THE UNIVERSITY OF CALGARY

High Quality Factor Asymmetric-slope Band-pass Filters
by
Peyman Ahmadi
A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

AUGUST, 2011

© Peyman Ahmadi 2011



THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies for acceptance, a thesis entitled “High Quality Factor Asymmetric-slope
Band-pass Filters” submitted by Peyman Ahmadi in partial fulfillment of the require-

ments for the degree of Master of Science.

Stipervisor, Dr. Brent Maundy

Department of Electrical and Computer Engineering

e f Foles L

Co-supervisor, Dr. Leonid Belostotski

Department of Electrical and Computer Engineering

Dr. Ed Nowicki

Department of Electrical and Computer Engineering

Q@Q/

¥

. Svetlana Yanushkevich

Deparﬁlent of Electrical and Computer Engineering

WA
o

Department of Physics and Astronomy

2 4/%////

Date




ABSTRACT

This thesis presents new techniques for designing continuous-time band-pass filters
with high quality factors and asymmetric slope characteristics based on the concept
of fractional-order filters. The techniques are centered around the realization of non-
conventional transfer functions which include a non-integer-order Laplacian operator
% 0 < a < 1. Two types of asymmetric-slope band-pass filters are presented and
the symmetry in the relationship of one transfer function to the next is highlighted.
Possible circuit realizations for second-order and fourth order asymmetric band-pass
filters; based on Frequency Dependent Negative Resistor, inductor and Multiple Am-
plifier Biquad are given and verified using SPICE and experimentally for the proposed
transfer functions. In addition, a Field Programmable Analog Array realization is also

tested and verified.
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CHAPTER 1

Introduction

1.1 Integer-Order Filters

In Electrical Engineering, a filter is a frequency-selective circuit that passes a specified
band of frequencies and blocks or attenuates signals of frequencies outside this band.
These signals are usually voltages. An ideal filter has a frequency band over which
the magnitude of transmission is unity (the filter passband) and a frequency band
over which the transmission is zero (the filter stopband). Figures 1.1 and 1.2 show
the ideal transmission characteristics of the four major filter types: low-pass in Figure
1.1(a), high-pass in Figure 1.1(b), band-pass in Figure 1.2(a) and band-stop in Figure
1.2(b). These idealized characteristics, by virtue of their vertical edges, are known as
brick-wall responses [1-4].

Filter design is one of the very few areas of electrical engineering for which a
complete design theory exists [1-4]. The classical linear circuit theory upon which
electronic circuits are designed today is based on integer-order differential equations
which reflect the behavior of the well-known elements: the resistor, the capacitor, the
inductor and the memresistor! in the time domain. Via Laplace transforms, integer-
order algebraic equations in the complex frequency s-domain can be used to describe
linear dynamical systems. Accordingly, electronic filters are traditionally classified as

1st-order, 2nd-order or n**-order circuits where n is an integer number. The circuit

IMemresistor is a passive two-terminal circuit element in which there is a functional relationship
between charge and magnetic flux linkage.
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Figure 1.1: Ideal transmission characteristics of the (a) low-pass and (b) high-pass
filter.

order is directly proportional to the number of energy storage elements in the circuit.
The describing transfer function of the integer-order filters are usually of the form

T(s) = N(s)/D(s) where N (s) and D(s) are polynomials in the Laplacian operator

s raised to an integer exponent; i.e s, s%or s".

1.2 Band-pass Filters

Whether passive or active, band-pass filters are indispensable parts in electronic cir-
cuit applications [1-5]. Several methods have been introduced for designing continuous-

time integer-order band-pass filters over the years [1,2,5,6]. A band-pass filter is a
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Figure 1.2: Ideal transmission characteristics of the (a) band-pass and (b)
' band-stop filter.

device that passes frequencies within a certain range and rejects or aﬁtenuates fre-
quencies outside that range. Bandwidth is defined as the frequency range between
two specified frequency cut-off points, that are 3dB below the maximum centre or res-
onant peak while attenuating or weakening the others outside of these two points. An
ideal band-pass filter would have a completely flat passband and would completely
attenuate all frequencies outside the passband. In practice, no band-pass filter is
ideal. The filter does not attenuate all frequencies outside the desired frequency
range completely; in particular, there is a region just outside the intended passband

where frequencies are attenuated, but not rejected.



1.3 Fractional Capacitor

Works [7] and [8] introduce new methods to approximate a fractional capacitor whose
impedance is Z,, = ﬁ, where C, is the capacitance and a (0 < o < 1) is its order.
If a sinusoidal current I(¢) = I,sin(wt) is used to excite a fractional capacitor, the

voltage developed across it can be shown to be given by [9]

V(t) = L7 1(s)] = Lw® [sinawt)cos (S0) +cosalwt)sin (51)], (L)

where sing(wt) and cos,(wt) are respectively given by

7r
sing(wt) Zek oStn(k )5, (1.2)
k=0
and
cosqe(wt) = Zek «cos(k )5 (1.3)

The fractional capacitor approximations have been appealing only to those seeking
to experiment with fractional-order circuits to prove a concept but have never been
appealing to real-world circuit designers. The reason is economics since several ca-
pacitors are needed just to approximate one capacitor with a non-integer-order.

The authors of [10] proposed a capacitive probe fabricated in such a way that it
displays a metal-insulator-liquid interface when placed into a liquid. The proposed
capacitive probe has a fractional-order impedance and « varies with the amount of
liquid immersion. The proposed capacitive probe is bulky and cannot be applied to
the real circuits. But it shows that further work in material properties are needed in
order to fabricate a commercial device.

Silicon-based fractional capacitors were proposed, fabricated and tested in [11,12].



(b)

Figure 1.3: (a) Silicon-based fractional capacitors using photolithographic fractal
structure on silicon and (b) tree fractal structure of the capacitors fabricated in
[11,12].

The idea was to use of fractal geometry to lithographically implement a capacitor
using a standard silicon process. The fractional-order of the capacitor « is related to
the geometry of the fractal pattern used. The authors in [11,12] built a Hilbert-type
capacitor with the capacitance of C,, = 7.5nF and a = 0.5 and a Arbre-type capacitor
with C, = 1.5nF and a = 0.5. Figure 1.3 shows the Hilbert-Type and Arbre-Type

fractional capacitor using photolithographic fractal structure on silicon and their tree

fractal structure.



All the circuits in this work require a single fractional capacitor. As of the time
of this writing, there are no commercial fractional capacitors and therefore we use an
approximation based on Carlson’s method [7] to mimic the fractional capacitor. The
overhead of using an emulation of the fractional capacitor is still acceptable given the

complexity of other techniques.

1.4 Fractional-Order Filters

The classical linear circuit theory upon which electronic circuits are designed today
is based on integer-order differential equations. However, using fractional calculus,
filters can also be represented by more general fractional-order differential equations
in which case integer-order filters are only a subset of fractional-order filters. The
Riemann-Liouville definition of a fractional derivative of order « is given by

a* 5 = 1 am [t f(r)
dte (t) = I'(m —a)dtm J, (¢t —T)atl-m

dr (1.4)

where I'(.) is the gamma function, m is an integer and m — 1 < a < m [13,14].

The authors in [15-17] were the first to generalize first and second-order low-pass
filters to the fractional domain showing some clear benefits. The stopband attenu-
ation of integer-order filters is —20n dB/dec while the attenuation of the proposed
fractional-order filters in [15-17] is —20n(n + «) dB/dec which allows for stepping the
attenuation very precisely. In addition, the filters magnitude and phase responses,
cut off frequency and quality factor are functions of fractional order «. The authors
in [17] and [18] worked on the realization of higher-order fractional step filters with
maximally-flat response. Figure 1.4 shows a plot of the magnitude response of the

proposed fractional-order low-pass filter in [17] and [18] of order 5 + «.
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1.5 High Quality Factor Asymmetric-Slope Band-Pass Filters

High selectivity and low pass-band insertion loss of microwave band-pass filters are
needed for many applications, such as the rapidly expanding area of mobile commu-
nications networks [19-21]. These requirements are imposed to conserve the valuable
frequency spectrum and improve the performance of the systems. Generally, band-
pass filters can obtain a higher selectivity by increasing the degree of poles, i.e. the
number of resonators. However, because of finite quality factor of the resonators, the
insertion loss of the band-pass filter is increased as the number of resonators increases.
Therefore, there is always a trade-off between obtaining a higher selectivity and the
insertion loss in the band-pass filters. In addition, some applications of band-pass fil-
ters may need a higher selectivity on only one side of the pass band, but less or none on
the other side [19-21]. It would be desirable to use a filter with asymmetric frequency
characteristics in such cases. This is because a symmetric frequency-response band-
pass filter requires a larger number of resonators which results in a higher insertion
loss in the passband, a larger size and a higher cost.

All available techniques that have been proposed up until now for the design of



such filters were microwave-based techniques that have only been verified using micro-
strip based circuits [19-22]. High selective-slope band-pass filters with asymmetric-
slope characteristics are needed in the receive filter of some personal communication
networks [19-21]. Several methods have been introduced for designing agymmetric- -
slope band-pass filters over the years [20-22]. In [20], cross-coupled open-loop res-
onators were introduced to show asymmetric frequency characteristics in a micro-strip
trisection band-pass filter. In [21], an asymmetric synthesis method based on flexibil-
ity in placing the transmission zeros was used to increase the skirt selectivity of one
side of a band-pass filter. In [22], band-pass filters with asymmetric-slope character-
istics were realized using low-loss ceramic resonators. The selectivity of one side of
the band-pass filter was improved by using a capacitively coupled network with finite
transmission zeros.

On the other hand, obtaining high quality factors with such filters is not an easy
task. In order to have a large quality factor (@), at least one pair of poles sh9uld be
located very close to the stability boundary.

