1 Introduction

Funetional languages are gianing support. throughout the acadenne world doe to Cheir strong mathond ol
basis and amenity to propf. Many different. languages are available for example, Miranda' Hope, Pondeo
Pebble, ML, SML, and Haskell all hased on the lambda caleatus. Given their common hasis, an interme i

language can be designed 1o meet, the following objectives:

o Span alarge portion of the spectrum hetween ausers program and the machme s oy on e
reheving alarge pagt of the campilation burden for new (experimental) lpuages

o rovide astandard intermediate representation for portabihty and to faeilitite progeamimmg cinvion
ments which handlg several tangoages

o Provide an mtermediate compiler which may be proven correct with the view to future “total suston

correctiess. ('I'he foeus of current research in the U ol C’s VEST group is towards proving (he corres o
of microchip designs. In conjunction with a proven compiler, this would he aomajor step tonvand o

systenn e whieh bolh hardware and software are verified).

o Provide asunple yet expressive language with which to do rescarcli into funetional Tinguage e -
should provide mechanisms Lo assist research without the complexities of a lagh Level Tuiguag

I order to define thas intprmediate functional language, the cotplete semanties st he worked out so oo
the meaning of cacl stataquent is well defined. As well, it is possible to find semantios for the transhate ool
the mtermediate language, which will tie in well with current research in cotplele system corrocties

2 Background
Following are some justifications tor using tunctional langnages:

o Functional languagas are all based on Che Tanbda caleulus. By definition there exists an mtern diat
language for them - the Tanmbda caleulus. Further, the expressive power ol the Linbda calentuso vl

hnown

o The semantics of the lambda calenlus have bheen completely defined and are relatinvely cany Tha il

semantics of anintgrmediate lagnage (which will he based on lambda) will henelit

o thgh level functional languages and the lambda caleulus are amenable to proot. T particula
pattern matehing explaned below matehes the form ol prools done by stractural vnduclion N vl
stuce no expression ina functional language can cause a side effect, these types of complication: e

removed from proofk

o Large amounts ol recent research s fooked al functional Tanguages and machmes Tfor themr 1
direet correlation between Tunetional languages and functional architectures s mathenativally v
that the propocrties of the fambda caleulus span the bonndary. Current avelitectures Tor Tt aial
fanguages tend to bre slow, bul faster machines are on the horizon, "The Churel Rosser properiy be L
lor the Tunbda calealus, and thus parallel iaplementations are also possible

2.1 Intermediate Functional Languages
Currentintermediate funetional languages (lor, example [6],[16]) can be characterized as

o They exist ab the level of Che typed Tambda caleulus with lots of batltin functions and very few Ll
fevel structures "This mcans

. . S A, . .
"N icandacis a trademark of Research Software 1.6

— The languages cannot themselves be typechecked but they rely on well-typed expressions. That
1s, the only expressions which have meanings in these languages are those which have been type-
checked by some external agent.

— They are difficult source languages to program in. For a researcher who needs access to low level
structures but does not want to be burdened by “assembly-like” programming these languages
are insufficient.

o They ignore the fact that high level functional languages are interactive. This means that environment
issues must be addressed elsewhere.

But, these languages form an important part of a system in that:

o They provide the lowest level representation from which a designer would like to generate machine
code. This is because the “higher” level structures they contain allow optimizations for machine code.

¢ They contain a complete set of primitive functions for implementing high level functional languages.

e They allow many compilation functions to be performed as source to source transformations. Perform-
ing dependency analysis, strictness analysis, lazy lambda lifting and other functions can be performed
directly on the intermediate language. (These issues are discussed in [15]).

This paper deals with a design for an intermediate language at a higher level than those discussed above.
This language is designed to:

o Provide a wide array of structures and primitives so that high level languages are easily translated.
The composition of these structures and primitives will support high-level structures with a minimum
of effort, but will not limit the generality of the high-level structures.

¢ Provide a type system which will be sufficient for most applications and which can be sidestepped for
those applications which require a different system.

o Handle the interactive features of high level languages so that binding in the environment is well
modelled.

o Use existing intermediate languages (or a slight variation of them) as a target language. In this way, the
primitives from the existing languages will help to implement the structures in the new intermediate
language.

The most important consideration in the design of this language is: “Which structures can be contained in
the intermediate language without a loss of generality to the structures in high level languages?” The next
section works through an example of a high level expression in order to motivate an answer to this question.

2.2 Introduction to Functional Expressions

Consider the following expression (in a generic high level functional language syntax):

datatype list * := nil | cons * (list *)
length nil ==0
length (cons a 1) == 1 + (length 1)

This is the declaration of the type list * and the function length on lists. A list is either nil or it is the cons of
an item of type * onto a list of type list *. The * is a type variable, meaning that the type list is polymorphic.
We may have items of type list int, list (list *), list char,....

length is defined using pattern matching — each constructor in the type of list is given a case in the
definition of the function (this corresponds well with proofs done by structural induction for the correctness
of programs). Thus, if the argument to length is nil, the first expression will be evaluated. Otherwise, the
argument must be a cons, so the second expression will be evaluated.

