochastic error characteristics 

that are difficult to model [Bistrovs et al., 2011]. The nonlinearities and IMU unknown bias 

uncertainties result in the reduced performance of KFs. Researchers developed hybrids of KFs and 

intelligent methods to solve this problem. For example, hybrid a KF with a fuzzy neural network 

(FNN) is used to estimate trajectories for implementing at touch interface [Li et al., 2019]. The KF 

output is fused with GPS to estimate positions, and ANN compensation is used to refine the results 

and to reduce the nonlinear error affection [Chang et al., 2010]. GPS data and inertial sensor data 

can be fused with a KF; the output of the KF is then compared with a radial basis function neural 

network (RBFNN) to estimate the error so that the result of the KF can be corrected [Xia et al., 

2009].  
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2.3.2 Other Sensor Fusion Methodologies 

Rule-based systems using human expert knowledge are employed to fuse GPS and 

accelerometer sensors data [Bistrovs et al., 2010]. For example, ANFIS can be designed to 

augment a KF creating a corresponding nonlinear error model to minimize IMU position errors 

[Noureldin et al., 2009]. This design can predict position errors during a GPS outage to enhance 

overall system accuracy. In addition to ANFIS, fuzzy logic can also be applied to design mobile 

robot tracking fusion by fusing the information from vision systems, laser radar, IMUs and speed 

information [Subramanian et al., 2009]. In addition, since the accuracy of GPS signals is affected 

by trees and other obstructions, the reliability of the machine vision is influenced by soil color and 

changing light levels. Further, IMUs suffer from drifting, and therefore, fuzzy logic fusion design 

is applied to reduce the errors from GPS, machine vision and IMUs [Shen et al., 2007].  

Intelligent fusion methods, such as the neuro-fuzzy approach, can also be employed to 

design a GPS-free position correction that is based on a camera and an IMU for an indoor moving 

object [Casanova et al., 2011]. In this neuro-fuzzy design approach, a camera is used to capture 

movements, which means that the movements can be evaluated by measuring the displacement of 

selected image points in consecutive frames (optical flow). All measurements obtained from the 

IMU and camera are fed into the neuro-fuzzy system to estimate final positions. Furthermore, for 

indoor positioning, PFs have been designed. For example, a PF is used to extend the typical 

wireless local area network (WLAN)-based indoor positioning systems by integrating a MEMS 

accelerometer and map information [Wang et al., 2007]. Since indoor environments are GPS 

outage, global navigation satellite system (GNSS) receivers are forced to operate under more 

demanding conditions in receiving GPS signals than outdoor applications [Vecchione et al., 2010]; 

therefore, an indoor positioning reference system such as WLAN is necessary.  
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2.4 Summary 

This chapter reviews the literature regarding subsurface sensing technology applications, 

MEMS-based IMUs, and sensor fusion methodologies. First, inclinometers and directional drilling 

survey sensors and their applications are discussed. Then, working principles, challenges, and 

basic compensations of IMUs are described. In the sensor fusion methodology section, fusion 

methodologies with MEMS IMUs (accelerometer, gyroscope, and magnetometer) are reviewed. 

The advantages and limitations of the most frequently used fusion algorithms based on MEMS 

IMU sensors are also summarized. The benefits of implementing sensor fusion based on IMUs are 

shown by presenting application examples in various fields. IMU-based sensor fusion has become 

a fundamental technology to develop an AI system. Sensor fusion systems with multiple sets of 

sensors can theoretically provide better estimations compared with the results from single sensor 

systems.  

Subsurface sensing procedures often experience magnetic and shock disturbances. 

However, current sensor fusion methods have difficulty dealing with the unknown magnetic 

distortions and drifts are caused by shocks in the integral calculation because traditional methods 

focus on using external correction signals to remove the magnetic disturbances and drifts. All 

external correction signals that are derived from GPS or other alternative sensors, such as Wi-Fi, 

camera, or radio, are impossible to implement in subsurface environments. Consequently, it is 

necessary to develop sensor a fusion technology with MEMS IMUs that does not suffer from these 

problems.  
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CHAPTER 3. EXPERIMENTAL SETUP 

 

The proposed sensor is called a subsurface monitoring system (SMS). Subsurface industry 

activities such as directional drilling need accurate positioning techniques to provide safe and 

efficient working conditions. SMS is designed to quantify changes in orientation angles and 

positions by measuring the movements of the SMS’s instrument itself. Specifically, the SMS is 

expected to reduce the effect of magnetic and shock disturbances using a physical structure 

configuration (hardware) and fusion methods (software). This chapter describes the design details 

of the SMS and a test rig, which is used for calibration and testing. The calibration methods of 

magnetometers and compensation methods of accelerometers are also included.  

The measurements of motion are expected to have no bias errors, though the measurements 

may contain noise. The setup of the rig controls movement by pre-setting the track paths and 

speeds. The reference values are derived from the encoders, which are used in the result analysis. 

These experiments can simulate subsurface tilting movements, while IMUs record the 

corresponding measurements of the tilt movements. 

 

3.1 Configuration Design of Subsurface Monitoring System (SMS) 

Two sets of IMUs and related circuits are included in the SMS. The IMUs (ADIS 16448) 

take the measurements since the SMS cannot obtain correction assistance from GPS in a 

subsurface environment. As we developed the SMS, we encountered several problems. For 

example, we need to reduce the influence of the magnetic disturbances caused by iron ores.  
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Magnetic disturbances can be reduced in many ways, such as increasing the distance 

between the IMUs and the disturbances [Abbott et al., 2007]. To find the distance relationship 

between the sensor and the magnetic disturbances for the SMS design, we conducted magnetic 

interference effect tests (Figure 3.1.1). Six magnets (the value was about 4.16 × 105 nT with a 

50mm distance to the sensor on an aligned collinear axis) were stacked in line and then taped onto 

one of the test stand’s sliders. The justable table (Figure 3.1.1) was tuned to ensure the magnets 

were exactly collinear with one axis of the IMU to prevent the misalignment of the IMU.  

The results are presented in Figure 3.1.2; as shown, distance is a crucial factor in reducing 

the influence of magnetic disturbances. When one axis (for example, the 𝑥𝑠  axis) of a 

magnetometer is pointed at the magnetic source, that axis is most affected; the other axes (𝑦𝑠, 𝑧𝑠) 

are also affected, but by a smaller deviation. For all axes, if the distance is sufficiently increased, 

the effect of the disturbance significantly decreases. Consequently, the SMS should be designed 

with a configuration that allows for a long enough distance between the two IMUs so that the 

IMUs are disturbed while the sensor system passes through the iron ores.  

 

 

Figure 3.1.1 IMU magnetic disturbance test 
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Figure 3.1.2 Experimental results, relation between magnetic disturbance strength and distance 

 

The solid black line in Figure 3.1.2 depicts the magnetic disturbance magnitude-distance 

relationship. When test data in Figure 3.1.2 are used for the curve fitting model, a relation between 

the magnitude and distance can be approximated using the following equation: 

 

|𝐵𝑛| = 𝐷−ℎ(𝑠) × 4.16 × 105                                                   (3.1.1) 

where, 

{
ℎ(𝑠) = 𝑘𝑠 + 1.5 𝐷 < 200𝑚𝑚

ℎ(𝑠) = 2 𝐷 > 200𝑚𝑚
                                           (3.1.2) 

 

where 𝑠 ∈ (0,1855) and 𝑘 = 2.7 × 10−4. The curve fitting model is depicted in Figure 3.1.2 using 

a solid blue line. The relation between the magnitude and distance of the 𝑥𝑠, 𝑦𝑠, and 𝑧𝑠 axes is 

shown in the Table 3.1.1. 



43 

 

Table 3.1.1 Magnitude and distance relation on the 𝑥𝑠, 𝑦𝑠, and 𝑧𝑠  axes 

 

 

 

Figure 3.1.3 SMS configuration 
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Figure 3.1.4 Sensor data flow 

 

The proposed sensor system provides orientation angles using two redundant sets of IMUs.  

Each IMU set has gyroscopes (× 3), accelerometers (× 3), and magnetometers (× 3) located on 

the 𝑥𝑠, 𝑦𝑠, and 𝑧𝑠 axes to determine its orientation. Also, both IMUs are configured with aligned 

directions, and they are placed with a known distance D apart as shown in Figure 3.1.3. The newly-

designed sensor system consists of the following sections: the instrument, the data conversion 

system including data loggers, and the analysis system. The data flow of these sections is detailed 

in Figure 3.1.4. The instrument device (the sensor) is the physical device that records data while 

buried in the ground. It includes the IMUs, microcontrollers, and communication modules. The 

instrument sends the recorded measurements to the data conversion system.  

The communication modules are necessary because signals sent along USB cables are 

limited by distance. The range of data transfers between a computer and instrument using a USB 

cable is only several meters [Norton 2009]. Consequently, USB cables cannot be used for 
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subsurface data communication. Therefore, industry data conversion methods are necessary to 

transport data over long distances. Microcontrollers must first convert the data to TTL signals 

(RS485 standard) before the data is transported. The microcontrollers act as an intermediary 

between the IMUs and the conversion system.  

 

3.2 Testing and Calibration Rig 

 

 

Figure 3.2.1 Test rig 
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The test rig consists of a two-axis turntable riding on a linear moving stage, as shown in 

Figure 3.2.1. Three encoders that are located on three DC drive motors are used to track the 

movements of the rig. This test rig simulates inclination, azimuth, and translational movements. 

The host control PC reads in encoder signals and sends out command signals to different motors. 

The desired motion paths are programmed through the controller, which performs the necessary 

calculations and transmits the commands to the motors. The command values of the corresponding 

motions are calculated based on the collected feedback information.  

 

3.3 Calibrations 

3.3.1 IMU Errors  

An IMU navigation system consists of three axes of accelerometers, gyroscopes, and 

magnetometers. The triad of axes defines a single orthogonal 3D frame. An accelerometer and a 

magnetometer sense acceleration and magnetic strength, respectively, along one axis, while each 

gyroscope measures the angular velocity around the same axis.  

When used in a navigation system, commercial IMUs on their own perform poorly, because 

of errors in the IMUs' measurements. In general, IMU errors can be classified as biases, scale 

factor errors, or misalignment errors [Ferguson 2015]. IMU biases in accelerometers, gyroscopes, 

and magnetometers are errors present in the measurements regardless of the real information, such 

as the forces, angular rates, or magnetic strength, obtained by the sensors. IMU sensors are also 

affected by scale factor errors, which describe how well the output of the sensor corresponds with 

an input. Scale factor errors contribute to IMU displacement measurement errors only when the 

IMU is moving [Looney 2010]. Misalignment errors describe the angular difference between each 

sensor’s axis of rotation and the system-defined navigation reference frame [Looney 2015], as 
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shown in Figure 3.3.1. In this diagram, the three solid black lines represent the three axes in the 

navigation frame, and the 𝜃-based angles represent the misalignment errors between the navigation 

frame and sensor body axes. These IMU errors can be removed using calibration methods 

[Pasquale 2010; Hemanth et al., 2012; Yang et al., 2017; Ladetto et al., 2002]. 

 

Figure 3.3.1 Sensor body axes (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) and navigation sensing axes (𝑥𝑁 , 𝑦𝑁 , 𝑧𝑁) 

 

The noises that are included in accelerometers, gyroscopes, and magnetometers are 

classified into white noise and pink noise (1 𝑓⁄ ) [Woodman 2007; Patonis et al., 2018; Denoual et 

al., 2014; Butta et al., 2012]; here, 𝑓 denotes frequency. However, for magnetometers used in this 

research, there is no specification about the noise type listed on the data sheet. According to the 

test conditions, the noise of the magnetometer is treated as pink noise.  

In addition, magnetometers suffer from hard and soft iron errors, which in most cases 

significantly affect the navigation performance. A tumble test of the magnetometer in an ideal 3D 
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environment without any hard or soft iron disturbances shows a perfect sphere with a center at 

(0,0,0) and a radius equal to the total magnetic field strength at the test location:  

 

𝐵𝑥
2 + 𝐵𝑦

2 + 𝐵𝑧
2 = 𝐵2                                                            (3.3.1) 

 

Table 3.3.1 IMU noise specification [ADIS 16448] 

 

 

Under real conditions, however, the generated center is offset because of the presence of hard iron, 

which interferes with the permanent magnets in the sensors. Mathematically, this error is 

equivalent to zero-deviation [Liu et al., 2014]: 

 

𝐵𝐻𝑖𝑟𝑜𝑛 = [𝐵𝑥𝐻𝑖𝑟𝑜𝑛 𝐵𝑦𝐻𝑖𝑟𝑜𝑛 𝐵𝑧𝐻𝑖𝑟𝑜𝑛]𝑇                           (3.3.2) 

 

The hard iron error is modeled as follows: 
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(𝐵𝑠𝑥 − 𝐵𝑥𝐻𝑖𝑟𝑜𝑛)
2 + (𝐵𝑠𝑦 − 𝐵𝑦𝐻𝑖𝑟𝑜𝑛)

2
+ (𝐵𝑠𝑧 − 𝐵𝑧𝐻𝑖𝑟𝑜𝑛)

2 = 𝐵2              (3.3.3) 

 

Here, (𝐵𝑠𝑥, 𝐵𝑠𝑦, 𝐵𝑠𝑧) represent magnetometer measurement values on three axes. If the soft iron 

disturbances caused by the magnetism-inducing interaction of ferromagnetic compounds with an 

external field exist, the perfect sphere would become an ellipsoid. This change in shape means soft 

iron changes the intensity and direction of the sensed magnetic field. The soft iron effect can be 

modeled as a three by three matrix [Renaudin et al., 2010]: 

 

𝐵𝑆𝑂𝑖𝑟𝑜𝑛 = [

𝐵𝑆𝑂𝑥𝑥 𝐵𝑆𝑂𝑥𝑦 𝐵𝑆𝑂𝑥𝑧
𝐵𝑆𝑂𝑦𝑥 𝐵𝑆𝑂𝑦𝑦 𝐵𝑆𝑂𝑦𝑧
𝐵𝑆𝑂𝑧𝑥 𝐵𝑆𝑂𝑧𝑦 𝐵𝑆𝑂𝑧𝑧

]        (3.3.4) 

 

The soft iron error can also be modeled as follows to image the error easily: 

 

(
𝐵𝑠𝑥

𝐵𝑆𝑂𝑥𝑥
)
2

+ (
𝐵𝑠𝑦

𝐵𝑆𝑂𝑦𝑦
)
2

+ (
𝐵𝑠𝑧

𝐵𝑆𝑂𝑧𝑧
)
2

= 𝐵2                                   (3.3.5) 

 

The complete error model of hard and soft iron is as follows: 

 

(
𝐵𝑠𝑥−𝐵𝑥𝐻𝑖𝑟𝑜𝑛

𝐵𝑆𝑂𝑥𝑥
)
2

+ (
𝐵𝑠𝑦−𝐵𝑦𝐻𝑖𝑟𝑜𝑛

𝐵𝑆𝑂𝑦𝑦
)
2

+ (
𝐵𝑠𝑧−𝐵𝑧𝐻𝑖𝑟𝑜𝑛

𝐵𝑆𝑂𝑧𝑧
)
2

= 𝐵2                                   (3.3.6) 

 

Equation 3.3.6 shows the relationship of hard and soft iron to the magnetic sphere. The center of 

the sphere has an offset value caused by the hard iron. In contrast, the soft iron factors change the 

shape of the sphere to an ellipse. 
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3.3.2 Calibration and Compensation Procedures 

Calibrating IMUs involves removing as many error sources as possible before deploying 

the unit for navigation. Techniques such as the six-position static test for accelerometers and 

angular rate tests for gyroscopes can be used to remove errors such as bias offsets and scale factor 

errors. The details of how to calibrate hard and soft iron errors for magnetometers are described 

below. 

