
THE UNIVERSITY OF CALGARY 

High Quality Factor Asymmetric-slope Band-pass Filters 

by 

Peyman Ahmadi 

A THESIS 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL 

FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 

CALGARY, ALBERTA 

AUGUST, 2011 

© Peyman Ahmadi 2011 



THE UNIVERSITY OF CALGARY 

FACULTY OF GRADUATE STUDIES 

The undersigned certify that they have read, and recommend to the Faculty of Grad-

uate Studies for acceptance, a thesis entitled "High Quality Factor Asymmetric-slope 

Band-pass Filters" submitted by Peymnan Ahmadi in partial fulfillment of the require-

ments for the degree of Master of Science. 

  t_• NA 
S( 'pervisor, Dr. Brent Maundy 

Department of Electrical and Computer Engineering 

Co-supervisor, Dr. Leonid Belostotski 

Department of Electrical and Computer Engineering 

Dr. Ed Nowicki 

Department of Electrical and Computer Engineering 

Dr. Svetlana Yanushkevich 

Departgient o Elçctrical and Computer Engineering 

Dr. JenI 

Department of Physics and Astronomy 

Date 



ABSTRACT 

This thesis presents new techniques for designing continuous-time band-pass filters 

with high quality factors and asymmetric slope characteristics based on the concept 

of fractional-order filters. The techniques are centered around the realization of non-

conventional transfer functions which include a non-integer-order Laplacian operator 

sa; 0 < c < 1. Two types of asymmetric-slope band-pass filters are presented and 

the symmetry in the relationship of one transfer function to the next is highlighted. 

Possible circuit realizations for second-order and fourth order asymmetric band-pass 

filters; based on Frequency Dependent Negative Resistor, inductor and Multiple Am-

plifier Biquad are given and verified using SPICE and experimentally for the proposed 

transfer functions. In addition, a Field Programmable Analog Array realization is also 

tested and verified. 
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CHAPTER 1 

Introduction 

1.1 Integer-Order Filters 

In Electrical Engineering, a filter is a frequency-selective circuit that passes a specified 

band of frequencies and blocks or attenuates signals of frequencies outside this band. 

These signals are usually voltages. An ideal filter has a frequency band over which 

the magnitude of transmission is unity (the filter passband) and a frequency band 

over which the transmission is zero (the filter stopband). Figures 1.1 and 1.2 show 

the ideal transmission characteristics of the four major filter types: low-pass in Figure 

1.1(a), high-pass in Figure 1.1(b), band-pass in Figure 1.2(a) and band-stop in Figure 

1.2(b). These idealized characteristics, by virtue of their vertical edges, are known as 

brick-wall responses [1-4]. 

Filter design is one of the very few areas of electrical engineering for which a 

complete design theory exists [1-4]. The classical linear circuit theory upon which 

electronic circuits are designed today is based on integer-order differential equations 

which reflect the behavior of the well-known elements: the resistor, the capacitor, the 

inductor and the memresistor' in the time domain. Via Laplace transforms, integer-

order algebraic equations in the complex frequency s-domain can be used to describe 

linear dynamical systems. Accordingly, electronic filters are traditionally classified as 

1st-order, 2nd-order or ntl_order circuits where n is an integer number. The circuit 

1Memresistor is a passive two-terminal circuit element in which there is a functional relationship 
between charge and magnetic flux linkage. 

1 



2 

TI A 

1 

ITI 

( passband ) 

A 

.( stopband ). 

•( stopband - - - 

'( passband - - -. 

Figure 1.1: Ideal transmission characteristics of the (a) low-pass and (b) high-pass 
filter. 

order is directly proportional to the number of energy storage elements in the circuit. 

The describing transfer function of the integer-order filters are usually of the form 

T(s) = N(s)/D(s) where N(s) and D(s) are polynomials in the Laplacian operator 

s raised to an integer exponent; i.e s, s20r s. 

1.2 Band-pass Filters 

Whether passive or active, band-pass filters are indispensable parts in electronic cir-

cuit applications [1-5]. Several methods have been introduced for designing continuous-

time integer-order band-pass filters over the years [1,2,5,6]. A band-pass filter is a 
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TI A 

-.(---- stopband -* .- passband —*4--- stopband — — 

ITI A 

1 

wpi wp2 

(a) 

+—passband —* *— stopband —4- -.(---- passband - - 

WI,2 

(b) 

Figure 1.2: Ideal transmission characteristics of the (a) band-pass and (b) 
band-stop filter. 

device that passes frequencies within a certain range and rejects or attenuates fre-

quencies outside that range. Bandwidth is defined as the frequency range between 

two specified frequency cut-off points, that are 3dB below the maximum centre or res-

onant peak while attenuating or weakening the others outside of these two points. An 

ideal band-pass filter would have a completely flat passband and would completely 

attenuate all frequencies outside the passband. In practice, no band-pass filter is 

ideal. The filter does not attenuate all frequencies outside the desired frequency 

range completely; in particular, there is a region just outside the intended passband 

where frequencies are attenuated, but not rejected. 
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1.3 Fractional Capacitor 

Works [7] and [8] introduce new methods to approximate a fractional capacitor whose 

impedance is Z = where Ca is the capacitance and a (0 < a < 1) is its order. Casa 

If a sinusoidal current 1(t) = I0sin(wt) is used to excite a fractional capacitor, the 

voltage developed across it can be shown to be given by [9] 

(\ (_2 a7r\ 1V(t) = L'[?I(s)] = I0wa [ina(wt)co -a  lr -) + COSa(wt)Sim )j (Li) 

where sin, (wt) and cos, (wt) are respectively given by 

and 

00 
sin,, (wt) = easirt(k - 

00 

cos(wt) = e ccos(k - a). 

(1.2) 

(1.3) 

The fractional capacitor approximations have been appealing only to those seeking 

to experiment with fractional-order circuits to prove a concept but have never been 

appealing to real-world circuit designers. The reason is economics since several ca-

pacitors are needed just to approximate one capacitor with a non-integer-order. 

The authors of [10] proposed a capacitive probe fabricated in such a way that it 

displays a metal-insulator-liquid interface when placed into a liquid. The proposed 

capacitive probe has a fractional-order impedance and a varies with the amount of 

liquid immersion. The proposed capacitive probe is bulky and cannot be applied to 

the real circuits. But it shows that further work in material properties are needed in 

order to fabricate a commercial device. 

Silicon-based fractional capacitors were proposed, fabricated and tested in [11,12]. 
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(a) 

(b) 

Figure 1.3: (a) Silicon-based fractional capacitors using photolithographic fractal 
structure on silicon and (b) tree fractal structure of the capacitors fabricated in 

[11,12]. 

The idea was to use of fractal geometry to lithographically implement a capacitor 

using a standard silicon process. The fractional-order of the capacitor a is related to 

the geometry of the fractal pattern used. The authors in [11, 12] built a Hubert-type 

capacitor with the capacitance of Ca = 7.5nF and a = 0.5 and a Arbre-type capacitor 

with Ca = 1.5nF and a = 0.5. Figure 1.3 shows the Hilbert-Type and Arbre-Type 

fractional capacitor using photolithographic fractal structure on silicon and their tree 

fractal structure. 
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All the circuits in this work require a single fractional capacitor. As of the time 

of this writing, there are no commercial fractional capacitors and therefore we use an 

approximation based on Carlson's method [7] to mimic the fractional capacitor. The 

overhead of using an emulation of the fractional capacitor is still acceptable given the 

complexity of other techniques. 

1.4 Fractional-Order Filters 

The classical linear circuit theory upon which electronic circuits are designed today 

is based on integer-order differential equations. However, using fractional calculus, 

filters can also be represented by more general fractional-order differential equations 

in which case integer-order filters are only a subset of fractional-order filters. The 

Riemann—Liouville definition of a fractional derivative of order a is given by 

da 1  dm  dT 
dtcl f  = F(m - a) dtm (t - 

(1.4) 

where r(.) is the gamma function, m is an integer and m - 1 <a <rn [13,14]. 

The authors in [15-17] were the first to generalize first and second-order low-pass 

filters to the fractional domain showing some clear benefits. The stopband attenu-

ation of integer-order filters is —20n dB/dec while the attenuation of the proposed 

fractional-order filters in [15-17] is —20m(n +a) dB/dec which allows for stepping the 

attenuation very precisely. In addition, the filters magnitude and phase responses, 

cut off frequency and quality factor are functions of fractional order a. The authors 

in [17] and [18] worked on the realization of higher-order fractional step filters with 

maximally-fiat response. Figure 1.4 shows a plot of the magnitude response of the 

proposed fractional-order low-pass filter in [17] and [18] of order 5 + a. 
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Figure 1.4: Response of 5 + a proposed fractional-order low-pass filter in [17,18]. 

1.5 High Quality Factor Asymmetric-Slope Band-Pass Filters 

High selectivity and low pass-band insertion loss of microwave band-pass filters are 

needed for many applications, such as the rapidly expanding area of mobile commu-

nications networks [19-21]. These requirements are imposed to conserve the valuable 

frequency spectrum and improve the performance of the systems. Generally, band-

pass filters can obtain a higher selectivity by increasing the degree of poles, i.e. the 

number of resonators. However, because of finite quality factor of the resonators, the 

insertion loss of the band-pass filter is increased as the number of resonators increases. 

Therefore, there is always a trade-off between obtaining a higher selectivity and the 

insertion loss in the band-pass filters. In addition, some applications of band-pass fil-

ters may need a higher selectivity on only one side of the pass band, but less or none on 

the other side [19-21]. It would be desirable to use a filter with asymmetric frequency 

characteristics in such cases. This is because a symmetric frequency-response band-

pass filter requires a larger number of resonators which results in a higher insertion 

loss in the passband, a larger size and a higher cost. 

All available techniques that have been proposed up until now for the design of 
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such filters were microwave-based techniques that have only been verified using micro-

strip based circuits [19-22]. High selective-slope band-pass filters with asymmetric-

slope characteristics are needed in the receive filter of some personal communication 

networks [19-21]. Several methods have been introduced for designing asymmetric-

slope band-pass filters over the years [20-22]. In [20], cross-coupled open-loop res-

onators were introduced to show asymmetric frequency characteristics in a micro-strip 

trisection band-pass filter. In [21], an asymmetric synthesis method based on flexibil-

ity in placing the transmission zeros was used to increase the skirt selectivity of one 

side of a band-pass filter. In [22], band-pass filters with asymmetric-slope character-

istics were realized using low-loss ceramic resonators. The selectivity of one side of 

the band-pass filter was improved by using a capacitively coupled network with finite 

transmission zeros. 

On the other hand, obtaining high quality factors with such filters is not an easy 

task. In order to have a large quality factor (Q), at least one pair of poles should be 

located very close to the stability boundary. 

In this thesis, we propose new methods for designing continuous-time asymmetric-

slope band-pass filters which can also achieve high quality factors. These methods 

are centered around the realization of the new transfer functions 

asa 
Hi(s) =k152+aso!+b 

as 
Hii(s) = k22 +as' + b 

(1.5) 

(1.6) 

which we refer to as Type I second-order asymmetric-slope band-pass filter transfer 

functions and the units of the constant a are (rad/sec)2 and (rad/sec)', respec-

tively. Similarly, we refer to the transfer functions below as the Type II second-order 

asymmetric-slope band-pass filter transfer functions. 
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Hiii (s) = k32 +asl+a + b 

as 2-a 
Hjv(s) = k4 S2+ a52_a + b 

(1.7) 

(1.8) 

The units of the constant a are (rad/sec)' and (rad/sec)a, respectively and 

the unit of the constant b for the four new proposed transfer functions is (rad/sec)2. 

Here, Sa = (jw )a = w{cos(') + jsin()] and 0 <a < 1 [15]. These second-order 

band-pass filter transfer functions are different from the one studied in [16] and given 

by 

H(s) = k  asa 
82a + asa + b 

(1.9) 

which represents a symmetrical-only fractional-order band-pass filter of order 2a. As 

will be shown later in Chapter 2, an advantage of filters proposed in this work is 

that they can achieve high quality factors by selecting a appropriately. The practical 

realization of fractional filters on a Field Programmable Analog Array (FPAA) was 

recently reported in [23]. Here, we also validate our designed high-Q asymmetrical 

filters using an FPAA in addition to implementing six discrete circuits for second-

order filters; two based on a Frequency Dependent Negative Resistor (FDNR), two 

based on an inductor and two based on Multiple Amplifier Biquads (MABs). The 

techniques extend to higher order filters and four circuits for two types of fourth-

order asymmetric-slope band-pass filter which are proposed, simulated in SPICE and 

verified experimentally using discrete components and FPAA technique as well. 

1.6 Thesis layout 

This thesis is divided into two basic areas of research focus. First, new techniques 

for design and implementation of high quality factor second-order asymmetric-slope 

band-pass filters are presented. Second, these techniques are used to generate higher 
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order asymmetric-slope band-pass filters. 

Chapter 2 looks at passive prototypes of second-order asymmetric-slope band-pass 

filters and their equivalency. Two types of second-order asymmetric-slope band-pass 

filters are presented and the symmetry in the relationship of one transfer function 

to the next is highlighted. Exact expressions for w0 and two different slopes, and 

approximate expressions for the Q of each filter are presented. Circuit designs are 

also presented in Chapter 2. 

Chapter 3 provides simulation results for the proposed second-order asymmetric-

slope band-pass filters. Furthermore, the approach is verified experimentally using 

discrete components and FPAA technique. 

The non-ideal effects of the second-order asymmetric-slope band-pass filters are 

presented in Chapter 4. Four non-ideal transfer functions using lossy elements are 

given and discussed in Chapter 4. The effects of finite gain band-width product in 

operational amplifiers and the current and voltage tracking errors in non-ideal current 

conveyors are also discussed in Chapter 4. 

The techniques to design second order band-pass filters are used to generate higher 

order asymmetric-slope band-pass filters in Chapter 5. This chapter looks at passive 

prototypes of mt order asymmetric-slope band-pass filters and their equivalency, 

and evaluates expressions for two different slopes and phases. Possible designs and 

simulation and experimental results using discrete components and FPAA technique 

are also presented in Chapter 5. 

Chapter 6 provides conclusions of this thesis and suggests improvements for future 

work. 



CHAPTER 2 

Asymmetric-Slope Band-pass Filters 

2.1 Passive Prototypes 

Consider the lowpass filters in Figures 2.1(a) and (b). The filters can be transformed 

into normal integer order band-pass filters using the s —* transformation where Bs 

w0 is center frequency and B is the bandwidth of the band-pass filter. Now consider 

the band-pass filters in Figures 2.2(a) and (b), obtained by applying this transforma-

tion on the corresponding lowpass filters, respectively. In other words, a lowpass filter 

can be transformed into band-pass filter circuit by replacing the capacitor C with a 

(a) 

(b) 

Figure 2.1: First order RC and RL lowpass filters. 
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Figure 2.2: Band-pass filters obtained using s —+ transformation on lowpass 
filters. 

parallel combination of capacitor and inductor of values and , respectively and 

replacing the inductor L with a series combination of capacitor and inductor of values 

LwOy and , respectively. 

Now consider the multiplication of each element of the circuits in Figures 2.2(a) 

and (b) by a scaling factor 1/As where A is a constant of dimension sec-1. The result-

ing circuits are shown in Figures 2.3(a) and (b). This transformation is referred to as 

Bruton REC: CRD transformation [24]. Continuous-time second-order asymmetric-

slope band-pass filters can be obtained from integer-order band-pass filters in Figures 

2.2 and 2.3 by replacing the resistors in Figure 2.2 and the capacitors in Figure 2.3 

with fractional order capacitors. 

Consider the passive prototype Type I and Type II filters shown in Figures 2.4 

and 2.5, respectively. Each deploys a fractional-order capacitor C (i = 1, 2, 3,4) 

whose impedance is 1/Cs where Ca is the value of the capacitor and 0 <a < 1. 

Figures 2.4(a) and (b) realize Type I transfer functions in (1.5) and (1.6) and Figures 
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Figure 2.3: Band-pass filters obtained using s -4 transformation on lowpass 
filters. 

2.5(a) and (b) realize Type II transfer functions in (1.7) and (1.8), respectively if 

al = a2 = a3 = a4 = a and k1 = k2 = k3 =k4 = 1. The equivalence between 

the two circuits of Figures 2.4(a) and 2.5(a) can be easily seen if one considers the 

multiplication of each element of the Type II filter in Figures 2.5(a) by a scaling 

factor 1/As where A is a constant of dimension sec-1. For circuits in Figures 2.4(a) 

and 2.5(a) it follows then that R1 L/A, D AC, and Cai ACa3 where a1 and 

a3 would be related by a1 = 1 + a3. Similarly, Type II filter in Figure 2.5(b) can 

be obtained from Type I in Figure 2.4(b) if one considers the multiplication of each 

element of the Type I circuit by a scaling factor 1/As. The passive prototype Type 

II in Figure 2.5(b) is equivalent to Type I in Figure 2.4 (b) for R L/A, D AC 
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Figure 2.4: Passive prototype models of the Type I asymmetric-slope band-pass 
filters. 
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Figure 2.5: Passive prototype models of the Type II asymmetric-slope band-pass 
filters. 
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Frequency Type I FDNR-based 

Slope (dB/dec) 

0<20a<20 

w>>w0 20<20(2—a)<40 ir(—l) 

(a) 

Frequency Type I inductor-based 

Slope(dB/Dec) 

W <<w0 0 < 20(1 - a) <20 
2 

w>>w0 20<20(1+a)<40 —(1+a) 

(b) 

Table 2.1: Slopes and phase responses for the Type I asymmetric-slope band-pass 
filter. 

and C 4 AC,, where a2 and a4 would be related by a4 = 1+ a2. The Type I and 

Type II filters in Figures 2.4(a) and 2.5(a) are related through the C 3LC1 C 1R1D 

transformation and the relationship between Type I and Type II filters in Figures 

2.4(b) and 2.5(b) can be explained by the C 2LC: CO,4RD transformation which are 

analogous to the Bruton REC: CRD transformation [24]. The equivalence between 

the four transfer functions, interesting enough, results in having different filter slopes 

and phases which are complimentary as illustrated in Tables 2.1 and 2.2. Here w0 is 

the center frequency of the particular filter and the slopes are given in dB/dec. 