In this thesis, we propose new methods for designing continuous-time asymmetric-
slope band-pass filters which can also achieve high quality factors. These methods

are centered around the realization of the new transfer functions

as®
o) =T (49)
ast—®
Hir(s) =k (1.6)

which we refer to as Type I second-order asymmetric-slope band-pass filter transfer
functions and the units of the constant a are (rad/sec)>=* and (rad/sec)'*®, respec-
tively. Similarly, we refer to the transfer functions below as the Type II second-order

asymmetric-slope band-pass filter transfer functions.



o k asite

r(s) = 3 L a1 ] (1.7)
as?™®

Hiv(s) =k (1.8)

The units of the constant a are (rad/sec)'~* and (rad/sec)®, respectively and
the unit of the constant b for the four new proposed transfer functions is (rad/sec)?.
Here, s¢ = (jw)* = w*[cos(%) + jsin(F)] and 0 < o < 1 [15]. These second-order
band-pass filter transfer functions are different from the one studied in [16] and given
by

as®
H(s) = k————
(s) §2 4+ as*+ b

(1.9)
which represents a symmetrical-only fractional-order band-pass filter of order 2c.. As
will be shown later in Chapter 2, an advantage of filters proposed in this work is
that they can achieve high quality factors by selecting « appropriately. The practical
realization of fractional filters on a Field Programmable Analog Array (FPAA) was
recently reported in [23]. Here, we also validate our designed high-Q asymmetrical
filters using an FPAA in addition to implementing six discrete circuits for second-
order filters; two based on a Frequency Dependent Negative Resistor (FDNR), two
based on an inductor and two based on Multiple Amplifier Biquads (MABs). The
techniques extend to higher order filters and four circuits for two types of fourth-

order asymmetric-slope band-pass filter which are proposed, simulated in SPICE and

verified experimentally using discrete components and FPAA technique as well.

1.6 Thesis layout

This thesis is divided into two basic areas of research focus. First, new techniques
for design and implementation of high quality factor second-order asymmetric-slope

band-pass filters are presented. Second, these techniques are used to generate higher



10

order asymmetric-slope band-pass filters.

Chapter 2 looks at passive prototypes of second-order asymmetric-slope band-pass
filters and their equivalency. Two types of second-order asymmetric-slope band-pass
filters are presented and the symmetry in the relationship of one transfer function
to the next is highlighted. Exact expressions for w, and two different slopes, and
approximate expressions for the @ of each filter are presented. Circuit designs are
also presented in Chapter 2.

Chapter 3 provides simulation results for the proposed second-order asymmetric-
slope band-pass filters. Furthermore, the approach is verified experimentally using
discrete components and FPAA technique.

The non-ideal effects of the second-order asymmetric-slope band-pass filters are
presented in Chapter 4. Four non-ideal transfer functions using lossy elements are
given and discussed in Chapter 4. The effects of finite gain band-width product in
operational amplifiers and the current and voltage tracking errors in non-ideal current
conveyors are also discussed in Chapter 4.

The techniques to design second order band-pass filters are used to generate higher
order asymmetric-slope band-pass filters in Chapter 5. This chapter looks at passive
prototypes of mt* order asymmetric-slope band-pass filters and their equivalency,
and evaluates expressions for two different slopes and phases. Possible designs and
simulation and experimental results using discrete components and FPAA technique
are also presented in Chapter 5.

Chapter 6 provides conclusions of this thesis and suggests improvements for future

work.



CHAPTER 2

Asymmetric-Slope Band-pass Filters

2.1 Passive Prototypes

Consider the lowpass filters in Figures 2.1(a) and (b). The filters can be transformed
into normal integer order band-pass filters using the s — 52—]“3%“’3 transformation where
w, is center frequency and B is the bandwidth of the band-pass filter. Now consider
the band-pass filters in Figures 2.2(a) and (b), obtained by applying this transforma-
tion on the corresponding lowpass filters, respectively. In other words, a lowpass filter

can be transformed into band-pass filter circuit by replacing the capacitor C' with a

R
4YA"AY o
+ +
Vin C =< Vout
(a)
Ly
YYynm o
+ +
Vin R § Vout
(b)

Figure 2.1: First order RC and RL lowpass filters.

11
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Vin C= Vout Vin % -~ Cig % Vout
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B L
Ll Llwo fl
M \| AN
+ + * /1 M
s 8% 4 w?
Vin R § Vout Bs : Vin R § Vous
(b)
. . ; 24,2 .
Figure 2.2: Band-pass filters obtained using s — £}* transformation on lowpass
filters.

parallel combination of capacitor and inductor of values % and c%g’ respectively and
replacing the inductor L with a series combination of capacitor and inductor of values
-Lif)? and £, respectively.

Now consider the multiplication of each element of the circuits in Figures 2.2(a)
and (b) by a scaling factor 1/\s where ) is a constant of dimension sec™. The result-
ing circuits are shown in Figures 2.3(a) and (b). This transformation is referred to as
Bruton RLC : CRD transformation [24]. Continuous-time second-order asymmetric-
slope band-pass filters can be obtained from integer-order band-pass filters in Figures
2.2 and 2.3 by replacing the resistors in Figure 2.2 and the capacitors in Figure 2.3
with fractional order capacitors.

Consider the passive prototype Type I and Type II filters shown in Figures 2.4
and 2.5, respectively. Each deploys a fractional-order capacitor C,, (¢ = 1,2,3,4)

whose impedance is 1/C,,s* where C,, is the value of the capacitor and 0 < o < 1.

Figures 2.4(a) and (b) realize Type I transfer functions in (1.5) and (1.6) and Figures



13

2
R
V|
s /| :
B_—_— B
Vin 3 —— XC w§§ Vout
o °
(a)
L1 Llwg
B\ BA
o I | 0
: w— ||} :
A
‘/in —~ E‘ %ut
(b)
Figure 2.3: Band-pass filters obtained using s — 32%:’21 transformation on lowpass
filters.

2.5(a) and (b) realize Type II transfer functions in (1.7) and (1.8), respectively if
oy =0 =a3 =0aq4 = and k; = ky = k3 = kg = 1. The equivalence between
the two circuits of Figures 2.4(a) and 2.5(a) can be easily seen if one considers the
multiplication of each element of the Type II filter in Figures 2.5(a) by a scaling
factor 1/As where X is a constant of dimension sec™. For circuits in Figures 2.4(a)
and 2.5(a) it follows then that Ry = L/A, D = AC and C,, = AC,, where ¢; and
a3 would be related by oy = 1+ 3. Similarly, Type II filter in Figure 2.5(b) can
be obtained from Type I in Figure 2.4(b) if one considers the multiplication of each
element of the Type I circuit by a scaling factor 1/As. The passive prototype Type
IT in Figure 2.5(b) is equivalent to Type I in Figure 2.4 (b) for R = L/)\, D = \C
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Figure 2.4: Passive prototype models of the Type I asymmetric-slope band-pass
filters.
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Figure 2.5: Passive prototype models of the Type II asymmetric-slope band-pass
filters.
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Frequency Type I FDNR-based I
Slope (dB/dec) ¢
w K W, 0 <20a<20 ax
w>w, |20<20(2—0) <40 |7 (¢-1)

(a)
Frequency Type I inductor-based
Slope(dB/Dec) o)
wLw, | 0<20(l—a)<20 | {9r
w>w, [20<20(14+0)<40|-(14+a)%
(b)

Table 2.1: Slopes and phase responses for the Type I asymmetric-slope band-pass
filter.

and C,, = ACy,, where ay and oy would be related by oy = 1+ a5. The Type I and
Type II filters in Figures 2.4(a) and 2.5(a) are related through the C,,LC) : C,, R1D
transformation and the relationship between Type I and Type II filters in Figures
2.4(b) and 2.5(b) can be explained by the C,, LC : Cy,RD transformation which are
analogous to the Bruton RLC : CRD transformation [24]. The equivalence between
the four transfer functions, interesting enough, results in having different filter slopes
and phases which are complimentary as illustrated in Tables 2.1 and 2.2. Here w, is

the center frequency of the particular filter and the slopes are given in dB/dec.

2.1.1 Type I FDNR-~Based Asymmetric-Slope Band-pass Filter

Now with reference to (1.5), the magnitude and phase functions for Type I FDNR-

" based circuit shown in Figure 2.4(a) are respectively given by

L ky
()] = /14 2z cos(am/2) + z2 (2.12)
LHy(juw) = ST — pan-1 _SOT/2) (2.1b)

2 z + cos(am/2)
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Frequency Type II inductor-based
Slope (dB/dec) é
wLw, [20<20(14+a)<40|(1+a)%
w>w, | 0<20(1—a)<20 | 7(%2)

(a)
Frequency Type II FDNR-based
Slope(dB/Dec) é

wLw, [20<202—-a)<40|(2—)%

w > W, 0<20c<20 -
(b)

Table 2.2: Slopes and phase responses for the Type II asymmetric-slope band-pass
filter.

where z = (b — w?)/aw®. The frequency w, at which the magnitude response has its

maximum is given by

w, = eN/® (2.2)

where ¥ is a root of the equation
2+« [y —In (bey + ae® cos %)} =0 (2.3)

which can be found numerically. For a < b, it can be easily shown that w, =~ v/b.
Figure 2.6 shows the magnitude and phase responses for the Type I FDNR-based
asymmetric band-pass filter shown in Figure 2.4(a) at &y =1, =10.01,b=1.

From a stability point of view, (1.5), (1.6), (1.7) and (1.8) are stable if a > 0 and
0 < a <1 (1.5) and (1.8) become unstable for & = 0 and o > 1 while the transfer
functions in (1.6) and (1.7) are unstable for o > 1, respectively [25]. However, to find
the quality factor @ of Type I FDNR-based filter governed by (1.5) we need to find
the poles in the so-called W—plane defined as W = s® [25]. The poles of the transfer
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Figure 2.6: Magnitude and phase responses of the proposed Type I FDNR-based
asymmetric-slope band-pass filter in (1.5) to various values of a.

function in (1.5) can be obtained by solving the equation below.
W L aW +b=0 (2.4)

It should be noted that all the poles should be located in the stable region (|6,,| >
2L) to have a stable system. Note that the transfer function in (1.5) approaches the
normal integer-order band-pass transfer function for o = 1. In the case of @ = 1,
the stability border will be (|0, = %), which is the same as the stability border in

the s-plane. Figure 2.7 shows the stable region in the W—plane. It is clear from
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Figure 2.7: Stable and unstable regions in the new W—plane.
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Figure 2.8: Relationship between poles, center frequency and quality factor.