2D Calibration for Lab Test 

Rotating a magnetometer in a sphere and collecting data from all three axes is a traditional 

method to calibrate a magnetometer in 3D. However, to form a sphere, a sensor is required to rotate 

a large number of circles, which is not feasible in the lab test rig in this research; therefore, 

simplifying 3D magnetometers has become a popular research topic [Hemanth et al., 2012; Yang 

et al., 2017; Ladetto et al., 2002]. For lab tests, a simplified approach that only calibrates in the 

horizontal plane is applied during each linearized inclination angle interval. Considering the 

rotation, the horizontal components of the sensor measurements are calculated using a 3D rotation 

matrix: 

 

[

𝐵𝑠𝑥𝑇
𝐵𝑠𝑦𝑇
𝐵𝑠𝑧𝑇

] = [

𝑠𝑖𝑛𝜃𝑦 0 𝑐𝑜𝑠𝜃𝑦
𝑠𝑖𝑛𝜃𝑥𝑠𝑖𝑛𝜃𝑦 𝑐𝑜𝑠𝜃𝑥 −𝑠𝑖𝑛𝜃𝑥𝑐𝑜𝑠𝜃𝑦
𝑐𝑜𝑠𝜃𝑥𝑐𝑜𝑠𝜃𝑦 −𝑠𝑖𝑛𝜃𝑥 𝑐𝑜𝑠𝜃𝑥𝑠𝑖𝑛𝜃𝑦

] [

𝐵𝑠𝑥
𝐵𝑠𝑦
𝐵𝑠𝑧

]                            (3.3.7) 

 

Using Equation 3.3.7, the 3D calibration can be simplified into 2D (Figure 3.3.2). The 

magnetometer starts from an inclination angle of 0 degrees and then rotates 90 degrees. 

Simultaneously, the magnetometer rotates on the azimuth direction from 0 to 90 degrees, which is 
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shown with a green dashed line in Figure 3.3.2 (this path is also used as the test track). Then, the 

azimuth angle continues to rotate a full 360 degrees with a constant inclination angle (90 degrees, 

horizontal to the ground); the magnetometer finally stops at the yellow point in the figure. 

 

 

 

Figure 3.3.2 Magnetometer calibration track 

 

During the rotation process, the sensor axes need to be converted to earth coordinates using 

Equation 3.3.7, and in this research, the magnetometer is only used to calculate the azimuth angle. 

Therefore, 2D calibration based on the data sets of  𝐵𝑠𝑥𝑇 and 𝐵𝑠𝑦𝑇 is sufficient. A full circle of 2D 

rotation can be obtained as shown in Figure 3.3.2; after the 2D calibration (removal of hard and 

soft iron), a set of reference magnetic measurement data is obtained. This reference data is then 

compared to the test track data (with inclination), and the scale factors are calculated. 
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Figure 3.3.3 Calibration of magnetometer (2D) 

 

Sensor calibration needs to be completed during data measurement, particularly with 

magnetometers. Figure 3.3.3 shows the results of 2D calibration for the magnetometers with the 

test rig. The values of a horizontal magnetic field of strength 𝐵ℎ are different depending on the 

location. The values can be obtained from the database of International Geomagnetic Reference 

Field. The magnetic field parameters 𝐵ℎ at the University of Calgary, the location used in this 

research, is 16115 nT [Geomagnetism Canada]. From the values of the magnetic field at the 

university, the shape of the magnetic circle after calibration, shows that the magnetometers are 

well calibrated. 

3D Calibration for Field Tests 
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The hard iron error of the magnetometers is easily calculated using the average values of 

the measurements on the axes: 

 

𝐵𝐻𝑖𝑟𝑜𝑛 =
1

2
[𝐵𝑠𝑥

𝑚𝑎𝑥,+ + 𝐵𝑠𝑥
𝑚𝑖𝑛,− 𝐵𝑠𝑦

𝑚𝑎𝑥,+ + 𝐵𝑥𝑦
𝑚𝑖𝑛,− 𝐵𝑠𝑧

𝑚𝑎𝑥,+ + 𝐵𝑠𝑧
𝑚𝑖𝑛,−]

𝑇
       (3.3.8) 

𝐵𝐻𝑖𝑟𝑜𝑛 = [37.9665 −4.0040 −6.2920]𝑇                                                (3.3.9) 

 

nT (nano Tesla) is used as the unit for Equation 3.3.8 and Equation 3.3.9. For the soft iron matrix, 

the calibration procedure can be simplified by eliminating the non-diagonal components to 

minimize the model’s complexity [Renaudin 2010]. The soft iron matrix equation  

 

𝐵𝑆𝑂𝑖𝑟𝑜𝑛 = [

𝐵𝑆𝑂𝑥𝑥 𝐵𝑆𝑂𝑥𝑦 𝐵𝑆𝑂𝑥𝑧
𝐵𝑆𝑂𝑦𝑥 𝐵𝑆𝑂𝑦𝑦 𝐵𝑆𝑂𝑦𝑧
𝐵𝑆𝑂𝑧𝑥 𝐵𝑆𝑂𝑧𝑦 𝐵𝑆𝑂𝑧𝑧

]                                                             (3.3.10) 

 

is simplified to:  

 

𝐵𝑆𝑂𝑖𝑟𝑜𝑛 = 𝑑𝑖𝑎𝑔(𝐵𝑆𝑂𝑥𝑥 𝐵𝑆𝑂𝑦𝑦 𝐵𝑆𝑂𝑧𝑧)                                                     (3.3.11) 

 

where, 

 

𝐵𝑆𝑂𝑥𝑥 =
1

3
(𝐵𝑎𝑣𝑔,𝑠𝑥 + 𝐵𝑎𝑣𝑔,𝑠𝑦 + 𝐵𝑎𝑣𝑔,𝑠𝑧) 𝐵𝑎𝑣𝑔,𝑠𝑥⁄                                          (3.3.12) 

𝐵𝑆𝑂𝑦𝑦 =
1

3
(𝐵𝑎𝑣𝑔,𝑠𝑥 + 𝐵𝑎𝑣𝑔,𝑠𝑦 + 𝐵𝑎𝑣𝑔,𝑠𝑧) 𝐵𝑎𝑣𝑔,𝑠𝑦⁄                                          (3.3.13) 

𝐵𝑆𝑂𝑧𝑧 =
1

3
(𝐵𝑎𝑣𝑔,𝑠𝑥 + 𝐵𝑎𝑣𝑔,𝑠𝑦 + 𝐵𝑎𝑣𝑔,𝑠𝑧) 𝐵𝑎𝑣𝑔,𝑠𝑧⁄                                           (3.3.14) 
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and 

 𝐵𝑎𝑣𝑔,𝑠𝑥 =
1

2
(𝐵𝑠𝑥

𝑚𝑎𝑥,+ − 𝐵𝑠𝑥
𝑚𝑖𝑛,−)                                                       (3.3.15) 

𝐵𝑎𝑣𝑔,𝑠𝑦 =
1

2
(𝐵𝑠𝑦

𝑚𝑎𝑥,+ − 𝐵𝑠𝑦
𝑚𝑖𝑛,−)                                                  (3.3.16) 

𝐵𝑎𝑣𝑔,𝑠𝑧 =
1

2
(𝐵𝑠𝑧

𝑚𝑎𝑥,+ − 𝐵𝑠𝑧
𝑚𝑖𝑛,−)                                               (3.3.17) 

 

After calibration, 𝐵𝑆𝑂𝑖𝑟𝑜𝑛 is as follows:  

 

𝐵𝑆𝑂𝑖𝑟𝑜𝑛 = 𝑑𝑖𝑎𝑔(1.0694 1.0766 1.0751)                                             (3.3.18) 

 

 

 

Figure 3.3.4 Calibration of magnetometer (3D) 

 

Figure 3.3.4 shows the results of a 3D calibration for magnetometers. From the values of 

the magnetic field at the University of Calgary and the shape of the magnetic sphere, it can be 

determined that the magnetometers are well calibrated. 
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Accelerometer Correction Procedures 

Dynamic accelerations can be used to obtain positions by calculating the double integral. 

However, movements are not fast in many applications of subsurface sensing and measurements 

of accelerations are difficult to obtain if movements are slow in real application environments. 

Therefore, accelerometers have difficultly measuring accurate dynamic accelerations because 

acceleration values are very small. For lab-scale tests in this research, the accelerometer 

measurements of dynamic acceleration correction are necessary even after gravity is removed from 

the calculation because the dual acceleration difference method only works well for certain 

rotations (>140 deg/s) [Kiosk 2008]. To address this problem, we propose an acceleration 

correction method using dual accelerometers and ANFIS to calculate accurate accelerations. As 

shown in Figure 3.3.5, two IMUs rotate around the azimuth and inclination directions on the same 

side of the rotation center; the difference between the centrifugal accelerations is calculated as 

follows: 

 

|𝑥̈𝐵 − 𝑥̈𝐴| = (𝑅𝐵 − 𝑅𝐴)(𝜃̇𝑦
2 + 𝜃̇𝑧

2) = 𝐷(𝜃̇𝑦
2 + 𝜃̇𝑧

2)                                (3.3.19) 

 

Here, 𝐷 is the distance between two IMUs. 𝜃̇𝑦 and 𝜃̇𝑧 are inclination and azimuth angular speeds, 

respectively, which are obtained from other sensors such as gyroscopes. However, when the 

rotation is slow, the accelerometers cannot accurately measure the dynamic accelerations, and 

therefore, an error, described below, occurs:  

 

𝐸𝑟𝑟𝑥̈1 = |𝑥̈𝑆𝐵 − 𝑥̈𝑆𝐴| − 𝐷(𝜃̇𝑠𝑦
2 + 𝜃̇𝑠𝑧

2 )                                                   (3.3.20) 
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Figure 3.3.5 Moving displacement in polar coordinates 

 

 

Figure 3.3.6 ANFIS design to obtain accelerations 

 

where 𝑆 denotes the value from an accelerometer sensor. Also, we know   
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|𝑥̈𝐵 + 𝑥̈𝐴| = (2𝑅𝐴 + 𝐷)(𝜃̇𝑦
2 + 𝜃̇𝑧

2) = (2𝑅𝐵 − 𝐷)(𝜃̇𝑦
2 + 𝜃̇𝑧

2)                   (3.3.21) 

 

Therefore, 

𝐸𝑟𝑟𝑥̈2 = |𝑥̈𝑆𝐵 + 𝑥̈𝑆𝐴| − (2𝑅𝐴 + 𝐷)(𝜃̇𝑠𝑦
2 + 𝜃̇𝑠𝑧

2 )                                        (3.3.22) 

𝐸𝑟𝑟𝑥̈3 = |𝑥̈𝑆𝐵 + 𝑥̈𝑆𝐴| − (2𝑅𝐵 − 𝐷)(𝜃̇𝑠𝑦
2 + 𝜃̇𝑠𝑧

2 )                                        (3.3.23) 

 

Here, the radii 𝑅𝐴 and 𝑅𝐵 are calculated as follows: 

 

𝑅𝐴 =
𝑥̈𝑆𝐴

(𝜃̇𝑠𝑦
2 +𝜃̇𝑠𝑧

2 )
,       𝑅𝐵 =

𝑥̈𝑆𝐵

(𝜃̇𝑠𝑦
2 +𝜃̇𝑠𝑧

2 )
                                                           (3.3.24) 

 

Based on the above Equations 3.3.20-3.3.24, ANFIS can obtain accurate accelerations (an example 

is shown in Figure 3.3.6 with the correction case on the 𝑥𝑠 axis). For the acceleration correction 

on the 𝑦𝑠 and 𝑧𝑠 axes, the following equations can be derived similar to the derivation of Equation 

3.3.19: 

 

(𝑦̈𝐵 − 𝑦̈𝐴) = 𝐷𝜃̈𝑧                                                                                (3.3.25) 

(𝑧̈𝐵 − 𝑧̈𝐴) = 𝐷𝜃̈𝑦                                                                                (3.3.26) 

 

Similar to the process for the 𝑥𝑠 axis, the errors on the 𝑦𝑠 and 𝑧𝑠 axes are as follows:  

 

𝐸𝑟𝑟𝑦̈1 = (𝑦̈𝑆𝐵 − 𝑦̈𝑆𝐴) − 𝐷𝜃̈𝑠𝑧                                                              (3.3.27) 

𝐸𝑟𝑟𝑧̈1 = (𝑧̈𝑆𝐵 − 𝑧̈𝑆𝐴) − 𝐷𝜃̈𝑠𝑦                                                              (3.3.28) 

𝐸𝑟𝑟𝑦̈2 = |𝑦̈𝑆𝐵 + 𝑦̈𝑆𝐴| − (2𝑅𝐴 + 𝐷)𝜃̈𝑠𝑧                                                (3.3.29) 
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𝐸𝑟𝑟𝑧̈2 = |𝑧̈𝑆𝐵 + 𝑧̈𝑆𝐴| − (2𝑅𝐴 + 𝐷)𝜃̈𝑠𝑦                                                 (3.3.30) 

𝐸𝑟𝑟𝑦̈3 = |𝑦̈𝑆𝐵 + 𝑦̈𝑆𝐴| − (2𝑅𝐵 − 𝐷)𝜃̈𝑠𝑧                                                (3.3.31) 

𝐸𝑟𝑟𝑧̈3 = |𝑧̈𝑆𝐵 + 𝑧̈𝑆𝐴| − (2𝑅𝐵 − 𝐷)𝜃̈𝑠𝑦                                                 (3.3.32) 

 

The accelerations on the 𝑦𝑠 and 𝑧𝑠 axes are corrected using ANFIS, as shown in Figure 

3.3.6. Figure 3.3.7 shows the raw dynamic accelerations from IMUs A and B, both of which are 

mounted on the rotation arm of the test rig; the configuration is shown in Figure 3.3.5. The original 

signals are not accurate because the rotational speed is low (<15deg/s). After the ANFIS 

compensation, the accelerations are corrected (Figure 3.3.8). Also, Figure 3.3.9 shows that the 

rotational radii can be calculated using the corrected accelerations (the rotational radii are shown 

in Figure 3.3.5).  

 

 

Figure 3.3.7 The dynamic accelerations after compensation 
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Figure 3.3.8 The radii calculated using the corrected accelerations 

3.4 Summary 

The sensor configuration is designed such that two IMUs are mounted on a rigid body that 

is separated by a known distance D. To test the sensor, we built a testing and calibration rig to 

simulate subsurface sensing movements including rotational (inclination, azimuth) and 

translational motion.  

Different kinds of IMU errors are then described, including the 2D and 3D magnetic hard 

and soft iron calibration methods. The 2D calibration is designed for indoor tests and includes two 

steps: the 3D magnetic measurements (vertical and horizontal) are first converted into 2D 

measurements (horizontal) using a transfer matrix, and then the converted 2D measurements are 

calibrated. Tumble tests are used for 3D calibration for outdoor tests. 

Finally, to extend the dual acceleration difference method to low speed rotation 

applications (<140 deg/s), we introduce an ANFIS design, which is used to correct the rotational 

dynamic accelerations. 
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CHAPTER 4. ANGLE FUSION METHODS 

 

Subsurface sensing technologies are necessary to investigate the subsurface environment 

and evaluate industry subsurface activities. For subsurface activities, such as using an inclinometer 

to monitor reservoir status or MWD for directional drilling, the sensors applied in subsurface 

sensing must provide proper orientation angles to guarantee proper activity procedures. For 

example, it is necessary for the MWD sensors to measure proper well path orientations, which are 

then combined with the drill string length to obtain drilled borehole positions. Inclinometers are 

usually used to measure the inclinations of a well during subsurface activities. 

Data from accelerometers and magnetometers are typically used to determine the 

orientation angles in commercial operations. In some tools, gyroscopes are employed to improve 

the low signal to noise ratios of accelerometers and magnetometers. A hybrid multi-sensor system 

that combines a magnetometer with a gyroscope can increase the accuracy of the azimuth since a 

gyroscope’s signal is smooth and robust against magnetic disturbances. Combining these two 

sensors with a Kalman filter (KF) removes the noise inherent in magnetic signals and reduces drift 

in integral calculation caused by the DC component of gyroscope signals [Bergamini et al., 2014]. 

The current MWD systems are based on magnetic surveying technology [ElGizawy et al., 

2010], where the magnetic surveying part of MWD systems is housed in a special non-magnetic 

drill collar and consists of three-axis accelerometers and three-axis magnetometers [Xue et al., 

2014]. However, this method does not perform well because of magnetic disturbances, which are 

randomly located and hard to predict. Such magnetic disturbances can be caused by drill string 

components (such as polarized steel pipe or electrically powered equipment) that may affect the 
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magnetic field, geomagnetic influences, downhole ore deposits, etc. [Noureldin 2002; EIGizawy 

2009]. 

If there are magnetic disturbances, a gyroscope is employed to correct the heading errors 

since the headings can be updated by gyroscope data [Fan et al., 2017; Zhang et al., 2011]. 

However, there are several problems associated with gyroscope compensation. Unlike typical 

sensing activities at the earth’s surface, such as outdoor vehicle movement detection, motion in 

the subsurface is much slower, which means magnetometers may be exposed to ferromagnetic 

objects for an extended period of time, and the drift caused in gyroscope data integral calculation 

may affect the heading performance [Lee et al., 2016]. Also, gyroscopes are susceptible to shock 

impacts, and the shocks could cause drift in gyroscope data integral calculation. 

