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Abstract: Let X denote a 2-dimensional surface. A graph G is irreducible for T provided that G
does not embed into Z, but every proper subgraph of G does. Let I(Z) denote the set of graphs with
vertex degree at least three that are irreducible for =. In this paper we prove that I () is finite for each
orientable surface. Together with the result by D. Archdeacon and Huneke, stating that I(Z) is finite
for each non-orientable surface, this settles a conjecture of Erdo’s from the 1930s that / (Z) is finite for

each surface Z.

Let Z, denote the closed orientable surface of genus n. We also write Y(Z) to denote the genus

of orientable surface X.
Let G be a finite graph. An embedding of G into a surface X is a topological map &: G — Z.
The orientable genus ¥(G ) of the graph G is defined to be the least value of Y(£) for all orient-

able surfaces X into which G can be embedded.

Let P be a property of a graph G. We say that G is P-critical provided that G has property P
but no proper subgraph of G has property P. For example, if P is the property that YG) = 1, then
the P -critical graphs are the two Kuratowski graphs K's and K33. In general, if P is the property that
YG) 2 n, then a P-critical graph can be embedded in X, but not in £,_;. Such a P -critical graph is

also called irreducible for the surface %,_;.

For any surface Z, let /(Z) denote the set of graphs that have no vertices of degree two and are

irreducible for X.
The result of this paper is the
Main Theorem: () is finite for each orientable surface X.

This result generalizes Kuratowski’s theorem [9], that I (X) = {ks, k33} if T is the sphere, to all
orientable surfaces. The analogue result for non-orientable surfaces has been proved by D. Archdeacon

and P. Huneke, who in [2] proved that /5(Z), the set of all cubic graphs in I (Z), is finite for all non-
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orientable surfaces X and then extended in [1] their result to the full set I(Z) for all non-orientable sur-

faces X.

Together these results settle completely a conjecture of P. Erdos from the 1930’s that I(Z) is

finite for each closed two-dimensional surface X.

Some further historical references on this problem can be found in [2, 5-11]. There it is also
noted that the finiteness of 7(Z) is implied by the results of N. Robertson and P. Seymour on graph
minors [12-14]. However, these results are far more general and difficult to derive than ours. The

methods used in our proofs are more direct and in the spirit of Kuratowski's original proof.

In [1] the authors point out that their methods for proving the non-orientable analogue of our
main theorem are not powerful enough to prove our main theorem. The reason is, loosely speaking,
that the inductive step from %, to X,,; for orientable surfaces is twice as large -- measured in terms of
the Euler characteristic -- as the step between X,,; and X, for non-orientable surfaces, where n
denotes the orientable and non-orientable genus respectively. This larger step size markes the con-

struction of all critical graphs for X,,; from those for X, more difficult in the orientable case.

We will show how this difficulty can be overcome by proving some new results, lemma 5 to

lemma 11 while lemma 1 to lemma 4 can be obtained with little modification from the results in [1].

Before we give the proof of our main theorem, we mention a few definitions from [1] that we are

going to use:

For a graph G with vertex set V(G ) and edge set E(G), we call any vertex in V(G) that is not
of degree two in G a topological vertex of G and call any path of G whose endpoints are topological
vertices of G while its innter vertices have all degree two in G a topological edge of G. A piece of

G is either a topological vertex or the interior of a topological edge of G.

If H is a subgraph of G, then a bridge B of G with respect to H is the closure in G of a topo-

logical component of G—H. The vertices of attachment at B, denoted by v of a(B), are the elements
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of BNH.

Proof of the main theorem

The proof of the main theorem is by induction on Y(X), the orientable genus of X.
The base case, Y(T) = 0, is Kuratowski’s theorem.
The induction step follows immediately from proposition 1 and the fact that each (y = n + 1)-critical

graph contains a (y 2 n)-critical graph as subgraph. O

Proposition 1: Let n be an arbitrary natural number and H be a (y 2 n)-critical graph. Then there

exist only finitely many (y = n + 1)-critical graphs G that contain H as a subgraph.

Before giving the proof for this lemma, we want to point out that the proof is constructive in the
sense that all the possible extensions of a (y= n)-critical graph to a (Y= n + 1)-critical graph are
investigated. As it turns out, different extensions lead often to isomorphic copies of the same
(Y2 n + 1)-critical graph. Also, a (y > n + 1)-critical graph can contain different (y = n)-critical sub-
graphs. It therefore appears to be quite difficult to obtain a tight upper bound on the number of non-
isomorphic (y 2 n + 1)-critical graphs. We therefore restrict our arguments to proving the finiteness of

the number of all possible extensions of a (y = n)-critical graph to a (y=> + n + 1)-critical graph.

We now come to the proof of proposition 1. First we observe that, because of the additive pro-

perties of ¥(G ) for separable graphs [4], we can assume w.Lo.g. that G is 2-connected.