If the argument is not nil it must be cons since, in general, high level functional languages are statically
typechecked — the type of an expression is computed at compile-time. The type of length is a function from
list * to int, usually written length:list * — int. Thus, if the first defining equation for length has a parameter
of type list *, the following equations must have a type at least as specific as list * (a more specific type, such
as list int is also acceptable).

Programming occurs in an inferactive environment. After each function is typed in, it is compiled or
interpreted. It is important to note that several interactive commands may be given before a function is
defined (as in the case of length).

In order to compile the length example, we must have some representation of the type list *. It is sufficient
to have a representation for both nil and cons since together they totally define list:

nil ==> (list,0)
cons * (fist *) ==> (list,1,* list *)

Thus, cons 3 nil would be represented as: (list,1,3,(Vist,0)). In general, types can be packed in this manner,
and then specific parts of the type may be selected at will.

Compiling the length function will require a function to select an expression based on which parameter
matches the argument. Given the representation of list this would look like:

length n == if n = (list,0) then 1 else
if n = (list,1,a,1) then 1 + (length I)
else error

In this case error will never be encountered (since length was typechecked), but incomplete pattern matches
are possible. This definition contains no pattern matching ~ the matching has been replaced by equality
checks on the representation of lists. This process is known as pattern maiching compilation.

The next step in compiling length is to compile it into the lambda calculus, from which the back end is
generated. These steps are completely covered in [15].

2.3 Characteristics of Functional Languages

A review of the ideas touched on above and an introduction to some other characteristics of functional
languages is given below:

o Data types and pattern maiching as introduced above.

o Strongly typed expressions are the only ones accepted. Types are polymorphic and may be ezplicit
(supplied by the user) or implicit (inferred by the compiler). Explicit systems allow more general
types than implicit ones, but lack the user friendliness that inferring types provides. Most widely used
languages (ie. Miranda and SML) have implicit type systems although considerable recent research
has been into explicit systems (for example, [4]).

o List comprehensions are akin to the declaration of mathematical sets. For example,
[n*n]|n<100]

is the list containing the squares of all the integers less than 100. These structures allow for very
succinct clear programming. Consider this quicksort from [15]:

gs nil == nil
gqs (cons a) == cons (gs [b | mem b I; b <= a]) (cons a (qs [b | mem b I; b > a]))

where mem is a function which returns true if its first argument is included in the list which is its
second argument.

3

Modules are user friendly and useful when programming large systems. SML [9] and Pebble [1] are two
functional languages which take radically different approaches to modules. Pebble treats modules as
values and thus types become first class objects. SML maintains the ability to infer types by raising a
strict distinction between functions and modules. Both these systems can be viewed as experimental
since neither has been widely accepted yet. Other functional languages, such as Miranda and Haskell
do not contain modules.

o Arrays are desirable in a functional language if sharing analysis is done [11], since they provide constant
access time. With no sharing analysis each update of an array would require making a copy of the
entire array.

o FEzxceptions allow errors to be flagged so that functions can recover. For example:

exception div0;
div x 0 == raise div0
divxy==x/y;

The exception div0 can then be handled by functions which wish to provide a default value or print out
an error message.

o Lazy evaluation ensures that expressions which can be evaluated are. Strictness analysis allows some
functions to be called by value, and thus allows parallelism. It also increases the speed of non-parallel
machines [22].

An Intermediate Functional Language (IFL)

My goal is to define an intermediate functional language, IFL, which incorporates as many of the above
structures as possible without being too specialized.

The following priorities for designing and implementing a language (given in order of importance) reflect

my views on the importance of having a well defined language before it is implemented:

o Design: The langnage must be designed to meet specific applications. A useful subset of programming
languages must be defined. In this case I have limited myself to lazy functional languages and have
outlined the major features which are necessary in the design. This subset is mathematically clean
and the implementation is not overly complex. An abstract syntax must be given for the language,
listing the components of the language and their relation to each other. It does not include syntactic
information or precedence information. The abstract syntax is sufficient for defining the semantics of
the language.

o Semantics: Before any implementation is done the semantics of the language must be totally defined.
If this is done, all implementations should give identical results for any program. Semantics also give
important feedback on the design of a language — if the semantics are complicated this is an indication
that the language may be too complex. At this stage it is also worth designing a concrete syntax which
specifies syntactic and precedence constraints on programs. If this is done, the language will be totally
defined before it is implemented.

o Implementation: Once the language is totally defined, a correct implementation, one which maintains
the semantics of expressions, can be devised. A proof of the correctness would be advantageous.

o Optimization: Any optimization which improves performance without changing the semantics can be
added once the implementation is known to be correct.

