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Abstract 

The classification of pure quantum states in terms of the resources they provide with re-

gards to performing computational tasks is an important problem. From a fundamental 

standpoint, such a classification could give insight into the specific features of quan-

tum information that differentiate it from its classical counterpart. From the pragmatic 

perspective, exhaustive knowledge of the specific forms that a particular resource can 

take could lead to simplifications in the implementations of various quantum informa-

tion processing protocols. One means of classifying pure states is to divide them into 

classes whose members are interconvertible by means of protocols consisting solely of 

local operations and classical communication (LOOC). If the conversion succeeds with a 

probability less than unity, then the pure states are said to be equivalent under stochastic 

LOCC, or SL000. 

There is a special class of states called stabiliser states, having some interesting prop-

erties. Firstly, stabiliser states are efficiently describable in terms of a linearly rather 

than exponentially growing number of parameters in the size of the Hubert space of the 

system. Secondly, the class of stabiliser states is sufficiently rich that such states can 

be used for a variety of important quantum information processing tasks, most notably 

quantum error correction and measurement based quantum computing. Since any state 

that is SLOCC-equivalent to a stabiliser state can be used to perform the same tasks, 

it is a problem of interest to characterise such states. All stabiliser states are equivalent 

under local unitary operations to a specific kind of stabiliser state known as a graph 

state. Thus, it is sufficient for our purposes to consider SLOCC-equivalence to graph 

states in particular. 

Suppose one is given two multipartite pure states I) and > which may or may not 

be connected by a separable, invertible operator 8, the diagnostic criterion for SL000 
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equivalence or inequivalence. One approach to testing the SLOOC-equivalence of Ic) and 

l'b) is to attempt to solve the relationship Ic) = SI) explicitly for S. This is in general 

difficult, as the equations are multivariate polynomial equations with degree equal to the 

number of particles on which ) and c) are defined. In this thesis, a set of necessary 

conditions for the equivalence of I ') and 10) are given, using the stabiliser formalism, in 

the special case that q5) is a graph state. The evaluation of these conditions involves the 

solution of multivariate polynomial equations, but most of these conditions have degree 

much lower than the number of particles. A discussion of how the set of conditions may 

be extended to one that is sufficient to guarantee SLOCC-equivalence is also presented. 
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Chapter 1 

Introduction 

The classification of quantum states in terms of the characteristics they possess that allow 

them to be used for quantum information processing jobs is an important task. Many 

realistic quantum information processing tasks take the form of a situation in which a 

quantum system, or resource, consisting of some number of two-level quantum systems 

called qubits, is distributed over a number of spatially separated parties, and these parties 

are required to alter the quantum state of the resource in some predetermined way so as 

to produce a desired output. The parties can usually communicate classical information 

to each other as well (for example over the telephone), but they are usually unable 

to exchange quantum information. Thus, in their quest to solve the task presented to 

them, the parties are restricted to protocols in which each party is able to perform local 

operations and classical communication (LOGO). If the resource can be deterministically 

converted into the final quantum state by means of LOGO alone, then the resource and 

the final state are said to be LOGO-equivalent. If there is a LOGO protocol that effects 

the conversion with some finite probability rather than with certainty, then the initial 

and final states are said to be equivalent under stochastic LOGO (SL000). Two different 

quantum states that are SL000-equivalent to each other can be used to perform the same 

information processing tasks, although not necessarily with equal probabilities of success. 

Therefore, the classification of quantum states into equivalence classes under SL000 is 

of obvious interest to quantum information theorists. 

A particularly interesting class of quantum states is the so-called stabiliser states. 

These states have a compact, elegant description in terms of finite abelian groups called 

stabilisers. They are also known to serve as resources for some important quantum 

1 



2 

information processing tasks, most notably quantum error correction and measurement-

based quantum computing. It is not usually trivial to create a stabiliser state in an 

experimental setting in a way that is stable and relatively free of errors. For example, in 

the case of measurement-based quantum computing (MBQC), the required resource state 

is a specific kind of stabiliser state known as a cluster state. The principal experimental 

realisations of cluster states have thus far relied on some dynamical process, and the 

result is a resource state that is unstable and subject to decoherence. A potential road 

to circumventing this problem is to create some environment in which the ground state 

encodes a cluster state. This ground state must be non-degenerate and there must be 

a large energy gap between the ground state and the first excited state. It has been 

proven that cluster states themselves cannot arise as the non-degenerate ground states of 

any physically realisable Hamiltonian involving n-body interactions where n is at most 

2. However, it might be possible to produce states that are SLOCC-equivalent to cluster 

states as non-degenerate ground states of such Hamiltonians. Such states can likely serve 

as resources for probabilistic MBQC. 

It is generally a hard problem to determine SLOCO-equivalence of two arbitrary pure 

quantum states. The task of dividing up the complete set of pure states on n-qubits 

into disjoint SL000-equivalence classes has been accomplished for the cases n = 2 (two 

classes) and n = 3 (six classes). The cases where n ≥ 4 turn out to be much more 

complicated, and it appears that there are an infinite number of SLO CC-equivalence 

classes in this case. Nevertheless, there are cases in which it is interesting simply to 

determine whether some specific quantum state is SLOCC-equivalent to another. For 

example, if a particular pure state is known to be the non-degenerate ground state of a 

gapped, physically realisable Hamiltonian, it could be useful to determine whether this 

state is SLOCC-equivalent to a cluster state. This problem should be much simpler than 

the general SLOCC classification problem. This thesis tackles the specific case in which 
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the given pure state is to be tested for SLO CC-equivalence to a specific kind of stabiliser 

state known as a graph state. The specific problem considered herein can be stated 

as follows: given an n-qubit graph state Ig) and an n qubit pure state I) determine 

whether or not there is an operator S = ®t S such that l) = SIg), where the Siare 

single-qubit invertible operators. The solution of this problem implies the solution of the 

more general case of testing equivalence to a stabiliser state, as all stabiliser states are 

known to be locally equivalent to a graph state. 

The approach taken here is to use the stabiliser formalism, most commonly seen in 

quantum information in the context of quantum error correction, to determine a set 

of necessary and sufficient conditions under which some given quantum pure state is 

SLOCC-equivalent to a graph state. Graph states can be described by the kind of stabilis-

ers that are usually seen in the literature on quantum information, those whose elements 

consist of tensor products of operators from the Pauli group. Due to the structure of 

SL000 transformations, it is shown in this thesis that SLOOC-transformed graph states 

can also be described by stabilisers comprising operators of the form of tensor products 

of local operators. In this case, the local operators are not from the Pauli group, but 

they have the same multiplication table (and therefore commutation relations) as the 

Pauli group, and are related to the Pauli group elements by similarity transformations. 

An arbitrary quantum state that is SLOCC-equivalent to a graph state must therefore 

possess a stabiliser whose elements are built from such local Pauli-like operators. This 

thesis gives a set of conditions involving the given state and some graph state (on the 

same number of qubits) that the Pauli-like operators must obey given their existence. 

We can therefore, given an arbitrary quantum pure state, assume the existence of a sta-

biliser for this state comprising Pauli-like local operators, and test the conditions for 

some graph state. If these conditions are not satisfiable, then our assumption of the 

existence of the Pauli-like operators was invalid, and the given state is inequivalent to 
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the graph state under SLOCC. The conditions derived herein thereby constitute a set 

of necessary conditions for SLOCC-equivalence of an arbitrary pure state and a graph 

state on the same number of qubits. Although the existence of a similar set of sufficient 

conditions is not proven, some discussion as to how one might construct these conditions 

is given in the conclusions. Furthermore, the form taken by the conditions allow them to 

be tested more easily than any similar conditions based on solving for the existence of an 

SLOCC-transformation between the given state and the graph state directly. Solving for 

an explicit SLOCC-transformation involves solving a system of multivariate polynomial 

equations, each having degree equal to the number of qubits in the system. It is known 

that the general problem of solving even systems of multivariate polynomials of degree 

2 is NP-complete. However, there is cause for hope; it is sometimes possible to solve 

overdefined systems of multivariate polynomial equations, such as the system in which 

we are interested, efficiently. The necessary conditions for SLOCC-equivalence between 

a graph state and an arbitrary pure state given in this thesis are also in the form of 

multivariate polynomial equations, but with reduced degree. Specifically, for an n-qubit 

(n 
system, there are conditions of degree k. 

k) 

The thesis is structured as follows: background information on quantum information 

processing is found in Chapter 2. Important concepts regarding SLOCC-equivalence are 

detailed in Chapter 3. The necessary background on the general stabiliser formalism 

and the standard way in which it arises in quantum information theory is presented in 

Chapter 4. The new contributions of this thesis, namely the derivation of the necessary 

conditions for SLOCC-equivalence between a graph state and an arbitrary quantum pure 

state, are provided in Chapter 5. Finally, the conclusions of this thesis and some ideas 

as to how to construct a set of sufficient conditions for SLOCC-equivalence, as well as 

possible future applications to MBQC, are the subject of Chapter 6. 



Chapter 2 

Introduction to Quantum Information Processing 

2.1 The power of quantum information processing 

Quantum information processing is an exciting and relatively new field of research that 

harnesses the properties of quantum mechanics for the purposes of computing. Although 

there is no conclusive proof as yet, it appears that quantum computers offer significant 

efficiency improvements over their classical counterparts with regards to performing cer-

tain computational tasks. For example, Grover's algorithm for quantum information 

processors gives us a means for searching for a marked item in an unsorted database 

in a time proportional to the square root of the number of entries in the database, a 

quadratic speed-up over the best known algorithm for a classical computer [1]. In 1994, 

Shor demonstrated how a quantum computer can factor large numbers in a time poly-

nomial in the size of the number, an exponential speed-up over the best known classical 

algorithm [2]. This result has important implications for communication security, as 

current cryptography schemes such as RSA encryption rely upon the hardness of the 

factoring problem for their security [3]. Perhaps most excitingly, Feynman conjectured 

in 1982 [4] and then Lloyd showed in 1996 [5] that it is possible to simulate quantum 

systems efficiently with a quantum computer, a task that is intractable by any known 

means on classical computers because the quantity of complex numbers required to spec-

ify quantum systems increases exponentially as a function of the number of particles in 

the system. Quantum simulation is of tremendous importance to scientists who study 

the behaviour of quantum systems. Therefore, quantum computers appear to be a truly 

fascinating technological prospect. 

5 
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2.2 Qubits 

2.2.1 Classical bits and qubits 

In classical information theory, the basic unit of information is called the classical bit, or 

just the bit. Abstractly speaking, a bit of information is a single character representing 

either the number 0 or the number 1. The physical realisation of bits is some physical 

system that only exists in one of two physically distinguishable states, one corresponding 

to 0 and the other to 1. For example, a bit can be realised by means of an electrical 

circuit containing a switch. If the switch is open and no current flows through the circuit, 

then the bit is said to be in state 0. If the switch is closed and current flows, then the 

bit is in state 1. These states can be distinguished by means of a measurement of the 

current in the circuit. 

Analogously, in quantum information theory, the basic unit of information is called 

the quantum bit, or just the qubit [6]. Similar to the bit, a qubit is a physical (quantum) 

system that can exist in one of two physically distinguishable states, corresponding to 

the 0 state and the 1 state. However, due to their quantum nature, qubits are also able 

to exist in a superposition of the 0 and 1 states. For instance, a qubit can be physically 

realised by a spin-! particle. The 0 and 1 states respectively correspond to the amount 

of the total spin of the particle projected onto some fixed axis being +1 or - in units 

of the reduced Planck constant Il. These states can be distinguished from each other 

by measuring the chosen component of total spin, for example with a Stern-Gerlach 

apparatus [7]. The superposition property of qubits is essential to the working of many 

interesting quantum algorithms, those that either improve on their best known classical 

counterparts or describe tasks that are impossible with classical information. 
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2.2.2 Dirac notation for quantum state vectors 

Throughout this thesis, Dirac notation will be used to describe quantum states. In 

this notation, a quantum state will be represented by a construction called a ket. The 

kets corresponding to the zero and one states of a qubit will be denoted as 0) and Ii) 

respectively. These states constitute an orthonormal basis for the Hilbert space of the 

qubit, called the computational basis [6]. In this notation, an arbitrary quantum pure 

state (i.e. one that can be regarded as a superposition of 0) and Ii) would look like 

10) = a0) + b11), (2.1) 

where a, b (=- C. The coefficients a and b will obey the relation 

al2 + b12 = 1 (2.2) 

and a quantum state for which this is true is said to be normalised. For a normalised 

quantum state, the quantities jal2 and 1b12 can be interpreted as the probabilities that 

an attempt to reveal the state of the system, via a so-called measurement in the compu-

tational basis, would yield state 10) and state Ii) respectively. 

It should be noted that it is not always possible to describe the state of a quantum 

system using this formalism. Those quantum states that can be specified in this way are 

called pure states. If Alice knows that a quantum system is in a pure state, and also 

knows the state of the system, then she knows all the information about the system that 

can be known. There is another class of quantum states, called mixed states, that cannot 

be described with the formalism of this section. A more advanced formalism, the density 

matrix representation of quantum states, addresses this issue [8, 9]. The density matrix 

representation is discussed in section 2.6. 
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2.2.3 Column vector notation 

Quantum states can be viewed as vectors in a Hilbert space, and can thus be represented 

as column vectors. For example, we can use the qubit states 0) and 1) to specify an 

orthonormal basis for the Hubert space of the qubit, represented in vector form as 

and 

(2.3) 

(2.4) 

and thus the general superposition state of Equation (2.1) would be written as 

I&) = alO) + bll) 

1 0 
+b 

0 

a 

b 

Due to the existence of this concrete representation of abstract kets in a Hilbert space in 

terms of column vectors, the terms 'state', 'vector' and 'state vector' will often be used 

interchangeably in this thesis. The basis consisting of the vectors 0) and Ii) is called 

the computational basis for the Hilbert space, and the vectors 0) and 1) themselves are 

called computational basis vectors or computational basis states. 

2.2.4 Dual vectors and inner products 

Every vector in a Hilbert space has a corresponding dual vector. In Dirac notation, the 

dual vector of a quantum state represented by a ket is denoted using a construct called 

a bra. The bra corresponding to a ket I) looks like ('I. In vector representation, the 
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dual vector of a column vector representing a ket is given by a row vector denoting the 

corresponding bra. The bra vector is the adjoint, or complex conjugate transpose of 

the dual column vector. Denoting the adjoint operator by the symbol t and complex 

conjugation by *, we have 

= [a* b*]. 

The inner product between two state vectors ) and q) is given by the product of the 

dual vector (''I with q5), denoted by (4), With this definition in mind, the normalisa-

tion condition from Equation (2.2) is given by 

(2.5) 

2.2.5 Multiple-qubit systems 

Product states 

The Kronecker product, denoted by ®, is used in the description of multiple-qubit sys-

tems. Suppose two qubits are individually in the state 10). Then their combined state 

would be given by I0)®I0), which can be written more compactly as IOU). There are three 

other possible combined states in which each of the individual qubits is in a computa-

tional basis state; these are the states 101), 110) and Ill). Together, these four combined 

states form a basis for the Hubert space of the two-qubit system, and this basis is again 

called the computatational basis for the two-qubit Hilbert space. For example, if qubit 1 

is in the state I) = a1 10) + bill) and qubit 2 is in the state l'I'2) = a2 0) + b2 1), then the 

total state Itot) of the combined system expressed in the computational basis is given 
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by 

kbtot) = I'i) ® I'P2) (2.6) 

= (ailo) + b111)) 0 (a210) +b21 1)) (2.7) 

= a1a2100) +aib2101) + bia2jlO) + bib2lll) (2.8) 

a1a2 

a1b2 

b1a2 
(2.9) 

b1b2 

The state is called a product state, because it is just the Kronecker product of 

two single-qubit states. In general, a product state is any multi-qubit state that can 

be written as the Kronecker product of sinle-qubit states. Note that while the Hubert 

space of each individual qubit had dimension 2, the Hubert space of the combined system 

has dimension 4. In general, the Hilbert space of a combined n-qubit system will be 2-

dimensional. The computational basis vectors are given by the set B, where 

B={Ikik2 ... k) lkE{0,1} for all iE{l,2,...,n} }. (2.10) 

The labels of the kets in B just look like binary representations of the decimal numbers 

from 0 to 2 - 1, so we label these kets with decimal number labels. With the under-

standing that ki refers to the ith digit in the binary representation of the decimal number 

k, we can just rewrite the definition of B from equation (2.10) as 

B= { k) I ki € {0,1} for all iE {1,2,...,n} }. (2.11) 

For example, in the case of two qubits, the computational basis vectors would be labelled 

10) 00), Ii) 01), 2) 110) and 3) 11). The combined state for n qubits each in 

state lb) = ai,olO) + aj,iIl) with the label i running from 0 to n - 1 can thus be written 
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as 

n—i 

'tot)  
i=O 

n—i 1 

= ®aj,jIj) 
i=O j=O 

ko=Oki=O k_1=0 

= CkIk), 
k=O 

where 

(2.12) 

(2.13) 

ao,k0a1,k1 . . . an— l,kn_1Ikok1 .. . k) (2.14) 

(2.15) 

Ck = ao,k0al,k1 . . . a_1,k_  - 

The dual vector for the combined state is, naturally, given by 

(kJ) 
k=O 

(2.16) 

(2.17) 

(2.18) 

where c is the complex conjugate of Ck as defined in Equation (2.16). It is straightforward 

to show that inner products for two product states are described by the rule 

 / \j=O / i=O i=O 

As a consequence, any product state that is a product of normalised single-qubit state is 

itself normalised. 

