INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are availabie for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-06800

®

UMI

THE UNIVERSITY OF CALGARY

A Metamorphic Control Architecture for Holonic Systems

by

Sivaram B.alasubramanian

A DISSERTATION

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MECHANICAL ENGINEERING

CALGARY, ALBERTA

SEPTEMBER, 1997

© Sivaram Balasubramanian 1997

i+l

National Library Bibliotheque nationale

of Canada du Canada
Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
395 Waellington Street 395, rue Wellington
Ofttawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your e Votre reférence
Our file Notre réMérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protege cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-47923-4

Canadia

Abstract

Next generation manufacturing systems are envisioned to be comprised of
distributed network of autonomous and cooperative holonic resources. Holonic systems
have an information processing part and a physical processing part to process knowledge
and material simultaneously. Holonic systems are evolutionary in nature to better
accomplish current system objectives. In other words the form and substance of holonic
systems undergo constant transformation (metamorphosis) through out their life time.
Real time control of such holonic systems requires a radically different approach from that
of traditional unit level regulatory control systems.

The control requirements of holonic systems are distributed in nature. The
dynamics of distributed control results in complex system behavior and requires an event
driven control system. Since holonic systems are evolutionary in nature, they require both
static and dynamic reconfigurability of their control systems. Additionally, holonic systems
require incorporation of intelligence into their control systems that can enhance autonomy
and cooperation. The conventional centralized scan based control systems are inadequate
in meeting the said control requirements of holonic systems. This necessitates a new and
novel system level distributed control approach. and the control systems based on this
approach are termed as metamorphic control systems.

The engineering of such software centric metamorphic control systems for
dynamically reconfigurable distributed multi-sensor based holonic systems. is addressed in
this dissertation. An integrated and uniform event driven control architecture is specified
for various functional levels of metamorphic control system. The architecture utilizes the
emerging International Electrotechnical Commission function block standard (IEC 1499)
for industrial process measurement and control systems, to specify the requisite behavior
of distributed control software components (agents).

A prototype metamorphic control system has been developed using the new

architecture. The core metamorphic control mechanisms have been developed in the form

i

of a distributed real time operating system. The function block specification is used to
develop distributed control software agents and applications. A system engineering
interface has been developed for remote program development, configuration and
maintenance of distributed control system. The implementation and evaluation details of

this prototypical system are presented.

iv

Acknowledgements

First and foremost. I would like to thank my supervisor, Dr. Douglas H. Norrie.
for his direction and advice through out this research. I especially appreciate the freedom
and flexibility, that led me to explore a relatively new area of research. I also appreciate his
efforts for making sure that lack of resources never impeded progress.

I would like to thank my supervisory committee members. Dr. Paul Rogers and
Dr. Keith Chrystall, for their suggestions. time and energy during the course of this work.

Special thanks are extended to IEC 1499 Function Block Standards Committee
project leader. Dr. James Christensen, for giving me ‘inside’ information. I gained a lot
from the discussions with him and am grateful to him for lending an ear.

I thank our technical supervisor, Nick Vogt, for his help in obtaining equipment
and other resources for this research.

I am grateful to our technician, David Genge. for his help in developing special
hardware used in this research.

I am also thankful to our graduate secretary. Lynn Banach. and division secretary.
Karen Undseth. for their help during this research.

I am indebted to my colleagues, Harish Ananda Rao and Francisco Paul Maturana
for their help and invigorating discussions.

I am also privileged to have many good friends who have helped me in one way or
the other. Thanks to you all.

Words cannot describe my gratitude adequately, to my beloved parents and family

members for their encouragement and support, without which this endeavor would not

have been possible.

Dedicated to my beloved parents.

vi

Table of Contents

APPIOVAL PAGe..............uuuunaaaoeeeaaeeeeeeeeereeeeressseveessinessseesssssssiessnsassasessssssssssmonmtnesnnsasansrens i
ADSIract...............cuuuueueieeneeereoveennnnn. teeesnessescssseneteeenemsamersesssestnsensresarrrrsssastsssniessases [17]
Acknowledgements.................................. tesseesessssemssnsnsssennsstmmnsstatasnnasesansnonnnnrtssansns 14
DOAICALIONeaaneeeneeeeeeaneeneeeseorseeireinssacesssssssssessessosssssssassnsssssnsssssasnsssssssassennassasssnsas vi
TaDlE Of CORLENESeeueeeeeeeeeeeoereeresseessesesssssssenscssseresssssssarsssassssmnnsassssnsenmssnasesssanesass vii
LiSt Of T@DIes...........ueeeeeeaaaoaneaaaanucaieissassicsesessssssenissnssnsessssssssnnsssasarosssssssssensssensrssasssne Xii
LiSE Of FEGUFES «....oeeeeeeeeeaeenenccoonnueicsenensresssessssserssenossssassssssssssnssnsnsnsasssssessssassassmnsnsesasss xiii
ACTOMRYINSeeeeeeeeerrcecenecsscscseoamssocssorssmssssssmssnsssssssossassssssssssnsssssmsnsssanssssssstossossnssnssscnses xvi
GLOSSATY.......nneeeeeeeeeesesasecscsssessssssesssnsssessessnsesessssssstsssssssasssrssssnnsasassssssssmassassasssssnsesnss xvii
Chapter 1 - INIrodUCHONuuueeeecoenneeneeenennernsseeesssnensessaseessssssassossssnsasnasarssses 1
L. J OVEIVIEWeeaeeeeeeeeeeeeenaceencosnaeriiesenessesarsrssssssssssssnsssssssnsssnssasasasesssssessesnnnssnsssonssses 1
1.2 HOIORIC SYSEEMISccoaeeenomnnannnnenniieeeensssssseeencsssssssssssassnsssssssssansossnssssssssssnsanssnss 2
1.3 MOBVAHOMneeeeeeeeeaneecaoeenneceennnicossscssssssssssessssssssssensssesssnssssenasasnsasssnsssssarassaens 4
I8 OBJOCHVES....eeaeneeeeeeaeeeaeeaeanscrsscorsssesscsossussemcsssosssssensssssissansnssnnsnerssassssasssssssannsnssansane 6
1.5 Organization of DiSSEFtALIONeeeeeeneeeeeeeenerensasasassssasseosiossassasessssrassnns 6
Chapter 2 - Industrial Automation and Control........................cocceeeoeecennnnnnnnacnne 8
2.1 INIPOAUCHON.oueeeeeenneeeeoereneneniecncsscsssecstessssssssasssssnsrssssssssnsssnnssnsasssssssssnsansanas 8
2.2 Industrial Control SYSEEMSeueueeueirireccsssoccsersrsssassssonsssssssssssssssssssasansssen 8
2.2.1 Programmable Logic Control Systems 9
2.2.2 Process/Loop Control Systems 11
2.2.3 Distributed Control Systems 12
2.2.4 Computer Numerical Control Systems 13
2.2.5 Robot Control Systems 13

2.3 Factory Floor COMMURICAUONSoeeeeeeeeereeeernceameosoocosnncccoscassessasasses 14
2.3.1 Manufacturing Automation Protocol 15
2.3.2 Field Level Networks 17
2.4 0pen Architecture CORITOL...................ucueeeoeeeeeeerneneeeieaanaaeeeacsssosesessssasssisssarosseens 19

2.4.1 Open Modular Architecture Controller 20

2.4.2 Open Systems Architecture for Controls within Automation Systems.................. .23
2.4.3 Open System Environment for Controller 25
2.4.4 Enhanced Machine Controller 27
2.4.5 University of Michigan Open Architecture Controller 29
2.4.6 Machine tool Open System Advanced Intelligent Controller 31
2.4.7 Other Open Architecture Control Approaches. 32
2. 5 SUIIMATYaeeeeeovnrerecivnneeneonneceesenesessssssssssssscssssssssssssssasnssssssssensessasssssssenssssansas 34
Chapter 3 - Holonic Systems Control.....................eeeeeeeeeieereeeeeceeecenserennnecosacnes 35
3.1 IREFOAUCHON.o..oeaaaeeeoeennoaannncaenriionennionneneeseesessseseessossnsnsonssessssnsasnsssssssnsssnnssons 35
3.2 Metamorphic Control Requirementsoeoeeeeeeeeeeeeneeeececnnnraneeenneneseecnnns 35
3.2.1 Real Time Control 37
3.2.2 Distributed Control 39
3.2.3 Event Driven Control 42
3.2.4 Intelligent Control 43
3.3 Control Architectures for Autonomous SYSLEmS..................couuueeeeeeeeereoeeereeenncenes 44
3.3.1 Subsumption Architecture. 45
3.3.2 Other Reactive Architectures 48
S SUMMATYeaaaeeeeeeeaeeeeeessesaooeassssssssuesssssiossossassssssessossessssssssssesessssssasssssssssnsesns 50
Chapter 4 - A Review of Real Time SYSUEmsueeeeeeeeeeenanarerosioiasoronnsssncccncanes 51
4.0 INtrodUCHOm..................uneeeeeecsaiveanniiranenerenerinisscresressessnsssnsssenstsssssnsnassssasensossnannans 51
4.2 Real Time Operating SYSIEMIS....................eeeeecreeeeeeeeecrsoceeneessnmessarasssesesasesnscssasenes 51
4.2.1 Scheduling 52
4.2.2 Synchronization 56
4.2.3 Communication 57
4.2.4 Clock Synchronization 58
4.2.5 Fault Tolerance 59
4.2.6 Distributed Real Time Operating Systems 61
4.3 Formal Specification MetROdSeuoeeeeeerannnnioeaeeanceccenteuoenacssecscessees 64
4.3.1 Reference Models 65
4.3.2 Basic Function Blocks 72

viil

4.3.3 Compeosite Function Blocks 75

4.3.4 Service Interface Function Blocks 76

B SUIIMATYeeeeeeeeeeeeeeeccesoneeiosercssesesesossrosessssssosssssrsarsassasssnnasssssssssssssssssssnssnssssnses 79
Chapter 5 - Metamorphic Control Architecture......................ueeeeeneeneeneeconeneeeesnnoceees 80
5.1 Introduction.. eeerereestesssieessstessnassesirostessttettetrrntarresseseetstetssteseaserssrenannane 80
5.2 SyStem AFCRILECIUTE............o..eeueeeeeieeeenereeseenessienenessssersssssrnessassasasessnansssnsnnnsnesassease 81
5.2.1 Distributed Intelligent Controller 83
5.3 PRySicQl AFCRILECIUTEo.ooeeeneeeeeeeneaeanrneeeeesssnaaasanneseesssaniensssnesssnnsnseassesees 85
5.4 SOftWare AFCRILECIUTE.coueoeeeeennenenrinenisneeesreesaeeesseeeetisttenisnenssaesessanansasses 88
5.4.1 Operational Architecture 88
5.4.2 Application Architecture 9%
5.5 Functional Architecture.................. Neeemreeemarestessssasanseiesisasssessresttessssatsesasssassassnanes 91
5.6 ClUCALISSUESeeeeeeeeeeeeeeeerennseenesenncossnssssssssssssacerssssossessasssssmssssssssesssssassassasasnsans 93
5.7 Limitations of EXtant SYSIEMSeueueeemeereeeeeeessaseereceneessssssnesssssssssssenssnsase 97
5.8 Prototype Metamorphic Control SYStem................ueeeeeeeeoecneaeiecsceieeseaserssnonsscncs 99
SO SUMIMATYaanaaeeeeeeeeeecseeseccsnionnerscnsssssessereansssnsasssssssassesanacssssssssssssnsssessmasansssess 100
Chapter 6 - The Distributed Controller Operating System Design............................. 101
6.1 INEEOAUCHOMN.oueeeeeeeeeeeaasaeesreaasssassasessssssmssssssassssssssssesssmassssssssnssssessessannens 101
6.2 Operating SyStem COMCEPISoueeeueenneierannroeeracseisasnnniesunessaessarasssasscnnens 102
6.2.1 Types of Operating Systems. 104
6.3 Operating System Design TeCRRIGQUESueonneeeenneennneiionnernceneaaneeccosenes 107
6.3.1 Uninterruptable Monitor Approach 108
6.3.2 Kernel Approach 109
6.3.3 Layered Approach 110
6.3.4 Message Passing Approach 112
6.3.5 Object Based Approach 113
6.4 DCOS ATCRILECIUTE.oeeeeeeeeeeeeeenesosnsosssesmicecssssisossessssssssssssssssssssassessnssssnnnsans 115
6.5 SUMMATYoonneeeeccveeeececeasscsscsssssnnssssusmssisesssssnstsssssassssasasessasssasessassasasasassencese 122
Chapter 7 - The DCOS Implementation.......................ueeeecooiionscoiascnnninsssesssacocsacnnees 123
7.1 Introduction............... teeereereeteacareesasssssassensnisesssssnsessissneressansnns 123
7.2 Implement@tion DELAIseeeeeemeneeeenneaeneiaaaaecneeceeeinsscssncnnseissssscstosascsiosenes 123

7.2.1 Class Design 125

7.2.2 Virtual Memory Management 127
7.2.3 Hardware Dependencies 128
7.2.4 Application Interface 129
7.3 The SYSteM AeML...........ccccoouueneermronaeeeeesaissnsasascsossecstssssssasssssssnesssnionsnsssssosssanes 130
7.3.1 /O Devices 130
7.3.2 Device Management 133
7.3.3 Interrupt Management 135
7.4 The Scheduler Agent... teeeeeeeescssresaseentasatetatescasasstsrnsannssnrsnnenenne 136
7.4.1 Scheduling Mechanisms. 137
7.4.2 Execution Services 142
7.5 The Timer Agent ... reeeonsesasesernsaseesnsanasasnasanserasseasaasssneserntesesseernsasrsanen 143
7.6 THE TASK ARnennenennceeranrennneennnnnnnsnaeaeieeeasaasisssssssosenncasssssssiosssssseansnnsns 145
7.6.1 Task Services, 147
7.7 The Buffer Pool Memory AeRL................onueeeaneeceesaniaoaneessosenemmimnenesionasesses 149
7.8 The Segmented Heap Memory AeEnL.....................eeuoeiaooricaennrnennmienasscnnnenenns 149
7.9 The Message Port AGeNL..................eueeeeerormieaecsncreenecnnssssscsacsssssensesssssssssssssasenss 150
7.10 The Distributed Shared Memory Agent.........................euuenueremvoncsscscrcenenesocanes 151
7.1]1 The SemapRhore AGeNL....................eeeeemeeeosrureesrneecesasssosacsossescccssorssnsssssssssassnnes 152
7.12 The Dynamic LINKeroouueeeeeemeeneeeeeeesonseoonnccncnsconsmersesessssssasssssasasanaes 154
7.13 The Network Interfaces Manager......................e.eeeeneeneeeccrssrirsessssseronsnnens 156
7.14 The System Engineering Interface Agent.....................uceceeeceerivenicecosesinnnnennes 159
715 SUMMATY .ooeverereeesssniessmssassensesssessssnsssssssssnssess eevereeeraeesassassa st ne st essaetes 160
Chapter 8 - Application Development and COnfiguration.....................cocceeveeeecennneee 161
8.1 INUrOAUCHON..............oeenneeeeaaeeeerecosneneennoresrossasssesssssnsrsesontasmasesassssssssessasssssssesssnns 161
8.2 SOftWAre SYMIRESIS...........cuuecooeneennnninrasniascnnaciasestissstotiserssssensnssssssasessansnsasaneas 161
8.2.1 PID Application 163
8.2.2 Publisher-Subscriber Application 165
8.2.3 Code Development 167
8.3 System Engineering INLETfaCeueeeeevoeeiivueeionsnmnnneniuneentessseecssoacneccsses 169
B.d SUMIMUATYeeneeeeeeeeerrensenaarsssssessssssssssssssrmiasssssasessesassssssssssssssssssssnsssnsssassnsansacns 171

Chapter 9 - Implementation and Evaluation........................ eessenesesssmnsantnan 172

9.1 INUPOAUCHON.c.coeaeeeeeeeeeeeeencooseneeeessorsesessicssossssssssssassssasnsassenmsnsssssssasansnssansasss 172
9.2 System Implementation .. teeeerssassssessrrrnsnssennsetnsnssstasassserenen sanns 172
9.3 Timing Analysis............cccoueeeeeeeerenene teerereesennnesssssnasssnsasssnsrensnnes 175
9.3.1 Determinacy 177
9.3.2 Interrupt Latency 178
9.3.3 Context Switch Time 178
9.3.4 Network Latency 179
9.3.5 Service Primitive Times 179
9.3.6 Methodology 180
9.3.7 Performance Data 181

9.4 FUNCEONALEY TESIS «....cooeeeeeeeenvecccsscenrerensesmmsssasesssssessasensassaasssasssnsssssssssasassssasasts 185
9.4.1 Test Case 1 186
9.4.2 Test Case 2 188
9.4.3 Test Case 3 189

D.5 SUIMIMUATYeeeveeeeeeerrrneanncncscosscsssssnsemsstsmeeissssssssssssssasssassssssmtessssssenssnsesssssssisone 192
Chapter 10 - Contributions and Recommended Future Work 193
JO.I SURIMATYooeeeneeereecocscacnessssssasssssssaressannsssnsassasssssssstosssssessssssssnsanssssnseene 193
10.2 Research CORIIDULIONSc..ceoeeneeeiecririsosueeneseansesessesoncnsscrascssssssssascssssossess 194
10.3 Future Work.... tecevassrssnseesesesnnrntretttstsasistsetanssessessenttresserarersaraastisssasssasasts 195
REfEreNCESoonneeeeeeeeoianonennnrenrenresnreenaaesaamscssssiasascssassssssnssssssssnannasssansesssssssancesessens 197

List of Tables

Table 4.1 - Transitions of Event Input State Machine............ccoooooomae. 74
Table 4.2 - Transitions of ECC Operation State Machine.....................oool. 74
Table 9.1 - Qualitative Feature COMPAriSONoueeimmmiiiemeiemmiiniirnrieeeeeeeeeeeneceeeerennnaaeas 176
Table 9.2 - System Agent PrMITVES ...o...uniemimieeeieeee et 181
Table 9.3 - Scheduler Agent PrimitiVescooeeemmmmmmmmeemiieeeee e 182
Table 9.4 - Timer Agent PrmitiVascoveimrimim e eeneanes 182
Table 9.5 - Task Agent PrmMItIVES......cuuueememmemiitee e cee e 182
Table 9.6 - Buffer Pool Memory Agent Primitivesocoomiiiiieee 183
Table 9.7 - Segmented Heap Memory Agent PAMItIVES ...ccceeermiirriiiiincciiecieneineen 183
Table 9.8 - Distributed Shared Memory Agent PrmitiVes..........cccooirccniniciaaneen. 184
Table 9.9 - Message Port Agent Primitiveseeeeenemmmiiieenecneeaenns 184
Table 9.10 - Semaphore Agent PrAMItIVESonnemiiiiiiteeeecccceeeee 184
Table 9.11 - Miscellaneous Timing Dataccouuerimmmmiimminiieeer e 185

List of Figures

Figure 1.1: Holonic Elements and Interfaces..........cooooiiiiiiiiiicieene 3
Figure 1.2: Intelligent Control SYSIEMomeiereeiiiirirircct ettt 4
Figure 2.1: Programmable Logic Control System..........cooeieimiiiiiiiiiniinniiiiiiinenees 10
Figure 2.2: Open Modular Architecture Controller..........cocoooiioiiiiiiiiiiiiiess 21
Figure 2.3: Elements of OMAC ..ottt 22
Figure 2.4: Open System Architecture for Controls within Automation Systems 24
Figure 2.5: Open System Environment for Controller............coooiiiiiinn 26
Figure 2.6: Enhanced Machine Controller Architecture.............cccoccoeeiiiinnnnniiinnnnne. 28
Figure 2.7: University of Michigan Open Architecture Controller.............cccoceeeeeennenee. 30
Figure 2.8: Machine tool Open System Advanced Intelligent Controller......................... 31
Figure 3.1: Holonic Distributed CONtrol.............ooiiiimmiiiiiii s 36
Figure 3.2: Scan Based and Time Triggered Systemsccooeiiiniiriinniiiniininniiiennns 42
Figure 3.3: Control System Relationshipscoooooiiiiiinceene 43
Figure 3.4: Activity DECOMPOSIHON «ocnnnmiiieieieeeeeeeic e 46
Figure 3.5: SUbSUMPHON LAYETS ..oeveemiiiiieeeeee et 46
Figure 4.1: System MOdel......oonnnemmeei e 66
Figure 4.2: Device MOdel........ .o 67
Figure 4.3: Resource model...... .o 68
Figure 4.4: Application MOdeL..... ..ottt 69
Figure 4.5: Function Block Modelooiiii i 70
Figure 4.6: Execution Model and Timingcooimoiiiiies 70
Figure 4.7: Basic Function BIOCK....ccor i 72
Figure 4.8: Typical Execution Control Chart.........ccooiiimiimiiiiiiiiiceeee 73
Figure 4.9: Event Input State Machine...........coccoiiiiiiniiiii e 73
Figure 4.10: ECC Operation State Machine...........ccoooeeioiiiiiiiiiiiines 74
Figure 4.11: Composite Function BIOCK.........ccooiimiiiiiiiiii e 75
Figure 4.12: Application Initiated INtEraction........ccccveeviiniiiiiiiiiiiiiii 77

Figure 4.13: Resource Initiated INteraCtioncooeemiiiiiiiiiiicceceee 77

Figure 4.14: Unidirectional ReqUESIET.......coceemmiiieiiiiiiiceciicccenes 78
Figure 4.15: Unidirectional Responder........ccooooiiiiiiiiiiiiiiiicciens 78
Figure 4.16: Bidirectional REqQUESTET..........oooiiiiiiieiicirciiit e 78
Figure 4.17: Bidirectional Responder........ .o 78
Figure 4.18: Manager Function BIOCK.......coouiioeiiiiciiccii e 79
Figure 5.1: System AICRItECTUTe........oociiieeee ittt 81
Figure 5.2: Feasible System ArChiteCtUIeS......ccccoecrtiiiiiiiieiecriiiicittes e 83
Figure 5.3: Feasible Physical ArChIteCturescoooeeeriieiniiieeiiiceiiieiieinen e 86
Figure 5.4: Operational ArChiteCture.cooeeieiiiiiiicii e 89
Figure 5.5: Application ArChiteCtUreccomreiieieein ettt 90
Figure 5.6: Functional ArChitecture........ccooo i 92
Figure 5.7: Location TranSPAreNCYcecoeeeemeiericetmennenieaieianteenncissnnsenens e 94
Figure 5.8: Prototype Metamorphic Control Systemccoovriieiiciiiiiiiiiiiiiicinnees 99
Figure 6.1: Conceptual Operating SYSteM.....ccoeeiiiiiiiimiieitiiiiececeiiisssic e 102
Figure 6.2: DCOS ATCRIECTUIEomineieeeeee et 117
Figure 6.3: Remote TranSaCtioN......cccoueieeeermereiiteeenetrtectente s ates s 120
Figure 6.4: Logical Object Identifiercccoeeiiiiiiieei e 121
Figure 7.1: Class DeSIZN ..o ettt 126
Figure 7.2: Virtual Address SPacecoooeiimiieiiiiiiiie e 127
Figure 7.3: Virtual Address Translationccoooeieeoiimiiiiiiniiiic e 128
Figure 7.4: Application INterfaceooeeieiieeiimii e 129
Figure 7.5: Static Priority ScCheduling.........ccoermoiriiiiiiicii e 139
Figure 7.6: Encoded PHOMILYvenieiieeeeee e 140
Figure 7.7: Dynamic Priority SCheduling..........ccooiciiiiiiimiiniiieeen 141
Figure 7.8: System ClOCK. ... uveimiieimieeieietee ettt 143
Figure 7.9: Time Wheel StucCture.... ..ottt 145
Figure 7.10: Task State Transitionsccceeeeeniiennccniniineiceininen et 146

Xiv

Figure 7.11: Message POITScooocoiiiiiiiiiiieieeiereecrteceres e e e e e e e e 151

Figure 7.12: Distributed Shared MemOrycccuuemmimemiieiiieereeeecceeeeee e 152
Figure 7.13: Address Mapping.......ccceeeeeummmiiiiimimmemmmeieecceeeeeiee e e s e e e sennnne s 157
Figure 7.14: Network Address........ccuueeeemueeeiiiiimeeeeeiee e ccreeea e s enneeeee 157
Figure 7.15: Message ROULNEcccoeiiiiummimmiiieiimeeee e see e s e e e eee e 158
Figure 7.16: System Engineering Interface Agent...........cooooniriiniiriiiiiiiieeeeeeeeeeene. 159
Figure 8.1: Steps in Application Software Development...............cccccoieericiiiiannnnn. 162
Figure 8.2: PID APPHCAtON.ueeiiiiiiiiieeereerennnnreinneeitieeeeinicee s reeeeneesenesssesssasesasanans 163
Figure 8.3: ADC Function BIOCKoooiimrmiieeeee e 164
Figure 8.4: DAC Function BloCKccovuuuuumiimmiee e s seeeneneee 164
Figure 8.5: PID Function BIOCK......cccoouuummmmiiieee et 164
Figure 8.6: Publisher Application COMPONENL..........ccoimmimmiiiienrenirreeereeeeeeeaeeseeeaeaean 166
Figure 8.7: Subscriber Application COmPpONent.........ccceeeeeemiieirieeieiceenceeeeeeeennenennnns 166
Figure 8.8: Fuzzy Function BIOCK...........ouuuiiiiieeeeeee et 167
Figure 8.9: Application Class DeSighceuueeiimmmmmiorieeeecerrer e e 168
Figure 8.10: Elements of System Engineering Interface............cccccevinmiiieecieeceinnnne, 169
Figure 8.11: Application Configuration...........ccceeeeeeeeereeemmeeerierieieeenenresseeaseseresneaanns 170
Figure 9.1: System Implementation............c.eeeeeeemnmmmmmiiieeeieieeeneeeesseeceeeseseeeseanaeas 173
Figure 9.2: Dual Processor ArchiteCturecceoeemmemiieniiiiieieiiieeeeeeseneeeeneenennaes 174
Figure 9.3: Multi-Function VO Boardc.coooaniiirimiieeeeeeceeeee e, 185
Figure 9.4: Test Case 1 - Frequency Multiplicationcccceeeiiiiiiiiiiiieeiiceee e, 187
Figure 9.5: Test Case 1 - Frequency Multiplierccooiriiiriiriie. 187
Figure 9.6: Test Case 2 - PID Application ...t 188
Figure 9.7: Test Case 2 - Distributed Configurationcccceeeieeiniiiiiiioniieceennieneee 189
Figure 9.8: Test Case 3 - Publisher COmponentcccommeiiiiiiiiiiiiieeeeececccceenes 190
Figure 9.9: Test Case 3 - Subscriber COomponentcocoumeiemiieimiiiieeeeieeeeeene. 191
Figure 9.10: Test Case 3 - Distributed Configurationcoooemiemiiiiniiiniicnieeennn. 191

XV

CNC
CPU
DCOS
DCS
ECC
FIFO/LIFO
Vo

IEC
IEEE
ISA/EISA
ISO
LAN
MAP
MB/GB
MMS
NC
CAC
oS

OSI

PC

PCI
PLC

TCP/UDP/IP

Acronyms

Application Programming Interface
Computer Numerical Control

Central Processing Unit

Distributed Controller Operating System
Distributed Control System

Execution Control Chart

First In First Out/Last In First Out
Input/Output

International Electrotechnical Commission
Institute of Electrical and Electronics Engineers
Industry Standard Architecture/Extended Industry Standard Architecture
International Standards Organization
Local Area Network

Manufacturing Automation Protocol
Mega Byte/Giga Byte

Manufacturing Message Specification
Numerical Control

Open Architecture Control

Operating System

Open Systems Interconnection

Personal Computer

Peripheral Component Interconnect

Programmable Logic Controller

Transmission Control Protocol/User Datagram Protocol/Internet Protocol

xvi

Agent

Autonomy

Cooperation

Function Block

Holarchy

Holon

Interoperability

Loosely Coupled

Metamorphic

Tightly Coupled

Glossary

An active control software component/module/object of a holon.
The capability of an entity to create and control the execution of its
own plans and/or strategies.

A Process whereby a set of entities develop mutually acceptable
plans and execute them.

A software functional unit comprising an individual. named copy of
a data structure and associated operations.

A system of holons which can cooperate to achieve a goal or
objective. The holarchy defines the basic rules for cooperation of
the holons and thereby limits their autonomy.

An autonomous and cooperative building block of a manufacturing
system for transforming, transporting. storing and/or validating
information and physical objects. The holon consists of an
information processing part and often a physical processing part. A
holon can form part of another holon.

The ability of an entity to cooperate with other dissimilar entities.
Also the ability of heterogeneous hardware and software
subsystems to function together.

A distributed multi-processor system with no shared primary
memory.

A control system that undergoes constant transformation of form
and substance through out its life time.

A multi-processor system with shared primary memory.

xvil

Chapter 1
Introduction

1.1 Overview

Computer control of manufacturing systems has been the focus of extensive
research over the last several decades. Advances in microprocessor. computing,
networking and interfacing technologies have improved the capabilities of industrial
automation and control systems substantially over this period. However, these control
systems are proprietary and still have problems in areas such as interoperability. scalability.
upgradability (without complete replacement), and lack of standard interfaces. The
development of open architecture control systems addresses some of these problems. in
varying degrees. Open architecture control systems shift the focus of automation from
being hardware centric to software centric, providing further flexibility. The focus is now
shifting to distributed control systems which is the central concern of this dissertation
research work.

This dissertation addresses the engineering of software centric control systems for
cooperating networks of distributed autonomous sub-systems to provide for enhanced
interoperability. scalability, and upgradability. A comprehensive control architecture is
presented for dynamically reconfigurable distributed multi-sensor based systems. A
prototype control framework has been developed using a system level approach. The core
distributed control mechanisms have been developed in the form of a distributed real time
operating system. A state machine based sophisticated application specification model is
used to develop reusable software modules. A system engineering interface has been
developed to address the configuration and maintenance requirements of the distributed
control system.

In this chapter, the concepts of holonic manufacturing paradigm and its Intelligent

Control System are introduced. Subsequently, the motivation for developing a new control

2

architecture, and the objectives of this dissertation are presented. Finally, the

organizational structure of the remaining chapters in this dissertation is outlined.

1.2 Holonic Systems

The change in market requirements towards a larger variety of products in smaller
batch sizes. has lead to the concept of next generation intelligent manufacturing systems
being an integrated network of distributed resources simultaneously capable of combined
knowledge processing and material processing [Norrie94]. The control relationships
among these distributed resources need to be reconfigured “on the fly” according to
changing requirements [Norrie94]. Earlier research in the area of intelligent manufacturing
systems has established that such resources can be realized through the concepts of
holonic paradigm [Chris94a].

Arthur Koestler [Koes71] established the basic concepts of holonic systems by
postulating a set of underlying principles to explain the self organising tendencies of social
and biological systems. He proposed the term holon to describe the building blocks of
these systems. This is a combination of the Greek word holos. meaning “whole”, with the
suffix -on meaning “part”. This term reflects the ability of holons to act as autonomous
entities. yet cooperating to form self-organizing hierarchies of subsystems. Koestler used
the term holarchy to describe these holonic hierarchies. These concepts have been
subsequently extended and applied in the context of manufacturing systems by an
international consortium of industry and academia on Holonic Manufacturing Systems
(HMS) [Chris94a].

In the context of manufacturing systems. a holon is defined as an autonomous and
cooperative building block of a manufacturing system for transforming, transporting.
storing and/or validating information and physical objects [Chris94b]. A holon has the
autonomy to create and control the execution of its own plans. and can cooperate with
other holons to develop mutually acceptable plans for achieving system goals.
Cooperation among holons is accomplished through an evolutionary self-organizing

holarchy. A holon consists of an informaticn processing part and a physical processing

part, and can form a part of another holon.

Fig. 1.1 illustrates the major functional elements and critical interfaces of a holon.

As may be noted, the functional elements of holon are modular in nature and the

architecture is highly distributed. Further. the constitution of holons change and the

functional elements evolve over time according to system level requirements. For instance,

a turning center holon may be augmented with certain milling operations or a holonic

robot may be provided with additional vision system capabilities. Hence the ability to

reconfigure on demand is an important requirement for holonic systems. This and other

capabilities of holonic systems are largely dependent on their Inteiligent Control Systems.

Inter-Holon Negotiation/Cooperation

N

¥

¥

Human Inter- System
Interface Holon Engineering
Interface Interface
Intra-Holon
B . Coordination
[I l Intelligent
Sensors/Actuators
Process/Product

Figure 1.1: Holonic Elements and Interfaces
As shown in Fig. 1.2, the Intelligent Control System has been identified [Chris94b]

to be comprised of four major components:

e The Process/Machine Control block, responsible for execution of the control plan

for the process being controlled.

e The Process/Machine Interface block, representing the physical and logical

interface (sensors and actuators) to the process being controlied.

e The Human Interface block, representing the interfaces to the human resources.

e The Inter-Holon Interface block. which provides for the exchange of information.

negotiation and cooperation, with other holons in the system.

_— Inter-Holon

Interface
-

Human Process/Machine [
Interface Control —

&
Process/Machine

| Interface

Figure 1.2: Intelligent Control System
In this dissertation. the architecture and functional elements of these four major

121!

components are developed. As mentioned earlier, the form and substance of holonic
systems, and the control relationships among them, evolves continuously according to
changing requirements. Due to this constant transformation of a holonic system within its
lifetime. its control system undergoes metamorphosis. Hence we term this control system
as “metamorphic”. The issues associated with metamorphic control of holonic systems
include predictable real time performance under distributed computation and control.
dynamic reconfiguration and fault tolerance. distributed machine intelligence and
cooperation, and distributed system engineering interface. The architectural requirements
and development of such control systems have not been addressed before. in an integrated

manner.

1.3 Motivation

Real world autonomous and cooperative systems such as holonic machines operate
under real-time constraints and are inherently distributed and dynamic. Traditional system
structures based on static and hierarchical control do not suffice for such situations. and
hence a new generation of control systems are needed. Modern and future machinery will
therefore, include embedded modular distributed real-time computer control systems. The

control system is distributed since computer nodes are spatially distributed in the machine

5

and control functions are distributed over the nodes. Nodes acquire sensor data, perform
processing, exchange information over a real-time network, synchronize, and perform
actuaticn. in order to achieve the system goals. Distributed control systems such as these
can provide improved functionality, performance, flexibility, and reduced complexity and
costs.

In order to function effectively, the distributed hardware and software systems
which monitor and control real world processes must provide adequate means to cope
with application requirements such as timeliness, concurrency, and decentralization. A
predictable real time communication protocol is the backbone of a distributed control
system. In addition, the control system also has to provide high degree of robustness and
fault-tolerant behavior through the use of techniques such as component redundancies.
dynamic reconfiguration mechanisms, and distributed intelligent sensors and actuators.

Real-time computer control systems arose and have evolved primarily in the
context of small, simple. static. centralized, subsystems for unit-level. sampled data
monitoring and regulatory control. Holonic systems move from centralized to distributed
control, because the problem is distributed, and because of flexibility and cost-
effectiveness. However there is a price to pay: system development becomes more
complex than in the case of centralized control. There are no comprehensive methods or
tools currently available to develop distributed control systems for holonic systems.
Today. there are many commercial components that are available “off the shelf’ for
standalone control systems. Unfortunately, these systems do not scale up beyond the unit
level and are unable to meet the needs of future applications in respect to performance.
reliability, and extendibility.

For the new distributed control systems. a new design step is introduced in which
the control tasks need to be structured and partitioned such that they lend themselves to
distributed allocation. There are no tools to support this step and evaluate the effect on
control system performance due to different allocations. In a real-time control system.
several modes of operation usually need to be implemented as well as mode transitions

among them. Data processing and communication in each case pose different requirements

6

with respect to delays, consistency. and error detection and handling. Existing systems do
not provide any support to achieve these requirements nor for a host of others. In short. it
becomes the responsibility of system designer/developer to meet any shortcoming at
system level through a “piece meal”” approach at the application level.

This lack of architecture and means for developing dynamically reconfigurable
distributed control systems provides the prime motivation for the work presented in this
dissertation. Having outlined the motivation, the following section describes the objectives

of this dissertation.

1.4 Objectives

The goal of this dissertation is to provide a comprehensive framework for
engineering dynamically reconfigurable distributed control of multi-sensor-based systems.
It is targeted towards improving the capabilities, reliability and performance of distributed
control systems. while at the same time significantly reducing the development time and
costs. To achieve this goal. the research has focused on the following objectives:

e To identify the architectural components for generic metamorphic control of holonic
systems.

e To develop the core distributed control mechanisms in the form of a distributed real
time operating system.

e To develop a consistent programming model and the associated libraries for mapping
application level requirements.

e To develop a graphical system engineering interface for configuration and maintenance

of the distributed control system.

1.5 Organization of Dissertation

Having provided the motivation and objectives, this section outlines the contents
of this dissertation. In Chapter 2, the state of the art in industrial automation and control is
discussed. This is followed by an overview of emerging open architecture control

technology. In Chapter 3, the requirements for metamorphic control of holonic systems

7

are identified and the need for a new and novel system-level approach is demonstrated.
This is followed by a review of agent based intelligent control architectures. In Chapter 4,
the relevant literature in the areas of distributed real time operating systems and formal
specification methods of distributed real time systems, are reviewed.

In Chapter 5. a novel agent based metamorphic control architecture is presented
and the critical components and issues of this architecture are identified. In Chapter 6. the
concepts and architecture of a new distributed real time operating system is presented. In
Chapter 7, the design and implementation of this distributed operating system are
described. In Chapter 8. one feasible method for developing application software and a
system engineering interface for developing application software. configuration and
maintenance. are presented. In Chapter 9, the details of implementation infrastructure and
evaluation of the implemented system are presented. Finally in Chapter 10. the conclusions

are summarized. and the anticipated contributions and areas for future research are

identified.

Chapter 2
Industrial Automation and Control

2.1 Introduction

In an automated manufacturing system, the objective is to achieve a complete
spectrum of manufacturing control functions ranging from production planning and
control at the highest level, to process/machine control at the lowest level. Intelligent
manufacturing involves not only the achievement of these control functions, but seamless
integration of these as well. Traditionally. these objectives have been achieved by
horizontal integration across an hierarchy of control layers. However, for an autonomous
holon the control objectives of traditional layers are partitioned vertically. Hence. a holon-
based decentralized and distributed manufacturing system uses cooperation as the primary
means to achieve system wide integration of control functions. In other words. the control
objectives which need to be achieved at the individual holon level need also to be achieved
at the system level. Obviously, the ability of a holon to achieve these control functions is
directly dependent on its control system.

This chapter begins by presenting an overview of existing industrial control
systems technology and is followed by a discussion on factory floor communications
standards that are crucial for system integration. The drawbacks of extant control systems
technology have led to a number of software centric open architecture control initiatives
that are destined to impact the future of the control industry. Therefore, these efforts are

reviewed in detail.

2.2 Industrial Control Systems

An industrial process/machine control system is the “sense and brain for the
muscle” behind any automated manufacturing equipment. Its function is that of

periodically comparing sensory process/discrete input variables with setpoints/logic states,

9

computing the outputs according to a predefined control algorithm/logic and
communicating the output signals to the final control element for actuation. The industrial
process/machine control systems used in a manufacturing scenario can be classified into
following categories: Programmable Logic Control systems. Process/Loop Control
systems. Distributed Control Systems, Computer Numerical Control systems and Robot
Control systems. The following sub-sections discuss briefly the state of the art in these

control systems.

2.2.1 Programmable Logic Control Systems

The first Programmable Logic Control (PLC) [Bryan88] system was introduced in
the late sixties as a replacement for massive hard-wired relay panels then used in
manufacturing plants. In addition to the key feature of programmability, PLCs provided
modularity. expandability, diagnosis indication and reliability under extreme factory floor
operating conditions. Although originally designed for on/off applications. such as
controlling the starting and stopping of transfer lines, PLCs rapidly spread to more
sophisticated applications, such as those in the process industries. The evolution of the
PLC over the years, due primarily to advancements in microprocessors. high-speed
communication networks and software has gained it a central place in industrial
automation.