Liu et al. [2018] proposes a two-level structure fusion method to reduce the influnce of 

magnetic disturbances using QKF and ANFIS with geomagnetic referencing. QKF is affected by 

unknown, non-white magnetic disturbances when obtaining azimuth angles because a priori 

variance information is necessary to set up the matrices of 𝑄  and 𝑅 . To reduce the effect of 

unknown magnetic disturbances of a QKF, we propose a global ANFIS filter. The filter consists 

of a two-level structure with two local level filters (QKF) and a global level filter (ANFIS). To 

remove the unknown magnetic disturbances, using the local geomagnetic field values as a 

reference, we compare the measurements of two magnetometers with the reference values. Then 

the deviation values (between the two sets of magnetometers and the geomagnetic reference) are 

used as input into the ANFIS filter. According to the deviation information, the ANFIS calculates 

the proper weights for the two magnetometers. In this situation, however, shock is not considered.  
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In this chapter, we discuss our design that uses two redundant sets of IMUs with a known 

distance D to increase the accuracy of orientation angle estimations in the presence of magnetic 

and shock disturbances.  

Section 4.1 outlines a supervised learning filter (SLF) designed to reduce the effect of 

shock and magnetic disturbances. Supervised machine learning methods have a feature that allow 

it to map inputs to outputs based on teaching signal training [Roth 2016; Wang 2011]. The teaching 

signal can also be used as data labelling [Arachie et al., 2019]. Our design labels the errors (big or 

small) of different kinds of sensors when the sensors perform poorly due to disturbances. Each 

sensor is used to compare with other sensors to obtain the error groups of the sensor (we name this 

sensor as center sensor). Then, the error groups are fed into ANFIS to label the center sensor as 

belonging to small or big error groups. After identifying the center sensor’s accuracy, a proper 

weight is calculated and added to the center sensor. The proposed idea is evaluated using lab-scale 

evaluation results based on a lab test rig. The results yield accurate angle estimations based on an 

error RMS value evaluation and under the condition that at least one sensor is accurate.   

Section 4.2 introduces a KF optimized by the supervised learning method introduced in 

section 4.1. This supervised learning (SL)-KF is designed to further increase accuracy when all 

sensors are affected by the disturbances. The rotational angles and angular speeds are first 

computed by an SLF (local filter) and then fed into a KF, which uses as a global filter. This method 

is evaluated using the same test conditions described in section 4.1 and then compared with the 

proposed SLF.  
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4.1 Shock and Magnetic Robustness of SLF (Fusion Method 1) 

According to Liu et al. [2018], data from accelerometers and magnetometers are typically 

used to determine orientation angles. The gravity elements on the 𝑥𝑠, 𝑦𝑠, and 𝑧𝑠 axes, which are 

measured using accelerometers, can be used to compute inclination angles; the magnetometers 

measure magnetic field strength, and these measurements can be used to compute azimuth angles. 

However, the high signal to noise ratio of magnetometers needs to be improved. Gyroscopes are 

good candidates to reduce noise due to their smooth signals. A drawback of gyroscopes is drift 

during long-term integral calculations caused by the DC components embedded in gyroscopes 

[Bergamini et al., 2014]. 

Earth surface sensing activities employ gyroscopes to correct heading errors because the 

heading angles can also be obtained through integral calculations of gyroscopes data [Fan et al., 

2017; Zhang et al., 2011]. When a magnetometer is exposed to ferromagnetic objects, the data 

from a gyroscope is used to correct the error caused by magnetic disturbances. However, when 

movements are too slow, gyroscopes may not be used to correct long duration magnetic 

disturbances because the drift caused by the integral calculation may difficult to be corrected [Lee 

et al., 2016]. Shocks also cause drift because gyroscopes are affected by shock impacts.    

In addition to drift in the integral calculation, measuring rapidly rotating objects with large 

accelerations is challenging [Larin et al., 2012] since each gyroscope is designed for a particular 

maximum angular velocity, especially for MEMS gyroscopes [Tsai et al., 2010]. MEMS 

gyroscopes included in the IMUs used in this study are strongly affected by the large rotational 

accelerations during drilling processes since for a typical MEMS gyroscope the measurement 

range is only a few hundreds of degree/s [Iozan et al., 2016; Cao et al., 2017]. Also, the 

performance of MEMS gyroscopes can be affected by various shock impacts [Li et al., 2014]. 
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Typical MWD tools currently used in industry favor accelerometers [Shor et al., 2015], but 

gyroscopes are often found in tools used for continuous drilling survey applications [ElGizawy et 

al., 2010]. Non-strapdown based gyroscopes are available (for example, fiber-optic coil), which 

may be more robust to the subsurface environment; however, current technologies are not 

economically viable [Gebre-Egziabher 2004].  

Using redundant accelerometers to obtain rotation information is becoming popular as a 

means to address the issues of gyroscopes [Wang et al., 2014; Bhuiyan et al., 2013]. Without the 

assistance of a gyroscope, the minimum number of accelerometers needed to extract 3D rotational 

information is six [Nilsson et al., 2016]. Therefore, using two IMUs, each with three 

accelerometers, one each on the 𝑥𝑠 , 𝑦𝑠 , and 𝑧𝑠  axes, allows for rotational information to be 

obtained using only accelerometers.  

The objective of this section is to enhance the accuracy of subsurface orientation using two 

redundant sets of IMUs to reduce the effect of magnetic and shock disturbances on orientation 

angle estimations. Magnetometers and gyroscopes are used to obtain orientation angles, and 

instead of gyroscopes, redundant accelerometers are used to obtain redundant rotational 

information. By separating the IMUs by a constant distance, the difference between the two 

centripetal acceleration elements may be used to provide redundant rotational information. The 

newly proposed sensor configuration and fusion method improve sensor robustness to magnetic 

and shock disturbances. Using two magnetometers with a constant distance can reduce the negative 

effect of magnetic disturbances. For the fusion method, an SLF that uses ANFIS is designed. The 

ANFIS builds the error models of different orientation angles obtained from the accelerometers, 

gyroscopes, and magnetometers, which means using the ANFIS to label the errors (small or big) 
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of each sensor. Based on the outputs from these error models, weights are calculated for each 

sensor and these weights show the accuracy of each sensor in an applied environment. 

 

4.1.1 Rotation Angles from Dual Tri-axis Accelerometers 

Gyroscopes are good at obtaining angular velocities under dynamic movements. However, 

the maximum angular speed measurement limitation, which is caused by the internal structure of 

a gyroscope, reduces potential applications in the industry [Iozan et al., 2016; Cao et al., 2017]; in 

addition, shocks negatively impact the performance of gyroscopes [Li et al., 2014]. Using dual tri-

axis accelerometer sets separated by a known distance to find angular velocity estimations, 

orientation estimations can be improved [Kionix, 2008]. The acceleration magnitude (𝑎𝑝) of a 

moving point, as shown in Figure 4.1.1, is calculated as follows: 

 

𝑎𝑝 = √𝑎𝑥2 + 𝑎𝑦2 + 𝑎𝑧2 = √𝑎𝑁
2 + 𝑎𝑇

2                                                (4.1.1)  

 

where 𝑎𝑥, 𝑎𝑦, 𝑎𝑧 are the particle accelerations on x, y, and z axes, respectively, 𝑎𝑁 is centripetal 

acceleration, and 𝑎𝑇  is tangential acceleration. The following equation is used to find the 

difference between the two measurements of the accelerometers: 

 

𝑎𝑁𝐵 − 𝑎𝑁𝐴 = (𝜌𝐵 − 𝜌𝐴)(𝜃̇𝑧
2 + 𝜃̇𝑦

2) = 𝐷(𝜃̇𝑧
2 + 𝜃̇𝑦

2)                         (4.1.2) 

 

The 𝑥𝑠 axis of the IMU is oriented along the rotation radius (centripetal direction, as shown 

in 𝑥𝑠 of the IMU in Figure 4.1.1), the 𝑦𝑠 and 𝑧𝑠 axes of the IMU are tangential to the rotation(𝑦𝑠,𝑧𝑠 
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axes of the IMU in Figure 4.1.1), and the rotation center of the IMU is set as (0,0,0); however, the 

rotation arm does not rotate around the IMU 𝑥𝑠 axis in our test rig design.    

 

 

Figure 4.1.1 Spherical coordinates for two redundant accelerometers 

 

Based on the configuration of the pair of IMUs, the centripetal components of the 

accelerations in Equation 4.1.2 are measured using the 𝑥𝑠  axes of the IMUs. Therefore, the 

centripetal acceleration 𝑎𝑁𝐴 & 𝑎𝑁𝐵  obtained by IMUA and IMUB are denoted as 𝑥̈𝑠𝐴 & 𝑥̈𝑠𝐵 , 

respectively. The difference between these two centripetal elements of the acceleration is used to 

calculate the square root sum of the roation speeds of the inclination and azimuth (Equation 4.1.3) 

[Kionix, 2008].  
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𝜃̇𝑐𝑒𝑛𝑡𝑟𝑖𝑝𝑒𝑡𝑎𝑙 = √𝜃̇𝑧2 + 𝜃̇𝑦2 = √|𝑥̈𝑠𝐵 − 𝑥̈𝑠𝐴| 𝐷⁄                                        (4.1.3)  

 

Here, the 𝑠 denotes the values obtained from an IMU.  

 

𝜃̇𝑧𝑐𝑒𝑛𝑡𝑟𝑖𝑝𝑒𝑡𝑎𝑙 = 𝜗𝐴𝑧𝑖 ∗ 𝜃̇𝑐𝑒𝑛𝑡𝑟𝑖𝑝𝑒𝑡𝑎𝑙                                         (4.1.4) 

𝜃̇𝑦𝑐𝑒𝑛𝑡𝑟𝑖𝑝𝑒𝑡𝑎𝑙 = 𝜗𝐼𝑛𝑐𝑙𝑖 ∗ 𝜃̇𝑐𝑒𝑛𝑡𝑟𝑖𝑝𝑒𝑡𝑎𝑙                                       (4.1.5) 

𝛾𝐴𝑧𝑖 =
𝜃̇𝑧𝑖𝑛𝑡𝑒𝑔

√𝜃̇𝑧𝑖𝑛𝑡𝑒𝑔
2 +𝜃̇𝑦𝑖𝑛𝑡𝑒𝑔

2
                                                           (4.1.6) 

𝛾𝐼𝑛𝑐𝑙𝑖 =
𝜃̇𝑦𝑖𝑛𝑡𝑒𝑔

√𝜃̇𝑧𝑖𝑛𝑡𝑒𝑔
2 +𝜃̇𝑦𝑖𝑛𝑡𝑒𝑔

2
                                                        (4.1.7) 

 

Because 𝜃̇𝑐𝑒𝑛𝑡𝑟𝑖𝑝𝑒𝑡𝑎𝑙 in Equation 4.1.3 includes the components of inclination, azimuth, 

and angular velocities, and the term is always positive, it cannot be used directly. As shown in 

Equations 4.1.6 and 4.1.7, the ratio factors (𝛾𝐴𝑧𝑖, 𝛾𝐼𝑛𝑐𝑙𝑖), which identify the proper percentages of 

inclination and azimuth, are necessary; also, the factors provide correct rotational directions 

(positive and negative signs of the calculated rotational angular speeds). These ratio factors can be 

obtained from the integral calculation of the tangential accelerations or derived from azimuth 

(magnetometer) and inclination (gravity) angular values. 

 

4.1.2 SLF Design (Magnetic and Shock Disturbance Robustness) 

Identifying when measurements have low accuracy, as during a shock event or while 

passing a magnetic disturbance, is paramount to effective sensor fusion. For example, as one of 
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the redundant IMUs passes a magnetic disturbance, the magnetometer is adversely affected, but 

the gyroscope remains unaffected.  

The azimuth angle is estimated using the weighted information obtained from different 

sensors and methods; the weighted average of different azimuth angles provides an appropriate 

estimation despite magnetic disturbances. To determine the proper weights of each azimuth angle, 

we employ a fuzzy inference system (FIS). In this paper, a special process of the SLF using ANFIS 

is proposed to tune membership functions and design the precise fuzzy rules to improve 

performance and to build the error model of each sensor. Sensor values are used as the inputs of 

the ANFIS error models to output the error of each sensor. Based on the magnitudes of these errors, 

the weight of each sensor is computed.  

 

Adaptive Neural Fuzzy Inference System (ANFIS) 

ANFIS is an algorithm that combines neural network and fuzzy logic to obtain more 

accurate results. By using a back propagation neural network learning algorithm, the parameters 

of the Takagi-Sugeno (TS) fuzzy model continue updating until they reach an optimal solution 

[Arsava 2013].  

ANFIS is a combination of a Takagi-Sugeno type fuzzy inference system (FIS) and a neural 

network (NN). The core of ANFIS is FIS, and combined with the NN, the ‘IF-THEN’ rules are 

updated automatically to predict the behavior of many uncertain systems [Lei 2012].  

Compared to FIS, NN is employed to adapt the environments in ANFIS. With the input-

output data, a back propagation algorithm is applied to ANFIS to minimize the error [Ayaz 2014; 
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Nilashi 2011]. Lei [2012] used two fuzzy if-then rules based on a first order Sugeno model to 

explain the ANFIS architecture (Figure 4.1.2).  

 

 

Figure 4.1.2 ANFIS structure 

 

𝑅𝑢𝑙𝑒 1: 𝐼𝑓 (𝐼𝑛1 𝑖𝑠 𝐴1) 𝑎𝑛𝑑 (𝐼𝑛2 𝑖𝑠 𝐵1) 𝑡ℎ𝑒𝑛 (𝜀1 = 𝑝1𝐼𝑛1 + 𝑞1𝐼𝑛2 + 𝑟1)             (4.1.8) 

𝑅𝑢𝑙𝑒 2: 𝐼𝑓 (𝐼𝑛1 𝑖𝑠 𝐴2) 𝑎𝑛𝑑 (𝐼𝑛2 𝑖𝑠 𝐵2) 𝑡ℎ𝑒𝑛 (𝜀2 = 𝑝2𝐼𝑛1 + 𝑞2𝐼𝑛2 + 𝑟2)             (4.1.9) 

 

The structure has five layers: 

Layer_1: The first layer consists of input variables, also known as membership functions (MFs). 

Usually, the bell-shaped membership function is employed. 

Layer_2: The second layer is called the MF checking layer. The incoming signals from the first 

layer are multiplied in this layer. This layer functions as MFs to fuzzify the inputs. 
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Layer_3: This layer is the layer of rules. Here, the activation level of each rule is computed, and 

the number of nodes in this layer is equal to the number of fuzzy rules. Each node calculates 

weights as follows: 

 

𝑊𝑖̅̅ ̅ =
𝑊𝑖

𝑊1+𝑊2
, 𝑖 = 1,2                                                             (4.1.10) 

 

Layer_4: The fourth layer provides the output values resulting from the inference of rules. Every 

node in the fourth layer is an adaptive node with a node function: 

 

𝑊𝑖̅̅ ̅𝜀𝑖 = 𝑊𝑖̅̅ ̅(𝑝𝑖𝐼𝑛1 + 𝑞𝑖𝐼𝑛2 + 𝑟𝑖), 𝑖 = 1,2                                     (4.1.11) 

 

Layer_5: The fifth layer sums all inputs coming from the fourth layer. A single node in this layer 

is not adaptive. It computes the overall output as the summation of all incoming signals. 

In this study, there are five clusters of data that serve as inputs of each ANFIS error model. 

Bell-shaped membership functions are chosen with a maximum value (one) and a minimum value 

(zero). The fuzzy logic toolbox in MATLAB was used for the entire process of training and 

evaluating the fuzzy inference system. 

 

Error Teaching Signal 

To obtain the error teaching signal, we compute various azimuth angles from 

magnetometers directly using gyroscope data integral calculation and information from two tri-

axes accelerometers. These computed azimuth angles are compared with a reference azimuth angle 
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to calculate the errors. For the lab-scale evaluation, the reference signal was from the encoder of 

the rotation motor. For a drilling industry application, the reference signal may be obtained from 

wellbore survey data [Liu et al., 2019]. 