2.1.1 Type I FDNR-Based Asymmetric-Slope Band-pass Filter 

Now with reference to (1.5), the magnitude and phase functions for Type I FDNR-

based circuit shown in Figure 2.4(a) are respectively given by 

Hi(jw)I = 
k1 

/i + 2x cos(air/2) + x2 

sin(air/2)  
LH1(jw) = - tan x + cos(ar/2) 

(2.la) 

(2.lb) 
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Frequency Type II inductor-based 

Slope (dB/dec) 

w<<wo 20<20(1+a)<40 (1+a) zl 

w>>w0 O<20(l—a)<20 i) ir(-  

(a) 

Frequency Type II FDNR-based 

Slope(dB/Dec) 

.,i<<w0 20<20(2—a)<40 (2—a) 2E 
2 

O<20a<20 - T 

(b) 

Table 2.2: Slopes and phase responses for the Type II asymmetric-slope band-pass 
filter. 

where x = (b - W2) law'. The frequency w0 at which the magnitude response has its 

maximum is given by 

Wo = 

where Yl is a root of the equation 

a7r \ -I 
2y + a ly - in (bell + ae2 cos ---)j = 0 

(2.2) 

(2.3) 

which can be found numerically. For a << b, it can be easily shown that w0 

Figure 2.6 shows the magnitude and phase responses for the Type I FDNR-based 

asymmetric band-pass filter shown in Figure 2.4(a) at k1 = 1, a = 0.01, b = 1. 

From a stability point of view, (1.5), (1.6), (1.7) and (1.8) are stable if a> 0 and 

0 < a < 1. (1.5) and (1.8) become unstable for a = 0 and a> 1 while the transfer 

functions in (1.6) and (1.7) are unstable for a ≥ 1, respectively [25]. However, to find 

the quality factor Q of Type I FDNR-based filter governed by (1.5) we need to find 

the poles in the so-called W—plane defined as W = sa [25]. The poles of the transfer 
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Figure 2.6: Magnitude and phase responses of the proposed Type I FDNR-based 
asymmetric-slope band-pass filter in (1.5) to various values of a. 

function in (1.5) can be obtained by solving the equation below. 

W 2/° + aW + b = 0 (2.4) 

It should be noted that all the poles should be located in the stable region (IOI > 

to have a stable system. Note that the transfer function in (1.5) approaches the 

normal integer-order band-pass transfer function for a = 1. In the case of a = 1, 

the stability border will be (lOI = ), which is the same as the stability border in 

the s-plane. Figure 2.7 shows the stable region in the W—plane. It is clear from 
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Figure 2.7: Stable and unstable regions in the new W—plane. 
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Figure 2.8: Relationship between poles, center frequency and quality factor. 

Figure 2.7 that the region of instability in the W-plane is smaller than in s-plane. 

Another feature of this new plane is that the stable region in the W—plane decreases 

as a increases. Q can then be calculated by converting the pair of poles closest to the 

stability boundary (i.e. the ones with corresponding angle 0 closest to the value air/2) 

back to the s—plane (s = Wh/). Figure 2.8 shows the relationship between poles, 

center frequency and quality factor in s—plane. Quality factor can be calculated by 

the equation below 

1 

2cos(q) 
(2.5) 
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As an example, here we find the quality factor of Type I filter in (1.5) with 

a = 0.5, k1 = 1, a = 0.01 and b = 1. The corresponding characteristic equation in 

the W—plane is, 

w 4+o.oiw+i. = 0 (2.6) 

The equation has four roots in P1,2 = —0.707 ± 0.704i and P3,4 = 0.707 ± 0.709i 

with respective angles of 0111,2 = ±135.12° and 9W3,4 = ±45.08°. There is no pole in 

the unstable region (450 < 9L <45°) and therefore the system is stable. Converting 

the pair of poles closest to the stability boundary (p3,4 = 0.707 ± 0.709i) back using 

the equation (s = W 2) results in = —0.0035 ± 1.0035i in the s—plane. For this 

pole pair, the angle is q = 90.2 degrees and the quality factor is Q = 143.35 using 

equation (2.5). Figure 2.9(a) and (b) show the place of roots in the W and s—planes. 

The previous example shows that for a fixed a (0 < a < 1) and for a << b, at least 

one pair of poles is located close to the stability boundary and results in a very large 

Q. Note that depending on the value of a multiple poles may exist in the W—plane. 

The stable region in the W—plane gets smaller as a increases and for a> 1 at least 

one pair of poles exists in the unstable region, resulting in an unstable system. Figure 

(2.10) shows the values of Q versus a when b = 1 for five different values of a. It is 

clear that large Q values are obtained for small a (Type I FDNR-based) and small 

values of a. Numerically, the following approximate relationship was found for the 

Type I FDNR-based filter response, 

1 r a  0.8686 

a Lb(1_o.5)] (2.7) 

The step response of the filter can be obtained by substituting for the non-integer 

Laplacian operator sa with the second-order approximation 

(a2+3a+2)s2+(8-2a2)s+(a2-3a+2)  

(a2 - 3a + 2)s2 + (8 - 2a2)s + (a2 + 3a + 2) 
(2.8) 
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Figure 2.9: Roots of the transfer function (1.5) with a = 0.5, k1 = 1, a = 0.01 and 
b = 1 in (a) W—plane and (b) s—plane. 

which is discussed in more detail in section 3.2.2. Substituting (2.8) in (1.5) yields a 

fourth order transfer function for Type I FDNR-based filter which can be written in 

the form 

s2 + as +  
Hi(s) = Ic1 (2.9) 

S4 + âs + ds2 + ês + f 

where ki - a2+3a+2 = 8-2a2, b = a2-3a+2, ê = 8-2a, c = (a+b+1)a2+3(a-
- a2-3a+2' 

b+1)a+2(a+b+1), 6 = (a+b)(8-2a2) and I = (a+b)a2+3(b—a)a+2(a+b). Figure 



21 

01 

Figure 2.10: Quality factor versus a at b = 1 for various values of a for Type I and 
Type II transfer functions in (1.5) and (1.7). 

2.11 shows the step response of the Type I FDNR-based filter in (1.5) at a = 0.2, 

b = 1 and a = 0.5. 

2.1.2 Type II Inductor-Based Asymmetric-Slope Band-pass Filter 

For the Type II inductor-based filter governed by (1.7) the magnitude and phase 

functions are respectively given by 

k3  

/i + 2x cos((1 + a) ,7r/2) + x2 

(1 + a) ii- tan'  sin((1 + a) ir/2) 
LH111 (jw) = 2 x + cos((1 + a) /2) (2.lob) 

(2. lOa) 

where x = (b - w 2)/aw'. The center frequency w0 at which the magnitude response 

has its maximum is given by 

wo = e''' ) (2.11) 
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Figure 2.11: Step response of the Type I FDNR based filter in (1.5) at a = 0.2, 
b=1 and a=0,5. 

where y3 is a root of the equation 

'\1 
2y + (1 + c) - )] in (bev + ae 2y cos (i+a)ir 2 = 0 (2.12) 

which can also be found numerically. Similarly for a << b, it can be shown that 

for the Type II inductor-based filter. Figure 2.12 shows the magnitude and 

phase responses of the Type II inductor-based filter for a = 0.01 and b = 1 with 

k3 = 1. It is worth noting that the transfer function in (1.7) approaches the normal 

integer-order band-pass transfer function for a —+ 0. 

The poles in the W—plane can be obtained by solving the equation W2/O! + aW + 

b = 0. Note that (2.12) is identical to (2.3) except that a is replaced by 1 + a. 

Likewise the approximate relationship for Q is given as 

[.5 +] °8686 bo  
(2.13) 
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Figure 2.12: Magnitude and phase responses of the proposed Type II 
inductor-based asymmetric-slope band-pass filter in (1.7) to various values of a. 

which can be obtained from (2.7) by replacing a with 1— a. The implication of this is 

that the curves of Figure (2.10) can be used for the Type II inductor-based governed 

by (1.7) realization if for identical a and b, a is replaced by 1 - a. To illustrate an 

example the Q value for a Type II inductor-based filter with given a and b and a = 0.3 

can be found by examining the Type I FDNR-based curve for the same a and b but 

with a = 0.7. Note that for a = 0.5 the quality factors for both Type I FDNR-based 

and Type II inductor-based realizations are the same. For the Type II inductor-based 

filter, Figure (2.10) follows the reverse trend of the Type I FDNR-based filter. That 

is for a given a, large Q's are obtained for increasing a. For both Type I FDNR-based 
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Figure 2.13: Step response of the Type II inductor based filter in (1.7) at a = 0.2, 
b = 1 and ce = 0.5. 

and Type II inductor-based filters in general and for a given c, large Q's are obtained 

by ensuring that a << b. 

Finally, the step response of the filter can be obtained by substituting for the 

non-integer Laplacian operator (se) with the integer order approximation in (2.8). 

Substituting (2.8) in (1.7) yields a forth order transfer function for Type II inductor-

based filter which can be written in the form 

Hill (s) = 
s(s2 + as + 

4 + a83 + dS2 + ês + J (2.14) 

where k111 — 2+32 â=8-2a2, a2 —3a+2, â=(a-2)a2+3aa+2(a+4), 
- c2-3a+2' 

= (b - 2a + 1)a2 +3(1 - b),  ê = (a - 2b)a2 - 3aa + 2(a + 4b) and J = b(a2 +3a+2). 

Figure 2.13 shows the step response of the Type II inductor-based filter in (1.7) at 

a= 0.2,  b= 1 and a= 0.5. 
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2.1.3 Type I Inductor-Based Asymmetric-Slope Band-Pass Filter 

The general magnitude and phase responses for the Type I inductor-based filter gov-

erned by (1.6) are given by 

IHii(jw) I = 
/i + 2xcos((1 - a)ir/2) + x2 

(1 - a)'ir tan'  sin((1 - a)r/2)  
LH11 (jw) = 2 x + cos((1 - a)ir/2) 

(2.15a) 

(2.15b) 

where x = (b - w2)/aw('). The frequency at which the magnitude response has its 

maximum is 

where Y2 is a root of the equation 

asin() \ 
b—e2 ) = 

(2.16) 

(2.17) 

which can be found numerically. For a << b, it can be easily shown that w0 v. 

Figure 2.14 shows the magnitude and phase responses of the Type I inductor-based 

filter for a = 0.01 and b = 1 with k2 = 1, Normal second-order band-pass filter 

transfer function can be obtained from the transfer function in (1.6) for a -* 0. 

For this Type of filter the poles in the W—plane can be found by solving the 

equation W 2/0! + aWi + b = 0. For fixed values of a and b, the quality factor gets 

larger when a increases. Figure 2.15 shows the values of Q versus a when b = 1 for 

various values of a. Figure 2.15 reveals that large Q values for the Type I inductor-

based filter can be obtained for large a and small values of a whereas large Q values 

for the Type I FDNR based filter in Figure 2.10 can be obtained for small values of a 

and a. Numerically, the following approximate relationship was found for the Type I 
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Figure 2.14: Magnitude and phase responses of the proposed Type I 
inductor-based asymmetric-slope band-pass filter in (1.6) to various values of a. 

inductor-based filter response, 

1  [bO.5 (1+ce)]°8686 (2.18) 

which reveals that for given a, b and a, the quality factors of Type I and Type II 

inductor based transfer functions in (1.6) and (1.7) are the same and can be calculated 

using the equation (2.18). 

It is to be noted that the step response of the Type I FDNR-based filter in (2.9) 
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Figure 2.15: Quality factor versus a at b = 1 for various values of c for Type I 
inductor-based and Type II FDNR-based realizations. 

can be used for the Type I inductor-based filter if for the identical a and b, a is 

replaced by 1 - a. Therefore, Figure 2.11 shows the step response of the Type I 

inductor-based filter in (1.6) at a = 0.2, b = 1 and a = 0.5. 

2.1.4 Type II FDNR-Based Asymmetric-Slope Band-Pass Filter 

Finally for the Type II FDNR-based design governed by (1.8) it can be shown that 

the magnitude and phase responses are respectively given by 

I kHiv (iw)I =  4  (2.19a) 

/i + 2x cos((2 - a) ir/2) + x2 

LH1v(jw) = (2 - a) 7r tan'  sin((2 -  a) ir/2) (2.19b) 
2 x + cos((2 - a) /2) 

where x = (b - w') law'-'. The peak frequency is given by 

(2.20) 

where y4 is a root of the equation 
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Figure 2.16: Magnitude and phase responses of the proposed Type II 
FDNR-based asymmetric-slope band-pass filter in (1.8) to various values of a. 

 ) 
- a) + in ( asin( 2 ' 

b—e2 = 
(2.21) 

which can also be found numerically. Note that (2.21) is identical to (2.17) except 

that a is replaced by a - 1. For a << b, it can be easily shown that w0 \/. Figure 

2.16 shows the magnitude and phase responses of the Type II FDNR-based filter 

for a = 0.01 and b = 1 with k4 = 1. Normal second-order band-pass filter transfer 

function can be obtained from the transfer function in (1.8) for a = 1. The poles 

can be found by solving the equation W a + aW + b = 0 in the W—plane and the 
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approximate relationship for Q is given as 

r a 0.8686 

a Lb(1-0.5a)] (2.22) 

which is equivalent to (2.7). In other words, Type I and Type II FDNR-based transfer 

functions in (1.5) and (1.8) have the same quality factor for given a, b and a. 

The quality factor for Type II FDNR-based filter versus a at b = 1 for different 

values of a is shown in Figure 2.15 as well. It is clear that the curves for Type I 

inductor-based filter can be used for Type II FDNR-based realization if a is replaced 

by 1—a. As an example, for given a and b and a = 0.9, Type II FDNR-based quality 

factor can be obtained by examining the Type I inductor-based curve for the same a 

and b but with a = 0.1. Generally speaking, for Type I inductor-based realization, 

large Q values are obtained for large a and small values of a and Type II FDNR-based 

filter obtains high quality factor for small values of a and a. 

It is also clear from Figures 2.10 and 2.15 that for a given a large quality factors 

can be obtained for a << b for both Type I and Type II filters. 

Finally it is worth noting that the step response of the Type II inductor-based 

filter in (2.14) can be used for the Type II FDNR-based filter if for the identical a 

and b, a is replaced by 1 - a. Therefore, Figure 2.13 shows the step response of the 

Type II FDNR-based filter at a = 0.2, b = 1 and a = 0.5. 

2.2 Possible Designs 

2.2.1 Type I Filter Realizations 

The circuits of Figures 2.4 and 2.5 can be easily realized actively by appropriately 

replacing the FDNR and the inductor by their active realizations which can employ 

operational amplifiers (opamps) [1,2,26,27], OTAs [6,28], current conveyors [29-32], 

Active-R [33,34] and even hybrid realizations [35,36]. Two circuits are proposed for 



30 

'in 

Vsn   
+ 

Zin ± 

Figure 2.17: Grounded FDNR based on Antonio's General Impedance Converter, 
whose input impedance is Zin = 1/RC2s2 used in Type I FDNR-based 

asymmetric-slope band-pass filter. 

the Type I realization governed by the transfer function in (1.5) in Figures 2.18(a) 

and (b). Figure 2.18(a) employs a General Impedance Converter (GIC) based FDNR, 

whose input impedance is Z = 1/RC2s2 (see Figure 2.17), connected to the pas-

sive filter section which employs the resistor R, and the fractional-order capacitor 

C [1, 2]'. It can be shown that this circuit realizes the transfer function in (1.5) 

with k, = 2, a = Ca/RC2 and b = 1/R,RC2. Likewise, the circuit shown in Fig-

ure 2.18(b), which employs a multiple amplifier biquad (MAB), can also realize the 

transfer function in (1.5) with k, = —R6/R5, a =  and b = where 
71 T2 

= R,C,, r2 = R2C2 and i- = RaCa. The output in this case is taken as V while 

if the output is taken as V, (see Figure 2.18(b)), k, in this case would be equal to 

R6R2C2/R5Rc,Ca with a and b staying the same and the numerator term in (1.5) 

changing from sa to s. This means that while the output V represents an asym-

metric filter, the output taken at will represent symmetric filter characteristics. 

'The FDNR is a standard circuit element in filter design whose impedance is negatively and 
inversely proportional to the square of the frequency [24], [37]. 
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Figure 2.18: Possible realizations of the Type I asymmetric-slope band-pass filter 
realizing the transfer function in (1.5); (a) using an FDNR and (b) using a multiple 

amplifier biquad. 

The circuit shown in Figure 2.20 realizes the transfer function in (1.6) with k2 = 1, 

a = Ri/(RR2R3CiCa) and b = R1/(RR2R3CC1). The circuit employs a floating 

inductor based on Riordan technique whose impedance is Z = RR2R3Cis/R1 as 

shown in Figure 2.19 [38,39]. 
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12 

Figure 2.19: Floating inductor based on Riordan technique, whose input 
impedance is Zi = RR2R3Cis/Ri used in Type I inductor-based asymmetric-slope 

band-pass filter. 