The architecture of a PLC resembles that of a general purpose microcomputer and
can be considered representative of other controller systems as well. Basic PLC
components are designed as self-contained modularized units that can be inserted and
removed from industrial racks or panels. As shown in Fig. 2.1, the hardware platform of a
PLC has three main sub-systems: a system power supply module. a processor module and
Input/Output (/O) interface modules. The PLC may also include a peripheral
programming device and an interface to a data communications network. The system
power supply module provides the necessary voltages for the correct operation of primary
PLC components and also usually includes a battery backup to provide power to memory

in case of a power failure.

10

Operator Interface

Power
Supply

T Data Highway

4 N
Local Processor
I/O Modules Module Remote Remote

I/O Modules /O Modules

Figure 2.1: Programmable Logic Control System
The processor module houses one or more miCroprocessors, their supporting

circuitry and memory. The processor module also includes diagnostic indicators designed
to detect communication failures as well as other failures during system operation. The
memory is partitioned into two regions: a system memory region and an application
memory region. The system memory includes an area called the executive or operating
system. composed of a collection of permanently stored programs that direct all system
activities. such as execution of user control programs. communication with peripheral
devices etc. The system memory also contains the routines that implement the PLC
instruction set, which is composed of specific control functions such as logic. sequencing.
timing, counting and arithmetic.

The application memory is divided into the data table area and user program area.
The data table stores any data associated with the user control program, such as system
input/output status data, constants, variables. preset values etc. The data table is where
data is monitored, manipulated and changed for control purposes. The user program area
is where the programmed instructions entered by the user are stored as an application
control program.

The L/O interface modules connects a PLC to extermal factory floor
sensor/actuator field devices. The main purpose of the /O interface is to condition the
various signals received from or sent to the external input and outﬁut devices. Input and

output modules are housed in the same master rack or panel that houses the other

11

components of PLC system. Additional I/O modules can be housed in a remote /O racks

that communicate with the master rack about O and diagnostic information. Every I/O

module has its own address and these addresses are used in the control program to identify

each input and output device.
The operation of the PLC includes four phases which are repeated continuously for
individual cycles of operation.

e Input Status Scan: During this period the sensor readings are mapped onto a data table
called the input image table. This phase is carried out as a single step uninterrupted by
other operations to provide a clear snap shot of the state of the process at a given
instant.

e Program Execution: In this phase, the user control program is executed. The values in
the input image table are examined, the required calculations and logic are performed
and the results are stored in a data table called output image table.

e Output Status Scan: In this step the stored output values are sent to actuators and
other field output devices.

e Housekeeping: In this step, several overhead functions such as diagnostic checks.
service of peripheral devices. communications etc. are performed.

The time that a PLC takes to complete these four phases is called the scan time.

The program scan time depends on the amount of memory needed by the control program

and type of instructions used within it. The scan time can be usually calculated based on

the instructions used in the control program. However, other factors such as use of remote

I/O. execution monitoring of control program etc., can add additional scan time. PLCs are

predominantly programmed using relay ladder logic. However. a variety of other

languages such as instruction list. structured text. function blocks. sequential function

charts etc. are now also used.

2.2.2 Process/Loop Control Systems

The heart of many process control operations is the loop controller [Earl92]. This

is the device that does the actual control. keeping the process variable at the setpoint and

12

maintaining stability. Loop controllers are available as single loop and multi-function loop
controllers. The loop controller may be broken down into three major functional areas:
operator interface, control data processor and I/O interface. The operator interface
typically includes visual display facilities for process variables and a keypad to enter
setpoints and other control parameters. The control data processor is microprocessor
based and includes system memory. The /O interface consists of signal conditioning
circuitry to convert the input and output to compatible signals for the control data
processor and actuator control device, respectively. All loop controllers provide the
capabilities for simple proportional-integral-derivative (PID) control without any
requirement for programming. Other loop controller features that may be present include
but are not limited to, auto-tuning capability, multiple PID algorithms, cascade control.
dead time compensation. batch control recipes, diagnostics, internal clock. logic functions.

math functions. adaptive control, feed forward control, fuzzy logic. etc.

2.2.3 Distributed Control Systems

The distributed Control System (DCS) [Wayn91] in its infancy. simply provided
remote control of valves and other final control elements, based on setpoints from the
operator and feedback from the process. Today. various control. interface, and
communication functions are distributed among widely separated devices and a data
highway carries information between them. Typically, several sophisticated multi-function
process controllers form the network of distributed control operations with a centralized
operations control room. This modular distributed architecture provides geographical and
functional distribution. With geographical distribution. it is no longer necessary to run
hundreds or thousands of separate wire pairs to link each point in a system with a central
computer or control station. Instead, the system components can be located throughout a
plant, all linked for plant wide communications via a data highway. To expand the system.
the user simply connects new field devices to the data highway. Functional distribution
means that control system tasks are assigned to individual devices. Thus. controliers in

remote locations perform control functions independent of other devices in the system.

13

Similarly. both the centralized and remote operations consoles provide a real-time
operator interface to observe process conditions and controller actions and to interact as
necessary. DCS process controllers need not be programmed in the same sense as a PLC,
since their ‘programming’ is more like choosing the right control function and configuring
it. Their suppliers also provide a proprietary high level control language for programming
if needed. Much DCS technology is proprietary in nature and used only in high end

continuous process control applications due to the high cost of its implementation.

2.2.4 Computer Numerical Control Systems

Numerical Control technology has evolved from the “brittle” hard-wired analog
control systems to flexible, reliable and performance intensive microcomputer based digital
Computer Numerical Control (CNC) systeﬁls [Sten97]. The microcomputer acts both as a
intelligent human interface and as a supervisory coordinating controller for spatially
distributed. embedded microprocessor controlled drives. The distributed servomechanism
drive controllers have the capability to communicate among themselves as well as with the
supervisory microcomputer. CNC systems are programmed using standard part
programming languages such as RS-274D. CNC systems provide a set of parameters that
can be software configured to dictate the behavior of the system. They also offer a rich
set of diagnostic messages and services. Distributed numerical control is a logical
extension to CNC systems in that it replaces the earlier unreliable tape reader for part
programs, with high speed storage and retrieval of programs through a factory control
network. It provides facilities for control of program execution from remote computers.

communication with other control systems for task coordination, collection of production

statistics. etc.

2.2.5 Robot Control Systems
Most industrial robots use some form of PLC equipped with special motion
control modules in their control systems [MC95]. The PLCs are augmented with

coprocessors and software that lets them execute complex procedures according to simple

14

instructions in user programs. Such robots typically provide simple point to point or
contouring motion. Complex and high performance robots use proprietary control systems
technology to provide sophisticated features such as velocity control. force control, fuzzy
logic control, vision system and mobility. Robot controilers are predominantly
programmed using teach pendant and high level proprietary languages such as VAL and
V+. but some provide facilities for using a systems language such as C. Robot controllers
also provide capabilities for remote program storage and retrieval. remote program
execution. communication and coordination with other controllers. and on-lne status

information from remote locations.

2.3 Factory Floor Communications

Many of the communication schemes for passing data among nodes (devices
connected to network) on a factory automation network have been proprietary, and
closely held by the companies that developed them. Interoperability between devices from
different suppliers often requires gateways and special interfaces that can be inefficient.
functionally limited and slow to be developed. Faced by demand for greater
interoperability among equipment from various vendors, both at the control and plant
information level. the industry focus has shifted to the development and adoption of
standard protocols (sets of rules for formatting, encoding and transmitting data). In
addition. the proliferation of increasingly smart devices at the field level and the growing
functionality of these devices in control schemes have resulted in intense interest in the
development of field level communication standard protocols.

All of these standards are based on the Open Systems Interconnection (OSI)
reference model [ISO84] defined by the International Standards Organization (ISO). The
OSI model defines seven hierarchical layers: physical, data-link, network, transport.
session, presentation and application. At the bottom is the physical layer, which defines
parameters such as bit rate, the method of encoding bits. electrical or optical
characteristics of the communication channel and the manner in which stations are

connected to the channel. The data-link layer organizes data into a sequence of bytes

15

known as a frame and passes it to the physical layer for transmission. The data-link layer
also determines which station has a right to transmit on the network. a function called
Media Access Control (MAC) that is critical to the performance of the network.

The network layer provides an end-to-end channel which could be made up of
many point-to-point connections, or data links. The network layer also reroutes traffic to
avoid congestion. The transport layer provides a reliable end-to-end transmission channel,
regardless of how many links and subnetworks the data passes through. The session layer
provides mechanisms for controlling dialogs between applications. In other words, it
ensures that all participants in a dialogue encode their data in a common language. The
presentation layer negotiates what is known as abstract syntax (the elements that make up
a language vocabulary, such as integers, characters and records) and transfer syntax (the
rules for representing these elements in 1s and Os). At the very top is the application layer.
This layer provides high-level services for data access.

A number of communication protocols oriented toward the control or field
network level for industrial automation have been based on the OSI model. Notable
among these are the Manufacturing Automation Protocol (MAP) and field level

communication standards. The following sub-sections discuss these in detail.

2.3.1 Manufacturing Automation Protocol

MAP [Val92] was introduced as a means of interconnecting control devices such
as process controllers, CNCs, PLCs and robots, and of providing a connection to higher-
level plant systems. The MAP standard has been developed and is maintained by the
Technical Committee for Industrial Automation, of the ISO. MAP is built upon the
Institute of Electrical and Electronic Engineers (IEEE) 802.4 standard for physical and
data link layers. This standard specifies coaxial or fiber connection in a bus or tree
topology running at 5 or 10 Mbits/s at the physical layer. The data link layer MAP uses an
approach called token passing to share access to the bus by multiple devices mn a
controlled manner. In a token passing architecture, the right to ‘speak’ on the network

(the token) is circulated from device to device in a predetermined manner. As each device

16

receives the token, it can put traffic on the network for a predetermined maximum length
of time before passing the token to the next device in the sequence. This gives every
device on the network the chance to transmit with the maximum waiting time between
transmissions for a given node being dependent on the number of nodes and amount of
traffic on the network layers. Layers 3-6 of MAP make it possible for MAP networks to
be interconnected with other networks and different data formats.

The Manufacturing Message Specification (MMS) [ISO90] is an internationally
standardized messaging system for exchanging real-time data and supervisory control
information between networked devices and/or computer applications. It defines the
application layer (layer 7) protocol of MAP. The messaging services provided by MMS
are generic enough to be appropriate for a wide variety of devices, applications. and
industries. Whether the device is a PLC or a CNC or a robot, the MMS services and
messages are identical. The MMS standard consists of six parts. Part 1 is the service
specification and contains a definition of

e The Virtual Manufacturing Device.

e The services (or messages) exchanged between nodes on a network. and the

attributes .

e Parameters associated with the Virtual Manufacturing Device and services.
Part 2 is the protocol specification and defines the rules of communication which includes

e The sequencing of messages across the network.

e The format (or encoding) of the messages.

e The interaction of the MMS layer with the other layers of the communications

network.

The remaining parts explain how MMS can be used for a class of applications such
as CNCs. Robot controllers, PLCs or Process Controllers. These companion standards
model an application area in terms of objects which are then mapped onto MMS objects.
To manipulate the application objects, one has to actually manipulate the corresponding

MMS objects with the appropriate services. The key feature of MMS is the Virtual

17

Manufacturing Device (VMD) model. The VMD model specifies how MMS devices. also
called servers, behave as viewed from an external MMS client application point of view.
MMS allows any application or device to provide both client and server functons
simultaneously.

MAP provides partial integration of plant devices. at the non-time critical layer of
plant information gathering through a restrictive client-server model of communications.
This and a host of other factors such as cost and complexity of implementation have led to
the failure of MAP. However several smaller versions of MAP such as Mini-MAP,
MAP/Enhanced Performance Architecture (MAP/EPA) and Factory Automation

Instrumentation System (FAIS), have been developed and have received limited

acceptance.

2.3.2 Field Level Networks

In the last two decades. much of the network integration work was focused at the
plant information level. such as MAP. Recently, much of the network integration effort
has shifted to the field level. This is due primarily to advances and cost reductions in
microprocessor technology that have made possible smart field devices with digital
communication capability. A field level network is a digital communications standard for
measurement and control field devices. Field level networks are emerging at two
functional levels: sensor bus networks used primarily as high speed communication
networks for simple field devices. and low/high speed fieldbuses aimed at both the process
control and/or discrete manufacturing industries [John95].

All of these networks have multidrop capability, allowing for the connection of
numerous field devices to a single bus, rather than having each device wired directly to ithe
control system. Consequently, the most obvious benefit of field networks is a reduction in
the cost of field wiring and wiring maintenance. Additionally, digital communications
makes it possible for devices to provide increased diagnostic information remotely and
continuously. This in turn, reduces the amount of time and effort expended on field device

maintenance. Further. since the smart field devices have some onboard intelligence, some

18

control functions can be further distributed downward to reside mn the field devices
themselves.

Sensor bus networks [McMa95] are aimed at replacing the point-to-point
individual wiring currently used for photoelectric, proximity. pressure and other low cost
sensors and switches commonly used in discrete manufacturing or packaging industry.
Sensor bus networks require a four wire connection and are not capable of the same
distances as fieldbuses. Two wires are used for communication and two wires provide
power to the field device. Sensor bus networks are generally high speed with extremely
simple message structures to enable millisecond response. Several sensor bus networks
such as the Devicenet network, Smart Distributed Systems network (both based on
Controller Area Network), Bitbus network, Highway Addressable Remote Transducer
network. Actuator Sensor Interface network and LonWorks network, have been
developed and have found varying degrees of acceptance.

There are three major low/high speed fieldbus protocols vying for international
recognition [Chat92]. The first is [EC/SP50. which represents the joint efforts of
International Electrotechnical Commission (IEC) and Instrument Society of America
(ISA). It uses only three layers of OSI model, namely physical, data link and application
layer. It provides peer-to-peer communications using twisted pair wire at several
transmission speeds. The second is the Factory Instrumentation Protocol (FIP), a French
national standard. It also uses only three layers, with the application layer services being a
subset of MMS. It provides Master/Slave communications using twisted pair wire at
several transmission speeds. The third is the Profibus or process fieldbus., a German
national standard. It again uses only three layers with the application layer services being a
subset of MMS. It provides master/slave or token passing communications using twisted
pair wire at several transmission speeds. In addition. other fieldbus networks such as
Controlnet network and Interoperable Systems Project fieldbus network have been

developed and have found varying degrees of acceptance.

19

2.4 Open Architecture Control

Currently, most industrial control systems incorporate proprietary control
technologies. Even though these proprietary technologies have been proven to be reliable
and capable of meeting application needs. there are difficulties associated with using them.
Examples of these difficulties include non-common interfaces, inability of equipment from
different vendors to interoperate, and inability to extend and enhance the control system
without replacing them. Hence, in recent years, industry and academia have shifted their
focus towards the development of Open Architecture Control (OAC) systems. IEEE
defines openness as [IEEE83]: “An open system provides capabilities that enable properly
implemented applications to run on a variety of platforms from multiple vendors,
interoperate with other systems, applications. and present a consistent style of interaction
with the user’.

The concept of OAC provides flexibility in terms of both hardware and software,
and shifts the focus from hardware to software. By moving away from a hardware centric
control to a software centric one, the OAC concept makes it possible to change the basic
configuration of hardware at any time during the controller life cycle. This allows for
incorporating advances in hardware without having to change the software interfaces.
Further. the limitation of a restricted instruction set from a control equipment vendor,
without the possibility for enhancement, is done away with in an OAC. Since the system is
software based, the programming capabilities of a OAC is limited only by the Application
Programming Interfaces (API) and the software libraries used. With the advent of mature
OAC systems, the programming capabilities should approach that of general purpose
computing systems.

An open architecture control system provides benefits such as reduced system
costs. simplified integration of tasks, easier incorporation of diagnostic functions. better
integration of user knowledge, and quick and easier reconfiguration of control systems
with changing requirements. With the availability of open, modular control systems. the

distinction between the various types of process/machine control systems and their

20

applications become blurred. The modularity and scalability of the OAC enables easy
integration of particular functions for specific applications and hence reduces the need to
have dedicated control systems.

As mentioned earlier, several initiatives are underway to develop an OAC. Notable
among these are: the Open Modular Architecture Controller (OMAC), the Open Systems
Architecture for Controls within Automation systems (OSACA), the Open System
Environment for Controller (OSEC), the Enhanced Machine Controller (EMC). the
University of Michigan Open Architecture Controller (UMOAC) and the Machine tool
Open System Advanced Intelligent Controller (MOSAIC). The following sub-sections

discuss these efforts in detail.

2.4.1 Open Modular Architecture Controller
The OMAC [OMAC94] initiative is a joint effort by the ‘Big Three’ automobile

manufacturers in North America: Chrysler, Ford and General Motors, with a pilot project
at the GM power train division. OMAC has the distinction of being the largest effort to
develop an OAC to date. As an OAC, the openness and modularity of an OMAC are
achieved mostly through software modules rather than hardware components. Fig. 2.2
illustrates the concept of modularity in OMAC using cooperating entities to perform the
different controller functions. The scalability of the controller is achieved by adding,
removing. or replacing control modules to the controller architecture. For example.
modules for motion. sensing, and the network interface can be removed from the
controller architecture to meet the requirements of a low cost control application. On the
other hand. all these modules may be integrated to control a complicated, sensor adaptive
controlled machining operation.

The modularity concept allows for interchangeability of controller modules i.e.
replacement of a module with another that meets the same interface requirements even if
the replacement module may not have identical, detailed internal functions. Instead of
requiring replacement of an existing module, the model also allows for incremental

functional improvements to each control module with technological advances and

21

changing requirements. The OMAC groups these modules into two sets: core modules

and API modules.

Link to Network

Figure 2.2: Open Modular Architecture Controller

OMAC identifies the real-time kernel, database, and the graphical user interface
environment as being the core modules, and the successful resolution of issues in these
areas as a prerequisite for its success. OMAC requires flexibility in terms of selecting the
most appropriate operating system kernel for a particular application. In other words. a
controller designed to satisfy applications with real-time requirements in the range of
seconds may require an operating system kernel that is different from the one implemented
in a controller that is used primarily in applications with millisecond real-time
requirements. However, both controllers will have identical graphical interface

environments to the users and this feature is considered critical to achieve scalability.

22

The API modules layer is considered to be the critical layer to achieve ‘plug-and
play’ functionality and much work needs to be done in standardizing the interfaces.
Through well defined and commonly accepted APIs, OMAC aims to integrate modules
from various vendors into the controller infrastructure without extensive reprogramming,
even though special efforts will still be required to integrate device specific software (e.g.
device drivers).

As shown in Fig. 2.3, OMAC groups the functionality of control into eight
controller elements. The infrastructure element consists of the hardware platform. real
time operating systems, graphical user interface, and the underlying system level software
that interacts with all other elements by sending and receiving information such as
commands, status, and data. The information base element consists of a real time data base
module and is responsible for storing, updating, and sharing system information and data
that are needed for the machine or process to operate properly. The task coordination
element functions as a coordinator of application tasks being executed by the controller. It
ensures proper sequences of machine or process operations are scheduled and executed at
the application level, by using the scheduling and coordination services of controller

operating system.

-Q-

_ infrastructure

Figure 2.3: Elements of OMAC
The human interface element is used to input system parameters, program machine
and process operations, operate the machine or process being controlled, monitor machine
and process performance, display controller and process status, receive and display

diagnostic information, etc. The motion control element provides the key functions for

23

path planning, trajectory generation, and servo loop trajectory tracking. The motion
control functions may be executed by a dedicated motion control board in the controller or
can be executed by the main CPU of the controller. However, the API between the
infrastructure system software and the motion control element is identical regardless of the
motion control hardware configuration.

The discrete event control element interacts with the external environment and
implements an all software based PLC. It collects input information. executes the discrete
logic, enables output devices, and also supplies I/O information to the real-time database
for other controller elements to make proper decisions and take appropriate actions. The
sensing interface element provides a means to gather information from complex sensing
devices and systems, such as vision systems and force monitoring systems, that generally
acquire and process a large amount of data. The network connection element provides
facilities to upload and download programs and to transfer information about production

statistics to the plant manufacturing information system when they are requested.

2.4.2 Open Systems Architecture for Controls within Automation Systems

OSACA [OSACA96] is a joint project by a consortium of European control
systems and machine tool manufacturers and universities. The main goal of OSACA is to
define a hardware independent reference architecture for controller equipment such as
robot controllers, numerical controllers, logic controllers and cell controllers. OSACA has
elaborated specifications primarily by defining a software reference architecture. This
reference architecture enables the interchangeability and extendibility of comparable
control specific application Architecture Objects (AO). It defines which AOs can be found
in a control system, what tasks they perform and how they interact with each other.

As shown in Fig. 2.4, the architecture consists of two main sub divisions: the
System Platform and Architecture Objects. The system platform consists of system
hardware and system software. The system software contains core parts such as operating
system, communication system, database and graphical user interface. It offers its services

through a standardized API and is the only means of access from AO. This hides the

pr

actual implementation of services, thus achieving hardware independence. Interoperability
of AOs is achieved through a standardized communication system which not only allows
interchange of data but also defines the protocols for interchange. Portability of AOs is
guaranteed since the API is standard across various platforms. Scalability is achieved by
adding. removing or modifying system hardware, software and/or AOs.

application-
software

system-
software

hardware

‘operating system
electronical components

AO: Architecture Object

Figure 2.4: Open System Architecture for Controls within Automation Systems
The AOs are grouped into 5 areas also called subjects. according to their functions

in control: Man Machine Control, Motion Control, Axis Control, Process Controls and
Logic Controls. The man machine control represents the machine or part of it, to external
entities. such as the operator and supervisory control system, and allows these entities to
control the operation of the machine. Motion control enables the machine to produce
relative motion of a given degree of freedom, by commanding axis controls. Axis control
includes all the means necessary for activating the axis to execute movement commands
within defined constraints. Process controls represent the auxiliary systems of the machine.
Logic controls are responsible for discrete sensors and actuators of the machine.

OSACA has specified a vendor neutral communication system based on the
ISO/OSI reference model. In this model, the internal control communication is via a
uniform. message oriented communication interface. In order to fulfill the high real time

demands on the controller. layers 1 to 4 were combined into the OSACA Message

25

Transport System and layers 5 to 7 to the OSACA Application Services System. The
message transport system provides a hardware independent interface for transport of
arbitrary messages between arbitrary objects both for local and distributed control. The
application services system is responsible for connection management, encoding and
decoding of messages, data format conversions and error correction within the
communication system. To simplify the implementation and management of
communication objects with the AOs, a Communication Object Manager is used. It
provides an optional layer with standard routines and call back functions for creation and
deletion of communication objects.

OSACA specifies that the real time controller operating system should be
compliant with I[EEE POSIX portable operating system standard and its real time
extensions. It also specifies the requirements for process scheduling, real time aspects.
parallel tasks and task distribution, within the operating system. OSACA specifies the
architecture of a Configuration Manager that can be used for both static configuration
during boot up and dynamic configuration during run time. Means are also specified for

integrating databases.

2.4.3 Open System Environment for Controller

OSEC [OSEC95] is a joint effort by a consortium of Japanese machine tool and
control equipment manufacturers to develop an open architecture controller for CNCs.
OSEC has a restricted focus compared to OMAC or OSACA in the sense that it is only
meant for CNCs. Further, OSEC architecture specifies a personal computer based open
architecture Numerical Controller (NC). As shown in Fig. 2.5, the OSEC reference
architectural model for CNC systems consists of the following parts: an operation planning
part, a machining process control part. trajectory control part, an axis control part, a

discrete event control part, a device control part and actual devices.

Operat: on Planmng
mar hining sequence, tool path, cutting condition, etc.

Machining Control Server

FADL Interpreter
C A,
stcrete Event w Ladder
Control : Program

Actuator

Figure 2.5: Open System Environment for Controller

The operation planning part includes a CAD/CAM system to generate geometric
design. machining sequence and part program codes. The machining process control part
includes program interpretation, supervisory operation control. intelligent machining
process control, etc. The trajectory control is responsible for generating coordinated
commands to axis control. The axis control is responsible for achieving desired axis
motion. The discrete event control part executes logic control functions of the controller.
The device control includes control of auxiliary devices that may be present in the machine

tool. The actual devices include all forms of sensors and actuators.

27

The service and the protocol for connecting modules are designed to form
autonomous agent systems that exchange messages in distributed network environments.
To achieve a high degree of autonomy, OSEC defines a new data communication
language called the Factory Automation equipment Description Language (FADL). FADL
provides a rich set of services to interact with the real time controller and to command
control sequence in a hardware independent manner.

OSEC also provides NC machining libraries to dynamically alter the control system
performance. NC machining libraries are classified into 3 levels: machining description
level, machining level and servo drive control level. These library functions are defined
externally and linked dynamically during run time to command different types of system
behavior and servo drives. The OSEC also specifies a service and message protocol for
remote control of NC nodes based on the MMS standard. Service functions include
management of the communication environment. uploading/downloading of program/data.

reading and writing of control parameters, monitoring and signaling of alarms etc.

2.4.4 Enhanced Machine Controller

EMC [Proc93] is a joint effort by the Manufacturing Engineering Laboratory of
the National Institute of Science and Technology (NIST) and the Department of Energy to
develop an OAC as part of the Technologies Enabling Agile Manufacturing (TEAM)
research. As shown in Fig. 2.6, the EMC architecture consists of a task sequencing
component, a trajectory generation component, an operator interface component, a
discrete I/O component, a servo control component and the sensors and actuators. The
operator interface provides means to command and monitor the machine tool controller.

The task sequencing component is responsible for sequencing the high level
commands to the controller. The trajectory generation component is responsible for
generating coordinated motion commands for servo control. The servo control achieves
the actual movement on a given degree of freedom. The discrete /O component
implements the logic sequencing operations of the controller. The EMC architecture is
based on the Real Time Control System (RCS) model developed by NIST [Albus9l.

28
Huang96]. The RCS model includes a software interface specification and library for real
time controllers. It provides an exhaustive C++ API for control that is hardware

independent and is portable across a variety of real time operating systems.

Factory
Network
Task
Sequencing
/ \ Operator
yd N Interface
Trajectory Discrete
Generation Input/Output

-~—

Servo | Servo
Control Control
! I

Encoders Motors Valvesand ~ Limit
Solenoids Switches

Figure 2.6: Enhanced Machine Controller Architecture

The interface specification is divided into two parts: commands that each module
will perform. and status that each module will maintain. The specification also consists of
messages ‘into’ each module, and world model data provided by each module.
Supplementing the message specification is a model of data transfer based on the Neutral
Manufacturing Language (NML). This model provides for "mailboxes” of data, with one
or more readers and writers. Each module is modeled as a cyclic process. which reads its
input command from its supervisor. reads the status of its subordinates (or sensors). and

computes and sends outputs to its subordinates (or actuators).

29
2.4.5 University of Michigan Open Architecture Controller

UMOAC [Park95] is a research effort to build an open architecture real time
controller for manufacturing systems. The base configuration of UMOAC is a distributed
system in which processing nodes are connected through a real time link/bus. The
architecture defines no particular hardware platform, but specifies that each processing
node is based on an industry standard architecture and built with standard off-the-shelf
components such as the VME bus. Three types of processing nodes are specified: operator
interface node. real time computing node and real time control node.

The operator node is used for non-real-time tasks such as programming and non-
real-time plant monitoring. The real time computing node deals with real time control and
monitoring tasks such as real time data logging, diagnosis. scheduling and control. The
real time control node performs fine grain real time tasks such as servo level control and
data acquisition. The UMOAC has adopted the Controller Area Network (CAN) as the
real time communication link between processing nodes and uses a Mixed Traffic
Scheduling algorithm to support periodic. sporadic and non real time messages over the
same CAN bus.

As shown in Fig. 2.7, the software architecture of UMOAC consists of three main
layers: an application layer, an object management layer and a device driver layer. The
application layer is composed of application programs, functional modules. and abstract
machine models. Application programs are top-level software which include a user
interface. programming and monitoring. The functional modules are hardware independent
modular software components for control. The abstract machine model is a hardware
independent representation of real machine hardware. This model also includes a detailed
specification of data acquired during run time. The functional modules and abstract
machine models are managed by an application integrator, with functional modules written
for a specific application which can be reused for other applications.

The object management layer consists of the virtual device driver. system

configurator, real time object manager and real time operating system. The virtual device

30

driver provides an hardware independent interface for I/O devices. The system
configurator is responsible for mapping between hardware independent application layer
software with real hardware and for providing a transparent view of system. For example,

it maps the data to local device drivers for local /O and to network driver for remote I/O.

Applicarion Saftware !

])

Applictica 'y

7 1
Abntact || Attt || Abtmct Fuactioa || Fesctios || Fesctioa | |
Machise || Machise || Mackine Medule || Modue ||3Mdele |
1)| 1 _-;{
Virtual Device Driver / :

H

b

IS x|

)

Realtime Obgect Manager g ;

I (0
Micro-kernel-based /S 3

I I =! ?

Device Driver Network Driver t

] 1 [

™ ™ : -5

Local Local Memole Kemote t 8

O Drive I}ODuvc) L O Drve Prooea IF -‘:3

Figure 2.7: University of Michigan Open Architecture Controller
The real time object manager provides a object oriented wrapper for operating
system services and include domain specific scheduling of tasks and resources. It also
supports persistency, configuration definition and manages time critical data acquisition.
The real time operating system is a micro kernel architecture commercial operating
system, namely, the QNX. The device driver layer is the only hardware dependent part of
the UMOAC architecture and provides both local and remote driver support.

31
2.4.6 Machine tool Open System Advanced intelligent Controller

MOSIAC [Sarma95] is an OAC being developed by Integrated Manufacturing
Laboratory. University of California, Berkley. The architecture is meant for CNC
controllers and is currently part of the Integrated Manufacturing and Design Environment
(IMADE) research. Fig. 2.8 shows the hierarchical level of MOSAIC within IMADE. The
MOSAIC architecture consists of three major levels: trajectory planning level. real time
interpolation level and servo level. The trajectory planning level generates coordinated
motion commands for real time interpolation. which in turn achieves desired movement
through servo control. The hardware of MOSAIC is based on standard off the shelf

components such as processors and /O cards, and is based on a VME system bus back

plane.
CAD Model
L Part
CAD Conversion Interpretation
i |
——
Macro Planning
I Plan
Interpretation
Micro Planning i
ommuc:us a Planning
r
Segment Path Real Time
I Interpolation
Reference Generation
[
— %
Servo Loop Control

1

Machine Tool

Figure 2.8: Machine tool Open System Advanced Intelligent Controller

32

The key to the MOSAIC implementation is a real time version of the UNIX
operating system developed specifically for control purposes. This operating system
provides capabilities such as multi-tasking, inter task communications. sockets based
network communications and transparent integration multiple processor through the VME
back plane. A library of software modules and an API in C is provided as callable building-
blocks that run on the UNIX real-time operating system. This library of application
program interfaces contains a variety of machine tool commands that enhance the
machine's capabilities beyond simple RS 274 codes.

The API is categorized into primitives, functions and operations. Primitive-APIs
are the simplest application programs that define high level behavior such as movement
along a trajectory. Function-APIs are just more complex arrangements of primitives that
define a parametrized machining macro. Operation-APIs are programs like function API
but uses input from sensors in addition to the parameters passed. Additional complex

machining algorithms such as adaptive control are implemented using these APIs.

2.4.7 Other Open Architecture Control Approaches

The Manufacturing Systems Integration Research Institute. University of
Loughborough has developed an OAC as part of Integrated Machine Design and Control
(IMDC) research [Harr96]. The IMDC is a software environment to build the machine and
associated control system and to enable efficient modification as requirements change.
Physically, the IMDC environment utilizes a network of one or more workstations or
personal computers coupled to an embedded real time control architecture which resides
on each target machine. The two main elements of the IMDC environment are a software
tool set and a run time control architecture. The software tool set covers the life cycle of
manufacturing machines and supports the creation of application software for the target
control architecture. Underlying these elements is the IMDC system software written as
set of C libraries which integrates and manages the user tool set and links it to the run time
environment. The IMDC run time architecture provides the basis for an open, structured,

device independent method for building machine control systems and is based on OS-9

33

real time operating system. Profibus is used as the main real time control network and
enables control systems to be composed of intelligent devices, physically located at the
locations in the machine where the control functionality is needed.

The Division of Production Engineering, Machine Design and Automation at
Katholik University of Leuven has developed a Heterogeneous Distributed Real Time
Architecture (HEDRA) [Deme95] for robot and machine tool control. HEDRA uses a
heterogeneous multiprocessor hardware environment and a open. flexible software
development and operational enviromment. HEDRA originates from an existing
commercial real-time programming system called Virtuoso. The programming system
contains a multiprocessor real time kernel as the operational part and an application
development environment. The Virtuoso programming environment provides a software
shield on top of complex multiprocessor hardware systems and provides a virtual
uniprocessor environment for application development. A set of APIs are provided for
various control tasks such as man machine interface, numerical control. robot control. axis
control. process control and logic control.

The Manufacturing Engineering Laboratory of the University of British Columbia
has developed an OAC for CNC machine tools [Yello96]. This controller is based on a PC
and uses multiple processors in master/slave configuration for axes control. The controller
uses the FORTH language and a set of programming libraries to define application level
control tasks. The Advanced Mechatronics Laboratory of Cammegie Mellon University has
developed an OAC approach for robotic systems [Stew94]. This approach uses
CHIMERA, a real time multiprocessor operating system developed specifically for this
purpose. A set of API modules based on port based objects is used by a graphical interface
to synthesize application software assembly. The Aerospace Robotics Laboratory at
Stanford University has developed ControlShell, a component based graphical real time
software framework for open robotic control systems [Schn95]. The target run time
environment uses VxWorks, a commercial real time operating system.

Automated Control Engine (ACE) [Eric96] is a commercial software that provides

PC based event driven open architecture control. It uses a reusable library of control

34

component software to provide soft PLC functionality. In addition. several PC based open
architecture CNC controllers are being developed commercially and Owen [Owen95]

provides a comprehensive review of these efforts.

2.5 Summary

In this chapter, an overview of existing industrial control systems technology was
presented. This technology is proprietary and suffers from number of drawbacks in the
areas of interoperability, scalability and upgradability. This was followed by a discussion
about the ongoing research initiatives in the area of open architecture control. These

initiatives are shifting the focus of industrial control from being hardware oriented to

software based one.

35
Chapter 3

Holonic Systems Control

3.1 Introduction

Traditional industrial control systems are unit level scan based regulatory control
approaches or extensions of such, that use proprietary hardware and software. This limits
the interoperability. programmability and upgradability of these systems. They provide
network connectivity for programming, configuring and monitoring, and in some cases
distributed sensing and actuation. However, this network connectivity is not the same as
distributed control in a holonic sense. Open architecture control differs from traditional
approaches primarily by using open controller infrastructure that provides software based
control instead of hardware oriented control. This gives the controller much more
flexibility in terms of off-the-shelf hardware and programming through the use of standard
API’s. However the fundamental nature of control remains unchanged and is still a unit
level regulatory control approach.

The metamorphic control of holonic systems addresses a different type of
distributed control problem that is not met by extant technology and approaches. Hence.
in this chapter the differences and requirements of these control systems are discussed.
This is followed by a review of research in the area of agent based control architectures
for autonomous systems and a discussion on the applicability of underlying principles to

holonic systems.

3.2 Metamorphic Control Requirements

A holonic system is inherently distributed and metamorphic, which has important
implications for its control system. As shown in Fig. 3.1. a typical distributed control
system of this nature makes use of a real-time network for communication among the

spatially distributed controller nodes, and semsors and actuators. The centralized

36

application level control program that previously would have been executed on a single
CPU is now distributed among the controller nodes. The distributed programs synchronize
by communicating through messages under real time constraints to meet application
requirements. The micro computer serves to program, configure and monitor the
distributed control system. Metamorphic control requires numerous changes in form.

substance and allocation to be accommodated within system life time.

Micro-computer
Real Time Network Distributed I/O
Control I L
Program Controller Controller Controller
Node 1 Node 2 Node 3

Figure 3.1: Holonic Distributed Control

A consistent specification model is needed whereby the application requirements

can be partitioned and allocated across distributed controller nodes. Hardware
independence and location transparency are fundamental requirements to entertain
incremental changes, software reuse and reconfiguration. System level mechanisms are
needed to meet the real time and communication requirements of distributed control
applications. System level mechanisms are also needed to detect failure to meet such
guarantees and take appropriate action. System level support is required to ensure
reliability and fault tolerance.

Provision should be made at the individual controller node level for online
addition, deletion or modification of specialized hardware and local /O devices without
requiring shutdown of the system for upgrade. Similarly, provisions should be made in the
system software to recognize such changes during run time and map the application

requirements accordingly. At a macro level, provisions are necessary to add, delete or

37

upgrade controller nodes, communication network and distributed I/O components
dynamically during runtime without affecting existing distributed control applications.

Obviously, it is the responsibility of underlying system software to provide the
necessary mechanisms for such a distributed system with real time performance, in
contrast to a centralized system where no such specialized mechanisms are required. This
necessitates a system level approach for developing such a control system and constitutes
a fundamental difference from conventional control problem. For the same reason.
conventional unit level approaches simply do not scale up and cannot be used for
metamorphic control.

The complex nature of metamorphic control arises primarily from the unique
combination and interaction of four system level requirements. These are the real time
control. the distributed control. the event driven control and the intelligent control

requirements. The following sub-sections discuss the nature of these requirements in

detail.

3.2.1 Real Time Control

A real time system is defined as the one in which “the correctness of the system
depends not only on the logical result of the computation but also on the time at which the
results were produced” [Stan88]. Real time systems are characterized by the fact that
severe consequences will result if logical as well as timing correctness of the system are
not satisfied. Timing correctness requirements also arise because of the physical impact of
controlling systems’ activities upon its environment. For example. if the computer
controlling a robot does not command it to stop or turn on time, the robot might collide
with another object on the factory floor. In most of these systems, activities that have to
occur in a timely fashion coexist with those that are not time critical. Ideally. the control
computer must execute time critical tasks such that each task meets its deadline. and
should execute non real time tasks so as to minimize their average response time.

Timing constraints for tasks can be arbitrarily complicated. but the most common

timing constraints for tasks are either periodic or aperiodic. An aperiodic task has a

38

deadline by which it must finish or start. or it may have a constraint on both start and
finish times. In the case of a periodic task, a period might mean once per period T or
exactly T units apart. Low level application tasks, such as those that process information
from sensors or those that activate elements in the environment, typically have stringent
timing constraints dictated by the environment’s physical characteristics and are mostly
periodic. More complex types of timing constraints also occur. For example, spray
painting a car on a moving conveyor must be started after time t; and completed before
time t». Aperiodic requirements arise from dynamic events. such as a human operator
pushing a button console or an object falling in front of a moving robot. In addition, time
related requirements may also be specified in indirect terms. For example, a value may be
attached to the completion of each task where the value may increase or decrease with
time: or a value may be placed on the quality of an answer whereby an inexact but fast
answer might be considered more valuable than a slow but accurate answer. In other
situations, missing X deadlines may be tolerated, but missing X+1 deadlines cannot be
tolerated.

Needless to say, lower level control systems such as servo positioning. cannot
afford to miss timing constraints of critical tasks. Systems of this type where meeting the
timing requirements is mandatory and missing deadlines will have catastrophic
consequences are called Hard Real Time (HRT) systems. Resources needed for HRT tasks
will have to be preallocated so that the tasks can execute without delay. However, many
situations offer some leeway. For, example, if a control system estimates that the correct
command to a robot cannot be generated on time, it may be appropriate to command the
robot to stop without causing a different type of disaster. In this instance, the controller
produces a lower quality result but on time. Systems of this type where meeting timing
requirements is desirable, but a reduced quality of solution is acceptable and missing
deadlines does not necessarily result in disaster are called Soft Real Time (SRT) systems.