 

SLF Logic 

The first function of this design is to estimate the magnetometer errors caused by 

interferences to increase magnetic disturbance robustness. We have two azimuth angles from 

magnetometers (𝐴𝑧𝑖𝑚𝑎𝑔1, 𝐴𝑧𝑖𝑚𝑎𝑔2, the errors of these two magnetometers are 𝐸𝑟𝑟𝑚𝑎𝑔1, 𝐸𝑟𝑟𝑚𝑎𝑔2), 

two azimuth angles from gyroscope signal integral calculations (𝐴𝑧𝑖𝑔𝑦𝑟𝑜1, 𝐴𝑧𝑖𝑔𝑦𝑟𝑜2, the errors of 

these two gyroscopes are 𝐸𝑟𝑟𝑔𝑦𝑟𝑜1, 𝐸𝑟𝑟𝑔𝑦𝑟𝑜2 ), and three azimuth angles from accelerometers 

(𝐴𝑧𝑖𝑡𝑎𝑛𝑔𝑒𝑛, 𝐴𝑧𝑖𝑐𝑒𝑛𝑡𝑟𝑖1, 𝐴𝑧𝑖𝑐𝑒𝑛𝑡𝑟𝑖2, the errors are 𝐸𝑟𝑟𝑎𝑐𝑐1, 𝐸𝑟𝑟𝑎𝑐𝑐2, 𝐸𝑟𝑟𝑎𝑐𝑐3). There are three clusters 

of inputs identified with different blocks (a, black; b, red; and c, grass). For each cluster, one kind 

of sensor is used as the center value to compare with the other sensors; then, the obtained errors 

are used as inputs for ANFIS to build the error models (block a center: magnetometers; block b 

center: gyroscopes; block c center: dual accelerometers). For example, as shown in the black block 

(block a) of Figure 4.1.3, each azimuth angle from a magnetometer is compared with other azimuth 

angles from the other magnetometer, gyroscopes and accelerometers. The relationship between 

these relative differences and the sensor error is built with ANFIS as shown in Figure 4.1.3, which 

means the error model of each sensor is estimated using the relative differences between the 

sensors. After comparing the errors of all sensors, the weights of these sensors are obtained. 
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Figure 4.1.3 The structure of the SLF 

 

For example, if IMUA is affected by a magnetic disturbance but IMUB is not, the 

magnetometer in IMUA will not agree with the remaining measurements in IMUA, while all 

measurements in IMUB will be in agreement. In the event of a shock, the gyrosocpes in both IMUA 

and IMUB will be affected, but the disagreement between sensor measurements may still be used 

to compute the errors in the signals because the magnetometer is less affected by shocks compared 

with accelerometers and gyroscopes [Gooneratne 2017]. Calculating the weights of 𝑊𝐴𝑁𝐹𝐼𝑆1 … 

𝑊𝐴𝑁𝐹𝐼𝑆7 based on the different azimuth error values is shown in Figure 4.1.3 (the orange block, 

block d); the ratio between one error and the sum total of the errors indicates how accurate the 

sensor is. After normalizing, the weights are used for final azimuth output.  
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4.1.3 Discussion of Lab-scale Evaluation and Results 

As shown in Figure 4.1.4, the sensor setup contains dual IMUs, each of which has triaxial 

gyroscopes (× 3), accelerometers (× 3), and magnetometers (× 3) located on the 𝑥𝑠, 𝑦𝑠, and 𝑧𝑠 

axes, and data is sampled at 205 Hz. The IMUs are separated by 0.6 meters, with IMUA located 

0.4 meters and IMUB located at 1.0 meter from the center of rotation, and they are mounted on a 

rigid body. The reference azimuth is obtained from the encoders on the motors. Sensor noise is 

classified as constant bias, calibraiton errors (scale factors, alignments, and linearities), and white 

or pink noise (1 𝑓⁄ ) [Woodman 2007; Patonis et al., 2018]. Constant bias and calibration errors 

are removed using calibration methods [Pasquale 2010; Hemanth et al., 2012; Yang et al., 2017; 

Ladetto et al., 2002].  

 

 

 

Figure 4.1.4 Trajectories implemented in the test rig 
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Table 4.1.1 provides the experimental events time-line. From 0 to 11 seconds is Rest1; 

from 11 to 19 seconds is the first rotation (Rotation1); from 13 to 16 seconds is the first magnetic 

disturbance in the first rotation; from 13.6 to 15 seconds is the shock disturbance; from 19 to 40 

seconds is the second rest (Rest2); from 40 to 48 seconds is the second rotation (Rotation2) and 

the second magnetic disturbance happens during this time interval (43 to 46 seconds); from 48 to 

59 seconds is Rest3. 

 

Table 4.1.1 Experimental events time-line 

 

 

 

Three continuous impacts were made with a shock hammer to simulate shocks with a 0.4 

second time interval in the test rig setup. Magnetic disturbances were simulated using a permanent 

magnet (4.16 × 105 nT with a 50 mm distance) temporarily placed near one of the IMUs. Planned 
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trajectories were implemented using the test rig. The coordinate frame was anchored at the IMUs 

as shown in Figure 4.1.5. 

 

 

Figure 4.1.5 Image picture of shock and magnetic disturbance test. 
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Two case studies were used to evaluate the performance of the proposed sensor structure 

and the SLF method. For the first case study, a magnetic disturbance was applied to one 

magnetometer. The other magnetometer was unaffected since the separated distance D reduced the 

influence of the interference as a function of inverse 1st , 2nd, or 3rd power of D [Wu et al., 2017; 

EMFSinfo 2019]. Additionally, the sensors were subjected to shock impacts. Since both IMUs 

were mounted on a single rigid body, both gyroscopes were affected. For the second case study, 

both magnetometers were influenced by the same magnetic disturbance at the same time. Further, 

all sensors were affected by shock impacts. 

Magnetic Interference and Shock Impact - First Case Study 

Figure 4.1.6 shows the shock forces measured by an impact hammer sensor (PCB 208.A03) 

during a shock test (3 direct impacts on the rotation arm 15 cm away from IMUA and 45 cm from 

IMUB). Figure 4.1.7 shows the data of two magnetometers: the azimuth angle from magnetometerA 

is blue, and the azimuth angle from magnetometerB is black. MagnetometerB was affected twice 

by simulated magnetic interferences, while magnetometerA remained unaffected. The lower 

subplot of Figure 4.1.7 shows that the magnetometers were slightly affected by the shocks (the 

shock data were measured from the shock experiment, Figure 4.1.5). 

Figure 4.1.8 shows the output results of the shocks on the gyroscopes. The disturbance data 

were obtained from the same shock test. The bottom plot of Figure 4.1.8 is the integral calculation 

of the gyroscope signal (angular velocity). The shocks caused an angle drift (around 10 degrees) 

during the integral calculation process.  
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Figure 4.1.6 Shock forces measured from the shock test, 3 continuous hits with a time interval of 

0.4 seconds. The force peak values of these 3 hits are approximately 300N, 400N, and 500N. The 

bottom subplot is the view (zoomed in) of the second hit.  

 

 

Figure 4.1.7 Data from two magnetometers from lab-scale tests. 

Magnetic Disturbance 

& 

Shock Impact 

Zoom In 
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Figure 4.1.8 Gyroscope data from a shock test. 

 

 

Figure 4.1.9 Data from dual accelerometer difference methods under a shock impact 

Shock Impacts (3 times) 
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Figure 4.1.10 Sensor weights calculated by SLF 

 

Magnetic Disturbances 

Shock 



80 

 

 

 

Figure 4.1.11 SLF compared with a KF (shock and magnetic disturbances) 

 

 

Figure 4.1.12 SLF compared with a KF (magnetic disturbances) 

 

Magnetic Disturbance 
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Figure 4.1.9 shows the angular speed from two accelerometers (disturbances were obtained 

from the same experiment) and their integral computation values (rotation angles). These results 

were calculated from Equation 4.1.4 with different ratio factors: a1&a2 shows the ratio factor 

obtained from tangential accelerations; b1&b2 shows the factor is from IMUA, which is not 

affected by magnetic interferences; and c1&c2 shows the ratio factor calculated from the 

magnetometer azimuth and gravity inclination of IMUB, which is affected by magnetic 

interferences. Dual accelerometers provided rotational information, but as shown from the final 

integrated results (second column of Figure 4.1.9), the angles drifted and jerked due to the shocks. 

Figure 4.1.10 shows the values of the weights calculated by SLF as shown in Figure 4.1.3, 

which gives seven weights for the seven azimuth angles. The angles and weights were classified 

by sensor types of the same time-line. The SLF weights shown in the second subplot were the 

weights of the magnetometers when a magnetometer was affected by magnetic disturbances. As 

shown in the purple block, during the magnetic disturbances, the weight of the affected 

magnetometer was automatically tuned to zero (red circle in subplot 2), and as shown in the red 

square block (weight of magnetometerA in subplot 2), the weight of the other magnetometer was 

tuned to almost maximum because it was not affected by the magnetic disturbances. During the 

shock, the weight of magnetometerA was reduced (subplot 2, dark red block) because the errors 

from the other sensors were temporarily reduced by the shock. Also, after the shock impact, the 

angles from the gyroscopes drifted (around 10 degrees). Therefore, the weights of the gyroscopes 

were tuned to almost zero (grey blocks in subplot 4). Finally, the weights of the azimuth angles 

calculated from 3 different ratio factors were also automatically tuned (subplot 6 in  Figure 4.1.10). 

In addition, subplot 2 in Figure 4.1.10 shows that after the shock impacts, the magnetometers 

shared large weights (because the other sensors drifted). The data of subplot 2 also show that after 
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the shock, the weight of one magnetometer decreased while the other one’s weight increased. The 

ratio of the training data to the verification data was 5:1. 

Figure 4.1.11 shows the error between the proposed method and traditional KFs (the KF 

of IMUA is indicated by the red dashed line, and the KF of IMUB is the black dashed line). The 

covariance matrices Q & R were computed based on the standard deviation value of the first 1000 

measurement datum from the gyroscope and magnetometer. The calculated variance values of the 

covariance matrices Q & R were constants during the KF computation process. The drift in the 

final KF outputs was due to the weight calculation based on the covariance matrices; KFs 

determined that the gyroscopes were more trustable than the magnetometers. Therefore, when the 

gyroscopes drifted (caused by the shock impacts), the final KF outputs drifted too. To investigate 

the influences of the magnetic interferences, we assumed the gyroscope error caused by the shocks 

was known and put the gyroscope error into the Q matrix. Figure 4.1.12 shows that KFA was 

unaffected by the shock disturbances because the magnetometer provided relatively accurate 

information (magnetometerA was not affected by magnetic interferences). However, KFB shows 

large errors caused by the unknown magnetic interferences because the errors were not put into 

the R matrix. The black dashed circles indicate the errors during the magnetic interferences. The 

absolute maximum error (AME) of SLF is 0.98 degrees, and the AME of KF is 11 degrees (Figure 

4.1.11) and 47 degrees (Figure 4.1.12). With proper training, the redundant IMU design and 

proposed method are minimally affected by magnetic disturbances and shock impacts. However, 

the KFs are more affected by the unknown disturbances. 
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Magnetic Interference and Shock Impact (Second Case Study) 

Figure 4.1.13 shows the SLF results of the second case study where all sensors are 

influenced; the red circles show the response of the filter to the magnetic disturbances.  

 

 

Figure 4.1.13 The proposed SLF method (if all sensors are not accurate, the performance of the 

ANFIS method is reduced) 

 

The results show that the sensors were more affected in the second case study compared to 

the effect on the sensors in the first case study, as shown in Figure 4.1.13. During the disturbance 

time intervals (the red circles), the sensors did not compensate for one another because of the small 

weight caused by the large errors in all sensors. 

 

4.1.4 Verification 

To verify the proposed method, we used two additional sets of tests. The new cases were 

verified without further training. A single movement and disturbance were used to verify the 

Magnetic Disturbance 
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performance of the SLF filter. The moving was divided into two single movements, one for 

inclination and one for azimuth (implemented at different times). Also, the shock and magnetic 

disturbances were added to the two single movements separately. For the first verification case, 

the magnetic disturbance was only added in the inclination movement, and the shock disturbance 

was only added in the azimuth movement. Then, for the second verification case, the magnetic 

disturbance was added to the azimuth movement, and the shock disturbance was added to the 

inclination movement. 

Verification Case 1 

For the first verification case (Figure 4.1.14), there were two movements: 90 degrees 

inclination (1st step) and 90 degrees azimuth back and forth (2nd step). First, the rotation arm was 

rotated from 0 degrees (vertical to the ground) to 90 degrees (horizontal) on the inclination plane. 

During this step, the azimuth angles were kept constant and only the inclination angles changed. 

In this inclination rotation, a magnetic disturbance was added to IMUB. The magnetic disturbance 

(applied using a magnet) was perpendicular to the inclination plane with a distance 0.3 meters 

between the magnet and IMUB. After the first step finished, the rotation arm only rotated around 

the rotation center of the horizontal plane from 0 degrees to 90 degrees (back and forth). Also, a 

shock hammer was used to simulate a shock impact at 0.15 meters distance from IMUA during the 

azimuth rotation. The hit direction was horizontal to the azimuth rotational plane and vertical to 

the rotational arm. Figure 4.1.16 shows the shock force implemented by a shock hammer (PCB 

208. A03). The magnitude of the force was about 500N with only one hit. 
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Figure 4.1.14 Movement plan of verification case 1 

 

Figure 4.1.17 shows the results of the SLF azimuth estimation for verification case 1. The 

magnetic disturbance was implemented during the inclination process and caused a 40 degree 

deviation (MagnetometerB, Figure 4.1.15); the SLF reduced the deviation from 40 to 1.5 degrees 

as shown in subplot 1 of Figure 4.1.17. In verification case 1 without training, the SLF performance 

degraded from 0.259 to 2.227 (RMS value), and the maximum value of the error was 14 degrees. 
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Figure 4.1.15 The magnetometers in verification case 1 

 

 

Figure 4.1.16 Shock force in verification case 1 
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Figure 4.1.17 SLF performance in verification case 1 
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Verification Case 2 

 

Figure 4.1.18 Rotational plan of verification case 2 

 

 

Figure 4.1.19 Shock force in verification case 2 
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Figure 4.1.20 SLF performance in verification case 2 
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For the second verification case (Figure 4.1.18), there are two movements: 90 degrees 

inclination (1st step) and 90 degrees azimuth back and forth (2nd step). First, the rotation arm was 

rotated from 0 degrees (vertical) to 90 degrees (horizontal) on the inclination plane. During this 

step, the azimuth angles were kept constant and only the inclination angles changed. In this 

inclination rotation, a shock hammer was used to simulate an impact 0.15 meters from IMUA in 

the azimuth rotation. The hit direction was parallel to the azimuth rotational plane and was 

perpendicular to the inclination plane. After the first step finished, the rotation arm was only 

rotated around the rotation center of the horizontal plane from 0 degrees to 90 degrees (back and 

forth). Also, a magnetic disturbance (applied using a magnet) was added to IMUB. The magnet 

was on the azimuth plane 0.3 meters from IMUB.  

 

Table 4.1.2 Verification Disturbances Specification 

 

 

Figure 4.1.20 shows the results of the SLF azimuth estimation of verification case 2. The 

magnetic disturbance was implemented in the azimuth rotation and caused an 80 degree deviation 
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(MagnetometerB). In verification case 2 without training, the SLF performance degraded from 

0.259 to 2.84 (RMS value), and the maximum value of the error was 5 degrees. 

Table 4.1.2 shows the effect of the shock and magnetic disturbance in case study 1 (with 

training) and verification case 1 and verification case 2 (without training). The Օ means with 

disturbance influence, and the × means without disturbance influence. 

Comparing these two verification cases without further training shows the proposed SLF 

method performs less well in verification cases 1 and 2. Consequently, the disturbances in the 

verification cases are reduced under training conditions.  

 

4.1.5 Summary  

In this section, we first used two acceleration difference values to increase the redundant 

rotation information, similar to what gyroscopes can provide, in cases that have no gyroscopes. 

However, direct applications of this idea cause large errors because of accelerometer noise and 

low robustness to shock impacts. To improve accuracy and robustness, we proposed using an SLF. 

All azimuth angles from the magnetometers, gyroscopes, and accelerometers were compared, and 

their relative errors were put into the ANFIS to build error models. The final weights of each sensor 

were calculated according to the outputs of each error models.  

The proposed method performs well under the assumed conditions: 1) the reference angle 

can be obtained, 2) only one magnetometer is affected by magnetic disturbances during a specific 

time interval, 3) two IMUs rotate at one end of the rotation center, and 4) this method is only 

applied under similar conditions in a training environment. The unknown magnetic and shock 

disturbances that caused angle errors are corrected by the proposed fusion method. However, under 

the worst conditions (all sensors are not accurate), the error cannot be sufficiently reduced. 
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The proposed method was verified using two verification cases. In unknown application 

environments, without further training, the performance of SLF degraded from 0.259 (RMS error 

value) to 2.227 (RMS error value of verification case 1) and 2.84 (RMS error value of verification 

case 2). This research outcome can be extended to industry level field applications. For example, 

the outcome can be combined with drilling survey data (used as a reference) to increase the 

continuous wellbore positioning accuracy.  