Vin 

Figure 2.20: Possible realization of the Type I inductor-based asymmetric-slope 
band-pass filter realizing the transfer function in (1.6). 

2.2.2 Type II Filter Realizations 

Type II realizations governed by the transfer function in (1.7) using a grounded in-

ductor of the Antonio GIC variety, whose impedance is = R1R2Cs (see Fig-

ure 2.21) and MAB variety are shown in Figure 2.22 with k3 = 2, a = Ca/CI 

and b = 1/R1R2CC1 for the grounded inductor version of Figure 2.22(a) and k3 = 

+ -p-q + IRA), a = -R-2r,1, b = R31R' where ri=RiCi,r2=R2C2 and ra =RaC 
R3 R5 R4 71 TIT2 

for the MAB version of Figure 2.22(b). As in the previous Type I case, an ad-

ditional symmetric band-pass filter characteristic is available at V 1 with k3 = 
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'in 

Figure 2.21: Grounded inductor based on Antonio's General Impedance 
Converter, whose input impedance is = R1R2Cs used in Type II inductor-based 

asymmetric-slope band-pass filter. 

--- (1+ R, + RO, a and b remaining unchanged, and the numerator term in (1.7) 
7,174 R3 R5 

changing from to s. Another design example with different type of grounded 

inductor is proposed in Appendix B. 

Type II FDNR-based asymmetric-slope band-pass filter using a floating FDNR, 

whose impedance is Zi = C1C2R1R2/(R3s2) (see Figure 2.23(a)) is shown in Figure 

2.24 [40]. Note that for practical purposes each CCII— can be replaced by two 

CCII+ s as shown in Figure 2.23(b). The circuit realizes the transfer function in 

(1.8) with k4 = 1, a = l/RC and b = R3/(RR1R2C1C2). 
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(a) 

R5 

(b) 

Figure 2.22: Possible realizations of the Type II asymmetric-slope band-pass filter 
realizing the transfer function in (1.7); (a) using an inductor and (b) using a 

multiple amplifier biquad. 



35 

Z 
CCII 

E) Y X 

C1 Ri C2 R2 R3 12 

Vi  )_- Wv * ) Wv • WV ° V2 

-L 

x 

CCII 
0 

Y 

(b) 

Figure 2.23: (a) Floating FDNR using current conveyors, whose input impedance 
is Z1 = C1C2R1R2/(Rss2). (b) CCII— is realized using two CCII+s. 
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Figure 2.24: Possible realization of the Type II FDNR-based asymmetric-slope 
band-pass filter realizing the transfer function in (1.8). 



CHAPTER 3 

Simulation and Experimental Results 

3.1 Using Discrete Components 

3.1.1 Type I Filters 

The Type I asymmetric-slope band-pass filters in Figures 2.18 and 2.20 were simu-

lated in SPICE using LT1364 opamps (rated bandwidth 70MHz) biased with ±15V 

supplies. Carlson's method [7] was used to simulate the fractional-order capacitor Ca 

having C = 1pF and a = 0.5, as shown in Figure 3.1. The approximated model of the 

fractional capacitor represents a self-similar RC tree structure [41]. Note that other 

approximations exist [42-44] some more optimal than others, but Carlson's method 

was chosen for its simplicity. Table 3.1 shows the values of capacitors and resistors 

used in the approximated model of fractional capacitor in Figure 3.1, The values of 

components were calculated such that Ca has an operating range of 100Hz-10kHz. 

Figure 3.2 shows the simulation results for the Type I FDNR-based circuit of Fig-

Rin 

C' 
 I(  
C2 

R3 

Figure 3.1: Approximation of Ca based on Carlson's method. 

36 
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Variable Value for SPICE simulation and experimental test 

1.4Kg 

3.2Kg 

R2 4.77Kg 

R3 11.21Kf 

R4 92.97Kg 

Ci 6.64nF 

C2 23.45nF 

C3 42.57nF 

C4 55.05nF 

Table 3.1: Values of components used in SPICE simulation and experimental test 
for Ca = 1[F, a = 0.5. 

10 

Frequency(Hz) 

10 

Figure 3.2: SPICE and experimental results of the Type I FDNR-based 
asymmetric-slope band-pass filter in Figure 2.18(a). 

ure 2.18(a) taking R1 = 531l, R = 4.7kg and C = 0.1F while Figures 3.3(a) and 

3.3(b) show the results for the Type I MAB-based circuit of Figure 2.18(b) with 

= R2 = 1.59kg, R3 = R4 = 1kl, R5 = 5.lkf2, I?6 = 100, Ra = 2701 and 

C1 = C2 = 0.1F. Both circuits were designed to achieve a quality factor of 33 and a 

center frequency of f0 = 1kHz. The circuits were also constructed on breadboard and 

tested. Experimental results for the two circuits are also shown within Figures 3.2, 

3.3(a) and 3.3(b). The slope at frequencies lower than f° was measured as 10 dB/dec 
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Figure 3.3: SPICE and experimental results of the filter in Figure 2.18(b); (a) 
showing the asymmetrical output at V0 and (b) showing the symmetrical output 

at V01. 

while it was measured as —30 dB/dec at frequencies greater than f, for both types 

of filters confirming the asymmetric nature of the band-pass filters and the accuracy 

of realizing Table 2.1(a). The measured (Q, f°) for Type I FDNR based circuit were 

(31.65, 1.087kHz) and they were measured (26.15, 1.051kHz) for Type I MAB-based 

circuit, respectively. To confirm stability, the steady state transient response of the 

filter in Figure 2.18(a) is shown in Fig. 3.4. 
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Figure 3.4: Measured transient response of the Type I band-pass filter in Figure 
2.18(a) confirming stability at a = 0.5. 

The comparison between simulation and experimental results for Type I inductor-

based asymmetric band-pass filter of Figure 2.20 taking R = 2kg, R1 = 400, R2 = 

4.48kg, R3 = 5kf, C = 0.68nF and C1 = 0.33uF is shown in Figure 3.5. The filter 

was designed to achieve a quality factor of 20 and a center frequency of f° = 1kHz. 

The measured (Q, f°) were respectively (16.52, 1.03kHz). Also the measured slope 

at frequencies lower than f0 was 10 dB/dec while it was —30 dB/dec at frequencies 

greater than f0 as expected from Table 2.1. The slight deviation from the SPICE 

simulations (see Figures 3.2 and 3.3) is attributed to the component tolerances and 

the two circuit topologies which are examined in Chapter 4. To confirm stability, the 

steady state transient response of the filter in Figure 2.20 is shown in Figure 3.6. 

3.1.2 Type II Filters 

Figure 3.7 shows the comparison between simulation and experimental results for 

the Type II inductor-based circuit of Figure 2.22(a) using R = R, = R2 = 1kg, C = 

0.1iF and C1 = 0.215F while the comparison between simulation and experimental 

results for the circuit of Figure 2.22(b) using R1 = R2 = 1.59kg, C1 = C2 = 0.1jF, 

R3 = R4 = 1k2 and R5 = 0.9k11 is shown in Figure 3.8. The measured (Q, f0) results 
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Figure 3.5: SPICE and experimental results of the Type I baud-pass filter in 
Figure 2.20. 
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Figure 3.6: Measured transient response of the Type I band-pass filter in Figure 
2.20 confirming stability at c = 0.5. 

for a designed Q = 25 and f0 = 1.04kHz yielded a (20.1, 1.16kHz) for the inductor 

based circuit and (19.75, 1.07kHz) for the MAB based circuit. The measured slope at 

frequencies less than f° was 30 dB/dec while it was —10 dB/dec at frequencies greater 

than f0. The steady state transient response of the filter in Figure 2.22(a) is shown 

in Figure 3.9. 
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Figure 3.7: SPICE and experimental results of the filter in Figure 2.22(a). 
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Figure 3.8: SPICE and experimental results of the filter in Figure 2.22(b); (a) 
showing the asymmetrical output at V0 and (b) showing the symmetrical output 

at V01. 
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TeK Run: 500k5/s HI Res 
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Figure 3.9: Measured transient response of the Type II inductor-based band-pass 
filter in Fig. 2.22(a) for a = 0.5. 

Variable Value for SPICE simulation and experimental test 

12Ol 

R1 27ff 

R2 40&2 

R3 958 

R4 7.94Kl 

7.77nF 

02 27.4nF 

03 49.8mF 

04 64.4nF 

Table 3.2: Values of components used in SPICE simulation and experimental test 
for Ca = a = 0.5. 

AD844 opamps (rated bandwidth 21MHz) were used to simulate Type II FDNR-

based asymmetric-slope band-pass filter in Figure 2.24. The fractional-order capacitor 

Ca having Ca =3.7F and a = 0.5 was approximated by Carison's method such that 

it has an operating range of 1kHz - 100kHz [7]. Table 3.2 shows the values of resistors 

and capacitors used in Carison's approximation. The comparison between simulation 

and experimental results for Type II FDNR-based asymmetric-slope band-pass filter 

of Figure 2.24 taking R = 14k1, R1 = 8k1, R2 = 8.2kl, R3 = 40kg, C1 = 4.7nF 

and C2 = 2.2nF is shown in Figure 3.10. The filter was designed to achieve a quality 
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Figure 3.10: SPICE and experimental results of the filter in Figure 2.24. 

TeX Run: 2.SOMS/s HI Res 
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13:39:10 

Figure 3.11: Measured transient response of the Type II FDNR-based band-pass 
filter in Figure 2.24 confirming stability at c = 0.5. 

factor of Q = 18 and a center frequency of 10 = 10kHz and the measured (Q, f) were 

respectively (13.5, 10.52kHz). The slope at frequencies less than f0 was measured as 

30 d]3/dec while it was measured as —10 dB/dec at frequencies greater than f0 in the 

operating range of Ca. To confirm stability, the steady state transient response of the 

filter in Figure 2.24 is shown in Figure 3.11. 

It is to be noted that because of the fractional differentiator circuit in the feedback 

loop of the MAB based circuits of Figures 2.18(b) and 2.22(b), at f0, large signal 
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swings can be present at the outputs of the two lossless integrators. This results in 

the necessity to use small input signals for Vi,, to avoid the outputs of these lossless 

integrators being saturated. The MAB based circuit therefore should in general be 

driven by small input voltages. On the other hand the FDNR based circuits as well 

as the inductor based circuits in both types do not suffer from internal resonances at 

their nodes and are limited only by the maximum allowable differential voltage across 

the opamps input terminals. 

Finally, it is also worth noting that the deviation in the Q and f° is larger for 

the Type II circuit because of tolerances in addition to the fact that Type II filters 

responses are more susceptible to variations in the quality factor of the grounded 

inductor and floating FDNR in Figures 2.22(a) and 2.24. This point is discussed in 

more detail in Chapter 4. 

3.2 FPAA realization 

3.2.1 Field Programmable Analog Array Implementation 

Field Programmable Analog Arrays (FPAA) offer a unique way to experimentally 

validate the functionality of analog design on the integrated circuit level. FPAA is 

an analog signal processor which allows complex analog circuits to be implemented 

in real time programmable Analog Signal Processors. These analog signal proces-

sors are designed to implement signal conditioning, filtering, summing, subtracting, 

data acquisition, closed-loop control, audio and other analog functions in a wide 

range of embedded systems. The AN231E04 device consists of a 2x2 matrix of fully 

Configurable Analog Blocks (CAMs), surrounded by programmable interconnect re-

sources and analog input/output cells with active elements. The CAMs can be easily 

dropped in and wired together in the graphical design environment. Here, we use 

the proposed FPAA from Anadigm [45] based on fully differential switched capacitor 

building blocks running at a 4MHz clock. We use bilinear and biquadratic CAMs 
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Figure 3.12: AN231E04 FPAA development kit from Anadigm. 

to approximate the fractional order filters. Figure 3.12 shows the AN231E04 FPAA 

development kit from Anadigm. 

3.2.2 FPAA Realization of Non-Integer Laplacian Operator 

Using bilinear CAMs in FPAA we need to have the transfer function pole and zero fre-

quencies. To use low-pass and band-pass biquads, quality factor and center frequency 

are needed as well. Since non-integer Laplacian operator sc, cannot yet be physically 

realized, we substitute for s with the second-order approximation introduced in [17] 

as 
2 + ds + e 

es2 + ds + C 
(3.1) 

where c = 2 + 3c +2, d = 8— 2a2 and e =a2 - 3a +2. The proposed approximation 

minimizes the magnitude error to less than 1dB over two decades. This point is 

discussed in more detail in Appendix A. 
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Figure 3.13: Approximated Type I asymmetric-slope band-pass filter in (3.2) 
implementation using gain, bilinear and biquadratic filter CAMs of the 
AnadigmDesigner tools for implementation on the AN231E04 FPAA. 

3.2.3 FPAA Realization of Type I Band-pass Filter 

Substituting (3.1) in the Type I transfer function in (1.5) yields a fourth-order transfer 

function which can then be written in the form 

(.0-1— .V o.4-. 
V.'  

Hi(s) = '(s+ PI) (s+p2)s2+(o/Q)s+w (3.2) 

after replacing s with s/ 0. This rearrangement in bilinear and biquadratic terms 

is needed for the FPAA realization. The fourth order transfer function in (3.2) can 

be tested in the FPAA using one gain CAM, two bilinear and one biquadratic filter 

CAMs cascaded and wired together to the desired input and output ports in the 

AnadigmDesigner design environment as shown in Figure 3.13. Bilinear CAMs were 

setup in the pole-zero configuration, shown in Figure 3.14(a) and biquadratic CAMs 

were setup in the low-pass configuration, shown in Figure 3.14(b). The bilinear CAM 

and low-pass biquadratic CAM are realized on the FPAA using the switch capacitor 
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Figure 3.14: Parameters setup environment of the AnadigmDesigner tools for the 
(a) bilinear and (b) biquadratic filter CAMs. 

circuit in Figures 3.15(a) and (b) . Figure 3.16 shows the experimental results realizing 

a filter with (a, a, b, k) = (0. 5, 0.03, 1, 1) which theoretically yields Q = 47.64 and 

f0 = 38.42kHz. With reference to (3.2), the poles and zeros of the bilinear blocks 

in kHz are respectively (z1, z2,pi,p2) = (71.988,4.011)359.44, 19.773) and (Q, f0) for 



48 
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Figure 3.15: Internal switched capacitor circuits on the FPAA to realize the (a) 
pole/zero bilinear and (b) low-pass biquadratic transfer functions. 

low-pass filter are (48.95, 38.414kHz) , respectively. The gain of the transfer function 

is G1 = 0.147. The measured quality factor Q was 44.13 and the center frequency 10 

was 38.73kHz which are very close to the design values. It is important to note here 

that the pole and zero values of (3.2) are rounded off by the FPAA. 

Figure 3.17 shows another design example at (a, a, b, k) = (0.1,0.17, 1, 0.035) for 

a Type I transfer function. The poles and zeros of fourth-order transfer function in 

(3.2) in kHz are (z1,z2,pi,p2) = (122.55, 8.722, 165.049,11.379) and G1= 0.0404 and 
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Figure 3.16: Experimental results using an FPAA for Type I asymmetric filter in 
1.5 with a = 0.5, Q = 47.64. 
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Figure 3.17: Experimental results using an FPAA for Type I asymmetric filter in 
1.5 with a = 0.1,Q = 45.1. 

(Q, f0) for low-pass CAM are (45.41, 41.091kHz) , respectively. The measured (Q, f0) 

for a designed Q = 43.3 and f0 = 41.078kHz were (45.1,40.813kHz), respectively. 

It is to be noted that Type I transfer function in (1.6) can be obtained from the 

transfer function in (1.5) if a is replaced by 1 - a. The implementation of this is that 

the fourth-order transfer function in (3.2) can be used for the Type I transfer function 

in (1.6) if for identical a; b and k, a is replaced by 1 - a. To illustrate an example 
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the fourth order transfer function in (3.2) for the Type I filter in (1.5) with given a, 

b, k and a = 0.1 can be used for the Type I transfer function in (1.6) for the same a, 

b and k but with a = 0.9. As a result, Figure 3.17 shows the experimental result for 

the Type I filter in (1.6) for the same a, b and k used in the previous example but for 

a = 0.9. 

3.2.4 FPAA Realization of Type II Band-pass Filter 

Substituting (3.1) in a Type II transfer function in (1.7) yields a fourth-order transfer 

function which can then be written in the form 

(s + 21) (5 + 22) s(w0/Q)  
H11 (s) = Gil (S 

+1)(S+2) 2 + (w0/Q)s+w 
(3.3) 

after replacing s with s/w0. This rearrangement in bilinear and biquadratic terms 

is needed for the FPAA realization. The fourth order transfer function in (3.3) can 

be tested in the FPAA using one gain CAM, two bilinear and one biquadratic filter 

CAMs cascaded and wired together to the desired input and output ports in the 

AnadigmDesigner design environment as shown in Figure 3.18. Bilinear filters were 

setup in the pole-zero configuration and biquadratic filters were setup in the band-pass 

configuration. 

Figure 3.19 shows a design example at (a, a, b, k) = (0.5, 0.05, 1, 0.8) for Type II 

transfer function in (1.7). The poles and zeros of fourth-order transfer function in 

(3.3) in kHz are (21,22,231,132) = (72,4.011,365.94,20.25) and G11 = 0.198. The 

band-pass block has Q = 36.73 and f0 = 37.505kHz. The measured (Q, f°) for a 

designed Q = 39 and f° = 38.3kHz were (38.935, 37.57kHz), respectively. 