Figure 2.7 that the region of instability in the W-plane is smaller than in s-plane.
Another feature of this new plane is that the stable region in the W—plane decreases
as « increases. @ can then be calculated by converting the pair of poles closest to the
stability boundary (i.e. the ones with corresponding angle § closest to the value ar/2)
back to the s—plane (s = W/%). Figure 2.8 shows the relationship between poles,
center frequency and quality factor in s—plane. Quality factor can be calculated by

the equation below
1

" 2cos(¢)

Q= (2.5)
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As an example, here we find the quality factor of Type I filter in (1.5) with

a =05,k =1,a =0.01and b = 1. The corresponding characteristic equation in
the W—plane is,

W*+0.01W+1=0 (2.6)

The equation has four roots in py o = —0.707 £ 0.704¢ and p3 4 = 0.707 % 0.709¢
with respective angles of 0, , = +135.12° and 0y, , = +45.08°. There is no pole in
the unstable region (—45° < 6, < 45°) and therefore the system is stable. Converting
the pair of poles closest to the stability boundary (ps4 = 0.707 & 0.709;) back using
the equation (s = W?2) results in f34 = —0.0035 £ 1.0035; in the s—plane. For this
pole pair, the angle is ¢ = 90.2 degrees and the quality factor is @ = 143.35 using
equation (2.5). Figure 2.9(a) and (b) show the place of roots in the W and s—planes.

The previous example shows that for a fixed o (0 < & < 1) and for a < b, at least
one pair of poles is located close to the stability boundary and results in a very large
@. Note that depending on the value of o multiple poles may exist in the W—plane.
The stable region in the W—plane gets smaller as « increases and for o > 1 at least
one pair of poles exists in the unstable region, resulting in an unstable system. Figure
(2.10) shows the values of @ versus a when b = 1 for five different values of . It is
clear that large @ values are obtained for small o (Type I FDNR-based) and small
values of a. Numerically, the following approximate relationship was found for the

Type I FDNR-based filter response,

1 [ a ] 0.8686 @7)

Q N Q| pi-05)

The step response of the filter can be obtained by substituting for the non-integer

Laplacian operator s* with the second-order approximation

. (@® 4+ 3a + 2)s? + (8 — 2a?)s + (a2 — 3a + 2)
(0% =30+ 2)s2 + (8 —202)s + (@2 + 3o + 2)
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Figure 2.9: Roots of the transfer function (1.5) with o = 0.5, k; =1, a = 0.01 and
b=1in (a) W—plane and (b) s—plane.

which is discussed in more detail in section 3.2.2. Substituting (2.8) in (1.5) yields a

fourth order transfer function for Type I FDNR-based filter which can be written in

the form
- A $2+as+b
H](S) = kl ~ = " =
st+és¥+ds?+és+ f

(2.9)

where &y = g:fggig, & =8-20%b=0a?—3a+2,é=8-202d=(a+b+1)o2+3(a—

b+1)a+2(a+b+1), é = (a+b)(8—202) and § = (a+b)o2+3(b—a)a+2(a+b). Figure
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Figure 2.10: Quality factor versus a at b = 1 for various values of o for Type I and
Type II transfer functions in (1.5) and (1.7).

2.11 shows the step response of the Type I FDNR-based filter in (1.5) at a = 0.2,
b=1and a=0.5.
2.1.2 Type II Inductor-Based Asymmetric-Slope Band-pass Filter

For the Type II inductor-based filter governed by (1.7) the magnitude and phase

functions are respectively given by

N ks

()] = V1+2zcos((1+ a)n/2) + z2 (2.102)
.y (I+a)r _y sin((1+a)m/2)

KHIH(jw) = T — tan {I)—I—COS((l-l—Oé) 7_‘_/2) (210b)

where z = (b—w?)/aw'*®. The center frequency w, at which the magnitude response

has its maximum is given by

w, = ev3/(1+2) (2.11)
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Figure 2.11: Step response of the Type I FDNR based filter in (1.5) at a = 0.2,
b=1and o =0.5.

where y3 is a root of the equation

2+ (1+ ) [y —In (bey + ae® cos (l—I-Ta)W” =0 (2.12)

which can also be found numerically. Similarly for a < b, it can be shown that
wo ~ Vb for the Type II inductor-based filter. Figure 2.12 shows the magnitude and
phase responses of the Type II inductor-based filter for a = 0.01 and b = 1 with
ks = 1. It is worth noting that the transfer function in (1.7) approaches the normal
integer-order band-pass transfer function for oz — 0.

The poles in the W —plane can be obtained by solving the equation W2/ 4 aW & +
b = 0. Note that (2.12) is identical to (2.3) except that « is replaced by 1 + .
Likewise the approximate relationship for Q is given as

1 a ] 0.8686

Q ~(l-a)- [bO.5(1+a) (213)
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Figure 2.12: Magnitude and phase responses of the proposed Type II
inductor-based asymmetric-slope band-pass filter in (1.7) to various values of a.

which can be obtained from (2.7) by replacing o with 1 — . The implication of this is
that the curves of Figure (2.10) can be used for the Type II inductor-based governed
by (1.7) realization if for identical a and b, « is replaced by 1 — . To illustrate an
example the @) value for a Type II inductor-based filter with given a and b and oo = 0.3
can be found by examining the Type I FDNR-based curve for the same a and b but
with @ = 0.7. Note that for o = 0.5 the quality factors for both Type I FDNR-based
and Type II inductor-based realizations are the same. For the Type II inductor-based
filter, Figure (2.10) follows the reverse trend of the Type I FDNR-based filter. That

is for a given a, large Qs are obtained for increasing «.. For both Type I FDNR-based
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Figure 2.13: Step response of the Type II inductor based filter in (1.7) at a = 0.2,
b=1and a=0.5.

and Type II inductor-based filters in general and for a given «, large )’s are obtained

by ensuring that ¢ < b.
Finally, the step response of the filter can be obtained by substituting for the

non-integer Laplacian operator (s*) with the integer order approximation in (2.8).
Substituting (2.8) in (1.7) yields a forth order transfer function for Type II inductor-
based filter which can be written in the form

s(s? + as + b) (2.14)
st+8s3+ds2+8s+ f '

H II}(S) = krr

where krr; = ngggjﬁ, 4=8—202b=02—3a+2, &= (a—2)o?+3ax+2a+4),
d=(b—2a+1)a?+3(1—b), & = (a—2b)o? — 3ac+2(a+4b) and f = b(a® +3a+2).
Figure 2.13 shows the step response of the Type II inductor-based filter in (1.7) at

a=0.2,b=1and a=0.5.
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2.1.3 Type I Inductor-Based Asymmetric-Slope Band-Pass Filter

The general magnitude and phase responses for the Type I inductor-based filter gov-

erned by (1.6) are given by

o ks
3l = @ e 7 o (2152)
LHi(jw) = (_1—Ta)_7r —tan™! " -T-H;E)(sl( (_I f);r)/j%) (2.15b)

where & = (b — w?)/aw®~%). The frequency at which the magnitude response has its

maximum is

W, = €¥2 (2.16)
where ¥, is a root of the equation
asin(<E)

which can be found numerically. For a < b, it can be easily shown that w, ~ v/b.
Figure 2.14 shows the magnitude and phase responses of the Type I inductor-based
filter for a = 0.01 and b = 1 with &k, = 1. Normal second-order band-pass filter
transfer function can be obtained from the transfer function in (1.6) for oo — 0.

For this Type of filter the poles in the W—plane can be found by solving the
equation W?2/@ + aW ™3 + b= 0. For fixed values of a and b, the quality factor gets
larger when « increases. Figure 2.15 shows the values of @) versus a when b = 1 for
various values of a. Figure 2.15 reveals that large @) values for the Type I inductor-
based filter can be obtained for large o and small values of a whereas large @ values
for the Type I FDNR based filter in Figure 2.10 can be obtained for small values of a

and a. Numerically, the following approximate relationship was found for the Type I
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Figure 2.14: Magnitude and phase responses of the proposed Type I
inductor-based asymmetric-slope band-pass filter in (1.6) to various values of a.

inductor-based filter response,

1 a  70.8686
Q ~(l-a) [b0.5(1+a)] (2.18) -

which reveals that for given a, b and «, the quality factors of Type I and Type II
inductor based transfer functions in (1.6) and (1.7) are the same and can be calculated

using the equation (2.18).
It is to be noted that the step response of the Type I FDNR-based filter in (2.9)
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Figure 2.15: Quality factor versus a at b = 1 for various values of « for Type I
inductor-based and Type II FDNR-based realizations.

can be used for the Type I inductor-based filter if for the identical a¢ and b, « is
replaced by 1 — a. Therefore, Figure 2.11 shows the step response of the Type I
inductor-based filter in (1.6) at a = 0.2, b=1 and a = 0.5.

2.1.4 Type II FDNR-~Based Asymmetric-Slope Band-Pass Filter

Finally for the Type II FDNR-based design governed by (1.8) it can be shown that

the magnitude and phase responses are respectively given by

. ky

Hiy(jw)| = 2.19%
v ()l I+ 2z cos((2 — o) 7/2) + a2 (2.198)

, 2—-a)w 1 sin((2 — a)7/2)

_ _ 2.
LHv(jo) = 5 e e e a)a/9) (2.19b)
where & = (b — w?)/aw?~®. The peak frequency is given by

wo = eV (2.20)

where y4 is a root of the equation
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Figure 2.16: Magnitude and phase responses of the proposed Type II
FDNR-based asymmetric-slope band-pass filter in (1.8) to various values of «.