 

4.2 Shock and Magnetic Robustness of SL-KF (Fusion Method 2) 

MEMS sensors for subsurface navigation consist of accelerometers, gyroscopes, and 

magnetometers [Renaudin et al., 2014]. Combining these sensors with KFs reduces the effect of 

noise and known magnetic disturbances, allowing for accurate inclination and azimuth angles to 

be obtained [Qu et al., 2017]. In many situations, the magnetic disturbances are unknown, and 

traditional KFs cannot filter out unknown disturbances. Furthermore, shocks can cause drift 

displacements in integral computations of angular speed that are difficult to correct without an 

extra reference signal.  

The problem of orientation estimation with MEMS IMUs is low robustness to magnetic 

and shock disturbances, especially in the case that all sensors are subjected to the disturbances. 

Section 4.1 introduced the SLF method, which had a high robustness to magnetic and shock 

disturbances. However, the limitation of the SLF method is that it may not perform well if all 

sensors are affected simultaneously. To increase robustness to these disturbances, we combined 

the proposed SLF method with a KF. In this design, ANFIS is also utilized to update adaptive 

covariance matrices of the KF to reduce the effect of unknown magnetic and shock disturbances 

on the KF. Finally, this proposed method is verified using a lab test rig.       
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4.2.1 SL-KF Design 

For a traditional KF fusion design, gyroscope data integral computation are built as the 

system model of the KF; azimuth angles from magnetometers and inclination and roll 

measurements from accelerometers are used in the measurement model [Liu et al., 2018]. 

However, the gyroscopes are subjected to shock impacts, and the magnetometers are affected by 

magnetic disturbances. Without proper co-variance matrices, Q & R, the KF cannot accurately 

produce proper output values. Therefore, the ANFIS is applied to design the proper co-variance 

matrices of the KF to increase the robustness of the KF to shock and magnetic interferences. 

 

 

Figure 4.2.1 Supervised learning KF design 

 

Measurement States Computation of Proposed KF 

Unlike the inclination angles obtained from the gravity elements of accelerations, the 

azimuth angles from magnetometers suffer from magnetic disturbances. For MWD in directional 
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drilling, the orientation angles can be measured using accelerometers (inclination), gyroscopes 

(inclination and azimuth angles through integral calculation) and magnetometers (azimuth). In 

addition, if gyroscopes are absent, several sets of rotational angles can be obtained using a dual 

acceleration difference method. The details of how to obtain the angles are presented in Section 

4.1.  

 

 

Figure 4.2.2 Measurement states calculation structure of the KF 

 

For a traditional KF azimuth estimation, the measurement states are obtained from 

magnetometers, which are affected by magnetic disturbances. To reduce the effect of magnetic 

disturbances, we employ the azimuth information obtained from gyroscopes and two 

accelerometers; in addtion, we use redundant magnetometers (two sets) separated by a constant 

distance and located on a rigid body. The SLF method introduced in Section 4.1 is employed to 

calculate the proper weights of each azimuth angle from different sensors. In this method, when 

one magnetometer is influenced by magnetic interference, the weight of the magnetometer is tuned 

to be small, and the weights of the gyroscopes and accelerometers are set as heavier. However, if 
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the gyroscopes and accelerometers suffer from shocks, the weights should be tuned to be small as 

well. In this situation, there is still one more magnetometer that can provide accurate values since 

the distance between these two magnetometers reduces the effect of the shock and, in addition, 

magnetometers are robust to shock impacts. Therefore, the weighted average of these azimuth 

angles from different kinds of sensors can remove the inaccuracy caused by magnetic and shock 

disturbances. 

Figure 4.2.2 shows how to obtain the azimuth angles that are used as measurement states 

of the proposed KF, based on the ANFIS error models as shown in Figure 4.1.3. The angles from 

different sensors are estimated using the ANFIS error models; further, the weights are calculated 

using these error amplitude value ratios. Finally, these calculated weights are added to each 

orientation angle from different sensors to obtain the final fused azimuth and inclination.   

The orientation angles measured from magnetometers, gyroscopes, and accelerometers are 

compared with a reference to calculate the errors as teaching data sets for training. For lab-scale 

tests, these reference signals are converted from the encoders of the motors mounted on the test 

rig. 

 

Process States Calculation of Proposed KF 

As shown in Figure 4.2.1, the rotational velocity information obtained from different 

sensors is compared to calculate the relative difference values; then, these difference values are 

input to ANFIS to build the angular velocity error model. The outputs of the ANFIS are the angular 

velocity errors of the sensors, and based on the magnitude of these errors the weight of each sensor 

can be calculated. 
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Figure 4.2.3 Designed fusion structure of rotational velocity (azimuth example) 

 

The calculation is shown in Figure 4.2.3. First, angular velocity errors are outputted from 

ANFIS error models, and then the weight of each sensor is calculated. Finally, the calculated 

weights are put on different orientation angles to obtain the proper fused azimuth angle velocities, 

𝜃̇𝑧, which are used for the process states calculation of the proposed SL-KF. 

Covariance Matrices Q & R 

The final performance of a KF depends on the proper values of the co-variance matrices, 

Q & R, which are based on a priori information about the process and measurement noises [Basso 

et al., 2017]. However, unknown magnetic and shock disturbances are different from noise 

embedded in the sensor itself, which means the calculated error covariance matrices based on 

sensor noise could be inaccurate. If the reference values of both process and measurement states 
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are known, then the process and measurement uncertainty errors can be derived and put into the 

KF co-variance matrices for proper weight calculation. 

 

 

Figure 4.2.4 Uncertatinty error calculation for covariance matrices calculation 

 

To address this problem, we employ ANFIS to build error models for obtaining the 

process and measurement uncertainty errors. As shown in Figure 4.2.4, the orientation angular 

speeds and angles from the process and measurement states are compared to obtain the 

differences between them; then, these differences are inputted into ANFIS to compute the 

uncertainty errors, which are then used in the co-variance matrices of the SL-KF.  

 

4.2.2 Discussion of Lab-scale Evaluation and Results 

Movement Plan of Lab Test 
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To compare the performance of the SL-KF with the SLF, we used the same experimental 

approaches (Section 4.1.3) to evaluate the SL-KF method. The test process is described here for a 

quick review. Two IMUs were mounted on the arm of a test rig a constant distance D (0.6 meters) 

apart. The orientation of each IMU was measured using tri-axes gyroscopes, accelerometers, and 

magnetometers; there were 3 of each kind of sensor, one located on each axis 𝑥𝑠, 𝑦𝑠, and 𝑧𝑠 axes. 

The two IMUs were configured with a known distance D to reduce magnetic disturbances. Also, 

distance D was used to calculate the rotational angular speeds with two sets of tri-axes 

accelerometers. 

To investigate this method, we designed a 3D test track that includes inclination and 

azimuth (Figure 3.3.5). This 3D movement trajectory was a combination of two 2D orientations 

on the azimuth or inclination plane. Two IMUs were located on the rotation arm of the test rig, 

and the arm moved from vertical (inclination=0 deg) to horizontal (inclination=90 deg) on the 

inclination plane as shown with the grass dashed line in Figure 3.3.5. The red and yellow points in 

the figure are the start positions of the azimuth and inclination. The purple point is the end position. 

At the same time, the center axis rotates 90 degrees on the horizontal plane as shown with the red 

dashed line (from yellow point to purple point). Both 2D rotational movements have the same 

rotational center (the black point). The black solid line is the combined 3D test track that includes 

the inclination and azimuth. The encoders mounted on the motors provide the reference signals 

that are compared with the measured orientation angles. Two IMUs (A & B) are mounted on the 

rotation arm of the rig. The IMU axis 𝑧𝑠 is pointed to the sky, the axis 𝑥𝑠 is pointed to the outside 

of the rotation center and the axis 𝑦𝑠 is perpendicular to the 𝑥𝑠 and 𝑧𝑠 plane.   
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Lab-scale Test and Results Discussion 

Without proper a priori information, a KF does not sufficiently filter out magnetic and 

shock disturbances. A hybrid with ANFIS and the Q & R matrices of the SL-KF can address this 

issue and obtain proper error information. Lab-scale tests with a test rig were implemented to 

evaluate the performance of the SL-KF. During the lab tests, the robustness of the method to 

magnetic and shock disturbances was investigated. The shock test data and the magnetic 

disturbance values are shown in Figure 4.1.5 in Section 4.1. 

As in Section 4.1, two cases were studied. For the first case, it is assumed that at least one 

magnetometer is not negatively influenced because of the distance that separates the 

magnetometers. In the second case study, it is assumed that all sensors are influenced by 

disturbances (magnetometers are affected by magnetic disturbances and gyroscopes and 

accelerometers are affected by shocks), and no accurate measurement values are obtained from the 

sensors at the same time. 

 

Figure 4.2.5 Speed error comparison (first case study) 
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Figure 4.2.6 Final angle error comparison (first case study) 

 

 

 

Figure 4.2.7 Speed error comparison (second case study) 
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Figure 4.2.5 shows the rotational speed error comparison of the SLF output and two 

gyroscopes in the first case. The SLF outputs corrected rotational speed because the magnetometer 

that is not exposed to magnetic interferences can correct the errors caused by the disturbances. 

Figure 4.2.6 shows the angle error comparison between SLF and SL-KF in the first case study. As 

shown, the SL-KF obtains proper error information to calculate the Q & R matrices and correct 

the magnetic and shock disturbances. 

 

 

Figure 4.2.8 Final angle error comparison (second case study) 

 

In the second case study, for rotational angle speed compensation, SLF does not properly 

correct the error caused by magnetic and shock disturbances, but it may reduce the negative 

influence as shown in Figure 4.2.7. Because of the limitation (all the sensors are affected), the SL-

KF does not achieve the same performance as in the second case as it does in the first case study 
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(first case: 0.34268). However, in the second case, the SL-KF performs better (56% better 

performance as indicated by the RMS value, Figure 4.2.8) compared to the SLF. 

In this section, an SL-KF is proposed to increase robustness to magnetic and shock 

disturbances under the assumptions that all the sensors are affected. An SLF was employed as a 

local filter to determine the rotational angular speeds and angles that were used as inputs in the 

global filter (KF). All angles and angular speeds from the magnetometers, gyroscopes, and 

accelerometers were compared, and the relative errors were put into the ANFIS to build error 

models. The final weights of each sensor were calculated according to the outputs of the ANFIS 

error models. 

The proposed SL-KF method performs better compared to the proposed SLF filter method, 

assuming the following conditions: 1) the reference angle can be obtained, 2) two IMUs rotate at 

one end of the rotation center, and 3) this method will be applied under similar conditions in a 

training environment. Even in the worst scenario (all sensors are inaccurate), the proposed SL-KF 

fusion method corrected 56% more errors caused by unknown magnetic and shock disturbances 

than in the SLF method.  

 

4.2.3 Verification 

To verify the SL-KF method, we used two case studies. First the SL-KF method was trained 

using a combined movement (inclination and azimuth move simultaneously) and a combined 

disturbance (simultaneous magnetic and shock disturbance). Therefore, to verify the performance 

of the SL-KF filter in different movements and disturbances, we divided the combined movement 

into two single movements that included inclination and azimuth (they were implemented at 

different times). Also, the shock and magnetic disturbances were applied to the two single 
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movements separately. For the first verification case, the magnetic disturbance was only added in 

the inclination movement, and the shock disturbance was only added in the azimuth movement. 

For the second verification case, the magnetic disturbance was only added in the azimuth 

movement, and the shock disturbance was only added in the inclination movement.The details of 

the verification tests (1 & 2) were described in Section 4.1.4.  

Verification Case 1 

For the first verification case, there were two movements: 90 degrees inclination (1st step) 

and 90 degrees azimuth back and forth (2nd step). First, the rotation arm was rotated from 0 degrees 

(vertical to the ground) to 90 degrees (horizontal) on the inclination plane. During this step, the 

azimuth angles were kept constant, and only the inclination angles changed. For this inclination 

rotation, a magnetic disturbance was added to IMUB. The magnetic disturbance (applied using a 

magnet) was perpendicular to the inclination plane and at a distance of 0.3 meters from IMUB. 

After the first step finished, the rotation arm only rotated around the rotation center of the 

horizontal plane from 0 degrees to 90 degrees (back and forth). Also, a shock hammer was used to 

shock a point 0.15 meters from IMUA during the azimuth rotation. The hit direction was horizontal 

to the azimuth rotational plane and vertical to the rotational arm. 

 

1 2 
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Figure 4.2.9 Performance of SL-KF (verification 1) 

 

Figure 4.2.9 shows the performance of the SL-KF in verification1. Subplot 1 & 2 show the 

values of Q & R of the SL-KF. Subplot 3 shows the final output of the SL-KF in verification 1. 

Subplot 4 compares the error RMS values of SLF and SL-KF. The comparison shows that SL-KF 

performs as well as SLF in this scenario.  

 

3 
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Verification Case 2 

For the second verification case (Figure 4.1.18), there were two movements: 90 degrees 

inclination (1st step) and 90 degrees azimuth back and forth (2nd step). First, the rotation arm was 

rotated from 0 degrees (vertical) to 90 degrees (horizontal) on the inclination plane. During this 

step, the azimuth angles were kept constant, and only the inclination angles changed. In this 

inclination rotation, a shock hammer was used to hit a point 0.15 from IMUA. The hit direction 

was parallel to the azimuth rotational plane and was perpendicular to the inclination plane. After 

the first step finished, the rotation arm only rotated around the rotation center of the horizontal 

plane from 0 degrees to 90 degrees (back and forth). Also, a magnetic disturbance (applied using 

a magnet) was added to IMUB. The magnet was on the azimuth plane 0.3 meters from IMUB.  

Figure 4.2.10 shows the performance of the SL-KF in verification 2. Subplot 1 & 2 show 

the values of Q & R of the SL-KF. Subplot 3 shows the final output of the SL-KF in verification 

2. Subplot 4 compares the error RMS values of SLF and SL-KF. The SL-KF performed better than 

the SLF (up 45%) based on the error RMS value comparison.  

 

  

 

1 2 
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Figure 4.2.10 Performance of SL-KF (verification 2) 

 

4.3 Summary  

This chapter discusses how to increase robustness to magnetic and shock disturbances for 

subsurface orientation angle sensing. A two-level structure filter (local and global) with redundant 

IMUs (two sets) were used; these IMUs were mounted on a rigid body and were separated by a 

known distance D (0.6 meters). The traditional and supervised learning filter methods (KF and 

3 

4 

Time(Seconds) 



107 

 

SLF) were employed to achieve the research objectives. The advantages and disadvantages of 

these methods are summarized in Table 4.3.1. 

 

Table 4.3.1 Pros and cons of SLF and SL-KF 

 

 

To reduce the effect of magnetic and shock disturbances, we compared the angle errors 

from different sensors (magnetometers, gyroscopes, and accelerometers) under magnetic and 

shock disturbance conditions and employed ANFIS to obtain error models of each sensor (Section 

4.1). Based on these error models, the proper weights of the sensors were computed and added to 

different sensors. It was assumed that at least one magnetometer was unaffected by interferences 

during the same time interval to achieve the best performance of the SLF. When both 

magnetometers were affected simultaneously, the performance of the SLF was degraded because 

the sensors could not provide accurate references since they were affected by the disturbances 

during the same time interval. 
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An SL-KF was designed to further increase robustness in the scenario where all sensors 

were affected, as shown in Section 4.2. First, the SLF method was used to compute the corrected 

rotational angles and angular speeds; these values were then fed into a KF (used as a global filter) 

for further corrections. The lab-scale test results showed that the proposed SL-KF increased 

robustness by up to 56% in the worst case (all sensors were affected) compared with the SLF 

method.  

Lastly, we verified the designed filters (SLF and SL-KF) using two different case studies. 

The performance of both SLF and SL-KF was degraded in both cases because the ANFIS error 

models were without further training in these case studies. The SL-KF performed better than the 

SLF in both cases. 
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CHAPTER 5. POSITION FUSION METHODS 

 

Subsurface sensing evaluates the performance of subsurface industry activities. The 

sensors used in subsurface industry activities must provide proper orientations and positions. For 

subsurface activities, orientation information is usually detected by one or more micro-electro-

mechanical system (MEMS) inertial sensors, which consist of multi-axis accelerometers, 

gyroscopes, and magnetometers. The orientation information shows the sensor attitudes to the 

measurement process and reflect the changing states of the subsurface. 