Entangled states 

Product states are not the only kind of multi-qubit states. A system of multiple qubits 

can also be in an entangled state, one that cannot be written as the Kronecker product 

of single-qubit states. The signature of an entangled state is the absence of a solution to 

the system of equations (2.16) for the coefficients aij of the single-qubit states given the 

coefficients Ck of the state of the total system. 
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Example 2.2.1. A simple example is the two-qubit Bell state [10], 

kbBell) = (IOU) + I")). (2.20) 

For this state, the computational basis coefficients are c0 = ., c1 = 0, c2 = 0 and 

C3 = . It is clear that there is no solution to the system of multivariate polynomial 

equations 

co = a0,0a1,0 (2.21) 

= a0,0a1,1 (2.22) 

C2 = a0,1a1,0 (2.23) 

C3 = a,1a1,1 (2.24) 

and thus, the state I'bBe11) is entangled. 

The physical significance of entangled states is that there are correlations between 

the states of the individual qubits. The fact that c1 = c2 = 0 means that there is no 

probability of measuring qubit 1 to be in state 0) and qubit 2 in state Ii) simultaneously, 

nor is there any probability of finding qubit 1 in state 1) and qubit 2 in state 0) 

simultaneously. 

2.3 Quantum logic gates 

Classical and quantum computers process information by manipulating bits and qubits 

respectively. These manipulations occur by means of logic gates. Abstractly, a classical 

logic gate takes one or more bits as input and, depending on the states of the input bit, 

produces one or more bits as output. For example, the NOT gate takes a single bit as 

input and then flips the state of the bit. If the input bit was in state 0, the output bit 

will be in state 1, and vice-versa. If the bit were realised as an electrical circuit with 
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a switch as described in section 2.2.1, then the NOT gate has the effect of flipping the 

switch. The AND gate is an example of a multi-bit gate: it takes two bits as input and 

produces an output bit that is in state 1 if both the input bits were in state 1 and in 

state 0 otherwise. 

QuanW* logic gates follow the, same prindiples, but at on ,qubils insted of bits. The 

quantum analogue of the NOT gate, which is called the Pauli X gate, maps an input 

qubit in state 0) to an output qubit in state 1) and an input qubit in state 1) to an 

output qubit in state 0). The difference between the classical NOT gate and the Pauli X 

gate is that the input qubit can be in a superposition of the states 0) and 1), in which 

case the output qubit will also be in a superposition of these states. The precise action 

of this gate can be written as 

X (alO) + bll)) = (blO) + all)). (2.25) 

In the above equation, X represents the gate being. applied, and it is written to the left 

of the state to which it is applied. The output qubit is in the state on the right hand 

side of the equation. The logic gate is a linear operator that acts on quantum states 

represented by vectors in a Hilbert space. Throughout this thesis, the terms gate and 

operator will thus be used interchangeably. 

Similarly to how quantum states can be represented by column vectors, operators can 

be expressed as matrices. The action of an operator is then described by multiplying the 

matrix on the right by the column vector representing the state on which the operator 

is acting, with the result being a column vector expressing the state of the output qubit. 

In general, a linear operator 0 can be expressed in any orthonormal basis {li)} in either 

Dirac notation as - 

0ij  (2.26) 
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or in matrix notation as 

000 001 

0= 
0 10 On 

O(n-1)0 O(n-1)1 °(n-1)(n-1) 

(2.27) 

where the quantities oij are called the matrix elements of 0. For example, the X operator 

is represented in the computational basis using Dirac notation as 

and in matrix notation as 

X = ioii + lixol 

X = 
01 

10 

Equation (2.25) can then be written in the computational basis as 

01 a 

10 b 

b 

a 

(2.28) 

(2.29) 

(2.30) 

The matrix notations of several important quantum gates in the computational basis are 

summarised in Table 2.1. The gates R () and R () describe rotations of the pure state 

vector of a single qubit about axes of the Bloch sphere, a convenient visualisation of the 

space of single-qubit pure states [11]. 

Notice that the action of the X operator is completely specified by its effect on 

the computational basis states 0) and 1), since it is a linear operator. In quantum 

information processing, operators are typically unitary. 

Definition 2.3.1. A unitary operator is an operator U obeying the property that U = 

U', i.e. Uut = UtU = I. 

Unitary operators are used in quantum information theory because they preserve the 

norm of a vector (the inner product of a vector with its own dual vector). This means 
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Symbol Name Matrix Notation 

1(2) single-qubit identity operator 
Ii 01 

L 0 1 I 

X Pauli-X (or NOT) 
1 i i 

L 1 oj 

Y Pauli-Y 
1l 0 _i 

H o ] 

Z Pauli-Z (or phase) 
11 0 1 

0 —1 ] 

H Hadamard 1 Ii 1 1 

L1 _.j 

R () rotation about x-axis by I Cos 9 —iSin ] 
n Cos 

R () rotation about z-axis by 6 2 ig [ 0 e0 

CZ controlled-Z (or controlled-phase) 

_ 1 0 0 0 - 

00 1000 1 0 

_0 0 0 —1_ 

Table 2.1: Matrix notations in computational basis for some important quantum logic 
gates 
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that a state that is initially normalised remains normalised if a unitary operator acts 

upon it, thereby ensuring conservation of probability. The coefficients of the state vector 

encode the probability of observing the quantum system to be in the corresponding 

basis state, and these probabilities must add to unity in order for the description of the 

quantum system to be complete. A non-unitary operation that does not preserve the 

norm of the state would physically correspond to some mechanism of probability loss, 

such as particles escaping the system or information about the system being lost. 

2.4 Quantum measurements 

It is clear that both classical bits and qubits are capable of representing information, as 

their physical states encode information. In order to be able to do computation with 

these entities, it is also necessary to be able to access this information. This is done 

by means of measurements. As mentioned in section 2.2.1, the state of a classical bit 

represented by an electrical circuit is determined by measuring the current (for example 

with an ammeter) flowing through the circuit and then identifying zero current with the 

state 0 and non-zero current with the state 1. Since classical bits do not have the ability 

to be in a superposition of states, they will always be definitively in either state 0 or 

state 1, and the measurement merely reveals the state of the bit without altering it. 

Quantum measurements (i.e. measurements of quantum systems, such as qubits) are 

somewhat more complex and the physical mechanism that occurs in quantum measure-

ments, as well as the meaning of the measurement results, is today a matter of debate 

amongst physicists. The entire formalism of quantum mechanics is based on a basic set 

of statements known as the postulates of quantum mechanics, and all of the mathematical 

structure is designed in keeping with these postulates. It should be noted that although 

there are many interpretations of quantum mechanics that are consistent with the pos-
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tulates, the mathematical formalism used to do calculations does not depend in any way 

on the chosen interpretation. An in-depth treatment of the postulates and the formalism 

of quantum measurements can be found in [12]. 

A qubit can exist in a superposition of states 10) and 1). The most common kind of 

measurement of qubits performed in experiments is known as the projective measurement, 

which will be described more formally in section 2.4.2 below. The essence of a projective 

measurement revolves around a particular type of quantum operator called an observable. 

According to the postulates of quantum mechanics, an observable is an operator that is 

Hevinitian, meaning that it is equal to its own adjoint. 

Definition 2.4.1. A Hermitian operator 0 is one that obeys the property 0 = Qt . 

Definition 2.4.2. In quantum mechanics, an observable is a Hevinitian operator. 

Examples of observables include quantities such as position, momentum, total angular 

momentum, spin, and so on. A projective measurement is a measurement of a particular 

observable corresponding to some property of the quantum system. According to the 

postulates of quantum mechanics; when an observable is measured, the result of the 

measurement is a number corresponding to one of the eigenvalues of the observable and 

immediately following the measurement, the state of the system will be the eigenvector of 

the observable corresponding to that eigenvalue. When the value of a physical observable 

is measured, the outcome of the measurement should be a real number. This is guaranteed 

to happen since observables are Hermitian operators and all eigenvalues of Hermitian 

operators are real. Furthermore, eigenvectors of Hermitian operators corresponding to 

distinct eigenvalues are always orthogonal, meaning that if the spectrum of the observable 

is non-degenerate, then the set of possible states of the system after the measurement 

form an orthonormal basis for the Hilbert space of the system. These points are clarified 

in Examples 2.4.5 and 2.4.6. 
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2.4.1 General measurement postulate 

Formally, a quantum measurement is specified by a set of measurement outcomes {i}, 

corresponding to a set of measurement operators {M} which form a complete set. 

Definition 2.4.3. A complete set of operators {O} is one obeying the property 

I. 

If the state of the quantum system on which the measurement is being performed is ), 

then the measurement outcome i occurs with probability 

pi = (IM Mk') (2.31) 

and the state of the system after the measurement is given by 

(2.32) 

The completeness of the measurement operators guarantees that the probabilities of each 

of the outcomes sum to 1, thus guaranteeing that no possible measurement outcomes have 

been neglected: 

(IMMF?&) 

M) 

2.4.2 Projective measurements 

Projective measurements are the most common type of measurement found in experi-

mental settings, and also the most common kind that are used in quantum mechanics. 

In a projective measurement, all of the measurement operators are projectors. 
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0 —1 

Definition 2.4.4. A projector is a Hermitian operator P obeying the condition P2 = p . 

Example 2.4.5. Consider the quantum state b) = alo) + bll), and the observable 

z = IOXOI —1 1)(11 

which can be written in matrix form in the computational basis as 

10] 

(2.33) 

(2.34) 

The eigenvectors of this observable are 10) and 1), corresponding to eigenvalues +1 and 

—1 respectively. We can define a projective measurement in the eigenbasis of Z by means 

of the measurement operators 

M0 = OXOI 

= lixil, 

where M0 and M1 correspond to the measurement outcomes +1 and —1 respectively. 

The probability of measurement outcome +1 is 

P0 = (ibIMoMokb) 

= (a*(01 + b*(1I) IO)(OIOXOI (alo) + bll)) 

= ((a*(01 + b*(1I) 10)) ((Dl (alO) + bil))) 

a*a 

= IaI2. 

The state of the system after measurement outcome +1 is 

kb°) = V1  M010) 

:1.  
 IoXoI (alO) + bil)) 

= •Ja12 

1 
=  al —(alO)) 

10), 
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up to a global phase. Similarly, the measurement outcome —1 leaves the system in 

the state 1) and occurs with probability IbI2. The possible states of the system after 

the measurement are just the computational basis states, which indeed constitute an 

orthonormal basis for the Hilbert space of the system. 

In general, the probabilities of the various outcomes of a projective measurement of 

a Hermitian operator 0 on the state I'?I') can be read off by writing l) in the eigenbasis 

of 0 and then calculating lai 12, where ai is the coefficient in front of the basis vector 

corresponding to the relevant measurement outcome. 

Example 2.4.6. Consider the operator X defined in equations (2.25) and (2.29). The 

eigenvalues of this operator are ±1, corresponding to eigenstates 1+) (10) ±1 1)) 72 
respectively. Now note that the state I) from the previous example can be written as 

I) = alO) + bli) 

= (aI0)+ all) +bI0)+bI1)+aI0) — all) — bl0)+bll)) 

= 7(a+b)(I0)+I1))+ - (a — b)(I0)— I1)) 

Thus, a measurement of X will yield ±1 with probability la±bI2, and the state of the 

system will be collapsed to 1±). This is an example of a measurement in the orthonormal 

basis { 1+), I-) I, commonly referred to as the X-basis. 

2.4.3 Positive Operator-Valued Measure measurements 

Projective measurements are not the most general type of measurements that are possi-

ble. A projective measurement of an observable with a non-degenerate spectrum always 

corresponds to a measurement in an orthonormal basis. However, it is possible in princi-

ple to perform measurements in a non-orthogonal basis, and these types of measurements 
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are described by positive operator-valued measure measurements (POVM measurements, 

or just POVMs). The reasons for the name of this type of measurement are technical, 

and not of relevance to the subject of this thesis. It is not simple to describe the action 

of a POVM on a system by inspection, as was frequently the case for projective measure-

ments. Instead, the full set of measurement operators must be written down explicitly 

and the probabilities of the measurement outcomes and the resulting states of the system 

must be formally calculated. Although P0 VMs cannot typically be implemented directly 

in the lab, a result called Neumark's theorem shows how a POVM can be implemented 

as a projective measurement in a higher-dimensional Hubert space [13]. 

2.5 The circuit model 

The circuit model [11] of quantum computation is a means of describing algorithms for 

quantum information processors. In this model, qubits are initialised in some specified 

state, then they are acted upon by quantum operators (i.e. logic gates) and finally, output 

is obtained by means of measurement of some subset of the qubits. An algorithm can 

be depicted diagramatically as a circuit. Logical flow in a circuit diagram goes from left 

to right. Qubits are represented as wires, with the initial state of a qubit written to the 

left of the wire representing it. Operators are represented by boxes with the name (or 

symbol) of the operator written inside them. Measurement in the computational basis is 

depicted as a meter. 

Example 2.5.1. Quantum teleportation is a quantum algorithm allowing one party, 

Alice, to transfer the state of a qubit that she has in her possession to another party, Bob, 

provided she and Bob share an entangled pair of qubits and are allowed to communicate 

the results of measurements to each other. The quantum teleportation algorithm is 

depicted by the circuit in Figure 2.1. 
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p  

I HT±/1  

F 1 
Figure 2.1: Circuit diagram for quantum teleportation algorithm. 

The steps of this algorithm can be read off the diagram above, from left to right. Alice 

begins with a qubit in state ''), as well as the first qubit of a pair of entangled qubits in 

the state k''BeU) defined in Equation (2.20), qubit 2. The second qubit of this pair, qubit 

3, is in Bob's possession. Alice then performs a controlled-X gate with qubit 1 as the 

control and qubit 2 as the target, thereby generating entanglement between qubits 1 and 

2. She applies a Hadamard gate to qubit 1 and then measures it in the computational 

basis (this pair of actions can together be thought of as measuring qubit 1 in the X-basis), 

and sends the result to Bob. She also measures qubit 2 in the computational basis and 

sends that result to Bob. Based on these measurement results, Bob then performs one of 

four possible sequences of operations to qubit 3, following which the final state of qubit 

3 (which is in Bob's possession) will be the same as the initial state of qubit 1 (which 

was in Alice's possession), thereby effecting the teleportation. 

Example 2.5.2. Gate teleportation, another quantum algorithm, can be viewed as a 

generalisation of the regular teleportation algorithm described above. In this case, Alice 

teleports the state of qubit 1, along with a rotation in Hilbert space about the z-axis, 

to Bob. The only difference between the algorithms is the operation Alice performs on 

qubit 1 before her computational basis measurement (or equivalently, the basis in which 
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1+) 

R () H 

XmHR () kb) 

Figure 2.2: Circuit diagram for single-qubit gate teleportation. The set of operations 
inside the red box is equivalent to a measurement in the 6 basis 

she does the measurement). By measuring in the basis 

{ Ie+) 1 (10) +e-i I1)) (10) —e-4211))} (2.35) 

which will be called the -basis in this thesis, where 0 < e < 2ir, Alice teleports the state 
R () /') to Bob rather than just the state ). 

2.6 Density matrices and mixed states 

The Dirac state vector formalism of section 2.2.2 is not capable of describing the most 

general types of quantum states possible. For example, suppose that Alice possesses a 

qubit in the state (10) + Ii)). Suppose then that she has a black box that performs 

a projective measurement on the qubit, but does not reveal the outcome to her. In this 

scenario, the superposition exhibited by the qubit between the two computational basis 

states has been destroyed and it has been collapsed into one of the states 0) or Ii), each 

outcome occurring with probability . However, Alice does not know which outcome has 

occurred. From the point of view of the information about the system available to Alice, 

the state of the qubit is now a mixture (not a superposition) of the states 0) and Ii). 

Such a type of quantum state is called a mixed state, and it cannot be described using the 

state vector formalism. Instead, we use the density matrix or density operator formalism 

to describe the state [8, 9]. 
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Definition 2.6.1. The density matrix or density operator p corresponding to a pure 

quantum state l) is given by 

p= kb)('I. (2.36) 

All of the information contained in ) is encoded in the corresponding density matrix 

p. Thus, p can be viewed as a different way of expressing the state of a quantum system. 

This formalism can be used to describe mixed states as well. A mixed state of a system can 

be viewed as an ensemble of the pure states (described by density matrices Pk) in which 

the system could exist, together with the corresponding probabilities Pk of the system 

being in the various pure states. Such an ensemble is usual denoted by {(pk, Pk)}. Then, 

a density matrix can be written down for the mixed state described by this ensemble. 