Another design example at (a, a, b, k) = (0.1,0.027, 1, 1) with f0 = 37.916kHz and 

Q = 37.52 for the Type II filter is shown in Figure 3.20. The poles and zeros of the 

bilinear blocks in kHz are respectively (21,22,131,232) (8.722,122.55,11.805,165.9) 

and G11 = 1.356. The quality factor and center frequency (Q, f°) for band-pass filter 
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Figure 3.18: Approximated Type II asymmetric-slope band-pass filter in (3.3) 
implementation using gain, bilinear and biquadratic filter CAMs of the 
AnadigmDesigner tools for implementation on the AN231E04 FPAA. 
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Figure 3.19: Experimental results using an FPAA for Type II asymmetric filter in 
(1.7) with a=O.5,Q =39. 

CAM are (37.47,37.922kHz), respectively. The measured quality factor and center 

frequency are Q = 36.37 and f0 = 37.956kHz which are very close to the theoretical 

values. Note that this Type II filter response has an almost symmetric characteristic 
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Figure 3.20: Experimental results using an FPAA for Type II asymmetric filter in 
(1.7) with a = 0.1,Q = 37.52. 

about f0 because a is small. The slope at frequencies lower than f0 is 22 dB/dec 

while it is 18 d.B/dec at frequencies greater than f0 which is to be expected from 

Table 2.2. 

Finally, it is worth noting once again that the Type II transfer function in (1.8) 

can be obtained from (1.7) if a is replaced by 1 - a. Therefore, the approximated 

transfer function in (3.3) for Type II filter in (1.7) can be used for Type II filter in 

(1.8) if for identical a, b and k, a is replaced by 1 - a. As an example, the fourth 

order transfer function in (3.3) with given a, b, k and a = 0.1 can be used for Type 

II transfer function in (1.8) for the same a, b and k but with a = 0.9. As a result, 

Figure 3.20 shows the experimental result for the Type II filter in (1.8) for the same 

a, b and k used in the previous example but for a = 0.9. 

Note that the FPAA internal structure is based on switched capacitor building 

blocks running at a 4MHz sampling clock. Therefore, the bandwidth of any circuit 

implemented using the FPAA should not exceed 400kHz (1/10 of the sampling fre-

quency) to obtain sufficient accuracy. The center frequency of the filters realized 

using the FPAA in this work was around 40kHz. 



CHAPTER 4 

Non-Ideal Effects 

4.1 Lossy Elements 

4.1.1 Type I FDNR-Based Circuit 

To study the non-ideal effects in the proposed asymmetric-slope band-pass filters, 

it is useful to begin with a study of the non-idealites in the passive prototypes. In 

particular in the FDNR and the inductor, both of which would normally be imple-

mented using active circuits. For this consider the modified passive prototype shown 

in Figure 2.4(a) where the D—element of the Type I filter is now modeled by an ideal 

D—element in parallel with capacitor c, to model the losses as shown in Figure 4.1. 

The quality factor of non-ideal FDNR is QD = c,/Dw and straightforward analysis 

yields a modified Type I FDNR-based transfer function of the form, 

asa 
Hi(s) = 52+asa+b+As (4.1) 

r 1 

0  

+ 
co1 

Vin  

I 1+ 
I I 

Ip Vo I 

I I - 

L   I 

Figure 4.1: Non-ideal model of the Type I FDNR-based filter accounting for the 
lossy FDNR as shown by the dashed line. 
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0.2 0.4 0.6 

QD 

0.8 

Figure 4.2: Plot of ratio versus QD for Type I FDNR-based filter. Qi is the 
ideal quality factor of the filters with ideal elements and Q is the observed quality 

factor of the filters with lossy elements. 

where A = QDW and a1 = a. Ideally as QD - 0 equation (4.1) reverts back to see 

Type I transfer function in (1.5) with k1 = 1. In Figure 4.2, a plot of the ratio of the 

desired Q of the filter to the ideal quality factor Qr against QD is shown for a = 0.2, 

b = 1 and various a. Note that the ideal ratio of Q/Qi should be one for QD = 0. 

The plot in Figure 4.2 reveals that in the case of the Type I FDNR-based filter for 

low values of a it is important to keep QD as low as possible, since the slope is the 

largest for small a. As a increases, the slope for small QD decreases, meaning that 

more reactive losses can be tolerated. 

4.1.2 Type I Inductor-Based Circuit 

Figure 4.3 shows the modified passive prototype shown in Figure 2.4(b) where the 

inductor of the Type I filter is now modeled by an ideal inductor in series with resistor 

r to model the losses. Here, the quality factor of non-ideal inductor is QL = Lw/v. 

The non-ideal transfer function of Type I inductor based filter in (1.6) can be written 

in the form 

H11 (s) = 
as1 

S2 + as'-el 1 + b + s' 
(4.2) 
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Figure 4.3: Non-ideal model of the Type I inductor-based filter accounting for the 
lossy inductor as shown by the dashed line. 
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Figure 4.4: Plot of ratio versus QE for Type I inductor-based filter. Q' is the QI 
ideal quality factor of the filters with ideal elements and Q is the observed quality 

factor of the filters with lossy elements. 

  and a2 = a. Ideally as QL -4 oo equation (4.2) reverts where B = QL/W rad/sec  

back to the Type I transfer function in (1.6) with k2= 1. Figure 4.4 shows a plot 

of the ratio of the desired Q of the filter to the ideal quality factor Q against QL 

for a = 0.2, b = 1 and various a. It reveals that large inductor quality factors are 

important to maintain a high Q/Qj ratio. As a decreases this requirement can be 

relaxed but it is clear overall that large QL's are needed to ensure this circuit yields 

the desired Q. 
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+ 
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Figure 4.5: Non-ideal model of the Type II inductor-based filter accounting for the 
lossy inductor as shown by the dashed line, 

4.1.3 Type II Inductor-Based Circuit 

The inductor of the Type II filter in Figure 2.5(a) is now modeled by an ideal inductor 

L in series with resistor r in Figure 4.5 to show its losses. Here, the quality factor of 

non-ideal inductor is QL = Lw/r. The non-ideal transfer function of Type II inductor 

based filter can be written in the form 

a (s1 + Lsa) 
Hjij(s) =   

S2 + asl+a + b + I(s + asa)' 
(4.3) 

where B = QL/w rad/3ec and a3 = a. It is clear that as QL —* oo equation (4.3) 

reverts back to the Type II transfer function in (1.7) with k3 = 1. In Figure 4.6 plot 

of varying QL to the ratio of the desired Q of the filter to the ideal quality factor Q 

is shown for a 0.2, b = 1 and various a. Note that the ideal ratio of Q/Qi should 

be one for QL cc. The plot of Figure 4.5 reveals that large inductor quality factors 

are needed to maintain a high Q/Qi ratio. As a decreases this requirement can be 

relaxed but it is clear that large quality factors for the inductor are needed to ensure 

this circuit yields the desired Q. 
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Figure 4.6: Plot of ratio Q versus QL for Type II inductor-based filter. Q' is the 
ideal quality factor of the filters with ideal elements and Q is the observed quality 

factor of the filters with lossy elements. 
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Vin Ca4 
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vout 

 0 

Figure 4.7: Non-ideal model of the Type II FDNR-based filter accounting for the 
lossy FDNR as shown by the dashed line. 

4.1.4 Type II FDNR-Based Circuit 

The D—element of the Type II filter in Figure 2.5(b) is now modeled by an ideal 

D—element in parallel with capacitor c in Figure 4.7 to show the losses. The quality 

factor of non-ideal FDNR is QD = c/Dw. The non-ideal transfer function for the 

Type II FDNR-based filter can be written in the form 

Hi(s) = a (s2 + As")  
2 + a82-a + b + A (s + as')' 

(4.4) 
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Figure 4.8: Plot of ratio versus QD for Type II FDNR-based filter. Q is the 
ideal quality factor of the filters with ideal elements and Q is the observed quality 

factor of the filters with lossy elements. 

where A = QDW 'ad and a4 = a. In Figure 4.8 a plot of varying QD to the ratio of sec 

the desired Q of the filter to the ideal quality factor Qi is shown for a = 0.2, b = 1 

and various a. Ideally as QD —* 0 equation (4.4) reverts back to the Type II transfer 

function in (1.8) with k4 = 1. Note that the ideal ratio of Q/Qi should be one for 

QD = 0. The plot of Figure 4.8 reveals that in the case of the Type II FDNR-based 

filter for low values of a, its important that QD be kept as low as possible, since 

the slope is the largest for small a. As a increases the slope for small QD decreases 

meaning that more reactive losses can be tolerated. 

Finally it is worth noting that equations (4.3) and (4.4) reveal that the deviation 

in the Q and f0 is larger for the Type II circuits because of the fact that the responses 

of these filters are more susceptible to variations in the quality factor of the grounded 

inductor and floating FDNR, respectively. 
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r 

Ca 

Figure 4.9: The non-ideal fractional capacitor is modeled by an ideal fractional 
capacitor °a in parallel with resistor r. 

4.1.5 The Non-ideal Fractional Capacitor 

In this section, we study the effect of non-idealities in the fractional capacitor on filter 

quality factor. For this, consider the modified fractional capacitor shown in Figure 

4.9 where the non-ideal fractional capacitor is now modeled by an ideal fractional 

capacitor Ca in parallel with a resistor r to model the losses. 

The quality factor of ideal fractional capacitor is 

QI - tan( Car --) (4.5) 

and the quality factor of non-ideal fractional capacitor shown in Figure 4.9 is 

rCaw°sin( )  
Q= 1+TCaWaCOS(?) 

(4.6) 

The non-ideal quality factor of fractional capacitor approaches the ideal quality factor 

for r -+ oo. In Figure 4.10, the plot of the ratio of the actual Q of the fractional 

capacitor to the ideal quality factor Qi against r is shown for Ca = IF and various 



60 

r 

Figure 4.10: Plot of the ratio of the actual Q of the fractional capacitor to the 
ideal quality factor Qj, versus r for Ca = iF and various values of a. 

values of a. 

4.2 Finite Gain Bandwidth Product 

For the opamp-based designs of filters in Figures 2.18, 2.20 and 2.22 it is important 

to find the effect of the finite gain-bandwidth product on w0 and Q. Here, we assume 

that identical opamps, each described by a single-pole open-loop transfer function of 

the form A(s) = Wt/5 (Wt is the amplifier's gain-bandwidth product) are used. 

4.2.1 Type I FDNR.-Based Circuit 

Using non-ideal and identical opamps the following transfer function is derived for 

the Type I FDNR-based filter 

Hi Wt(s) = 
[rs3 + (1 + )s2 + Wt  + Pa(s)I + 

Wt a 

(4.7) 

where r = RC and Pa(s) = s4 + ( + Wt + br)s3 + ( + brw + 0.5w + 2b) s2 + 

bws' + bws with a = CaIRO2 and b = i/R1RC2 as defined earlier. It is noted 
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Figure 4.11: 3D plots of (a) Lw0/w0 for a =[O.005, 1], a =[O.005, 1] and (b) LQ/Q 
for a =[O.005, 1], a =[O.005, 1] both for the FDNR-based Type I realization. 

that (4.7) has complex zeros located at w /Wt/'r for Wt > 1/4r. To minimize the 

effect of ji-, a good choice is to select r = 100/wt which then yields w/1O. 

Furthermore, for the Type I FDNR-based filter, Figures 4.11(a) and 4.11(b) show 

the percentage variability of L.w0/ 0 and LQ/Q versus a and a for b = 1 and Wt = 

1000w0. The minimum and maximum deviations for w0 and Q were respectively found 

to be (-0.97%,-1.15%) and (-6.6%,7.47%). For Wt = 100w0, the minimum and 

maximum deviations jump to (-2.11%,-1.51%) and (-55.46%, 4.49%). As expected 

the deviation in Q, which is traditionally larger than w0, gets progressively worse as 

the center frequency approaches the opamp bandwidth. The Matlab codes to generate 
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Figures 4.11(a) and 4.11(b) is provided in the Appendix C. 

4.2.2 Type I MAB-Based Circuit 

Examining the MAB based circuit of Figure 2.18(b), under the same assumptions, 

reveals that there are no complex zeroes in the non-ideal transfer function as shown 

in Appendix D. The transfer function is of order s6 in the integer terms and s6 in 

the fractal terms of Pa(s). 

For the Type I MAB-based filter, Figures 4.12(a) and 4.12(b) show the percentage 

variability of L.w0/w0 and I..Q/Q versus a and a for b = 1, r1 = T2 = r = 100/wt 

and Wt = 1000w0. Here r = R1C1 , T2 = R2C2 and r = RaCa. The minimum and 

maximum deviations for w0 and Q were respectively found to be (0.925%,1.0811%) 

and (-0.698%,-57.81%). For Wj = 100w0, the minimum and maximum deviations 

jump to (0.124%,1.006%) and (1.515%, —93.35%), respectively. 

4.2.3 Type I Inductor-based Circuit 

The non-ideal transfer function for the Type I inductor-based asymmetric-slope band-

pass of Figure 2.20 is of order 5 in the integer terms and in the fractal terms of 

Pa(s) as shown in Appendix E. 

Figure 4.13(a) and 4.13(b) show the percentage deviation of /.Q/Q and zw0/w0 

versus a and a for r3 = b = 1, r1 = 100/we, wt = 1000w0. Here Ti = R2C1 and 

R3/R2. The maximum deviations for w0 is (-0.235%,-0.5179%) while it is 

(-9.9%,72.73%) for the quality factor. For wt = 100w0, the minimum and maxi-

mum deviations of center frequency and quality factor jump to (-1.13%,2.307%) and 

(-8.81%) —88.45%), respectively. 

In Figure 4.14, a comparison of the ideal magnitude response in (1.5) to the 

magnitude response of the circuits in Figures 2.18(a), 2.18(b) and 2.20 is shown for 

a=0.5,a=0.2,rs=1,ri=r2=r=100/wt,wt=1000w0 and b=l with all the 



63 

1.1 

1.05 

0.95 

0.8 
0.6 

0.4 
a 0.2 

00 

(a) 

-10 

-20 

-30 

-40 

-50 

-60 

0.2 

0.6 
0.4 

a 

0.8 

(b) 

Figure 4.12: 3D plots of (a) iw0/w0 for c =[O.005, 1], a =[O.005, 1] and (b) AQ/Q 
for c =[O.005, 1], a =[O.005, 1] both for the MAB-based Type I realization. 

plots normalized to a center frequency gain of 0dB. The presence of the zeroes in the 

FDNR based circuit can clearly be seen. Note that Type I ideal transfer functions in 

(1.5) and (1.6) have the same amplitude response for given a and b when c = 0.5. 

In order however, to gain a greater appreciation for the differences in the perfor-
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Figure 4.13: 3D plots of (a) iw0/w0 for a =[O.005, 1], a =[O.005, 1] and (b) tQ/Q 
for a =[O.005, 1], a =[O.005, 1] both for the inductor-based Type I realization. 

mances of the Type I, FDNR, inductor based and MAB based realizations a complied 

table of simulated results for percentage deviations in &.0/w0 and zQ/Q to various 

values of a is shown in Table 4.1 for a = 0.5, 71 =r2 =  -r = 100/wt, 73 = 1, 
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Figure 4.14: Plot of the amplitude response of the ideal transfer function of 1.5 
compared to the non-ideal transfer functions of Figures 2.18(a) and (b) and 2.20 for 

= = T = 100/Wt, 73 = 1, wt = 1000w0 and b = 1. 

Wt = 1000w0 and b = 1. The percentage variation in i.w0/w0 is small and roughly the 

same across the FDNR, inductor based and MAB based circuits of Figures 2.18(a), 

2.18(b) and 2.20. Conversely if the percentage variation in LQ/Q of Table 4.1(b) is 

examined the FDNR-based circuit always outperforms the MAB-based and inductor-

based circuits for all a and inductor-based circuit has the worst performance. Note 

that for a = 0.5 the w0's and Q's of the Type I filters in Figures 2.18(a), 2.18(b) and 

2.20 are identical for a given a and b. 

4.2.4 Type II Inductor-Based Circuit 

The non-ideal transfer function for the Type II inductor-based asymmetric-slope 

band-pass filter in Figure 2.22(a) is given as 

Hii(s) = WtS(S + b-i- + wt) 
S3 + (w + br)s2 + (bTwt + w)s + Pa(s) 

(4.8) 

where r = R1C1 and 

Pa(s) = + ( + b7-+ Wt)S3 + (bTwt + b + w? + L)32_a + bwts' + bws 
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a FDNR-based MAB-based Inductor-based 

0.01 -0.9956 1.0083 -0.4984 

0.05 -1.0059 1.0119 -0.4967 

0.1 -1.0111 1.0214 -0.4896 

0.5 -1.0684 1.0445 -0.4369 

(a) 

Qc11. 
- /0 

a FDNR-based MAB-based Inductor-based 

0.01 0.2386 -13.1336 142.58 

0.05 0.4544 -3.4386 17.17 

0.1 0.4749 -2.0633 8.267 

0.5 0.4314 -0.8922 2.078 
(b) 

Table 4.1: Percentage variation in (a) center frequency w0 and (b) Q for all Type I 
active filter realizations with a = 0.5 and b = 1. 

with a = Ca/C, and b = 1/R1R2 CC1 as defined earlier. Examination of (4.8) reveals 

the presence of zeroes at the origin and at frequencies slightly larger than the unity 

gain bandwidth of the opamp. 