Further, by reasoning as in [1, 2], we can assume that each 2-connected (y = n + 1)-critical graph
is the proper extension of a 2-connected (y 2 n)-critical graph K or of a 2-connected graph H that is
obtained from a separable (y > n-critical graph K in one of finitely many ways. In any case, each 2-
connected (Y2 n + 1)-critical graph is the extension of one of finitely many 2-connected graphs H.

Let H* denote the set of all these graphs.
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To simplify notation, we denote by I#+! the set of all (y > n + 1-critical graphs that contain the
graph H as a minor. Clearly, to prove proposition 1, it suffices to show that |1#*!| is finite for each
graph H in H. To prove this fact, we use the following six lemmas, which we state for any graph H

in H™ and any pair of graphs (G, H), where G belongs to I#+1,

Lemma 1: Each embedding ¢: H — X, is an open 2-cell embedding.

Lemma 2: There exists an upper bound on the number of all (G, H) bridges that are attached to only

one piece of G.

Lemma 3: There exists an upper bound on the number of all (G, H) bridges that are attached to at

least three pieces of G .

Lemma 4: For each (G, H) bridge B, the number of topological vertices of B is bounded by

3* |vofa(B)l.
These four lemmas follow readily from the results in [1, 2, 3, 15, 16].

As in the non-orientable case, it remains to prove the following two lemmas:

Lemma 5: There exists an upper bound on the number of all (G, H) bridges that are attached to two

pieces of G.

Lemma 6: There exists an upper bound on Ivofa(B)! for each (G, H) bridge B.
Clearly, proposition 1 follows directly from these six lemmas.

The proofs for lemmas 5 and 6 are not just generalizations of the analogue lemmas in the non-

orientable case. They require some new concepts, which we will now outline.

We first observe that in order to prove lemma 6, it suffices, because of the finiteness of |H" |, to

show that there exists an upper bound on Ivofa(B) N P for any (G, H) bridge B and any piece P
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of H. The proof for this fact can be further reduced to the proof of lemma 5.

The main burden in proving lemma 5 is the case that the two pieces of H are both topological

edges of H. The other cases can be reduced to this one.

The proof of lemma S in that case is by contradiction. We will derive a contradiction in five

steps, that are described by the following five lemmas. We first make the

Definition: Let e; and e, be two topological edges of a graph H in H* and let G be a graph in I#+1.
A set B of (G, H) bridges that are attached only to inner vertices of e, and e, is called a parallel bun-
dle between e; and e; if there exists an embedding ¢: H — X, for which all bridges in B can be
embedded into one face of ¢, leaving e; on one side only and arriving at e, from one side only. B

is the width of the parallel bundle.

Remark 1: For such a parallel bundle B we choose an orientation of e; and number the bridges B of
B in such a way that By is always left of B;,; for 1 <i < IB| — 1. Clearly, the orientation on e

induces a cormresponding orientation on e,.

Remark 2: If B; is an inner bridge of B, ie., 2<i < IBl -2, and §: G — B; = X, is an embed-
ding, then the bridges of B before and after B; leave e, from opposite sides and arrive at e, from
opposite sides, otherwise ¢ could be extended to an embedding of G into X, contradicting the critical-
ity of G.

From the pigeon hole principle follows

Lemma 7: If there is a graph # in H* and two topological edges e, and e, in H with the property
that there exist graphs G in /#+! such that the number of (G, H) bridges attached to e; and e, is
unbounded, then there exist also graphs G in I#*! with arbitrarily wide parallel bundles between e;

and €3.
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This lemma can be extended to

Lemma 8: If there is a graph H in H and two topological edges e; and e, of H with the property
that there exist graphs in /#+! with arbitrarily wide parallel bundles between e; and e,, then there
exists a topological edge e3 of H with the property that there are graphs in I#*! with arbitrarily wide
parallel bundles between e; and e, and between e, and e;. Furthermore, the two parallel bundles are

interlaced at e».
Continuing inductively, we make the following

Definition: Let H be a graph in H” and e, 5, - - - ¢4 topological edges of H, and let G be a
graph in I#*!1, A sequence of parallel bundles B; of G between ¢; and e;,y, 1 < i <, which are

interlaced at ¢; for 2 < i <1, is called a string S of interlaced parallel bundles of G of length I.

Remark: For such a string S, the inner edges ¢;, 2 < i < I, must be pairwise distinct. If e; = ¢/, ,

then S is called a cycle C of interlaced parallel bundles of G of length /.
By induction, lemma 8 can be generalized to

Lemma 9: If there is a graph H in H” and two topological edges e; and e, of H with the property
that there exist graphs in I#+! with arbitrarily wide strings S of interlaced parallel bundles of length [
between e and e, then there exists a topological edge e3 of H with the property that there are graphs
in I#+! with arbitrarily wide string of interlaced parallel bundles of length [ + 1 between ¢; and es.
Omitting some details, lemma 9 says that wide strings of interlaced parallel bundles can be extended to

longer strings.