Definition 2.6.2. Consider a quantum system that exists in a mixed state corresponding 

to an ensemble {(pk, Pk) }. The density matrix p describing this mixed state is given by 

P = >PkPk. (2.37) 

Example 2.6.3. The ensemble corresponding to Alice's mixed state from the beginning 

of this section would be denoted by {(, IOXOD, (, 11)(1I)}, where 10) (0 and 1)(1I are 

the density matrix representations of the two (pure) computational basis states. The 

density matrix corresponding to this mixed state is given by 

0 1 
2 

A density matrix p can be classified as a pure or mixed state using its rank. If it is a 

pure state, then it will have rank r (p) = 1. If it is a mixed state, then it will have rank 

r (p) > 1. The description of the information about a multipartite system possessed by 

any one party is given by the reduced density matrix [9] corresponding to that party. 
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Definition 2.6.4. Let PAD be a density matrix describing a quantum state distributed 

between parties A and B. Let {iA}, {iB} be a set of independent basis vectors for the 

subsystems corresponding to party A and B respectively, such that 

PAD = i (PAB)iAjAiBjB IZA)IiB)(jAI(JBI. 
,2A,.7B 

Then the reduced density matrix PA corresponding to party A is given by 

PA = TrB (PAD) 

(PAD)iAjAiBjB hA) (3A1 (iD liD). 
A,B,3A,3B 

(2.38) 

(2.39) 

(2.40) 

The operation TrB (PAD) is called the partial trace over B of PAD-

The reduced density matrix is a convenient tool for determining whether or not a 

multipartite system is entangled. Suppose PAD is a bipartite state distributed between 

parties A and B. Then, the subsystem belonging to A is entangled with the one belonging 

to B if and only if the rank of the reduced density matrix PA is 1. This method of 

diagnosing entanglement will prove useful the discussion of equivalence under stochastic 

local operations and classical communication found in Chapter 3. 

2.7 Admissible Quantum Operations 

The density matrix formalism allows us to generalise our description of the types of 

operations that can be performed on a quantum state, such as gates and measurements, 

to mixed states. Any operation that can be physically performed on a quantum state is 

called an admissible quantum operation. All admissible quantum operations on a state 

descibed by density matrix p can be decomposed into combinations of elements from a 

set of four basic operations [14]: 

1. Unitary operations. A unitary operation U effects the transformation 

P - UpU. (2.41) 
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2. Projective measurements. These map the single state l) to an ensemble of pure 

states {,ok} if the measurement outcome is recorded. In this case, the effect on the 

state of the system is 

P—* {p,p}. (2.42) 

If the outcome is not recorded, then the state is mapped to the mixed state realised 

by the aforementioned ensemble. Each Pk corresponds to a measurement outcome 

that occurs with probability Pk- Specifically, if the measurement is given by mea-

surement operators {Mk }, then Pk = MkpM. For this situation, the effect on the 

system is 

P - PkPk. (2.43) 

3. Addition of unentangled ancillary systems. If the ancillary systems are in the state 

p,,, then the effect on the state of the subsystem is 

PiPi®Pa- (2.44) 

4. Removal of a subsystem from the whole system. This amounts to erasing all knowl-

edge about a particular subsystem i of the total state p. Deletion of subsystem i 

effects the transformation 

p—Trj(p), (2.45) 

where Tri denotes the partial trace over subsystem i. 

Any admissible quantum operation can be decomposed into products of these four 

basic constituents. Formally, an admissible operation 9 has the effect 

P -+ e(p) = EpEt (2.46) 

where the Ei are called Kraus operators and obey the condition E i EiEl ≤ I. Equality 

of this condition is satisfied if no measurement outcomes are recorded, allowing measure-

ments to evolve the initial state to a mixed state and thereby preserving the trace of the 
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density matrix. If measurement results are recorded, then the state is mapped to a single 

element of an ensemble of states, which will have trace less than unity. In this situation, 

some of the outcomes of the operation, p1 = E1pE, are rendered impossible. 



Chapter 3 

Local Transformations and Equivalence Classes 

3.1 Introduction 

The purely quantum property of entanglement that was discussed in Section 2.2.5 is 

crucially important for several quantum information processing tasks. Despite its impor-

tance, much of the essential nature of entanglement remains poorly understood. Further-

more, not all entangled states are created equal; for example, the teleportation scheme of 

Example 2.5.1 only succeeds with unit probability if a Bell state, which is in a sense the 

maximally entangled pure state on two qubits, is available for Alice and Bob to share. 

If instead they share a 'less entangled' two-qubit state, then they will only be able to 

perform the teleportation with probability less than one. One approach to improving 

our understanding of entanglement is to classify quantum states distributed over mul-

tiple spatially separated parties in terms of whether they can be interconverted purely 

by means of local operations and classical communications. This chapter gives some 

background into the topic of classifying quantum states in this way. 

3.2 Local Operations and Classical Communication 

It is not possible to create an entangled state of qubits from a separable state using only 

single-qubit operations. Suppose we are given an initial state k-'in> = ® 'J&j), defined on 
n qubits, and we apply a single-qubit operation to each qubit, so that the total operation 

28 
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has the form 0 = ® O. Then, the output state is given by 

= 

= (: n-1 ) (:>) 
= 

i=O 

which is clearly separable as well. Thus, in order to produce an entangled state from a 

separable one in the circuit model of quantum computation, it is necessary to use gates 

that operate on multiple qubits, such as for example the controlled-Z gate from Table 2.1. 

All universal gate sets will necessarily contain at least one true two-qubit gate. In other 

words, if Alice and Bob each possess a qubit, and these qubits are not entangled, then 

they will not be able to entangle these qubits regardless of what operations they perform 

to their respective qubits, assuming they do not have access to each other's qubits. This 

statement is true even if they are allowed to communicate classically with each other 

(such as over the telephone). The situation faced by Alice and Bob is a realistic one; real 

quantum information processing tasks could certainly require spatially separated parties 

in isolated laboratories to share an entangled system. These parties are restricted to 

performing local operations on their subsystems alone. 

Definition 3.2.1. An admissible quantum operation 9 that maps an n-qubit input state 

p to the output Ej EpE is called a local operation if and only if all of the Ej operators 

can be written in the form 

where the Eij are single-qubit operators. 

Operations that can be performed by the individual parties in such a setting are 

collectively called Local Operations and Classical Communications (LOCC). 
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Definition 3.2.2. A quantum information processing protocol that deterministically con-

verts a given input state possessed by many parties into a desired output state possessed 

by many parties, which uses only local operations by the parties on their own parts of the 

system, plus communication of classical information between the parties, is called a local 

operations and classical communication (LOCC) protocol. 

Example 3.2.3. Suppose Alice and Bob share the (entangled) Bell state of Equation 

2.20, and wish to convert it into the unentangled state 00). This can easily be accom-

plished, as follows: Alice measures her qubit in the computational basis. If she obtains 

the result 0, then the total state is collapsed to 100), and the task is finished. If she 

obtains the result 1, then the total state is Ill), and Alice and Bob each have to perform 

X operations on their qubits. The protocol is summarised as follows: 

1. Alice measures her qubit in the computational basis and communicates the result 

to Bob classically. 

2. If the result was 0, then Alice and Bob do nothing. If the result was 1, then Alice 

and Bob each apply the Pauli X gate to their respective qubits. 

Since the unentangled output cannot be turned into an entangled state by means of local 

operations alone, the LOCC protocol is clearly not reversible. 

Two states b) and I) that are mutually interconvertible by means of LOCC protocols 

are said to be LOCC-equivalent. Similarly, two states that are mutually interconvertible 

by means of solely local unitary operations by the parties are said to be LU-equivalent. It 

has been shown that LOCC-equivalence and LU-equivalence amount to the same thing, 

i.e. that two LOCC-equivalent states are also LU-equivalent [15, 16, 14]. This is prob-

lematic, as local unitary transformations of a state can be viewed as merely changing 

the local bases used to express the state of the system, which has no real effect on 

the entanglement properties of the system. Qualitatively speaking, two states that are 
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LOCO-equivalent must therefore have precisely the same amount of entanglement, which 

can be quantified by entanglement monotones (to be introduced in Section 3.4). Since 

entanglement monotones can be continuously varying functions, the amount of entan-

glement can be viewed as a continuous parameter that characterises LOCC-equivalence 

classes. Any two states that have different amounts of entanglement will be LOCC-

inequivalent. The fact that there are infinitely many entanglement classes as specified 

by LOCC-equivalence casts into doubt the utility of such a scheme for entanglement 

characterisation. It could be more useful to have a classification scheme that allows for 

'coarser graining' of entanglement classes, such that they are characterised by discrete 

rather than continuous parameters, so that there are a finite number of such classes. For 

systems of three or fewer qubits, such a scheme is available, based on equivalence under 

Stochastic Local Operations and Classical Communication (SLOCC). 

3.3 Stochastic L000 

In Section 3.2, the protocols considered were those that transformed a given input state 

to some specific output state with certainty. But, in protocols where both local mea-

surements and communication of measurement results are allowed, it is possible to have 

rounds of the protocol in which some party performs an operation that is conditioned 

on the result of some other party's measurement. Since measurements in general have 

multiple possible outcomes, this means that certain protocols consisting of local opera-

tions and classical communication can have a number of different branches that occur 

with generally different probabilities, depending upon the results of certain intermediate 

measurements. The different branches of the protocol can lead to different output states, 

which means that it is possible to design protocols comprised solely of local operations 

and classical communication that convert an input state to a desired output state with a 
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probability less than 1. Such protocols are called stochastic local operations and classical 

communications (SLOCC) protocols [15]. 

Definition 3.3.1. A quantum information processing protocol that takes a multipartite 

input state p and transforms it into one of a set of possible output states Pk, each occurring 

with some probability Pk < 1, that consists solely of local gates and measurements, plus 

communication of classical information between the parties, is called a stochastic local 

operations and classical communications (SLOCC) protocol. 

Similarly to how LOCO-equivalence was defined, we call two pure states ) and Ic) 

SLOCC-equivalent if and only if they can be mutually interconverted with probability 

o <p < 1. It has been shown [16] that two pure states are SLOCC-equivalent if and only 

if there exists a separable, invertible operator that connects them. Since this condition 

is both necessary and sufficient for SLOCC-equivalence of two pure states, it can be 

regarded as an alternate definition of SLOCC-equivalence for pure states. 

Definition 3.3.2. Two n-qubit pure states I'') and 10 2) are SLOCC-equivalent if and 

only if there exists an operator S = S such that 

101) = Sb), (3.1) 

where the {S} are all invertible single-qubit operators. 

3.4 Entanglement monotones 

Because LOCC protocols are unable to generate entanglement, they can naturally be 

used to define means of quantifying the amount of entanglement present in a system. 

Similarly, since SLOCC protocols cannot increase the amount of entanglement present 

on average, they too can be used to define quantitative measures of entanglement. This 

is done by means of so-called entanglement monotones [14]. 
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Definition 3.4.1. An entanglement monotone is a magnitude 

: p -4 (p) e 

satisfying the following conditions: 

1. For any p and any local operation mapping p to an ensemble {Pk, pk}, 

2. For any ensemble {q, pk}, 

PkI-(Pk). 

qk[(pk) ≥ A(ppk  r , ). 

(3.2) 

(3.3) 

(3.4) 

The first condition ensures that an entanglement monotone is non-increasing on av-

erage under local transformations. The second condition states that if information about 

a system is locally dismissed, so that an ensemble of states is mapped to the mixed state 

realised by that ensemble, then the entanglement monotone is still non-increasing. A dif-

ferent kind of entanglement measure called a type-II entanglement monotone [17] can also 

be defined using the criterion of non-increasing behaviour under LOCO transformations, 

but we will not concern ourselves with this type of measure here. 

The first significant effort towards quantifying entanglement came in the form of 

the development of the entropy of entanglement by Bennett et al. [18], which provided 

a well-defined way of determining the amount of entanglement possessed by a large 

number of copies of a bipartite pure state. Rapid progress ensued from this starting 

point, and measures of entanglement for mixed states and single copies of pure states 

were developed [19, 14, 20], culminating in the complete classification of all two-qubit and 

three-qubit pure quantum states into SLOCO equivalence classes. The two-qubit case is 

quite trivial: all entangled bipartite states are SLOCC equivalent to the Bell state I/'BCU) 

of Equation (2.20), and all separable states are in a different class. The three-qubit case is 
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more complex, and the classification uses an entanglement monotone called the 3-tangle, 

introduced in [20]. It is shown in [16] that any genuinely tripartite entangled three-qubit 

pure states described by density matrix PABC, one obeying r (PA) = T (PB) = r (Pa) = 2, 

i.e. one for which all of the reduced density matrices have maximal rank, falls into one 

of precisely two distinct SL000 equivalence classes. Denoting the 3-tangle of PABc as 

TABC, the classes are: 

1. Those states having 'rABa> 0. All states in this class are SLOCC-equivalent to 

1 
IGHZa) = (I0)A10)B10)c + I1)A11)BI1)C). (3.5) 

2. Those states having '1ABC = 0. All states in this class are SLOCC-equivalent to 

IN = (I0)AIO)BI1)a + I0)A11)BIO)c + I1)AIO)BIO)c). (3.6) 

The situation is immensely more complicated for four or more qubits, and it has been 

shown that there are an infinite number of SLOCC-equivalence classes on four qubits 

[21]. This essentially means that the scheme for exhaustively classifying quantum states 

based on their entanglement by means of SLOCC-equivalence breaks down for four or 

more qubits, and a new paradigm must be found. Nevertheless, as SLOCC-equivalent 

quantum states can be used in the same quantum information processing tasks, it is still 

useful to be able to test SLOCC-equivalence between quantum states on four or more 

qubits. 

3.5 Testing SLOCC-equivalence of specific pure states by brute force 

States that are in the same SLOCC equivalence class must be capable of performing 

the same quantum information tasks, although in general with differing probabilities of 

success. Consider therefore a scenario in which we want to perform a task requiring the 
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pure resource state kbo), and we are unsure as to how to obtain a copy of kbo>, but we do 

have a means for obtaining some different pure state ). If ',bo) and I'') are SLOCC-

equivalent, then we can perhaps use the state Ii) that we have to perform the desired 

task. In such a situation, the classification of the entire set of quantum pure states into 

SLOCC equivalence classes is more than we require; we are merely interested in testing 

whether o) and I) specifically are interconvertible by SLOCC. Suppose (and this can 

always be arranged) that k1'o) and Ibi) are both defined on the same number of qubits, 

n. The most obvious way to try and determine SLOCC-equivalence of Rbo) and I) is 

to attempt to solve for the SLOCC operator S connecting them. Suppose S is composed 

of the tensor product of single-qubit operators S, i.e. S = ® S, where the subscript 

i refers to the qubit on which Si is acting. If the {S} are complex, invertible, two-by-

two matrices, then there are four complex or eight real unknown matrix elements per 

single-qubit operator, for a total of 8n real unknowns to be found. The relation 

101) = 8kbo) (3.7) 
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leads to a system of 2n multivariate polynomial equations of degree n in 8m unknowns 

to be solved. For example, suppose 

Ooo 

01 

002 

003 

Olo 

101) = 

so = 

81= 

Sooi 

oii I 
I 

Then the system of degree-two (i.e. quadratic) multivariate polynomial equations to be 

solved is 

010 

11 

013 

8000S100 S000siol Soolsloo S00iSi0i 

80008 110 S000Siu Sools lio 

8010S100 S8jDj S0j1S100 scjiiSicji 

Solosilo 80108 111 S011S110 S11S111 - 

Ooo 

Ool 

002 

'b03 

(3.8) 

In this case, there are 8 equations (considering the real and imaginary parts of the 

equations above separately) for 16 real unknowns, so multiple solutions may exist. This 

is not the case for n ≥ 6, at which point the system becomes overdefined. At first glance 

it may appear that the difficulty of this problem is influenced significantly by the fact 

that the number of equations in the system increases exponentially in the number of 

qubits. However, this should not pose a significant problem as the number of unknowns 
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only increases linearly and therefore the size of the subportion of the system that needs 

to be solved also grows linearly. The real source of difficulty in the solution of this 

problem lies in the multivariate polynomial nature of the system of equations to be 

solved. In the way the problem is cast, the degree of the polynomial equations is equal 

to the number of qubits, i.e. grows linearly. The general problem of solving systems of 

multivariate polynomial equations is known to be NP-complete [22]. However, there are 

some indications that the solution of overdefined systems, such as the one considered 

here for n ≥ 6, may be more efficiently soluble. For example, an efficient algorithm for 

solving 'sufficiently' overdefined systems of multivariate quadratic equations is presented 

in [22]. This gives us hope that our problem, which is simpler than the general problem 

of solving multivariate polynomial equations, may also be efficiently solved. One way to 

simplify the problem is to convert these multivariate polynomial equations into a different 

system of multivariate polynomial equations of lower degree, constituting necessary and 

sufficient conditions for SLOCC-equivalence. An idea for deriving necessary conditions 

is presented in Chapter 5, and some thoughts as to how to proceed towards a full set of 

necessary and sufficient conditions can be found in Chapter 6. 



Chapter 4 

Stabiliser States and the Walsh-Hadamard Construction 

4.1 Stabiliser states 

The number of coefficients needed to specify the state of a quantum system grows ex-

ponentially in the number of particles comprising the system. For example, the state 

vector of an n-qubit system has 2n components. With a large enough system, this de-

scription can become very unwieldy. There is a class of states that can be described more 

compactly, using resources that grow linearly in the number of qubits. This is the class 

of stabiliser states [23], which can be completely specified by means of a mathematical 

construction called a stabiliser (see for example [24]). Stabilisers in turn are examples of 

a mathematical structure called a group [24, 25]. 