The following design decisions were incorporated into IFL:

¢ Data types and pattern matching are the most pervasive feature of recent functional languages. A
general type definition and pattern matching system, akin to that of Miranda, ML, SML, Hope, and
others has been included.

o Typechecking will be the most general implicit system based on the one developed by Milner [14] and
outlined in [15]. Explicit types will be allowed through annotation so that the user has control of types,
if he so desires. This also means that more powerful explicit types can be given to IFL expressions,
sidestepping the inferencing algorithm.

o The interactive environment will be explicit in IFL. There is a distinction between commands which
cause bindings and those which evaluate to some value.

o Modules are not yet included due to the lack of agreement as to their definition. A semantic description
of modules is being worked on, and primitives for implementing them may be added later. If, in the
meantime, some agreement as to module definition is arrived at, this will be incorporated. (Semanti-
cally, a module is simply a set of bindings to be added or saved from the environment. The problem is
in enforcing types between modules in a general manner. So far the two solutions to this problem are
exemplified by SML and Pebble as discussed earlier).

o List comprehensions can be transformed into iteration over lists. With the appropriate functions
defined in the original environment for IFL, transformations for list comprehensions will be easy. This
will allow a very general class of list comprehensions, whereas defining a list comprehension structure
directly in IFL may lead to some limitations.

¢ Exceptions are included in IFL by using the builtin operator fail and lazy evaluation. (The failures
which are simulated are not as general as those in SML, but SML is not purely functional and uses some
imperative features in the implementation of its exceptions. The method of translating exceptions into
a functional language is given in [21]).

o Arrays will not be included in the first version of IFL although it is expected that they will be included
in the final version. (This is because sharing analysis is a difficult topic which would simply complicate
the original version).

o Lazy evaluation with strictness analysis will be the evaluation mechanisms for IFL.

3.1 Abstract Syntax

The BNF for IFL has been organized in order to highlight the difference between commands which evaluate,
exp, and those which cause bindings in the environment, bind. In the definition in Figure 1, x* means one
or more occurrences of x, x* means zero or more occurrences of x.

3.2 Informal Description of IFL

An ifl term can be an expression, exp, which evaluates to a value in a given environment, or a binding, bind,
which enriches the environment for subsequent evaluations, or a series of these two, ifl*.

A pattern is a match for a builtin type. Examples of patterns will be shown as we progress. Constants
include integer operations, real operations (prefixed by r), boolean operations, and fail.

A binding is one of the following:

¢ A let binding causes each variable in the pattern on the left-hand side to be bound to the corresponding
value on the right-hand side. Multiple bindings are done in parallel. For example:

letx=3,y=4
binds 3 to x and 4 to y. But,
letx=3,y=(+x1)

binds 3 to x and produces an error (if x was not previously defined) for the y binding. If an error occurs
in any part of a binding, none of the variables become bound.

ifl

bind

letbind

exp

pattern
tyname
type
constructor
knowntype
annot

const

var
num
digit

string

il

It

bind | exp | ifl*

letbind

lettype tyname = type,...,tyname = type

abstype tyname = type,...,tyname = type in letbind

let pattern = exp,...,pattern = exp
letrec pattern = exp,...,pattern = exp

var | const | exp exp | annot exp | number | string
X pattern® .exp

let pattern = exp,...,pattern = exp in exp
letrec pattern = exp,...,pattern = exp in exp
case var of pattern => exp,...,pattern => exp
O exp exp

(x0)

const pattern* | var | constructor pattern®

var | constructor tyname*

tyname | knowntype | var | constructor type*
sum | prod | fun | var

int | bool| char | string | real | tyname

var | var => exp ... var => exp | type
=1/t |r=|re|r/

if |or | and | zor | true | false | fail

num | string

alphabetic alphanumeric*

digit* | -num | num.num | num e num

0.9

" alphanumeric*”

Figure 1: Abstract Syntax for IFL

o A letrec binding works in the same manner as the lef except that definitions may be recursive or
mutually recursive. For example:

letrecf= Ax. if (=x0)1(+x (f(-x1)))
o A lettype binding declares a new type. An enumerated type is simply the sum of the possible values.
lettype colors = sum (sum (green,blue), red)
A data type can be more complicated and may contain type variables.

lettype list a = sum (nil, cons a ([ist a))
lettype pair = prod (a,b)

When more than one type definition is given they are assumed to be dependent on each other.
o A abstype binding binds the operators for an abstract type. For example, a stack could be defined as:

abstype stack a = sum (nils, element a (stack a)) in

let push = X as. element as, pop = A (element as). a
An exp can be a variable, a constant, an application, a number, a string or one of the following:
o A lambda expression is a function from one or more patterns to the result of the body.

let head = X (cons x y). x
let tail = X (cons x y). y

Here are the first examples of patterns in IFL. The cons x y matches our builtin type list. Thus, head
could be applied to any list which is not nil.

o A let expression executes the body of the let in the environment given by the let binding. The difference
between the binding and the expression is that the binding is permanent. This also holds for the letrec
expression.

o The case expression allows pattern matching on sum types.

let head = Ax. case x of (cons a b) => a, nil => fail
let tail = Ax. case x of (cons a b) => b, nil => fail

These would be more accurate definitions of head and tail.

o The O expression executes the first expression. If this evaluates, the second expression is ignored. If
the first expression fails, the result of the second is returned.

let tail2 = Ax. O (tail x) nil

e Annotated expressions allow extra information to be given to the compiler. At the present time
annotations may contain strictness and typing information. In the future, sharing, concurrency, and
other annotations may also be added.