In short, real time systems differ from Non Real Time (NRT) systems in that
deadlines or other explicit timing constraints are attached to tasks and faults including

timing faults may cause catastrophic consequences. This implies that real time systems

39

tightly interrelate correctness and performance. In addition to timing constraints. a real
time system may have the following types of constraints and requirements: resource
constraints such as access to /O devices and data structures. precedence relationships
among a related set of sub-tasks each requiring access to subset of resources. concurrency
constraints related to consistency of a resource that is accessed simultaneously by several
tasks. communication requirements among the cooperating tasks, and criticality depending
on the functionality of an application.

A real time system needs to be both fast and predictable. High speed computing
alone is not enough. Predictability has many meanings. In this context it is used to mean
the ability to precisely determine a task’s completion time with certainty. Predictability is
dependent on the underlying real time operating system. the current state of the system
and task’s resource needs. Predictability also involves determining system performance
under different levels of reliability. Reliability is a prerequisite for real time systems, since
the constraints related to the system cannot be achieved if system components are not
reliable. A real time system needs to be adaptive to changes in system state. system
configuration and input task specifications. Adaptability is important because if a task’s
deadlines can be met only under restricted system state and configuration. reliability and
performance will be compromised. On the other hand, if a system is adaptive one does not
have to redefine the system or recompute resource and task allocation for every small
change. A real time system’s timing properties are very tightly related to the system
hardware and the abstraction at which this binding occurs, in part, determines the

adaptability and predictability.

3.2.2 Distributed Control

The holonic distributed control system can be considered to be comprised of a
loosely coupled system of heterogeneous and asymmetric multiprocessor sub-systems. A
loosely coupled system does not have a shared primary memory. Asymmetry means that
every processor in the sub-system might not have access to same resources. Distribution

implies a high degree of parallelism and asynchrony within the system and gives rise to

40

multiple failure domains among the components. Such systems differ dramatically from

traditional ones by having

e concurrently executing tasks with different kinds and degrees of completion timeliness
constraints

e close cooperative behavior among physically dispersed computing nodes having
disjoint memory address spaces

e trans-node timeliness constraints and consistency properties

e inherent execution uncertainties, such as faults, dynamic dependencies, resource
conflicts, overloads, and variable latencies.

Distributed control systems need to use real time network communication
protocols that provide deterministic behavior for communicating components and a best
effort service to deliver on deadline. Deterministic behavior requires protocols that result
in bounded message communication delays where the bound is low compared to timing
requirements. Real time performance and flexibility requires that both the producer-
consumer (uni-directional) model and the client-server (bi-directional) model of
communication be supported. Complicating factors in developing both types of services
include the need to support high speed networks, the integration of high speed protocols
with system software, I/O modules, and application modules, as well as the inclusion of
dynamic reconfiguration and fault tolerant features.

Distributed control requires the maintenance of high degrees of trans-node
consistency. Trans-node consistency refers to the properties which the system should
maintain for correct behavior and operation. Sometimes the consistency objective is
cooperation among nodes, whereas at other times the objective is non-interference. While
all consistency properties can be expressed in terms of state. it is often convenient to
differentiate among certain cases such as consistency of execution, data, computational
groups. failure detection and recovery, and time. Consistency may be maintained explicitly
or implicitly. Explicit maintenance of consistency involves the use of run-time facilities

such as synchronizers and access protocols. Implicit consistency is an intentional or

41

unintentional consequence of the design and implementation of the system and
applicatons.

In centralized systems with shared primary memory, explicit support is available
for maintaining strong consistency of asynchronous concurrent execution and data
accesses. The primary mechanism for this is mutual exclusion of memory. using
synchronizers, such as locks and semaphores. In distributed systems, there is no shared
primary memory, so explicit maintenance of trans-node consistency for execution and data
accesses on multiple nodes cannot be implemented by mutual exclusion of memory, but
has to be implemented with message passing communication. Hence deterministic and
absolute inter-node consensus cannot be achieved due to inter-node communication and
computation latencies, and multiple failure domains.

Further complications arise due to lack of an absolute and global system clock. In
a distributed system every node maintains its own clock. Even if these clocks are
initialized with the same time, physical clocks drift apart due to physical conditions such as
temperature. so sooner or later, the individual nodes will have different time bases. This
introduces the problem of clock synchronization. Due to the access and communication
latencies of a real time network, though the clock synchronization may be bounded.
absolute and infinitesimal resolution cannot be guaranteed.

Almost all extant commercial systems are based on the presumption that
distributed systems consist only of decoupled local programs which have a very
constrained range of simple roles and interaction behaviors i.e. they loosely interact in a
two party client/server fashion. Hence, none of these systems support explicit maintenance
of trans-node consistency in anything close to the sense used by all centralized systems Le.
application-specified and with arbitrary computation roles and interaction behaviors. For
metamorphic control, it is a fundamental requirement that the system maintain trans-node
consistency in a flexible and fault tolerant manner, to the extent supported by underlying

hardware.

42

3.2.3 Event Driven Control

As shown in Fig. 3.2. traditional industrial control systems generally have scan
based operation, in which the control tasks execute periodically in a non-preemptive
manner. This is feasible since the system is centralized and both the local and remote /O
are accessed through image tables. In contrast, the control tasks in typical open
architecture control systems are time triggered and execute in a preemptive manner. It
should be noted that time triggered systems are a superset of scan based systems and may
be extended to certain types of distributed systems. If the execution and communication
requirements for a system are static and known a priori, and the execution and
communication periods are static and known a priori. then such a system can be
guaranteed deterministic performance through proper design and allocation in a time

triggered system. However. when the system is dynamic both of these approaches will not

suffice.

Timesliced Time Triggered

Scan Cycle Preemption

3
T I N R
House a = o P

= ==
s as— : ;—.

Time

Figure 3.2: Scan Based and Time Triggered Systems
A metamorphic control system is by definition dynamic in nature. Dynamism is
introduced into the system through numerous mechanisms inherent to metamorphic
distributed control. Examples of such mechanisms include reconfiguration due to addition,
deletion or modification of components and control tasks, fault tolerance, network access
and communication latencies, and time variant task priorities and execution periods. Hence
the dynamic behavior of the system can be adequately described only through the

occurrence or non-occurrence of events. Naturally, it is necessary to use event driven

43
preemptive control for such a system. Therefore metamorphic control requires system
level support for dynamic event driven control. As shown in Fig. 3.3. event driven control
is a superset of time triggered control, since the expiry of a timer is an event and not vice

versa.

Event Driven
Control

Time Triggered
Control

Scan Based
Control

Figure 3.3: Control System Relationships

3.2.4 Intelligent Control

The control of holonic systems needs to incorporate intelligence in order to
achieve the necessary basic characteristics for autonomy and cooperation. Intelligent
control is multifaceted, since the mechanisms used will result in various forms and degrees
of intelligence in the system. These include techniques such as distributed I/O based
control. fault tolerant control, model based control and symbolic processing based control.
Being a real time system, intelligent control needs to respond within deadline driven timing
constraints. Hence metamorphic control should support mechanisms for highly reactive
type of intelligent control. Higher notions of deliberative intelligence involve high variance
reasoning and therefore are unpredictable. This leads to a trade off between available time
versus quality of solution. Hence. higher forms of reasoning can act in parallel and may at
times improve the system performance. Such interfacing requires uniform architecture

through various levels and support at the real time system level for seamless integration.

3.3 Control Architectures for Autonomous Systems

As mentioned in the preceding section, holonic systems involve distributed
autonomous control that is different from traditional approaches. Further, incorporation of
intelligence into the control systems is an important requirement for holonic systems.
Earlier research has established that agent based control paradigm is naturally amenable to
distributed intelligent control of autonomous systems, as opposed to other paradigms of
control. Hence. this section reviews agent based control architectures for autonomous
systems. It should be noted that this dissertation uses the term agent to mean the control
software components of a holon.

Agent based computing is an active area of extensive research in Distributed
Artificial Intelligence. The notion of an agent is closely related to the concurrent actor
model of computation. An actor is a self-contained concurrently executing object that has
encapsulated internal state and responds to messages from other similar objects
[Hewitt77]. However an agent is a more complex entity than an actor (and it may be
added that the simplest form of agent would be an actor). Much of the research in agent
based intelligent control has been done in the context of autonomous mobile robots and
the scope of this review is limited to control architectures that were experimented with
using actual robots.

Due to real time performance requirements, agent based control architectures tend
to be substantially reactive in nature. Reactive agents do not possess an internal symbolic
models of their environments, instead they react to raw sensory stimuli from their
environment and according to present state [Ohare96]. Due to the absence of any world
model. reactive agents are relatively simple and each typically defines a behavior. As they
interact with other agents in basic ways, complex patterns of behavior and reasoning
emerge from the dynamics of interactions, when these multi-agent systems are viewed
globally. This emergent functionality is an important characteristic for reactive agent

systems. Further, a reactive agent itself is comprised of a number of autonomously

45

executing concurrent objects that interact with each other through messages (ie. like
actors) [Maes91].

Subsumption [Brooks86] is the earliest reactive behavior based architecture that
has been used experimentally and has since been refined considerably. Several other
architectures have been derived from reactive behavior based architecture, including some
that are hybrid in the sense that they also include deliberative components. The following

sub-sections reviews these architectures.

3.3.1 Subsumption Architecture

The key aspects characterizing the behavior based robots of subsumption
architecture are as follows [Brooks91a): Situatedness characterizing robots located in the
world and hence concerned not with abstract descriptions but with here and now and with
the ability to directly influence the behavior of the system. Embodiment identifying robots
as having bodies and experiencing the world directly and hence having immediate feedback
on their sensations. Intelligence describable by an external observer and whose limitations
are not intrinsic of the computational engine used. rather originated from situations i
which the robot finds itself in the world. the signal transformation by the sensors and
physical coupling of the robot with the world. Emergence of intelligence from the
interacton with the environment and from interaction between the internal components.

Subsumption architecture [Brooks91b] is based on decomposing the control
problem into levels of competence such that each layer is an activity producing sub-
system. Fig. 3.4 shows one such activity decomposition for autonomous mobile robots.
Each higher layer operates at an increasing level of competence and as an independent
asynchronously executing module. The layers are composed of simple computational
machines and communicate with each other through low bandwidth channels. However.
the lower layers are oblivious to the presence of higher ones and are not dependent on
proper functioning of higher layers. Such a decomposition allows incremental description

of intelligence.

o F—+{ _Identify Objects |=—b> A
€ bmmmmp| Monitor Changes ===y ¢
| S— Build Maps —py| U
cs,'——u Explore e :
[fr— Wander 1 o
S fommemppy| Avoid Obstacles iy ;

Figure 3.4: Activity Decomposition
As noted before there is no central representation of information of any kind.
Rather. individual layers extract only those aspects of the world which they find relevant
and every layer has its own purpose or goal. The lower layers are more reactive than
higher ones and provide faster response to external stimuli. Because of the multiplicity of
goals of various layers, conflicts exist. As shown in Fig. 3.5 the arbitration of these
conflicts is resolved through the priority of the layers, ie. the ability of higher layers to

subsume the actions of lower layers, hence the name subsumption.

> Layer 3 —l
—Or Layer 2 :

Layer 1 >

L4

Actuators

Sensors -» Layer 0

Figure 3.5: Subsumption Layers

Incremental enhancement in competence is achieved through the development and
addition of successively higher layers in hierarchy and by guaranteeing that appropriate
type of subsumption occur. This bottom up incremental development reduces the
complexity associated with debugging the system. Additionally, changes in the
environment have less chances of being reflected in all the layers. hence modification
becomes easier. Since the competence is distributed among parallel executing layers.
failure of a layer or unanticipated situations will not cause a total failure of the system. But

it will result in functioning at a lesser competence level, thereby achieving robustness.

47

The layers of subsumption architecture are composed of network of behavioral
agents that are “wired” with interconnections. The agents execute autonomously,
concurrently and asynchronously by sending messages through wires. The agents act as
abstraction barriers. one behavior agent cannot directly reach inside another. Agents of
higher levels of competence subsume the actions of lower levels through suppression and
inhibition. This is achieved through side tapping new wires onto existing wires. In the case
of suppression. the side tapping occurs on input side of an agent. If a message arrives from
a higher level on a new wire. this message is sent to the agent through the existing wire as
though it has come through normal mechanism. Additionally, the input from the normal
mechanism is suppressed for a short specified period of time. For inhibition. side tapping
occurs on the output side of an agent. A message on the new wire inhibits messages being
emitted on existing wire for a short specified period of time. However, unlike suppression,
the new message does not masquerade as having come from original source.

A behavioral agent. in turn, is composed of a network of autonomously executing
processes (concurrent objects) that communicate with each other. Each of these processes
is an Augmented Finite State Machine (AFSM). Each AFSM has a set of registers and a
set of timers. connected to a conventional finite state machine. The arrival of a message or
expiration of a timer can trigger a change of state in the AFSM. AFSM states can wait on
either wait on some event. conditionally dispatch to one of two other states based on
combinational predicate or compute a combinational function and direct it to another
AFSM. Much in the same way as agents, AFSMs can suppress or inhibit. input or output
of other AFSMs.

The modularity of subsumption architecture facilitates several subsumption
controllers to be operated in parallel, one each for various subsystems of controlled entity
that cooperate to achieve total distributed control. The absence of a global shared memory
due to the use of messaging paradigm facilitates physical distribution of control functions
as well. Further, robust fault tolerant control is a natural characteristic of this architecture.

Several robots based on the subsumption architecture have been successfully constructed

and tested [Brooks9lc].

48

3.3.2 Other Reactive Architectures

Several researchers have proposed extensions to the reactive behavior based
control architecture which include some form of deliberative reasoning mechanism and
goal driven behavior.

Goal driven behavior based control, derived from subsumption architecture. has
been developed to integrate a distributed navigational map representation [Mataric92].
This approach does not attempt to make a distinction between reactive and planning
systems. Instead. incrementally designed behaviors are used for collision avoidance,
dynamic landmark detection. map construction and maintenance. and path planning. The
topological representation uses primitives suited to the robots sensor and its navigation
behavior. The map. unlike traditional centralized maps, can be characterized as a
distributed collection of behaviors responding to the various landmarks, allowing constant
time localization and linear time planning. The approach is qualitative and tolerant of
sensor inaccuracies, unexpected obstacles and course changes.

The servo. subsumption and symbolic system hybrid layered architecture
{Connell92] attempts to combine best features of conventional servo systems and signal
processing with multi-agent reactive controllers and symbolic artificial intelligence. The
partitioning of architecture into three layers is derived from a quantization of space and
time. A centralized representation is introduced at the symbolic level. while the real time
control aspects are delegated to subsumption and servo level. It bridges the gap between
servo and subsumption layers by building situation recognizers and links subsumption and
symbolic layers by introducing event detectors.

The intelligent machine architecture [Pack97] is a hybrid approach that brings
together knowledge based and behavior based features. It uses a concurrent distributed
network of agents that interact through a well defined set of relationships to realize the
control system. Each relationship link encapsulates and manages a kind of action selection

or arbitration mechanism that can be reused by agents in the system. At the highest level

49

are knowledge based skill agents, task agents and behavior agents, while the lower level is
composed of reactive sensor and actuation agents.

The Reactive Action Package (RAP) [Firby94] is a task execution system that
takes high level symbolic goals and refines them into a sequence of appropriate skill set.
The RAP system uses a spatial planning module under its control to reason about
navigational goals. The RAP system controls a set of reactive skill based continuous
control modules to interact with environment. The skill set consists of action routines that
interfaces with sensors and actuators. The skill set is selectively enabled by the RAP
system according to the sequence required by high level system goals.

The design of the Atlantis [Gat91] architecture was based on the belief that
competent behavior in a complex, dynamic environment demands different types of
simultaneous activity. Quick reactivity is important for dynamism, but planning is
necessary to deal with complexity. Atlantis supports three specialized layers, operating in
parallel. to facilitate the required simultaneous activity. The control layer directly reads
sensors and sends reactive commands to the actuators based on the readings. The
stimulus-response mapping is given to it by the sequencing layer. The sequencing layer has
a higher-level view of robots goals than the control layer. It tells the control layer below it
when to start and stop actions. The deliberative layer responds to requests from the
sequencing layer to perform deliberative computations.

In the Cooperative Intelligent Real time Control Architecture [Musl93], an Al
subsystem reasons about task level problems that require powerful but unpredictable
reasoning methods, while a separate real time subsystem uses its predictable performance
characteristics to deal with control problems that require guaranteed response times. The
key to this approach is to allow both subsystems to interact with each other without
compromising their respective goals. To accomplish this, the architecture uses a
scheduling module and a structured interface that allows the unconstrained Al subsystem
to interact with the real time sub system asynchronously.

In the Distributed Architecture for Mobile Robots [Rose97], a set of task

achieving reactive behaviors cooperatively determine robots control by expressing for and

50

against to possible course of actions in a distributed manner through voting. A centralized
arbiter then performs a command fusion by selecting a course of action that is best suited
to prioritized goals and constraints of the system. The architecture is designed with a
belief that a centralized arbitration mechanism for distributed. independent decision
making processes provides a coherent, rational, goal directed behavior. while preserving
reactive real time responsiveness to the immediate physical environment.

A combined behavior based and cognitive control architecture [Doty95] supported
by knowledge based perception has been developed. The principal components hybrid
layered architecture decompose into independent, parallel and distributed functions. The
behavior based component provides the basic instinctive competencies. while the cognitive
part manipulates perceptual knowledge representations and a reasoning mechanism which
performs higher machine intelligence functions such as planning. Cognitive control directly
affects behavior through motivation inputs to behavior functions and through output
behavior arbitration. The perceptual system offers a general framework for sensory
knowledge generation, abstraction and integration. by fusing real time sensor data from
multuple sensors.

The underlying principles of behavior based control architectures in reactive
control of autonomous robots. hold promise for their applicability to generic holonic

systems as well.

3.4 Summary

In this chapter, the differences and requirements for metamorphic control of holons
as opposed to conventional approaches were described. This shows that the nature of
research described in this dissertation addresses a fundamentally different type of control
problem and that traditional approaches are inadequate to meet its requirements. This was
followed by a review of research in the area of agent based control architectures for
autonomous systems. The reactive behavior agent based control paradigm is ideally suited

for distributed intelligent control of holonic systems.

51

Chapter 4
A Review of Real Time Systems

4.1 Introduction

The embedded computing technology of modern distributed industrial control
systems is comprised of a number of diverse but inter-related components. Given such
hardware, the efficient execution of a real time control application requires that
programmers deal with issues that arise for high-performance, parallel and distributed
application programs, such as efficient resource management. task and communication
scheduling, load balancing, and programmed dynamic reconfiguration and recovery. These
issues can be categorized into two levels: system level and application level. The system
level determines real time capabilities of a controller. while the application level
determines its sophistication.

The underlying operating system is the key to system level performance and the
specification model is the key to application level sophistication. Hence the following

sectons discuss important results of earlier research in these two areas respectively.

4.2 Real Time Operating Systems

Existing commercial real-time operating systems are often stripped-down versions
of general purpose time sharing operating systems such as UNIX. To reduce the run time
overheads incurred by the kernel and to make the system fast, these systems typically are
small in size, provide multitasking with fast context switch and external interrupt response.
minimize worst case interrupt disable period. provide fixed or variable size partitions for
memory management, and provide fast sequential file systems. To deal with timing
requirements, they maintain a real time clock. provide a priority based scheduling
mechanism, provide for special alarms and timeouts, and provide the ability for application

tasks to invoke primitives to delay, pause and resume execution. Inter-task communication

52

and synchronization are achieved through standard primitives such as mailboxes, events,
signals and semaphores. Most of these systems provide primitives that are compliant with
IEEE POSIX 1003.1b [IEEE93] portable operating systems standard and its real time
extensions. Examples of such systems include QNX [QNX93]. OS-9 [Micro91]. VxWorks
[WRS94], pSOS [ISI93] and Chorus [Chorus96]. A complete list of existing commercial
real time operating systems can be found in [RTE96].

Commercial operating systems are not designed for distributed control applications
and hence become potential bottlenecks for non-trivial applications. The actual limitations
are discussed elsewhere in this dissertation. However, there are research operating systems
that are meant for distributed environment, even though under varying degrees of
suitability for distributed control. The following sub-sections discuss the important issues
and results for distributed real time operating systems, and review some of the extant

distributed operating systems.

4.2.1 Scheduling

Scheduling involves allocating resources and time to tasks so that the system meets
real time performance requirements. Consequently a scheduling algorithm is a set of rules
that determine the task to be executed at a particular moment [Liu73]. For a given task
set, if a feasible schedule exists, then the system is said to be schedulable and is called
overloaded otherwise. It is often possible to find a polynomial time optimal algorithm for
preemptive scheduling, while non-preemptive scheduling has been shown to be NP hard
[Mok83]. Further. the delayed response due to non-preemptive scheduling makes it an
unlikely candidate for complex real time systems. Research on real-time scheduling has
experienced a major shift during the last few years, from static (off-line) to dynamic (on-
line) scheduling. Thorough reviews of research in real-time scheduling appear in [Law83,
Cheng88. Stan93, Kop93].

Early research work focused on relatively small-scale or static real-time systems.
where task execution times and arrival rates can be estimated prior to task execution (i.e..

data dependencies are limited), and where the resulting task schedules can be determined

53

off-line. The most commonly used static method is the Rate Monotonic (RM) scheduling
algorithm[Liu73]. The rate monotonic algorithm assumes that all tasks are independent.
periodic. preemptible, have constant execution time and that their deadlines coincide with
the ends of their respective periods. The basic idea of the rate monotonic algorithm is to
assign different and fixed priorities to tasks with different execution rates, with the highest
priority being assigned to the highest frequency tasks, and the lowest priority to the lowest
frequency task. At any time. the scheduler simply chooses to execute the highest priority
task. Thus, by specifying the period and maximum computation time of each task, the
behavior of the system can be categorized a priori. The rate monotonic algorithm is an
optimal static algorithm, in that it can schedule a set of tasks if another static algorithm
can do so.

One of the drawbacks of the rate monotonic algorithm is that its schedulable
bound is less than 100%. A set of tasks is schedulable by the rate montonic algorithm if
the following condition is met [Liu73].

U<nR" -1 (1)

where n is the number of tasks and U is the total CPU utilization by all tasks, given by
n C
=) =+ 2
U=2% @

where C; and P; are the worst case execution time and period for task i respectively. From
Eqgn. (1), it can be seen that the schedulable bound decreases rapidly from 100% to 83 %
for 2 tasks and to 78% for 3 tasks and so on. For a large value of »n, the schedulable bound
converges to In 2 or 69 %. However these estimates are pessimistic and it has been shown
that, for a uniformly distributed task set. the average case schedulable bound is about
88%. Further Eqn. (1) is only a sufficient condition and not a necessary one. In other
words, a task set having an utilization factor greater than the values calculated per Eqn.
(1) may still be schedulable, if each task meets its first deadline when all tasks are started
at the same time [Liu73]. Another drawback of the rate monotonic scheduling algorithm is

that it does not support dynamically changing execution times and periods that are crucial

54

for distributed and dynamic control systems. However, the rate monotonic scheduling
algorithm remains the most popular since it can be used with commercial UNIX type real
time operating systems.

Several modifications have been proposed to make the RM algorithm deal with
aperiodic tasks. These include the background server, polling server. priority exchange
server, deferrable server [Leho87] and sporadic server [Sprunt89]. A background server
executes at a low priority, and makes use of any extra CPU cycles, without any guarantee
that it ever executes. The polling server executes as a high priority periodic task. and
every cycle checks if an event needs to be processed. if not, it goes to sleep until its next
cycle and its reserved execution time for that cycle is lost, even if an aperiodic event
arrives only a short time after. This results in poor aperiodic response time. In the priority
exchange algorithm, a high priority periodic task is used to service aperiodic tasks. When
an aperiodic tasks request exists, the server's time is used to execute this task, and when
not, this time is exchanged with a lower priority periodic task. Instead of being lost, the
run time of the server is then at a lower priority task and the schedulability of the aperiodic
task is still maintained.

Like the priority exchange algorithm, the deferrable server policy uses a high
priority periodic task to serve aperiodic tasks. Unlike the priority exchange algorithm. the
server task in the deferrable server has a fixed priority, but may defer its computation time
to a later point in the period if no aperiodic task is pending. If the server time is still not
used by the end of the period, the time is discarded. On the other hand, if an aperiodic task
arrives, the time is maintained and may be used to serve this task. This method of handling
aperiodic tasks is easier to implement than the priority exchange algorithm since it does
not have to handle exchanging of priorities. The cost of this simplification is a slightly
decreased worst case periodic task scheduling bound. The sporadic server algorithm like
the deferrable server uses a high priority periodic task for servicing aperiodic tasks. It
differs from the latter in the way in which the computation time is replenished. Instead of
being replenishing periodically, at fixed points in time, replenishment is determined by

when requests are serviced. In the simplest approach, the replenishment occurs T units of

55

time after the budgeted time has been exhausted. The Sporadic server provides quick
response to aperiodic tasks.

The problems associated with static scheduling algorithms have encouraged the
use of online dynamic priority algorithms. The Earliest Deadline First scheduling algorithm
can be used for both dynamic and static real-time scheduling [Liu73, Dert89]. As the name
implies. this algorithm uses the deadline of a task as its priority. Since the task with the
earliest deadline has the highest priority, the resulting priorities are naturally dynamic and
the periods of tasks (represented by their deadlines) can be changed at any time. Further, a
major advantage of this algorithm is that it has a schedulable bound of 100% for any task
set. A major problem with this algorithm is that there is no way of guaranteeing which task
will fail under transient overload. Transient overload arises in systems where the average
CPU utilization is less than 100%. but worst case utilization is above 100%. leaving the
possibility for one or more tasks failing.

A variant of earliest deadline first scheduling algorithm is Minimum Laxity (Slack)
First scheduling [Mok83, Dert89], where a slack is assigned to each task in the system.
and minimum slack tasks are executed first. Slack measures the amount of time remaining
before a task's deadline will pass if the task uses its allotted maximum execution time.
Essentially, slack is a measure of the flexibility available for scheduling a task. Like the
earliest deadline first algorithm, this algorithm also has a schedulable bound of 100% for
any task set. And in much the same way, it also suffers from the drawback of inability to
guarantee the failing task(s) under transient overload. However, both these algorithms are
optimal dynamic scheduling algorithms in the sense that they can schedule a set of tasks if
other static or dynamic scheduling algorithms can do so.

The drawbacks of these two dynamic scheduling algorithms has resulted in another
variant of deadline driven scheduling, called the Maximum Urgency First algorithm
[Stew91]. where each task is given an explicit description of urgency. This urgency is
defined as a combination of two fixed priorities, and a dynamic priority which is inversely
proportional to a task's slack. One of the fixed priorities, called task criticality, has

precedence over the task's dynamic priority. The other fixed priority, called user priority,

56

has lower precedence than the task's dynamic priority. The idea is to use two user-
specified notions of ‘priority’ to help on-line algorithms distinguish the importance of

every task uniquely.

4.2.2 Synchronization

Synchronization is important in real-time systems for two reasons: tasks may
experience unpredictable delays due to blocking on shared resources to which they require
exclusive access, and solutions attained for synchronization may also help in constructing
solutions for the multi-resource task scheduling important in several real-time applications.
Theoretically, Mok [Mok83] showed that the addition of mutual exclusion requirements in
realtime programs makes the general scheduling problem an NP-hard problem. In practice.
a number of algorithms have been devised and evaluated.

For uniprocessor systems running periodic tasks, two recent protocols provide
effective solutions to the scheduling problem with resource sharing. They are the
kernelized monitor protocol [Mok83] and the priority ceiling protocol [Sha90]. In the
kernelized monitor protocol. the earliest deadline first scheduling policy is used for task
scheduling. All executions in critical sections are non-preemptible. However.
schedulability analysis performed in this protocol requires the use of upper bounds on the
execution times of all critical sections appearing in tasks. Since such upper bounds may be
overly pessimistic, using the kernelized monitor protocol may result in low processor
utilization. _

The priority ceiling protocol is designed for systems where each task has a fixed
priority and the rate monotonic scheduling algorithm is used. With this protocol, in the
worst case. each task only has to wait for at most one lower priority task to finish in a
critical section. and deadlocks cannot occur. Assuming that the longest possible waiting
time is known for each task in the system, sufficient conditions for scheduling sets of
periodic tasks can also be derived [Sha90]. However, the priority ceiling protocol cannot
be directly used when priorities are dynamic, which is addressed in the protocol described

in [Chen90a].

57

4.2.3 Communication

Deterministic real time communication is the back bone of a distributed real time
system. To achieve this determinism, communication protocols must have bounded
channel access delays and bounded message communication delays. The channel access
delay is the interval between the instant at which a task issues a request for sending a
message. and the instant at which the local communication interface actually transmits that
message on the communication channel. The message communication delay is the interval
between the instant at which a task requests the transmission of a message and the instant
at which that message is successfully delivered to its destination [Panz93].

Two main strategies are used in sending real time messages: guarantee strategy
and best effort strategy. In the guarantee strategy, an attempt is made to guarantee ahead
of transmission time that the real time messages will meet their deadlines. The guarantee
may be given during system design or operation, but the key feature being that once a
message is accepted for transmission, it is guaranteed to meet its deadline. In the best
effort strategy. the network will try to meet the message deadlines. but no guarantees are
given. This strategy is used when there are insufficient network resources to meet all
message deadlines and some of the applications can tolerate certain amount of message
loss.

Hard real time messages fall into two categories: synchronous messages and
asynchronous messages. Synchronous messages arrive periodically and must satisfy their
deadlines or they are considered lost. Because synchronous messages are deterministic and
all of their timing characteristics are known in advance, most of the research in this area
has followed guarantee strategy. One popular network access arbitration based approach
is rate monotonic scheduling with network wide global priority driven protocols [Plein92,
Stros88, Stros89]. In this approach each message is assigned a priority and the access
arbitration ensures that higher priority messages are sent before the lower ones. The rate

monotonic algorithm attempts to assign priorities in such a way that synchronous message

58

deadlines are guaranteed. This approach is used over networks such as IEEE 802.5 token
ring network and Controller Area Network.

Another popular transmission control based approach is timed token protocol
[Kop94]. This is a token passing protocol in which the amount of time a node may hold
time is bounded. This approach can be used with networks such as Fiber Distributed Data
Interface and IEEE 802.4 token bus network. Another technique to guarantee
synchronous message transmission is to use round robin scheduling among message
streams. Networks using Time Division Multiple Access protocols can be used with this
technique [Kuro88].

Asynchronous messages on the other hand, arrive randomly during runtime and
must therefore be scheduled dynamically. This means that using the guarantee strategy is
more complicated for asynchronous messages. If the maximum generation rate of
asynchronous messages is known, then the messages may be guaranteed by allocating
sufficient network bandwidth [Ram87]. The actual transmission may be accomplished by
maintaining a periodic server for every asynchronous source or by dynamically estimating
the feasibility for transmission based on network load.

The best effort strategy for asynchronous messages typically uses the Minimum
Laxity First scheduling approach. The actual transmission is accomplished through priority
driven protocols or window protocols. In priority driven protocols, dynamic global
priorities are assigned to messages based on slack period and access arbitration ensures
higher priority messages are transmitted first [Shin90]. In the window protocol. nodes in
the network agree on a common interval or window. If the slack time of a message lies
inside this window, it is considered for immediate transmission. If more than one message
lies inside the window, the size of the window is reduced such that only one message

remains. However, this process incurs substantial overhead [Zhao88. Znati91, Lim91].

4.2.4 Clock Synchronization

A global time base is an important requirement for the measurement of time

instants at which events occur, intervals between events and to establish the causal order

59

of events in a distributed real time system. Distributed clock synchronization approaches

include hardware solutions [Lala91], software solutions [Lamp82. Lamp85] and hybrid

solutions [Kop89). Despite the differences in these approaches, certain requirements have
to be met by all of them [Kop87, Panz93]:

e The clock synchronization algorithm has to be capable of bounding, by a known
constant, the maximum difference of the time values between the observation of the
same event from any two different nodes of the system.

e The clock synchronization algorithm has to be capable of tolerating the possible fault
of a local clock, or the loss of a clock synchronization message.

e The global time constructed by the synchronization algorithm has to be sufficiently
accurate to allow a measurement of small time intervals at any time.

e The overall system performance is not to be degraded by the execution of the clock
synchronization algorithm.

Clock synchronization algorithms can be classified into deterministic and
probabilistic approaches. Deterministic approaches assume a maximum communication
delay and use it to provide guarantees on maximum clock deviations [Lamp85. Schn87.
Srik87]. If the delays experienced by n nodes receiving messages range between i to
Imax, all Of these deterministic algorithms can achieve a synchronization no closer than (tmax
- tmin)(1 - 1/m) [Lund84]. The probabilistic algorithms capitalize on the observation that
most messages incur communication delays shorter than the worst case delay. These
algorithms provide a probabilistic guarantee with much smaller clock deviations [Crist89.
Arvin89]. In other words, the guarantee may fail sometimes, but the failure probability is

known or bounded.

4.2.5 Fault Tolerance

Given the safety critical nature of real time applications. real time systems must
function in spite of failures. Fault tolerance requires error processing followed by fault
treatment. Error processing typically takes one of two forms: error recovery or error

compensation [Lapri88]. Error recovery replaces an erroneous state with an error free

60

state either from recovery points saved during past or by moving the system to a known
state. Error compensation, on the other hand, involves providing enough redundancy in
the system such that the system is able to provide acceptable level of services in spite of
the failure of one or more of its components. Thus, this technique masks the faults in a
system from its environment.

The complex interactive nature of a real time system with its environment means
that error recovery techniques cannot be used for non-trivial applications. This is due to
the fact that if the system were to be restored to a previous state or known state suddenly.
certain states will not be undone or will be skipped in the process, thereby not producing
the right kind of interaction between the control system and its environment. Hence the
error compensation technique using spatial and time redundant architectures is widely
used to mask faults in real time systems.

The number of redundant replicates needed depends on the types of failure that a
system is designed to handle. Types of failures range from fail-stop/fail-silent components
to components that experience Byzantine failures [Lamp82. Schi83, Ezhil86]. In fail-
stop/fail-silent type failure the components are self checking and they either function
correctly or do not produce an output at all. In Byzantine failure. some messaging
components may malfunction thereby producing conflicting information about the system.
Tolerating up to n fail-stop failures requires maintenance of n+/ replicates, while
tolerating n Byzantine failures requires maintenance of 3n+1 replicates.

The redundant components may be employed in active or passive manner. In active
redundancy all redundant components provide service functions at all times, whether there
is a failure or not. In passive redundancy one member serves requests another takes over
when it fails. The responsiveness of active redundancy has resulted in its wide spread use
in safety critical real time systems. The active redundancy is typically employed as one of
N-Modular Redundancy (NMR) techniques [Siew84. Chen90b, L090]. The NMR
techniques include N-modular redundancy with voting, N-modular redundancy with
backup spares, N-modular redundancy with adaptive voting by non-faulty modules, N-

modular redundancy with paired sift out and N-modular redundancy with comparison. Of

61

these the N-modular redundancy with comparison technique has the lowest complexity

and best fault masking capability.

4.2.6 Distributed Real Time Operating Systems

Several researchers have developed distributed real time operating systems for
applications such as distributed supervisory control and real time multimedia transactions.

ALPHA [Jen90] is a distributed operating system for large, complex, distributed
real-time systems. ALPHA's kernel provides its clients with a coherent computer system
on an underlying platform that may be composed of an indeterminate number of
networked physical nodes. Its principle abstractions are objects, operation invocations.
and threads. Objects are passive abstract data type in which there may be any number of
concurrently executing threads. Objects exists on a single node and can be dynamically
migrated among nodes. Threads are the units of schedulability and are fully preemptable.
It is the locus of control point movement among objects via operation invocation which
transparently and reliably spans physical nodes. ALPHA utilizes a transactional distributed
computing model for trans-node concurrency control and integrity.

ARTS [Tok89] is a distributed real-time operating system for predictable.
analyzable. and reliable distributed real-time computing environment. ARTS uses an object
model layered on top of threads. Objects are implemented using the C++ with real-time
extensions, called RTC++ [Ishi92]. Underlying ARTS objects are real-time threads which
can be hard real-time or soft real-time. Real-time threads in ARTS use priority based rate
monotonic scheduling method. The ARTS kernel implements an Integrated Time-Driven
Scheduler (ITDS). The ITDS scheduler provides an interface between the scheduling
policies and the rest of the operating system. An extended rate monotonic scheduling
paradigm is used for communication scheduling. This allows the system to integrate
message and processor scheduling with a uniform priority management policy.

Real-Time Mach (RT-Mach) [Tok90] is primarily an extension of ARTS
distributed operating system and addresses the real-time aspects of threads. thread

synchronization, inter-process communication. and other mechanisms to allow greater

62

predictability such as a tool-set for real-time program design and analysis. As in other
operating systems RT-Mach augments the threads model with timing attributes and both
periodic and aperiodic threads can have soft or hard deadlines. The ITDS scheduler of
RT-Mach uses processor sets (which are collections of processors available to an
application). with run queues specific to processor sets and provides five different
scheduling policies (Rate Monotonic, Fixed Priority, Round Robin, Round Robin with
Deferrable Server, and Round Robin with Sporadic Server) on each processor set. with
primitives to get and set the scheduling policy. The IPC extensions in RT-Mach use
priority-based queuing in message buffers. In addition. it provides primitives to propagate
priorities from the sender of a message to the receiver.

Maruti [Gud90] is an object-based distributed operating system with encapsulation
of services. Objects consist of two main parts: a control part which is an auxiliary data
structure associated with every object. and a set of service access points. Timing
information. maintained in the object, is dynamic and includes temporal relations among
objects. Objects that reside in different sites needs agents as representatives on remote
sites. Maruti is organized in three distinct levels: the kernel, the supervisor, and the
application level. The kernel is the minimum set of servers needed at execution time
including a dispatcher, a loader, a time server, a communication and a resource
manipulator. Supervisor objects in Maruti prepare all future computations. ensuring their
timely execution by pre-allocation of resources, whenever possible.

SPRING [Stan91] is a distributed real-time operating system for network of
multiprocessor nodes. In SPRING. tasks are classified as critical tasks (hard real-time
tasks). essential tasks (soft real time tasks). and nonessential tasks. The SPRING kernel
supports bcth individual tasks and a collection of individual tasks (task groups) which
have precedence constraints among themselves but share a single group deadline.
Scheduling is accomplished through a four level scheduler mechanism that separates policy
from mechanism. The design of the SPRING keme! provides for resource
segmentation/partitioning, functional partitioning of processing requirements, selective

resource pre-allocation. a priori guarantee for critical tasks. on-line guarantee for essential

63

tasks. integrated CPU scheduling and resource allocation. use of the scheduler in planning
mode. separation of importance and timing constraints, end-to-end scheduling, and use of
significant information about tasks at runtime, including timing, task importance. fault
tolerance requirements and the ability to dynamically alter this information.

The HARTOS real-time operating system is meant for a distributed-memory
architecture consisting of nodes connected in a hexagonal mesh [Shin91]. The operating
system focuses on support for on-line scheduling, in part targeting applications in
autonomous robot control and multi-media applications. HARTOS is built on top of
commercial pSOS+ real time operating system. While the pSOS+ executive provides the
low-level mechanisms for processor and memory management, HARTOS extends these
for the multiple-node environment, and handles real-time communications. HARTOS
specifically addresses the issue of fault-tolerant communications and local deadlines are
imposed on each hop of a message rather than deadlines for end-to-end delivery.

The CTRON [Sak89] real-time operating system is a part of the TRON platform
for industrial systems and is designed for network nodes consisting of different kinds of
computers. To assure software portability. the operating system is subdivided into two
functional sections. One section consists of functions that hide the processor architecture
and provide common interfaces, and are not portable among nodes with different
processor architectures. The other section offers portable functions that assume a common
interface. The kernel interface is divided into four parts: a group for the common model. a
group for the advanced real-time model. a group for the advanced complex function
model. and a group for the advanced virtual memory model. The objects supported by the
CTRON kernel are: tasks, synchronization. exceptions, timers, memory, interrupts, and
black box.