. (=7
asin(=5")\ _
which can also be found numerically. Note that (2.21) is identical to (2.17) except
that « is replaced by o — 1. For a < b, it can be easily shown that w, =~ v/b. Figure
2.16 shows the magnitude and phase responses of the Type II FDNR-based filter
for a = 0.01 and b = 1 with k4 = 1. Normal second-order band-pass filter transfer

function can be obtained from the transfer function in (1.8) for @ = 1. The poles

can be found by solving the equation W3 +aW™* +b=0in the W —plane and the
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approximate relationship for ) is given as

Q

1 a 708686
o~ [b(l—O.Sa)] (2:22)

which is equivalent to (2.7). In other words, Type I and Type II FDNR-based transfer
functions in (1.5) and (1.8) have the same quality factor for given a, b and «a.

The quality factor for Type II FDNR-based filter versus a at b = 1 for different
values of « is shown in Figure 2.15 as well. It is clear that the curves for Type I
inductor-based filter can be used for Type II FDNR-based realization if « is replaced
by 1 —c. As an example, for given a and b and a = 0.9, Type II FDNR-based quality
factor can be obtained by examining the Type I inductor-based curve for the same a
and b but with o = 0.1. Generally speaking, for Type I inductor-based realization,
large @ values are obtained for large a and small values of a and Type II FDNR-based
filter obtains high quality factor for small values of a and c.

It is also clear from Figures 2.10 and 2.15 that for a given « large quality factors
can be obtained for a < b for both Type I and Type II filters.

Finally it is worth noting that the step response of the Type II inductor-based
filter in (2.14) can be used for the Type II FDNR-based filter if for the identical a
and b, « is replaced by 1 — . Therefore, Figure 2.13 shows the step response of the
Type II FDNR-based filter at ¢ = 0.2, b= 1 and o = 0.5.

2.2 Possible Designs

2.2.1 Type I Filter Realizations

The circuits of Figures 2.4 and 2.5 can be easily realized actively by appropriately
replacing the FDNR and the inductor by their active realizations which can employ
operational amplifiers (opamps) [1,2,26,27], OTAs [6,28], current conveyors [29-32],
Active-R [33,34] and even hybrid realizations [35,36]. Two circuits are proposed for
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Figure 2.17: Grounded FDNR based on Antonio’s General Impedance Converter,
whose input impedance is Z;, = 1/RC?s? used in Type I FDNR-based
asymmetric-slope band-pass filter.

the Type I realization governed by the transfer function in (1.5) in Figures 2.18(a)
and (b). Figure 2.18(a) employs a General Impedance Converter (GIC) based FDNR,
whose input impedance is Z; = 1/RC?s? (see Figure 2.17), connected to the pas-
sive filter section which employs the resistor R; and the fractional-order capacitor
Cy [1,2]*. It can be shown that this circuit realizes the transfer function in (1.5)
with k; = 2, a = C,/RC? and b = 1/R; RC?. Likewise, the circuit shown in Fig-
ure 2.18(b), which employs a multiple amplifier biquad (MAB), can also realize the
transfer function in (1.5) with k&, = —Rg/Rs, a = %mﬁ% and b= % where
71 = RyC1, 7o = RpCs and 7, = RyC,. The output in this case is taken as V,,; while
if the output is taken as V1 (see Figure 2.18(b)), k; in this case would be equal to
—RsR2C2/RsR,C,, with a and b staying the same and the numerator term in (1.5)

changing from s® to s. This means that while the output V,,; represents an asym-

metric filter, the output taken at V,,;y will represent symmetric filter characteristics.

1The FDNR is a standard circuit element in filter design whose impedance is negatively and
inversely proportional to the square of the frequency [24], [37].
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Figure 2.18: Possible realizations of the Type I asymmetric-slope band-pass filter
realizing the transfer function in (1.5); (a) using an FDNR and (b) using a multiple
amplifier biquad.

The circuit shown in Figure 2.20 realizes the transfer function in (1.6) with &y = 1,
a = R1/(RRyR3C1C,) and b = R;/(RRyR3CCy). The circuit employs a floating

inductor based on Riordan technique whose impedance is Z; = RRyR3Cis/R; as

shown in Figure 2.19 [38,39).
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Figure 2.19: Floating inductor based on Riordan technique, whose input
impedance is Z; = RRyR3C}s/R; used in Type I inductor-based asymmetric-slope
band-pass filter.
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Figure 2.20: Possible realization of the Type I inductor-based asymmetric-slope
band-pass filter realizing the transfer function in (1.6).

2.2.2 Type II Filter Realizations

Type II realizations governed by the transfer function in (1.7) using a grounded in-
ductor of the Antonio GIC variety, whose impedance is Z;;, = R;R;Cs (see Fig-
ure 2.21) and MAB variety are shown in Figure 2.22 with k3 = 2, a = C,/C;
and b = 1/Ry R,CC for the grounded inductor version of Figure 2.22(a) and k3 =
(1 + %‘3} -+ %;), o = %}%, b= % where 73 = R1C1, 72 = RyCy and 7, = R,C,

for the MAB version of Figure 2.22(b). As in the previous Type I case, an ad-

ditional symmetric band-pass filter characteristic is available at V4 with k3 =



33

&
s

Zin —>

x||—o I
5

Figure 2.21: Grounded inductor based on Antonio’s General Impedance
Converter, whose input impedance is Z;, = R;RsC's used in Type II inductor-based
asymmetric-slope band-pass filter.

ﬁ (1 + %‘; + %—‘;), a and b remaining unchanged, and the numerator term in (1.7)
changing from s'*® to s. Another design example with different type of grounded
inductor is proposed in Appendix B.

Type II FDNR-based asymmetric-slope band-pass filter using a floating FDNR,
whose impedance is Z; = C;CoR; Ry/(R3s?) (see Figure 2.23(a)) is shown in Figure
2.24 [40]. Note that for practical purposes each CCII— can be replaced by two

CCII+ s as shown in Figure 2.23(b). The circuit realizes the transfer function in

(18) with k4 = 1, a = 1/RCa and b= R3/(RR1R20102).
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Figure 2.22: Possible realizations of the Type II asymmetric-slope band-pass filter
realizing the transfer function in (1.7); (a) using an inductor and (b) using a
multiple amplifier biquad.
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Figure 2.23: (a) Floating FDNR using current conveyors, whose input impedance
is Z; = C1CoR Ry /(R3s?). (b) CCII— is realized using two CCII+s.
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Figure 2.24: Possible realization of the Type II FDNR-based asymmetric-slope
band-pass filter realizing the transfer function in (1.8).



CHAPTER 3

Simulation and Experimental Results

3.1 Using Discrete Components

3.1.1 Type I Filters

The Type I asymmetric-slope band-pass filters in Figures 2.18 and 2.20 were simu-
lated in SPICE using LT1364 opamps (rated bandwidth 70MHz) biased with £15V
supplies. Carlson’s method [7] was used to simulate the fractional-order capacitor C,
having C = 1uF and o = 0.5, as shown in Figure 3.1. The approximated model of the
fractional capacitor represents a self-similar RC tree structure [41]. Note that other
approximations exist [42-44] some more optimal than others, but Carlson’s method
was chosen for its simplicity. Table 3.1 shows the values of capacitors and resistors
used in the approximated model of fractional capacitor in Figure 3.1. The values of
components were calculated such that C, has an operating range of 100H2—10kH z.

Figure 3.2 shows the simulation results for the Type I FDNR-based circuit of Fig-

Co
o—l(—o

R Ry R; Ry

A4 AA'A% A% A%,

Rip
o AAA— aa—)

¥4 ¥4 1L ¥4
[AY LAY LAY 1\
Ci Cy Cs Cy

Figure 3.1: Approximation of C, based on Carlson’s method.

36
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Variable | Value for SPICE simulation and experimental test

R 1.4KQ

Ry 3.2KQ)

R, 4. 77K
Rs 11.21KQ
Ry 92.97KQ)
Cy 6.64nF

Co 23.45nF
Cs 42.57TnF
Cy 55.05nF

Table 3.1: Values of components used in SPICE simulation and experimental test
for Cy = 1puF, a = 0.5.

= m = Experimental result

Simulated result

Gain in dB

Frequency(Hz)

Figure 3.2: SPICE and experimental results of the Type I FDNR-based
asymmetric-slope band-pass filter in Figure 2.18(a).

ure 2.18(a) taking R; = 531Q, R = 4.7k and C = 0.1uF while Figures 3.3(a) and
3.3(b) show the results for the Type I MAB-based circuit of Figure 2.18(b) with
Ry = Ry = 1.59kQ), R = R4 = 1kQ), Rs = 5.1kQ, Rs = 100Q2, R, = 2702 and
Cy = Cy = 0.1uF. Both circuits were designed to achieve a quality factor of 33 and a
center frequency of f, = 1kHz. The circuits were also constructed on breadboard and
tested. Experimental results for the two circuits are also shown within Figures 3.2,

3.3(a) and 3.3(b). The slope at frequencies lower than f, was measured as 10 dB/dec
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Figure 3.3: SPICE and experimental results of the filter in Figure 2.18(b); (a)
showing the asymmetrical output at V,,; and (b) showing the symmetrical output
ab Vout1~

while it was measured as —30dB/dec at frequencies greater than f, for both types
of filters confirming the asymmetric nature of the band-pass filters and the accuracy
of realizing Table 2.1(a). The measured (Q, f,) for Type I FDNR based circuit were
(31.65,1.087kH z) and they were measured (26.15,1.051kHz) for Type I MAB-based

circuit, respectively. To confirm stability, the steady state transient response of the

filter in Figure 2.18(a) is shown in Fig. 3.4.

38
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12:23:31

Figure 3.4: Measured transient response of the Type I band-pass filter in Figure
2.18(a) confirming stability at & = 0.5.

The comparison between simulation and experimental results for Type I inductor-
based asymmetric band-pass filter of Figure 2.20 taking R = 2k, R; = 40082, R, =
448k, Ry = 5kS), C = 0.68nF and C; = 0.33uF is shown in Figure 3.5. The filter
was designed to achieve a quality factor of 20 and a center frequency of f, = 1kHz.
The measured (Q, f,) were respectively (16.52,1.03kHz). Also the measured slope
at frequencies lower than f, was 10dB/dec while it was —30dB/dec at frequencies
greater than f, as expected from Table 2.1. The slight deviation from the SPICE
simulations (see Figures 3.2 and 3.3) is attributed to the component tolerances and
the two circuit topologies which are examined in Chapter 4. To confirm stability, the

steady state transient response of the filter in Figure 2.20 is shown in Figure 3.6.