3.3 Types

The number of different type systems which have been developed is immense (see [18] or [3] for a review of
those of interest here). The Milner type system is one of the most widely used since there is a well known
algorithm for inferring the types of expressions. The type system I develop here is an extension of the Milner
system to IFL with many ideas from the papers cited above.

The usual method for specifying type inference is through a series of inference rules. The premisses
consist of a type assignment which maps (possibly free) identifiers onto types. The following variables are
replaced by expressions or types as appropriate to create an instance of a rule.

Variable Meaning

m type assignment
v V..U, variables

C C1...Cn constructors

k ky..ky, constants

e ey..ep expressions

P P1---Dn patterns

n integers (n > 0)
tt..0, types

tvy...tu, type variables

A type scheme is a type containing type variables. A principle typing of an expression e is a type scheme
which can be instantiated to any valid type for e.

A substitution is given by 8,61, ...6,. 6(t) is the result of applying the substitution 6 to the type ¢. §(m)
is the result of applying the substitution § to all types assigned by m. Unification, 9, finds the most general
substitution for two types. That is, 9(6,t1,%2) = 61 where §1(¢1) = é1(¢2). If unification fails, the typing will
fail. In Figure 2 the inference rules are given for typing IFL expressions. §m is used as a shorthand for §(m).

Figure 3 gives two examples of how the typechecking rules are used to infer the types of expressions.

VAR

CST

APP

FUN

LET

CSE

FIX

REC

FTB

mb v:t when m assigns ¢ to v
F k:t when t is the type of k

ém €1 6(t — tl)
Smbeq: 6t
6imF ey e : 61ty where 6; = 9(6,t,¢')

m,p:t,vy iy, ..,V it ety
mbApe:t =i,
when vy...v,, are the variables in the pattern p

mbtep:t
myp:they:ty
mbletp=eiiney : t;

dm,v:6t,py b6tk ey 6ty

ém,v :6t,p, : 6tk e, : 6ty

dimbcasevof pi => e1..pn => ey : 61y where § = (.. 9(5,11,12), ...

S§m,py i vy, ., pn s tup ey s Oty

Sm,py i tvy,...,pn i tvg Fey, bty
where tvy, ..., 10, are new type variables not occuring in ém
bym, py : b1ty cey D ¢ 01ty Foey b1ty

b1m,py : 61tvy, ..., pn 1 81V, F ey, 1 Bty
where 61 = 9(...(9(6,t1,tv1), ... tn, tvn)

m,p; ti,e1 081,y Pn itn,6n ity Fe it
mbletrecpy = ey, ...p, =epine:t

émb ey : 8ty
émt ey : bty
61m [|:|€1 €9 . (5111 where 51 = 19(5,t1,t2)

Figure 2: Type Inference Rules

10

Let the environment m contain:

0:int,1:int,2 :1nt,...
=:int — int — bool

— int — int — int

if 1 bool — tvy — tvy — tvy

Let the substitution function § be empty. Let e; = An.if (= n0) 1 (fac(—n1)). Let FAC =
letrec fac = ey in (fac3). Assume that each right-hand side becomes part of the premisses for
rules following it. The typing for FFAC proceeds as follows:

VAR
APP
APP
APP
APP
APP
APP
VAR
APP
APP
FUN
FIX

APP
REC

ébm,n : tug
ém,n : tvy

bym,n :
§ym,n:
§ym,n:
bym,n:
bym,n:
bam,n :
bam,n :
bsm,n :
bzm,n :

int
int
int
int
int

int, fac:

int, fac
int, fac
int, fac

i'l)a
ttvug
ctvg — int
ttvg — int

é3m, fac : tvy — int
b4m, fac : int — int

64m

Fn:to,

F (—n) : int — int and &; = (6 and tvy = int)
F(-nl):int

F (= n) :int — bool

F (=n0) : bool

F (@f(=n0)):tv; > tvy — tny

F (if(=n0)1):int — int and 82 = (61 andtv; = int)
F fac:tvg

F (fac(—n 1)) : int and 83 = (8 and tvs = int — tv,)
F(GEf (=n0)1(fac(—n1))):int

ke :int —int

ey :int — int and 64 = (83 and tvs = int)

F (fac3) :int

F FAC :int

Assume m also contains cons : tvy — (list tvy) — (list tv1) and nil : (list tv;).
The typing for letrec length = M.case lof nil => 0,(cons a z) => +1 (length z):

APP
VAR
VAR
APP
APP
VAR
VAR

APP

APP

CSE

LAM

FIX

ém

om,a : tug
ém,a :tvg, z : tug

dmya :tvy, x : tug

61m,a :tvg, x : tvs
bom, a :tug, x : tvs, | :tuy
bam, a : tug, x : tus,
l:tvg, length : tvg
bam,a : tvs,z : tvs,
:tvg,length : tvs
8am,a : tvs, z : tug,

l: tuy, length : tvs — tus
64m,1 : g,
length : tvy — int
bsm, 1 : tuy,
length : list tv; — int
dem, length : listtv; — int + (M.case...) : list tv; — int

F (+1) : int — int

Fa:tvg

Fx:tvg

F (cons a) : (list tvy) — (list tvy) and 61 = (8 and tvy = tvs)
F (consaz) : list tvg and 6, = (61 and tvy = tvg)

F1:tuy

Flength : tus

F (length z) : tvg and 83 = (82 and tvs = tvz — tvg)
F (+1 (length z) : int and 84 = (63 and tvg = int)
F (case...) : int and 85 = (84 and tvs = list tvy)

F (M.case...) : list tvr — int and 86 = (85 and tvy = list tvy)

In this case, the last step tells us what the type of the binding of length is.