MARS [Kop89] is a fault-tolerant distributed real-time operating system
architecture for process control. The structure of the MARS operating system kernel
differs significantly from that of the other systems because of the specific demands a
distributed time driven system makes on its underlying operating system. MARS is

designed to maintain a completely deterministic behavior even under peak-load conditions.

64

i.e. when all possible stimuli occur at their maximum allowed frequency. In MARS, all the
activities are synchronous, and based on a globally synchronized clock. In particular, the
cnly interrupts present in the system are clock interrupts, which marks both CPU and bus
cycles. and this feature facilitates the system predictability. Task and communication
scheduling is done off-line by a scheduler before runtime and stored in a runtime
scheduling table, which is interpreted during runtime. Location transparency at the task
level is achieved implicitly in the MARS system because tasks merely send and receive
messages with a given semantics, but do not know the source and the destination of these
messages.

It should be noted that these distributed real time operating systems were designed

for specific application domains and hence are not suitable for event driven holonic

systems.

4.3 Formal Specification Methods

The real time system specification method facilitates the design at application level
through abstraction of functional and timing requirements. Hence it determines the ease of
expressiveness. sophistication and usefulness of the system. Real time specification
methods are usually based on techniques such as real time temporal logic [Alur89], timed
petri nets [Ghez91], modechart [Jah88], timed /O automata [Lynch89]. timed process
algebra [Baet91] and timed finite state machines [Raj93]. Of these. the finite state machine
and its variations have found wider acceptance. Recent research in the area of
specification methods has focused on object oriented approaches. These methods can be
classified into two categories: concurrent object oriented languages and object oriented
formalisms.

The programming language real time concurrent C [Geha91] is a superset of
C/C++ that provides facilities to execute activities with deadline constraints, seek
guarantees about timing constraints and perform alternative actions on failure of timing
constraints or guarantees. RTC++ [Ishi92] extends C++ with temporally constrained

objects called real time active objects and timing constraints may be specified both as part

65

of method declarations and as commands within methods. Flex [Kenn91] extends C++
with a language construct called control block and timing constraints can be specified
inside a control block for predictable performance. DROL [Tak92] is a concurrent object
oriented language that extends C++ with real time constructs. RealtimeTalk [Erik96] is an
extension of SmallTalk language for real time applications, while Real time Java [Nil96]
extends the Java language for time critical applications. RTSynchronizer [Ren95] extends
the Actor programming language with language constructs for specifying timing relations.

The Object Oriented formalisms typically use a higher level visual specification
technique for behavior and timing specification, and convert the requirements into
standard languages such as C/C++ for specific run time environment. StateMate [Hare96]
is a specification tool based on statecharts that is a variation of the finite state machine.
ObjectTime [Gaud96] is a Real time Object Oriented Modeling (ROOM) tool that uses a
variant of statecharts and the Actor model of computation. Onika [Gertz93] is a software
composition system that uses port based objects for specification. ControlShell [Schn95]
is an event driven finite state programming tool that uses objects called components and
data flow among them to model the system.

However, industrial control systems need to use a specification model that is
standard across various manufacturing applications. The IEC 1131-3 [IEC93]
programmable controller languages standard offers a solution to unit level time triggered
systems, but is not suitable for event driven distributed systems. On the other hand. the
IEC 1499 [IEC97] Function Block architecture is an emerging standard for distributed
industrial process measurement and control systems. It uses an explicit event driven model
and also provides for data flow and finite state automata based control. The following sub-

sections gives an overview of this object oriented formalism.

4.3.1 Reference Models
As shown in Fig. 4.1, an Industrial Process Measurement and Control System
(IPMCS) is modeled as a collection of controller devices interconnected and

communicating with each other by means of one or more communication networks that

66

may be organized in a hierarchical manner. The control functions performed by the
IPCMS are modeled as applications. An application may reside completely in a single
controller device or may be distributed among several devices. For instance, an application
may consist of one or more control loops in which the input sampling is performed in one

device. control processing is performed in another, and output conversion in a third.
Communication network(s)

1 | |
Device 1 Device 2 Device 3 Device 4
Application A]
[Application B B
Appl. C

1 1 1 |

Controlled process

Figure 4.1: System Model

As illustrated in Fig. 4.2, a controller device contains at least one resource and at
least one interface, viz., process interface or communication interface. A process interface
provides mapping between the physical process (analog measurements, discrete L/O, etc.)
and the resources. Information exchanged with the physical process is presented to the
resource as process data or process events. or both. Communication interfaces provide
mapping between resources and the information exchanged via communication networks.
Services provided by communication interfaces include presentation of communicated
information to the resource as communication data or communication events, or both. and

additional services to support programming, configuration, diagnostcs, etc.

67

Communication link(s)

Device boundary
Communication interface(s)
Resource x Resource y Resource z
| Application A
1 | 1
| Application C] { Application B |
| 1

Process interface(s)

Controlled process

Figure 4.2: Device model
A resource is a logical subdivision within the software (and possibly hardware)

structure of a device which has independent control of its operation. It may be created,
configured. parameterized, started up. deleted, etc.. without affecting other resources
within a device. The functions of a resource are to accept data and/or events from the
process and/or communication interfaces, process the data and/or events. and to return
data and/or events to the process and/or communication interfaces. as required by the
applications utilizing the resource. A resource provides the same functionality as an
operating system (OS) and as illustrated in Fig. 4.3. a resource is modeled by the
following:

e One or more local applications (or local parts of distributed applications) which are as

independent as possible of the process and network worlds.

e A process mapping part whose function is to perform the mapping between process

data and events and the variables and events used by function blocks.

e A communication mapping part whose function is to perform the mapping between

communication data and events and the variables and events used by function blocks.

68

e A scheduling function which effects the execution of, and data transfer between, the
function blocks in the applications, according to the timing and sequence requirements
determined by the occurrence of events, the function block interconnections, the

scheduling information such as task scheduling periods and priorities. and possible

interactions with scheduling functions of other resources.

N Communication interface(s)

lrmpﬁn! Local application
{or local part of distributed appilication)

Process interface(s)

Scheduling Function ‘

Figure 4.3: Resource model
An application consists of a network. in which nodes are function blocks and

parameters and branches are data connections and event connections. An application may
be distributed among several resources in the same or different devices. A resource uses
the causal relationships specified by the application to determine the appropriate responses
to events, which may include communication and process events. These responses may
include scheduling and performance of operations, modification of variables, generation of
additional events, and interactions with communication and process interfaces. As shown
in Fig. 4.4, applications are defined by function block diagrams specifying event and data
flow among function block instances. The event flow determines the scheduling and
execution of the operations specified in each function block's algorithm(s) by the

associated resource.

69

Event flow

4

|>|| — 1 *x
|

-

Data flow

-

Figure 4.4: Application model

A function block instance is a functional unit of software comprising an individual,
named copy of the data structure specified by a function block type, which persists from
one invocation of the function block to the next. As shown in Fig. 4.5, a function block
consists of a set of event inputs and outputs, a set of data inputs and outputs, a set of
internal variables and state information, an execution control function and a set of
algorithms. The execution control function. the algorithms, and the internal variables and
state information which persist between invocations of algorithms, are invisible outside of
the function block.

The execution of algorithms is invoked by the execution control portion of a
function block instance in response to event inputs. This invocation takes the form of a
request to the scheduling function of the associated resource to schedule the execution of
the algorithm's operations. Upon completion of execution of an algorithm. the execution
control generates zero or more event outputs as appropriate. Fig. 4.6 depicts the order of
events and algorithm execution for the case in which a single event input. a single

algorithm, and a single event output are associated.

70

Event inputs Event outputs
Instance identifier
Event flow Execution " Event flow
] (hidden) E
Type identifier
— Algorithms
Data fiow (hldden) Data flow
* n—— — *
—1| Intemalidata | __
? (hidden) ?
Data inputs : Data outputs

Resource capabilities
(Scheduling, communication mapping, process mapping)

Figure 4.5: Function Block Model

Execution control 8

2 -
* function ‘
: *- I Tstart
1
—_—

+

‘---E- Algod‘h r?—’—.
4 5 6 7 8

: : : Thinish
3: 4: 6. 7

¥ - ¥ . -
Scheduling function 1 2 3

Figure 4.6: Execution Model and Timing
The times at which the sequence of low-level events occur in this case are as

follows:

t1:Relevant input variable values are made available.

t>: The event at the event input occurs.

7
t3: The execution control function notifies the resource scheduling function to

schedule an algorithm fbr execution.
t4: Algorithm execution begins.
t5: The algorithm completes the establishment of values for the output variables.

t: The resource scheduling function is notified that algorithm execution has

ended.

t7: The scheduling function invokes the execution control function.
tg: The execution control function signals an event output.

Fig. 3.7 shows the significant timing delays in this case which are of interest in
application design. They are

Tstart = t4 - 12 (time from event input to beginning of algorithm execution)
Talg = t6 - t4 (algorithm execution time)
Thnish = t8 - t¢ (time from end of aigorithm execution to event output)

Due to these delays. various requirements exist for the synchronization of the
values of input variables with the execution of algorithms, such as

e Assurance that the values of variables used by an algorithm remain stable during the
executon of the algorithm.

e Assurance that the values of variables used by an algorithm correspond to the data
present upon the occurrence of the event input which caused the scheduling of the
algorithm for execution.

e Assurance that the values of variables used by all algorithms scheduled for execution in
a function block correspond to the data present upon the occurrence of the event input
which caused the scheduling of the first such algorithm for execution.

It is the responsibility of underlying resource to satisfy these requirements. The

function blocks are classified into three types: Basic Function Blocks, Composite Function

72
Blocks and Service Interface Function Blocks. The following sub-sections give an

overview of each type, respectively.

4.3.2 Basic Function Blocks

A basic function block utilizes an Execution Control Chart (ECC) to control the
execution of its algorithms. As shown in Fig. 4.7, it also utilizes an explicit set of internal
variables and state information, and algorithms. The ECC is a finite state machine similar
to IEC 1131-3 [IEC93] Sequential Function Charts and is made of EC states, EC

transitons and EC actions.

El variables EO variables

V2

Type identifier

Algorithms

internal
variables

? :

fnput variables Output variables

Figure 4.7: Basic Function Block
Fig. 4.8 shows a typical ECC of a basic function block. The initial EC state cannot
have any EC actions associated with it. The occurrence of an event input causes the ECC
to be invoked and the input variables to be mapped. The EC transitions use a Boolean
combination of conditions that may be comprised of event inputs, input variables. output
variables and internal variables. A “cleared” (i.e. triggered) EC transition causes a change
in EC state and this leads to the execution of associated EC action. The EC action

consists of zero or more algorithms associated with it. At completion of the algorithms.

73

the associated event outputs are set. The execution of algorithms may cause change of
internal variables and state, resulting in other EC transitions being cleared. However. the
evaluation of EC transitions is disabled till the completion of algorithms associated with an
EC action. If no further EC transitions are cleared, the set event outputs and the
associated output variables are issued.

As shown in Fig. 4.9, the resource maintains an event input state machine
associated with every event input. Table 4.1 shows the actions associated with the
transitions of this state machine. Transition 20 occurs when there is a map mput request
without an event arrival at this state machine. The occurrence of transition 2 means that
same event has occurred before the request for first one could be completed. This may
result in the loss of this event and the resources may provide mechanisms to detect and

handle it in an implementation dependent manner.

EC initial state

EC transition
1
EC action
MAIN MAIN | EXO | event

EC state algorithm

Figure 4.8: Typical Execution Control Chart

Figure 4.9: Event Input State Machine
Fig. 4.10 shows the ECC operation state machine and Table 4.2 shows the

transitions associated with it. The ECC is invoked by the action associated with transition
t1 of event input state machine. This results in issuing a map input condition to all event

input state machines of the function block, followed by evaluation of EC transistions.

74

Transitions 73 and #4 repeat till transition 2 occurs. At this instance the output variables
associated with set event outputs are sampled and the event outputs are issued. After

which the event outputs are reset. Thus, the ECC controls the execution of a basic

function block by cooperating with the associated resource.

Table 4.1 - Transitions of Event Input State Machine

Transitionn Condition Actions
t0 map input none
tl event arrives ECC invocation request
t2 event arrives implementation dependent
t3 map input | set EI variable and sample associated input variables

Figure 4.10: ECC Operation State Machine
Table 4.2 - Transitions of ECC Operation State Machine

Tramitior‘ Condition actions
tl invoke ECC map inputs
evaluate transitions
2 no transition clears issue events
t3 a transition clears |schedule algorithms

t4 algorithms complete| clear EI variables
set EO variables
evaluate transitions

75

4.3.3 Composite Function Blocks

The composite function block neither uses an ECC for execution nor does it
possess explicit internal variables and algorithms. As shown in Fig. 4.11. it is composed of
a network of interconnected component function blocks. events and variables. A
component function block may be a basic, composite or service interface function block.
The event and data connections specify the causality and sequencing of the component
function block invocations. The occurrence of an event input at the composite function
block causes the corresponding inputs to be sampled and invocation of all component
function blocks. An event input of composite function block or an event output of a
component function block can be connected to exactly one event input of component
function block or one event output of composite function block. It needs to be explicitly
split using a standard event processing function block in order to connect to multiple event
inputs or outputs. Similarly, events will have to be merged with a suitable standard event

processing function block.

Event inputs Event outputs

Type identifier

o
p—

j t

input variables Output variables

Figure 4.11: Composite Function Block

76

Unlike event variables. the input and output variables need not be explicitly split.
However no two outputs may be merged (Boolean OR). The occurrence of an event
output at a component function block causes the invocation of the next component
function block in sequence or the issuance of the event output of the composite function
block as required. It should be noted that event splitting may be used to invoke multiple
component function blocks concurrently. Thus. the composite function block provides

mechanisms for specifying complex behaviors.

4.3.4 Service Interface Function Blocks

A service interface function block is a function block which provides one or more
services to an application, based on a mapping of service primitives to the function block’s
event inputs, event outputs, data input§ and data outputs. Basically, they provide a
mechanism to map the services provided by the underlying resource, such as, process and
communication mapping, configuration and management, etc. The external interfaces of
service interface function block types have the same general appearance as basic function
block types. However the semantics and behavior have special meanings.

Fig. 4.12 and Fig. 4.13 show the model of application initiated (requester) and
resource initiated (responder) service interactions respectively. For the requester type
function blocks the event inputs INIT and REQ are used to initialize and request service,
while event outputs INITO and CNF are used to signal initialization completion and
service confirmation respectively. The input variable QI interacts in a specific way with the
input event depending on the logic level ie. TRUE for beginning and FALSE for
terminating the initialization or service. Similarly, the output variable QO is used to
indicate success or failure of service.

The input variable PARAMS. which may be an aggregate, is used to pass the
parameters associated with a service. The output variable STATUS is used to pass
detailed information regarding service, typically on failure. The input and output variables

SD_1, ..., SD_m and RD_1, ..., RD_n are used to pass application specific data for

77

service. The responder type function block uses event output IND and event input RSP to

interact with an application.

EVENT: INIT INITG EVENT
EVENT- REQ - EVENT
—1
REQUESTER
BOOL Qi Q BOOL
ANY PARAMESTATU ANY
ANY SD_1 RD_1 ANY
ANY SD_m RD_n ANY

Figure 4.12: Application Initiated Interaction

EVENT [INT__ INMO| EVENT
EVENT RSP IND| EVENT
:RESPONDE[;:

BOOL Qi QO BOOL
ANY PARAMS STATUS| ANY
ANY SD_1 RD_1 ANY
ANY SD_m RD_n| ANY

Figure 4.13: Resource Initiated Interaction
Communication function blocks are service interface function blocks that may be

used for explicit trans node interactions in a distributed application. The publisher-
subscriber and client-server model of communications are supported through
unidirectional and bidirectional transaction communication function blocks respectively.
Fig. 4.14 and Fig. 4.15 show the unidirectional requester and responder communication

function blocks, while Fig. 4.16 and Fig. 4.17 show the bidirectional requester and

responder, respectively.

EVENT
EVENT

BOOL
ANY
ANY
ANY

HREQ CNF

INIT INITO

PUBLISH
Ql QO
PARAMS STATUS
SD_1

SD_m

EVENT
EVENT

BOOL
ANY

Figure 4.14: Unidirectional Requester

EVENT
EVENT

BOOL
ANY

INIT INITO
|RSP g
SUBSCRIBE
Ql Qo
PARAMS STATUS
RD_1|
RD_m|

EVENT
EVENT

BOOL
ANY
ANY
ANY

Figure 4.15: Unidirectional Responder

EVENT
EVENT

BOOL
ANY
ANY
ANY

[INT INMO |
REQ CNF|
CLIENT
Qi Qo
PARAMS STATUS
sD_1 RD_1
sD_m RD_n

EVENT
EVENT

BOOL
ANY
ANY
ANY

Figure 4.16: Bidirectional Requester

EVENT
EVENT

BOOL
ANY
ANY
ANY

[INIT INMO| EVENT
RSP IND EVENT
~— —
SERVER

(o] Qo) BOOL
PARAMS STATUS ANY
SD_1 RD_1 ANY
|SD_n RD_m| ANY

Figure 4.17: Bidirectional Responder

78

79

Manager function blocks are service interface function blocks that can be used to
configure and manage applications. As shown in Fig. 4.18, manager CMD. OBJECT and
RESULT variables instead of SD_m and RD_n variables. The standard defines a complete
set of commands and valid syntax in each case. and the behavior of managed applications.
The commands include create, delete, start, stop. kill. query, read and write services.

Accordingly three classes for compliant systems are also defined.

EVENT —T—- INIT INITO & EVENT
EVENT REQ CNF EVENT
MANAGER:

BOOL Ql Qo BOOL
ANY PARAMS STATUS FB_MGT_STATUS
FB_MGT_CM&: CMD RESULT FB_OBJECT

FB_OBJECT (OBJECT

Figure 4.18: Manager Function Block
The versatility of IEC 1499 Function Block architecture makes it the most suitable

real time application specification model for holonic systems.

4.4 Summary

In this chapter previous work related to the research presented in this dissertation
were discussed. These included the important results in distributed real time systems
theory such as scheduling, synchronization, communication. fault-tolerance and clock
synchronization, and other research efforts aimed at developing a distributed real time
operating system. Further, various approaches pertaining to formal specification of real
time control applications were identified and the emerging IEC 1499 Function Block

standard was reviewed.

80
Chapter 5

Metamorphic Control Architecture

5.1 Introduction

An adaptive/reconfigurable holonic system is able to evolve according to changing
needs i.e. it enables easy re-design and allows addition, deletion and modification of
system components during operation. A reference metamorphic control architecture that
would provide unambiguous means for engineering such changes in form, structure and
allocation needs to be defined. A reference architecture specifies a design method and style
of building through abstraction of complex dynamic systems by simple models, interfaces
and their integration. It describes the kinds of vital system components, their
responsibilities, dependencies, possible interactions and constraints. By choosing suitable
elements from this predefined set and using them appropriately. one can build a specific
system with desired characteristics.

Evolutionary design of complex systems is characterized by the need to ensure
incremental changes to the system will not introduce inconsistency and instability. Critical
real-time systems pose an additional challenge as a high degree of assurance is required to
ensure that a system continuously meets its timing requirements, even during periods of
upgrade and transformation. Failure to do so can result in catastrophic damage to
equipment and life. Hence the reference architecture and implementation must ensure
incremental redesign and modifications will not lead to instability.

Accordingly, in this chapter a reference architecture for metamorphic control of
holonic systems is described. A reference version of the architecture for metamorphic
control is specified because it will be independent of any particular application and will
capture all generic characteristics. In the following section. the architectural components
of a metamorphic control system are identified and the concept of the distributed

intelligent controller is introduced. This is followed by a physical controller architecture

81

that identifies the essential hardware components of the runtime environment. An Agent
based uniform system and application software architecture is defined and the resulting
functional architecture is presented. Finally, the critical issues in realizing this architecture

and the components that provide means to engineer metamorphic control are discussed.

5.2 System Architecture

As shown in Fig. 5.1, the reference architecture for a metamorphic control system
is comprised of four major physical components: microcomputer based system engineering
hosts, primary factory control networks, distributed intelligent controllers and secondary
Fieldbus networks. To some extent, these four components directly correspond to
intelligent human interface block, inter holon interface block, process-machine control
block and process-machine interface block. respectively. All the four components are

softwired and can be dynamically reconfigured on the fly [Bala96].

Microcomputer Microcomputer

Facary Control

Network

g
Intelligert | [Iotelligent | | Intelligent | : ;| Intelligent || Intelligent | [fotelligent
Controller | | Controller | | Controller | : | Controller || Controiler | Controller
........................) ISR SRR CA U RN SR SR I SRS
X
Feldbus : Intelligent /O intelligent Feldbus : Intelligent /O
to Sensars and Actuators Controlier to Sensors and Actuatars

Figure 5.1: System Architecture
The microcomputers serve the purposes of system engineering interface functions.
namely. programming, system configuration, status monitoring, data acquisition and
possibly supervisory planning and control. The graphical user interfaces in these

microcomputers are consistent throughout the system and all information about the system

82

can be accessed at any host subject to access privileges. Consequently, it is the
responsibility of these interfaces to maintain consistent information and present a single
logical view of the entire system. The primary communication network serves to control
and coordinate all the distributed intelligent controllers within the factory control system.
It also serves as the communication link between the controllers and the microcomputer
hosts. The reference architecture provides redundant factory control networks fcr the
purposes of reliability and fault-tolerance.

The distributed intelligent controller serves the purpose of controlling a holonic
resource. A distributed intelligent controller is defined as a generic, open. autonomous and
cooperative composite entity, comprised of multiple component modules called intelligent
controllers. and capable of distributed real time intelligent control. It should noted that the
physical structure of a distributed intelligent controller is scaleable according to
application requirements and the characteristics of a distributed intelligent controller are
due to its component intelligent controllers. The secondary communication network serves
as the interface between one distributed intelligent controller and its distributed intelligent
sensors and actuators and as a communication link among the constituent intelligent
controllers. Here again, the reference architecture provides redundant Fieldbus networks
for the purposes of reliability and fault-tolerance.

The reference system architecture may be modified in a number of ways during
actual implementation. Fig. 5.2 shows two such modified and feasible system
architectures. In first case, the primary factory control network is absent. A single
secondary fieldbus network serves as inter-holon interface, intra-holon interface and as
communication link with system engineering interface. In the second case, the primary
factory control network and the secondary fieldbus networks are arranged in an arbitrary
hierarchy through bridges and routers. Other possibilities include for instance. a distributed
intelligent controller controlling more than one machine/process. Or. some of the
intelligent controllers in a distributed intelligent controller may be connected only to the
secondary network and thus do not have direct access to the primary network.

Irrespective of such modifications, a core sub-set of features will be available across all

83

implementations.
Microcomputer
Heldus
Controller | | Controller | | Controller | : | Comtroller | | Controller || Controller
.. \.' /--.......-.............-.................
Distributed Intelligent Controlier
M crooomputer
Factary Control Netwark l
Feldns Feldus
Controller | | Controller | | Comroller | : | Controller || Controller | | Controfler |:
-- \-' V.-....-..........-..--.....-..-.--....-.‘

Figure 5.2: Feasible System Architectures

The following sub-section describes the nature of a distributed intelligent

controller.

5.2.1 Distributed Intelligent Controller

As the name indicates, a distributed intelligent controller is by nature a real time
system and involves prioritized execution of both hard and soft real time tasks
concurrently. Distributed control requires that the diverse hardware and software
components interoperate maintaining trans-node consistency and timeliness. Trans-node
consistency requires that multiple nodes throughout the system. interpret and maintain the
real world events and the associated data in a consistent manner. Timeliness requires

prioritized and scheduled real time communications with predictable transmission

84

latencies. Intelligent control requires incorporation of various forms of intelligence that
can enhance autonomy and cooperation.

As noted earlier. a distributed intelligent controller is comprised of multiple
intelligent controllers and its characteristics are due to the component modules. The
intelligent controller provides the physical platform, the run time environment and the
mechanisms for a distributed intelligent controller. As a natural consequence. it is also an
autonomous and cooperating entity. An intelligent controller in turn, can be conceptually
visualized to be comprised of a number of logically and possibly physically separate
autonomous and cooperating operational modules. Examples of such operational modules
include the processor module. communication module. /O module, system software
module and application software module. The core functional characteristics of an
intelligent controller can be conceptually generalized and categorized as follows:

e Autonomy

e Interoperability

e Reconfigurablity

e Fault Tolerance

e Real Time Functionality

e Intelligent System Interface

However, it should be noted that these characteristics acquire a different meaning
depending on the functional level under consideration. Consequently, these characteristics
also extend to the distributed intelligent controller as a whole. Further, as discussed earlier
the intelligent behavior of a controller can best be characterized as being multi-faceted and
dynamically adaptive. Hence, this dissertation considers the intelligent behavior of a
distributed intelligent controller as dynamic emergent property due to the complex
changing interactions among its components at multiple levels.

The following section describes a reference architecture for the physical modules

of an intelligent controller.

85

5.3 Physical Architecture

As might be noticed from Fig. 5.1, the distributed intelligent controller is a loosely
coupled system (no shared primary memory) of intelligent controllers. The reference
physical architecture of an intelligent controller is modular in nature and may be comprised
of a stand alone single board control computer or a tightly coupled architecture containing
multiple processors. It should be noted that there are many possibilities for a
multiprocessor architecture intelligent controller. However to be open, the architecture
should be scaleable according to requirements and must utilize a defacto industry standard
on processor independent. high performance. multi-master system bus architecture such as
VME or PCI.

Fig. 5.3 shows two possible architectures for an intelligent controller: a
uniprocessor architecture and a dual processor architecture. The minimal uniprocessor
architecture intelligent controller is comprised of five modules. namely: a processor
module. a programmable timer module, a main system memory module, a network
communication module and a process instrumentation /O module. The modules may be
built as a single board control computer or may be built as ‘plug-and-play’ modules on a
standard system bus architecture. This minimal stand alone control computer model
doesn’t provide a mechanism for graceful fault recovery by itself. but is theoretically
enough for realizing an intelligent controller.

The processor module is comprised of a central processing unit, a memory
management unit and a priority interrupt controller. The processor module ideally has nil
overhead for the proper execution of other modules and they can interrupt the operation
of processor module upon the occurrence of a significant situation. The data transfer
between the modules occurs through the shared memory area or address space. The timer
module is comprised of at least one counter/timer that could be programmed to provide
real time interrupts for the processor module. The memory module comprises of the
physical ROM and RAM. The network /O module serves as the interface for the primary

real time network communications among peers as described earlier.

86

The process O module provides the interface between the controller and the
sensors and actuators. This module may be comprised of, a secondary network
communication interface module if Fieldbus is used for instrumentation. or modular
scaleable terminal I/O blocks if direct instrumentation is preferred, or both. The process
/O module provides facilities for both scan (synchronous) and event (asynchronous)
based instrumentation. The modules and hence the controller operate in fail-safe mode i.e.
either they function properly or they don’t function at all. which simplifies fault
diagnostics. Fault tolerance can be achieved through active redundant backup units and

voting mechanisms.

..

Network CPU, MMU & Priority | Process
/o Interrupt Controller 1 O
Programmable Timer
Etory Control
""" T "'""""""""""""""""""""""""""""”“"'""""""'Ne'ﬁ'mk
DMA :
Basic | [TShareq |, [Imtelligent Redundant
Control |[* M. <+ Control |e

Unit Memory Unit Memory

L] Interrupt Signal
—_ Fieldbus Dual-processor Architecture

Figure 5.3: Feasible Physical Architectures
The reference dual-processor architecture intelligent controller would provide
graceful fault recovery mechanisms. It consists of an intelligent control unit in a typical
configuration with a basic control unit. The basic control unit includes a processor
module, a timer module. a network I/O module and a process I/O module. The intelligent

control unit includes a processor module. a timer module and a network I/O module, and

87

provides additional processing power. For example, the basic control unit might be used to
execute hard real time tasks while the other may be used to implement soft real time
intelligent control functions.

The control units and their modules may be built as a single board control
computer or around an open industry standard system bus architecture. The primary
memory is shared by both the control units through Direct Memory Access (DMA). The
intelligent control unit maps the state of shared memory onto a redundant memory
periodically according to a programmed cycle. The basic control unit and the intelligent
control unit can communicate with each other either through the factory control network
or through the shared memory. Either unit can interrupt operation of the other and can
check functional status of other periodically, according to a programmed cycle.

The components in either unit are designed to operate in fail-safe mode. In case of
a failure in one of the control units. the working unit can transfer the state information to
another intelligent controller module with spare capacity for further action (passive roving
redundancy). Active backup redundancies and voting mechanisms can also be supported.
With this architecture. the distributed intelligent controller will be able to tolerate all
single fails. For instance, a failure in basic control unit can be recovered with the help of
intelligent control unit or failure of system memory can be recovered with redundant
memory or a network failure can be compensated with redundant network on the fly.

Simultaneous fails can also be tolerated, provided that they are limited to one per
functional unit. For example, simultaneous failures of a basic control unit in one intelligent
controller and a intelligent control unit in another, coupled with a network failure can all
be tolerated. It should be noted that to derive benefits from fault tolerant capabilities of
distributed intelligent controller, the sensors and actuators must also be duplicated as
appropriate. Further, the distributed control application software should also be suitably
designed to take advantage of fault tolerant capabilities.

As said earlier. many other multiprocessor architecture intelligent controllers are
feasible. For example, a uniprocessor controller closely coupled to a motion control

module through the system bus or a uniprocessor controller closely coupled to a vision

88

processing and control module through the system bus or a uniprocessor controller
coupled to a dedicated logic control module through the system bus. Irrespective of such
implementation specific architectures, at least one processor will be open and would
enable distributed intelligent control.

The following section describes an Agent based uniform software architecture for

system and application levels of distributed intelligent controller.

5.4 Software Architecture

The reference software architecture of a distributed intelligent controller is
specified as a heterogeneous multi-agent system. As explained earlier, an agent is a
distributed computing entity and possesses autonomous execution control. It
communicates with other agents through asynchronous messages, facilitating parallel and
distributed computing. Behaviorwise, an agent may be reactive or proactive and may be
mobile. Heterogeneous multi-agent systems involve a network of dissimilar agents
cooperating with each other to achieve the overall system objectives.

The use of agent technology provides uniform interfacing mechanisms for
integrating diverse computational components and means to incorporate intelligence into
the control system. The software architecture is defined at two levels: operational level
and application level. The operational level architecture defines components at individual
processor level, while the application level elaborates means to develop distributed control
tasks. Proper interaction between two levels is crucial in achieving distributed control. The

following sub-sections describe the reference architecture of these two sections in detail.

5.4.1 Operational Architecture

The operational architecture describes the essential software components to
operate hardware elements at controller level and to provide hardware independent
interface to application level software. The operational architecture is local to every
processor within a multi-processor intelligent controller. As shown in Fig. 5.4, the system

level software components include I/O device drivers. hardware independent virtual device

89

interface, network device drivers, hardware independent network management interface

and local agents of distributed real time operating system.

Control Control Control Control
Application Application Application Application
Agent Agent Agent Agent

T 1 T i

Distributed Real Time Operating System Software Agents
Hardware Independent Hardware Independent Network
Virtual Device Interface Management Interface
I/O Device | |U/O Device Network Network
Driver Driver Device Driver | |Device Driver

Figure 5.4: Operational Architecture

The /O device drivers are hardware specific software modules that operate
various hardware sub-systems within the controller such as process /O modules and
dedicated process/motion/logic control modules. The operating system elements interact
with these drivers through a hardware independent virtual device interface. The network
device drivers are network hardware specific software modules that operate local area
network communication interface sub-systems and their processors. The hardware
independent network management interface provides the link between operating system
elements and network specific drivers. It also abstracts the mapping of physical and logical
addressing mechanisms and routing of message packets.

The local agents of distributed real time operating system provide the core
controller mechanisms to achieve distributed control. They provide resource management
mechanisms at the local level according to global goals. Such mechanisms include
processor scheduling and allocation, memory management, network scheduling and
access. and /O resource access. They also provide capabilities such as hardware

independence, network transparent communications and enforce resource utilization based

90

on criticality. The application level distributed control agents use the facilities provided by

system level software to achieve their goals.

5.4.2 Application Architecture

The application level distributed control architecture is comprised of reactive
behavior based agents and these agents are specified using the IEC 1499 function block
standard. This provides a single standard behavior specification mechanism for control
agents of all manufacturing applications. The behavior based agents are specified using
composite function blocks comprised of basic and composite function blocks, and the

network of agents are distributed among intelligent controllers as shown in Fig. 5.5.

Reactive Behavior Based Agents
Distributed Control Applimﬁ/ / \ istri i
S— A — ’] X
s = s S A e L
-] :
5 & TTh o5 ¢
N Ry fecmemcccrcncttccctcctticcictencccnccccas
i [Distributed Real Time S hea e | Distributed Real Time
i3l | Operating System Agents Operating System Agents Operating System Agents
1" Intelligent Controller 1 |\ | Intelligent Controller 2 Intelligent Controller 3 |
: Infrastructure Infrastructure Infrastructure
.. \ﬁ
v Fieldbus

Distributed Real Time Operating System

Figure 5.5: Application Architecture
The network of control agents, distributed on physically separate controller
infrastructure. communicate and synchronize with each other through local agents of
distributed real time operating system to achieve distributed control functions. The use of
agent communication mechanisms lead to pass by value semantics even within same

platform. Through the use of location transparency, the same agent network may be

91

configured in different ways for other applications. Further. the behavior based control
results in control tasks being partitioned on behavior boundaries that execute in parallel.

The following section describes the functional architecture of an Agent based

distributed intelligent controller.

5.5 Functional Architecture

The architecture described thus far lead to a functional architecture for the
distributed intelligent controller as shown in Fig. 5.6 and has multiple layers. The
distributed intelligent controller interacts with the machine/process environment and with
other distributed intelligent controllers through the external physical /O interface devices
such as sensors, actuators and communication media. The distributed intelligent controller
conceptually has two functional levels, the system level and the application level. The
system level in turn has three layers, the bardware layer, the distributed operating system
layer and the library layer. The application level also has three layers, the program layer,
the execution layer and possibly the planning layer. Every layer in turn is comprised of
multiple control agents.

The hardware layer is comprised of modular hardware entities that serve as the
physical platform for agents. The distributed operating system layer agents provide a
number of services to the agents of higher layers to interact with the lower hardware
elements and the external world. They provide services to create, maintain. destroy and
search agents of higher layers. They also help in separating hardware dependencies and
provide location transparency. The library layer agents is comprised of reusable software
in the form of standard Function Blocks and provide services to agents of higher layers or
become part of them.

The program layer agents consists of user defined function blocks as local
components of distributed control applications. The program layer agents also provide
services for higher level agents facilitating information gathering and reconfiguration of
operational strategies. The execution layer agents are involved in control tasks such as

executing intelligent control strategies. fault diagnostics, fault recovery, data acquisition,

92

scheduling and decision making. The optional planning layer if present, would consist of

agents that will be involved in strategic long term planning.

r 3
A Planning
P 4 + 4
P
L
I) v
c E xecution o c
A Lialg
T Ulc |
b T| M| |P
o Program o L
- wlo < e
y ElOoly X
Yl Flo |t
Library D Y
A
s T
Y A
i_ Opr. System
T v
M
Hardware Legend
* Hardware
w Input/Output |Sensors, Actuators & Com. Media | Dependency
o
R S Soft Real
r E) - Time
D nvironment l Machine/Process I g HardReal
d Time

Figure 5.6: Functional Architecture

The lower layers, namely, operating system., library and program layers are
predominantly hard real time since they have to respond immediately to internal/external
events. On the other hand, the execution and planning layers are predominantly soft real
time involving high variance execution periods. As one traverses down the multiple layers
the following can be noted. The available time to respond, and the complexity of
operations and hence the processing time decreases with lower layers. On the other hand
the volume of raw data to be processed increases. Also the notion of agency ie. the
amount of intelligent responsibility delegated by the agents decreases progressively.

The means to engineer reference architecture described thus far involves a number

of critical issues that need to be resolved. The following section discusses these issues.

93

5.6 Critical Issues

A distributed control environment is predominantly aperiodic and asynchronous
event driven, having variable and unknown communication and computation latencies.
being subject to overloads, having resource dependencies and conflicts. Despite such run-
time uncertainties, the distributed intelligent controller must exhibit predictable timeliness
for distributed trans-node applications. Hence it becomes the responsibility of system level
software to provide adequate facilitiess and guarantees to meet distributed control
requirements.

Distributed control intrinsically consists of multiple computations on multiple
nodes which collectively perform an application that none could perform alone. This is
accomplished by close, many-to-many, cooperation among peers through coordinated
actions. However, since the computational agents are distributed. cooperation and
coordination is accomplished through real time communications. This is equivalent to
multitasking in a centralized multiprocessor, but with longer cooperation time constants
due to inter-node communication latencies.

An ideal distributed control system is one that creates a single virtual centralized
controller by providing single logical view of entire system. Inorder to create a single
logical view. a distributed control system requires abstractions in terms of location
transparency, network transparency, integrated priority based scheduled communications.
flexible trans-node inter-task synchronization and communication mechanisms, distributed
clock synchronization, fault-tolerance. and maintenance of high degrees of trans-node
consistency.

Location transparency refers to the ability of an application software module to be
independent of the target platform it will eventually be configured. It aiso refers to the
ability to be independent of location concerns for its distributed counter parts. For
example, as shown in Fig. 5.7, an application module may be configured for node 1 or 3
with its counter part at node 2. Because of location transparency incremental software

development and reuse is facilitated. In the above example, application modules may be

94
configured twice on node 1 and once on node 3, one each for different application.
Location transparency in conjunction with appropriate programming techniques also

facilitates online dynamic reconfigurability.

Node 1 Node 2| Node 3

Figure 5.7: Location Transparency
Network transparency is the ability of application programs to be independent of

physical network protocol characteristics. In other words, the system level software must
abstract certain properties such as packet size, addressing, priorities., deadlines and
medium access control from application level software. The system level software must
also provide for multi-homed nodes with multiple types of networks. This would require
sophisticated logical addressing and packet routing mechanisms. However, the application
software is oblivious to the presence of such diverse components and interactions among
them.

Maintenance of trans-node timeliness constraints requires prioritized and scheduled
communication. It is important to distinguish between priority based message passing and
prioritized scheduled communications. The former is found in most extant operating
systems. and involves queuing/processing of messages according to their priority effective
at local processor level. The Ilatter prioritizes and schedules all real time network
communications and the transmissions are scheduled on a global basis thereby satisfying
distributed real time constraints. Scheduled communications ensure end-to-end timeliness
constraints of trans-node applications will be met. Unscheduled communication such as a
First In First Out (FIFO) approach will result in priority inversion, thereby violating
distributed real time constraints.

Scheduled communications must also be integrated with system level software for

proper reception. For example, consider the situation in which a particular task with a

95

certain priority is executing on the processor module of a controller node and a message is
received by the communication module. If the message is meant for a higher priority
waiting task, than the executing task, the communication subsystem must cause an
interrupt signal in the processor module to preempt the executing task and let the higher
priority task process the incoming message. On the other hand, if the message is meant for
a lower priority task, then the communication module should not interrupt the executing
task and the message has to wait in a prioritized queue till a suitable opportunity arrives.

Distributed control applications require efficient and flexible trans-node inter-task
synchronization and communication mechanisms. ‘Such mechanisms include binary event
flags. asynchronous software interrupts, mutexes, semaphores, message queues. To
accommodate communication requirements of real time and non real time tasks. various
techniques such as time critical asynchronous publisher-subscriber. synchronous client-
server and asynchronous client-server models of communications must be integrated into
network management and system level software.

Distributed control requires a global time base to measure time instants at which
events occur. intervals between events and to establish the causal order of events. Hence.
the system level software must support synchronization of local clock with global clock
and among other local clocks. Further, distributed control involves multiple failure
domains. Examples of such domains include network overload or failure, failure of an /O
sub-system and software induced errors. The system level software must mask such
failures from application programs and reconfigure alternative mechanisms dynamically.