3.1.2 Type II Filters

Figure 3.7 shows the comparison between simulation and experimental results for
the Type II inductor-based circuit of Figure 2.22(a) using R=R; = R, = 1kQ, C =
0.1uF and Cy = 0.215uF while the comparison between simulation and experimental
results for the circuit of Figure 2.22(b) using Ry = Ry = 1.59kQ2, C; = Cy = 0.1uF,
R3 = Ry = 1k and Ry = 0.9k is shown in Figure 3.8. The measured (@, f,) results
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Figure 3.5: SPICE and experimental results of the Type I band-pass filter in
Figure 2.20.
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Figure 3.6: Measured transient response of the Type I band-pass filter in Figure
2.20 confirming stability at oo = 0.5.

for a designed @ = 25 and f, = 1.04kHz yielded a (20.1,1.16kH z) for the inductor
based circuit and (19.75,1.07kHz) for the MAB based circuit. The measured slope at
frequencies less than f, was 30 dB/dec while it was —10dB/dec at frequencies greater

than f,. The steady state transient response of the filter in Figure 2.22(a) is shown
in Figure 3.9.
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Figure 3.7: SPICE and experimental results of the filter in Figure 2.22(a).
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Figure 3.8: SPICE and experimental results of the filter in Figure 2.22(b); (a)
showing the asymmetrical output at V,,; and (b) showing the symmetrical output
aut Voutl.
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Figure 3.9: Measured transient response of the Type II inductor-based band-pass
filter in Fig. 2.22(a) for o = 0.5.

| Variable I Value for SPICE simulation and experimental test
Ry 1209
Ry 27102
Ry 40852
R 9582
Ry 7.94K)
& 1.7 F
Cs 27.4nF
Cs 49.8nF
Cy 64.4nF

Table 3.2: Values of components used in SPICE simulation and experimental test
for Cp, =3.7TuF, a = 0.5.

ADB844 opamps (rated bandwidth 21MHz) were used to simulate Type II FDNR-
based asymmetric-slope band-pass filter in Figure 2.24. The fractional-order capacitor
C,, having C, =3.7TuF and a = 0.5 was approximated by Carlson’s method such that
it has an operating range of 1k Hz—100kH z [7]. Table 3.2 shows the values of resistors
and capacitors used in Carlson’s approximation . The comparison between simulation
and experimental results for Type II FDNR-based asymmetric-slope band-pass filter
of Figure 2.24 taking R = 14k}, R; = 8kS2, Ry = 8.2kS), Rz = 40k}, C, = 4.7nF

and Cp = 2.2nF is shown in Figure 3.10. The filter was designed to achieve a quality
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Figure 3.10: SPICE and experimental results of the filter in Figure 2.24.
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Figure 3.11: Measured transient response of the Type II FDNR-based band-pass
filter in Figure 2.24 confirming stability at o = 0.5.

factor of @ = 18 and a center frequency of f, = 10kH z and the measured (@, f,) were
respectively (13.5,10.52kH z). The slope at frequencies less than f, was measured as
30dB/dec While it was measured as —10dB/dec at frequencies greater than f, in the
operating range of C,. To confirm stability, the steady state transient response of the
filter in Figure 2.24 is shown in Figure 3.11.

It is to be noted that because of the fractional differentiator circuit in the feedback

loop of the MAB based circuits of Figures 2.18(b) and 2.22(b), at f,, large signal
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swings can be present at the outputs of the two lossless integrators. This results in
the necessity to use small input signals for V;, to avoid the outputs of these lossless
integrators being saturated. The MAB based circuit therefore should in general be
driven by small input voltages. On the other hand the FDNR based circuits as well
as the inductor based circuits in both types do not suffer from internal resonances at
their nodes and are limited only by the maximum allowable differential voltage across
the opamps input terminals.

Finally, it is also worth noting that the deviation in the @ and f, is larger for
the Type II circuit because of tolerances in addition to the fact that Type II filters
responses are more susceptible to variations in the quality factor of the grounded
inductor and floating FDNR in Figures 2.22(a) and 2.24. This point is discussed in

more detail in Chapter 4.

3.2 FPAA realization

3.2.1 Field Programmable Analog Array Implementation

Field Programmable Analog Arrays (FPAA) offer a unique way to experimentally
validate the functionality of analog design on the integrated circuit level. FPAA is
an analog signal processor which allows complex analog circuits to be implemented
in real time programmable Analog Signal Processors. These analog signal proces-
sors are designed to implement signal conditioning, filtering, summing, subtracting,
data acquisition, closed-loop control, audio and other analog functions in a wide
range of embedded systems. The AN231E04 device consists of a 2x2 matrix of fully
Configurable Analog Blocks (CAMs), surrounded by programmable interconnect re-
sources and analog input/output cells with active elements. The CAMs can be easily
dropped in and wired together in the graphical design environment. Here, we use
the proposed FPAA from Anadigm [45] based on fully differential switched capacitor
building blocks running at a 4MHz clock. We use bilinear ahd biquadratic CAMs
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oL

Figure 3.12: AN231E04 FPAA development kit from Anadigm.

to approximate the fractional order filters. Figure 3.12 shows the AN231E04 FPAA

development kit from Anadigm.

3.2.2 FPAA Realization of Non-Integer Laplacian Operator

Using bilinear CAMs in FPAA we need to have the transfer function pole and zero fre-
quencies. To use low-pass and band-pass biquads, quality factor and center frequency
are needed as well. Since non-integer Laplacian operator s* cannot yet be physically
realized, we substitute for s* with the second-order approximation introduced in [17]

as
Otzcsz+ds-f—e (3.1)

es’+ds+c

where ¢ = a?+3a+2, d = 8—2a? and e = a? — 3a + 2. The proposed approximation
minimizes the magnitude error to less than 1dB over two decades. This point is

discussed in more detail in Appendix A.
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Figure 3.13: Approximated Type I asymmetric-slope band-pass filter in (3.2)
implementation using gain, bilinear and biquadratic filter CAMs of the
AnadigmDesigner tools for implementation on the AN231E04 FPAA.

3.2.3 FPAA Realization of Type I Band-pass Filter

Substituting (3.1) in the Type I transfer function in (1.5) yields a fourth-order transfer

function which can then be written in the form

o (st 2)(s+ ) w?

1) = O ) (57 12) 2 - (ol Q)5 ¥ (32)

after replacing s with s/w,. This rearrangement in bilinear and biquadratic terms
is needed for the FPAA realization. The fourth order transfer function in (3.2) can
be tested in the FPAA using one gain CAM, two bilinear and one biquadratic filter
CAMs cascaded and wired together to the desired input and output ports in the
AnadigmDesigner design environment as shown in Figure 3.13. Bilinear CAMs were
setup in the pole-zero configuration, shown in Figure 3.14(a) and biquadratic CAMs
were setup in the low-pass configuration, shown in Figure 3.14(b). The bilinear CAM

and low-pass biquadratic CAM are realized on the FPAA using the switch capacitor
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Figure 3.14: Parameters setup environment of the AnadigmDesigner tools for the
(a) bilinear and (b) biquadratic filter CAMs.

circuit in Figures 3.15(a) and (b) . Figure 3.16 shows the experimental results realizing
a filter with (o, a,b,k) = (0.5,0.03,1,1) which theoretically yields @ = 47.64 and

fo = 38.42kHz. With reference to (3.2), the poles and zeros of the bilinear blocks
in kHz are respectively (z1, 22, p1,p2) = (71.988,4.011,359.44,19.773) and (Q, f,) for
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Figure 3.15: Internal switched capacitor circuits on the FPAA to realize the (a)
pole/zero bilinear and (b) low-pass biquadratic transfer functions.

low-pass filter are (48.95, 38.414kH 2) , respectively. The gain of the transfer function
is Gy = 0.147. The measured quality factor ) was 44.13 and the center frequency f,
was 38.73kH z which are very close to the design values. It is important to note here
that the pole and zero values of (3.2) are rounded off by the FPAA.

Figure 3.17 shows another design example at (a,a,b,k) = (0.1,0.17,1,0.035) for
a Type I transfer function. The poles and zeros of fourth-order transfer function in

(3.2) in kH z are (21, 20, p1,p2) = (122.55,8.722,165.049, 11.379) and Gt = 0.0404 and
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Figure 3.16: Experimental results using an FPAA for Type I asymmetric filter in
1.5 with « = 0.5, Q = 47.64.
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Figure 3.17: Experimental results using an FPAA for Type I asymmetric filter in
1.5 with o = 0.1,Q = 45.1.

(Q, f,) for low-pass CAM are (45.41,41.091kH z) , respectively. The measured (@, f,)

for a designed @ = 43.3 and f, = 41.078kH z were (45.1,40.813kH z), respectively.

It is to be noted that Type I transfer function in (1.6) can be obtained from the

transfer function in (1.5) if « is replaced by 1 — . The implementation of this is that

the fourth-order transfer function in (3.2) can be used for the Type I transfer function

in (1.6) if for identical a; b and k, « is replaced by 1 — a. To illustrate an example
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the fourth order transfer function in (3.2) for the Type I filter in (1.5) with given a,
b, k and oo = 0.1 can be used for the Type I transfer function in (1.6) for the same a,
b and k but with oo = 0.9. As a result, Figure 3.17 shows the experimental result for
the Type I filter in (1.6) for the same a, b and k used in the previous example but for
a=0.9.