Figure 3: Examples of Typing

11

4 Examples of Compiling into IFL

It is worthwhile taking a quick look at how some programs in high level languages look in IFL. High level
functional language syntaxes do not vary greatly (which is a good indicator for an intermediate language),
and the reader is pointed to the references to find out the workings of a given example.

The first example is from Miranda, and is given in [20]. Figure 4 shows both the Miranda and IFL code
for this example.

The second example is in HOPE, from [2]. Figure 5 shows the definition of a tree, and some functions
on it. In the reference, these are bundled into a module. The module structure has been ignored in this
example (since, as mentioned above), a general module structure has not yet been worked out. In HOPE
types must be given explicitly, but the functions shown are easily typechecked in IFL.

12

tree * ::= niltree | node * (tree *) (tree *)
sort = flatten.build

foldropz =g
where
gl =z
g (ax) =opa(gx)

build = foldr insert niltree
where
insert b niltree = node b niltree niltree
insert b (node ast) = node a (insert bs)t, b <=a
=nodeas (insertbt), b>a

flatten niltree = []
flatten (node a s t) = flatten s ++ [a] ++ flatten t

MIRANDA tree sorting program

lettype tree a = sum (niltree, node a (tree a) (tree a))
let sort = comp flatten build

let foldr = Xop z.
letrec g = A 1. case | of nil => z, (cons a x) => op a (g x)
ing

let build = letrec insert = A b t.
case t of niltree => node b niltree niltree,
(node ast) => if b <= a then node a (insert b s) t else
if b > a then node a s (insert b t) else fail
in foldr insert niltree

letrec flatten = A t.case t of niltree => nil,
(node a s t) => cons (flatten s, cons (a, flatten t))

IFL tree sorting program

Assume for the translation into IFL that the type list * is defined with the constructors nil and
cons. As well, a composition operator, comp and the append operator append are defined as:

let comp=XAfgx f(gx)
let append = A 11 12. case I1 of nil => 12, (cons a x) => append x (cons a I2)

Figure 4: Example of Miranda to IFL Translation

13

data otree == empty ++ tip(num) ++ node(otree#£numstotree)

dec insert: num#fotree — otree
dec flatten: otree — list num

—insert (n,empty) <= tip(n)
—insert (n,tip(m)) <= n < m then node(tip(n),m,empty)
else node (empty,m,tip(n))
—insert (n,node(t1,m,t2)) <= n < m then node(insert (n,t1),m,t2)
else node(t1,m,insert(n,t2))

—flatten (empty) <= nil

—flatten (tip(n)) <= [n]
—flatten (node(t1,n,t2)) <= flatten(tl) <> (n::flatten(t2))

HOPE tree functions

lettype otree = sum (sum (empty,tip num), node otree num otree)

letrec insert = A(prod(n,tree)).
case tree of empty => tip n
(tip m) => if n < m then node (tip n) m empty
else node empty m (tip n)
(node t1 m t2) => if n < m then node (insert (prod(n,t1))) m t2
else node t1 m (insert (prod (n,t2)))

letrec flatten =) tree.
case tree of empty => nil
(tip n) => cons 1 nil
(node t1 n t2) => append (flatten t1) (cons n (flatten t2))

IFL tree functions

Assume for the translation into IFL that the type list * is defined with the constructors nil and
cons. As well, append which concatenates two lists can be defined in IFL as:

let append = A I112. case 11 of nil => 12, (cons a x) => append x (cons a [2)

Figure 5: Example of HOPE to IFL Translation

14

lam == bindy | expp| lamT

bindg = let var = expy... var = expy
| letrec var = expyp... var = expy

expp = var | consty | expyexpy| annot expy | (expp) | number | string
| Avart.expp
| let var = expy... var = exppin exp;
| letrec var = expp... var = expyin exps

consty = const | pack | unpack | ...

var = alphabetic alphanumeric*

number = digit* | -number | number . number | number e number
string = "alphanumeric*”

Figure 6: Abstract Syntax for lam

5 An Intermediate Functional Language Compiler

In order to be of optimal use, IFL will need a compiler to transform it into the lowest reasonable represen-
tation. As shown in Peyton-Jones, many back end optimizations rely on exploiting let and letrec structures.
Thus, the back end of the IFL compiler has been defined to include these structures inside supercombinator
bodies (supercombinators are a restricted class of lambda expressions where lazy evaluation is preserved).
The abstract syntax for the back end is given in Figure 6. Note that the interactive commands still exist
at this level, although all type declarations and pattern matching have been eliminated. This language is
nearly identical with all intermediate functional languages (including those discussed earlier).
The compilation proceeds as follows:

IFL

!
Typechecking using a Milner style type discilpline.