Distributed or trans-node consistency refers to the maintenance of properties
among nodes that is essential for correct system behavior. Examples of such properties
include status information about trans-node resources and system level resources.
Distributed control involves explicit maintenance of consistency using run-time facilities
such as semaphores and locks. However, these facilities will have to be implemented with
real time communication based message passing and hence the implementation must

account for failure domains, medium access and communication latencies.

96

Because of such delays, deterministic inter-node consensus cannot be achieved
instantly at any point in time and will take finite amount of time that can be bounded. Even
though causal order of events may be established after a finite delay. the system mostly has
to operate in an incomplete environment due to constant influx of new events. Hence, in a
distributed control system. the usual problems associated with real time computing and
distributed computing, such as scheduling, priority inversion and deadlocks get aggravated
for the worse. Further, some of the traditional techniques that may be used in any of these
systems alone are no longer applicable.

Conventionally, real-time control systems are variations of time triggered systems
in which the task arrival rate and execution period are known a priori. The resource
management for these systems is performed off-line by application programmers statically
mapping the time constraints into fixed priorities. Such a simple approach is inadequate for
dynamic distributed control environment. Dynamic systems are characterized by the
asynchronous event driven nature, where neither task arrival times nor execution periods
can be predicted.

In order to ensure timely response in such an environment. scheduling and
resource management will have to be done in a dynamic manner. Further, autonomous
control systems have differing requirements for computation and scheduling at various
levels that are often conflicting with each other. For instance, the planning level has
non/soft real time requirements, the execution level has soft/hard real time requirements
and the control level has hard real time requirements. Obviously, the scheduling
mechanism should handle computations with and without real-time attributes
simultaneously to accommodate hard. soft and non real time computations.

The timeliness of a dynamic individual activity may be specified by a deadline time
constraint for completing its execution. The timeliness of an individual activity is a scoped
attribute of the activity i.e. timeliness is defined only within a scope. While executing an
activity outside time constraint scope. its scheduling eligibility is based on attributes other
than timeliness such as relative priority. Upon reaching the beginning of scope either

through synchronous execution or asynchronous event, the scheduling must be based on

97

deadline constraint as well. The status remains unchanged until the end of scope or the
expiry of deadline causing asynchronous exception.

Further, the dynamic environment introduces uncertainty about transient overloads
and there exists a possibility of scheduling not being able to meet deadline constraint.
Hence, a dynamic deadline failure handling mechanism is an important requirement for a
distributed intelligent controller to support timeliness and complex interactions. Such a
mechanism would facilitate remedial action to be taken in case of scheduling failure. The
mechanism must be flexible enough for both synchronous and asynchronous execution
scoping. Within a scope. the execution might be blocked due to reasons such as
preemption or resource contention. The mechanism should keep track of completed
execution and deadline periods to reschedule execution and to detect exception.

Metamorphic control system requires dynamic reconfigurability of all system
components. This includes online changes at hardware level, network communications,
system software level and application software level. Online changes involve ability to add.
delete or modify components without requiring to shutdown the system and to recognize
such changes immediately. For instance. online addition of a network communication
hardware should be immediately accessible through installation of network driver software
and transparent to the application level modules.

Given these requirements, the following sub-section identifies the limitations of

extant systems to implement metamorphic control.

5.7 Limitations of Extant Systems

Existing real time operating systems have severe shortcomings for realizing
metamorphic control. They do not offer many required services for distributed control. In
addition, such existing systems would cause a major control bottle neck on this
environment. With the exception of a few existing commercial real time operating systems,
none of them were designed for distributed system application. Even though these
exceptions offer location transparency they have severe limitations in other areas. Almost

all commercial systems offer network connectivity and provide UNIX like pipes and

98

sockets.

These existing implementations use a TCP/IP protocol layer with FIFO queues for
transmission control. They do not consider the relative priority of tasks nor message
transmission deadlines for mapping onto communication priorities. There are no explicit
communication scheduling mechanisms nor preemptive transmissions. In much the same
way, communication reception is based on FIFO queues and system level software does
not consider integrated message priority for reception. These features lead to unbounded
priority inversion among distributed control tasks.

All existing systems assume loosely coupled interactions between application tasks
and hence only provide synchronous client-server model of communication mechanisms.
No system level support is provided for time critical publisher-subscriber communication
model. Inter-task communication mechanisms are restricted to local processor level and
similarly synchronization mechanisms do not span node boundaries. Global clock
synchronization and fault masking are not considered at the system level. None of these
systems make any effort to maintain explicit trans-node consistency.

Invariably, all commercial real time operating systems offer fixed priority based
static scheduling. Static scheduling for distributed multiprocessor systems is not only sub-
optimal but also violates real time constraints. Changing the priority dynamically during
run-time does not soive this problem and at the best leads to unpredictable execution.
Further. none of them consider deadlines and do not provide dynamic scheduling
mechanisms. Hence the capability for detecting scheduling failures and executing remedial
action does not exist.

In short, existing commercial systems are meant for unit level time triggered
systems. They are not suitable for event driven distributed systems since they violate real
time constraints and become potential bottlenecks in such situations.

A proof of concept prototype metamorphic control system suitable for the event
driven distributed environment (such as holonic control) has been developed as part of this

dissertation research is as outlined in the following section.

99

5.8 Prototype Metamorphic Control System

A proof of concept prototype metamorphic control system has been implemented
by the author. through the development of a distributed real time operating system. a
programming model and an implementation library. and a system engineering interface.
Fig. 5.8 shows schematically, the components involved in this system. The physical
infrastructure of this system used commercially available hardware for target platform and
communications. The further details of the actual implementation are presented elsewhere
in this dissertation (see Chapter 9).

The run time environment for the distributed control agents of this system
comprises embedded target platforms with local components of the Distributed Controller
Operating System (DCOS). The operating system provides location transparent system
services to application programs and transparent services to interface with the
communication network hardware. The application programs are created using graphical
system engineering interfaces on one or more microcomputer hosts. The system
engineering interface provides facilities to cross compile applications for the target

platform. configure and maintain them. and to acquire run-time data.

Microcomputer
Host
System
Engineering
Interface

Intelligent Intelligent
Controller Controller
Node 1 Node 2
DCOS Agents DCOS Agents
App. Agents App. Agents

Distributed Intelligent Controller

Figure 5.8: Prototype Metamorphic Control System

100

5.9 Summary

In this chapter, a reference metamorphic control architecture for distributed
control of dynamic reconfigurable systems was presented. The architectural components at
manufacturing system, physical hardware, operational software and application software
levels were identified. The architecture is open and software centric, and uses a behavior
based heterogeneous multi-agent system to provide a uniform functional model. The
critical issues involved in the engineering realization of the reference architecture were
elaborated and the limitations of extant systems were discussed. Finally, the components
of a proof of concept prototype metamorphic control system which has been developed

during this dissertation research were outlined.

101
Chapter 6
The Distributed Controller Operating System Design

6.1 Introduction

Operating System software should be efficient and flexible and desirably should
survive a lifetime of changes without sacrificing either of these properties. Such changes
include portability to new advanced hardware and on-line extension and/or modification of
functionality for reconfigurability. The design of an operating system is central to achieve
efficiency and maintainability. Object oriented design can efficiently address many of the
issues associated with operating system development. An object oriented operating system
can support the sharing of common interfaces and code, incremental extensibility, and the
development of reusable software, by allowing methods which can take many different
types of objects as arguments.

An object oriented operating system is one in which the components are organized
as a protected dynamic collection of objects. defined by classes that are structured by
inheritance. All components of the operating system, from low level entities like page
tables and devices, to high level abstractions like memory regions and tasks are designed
and implemented as objects. Interaction between these components is through the sending
of messages between objects. The object oriented attributes of components are maintained
dynamically across and within the privileged and non-privileged operating modes of the
system.

In this chapter, the key concepts of operating systems and their design are
introduced. This is followed by a detailed description of the design of the Distributed
Controller Operating System (DCOS).

102
6.2 Operating System Concepts

In general, the purpose of an operating system is to provide programmers with an
abstraction that simplifies the programming and management of a controller's resources.
These resources include processors, memory, input/output devices and network interface
devices. An operating system should control and manage resources reliably and efficiently.,
and often must enforce policies on their use. Fig. 6.1 shows the conceptual components of
an operating system. The abstraction provided by an operating system is usually in the
form of a set of primitive operations providing resource access and control. Programmers
use these primitive operations, or primitives. when writing programs that need to obtain
operating system services. The set of these primitives will be termed the operating system's
application interface and programs using the services of the operating system will be

termed application programs or simply applications.

OS Daaa
OS Code Structures Processor

| 1

mov ax, bx
mul ax, ¢x

TRARNET

Applications

Devices

i
Tre Ty

_ System/Application
Barrier
Figure 6.1: Conceptual Operating System

The complexity and richness of application interfaces provided by operating
systems varies widely, but the common subset normally includes primitives to support
device input/output (/O), process creation/deletion, and memory allocation/deallocation.
Examples of the low level resource management functions that an operating system must
perform include handling interrupts from devices, or writing packets of data to a network

interface. Even where these functions have direct hardware device support, it is the

103

operating system's responsibility to supervise such resource management functions from
their initiation to their completion. Operating systems enforce policy decisions including
scheduling priorities of application programs, the amount of memory allocated to each
application, and how long each application shall be given the processor at a time.

Most operating systems impose a barrier between applications and system
functions and data in an attempt to maintain integrity of their data and function. and
ensure continuity of operating system services in the presence of potentially malicious or
erroneous applications. This barrier is called the system/applicaton barrier. The
system/application barrier encapsulates the internal components of the system by limiting
requests for system services to the operating system primitives. The primitives provide the
only way to cross the barrier. Depending on the particular controller architecture and the
requirements of operating system, the barrier may be enforced by hardware mechanisms.
or be merely a programming convention. If it is simply a programming convention.
malicious applications can circumvent the barrier.

The application interface primitives of an operating system allow delayed binding
of application requests to the operating system functions implementing desired system
services. Without such a delayed binding, applications would have to be linked together
with the operating system. or include in their data addresses of the system primitive
routines. The delayed binding permits the operating system to be changed without
modifying the applications. Most operating systems provide their application interface
primitives by an indirection through entry points into the operating system. The arguments
to such entry points include the operation to be performed and the arguments to that
operation. Such entry points decode the desired operation and its arguments, verify the
arguments are correct, and call the proper operating system function that implements the
service.

Avoiding corruption by application programs is just one part of the problem of
protecting system data and keeping it consistent. Operating system software must also
deal with potential inconsistencies in system data that the operating system software itself

might cause. For example, if multiple threads of control are executing the operating

104

system code, they might leave shared data in an inconsistent state unless they synchronize
their use of the data. Other potential inconsistencies can arise from interrupt processing.
Interrupts can occur at almost any time during a system's execution. If an operating system
is in the middle of updating system critical data and it receives an interrupt, the function to
handle that interrupt might need access to the same data.

If the interrupted routine had not yet finished updating the data. the interrupt
handling function might reference the data in an inconsistent state. Even worse. if the
interrupt handling function were to further attempt to update the data. it could compound
the problem by further altering already inconsistent data. The need to prevent potential
inconsistencies in shared data caused by concurrent accesses is generally termed
guaranteeing mutual exclusion. Protecting data from corruption during interrupts is
usually addressed on a uniprocessor by disabling interrupts. On a multiprocessor. this is
not enough; mutual exclusion is usually guaranteed by a combination of disabling
interrupts to prevent accesses by the same processor and using spin locks and/or

semaphores to prevent access by other processors.

6.2.1 Types of Operating Systems

The simplest type of controllers have no operating systems that is close to meaning
of the term, and have no need of them. Programmers using such a controller have
complete access to the entire machine. There is no protection mechanism to keep an
application program from accessing any device or memory location desired. Applications
for such controllers run sequentially. Each would reinitialize the machine for its use,
consume its input. perform its computation and produce its output. A program for such a
controller is, in a sense, simultaneously the operating system and an application. Operatirg
systems for some embedded control systems behave this way . An embedded system is a
control computer that is contained within a device whose primary purpose is usually not
programmable control.

In the absence of an operating system, a programmer has to write functions to

manipulate all the devices of the controller. These device manipulation functions are

105

difficult to write and must be duplicated in every application that uses the controller. For a
simple embedded control system this is usually not a problem as there is often only one
application ever written. But for controllers with multiple application programs
reimplementing these functions should not be required for every application. If the
functions are complex enough to warrant it, libraries of device control routines can be
written and used by application programmers to avoid having to reimplement them for
every application. These libraries could be considered crude operating systems or
executives.

If a controller has many application programs to run, both processor and
programmer time can be utilized more efficiently if each application does not have to be
written to perform all the initialization and device management required. The solution to
this problem is to create supervisor programs that initialize the controller and load and
execute applications one at a time. When an application blocks/finishes, the supervisor
program again takes control and reinitializes the controller for the next application. The
supervisor also manages all the device I/O requests for the applications. A supervisor is
implemented by localizing common I/O routines. leaving them always resident in the
memory, and allowing application programs to call them. These routines define the
application interfaces of such operating systems.

Many of today's unit level controller operating systems are designed this way.
Most of these systems are, however, unprotected operating systems. Unprotected here
implies that such systems lack hardware enforcement of their system/application barrier.
Without hardware support for protecting the operating system functions and data from
malicious or aberrant applications, such systems can be unreliable and easily corrupted.
However. since existing controllers only offer restrictive and proprietary programming
capabilities and tools, the lack of protection is not usually a problem. On the other hand,
open architecture control systems allow unlimited capabilities with respect to
programming which approaches that of a general purpose computer. In such systems.
having to reboot and reinitialize the machine every time any application has a bug is

unacceptable.

106

Modern processor architectures provide mechanisms that can be used by an
operating system for protection. These mechanisms include privileged execution modes
for processors and memory protection schemes. They prevent non-privileged application
programs from accessing the memory storing the operating system data and functions.
Operating system functions execute in the most privileged mode, allowing access to
system data and functions. Application programs execute in the least privileged mode
restricting them from accessing system data and functions. In addition. the least privileged
mode prevents the execution of certain processor instructions that might compromise the
systems security, for example, a set privilege mode instruction. The least privileged mode
is also usually denied any direct access to resources.

Disallowing applications direct access to system memory and resources enforces
the encapsulation of the hardware that the system provides. In such protected operating
systems. primitives are implemented with special supervisor call or trap, instructions.
These instructions raise the privilege level of the processor, and simultaneously jump to an
entry point within the operating system's memory. Operating system entry points are
functions that verify their arguments and then perform then requested service. Once the
system service is complete, the operating system lowers the privilege level of the
processor back to that of the application and resumes the application at the instruction
following the call/trap instruction.

A multi-tasking operating system allows multiple applications to reside in the
controller's memory simultaneously. The processor is shared by assigning it to an
application with the highest priority or criticality at any given point of time. This gives
more efficient utilization of a processor and its attached device§ by overlapping /O and
computation. Applications must be protected from one another in a multi-tasking system.
Multi-tasking operating systems must share controller resources (mainly memory) between
multiple applications. Support for this is usually provided by allowing multiple address
spaces that only the operating system can change between. Each application is assigned its

own address space and cannot reference any data or functions in other address spaces.

107

Multiple address spaces can be provided in many ways, including: base/bounds registers.
segmentation, and virtual memory.

As an alternative to building costly high performance processors, the proliferation
of low cost microprocessors has allowed system designers to build high performance
control systems out of a large number of small, inexpensive systems. Distributed real time
operating systems support such a control system. Each controller, or node in a distributed
system is connected to the others by some form of real time network allowing inter-node
communication. A distributed operating system provides an application the abstraction of
a single controller with all resources accessible through a uniform. location transparent
mechanism. Many distributed systems exchange information between programming
entities using messages. The entities are distributed across nodes in the system. Each entity
has a global identification. Messages are sent to entities in such a way that they are
independent of the entity's location. Operating system services are provided by such
entities and may reside on arbitrary nodes.

In summary, operating systems range from simple embedded systems, to I/O
library packages, to multi-tasking systems that protect themselves from applications and

applications from each other, to distributed systems.

6.3 Operating System Design Techniques

Many design approaches have been applied to structuring operating systems to
address associated software engineering issues such as extensibility, maintainability and
portability. Most attack operating system problems by decomposing the system into
smaller pieces. or modules, with well defined interfaces. Webster's dictionary defines a
module as: any of a set of units designed to be arranged or joined in a variety of ways.
Modularization is a major accepted technique to decompose and structure large software
systems. The key to a successful modularization technique is to determine the correct
granularity of these modules and to provide efficient data exchange between modules.

The following sub-sections give a brief overview of approaches to structuring and

modularization of operating systems. These techniques have evolved in response to

108

advances in hardware technology and improvements in software engineering techniques.
Each sub-section concentrates on a particular design philosophy and identifies its problems

in order to motivate the design approach put forth in this dissertation.

6.3.1 Uninterruptable Monitor Approach

One of the earliest operating system structuring techniques is that of a single
uninterruptable monitor program with a single thread of control. This type of system. in
effect, dispatches or calls application programs in much the way that it calls functions
within itself. An application program returns to the system under one of three conditions:
an interrupt from a device requiring service, a service request from the program to the
operating system, or the program's termination. Once the call to an application program
returns, the operating system services the interrupt or request (or deletes the terminating
program) and then resumes another (or possibly the same) program.

An operating system constructed as a monitor guarantees mutually exclusive
accesses to system information since there is only one thread of control allowed to execute
the operating system code at a time. While this thread of control is executing in the
operating system, interrupts are disabled, prohibiting all but explicit changes of control.
This makes implementation easier since the implementor can ignore such problems as
mutual exclusion and concurrent access to system data structures. The main problem of
such a design is the lack of scalability.

The frequency of calls to the operating system from interrupts and application
service requests is proportional to the number of application programs and devices in the
system. As the number of calls to the system increases. the time during which interrupts
are disabled increases because the rising amount of time spent executing in the system
routines. This in turn increases the number of interrupts that can be lost, or held pending
for a long time, thereby decreasing /O device throughput. A system structured to allow
only one thread of control accessing system data must. on multiprocessor architectures.

serialize simultaneous attempts to enter the system as the result of interrupts. This results

109

in a decrease in potential concurrent execution. Decreases in potential concurrency are
also seen as application programs must wait for each other to enter and exit the system.
The monitor technique protects system data from interference. but at the price of
scalability and performance. From a software engineering point of view. this approach has
many problems as well. Such a system imposes no guidelines on how to structure its
internals. Since all of the functionality of the operating system is placed within a single
module. maintenance is severely impacted. The system internals are not divided into
modules or sub-units that can be separately developed and maintained. This reduces
portability and extensibility. These problems could be solved, however. with a good

approach to further decomposing the monitor.

6.3.2 Kernel Approach

The kernel model of structuring an operating system is an attempt to remedy some
of the performance problems of the uninterruptable monitor approach, in particular. those
of scalability and device under utilization. It also attempts to further decompose the
components of an operating system. This model treats all computational entities as
processes. or threads of execution. Examples are application program processes. interrupt
handler processes, and device driver processes. The kernel is primarily an inter process
communication module. In the kernel model, an operating system is a set of concurrently
executing system processes that request services from this kernel. Applications are
likewise viewed as sets of concurrently executing processes that request services from the
operating system processes via the kernel.

The kernel provides a minimal set of routines that perform the basic functions of
inter process communication, process management, and interrupt processing. Higher level
operating system functions are built around the kernel by using processes. The kernel is
responsible for scheduling processes and directing interrupts to the proper system
processes. Interrupts are disabled while executing within the kernel. but since most of the
operating system functions are moved out of the kernel and into system processes,

interrupts are enabled more often, thus improving device performance. A kernel should be

110

capable of processing multiple requests concurrently as long as the processes are
programmed to use mutual exclusion to access system data. Therefore this approach is
applicable to multiprocessor architectures.

A minimal kernel needs only to manage inter process communication and direct
interrupts to the proper processes. Larger kernels may also create and delete processes,
provide memory management, implement the application interface primitives, and supply a
wide variety of other services. Kernels become more difficult to implement and maintain as
they get larger. The cooperating. concurrently executing process model is the most
valuable contribution of the kernel model. The extra concurrency provided by this model
improves on the monitor approach. The idea of decomposing an operating system into a
set of communicating and cooperating processes increases modularity thus aiding
portability and extensibility.

The problem of identifying which processes should handle which operating system
functions and further decomposing those processes. as well as the kernel itself. still
remains. However, the kemel model remains the basis for the construction of most

modermn operating systems.

6.3.3 Layered Approach

Layered systems attempt to decompose an operating system by structuring it in
small. easily understood, layers or levels. The processes or functions of the system are
separated into layers that provide successive abstractions of the operating system. These
layers are ordered by increasing level of functionality, and each layer depends only on the
previous layer in this ordering. Usually, the hardware is the lowest layer. and the
application interface is the highest layer. Many early layered systems divided an operating
system into layers of processes performing system functions. This made it difficult to
separate the logical activities of processes from the processes themselves.

In later designs, layers are built to reflect the functions in the system, thereby
imposing a functional hierarchy. Various processes in a system invoke these functions, but

processes are independent of individual layers. The lowest layer corresponds to the

111

hardware instruction set of the processor. Functions in higher layers can use functions
from lower layers. Concurrent processes within the operating system can access functions
at different layers within the hierarchy. Layering aids in implementation. debugging and
testing of the system. Layers enhance portability; if lower layers hide the hardware. only
these layers need to be changed when retargeting the operating system to new
architectures.

An implementor can ignore the implementation details of lower layers but still use
their functionality when designing and debugging higher layers. This improves
maintenance. For example, some layered systems use as their lowest layer the concept of
an abstract machine representing an idealized computer architecture. This reduces the
portability problem to reimplementing the abstract machine for the available computer
hardware. This also allows multiple virtual computers to be simulated on a single physical
computer by supporting multiple concurrent copies of the lowest layer each sharing the
physical computer. Operating system software can be developed and debugged on any of
the virtual computers and. when ready, be run directly on the physical computer without
any changes.

A major difficulty with building layered operating system kernels is determining the
layer in which a process or function belongs. Since each layer may only rely on the
processes or functions provided by lower layers, careful planning is necessary. Another
problem with layered systems can be performance. If a layered system is structured in such
a way that a layer has access to only the layer directly beneath it, performance can suffer
as requests must traverse several layers to achieve a low level service. It is more desirable
to allow a layer to access the functionality in any of the layers beneath it.

Perhaps the biggest drawback to layered systems is that the granularity of the
abstractions it provides (the layers) are too coarse. However, layering is orthogonal to
many other structuring techniques. When further decomposed into servers, as in the
message-passing approach or into the objects in object-based system as discussed in the
following sub-sections, layers can substantially aid the documentation and high level

understanding of a system.

112

6.3.4 Message Passing Approach

Message passing operating systems are systems based on the kernel idea. They
attempt to further decompose an operating system's structure. Message passing systems
use explicit send and receive operations to exchange information (messages) between
concurrently executing processes. Each of these processes (or often sets of processes) is
usually viewed as a server providing functionality to other client processes. References to
servers are obtained from name servers, which convert symbolic service names to
references to servers implementing the service. Each message from a client includes a
request to the server and arguments specific to that request.

In a message-passing system, all communication and computation is achieved by
explicit message exchanges between clients and servers. Messages are sent to servers and
replies are sent back. This message exchange may be synchronous, in which case the
sender does not continue executing until the reply is received. or asynchronous, in which
case the sender continues to execute and awaits the reply whenever desired. Processes
executing on behalf of application programs are often just consumers of services and may
not provide any of their own.

In message-passing systems the kernel is usually viewed as a server as well. It can
be composed of many processes; each of which executes on behalf of the system to
perform system management functions, for example, handling interrupts and creating or
deleting new processes. Processes desiring a service from the kernel send a message and
(optionally) await a reply just as they would do if requesting a service from another
process. Message-passing systems come in two forms, those that consider all message
receivers to be processes or servers directly, and those that consider message receivers to
be message ports read by servers.

In a message-passing system using ports, server processes poll selected ports when
ready to receive a message. in the other type of system. messages are sent directly to a
target process and are received the next time that process executes an anonymous receive

primitive. The receive is anonymous in the sense that the process simply receives the next

113

message queued for it. In a port-based system, the server process could selectively chose
which port to receive the next message from, giving more flexibility in assigning priorities
to messages. Message-passing systems work well in distributed environments. The only
support needed is to provide server identities that can be used independently of location
and message send and receives that can span machine boundaries. In this way. processes
on one machine request services on another machine in exactly the same way they request
services on the machine they are executing on: by sending a message and awaiting a reply.
Decomposing the operating system into a set of servers increases both portability
and maintenance. Portability is improved since only servers relying on machine specific
details need to be retargeted for new architectures. Maintenance is assisted by the
decomposition of system functions imposed by servers. One problem with such systems is
that a message send/receive is usually much more expensive than a normal procedure call.
Since any message send can potentially cross a machine boundary, arguments must often
be copied rather than being referenced of the stack of the sender of the message. Likewise,
the synchronization between the sender and the receiver imposes additional overheads. For
example, a context switch may be incurred from the sending to the receiving process.
Many system designers have gone to considerable extents to minimize message
sending costs. Having one process execute on the behalf of multiple servers can reduce
context switching costs. Since a high level abstraction likely makes multiple requests on a
low level abstraction. requests to low level abstractions are usually more common than
those to high level abstractions. Therefore, rather than starting with a complex scheme for
handling high level abstractions that will not easily and efficiently handle the low level
cases, it would be desirable to start with a simple scheme for handling low level
abstractions that is efficient and will scale up to higher level abstractions. This allows a

single paradigm to be used throughout the construction of the system.

6.3.5 Object Based Approach

Object based approaches to operating system design replace the kernel model of

communicating, concurrently executing processes, with a collection of communicating,

114

cooperating objects . Each object in the collection represents a particular logical entity of
the system. Objects can represent processes. memory ranges, communication channels,
devices, and many other operating system abstractions. Each object provides a set of
operations available to other objects in the system. These operations define the behavior of
the object and the interface provided to other objects.

In this model, objects invoke such operations by sending messages to other
objects. These messages are conceptually similar to the messages in the message passing
approach. The main difference is that sending a message to an object is always
synchronous and no explicit receive is needed. This encapsulation of behavior in object-
based systems closely parallels the software engineering concepts of modular
programming and data encapsulation. An object can send a message to any other object as
long as it has a reference to that object. Like the servers in message passing systems.
objects can reside on different nodes in a distributed system.

Object based approaches are more data-driven than message passing approaches to
operating system construction. They separate the abstractions of a system into different
modules (objects), each with a well defined function and interface. Objects address other
objects in a system by means of a reference or capability to the object. The reference can
define what permissions the invoking object has with respect to the object on which it is
operating. These references can be as simple as direct pointers to other objects, in effect
providing no permission enforcement, or as complex as capabilities in full protected
capability based systems. In a protected capability based system, only trusted objects can
modify and distribute capabilities. Some systems provide hardware support for this
protection. while others rely on indirection through a trusted manager of capabilities.

Object based approaches address many of the operating system engineering
problems efficiently. Sets of objects can be used to abstract the hardware and thus increase
portability. Objects also represent a small enough encapsulation to improve maintenance
and documentation. The main potential problem of object-based systems is. like message
passing systems, one of efficiency. Efficiency in an object based system is a function of the

expense. or weight. of objects and the implementation of message sends between objects.

115

Object based systems span a spectrum of implementations. At one end of this
spectrum are systems that use the object/message send paradigm to structure the servers
of message-passing systems. Objects encapsulate servers and object messages structure
the messages exchanged between clients and servers by automatically providing the
operation code and defining the types of parameters. The object interface gives structure
to the interface that the server presents to its clients and defines the messages sent
between the client and server. However, such systems suffer the same performance
penalties as message-passing systems.

At the other end of the spectrum are systems that use an explicit send/receive
paradigm to implement message sending, transfer control between objects by explicitly
weaving threads of control from object to object. In such systems, objects are usually
passive. Message sending is implemented with traditional procedure calls. The thread of
control of the invoking process enters the object to perform the operation. This reduces
synchronization and context switching costs and involves no added expense of argument
copying. The one problem with such systems is that. without the underlying message
send/receive paradigm, they require extensions to handle distributed cases.

Object based systems address the software engineering problems for operating
systems by decomposing its functionality into small modules (objects) with well defined
interfaces. Since objects and message sending can be made efficient enough, performance
is not a problem. Hence the DCOS architecture uses primarily an object based approach to

operating system design and is discussed in detail in the following section.

6.4 DCOS Architecture

The DCOS is a distributed real time operating system that provides deterministic
execution for multi-sensor based dynamic reconfigurable control systems. In theory, it can
provide location and network transparent services for applications distributed across
several thousands of heterogeneous processors. The system can be a loosely coupled
network of heterogeneous real time sub-networks under arbitrary hierarchy and the sub-

networks themselves being a loosely coupled system of heterogeneous uniprocessor and

116

multiprocessor sub-systems. It provides several features for autonomous metamorphic
control such as dynamic scheduling, integrated priority based scheduled communications,
dynamic reconfigurable applications and online extension/modification of functionality.

DCOS is a preemptive multi-tasking system for 32 bit processors and the
application tasks may be “heavy weight” processes or “light weight” threads. The
operating system provides explicit process and thread model of task management. A
process specifies the virtual address space boundaries within which multiple threads of
execution control can coexist. A thread represents an execution unit with separate stack
and task management data structure and is the individual unit of schedulability. The
threads within a single process can communicate directly with other through shared
memory. A process with only one thread of execution control is the equivalent of a
conventional heavy weight process.

The DCOS uses a layered object based architecture and Fig. 6.2 shows the local
components of distributed operating system. The architecture is comprised of four layers
with each layer further being sub-divided into system level agents, system support tasks
and user applications. These agents assume an abstract hardware that can be accessed
through interface objects. The actual implementation of interface objects/methods has the
hardware dependent components. Layer 0 is comprised of system and scheduler agents.
They provide core hardware independent functionality to manage controller hardware.
The scheduler agent is associated with managing the processor, while the system agent is
responsible for structured management of device hardware.

Layer 1 is comprised of timer agent, task agent. buffer pool memory agent.
segmented heap memory agent, message port agent, distributed shared memory agent and
semaphore agent. The timer agent provides hardware independent facilities to manage
system timer and clock, and virtual software timers. The task agent provides capability to
manage application level tasks with simple synchronization mechanisms. The buffer pool
memory agent and segmented heap memory agent provide flexible high level memory
management mechanisms for fixed and variable sized buffers respectively. The message

port agent provides client server type inter-process communication and synchronization

117
capability. The distributed memory agent provides primary mechanism for publisher
subscriber model of communications. The semaphore agent provides location transparent

resource management and synchronization capability.

Distributed Shared
Memory Agent

Super User Tasks.

UserTasks
Figure 6.2: DCOS Architecture

Layer 2 is comprised of device drivers, network interfaces and manager, dynamic

linker, system engineering interface agent and super user tasks. The device drivers are
hardware specific software modules that operate special purpose hardware such as /O and
motion control. Unlike conventional operating systems, software device drivers are not
statically linked into the kernel Instead they can be installed and removed online thereby
providing dynamic reconfigurability. The network interfaces provide access to physical
layer of various network devices through appropriate network specific protocol stacks. As
with the device drivers, network interface software can be added or removed dynamically
online. These protocol stacks are integrated by a network interfaces manager that also
provides capabilities such as mapping of logical to physical addresses and network

routing.

118

The dynamic linker provides the capability to incrementally load, relocate and link
new binary code modules and their symbols. It also provides facilities to remove such
modules dynamically. Unlike conventional operating systems. every process does not need
to have its own copy of executable code. The dynamic linker facilitates code sharing
among various processes thereby reducing memory requirements. As the name implies. the
system engineering interface agent acts as an agent on behalf of remote system engineering
interfaces distributed across microcomputer hosts. It coordinates remote management
commands from system engineering interface, and alarm and data logging requests from
systemn and application tasks. Remote management commands include addition/deletion of
new system and application software modules. creation/deletion of system and application
tasks and configuration of operating system resources.

Super user tasks are administrator defined tasks that run with special privileges as
compared to user tasks that run at Layer 3. As may be noted. though there may be
multiple super user tasks, there is only one super user process. The system/application
barrier is imposed between Layer 2 and Layer 3. Therefore the user tasks cannot access
system data structures and resources directly and have to use system primitives to access
them. Further. certain system services are considered privileged. Such services include
ability to configure operating system resources. add/delete device drivers. network
interfaces. logical to physical address information. and binary code modules. Such services
may only be executed by Layer 2 tasks such as super user tasks and system engineering
interface agent tasks. Since access to these tasks can be secured through an authentication
procedure, the operating system provides capability for security critical and safety critical
operation.

All the system agents are multi-threaded active objects that communicate with their
distributed counterparts through message passing. In a conventional server based message
passing operating system, every service request involves a send/receive operation. This
operation in turn involves a context switch with prionty inheritance by the server task.
This feature results in costly system services. Further. preemptibility is affected since

simultaneous service request by a higher priority task will have to be processed

119

sequentially. In order to avoid this undesirable feature, the object based system agents are
multi-threaded. This removes the need to inherit priority from sender and sequential
processing among senders. However, each thread of a system agent executes on a separate
stack from the user stack to protect system integrity. Though this involves a partial
context switch. it is not as costly as a full fledged one. This also means all system agents
execute under multiple contexts which introduces the need for proper synchronization and
atomicity of operations among threads to maintain integrity of system data.

In the case of a remote service request that needs to be accomplished through
message passing, special mechanisms are used and as shown in Fig. 6.3, typically. the
following steps are involved. Once a system agent identifies that a remote operation is
required on a remote object it constructs and transmits a remote request message with
required parameters on behalf of sending task. The sending task now blocks depending on
the type of transaction requested. Upon receiving a request, the remote system agent
performs the requested operation on appropriate object and constructs and transmits a
response message with results of operation. The system agent that sent the request
receives the response message and copies the result to the blocking task and unblocks it
for execution. All of this procedure happens transparently to the user task thereby
providing location and network transparency.

Whenever a remote operation is requested, the system agent also sets a watchdog
timer. so that an unreachable or erroneous transmission can be detected. If such an error is
detected, an appropriate error code is returned to the requesting task. This behavior of
sending and receiving messages by system agents is somewhat similar to that of servers in
a conventional message passing operating system. It should be noted that the system agent
on remote node processes the requested operation on a separate stack from those
belonging to local tasks in that node. to maintain system integrity. Because of this multiple
simultaneous requests are processed sequentially according to their relative priority. The
priority of a request is transmitted along with the request and is inherited by receiving
agent to allow for preemption by local tasks. The priority of a request is the priority of

requesting task.

120

Agent ol — Agent | :
User Task Object
Local Node Remote Node

Figure 6.3: Remote Transaction

The operating system also provides integrated priority based communication
scheduling. This mechanism significantly alters the way in which any communication is
transmitted or received. For instance, whenever a remote operation is required the priority
of the requesting task is mapped onto the network priority for communication. All pending
transmissions for a particular network interface are processed according to their relative
priority. Similarly, on the receiving end an incoming message is allowed to interrupt
execution of a local task only if its priority is higher than the priority of executing task.
Otherwise, the request message is queued for processing till suitable opportunity arrives.

Being an object based operating system, all the entities of system are represented
by objects. Examples of these system objects include tasks, semaphores. message ports
and memory regions. The system agents provide a number of services to create. modify.
manipulate and delete specific system objects. In fact all system service primitives
manipulate system objects. Being a distributed object based system, it is necessary to
provide location transparent mechanism to manipulate objects. For this purpose and to
maintain integrity direct access mechanisms such as pointers cannot be used. Hence an
indirect logical object addressing mechanism is used to reference all system objects. The
logical identifier of an object is required by all service primitives thereby providing
location transparency.

All system objects are assigned a logical object identifier that is unique throughout
the distributed system. As shown in Fig. 6.4, the logical object identifier is 32 bits in length
and has three major components: a node identifier, an type identifier and an object

identifier. The node identifier is 16 bits wide and represents the logical address of the node

121

in which the object resides. The type identifier is 4 bits wide and denotes the system object
type. The object identifier is 12 bits wide and represents a specific object. Together, these
three components provide a way to uniquely identify a particular object. The logical
identifier of an object is returned by any primitive that creates an object. Further, the
operating system provides a user assigned naming mechanism for system objects. Hence, it
is also possible to obtain logical object identifier at any point during an objects life through
its name. All the system agents provide dynamic name to logical object identifier look up
service.

31 16 12 0
{ Node Id | Type] Objectid |

Figure 6.4: Logical Object Identifier

The 12 bit object identifier is used by system agents to locate actual objects
efficiently through a table look up mechanism. The table is an array of pointers to
locations of system objects in groups of eight. Hence. system objects can only be added in
multiples of eight during DCOS configuration. The agents maintain tables by filling them
with valid pointers during configuration and system objects with flags indicating whether
they have been used. This feature helps in identifying an invalid object identifier. All
allocated system objects also have a pointer to their owner task, so that the legality of an
operation requested by a task can be verified.

It should be noted that barring few exceptions, a task can request an operation on
a system object only if it owns it. Ownership under normal circumstances belongs to the
task that created object. but can be transferred explicitly by one task to another through
transfer ownership primitives provided by all system agents. All system objects owned by a
task are considered as system resources allocated to this task and a list of all such
resources is maintained. If a task fails to return certain system objects through delete
primitives. before it terminates normally or abnormally, the system recovers all such
resources automatically. This also includes address space and physical memory. Combined

with protection, this resource recovery feature makes DCOS stable in the presence of

122

erroneous applications.

The system objects can be created with a visibility attribute that defines the
visibility of an object in the system. The visibility attribute can be one of local, regional or
global. A local object is visible only within the node it is residing. A regional object is
visible only within the nodes of a distributed intelligent controller. A global object is visible
on all nodes throughout the factory control system. The visibility of an object determines
whether a name lookup service in a remote node will reference this particular object.
Depending on the visibility attribute, the distributed database throughout the system is
dynamically updated. whenever an object is created or deleted. It is the responsibility of
user to define a unique name for every system object to accomplish unique name to logical
identifier mapping.

The service primitives provided by system agents are classified into two categories:
configuration services and real time services. The configuration services are used to
configure operating system such as adding a number of system objects that could be
instantiated by user tasks later. The real time services are used during run time by
application tasks for control All real time tasks execute in a deterministic manner with
O(1) cost. while all configuration services execute with a varying cost of O(N). The
notation O(1) is used to denote deterministic execution with a constant computational cost
always. while O(log2N) or O(N) is used to denote that the worst case computational cost
for the operation is proportional to log:N or N, respectively. Irrespective of service type.
all primitives are preemptible while in kemel mode and hence DCOS provides

deterministic performance.

6.5 Summary

In this chapter, the concepts of an operating system and its design were reviewed.
After discussing various design strategies, an architecture that is primarily object based but
incorporating some features from other design methods was presented. This architecture
was used to implement the distributed controller operating system with metamorphic

control capabilities and is discussed in the following chapter.

123

Chapter 7
The DCOS Implementation

7.1 Introduction

The DCOS is an object based distributed real time operating system that integrates
important operating system techniques such as virtual addressing and paging, fully
reentrant kernel, multitasking through abstractions of processes and threads, support for
multiprocessors, integrated network management and location transparent distributed
services. The system is distinguished from other distributed real time operating systems by
its implementation as a protected, multi-programmed distributed real time operating
system for high speed reconfigurable multi-sensor based control systems. It is based on
object oriented techniques and provides an object oriented application interface to access
system services.

In this chapter, the details of DCOS implementation are discussed. The various

agents, their service primitives and algorithms used are also presented.

7.2 Implementation Details

The programming language used to implement an object-oriented operating system
can drastically affect its performance. The implementation language chosen for DCOS was
C++. This is mainly due to the advantages of statically typed object-oriented languages.
along with the added advantage that, although they violate the pure object-oriented
paradigm. being a superset of systems language C, C++ allows certain low-level
programming techniques necessary for the easy and efficient implementation of an
operating system. In particular, the language allows the programmer to specify an object’s
representation in memory. to place objects at a specific address, to predetermine the size
of an object and to use inline assembler directives to directly manipulate hardware.