3.2.4 FPAA Realization of Type II Band-pass Filter

Substituting (3.1) in a Type II transfer function in (1.7) yields a fourth-order transfer

function which can then be written in the form

(s+2)(s+%)  sw/Q)

Hs) = Gt 55 ) F (o] Q)5 + o

(3.3)

after replacing s with s/w,. This rearrangement in bilinear and biquadratic terms
is needed for the FPAA realization. The fourth order transfer function in (3.3) can
be tested in the FPAA using one gain CAM, two bilinear and one biquadratic filter
CAMs cascaded and wired together to the desired input and output ports in the
AnadigmDesigner design environment as shown in Figure 3.18. Bilinear filters were
setup in the pole-zero configuration and biquadratic filters were setup in the band-pass
configuration.

Figure 3.19 shows a design example at (o, a,b, k) = (0.5,0.05,1,0.8) for Type II
transfer function in (1.7). The poles and zeros of fourth-order transfer function in
(3.3) in kHz are (%1, 2s,91,02) = (72,4.011,365.94,20.25) and Grr = 0.198. The
band-pass block has @ = 36.73 and f, = 37.505kHz. The measured (@, f,) for a
designed @ = 39 and f, = 38.3kH z were (38.935, 37.57kH z), respectively.

Another design example at («, a, b, k) = (0.1,0.027,1, 1) with f, = 37.916kH z and
@ = 37.52 for the Type II filter is shown in Figure 3.20. The poles and zeros of the
bilinear blocks in kHz are respectively (21, 22,01, 02) = (8.722,122.55,11.805,165.9)

and Gyr = 1.356. The quality factor and center frequency (Q, f,) for band-pass filter
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FPALT

Figure 3.18: Approximated Type II asymmetric-slope band-pass filter in (3.3)
implementation using gain, bilinear and biquadratic filter CAMs of the
AnadigmDesigner tools for implementation on the AN231E04 FPAA.
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Figure 3.19: Experimental results using an FPAA for Type II asymmetric filter in
(1.7) with @ = 0.5,Q = 39.

CAM are (37.47,37.922kHz), respectively. The measured quality factor and center

frequency are @ = 36.37 and f, = 37.956kH z which are very close to the theoretical

values. Note that this Type II filter response has an almost symmetric characteristic
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Figure 3.20: Experimental results using an FPAA for Type II asymmetric filter in
(1.7) with @ = 0.1,Q = 37.52.

about f, because « is small. The slope at frequencies lower than f, is 22 4B /dec
while it is 18 dB/dec at frequencies greater than f, which is to be expected from
Table 2.2. |

Finally, it is worth noting once again that the Type II transfer function in (1.8)
can be obtained from (1.7) if « is replaced by 1 — . Therefore, the approximated
transfer function in (3.3) for Type II filter in (1.7) can be used for Type II filter in
(1.8) if for identical a, b and k, « is replaced by 1 — o. As an example, the fourth
order transfer function in (3.3) with given a, b, k and @ = 0.1 can be used for Type
IT transfer function in (1.8) for the same a, b and k but with o = 0.9. As a result,
Figure 3.20 shows the experimental result for the Type II filter in (1.8) for the same
a, b and k used in the previous example but for o = 0.9.

Note that the FPAA internal structure is based on switched capacitor building
blocks running at a 4MHz sampling clock. Therefore, the bandwidth of any circuit
implemented using the FPAA should not exceed 400kHz (1/10 of the sampling fre-
quency) to c;btain sufficient accuracy. The center frequency of the filters realized

using the FPAA in this work was around 40kHz.



CHAPTER 4

Non-Ideal Effects

4.1 Lossy Elements

4.1.1 Type I FDNR-Based Circuit

To study the non-ideal effects in the proposed asymmetric-slope band-pass filters,
it is useful to begin with a study of the non-idealites in the passive prototypes. In
particular in the FDNR and the inductor, both of which would normally be imple-
mented using active circuits. For this consider the modified passive prototype shown
in Figure 2.4(a) where the D—element of the Type I filter is now modeled by an ideal
D—element in parallel with capacitor ¢, to model the losses as shown in Figure 4.1.
The quality factor of non-ideal FDNR is Qp = ¢,/Dw and straightforward analysis

yields a modified Type I FDNR-based transfer function of the form,

as®

Hy(s) = s2+as*+ b+ As (1)

\ | . .

[o, o]

-+ /1 | I+
Cozl I Cp |

Vin R § o< =D, V
[ I

o ! l—»

Figure 4.1: Non-ideal model of the Type I FDNR-based filter accounting for the
lossy FDNR as shown by the dashed line.
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Figure 4.2: Plot of ratio % versus @p for Type I FDNR-based filter. @y is the
ideal quality factor of the filters with ideal elements and @ is the observed quality
factor of the filters with lossy elements.

where A = Qpw Tg—‘:—‘ci and oy = . Ideally as Qp — 0 equation (4.1) reverts back to
Type I transfer function in (1.5) with k; = 1. In Figure 4.2, a plot of the ratio of the
desired @ of the filter to the ideal quality factor Q; against @ p is shown for ¢ = 0.2,
b =1 and various . Note that the ideal ratio of Q/Qr should be one for @p = 0.
The plot in Figure 4.2 reveals that in the case of the Type I FDNR-based filter for
low values of a it is important to keep Qp as low as possible, since the slope is the

largest for small a. As « increases, the slope for small )p decreases, meaning that

more reactive losses can be tolerated.

4.1.2 Type I Inductor-Based Circuit

Figure 4.3 shows the modified passive prototype shown in Figure 2.4(b) where the
inductor of the Type I filter is now modeled by an ideal inductor in series with resistor
r to model the losses. Here, the quality factor of non-ideal inductor is Qr, = Lw/r.
The non-ideal transfer function of Type I inductor based filter in (1.6) can be written
in the form

ast—®

Huls) = s> +ast~*+b+ Ls’ (42)
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Figure 4.3: Non-ideal model of the Type I inductor-based filter accounting for the
lossy inductor as shown by the dashed line.

Figure 4.4: Plot of ratio % versus Jr, for Type I inductor-based filter. @y is the
ideal quality factor of the filters with ideal elements and @ is the observed quality
factor of the filters with lossy elements.

where B = Qr/w and oz = . Ideally as Qp — oo equation (4.2) reverts

back to the Type I transfer function in (1.6) with k; = 1. Figure 4.4 shows a plot
of the ratio of the desired @ of the filter to the ideal quality factor Q; against @
for a = 0.2, b = 1 and various a. It reveals that large inductor quality factors are
important to maintain a high Q/Qr ratio. As « decreases this requirement can be

relaxed but it is clear overall that large (Q1’s are needed to ensure this circuit yields

the desired Q.



56

-0
A

Vin Cr 1~

[o,

Figure 4.5: Non-ideal model of the Type II inductor-based filter accounting for the
lossy inductor as shown by the dashed line.

4.1.3 Type II Inductor-Based Circuit

The inductor of the Type II filter in Figure 2.5(a) is now modeled by an ideal inductor
L in series with resistor r in Figure 4.5 to show its losses. Here, the quality factor of
non-ideal inductor is Qr, = Lw/r. The non-ideal transfer function of Type II inductor
based filter can be written in the form

a (s + Ls%)

s? +astte + b+ £ (s +as®)’ (4:3)

Hip(s) =

where B = Qr/w and a3 = a. It is clear that as Q; — oo equation (4.3)

reverts back to the Type II transfer function in (1.7) with k3 = 1. In Figure 4.6 plot
of varying @1, to the ratio of the desired @ of the filter to the ideal quality factor @Q;
is shown for @ = 0.2, b = 1 and various . Note that the ideal ratio of @/Q; should
be one for @, = co. The plot of Figure 4.5 reveals that large inductor quality factors
are needed to maintain a high @/Qr ratio. As « decreases this requirement can be

relaxed but it is clear that large quality factors for the inductor are needed to ensure

this circuit yields the desired Q.
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Figure 4.6: Plot of ratio - versus Q, for Type II inductor-based filter. Q; is the

ideal quality factor of the gllters with ideal elements and @ is the observed quality
factor of the filters with lossy elements.
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Figure 4.7: Non-ideal model of the Type II FDNR-based filter accounting for the
lossy FDNR as shown by the dashed line.

4.1.4 Type 1I FDNR-Based Circuit

The D—element of the Type II filter in Figure 2.5(b) is now modeled by an ideal
D—element in parallel with capacitor ¢, in Figure 4.7 to show the losses. The quality
factor of non-ideal FDNR is Qp = ¢,/Dw. The non-ideal transfer function for the
Type II FDNR-based filter can be written in the form

a (s + Ast~?)

Hiv(s) = s?+as?>~*+ b+ A(s+asi~%)’ (44
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Figure 4.8: Plot of ratio - versus Qp for Type II FDNR-based filter. Q is the
ideal quality factor of the fi fers with ideal elements and Q is the observed quality
factor of the filters with lossy elements.

where A = Qpw ’;‘;g and a4 = a. In Figure 4.8 a plot of varying )p to the ratio of
the desired @) of the filter to the ideal quality factor Q) is shown for a = 0.2, b =1
and various a. Ideally as @p — 0 equation (4.4) reverts back to the Type II transfer
function in (1.8) with k4 = 1. Note that the ideal ratio of Q/@ should be one for
@p = 0. The plot of Figure 4.8 reveals that in the case of the Type II FDNR-based
filter for low values of ¢, its important that Qp be kept as low as possible, since
the slope is the largest for small . As « increases the slope for small Qp decreases
meaning that more reactive losses can be tolerated.

Finally it is worth noting that equations (4.3) and (4.4) reveal that the deviation
in the @ and f, is larger for the Type II circuits because of the fact that the responses

of these filters are more susceptible to variations in the quality factor of the grounded

inductor and floating FDNR, respectively.
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Figure 4.9: The non-ideal fractional capacitor is modeled by an ideal fractional
capacitor C, in parallel with resistor r.

4.1.5 The Non-ideal Fractional Capacitor

In this section, we study the effect of non-idealities in the fractional capacitor on filter
quality factor. For this, consider the modified fractional capacitor shown in Figure
4.9 where the non-ideal fractional capacitor is now modeled by an ideal fractional
capacitor C, in parallel with a resistor r to model the losses.