Pattern Matching compilation and removal of type declarations. This leads to the pack,
unpack,... builtin functions in lam.
|
lam
Dependency analysis, floating out let and letrec expressions, redundancy analysis,
common-subexpression elimination.

!

lam

!

Fully lazy lambda lifting without eliminating let and letrec expressions.

l

lam, limited to supercombinators.

!

Strictness analysis (future analysis such as sharing).

!

lam, limited to supercombinators.

15

Thus, the output will be fully annotated supercombinator definitions ready for compilation into machine
code.

6 Semantic Issues

In order for IFL to be used, its semantics must be fully worked out, including the compiler semantics. Using
standard denotational and algebraic semantics it is possible to show that IFL has the same semantics as the
lambda calculus (with constants). This is achieved in the following manner:

IFL > Domain of values for IFL
I M -

| |

| Compile | rep

| |

v M I
lam > Domain of values for lam

Goguen el al. [8] have shown that a context-free grammar forms an initial algebra and that semantic functions
from the context-free grammar are unique homomorphisms. To show that “meaning” is maintained by the
Compile operation we have to show that:

rep o M’ o Compile = M

which, since M and M’ are unique homomorphisms, means that you must show that Compile and rep are also
homomorphisms.

In order to accomplish the above, the semantics of IFL, compile, and lam must be totally defined. The
meaning of an IFL term is well defined only when it is correctly typed, implying that the well-typedness of
IFL terms must also be specified. This leads to a large amount of semantics.

7 Conclusion

To date, the following has been accomplished:

o IFL and lam have been defined as shown above. The idea of a high level intermediate language with a
type system and a model for the environment have been developed.

o The semantics for IFL have been defined (see appendix). An intuitive and easy semantics for expressions
involving abstract data types is forwarded.

o Parts of the semantics for typechecking have been defined.

o The compilation issues mentioned above have been researched, and many of them have been imple-
mented for lam.

Further work includes:
o Completing the semantics of types and typechecking.
¢ Defining a concrete syntax for IFL.

o Completing an implementation of the IFL to lam translation. Many of the individual functions have
been written and only need to be drawn together.

¢ Showing the translation from a high level language into IFL. (Hopefully the high level language will
be Haskell — at this time its syntax is still being worked out, although it is hoped that the abstract
syntax will be available soon [17].

16

e Showing the translation from lam into machine code. The TIM machine [5][17] is one of the newest
machines for functional languages and would be a good target machine. As well, the SECD machine
[12][10]is being used for other research at the U of C which would make it an attractive target machine.

In the future I hope to extend this work in several ways:

e Total systems correctness is a recent idea. A complete correctness proof IFL along with some new
ideas on how to simplify such a task would be very useful.

o Abstract interpretation is a growing discipline which will have a profound effect on compiler optimiza-
tions and other semantic issues.

o Given the inherent parallelism of functional languages, control structures could be added to IFL as
annotations and the semantics of parallelism could be worked out. Lots of work has been done in this
area but it is not yet totally conquered.

o Sharing analysis, reference counting, path semantics, and other interesting areas using functional lan-
guages could be studied using IFL as a base.

17

8 Appendix: Semantics

The semantics for the lambda calculus are given so that my style of denotational semantics is clear. Then
the semantics of lam are defined, since they parallel those of the lambda calculus. IFL is analyzed and a
new approach for the semantics of abstract types is discussed. An outline of what is necessary for a type
semantics is given, although this work is not yet complete.

8.1 The Lambda Calculus
The syntax of the lambda calculus with constants is given as:

expression = variable
| constant
[expression expression
| A variable. expression
| (expression)

The domain of meanings must contain all possible values, V, for expressions. Thus, we will need a set of
constants, say C, and we will need functions from values to values, V — V. From Scott’s work [19] we know
that we can define the domain as:

VC+(V-=V)
with the injection function «y and the projection function <y _y. Using this, the semantics are:

LAE | E € expression} — V
L [constant],

L [variable],

L [exprexps] o

L [Avar. exp],

K [constant]

o [variable]

(£ [ezpr 1o —vav) (L [ezpz 1o)
Aval. £ |[61'p]I(a [val/var]) <V

I

il

where exp; and exp, are lambda expressions, var is any variable, and o [val/var] means environment ¢ with
val associated with the identifier var. K is a function which maps syntactic constants into C.

8.2 LAM
The following syntactic domains will be used for the semantics of lam:
Lam = {L|Lelam}
Expp = {E|Ee€exps}
Bndy, = {B|B ebinds}
Var = {V|Vevar}

The semantic domain is the same for both lam and IFL:

VB +Bi+..+F+P+S4+E All Values

Bo = {L. true, false} Booleans

By, ={L1,01,2..} Numbers

.. other flat domains of basic values

F=V-=V Functions
P=V*V Products
S=V+V Disjoint Unions
E= {L,error,untyped} Errors

18

The sub-domain E holds error information: error implies a compile time error, such as an unbound
variable; untyped implies that an expression could not be typed. Each of B; is a flat domain containing
constant information.