For the Type II inductor-based filter, Figures 4.15(a) and 4.15(b) show the per-

centage variability of 1w0/w0 and LQ/Q versus a and a for b = 1, r = 100/we and 

Wt = 1000w0. The minimum and maximum deviations for w0 and Q were respectively 

found to be (-0.5072%,-1.0281%) and (-9.92%,58.171%). For wt = 100w0, the 

minimum and maximum deviations jump to (-1.9093%,-2.6389%) and (-9.9958%, 

103.214%). The deviation in Q is larger than center frequency and gets progressively 

worse as the center frequency approaches the opamp bandwidth. 

4.2.5 Type II MAB-Based Circuit 

If the Type II MAB-based circuit is examined, its transfer function also has a zero 

near the unity gain bandwidth of the opamp and likewise it also is of order 6 in the 
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Figure 4.15: 3D plots of (a) Lw0/w0 for a =[O.005, 1], a =[O.005, 1] and (b) i.Q/Q 
for a =[O.005, 1], a =[O.005, 1] both for the inductor-based Type II realization. 
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integer terms and s6 in the fractal terms of Pc, (s) due to the number of opamps in 

the circuit as in the Type I MAB-based circuit. The non-ideal transfer function of 

Type II MAB-based is shown in Appendix F. 

For the Type II MAB-based filter in Figure 2.22(b), Figures 4.16(a) and 4.16(b) 

show the percentage variability of Lw0/w0 and IQ/Q versus a and a for b = 1, 

= = r = 100/we and Wt = 1000w0. Here rl = R1C1 , r2 = R2C2 and r = Rc,Cc,. 

The minimum and maximum deviations for w0 and Q were respectively found to be 

(-0.7091%,-1.0281%) and (-72.243%,168.682%). For Wt = 100w0, the minimum 

and maximum deviations jump to (-0.7212%,-1.716%) and (-86.752%, 276.315%), 

respectively. 

In order, however, to gain a greater appreciation for the differences in the perfor-

mances of the Type II inductor based and MAB based realizations a complied table 

of simulated results for percentage deviations in Lw0/w0 and AQIQ to various values 

of a is shown in Table 4.2 for a = 0.5, r1 = -r2= r = 100/wt, wt = 1000w0 and b = 1. 

As expected the percentage variation in Aw,lw, is small and roughly the same across 

the Inductor based and MAB based circuits of Figures 2.22(a) and 2.22(b). Also Ta-

ble 4.2 reveals that Type II inductor-based circuit performs better than MAB-based 

circuit if deviation in quality factor is considered. 

The high frequency response of these two circuits can therefore be expected to 

be similar to Type I filters. Figure 4.17 shows a comparison of the ideal magnitude 

response in 1.7 to the magnitude response of the circuits in Figures 2.22(a) and 2.22(b) 

for a = 0.5, a = 0.2, b = 1, r = -r2 =  = 100/wt and Wt = 1000w0 with all the plots 

normalized to a center frequency gain of 0dB. 
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Figure 4.16: 3D plots of (a) /w0/w0 for a =[O.005, 1], a =[O.005, 1] and (b) LQ/Q 
for a =[O.005, 1], a =[O.005, 1] both for the Type II MAB-based realization. 
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a Inductor-based MAB-based 

0.01 —0.9918 —0.9861 

0.05 —0.9728 —0.9785 

0.1 —0.9471 —0.9641 

0.5 —0.7818 —0.8888 

(a) 

a Inductor-based MAB-based 

0.01 1.1975 73.6562 

0.05 1.4056 9.7833 

0.1 1.4123 4.948 

0.5 1.2988 1.3006 

(b) 

Table 4.2: Percentage variation in (a) center frequency w0 and (b) Q for Type II 
inductor-based and MAB-based realizations with a = 0.5, b = 1. 

4.3 Voltage and Current Tracking Errors 

4.3.1 Type II FDNR-Based Circuit 

The Type II FDNR-based circuit was designed using current conveyors as shown 

in Figure 2.24. Note that for practical purposes each CCII— was replaced by two 

CCII+s. For the current conveyor-based design it is important to find the effect of 

current and voltage tracking errors (Ei and 6V) on w0 and Q. We assume for simplicity 

that identical current conveyors each described by I, = (1— e)I and V = (1— e,) V 

(see Figure 2.23) are used. For the Type II FDNR-based filter, the following transfer 

function is then derived 

-s2 + A(s) + B(s) + eiC(s) 

Hjv(s) = k2 + + RR1R2C1C2 + A(s) +62 [B(s) + cs2] + ei[C(s) - 2cs2} 
RCa 

(4.9) 



71 

0 

-10 

-20 

-30 

-40 

-50 

-60 

-70 

10 10 

w (rad/s) 
10 10 ' 102 

Figure 4.17: Normalized plot of the amplitude response of the ideal transfer 
function of 1.7 compared to the non-ideal transfer functions of Figures 2.22(a) and 

2.22(b) for a = 0.5, a = 0.2, r = 72 = r = 100/wt, wt = 1000w0 and b = 1. 

where the parameters are k = ('v)' A(s) = -4J (RR:c1 s1 +   

B" ' -  6R2+5R3  1-a 6R2+5R3 2-a - (  4R2+2R3  1-a j 4R2+2R3 2-a 
- RRiR2CcrCi 8 ' RR2C ' - kRRiR2CaCi 5 RR2Ca s an 

c = (1+ ). It is clear that for E -+ 0 and 6V — f 0, the non-ideal transfer function in 

(4.9) reverts to the ideal transfer function in (1.8) with a = 1/RC, and b =  

The comparison between the ideal magnitude response of Type II filter in (1.8) 

to the magnitude response of the circuit in Figure 2.24 for r = RC,,, = 5, Tj = 

RiC1 -1,r2 —R2C2 -1,-1,6j—ev-0.001,a-0.2,b-1 and a-

0.5 is shown in Figure 4.18. The minimum and maximum deviations for w0 and Q 

were respectively found to be (1.196%,1.981%) and (15.642%,49.55%). For 61 = 

ev = 0.001, the minimum and maximum deviations jump to (0.6429%,2.5538%) and 

(4.542%,27.132%), respectively. 
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Figure 4.18: Plot of the amplitude response of the ideal transfer function of (1.8) 
compared to the non-ideal transfer function of Figure 2.24 when current and voltage 

tracking errors of CCII+'s are considered. For all curves 6, = = 0.001, 
a = 0.5,a= 0.2 and b= 1. 
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CHAPTER 5 

Higher-Order Asymmetric-Slope Band-Pass Filters 

5.1 Higher-Order Normal Band-pass Filters 

Higher order band-pass filters are obtained using the same method proposed for the 

second-order asymmetric-slope band-pass filter implementation in Chapter 2. The 

M th  order low-pass filters in Figures 5.1(a) and 5.1(b) can be transformed into normal 

integer-order band-pass filters using s —* transformation, where w0 is the center 
BS 

frequency and B is the bandwidth of the band-pass filter. Now consider the band-pass 

filters in Figures 5.2(a) and 5.2(b), obtained by applying this transformation on the 

corresponding low-pass filters, respectively. In other words, a low-pass filter can be 

transformed into band-pass filter circuit by replacing the capacitor C with a parallel 

combination of capacitor and inductor of respective values 2 and and replacing 

Vin 

Ri R2 

C, T 

L2 

(a) 

4. 

(b) 

Figure 5.1: m  th order RC and RL low-pass filters. 

73 
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Figure 5.2: m1h order band-pass filters schematics obtained by the s 82+W Bs 
transformation on low-pass filters in Figure 5.1. 

the inductor L with a series combination of capacitor and inductor of values and 

, respectively. Likewise, Figure 5.3(a) and 5.3(b) show normal band-pass filters 

which are equivalent to the circuits in Figures 5.2(a) and 5.2(b) if one considers 

the multiplication of each element of the circuits in Figure 5.2(a) and 5.2(b) by a 

scaling factor 1/As where A is a constant of dimension sec'. In other words, Bruton 

RLC: CRD transformation [24] is used to generate band-pass filters in Figures 5.3(a) 

and 5.3(b). The transfer function of the band-pass filters in Figures 5.2 and 5.3 is 

given by 

H(s) = aBmsm  
52m++aBmsm++w2m 

(5.1) 
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Figure 5.3: mth order band-pass filters schematics, where m is an integer. 

where B is the bandwidth, w0 is the center frequency and m is the order of filters. 
M 

The filters in 5.2(a) and 5.3(a) realize the transfer function in (5.1) with a = JJp-
m 

and in the case of band-pass filters in 5.2(b) and 5.3(b), a = 
i=1 

5.2 Asymmetric-Slope Band-pass Passive Prototypes 

i=1 

Consider the circuits in Figures 5.2 and 5.3. Fractional-order asymmetric-slope band-

pass filters are obtained if at least one resistor in Figure 5.2 and one capacitor in 

Figure 5.3 is replaced by a fractional order capacitor. It is to be noted that the 

number of fractional-order capacitors which can be used in the M th order fractional-

order band-pass filter, varies from 1 to m. In other words, at least one fractional 

capacitor in one stage of a band-pass filter is needed to have an asymmetric-slope 
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Vin 

(a) 

Ca, T Ca2 T 

T 
Lm 

+ 

vout 

(b) 

Figure 5.4: mth order passive prototype models of Type I asymmetric-slope 
band-pass filter. 

band-pass filter and the maximum number of fractional capacitor which can be used 

is m when all the resistors in Figure 5.2 and all the capacitors in Figure 5.3 are 

replaced by fractional-order capacitors. 

5.2.1 Type I Asymmetric-Slope Band-pass Passive Prototypes 

Figure 5.4(a) and 5.4(b) show Mth order passive prototypes Type I asymmetric-slope 

band-pass filters. The normal band-pass filter in Figure 5.3(a) converts to a Type 

I asymmetric-slope band-pass filter if at least one of the capacitors is replaced by 

a fractional capacitor of equal fractal capacitance and fractal order. Figure 5.4(a) 

shows passive prototype Type I asymmetric band-pass filter using maximum number 

of fractional capacitors, m. The transfer function of the proposed Type I FDNR 

based filter is given by 

Hi(s) = 
s2m + ... + aBmsm[l_(l_tY)J + ... + w 

aBmsmll_ (1—a)] 

(5.2) 
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Frequency Type I FDNR-based 

Slope (dB/dec) 

W <<w0 0 <20m(1 - - a)) <20m (1 - - a)) 

w>>w0 20m<20m(1+(1—a))<40m —(1+(i—a)) 

(a) 

Frequency Type I inductor-based 

Slope (dB/dec) 

0<20m(1—a)<20m 9(1—a) 

W >> w0 20m < 20m(1 + a) <40m —(1 + a) 

(b) 

Table 5.1: Slopes for 0 1 order Type I asymmetric-slope band-pass filter. 

where m is order of the filter, n is number of fractional-order capacitor used in the 

filter, B is the bandwidth, w0 is center frequency and a = flL. 

Likewise, the Type I passive prototype model in Figure 5.4(b) can be obtained 

from the normal band-pass filter in Figure 5.2(b) if each resistor is replaced by a frac-

tional capacitor of equal fractal capacitance and fractal order. The transfer function 

of the filter is given by 

aBmsm[ll  (5.3) 
liji(s) = 2m + + aBmsmEl_ MkaI + ... + w 

where m is order of the filter, n is number of fractional-order capacitor used in the 

filter, B is the bandwidth, w is center frequency and a = Two different HLjCcj 
slopes and phases of the Type I FDNR-based filter in Figure 5.4(a) and inductor-

based filter in Figure 5.4(b) are presented in Table 5.1. The phase of the filters was 

found empirically and verified using MATLAB. 

Figure 5.5 shows the relationship between center frequency, W3 and w4 for the 

ni'll order Type I FDNR-based asymmetric-slope band-pass filter. W3 and w4 are the 

stopband frequencies where the attenuation is maximum. With reference to Figure 
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a(w) 

amin 

w3 wo w4 W 

Figure 5.5: w0, w3 and w4 in the Type I asymmetric-slope band-pass filters. 

5.5 and Table 5.1, we arrive at the following equation 

amin  
= 20m(1 + --(1 - a)) 

log(LIAI ) m 

which in turn yields 

(5.4) 

amin = 20m(1 + ?(1 - a))1og() (5.5) 
M WO 

for frequencies greater than we,. Here, amin is the maximum attenuation in the stop-

band. For frequencies less than w0, we have the following equation 

which in turn yields 

—amin - 

log(cL) - —20m(1 - .!(1 _ a)) 
M 

W3 

(5.6) 

amin = 20m(1 - -(1 —a))log( WO —) (5.7) 
M 

The relationship between w0, w3 and w4 can then be found 

1)0 \I (i-'(1)) (1+ (1 ce)) = m 

by equating equations (5.5) and (5.7). 

(5.8) 
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Figure 5.6: m th order passive prototype models of Type II asymmetric-slope 
band-pass filter. 

For the Type I m order inductor-based asymmetric-slope band-pass filter, the 

center frequency is given by 

VW3 ,,(1+o) 
UI4 

using the same method. 

5.2.2 Type II Asymmetric-Slope Band-pass Passive Prototypes 

(5.9) 

Consider the m' order passive prototypes Type II asymmetric-slope band-pass filter 

shown in Figures 5.6(a) and 5.6(b). Normal band-pass filter in Figure 5.2(a) converts 

to Type II asymmetric-slope band-pass filter if at least one of the resistors is replaced 

by a fractional capacitor of equal fractal capacitance and fractal order a. Figure 5.6(a) 

shows passive prototype Type II asymmetric band-pass filter using maximum number 

of fractional capacitors. The transfer function of the proposed Type II inductor based 
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Frequency Type II inductor-based 

Slope (dB/dec) 

W 4 w0 20m < 20m(1 + a) <40m 9(1 + a) 

W >> w0 0 < 20m(1 - a) <20m -- mir ( n a —1) 

(a) 

Frequency Type II FDNR-based 

Slope (dB/dec) 

w<<w0 20m<20m(1+(1—a))<40m (1+(i—a)) 2 7n 

W >> w0 0 < 20m(1 - (1 - a)) <20m ((1 - a) - 1) 

(b) 

Table 5.2: Slopes for Type II m order asymmetric-slope band-pass filter. 

filter is given by 

H111 (s) = 
aBmsm[1 1 

2m  + + aBmsmIiI + ... + w 
(5.10) 

where m is order of the filter, n is number of fractional-order capacitor used in the 
m 

filter, B is bandwidth, w0 is the center frequency and a = rrCcc 

i=i 

Likewise, the Type II passive prototype in Figure 5.6(b) can be obtained from the 

normal band-pass filter in Figure 5.3(b) if each capacitor in Figure 5.3(b) is replaced 

by a fractional capacitor of equal fractal capacitance and fractal order. 

The transfer function of the filter is given by 

Hiv(s) = 
aBmsmll_ (a—i)) 

2m + + aBmsmtl(l)I + ... + w2 
(5.11) 

where m is order of the filter, n is number of fractional-order capacitor used in the 

filter, B is the bandwidth, w0 is the center frequency and a =   Table 5.2 M icaj 

shows the slopes and phases of the proposed Type II inductor-based filter is Figure 

5.6(a) and FDNR-based filter in Figure 5.6(b). 

It is to be noted that the maximum number of fractional capacitor is used in all 
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) 

amin 

w3 W O W 
Figure 5.7: w0, w3 and w4 in the Type II asymmetric-slope band-pass filters. 

four circuits in Figures 5.4 and 5.6. 

Figure 5.7 shows the relationship between center frequency, w3 and w4 for the m ilL 

order Type II inductor-based asymmetric-slope band-pass filter. With reference to 

Figure 5.7 and Table 5.2, we arrive at the following equation 

which in turn yields 

Cemin  = n 20m(1 - —a) 
log() In 

amin = 20m(1 - n —a)log(—) 
M 

(5.12) 

(5.13) 

at frequencies greater than w. For frequencies less than w0, we have the following 

equation 

min - —20m(1 + n—a) 
log( m 

which in turn yields 

am in = 20m(1 + n —a)log(—) 
M 

The relationship between w0, w3 and w4 can then be found 

Lu 0 = VW3 M W4 M 

(5.14) 

(5.15) 

(5.16) 
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Figure 5.8: Passive prototype model of a fourth order Type I FDNR-based filter 
using one fractional capacitor. 

by equating equations (5.13) and (5.15). 

For the Type II m th order FDNR-based asymmetric-slope band-pass filter, the 

center frequency is given by 

0 = VW3 (1+2.(1_)) In (5.17) 

using the same method. 

Finally, it is clear from Table 5.1 that increasing the number of fractional ca-

pacitors in the Type I FDNR and inductor based filters decreases the slope at low 

frequencies and increases it at high frequencies. On the other hand, Table 5.2 reveals 

that having greater number of fractional capacitors in the Type II filters leads to 

sharper slopes at low frequencies and slighter slopes at high frequencies. 