The quality factor of ideal fractional capacitor is

Qr=— tan(%) (4.5)

and the quality factor of non-ideal fractional capacitor shown in Figure 4.9 is

rCow®sin(%E)

14 rCowcos(%r)

Q= (4.6)

The non-ideal quality factor of fractional capacitor approaches the ideal quality factor
for r — oo. In Figure 4.10, the plot of the ratio of the actual @ of the fractional

capacitor to the ideal quality factor @; against r is shown for C, = 1F and various
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Figure 4.10: Plot of the ratio of the actual @ of the fractional capacitor to the
ideal quality factor @ versus r for C, = LF and various values of a.

values of .

4.2 Finite Gain Bandwidth Product

For the opamp-based designs of filters in Figures 2.18, 2.20 and 2.22 it is important
to find the effect of the finite gain-bandwidth product on w, and Q. Here, we assume
that identical opamps, each described by a single-pole open-loop transfer function of

the form A(s) = wy/s (w; is the amplifier’s gain-bandwidth product) are used.

4.2.1 Type I FDNR-Based Circuit

Using non-ideal and identical opamps the following transfer function is derived for

the Type I FDNR-based filter

2
T84
1+ ==

Hi(s) =
(s) é[rsf“ + (14 7)s2 +ws + 2Py(s)] + 3

(4.7)

where 7 = RC and Py(s) = s+ (2 +wy + b7) ¥ * + (2 + brw; + 0.5w7 + 2b)s*~* +
bwys?~®+ z=bwis™* with a = Co/ RC? and b = 1/R RC? as defined earlier. It is noted
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Figure 4.11: 3D plots of (a) Aw,/w, for o =[0.005,1], a =[0.005,1] and (b) AQ/Q
for a =[0.005, 1}, a =[0.005, 1] both for the FDNR-based Type I realization.
that (4.7) has complex zeros located at w, & /w;/7T for w; > 1/47. To minimize the

effect of 7, a good choice is to select 7 = 100/w; which then yields w, = w;/10.
Furthermore, for the Type I FDNR-based filter, Figures 4.11(a) and 4.11(b) show
the percentage variability of Aw,/w, and AQ/Q versus « and a for b = 1 and w; =
1000w,. The minimum and maximum deviations for w, and ¢) were respectively found
to be (—0.97%,—1.15%) and (—6.6%,7.47%). For w; = 100w,, the minimum and
maximum deviations jump to (—2.11%,—1.51%) and (—55.46%, 4.49%). As expected
the deviation in @, which is traditionally larger than w,, gets progressively worse as

the center frequency approaches the opamp bandwidth. The Matlab codes to generate
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Figures 4.11(a) and 4.11(b) is provided in the Appendix C.

4.2.2 Type I MAB-Based Circuit

Examining the MAB based circuit of Figure 2.18(b), under the same assumptions,
reveals that there are no complex zeroes in the non-ideal transfer function as shown
in Appendix D. The transfer function is of order s% in the integer terms and s+ in
the fractal terms of P,(s).

For the Type I MAB-based filter, Figures 4.12(a) and 4.12(b) show the percentage
variability of Aw,/w, and AQ/Q versus ¢ and a for b =1, 7, = 7 = 7 = 100/w;
and w; = 1000w,. Here i = R1Cy , 75 = RpCs and 7 = R,C,. The minimum and
maximum deviations for w, and @ were respectively found to be (0.925%,1.0811%)
and (—0.698%,—57.81%). For w; = 100w,, the minimum and maximum deviations

jump to (0.124%,1.006%) and (1.515%, —93.35%), respectively.

4.2.3 Type I Inductor-based Circuit

The non-ideal transfer function for the Type I inductor-based asymmetric-slope band-
pass of Figure 2.20 is of order s° in the integer terms and s°* in the fractal terms of
P,(s) as shown in Appendix E.

Figure 4.13(a) and 4.13(b) show the percentage deviation of AQ/Q and Aw,/w,
versus @ and a for 73 = b = 1, 74 = 100/w;, wy = 1000w,. Here 74 = RyC and
73 = R3/Rp. The maximum deviations for w, is (—0.235%, —0.5179%) while it is
(—9.9%,72.73%) for the quality factor. For w; = 100w,, the minimum and maxi-
mum deviations of center frequency and quality factor jump to (—1.13%,2.307%) and
(—8.81%, —88.45%), respectively.

In Figure 4.14, a comparison of the ideal magnitude response in (1.5) to the
magnitude response of the circuits in Figures 2.18(a), 2.18(b) and 2.20 is shown for

a=05a=02 =171 =m=7=100/w;, w; = 1000w, and b = 1 with all the
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(b)

Figure 4.12: 3D plots of (a) Aw,/w, for a =[0.005, 1], a =[0.005, 1] and (b) AQ/Q
for o =[0.005, 1], a =[0.005, 1] both for the MAB-based Type I realization.
plots normalized to a center frequency gain of 0dB. The presence of the zeroes in the
FDNR based circuit can clearly be seen. Note that Type I ideal transfer functions in

(1.5) and (1.6) have the same amplitude response for given a and b when o = 0.5.

In order however, to gain a greater appreciation for the differences in the perfor-
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Figure 4.13: 3D plots of (a) Aw,/w, for a =[0.005,1], a =[0.005,1] and (b) AQ/Q
for a =[0.005, 1], a =[0.005, 1] both for the inductor-based Type I realization.
mances of the Type I, FDNR, inductor based and MAB based realizations a complied
table of simulated results for percentage deviations in Aw,/w, and AQ/Q to various

values of a is shown in Table 4.1 for « = 0.5, 7, = 7 = 7 = 100/w, 73 = 1,
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Figure 4.14: Plot of the amplitude response of the ideal transfer function of 1.5
compared to the non-ideal transfer functions of Figures 2.18(a) and (b) and 2.20 for
7 =7y =7 =100/wy, 73 = 1, wy = 1000w, and b = 1.
wy = 1000w, and b = 1. The percentage variation in Aw,/w, is small and roughly the
same across the FDNR, inductor based and MAB based circuits of Figures 2.18(a),
2.18(b) and 2.20. Conversely if the percentage variation in AQ/Q of Table 4.1(b) is
examined the FDNR-based circuit always outperforms the MAB-based and inductor-
based circuits for all ¢ and inductor-based circuit has the worst performance. Note
that for o = 0.5 the w,’s and @’s of the Type I filters in Figures 2.18(a), 2.18(b) and

2.20 are identical for a given a and b.

4.2.4 Type 1I Inductor-Based Circuit
The non-ideal transfer function for the Type II inductor-based asymmetric-slope

band-pass filter in Figure 2.22(a) is given as

Hii(s) = wis(s -+ br + wy)
" 83+ (wg + b7)s? + (brws + 3wi)s + LP,(s)

(4.8)

where 7 = R;C; and

Po(s) = s+ (2 4+ b7 + wy) 837 + (brws + b+ 2w? + £)s> % + bwys' % + Lbwis™®
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Quady

a | FDNR-based | MAB-based | Inductor-based
0.01 —0.9956 1.0083 -0.4984
0.05 —1.0059 1.0119 -0.4967

0.1 —1.0111 1.0214 -0.4896
0.5 —1.0684 1.0445 -0.4369
(a)
5oy,

a | FDNR-based | MAB-based | Inductor-based
0.01 0.2386 —13.1336 142.58
0.05 0.4544 —3.4386 17.17

0.1 0.4749 —2.0633 8.267
0.5 0.4314 —0.8922 2.078

(b)

Table 4.1: Percentage variation in (a) center frequency w, and (b) @ for all Type I
active filter realizations with « = 0.5 and b = 1.

with a = C,/C; and b = 1/ Ry RyCC as defined earlier. Examination of (4.8) reveals
the presence of zeroes at the origin and at frequencies slightly larger than the unity
gain bandwidth of the opamp. ‘

For the Type II inductor-based filter, Figures 4.15(a) and 4.15(b) show the per-
centage variability of Aw,/w, and AQ/Q versus o and a forb=1,7= 100/w; and
Lut = 1000w,. The minimum and maximum deviations for w, and @ were respectively
found to be (—0.5072%,—1.0281%) and (—9.92%,58.171%). For w; = 100w,, the
minimum and maximum deviations jump to (—1.9093%,—2.6389%) and (—9.9958%,
103.214%). The deviation in @ is larger than center frequency and gets progressively

worse as the center frequency approaches the opamp bandwidth.

4.2.5 Type II MAB-Based Circuit

If the Type II MAB-based circuit is examined, its transfer function also has a zero

near the unity gain bandwidth of the opamp and likewise it also is of order s® in the
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Figure 4.15: 3D plots of (a) Aw,/w, for a =[0.005,1], a =[0.005, 1] and (b) AQ/Q
for & =[0.005, 1], @ =[0.005, 1] both for the inductor-based Type II realization.
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integer terms and s%+* in the fractal terms of P,(s) due to the number of opamps in
the circuit as in the Type I MAB-based circuit. The non-ideal transfer function of
Type II MAB-based is shown in Appendix F.

For the Type II MAB-based filter in Figure 2.22(b), Figures 4.16(a) and 4.16(b)
show the percentage variability of Aw,/w, and AQ/Q versus « and a for b = 1,
71 = 1o = 7 = 100/w; and w; = 1000w,. Here 71 = RyC} , 72 = RyCy and 7 = R,C,.
The minimum and maximum deviations for w, and @ were respectively found to be
(—0.7091%,—1.0281%) and (—72.243%,168.682%). For w; = 100w,, the minimum
and maximum deviations jump to (—0.7212%,—1.716%) and (—86.752%, 276.315%),
respectively.

In order, however, to gain a greater appreciation for the differences in the perfor-
mances of the Type II inductor based and MAB based realizations a complied table
of simulated results for percentage deviations in Aw,/w, and AQ/Q to various values
of a is shown in Table 4.2 for &« = 0.5, 74 = 7, = 7 = 100/w;, w; = 1000w, and b = 1.
As expected the percentage variation in Aw, Jw, is small and roughly the same across
the Inductor based and MAB based circuits of Figures 2.22(a) and 2.22(b). Also Ta:
ble 4.2 reveals that Type II inductor-based circuit performs better than MAB-based
circuit if deviation in quality factor is considered.