The semantics for lam closely parallel those of the lambda calculus (I will prove here ~later — that they are
identical). In addition, the semantic function R s is defined to model the interactive environment. It produces
a finite product of values (V * (V * (...))) for each command which evaluates. For binding commands, the
environment is updated, but no value appears in the product result. If a binding fails, the old environment
1s still used.

Define the environment as Env: Var — V and represent the environment as o.

Rp: Lam — Env — V
R [super;ine;] o
Rp [binderjine,] o

(Ss [super Jo,Rp [ine; o)
if 1 = {error} then Rz [ine] o else Rg [ine] oy
where 01 = B [binder] o

Bs:Bndy — Env — Env
Bg [letvi=er..va=e, o
Bs [letrecvi =€ ... vp=e, J o

o [vi.vn/Ss [s1 Jo,.. 88 [s1]o]
fiz (Aoy. 0 [v1.v4 /8B [s1 Jo1,... S8 [s1]o1])

Sg:Lam — Env — V

Sg [var Jo =0 var

Sz [const Jo =K [const Jo

Sz [number] o =N [number |

Sp [string J o =8 [string]

S [sis2]o =S8 [s1]o —vov)(Ss [s2]0)

Ss [(5) 1o =S5 [s 1o

Sp [[annot]s] o = A [[annot]s] o

Ss [Avivps Jo =As81..80. S5 [s J (0 [vi..vn/Ss [s1 [0..88 [sn] 0]

S [letvi=er ... va=epins Jo =8 [s 1 (Bs [letvi=es .. vo =e,] 0)
Sp [letrecvi =e; ... vp =eqins Jo=8g [s § (Bs [letrecvi =€y ... vp = e,] 0)

K and N and S have their obvious meanings. A is dependent on the annotation, some of which are discussed
later.

8.3 IFL

The semantics of IFL are fairly straightforward except for pattern matching and abstract types. Pattern
matching will be explained as it is developed below, but abstract types warrant some discussion before we
proceed.

The meaning of an expression is dependent on the meanings of its subexpressions. Since some expressions
will contain constructors from type definitions, in order to understand the expression we must know the
meaning of the constructor. In the following discussion a constructor is a simply a function. The fact that it
is a function whose purpose is to make a new type is not important at this stage since we are not discussing
the semantics of types, but of expressions. Later, expressions will be limited to those which are well-typed,
and the meaning of a type will then be a addressed.

Consider this simplistic abstract type in IFL:

abstype list * = sum (nil, cons prod(*, list *)) in
let hd = A(cons h t). h,
tl = Mcons h t). t;
command;

The idea behind an abstract type is that it is only defined for the operations given on it (in this case list * is
only defined for hd and tl) and not for any expressions given subsequent to the definition (ie. command). For

19

this to be the case, the constructors (nil and cons) must be in the environment whenever hd or t! is called,
but at no other time. As well, both hd and tl must access exactly the same constructor in the environment or
they will be working on different types. (ie. we cannot take the easy way out and simply add the constructors
to the environment whenever hd or tl is used since this would result in new constructors for each instance of
hd and tl).

An elegant solution to this problem is to give an indirection to variable access in the environment. This
can be done by defining the environment ¢ to be of type (Var — Int,Int — V) where Int forms the
indirection pointer. Define o to be (01,02) to represent these two functions, and ovar to be a5(0y var)
to represent the value in the environment corresponding to var. In all cases except abstract types, this
environment works exactly like the ordinary environment mapping var — V. (This indirection is often used
in denotational semantics to incorporate branches, side effects, jumps, and procedure calls [7]. For abstract
types it is slightly more complicated since we also require the use of annotations, as described below).

For an abstract data type we need a mapping in the environment for each constructor. For example,
nil — n and cons — m are the mappings to Int (given that m and n are unique integers) — call these o%.
n— [nil] and m — [cons] are the mapping from Int to the meanings of the constructors — call these
5.

’ The condition that hd and tl access the same constructors is equivalent to making sure that both access
the same unique indirection keys (the integers m and n). This can be accomplished by adding o to the
environment.

The condition that only hd and tl can access the constructors means that ¢f must be in the environment
when hd or tl are used, but at no other time. Notice that the mapping from Var — Int is syntactic in
that it can be represented by pairs of values. Since this is the case, 0 can be passed to hd and tl using an
annotation.

This idea is developed by the semantics given below.

The syntatic domains are given below:

Ifl = {Il]|leifl}

Exp = {E|Eeexp}

Bnd = {B]|Bebind}

Pat = { P | Pepattern}
Tyn = {T]|T etyname}
Typ = {T|[Tetype}

Con = { C| C e constructor}
Var = {V|Vevar}

The semantic domain is the same as the one developed for lam.

8.3.1 Expressions

Define a Binding in the domain V as:
Binding: (Var — (Int + {error}), (({error} — {error}) + (Int — V))

A binding maps a variable to a value in the domain using an indirection key (an integer) as discussed above.
If the variable is not bound to a key or a key is not bound to a value, the result of the binding is an error.

Aisused to add bindings to the environment. If a new binding is added then any access to the environment
will first check the new bindings and then the old ones. Ap and Ay are variations of A which add Var —
Int or Int — V mappings only, not both. A gives an empty binding where any access will result in an error,
since nothing is bound.