5.3 Fourth-Order Asymmetric-Slope Band-pass Filter 

5.3.1 Fourth-Order Type I FDNR-Based Filter 

5.3.1.1 Passive Prototype 

Consider the fourth order passive prototype Type I filter shown in Figure 5.8 which 

deploys only one fractional capacitor. The transfer function of this filter is 
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Figure 5.9: Magnitude response of the proposed fourth-order Type I filter in 
(5.18) to various values of c. 

where a = 

Hi(s) =   
s' + as3 + bs2 + Cs2 + d81+a + es + fs + g 

ds1 
(5.18) 

C(Dl+D2) b - - R1D1+R2D2 d - -90a,  C(Ri+R2) ,e -  

DiD2 - D1 ' - R1R2D1D2 ' - 751D2 - - R2D1D2 

and g -  The transfer function converts to 
- RiR2DiD2 

CS 2a 

H; (s) 4 + a82+a + bs2 + CS2a + dsa + e (5.19) 

if C is replaced by another fractional capacitor (Cai) with the same fractal order 

in Figure 5.8. Here, a = (Cal Di+Ca2Di+Cc.2Di) b - R1D,+R2D2 cc,  Ca2 d - 

D1D2 ' - R1R2D1D2 C = D1D2 ' - 

(RiCa1 +RiCa2 +R2Ca )  
R1R2D1D2 and e = R1R2D1D2• Figure 5.9 shows the magnitude response for 

the filter in (5.18) at a = c = e = 2, b = f = 1.5, d = 0.05 and g = 1. 

The step response of the filter can be obtained by substituting for the non-integer 

Laplacian operator sOI with the the equation (3.1). Figure 5.10 shows the step response 

of the fourth order FDNR-based filter in (5.19) at a = b = d = 2, c = e = 1 and 

a = 0.5. 
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Figure 5.10: Step response of the fourth order FDNR based filter in (5.19) at 
a=b=d=2,c=e=1 and c=0.5. 

5.3.1.2 Simulation and Experimental Results 

The circuit of Figure 5.8 can be easily realized actively by appropriately replacing the 

FDNR by their active realizations which can employ operational amplifiers (opamps) 

[2], OTAs [6], current conveyors [29, 30], Active-R [33] and even hybrid realizations 

[35]. In the case of the Type I realization one such realization that uses opamps is 

shown in Figure 5.11 which employs a GIC based FDNR, connected to the passive 

filter section which employs the resistor R1, the capacitor C1 and the fractional-order 

capacitor C. The proposed filter was simulated in SPICE using LT1364 opamps 

(rated bandwidth 70MHz) biased with ±15V supplies. Carison's method [7] was used 

once again to simulate the fractional-order capacitor C having C = 11iF and a = 0.5. 

The values of the capacitors and resistors in the approximated model shown in Table 

3.1 were calculated such that Ca has an operating range of 100Hz-10kHz. Figure 

5.12 shows the simulation results for the fourth order Type I FDNR-based circuit 

of Figure 5.11 taking R1 = 1.5kg, R = 1.68kg, C = 0.1F and C1 = 0.011F. The 
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Figure 5.11: Possible realization of fourth-order Type I FDNR-based 
asymmetric-slope band-pass filter. 
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Figure 5.12: SPICE and experimental results of the filter in Figure 5.11. 

expected quality factor and center frequency were Q = 25.15 and w0 = 1kHz. The 

circuit was also constructed on breadboard and tested. Experimental result for the 

circuit is also shown within Figure 5.12. The slope at frequencies lower than f0 was 

measured as 30 dB/dec while it was measured as —50 dB/dec at frequencies greater 

than f0 confirming the asymmetric nature of the band-pass filters and the accuracy 

of realizing Table 5.1(a). The measured (Q, f0) for the circuit were (23, 1.04kHz). 
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Figure 5.13: Measured transient response of the fourth order Type I FDNR-based 
band-pass filter in Figure 5.11 confirming stability at a = 0.5. 

To confirm stability, the steady state transient response of the filter in Figure 5.11 is 

shown in Figure 5.13. 

The fourth order Type I transfer function in (5.19) was tested experimentally 

using an AN231E04 FPAA from Anadigm [45]. Substituting (3.1) into (5.19) yields 

an eighth order transfer function which can be written in the form 

1 (s2 + 2 s+w 2) 

Hi(s) = G1 Qz1  
(s2+s+wp1)(s2+s+op2)(s2+s+wp3)(s2+ EEL s+ WP, ) 

QP4 QpI 

(5.20) 

after replacing s with s/w0 where w 0 = w1,w 2w7 w 4. This rearrangement in bi-

quadratic terms is needed for the FPAA realization. The eighth order transfer 

function in (5.20) can be tested in FPAA using four biquadratic filter CAMs cas-

caded and wired together to the desired input and output ports in the Anadig-

mDesigner design environment as shown in Figure 5.14. Two biquadratic filters 

were setup in the low-pass configuration and two of them were setup in the pole-

zero configuration. Figure 5.15 shows the experimental result realizing a filter with 

(a, a, b, c, d, e) = (0. 1, 2, 2, 2, 2, 1) which theoretically yields Q = 30.5 and f0 = 

53kHz. With reference to (5.19), the zeros quality factor and center frequency in 
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Figure 5.14: Approximated fourth order Type I band-pass filter in (5.20) using 
four biquadratic filter CAMs. 
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Figure 5.15: Experimental result using an FPAA for fourth order Type I 
asymmetric-slope filter in (5.19) with a = 0. 1, Q = 30.5. 

kHz are respectively (Q 1,w 1) Q 2,w 2) = (0.249,32.694,0.249,32.694), the poles 

quality factor and center frequency in kHz are (Q,1, w1, QP21 &JP21 Q3 I &JP31 Q4, w) = 

(5.16,54.168,29-36,54.213,0.499,162.68,0.499,10.322) and G1 = 0.44. The measured 

quality factor was 29.767 and the center frequency f0 was 54.077kHz which are very 

close to the expected values. It is important to note here that the pole and zero values 

of (5.20) are rounded off by the FPAA. 

Another design example for (a, a, b, c, d, e) = (0.5, 2, 2, 1, 2.28, 1) with Q = 31 
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Figure 5.16: Experimental result using an FPAA for fourth order Type I 
asymmetric-slope filter in (5.19) with a = 0. 1, Q = 30.5. 

and f0 = 45kHz is shown in Figure 5.16. With reference to (5.19), the zeros 

quality factor and center frequency in kHz are respectively (Q1 ,Wzj, Q2 )w2) = 

(0.223, 13.41,0.223, 13.41), the poles quality factor and center frequency in kHz are 

(Q 1,w 1) Q 25w 21Q 31w3, Q 4,w 4) =(0.5,9.79,0.5,270.4,1.07,43.26,30.19,44.7) and 

G11 = 0.933. The measured quality factor and center frequency were Q = 29.472 and 

= 44.355kHz which are very close to the theoretical values. 

5.3.2 Fourth Order Type I inductor-Based Filter 

5.3.2.1 Passive Prototype 

Consider the fourth order passive prototype Type I filter shown in Figure 5.17 which 

deploys only one fractional capacitor. The transfer function of the filter is 

Hii(s) = 
ds2 

4 + as3 + b83-a + cs2 + ds2 + es + fs' + g 
(5.21) 

where a = R - C - b L1+L2 L1C,+L2L2 d -  R  R  
L2 LjL2CC,1 L1L2CjC2 ' - LiL2C' e  = L1L2C1 .1 cS+c2  LiL2CiC2Ca 

and g = L1L2C1C2• The transfer function in (5.21) can be obtained from the Type I 

transfer function in (5.18) if a is replaced by 1 - a. We have the following transfer 
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Figure 5.17: Passive prototype model of fourth order Type I inductor-based filter 
using one fractional capacitor. 

function for the fourth order passive prototype model in (5.17) if R is replaced by a 

fractional order capacitor (Ca2) with the same fractal order 

H11(s) =   
4 + asS0 + bs2 + CS2-2a + ds' + e 

(5.22) 

where a = (LiCaj+LiCa2+L2Cc2) L1C1+L2C2 ,  1  ,j (CiCa2+Ci0aj+t20a2) 
- 

- - 

LiL2CO 1Co 2 LiL2CIC2 LiL2CIC2  L1L2CjC2Ccr1Cc 2 

and e = L1L201C2• Likewise, it is worth noting that the transfer function in (5.22) can 

be obtained from the transfer function in (5.19) if a is replaced by 1 - a. Figure 5.18 

shows the magnitude response of the filter in (5.21) at a = c = e = 2, b = f = 1.5, 

d = 0.05 and g = 1. The step response of the filter can be obtained by substituting 

for the non-integer Laplacian operator s° with the the equation in (3.1) into transfer 

functions in (5.21) and (5.22). Clearly the step response of the Type I FDNR based 

filters in (5.18) and (5.19) can be used for the fourth order Type I inductor-based filter 

if for the identical a, b, c, d, e, f and g, a is replaced by 1 - a. Therefore, Figure 5.10 

shows the step response of fourth order filter in (5.22) at a = b = d = 2, c = e = 1 

and a = 0.5. 
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Figure 5.18: Magnitude response of the proposed fourth-order Type I filter in 
(5.21) to various values of a. 

Figure 5.19: Possible realization of fourth-order Type I inductor-based 
asymmetric-slope band-pass filter. 

as shown in Figure 5.20. The fractional-order capacitor Ca having C =11LF and 

a = 0.5 was approximated by Carison's method such that it has an operating range 

of 100Hz - 10kHz. The value of components in the approximated model is shown in 

Table 3.1. 

The circuit was constructed on breadboard and tested. The comparison between 

simulation and experimental results taking R = R3 = 6k1, R1 = R2 = 4kg, R4 = 

8kg, C = 2.2nF and C1 = 0.33/.F is also shown in Figure 5.20. The expected quality 

factor and center frequency were Q = 22 and w0 = 1kHz. The slope at frequencies 
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Figure 5.20: SPICE and experimental results of the filter in Figure 5.19. 

lower than f0 was measured as 30 dB/dec while it was measured as —50 dB/dec at 

frequencies greater than f0 confirming the asymmetric nature of the band-pass filter 

and the accuracy of realizing Table 5.1(b). The measured (Q, f0) for the circuit were 

(18.2, 1.04kHz). To confirm stability, the steady state transient response of the filter 

in Figure 5.19 is shown in Figure 5.21. 

5.3.3 Fourth Order Type II Inductor-Based Filter 

5.3.3.1 Passive Prototype 

Consider the fourth order passive prototype Type II filter shown in Figure 5.22 which 

deploys only one fractional capacitor and grounded inductors. The transfer function 

of the proposed passive prototype is 

H111 (s) = 
cs2 

S4 + ass+a + bs3 + CS2+cE + ds2 + esl+a + f  + g 
(5.23) 
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Figure 5.21: Measured transient response of the fourth order Type I 
inductor-based band-pass filter in Figure 5.19 confirming stability at c = 0.5. 

Cai R 

Figure 5.22: Passive prototype model of fourth order Type II inductor-based filter 
using one fractional capacitor. 

where a = - b =    d - L1CI+L2C2 _____ - and 
1 RC102' = 'RCCg' - L1L2C1C2 e = L2C102' I - RL1L20102 

g = L1L2C1C2• The transfer function converts to 

H111 (s) =   
4 + asS+t + b82+2a + Cs2 + ds'-- + C 

(5.24) 

if R is replaced by another fractional capacitor (Ca2) with the same fractal order 

- (C1Cc,+C2Ccq +C2Ccx2 -  ) b C"',Ca2 c = L1C1+L2C2 d - in Figure 5.22. Here, a - CIC2 CI C2 - L1L2C1C2 - 

(Li Cc, 1+Llca2+L2acr2) and e =  Figure 5.23 shows the magnitude response for 
L1L2C1C2 L1L2C1C2 

the filter in (5.23) at a = e = 0.5, b = d = f = 2, c = 0.05 and g = 1. 

The step response of the filter can be obtained by substituting for the non-integer 
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Figure 5.23: Magnitude response of the proposed fourth-order Type II filter in 
(5.23) to various values of a. 
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Figure 5.24: Step response of the fourth order inductor based filter in (5.24) at 
a=b=d=2,c=e=1 and a=O.5. 

Laplacian operator sl with the the equation in (3.1) into the transfer functions in 

(5.23) and (5.24). Figure 5.24 shows the step response of the fourth order Type II 

inductor-based filter in (5.24) at a = b = d = 2, c = e = 1 and a = 0.5 
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Figure 5.25: Possible realization of fourth-order Type II inductor-based 
asymmetric-slope band-pass filter. 

5.3.3.2 Simulation and Experimental Results 

The fourth order Type II realization using grounded inductor of the Antonio GIC 

variety whose impedance is Zi = R1R2Cs and one fractional-order capacitor is shown 

in Figure 5.25. The proposed filter was simulated in SPICE using LT1364 opamps 

biased with ±15V supplies. Carlson's method [7] was used to simulate the fractional-

order capacitor C, having C = 1/hF and c = 0.5, as shown in Figure 3.1. Figure 

5.26 shows the simulation result for the fourth order Type II inductor-based circuit of 

Figure 5.25 taking R1 = R2 = R = 1.5k≤, R3 = 1OOQ and C1 = 0.1/hF. The expected 

quality factor and center frequency were Q = 22 and w0 = 1kHz. Experimental 

result for the circuit is also shown within Figure 5.26. The slope at frequencies 

lower than f0 was measured as 50 dB/dec while it was measured as —30 dB/dec at 

frequencies greater than f0 confirming the asymmetric nature of the band-pass filter 

and the accuracy of realizing Table 5.2(a). The measured (Q, f°) for the circuit 

were (19.798, 1.066kHz), respectively. To confirm stability, the steady state transient 

response of the filter in Figure 5.25 is shown in Figure 5.27. 

The fourth order Type II transfer function in (5.24) was tested experimentally 
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Figure 5.26: SPICE and experimental results of the filter in Figure 5.25. 
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Figure 5.27: Measured transient response of the fourth order Type II 
inductor-based band-pass filter in Figure 5.25 confirming stability at a = 0.5. 

using AN231E04 FPAA from Anadigm [45]. Substituting (3.1) into (5.24) yields an 

eighth order transfer function which can be written in the form 
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Figure 5.28: Approximated fourth order Type II band-pass filter in (5.25) using 
four biquadratic filter CAMs. 

(s2+—-s+w 1)(s2+-s+w 2) Q1  
HI (s) = G111  (s2 + s + c 1)(s2 + s + w 2) (s2 + + w3)(s2 + + w4) 

QP1 QP2 

(5.25) 

after replacing s with s/w0 where w0 = The eighth order transfer func-

tion in (5.25) can be tested by FPAA using four biquadratic filter CAMs cascaded 

and wired to the desired input and output ports in the AnadigmDesigner design 

environment as shown in Figure 5.28. Two biquadratic filters were setup in the 

band-pass configuration and two of them were setup in the pole-zero configuration. 

Figure 5.29 shows the experimental result realizing a filter with (a, a, b, c, d, e) = 

(0. 1, 0.5, 0.015, 2, 0.5, 1) which theoretically yields Q = 32 and f0 = 38kHz. With 

reference to (5.25), the zeros quality factor and center frequency in kHz are re-

spectively (Q 1,w 1, Q 2, w2) = (0. 249, 32.694, 0.249, 32.694), the poles quality factor 

and center frequency in kHz are respectively (Q 1, w 1, Q2, w7, Q3, w3, Q,4, w4) = 

(2.17, 36.529,31.562,37.508,0.499, 169,0.499, 12.028) and C111 = 1.984. The mea-

sured quality factor was 31.464 and the center frequency f0 was 37.8kHz which 

are very close to the expected values. The slope at frequencies lower than f0 was 

44 dB/dec while it was measured as 36 dB/dec at frequencies greater than f0 which 
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Figure 5.29: Experimental result using an FPAA for fourth order Type II 
asymmetric-slope band-pass filter in (5.24) with a = 0.11 Q = 32. 

yields an almost symmetric characteristics about f° because of small a. 

Another design example for (a, a, b, c, d, e) = (0. 5, 0.1,0.01,2, 0. 1, 1) with Q = 42 

and f° = 38kHz is shown in Figure 5.30. With reference to (5.25), the zeros 

quality factor and center frequency in kHz are respectively (Q11 w) Q2, w2) = 

(0.223, 16.994, 0.223, 16.994), the poles quality factor and center frequency in kHz are 

(Q1 I w 11 Qp2, w2, QP31 W735 Q4 ,w 4)=(0.5, 368, 0.5, 20.306, 10.311, 38.506, 44.227, 36.23) 

and G111 = 0.933. The measured quality factor and center frequency were Q = 40.801 

and f0 = 36.052kHz which are very close to the theoretical values. 

5.3.4 Fourth Order Type II FDNR-based Filter 

5.3.4.1 Passive Prototype 

Consider the fourth order passive prototype Type II filter shown in Figure 5.31 which 

deploys only one fractional capacitor. The transfer function of the proposed passive 

prototype is 

Hiv(s) = 
S4 + as4 + bs3 + CSS—cd + ds2 + es2 + fs + g 

cs3 
(5.26) 
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Figure 5.30: Experimental result using an FPAA for fourth order Type II 
asymmetric-slope band-pass filter in (5.24) with a = 0.5, Q = 42. 
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Figure 5.31: Passive prototype model of fourth order Type II FDNR-based 
asymmetric band-pass filter using one fractional capacitor. 

where a = Rl+R2 - b 1 - c 1  d - R1D1+R2D2 Di+D2  : - 
R1R2Ca1' - RC' - R1R2OCIH1 ' - R1R2D1D2 e = R1R2D1D2C1 j - 

' and 9:-'-': R1R2D1D2 
 1 The transfer function in (5.26) can be obtained from the 

R1R2D10 

fourth order Type II transfer function in (5.23) if a is replaced by 1 - a. We have 

the following transfer function for the fourth order passive prototype model in Figure 

5.31 if C is replaced by another fractional order capacitor (C'2) with the same fractal 

order 

H1v(s) = 
CS 2-2a 

S4 + as4 + b,54-2a + cs2 + ds2 + e 

(R1Cos1+R1C432+R2Ca2) b = R1R2C1 1Ca2 ' where the parameters are a = RiR2C 1C 2 

d -- (DjCco+D2Caj+D2Cco2) and e =  1  
RiR2DiD2Ca1C 2 R1R2D1D2 

c= 

(5.27) 
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Figure 5.32: Magnitude response of the proposed fourth-order Type II filter in 
(5.26) to various values of a. 

function in (5.27) can be obtained from the transfer function in (5.24) if a is replaced 

by 1 - a. Figure 5.32 shows the magnitude response of the filter in (5.26) at a = 

e = 0.5, b = d = f = 2, c = 0.05 and g = 1. The step response of the filter can be 

obtained by replacing the non-integer Laplacian operator s in transfer functions in 

(5.26) and (5.27) with the equation (3.1). It is to be noted that the step response of 

the fourth order Type II inductor-based filters in (5.23) and (5.24) can be used for 

the fourth order Type II FDNR-based filter if for the identical a, b, c, d, e, f and g, a 

is replaced by 1 - a. Therefore, Figure 5.24 shows the step response of fourth order 

filterin(5.27)ata—b--d=2,c=e--1 and a=0.5. 