Definition 4.1.1. A group {, } is a set of elements g together with a binary operation 

o obeying the following four axioms: 

1. Closure. 

2. Existence of identity. 3 e E {, ol such that g e = e gi = gi V gi E {, }. 

3. Existence of inverses. V gi E *1, 3 g' E {, } such that gGg 1 = 91'Ggj = e. 

4. Associativity. (gi 0 gi) 0 gk = 9i 0 (9i 0 9k) V gi, 9j, 9k e  

A group {, } where the cardinality of 9 is finite is called a finite group [24]. Some 

groups that are important in theoretical physics have elements described by continuously 

varying parameters and are known as continuous groups [25]. This thesis be primarily 

concerned with finite groups. If the operation is commutative, then {, } is called 

an abelian group. For example, the group of invertible n-by-n matrices whose elements 

38 
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belong to the field F, under matrix multiplication, called the general linear group and 

denoted CL (n, IF), is a group that is neither finite nor abelian. The real numbers of 

modulus 1 under multiplication, denoted {{1, —1}, x}, is both finite and abelian. The 

group of integers under addition, {Z, +}, is abelian but not finite. An important example 

of a finite, non-Abelian group is the single-qubit Pauli group {, *} [23], where * means 

matrix multiplication, which consists of the set of matrices 

= {±i(), ±i.r2, ±X, ±iX, ±Y, ±iY ±Z, ±iZ} (4.1) 

where 

Y 

z = 

10 

01 

01 

10 

i0 

10 

0 —1 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

The matrices X, Y and Z are called the Pauli matrices. Table 4.1 summarises some com-

mon examples of groups. For more information on basic groups, the reader is encouraged 

to consult [24]. 

For simplicity, the symbol will be dropped, so that gjgj is understood to mean gj g. 

Sometimes the group {, } will be referred to as g. Two more ideas are necessary in 

order to describe the concept of a stabiliser: the subgroup and the group action [24]. 

Definition 4.1.2. A set Sg subgroup is called a subgroup of a group under the binary 

operation if and only if: 
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Group Identity Inverse of group element g Finite? Abelian? 

{{1,-1},x} 1 g Yes Yes 

{, *} 1(2) Either g or ±ig Yes No 
{Z,+} 0 —g No Yes 

{J1.-0,x} 1 No Yes 

{GL (n, R), *} 9_i No No 

Table 4.1: Common examples of groups. 

.i.sgcg. 

. Sg is itself a group under o. 

Definition 4.1.3. A left group action is a binary function 

(4.6) 

between a group 9 and a set T obeying the following two axioms: 

1. (9192) * t = 9i* (92 * t) V 91,92 E g, t E T. 

. e *t = t for e the identity element of 9. 

If a group action * exists between 9 and T, then g is said to act on T on the left under 

*. 

An analogous definition exists for a right group action, but it will not be needed here. 

For the sake of notational simplicity, the symbol * will be dropped. We are now ready 

to define the meaning of the term stabiliser. 

Definition 4.1.4. Consider a group 9 under a binary operation , that acts on a set T 

on the left under a binary operation *. The set stabg (t) defined by 

stabg (t) = { gi E C I g * t = t for t E T } (4.7) 

is called the stabiliser subgroup of t in . In this thesis, we will use the term stabiliser 

to mean stabiliser subgroup. 
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The stabiliser of t is essentially a group of operations on t that 'fixes' t. It is easy to 

prove that stabg (t) is a subgroup of G. By definition, stabg (t) is a subset of G , so all 

that remains to be proven is that stabg (t) is a group under the binary operation of 

(call it o). 

Theorem 4.1.5. Given a group that acts on the left of a set T, the stabiliser stabg (t) 

oft E T in is a group under the same operation as 

Proof. Denote stabg (t) by S for compactness. We will check that S obeys each of the 

four group axioms under the group operation of . 

1. Closure. Suppose s, sj E S. Then, 

(ss) t = s (sit) (axiom 1 of left group action) 

= Sit (since sj fixes t) 

= t (since si fixes t), 

which immediately gives sisj € S. 

2. Identity. Let e be the identity element of . Then, et = t (by axiom 2 of the left 

group action). Thus, e € S. 

3. Inverse. Let g E 5, g' E 9 such that gg' = g'g = e with e the identity element 

of g. Then, 

t = et (axiom 2 of left group action) 

= (g'g)t 

= g' (gt) (axiom 1 of group action) 

= 9—It (since g fixes t), 

thereby demonstrating that g' E S. 
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4. Associativity. The associativity of S follows directly from the associativity of g. 

0 

In quantum information science, typically the stabilisers with which we are concerned 

are subsets of the n-qubit Pauli groups [23], which are examples of finite abelian groups, 

and the set on which they act is the set of state vectors in a Hilbert space. For the 

remainder of this thesis, any such stabiliser will be called a Pauli stabiliser. A detailed 

overview of Pauli stabilisers can be found in [23]. The properties of Pauli stabilisers that 

are germane to the subject of this thesis are summarised in this section. 

Definition 4.1.6. The n-qubit Pauli group gn is the group consisting of all possible 

tensor products of operators from the single-qubit Pauli group 91 such that the result is 

an n-qubit operator. 

Definition 4.1.7. Any stabiliser that is a subgroup of an n-qubit Pauli group shall be 

called a Pauli stabiliser. 

Any Pauli stabiliser is obviously a finite group, since the single-qubit Pauli group is ex-

plicitly finite and thus only a finite number of operators can be generated from this group 

through Kronecker products. It is also straightforward to show that Pauli stabilisers are 

abelian. 

Theorem 4.1.8. Any Pauli stabiliser stabg (I)) is abelian. 

Proof. It can be checked that all elements of the single-qubit Pauli group 91 either 

commute or anticommute, i.e. gjgj = ±9j9i V gj, 9j E 91. This fact immediately implies 

that all elements of either commute or anticommute. Thus, in order to show that 

stabg I) is abelian, all that remains is to show the impossibility of two stabiliser elements 

anticommuting. Two facts need to be established in order to prove this. Firstly, as can 
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be easily checked, all elements of the single-qubit Pauli group square to ±1(2). Secondly, 

_1(n) can never be an element of any Pauli stabiliser. 

Lemma 4.1.9. —i'stabg (&)), where j(m) is the negation of the n-qubit identity 

matrix. 

Proof. 

= 

Now I) - 10) unless all entries of ) are zero, which is not possible since I'?!') must 

be normalisable, i.e. have non-zero norm. Thus, _1(n) does not fix  

The above two facts immediately imply that any stabiliser element must square to 

the (positive) identity matrix. We now return to the main proof. Suppose gjgj = — gjgj 

for some pair of elements gj, gj E stabg (I)). Closure ensures that gigj E stabg (I)) 

and thus that — gjgj = (—gj) (gj) E stabg (Ib)), and thus that —gj E stabg (I)). But, 

since gj squares to the identity, we have 

(—gj)(gj) = —(gjgj) 

= E stabg (I)) 

a contradiction. D 

The concept of a Pauli stabiliser is best clarified through example. 

Example 4.1.10. Suppose 9 is the single-qubit Pauli group 91 and T is the Hubert 

space of a single qubit, so that t is a single-qubit pure state. Specifically, suppose t is the 
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state 1+) = (10) + Ii)). It can easily be verified that the matrices i2,x E 91 fix 1+). 

1(2)1+) I(2) (10) + Ii)) 

1 (1(2) 10) +1(2) 11)) 

1 
(10) + I')) 

I+) 

XI+) = X---(I0)+I1)) 

= --(Xl0)+XI1)) 

= (I1)+l0)) 

I+) 

It can also easily be verified that no other element in 91 fixes 1+). Thus, the stabiliser 

of 1+) in 91 is said to be 

stabg1 (1+)) = {I, X}. (4.8) 

The stabiliser can readily be verified to be a group under operator composition (or matrix 

multiplication). 

Example 4.1.11. Consider the two-qubit Bell state IbBe11) = (100) + Ill)). We can 

verify that the operator X ® X E 92 fixes kL'Bett). 

(X ® X) (kbBeli)) = (X 0 X) (100) + Ill)) 

= ---(XI0)®XI0)+XI1)®XI1)) 

= --(l00)+I11)) 

= kl'Beu) 
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It can be similarly verified that Z ® Z is also a stabiliser element. Therefore, we can infer 

that the product of these two operators, 

(X ® X) (Z ® Z) = (XZ ® XZ) 

= (—iY®—iY) 

= —(Y®Y), 

is also a stabiliser element. Similarly, the product of any of these operators with itself, 

j(2) ® 1(2) = I(), is also a stabiliser element. No other elements of 92 fix I'?/)BCU), so the 

full Pauli stabiliser is given by 

stabg2 (IbBelt)) = {.r(4), x ® x, z ® z, —Y ® Y}. (4.9) 

In the above examples, the states 1+) and JOB,,,) are completely specified by their 

Pauli stabilisers, which contain 21 and 22 elements respectively. Saying that a state is 

stabilised or fixed by some operator is equivalent to saying that it is an eigenvector of 

this operator with eigenvalue 1. Since 1+) is the unique eigenvector of X with eigenvalue 

1, saying that X stabilises a state I&) completely specifies that state (up to an overall 

phase); in this case, Ib) is the state 1+). Similarly, it can be verified that IBelt) is the 

unique simultaneous eigenvector of X 0 X and Z 0 Z with eigenvalue 1. In general, 

any n independent elements of a Pauli stabiliser will completely specify a single n-qubit 

quantum state that is fixed by all of them. Such a set of elements are referred to as 

the generators of the Pauli stabiliser. Since each of the generators square to the identity 

and commute with each other, the total number of operators that can be produced by 

multiplying the generators together is 2. This will be the minimal size of any group that 

completely specifies the state. Thus, a Pauli stabiliser with n generators and 2n elements 

completely specifies a single n-qubit state, which is known as a stabiliser state. 

Definition 4.1.12. Any pure n-qubit quantum state that is completely specified by a 

Pauli stabiliser with n generators and 2n elements is called a stabiliser state. 
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Thus, this special class of n-qubit quantum states can be completely specified by the 

n generators of its Pauli stabiliser, rather than the 2n complex coefficients in its vector 

representation. The representation of stabiliser states in terms of their Pauli stabilisers 

rather than their vector coefficients is thus convenient and efficient. Although Pauli 

stabilisers are typically used in quantum information science in the context of a class of 

quantum error correcting codes known as .stabiliser codes [23], for the purposes of this 

thesis they are merely used as a tool for compactly describing a class of quantum states. 

4.2 Graph states 

Within the class of stabiliser states lies a subclass of states that can be described in terms 

of mathematical graphs [26]. These states are called graph states (a thorough review of 

which can be found in [27]), and it has been shown that every stabiliser state is equivalent 

to a graph state under local unitary transformations (see, for example, [28]). A graph 

G = (V, E) is a set of vertices V together with a set of edges E that connect pairs of 

vertices. If two vertices are labelled i, j E V, then an edge from i to j is represented by 

the pair (i, i). Graph states always correspond to simple graphs, those having at most 

one edge between any pair of vertices and no edges connecting vertices to themselves. 

Such graphs can be described by means of an adjacency matrix, defined below. 

Definition 4.2.1. An adjacency matrix A for a simple graph G with n vertices labelled 

i E V with V = {O, 1,— , , n - 1} and a set of edges F is an n-by-n matrix whose elements 

Aij are equal to 1 if there is an edge between vertices i and j and 0 otherwise. 

The set of vertices connected to a vertex i by edges is called the neighbourhood of i 

and denoted ngbh (i). 

Some depictions of simple graphs are shown in Figure 4.1. Graph states can now be 

defined in a constructive way using these concepts. 
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(a) Three-vertex graph (not (b) Three-vertex linear graph. 
fully connected). 

(c) Three-by-three connected 
two-dimensional graph. 

Figure 4.1: Some examples of simple, undirected, unweighted graphs. Open circles rep-
resent vertices and solid lines edges. The numbers inside the circles label the vertices. 
Element (i, i) of the adjacency matrix will be 0 if there is no edge between vertices i and 
j and 1 if there is an edge. The graph in Figure 4.1(a) defines a graph state in which 
one of the qubits is unentangled with the rest, as the vertex representing this qubit is 
not connected to any others. The graph in Figure 4.1(b) is the underlying graph for the 
so-called three-qubit cluster state, and the one in Figure 4.1(c) for the three-by-three 
cluster state. 



48 

Definition 4.2.2. A graph state g) is a stabiliser state whose Pauli stabiliser is specified 

by a simple graph G using the following process: 

1. Associate each vertex of G with a qubit. 

2. For each vertex i, construct the operator gi = Xi ® jEngbh(j) Z, where Xk refers to 

single-qubit operator X acting on qubit k and Zk to single-qubit operator Z acting 

on qubit k. The group S generated by the operators {gj, i E {0, 1,. . . , n - 1}} is the 

Pauli stabiliser for Ig>. 

The above definition was given in [27]. Graph states have a number of applications in 

quantum information, and it is thus useful to have a thorough understanding of them. 

Example 4.2.3. Two-qubit cluster state. Consider the two-qubit cluster state g) whose 

underlying graph is the two-vertex graph with a single undirected edge connecting them 

(the two-vertex analogue of the middle example of Figure 4.1). The adjacency matrix of 

this graph is given by 

A= 
01 

10 • 
(4.10) 

The process outlined above for constructing the generators of the Pauli stabiliser for this 

graph state is equivalent to putting a Pauli X in position i for row i of A, and a Pauli 

Z for every position in row i where the entry is a 1. Thus, the generators are given as 

follows. 

Row 1: [o i] X0 Z' (4.11) 

Row 2: [0 i] Z. X, (4.12) 

The last two elements of the Pauli stabiliser are found by constructing products of the 

generators. The full stabiliser is given by 

stabg2 (Ig)) = {I' ), Xo 0 Z1, Zo 0X1, Yo 0 Yi}. (4.13) 
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As a demonstration that the generators completely specify the graph state, we can find 

the state vector for the graph state based solely on the generators. Let the expression of 

the state vector for g) in the computational basis be 

g) = aolOO) + ai101) + a21 10) + a31 11 ). (4.14) 

Since the generators fix the graph state, we have two equations to solve for the unknown 

coefficients: 

Ig) = (Xo®Z1)g). 

Expanding the above expression in the computational basis yields 

aolOO)+a1101)+a2110)+a3111) = (Xo(&Zi)(aoOO)+aiO1)+a2I1O)+a3I 11 )) 

= aollO) - a11 11) + a2100) - a3jOl). 

Comparing coefficients on the left- and right-hand sides of the previous expression gives 

a0 = a2 (4.15) 

a1 = —a3. 

Next, consider 

I) = (Zo®X1)g). 

This implies that 

aolOO) + ailol) + a21 10) + a31 11) 

(4.16) 

(4.17) 

= (Zo(DX1)(ao OO) +ai101) +a21 10) +a31 11 )) 

= ao101) + ailOO) - a2111) - a3 1O). 

We immediately obtain from here the conditions 

a0 = a1 (4.18) 

a2 = —a3. (4.19) 
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From equations (4.15), (4.16), (4.18) and (4.19), it is necessary that 

a0 = a1 = a2 = —a3. (4.20) 

Imposing the condition that I) be normalised immediately sets a0 = 1/2 and thus, the 

state vector can be written as 

l) =(I00)+I0l)+Il0)— I1l)). (4.21) 

The method in the above example for solving for the state vector of an n-qubit graph 

state I) corresponding to a graph C with adjacency matrix A can always be carried out 

for an arbitrary graph state, giving us an analytical expression for the state vector purely 

in terms of the adjacency matrix and the number of qubits. Introducing the notation 

Ii) = Iii) for computational basis vectors, where ij E {0, 1} is the jth digit in the 

binary representation of i, we can write 

2' 

I) = n/2 T (J)E=o2EJ+11tikiiik (4.22) 

4.3 Constructing generalised stabilisers from density matrices of pure 

states 

A simple method of constructing a generalised stabiliser for a n-qubit pure state lb), 

one whose elements are not necessarily from the n-qubit Pauli group , was shown in 

[29]. Consider the density matrix of the state, p = 10) ( . Since p is a pure-state density 

matrix, it will have eigenvalues 1 (non-degenerate) and 0 ((2 n - 1)-fold degenerate). It 

is easy to see that the unique eigenvector corresponding to eigenvalue 1 is the state I'?4') 

itself: 

pkb) = 

= 
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where it has been assumed that l') is normalised. Since p is Hermitian, any vector 

orthogonal to I') is thus an eigenvector of p with eigenvalue 0, and since this eigenvalue 

is (2 - 1)-fold degenerate, it is possible to find a basis of 2 - 1 linearly independent 

eigenvectors spanning the eigenspace of p corresponding to eigenvalue 0. Suppose we use 

an orthonormal basis { v1) I i € {0, 1,. .. , 2 - 1} } obeying the eigenvalue relations 

pIv) = 5,oIv), (4.23) 

implying that vo) = ). Then we can construct a set of orthonormal projectors {f} 

defined by 

fi = lvXviI. 

Since the v) are orthonormal, we have (vjv5) = 5i,j and thus 

= vjXvjlvo) 

= o,oIv). 