20

U Boad o Binding -+ Binding
B tetpy e P e |l
ACLpn Fen O AL e o)
B letree py e Pe ey o
Jio (Nog (AL pe Jerond ACAL | pr e o0))
B dettype tng vy, b, e
fro (Vo U006 o (A [0 Do))
B abstypc tng gy e by e lethind o
Baypr [lathid | o (85 | dottyp ing 1y m, L, | V)

Bapr Bod o Bingding o Bindig Binding
Bapr | letirec) py e I e, || o (oy,0y)
B dttra)y p o] e P o] ey O 0 ay)

Cosonsed for case stabments Successive mabches are beed unbil one s Tonnd which does not canse an oo

¢V .V .,V
C {error} t f
Cfl x il

A evaluates constants hese are pretty stinsdacd and not all ol them are given below
| ¥ B

A Cnst » V

Ao Jo Aote e b o huethend |1 [oelsed e o
At fe lambdaa b & o o & “ q " o

A e Inlager

A Sl o ferran)

ANN s used for annotations AL s tane Lhe only annotabion descerihed helow s lor abstract data v
Lesimply takes the Viar o Lat miapping out of Che anmotabion and adds i to the environment

AVN O Binding 0V
AN [l e o & fesn T (Ao o o)

£ models expressions which evaluate to values.

&: Exp — Binding — V

E [x] {error} = {error}

E fvar Jo =0 [var]

E [eonst | o = K [constant]|

& [number Jo =N [number]

E [string Jo =S [string]

E [expiexps Jo =(€ [expr Jo —voy) (€ [expz] o)
E [[annot] exp] o = ANN [annotexp] o

E [(exp) Jo =& [exp Jo

E[Ap1-prnexp Jo =Xep..ep. & [exp |

(B [letpr=¢e..pn=¢,] o) <y
[letpy =e;...pa=eninexp Jo =& [exp J(B [letpi=es..pp=¢e,]o)
[letrecpy =e1 .. pn=epinexp Jo =& [exp J(B [letrecps =e; ... pn =e,] o)
[lettypetn; = ti..tn, =ty inexp Jo=& [exp [(B [lettypetny =t; ... tny, =t,] o)
[casev ofpr=>e1.pn=>e, Jo =C(€ [ea JM [p1 J(€ [v]0)0) ...

C(E Lens 1M [pns 16 [v 19)0)

(€ [ea TM [pn 1(€ [v]o)o)).)

[Oere; Jo =C(€ [e1]o. & [e2 Jo)

where S maps strings into the appropriate B;, N maps numbers into B;, and K maps other constants into
the other B; domains.

Mty My

™

8.3.2 Typechecking

Work on the semantics of the types for IFL is still underway. The type discipline is a simple Milner style
system at this point.

Typechecking semantics simply limit the domain V to those meanings which come from well-typed IFL
expressions.

The abstract syntax of a type is given by:

texp = tvar | tcon texp ... texp
tvar = "“*" integer
teon ::= sum | prod | fun | alphabetic alphanumeric*

A builtin type, such as int, is a tcon of zero arity.
The syntactic domains for the semantics of typechecking will include Ifi, Exp, Bnd, Pat, Tyn and Var for
IFL terms as well as the following domains for type expressions:

Texp = {T | T € texp}
Tvar = {V |V e tvar}
Teon = {C | C € tcon}

In order to show that a well-typed expression does will not cause any run-time type errors, it will be
necessary to show that an syntactic object of a certain type always maps to an semantic object with that
same type. That is, an integer should always map into the domain B;. The easiest way to do this is to
define the domain of type expressions to be the same as the domain for expressions, namely V. In this case,
we could map the type “int” to the domain of integers, B;.

MacQueen’s work with ideals [13] allows us to do exactly this. To summarize his work, define a subset I
of V to be an ideal if and only if:

N I#{}
2) Vyel, xeV. x C 'y — xel
HV<z>(Vnzpel) mU<z>el

23

L is assumed to have every type, thus an ideal cannot be empty. An ideal contains chains beginning with L
and containing a least fixed point.

Denote the subset of V which contains only ideals as Z(V). Given that I and J are ideals, we can define
binary functions on them:

e I @ J is the union of the injection of I into V + V and the injection of J into V + V.
e 1 ® J is the cross product of Tand J, T x J.
o I & Jis the function space {fe V. — V | {(I) C J}

Each of these preserve ideality.
Given a mapping from type variables to Z(V), we can define

D:tetexp — (vetvar — I(V)) — I(V)
D [c]v=Dc [c]
D[tlv=vt

D [prodtexp; texps Jv=D [texpy Jv®D [texpy Jv
D [sum texp; texps Jv =D [texpy Jv@® D [texps Jv
D [funtexp; texps Jv="D [texpy Jv & D [texps Jv
De [bool] =By

DC |[int]]:Bl

This ideal model was actually defined in order to handle recursive types, thus, if recursive types are added
to the discipline, I may still work with the same model.
The semantics for types are only partially complete, and are thus not included here.

24