5.3.4.2 Simulation and Experimental Results 

The fourth order Type II realization using floating FDNR whose input impedance 

is Zi = C1C2R1R2/(R3s2) and one fractional-order capacitor C 1 is shown in Figure 

5.33. The circuit was first simulated using AD844 opamps biased with ±15V sup-

plies in SPICE as shown in Figure 5.34. The fractional-order capacitor Cai having 
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Figure 5.33: Possible realization of fourth-order Type II FDNR-based 
asymmetric-slope band-pass filter. 
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Figure 5.34: SPICE and experimental results of the filter in Figure 5.33. 

V0 

C =3.7F and a1 = 0.5 was approximated by Carison's method such that it has an 

operating range of 1kHz - 100kHz. The value of components is shown in Table 3.2. 

The comparison between simulation and experimental results for the fourth-order 

Type II FDNR-based asymmetric-slope band-pass filter of Figure 5.33 using R = 8kg, 

R1 = 14kg, R2 = 8.2k2, R3 = 38kc1, C1 = 4.7nF, C2 = 2.2nF and C = 1nF is 

also shown in Figure 5.34 . The expected quality factor and center frequency were 

Q = 20 and f0 = 10kHz. The slope at frequencies lower than f0 was measured 

as 50 dB/dec while it was measured as —30 dB/dec at frequencies greater than f0 
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Figure 5.35: Measured transient response of the fourth order Type II FDNR-based 
asymmetric-slope band-pass filter in Figure 5.33 confirming stability at a = 0.5. 

confirming the asymmetric nature of the band-pass filter. The measured (Q, f0) for 

the circuit were (16.95, 10.6kHz), respectively. To confirm stability, the steady state 

transient response of the filter in Figure 5.33 is shown in Figure 5.35. 



CHAPTER 6 

Conclusions and future work 

6.1 Conclusion 

In this work, new approaches were proposed for realizing high-Q continuous-time 

asymmetrical-slope band-pass filters based on concepts of fractional-order filters [15], 

[16], [18]. Two types of asymmetric-slope band-pass filters were presented and the 

symmetry in the relationship of one transfer function to the next was highlighted. 

Exact expressions for w0 and approximate expressions for the Q of two types of 

second-order filters were presented. The two approaches were verified experimentally 

using discrete components and an FPAA technique. For the discrete realizations, the 

overhead of using an emulation of the fractional capacitor is still acceptable given the 

complexity of other techniques. The overhead of the FPAA technique, as clear from 

(3.2) and (3.3), is that a fourth-order transfer function is realized instead of the actual 

second-order functions in (1.5), (1.6), (1.7) and (1.8); due to employing the fractional 

Laplacian operator. The non-ideal effects of second-order asymmetric-slope band-pass 

filters were studied as well. The effects of parasitic capacitors in the non-ideal FDNR 

and resistor in non-ideal inductor were considered and four non-ideal transfer func-

tions were introduced for each Type of second-order filters. Furthermore, the effects 

of current and voltage tracking errors in non-ideal current conveyors and the finite 

gain-band width product in operational amplifiers were considered for second-order 

filters and the amplitude response of the non-ideal transfer functions were compared 

to the ideal response curves. 

102 
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The techniques used in the second-order filters were then extended to higher-order 

filters as well. m  th order band-pass filters with two different slopes in the stopband 

were introduced for proof of the concept. Two types of fourth-order asymmetric-slope 

band-pass filter were proposed, simulated in SPICE and verified experimentally using 

discrete components and FPAA technique. Using the FPAA technique two eighth 

order transfer functions were realized after substituting the Laplacian operator 81 

with the second order approximation in equations (5.19) and (5.24). 

6.2 Contribution 

The main contributions of this thesis have been divided into two areas. First in 

the design of second-order asymmetric-slope band-pass filters which can obtain very 

large quality factors and secondly extending the same techniques to design higher 

order asymmetric-slope band-pass filters. 

This work introduced methods by which asymmetric band-pass filters can be real-

ized, based on fractional-order transfer functions. All available techniques that have 

been proposed up until now for the design of such filters were microwave-based tech-

niques (see [20,21]) that have only been verified using micro-strip based circuits. In 

this work we not only introduce a new theory for the design of asymmetric filters 

but verify its functionality using classical discrete circuit topologies as well as by 

using an FPAA. The use of standard inductor, FDNR and MAB filter structures, 

which are classical and widely known structures, serves to show that the proposed 

fractional-order transfer functions can still rely on available classical techniques of fil-

ter circuit design. Compared to other design techniques for asymmetric filter design, 

this overhead is less and the design process is easier. 

Coupled with obtaining asymmetrical characteristics, we also show that the pro-

posed technique can achieve high-Q filters, which by itself is a challenging problem. 

Hence, the advantage of using fractional-order transfer functions in achieving together 
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two properties, which are otherwise very difficult to achieve, is clear. To obtain high 

quality factor we used fractional capacitors which yields fractional terms in the trans-

fer function of the filters. The non-integer Laplacian operator in the denominator of 

the transfer function of band-pass filters played the main role in placing the poles 

very close to the stability boundary and obtaining high quality factors whereas the 

operator in the numerator was considered to obtain asymmetric-slope characteristics. 

6.3 Future Work 

This work has focused on the importing of concepts from fractional calculus into the 

design of filters to create asymmetric-slope fractional-order filters with high quality 

factors. Although no commercial fractional capacitors are available as yet, the re-

search on fractals in [8, 11, 12,46,47] appears promising and lends itself to this work. 

Furthermore, even though low frequencies were used in the experiments, with the 

advent of commercial or in-house fractional capacitors it is conceivable that this work 

could be naturally extended to higher frequencies. Further research would have to be 

done to investigate the behavior of these circuits at higher frequencies and beyond 

the operational range of the fractional capacitances. Likewise the sharp and different 

phase responses for frequencies greater than or less than w0 for both types of circuits, 

suggest that these circuits may find other applications or uses in phase discriminators. 

The nature of the networks in Figures 5.4 and 5.6 suggest that these principles could 

potentially be expanded to the Butterworth, Chebychev, Inverse Chebychev and El-

liptic filter approximations. In addition, further research could be done to generate 

and design asymmetric notch filters. 

The entirety of this work focused on the continuous time second-order band-pass 

filters with asymmetric-slope characteristics and high quality factors. The design 

equations and process to create second-order band-pass filters were presented for 

two types of filters. The concept was expanded to higher order filters, however the 
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closed-loop expressions for center frequency and quality factor are unexplored. The 

concept was proved by giving simulation and experimental results for Type I and 

Type II fourth order filters in Chapter 5. Further work could be done to determine 

the generalized method to design higher order asymmetric-slope band-pass filters and 

find expressions for center frequency and quality factor. 

Finally, further work could be done on designing and implementing high quality 

factor symmetric band-pass filters using fractional capacitor showing the potential to 

become commercially available. 
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APPENDIX A 

Approximated Fractional Capacitor Realization 

An approximated fractional capacitor must be built to simulate the proposed asymmetric-

slope band-pass filters. Carlson's method was used to simulate the fractional capacitor 

whose impedance is Z0a = C  where Ca is the value of capacitor and 0 < a < 1. 

It is possible to approximate the term (1/s) for n = > 1 using this method. 

The following function is used in the newton process for this approximation 

F(x) = x(n— I)Xn  (n+ 1)(1/s)  
(n+l)x+(n— 1)(1/s) 

(A.1) 

where x is the previous iteration. It is clear from A.1 that the order and accuracy of 

the approximation increases as the number of iteration increases. 

The first iteration approximation of (1/s)a using an initial assumption x0 = 1 

yields 

1.9a (a2+3a+2)s2-i-(8-2a2)s+(a2-3a-i-2)  
/ (a2-3a+2)s2+(8-2a2)s+(a2+3a+2) 

and the second iterate approximation is given by 

1 as  + bs3 + cs2 + ds + e 
/ es4+ds3+cs2+bs+a 

(A.2) 

(A.3) 

where a = a4 - 10a3 + 35a2 - 50a + 24, b = —4a4 + 20a3 + 40a2 - 320a + 384, 

c = 6a4 - 150a2 + 864, d = —4a4 - 20a3 + 40a2 + 320a + 384 and e = a4 + 10a3 + 

35a2 + 50a + 24. It is to be noted that equations in (A.2) and (A.3) approximate the 
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Figure A.1: Comparison between magnitude responses of the approximated 
fractional capacitor and ideal fractional capacitor at C = lizF and a = 0.75. 

fractional order capacitor around the frequency lrad/s. As an example the following 

Carison's approximation can be used for second iteration of 1/0.75. 

39s4 + 2964s3 + 1333882 + 10868s + 1463 
1/s°75 1463s + 10868s + 13338s2 + 2964s +39 

(A.4) 

the comparison between the magnitude responses of this approximation and ideal 

fractional capacitor of impedance Zn(s) = is shown in Figure A.I. Using the 

approximation in (A.3) the fractional capacitor can be realized using the RC ladder 

network in Figure A.2 whose input impedance is 

1 1 1 1  
Zfl=Rfl+ Ci(s+R1C1) + C2(s+R2C2) + C3(s+R3C3) + C4(s+R4C4) 

The values of components can be found by equating equations in (A.3) and (A.5). 
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R1 R2 R3 R4 

+ 
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0  

C' C2 C3 

Figure A.2: RC tree to realize fourth order approximated fractional Laplacian 
operator based on Carlson's approximation technique. 

As an example the equation in (A.4) can be rewritten in the form 

0.332 0.505 0.28 0.709  1/s0.75 = 0.026 + + + + 
s+1.192  s+0.014  s+0.267  s+5.954 

(A.6) 

and the values of components are R = 0.026, R, = 0.1192, R2 = 0.2782, R3 = 

1.0462, R4 = 36.0412, C1 = 1.408F, C2 = 3.01F, C3 = 3.57F and C4 = 1.977F. 

It is worth noting that the fractional capacitor with the capacitance of C can 

be approximated around any frequency, w, by applying magnitude and frequency 

scaling factors to the values of R and C in the RC ladder network. The values of 

components after scaling are 

R=Rk (A.7) 

O = C/Kmkf (A.8) 

where km = 1/(Cw) is the magnitude scaling factor and k1 = w is frequency 

scaling factor. Figure A.3 and A.4 show the magnitude and phase responses of the 

approximated fractional capacitors used in this work compared to the ideal fractional 

capacitors. 

Figure A.5 shows the code used to generate the values of components for fractional 

capacitor Ca having C = 1uF and a = 0.5 with the center frequency of f° = 1kHz. 
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[This program generates any series RC tree for any value of alpha, center frequency and capacitance C 

> restart; 
with(numtheory): 
wo:=evalf(2*Pi*(1e3)): This is the desired center frequency 

alpha: =0.5: This is the desired value of alpha 
C: =le-6: These values represent the desired Capacitance and the center frequency wo of the approximation 

> kf : =wo: This is the desired frequency scaling factor 

> km: =l/C/(wo0.5): This is the desired magnitude scaling factor 

[> : =8: Expand to the order of s"4 

outl:=cfrac((l+x)beta, x, n, 'simple'): 

[> sa_h:=cfrac(outl): 

> total:sa_h: 
total:=normal (total, expanded): 
total :=sort(tota]., s ,descending): 
s_alpha:=collect(total ,$): 

> beta: =—alpha: Flip the value of the function needed. 
s_alpha: n0rma1 (s_alpha): 

> s_alpha:=simplify(%); 

39.42964. + 13338.82+ 10868.s + 1463. 
so/p/ia 

1463.+ l0868. + 13338.82+2964.8 +39. 

> num:=numer(s_alpha) :num:''collect(num,$): 
a:coeff(num, s,3) /coeff(nuat,s, 4); 
b:coef(num,s,2)/coeff(num,s,4); 
c:=coeff(nuin,s,1)/coeff(num,s,4); 
d:"coeff(num,s,0)/coeff(num,s,4); 

a 76.00000000 

b : 342.0000000 

o := 278.6666667 

37.51282051 

[> 
> y:Rin + (l/Cl)/(s + l/Rl/Cl) + (1/C2)/(s + l/R2/C2) + (l/C3)/(s + 

1/R3 /C3) + (1/C4) / (S + l/R4 /C4) ;This is the input impedance of RC network 
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I?/iz +  1  1  

Cl I .r +  C2 Is + 1 C• (  ,, + R 3  CI (   
C3) RI CI 

>test:(s"4 + a*s"3 + b*s"2 + cs + d)/(d*s"4 + c*s3 + b*s'2 + a*s + 1); 
I use this to check that the partial fraction expansion matches the unsealed R's anc C's 

If 'I' 76.00000000s + 342.00000008 2 .1-- 278.66666678 + 37,51282051 

37.51282051 y 4+ 278.6666667 x + 342.0000000s 2 + 76.00000000s + 

> out:=convert(test,parfrac,s,real); 

out 0.02(565755298 
0.3322203021 0.5058089777 0.2300354153 0.7098817949  

,Y +1.192550328   s+0.01403407795  s x+0.2674945446 x+5.954492479 

x:=fso1ve(donom(test)O,$); 
-5.954492479, -1,192550328, -0.2674945446, -0.01403407795 

fg 

A' .s' - out 

> res1:'residue(fg(s),sx(1J); 
cs2:=residuo(fg(s),sx(2)); 
r0s3:=residue(fg(s).s=x[3]); 
rcs4:=residue(fg(s) ,s=x(4]); 

resi 

/081 

0.70988 17947 

:= 0.3322203021 

0.2800354 153 

:= 0.5058089777 

I> Calculate the new scaled and shifted values of R's and C's 
> Rin:=1/d; 
C1=1/res1;1:.-res1/x[1]; 
C2:'1/res2;R2'=-res2/x[21; 
C3=1/res3;R3:=-res3/x[3]; 
C4:llres4;Xt4 :=-res4/x[4]; 

Ri/i 0.02665755298 

Cl :'= 1.408685231 

RI :=0.1192178506 

('2 := 3.010050842 

B.? :'0.2785796912 

0 :3.570976903 

R3 1.046882716 

CI 1.977030943 
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L 
> Rin Rin*JJn; 

Cl Cl/kf/km; 

C2 : C2/kf/km; 

C3 C3/kffkm; 

C4 C4/kf/km; 
Ri Rl*kxu; 

R2 R2*kin; 

R3 R3*km; 

P.4 : R4*km; 

Al := 36.04148270 

Ri,, 42.42681328 

C? :2.24[992177 

CJ :4.790644702 jØ9 

C3 5.683386255 10 

Cl := 3.146542471 10-9 

RI 189.7411023 

R2 :443.3733490 

R3 1666.165591 

RI : 57361.80128 

Figure A.5: Maple code to generate component values for the RC ladder network 
of a fractional capacitor Z (jw) = 1F(w)°. at a center frequency of 1kHz. 



APPENDIX B 

Alternative Second-order Type II Inductor-based Circuit 

In this section we present an alternative second-order Type II inductor-based filter 

supported by simulation and experimental results. A second order Type II inductor-

based asymmetric-slope band-pass filter using a grounded inductor, whose impedance 

is Z = RR, C1s (see Figure B.1(a)) is shown in Figure B.1(b) [48]. The circuit realizes 

(1.7) with k3 = 1, a = C,/O1 and b = l/(RR1CC1). 

The proposed circuit was simulated in SPICE using LT1364 opamps (rated band-

width 70MHz) biased with ±15V supplies. Carison's method [7] was used to simulate 

the fractional-order capacitor C,, having C = 1/2F and a = 0.5, as shown in Figure 

3.1. The values of the capacitors and resistors in the approximated model shown in 

Table 3.1 were calculated such that Ca has an operating range of 100Hz-10kHz. 

The comparison between simulation and experimental results for the proposed 

filter taking R= R1 = 1.59k2, C = 0.1pF and C1 = 0.215F is shown in Figure B.2. 

The filter was designed to achieve a quality factor of 25 and a center frequency of 

= 1kHz. The measured (Q, f°) were respectively (23.956, 1.0213kHz). Also the 

measured slope at frequencies lower than f0 was 30 dB/dec while it was —10 dB/dec 

at frequencies greater than f0 as expected from Table 2.2. 
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R1 

(a) 

RI 

Vo  

(b) 

Figure B.1: Grounded inductor whose input impedance is Z, = RR1C1s used in 
second order Type II inductor-based asymmetric-slope band-pass filter and (b) 

Possible realization of the Type II asymmetric-slope band-pass filter realizing (1.7). 
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Figure B.2: SPICE and experimental results of the filter in Figure 13.1(b). 