For a position measurement, accelerometers are primarily used to measure the dynamic 

acceleration; then, the acceleration measurements are used to compute the travel distance through 

double integral computation. The moving velocity can also be calculated during this integral 

calculation procedure [Axelsson et al., 2012]. For this traditional acceleration double integral 

calculation method, the DC components and disturbances embedded in the acceleration 

measurements may cause drift during the process of integral calculation [Latt et al., 2011]. 

In subsurface position tracking, it is difficult to utilize external location correction sensors 

such as GPS [Tarokh 2007]. Therefore, the biggest challenge to position tracking is dealing with 

insufficient information resources, for example, in the case of using accelerometers without the 

assistance of extra correction sensors such as GPS or cameras. In this case, noise and the DC 

components contained in acceleration signals and shocks on the accelerometers can cause drifts in 

position estimation in a long-term double integral calculation of accelerations.  
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5.1 Dual Acceleration Difference KF (Lab-scale Position) 

The movements of an IMU sensor can be divided into translational and angular 

movements. Typical scenarios of application include longitudinal and lateral maneuvers. Unlike 

traditional methods that obtain position correction using GPS, the IMU is mainly used in  

subsurface environments where GPS signals are unavailable. In this scenario, translational 

movement displacement may only be calculated using double integral calculations of the 

acceleration signals. If the rotational movements are included, the accelerometers’ measurements 

are classified into tangential and centripetal accelerations. The centripetal accelerations determine 

moving directions, and the tangential accelerations determine moving distances. Without 

identifying the centripetal and tangential elements of accelerations, the double integral calculation 

method may obtain incorrect results. Also, although the DC components embedded in 

accelerations may be removed using high pass filter, the drifts caused by shocks still remain.  

To deal with these problems, this section develops a position measurement system using 

redundant sets of accelerometers and polar coordinates. A Kalman filter (DAD-KF) is proposed to 

improve the robustness to the shock disturbances for position estimations. 

 

5.1.1 Displacement Calculation without Filter  

The basic position calculation method for an IMU accelerometer is double integral 

computation. However, using double integral computation to obtain displacement requires 

identifying the tangential elements from the raw acceleration signals for a curvilinear movement. 

Without identification, the centrifugal elements of the accelerations can cause errors in position 

computations because centrifugal (or centripetal) accelerations only contribute to the change in 

the moving direction. The other method to calculate positions is based on the rotation radii 



111 

 

estimation of the curvilinear movements. In a polar coordinates, the arcs of curvatures can be 

obtained from rotational radii and angles. In addition, the rotation radius 𝜌 is crucial to convert 

polar coordinates to Cartesian coordinates. This section also shows how to calculate redundant 

positions using radius 𝜌 from different sensors.  

Polar Coordinates and Cartesian Coordinates 

There are few cases in industry applications where a sensor’s movement between two 

points is a straight line because curvilinear motions occur much more often than pure linear 

movements in reality. A curvilinear movement can be modeled as a trajectory that is approximated 

by a sequence of circular arcs. These circular arcs can be calculated using double integral 

calculations of tangential accelerations (the centripetal accelerations are not included). If GPS is 

used for corrections, identifying tangential accelerations is not necessary since the components 

that do not contribute to position change can be considered as noise and removed by filters. For 

applications that use only accelerometers, the influence of centripetal accelerations should be 

considered. 

For a rotational motion in 3D spherical coordinates (Figure 5.1.1), the position values of 

an IMU are given as follows:  

 

𝑥 = 𝜌𝑠𝑖𝑛𝜃𝑦𝑐𝑜𝑠𝜃𝑧                                                                              (5.1.1) 

𝑦 = 𝜌𝑠𝑖𝑛𝜃𝑦𝑠𝑖𝑛𝜃𝑧                                                                              (5.1.2) 

𝑧 = 𝜌𝑐𝑜𝑠𝜃𝑦                                                                                       (5.1.3) 
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Figure 5.1.1 Moving displacement in polar coordinates 

 

The spherical radius, 𝜌, shows the distance between a moving object and the rotational 

center, where 𝜃𝑦 (inclination angle) represents the angle between the positive z- axis and the line 

from the rotation center to the moving object. Also, 𝜃𝑧 (azimuth angle) is the angle between the 

positive x- axis and the line denoted by 𝑅𝑎𝑑, which is the projection of 𝜌 on the horizontal 𝑥, 𝑦 

plane. The following relations can be derived: 

 

𝜌 = √𝑥2 + 𝑦2+𝑧2                                                                           (5.1.4) 
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As shown in the above equations, if the rotational radius (𝜌) and orientation angles are known, the 

positions can be calculated. The different radius calculating methods from different sensors are 

discussed below. 

 

Radius Calculation Using Double Integral Calculation of Acceleration 

As shown in Figure 5.1.1, the movement of IMUA from point A to B is based on the integral 

calculation of the tangential elements of accelerations (𝑦𝑠, 𝑧𝑠), and the centrifugal element (𝑥𝑠) 

does not contribute to the magnitude of the distance but only to the changes in direction. Therefore, 

the first set of positions is derived from the double integral computation of the tangential 

accelerations. The total moving distance is shown in Equation 5.1.5. 

 

𝑆𝑝 = √(∬ 𝑦̈𝑑𝑡)2 + (∬ 𝑧̈𝑑𝑡)2                                                              (5.1.5) 

 

However, this total moving distance 𝑆𝑝 does not clearly show the positions on the x, y, and z axes 

in Earth coordinates since 𝑆𝑝 is a series of arcs in polar coordinates. Therefore, it is necessary to 

calculate the radii to convert the polar coordinates to Cartesian coordinates. During each time 

interval, the moving distance is calculated as follows: 

 

𝑆𝑝,∆𝑡 = 𝑆𝑝,𝑡 − 𝑆𝑝,𝑡−1                                                                             (5.1.6) 

 

For each time interval, the movement track is assumed to be an arc; therefore, the rotational radius 

is as follows: 
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𝜌𝑇𝑎𝑛𝑔𝑒𝑛 =
𝑆𝑝,∆𝑡

√(∆𝜃𝑦)
2
+ (𝑠𝑖𝑛(𝜃𝑦) × ∆𝜃𝑧)

2⁄
                                 (5.1.7) 

 

𝑆𝑝,∆𝑡  can be obtained from the known measurement depth (drill string length) for directional 

drilling. For the lab-scale tests, the 𝑆𝑝,∆𝑡 value is calculated using known orientational angles and 

radii.  

 

Radius Calculation Using Accelerometers and Gyroscopes 

As shown in Figure 5.1.1, two IMUs are mounted on a rigid body. The rotational radii are 

calculated using the measurements of one accelerometer and the rotational angular velocity 

information from a gyroscope: 

 

𝜌 = 𝜌𝑆𝑖𝑛𝑔𝑙𝑒𝐴𝑐𝑐𝐴 = 𝑥̈𝑠𝐴 (𝜃̇𝑧
2 + 𝜃̇𝑦

2)⁄                                                   (5.1.8) 

 

This calculation method is a combination of accelerometers and other kinds of sensors such as 

gyroscopes. However, sometimes the industry favors using only accelerometers rather than 

combining different types of sensors in subsurface activities [Shor et al., 2015]. Due to industry 

preferences, a radius calculation based on dual accelerometers was also proposed.  Because of the 

configuration of the IMUs, we can obtain the redundant rotational radius from dual accelerometers 

as follows: 

𝜌 = 𝜌𝐷𝑢𝑎𝑙𝐴𝑐𝑐𝐴 ,       
(𝜌𝐷𝑢𝑎𝑙𝐴𝑐𝑐𝐴 + 𝐷)

𝜌𝐷𝑢𝑎𝑙𝐴𝑐𝑐𝐴
⁄  =

𝑥̈𝑠𝐵
𝑥̈𝑠𝐴
⁄                  (5.1.9) 
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Position Calculation 

After the radii are calculated based on Equation 5.1.9, the movement distances in Cartesian 

coordinates at each time interval are as follows:  

 

𝑑𝑥 = 𝜌 × [𝑠𝑖𝑛(𝜃𝑦,𝑡) × 𝑐𝑜𝑠(𝜃𝑧,𝑡) − 𝑠𝑖𝑛(𝜃𝑦,𝑡−1) × 𝑐𝑜𝑠(𝜃𝑧,𝑡−1)]          (5.1.10) 

𝑑𝑦 = 𝜌 × [𝑠𝑖𝑛(𝜃𝑦,𝑡) × 𝑠𝑖𝑛(𝜃𝑧,𝑡) − 𝑠𝑖𝑛(𝜃𝑦,𝑡−1) × 𝑠𝑖𝑛(𝜃𝑧,𝑡−1)]           (5.1.11) 

𝑑𝑧 = 𝜌 × {[1 − 𝑐𝑜𝑠(𝜃𝑦,𝑡)] − [1 − 𝑐𝑜𝑠(𝜃𝑦,𝑡−1)]}                                 (5.1.12) 

 

After a sum calculation process, the movement positions in polar coordinates can be derived: 

 

𝑥𝐺 = 𝑥𝑐 + ∑ 𝑑𝑥𝑖
𝑛
𝑖=1                                                        (5.1.13) 

𝑦𝐺 = 𝑦𝑐 + ∑ 𝑑𝑦𝑖
𝑛
𝑖=1                                                         (5.1.14) 

𝑧𝐺 = 𝑧𝑐 + ∑ 𝑑𝑧𝑖
𝑛
𝑖=1                                                         (5.1.15) 

 

where the subscript 𝑐 denotes the initial position value. 

 

5.1.2 Displacement Calculation with DAD-KF  

Process and Measurement Model of the DAD-KF 

The integral calculation used as a process model of the DAD-KF is established from 

differential equations:  

 

𝑋̇𝑘+1 = 𝐹𝑋𝑘 + 𝐺𝑈𝑘 + 𝑤𝑘, 𝑤𝑘~𝑁(0, 𝜎
2)                                  (5.1.16) 
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𝑋 =

[𝑥𝑠𝐴 𝑦𝑠𝐴 𝑧𝑠𝐴 𝑥̇𝑠𝐴 𝑦̇𝑠𝐴 𝑧̇𝑠𝐴
𝑥𝑠𝐵 𝑦𝑠𝐵 𝑧𝑠𝐵 𝑥̇𝑠𝐵 𝑦̇𝑠𝐵 𝑧̇𝑠𝐵
∆𝑥𝑠 ∆𝑦𝑠 ∆𝑧𝑠 ∆𝑥̇𝑠 ∆𝑦̇𝑠 ∆𝑧̇𝑠]

𝑇

                             (5.1.17) 

 

where 𝑋  is the state’s vector composed of navigation information and two inertial sensor 

difference values, 𝐹 is the system’s dynamic matrix, 𝐺 is the input and noise coefficient matrix, 

and 𝑤𝑛  is the system noise vector of inertial accelerometers. Additionally, 𝑥𝑠𝐴 ,  𝑦𝑠𝐴 ,  𝑧𝑠𝐴  and 

𝑥̇𝑠𝐴, 𝑦̇𝑠𝐴, 𝑧̇𝑠𝐴 are position and velocity values along the x, y, and z axes that are calculated from 

accelerations measured using accelerometer A. The difference values ∆𝑥𝑠, ∆𝑦𝑠, ∆𝑧𝑠, ∆𝑥̇𝑠, ∆𝑦̇𝑠, ∆𝑧̇𝑠 

represent the navigation position and velocity errors between the two accelerometers. The inputs 

(𝑈) are the acceleration elements, which are double differential values of Equation 5.1.13-15 (the 

radius value is calculated from Equation 5.1.7; 𝑆𝑝,∆𝑡 is not the measurement depth).  

The detailed matrix of 𝐹 and 𝐺 are given in Equations 5.1.18-21: 

 

 

𝐹 = [

𝐹6×6
1 06×6 06×6
06×6 𝐹6×6

2 06×6
𝐼6×6 −𝐼6×6 06×6

]                                                  (5.1.18) 

 

 

 

 𝐹6×6
1 = 𝐹6×6

2 =

[
 
 
 
 
 
1 0 0 𝑑𝑡 0 0
0 1 0 0 𝑑𝑡 0
0 0 1 0 0 𝑑𝑡
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1 ]

 
 
 
 
 

                           (5.1.19) 
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   𝐼6×6 =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

                            (5.1.20) 

 

 

𝐺18×6 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1

2
𝑑𝑡
2 0 0 0 0 0

0
1

2
𝑑𝑡
2 0 0 0 0

0 0
1

2
𝑑𝑡
2 0 0 0

𝑑𝑡 0 0 0 0 0
0 𝑑𝑡 0 0 0 0
0 0 𝑑𝑡 0 0 0

0 0 0
1

2
𝑑𝑡
2 0 0

0 0 0 0
1

2
𝑑𝑡
2 0

0 0 0 0 0
1

2
𝑑𝑡
2

0 0 0 𝑑𝑡 0 0
0 0 0 0 𝑑𝑡 0
0 0 0 0 0 𝑑𝑡

1

2
𝑑𝑡
2 −

1

2
𝑑𝑡
2 0 0 0 0

0 0
1

2
𝑑𝑡
2 −

1

2
𝑑𝑡
2 0 0

0 0 0 0
1

2
𝑑𝑡
2 −

1

2
𝑑𝑡
2

𝑑𝑡 −𝑑𝑡 0 0 0 0
0 0 𝑑𝑡 −𝑑𝑡 0 0
0 0 0 0 𝑑𝑡 −𝑑𝑡 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                         (5.1.21) 

 

 

In this section, the positions calculated from Equations 5.1.13-15 (the values of the radii are 

obtained using Equation 5.1.8 or Equation 5.1.9 when the measurement depth is unavailable; the 
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values of the radii are obtained by Equation 5.1.7 when the measurement depth is available). The 

position values are then used as the measurement values of the DAD-KF. 

Covariance Matrices Q & R Design 

To increase the performance of the DAD-KF, we do not calculate the Q & R covariance 

matrices using the sensor noises since the sensor noises are different to the true error. As shown in 

Figure 5.1.1, while the two accelerometers are rotating in polar coordinates, there are known 

distance differences between the three axes and the distance D (0.6 meters in this thesis) between 

the two accelerometers. These position difference values are used as references.  

 

 

 

Figure 5.1.2 Covariance matrices Q & R calculation 
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∆𝑥𝑟𝑒𝑓 = 𝐷 × 𝑠𝑖𝑛(𝜃𝑦,𝑡) × 𝑐𝑜𝑠(𝜃𝑧,𝑡)                                           (5.1.22) 

∆𝑦𝑟𝑒𝑓 = 𝐷 × 𝑠𝑖𝑛(𝜃𝑦,𝑡) × 𝑠𝑖𝑛(𝜃𝑧,𝑡)                                           (5.1.23) 

∆𝑧𝑟𝑒𝑓 = 𝐷 × 𝑐𝑜𝑠(𝜃𝑦,𝑡)                                                               (5.1.24) 

 

Also, the position differences between the two accelerometers (∆𝑥𝑠, ∆𝑦𝑠, ∆𝑧𝑠) are compared 

with the reference values to calculate the errors. 

 

DAD-KF Structure 

Time-update prediction: The time-update predicts the state and variance at time 𝑘 + 1 

dependent on the information at time 𝑡: 

 

{
𝑋̂𝑡
− = 𝐹𝑋̂𝑡−1 + 𝐺𝑈𝑡

𝑃𝑡 = 𝐹𝑃̂𝑡−1𝐹
𝑇 + 𝑄𝑡−1

                                                      (5.1.25) 

 

Measurement Update: The measurement update revises the state and variance using a 

combination of the predicted state and actual observation. 

First, compute the Kalman gain matrix: 

 

𝐾𝑡 = 𝑃𝑡𝐻
𝑇(𝐻𝑃𝑡𝐻

𝑇 + 𝑅)−1                                             (5.1.26) 

 

Then, update the estimate with measurement: 
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𝑥̂𝑡 = 𝑥̂𝑡
− + 𝐾𝑡(𝑦𝑡 − 𝐻𝑥̂𝑡

−)                                             (5.1.27) 

 

Finally, update the error covariance: 

 

𝑃̂𝑡 = (𝐼 − 𝐾𝑡𝐻)𝑃𝑡                                                         (5.1.28) 

 

5.1.3 Results and Discussions 

The proposed DAD-KF fusion method was tested using a lab-scale test rig. Detailed 

information about the test rig, the moving path plan, and the sensor setup is in Chapter 4. Dynamic 

accelerations are easily affected by shock impacts, and the shocks may cause drifts in the 

acceleration double integral calculation. In addition, a KF cannot filter out shock disturbances 

without proper a priori information. Therefore, in this section, we combine the known distance D 

between two IMUs (A&B) and the orientation angles to determine distance difference values 

(∆𝑥𝑟𝑒𝑓, ∆𝑦𝑟𝑒𝑓and ∆𝑧𝑟𝑒𝑓) for the two IMUs during rotational movements (Equations 5.1.22-24). 