Specifying an object's representation in memory is necessary to allow classes to

represent hardware defined entities such as device or processor control registers and

124

device command/control messages. It is also necessary in order to allow data structures
specified by certain standards, such as the representation and the placement of fields in a
network protocol packet, to be encapsulated within objects that are instances of
representative classes. The ability to specify a new object’s location in memory is
necessary to allow addressing hardware specified entities as objects once representative
classes have been designed. Again, this includes entities like device registers or hardware
defined data structures that are often at a fixed location in memory. Finally. the ability to
precisely determine the size of an object is useful to optimize memory
allocation/deallocation for frequently instantiated classes.

C++ does not always faithfully implement the object-oriented paradigm. mostly
due to the backward compatibility maintained with C. It can. however, be used as an
object-oriented language and allows an examination of the advantages of object-oriented
programming applied to operating systems. C++ supports objects, classes, single and
multiple inheritance, and polymorphism. However, every value in a C++ program is not an
object, in particular. primitive types such as integers, floating point numbers and
characters are not objects that are instances of representative classes. This is a concession
to simplify code generation and optimization. Having such primitive types built into the
language allows a compiler to generate traditional C equivalent code for operations on
such types. Specifically, since no method lookup is done for such operations straight one-
to-one mappings to machine code exist and can be expanded inline in the generated code.

Another violation of the pure object-oriented programming is that C++ allows
direct accesses to instance variables. Perhaps the biggest drawback of C++ is that it
implements polymorphism only in the form of inheritance polymorphism and does not
support other types of interface signatures. This is mostly a concession to efficiency and.
along with static typing, allows C++ to implement a very fast method invocation scheme.
However, it forces the programmer to constrain the type hierarchy to the class hierarchy
i.e.. a concrete class implementing a desired signature must be a subclass of the abstract

class defining the signature.

125

7.2.1 Class Design

Fig. 7.1 shows the major classes used in the design of DCOS. As may be noted,
these classes fall into three distinctive sets. The first set is composed of classes that
implement basic and supporting functionality of DCOS. Classes Single Link, Singly
Linked List, Double Link and Doubly Linked List implement basic list management
functionality. Classes Segment, Ram Heap, Memory Manager and PMMU manager
implement low level paged memory management capability. Classes Packet, SEI Packet,
Message Buffer, Address Entry. Route Entry. Protocol Interface and Network Manager
implement low level communication and message passing capability. Classes Process
Context, Device. Async Info, Clock, Timing Info. Wait Info, Owner Info and Object Id
implement miscellaneous functionality required for system object and task management.

The second set is composed of classes that implement system objects, while the
third set implements functionality of system agents. OS Object is the super class of all
system objects, while OS Agent is the super class for all system agents. The individual
system agent is a friend class of its respective system object. For instance. System agent is
a friend of HW Device object, Task agent a friend of Task object and so on. Together
system agents and objects implement the requisite functionality of operating system in a
modular fashion. Hence, some of the OS functionality can be readily omitted by removing
appropriate classes. For instance, only system, scheduler. task and timer agents are

required for a minimum configuration.

Segment | |Single Link | | Singly Linked List | | Double Link | |Doubly Linked List
Async Info Timing Info Wait Info Owner Info Object Id
Packet SEI Packet | { Message Buffer Address Entry Route Entry
Protocol Interface | | Network Manager | | Dynamic Linker SEI Agent
Ram Heap { |Memory Manager | | PMMU Manager | | Process Context} | Device
OS Object
HW Device Semaphore Timer Message
Object Object Object Port Object
Proxy Distributed Segmented Buffer Pool
Object MCII}OYY Memory Object
Object Object
Task
Object
OS Agent
System Scheduler Timer Task
Agent Agent Agent Agent
Message Distributed Semaphore Segmented Buffer Pool
Port Agent Shared Agent Heap Memory
Memory Memory Agent
Agent Agent

Figure 7.1: Class Design

127

7.2.2 Virtual Memory Management

DCOS implements memory protection mechanisms using the virtual memory
management capabilities of modern processors. However, DCOS does not provide any
demand paged virtual memory management. This is so since disk file systems are not
typically present in controllers and swapping to file leads to unpredictable execution.
Virtual addressing and paging mechanisms are used to implement process address space.
Fig. 7.2 shows the memory partitions on a typical 32 bit processor providing 4GB of
address space. The 4GB address space is halved to implement a 2 GB per process data

segment that is read/write accessible to an user level application.

4GB
Process Process Process Per
1 2 3 Process
Data Data Data Address
Segment Segment Segment Space
2GB
Write
Code Segment Protected
Shared
256 MB |ecooeeeeeeeeeee e Address
128 MB foorro] Memory Mapped Devices Space
0 Kemel Segment

Figure 7.2: Virtual Address Space

The lower 2GB address space is shared by all the processes. This address range is
write protected from applications and is further sub-divided into three regions. The lower
128MB is set aside for kernel segment where the operating system code and data reside.
The next 128MB is set aside for memory mapped /O devices and the rest is set aside for
code segment. The code segment is the region where code for all processes reside. DCOS
provides dynamic code loading and linking capability and both the binary code and online
symbol table is shared. This results in significant savings towards memory requirements.

Fig. 7.3 shows a typical two level paging mechanism used by modern processors.

The individual page directory, page table and page sizes vary among processors along

128

with the hashing and lookup mechanisms. However, the typical logical to physical address
mapping involves following steps. An upper portion of the logical address is used to
identify a page directory entry in the page directory for current process. This leads to a
page table that is used in combination with middle portion of logical address to identify the
physical memory page. Finally, the lower portion of logical address is used to offset into
physical page to access requisite location. Most of this address translation process occurs
in hardware though it is the responsibility of operating system to set up appropriate

translation tables.

Page Directory
Pointer

]l

[Virtual Address |

| 2

Page
Directory
Page Table
Physical
Memory
Page

Figure 7.3: Virtual Address Translation

7.2.3 Hardware Dependencies

As mentioned earlier, the system agents assume an abstract hardware layer that is
accessed through interface objects and methods. These interface objects/methods
implement hardware dependent code to manipulate specific sub-systems such as priority
interrupt controller and programmable interval timer. Other hardware specific code
include context switching, floating point processing, bit manipulation, device I/O and

multi-precision arithmetic and comparison operations. The inline code generation facility

129

of C++ is used to efficiently integrate such code into operating system without any

overhead.

7.2.4 Application Interface

The application programming interface for system primitives of DCOS is also
object oriented. However, since the DCOS is a protected mode operating system imposing
a strict system/application barrier, the user tasks cannot access system agents or objects
directly. To circumvent this situation dummy objects are used. As shown in Fig. 7.4, these
dummy objects correspond to system agents on application side. The user tasks invoke

system primitives as methods on these dummy objects in usual manner. These dummy

objects in turn raise the execution privilege by jumping to a system trap and in the process

System
Object

switching stacks.

Figure 7.4: Application Interface
The system trap performs a high speed message dispatch to appropriate system
agent that checks the arguments and performs requested service. The result is returned to
the dummy object and the execution privilege is lowered along with stack switch in
reverse. The dummy object in turn returns a result to the user task for continuation. The

dummy objects are part of application software development libraries. This interfacing

130

technique uses normal C++ method invocation mechanism on objects and as a result
makes use of static type checking capabilities of compiler. It is also an efficient and low

overhead method for crossing protection boundary.

7.3 The System Agent

The System Agent provides a structured way to manage I/O device sub-systems. It
also provides facilities to manage external interrupts to the processor. It provides a
number of services to manipulate device hardware and software and their associated
interrupts. Due to protected nature of DCOS, all I/O instructions and memory accesses
are subject to privilege checking. Similarly, interrupt servicing software cannot be directly
installed by an application, nor will the operating system vector an interrupt request to
application level privileged software. Hence, the services of the system agent provide the
only way to install device manipulating and interrupt handling software. Further, all such
software needs to execute with operating system privilege level. Since this means that the
security and stability of operating system is at stake. only tasks with super user privileges
are allowed to install and maintain device manipulating and interrupt handling software.
The following sub-sections provide an overview of I/O devices. their control by processor

and services of this agent to manipulate them.

7.3.1 /O Devices

An /O device is a hardware sub-system of a controller that can perform input and
output operations. Examples of device sub-systems include input and output interfacing
modules with sensors and actuators, serial communication devices, network interface
cards and special purpose modules such as motion control and vision processing modules.
Devices are usually available as self-contained modules that can be plugged onto a slot in
the chassis of a controller system. These modules communicate with the main processor
through a standard system bus. A open system bus architecture such as VME or PCI

provides the ability to connect a large and diverse number of devices to the controller

system.

131

Though there will be many hardware components to a device depending on its
purpose, the most important component from the operating system point of view is its
controller. A device controller is responsible for autonomous execution of the device sub-
system under the supervision of main processor. A device is manipulated by main
processor through its controller. Sometimes several devices may share same controller.
For instance, two serial communication devices may share a single controller. The
existence of device controller is transparent to the end user.

The main processor communicates with a device controller in order to transfer
data and to set control parameters. For example, such a communication may be a simple
command to set the baud rate of a serial communication device or a complex command to
initiate execution of a small program (sequence of commands) in the memory by a
network interface controller. The controller of a device can be addressed by writing or
reading bytes at specific address in an address space. Each of these addresses correspond
to a control or data port of the controller. Depending on the processor architecture there
are two ways to access the port of a controller: memory mapped I/O address space and
I/O mapped I/O address space.

In memory mapped addressing, the ports of a device controller are mapped to a
range of addresses in the memory space of a processor. When a program reads from or
writes to these addresses the ports of device controller are accessed. Memory mapped I/O
has the advantage of simplifying instruction set, since no special I/O instructions are
required. Similarly no special protection mechanisms are needed other than normal
memory access protection mechanism. However, some amount of memory address space
is lost due to the allocation to device controllers. It also complicates the data caching
mechanism, since most modern processors/controllers use caching to improve their
performance. This problem can be worked around if the processor supports a page level
caching disable mechanism.

Some processors provide a relatively small address space dedicated to input and
output. This space is known as /O mapped input/output address space. This address

space is not accessible by normal load, store or move instructions used for memory access.

132

Instead, special in and out instructions are used. Further, in order to enforce protection
these instructions can be executed only by programs with sufficient privilege level A
disadvantage of /O mapped addressing is that it makes access of ports more difficult since
usually only a few addressing modes are provided with the /O instructions. Further,
exclusive access to an /O address range is complex to implement and requires special
mechanisms.

Accessing a port of a device controller from a high-level language like C or C++ in
memory mapped architectures is relatively easier than accessing a port in an architecture
that uses a dedicated I/O address space. In the former case a variable bound to the address
of the port can be used to access /O ports. Assigning to the variable is equivalent to
writing to the port, while reading the variable is equivalent to reading the port. In
architectures with separate I/O address spaces special inline assembler instructions are
needed to access a port. The system agent supports both forms of I/O addressing. subject
to privilege checking.

The synchronization between the processor and device controller requires a special
mechanism. For instance, the processor initiates an /O operation by sending a command
to the device controller. An example of such operation would be to initiate analog to
digital conversion in an /O interface module. The controller executes the command and
completes the operation after some time. The processor has to be notified when the
operation is completed in order to resume tasks waiting for this completion. One way to
accomplish this is through polling by main processor. However. this is very inefficient and
is unsuitable for high performance controllers.

Most modern I/O devices provide an interrupt mechanism to notify the processor
of a significant situation. Also, all open architecture system buses provide special interrupt
lines to communicate such signals to processor. Upon the occurrence of a significant
event, the device ccntroller raises an interrupt signal that is communicated to a priority
interrupt controller. The priority interrupt controller prioritizes all pending interrupts and
is selectively programmable by the processor to enable/disable specific interrupts. At any

point of time, the priority interrupt controller communicates the highest priority interrupt

133

among the pending enabled interrupt signals, to the processor. The processor receives the
interrupt signal if it has enabled interrupt processing.

The external IO interrupts are treated as special cases of exception by most
modern processors and the interrupt handling mechanism is similar to exception handling.
Most processors support up to 256 exceptions and interrupts. It is the responsibility of
operating system to initialize a special data structure of interrupt table containing the
pointers to individual interrupt handling routine along with information such as privilege
level required to access it. Upon the occurrence of an interrupt, the processor performs
several checks to ensure integrity and automatically vectors (jumps) to the interrupt
service routine pointed to by the said table. It is the responsibility of interrupt handling
software to gather further information about the interrupt and take required actions such
as acknowledgment and signaling of service completion.

Though the interrupt mechanism is very efficient in enhancing system performance,
it introduces special requirements due to its asynchronous nature. Care must be taken to
save execution context and to ensure system integrity through atomic transactions and
mutually exclusive access to critical regions and data. The interrupt handling mechanism
implemented by system agent reduces the burden on interrupt service routine for such

care.

7.3.2 Device Management

The system agent uses an abstract class Device to define virtual interfaces for
object of this type. This class defines method interfaces to Probe, Open, Close. Read,
Write and Control an I/O device. In order to define a new device driver, one simply has to
inherit from this class and override its member functions. Thus polymorphism is put into
use when actual method invocation on an object of this type takes place. A new device
driver object can be installed into the operating system dynamically by a task with super
user privilege through the services of the system agent. The system agent provides Create

and Delete primitives to install and remove a device driver object. The Create primitive

134

takes a reference to the device object and encapsulates it inside the system HW Device
object. ‘

The logical object identifier returned by Create primitive refers to the system
object. This identifier could be used in the Probe, Open, Close, Read. Write, Control and
Delete primitives of system agent. It should be noted that due to the protected nature of
DCOS. direct method invocation on a device object is impossible and will result in an
exception. The services provided by the system agent are the only way to indirectly invoke
a device object services. The services of the system agent raise the privilege level, switch
stacks. check memory reference arguments for access violation and redirect the invocation
to appropriate object. The result returned by this device object is returned to the original
task after lowering privilege level and reverse switching of stacks. All service primitives
except for Create and Delete can also be invoked from application privilege level.

The object oriented device management capability provided by system agent is
fundamental to online extension of metamorphic control functionality for DCOS. This
technique obviates the need to statically link in device driver software as in conventional
operating systems and the importance of this can be readily understood from the fact that
device driver software typically forms the single largest chunk of code in any traditional
operating system. The ability to dynamically install, remove or reconfigure device driver
software provides the capability to plug-and-play new hardware online, an important
requirement for metamorphic control.

Further, the flexible services of system agent and the dynamic loading/linking
capability for application software libraries (described in section 7.12) can be used to add
completely new functionality to DCOS online. An example of this would to add a disk
drive and a file system to DCOS. In fact multiple types of file systems can be implemented
on the same drive using multiple device objects. Careful design of device driver software is
necessary to provide transparent fault masking capability in operating system. Most of the
fault tolerance capability for metamorphic control system can be implemented through a
combination of fault monitoring agents with super user privileges and device driver objects

with fault detection/correction capabilities. This approach has been chosen for DCOS

135

because it is not only impossible to foresee and implement tolerance for all types of faults,

but would also result in a huge operating system.

7.3.3 Interrupt Management

Any real-time operating system must provide a mechanism for quick response to
externally generated interrupts to satisfy the critical time constraints of the control
application. The system agent permits quick interrupt response times by providing
deterministic worst case interrupt service latency and critical ability to alter task execution.
This allows for an executing task to be preempted upon exit from interrupt service routine.
The system agent provides an InstallISR primitive to install a interrupt service routine to a
hardware interrupt vector. This service is considered privileged and can be used only by a
task with super user privileges.

When an interrupt occurs, the processor will automatically vector to the interrupt
handling wrapper of system agent. The system agent saves and restores all registers which
are not preserved by the normal procedure calling convention for the target processor and
invokes the installed interrupt handling procedure along with the information about
interrupt vector number. The invoked interrupt service routine is responsible for
processing the interrupt, clearing the interrupt if necessary, invoking appropriate device
object(s) methods and any device specific manipulation. The interrupt service routine may
complete all the processing requirements itself, if such requirements are small or can
reschedule a server task to complete the processing by sending a signal, event or message
to it.

The system agent guarantees that proper task scheduling and dispatching are
performed at the conclusion of an interrupt service. A system call made by an interrupt
handling procedure may have readied a task of higher priority than the interrupted task.
Therefore. when the interrupt service completes. the postponed dispatch processing must
be performed. Interrupts are nested whenever an interrupt occurs and interrupts are
enabled, during the execution of another interrupt service. System agent supports efficient

interrupt nesting by allowing the nested interrupt services to terminate without performing

136

any dispatch processing. Only when the outermost interrupt service terminates will the
postponed dispatching occur.

Unrelated low priority interrupts can cause the effect of cycle stealing in a high
priority task, thereby causing it to miss critical deadlines. A protection mechanism is
therefore required by application tasks to avoid unwanted interruptions. The system agent
provides such a protection mechanism to application tasks through a SetinterruptlLevel
primitive. An application task can specify an interrupt level with this primitive and only
interrupts with priority level higher than the set level are allowed to interrupt execution.
The operating system maintains a tasks interrupt level whenever the task is executing by
restoring interrupt level across context switches.

Interrupt priority level O has the highest priority and numerically higher priorities
are at lower priority levels. Priority level O is assigned to timer interrupts and these
interrupts cannot be masked. All other priorities are masked according to application task
requirements. This protection mechanism also introduces potential problems by opening
the door for abuse. For instance, a lower priority task may block an interrupt meant for
higher priority task. To avoid this scenario, the system agent provides an overloaded
SetinterruptLevel primitive that can be used only by a task with super user privilege. With
this primitive. super user can specify the legal limit of interrupt level for a particular task
priority. When lower priority task requests for a high interrupt mask level that is not legal
for its own priority level, the operating system will choose the legal maximum. This

mechanism protects the interrupt masking facility of operating system from abuse.

7.4 The Scheduler Agent

The concept of scheduling in real-time systems dictates the ability to provide
timely response to critical external events. The scheduler agent provides this capability to
the real time distributed controller operating system. It is the responsibility of the
scheduler agent to allocate processor time to the highest priority task among various tasks
competing for attention. The scheduler agent provides a variety of static and dynamic

priority based preemptive scheduling mechanisms for this purpose. The flexible

137

mechanisms provided by the scheduler agent can be used for scheduling hard, soft and non
real time tasks of periodic, sporadic or aperiodic nature.

A periodic task is one which must be executed at regular intervals of time. Periodic
tasks can be characterized by the length of their period and execution time. The interval
between successive iterations of the task is referred to as its period and the deadline of a
periodic task is usually the same as its period. The execution time of a periodic task will be
less than its period and the ratio of execution time to period determines the processor
utilization by this task. Periodic tasks are typically of a hard or soft real time nature. As
noted earlier. hard real time tasks cannot afford to miss their deadline since it will result in
catastrophe, while soft real time tasks can afford to do so at the expense of quality.

A sporadic task occurs at irregular intervals of time but has a deadline before
which it must be completed. Sporadic tasks typically execute in response to external
events and usually have a minimum delay between the occurrence of same event. Due to
the dynamic nature of sporadic tasks it is generally not possible to predict processor
utilization. Sporadic tasks are also of hard or soft real time nature. In contrast. an
aperiodic task executes continuously subject to processor availability and not in response
to any particular event though it may make use of event information. It does not have any

deadlines to meet and is of non-real time nature.

7.4.1 Scheduling Mechanisms

The scheduler agent internally implements two different scheduling mechanisms.
The first one is a static priority based preemptive scheduling mechanism meant for non-
real time and unit level statically analyzable real time tasks. The second is a combined
static and dynamic priority based scheduling mechanism meant for dynamic deadline
driven hard and soft real time tasks. The existence of these two mechanisms is transparent
to application tasks. The scheduler agent automatically uses one of these mechanisms
depending on task context ie. when a task is within a dynamic deadline based real time
scope the dynamic scheduling mechanism is used, while it is outside the static scheduling

mechanism is used.

138

Among these two scheduling mechanisms, the tasks requiring dynamic scheduling
are given higher priority over others. In other words, tasks requiring static priority based
scheduling will be considered for execution only when there are no tasks requiring
dynamic scheduling. The reason being that deadline driven real time tasks are considered
more important than others. The rationale for using two different mechanisms is that only
tasks with complex real time requirements should have to pay the additional cost incurred
due to dynamic scheduling. Though the dynamic scheduling mechanism can be used for
static scheduling as well. it will lead to inefficient processor utilization due to higher costs.

The static priority based scheduling mechanism can be used to provide three types
of scheduling: round robin scheduling, time shared scheduling and rate monotonic
scheduling. In the manual round robin scheduling, a cooperative scheduling policy
involving voluntary relinquishing of processor by the executing task is used. The scheduler
agent provides a Yield primitive to voluntarily relinquish the processor. The tasks are
scheduled in a first come first served manner. In the time shared scheduling, all the tasks
get access to the processor resource for one time slice period at a time in an equitable
manner. The quantum value of time slice can be set by a super user task during
initialization. Time slicing for tasks can be enabled during task creation and tasks are
scheduled in a first come first served manner.

These two scheduling mechanisms can be used in conjunction with priority based
preemptive scheduling. In this case, the round robin and time shared scheduling
mechanisms are applied only when multiple tasks of equal priority are rsady for execution,
and the tasks of equal priority are serviced in a first come first served fashion. When a task
of higher priority become ready for execution, it preempts present lower priority executing
task. These two scheduling mechanisms can be only used with non real time tasks and are
commonly found in general purpose commercial operating systems.

As explained earlier. the rate monotonic scheduling (RMS) is an optimal
scheduling policy for static priority, unit level, time triggered real time systems comprised
of periodic tasks. If the periods and worst case execution times for a set of periodic tasks

are known a priori, the RMS can be used to guarantee that critical tasks will always meet

139

their deadline even under transient overload conditions. To do so, RMS calls for static
assignment of priorities based upon their execution period ie shorter a task’s period
higher its priority. After assignment, all tasks that meet their first deadline when started
together are guaranteed to be schedulable.

Static priority scheduling has an efficient and deterministic O(1) implementation
that always take a constant amount of time, irrespective of number of tasks ready for
execution. The DCOS provides 32 priority levels for tasks ranging between 0-31 with 0
being the highest priority. As shown in Fig. 7.5, the static scheduling mechanism makes
use of a bit pattern to indicate which ready queues corresponding to priorities have tasks
ready for execution. The ready queues are simple doubly linked lists that have O(1) cost
for insertion and removal at tail and head positions.

In order to identify the highest priority task, the scheduler agent performs a high
speed bit search that has O(1) cost for practical purposes and schedules the task at head
position of ready queue corresponding to bit index searched, for execution. Hence, all the
operations involved in static scheduling are performed in constant time. The term static
priority does not mean that a task cannot change its priority during run time. Instead it
indicates that the priority is not determined dynamically from deadlines. The scheduler
agent provides a service primitive ChangePriority to modify static priority during run time.

31 Bit Pattern 0

L frjofti]

Figure 7.5: Static Priority Scheduling
The dynamic scheduling mechanism of scheduler agent is based on a new

scheduling algorithm developed during this dissertation research and is a variation of the
Minimum Slack First algorithm. Similar to the Maximum Urgency First algorithm, it uses

two priorities, one static and another dynamic. Tasks are first prioritized according to their

140
static priority and among tasks with identical static priority, dynamic priority is used. The
dynamic priority of a task is its latest start time. The latest start time of a task is given by:
deadline - execution period. The deadline is calculated as: task arrival time + deadline
period. Tasks of equal static priority are resolved according to the ascending order of their
latest start times i.e. a task with an earlier latest start time has a higher priority.

The effect of using latest start times is same as Minimum Slack First scheduling.
However. the latest start time was chosen because of implementation considerations. A
slack is a relative quantity that changes with time as time advances. Hence. a queue with
delta slack times needs to be used, but a delta time queue will work if there is only one
static priority. On the other hand, latest start time is an absolute quantity and will work for
multiple static priority levels. In order to resolve static and dynamic priority efficiently,
they are combined into a single value as shown in Fig. 7.6. A 64 bit composite value is
encoded by assigning static priority to higher order bits and dynamic priority to lower

order bits. This encoded composite value is used to sort the priorities efficiently.

63 59 0
L 1 |
Static Priority Dynamic Priority
Figure 7.6: Encoded Priority

The encoded priority values might still result in ties. In order to break those ties
following rules are used. First an attempt is made to break the tie based on deadline
periods. A task with a shorter deadline period is accordéd higher priority. The rationale
being that shorter deadline periods indicate relative urgency. If the tie still persists, it is
broken using shortest processing times. The rationale being that in the case of transient
overload, choosing shortest processing time will result in proper completion of first task
and proper invocation of scheduling failure handling mechanisms for others, if needed. A
system clock with sufficient resolution will prevent a tie at this point. With a coarser
clock. the ties are broken based on a first come first served basis.

This dynamic scheduling mechanism is superior to any of the static or dynamic

141

scheduling mechanisms described earlier. It is better than static scheduling mechanisms
because it has a 100% schedulable bound and hence can schedule more tasks than rate
monotonic scheduling. At the same time, it ensures critical task set will meet deadline
under transient overload, which is unlike other dynamic scheduling algorithms. Further. a
pessimistic worst case estimation for task execution period need not be used. Since the
execution period can be changed dynamically, an optimistic estimate that reflects the
present conditions can be used. Similarly, the deadline period can be changed dynamically
to suit current requirements.

The dynamic priority scheduling mechanism though costlier than static priority
scheduling. has an efficient O(log>N) implementation. where N is the number of entities in
the ready queue. For all practical purposes this implementation can be considered to
provide O(1) performance. The implementation makes use of a variation of Binary Heap
[Gon91] data structure. As shown in Fig. 7.7, the Binary Heap is a balanced tree that
maintains partial ordering of entities in it. The ordering is partial since only the progressive
levels are guaranteed to be ordered and there is no ordering within a level. The insertion
and removal operations have a O(log:N) cost, since the heap needs to be adjusted after
every operation.

Binary Heap
Co > Level 0
(3 C2) Levll

DA DOE w2

Figure 7.7: Dynamic Priority Scheduling
The Binary Heap represents the prioritized queue of ready tasks and the highest
priority task is always at the first location. An important requirement for Binary Heap is
that the priorities need to be unique, since the Heap cannot distinguish between identical
priorities for ordering such as first come first served. The scheduler agent guarantees
unique priorities through tie breaking mechanisms described earlier. The variation from

original Binary Heap is due to facts that the scheduler agent generally improves

142

performance by deferring Heap adjustment after a removal operation and the Heap itself is
implemented as a collection of references to objects.

The scheduler agent provides two service primitives, SetDeadline and
ClearDeadline to specify real time scope. A task can enter real time scope in two ways:
synchronously or asynchronously. In order to enter synchronously, a task uses
SetDeadline primitive with set now option as one of the parameters. In this case real time
scope starts immediately and a deadline is set. If set later option is used as a parameter.
then the task will enter real time scope asynchronously at a later time. The entry happens
when a task blocks for first time after using SetDeadline primitive. This blocking may be
for anything that will happen or arrive, such as event, signal. message or resource access.
On the occurrence of such thing. the task enters real time scope and a deadline is set. The
SetDeadline primitive also takes the execution and deadline periods as parameters to

facilitate dynamic changes. The ClearDeadline primitive signals the end of real time scope.

7.4.2 Execution Services

The scheduler agent provides services to detect scheduling failure and take
appropriate actions. It can detect scheduling failure for tasks that use deadline driven
dynamic scheduling, since the requisite information is available only for such tasks. The
scheduler agent constantly keeps track of a tasks deadline and if the deadline is crossed
before end of real time scope, a scheduling failure is signaled. This is delivered to the task
as an exception through normal exception handling mechanisms described later. If the task
has installed an exception handler. it will be invoked to service the exception. The
exception is ignored otherwise.

The scheduler agent also provides services to profile task execution times
dynamically online. Since the intelligent controller is an embedded real time platform with
high variance loads, it is difficult to estimate execution times accurately by other means.
The scheduler agent profiles and provides timing information dynamically, so that it can be
used in calculations and scheduling. It provides two primitives. StartProfiling and

StopProfiling, for this purpose. It keeps track of actual time allocated to a task between

143

calls to these primitives. This time excludes periods when a task was swapped out of
context. The primitive GetTimingInfo provides access to timing information dynamically.

Such information includes maximum, average and minimum execution times.

7.5 The Timer Agent

The timer agent maintains the system clock, enables time slicing and time-out
mechanisms, and provides services to manage a number of virtual software timer objects.
It uses the programmable hardware timer through an interface object. to provide periodic
timer interrupts. Every interrupt corresponds to a clock tick and is delivered to timer agent
by handling procedure for timer interrupt. The value of clock tick is a variable initialized
by super user and is equal to an integral number of nanoseconds. The system clock is
maintained with nanosecond resolution that is updated every clock tick, hence the
granularity may not be same as resolution.

The system clock maintains absolute time and is valid for approximately 18 years
from the time it was started before an overflow. As shown in Fig. 7.8. the system clock is
maintained as two 64 bit unsigned integers, base and increment. Base number is used
initially to store the number of nanoseconds from the start of a nearest base leap year, tll
the time system was started. The increment stores the number of nanoseconds elapsed
since the start of system and is updated every clock tick. The summation of these two

quantities reflects the system clock and is used to derive time of day.

Base Nanoseconds Ticked Nanoseconds

1

Total Nanoseconds

Conversion

System Time

Figure 7.8: System Clock
The time of day is calculated into Gregorian calendar format, by making suitable

144

adjustments for leap years and century leap years. The timer agent provides two service
primitives, GetSystemClock and SetSystemClock to access time of day in Gregorian
format. The latter primitive is considered a privileged service and only tasks with super
user privileges can change system clock. When the system clock is changed to correct drift
from global clock, only the base number of system clock is modified in appropriate way.
The new base number is then used in subsequent calculations for time of day to reflect
updated time.

The timer agent provides service primitives Create and Delete to instantiation and
removal of software timer objects. Once created a timer object may be used to set either
interval timer alarm or time of day alarm or periodic alarm. The timer agent provides
service primitives SetWatchDogAlarm, SetDayClockAlarm and SetPeriodicAlarm for this
purpose. The alarm notification is available either in the form of synchronous event flag or
asynchronous signal delivery (described in next section). The notification mechanism may
be specified when the alarm is set. The service primitive CancelAlarm may be used to reset
a set alarm timer object.

All time out values for timer objects, except for time of day alarm and for service
primitives by other agents are specified in nanoseconds using a 64 bit unsigned integer.
The time out queue is implemented using an efficient time wheel data structure that is a
variation of original schemes proposed in [Varg87]. Instead of using a single delta time
out list that is used in most operating systems and provides O(N) worst case performance,
a time wheel data structure as shown in Fig. 7.9, is used to provide O(1) average case
performance. Though the theoretical worst case performance is O(N;), where N; is the
number of elements in the i queue, the performance is O(1) for all practical purposes.

The time wheel structure is comprised of / number of queues. where / is a prime
number that is greater than or equal to the estimated number of time outs active at same
time. A time out value is subtracted with base nanoseconds and divided by the quantum
clock tick. to obtain the incremental tick ¢ at which the timer should expire. The timer is
then inserted into the queue that is ¢ modulus / away from first queue. All the queues have

their elements sorted according to ascending order of expiry time. The first queue of time

145

wheel is the queue that is processed when first clock tick occurs.

Figure 7.9: Time Wheel Structure
Subsequent clock ticks advance and process the next queue on the wheel.
Processing a queue involves checking whether any time outs on this queue has expired, if
so removing them and notifying the owner task. Processing a queue is usually a
deterministic O(1) operation with sufficiently large time wheel and finer granularity clock

ticks, since only rarely will two time outs expire simultaneously.

7.6 The Task Agent

The task agent provides services to manage user level tasks. A system level data
structure known as the task object is used to manage associated task. A task is an
independent thread of execution control, which can compete on its own for system
resources. As explained earlier, a task may be a separate heavy weight process or as a light
weight thread within a process. The task agent provides a Create primitive to instantiate a
task. A number of task attributes such as priority, stack size, time slicing. floating point.
process and visibility. may be specified with this primitive. The priority attribute specifies
the initial static priority of the task and may in the range of 0-31 inclusive. with O being the
highest priority. As noted earlier, multiple tasks can have same priority.

The stack size attribute specifies length of memory region to be set aside for stack.

The time slicing attribute specifies whether time slicing should enabled among tasks having

146

identical priority. The floating point attribute specifies if this task will make use of any
hardware floating point unit and enables saving and restoring hardware floating point
context during a task switch. This attribute is not applicable to floating point software
emulartion. It enables efficient context switches by saving and restoring hardware floating
point registers only for tasks that need them. The process attribute specifies if the task is
to be created as a separate process. The visibility attribute was described before.

As shown in Fig. 7.10, a task is always in one of the following states: non-existent,
spawning. ready, executing blocked. suspended and terminating. The transition among
these states is also shown in Fig. 7.10. A new task in the process of creation is in a
spawning state. Upon completion of this process. it makes a transition to ready state.
where it is waiting to be scheduled for execution. Upon scheduled for execution it enters
executing state. From this state it may be blocked or suspended from execution depending
on the mechanism used to stop execution. It will be readied for execution again based on

occurrence or non-occurrence of a requested event.

Ready .
<>

>

Figure 7.10: Task State Transitions

A task moves into the terminating state when task deletion process is initiated and

Blocked

moves into non-existent on its completion. The task agent provides Delete and KillTask

primitives to initiate deletion process. The Delete primitive is a suicidal service that is

147

requested by same task. The KillTask primitive is a more general primitive that may be
used by one task to remove another task. The second task may not even be in executing
state i.e. they may be blocked or suspended from execution. The KillTask primitive may
be used by a task to kill another task that is a thread within the same process. It may also

be used by a super user task to kill another task in a different process.

7.6.1 Task Services

The task agent provides a number of services for user level tasks. Such services
include changing priority, simple time delays, event flags. signals and exception handling.
The task agent provides a primitive ChangePriority to change the static execution priority
of a task dynamically. It provides two primitives SleepFor and SleepTill for simple time
delays. The first one uses an interval time out period for which the task will be blocked
from execution. while the second one is a time of day variation of same service. These two
services use default watch dog timer associated with a task and hence do not require a
timer object.

An event flag is used by a task or an interrupt service routine to inform another
task of the occurrence of a significant situation. Thirty-two event flags are associated with
each task. A collection of one or more event flags is referred to as an event set. Events are
independent of one another and are not queued. In other words. if an event is posted
more than once before being received, the second and subsequent posting operations have
no effect. The task agent provides a primitive PostEvent to set an event flag of a task
anywhere in the distributed system. It provides the primitive ReceiveEvent to wait for the
occurrence of an event set. A task can wait for the occurrence of any individual event in
an event set or can wait for the occurrence of all events in the set. Further it may poll for
the occurrence of an event set or specify a time-out condition.

The task agent allows a task to optionally define an asynchronous signal
processing routine through the SetSignalHandler primitive. A signal is to a task what an
interrupt is to the operating system. When the processor is interrupted. the execution of an

application is also interrupted and an interrupt handling procedure is given control

148

Similarly. when a signal is sent to a task, its execution path will be “interrupted” by the
signal handling procedure and hence signals are also known as software interrupts.
Sending a signal to a task has no effect on the receiving task’s current state except when it
is in a suspended state. In the latter case, the task will be readied for execution.

Thirty two signals are associated with each task and all of them are user defined
software interrupts. Similar to event flags, signals are not queued. Hence, multiple signals
of same type before first one can be delivered have no effect. The task agent provides a
service primitive SendSignal to send a signal to another task anywhere in the distributed
system. To deliver a signal the operating system constructs a simulated interrupt context
on the stack and invokes signal handling procedure with signal number as argument, if one
has been installed. Otherwise the signal is left pending till a handler is installed.

Signal delivery is not nested and multiple signals are delivered sequentially i.e. one
signal will not interrupt while another one is being delivered. The priority of signals are
predefined with signal O having highest priority. However, since signals are not nested.
they are also non-preemptive ie. a higher priority signal arriving when a lower priority one
is being delivered will have to wait till the lower priority delivery is complete. Signals can
be masked by using the SetSignalMask primitive. A signal set specifying the mask can be
installed dynamically by the task or from the signal handling routine. The masked signals
are left pending till their mask is removed.

The task agent allows every task to optionally establish an exception handling
routine through the SetExceptionHandler primitive. The exception delivery mechanism is
used by the operating system to signal exceptions to a task. The exceptions are classified
into timing exceptions, synchronous exceptions, asynchronous exceptions and fatal
exceptions. The timing exception is the scheduling failure exception discussed before. The
synchronous exception include the ones that is caused by invalid instruction operands such
as divide by zero and floating point exceptions.

The asynchronous exceptions include the ones caused by system hardware such as
bus error. The fatal exceptions include the ones caused by irrecoverable errors such as

segment access violation and certain double exceptions. The exception delivery

149

mechanism is similar to signal delivery mechanism, but has higher priority than signals.
Exception may be delivered while signal handling is in progress. Some exceptions such as
timing exception are ignored if a exception handler is not installed. while others result in
termination of task. An exception handler may recover ifrom certain exceptions such as

floating point exceptions by taking suitable actions.

7.7 The Buffer Pool Memory Agent

The buffer pool memory agent provides a high level memory management
mechanism for user tasks. Most of the dynamic memory requirements in high level
programming languages such as C/C++ are for fixed size data structures. A buffer pool
memory offers a high performance and low overhead memory management scheme for
such requirements than the regular variable sized memory block management scheme. A
pool is a physically contiguous memory area divided into fixed-size buffers that can be
dynamically allocated and deallocated. The size of pool memory area and buffers are user
defined with the restriction that minimum buffer size should atleast be 4 bytes long.

The buffer pool memory agent provides Create and Delete primitives to instantiate
and delete pool objects. The size of pool area and buffer can be specified during creation.
It provides Allocate and Return primitives to obtain and release buffers from pool objects.
These primitives fail with an error code if they detect inconsistency in a pool object and
deleting the object is the only way out. Inconsistency may be caused by an erroneous
application overwriting memory regions within process boundaries. The buffer pool
memory agent also provides a GetStatistics primitive to access usage statistics for a pool

object.

7.8 The Segmented Heap Memory Agent

The segmented heap memory agent provides an alternative high level memory
management mechanism that is flexible but costlier than buffer pool memory management.
A heap is a physically contiguous memory space from which variable-sized segments are

dynamically allocated and deallocated. The size of heap memory area is user defined and

150

there is an overhead of 8 bytes per segment to maintain segment information. The
minimum segment size allocated is restricted to 8 bytes and segments are always data
aligned on an eight byte boundary.

The memory allocation requests from a heap object by a user task are processed
using first-fit algorithm [Tan87]. In this algorithm. the available memory regions are
maintained as a list in arbitrary order and the first region that is larger than or equal to
requested size is allocated. If the allocated region has a larger size than requested, then it
is fragmented. Upon return to the Heap, a free segment is coalesced with its neighbors on
both sides. if any or both of them are free. to produce the largest possible unused region.
This algorithm provides quick and satisfactory response so long as the heap is evenly
fragmented. Hence it is advisable not to club widely varying segment sizes into same heap.

The segmented heap memory agent provides Create and Delete primitives to
instantiate and delete heap objects. The size of heap area can be specified during creation.
It provides Allocate and Return primitives to obtain and release segments from heap
objects. These primitives fail with an error code if they detect inconsistency in a heap
object and deleting the object is the only way out. Inconsistency may be caused by an
erroneous application overwriting memory regions within process boundaries. The
segmented heap memory agent also provides a GetStatistics primitive to access usage

statistics for a heap object.

7.9 The Message Port Agent

The message port agent provides highly flexible communication and
synchronization capabilities among tasks through port objects. As shown in Fig. 7.11. 1t
provides a N-to-1 type asynchronous client-server model of communication i.e. N tasks
can send messages from anywhere in the distributed system to same port that will be
received by one task. Synchronous communication model can be readily realized with
ports on either end and there is no limit on number of ports a task can own. A message has
a fixed length to ensure real time performance and has a length of sixteen bytes to store

user defined information. Messages can be posted to ports using FIFO, LIFO or prionty

151
order. 32 priority levels ranging from O to 31 inclusive are available with O being the
highest priority.