We can thus see that any operator of the form 

2'-1 

(4.24) 

with aij E JR for all i,j (4.25) 
j=1 

has ') as an eigenvector with eigenvalue 1, and is thus an element of some general 

stabiliser of I). Evidently there are an infinite number of such operators. Thus, the 

remaining task is to choose appropriate values for the aij with i, j E {0, 1, . . . 1 2n - 1} 

such that the 2 operators si form a group. A suitable choice is the matrix elements of 

the so-called Walsh-Hadamard transform matrix [30, 29], defined below. 
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Definition 4.3.1. The single-qubit Walsh-Hadamard transform matrix (WHT) is the 

matrix 

The n-qubit WHT is the matrix 

11 
wi= 

1 —1 

wn = 
n—i 

®wi 

(4.26) 

(4.27) 

The following lemma gives a convenient way to express the matrix elements of W. 

Lemma 4.3.2. The (i, i) matrix element of the n-qubit WHT can be written as 

n )ij 
= (_i)Ek=O ikik (4.28) 

where ik is the kth bit from the left in the n-bit binary representation of i (padded with 

Os on the left as necessary). 

Proof. The proof proceeds by means of induction. Consider the case n = 1. We have 

wi= 

We explicitly see that 

Now suppose the claim is true for W, i.e. 

(4.29) 

(Wt)rs = (_1)'k8k, (4.30) 
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and consider the case of We can express W 1 in block form as 

wt+1 = w1®w 

(W1)00 W (W1)01 W 

(T'V1)10 T'V (W1)11 W - 

(4.31) 

Label the block (W1)ab W as block ab. Clearly, each element (Wt+i)rs falls into one of 

the four blocks. The value of each matrix element is determined by the block in which 

it is contained and the relative position of that matrix element within its block. Each of 

these quantities can be determined from the indices r and S. Specifically, for identifying 

the block, we have 

r ≥ 2t? s ≥ 2t? Block containing (W +1)8 
No No Block 00 
No Yes Block 01 
Yes No Block 10 
Yes Yes Block 11 

In other words, if r and s are expressed as (t + 1)-bit strings, then a and b correspond 

to the first bit of r and s respectively. The indices describing the relative position of the 

matrix element within block ab are r - a and s - b (i.e. the last t bits of the 

(t + 1)-bit representations of r and s. The matrix element of Wti 

from this fact, together with equations (4.30) and (4.31), to be 

(Wt+i) rs = (W1) ab (T4't)r_a.2t,s_b.2t 

(l)EJ(r_a.2t)k(8_b.2t) 

= (l)a.b+(r_a.2t)k(s_b.2t)k 

k 

is then determined 

(4.32) 

The first term in the exponent in equation (4.32) corresponds to the product of the first 

bit in r with the first bit in s. The second term in the exponent above is the sum of the 

bitwise products of the last t out of the t + 1 bits in r with the corresponding bits in s. 
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We can thus combine the two terms under one summation over all (t + 1) digits of r and 

5, 

(W+i)ra = (4.33) 

thus completing the proof. D 

The WilT can be used to give a constructive method for finding a stabiliser (in the 

general sense, not the quantum information sense of a Pauli stabiliser in particular). Any 

particular n-qubit quantum pure state will have an infinite number of general stabilisers 

whose elements belong to SU (2), the group of 2'-by-2' unitary operators. In the case 

of a stabiliser state in particular, one of these general stabilisers will be in the form of a 

Pauli stabiliser, whose elements are separable and composed of Pauli operators, belonging 

to the set SU (2)® . First, we will review the constructive method of finding a general 

stabiliser for a general quantum pure state, given in reference [29]. Then, in the special 

case of a stabiliser state, we will show how to construct the unique Pauli stabiliser for 

this state, a new result. 

Theorem 4.3.3. Suppose an n-qubit pure state /-') has density matrix p = I&)( with 

orthonormal eigenvectors {Ivi)} corresponding to eigenvalues 6i,o such that 

Si = aijf j (4.34) 
j=o 

where i,j E {O, I,— , , 2' - 1} and fj  vj)(vjl. Then, the set {s} of cardinality 2 

defined by 

aij = (4.35) 

i.e. aij is the (i, i) matrix element of the n-qubit WHT, is a general stabiliser for I). 

Proof. The following facts must be established in order to complete the proof: 
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1. Each operator si fixes I). 

2. The {s} form a group of order 2 under composition or, equivalently, matrix 

multiplication. 

First, note that 

Thus, all of the si are in the form of the operators in equation (4.25), meaning that they 

all fix Similarly, it can be proven that a01 = 1 for all i. Now, we prove that the 

si form a group of order 2. Since W,- has 2n rows, the cardinality of the set {s} is 

clearly 2. Thus, we just need to check that the four group axioms are obeyed. First, we 

demonstrate closure, i.e. that Si8i = 8k for i,j, k € {O, 1,... , - 

2'-1 

= (aikfk) 
k=O 

2t21 221 

= E  aaff 
k=0 1=0 
2'—1 2l 

'jifl) 
1=0 

(.1)E 1rkr (_l)Ei318 Vk) (from Equation (4.28)) 

k=0 1=0 

(VklVI) (vii rO 
2'—i 2l 

i >i (_l)E=int) óklivk) (vii 
k=0 1=0 

= y ( 1)(ir+r)kr ivk)(VkI. 
k=0 

Since the value of (_i)' depends only on whether p is odd or even, we can do all of the 

arithmetic in the exponent of the summand above modulo 2. Denoting bitwise addition 
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modulo 2 by the symbol , we have 

sisi = 

k=O 

k=O 

= sij, 

)r)E n-1 __r=O (rjr)kr IVk) (VkI 

a()kfk 

thus indicating closure. Next we show that so is the n-qubit identity matrix: 

so = aof 
j=o 

j=o 

2-1 

= v)(vI 

j=o 

= 

where the last step is due to the completeness property of the eigenvectors of Hermitian 

operators. Therefore, the set contains the identity element. It is trivial to show that each 

element is its own inverse: 

Ssi = 8iei 

=  80. 

The operation under which the elements are combined is matrix multiplication, which is 

known to be associative, and the proof is complete. 0 

As an illustration of the use of the above theorem, we will once again turn to the Bell 

state and explicitly construct a stabiliser for it. 
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Example 4.3.4. Consider the Bell state 

1 
IBeU) = (I00)+ 111)) 

1 

0 

0 

1 

We have Ivo) = lBeU), and we choose the other v) such that all of the vectors are 

mutually orthonormal. There are an infinite number of such choices available, so pick, 

for example, 

1 

0 
Ivi)= 

0 

1 

From this choice, we obtain 

0 

1 

0 

0 

Iv2)= 

0 

0 

1 

0 

2 2 

0000 

0000 

inn' 
' '' 2. 

0000 

0100 

0000 

0 0 0 

1 

0 

0 

1 

(4.36) 

(4.37) 

(4.38) 
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f2 =  

f3= 

0000 

0000 

0010 

0 0 0 0 

1 n 
2 " 2 

0000 

0000 

inn 1 
2 '' 2 

The two-qubit WHT whose rows tell us how to combine the fs is given by 

w2= 

which in turn leads to the stabiliser elements 

Si 

= fo+fi+f2+f3 

1000 

- 0100 

- 0010 

0001 

= fo — fi+f2 — f3 

0001 

- 0100 

- 0 0 —1 0 

0 0 0 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

(4.43) 



59 

= fo+fl—f2—f3 

0001 

= 0100 

0 0 —1 0 

—1 0 0 0 

83 = fo — fl — f2+f3 

1000 

- 0 —1 0 0 

- 0 0 —1 0 

0 0 

(4.44) 

(4,45) 

These four matrices do indeed stabilise I'u) but they (specifically and .92) are not 

separable. Thus, the stabiliser we have obtained here is not the same as the one from 

Example 4.1.11. Because of the freedom we have in choosing vi) and Iv2), the stabiliser 

yielded by this constructive method is not unique. 

In the case where k?') is a stabiliser state it is in fact possible to determine systemat-

ically the basis of eigenvectors of p = 10) ( that is required to give rise to the separable 

(Pauli) stabiliser for ). This subject will be addressed in Theorem 5.3.3 of Chapter 5, 

in which the new contributions presented in this thesis are discussed. 



Chapter 5 

Necessary Conditions for SLOCC-Equivalence Between Graph 

States and Arbitrary Quantum Pure States 

5.1 Introduction 

Since the types of tasks that can be accomplished with different kinds of quantum states 

vary depending upon the SLOCO class to which these states belong, it would be bene-

ficial to have a systematic scheme for SLOCC-classification of quantum pure states. On 

two qubits, it is known that all pure states are SLOCC-equivalent [18]. On three qubits 

there are precisely two inequivalent classes exhibiting true tripartite ex, represented by 

the GHZ-state and the W-state [16]. Unfortunately, the classification based on SLOCC-

equivalence breaks down for four-qubit states, as it was shown by Wallach in 2005 that 

there are an infinite number of SLOCC-equivalence classes on four qubits [21]. Neverthe-

less, since quantum pure states that are SLOCC-equivalent to each other are capable of 

performing the same kinds of quantum information processing tasks, it is still an interest-

ing challenge to determine SLOCC-equivalence of quantum pure states on four or more 

qubits. Since it is known that stabiliser states are useful for a number of such tasks, for 

example quantum error correction [23] and measurement-based quantum computing [31], 

it would behoove us to find a means of testing SL000-convertibility between arbitrary 

quantum pure states and stabiliser states. The primary focus of this thesis is to elucidate 

some ideas with regards to accomplishing the task of determining SLOCC-equivalence 

between stabiliser states and arbitrary quantum pure states, for which there is no known 

efficient means in general. The specific question that we are interested in answering can 

be stated as follows: given an n-qubit pure state I) and an n-qubit graph state Ig), does 

60 
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there exist an n-qubit SLOCC operator S such that I) = Sjg)? It is inefficient in general 

to attempt to solve for S explicitly. An alternative approach, the one embraced by this 

thesis, is to construct a set of easily evaluated conditions on b) that are necessary and 

sufficient for SLOCCequivalence between 'b) and g). In this chapter, a set of necessary 

conditions for the SLOCC-equivalence of an arbitrary quantum pure state to a graph 

state will be provided. Some ideas regarding how to find a set of sufficient conditions will 

be discussed in Chapter 6. The remainder of this chapter comprises my original research 

contributions. 

5.2 SLO CC-transformed stabilisers 

The principal idea that was investigated in the hope of finding a means of checking 

for interconvertibility between stabiliser states and arbitrary quantum pure states is 

the fact that SLOCC-transformed stabiliser states have separable (in general non-Pauli) 

stabilisers themselves. This is demonstrated demonstrated by Lemmas 5.2.1 and 5.2.2 

below. 

Lemma 5.2.1. Suppose that an n-qubit pure state I) is SLOCC-connected to a stabiliser 

state Is), i.e. 
n-i 

I) = ®SIs). 
i=O 

(5.1) 

for some set of invertible single-qubit operators S. If oj is an element of the Pauli 

stabiliser for Is), i.e. 
n-i 

ojs) = ® 0jj15) 
j=o 

=Is) 

where the o are single-qubit Pauli group operators, then the operator 

(5.2) 
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is a separable, generally non-Pauli operator that fixes I). 

Proof. It is self-evident from the form of equation (5.2) that öj is separable. For conve-

nience, let S = ® S. Then 

= (SuS') (Sls)) 

= Sojls) 

= Sos) 

= 

D 

Lemma 5.2.2. The set of operators F, = {5} whose elements are defined in equation 

(5.2) is a group of order 2. 

Proof. As usual, we check the four group axioms one at a time. 

1. Closure. 

= (8oj8') (SoS') 

= 

= SojEjS 1 

= 

2. Identity. 
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3. Inverse. Every element of {&} is its own inverse: 

(5.3) 

(5.4) 

4. Associativity. As usual, this property follows directly from the associativity of 

matrix multiplication. 

El 

We will refer to the group consisting of the transformed stabiliser elements as a 

SLOCC-transformed Pauli stabiliser, and define some notation for it. 

Definition 5.2.3. Suppose G is a group of n-qubit Pauli operators and S is an n-qubit 

SLOCC operator. Then the symbol () denotes the group that results from transforming 

C by 8, or more specifically, 

= SGS' 

= {SgjS' I gEG}. 

shall be called a SLOCC-transformed Pauli stabiliser, and its elements will be denoted 

p(S) Sg1S' 
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For notational convenience, the superscript (8) will be dropped whenever there is no 

possibility for confusion, so the group transformed by S will be written merely as C, 

and the elements of the group as . As an example of the above notation, the single-

qubit Pauli group transformed by the SLOCC operator S shall be denoted either as 

or simply as g1. Note well from the proof of the existence of inverses that each local 

operator that occurs in any element of the stabiliser t from Lemma 5.2.2 squares to 

the identity, Equation (5.3). This property is useful, because any element of GL(2, C) 

that squares to the identity and is not itself a multiple of the identity has only two free 

complex parameters, rather than the usual four, thereby halving the number of unknowns 

appearing in the system of equations (3.7). First, we show how to write any matrix from 

in terms of three unknowns. 

Lemma 5.2.4. A matrix M E GL(2, C) obeying M2 = 1(2) either also obeys M = ±1(2) 

or can be written as 

where u, v E C. 

Proof. Let 

with t,u,v,w E C. Then, 

M=± 

M 2 

t  
M = 

V  

t  

V  

t  

V  

u(t+w) 

w2 + uv 

(5.5) 

(5.6) 

(5.7) 



65 

Equation (5.7) admits two cases. 

CASE I:t+w 0. 

In this case we find that 

U = v=0 

and thus thatt2 w2 = 1. 

But, t —w, so 

t = w=±l and thus, 

M = ±1(2). 

All matrices corresponding to this case have determinant 1. 

CASE II: t+w = 0. 

In this case, 

t = —w=±/1—uv and thus, 

M=± 
\/1UV u 

V —/1—uv 

All matrices falling into this category have determinant -1. El 

All elements of t that have determinant -1 and square to the identity fall under case 

II in Lemma 5.2.4. Thus, they have three unknowns: u, v and the overall sign. However, 

the overall sign can be fixed to be positive. 

Lemma 5.2.5. Any operatorö = SoS 1, where SE GL(2,C) and  E Gi , det(ci) = —1, 

can be written as 

\/1UV u 

V — J1— uv 

where u,v E C. 

(5.8) 
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Proof. From case II of Lemma 5.2.4, we know that 

uv U 

v —/1—uv 

where u, v E C. Suppose that 

5=-

Then 

—cr 

V \/1UV 

uv u 

v —/1—uv 

= —SoS' 

= S(—u)S'. (5.9) 

Now, note the following relations: 

—x=YxY 

—Y=HYH 

—z = xzx. 

Thus, for any single-qubit Pauli operator or that is not proportional to the identity ele-

ment, there is a matrix T E GL(2, C) such that 

—u = TuT'. (5.10) 

Putting (5.10) into (5.9) yields 

uv u 

V 

= STuT'S' 

= (ST)u(ST)' 

= su(s), 
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where 5' = ST € GL(2, C). In other words, the positive sign in Equation (5.5) can 

always be chosen. LI 

If a separable stabiliser composed of local operators that square to the identity exists 

for some given pure state I) the state k) is SLOCC-equivalent to a stabiliser state. 

Recall that it is possible to construct stabilisers of a pure state kb) as described in Section 

4.3, and that the stabiliser obtained is not necessarily separable. It turns out to be true 

that if 'i/') is a stabiliser state, there is always a choice of orthonormal eigenbasis for 

= 10)(01 such that the constructed stabiliser is separable. This will be demonstrated 

in the next section. 

5.3 Constructing separable stabilisers for graph states 

Since all stabiliser states are local-unitarily equivalent to graph states, the problem of 

constructing separable stabilisers for stabiliser states can be reduced to the consideration 

of graph states. Suppose an n-qubit graph state g) is provided. The key to constructing 

the separable stabiliser for this state is in the selection of the particular orthonormal 

elgenbasis for I) = Ig) (gl that accomplishes this. Fortunately, the correct choice of basis 

can be obtained straightforwardly by means of local Pauli Z operations on the original 

graph state. The specific basis is given in Lemma 5.3.1 and Corollary 5.3.2, and then the 

correctness of this choice of basis is demonstrated in Theorem 5.3.3. 

Lemma 5.3.1. Suppose a (normalised) n-qubit graph state g) is provided. The vectors 

in the set { Iui) } of cardinality 2, defined by 

v) = (j=o 
(5.11) 

are an orthonormal set of vectors, where Z is the Pauli-Z matrix operating on qubit j 

and ii is the jth bit in the n-bit binary expression for the index i obeying 0 ≤ i < 2 - 1. 
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Proof. Consider the inner product (vIv). We can use the binary form of Ig) from 

Equation 4.22 to write 

(k=O 

m—i \ 2'' 

Z 2/ >I  / 1=0 

2'' 

= 2/ ( 1)+1Aiklilk (®Zik Il) 
1=0 \k=o I 

(5.12) 

Zk acts if and only if ik = 1. If it does act, then it has no effect if qubit k is in state 0), 

i.e. 1k = 0, and it introduces a factor of —1 if qubit k is in state 1), i.e. ik = 1. Thus, for 

the four possible combinations of ik and 1k, there is a factor of —1 introduced for every 

k such that ik = lk = 1. This can be expressed mathematically as 

n-1 n-1 

= (\•y1zklk)n-1  

= ( tl••j 101 (1)kk : =0  Ilk)) 

= (1)EWk el). 