After comparing with the known distance difference values (Equations 5.1.22-24), the errors of 

the process and measurement models of the DAD-KF are used to compute the proper values to 

design the Q & R matrices of the DAD-KF.  

 



121 

 

 

Figure 5.1.3 Error comparison of DAD-KF and acceleration integral calculation (IMUA X) 

 

 

Figure 5.1.4 Error comparison of DAD-KF and acceleration integral calculation (IMUA Y) 
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Figure 5.1.5 Error comparison of DAD-KF and acceleration integral calculation (IMUA Z) 

 

Table 5.1.1 The DAD-KF results: a comparison of IMUA and IMUB 

 

 

To evaluate the performance of the DAD-KF and determine the robustness of the method 

to shock disturbances, we conducted lab-scale tests with a test rig. Figures 5.1.3-5 and Table 5.1.1 

compare the results of DAD-KFs (with and without drill string length correction) and show the 

pure integral calculations of accelerations. The magnetic and shock robust orientation angles were 

calculated based on the design introduced in Section 4.1.  
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The position estimation comparison results of IMUA and IMUB on three directions (𝑥, 𝑦, 

and 𝑧) show that the shocks caused large drifts (for example, the drift on the 𝑧 position of IMUB 

was up to 25.7 meters) in position estimations when only acceleration double integral calculations 

were used, as shown in Table 5.1.1. Table 5.1.2 shows the DAD-KF results in first and second 

case studies (Chapter 4). With the proposed DAD-KF method, the drifts were removed. With the 

drill string length correction, the error magnitude was reduced to millimeters; without the drill 

string length correction, the error magnitude was reduced to centimeters. Using the drill string 

length correction and accurate orientation angles, the DAD-KF showed high robustness to shocks.  

 

Table 5.1.2 The DAD-KF results with drill string length correction: a comparison of IMUA and 

IMUB in the first and second case studies  

 

 

The DAD-KF with drill string length correction reduces the effect of shocks if we assume 

the orientation angles are accurate. However, when the orientation angles are incorrect (second 

case study) the magnitude of the errors increased from millimeters to centimeters. 

This section proposed a DAD-KF to increase robustness to shock disturbances during 

position estimation. The known distance D between two IMUs is combined with orientation angles 

(computed in Chapter 4) to provide the difference position references (∆𝑥𝑟𝑒𝑓, ∆𝑦𝑟𝑒𝑓and ∆𝑧𝑟𝑒𝑓) for 
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the DAD-KF design. The outputs of the process and measurement models of the DAD-KF are 

compared with the position difference references and the errors are used to compute the Q & R 

matrices of the DAD-KF then calculate the proper weights. The calculated weights are added to 

the process and measurement outputs for the final DAD-KF output. Based on the lab-scale tests, 

the proposed DAD-KF shows high robustness to unknown shocks under the assumed conditions: 

1) the acceleration can be corrected to a proper value; 2) the two IMUs’ movements are curvilinear 

and rotate in polar coordinates; 3) two IMUs rotate at one end of the rotation center. 

 

5.2 Two-level Structure (Position, Industry Application) 

KFs remove noise and known magnetic disturbances, which allows accurate inclination 

and azimuth angles to be obtained. In many situations, however, the magnetic disturbances are 

unknown. Traditional KFs cannot reduce the effect of the unknown magnetic disturbances caused 

by iron materials or other magnetic resources. It is therefore not feasible to measure the Earth's 

magnetic field in the presence of iron materials, which include casings, drill strings, and iron ores 

that are scattered in the subsurface. Although the effect of this magnetic interference can be 

reduced by utilizing non-magnetic drill collars, this solution could be expensive [Noureldin 2002; 

Collins 2001; Russel et al., 1985; Zhang et al., 2016].  

The orientation angles (inclination and azimuth) and drill string length are inputs of the 

minimum curvature method (MCM), which is the most common and considered the most accurate 

model from the defined algorithms used to compute wellbore trajectory. Another popular method 

is the advanced spline-curve (ASC) model [Abughaban et al., 2016]. The MCM assumes that the 

arc between survey stations is a constant curvature. However, high resolution surveys show that 

this assumption is not true because of the sliding/rotating pattern of drilling [Lentsch et al., 2012]. 
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This assumption miscalculates the actual true vertical depth (TVD) and underestimates of torque 

and drag (T&D) because MCM tends to create an artificially low tortuosity by mathematically 

smoothing the well path between survey stations. To overcome these limitations, Abughaban et al. 

developed the ASC model to provide realistic results and accurately calculate the spatial course of 

a well path [Abughaban et al., 2016]. 

These methods are sufficiently accurate [Amorin et al., 2010; Sampaio 2007]; however, 

the accuracy of both MCM and ASC depends on their inputs: orientation angles and measured 

depth. The inclination angles and TVD calculated from accelerometers and measured depth 

calculated from drill string length have relatively minimal errors because of the stable gravity field 

and known drill string length measurements. However, the position estimations of North and East 

depends on the performance of magnetometers and a low magnetic disturbance environment.  

 

5.2.1 Two-level Structure Filter For Industry Application 

For well path estimation, it is necessary to consider the travel distance in 𝑥(easting), 

𝑦(northing), and 𝑧(true vertical depth) axes. The traditional industry standard method to calculate 

wellbore trajectory is the MCM method MCM combined with KFs. For this kind of KF design, 

the MCM calculation value is used as measurement model information, and the double integral 

calculation of acceleration is used as process model information. [ElGizawy et al., 2010; Zhang et 

al., 2016]. Although MCM is a successful method, the accuracy can be improved using ASC 

because MCM is limited due to its assumption that the arc between survey stations is smooth 

[Abughaban et al., 2016]. However, the accuracy of the wellbore trajectory estimation depends on 

a complex well path model and accelerometer and magnetometer signals having minimal errors, 

which is difficult to obtain during drilling processes. Finally, both MCM and ASC are affected by 
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magnetic interferences, which can cause errors in azimuth angle measurements from 

magnetometers. 

 

 

Figure 5.2.1 The extended filter structure for industry application 

  

A two-level filter is extended for well path position estimation [Liu et al., 2018]. In the first 

level (local), ANFIS is used to filter out the position errors caused by the sensor error; then, the 

outputs of the local filters are entered into the global ANFIS filter to reduce the effect of magnetic 

interferences. 

 

5.2.2 Local Filter (Splines and ANFIS) 
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Spline Method 

The position of a wellpath trajectory can be calculated from an approximate spline 

[Abughaban et al., 2016]: 

 

[

𝑃𝑜𝑠𝐸(𝑖)
𝑃𝑜𝑠𝑁(𝑖)
𝑃𝑜𝑠𝑇𝑉𝐷(𝑖)

] = ∑

[
 
 
 
 𝑙𝑖𝐴𝐸(𝑖) +

𝑙𝑖
2

2
𝐵𝐸(𝑖) +

𝑙𝑖
3

3
𝐶𝐸(𝑖) +

𝑙𝑖
4

4
𝐷𝐸(𝑖)

𝑙𝑖𝐴𝑁(𝑖) +
𝑙𝑖
2

2
𝐵𝑁(𝑖) +

𝑙𝑖
3

3
𝐶𝑁(𝑖) +

𝑙𝑖
4

4
𝐷𝑁(𝑖)

𝑙𝑖𝐴𝑇𝑉𝐷(𝑖) +
𝑙𝑖
2

2
𝐵𝑇𝑉𝐷(𝑖) +

𝑙𝑖
3

3
𝐶𝑇𝑉𝐷(𝑖) +

𝑙𝑖
4

4
𝐷𝑇𝑉𝐷(𝑖)]

 
 
 
 

𝑛
𝑖=1                  (5.2.1) 

 

Here,  

𝑙𝑖 = 𝑀𝐷𝑖+1 −𝑀𝐷𝑖                                                    (5.2.2) 

 

where 𝑀𝐷𝑖 are values of measurement depth.  

[

𝐴𝐸(𝑖)
𝐴𝑁(𝑖)
𝐴𝑇𝑉𝐷(𝑖)

] = [

𝑠𝑖𝑛𝜃𝑖𝑛𝑐(𝑖)𝑠𝑖𝑛𝜃𝑎𝑧𝑖(𝑖)
𝑠𝑖𝑛𝜃𝑖𝑛𝑐(𝑖)𝑐𝑜𝑠𝜃𝑎𝑧𝑖(𝑖)

𝑐𝑜𝑠𝜃𝑖𝑛𝑐(𝑖)

]                                          (5.2.3) 

 

[

𝐵𝐸(𝑖)
𝐵𝑁(𝑖)
𝐵𝑇𝑉𝐷(𝑖)

] =

[
 
 
 
 

𝐴𝐸(𝑖+1)−𝐴𝐸(𝑖)

𝑙𝑖
−
𝑙𝑖

6
𝑧(𝑖+1) −

𝑙𝑖

3
𝑧(𝑖)

𝐴𝑁(𝑖+1)−𝐴𝑁(𝑖)

𝑙𝑖
−
𝑙𝑖

6
𝑧(𝑖+1) −

𝑙𝑖

3
𝑧(𝑖)

𝐴𝑇𝑉𝐷(𝑖+1)−𝐴𝑇𝑉𝐷(𝑖)

𝑙𝑖
−
𝑙𝑖

6
𝑧(𝑖+1) −

𝑙𝑖

3
𝑧(𝑖)]
 
 
 
 

                                         (5.2.4) 
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[

𝐶𝐸(𝑖)
𝐶𝑁(𝑖)
𝐶𝑇𝑉𝐷(𝑖)

] =

[
 
 
 
 
𝑧(𝑖)

2
𝑧(𝑖)

2
𝑧(𝑖)

2 ]
 
 
 
 

                                                                     (5.2.5) 

 

[

𝐷𝐸(𝑖)
𝐷𝑁(𝑖)
𝐷𝑇𝑉𝐷(𝑖)

] =

[
 
 
 
 
𝑧(𝑖+1)−𝑧(𝑖)

6𝑙𝑖
𝑧(𝑖+1)−𝑧(𝑖)

6𝑙𝑖
𝑧(𝑖+1)−𝑧(𝑖)

6𝑙𝑖 ]
 
 
 
 

                                                           (5.2.6) 

 

The details of how to calculate 𝑧(𝑖) are shown in [Abughaban et al., 2016].  

 

ANFIS 

Traditional MCM and spline methods are limitated in terms of the accuracy of well path 

estimations because of sensor measurement uncertainty and the methods themselves: both methods 

assume the arc between survey stations is smooth, and therefore, nonlinear features are not 

considered. Here, the ANFIS method was employed to build a model of orientation angles, 

measurement depth and the well path positions.  

With proper wellbore survey data, the ANFIS can be trained as a 3D model with inclination 

and azimuth. If survey data is not available, the inclination cannot be modeled properly; however, 

a horizontal path model can be built using ANFIS with the assistance of GPS data training. Since 

GPS cannot provide subsurface position information, it is limited in terms of building an 

inclination model. 

 



129 

 

 

Figure 5.2.2 ANFIS design for position estimation  

 

For accuracy of the horizontal plane, ANFIS can be used to build an input/output 

relationship between orientation angles, measured depth, and positions using GPS data as a 

teaching signal. With the GPS correction, the position uncertainties caused by sensor errors and 

the calculation method itself are filtered out. The ANFIS model design of a local filter is shown in 

Figure 5.2.2. As shown in the figure, if the teaching signal is GPS data, the ANFIS represents a 

2D position model of the horizontal plane; if the teaching signal is survey data, the ANFIS 

represents a 3D position model that includes inclination. ANFIS can model a proper relationship 

between inputs and output positions, but the azimuth angle is distorted due to magnetic 

disturbances. This error leads both the spline and local ANFIS methods to output wrong values. A 

global ANFIS filter is proposed to reduce the effect of magnetic disturbances in this situation. 
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5.2.3 Global Filter (ANFIS) 

Input Design of Global ANFIS 

Two IMUs are mounted on a rigid body a known distance apart to reduce the influence of 

magnetic disturbances. In this scenario, we assume a single source of magnetic interference, such 

that one IMU is perturbed while the other is not due to the longer distance from the disturbance. 

The idea is to weigh the information obtained from the two IMUs to estimate the orientation angle. 

A weighted average of 𝐿𝐹1  and 𝐿𝐹2  can provide an appropriate estimation despite magnetic 

disturbances. The inputs of the artificial intelligence (AI) filter system should be set up 

appropriately to determine the weights of each IMU. If the output values of 𝐿𝐹1 and 𝐿𝐹2 are 

similar, then either both IMUs are reliable under clean conditions (without interferences) or they 

experience the same level of interference. In this situation, it is difficult to say which of these cases 

is true, so both are considered untrustworthy. In this situation, the weights 𝑤1 and 𝑤2 should be 

equal.  

If there is a large difference between the two values, that means magnetic disturbances are 

affecting one sensor greatly. In this case, new variables are needed as additional inputs to decide 

the weights of the orientation outputs of both local filters. In this research, deviation degree of total 

geomagnetic field strength (DDTGFS) and deviation degree of geomagnetic field horizontal 

intensity (DDGFHI) are used to calculate these new weights. 

Without magnetic disturbances, the total magnetic field strength measured by the 

magnetometer (𝐵𝑠𝑥, 𝐵𝑠𝑦, 𝐵𝑠𝑧) should be 𝐵(𝐵𝑥, 𝐵𝑦, 𝐵𝑧). The deviation value depends on the sensor’s 

quality. Magnetic disturbances draw the sensor value away from the real magnetic field strength. 

The deviations caused by the magnetic disturbances are defined as follows: 
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             𝐷𝐷𝑇𝐺𝐹𝑆 = |√𝐵𝑠𝑥2 + 𝐵𝑠𝑦2 + 𝐵𝑠𝑧2 − 𝐵|                                             (5.2.7) 

            𝐷𝐷𝐺𝐹𝐻𝐼 = |√𝐵𝑠𝑥2 + 𝐵𝑠𝑦2 − 𝐵ℎ|                                                      (5.2.8) 

 

where the values of 𝐵 (total magnetic field strength) and 𝐵ℎ (horizontal magnetic field strength) 

are different based on their physical location. Local values can be obtained from the database of 

the international geomagnetic reference field; according to this database, the total magnetic field 

strength for Calgary, Alberta, Canada is 𝐵 = 56125 𝑛𝑇, and that the horizontal magnetic field 

strength is 16115 𝑛𝑇.When the DDTGFS of  IMUA is bigger than that of IMUB, IMUA is more 

affected than IMUB. IMUB should be trusted more, and the weight assigned to IMUA should be 

small. When the DDTGFS values of both sensors are similar, then DDGFHI is used. We assume 

that one sensor is exposed to magnetic disturbances and the other is not; therefore, the differences 

between the two sensors are used as input values.  

 

ANFIS Structure 

ANFIS is an algorithm that combines neural network and fuzzy logic approaches to obtain 

more accurate results. In this section, there are three input values and three MFs that serve as 

ANFIS inputs. Bell-shaped membership functions are chosen with a maximum equal to one and a 

minimum equal to zero. The fuzzy logic toolbox in MATLAB was used for training and evaluating 

the fuzzy inference system. As shown in Figure 5.2.3, two azimuth angles calculated from IMU 

measurements are compared with a reference azimuth angle to obtain the teaching weights for 

training the ANFIS fusion model. Then, the ANFIS fusion model provides proper weights of these 
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two IMUs based on the magnetic disturbance magnitudes. After the magnetic disturbances are 

removed, the final azimuth angle is obtained and then input into the ANFIS position model together 

with inclination angle and measurement depth to output the 3D positions.    

 

 

Figure 5.2.3 ANFIS filter for position estimation 

  

 

5.2.4 Experimental Results (GPS Comparison) 

To evaluate the performance of the proposed local filter, we designed and implemented a 

horizontal field test, at the University of Calgary and compared the results with GPS reference 

data. The sensor was first moved on the ground, at the same time the measurement data were 

recorded to calculate the orientations. Then, GPS data was used as a teaching signal to train the 

ANFIS models. The moving area was selected on an almost flat ground with small inclinations. 