Senders

Figure 7.11: Message Ports

The message port agent provides Create and Delete primitives to instantiate and
delete port objects. FIFO ports can be specified during creation, otherwise priority ports
are created by default. It provides Send primitive to post a message on a port according to
specified priority. A negative priority would mean that the message is to be queued in
LIFO order at specified priority. Positive priority has no effect on a FIFO port. while any
negative priority would mean message is to be queued in LIFO order. There is no limit on
number of messages that may be queued in a port. Messages can be received by a task
using Receive primitive in the queued order one at a time. If no messages are available, a

task may poll or wait with a time out condition for receiving new ones.

7.10 The Distributed Shared Memory Agent

The distributed shared memory agent provides an all software shared memory
mechanism with strictly consistent multiple reader-single writer model and 16 bytes fixed
page size. Despite the name, it is actually a mechanism for publisher-subscriber model of
communication that is crucial for distributed real time systems. As shown in Fig. 7.12, a
task can create a publisher object with desired visibility and write onto it from time to

time. Depending on visibility this data is published over the network. Another task can

152

read the published data by opening a subscription to it.

Network
Broadcast/Multicast

...

Figure 7.12: Distributed Shared Memory

The distributed shared memory agent provides Create and Delete primitives to
instantiate and delete publisher objects. It provides the Write primitive for task owning this
object to publish data. It provides Open and Close primitives to create and delete a
subscriber object for subscribing and unsubscribing to receive data. It should be noted that
a task cannot receive data by circumventing subscription. It also provides the Read
primitive to receive data by polling or by waiting with a time out. The Read primitive also
takes a data identifier as parameter and this number is used to identify whether the current

data is newer than one requested. Similarly when data is read successfully, the associated

data identifier is returned.

7.11 The Semaphore Agent
The semaphore agent utilizes standard Dijkstra [Dij68] semaphores to provide

synchronization and mutual exclusion capabilities. It supports both binary and counting
semaphores for controlling access to local and remote resources in a location transparent
manner. A binary semaphore can be used to control access to a single resource. In
particular, it can be used to enforce mutual exclusion for a critical section in user code
(Mutex). In this instance, the semaphore would be created with an initial count of one to
indicate that no task is executing the critical section of code. Upon entry to the critical

section, a task acquires the semaphore to prevent other tasks from entering the critical

153

section. Upon exit from the critical section, the task releases the semaphore to allow
another task to execute the critical section.

A counting semaphore can be used to control access to a pool of two or more
resources that may be physically distributed in the system. For example, access to three
identical devices could be administered by a counting semaphore created with an initial
count of three. When a task requires access to one of the devices, it tries to acquire a
semaphore thereby acquiring access to a device. If a device is not currently available, the
task can wait for a device to become available or return immediately to poll again at a later
time (Spin Lock). When the task has completed the operation with the device, it releases
the semaphore to allow other tasks access to the device.

Deadlock can occur when a task holding a binary semaphore attempts to acquire
that same semaphore and blocks as result. The semaphore agent prevents deadlocks by
returning with an error code on detection of such situation. Priority inversion is a form of
indefinite postponement which is common in multitasking, preemptive real time systems
with shared resources. Priority inversion occurs when a high priority task requests access
to a shared resource which is currently allocated to a low priority task. The high priority
task must block until the low priority task releases the resource.

This problem is exacerbated when the low priority task is prevented from
executing by one or more medium priority tasks. Because the low priority task is not
executing, it cannot complete its interaction with the resource and release that resource.
The high priority task is effectively prevented from executing by lower priority tasks. The
semaphore agent addresses this problem through the optional priority inheritance
algorithm. Priority inheritance is an algorithm that calls for the lower priority task holding
a resource to have its priority increased to that of the highest priority task blocked waiting
for that resource.

Each time a task blocks attempting to obtain the resource. the task holding the
resource may have its priority increased. The implementation of the priority inheritance
algorithm takes into account the scenario in which a task holds more than one semaphore.

The holding task will execute at the priority of the highest priority task blocked waiting

154

for any of the semaphores the task holds. Only when the task releases all semaphores it
holds will its priority be restored to the normal value. Priority inheritance is available as an
option for local binary semaphores. It is not supported for remote semaphores due to the
costly communication overhead.

The semaphore agent provides Create and Delete primitives to instantiate and
delete semaphore objects. The type of semaphore, initial count and optional priority
inheritance if applicable may be specified during creation. It provides Acquire and Release
primitives to obtain and release resources from/to local or remote semaphore objects. A
task can poll or wait for a resource to become available. In the latter case, it can specify a
time out condition in nanoseconds. If the resource does not become available within the

specified period, the Acquire primitive returns with an error code.

7.12 The Dynamic Linker

When a file containing source code in a high level language such as C/C++ is
compiled. the compiler generates an object file as output. An object file is the machine
code equivalent of its corresponding source file. Generally, it contains a text segment with
machine code equivalent for procedures and a data segment with machine representations
of global and static variables, objects, string constants, etc., global symbol definitions and
information that enables this module to be relocated. Multiple object files can be combined
together into an executable image file through the process of link editing or simply
linking.

The link editing activity maps each object module to a region of the run time
memory address space, relocates symbol references within a module to new locations.
resolves global symbol references across modules, allocates storage for the global data
structures and writes the resulting executable image into a file. Object modules to be
linked together may be in the form of individual object files or library archives. In the latter
case it is the responsibility of a link editor or linker to search through the library archives
to ensure all and only required modules are linked in. The format of the resulting

executable image file conforms to the specification by the operating system.

155

Most traditional operating systems support only static linking and program
loading. In static linking, the link editing step is carried out only once to produce an
executable image file. This image file contains all the information required to create a run
time process. The executable file is loaded into memory by a program loader that creates
run time memory regions and maps the image regions into memory regions as specified in
image. Static linking and loading requires that all global symbols be well defined at link
time. Static linking does not allow code to be shared across process boundaries and is not
flexible.

Unlike static linking, dynamic linking allows unresolved giobal symbols to be
defined during run time. Most modern operating systems support dynamic linking during
program loading and some provide facilities to accomplish dynamic linking at a later stage
also. The DCOS provides a kind of online dynamic linking that is different from most
operating systems. The dynamic linker allows user to add, remove. replace. or relocate
object modules during execution. In other words. application programs could be
downloaded on the fly and are allowed to change.

During the lifetime of its execution, a program may have new modules added. old
modules removed, or even evolve into a completely different program. For instance, faulty
portions of an application program can be replaced on the fly. Hence for a compiled
language such as C/C++, the traditional concept that the code of a program cannot change
during execution is no longer valid. All processes share same code segment facilitating
usage of single copy of machine code. This segment is write protected from all processes
for safety considerations.

The dynamic linker maintains an online symbol table of all object modules to link
with new ones. It also maintains an explicit reference list of relocations for every symbol
This list is used to restore the referencing locations to their original value, when a symbol
is removed online with its object module. A new object module with identical symbol as
old one. but with new code can now be linked in dynamically. Thus the dynamic linker
facilitates upgrading faulty code online. However, care must be taken to suspend tasks

from executing unreferenced locations during this period.

156

Code sharing requires binary object files containing position independent code.
Position independent code locates every symbol indirectly by indexing into an on-line
symbol table whose location is held in a special reserved register. This process causes a
severe degradation in performance. However, most of the capabilities of position
independent code can be simulated through object oriented programming. Hence DCOS
supports code sharing through thread safe programming and object oriented mechanisms.
The dynamic linker uses the Executable and Linking Format (ELF) [ELF94] for binary

object modules.

7.13 The Network Interfaces Manager

The network interfaces manager provides crucial ability for DCOS to function in a
distributed multiprocessor environment. The presence of network interfaces is transparent
to application tasks, but its services are used internally by all operating system agents. The
network interfaces manager implements a routing module and interfaces to multiple
communication protocol stacks. The protocol stacks in turn implement protocol related
services and interfaces to physical network driver software. It is possible for multiple
protocol stacks to share same physical network driver, thereby making it possible to
implement multiple protocols over single network.

The network interfaces manager uses a three level address mapping scheme to
provide maximum flexibility in terms of multi-homed network interfaces for multiple
network types. As shown in Fig. 7.13, the logical address of a node is first mapped onto a
network address and then onto a physical address. The logical address is same as the 16
bit node identifier discussed earlier. The network address is a 32 bit address uniquely
identifying a protocol stack. The physical address uniquely corresponds to a metwork
interface and has network specific format and length. It should be noted that a logical
address may be mapped to multiple network addresses. Similarly a physical address may

mapped to multiple network addresses. Hence, the reverse mapping is not as simple as

forward mapping.

157

Logical Network | Physical
Address Address Address
Figure 7.13: Address Mapping

The network address format has been adapted from Internet Protocol (IP) V4
[IP81]. As shown in Fig. 7.14, it is comprised of three portions, namely. net id, sub-net id
and host id. While the net id has a fixed length of 8 bits, sub-net id and host id have
variable length depending on sub-net mask length. As in IP. a sub-net mask is used to
identify whether the packet is meant for a specific sub-network. Addresses containing the
first octet between 128 and 223 inclusive are used as network addresses, while the ones
between 224 and 239 inclusive are used as multicast addresses. Address 255.255.255.255
is used as limited broadcast address, while x.255.255.255 is used as net x directed

broadcast address.
31 24 0

Net Id Sub-net Id Host Id
al
hd]

=x

Sub-net Mask Length

Figure 7.14: Network Address

A high level message is wrapped inside a protocol specific packet by the protocol
interface, which in turn is wrapped inside a physical network specific frame by the network
driver for communication. The frame is then scheduled for transmission according to
message priority. The message priority is mapped onto network priority if available, to
resolve global transmission scheduling. The network drivers perform actual transmission
of frames by interacting with network hardware or multiprocessor system bus as
appropriate. Conversely at the receiving end, the network driver receives a frame and
passes the enclosed packet to protocol stack which in turn passes the enclosed message to
the network interfaces manager. If the message was meant for local node it is passed onto

the appropriate agent for further action.
Fig. 7.15 shows a distributed system comprised of two networks. In order for the

158

message sent by node 3 to be received on node 1, it has to be routed by the network
interfaces manager at node 2. In this case, the network interfaces manager at node 3
forwards the packet to gateway node 2. The one at node 2 identifies that the packet needs
to be routed to another network and retransmits it on the second network to node 1. If the
system were to be more complex with multiple networks to pass through, a local network
interfaces manager routes a message by hopping it to nearest gateway. The routing and
address tables can be dynamically constructed by a task with super user privileges through

service primitives of network interfaces manager.
Net 1 Net 2

Receiver "o O* ~» Sender

Node 1 Node 2 Node 3

Figure 7.15: Message Routing

Sharing data within a heterogeneous distributed system poses a difficult problem
due to the varying data representation schemes used by different processor types. The
most pervasive data representation protlem is the order of the bytes which compose a data
entity i.e. little endian or big endian. Unfortunately, sharing a data structure between big
endian and little endian processors requires translation into a common endian format.
Other issues include representation of floating point numbers, bit fields. binary coded
decimal data, time, date and character strings. In addition, the representation method for
negative integers could be one's or two's complement and the floating point precision may
be of different word length.

In order to provide maximum flexibility and efficiency, the network interfaces
manager does not impose any specific data representation scheme. Instead, system level
messages are encoded into network specific schemes, while the application level data is

left untouched. This is necessary for data sharing among function blocks. since IEC 1499

159

requires a specific scheme for encoding data. The actual encoding in this case. can be
accomplished with the help of an application level software library. If needed. other

schemes for encoding data can also be accommodated simultaneously with suitable

libraries.

7.14 The System Engineering Interface Agent

As shown in Fig. 7.16, the system engineering interface agent acts as a remote
liaison for its name sake. It is a task or tasks if multi-threaded. with super user privileges
that helps the remote commands from any system engineering interface in a distributed
system be turned into local actions. It provides services to configure the local components
of DCOS from a remote station. It implements simple file transfer protocol to dynamically
download program distribution units and other data files into local platform. It also maps

the downloaded object modules to a memory regions within the code segment and initiates

the dynamic linking process.
| Commands
System System
Engineering Engineering
Interface Interface

OSAgents | QO O OO[H— SElAgent

User Tasks O O O

Node X

Figure 7.16: System Engineering Interface Agent
It provides services to dynamically unlink previous loaded files and unmap them
from code segment to recover memory. It provides services to create and delete tasks that

may be threads or processes, and query object identification. file location and symbol

160

location information. It provides services for local tasks to log messages on any remote
system engineering interface. It also provides services for logging real time data into
databases distributed among system engineering interfaces. In short, it acts as the primary

mechanism to implement manager function block discussed in chapter 4.

7.15 Summary
In this chapter, various components of the DCOS operating system and their
implementation were discussed. The important service primitives offered by these

components and the algorithms used were also reviewed.

161

Chapter 8
Application Development and Configuration

8.1 Introduction

The capabilities of a metamorphic control system can only be fully assessed with
complex control applications. The ease of modeling, development and configuration of
complex applications dictates the practical usefulness of a control system. As described
earlier. the metamorphic control architecture facilitates modeling of complex applications
using the powerful IEC 1499 function block specification standard. It should be noted.
however, that there is no unique way of modeling an application with function blocks.
Irrespectively, a model needs to be translated into corresponding application software for
execution with desired behavior and real time responses.

Much of the difficulty associated with development of distributed application
software is reduced by the location transparent services of DCOS described in preceding
chapter. The DCOS has been designed to provide genmeric and flexible support in
implementing event driven distributed control systems. As in modeling, it is possible to
implement a single function block model of an application in more than one way. This
chapter describes one feasible method for modeling with function blocks and development
of distributed application software in C++, using simple illustrations, with implementation
through DCOS primitives. A system engineering interface for remote software

development. configuration and status monitoring is also described.

8.2 Software Synthesis

As shown in Fig. 8.1, the application software development process involves four
major steps. The first step involves modeling of a distributed application with function
blocks. The boundaries of function blocks may arise naturally from application

characteristics or in some cases defined arbitrarily by system modeler. The second step

162

involves converting function blocks into source code supported by underlying DCOS
services. The code should produce equivalent run time behavior and satisfy real time
characteristics of function blocks. In the next step, the source code is cross compiled for
target run time environments to produce binary executable modules. In the final step. these
modules can be downloaded to target platforms and configured with run time data to
create a specific instance of application. It is possible to create multiple instances of an
application or parts of it depending on requirements. Software reuse is facilitated both at

source code development stage and at configuration stage.

Function Block
Model

1

Source Code
Development

1]
Cross
Compilation

!

Instance
Configuration

Figure 8.1: Steps in Application Software Development

The application software development process will be illustrated with two simple
sample applications, namely. PID application and publisher-subscriber application. While
the former illustrates simple function block network with client-server type
communication, the latter illustrates fault tolerant two way active redundancy network
with publisher-subscriber type of communication and incorporation of symbolic
intelligence in the form of fuzzy logic. Though these illustrations do not exemplify
development of intelligent reactive behavior based agents and their complex interactions,
they do involve the essentials involved in developing distributed agents based real time
control applications. Complex reactive behavior based agents and applications can be

readily built by scaling these fundamental concepts.

163

8.2.1 PID Application

As shown in Fig. 8.2, the PID application is modeled by four function blocks in a
sequential network. The E_CYCLE function block is a standard IEC 1499 function block
to provide periodic timer events. These events activate rest of the network periodically
providing behavior similar to traditional sampled data control system. The ADC, PID and
DAC function blocks are application specific, and represent analog process variable mput,
process controller and analog controlled variable output respectively. All four function
blocks in network may eventually be configured to a single controller node or assigned

two each to two distributed nodes or in any other combination.

e usescememmmesenetecntecsmenereorteee e e e et R e e = at® e eeiececumescseassotccetretey pomeecmeecemnsceaseneencanacsransneease

PID DAC

Figure 8.2: PID Application

Figures 8.3, 8.4 and 8.5, show event inputs/outputs, variable inputs/outputs and
execution control chart (ECC) details of application specific function blocks. The ADC
function block has two event inputs: EI_Init corresponding to initialization command and
EI_Sample corresponding to sampling process. The occurrence of EI_Init signifies
initialization event with Param as its parameter. This causes ECC to clear transition and
move to Init state. This causes initialization algorithm to be executed and on its
completion. EO_Init output event is issued. Similarly. EI_Sample input event causes
analog sampling process to occur and the converted digital data is mapped to PV output

variable with the issuance of EO_Sample output event.

EI_Init EO_Init
EI_Sample EO_Sample

164

=t EIl_Init

Init

EO_Init

3 EI_Sample

Sample | EO_Sample

4 1

Figure 8.3: ADC Function Block

El_Init

EO_Init

EI_Hold

Hold EO_Hold

—— 1

Figure 8.4: DAC Function Block

ADC
~8{ Param PV
=4 El_Init EO_Init
-1 E1_Hold EO_Hold
DAC
-84 Param
4 CV
EI_Init EO_Init
EI_Calc EO_Calc
A KP PID
] KD
B KI cv
B Sp
~ TP
—a— PV

—+— EI_Init

Init

EO_Init

- EI_Calc

Calc EO_Calc

Figure 8.5: PID Function Block
The DAC function block has two event inputs: EI_Init corresponding to

initialization command and EI_Hold for holding digital to analog conversion value. The

ECC functions similar to ADC function block, while the controlled variable data value for

EI_Hold event is passed through CV input variable. The PID function block implements

165

standard discrete PID equation and the values for proportional, integral and derivative
gains. set point and sampling time period are initialized through input variables KP. KI,
KD. SP and TP respectively. It also has two input events, EI_Init and EI_Calc for
initialization and calculation respectively. The ECC functions in a similar manner as other
function blocks, with the input process variable being mapped to PV and ouput controlled
variable to CV.

During normal operation of PID application, periodic events from E_CYCLE
function block activates analog sampling process. The completion of sampling process
activates PID function block for control, with value of converted digital process variable.
The completion of PID algorithm triggers digital to analog conversion and hold process,
with value of computed controlled variable. Thus traditional sampled data control is

accomplished in a event driven distributed control system.

8.2.2 Publisher-Subscriber Application

Fig. 8.6 shows the publisher component of second sample distributed control
application. It is composed of three function blocks: E_CYCLE. ADC and Publish. The
standard E_CYCLE function block provides periodic timer events to initiate analog
process variable sampling. The converted data is broadcast/multicast over network by IEC
1499 standard Publish function block. Two copies of the publisher component are
instantiated in two independent nodes by application for two way active redundancy fault
tolerance and voting. The voted values will be evaluated by subscriber component of
application for accuracy and validity through special logic such as continuity from past
data.

Fig. 8.7 shows the subscriber component of application which is composed of five
function blocks: 2 Subscribe, E_CYCLE. Fuzzy and DAC. The Subscribe function blocks
receive data from publisher component periodically and make the data available for use.
The standard E_CYCLE function block provides periodic timer events to Fuzzy function
block to read subscribed data and perform computations for control. The E_CYCLE

function block has same time periods as publisher components, but provides independent

operational even if a publisher component fails.

166

activation events to Fuzzy function block. This ensures that the application will be

Subscribe

E_CYCLE

Fuzzy

DAC

Figure 8.7: Subscriber Application Component

167

The Fuzzy function block utilizes both subscribed process variable values to arrive
at an accurate estimate of process status. The corrective action is computed through fuzzy
reasoning and the new controlled variable value is made available to DAC function block
for digital to analog conversion and hold. Similar to publisher components, two copies of
subscriber component are instantiated in two independent nodes by application for two
way active redundancy fault tolerance. It should be noted that publisher and subsriber
components are instantiated in separate nodes. As shown in Fig. 8.8, Fuzzy function block
has two input events, EI_Init and EI_Main for initialization and normal operation
respectively. The behavior of its ECC is similar to that of other function blocks.

EI_Init EO_Init |
EI_Main EO_Main .

h Param Fuzzy ~4— EL_Init = EI_Main
Init EO_Init Main EO_Main
1 PV1 Ccv
PV2 -+ 1
—~—

Figure 8.8: Fuzzy Function Block

8.2.3 Code Development

The function blocks described thus far can be readily converted into simple
distributed control agents. This is done through developing appropriate C++ classes
representing the behavior of these function blocks and instantiating objects of those
classes. However, instead of instatiating them as traditional passive objects, they are
instantiated as independent active objects (i.e. agents) through user level tasks of DCOS.
A local application component is defined within a single DCOS process boundary, with
function blocks as independent threads of execution control. The agents communicate

with each other through message ports provided by DCOS.

168

As shown in Fig. 8.9, classes for all function blocks are derived from class
BasicFunctionBlock. This parent class defines common interfaces and behaviors such as
ECC data structures, ECC execution and communication through message ports. The
child classes define function block specific variables, actions corresponding to ECC states
and initialize ECC state machine data structure. The event and data communication, ECC

execution and state action execution closely simulate the behavior of function blocks in

software.

BasicFunctionBlock

ADCFunctionBlock| |DACFunctionBlock| | PIDFunctionBlock | |FuzzyFunctionBlock

Figure 8.9: Application Class Design

Standard function blocks such as E_CYCLE, Publish and Subscribe are
accomplished through suitable DCOS objects and primitives to manipulate them. For
example, the functionality of E_CYCLE function block can be obtained by creating a
DCOS timer object and manipulating it through the service primitives of DCOS timer
agent. Similarly, the functionality of Publish and Subscribe function blocks can be obtained
through the creation of DCOS publisher and subscriber objects and manipulating them
with DCOS distributed shared memory agent primitives. Further details about application
code development with DCOS primitives are described in the DCOS programming manual
[Bala97). ‘

In order to achieve software reuse, the agents do not communicate directly with
each other. Instead the communication is redirected through call back functions provided
by respective application object during initialization. This technique facilitates reuse of the
same function block code in multiple applications with different network configurations.
The code development process described thus far is sufficient for simple sample

applications discussed earlier. For complex applications, additional mechanisms will have

169

to be used to ensure data consistency. Support for such mechanisms are available from

DCOS in the form of mutual exclusion and synchronization services.

8.3 System Engineering Interface

The system engineering interface facilitates remote management of distributed
control system using icons. As shown in Fig. 8.10, its functionality can be divided into
three areas. namely, programming interface, configuration interface and monitoring
interface. The programming interface facilitates remote software development and
software reuse. It provides standard libraries for data types, functions and function blocks
that are defined by IEC 1131-3 and 1499 standards. It provides support for development
of user defined data types and functions. These in turn can be used to develop user defined
basic and composite function blocks, and distributed applications. The programming
interface also provides cross compilation tools to produce binary object modules for target

controller platform.

System Engineering Interface
: "l;r.ogramming i Configuration : Monitoring
Interface : Interface : Interface
DaaType & || [Process/ |: : [Diswributed
i| Funcuion [:| Machine |: Data
: | Development & |: : | Configuration | ; : | Acquisition
: Library i | & Database
: [Function Block|; || Distributed |: [Graphical
: | Development & |: :| Controller |: Data :
Library | i | Configuration | : : | Visualization | :
Distributed | | :
:] Application |: :| Distributed |: Status :
: | Development &|: i | Application |: : | Messages & |:
: Library : | Configuration | : Alarms i

Figure 8.10: Elements of System Engineering Interface

The configuration interface provides facilities to configure process/machine

specific information such as distributed controllers involved in controlling them. It also

170

provides facilities to remotely configure distributed controller resources such as DCOS
system objects, networks and addresses. As indicated in Fig. 8.11, applications can be
“dragged and dropped” into controllers, at which point binary object modules are
dynamically downloaded to remote controllers and linked in. Application copies can bz
dynamically instantiated and configured with instance specific data. Facilities are also
provided to dynamically query information and status, and to unlink and unload binary

object modules from remote controller nodes.

- Data
Cross Source Code . ..
Compiler & Editor & Visualization
Database Assembler Libraries I _/_l
Application Library
Status Messages E Alarm Messages

1t a0 N |-
AN

Process/Machine View \ ControlledYiew

Figure 8.11: Application Configuration
The monitoring interface provides facilities to acquire remote real time data and
log them into a local database. It provides facilities to graphically view the acquired data in
the form of charts and trends. Remote application tasks can log status messages onto a
screen in monitoring interface. Similar facilities are also provided to log alarm messages
from remote controller nodes. The system engineering interface was developed in C++ and
uses capabilities provided by the system engineering interface agent on distributed

controller nodes to accomplish remote management functions.

171

8.4 Summary

In this chapter, the issues associated with development of distributed application
software were discussed. The four major steps involved in software development. namely,
modeling, code development. cross compilation and instance configuration, were
illustrated with simple examples. A system engineering interface developed for remote
management of distributed control system was presented. This system provides support
for off-line software development through a programming interface. configuration of
process, controller and application parameters through a configuration interface. and data
acquisition. visualization, continuous monitoring of system status and alarms through a

monitoring interface.

172

Chapter 9
implementation and Evaluation

9.1 Introduction

This chapter discusses details pertaining to implementation and evaluation of a
prototype metamorphic control system. In the following section, a brief description of
controller platforms and networking infrastructure used is presented. This is followed by
information pertaining to measurement of performance, methods of gathering timing data
and their usefulness. Also discussed are other time critical aspects of DCOS that affect
applications design and ultimate throughput. These aspects include determinacy, interrupt
latency and context switch times. The performance data for various operating system
service primitives are also provided. Finally. some of the tests used in the functionality

evaluation of implemented system are presented.

9.2 System Implementation

As Fig. 9.1 shows, the proof of concept system implementation is comprised of a
system engineering interface, a uniprocessor and a multiprocessor controller nodes.

The system engineering interface was implemented on a PC running Windows 95
operating system. It makes use of underlying socket based networking services and
graphical user interface to implement functionality discussed in preceding chapter. Local
database and data visualization capabilities were implemented using commercially available
software. Additional capabilities such as remote system management. application software
development. cross compilation tools, configuration and dynamic downloading. were also
implemented. The PC communicates with controller nodes using an Ethernet based local
area network and UDP/IP protocol.

Controller node 1 was based on a commercially available uniprocessor platform

running an Intel 80486DX 33 MHz processor. Programmable interval timer hardware was

173

available in the form of Intel 8254 chip and priority interrupt controller in the form of Intel
8259 chip. The platform used an ISA system bus wherein all system memory accesses
were through system bus making it slow. External devices were connected through
expansion slots of ISA bus and external interrupts were directed through standard
mechanisms of this bus. The local area network accesses were controlled by an Intel

82595 coprocessor.

System Engineering
Interface
Intel Pentium 100 MHz
PC & Windows 95 OS

Ethernet
UDP/TP

Controller Node 1
Intel 486DX 33MHz
Processor, Integrated
Floating Point Unit,

16MB RAM, Intel 8259
PIC, Intel 8254 PIT &

Controller Nodes 2 & 3
Dual Intel Pentium
150MHz Processors,
Integrated Floating

Point Units, Integrated
APIC & PIT, 16MB

Intel 82595 LAN RAM & Intel 82595
Coprocessor LAN Coprocessor

Figure 9.1: System Implementation

Controller nodes 2 and 3 were based on a commercially available multiprocessor
platform running dual Pentium 150 MHz processors. This dual processor architecture was
based on Intel multiprocessor specification [SMP95] and is shown in Fig. 9.2. The
architecture used PCI system bus for local system memory accesses and EISA system bus
for expansion slots. The external devices were connected through EISA system bus and
external interrupts were redirected from EISA bus to PCI bus. As shown in Fig. 9.2, the
interrupts were delivered to Intel 82489DX chip called I/O Advanced Priority Interrupt
Controller (APIC).

The /O APIC bus is connected to a special Interrupt Controller Communications
(ICC) bus which in turn is connected to local APICs integrated with processors. The /O

APIC can be programmed to deliver external interrupts to any processor on ICC bus and

174

local APICs can be programmed to deliver several types of inter-processor interrupts for
communication between processors. Both external and inter-processor interrupts are
delivered through ICC bus and simultaneous interrupts are arbitrated automatically by ICC
bus. The arbitration is based on dynamic priority mechanism that is programmable through
local and /O APICs.

8sP AP
PENTHUM (73580, 8151100} PENTIUM (73560, 815\100)
cPU1 CPU2
APICEN) LOCAL APICEN ; LOCAL
APIC APIC
AA TA
A . A I
INT R/ NTD |
NMI NMLLINTA |
INIT INT
SMW SHIN
ICC BUS
<€ —.— —e- >
3
¢ 3
s .
- o
INTS - T AP
v
Y :
=1 13 3

FERRM | FERR

_IGNNEM _ 1SAMPLING

%

XU
»
2
(3]

ABFULL ABFULL
TFE2ZWOIUSE] |SAMPLIN

PIRQO-3

© EOGEAEVELTRIGGER ,
 POLARITY.CONTROL : stave |
IRGB-?, } ma pic
Li‘!’hG'? s IMCR
Se Rl =

Figure 9.2: Dual Processor Architecture

175

Though this dual processor architecture was meant for symmetric multiprocessing,
the platform was suitably configured to provide asymmetric multiprocessing. This was
done since multiprocessor controller platforms typically perform asymmetric processing
only. Controller nodes 2 and 3 were assigned different resources for asymmetry. For
instance. controller node 2 had direct access to network through an Intel 82595 LAN
coprocessor and node 3 through shared memory and inter-processor interrupts, while
node 3 can communicate only with node 2 through shared memory and mter-processor
interrupts. This meant that node 2 had to act as router for node 3 for external
communications. Similarly, external interrupts were assigned asymmetrically among
processors.

Both processors made use of an integrated programmable timer to provide
periodic interrupts for maintaining system clock. The DCOS was augmented with device
drivers software for Intel 82595 LAN coprocessor and communicating with inter-
processor interrupt and local APICs. It was also provided with a connection less UDP/IP
stack as protocol interface for network interfaces manager. The DCOS messages were
transparently mapped to UDP/IP packets and in turn to Ethernet frames by network
interfaces manager through protocol interface and was communicated by underlying

device driver software.

9.3 Timing Analysis

The evaluation of the implemented metamorphic control system has proven to be a
difficult task. This is primarily because of two reasons: most of the metamorphic
capabilities are not quantifiable and there are no other similar event driven distributed
control systems available for comparison. Metamorphic capabilities such as dynamic online
extension/modification of functionality, ease of distributed control application
development and reconfiguration of applications are features that cannot be readily
quantified. Quantifying such features involve subjective evaluation which depends on need

and hence is not unique.

176

Table 9.1 shows qualitative comparison of major metamorphic control features of

DCOS against some of the popu]ai' commercial and research real time operating systems,
namely, QNX [QNX93], 0S-9 [Micro91]. VxWorks [WRS94], pSOS [ISI93] and Chorus
[Chorus96]. However, this comparison is not a straight forward process. since DCOS is
meant for event driven distributed control systems, while the others are meant for time

triggered control systems with network connectivity.

Table 9.1 - Qualitative Feature Comparison

Features DCOS | QONX | Chorus | VxWorks | pSOS | OS-9
Event Driven Dynamic X
Scheduling
Scheduling Failure Detection X
and Handling
Integrated Priority X
Scheduled Communications
Location Transparent X X
Distributed Services
Distributed Inter Task X X X
Communication

Publisher-Subscriber Model X
of Communication
Dynamic Online Code X X
Modification
Dynamic Online Functional X

Reconfiguration

When evaluating the performance of a distributed real time system, one typically
considers the following areas: determinacy, worst case interrupt latency, context switch

time. network latency, and service primitive times. Unfortunately, these terms do not have

177

unique meanings and standard measurement methodologies. The following sub-sections

provide term definitions, measurement methodology and performance data.

9.3.1 Determinacy

A system engineer must be able to predict the worst-case timing behavior of a
control application. In this context, it is important that a real-time system perform
consistently regardless of the number of tasks, semaphores. or other resources allocated.
Unfortunately. the performance of most operating systems is very sensitive to number of
entities in the system. They use the term deterministic to mean that the execution times of
their services can be calculated or predicted under a specific circumstance. However, this
usage is in sharp contrast to the notion of deterministic meaning fixed cost under all
situations and work loads.

An important design goal of DCOS was that all internal algorithms of real time
services be fixed cost. Almost all DCOS real time primitives execute in a fixed amount of
time regardless of the number of objects present in the system. The primary exception
occurs when a task blocks while acquiring a resource and specifies a non-zero timeout
interval. Other exceptions include obtaining a variable length memory block. remote object
manipulation and some configuration services. Though these services have variable cost.
they do not affect execution of other higher priority tasks, since they are preemptible.

In addition. the time required to service a clock tick interrupt is based upon the
number of timeouts which expire at that tick. However, with a fine grained clock tick the
average case expiry of timeouts is bounded to one. It should also be noted that even
though real time primitives have fixed cost. being a event driven system the number of
external events that can interrupt execution is unpredictable. But this is usually not a
significant factor since the frequency of interrupts and interrupt service times are limited

compared to the execution speed of processor.

178

9.3.2 Interrupt Latency

Interrupt latency is defined as the delay between receipt of an interrupt request and
execution of the first user specified instruction in an interrupt service routine. Interrupts
are critical component of event driven systems and it is necessary that they be acted upon
as quickly as possible. The worst case interrupt latency for an real time operating system is
based upon the following components:

1. the longest period of time interrupts are disabled by operating system

[\°]

for some microprocessors, the length of longest instruction

the time required for processor to vector interrupt

Rl

the operating system overhead at the beginning of every interrupt service

The first component is irrelevant if an interrupt occurs when interrupts are enabled,
although it must be included in a worst case analysis. The second and third components
are specific to processor hardware and are not dependent on operating system. The first
and second components are mutually exclusive and the longest of these two should be
considered. The fourth component includes the time necessary for operating system to
save registers and vector to user defined handler. Many real time operating systems report
only the first component as their interrupt latency and ignore other components.

The definition used in this dissertation uses all four components to accurately
reflect longest delay between receipt of an interrupt request and execution of first user
specified instruction in an interrupt service routine. It should be noted that this definition
does not include the components involved during simultaneous pending of multiple
interrupts. For instance, a higher priority interrupt might have masked lower priority
interrupts. These components are not accounted for since such information is available

only with system engineer and the occurrence of simultaneous interrupts is dyramic.

9.3.3 Context Switch Time
Context switch is defined as the act of taking the processor from currently
executing task and giving it to another task. This process involves selecting highest

priority task that is ready. saving the hardware state of current task and restoring the

179

hardware state of new task. The hardware state of a task includes general purpose data
registers. address registers, segment registers, control registers and paging registers. It
should be noted that if either or both task(s) use floating point registers they need to be
saved and/or restored.

A context switch is usually performed as part of a primitive's action or because of
an interrupt. For example, if a task is unable to acquire a semaphore and blocks. a context
switch is required to transfer control from the blocking task to a new task. Similarly an
interrupt might make a higher priority task ready causing the current task to be preempted.
In this case, the scheduling time for both preempting and preempted task should also be
taken into account. Many real time operating systems report only saving and restoring of

hardware state as context switch time. The remaining components should also be

considered for accuracy.

9.3.4 Network Latency

Network latency is composed of following components: operating system
overhead at sending end to map messages into communication packets. medium access
latency. transmission latency and operating system overhead at receiving end to map
packets into messages. Medium access latency is a variable component depending on
network load and message priority. Transmission latency is a variable quantity depending
on message length. Operating system overhead at receiving end is also variable quantity
since a message may not be delivered at the receiving end immediately depending on its
priority. Despite such variability network latency can be bounded and can be used to

calculate round trip time and end to end communication delays.

9.3.5 Service Primitive Times

Service primitives are the application’s interface to the operating system. and as
such their execution times are critical in determining the performance of an application.
For example, an application using a semaphore to protect a critical data structure should

be aware of the time required to acquire and release a semaphore. In addition, a system

180

engineer can utilize service execution times to evaluate the performance of alternative

means for synchronization and communication.

9.3.6 Methodology

All the times reported in following section except for the maximum period
interrupts are disabled, were measured on the controller node 2 running on the 150MHz
Pentium processor with 8KB integrated cache. This platform had a 2 wait state dynamic
system memory and 256KB external cache. The integrated 64 bit clock counter of the
Pentium processor was used to measure elapsed time with 6.67 nanosecond resolution. All
sources of external and internal interrupts were enabled to reflect measurement under
typical operation. The clock tick timer interrupt was configured for a period of 100usec.

The times were measured for multiple invocations under various loads and
situations, and averaged for better accuracy. The service primitive times were measured
end to end including argument passing, raising and lowering of privilege level, stack
switching and servicing by system agents. Times are provided for all primitives regardless
of whether or not they are typically used in time critical code. For example, execution
times are provided for configuration services such as object create and delete primitives.
even though these are typically part of application initialization.

As noted earlier all real time services execute with fixed cost and hence the
reported times of such services can be considered worst case performance. On the other
hand some configuration services execute with variable cost and the reported times for
such services should be considered average case performance. The maximum period
interrupts are disabled was measured manually by summing the number of clock cycles
required by each assembly language instruction within every block where interrupts were
disabled. Zero wait state memory was assumed and the worst case times included
instructions to disable and enable interrupts. The resulting clock cycles were converted to

reflect times on a processor executing at 15S0MHz.

181
9.3.7 Performance Data
Tables 9.2, 9.3,9.4, 9.5, 9.6, 9.7, 9.8, 9.9. 9.10 and 9.11 list the performance data

for system agent, scheduler agent, timer agent, task agent, buffer pool memory agent,
segmented heap memory agent, distributed shared memory agent, message port agent,
semaphore agent and miscellaneous primitives. respectively. The significance of
performance data reported in these tables is that these data can be used in designing
distributed control applications. The data can be utilized to analyze and calculate timing
information for operating system services used by a control application component. It can
also be used to ensure that the timing constraints of a distributed application would be
met. It should be noted that the performance data is implementation hardware specific and
can only be used to analyze applications designed to run on the infrastructure described n
previous sub-section. For the same reason, these data cannot be used for comparison with
real time operating systems, unless the performance data for those systems were also

measured on same hardware.