Substituting Equation (5.13) into Equation (5.12), we get 

2 1 

Iv) = 2n/2 (_l)E oE1Flkkhj1k (_1)Eril Il) 

The inner product of two of these vectors is thus given by 

/ 1 2 1 
n-2 n-1 ' ç 

(v  Iv) = (-1)i=° k=l+lAiktatk (_1)Ei1 (11) 

/ 1 2' n-2 n-1 
Arsmr?ms (-1) jpmp rn)) X (—.1)=° Fn-1 

M=0 

2 1 2n-1 

'-'n-2 'n-1 
= (l)Li= E n— -1 (_1) (iqlq+3qmq) Sim 

1=0 m=0 

2Th1 
ç (_1)2 L...n-1 k=j+j Aklalk (_ l)E= (iqjq)lq 

(5.13) 

(5.14) 

(5.15) 
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2 
8=0 (18=0 

1 1 

Suppose first that i = j. In this case, it is clear that iq 0 for all q, and thus 

Equation (5.15) reduces to 

Lq=O q 

Next, consider the case i j. Then, it is possible to choose at least one 

1, allowing us to rewrite Equation (5.15) as 

1 
1 — (1)EL(ire.7r)lr 

— 
10=0 11=0 In-1=0 

h 1 
1 E (i)(iseis)18) 

fi 

1Tn 

1Q=°  ( 1.=Osq  I \ 

1 
- ((_1)10 + (_1)11) fi ; (1,=O ( i)(i8 Js)1s) 
— 

sq 

1 
- -2 (1 - 1)11  —  

sq \l=0 

=0. 

Combining equations (5.16) and (5.17) gives us the desired result of 

(Vi Iv) = 5ij• 

q 

(5.16) 

such that 

(5.17) 

(5.18) 

Corollary 5.3.2. The set {Iv)} defined in Equation (5.11) is an orthonorrnal basis of 

eigenvectors for the density matrix p = IXI with eigenvalues Sj,o. 
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Proof. It is clear from the definition of vi) that Ivo) = g). Thus, 

PIvo) = I)('1') 

=Ig) 

= Ivo) and 

pIvo) = Ivo)(voIv5.o) 

=0. 

El 

Theorem 5.3.3. Suppose an n-qubit graph state g) is provided. The orthonorinal basis 

{Iv1)} for the density matrix p = I)(I defined in Equation (5.11) gives a separable Pauli 

stabiliser for g) when used in the constructive algorithm of Theorem .4.3.3. 

Proof. The proof of this statement, although somewhat tedious, is relatively straight-

forward. Consider the stabiliser element Si. We will show that it is a separable Pauli 

operator. 
2"—1 

Si (W) 1 I vi) (vu 

Use equations (4.28) and (5.11) to expand this expression: 

X 

1=0 

2-1 2'-1 
=0 k-1- 1: (_i)E=O zb=a+l 

x=0 y=O 

(_,)E id(d+/d) I x) (I 
2'-1 2'-1 

n-2 'n—i i (_)a=o I.b=a+lAab(XaXb+YaVb) 

x=0 Y=O 

( 1)Eo 1m(Xm+Ym+km) 

l=0 

Aa& (Xaxb+yayb) 

(5.19) 

(5.20) 

(5.21) 

The operator Si 15 fully separable if and only if none of its matrix elements depend on more 

than one bit of x or y. Thus, we need to remove the explicit dependence of the stabiliser 

matrix elements on the cross terms XaXb and YaYb The factor (_i)E= Aab(Xab+yaVb) 
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above depends on the properties of the underlying graph (i.e. the adjacency matrix), 

En-1 X 
whereas the factor (—l)° 1m(m+ym+km) does not. We can rewrite this graph-independent 

portion as follows: 

2—i 

- 

1=0 

lm (xm+ym+km) 

1=0 \m=0 

(1i (1)lm(Xm+Vm+ktn) 
ln—i0 \m=0 

= 
M=O \1m 0 

= 11 [1+ (l)Xm+Vn+km] 

M=0 

n—i 

= [f 

lm (xm +ym +km ) 

(5.22) 
M=0 

where the equality of the last two lines above is straightforward to verify. Substituting 

Equation (5.22) into Equation (5.21) and using the fact that regular integer arithmetic 

is equivalent to arithmetic modulo 2 when it appears in a power to which the number 

—1 is raised gives 

Sk 

2n-—1i 2'—i n—i 
n-2 -'n-1 

= _ Aab(XaXbyaYb) (rJm=0 28XmYmkn) xXyl 
=0 y=0 

2'—i2'-1 /n—i 

= 1 ( 1)E2n a=O E +iAab((Vaka)(VbkYaYb) -2 ( J1 5Xmmkm) Ix)(yl 
=o y=o \m=0 

2-12-1 /n—i 

( 1)E Aab(yaybyakbybkakakbyaVb) ( If 6nmYmkm) 
x=0 y=O m=0 

2n-1 2n-1 (M=0 n—i 

E 02E +1 kkak) fi 6xmtnkm IxXyI, 
x=0 y=o  

(5.23) 

In Equation (5.23), it can now be seen that the matrix elements of 3k do not depend on 

cross terms like XaXb or YaYb and thus, the matrix elements are separable as promised. 

We can go further and show that the separable operators are, in fact, single-qubit Pauli 
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operators. 

8k = (- 
2'-n-1 >i: E; +1 Aab(kc,kb) (__i)En =o 2-d=c4.1 Aa(yCkd+ydkC) 

x=0 y0 (n—i FImmkm) xxyl. 
m=O 

Since Acd = Ad (the underlying graph is undirected), it is true that 
n-2 n—i n-2 n—i n-2 n—i 

Acd (yckcj + ydkc) Ayk + A1mymk1. 
c=O d=c+1 c=O d=e+i 1=0 m=l+i 

(5.24) 

The above pair of sums can be condensed into a single sum over all possible indices c 

and d labelling the matrix elements Add, because the diagonal matrix elements Aii are 

all equal to zero (since the graph is simple): 
n-2 n—i n—i n—i 

Acd(yckd+ydkc)=EAcjiyckd. (5.25) 
c=O d=c+i c=O d=O 

Substituting Equation (5.25) into Equation (5.24) gives us 
2—i 2'—i 

Sk = 

x=O v=O 

C 
( i)E 2 ' 1 - a=O L-'b=a+l Aab(kakb) (-1)= 01 Ayk 

II 5 mYmekm) xXyl 
m=O 

E n-2 (_1)Ea=O 2-'b=a+l Aab(kakb) 

In—i 

H 5 m,vmnt) x)(yl 
mO 

(_i)>; E;a+i Aab(kkb) 

2n-1 2n-1 In—i 
(rj(l)E!4 A cdvckd 

.T=O y=O c=O 

2—i2—1 n—i 

(H lxXyl, 
z=O y=O \m=O 

which can be written explicitly as the Kronecker product of single-qubit operators as 

8k = 

X 

X 

) E n-1 = LI b=a+1 Aab(kakb) (-1  

n—i (r=O 

i 1 

® ( 1)SEAmdkd Sr,sknjT)(Sm=O  s=O 

(-1)= L..,ba+j Aab(kakb) 

n—i/i i 

( 
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km >:Ii::: Amdkd mod 2 Sm 
o 0 1(2) 

o i z 
1 0 X 
1 1 —iY 

Table 5.1: Possible values of single-qubit operator Sm appearing in Equation (5.27). 

The factor (-1) E +1 Aab(kakb) only affects the overall sign appearing in front of the 

stabiliser element Sk, depending upon the index k and the adjacency matrix A of the 

underlying graph. Now consider the single-qubit operator 

1 1 

Sm = I (_1)8 —'A,,,,dkd r®s,kmlT)(SI 
r=O S=O 

óO,km 
(1)EAmdkd5 1 

O,k,, J 
(5.27) 

There are four possibilities as to what this operator could be, which are summarised in 

Table 5.3. They are all single-qubit Pauli operators, thus completing the proof. 0 

To demonstrate the value of Theorem 5.3.3, we will turn yet again to the Bell state 

previously studied in Example 4.3.4. 

Example 5.3.4. Consider the Bell state 

IBe11) 
1 

;7 (100) + 11)) = 

1 

1 0 

1 

This is not a graph state; however, it is equivalent under the local unitary transformation 

I2) (D H1 to the two-qubit connected graph state 

Ig) = (100) + 01) +10) —11)). (5.28) 
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In accordance with Equation (5.11), we choose the eigenbasis {Ivj)} of o = lXI as 

follows: 

lvo) = (42) (Di 2)) (100) + 01) + 110) Ill)) 

= (1 00) + 01) + 10) - I">) 

1 
2 

1 
2 

1 
2 

1 
- 2 

Ivi = (,.,2) z1) . (IOU) + 01) + 10) - I")) 

= (100) - 101) + 110) +1")) 

1 
2 

2 

1 
2 

1 
2 

Iv2) = (z0 ® '?) 1(100) + 01) + 110) - I")) 

= (100) + 101) - 110) + I")) 

1 
2 

1 
2 

1 
2 

1 
2... 
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I V3) = (Zo®Z1)' (I00)+I01)+I10) —11)) 

= (lOO) — IO1)— I1O) — I11 )) 

1 
2 

1 
2 

1 
2 

2 

thereby finding the fi defined in Theorem 4.3.3 to be 

A 

f2 

f3 

1 

4 

1 

4 

1 

4 

(5.29) 

(5.30) 

(5.31) 

(5.32) 
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From here we obtain the stabiliser elements 

so = fo+fl+f2+f3 

1000 

= 0100 

0010 

_0 0 0 1 

-  o ®1 (2) (2) 
- . 

1 fo—fl+f2—f3 

010 0 

= 100 0 

0 0 0 —1 

0 0 —1 0 

= zo®x1. 

52 = fo+fl — f2 - 13 

.93 

0010 

0 0 0 —1 

1000 

0 —1 0 0 

= Xo®Zi. 

0 0 0 —1 

= 0010 

0100 

0 0 0 

= Yo®Y1. 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

(5.40) 
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From here, it is straightforward to obtain the Pauli stabiliser of IBeI1): 

= (_T'0(2) ® H1) (,0,2) if)) (10,2) H1) 

= 42)42)42) ® H, H, 

= 42) ® I2). 

= (,0(2) ® H1) (Zo ® X1) (10(2) ® H1) 
-  1r0(2)ZI(2) ® H1X1H1 
-  

= (42) ® H1) (Xo(DZ.) (10(2) if) 

= 42x042 0 H1Z1H1 

= X0®X1. 

83 = (j.(2) Hi) (Yo Y1) (10(2) H1) 

= 42)y042) 0 HY1H1 

= _Yo (9Y1. 

The Pauli stabiliser of I''Be11) is therefore seen to be {42) (D 4)'  Zo ® Z1, Xo 0 X1, —Yo (g 

in agreement with Equation (4.9). 

5.4 Constructing separable stabilisers for SLOCC-transformed graph states 

As discussed in Section 5.2, a SLOCC-transformed stabiliser state has a separable, gener-

ally non-Pauli stabiliser whose elements are composed of tensor products of single-qubit 

operators that square to the identity. In our scenario of interest, some state I ë) is given, 

and the problem is to find out whether there exists a SLOCC transformation S connect-

ing ) to some known stabiliser state Is). The approach described here is to attempt 
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to explicitly construct the SLOCC-transformed stabiliser of I) using an extension of the 

constructive algorithm given in theorems 4.3.3 and 5.3.3. The algorithm as given only 

works for graph states, although it can easily be used for all stabiliser states, as shown 

in Example 5.3.4. The generalisation to SLOCC-transformed stabiliser states, however, 

is not trivial. Consider the SLOCC-transformed stabiliser state I). Since Is) was fixed 

by the operators {aj}, ) will be fixed by the operators {&}, given by 

crj 

2'-i 

- S ( (W)j Ivk)(vkl) -1 

2's-i 

= (Wn)jk (slvk)(vkls') 

2'-i 

= (Wn)jk  

where fk = Slvk)(vkIS'. Whereas the fk could be determined from the knowledge of Ivk) 

alone, constructing the fk requires knowledge of Slvk) and (vkIS', which are not known. 

These vectors are the right and left eigenvectors respectively of the matrix 1 = SpS': 

4ö (SIv)) = SIvo)(voIS'Slvk) 

= SlvoXvolvk) 

ôO,k(SIVk)). 

((vk15'),3 = (VkIS'SIVO)(VOIS' 

= (VkIlVo)(VOIS' 

= ((vkIS')öo,k. 

This was not an issue in the case of the graph state because p is a Hermitian matrix, 

and the left eigenvectors of Hermitian matrices are the adjoints of the right eigenvectors. 
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However, ,3 is not Hermitian unless S is unitary. In order to construct the separable 

stabiliser for I we will need to find both a left and a right orthonormal eigenbasis for . 

Due to the degeneracy of the eigenvalue 0, there are an infinite number of choices of right 

eigenbases, and there are also an infinite number of possible left eigenbases. However, 

there is a specific choice for each of these bases such that the ck operators are separable. 

The basis of right eigenvectors, denoted {IVk,R)}, can be written as 

I Vk,R) Slvk) 

j=o 

where Z is the Pauli-Z gate acting on qubit j and 

Zj = szs;-'. 

Similarly, the basis of left eigenvectors is denoted by { (Vk,L } and given by 

(Vk,LI 

where 

= (VkIS' 

( :2;5) , 

(5.41) 

(5.42) 

(5.43) 

('I = (sIS'. (5.44) 

At this point it will be convenient to define some notation for groups that are transformed 

by the SLOCC operator S. 
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Definition 5.4.1. Suppose G is a group of n-qubit operators and S is an n-qubit SLOCC 

operator. Then the symbol denotes the group that results from transforming G by 

or more specifically, 

O(S) = SGS 1 

= {sgjs' IgiEG} 

= {(S) gEG}, 

where (S) = SgS'. 

It is straightforward to verify in the usual way that G(s) is a group, so it will not 

be done here. For notational convenience, the superscript (S) will be dropped whenever 

there is no possibility for confusion, so the group transformed by S will be written merely 

as C, and the elements of the group as j. Using the above notation, it can be seen for 

example that the operators Z from Equation (5.42) belong to the group jI, the single-

qubit Pauli group transformed by the SLOCC operator S. 

It can be shown that the left and right eigenbases of equations (5.43) and (5.41) are 

orthonormal relative to each other. 

Lemma 5.4.2. The basis vectors {(Vk,LI} that are left eigenvectors of the matrix 1ö = 

SggIS', defined in Equation (5.43), where g) is an n-qubit graph state and S is an 

n-qubit SLOCC operator, obey the orthonormality relations 

(Vj,LIVk,R) = 5j,k (5.45) 

with the elements of the basis of right eigenvectors {Ivk,R)} of , defined in Equation 

(5.41). 
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Proof. 

(V,L I Vk,R) - (vIS'SIvk) 

= (vjlvk) (where the {Ivk)} are right elgenvectors of p = IXI) 

= 

El 

We can now state the central theorem regarding the construction of the separable 

(non-Pauli) stabiliser of a SLOCC-transformed graph state. 

Theorem 5.4.3. Suppose we have an n-qubit graph state g) and an n-qubit SLOCC 

operator S. Then the set of operators ci = {&} given by 
2-1 

= (W) Ivk,R)(' 1k,LI (5.46) 

form a separable (in general non-Pauli) stabiliser for the SLOCC-transformed graph state 

I) = SIg), where the {Ivk,R)} and {(vk,LI} are defined in equations (5.41) and (5.48) 

respectively. 

Proof. Since S is an n-qubit SIJOCC operator, it can be written as 

where the Si are all single-qubit, invertible operators. Now, note that 

2-1 

o_j 
k=O 
22_1 

(T4Jn)k I''k,R) (Vk,L I 

(Wfl) k Slvk)(vkIS' 
k=O 

= S (2n-1 (W)jk  Ivk>(vkl) 

= So-is-1 

= 

(5,47) 

(5.48) 
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where crj = o is an element of the separable Pauli stabiliser for g). The operators 

& in Equation (5.48) are precisely the ones found in Equation (5.2) and are thus known 

to form a stabiliser for ). 0 

The orthonormality relations from Equation (5.45) give us a system of multivariate 

polynomial equations that can be solved for the unknown Zi operators: 

Therefore, 

(V,L Vk,R) 

1n—i \ In—i \ 

2 (2c1) IVO,R) 
\i=O / \i=o I 

(n—i ®2ii ) IVO,R). 
i=O 

(VO,L ® 'I IVO,R) = 5j,k 

I ( \ 
i=O I 

n—i 

(vo,LI 2) IVO,R) = öj,o. 
i=O 

(5.49) 

Equation (5.49) is a system of 2 equations in 4n real unknowns for the matrix 

elements of the 2j operators. It will be shown shortly that only of these equations 

give useful conditions on the 2j operators, while the rest are automatically satisfied 

regardless of the pure state ) being considered. As a direct consequence of Theorem 

5.4.3, it can be seen that the conditions (5.49) are necessary, although not sufficient, 

for the states g) and kb) to be SLOCC-equivalent. These orthonormality conditions 

as written exhibit a serious practical problem, namely that (q = (VO,LI is unknown. 