As shown in Figure 5.2.4, two IMU sensors were put on a cart and moved along a path indicated 
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by the red line shown on the map in Figure 5.2.5. Sixty-five stops were chosen at one meter 

intervals to simulate the survey stations in horizontal drilling processes. A roll measure was used 

to provide the measured depth, and the orientation angles (inclination and azimuth) were obtained 

from the IMUs. First, the results of one IMU were compared with a GPS reference that was 

obtained using a Trimble R10 GNSS receiver with an accuracy of 8 mm for horizontal and 15 mm 

for vertical position measurements (Trimble 2012). Figure 5.2.6 shows the azimuth and inclination 

angles calculated from the two calibrated IMUs. Differences in the measurements were due to 

manufacturing and could not be avoided even with careful calibration, and these differences caused 

errors in the spline calculations as shown in Figures 5.2.6-7. 

 

Figure 5.2.4 Horizontal field test setup 
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To evaluate the global filter, we manually added three magnetic disturbances that affected 

IMUA, and these disturbances caused a deviation in the azimuth angles.  This deviation is shown 

in Figure 5.2.8 where the blue dashed line is the disturbed azimuth angle, and the red dashed line 

is the azimuth angle measured by IMUB without magnetic disturbances. The three magnetic 

disturbances were put at station 10, 30, and 50 (one at each station). Also, as shown in Figure 5.2.8, 

the magnetic disturbances caused large deviations in the azimuth angles. Further, these azimuth 

angle errors caused horizontal position errors when the spline method was used as shown in Figure 

5.2.9. The error in the vertical position remained the same since the azimuth angle was not used in 

the vertical position calculation in the spline method. 

 

 

Figure 5.2.5 Above ground test path 
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Figure 5.2.6 Azimuth and inclination IMU measurement difference 

 

 

Figure 5.2.7 Spline error difference caused by IMU uncertainty 
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Figure 5.2.8 Azimuth angle with magnetic disturbance 

 

Figure 5.2.9 Position error caused by azimuth angle drift 
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Figure 5.2.10 ANFIS vs. spline method 

 

The performance of the proposed ANFIS filter in an environment with magnetic 

disturbances is shown in Figure 5.2.10. The red dashed line is the error of the spline method 

without the azimuth angle deviation. The ANFIS shows high robustness to magnetic disturbances 

and performs better than the spline method without magnetic disturbances. 

High accuracy wellbore positioning is important to the directional drilling process. Current 

methods used in the industry include well path calculations using the MCM and splines. These 

methods are sufficiently accurate for survey activities; however, the accuracy of these methods is 

dependent on the performance of measurement sensors. In addition, the current horizontal position 

estimation is significantly affected by magnetic disturbances. A two-level structure ANFIS filter 

design was proposed to address the drawbacks in the current wellbore trajectory estimation 

methods. 
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• The ANFIS filter has a two-level structure (local and global). The local filters 

employ ANFIS to model the wellbore trajectory and, to remove the position errors caused 

by poor measurement sensor performance. In this local level design, magnetic disturbances 

are not considered.  

 

• The local ANFIS needs teaching signals to train it. The teaching signals can be 

obtained from survey data, or for horizontal drilling path estimations, they can be obtained 

from GPS data. There is no reference to correct underground horizontal estimations and 

current subsurface position estimation accuracy only depends on the performance of 

magnetometers. If it is assumed that magnetometers experience the same situation in above 

ground and underground environments, GPS and ANFIS can be used to correct the 

magnetometer errors in underground environments given a similar route above ground. 

The key factor of this design is the accuracy of ANFIS estimations. A GPS comparison test 

conducted at the University of Calgary, with GPS correction, showed that the proposed 

local ANFIS performed well and was sufficiently accurate. 

 

 

• The outputs of two local filters were input into a global ANFIS filter, which 

adjusted the proper weights of the two local filters based on the strength of the magnetic 

disturbances. This design assumed that both sensors were not disturbed simultaneously; 

therefore, depending on the deviation strength of the two magnetometers to magnetic 

disturbances, the global ANFIS makes proper adjustments. 
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• From the evaluation results of the GPS test data, the proposed design showed a 

marked reduction in estimation errors and increased robustness to sensor noise and 

disturbances. 

 

5.3 Summary  

This chapter introduced a newly designed KF to estimate positions with high robustness to 

shock impacts. The Q & R matrices of traditional KFs require a priori error information, which is 

difficult to obtain in real applications. Consequently, the known distance D between two IMUs 

was combined with orientation angles and then used as a reference for Q & R computing to allow 

the KF to update the Q & R matrices so that the matrices could be computed without a priori error 

information. The lab-scale tests showed this newly designed KF had high robustness to shock 

disturbances. 

In addition, a real drilling industry process was simulated at the University of Calgary. 

Two-level structure position fusion (global: ANFIS; local: ANFIS or industry favored spline 

position estimation method) was introduced to reduce the effect of magnetic disturbances and 

sensor uncertainties. The results of the two-level structure position estimation method were 

evaluated using GPS data as a reference, and they showed what this method performed better. 
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CHAPTER 6. CONCLUSIONS 

 

Improving the accuracy of sensors for underground orientation is crucial. Subsurface 

industry activities, such as monitoring a reservoir’s leakage or directional drilling, need to be 

oriented correctly (inclination and azimuth) and have accurate locations (north, east, and vertical). 

Magnetic disturbances need to be identified and suppressed to achieve higher orientation accuracy 

during the sensing process. GPS is typically used for this purpose, but signals are difficult to obtain 

beneath the surface. Therefore, high precision in position sensing with IMUs must be achieved 

without GPS.  

Different methodologies for improving the accuracy of underground orientation and 

displacement measuring are proposed in this research. The orientation angle fusion methodologies 

are divided into two main types: SLF and SL-KF.  

SLF: to reduce the effect of unknown magnetic and shock disturbances, we use ANFIS to 

build error models of each IMU sensor (magnetometer, gyroscope, and accelerometer) under 

working conditions with magnetic and shock disturbances; based on these error models, the proper 

weights are calculated and added to the IMU sensors for the final output. 

SL-KF: SLF designs the process and measurement inputs of a KF, and ANFIS is used to 

build error models for covariance matrices to increase the ability of KF to recognize errors since 

the performance of a KF depends on the proper design of covariance matrices. Finally, the 

orientation angles computed from the above-mentioned fusion methods are used for position 

fusion. 

 The orientation angles are robust; however, the position estimation calculated using double 

integral calculations of dynamic accelerations are still affected by shocks. The dual acceleration 
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difference method is proposed to build reference values of covariance matrices (Q & R) of a 

position fusion KF, called DAD-KF. Based on the reference values, the proper covariance matrices 

are computed and used to recognize shock interferences. The adapted covariance matrices increase 

the shock robustness of the DAD-KF. Finally, a two-level positioning fusion structure that uses 

ANFIS is also proposed and evaluated using a simulated drilling process. The local-level ANFIS 

models the wellbore path using orientation angles (azimuth and inclination) and measurement 

depth as inputs. Then, the global-level ANFIS removes the unknown magnetic disturbances.  

This chapter provides a summary of the presented works and the novel contributions of 

this research. The limitations and assumptions associated with the proposed methods are also 

discussed. Future works are discussed in the last section of this chapter. 

 

6.1 Expected Scientific Contributions  

The novel contributions of this research fall into three categories. First, a special IMU 

configuration is proposed. Then, the supervised learning filter (SLF) is proposed to increase a 

sensor’s orientation angle fusion robustness to unknown magnetic and shock disturbances. Finally, 

a dual acceleration difference method is proposed to compute the reference values for covariance 

matrices of a position fusion KF (DAD-KF). 

 

Subsurface Sensing System Configuration 

This configuration consists of two redundant IMUs that are located on a rigid body 

separated by a known distance D; the distance D reduces the negative influence of magnetic 

disturbances. This configuration allows for the identification of unknown magnetic disturbances 

assuming that the two IMUs are not exposed to magnetic disturbances at the same time (because 
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of D, when one IMU is close to a magnetic disturbance, the other IMU is far from the magnetic 

disturbance). Also, IMU accelerometer measurements can be corrected using the dual acceleration 

difference method and D and the orientation angles in environments with insufficient GPS data, 

such as underground. The two redundant accelerometers have a difference value D as the sensor 

system moves (assuming the movement has a curvilinear trajectory with polar coordinates). The 

different position values on the x, y, and z axes can be calculated using D multiplied by orientation 

angles (azimuth and inclination). The proposed design uses these different positions to correct the 

positions calculated from double integral calculation of accelerometers’ measurements. The 

corrections are reliable because D is a constant value and the orientation angles are accurate. 

 

Supervised Learning Filter for Orientation Design 

The second contribution is the creation of an identification technique that detects unknown 

magnetic and shock disturbances. This technique predicts the deviation strength of the magnetic 

and shock interferences from the error models built by ANFIS. The measurements from all sensors 

(magnetometer, gyroscope, and accelerometer) are compared to calculate the relative errors that 

are then used as the inputs of the ANFIS. After a training process that uses teaching signals, the 

proper error models are built and used to calculate the weights for the final angle fusion outputs. 

The error can be reduced to smaller than 0.26 degrees through RMS value evaluation. 

Also, the supervised learning method can be used to enhance the performance of an 

orientation fusion KF named SL-KF. With a priori noise information and the proper covariance 

matrices, KFs work properly. However, measuring noises properly is a problem of the KF design, 

especially in the presence of magnetic and shock disturbances with random strengths. The ANFIS 

error models can identify unknown magnetic and shock disturbances. Therefore, ANFIS is used to 
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compute the errors to design the covariance matrices of the SL-KF. For the first step, SLF models 

the errors of the process and the measurement inputs of the KF. Then, these modeled errors are put 

into the covariance matrices to compute the proper weight of the final SL-KF output. The 

robustness of the SL-KF increased approximately 56% compared with the SLF approach in the 

case where all sensors were negatively affected. 

 

Dual Acceleration Difference Method 

 Another research contribution is recognizing the usefulness of acceleration information in 

obtaining accurate displacement measurements. Almost all traditional methods rely on external 

correction aids such as GPS. These methods limit the application fields, especially for subsurface 

environments.  

This thesis proposes how to overcome this limitation using alternate methods. Instead of 

using real external position measurement signals, such as those obtained from GPS, it uses 

correction signals designed based on the dual acceleration difference method to correct the 

velocities and positions. The distance D between the two accelerometers and the rotation 

information are used for real correction signal computation.  

A polar coordinates system is introduced to build a movement model that reduces the 

influence of centrifugal accelerations, which do not contribute to the displacement magnitude 

calculation. The experimental results show the effectiveness of the proposed method (the position 

errors are reduced from meters to millimeters).  
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6.2 Limitations and Assumptions  

A subsurface sensor system with original fusion methodology is introduced in this thesis. 

The sensor fusion system is designed to increase robustness to unknown magnetic and shock 

disturbances during orientation estimation and to obtain accurate positions using only acceleration 

information. 

The SLF is proposed to improve the robustness to magnetic and shock disturbances. All 

angles obtained from magnetometers, gyroscopes, and accelerometers are compared, and their 

relative errors are put into the ANFIS to build error models. The final weight of each sensor is 

calculated according to the outputs of each error model. The proposed method performs 

sufficiently under the assumed conditions: 1) the reference angle can be obtained, 2) only one 

magnetometer is affected by magnetic disturbances at the same time, 3) two IMUs rotate at one 

end of the rotation center, and 4) this method is only applied under similar conditions in a training 

environment. The angle errors caused by unknown magnetic and shock disturbances are corrected 

by the proposed fusion method. However, the errors cannot be satisfactorily reduced in the 

scenario where all sensors are inaccurate. Also, the SLF uses two accelerometer difference values 

to increase the redundant rotation information to be a backup for a gyroscope in the cases where a 

gyroscope is absent. However, direct applications of this setup (dual accelerometer difference) 

cause large errors because of the accelerometer noise. This setup has low robustness to shocks as 

well. 

A KF combined with the SLF is proposed to increase the performance in the case where 

all sensors are inaccurate. SLFs are used as local filters to determine the rotational angular speeds 

and angles to be used as inputs for the global filter (SL-KF). All angles and angular speeds from 

magnetometers, gyroscopes, and accelerometers are compared, and their relative errors are put into 
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ANFIS to build the error models of the covariance matrices of the SL-KF. Analyzing the results 

shows the SL-KF’s robustness increases 56% compared with the SLF. However, SL-KF has the 

limitations of the SLF and more complex calculations than the SLF. 

This thesis proposes a position fusion named DAD-KF based on the dual acceleration 

difference method designed for position correction instead of using a GPS correction signal to 

reduce the errors caused by shock to the accelerometers. The distance D between the two redundant 

IMUs combined with the rotation information obtained from the SLF is used to design a new real 

correction signal. The application of this redundant data correction method requires special 

assumptions: 1) the rotation center of both IMUs must be at one end of a straight line, and 2) the 

movement is along a curvilinear path in polar coordinates. It is only in this situation that the dual 

acceleration difference method can provide accurate correction information. 

 

6.3 Future Works  

This study develops different, effective methods for subsurface orientation angles and 

position fusion that is robust to shock and magnetic disturbances. However, the accuracy of the 

fusion results can be improved if the limitations and assumptions associated with each method are 

addressed. Further research can be divided into two main categories: (a) using geomagnetic 

information as a reference to reduce magnetic disturbances and (b) developing the SLF to semi-

supervised learning.  

Geomagnetic Reference Design 

Sensor errors were used in this study, which means that there were no trustworthy references 

to judge the reliability of each sensor. Therefore, the SLF was employed to decide the reliability. 

However, the SLF is limited in that it requires teaching signals for training, but these teaching 
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signals are difficult to obtain during real field applications, especially in subsurface sensing. 

Geomagnetic field information may be a good candidate to address this limitation.  

 

 

Figure 6.1.1 Reference angle computing based on a geomagnetic reference 

 

As shown in Liu et al. [2018], two redundant IMUs (IMUA and IMUB) are mounted on a 

rigid body with a known distance, and the weight information obtained from these sensors is used 

to estimate orientation angles. A weighted average of azimuth angles obtained from IMUA and 

IMUB can provide an appropriate estimation despite magnetic disturbances. If the output values of 

IMUA and IMUB are very close, both IMUs are unaffected by magnetic interferences or they 

experience the same level of interference. In this situation, it is difficult to say which of these cases 

is true, so both are considered untrustworthy. 
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If there is a large difference between the two values of IMUs, magnetic disturbances affect 

one sensor greater than the other sensor. In this case, new variables are necessary. Two values, 

deviation degree of total geomagnetic field strength (DDTGFS) and deviation degree of 

geomagnetic field horizontal intensity (DDGFHI) are proposed. The values of DDTGFS and 

DDGFHI can be calculated using Equations 5.2.7 and 5.2.8. These two kinds of values can be used 

to compute the covariance matrices for a KF.  

The azimuth angle, calculated from the KF (Figure 6.1.1), is used as a teaching signal for 

the proposed SLF and SL-KF approaches.  

 

Semi-Supervised Learning Design 

This thesis proposes using one sensor, for example a magnetometer, as a reference to obtain 

errors by comparing this reference sensor with other different sensors. Then, these error groups 

are labeled as different groups, for example small error groups or big error groups, using a 

supervised learning method (ANFIS was used to build error models in this thesis). Neural networks 

(NN) are also good candidates to build the error model of the proposed SLF method. The basic 

function of the NN is to build a model using input/output data sets [Farias et al., 2018]. Another 

well-known supervised learning method is called random forests (RF). RF is a proven method for 

regression and classification [Cutler 2010]; therefore, RF can also build the error model of the 

proposed SLF approach. The thesis shows that the SLF performs well with a training process. 

However, training data is insufficient in real applications, such as subsurface sensing. 

Output values are not necessary for an unsupervised learning method to label group data. 

As introduced in Ghahramani [2004], the unsupervised learning module receives input 𝑖1, 𝑖2,…, 
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𝑖𝑛, but no teaching signals are obtained. Therefore, the main function of the unsupervised learning 

method is clustering; however, it is difficult to do the labelling [Lyons et al., 2018]. 

A semi-supervised learning method has been proposed by researchers to combine the 

benefits of both supervised and unsupervised learning [Chapelle 2006]. In this method, the labeled 

data (training data) and unlabeled data is mixed to build a new model. The advantages of semi-

supervised learning include reducing the training data amount and improving the model robustness 

because of a more precise decision boundary [Jain 2017]. Therefore, when the training data are 

not sufficient for training the SLF, the following process may address this problem. First, the SLF 

is trained using lab-scale test data or partial field data to build the initial error models of magnetic 

and shock disturbances; then, the new unlabeled data is labeled by semi-supervised methods, such 

as K-means, to update the new error models.     
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