Table 9.2 - System Agent Primitives

Service Primitive Time Remarks
(usec)

SystemAgent.MapDualPortMem 11 Variable
SystemAgent. UnmapDualPortMem 19 Variable
SystemAgent. AddObijectlds 7 Variable
SystemAgent. AddObjects 6 Variable
SystemAgent. XferOwnership 6
SystemAgent.Create 3
SystemAgent. Delete 5
SystemAgent.Probe 6 Overhead Only
SystemAgent.Open 5 Overhead Only
SystemAgent.Close 5 Overhead Only
SystemAgent.Control 7 Overhead Only
SystemAgent.Read 7 Overhead Only
SystemAgent. Write 9 Overhead Only
SystemAgent.InstallISR 3
SystemAgent.SetinterruptLevel 3
SystemAgent. SetnterruptLevel 3 Legal Limit

Table 9.3 - Scheduler Agent Primitives

Service Primitive Time Remarks
(usec)
SchedulerAgent Yield 6 Overhead Only
SchedulerAgent. SetDeadline 12 Set Now Option
SchedulerAgent.ClearDeadline 5
SchedulerAgent.GetTimingInfo 7
SchedulerAgent. StartProfiling 3
SchedulerAgent.StopProﬁlinfL 4
Table 9.4 - Timer Agent Primitives
Service Primitive Time Remarks
(usec)
TimerAgent.GetSystemClock 11
TimerAgent.SetSystemClock 8
TimerAgent.NameToObject 5
TimerAgent. AddObjects 8 Variable
TimerAgent.XferOwnership 5
TimerAgent.Create 6
TimerAgent.Delete 7
TimerAgent.SetWatchDogAlarm 7
TimerAgent.SetDayClockAlarm 10
TimerAgent.SetPeriodicAlarm 7
TimerAgent.CancelAlarm 3
Table 9.5 - Task Agent Primitives
Service Primitive Time Remarks
(usec)
TaskAgent. NameToObject 5
TaskAgent. AddProxyTasks 7 Variable
TaskAgent. AddObjects 17 Variable
TaskAgent.Create 200 Varniable
TaskAgent.Delete 180 Variable
TaskAgent. ChangePriority 17
TaskAgent.SleepFor 15 Overhead Only
TaskAgent.SleepTill 17 Overhead Only
7

TaskAgent.SendSignal

182

Service Primitive

Time
(

e’

Remarks

TaskAgent.SetSignalHandler

TaskAgent SetSignalMask

TaskAgent.Suspend

Overhead Only

TaskAgent.PostEvent

TaskAgent.PendOnEvents

Available/Polling

TaskAgent. ThrowException

TaskAgent.SetExceptionHandler

TaskAgent.IdOfSelf

TaskAgent.KillTask

usec
3
2
7
7
4
7
3
3
7

Sending Kill Signal

Table 9.6 - Buffer Pool Memory Agent Primitives

Service Primitive Time Remarks
(usec)

BPMemAgent. NameToObject b]
BPMemA gent. AddObjects 8 Variable
BPMemAgent. XferOwnership 5
BPMemAgent.Create 10 Variable
BPMemAgent.Delete 10
BPMemAgent.Allocate 5
BPMemAgent.Return)

6

BPMemAgent.GetUsagelnfo

Table 9.7 - Segmented Heap Memory Agent Primitives

Service Primitive Time Remarks
(usec)
SHMemAgent. NameToObject]
SHMemA_gent. AddObjects 12 Variable
SHMemA gent. XferOwnership 5
SHMemAgent. Create 10 Variable
SHMemAgent.Delete 10
SHMemAgent.Allocate 7 Variable
SHMemAgent.Return 6
6

SHMemAggnLGetUsageInfo

183

Table 9.8 - Distributed Shared Memory Agent Primitives

Service Primitive Time Remarks
(usec)
DSMemAgent. NameToObject 5
DSMemAgent. AddSubscribers 29 Variable
DSMemAgent.AddObjects 14 Variable
DSMemA gent. XferOwnership S
DSMemAgent.Create 35
DSMemAgent.Delete 40
DSMemAgent.Open 10
DSMemAgent.Close 5
DSMemAgent Read 6 Available/Polling |
DSMemAgent.Write 22
Table 9.9 - Message Port Agent Primitives
Service Primitive Time Remarks
(usec)
PortAgent. NameToObject 5
PortAgent. AddObjects 11 Variable
PortAgent. XferOwnership S
PortAgent.Create 34
PortAgent.Delete 27
PortAgent.Send 13
PortAgent.Receive 7 Available/Polling |
PortAgent. AddMsgBufs 6 Variable
Table 9.10 - Semaphore Agent Primitives
Service Primitive Time Remarks
(usec)
SemaphoreAgent. NameToObject 5
Semaphore Agent. AddObjects 10 Variable
Semaphore Agent. XferOwnership 5
SemaphoreAgent.Create 31
SemaphoreAgent.Delete 34
SemaphoreAgent. Acquire 8 Available/Polling
SemaphoreAgent.Release 7

184

Table 9.11 - Miscellaneous Timing Data

Service Primitive Time Remarks
(usec)

SEIAgent.LogMessage 14

SEIAgent.LogData 20

Interrupt Latency 1.3

Context Switch Time 0.6

Floating Point Context 1.4 Save and Restore
Static Scheduling 0.1

Dynamic Scheduling 2

Network Latency 80

9.4 Functionality Tests

185

The functionality of the metamorphic control system was tested for proper

implementation and operation using a number of distributed control applications. The

process input/output requirements of these applications were satisfied through a multi-
function I/O board developed specifically for this purpose. As shown in Fig. 9.3, this
board has 8 analog to digital conversion channels with 12 bit resolution, 8 digital to analog
conversion channels with 12 bit resolution, 16 digital inputs and 16 digital outputs. Every
analog to digital conversion channel was equipped with a programmable amplifier
providing gains of 1, 10, 100 and 1000. The completion of conversion triggers the

configured processor interrupt, if enabled or can be polled by the processor, alternatively.

Programmable
Amplifiers

8 Channel
Digital to
Analog
Converter

8 Channel
Analog to Interrupt/
Digital Polling
Converter
16 Digital 16 Digital
Inputs Outputs

Figure 9.3: Multi-Function I/0 Board

186

The various analog and digital I/O can be accessed through their respective 16 bit
offset addresses from the base address of board. The board is designed for ISA system
bus and can be plugged into any slot of this bus. The board can be mapped into the proper
[/O address space of processor through configuration switches. Once configured. all
inputs and outputs are accomplished through reading and writing at appropriate /O
addresses. A software device driver for this board was written and configured with the
DCOS system agent for transparent access of functionality. The input/output function
blocks such as ADC and DAC function blocks described in previous chapter. were
accomplished by creating DCOS device object and manipulating it with primitives of
system agent.

The following sub-sections describe three of the test cases that were used in

functionality evaluation.

9.4.1 Test Case 1

The test case 1 was a simple frequency multiplication application. As shown in
Fig. 9.4. two square wave signals out of phase with each other, were combined together
through Boolean XOR operation to produce a frequency that is double that of source
square waves. As may be noted, the duty cycle of the resulting wave is controlled by the
phase shift between two source waves and the shape of the source waves, resulting in
effective frequency multiplied software pulse width modulation.

Fig. 9.5 shows the function block components of control application used to
generate the source and frequency multiplied waves. The IEC 1499 standard E_CYCLE
and E_DELAY function blocks are used to generate periodic events, while the standard
set dominant bistable function block E_SR and reset dominant bistable function block
E_RS are used to generate source square waves. The initialization parameters for
E_CYCLE and E_DELAY function blocks are used for setting up wave shapes and phase
shift among them. As the name implies, the XOR function block performs Boolean XOR
operation in an event driven fashion. The outputs of all waves are sent to digital output

points on the multi-function I/O board through the DO function block.

—

C=AXORB

R IaIahl

|

Figure 9.4: Test Case 1 - Frequency Multiplication

£

i E_CYCLE i E_SR
E_DELAY

187

=

XOR

05

E_CYCLE E_RS

|

E_DELAY

Figure 9.5: Test Case 1 - Frequency Multiplier

All the function block components of the frequency multiplier application were

configured on node 2 of metamorphic control system for evaluation. The tests were

carried out successfully by changing the shape and phase shift of source waves. The tests

188

were carried out at various frequencies of source waves ranging from 1Hz to 10000 Hz.
The significance of these tests was to evaluate high speed event driven multi-tasking,
timing and local messaging capabilities of the DCOS. The tests demonstrated these

capabilities adequately.

9.4.2 Test Case 2

As shown in Fig. 9.6, this test case involved conventional regulatory PID control
application. but implemented using event driven function blocks. As may be noted, the
application is comprised of three components. The details of function blocks in this

application were discussed in chapter 8.

ST ecetT. seccasecccccccccrrrnccenreteroY geccurssercssemcstamosmttssemtncmcsnone

PID DAC

é
I
:
i

Figure 9.6: Test Case 2 - PID Application

Fig. 9.7 shows the various configurations used to test this application. In the
instance 1 configuration, all 3 components of application were configured on node 2 with
an application cycle period of 1 millisecond. In the instance 2 configuration, component 1
was configured on node 2, while the other two were configured on node 3. The
application cycle period for this configuration was 2 milliseconds. In the instance 3
configuration, components 1, 2 and 3 were configured on nodes 1. 2 and 3. respectively.

The application cycle period for this configuration was 5 milliseconds.

189

Instance 3

[ci]lc |l
AN
/ \ .

i NN

Figure 9.7: Test Case 2 - Distributed Configuration

The tests were carried out successfully. once each for every configuration. The
significance of these tests was to evaluate location transparency, dynamic reconfiguration.
client-server model of communication and trans-node consistent operation capabilities of
the DCOS. These tests demonstrated the location transparency and dynamic
reconfiguration since a single copy of application was used in multiple configurations. The
client server model of communication was used to accomplish distributed control

involving trans-node consistent operations.

9.4.3 Test Case 3

As shown in Fig. 9.8 and 9.9, this test case involved a distributed control
application using the publisher-subscriber model of communication. The details of function
blocks in this application were discussed in chapter 8. The objective of this test case is to
demonstrate fault tolerant control using active backup redundancy techniques and voting
mechanisms. In this case, it is accomplished through two copies each of publisher and
subscriber components. Every subscriber component receives input data from both
publisher components (voting). The subscriber component decides which one to use
through fuzzy reasoning and computes the control output through fuzzy logic. The
significance of two copies of components is that at least one copy will function properly in

case one of them fails (active backup redundancy).

190

Figure 9.10 shows the configurations used in evaluation. In the first instance. one
copy each of publisher and subscriber were instantiated on nodes 1 and 2, and active
backup redundant copies were instantiated on nodes 2 and 3. respectively. The application
cycle period for this configuration was 6 milliseconds. In the second instance, one copy
each of publisher and subscriber were instantiated on nodes 1 and 3, and active backup
redundant copies were instantiated on nodes 2 and 1, respectively. The application cycle
period for this configuration was 8 milliseconds.

The tests were carried out successfully once each for every configuration.
The significance of these tests was to evaluate publisher-subscriber model communication.
location transparency, dynamic reconfiguration and trans-node operational capabilities of
DCOS. The tests demonstrated trans-node distributed operations primarily through
publisher-subscriber model of communication. However as mentioned earlier, the most
important aspect of this test case was to evaluate fault tolerant control through active
backup redundancy. To accomplish this one of the components was failed at random in
each configuration. The redundant component ensured proper functioning, thereby
demonstrating fault tolerance. It should be noted that N-way redundant fault tolerant

control can also be implemented through similar techniques.

Figure 9.8: Test Case 3 - Publisher Component

191

e cvas

Subscribe — - =

T A C 4
Fuzzy] DAC

Figure 9.9: Test Case 3 - Subscriber Component

Instance 2

Nodel [Node 2 | Node 3 }

N\ S/

\/Instance 1 X/
| Publisher I ISubscriberI

Figure 9.10: Test Case 3 - Distributed Configuration

192

9.5 Summary

In this chapter, the implementation and evaluation of a prototype metamorphic
control system was presented. The implementation details included description of
controller platforms and networking infrastructure. This was followed by discussions on
measurement of performance, methods of gathering timing data and other time critical
aspects that affect applications design such as determinacy, interrupt latency and context
switch times. The timing data for various operating system service primitives were also
provided and the significance of these were discussed. Finally, some of the test cases used

in the functionality evaluation of the implemented metamorphic control system were

presented.

193

Chapter 10
Contributions and Recommended Future Work

10.1 Summary

Real time control of autonomous and cooperative holonic systems requires a
radically different approach from traditional unit level control systems. Holonic systems
combine knowledge and material processing, and are evolutionary in nature to
accommodate changing requirements. Evolutionary systems require both static and
dynamic reconfigurability of their control systems. The control requirements of holonic
resources move away from being that of centralized to one of being distributed,
necessitating a system level approach. The dynamics of distributed control result in
complex behavior and can only be handled through an event driven control system.
Additionally, autonomous systems require incorporation of intelligence into their control
systems.

This dissertation addressed the engineering of software centric open architecture
control systems for cooperating networks of distributed autonomous resources. A
comprehensive software agent based metamorphic control architecture was developed for
dynamically reconfigurable distributed multi-sensor based holonic systems. This reference
architecture defined vital system wide components at hardware and software levels. It uses
IEC 1499 function block specification standard for modeling distributed applications. The
critical issues associated with development of dynamically reconfigurable event driven
control systems were also identified.

A prototype metamorphic control system developed as a proof of concept
implementation was presented. In this system, the core mechanisms required for
metamorphic control of distributed systems were incorporated into a distributed real time
operating system. These mechanisms provide flexible and extensive functionality for

implementing event driven control systems. One feasible method of developing distributed

194

application software from the function block specification was described. A system
engineering interface developed to address remote software development. configuration
and maintenance requirements of distributed control system was presented.

The performance of the implemented system was evaluated and extensive timing
data pertinent to design of distributed applications were presented. This prototype system
has adequately demonstrated the feasibility and usefulness of metamorphic control
architecture for distributed multi sensor based holonic systems. It should be noted that this
metamorphic control system is not restricted to “green field” applications. but can be

interfaced with “legacy systems” as well.

10.2 Research Contributions

The issues associated with design and development of intelligent control systems
for distributed, autonomous and cooperative manufacturing resources such as holonic
systems have not been addressed by earlier research. The objective of the research
presented in this dissertation was to develop a software centric open architecture
metamorphic control system for dynamically reconfigurable distributed multi-sensor based
real time systems. This has been achieved and this research is expected to have following
ramifications in the field of industrial controller research and development.

1. Earlier research in related fields of interest such as distributed computing, real time
operating systems, formal specification techniques and intelligent autonomous control
have yielded several significant results, albeit originally meant for different
applications. The integration of these results using a system level approach with focus
on dynamically reconfigurable distributed control systems has remained unaddressed.
By defining an unified, agent based metamorphic control architecture this research has
made an original contribution in the distributed control area. Further, the critical issues
involved with implementation of metamorphic control systems have also been

identified.

195

2. By developing a new distributed real time operating system incorporating the core

3.

functionality required for metamorphic control, this research makes the following
contributions to real time operating system research:
e It has an unique distributed object based architecture and deterministic
implementation that has implications for operating system design.
e A novel device driver management technique facilitating online extension of
functionality has been developed.
e A new dynamic mixed priority scheduling algorithm has been developed.
e A new integrated priority communication scheduling mechanism has been
developed.
This research is the only known work at the time of writing this dissertation, to
address significant distributed control issues associated with the implementation of the
emerging IEC 1499 function block specification standard. The incorporation of the
requisite functionality into the developed operating system led to the identification of
several important design and implementation issues that were communicated to the

IEC 1499 Standards Committee for consideration.

10.3 Future Work

The proof of concept metamorphic control system presented in this dissertation

breaks new ground but still leaves many features to be desired. The development of the

following tools should be particularly addressed in future work:

A generic visual programming interface for development of application software from
the IEC 1499 function block specification. This environment should be able to
generate code automatically with equivalent functionality of function blocks from
graphical specification. Such an environment would reduce much of the tedium
associated with textual code development. The issues associated with such an interface
includes development of a programming methodology that will produce consistent
code for a wide variety of situations and maintain data comsistency under

asynchronous event driven execution and communication.

196

A sophisticated system engineering interface with all remote management capabilities
required for class-2 user reprogrammable implementation as specified in the IEC
1499 standard. This interface should support remote debugging and performance
monitoring tools for function block code development and maintenance. It should also
support traditional human machine interface elements for development of customized
graphical operator interfaces.

A system analysis tool to verify if a distributed application under particular
configuration would satisfy critical timing constraints. Such a tool must use real time
performance data and current load on system hardware to analyze and/or simulate new
configuration. It should also support expert knowledge and intelligent reasoning
mechanisms to suggest improvements and modifications in computation allocations
and possible courses of actions.

A library of mechanisms for development of application specific intelligent execution
control agents to provide higher order autonomy and cooperation. Such mechanisms
should include hybrid reactive and deliberative reasoning techniques to incorporate
soft real time goal directed behavior to execution control agents. In order to be
compatible with hard real time distributed control agents. the execution control agents
will also have to use the IEC 1499 function block standard for behavior specification.
A prototype manufacturing application involving autonomous and cooperative
holonic resources. Such an application would act as a test bed for two purposes. First,
it can be used to experiment, refine and demonstrate capabilities of metamorphic
control system. Second, it can be used as a benchmark for comparison with other

types of traditional control paradigms.

[Albus91]

[Alurg&9]

[Arvin89]

[Baet91]

[Bala96]

[Bala97]

[Brooks86]

[Brooks91a}

[Brooks91b]

[Brooks91c]

[Bryan88]

197

References

J. S. Albus, “Outline for a Theory of Intelligence,” IEEE Transactions on
Systems, Man, and Cybernerics, Vol. 21, No. 3, 1991, pp. 473-509.

R. Alur and T. A. Henzigner, “A Really Temporal Logic,” Inn Proceedings
of 30" Annual Symposium on Foundations of Computer Science. 1989, pp.
164-169.

K. Arvind, “A New Probablistic Algorithm for Clock Synchronization, ” In
Proceedings of Real Time Systems Symposium. 1989. pp. 330-339.

J. C. M. Baeten and J. A. Bergstra, “Real Time Process Algebra.” Formal
Aspects of Computing, Vol. 3, No.2. 1991, pp. 142-188.

S. Balasubramanian and D. H. Norrie, “Intelligent Manufacturing System
Control,” In Proceedings of 1996 Canadian Conference on Electrical and
Computer Engineering, 1996, pp. 570-573.

S. Balasubramanian, DCOS Programming Manual, Division of
Manufacturing Engineering. The University of Calgary, 1997.

R. A. Brooks, “A Robust Layered Control System for a Mobile Robot.”
IEEE Journal of Robotics and Automation, Vol. 2, No. 1, 1986. pp. 14-
23.

R. A. Brooks, “Intelligence without Reason,” In Proceedings of 12*
International Joint Conference on Artificial Intelligence, Menlo Park,
Morgan Kaufmann, 1991, pp. 569-595.

R. A. Brooks, “Intelligence without Representation.” Artificial
Intelligence, Vol. 47, 1991, pp. 139-159.

R. A. Brooks, “Elephants Don’t Play Chess.” In P. Maes, Editor.
Designing Autonomous Agents: Theory and Practice from Biology to
Engineering and Back, London, The MIT Press. 1991, pp. 3-15.

E. A. Bryan, and L. A. Bryan, Programmable Controllers - Theory and
Implementation, Industrial Text Co., 1988.

[Chat92]

[Chen90a]

[Chen90b]

[Cheng88]

[Chorus96]

[Chris94a]

[Chris94b]

[Connell92]

[Crist89]

[Deme95]

198

Andy Chatha and Chantal Polsonetti, “Fieldbus Standard: We Need a
Winner,” Instrumentation & Control Systems, October, 1992, pp. 29-31.
M. Chen and K. Lin, “Dynamic Priority Ceilings: A Concurrency Control
Protocol for Real Time Systems,” Journal of Real Time Systems. Vol. 2,
1990, pp. 325-346.

Y. Chen and T. Chen, ‘“Implementing Fault Tolerance via Modular
Redundancy with Comparison,” IEEE Transactions on Reliability. Vol
39, No. 2. 1990, pp. 150-173.

Sheng Chang Cheng, John A. Stankovic, and Krithi Ramamritham.
“Scheduling Algorithms for Hard Real Time Systems - A Brief Survey,”
IEEE Computer, 1988, pp. 150-173.

-, STREAM API-v2 Kernel Architecture and API Specification, Version
1.0, Chorus Systems Inc., 1996.

James H. Christensen, Douglas Norrie and Christoph Schaeffer, “Material
Handling Requirements in Holonic Manufacturing Systems.” In
Proceedings of 2" International Conference on Material Handling
Research, Michigan, 1994, pp.1-22.

James H. Christensen, “Holonic Manufacturing Systems: Initial
Architecture and Standards Directions,” In Proceedings of First European
Conference on Holonic Manufacturing Systems, Hannover, Germany,
1994, pp. 1-20.

J. H. Connell, “SSS: A Hybrid Architecture Applied to Robot Navigation.”
In Proceedings of International Conference on Robotics and Automation,
1992, pp. 2719-2724.

F. Cristian, ‘“Probablistic Clock Synchronization,” Distributed Computing,
Vol. 3, 1989, pp. 146-158.

L. Demeestere, H. Thielemans, and H. Van Brussel. “HEDRA:

Heterogeneous Distributed Real-Time Architecture,” In Proceedings of 3"

[Dert89]

[Dij68]

[Dory93]

[Earl92]

[ELF94]

[Eric96]

[Erik96]

[Ezhil86]

[Firby94]

199

Workshop on Algorithms and Architectures for Real-Time Control,
Ostend, Belgium, 1995, pp. 517-524.

M. L. Dertouzos and A. K. Mok, “Multiprocessor Online Scheduling of
Hard Real Time Tasks,” IEEE Transactions on Software Engineering.
Vol. 15, No. 12, 1989, pp. 1497-1506.

Edsger W. Dijkstra, “The Structure of THE-Multiprogramming System.”
Communications of the ACM, Vol. 11, No. 5, May 1968, pp. 345-346.

K. L. Doty and A. B. Ghannam, “Controlling Situated Agent Behaviors
with Consistent World Modelling and Reasoning,” In Proceedings of AAAI
Spring Symposium on Lessons Learned from Implemented Software
Architectures for Physical Agents, 1995, pp. 50-56.

Earl Chafin, “Multiloop Controllers Become Multifunctional.”
Instrumentation & Control Systems, August, 1992, pp. 51-54.

Intel, Executable and Linking Format, Portable Format Specification V1.1.
1994.

Eric Jackson and David Eddy, Design and Implementation Methodology
for Autonomous Robot Control Systems, Technical Paper. International
Submarine Engineering, Ltd., Vancouver, 1996.

C. Eriksson, J. Maki-Turia, L. Post, M. Gustafsson, J. Gustafsson. K.
Sandstrom, and E. Brorsson, “An Overview of RealTimeTalk, a Design
Framework for Real Time Systems,” Journal of Parallel and Distributed
Computing, Vol. 36, No.1, 1996, pp. 66-80.

P. Ezhilselvan and S. K. Shrivatsava, “A Characterization of Faults in
Systems,” In Proceeedings of 5™ Symposium on Reliability in Distributed
Software and Database Systems, 1986, pp. 215-222.

R. J. Firby, “Architecture. Representation and Integration: An Example
From Robot Navigation,” In Proceedings of AAAI Fall Symposium on
Control of the Physical World by Intelligent Agents, 1994, pp. 55-59.

[Gat91]

[Gaud96]

[Geha91]

[Gertz93]

[Ghez91]

[Gon91]

[Gud90]

[Hare96]

[Harr96]

200

E. Gat, "Integrating Planning and Reacting in a Heterogeneous
Asynchronous Architecture for Mobile Robots,” SIGART Bulletin, No. 2.
1991. pp. 70-74.

D. Gaudreau and P. Freedman, “Temporal Analysis and Object-oriented
Real-Time Software Development: A Case Study with
ROOM/ObjecTime,” In Proceedings of 1996 IEEE Real-Time Technology
and Applications Symposium. 1996, pp. 110-118.

N. Gehani and K. Ramamrithm, “Real Time Concurrent C: A Language for
Programming Real Time Systems,” Journal of Real Time Systems. Vol 3.
No. 4, 1991, pp. 377-405.

M. Gertz, D. Stewart, and P. Khosla, “A Software Architecture Based
Human Machine Interface for Reconfigurable Sensor Based Control
Systems.” In Proceedings of IEEE International Symposium on Intelligent
Conrrol, 1993, pp. 75-80.

C. Ghezzi. D. Mandrioli. S. Morasca, and M. Pezze., “A Unified High
Level Petri Net Formatism for Time Critical Systems.” I[EEE Transactions
on Software Engineering, Vol. 17. No. 2, 1991, pp. 12-17.

G.H. Gonnet and R. Baeza-Yates., Handbook of algorithms and data
structures, Addison-Wesley, 1991.

O. Gudmundsson, D. Mosse., A. Agrawala. and S. Tripathi, “Maruthi: A
Hard Real Time Operating System,” In Proceedings of 2"* Workshop on
Experimental Distributed Systems, 1990, pp. 29-34.

D. Harel and A. Naamad, “The STATEMATE Semantics of Statecharts.”
ACM Transactions on Software Engineering and Methodology. Vol. 5,
No. 4, 1996, pp. 293-333.

R. Harrison, C.D. Wright, A. H. Booth, and A. J. Carrott, “IMDC: An
integrated environment for the design and control of manufacturing

machines,” IEE Colloquium Digest, Issue 42, 1996, pp. 4/1-4/8.

[Hewitt77]

[Huang96]

[IEC93]

[IEC97]

(IEEES83]

[IEEE93]

[IP81]
[Ishi92]

[ISI93]
[ISO84]

[ISO90]

[Jah88]

[Jen90]

201

C. Hewitt, “Viewing Control Structures as Patterns of Passing Messages,”
Artificial Intelligence, Vol. 8, No. 3, 1977, pp. 323-364.

H. M. Huang, “An Architecture and a Methodology for Intelligent
Control,” IEEE Expert, April, 1996, pp. 46-55.

IEC 1131-3, Programmable Controllers - Programming Languages,
International Electrotechnical Commission, 1993.

IEC 1499-1, Function Blocks for Industrial Process Measurement and
Control Systems - Architecture. Committee Draft 10. International
Electrotechnical Commission, 1997.

IEEE 729, IEEE Standard Glossary of Software Engineering
Terminology, Institute of Electrical and Electronic Engineers, 1983.

IEEE 1003.1b, IEEE Standard for Information Technology - Portable
Operating System Interfaces - System Application Programming, Institute
of Electrical and Electronic Engineers, 1993.

RFC-791, Internet Protocol. Internet Engineering Task Force, 1981.

Y. Ishikawa, H. Tokuda, and C. Mercer, “An Object Oriented Real Time
Programming Language,” IEEE Computer. Vol. 25, No. 10, 1992. pp. 66-
73.

-, pSOS Operating System - User Manual, Integrated Systems Inc., 1993.
ISO 7498, [Information Processing Systems - Open Systems
Interconnection, International Standards Organization, 1984.

ISO 9506, Industrial Automation Systems - Manufacturing Message
Specification, International Standards Organization, 1990.

F. Jahanian and A. K. Mok, “Modechart: A Specification Language for
Real Time System,” IEEE Transactions on Software Engineering, Vol. 14,
No. 1, 1988, pp. 10-15.

E. Jensen and J. Northcutt, “ALPHA: A Non-properietary OS for Large,
Complex, Distributed Real Time Systems,” In Proceedings of 2" IEEE

[John95]

[Kenn91]

[Koest71]
{Kop87]

[Kop89]

[Kop93]

[Kop94]

[Kuro88]

[Lala91]

[Lamp82]

[Lamp85]

202

Workshop on Experimental Distributed Systems, October, 1990, pp. 20-
28.

D. Johnson, “Looking over the bus systems.” Control Engineering, Vol
42, No. 13, December, 1995, pp. 56-64.

K. B. Kenny and K. J. Lin, “Building Flexible Real Time Systems Using the
Flex Language,” IEEE Computer, Vol. 24, No. 5, 1991, pp. 70-78.

A. Koestler, The Ghost in the Machine. 1971. ISBN 0-14-019192-5.

H. Kopetz and W. Ochsenreiter, *“ Clock Synchronization in Distributed
Real Time Systems,” IEEE Transactions on Computers, Vol 36. No. 8,
1987. pp. 933-940.

H. Kopetz, A. Damm, C. Koza, M.Mulazzani, W. Schwabl, C. Senft, and
R. Zainlinger, “Distributed Fault Tolerant Real Time Systems: The MARS
Approach,” IEEE Micro, Vol. 9. NO. 1, 1989. pp. 25-40.

Hermann Kopetz, “Scheduling,” In Sape Mullender. Editor, Distributed
Systems, ACM Press and Addison-Wesley, 1993, pp. 491-509.

H. Kopetz and G. Grunsteidl, “TTP - A Protocol for Fault Tolerant Real
Time Real Time Systems,” IEEE Computer, Vol 27. No. 1. 1994, pp. 14-
23.

J. F. Kurose, M. Schwartz. and Y. Yemini, “Controlling Window Protocols
for Time Constrained Communication in Multiple Access Networks.”
IEEE Transactions on Communications, Vol. 36, No. 1, 1988, pp. 41-49.
J. Lala, R. Harper, and L. Alger, “A Design Approach for Ultrareliable
Real Time Systems,” Computer, Vol. 24, No. 5, 1991, pp. 12-22.

L. Lamport, R. Shostak, and M. Pease. “The Byzantine Generals’
Problem,” ACM Transactions on Programming Languages and Systems.
Vol. 4. No. 3, 1982, pp. 382-401.

L. Lamport and P. M. Melliar-Smith, “Synchronizing Clocks in the
Presence of Faults,” Journal of the ACM, Vol. 32, No. 1, 1985, pp52-78.

[Lapri88]

[Law83]

[Leho87]

(Lim91]

[Liu73]

[Lo90]

[Lund84]

[Lynch89]

[Maes91]

[Mataric92]

203

J. C. Laprie, “Dependability: A Unifying Concept for Reliable Computing
and Fault Tolerance,” Resilient Computing Systems. Vol. 2, T. Anderson
Editor, Collins and Wiley, 1988.

E. L. Lawler, “Recent Results in the Theory of Machine Scheduling,” In A.
Bachem et. al., Editor, Mathematical Programming: The State of the Art,
Springer Verlag, 1983, pp. 202-233.

J. P. Lehoczky, L. Sha, and J. K. Strosnider. “Enhanced Aperniodic
Responsiveness in Hard Real Time Environments,” In Proceedings of 8*
IEEE Real Time Systems Symposium, December 1987. pp. 261-270.

C.C. Lim. L. j. Yao, and W. Zhao, “A Comparative Study of Three Token
Ring Protocols for Real Time Communications,” In Proceedings of 1 1*
IEEE International Conference on Distributed Computing Systems, 1991.
pp- 308-317.

C. W. Liu and J. W. Layland. “Scheduling Algorithms for
Multiprogramming in a Hard Real Time Environment.” Journal of the
ACM, Vol. 20, No. 1, 1973, pp. 46-61.

H. Y. Lo. L. P. Ju, and C. C. Su, “General Version of Reconfiguration N
Modular Redundancy System,” In IEE Proceedings on Circuits, Devices
and Systems, 1990, pp. 137-145.

J. Lundelius-Welch and N. Lynch, “An Upper and Lower Bound for Clock
Synchronization,” Information and Controi, Vol. 62, 1984, pp. 190-204.
N. A. Lynch and M. R. Tuttle, “An Introduction to Input/Output
Automata,” CWI Quarterly, Vol. 2, No. 3. 1989, pp. 219-246.

P. Maes, Designing Autonomous Agents: Theory and Practice from
Biology to Engineering and Back, London, The MIT Press, 1991.

M. J. Mataric, “Integration of Representation into Goal Driven Behavior
Based Robots,” IEEE Transactions on Robotics and Automation, Vol. 8.

June 1992, pp. 304-312.

[MC95]

[McMa95]

[Micro91]

[Mok83]

[Musl93]

[Nil96]

[Norrie94]

[Ohare96]

[OMAC94]

[OSACA96]

[OSEC95]

[Owen95]

204

- . “PLCs Suit Up for Robot Control,” Machine Design. April. 1995, pp.
160-162.

R. McMahon, “Sensor bus technology: Revolutionizing factory process
control,” Semiconductor Intermational, Vol. 18, No. 8, July, 1995. pp.
123-126.

-. 08-9 Version 2.4 Operating System - User Manual, Microware Systems
Corp., 1991.

A. K. Mok, Fundamental Design Problems of Distributed Systems for the
Hard Real Time Environment, Ph.D. Thesis, M.LT., 1983.

D. J. Musliner, E. H. Durfee, and K. G. Shin, “CIRCA: A Cooperative
Intelligent Real Time Control Architecture,” IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 23, No. 6, 1993, pp. 1561-1574.

K. Nilsen, “Java for Real Time,” Real Time Systems. Vol.11, No.2. 1996,
pp- 197-205.

Douglas H. Norrie, A Vision of the Next Generation of Manufacturing
System, Internal Document, Division of Manufacturing Engineering. The
University of Calgary. 1994.

G. M. P. O’Hare and N. Jennings, Foundations of Distributed Artificial
Intelligence, John Wiley, 1996.

Chrysler, Ford and GM, Requirements of Open, Modular Architecture
Conrrollers for Applications in the Automotive Industry, Specification
Document V1.1, 1994.

ESPRIT III Project 6379, Open System Architecture for Controls within
Automation Systems, Final Report V1.4, 1996.

OSEC Consortium, Open System Environment Controller, Specification
Document V2.0, 1995.

J. Owen, "Open Controllers," Manufacturing Engineering, November
1995, pp. 53-60.

[Pack97]

[Panz93]

[Park95]

[Plien92}

[Proc93]

[QNX93]

[Ram87]

[Raj93]

[Ren95]

205

R. T. Pack, M. Wilkes, G. Biswas, and K. Kawamura, “Intelligent Machine
Architecture for Object Based System Integration,” In Proceedings of
1997 IEEE/ASME International Conference on Advaced Intelligent
Mechatronics, 1997, pp. 11-16.

F. Panzeri and R. Davoli, “Real Time Systems: A Tutorial,” In Lorenzo
Donatiello and Randolph Nelson, Editors, Performance Evaluation of
Computer and Communication Systems, Lecture Notes in Computer
Science, Vol. 729, Springer Verlag, 1993, pp.435-462.

J. Park, S. Birla, K. G. Shin, and Z. J. Park, "An Open Architecture
Testbed for Real-time Monitoring and Control of Machining Systems,” In
Proceedings of the American Control Conference, Seattle, 1995, pp. 200-
204.

P. Plienvaux, “An Improved Hard Real Time Scheduling for the IEEE
802.5.” Journal of Real Time Systems, Vol. 4, No.2, 1992, pp. 99-112.

F. M. Proctor, and J. Michaloski, Enhanced Machine Controller
Architecture Overview, NIST Technical Report 5331, December 1993.

-. ONX 4 Operating System - System Architecture, QNX Software Systems
Ltd.. 1993.

K. Ramamritham, “Channel Characteristics in Local Area Hard Real Time
Systems,” Computer Networks and ISDN Systems, Vol. 13, No. 1, 1987,
pp- 3-13.

S. C. V. Raju, An Automatic Verification Technique for Communicating
Real Time State Machines, Technical Report UW-CSE-93-04-08,
Department of Computer Science and Engineering, University of
Washington, 1993.

S. Ren and G. A. Agha, “RTsynchronizer: Language Support for Real
Time Specifications in Distributed Systems.” SIGPLAN Notices. Vol.30,
No.11, pp. 50-59.

[Rose97]

[RTE96]

[Sak89]

[Sarma95]

[Schi83]

[Schn87]

[Schn95]

[Sha90]

[Shin90]

[Shin91]

206

J. K. Rosenblatt, “DAMN: A Distributed Architecture for Mobile
Navigation,” Journal of Experimental & Theoretical Artificial
Intelligence, Vol. 9, No. 2/3, 1997, pp. 339.

-, “Real Time Operating Systems,” Real Time Engineering Magazine, Vol.
3, No. 2, 1996, pp. 24-27.

K. Sakamura and R. Sprague, “The TRON Project,” Byre, April, 1989, pp.
292-301.

S. Sarma, R. Narayanaswami, S. Schofield, and P. Wright, “Machine Tool
Open System Advanced Controller for Precision Manufacturing
(MOSAIC-PM),” In Proceedings of NSF Design and Manufacturing
Grantees Conference, La Jolla, 1995, pp. 151-152.

R.D. Schlichting and F. Schneider, “Fail Stop Processors: An Approach to
Designing Fault Tolerant Computer Systems,” ACM TOCS. Vol 1. No. 3
1983, pp. 222-238.

F. Schneider, Understanding Protocols for Byzantine Clock
Synchronization, Technical Report 87-859, Comell University, 1987.

S. Schneider. V. Chen, J. Steele, and G. Pardo-Castellote, “The
ControlShell component-based real-time programming system. and its
applications to the Marsokhod Martian Rover,” In Proceedings of ACM
Workshop on Languages, Compilers, and Tools for Real Time System, La
Jolla, 1995, pp. 146-155.

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance Protocols:
An Approach to Real Time Synchronization,” IEEE Transactions on
Computers, Vol. 39, No. 9. 1990, pp. 1175-1185.

K. G. Shin and C. J. Hou, “Analysis of Three Contention Protocols in
Distributed Real Time Systems.” In Proceeedings of IEEE Real Time
Systems Symposium, 1990, pp. 136-145.

K. G. Shin, “HARTS: A Distributed Real Time Architecture,” Computer.
Vol. 24, No. 5, 1991, pp. 25-35.

[Siew84]

[SMP95]

[Sprunt89]

[Srik87]

[Stan88]

[Stan91]

[Stan93]

[Sten97]

[Stew91]

[Stew94]

[Stros88]

207

D. P. Siewiorek, “Architecture of Fault Tolerant Computers,” Computer.
Vol. 17. August, 1984, pp. 9-17.

Intel. MultiProcessor Specification. Technical Document Version 1.4.
1995.

Brinkley Sprunt, Lui Sha, and John Lehoczky, “Aperiodic Task Scheduling
for Hard Real Time Systems,” Journal of Real Time Systems, Vol. 1. 1989,
pp- 27-60.

T. K. Srikanth and S. Toueg, “Optimal Clock Synchronization, ” Journal of
the ACM, Vol. 34, No. 1, pp. 626-645.

John A. Stankovic, "Misconceptions About Real Time Computing," IEEE
Computer, Vol. 21, No. 10, October 1988, pp. 10-19.

J. A. Stankovic and K. Ramamrithm. “The Spring Kermel: A New
Paradigm for Real Time Systems,” IEEE Software. Vol. 8, No. 3, 1991.
pp- 62-72.

John. A. Stankovic and Krithi Ramamritham, “Scheduling.” In Advances In
Real-Time Systems, IEEE Computer Society Press, 1993. pp. 47-52.

Jon Stenerson and Kelly Curran, Computer Numerical Control : Operation
and Programming, Prentice Hall, 1997.

D. B. Stewart and P. K. Khosla. “Real Time Scheduling of Dynamically
Reconfigurable Systems,” In Proceeedings of 1991 International
Conference on Systems Engineering, Dayton, August 1991, pp. 139-142.
D. B. Stewart and P. K. Khosla, “The Chimera Methodology: Designing
Dynamically Reconfigurable Real-Time Software Using Port-Based
Objects,” In Proceedings of 1" IEEE Workshop on Object Oriented Real
Time Dependable Systems, Dana Point, 1994, pp. 46-55.

J. K. Strosneider, T. Marchok, and J. Lehoczky, “Advanced Real Time
Scheduling Using the IEEE 802.5 Token Ring,” In Proceedings of IEEE
Real Time Systems Symposium, 1988, pp.42-52.

[Stros89]

[Tak92]

[Tan87]

[Tok89]

[Tok90]

[Val92]

[Varg87]

[(Wayn91]

[WRS94]

[Yello96]

[Zhao88]

208

J. K. Strosneider and T. Marchok, “Responsive, Deterministic IEEE 802.5
Token Ring Scheduling,” Journal of Real Time Systems, Vol 1, No. 2,
1989, pp. 133-158.

K. Takashio and M. Tokoro, “DROL: An Object Oriented Programming
Language for Distributed Real Time Systems,” In Proceedings of
OOPSLA’92 Conference, 1992, pp. 276-294.

Andrew S. Tanenbaum, Operating systems : design and implementation.
Prentice-Hall. 1987.

H. Tokuda and C. Mercer, “ARTS: Adistributed Real Time Kernel.” ACM
Operating Systems Review, Vol. 23, No. 3, 1989, pp. 29-53.

H. Tokuda. T. Nakajima, and P. Rao. ‘“Real Time Mach: Towards
Predictable Real Time Systems,” In Proceedings of 1990 USENIX Mach
Workshop, 1990, pp. 35-45.

A. Valenzano, C. Demartini, and L. Ciminiera, MAP and TOP
Communications, Addison Wesley, 1992.

G. Varghese and A. Lauck, “Hashed and Hierarchical Timing Wheels: Data
Structures for the efficient Implementation of a Timer Facility.,” In
Proceedings of 1 1" ACM Symposium on Operating System Principles,
1987, pp. 171-180.

Wayne Labs, “DCS Technology Update,” Instrumentation & Control
Systems, October, 1991, pp. 27-31.

-. VxWorks 5.2 Operating System - User Manual, Wind River Systems.
1994.

L. Yellowley, R. Ardekani, L. Yang, and R.J. Seethaler, “Development of
robust extensible architectures for machine-tool control,” In Proceedings
of SPIE Meeting on Open Architecture Control Systems and Standards.
Boston, 1996, pp. 72-83.

W. Zhao, J. A. Stankovic, and K. Ramamrithm, “A Multi Access Window

Protocol for Time Constrained Communications.” In Proceeedings of 8*

[Znati91]

209

IEEE International Conference on Distributed Computing Systems, 1988,
pp- 384-392.

T. Znati, “Deadline Driven Window Protocol for Transmission of Real
Time Traffic,” In Proceedings of 1 0" IEEE International Conference on
Computers and Communications, 1991, pp. 667-673.