However, this problem can be alleviated by writing (q in terms of 'b) and the unknown 

S operators in the computational basis. 

Remark 5.4.4. The inverse of a matrix S E GL(2, C) can be written as 

(Si)-' = 1 YSTY 
det(S) 

(5.50) 
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where S' denotes the transpose of S, det (Si) is the determinant of Si and Y is the 

standard Pauli-Y matrix. 

This above fact can easily be checked, and is very useful: it allows us to write (01 in 

terms of (gl and the SLOCO operator S. The expression (5.51) given in Lemma 5.4.5 

below also contains local operators ojj from the Pauli stabiliser for l)• This feature will 

prove to be useful for simplifying (5.51). 

Lemma 5.4.5. Suppose we have an n-qubit pure state l) an n-qubit graph state ) 

with Pauli stabiliser 

E = stab (la)) 

= {01i 07i = E Gi } 
and an operator S = (g' S with S GL(2, C) V i E {O, 1,. .. In - 1} such that 

lv') = Sly). Then the bra vector (01 = (glS' can be written in any basis where g) e R 2n 

as 
1 n—i 

(c51 = det (So) 
  ((?I,D*Y®Th®Ok, 

where 0 k = SkYkojkS; ' E 61 

Proof. 

k=O 

(I = (gIS' 
n—i 

= (g S, 
i=O 

(gl® n—i YS'Y 
(from Remark 5.4.4) =  

det (Si) 

= [Ic det (Si) 
Without loss of generality, we can set det (Si) = 1 for all i 0, so that 

1 n—i 

y i-= det (So)(91 ' ' 

(5.51) 

(5.52) 
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At this point, we can use a trick: since the graph state I) is known, its Pauli stabiliser 

= stabg (g)) is also known. For a stabiliser element ai € E, we have 

01g) = g), so 

(g I = (g o (since o is Hermitian) 

= (gl• 

Because of this relationship, we can insert a stabiliser element into Equation (5.52) as 

follows: 

n-i 

(I = 

L 

det (S0) (gIo ® YS'Y 
i=O 

1 

= det(So)1 ( k= : ak) ( s) 
= det(So)1 ® UkYkS'Yk. 

Now, we have I'?/)) = Sag) by assumption, and thus 

= Ig), implying 

(l (1(8-i)t 

= (I ((S1)T) 

Taking the transpose of both sides of Equation (5.50) gives us 

(S,- i)T 1  yT8yT 

= det(S) 
1  

YSY (since yT = —Y). 
det(S) 

Substituting (5.55) into (5.54) yields 

(I = detI - n-1 ) 9 
 (So) 1 (Oyisiyi  and thus, 

i=O 

n-i 

Yisiyi YYI) =   det (So) 
i=O 

(5.53) 

(5.54) 

(5.55) 
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In any basis where (gl is completely real (such as the computational basis, with all 

elements being ±1), we have ((gj)* = (gI' and thus that 

= det (SO) ((I)* ® YSY (in a basis where g) E (5.56) 
i=O 

Putting (5.56) into (5.53), we see that 

1  1 1/n-i \\ 1/n-i TY 

det (S0) det (So) ((I)* ® YiSiYi) ® aJkYkSk) (I = 

i=O k=O 

1 n-i 

= det (So) det (So)  ® YkSkYkokYkS 'Yk. 
k=O 

Now, noting that Y' = Y and taking the inverse of both sides of Equation (5.55) gives 

(5.57) 

us 

SiT = det (Si) YS'Y. (5.58) 

Putting Equation (5.58) into Equation (5.57), we get 

1 n-i 
(c51 = det (So) ((I)* ® YkSkYkokYkYkS'YkYk 

det (So) det (So) k=O 

1 
= det (So) ((, )I)* ® YkSkYkokS' 

n-i 

k=O 

n-i 
1  ((,/,l)* yon ::g (SkYkojkS1) (5.59) 

= A.+ (Q_) 
k=O 

n-i 

- det So) ((j)*yon ®Q (5.60) 
k=O 

where 0 k = SkYkujkS ' E 1-

Using Lemma 5.4.5, the conditions from Equation (5.49) can be rewritten in an ap-

propriate basis (one where I) is real) as 
In-i \ n-i 

® )  ((l)* yon ®Ok (I (  
i=O det (So) k=O 

n-i 
1 

=   ((II)* yon ®Okkb) 
det (So) 

(5.61) 
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The Ok operators in the above conditions can be eliminated. Recall the definition 

Ok = E g1. 

In the case that Ojk = Yk, we find 

and thus, 

Similarly, when crk = Xk, 

and thus, 

Ok = SkYkYkS1' 

= 

= 1(2), 

OkZ? = I(2)Zk 

- —2jk 

0  = SkYkXkSJ' 

= —iSkZkS;' 

OkZ? = —ZZkZ 

- - . çjj1 
- 

(5.62) 

(5.63) 

(5.64) 

Therefore, in the case that Ig> has a Pauli stabiliser element oj consisting purely of local 

X and Y operations (up to a constant), the conditions in Equation (5.61) reduce to 

(01 (n-Y1) kl') = ((I)*yefl®7lkI) 

= (j)E'O1m det (Se) 8j,l, (5.65) 
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where 

0 if cr.k is proportional to Yk 
lk=S 

1 if 17jk is proportional to Xk 

The quantity j0 l corresponds to the number of ones in the n-bit expression for 1. It 

is called the Hamming weight of 1 [32]. It so happens that all graph states have a Pauli 

stabiliser element that is proportional to a tensor product of X and Y operators, as will 

be demonstrated in the next section. 

5.5 Binary representation of Pauli subgroups and properties of Pauli sta-

biliser elements 

In order to simplify the necessary conditions for SLOCO equivalence given in Equation 

(5.65), it is necessary to prove that all graph states have a Pauli stabiliser element whose 

local operations are all proportional to either X or Y. In order to do this, we will use a 

concept called the binary representation of Pauli operators (see, for example, [33]), which 

for our purposes is essentially a convenient way of writing down Pauli operators. 

Definition 5.5.1. Consider an n-qubit Pauli operator a E 9n. The binary notation of 

a is the 2n-dimensional row vector r (a) whose elements are given by the conditions in 

Table 5.2. 

Local operator on qubit i 
(up to a constant) Entry i of r (a) Entry i+n ofr(a) 

I2) 0 0 

Xi 1 0 

Yi 1 1 
zi 0 1 

Table 5.2: Binary notation r (a) of a E 9n . 
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Definition 5.5.2. The binary representation of a subset E of the n-qubit Pauli group, 

E={oi IOEgviE{o,1, ... ,IEI-1} } 

is the IEI-by-2n matrix ',' (E) whose ith row is the vector corresponding to the binary 

notation r (ui) of the element Oj of E. 

Although the binary notation for an n-qubit Pauli operator neglects the possible 

overall constants of ±1 or ±i, no two n-qubit Pauli operators that differ merely by a 

constant can ever appear in the same stabiliser (as that would imply that _I(1) is also 

in the stabiliser, which is impossible). The binary representation of a set of independent 

generators for a stabiliser is also called the check matrix corresponding to that stabiliser 

[32]. 

Example 5.5.3. Consider the three-qubit linear cluster state g3), a graph state defined 

by the adjacency matrix 

A= 

010 

101 

010 

(5.66) 

The Pauli stabiliser for this state can be generated by the set 

G(stabg3 (193))) {x0®z1 ®42,z0®x1®z2,i2 ®z1®x2}, (5.67) 

while the full Pauli stabiliser is 

G(stabg3 (g3))) = f 42) ®I 2) ®z1®x2, 

Yo®Yi®Z2,Xo®I2)®X2,Zo®Yi®Y2, —YO ®Xi®Y2}. 

The binary notation for the operator Yo 0 Y, 0 Z2, for example, is given by 

r (YO ®Yi®Z2)=(i 1 0 1 1 1). 
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The binary notation for the generators of the Pauli stabiliser of g), also called the check 

matrix corresponding to this stabiliser, is given by 

0 0 0 1 

r (C (stabç3 (Igs)))) = 0 1 0 1 0 1 (5.68) 

0 1 0 1 0,, 

Similarly, the binary representation of the entire Pauli stabiliser of 93) is 

r (stabg3 (193))) = 

0 0 0 0 0 0" 

100010 

010101 

001010 

110111 

101000 

011111 

1 1 1 0 1  

The binary notation of the stabiliser elements is a so-called group isomorphism [24] from 

the operator depiction of the elements to a binary row vector depiction of the same, 

meaning that there is a bijective map from the operator depiction to the row vector 
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depiction. For example, 

r(Zo®Xi ®Z2) 

r (10(2) ® ® x) 

So, 

r(Zo®Yi®Y2) 

= (o 1 0 1 0 1 ) 
= (o 0 i 0 1 o ) 

= r ((Zo®Xi®Z2)(I 2)®Zi®X2)) 

= r (Zo ® X1 ® Z2) ED r (10(2) ® z1 ® x2) 

= (o 1 0 1 0 1 0 0 1 0 

= (o 1 1 1 1 

1 
0 ) 

Note that the rows of the binary representation of a set of operators can be permuted 

arbitrarily. 

The binary representation of sets of Pauli operators is a useful tool for classifying 

Pauli stabiliser elements in terms of how many of the local operators are proportional to 

X or Y. 

Remark 5.5.4. Suppose we have an n-qubit graph state characterised by an adjacency 

matrix A. Then it can be seen that the generators gj of the Pauli stabiliser, given 

in Definition 4.2.2, can be written in their check matrix representation by the n-by-n 

identity matrix augmented by the adjacency matrix A, i.e. 

r (stabg (g))) (i() IA) . (5.69) 

For example, compare Equation (5.69) with Equation (5.68). 

With these ideas, it is easy to show that every graph state has a Pauli stabiliser 

element composed purely of local X and Y operations. 
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(n 
Lemma 5.5.5. Any n-qubit graph state I) has precisely I (or n choose k) Pauli 

k) 

stabiliser elements for which k of the local Pauli operators composing it are proportional 

to either  or Y, where kE{O,1,...,n—IT. 

Proof. Suppose the n-by-n adjacency matrix characterising I) is called A. We can 

write the binary representation of one set of generators of the Pauli stabiliser of g) as 

r (G (stabg (g)))) = (j(n) IA), as discussed previously. Due to the form of the identity 

matrix, the ith row of r (G (stabg (10)))) (where i E {O, 1,— , , n - i}) has a 1 in position 

i and Os in all of the rest of the positions 0 to n - 1. Thus, in order to construct a binary 

row vector which has k is and n - k Os occurring in positions 0 to n - 1, we must simply 

choose k of the n rows of r (G (stabg (g)))) and perform elementwise addition modulo 2. 

(n 
There are ways to choose these k rows from the set of n independent rows. Each 

k) 

of the binary rows produced thusly corresponds to a Pauli stabiliser element, k of whose 

local constituents are proportional to either the Pauli X or the Pauli Y operator. U 

(n 
In particular, there are precisely = 1 Pauli stabiliser elements for which all 

n) 

of the local operators are proportional to X or Y. As an illustration of this point, note 

that the first three entries of the last row in the binary representation of the stabiliser for 

the three-qubit linear cluster state in Example 5.5.3 are all is, and this row represents 

the stabiliser element —Y0 0 X1 0 Y. Let us look at a specific example of using the 

Pauli stabiliser element composed purely of local X and Y operations to simplify the 

conditions (5.61) to the form of (5.65). 

Example 5.5.6. Consider again the three-qubit linear cluster state 93), given in Ex-

ample 5.5.3. SLOCC-equivalence of I) and some arbitrary three-qubit pure quantum 
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state Iv') requires the conditions from Equation (5.65) to be true, namely that 
2 2 

((bI)*Yøs ®SjYajjS'Ib) 
i=O i=O 

= (—i) det (Se) Sj,o. (5.70) 

One of the elements of the Pauli stabiliser for this state was —Yo 0 X1 0 Y. Thus, with 

the choice oj. = —Yo 0 X1 0 Y2, Equation (5.59) becomes 

1 
(cM =  det So) ((,I)* (Y0 ® o Y2) (—SoYoYoS' ® S1Y1X1Sj-' ® S2Y2Y2S 1) 

(  

= det (SO) 1)*(Y ® Y1 ® Y2) (_sos1 ® —51z15j-' ® s2s') 
1  

= det (So)  (Y0 ® Y1 o Y2) (,0(2) ® 210 2) 
2 

1 
- det(So) ((,D*Y®Th®Z, 

i=0 

where 2 010 in three-bit binary representation and thus 20 = 0, 21 = 1 and 22 = 0. 

Therefore, the orthogonality conditions (5.65) that must be satisfied in order to guarantee 

SLOCC-equivalence of 93) and k&) in this case are reduced to 
2 

((,I)*Y®s®2uI,) = i(So)5,2, (5.71) 
i=O 

where j (=- {0, 1,.. . , 7}. The reader is once again reminded that Equations (5.71) are 

necessary but insufficient conditions for evaluating the SLOCC-equivalence of g) and 

5.6 Testing for SLOCC-inequivalence between pure states and graph 

states 

Theorem 5.4.3 gives the conditions (5.65), that are necessary for a pure quantum state to 

be SLOCO-equivalent to a graph state, although they are insufficient. The determination 

of the minimal set of necessary and sufficient conditions to guarantee SLOCC-equivalence 
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is a problem for the future, and will be briefly discussed in Chapter 6. If the conditions 

(5.65) are not satisfiable, it means that the pure state J&) under consideration is SLOCC-

inequivalent to the chosen graph state jg) on the same number of qubits. Therefore, the 

conditions (5.65) give rise to a test for SLOCC-inequivalence. It so happens that not all of 

these conditions are useful, as some of them are satisfied for any { 2 I that square to the 

identity, regardless of the kb) vector being considered. The ones that are automatically 

satisfied are those for which the right hand side is 0 and the left hand side contains an 

odd number of 2i operators when ) is on an even number of qubits or an even number 

of 2i operators when I'?I) is on an odd number of qubits. This statement will be made 

concrete, and proven, in Lemma 5.6.2 below. The proof will require the fact that a 

SLOOC-transformed Z operator 2 can be written as a SLOCC-transformed Y operator 

2 that has undergone a different SLOCC transformation. 

Lemma 5.6.1. Suppose 2 = SZS' where Z is the single-qubit Pauli Z operator and 

S E GL(2, C). Then, there exist matrices T, V E GL(2, C) such that 

Z = SZS' = TYT 1 = VXV'. (5.72) 

Proof. There exist invertible operators that transform Z to X or to Y. Specifically, note 

that 

1 [1 1 1 
Z = OXOr' where 01 1 

1 11 —i 
Z = O2YO' where 02= 1 

(5.73) 

(5.74) 
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From Equation (5.73), we have 

2 = szs' 

= SO1XOj-'S-' 

= (501)X(801)' 

= VxV-i 

where V = SO1 E GL(2, C). Similarly, Equation (5.74) yields 

2 = szs' 

= 802Y02-iS-1 

= (502) Y (SO2)-' 

= TYT' 

where T = S02 E GL(2,C). 11 

Lemma 5.6.1 essentially says that there is nothing special about SLOCC-transformed 

Z operators; they can just as well be thought of as SL000-transformed X or Y operators. 

This property allows us to show which of the necessary conditions for SL000-equivalence 

given in Equation (5.65) are superfluous. 

Lemma 5.6.2. Suppose ) is a pure quantum state on n qubits, Z = S1ZS' for all i E 

{O, 1,. . . , n - 1} where Z is the Pauli Z operator acting on qubit i and SiE GL(2, C). 

Then, the condition 
n-i 

[((I)*Y®f] 2iji  = 0 
i=O 

(5.75) 

where j E {0, 1,. . . , 2' - 1} is automatically satisfied if n is odd and j has even Hamming 

weight, or if n is even and j has odd Hamming weight. 
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Proof. First we split up the tensor product in Equation (5.75) into two tensor products, 

one over the indices where a Z operator is acting and one for the rest of the indices: 

[((I)*Y®Th] ((0 1)* (k E)jk= ® Yk) (® 
i=O O l7ji 

= ((J)* ® Y (1Djj=1® —i)  
(kjk=O )   

where T1 € GL(2, C) and the second line uses the result of Lemma 5.6.1. In the notation 

for tensor products used above, where not all of the qubits are encompassed by the 

index, it is assumed that an identity operator acts on any qubits whose index is not 

encompassed. Now, we use Equation 5.50 to rewrite YITIYI, resulting in 

[((I)* -on ] = ((I)* (kE)jk=o ® Yk) (® det(Ti) (T1)TT1i=O  1j1=1 

= H det(Tr)] 

= H det(TP)] ( ® T; 110) )T (k(& Yk) ((O T'kb) 
j=i mjm =l O tj ii 

where we broke up the tensor product over the indices with Z operators acting, and 

realised that ((bI)* = (1/,))T Defining 

(kb))T 

'•1 

m-i\ (kDjk=O ®Yk 
( ®mjmi I  ) (® T11) 1jj=1 

allows us to rewrite Equation (5.76) as 

n—i 

[((bI)*Y®f] (& 2i I') = 

i=O 

(® T1-i kb)) 
t?j=i 

H det() ((vl)* ( ® Yk) Iv 
pjp=i kjk=O 

= IpDj,=l det(T)] ((vl)* (k+1k=O Y k v), 

(5.76) 

(5.77) [rij, 

where the last line above uses the more standard Kronecker product notation in which all 

of the qubit indices are incorporated. Notice that det (Tn)] ((vl)* ((&- Yklk) Iv) 
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is just a complex number, so we can write 

In—i yik+i 
((vl)* ( 

\k=O k 

Taking the transpose of both sides of (5.78) gives us n-i
[( ((g 

(vl)* Yik+1 lv)]k=O 
1(n-1 [Iv)IT ® kj Y 1)) T [((vl)*]T 

=o 
n—i 

= ((vl)*®(Y, +1)T IV) 

k=O 

n—i 

= ((vl)* ((_I)jk+l y3k+i) Iv) (using yT = —Y) 
k=O 

(5.78) 

= (_1) 01U1+1) ((vD*®hv) 
Y k 

= (l)fl+Eo'ii ((vl)*(&ulv) 

k=O 

= aT 

(5.79) 

= a. (5.80) 

Equations (5.78), (5.79) and (5.80) imply that 

n—i /n—i 

(i)fl+Eo'ii ((vI)*®Y+hIv) = ((VD* (®Yi1) 1v. 
k=O 

(5.81) 

Now J' j1 is precisely the Hamming weight of j, while n is the number of qubits. 