Because of the finiteness of |H" |, the number of topological edges for any graph H in H” is
bounded. Therefore the length of strings of interlaced parallel bundles for any graph in I#+! is uni-
formly bounded. That means that the extension process described in lemma 9 has to stop after a

bounded number of steps. The only way that this can happen is that this extension process leads even-
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tually to a cycle of interlaced parallel bundles.
Combining the results of lemmas 7-9, we obtain

Lemma 10: From the assumptions of lemma 7 follows that there exist graphs in I7#+! with arbitrarily

wide cycles cycles of interlaced parallel bundles.

To arrive at the contradiction needed to prove lemma 5, we now state

Lemma 11 There exists a uniform bound on the width of interlaced parallel bundles for all graphs in
17+,
Proof: Let G be a graph in /#+! and C a cycle of interlaced parallel bundles in G. If C is wide

enough, we can derive a contradiction and so prove lemma 11.

We will show first that for any inner bridge B; of a parallel bundle of C and any embedding
¢:G - B; - Z,, C— B; must be embedded into two opposite cylinders, such that B; cannot be
embedded into either of them. This implies that the string of parallel bundles that forms C must be
closed to a cycle in a unique way, forcing a unique interlacing of the first and last parallel bundle of
this string,

We then conclude that G contains a subgraph H’ isomorphic to H and a cycle C’ of parallel
bundles that is a proper sub-bundle of C, closed in the same way as C. For any edge ¢ of C — C,
there exists an embedding ¢: G — e — X,. In this embedding,‘ C’ must be embedded into a single
cyclinder. Clearly, by extending this embedding of C’ to C, the embedding of G — ¢ into I, can be

extended to an embedding of G into Z,, contradicting the criticality of G .

Details of this proof are best demonstrated on a cycle of length four. The case for general values

of [ follows by induction.

Let By, B2, B3, B4 be four parallel bundles of a graph G in I#*!, interlaced at the four topological

edges e;, €3, e4, €1 of H respectively. W.lo.g., assume that these edges are oriented in the same way
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and that the bridges in the four parallel bundles are numbered according with that orientation. Let By;
be a bridge of B; and let B and B denote the sub-bundles of B; to the right and to the left of By;

respectively, and assume w.l.o.g., that both contain at least two bridges.

Let ¢: G — By; — Z, be an embedding. Clearly, Bi and Bi leave e; at opposite sides, w.Lo.g.,
assume B leaves e; on the right (Figure 1). For By; not to be embeddable on the right side of e,
parallel to B, there has to exist w.l.o.g. a first bridge B,; of B, with the property that By; and By;
are interlaced at e, in such a way that the lowest vertex on e is lower than the highest vertex of By;
on e, and such that B; is embedded to the left of e, together with By, consisting of all bridges of B,
to the left of By;, while the remainder B# of B; is embedded to the right of e;. Continuing to reason
this way, we conclude that there has to exist a first bridge Bs; of Bs, analogously to By;, blocking an
embedding of By; next to B# and again analogously, that there has to exist a first bridge B4; of By,
blocking an embedding of Bj; next to Bi. Again, By; leaves e4 on the left together with B, while
B leaves e4 on the right. In order that B4; cannot be embedded parallel to B on the right of ¢4 and
on the left of ey, the lowest vertex of By; on e has to be lower than the highest vertex of the bridge

of By; the bridges By;_; in Bf.

On the other hand, in order to block an embedding of B; on the left of e, parallel to Bf, B4,
must interfere; that means, the lowest vertex of B4;4; on e has to be lower than the highest vertex of
By; oney.

This argument can be applied to any inner bridge B; of B; and shows that there is only one way

that the parallel bundles B; and B4 can be interlaced at e;.

From these discussions it is obvious that a cycle of parallel bundles that is interlaced in this way
cannot be embedded into two opposite cyclinders without excluding the embedding of one of its inner

bridges.
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We will show next how to construct a subgraph H' of G isomorphic to H and a proper sub-

bundle C’ of C that is connected to H” in the same way as C is connected to H .

For each bridge By, 1 <k <4, let by be a path in By; from the highest veriex of By; on ¢, to

the lowest vertex of By; on e,y (k mod 4).

We now define the new topological edges ¢, by

e1=el bybnbnbye,
€4 = €4 b3 by b3 bys ey
e3 =e3 by bia by bss ey,

€3 = ey b1y bz b3y bas ey

Here ey and ey, are the subpaths of ¢ to the left and to the right of the paths bj; respectively and the

paths by; and b, j are joined by appropriate subpaths of ¢, (k mod 4), see Figure 2.

For k =2, 3, 4 we define B, to be Bf U B+, where B consists of all bridges of B, to the left
of By and B*™ of all bridges of By to the right of Bys. Finally B{ is defined as By U Bi+ U {r},
where BT consists of all bridges of By to the left of B o, Bi+ of all bridges to the right of B;s and p
is the path b1o b4 b33 byg bys, where these paths are connected by appropriate subpaths of the topo-
logical edges e;. (Figure 2)

It is straight forward to check that the four bundles B; form a cycle C’ of parallel bundles that

are interlaced in the same way as C, completing the proof of lemma 11.
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