APPENDIX C 

Percentage Variability of Center Frequency and Quality Factor for Type 

I FDNR-Based Filter 

The Matlab codes to generate Figures 4.11(a) and 4.11(b) for the Type I FDNR-based 

circuit are provided below. These codes were used to find the percentage variability 

of Lw0/w0 and zQ/Q versus a and a for b = 1 and Wt = 1000w0. 
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close all;clear all;cic; 
points600l; 
b1; 
N=1O; 
alpha_a(linspace(O.05,N,N) )/N; 
aa=(linspace(O.05,N,N))/N; 
for l=1:size(alpha_a,2) 
for k=1:size(aa,2) 

a=aa(k); 
alpha=alpha_a(l); 

% Solve for the exact wo according to equation (2.3) and (2.4) of the 
thesis. 
f = @(y)2*y + alpha*(y - log(b*exp(y) -F a*exp(2*y)*cos(alpha*pi/2))); 
zo = fzero(f,O.05); 
wo = exp(zo/alpha); % Ideal wo based on a and b and the ideal equation. 

wt=1000*wo; % opamp Gain Bandwidth Product. Typically much greater than wo 

tau = 100/wt; % Experimental 

wlogspace(-2,loglO(wt) ,points); 
sj *; 
Hsn = 2*wt*a*tau*(s+s."2*tau+wt)./(2*s."(-alpha±3)*wt*tau+2*tau2*s.'(-Ie 
alpha+2)*wt*b+2*tau2*s. 
(_alpha+4)*tau+2*s. '(_alpha+2)*b*tau+2*s. "(_alpha+3)+2*wt*a*tau*s+s. 
alpha)*2*b*tau+2*a*tau*s/'2+wt2*a*tau+s."(_alpha+2)*wt2*tau+2*s. ' (- ii 

alpha+1)*wt*b*tau+2*s. "(-alpha+2)*wt); 
Mag2O*loglO(abs(Hsn)); 

% Find the frequency at which the maximum occurs in the Magnitude plot 
[Y,Index]=max(Mag); 
wo_new=w(Index); % Find the frequency at which we get the peak mag result 
wo; 
Percentage_change(l,k) = (wo_new - wo)*100/wo; 

end 
end 

surf (alpha  aa, Percentage_change); 
grid on 
axis square 
ylabel('a'); 
xlabel( '\alpha'); 
zlabel( 'Percentage Change'); 
max (max (Percentage_change)) 
min(min (Percentage_change)) 

Figure C.1: The Matlab Code used to find the percentage variability of /w0/w0 
shown in Figure 4.11(a). 
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close all;clear all;cic; 
points=1O 00 1; 
b1; 
N10; 
alpha_a=(linspace(0.05,N,N))/N; 
aa=(linspace(O.05,N,N))/N; 
for l=1:size(alpha_a,2) 
for k"1:size(aa,2) 

a=aa(k); 
alpha=alpha_a (1); 
% Solve for the exact wo according to equation (2.3) and (2.4) of the 
% thesis. 
f = @(y)2'y + alpha*(y - log(b*exp(y) + a*exp(2*y)*cos(alpha*pi/2))); 

zo = fzero(f,0.05); 
wo = exp(zo/alpha); % Ideal wo based on a and b and the ideal equation. 

wtl000*wo; % opamp Gain Bandwidth Product. Typically much greater than wo 
tau = 100/wt; % Experimental 

w=].ogspace(-2,1og10(wt) ,points); 
s=j*w; 
Hsn = 2*wt*a*tau*(s+s.2*tau+wt)./(2*s.(-alpha+3)*wt*tau+2*tau2*s/'(_, 
alpha+2)*wt*b+2*tau2*s. "(_alpha+3)*b+2*tau2*wt*a*s.2+2*tau2*s. '3*a+2*s. '' 
(_alpha+4)*tau+2*s. '(_alpha+2)*b*tau+2*s. "(_alpha+3)+2*Wt*a*taU*S+S. 
alpha)*wt2*b*tau+2*a*tau*s.'2+wt2*a*tau+s. (-alpha+2)*wt2*tau+2*s. ' (-ii 

alpha+1)*wt*b*tau+2*s. "(-a].pha+2)*wt); 
magdb=20*loglo(abs(Hsn)); 
(maxgaindb, Index3=max(magdb); 
wo_neww(Index); % Find the frequency at which we get the peak mag result 

% This section finds the Q of the magnitude response for the nonideal TF 
wl = spline(magdb(l:Index-l),w(l:Index-l),(maxgaindb-3.01)); 
w2 = spline(magdb(Index+1 :points) ,w(Index+l :points), (maxgaindb-3 .01)); 
wO_amp = pchip(magdb,w, (maxgaindb)); 
Q_inter = wo_amp/abs(wl - w2); 

% This sections looks at the ideal Transfer function and computes the Ideal 
%Q 
Hs=2*s.'alpha*a./(b+s."alpha*a+s.2); 
Magideal=20*loglo(abs(Hs)); 
[maxdb, Indx]=max(Magideal); 
wildeal = spline(Magideal(1:Indx-1),w(1:Indx-1),(maxdb-3.01)); 
w2ldeal = spline(Magideal(Indx+1:points) ,w(Indx+1 :points), (maxdb-3.01)); 

Q_ideal = wo/abs(wlldeal - w2ldeal); 
Percentage_Change(l,k) = (Q_inter - Q_ideal)*100/Q_ideal; 

end 
end 
surf (alpha_a,aa,Percentage_Change) 
grid on 
axis square 
ylabel( 'a'); 
xlabel( '\alpha'); 
zlabel( 'Percentage Change'); 

Figure C.2: The Matlab Code used to find the percentage variability of tQ/Q 
shown in Figure 4.11(b). 



APPENDIX D 

Non-ideal Transfer Function of Type I MAB-based Circuit 

Examining the MAB based circuit of Figure 2.18(b), reveals that there are no complex 

zeroes in its non-ideal transfer function. The transfer function is of order S6 in the 

integer terms and in the fractal terms as shown in the Figure D.1. 
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[> restart; 

> soln:solve({Vx=A1*(Va_Vb), 

(Vin-Va)/R5 + (Vo-Va)/R6=O, 

(Vz-Vb)/R4 + (Vx_Vb)/R3=O,Vy=A2*Vm, 

(Vc-Vm) /R1+(Vy_Vm)*C1*s=O,Vz=A3*Vn, 

(Vy_Vn)1R2+(Vz_Vn)*C2*s=O, 

(Vs-Vp) *Ca*s'a1pha+ (Vo-Vp) /RaO, 

VoA4*Vp}, {Viri,Vo,Va,Vb,Vx,Vy,Vz,Vm,Vn,Vp}) :Node analysis for the circuit 

> 

[> assign(soln) :R3:=c*R4:R5:=d*R6:C1:=taul/R1:C2:=tau2/R2:Ca:=tau/Ra: 
[> usa:'vo/vinutsl:couect(ffsl,$): 

> Hsidea1:1imit(Hs1,A1'infinity): 

Hsideal:=limit(Rsideal,A2=infinity):Usideal:=limit(Esideal,A3=infinity) :Hsi 

> Hsidea1:=_(tau*(1+c)*s"a1pha)/(tau1*tau2*(1+d)*s'2+d*tau[a1pha]*(1+c)*s"a1 

pha+c* (d+1) ) ;The ideal transfer function 

•SIdeal :=   r (c I1) s a 

ri z2 (I +d)s 2 +dr(c+ 1) x a 1-c (I +d) 

3 A1:t/s:A2:t/s:A3;wt/s:A4:=wt/s; 

> ltsnl:=algsubs(c=b*taul*tau2,I1sn) :Hsnl:=algsubs(d=a*taul*tau2/(tau+taul*tau 

2*(b*tau_a)) ,asnl) The non-ideal transfer function 

3 

:= J r2 6 z' - ri r2 a) ,, a / 4)/( (.x + 4) r2 2 / 2 2 (a + 4) 2 +z'i r2 r rlv/ 4 

(a+4) rn 2 ivi 6 n2 

+(ljg'/ r2 -ni w/ -2r/ ') uw 6 r2 -2w/ r2 6 ri +4 rl 2 wi  2 6)r 4 +(i'I 2 

2 2 ni +2 ni Wi w 2 2 -WI 6 ri r2 ,2 24 rl  - 2 2 3 

- , 4 S  r' at -i's + - I- (ni 2 2 +r/ r2 ),v -1-c 6 (5 + a) 2 z'r2 bri 
(a+I) 3 + n s 11?/ 6 z/ r2 + .s' (5 ± tO r rl 2 ? -2 i'J 2 r2 2 (5 + a) (a fr 4) S i'w/b+rs 6r1r2 

• / 2 2 6 + a) (3 fr a) 2 (3 + a) 2 (a + 4) 2 
s - rb -s nu'I r/s rw/ r2 -ri r2s VWI 

+ / :6 nl n2 + ri (6 a) s r - r s ru'i 

r2 wi 4 + IV/ 3 ri +wI 3 wi 2) I- ri n2 .c '2 3'4'a) r ii'! 3 + S (5±a) r ri 
+ 5 + a) r2 a) +rs wi 

> 

Figure D.1: The non-ideal transfer function of Type I MAB based circuit of 
Figure 2.18(b). 



APPENDIX E 

Non-ideal Transfer Function of Type I Inductor-based Circuit 

The non-ideal transfer function for the Type I inductor-based asymmetric-slope band-

pass filter of Figure 2.20 is of order s5 in the integer terms and in the fractal 

terms as shown in Figure E.1. 
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restart; 

> soln:=solve({ 

(Vin-Vx) *C2*s+(Vy.VX) /R=O, 

Vy=A* (Vx-Vz), 

(VP-Vz) /R1+ (Vy-Vz) *C1*50, 

Vp=A* (Vx-Vm), 

(Vn-Vzn)/R3+(Vp-Vm) /R2=O, 

Va=A* (Vo-Vn), 

(Va-yb) IR1+(Vd_Vb)*C1*s=O, 

Vd=A (Vo-Vb), 

(Vm-Vn) /R3+ (Va'-Vn) /R2O, 

(Vo_Vd)JR+Vo*Ca*s'a1phaO},{Vin,Vx,Vy,Vz,Vp,Vm,Vn,Va,Vb,Vd,Vo}) :Node analysis 

for the circuit 

assign(soln): 

us:=vo/vin 

> Us1:=collect(Hs,$) :)t/s:C2:cJRR1:tau1/Ci.:R3:tau3*R2:Ca:=C2*d/c;Hs1: 

=coflect(Hs1,$): 

Isn;sinip1ify(Bs1): 

usnl:=algsubs(d=1/taul/tau3/a,Rsn): 

> Hsnl :=algsubs(c=1/taul/tau3/b,Hsnl) :Hsnl:=simplify(usnl) :Hsnl:=collect(Hsn 

1,$) ; The non-ideal transfer function of the circuit 

HnJ := (14,t s rJ r3 a)/((3 2, ai-2 J r3 a +2 z/ 2 ,, a+2 , 2 r3 a 'T, r3 a h 

+2v/ 3 r3 2 ab)s 4 +(2r1 2 r3 a-I-ri 2 d 2 a)s+w/ x (2+a) 3 2 

+ 3 ri r3 WI 2 s 3) (44 + 2.Y + (w/ ri z a + 2 , 2 / 2 r3 a  2 b) ,y 

+(r/ 3 r3 3 jwa+r3 3 rJ 2 ah+2r/ 2 r3 2 ab+rJ 2 J 2 uq2a+z2w/ ri a)? 

+ WI S a ri r3 b + 2 ri s (5 + a) +S 4 a) + 2 wl x (a + 3 (2 + a) vS vi 

(4 f a) ., f a) 2 2 (a + 3) (a 4 3) 
+ 3 r, vi s + 25' vi z b + t-3 s vi 6 +2s   vi vS 6 

(4 + a) 2 2 (5 4 a) (4 1-a) 2 (a 4 3) :, -, (a 4 3) 
+ ,s' vi vS 6 + vi s vS +4s vi wi • 2 ,W vi s +2 j'/ ,ç 

2 (2 ,1a) ., 2 2 2 2 a 4 3) ,, 2 (2 + a 2 2 
+ w/ r r., - 2 w/ 5' vi vi a 6 + 2 vi sW s v, 6 + si/ s vS vi 6 

+2r1 2 si'/ T1 2 r (a+ 3)b) 

Figure E.1: The non-ideal transfer function of Type I Inductor based circuit of 
Figure 2.20. 



APPENDIX F 

Non-ideal Transfer Function of Type II MAB-based Circuit 

The non-ideal transfer function for the Type II MAB-based asymmetric-slope band-

pass filter of Figure 2.22(b) is of order 86 in the integer terms and in the fractal 

terms as shown in Figure F.1. 
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[> restart; 

> so1n:so1ve({VxA1*(Vin.Vb), 

(Vo..-Vb) /R4+(Vz-Vb)/R5+(Vx-Vb)/R3O, 

Vy_A2*Vm, 

(Vx-Vm) /R1+ (Vy-'Vm) **Q 

Vz-A3 *Vn, 

(Vy*Vn)/R2±(Vz_Vn)*C2*sO, 

VoA4*Vp, 

(Vy.Vp)*Ca*s'a1pha+(VoVp)/RaO},{Vin,Vo,Va,Vb,Vx,Vy,Vz,Vm,Vn,Vp}) 

assign(soln) :R3 :c*R4:R4:=d*R5/c:C1:tau1/R1:C2:tau2/R2:Ca:=tau/Ra: 

lls1:Vo/Vin: 

J1sidea1:1imit(Hs1,A1infinity) :HsideaL:1imit(Hsidea1,A2=infinity) :Iisidea 

1:=limit(Hsideal,A3=inflni.ty) :Rsidea1:1imit(Hsidea1,A4=inflnity): 

> Hs ideal: collect (Hs ideal, 5) ;The ideal transfer function 

(vs' r2 c4-vs"d172 ivs'r2)s 
/iridea/ 

vi r2 x 2 ? cs 4',! 

> Al:=/s:A2:-t/slA3:wt/s:A4:=wt/s 

Hsn1:=a1gsubs(a=b*ta1*tau2,Bsn) :Hsn1:=algsubs(c=a*taul/tau,ffsnl): 

> Hsn3, =collect (ffsnl, s) ; The non-ideal transfer function 

((l+v2 )Pi +r2 s) it,, vs D (ar/ -i  -h vi r2 r I))/((i22 2 b z2 r 

/ 2 v.2 ,s 6 WI v2 s (34 + (vi 2 • 2 b v.2 v + v2 v + 4 vi v.2 w/ v + v.2 a vi 
2 2 2 2 5 

+ 3 vi v.2 ivi b v + r2 1' vi r '1- 3 vi r2 ivi a i' vi v) s 

2 WI 2 v2 2 'S' 64, v2 b 

+rJ 2 r2 2s" 4 W/ 2 v2 b+(3rJ 2 r2 u'/a+v+2r2 2 1W by! v+3v2 iwr 

+3 vir2 2 lvi 2 b r+2 r/ 2 iw b v.2 v -i -br! 2 v'4-3 vi WI v'I'2r2 u/ar! +2v/ 2 

ivi +6r1 v.2 Ivl 2 v)'S' 4 +(r2 by! v.2 v+2iv/ r•i-v1 2 w1 2 a 
2 2 2 2 2 2 2 1 2 

+ vi iv/ b z? v + 3 vi wi v + ui a vi 4' v.2 wl h vi v + vi z2 W/ 1, z' 'F 3 v.2 WI z' 
2 3 3 3+ 11Y 2 2 (31-a) 2 2 (a+4) 

4 vi v.2 WI a 4' 4 vi v.2 n'I v) s   vi r .1' 4 vi u't v s b z2 
2 2 a+5) 2 2 (a+4) 2 2 (al-5) 

-I2 vi v.2 .c' u', v h +v ,c h vi z2 -I' vi v s h v.2 
2 2 (a 4. 5) 3 2 (a I) 2 2 (a 4-4) 
-I- .r s h vi + ui v s b vi v.2 4 v.2 IW v S b vi 

(3 4 a) 3 2 (a - 4) 2 2 (a .4. 5) 2 
-I vi v.2 .4 WI v + 3 vi v.2 s IW v -I' 3 vi v2 S 111/ v 

2 (a 1- 5) 2 (a * 4) 2 3 (a + 2) 
4' 2 vi v.2 s ut a z' -I- vi v.2 s WI a v 1- lvi x  a vi v 

a) (a + 4) 3 (1 1. I) (a + 5) 2 (6 .4. 
+ v.2 wI .v a vi v 4 wi s a vi r 4' v.2 .r a vi v -I- vi v.2 s a v 

2 (a + 4) 2 (a + 5) 2 (a '4 5) 4 3 
+ vi WI .4' a v 4' vi v s + v.2 v s • wI b v.2 v + WI s b vi v.2 v 

(a + I) 4 2 (a + 4) 2 2 (3 -I' a) (61 a) 2 
+4' ui v2 a vi v 4' v i 4- WI v.2 v s + vi v.2 s v 

2 (a + 4) 2 (a .4 4) 2 (a .4. 5) (a + 4) 
+ 2 v.2 lvi r .s' • 2 vi u-i v ,c -I- vi s a v + s a vi v) 

Figure F.1: The non-ideal transfer function of Type II MAB based circuit of 
Figure 2.22(b). 