If one of these numbers is odd and the other is even, then the sum of the two is odd, 

meaning that - 1'o' .1 = —1 and thus implying that 

_((vl)*®Yhlv) = ((V D* ( k+l) v), 

k=O k=O 

which is only possible if ((vl)* ((&1 yk+l) Iv) = 0. 

(5.82) 

0 

We are now ready to use the conditions (5.65) to test some quantum pure states 

for SLOCC-equivalence to graph states. We will consider two examples of three-qubit 
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pure states, both of which are to be tested for SLOCC-equivalence against the three-

qubit linear graph state which is SLOCO-equivalent to the three-qubit GHZ state. 

The first of these pure states is a SLOCC-converted W state, which we know from [16] 

is SLOCC-inequivalent to the three-qubit linear graph (since the latter is in the GHZ 

class), and the second is a SLOCC-converted GHZ state. 

Example 5.6.3. SLOCC-converted W state. Suppose we choose the three-qubit 

SL000 operator 

where 

s=so®s1®s2, (5.83) 

3  1 1 21 
so = 21097 —1 3] (5.84) 

14 
Si = (5.85) 

—2 1 

6 —3 
5 2 = , (5.86) 

27 

chosen arbitrarily, with the mysterious looking prefactor in the definition of So ensuring 

that the SLOCC-transformed W state remains normalised. The three-qubit W state is 

given in the computational basis by 

1W) (1 001) +1010) + 1100)). 

Define the pure state to be tested as 

10) = 8 1W) 

(5.87) 

=  (" i000) + " Iool) - 61010)- 101011) -   1100) - -1101) - 241110)) 

which leads directly to 

((l)*Y®3 i  
= v'iö (-24(0011 - (0101+ (0111 - 10(100 + 6(1011 - !(110I + (1111) 



98 

We now wish to test the state I&) for SLOCC-equivalence to the three-qubit linear cluster 

state 

1  (1000) + 1001) + 1010) - 011) + 100) + 101) - 110) + liii)). (5.88) 193) - 2\/ 

Let us define 

a00 a01 
= I ,iE{0,1,2}. (5.89) 

a10 —a 00 

The requirement Z = 42) gives the three constraints 

a00 + a01a110 = 1, i E {0, 1, 2}. (5.90) 

Since the number of qubits is odd, the necessary conditions from Equation (5.65) that are 

not automatically satisfied are the ones in which an odd number of Z operators appear, 

namely 

(20 ® (2) ® i2)) ') 

(10(2) ® 21 0 i2)) I'?) 

(,0(2) ® (2) ® 22) 10) 

((bI)*Y®3 (20 0 21 ®z2) i 

= 0 (5.91) 

= idetSo (5.92) 

= 0 (5.93) 

= 0, (5.94) 

where the Pauli stabiliser element of 193) composed purely of local X and Y operators 

up to a constant is —Y0 ® X1 ® Y2. Thus, we have 7 necessary conditions to be checked, 

and we can use Mathematica to do this. Constraints (5.91), (5.92) and (5.93) are linear 

equations in the unknown ak E C, so we can use them first to eliminate three of the 

nine unknown complex quantities. It turns out that there is a unique way to eliminate 

a000, a100 and a200, which is given by 

1 1 
a000 = a001 - 

a100 =  097det (S0) + a101 - 

48 4 
1 3 

a200 = —a201+a210. 
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Backsubstituting these solutions into the conditions allows Mathematica to use the con-

straints (5.90) to eliminate a001, a101 and a201, and it reports eight different possible 

reductions for these parameters. However, none of them are compatible with Equation 

(5.94) when det (So) zA 0, thereby ensuring that Rb) is SLOCC-inequivalent to 1W>. 

Example 5.6.4. SLOCC-converted GHZ state. Suppose we choose the three-qubit 

SLOCC operator 

where 

5= So®Si®S, (5.95) 

2 12 
S0 = (5.96) 

9319 _I 3 

1 4 
= (5.97) 

—2 1 

6 —3 
82 = . (5.98) 

27 

Once again the prefactor in the definition of So was chosen in order for IV)) = Sg3), 

where 93> is again the three-qubit linear cluster state, to be normalised. We have 

and 

Rb) = 8 193) 

1  (_L7 
\/9319 l000) + 47 ,001) 

- 17,010) - 11 ,011) 

—691100) + 491101) - 241110) + 81111 )) 

((pI)*y®s = 

v'9319 
(8(0001 - 24(0011 + 49(0101 + 69(0111 

49 (1001 + (1011 -  47  (1101 -  27  (111I). (5.99) 
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The necessary conditions to be satisfied are precisely the same as (5.90), (5.91),(5.92), 

(5.93) and (5.94) from Example 5.6.3. Solving first Equations (5.91), (5.92) and (5.93), 

then (5.94) and finally (5.90) is easy for Mathematica, and many solutions are possible. 

The fact that the solutions for the 2i operators in this case are not unique may turn 

out to be important in the construction of sufficient conditions for determining SLOCC-

equivalence based on the methods presented in this thesis. This point will be further 

discussed in Chapter 6. One possible set of solutions provided by Mathematica is Since 

a solution has been found, the test is inconclusive and it is not immediately possible to 

say whether I) and g) are SLOCC-equivalent. Since it is already known from [16] that 

these two states are SLOCC-equivalent, the fact that the conditions (5.65) are satisfiable 

in this case is desirable. Since a known set of Z operators satisfy the necessary conditions 

for SLOCC-equivalence, one could in principle use the relationship Zi = SZS11 to fix 

two of the four free parameters in S, and then attempt to solve for the other parameters 

by brute force. 



Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

The goal of this research was to provide an efficiently evaluable set of necessary and 

sufficient conditions for the equivalence of a pure quantum state j'J') and a graph state 

Ig) under SLOCO. In equation (5.65), a necessary set of conditions was provided. Many 

of these multivariate polynomial conditions are easier to evaluate than those required in 

a brute-force determination of SLOCC-equivalence as described in Section 3.5, due to 

the fact that they are of lower degree. For example, consider the case in which I) and 

g) are defined on n qubits. Evaluation of the conditions 

I')=®Sjlg) (6.1) 

requires the solution of a system of 2n multivariate polynomial equations of degree n in 4n 

unknowns; one complex equation for each coefficient of I'I') and four complex unknowns 

for each operator Si. This set of conditions is both necessary and sufficient for SLOCC-

equivalence. By constrast, the conditions 

n-i 

= Si,1, (6.2) 
i=O 

precisely as defined in equation (5.65), is necessary although not sufficient for the SLOCC-

equivalence desired. However, the degree of many of the equations to be solved is reduced. 

For example there are polynomial conditions of degree k that need to be satisfied, 
k) 

where k is of the same parity as n, i.e. (1)' = (_1)k• In particular, if n is odd, there 

are m linear conditions (k = 1). If any of these conditions are violated, then SLOCC-

101 
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inequivalence is guaranteed. Therefore, there is a good chance of detecting SLOCC-

inequivalence quite easily using these conditions. Solving these conditions also puts 

constraints on the SLOCC operators that connect ) and g), and these constraints can 

be used to simplify the brute-force version of the problem. Specifically, the constrained Si 

operators can be used in equation (6.1), hopefully reducing the difficulty of the problem. 

This analysis of the efficiency of analysing SLOCC-equivalence using the conditions (5.65) 

is quite preliminary, and a more detailed analysis should be carried out in the event that 

a set of sufficient conditions for SLO CC-equivalence is found using the principles of this 

thesis. 

6.2 Future Work 

6.2.1 Sufficient conditions for SLOCC-equivalence 

An obvious direction of future work is to extend the necessary conditions (5.65) for 

SLOCC-equivalence between a graph state and a pure state into a set of efficiently evalu-

able necessary conditions for the same. Such conditions would give rise to a hopefully 

efficient algorithm by means of which SLOCC-equivalence between graph states and ar-

bitrary pure states could be tested. In Equation (5.61), we inserted a specific choice 

for the Pauli stabiliser element o'j of the graph state that was composed specifically of 

Pauli-X and Y operators, in order to remove the 0jk operators from the conditions. The 

complete specification of an n-qubit graph state Ig), however, requires n independent 

separable Pauli operators that generate the entire Pauli stabiliser to be given. This is 

presumably the reason that the conditions (5.65) are necessary but insufficient to guaran-

tee SLOCC-equivalence of I) and the pure state I'b) of Equation (5.61). In fact, a larger 

number of conditions can be obtained by using any of the other elements oj E stabg (g) 

in equation (5.61). 
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Example 6.2.1. Consider Example 5.5.6 once again. We had 

(I det(So) (1)* (Y0 (D Y1 ® Y2) ® SYS1', 
i=O 

(6.3) 

and we inserted ai = —Yo ® X1 (9 Y2 in order to simplify this. However, we could also 

have inserted oj = —Yo © Y1 © Z2, which would instead give us 

1  
(I =  det Se) ((,I)* (Y0 © Y1 © Y2) (—s0YoYos' © S1Y1Y1S' © S2Y2Z2S') (  

1  ((I)* (Y0 © Y1 © Y2) (_,0(2) © i(') © jk2). 
det(So) 

In this case, Equations (5.49) can be written as 

(YO (9Yj ®Y2) (,0(2) ®(2) ©x2) 

(()*(y0®y1®y2) (10(2) ®I(2)©.2.) 

((I)* (Y0 ® Y1 ® Y2) (,0(2) 0  zi ® x) 

((I)*(YO ®Y(9Y)(I(2)ø®T) 

((I)*(YO øYi®Y2)(2o®1 2) ® 2) 

((bl)*(YO ®Yl®Y2)(2o®1 2) ®) 

((bI)*(YO ®Yi©Y2)(2o©2i© 2) 

(YO ©Yi®Y2)(o©2i©) 

= —idet (So) (6.4) 

= 0 (6.5) 

= 0 (6.6) 

= 0 (6.7) 

= 0 (6.8) 

= 0 (6.9) 

= 0 (6.10) 

= 0. (6.11) 

Perhaps an optimally efficient test of SLOCC-equivalence can be formulated by selecting 

elements from the set of necessary conditions such as these in order to form a minimal 

set of necessary and sufficient conditions. Alternatively, perhaps an even smaller set of 

efficiently evaluable conditions can be found using the ideas presented in this thesis, or 

some other ideas, that constitute a sufficient but not necessary set of conditions; this too 

would be sufficient for creating an algorithm for testing SLOCC-equivalence. 
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6.2.2 Application to Measurement-Based Quantum Computing 

One important application of graph states is to measurement-based quantum computa-

tion (MBQC), a distinct model of quantum computing from the circuit model. At least 

one specific scheme for MBQC, one-way quantum computing (1WQC), has been shown 

to be equivalently powerful to the circuit model, in the sense that a MBQC computer 

can efficiently simulate the action of a circuit model quantum computer, and vice-versa 

[34]. In the MBQC model, computation proceeds as follows: 

1. An entangled state, known as a resource state, is created. The configuration of the 

resource state is tailored to the specific algorithm to be executed. 

2. An effective quantum gate is applied to a qubit by means of measurements on the 

qubit and classical 'feed-forward' of the measurement result. 

In MBQC, an initial amount of entanglement is supplied (the resource state), and this 

entanglement is gradually exhausted by means of measurements until the desired output 

is achieved. Once the resource state has been created, no further entangling operations 

are necessary; this is a major advantage of the MBQC model over the circuit model. 

However, there is a tradeoff, as the entangled resource states necessary for universal 

MBQC are not trivial to produce. 

The first major event in the development of MBQC was the invention by Daniel 

Gottesman and Isaac Chuang of a probabilistic gate teleportation algorithm similar in 

spirit to the one from Example 2.5.2 [35]. Variations on this algorithm led to the develop-

ment of MBQC schemes designed for linear optical implementations [36, 37]. Currently, 

the best known model for MBQC is one-way quantum computation (1WQC), first pro-

posed by Robert Raussendorf and Hans Briegel in 2001 [38]. The name refers to the 

fact that the model begins with a massive, highly entangled resource state, and the en-

tanglement is used up as the computation proceeds; since there is no entangling gate as 
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a basic element of 1WQC, the computation is irreversible. This computational model 

has been proven to have the same computational power as the circuit model [34]. The 

resource state used in this scheme is called a cluster state, which is an instance of a 

graph state. Examples of the underlying graphs corresponding to one-dimensional and 

two-dimensional cluster states can be found in Figure 4.1. The measurement patterns 

that implements the controlled-not or CNOT gate and the arbitrary single-qubit rotation 

operation R (, 77,6) = R () R () R () in the 1WQC scheme can be found in [34]. It 

has been shown [39] that any sequence of unitary operations on any number of qubits 

can be expressed purely in terms of CNOT and R ((,,q, ) operators, and therefore, the 

1WQC scheme can execute an arbitrary unitary operation. The essential idea is that the 

measurements are used to teleport the qubits through a gate, as described in Example 

2.5.2, in which the gate R () was implemented by means of a judiciously chosen mea-

surement. The implementation of the CNOT gate (or any other true two-qubit gate) 

requires a two-dimensional cluster state. 

A cluster state can be constructed by creating the initial unentangled state  

® J+)i with each qubit in the state 1+) and then applying the CZ-gate from Section 

2.3 between all pairs of qubits whose representative vertices in the cluster state graph 

are connected by edges. An experimental scheme for performing the global entangling 

operation necessary for producing a cluster state was given in [40] and demonstrated in 

[41], using collisional interactions in a Bose-Einstein condensate loaded into an optical 

lattice. However, a cluster state generated in such a dynamical way is likely to be 

unstable. A different, more passive approach is to cool down a system described by a 

Hamiltonian R whose non-degenerate ground state is a cluster state. Unfortunately, 

it has been proven that no graph state can be the non-degenerate ground state of any 

Hamiltonian featuring at most two-body interactions [42, 17]. A large body of work has 

emerged in recent years in an attempt to generate stable resource states, possibly cluster 
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states but possibly alternative resources, that are suitable for MBQC. Some approaches 

that have been considered are based on projected entangled pair states or valence bond 

states [43, 44], the so-called 'gadget construction' [45, 46, 47], matrix product states [48] 

and using a chain of three-level spin systems [49]. 

The original motivation of the novel research presented in Chapter 5 of this thesis 

was also to explore the possibility of universal MBQC using alternative resource states. 

Specifically, the class of resources that were to be considered was the set of states that 

are SLOCC-equivalent to cluster states. It stands to reason that a pair of quantum states 

that are SLOCC-equivalent can be used to perform the same set of quantum information 

processing tasks, and it could in principle be possible for a SLOCC-transformed cluster 

state to be the non-degenerate ground state of a physically realisable Hamiltonian. The 

teleportation of the gate that effects the single-qubit rotation R () from Example 2.5.2 

is at the heart of 1WQC. This algorithm corresponds precisely to entangling an input 

state Iv') with a 'one-qubit cluster state' 1+> to produce the state = CZ(I) ® 1+)) 

and then performing a projective measurement in the e-basis defined by 

MO 

= 

on the first qubit of IiI'i), where +) and ) are defined in Equation (2.35). It can also 

be executed on the SLOCC-transformed state 

Pill) = SI'b1) 
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where S is a SLOCC operator, replacing the projective measurement with a POVM for 

which the measurement operators {M} satisfy 

MO = 

M1 = 

MM2 = I(2)_ Mot Mo_zvIlt MI. 

This time, the teleportation is probabilistic, as the procedure fails should the measure-

ment outcome corresponding to measurement operator M2 be obtained. This POVM 

can be translated into projective measurements on a higher dimensional Hilbert space 

using Neumark's theorem [13]. It should also be possible to design POVM measurement 

schemes to implement a probabilistic arbitrary single-qubit rotation, and a probabilistic 

two-qubit entangling gate on a SLO CC-transformed two-dimensional cluster. It would 

be interesting to try and find a scheme that allows these gates to be executed with a 

probability arbitrarily close to unity, similar to what Knill, Laflamme and Milburn did 

for the probabilistic gate teleportation algorithm of Gottesman and Chuang [36, 35]. 
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