The high frequency response of these two circuits can therefore be expected to
be similar to Type I filters. Figure 4.17 shows a comparison of the ideal magnitude
response in 1.7 to the magnitude response of the circuits in Figures 2.22(a) and 2.22(b)
fora=0.5,a=02,b=1 71 =7 =7 =100/w; and w; = 1000w, with all the plots

normalized to a center frequency gain of 0dB.
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(b)

Figure 4.16: 3D plots of (a) Aw,/w, for a =[0.005, 1], a =[0.005, 1] and (b) AQ/Q
for & =[0.005, 1], @ =[0.005, 1] both for the Type Il MAB-based realization.
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ey

a | Inductor-based | MAB-based
0.01 —0.9918 —0.9861
0.05 —0.9728 —0.9785

0.1 —0.9471 —0.9641
0.5 —0.7818 —0.8888
(a)
5oy,

a | Inductor-based | MAB-based
0.01 1.1975 73.6562
0.05 1.4056 9.7833

0.1 1.4123 4.948
0.5 1.2988 1.3006
(b)

Table 4.2: Percentage variation in (a) center frequency w, and (b) @ for Type II
inductor-based and MAB-based realizations with « = 0.5, b= 1.

4.3 Voltage and Current Tracking Errors

4.3.1 Type II FDNR-~Based Circuit

The Type II FDNR-based circuit was designed using current conveyors as shown
in Figure 2.24. Note that for practical purposes each CCII— was replaced by two
CCII+s. For the current conveyor-based design it is important to find the effect of
current and voltage tracking errors (e; and ey) on w, and Q. We assume for simplicity
that identical current conveyors each described by I, = (1 —er)l, and V, = (1 —¢,)V,
(see Figure 2.23) are used. For the Type II FDNR-based filter, the following transfer

function is then derived

ReoS" % + A(s) + €3B(s) +€1C(s)

 + 78~ + mmhigre; + A(S) + €31B(s) + os?] + r[C(s) - =
4.9

va(s) =k
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Ideal Response

Gain in dB

Inductor Based circuit

MAB Based circuit /

“l ‘0 ! 1 '2 '3 4
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w (rad/s)

Figure 4.17: Normalized plot of the amplitude response of the ideal transfer
function of 1.7 compared to the non-ideal transfer functions of Figures 2.22(a) and
2.22(b) for « = 0.5,a = 0.2, 7, = 7, = 7 = 100/w;, ws = 1000w, and b = 1.

where the parameters are k = =gy, A(s) = [e]—4e}] (Mﬁ—sl““ + M.ﬁ‘“),

RR1 RyCoC1 RRoCy
__ _6Rs4+5R3 . l1-« 6R2+5R3 22—« — _({_A4R+2R3 _l—« 4R +2R3 2~
B(s) = REEsCaCriS T RECa S C(s) = (RRlRZC’aC&S + “Rhos'™) and

c=(1+ %). It is clear that for ey — 0 and ey — 0, the non-ideal transfer - function in
(4.9) reverts to the ideal transfer function in (1.8) with a = 1/RC, and b = —Rﬁl—}%?

The comparison between the ideal magnitude response of Type II filter in (1.8)
to the magnitude response of the circuit in Figure 2.24 for 7 = RC, = 5, i1 =
RiCi =17 =RC =12 =1¢ =6 =000,a=02b=1and o =
0.5 is shown in Figure 4.18. The minimum and maximum deviations for w, and @
were respectively found to be (1.196%,1.981%) and (15.642%,49.55%). For er =
ey = 0.001, the minimum and maximum deviations jump to (0.6429%, 2.5538%) and

(4.542%, 27.132%), respectively.
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Figure 4.18: Plot of the amplitude response of the ideal transfer function of (1.8)
compared to the non-ideal transfer function of Figure 2.24 when current and voltage
tracking errors of CCII+’s are considered. For all curves e; = ey = 0.001,
a=05a=02and b=1.



CHAPTER 5

Higher-Order Asymmetric-Slope Band-Pass Filters

5.1 Higher-Order Normal Band-pass Filters

Higher order band-pass filters are obtained using the same method proposed for the
second-order asymmetric-slope band-pass filter implementation in Chapter 2. The
m** order low-pass filters in Figures 5.1(a) and 5.1(b) can be transformed into normal
integer-order band-pass filters using s — -32—;%2& transformation, where w, is the center
frequency and B is the bandwidth of the band-pass filter. Now consider the band-pass
filters in Figures 5.2(a) and 5.2(b), obtained by applying this transformation on the
corresponding low-pass filters, respectively. In other words, a low-pass filter can be
trénsformed into band-pass filter circuit by replacing the capacitor C' with a parallel

combination of capacitor and inductor of respective values < and =£; and replacing
o

Ry Ry R
—W\ AV c e AMA— .
Vin G R Ca R Cn<  Vou
()
Ll L2 Lm
oYY YY" QU g o o o N
+ +
Vin R g B g Bn$  Vou
(b)

Figure 5.1: m** order RC and RL low-pass filters.
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stage 1 stage m

r——-—=-=7=——- ] r——-—=-====7" |
! j | |

——MA —AMV — VW —o
! I ! 1
[ o s 5! 5 ! I

L L Cn - _B

o SRl ghed | osied i
I | | |

-1 | I -
| | T |
| ! I !
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(a)
stage 1 stage m
F—-—==- 1 Fr———--- i
oy By B oo | B Im
2 _ - _= jast LS
) s B Lwj B | Imw3 B
\ AY| AY|

> : /I Y'Y : 1 YYN : ] YYM : o
| [ | !
| | > | |

Vin| | SR SR l 1 3 B Vout
! | I |

_ | ! ! -
: : f }
! | I I
L e J e e ]

(b)

Figure 5.2: m** order band-pass filters schematics obtained by the s — %f"j
transformation on low-pass filters in Figure 5.1.

the inductor L with a series combination of capacitor and inductor of values L%g and
7@—, respectively. Likewise, Figure 5.3(a) and 5.3(b) show normal band-pass filters
which are equivalent to the circuits in Figures 5.2(a) and 5.2(b) if one considers
the multiplication of each element of the circuits in Figure 5.2(a) and 5.2(b) by a
scaling factor 1/\s where ) is a constant of dimension sec™. In other words, Bruton
RLC : CRD transformation [24] is used to generate band-pass filters in Figures 5.3(a)
and 5.3(b). The transfer function of the band-pass filters in Figures 5.2 and 5.3 is

given by

aB™s™

B) = oy aBrem 1 7 wzm
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Figure 5.3: m!" order band-pass filters schematics, where m is an integer.

where B is the bandwidth, w, is the center frequency and m is the order of filters.

m
The filters in 5.2(a) and 5.3(a) realize the transfer function in (5.1) with a = HEIC_,

i=1

and in the case of band-pass filters in 5.2(b) and 5.3(b), a = H%

i=1
5.2 Asymmetric-Slope Band-pass Passive Prototypes

Consider the circuits in Figures 5.2 and 5.3. Fractional-order asymmetric-slope band-
pass filters are obtained if at least one resistor in Figure 5.2 and one capacitor in
Figure 5.3 is replaced by a fractional order capacitor. It is to be noted that the
number of fractional-order capacitors which can be used in the m** order fractional-
order band-pass filter, varies from 1 to m. In other words, at least one fractional

capacitor in one stage of a band-pass filter is needed to have an asymmetric-slope
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Cal 0012 Cam
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(b)

' Figure 5.4: m** order passive prototype models of Type I asymmetric-slope
band-pass filter.

band-pass filter and the maximum number of fractional capacitor which can be used
is m when all the resistors in Figure 5.2 and all the capacitors in Figure 5.3 are

replaced by fractional-order capacitors.

5.2.1 Type I Asymmetric-Slope Band-pass Passive Prototypes

Figure 5.4(a) and 5.4(b) show m® order passive prototypes Type I asymmetric-slope
band-pass filters. The normal band-pass filter in Figure 5.3(a) converts to a Type
I asymmetric-slope band-pass filter if at least one of the capacitors is replaced by
a fractional capacitor of equal fractal capacitance and fractal order. Figure 5.4(a)
shows passive prototype Type I asymmetric band-pass filter using maximum number
of fractional capacitors, m. The transfer function of the proposed Type I FDNR

based filter is given by

aBmsm[l—--f%(l—a)]

§2m .+ @Bmsmi-ml=a)l 4 4 2m

Hi(s) = (5.2)
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Frequency Type I FDNR-based
Slope (dB/dec) o
w <K W 0<20m(l—2(1-a)) <20m 21— 2(1-0))
w>w, |20m<20m(l+2(1-a)) <40m | —ZE(1+ 2(1—a))
(a)

Frequency I Type I inductor-based |
Slope (dB/dec) é
W <K W 0 <20m(l—2a) <20m 21— 2a)
w>w, |20m <20m(l+ Za) <40m | —Z5(

(b)

Table 5.1: Slopes for m** order Type I asymmetric-slope band-pass filter.

where m is order of the filter, n is number of fractional—orger capacitor used in the
filter, B is the bandwidth, w, is center frequency and a = H%

Likewise, the Type I passive prototype model in Figui‘=elS.4(b) can be obtained
from the normal band-pass filter in Figure 5.2(b) if each resistor is replaced by a frac-
tional capacitor of equal fractal capacitance and fractal order. The transfer function
of the filter is given by

aBmSm[l— 2a]

Hi(s) = §2m 4 . 4 aBms™i-mel 4 4 2m

(5.3)

where m is order of the filter, n is number of fractional-order capacitor used in the
filter, B is the bandwidth, w, is center frequency and a = ﬁﬁ(}% Two different
slopes and phases of the Type I FDNR-based filter in Figu;:lSA(a) and inductor-
based filter in Figure 5.4(b) are presented in Table 5.1. The phase of the filters was
found empirically and verified using MATLAB.

Figure 5.5 shows the relationship between center frequency, ws and ws for the

mt* order Type I FDNR-based asymmetric-slope band-pass filter. ws and wy are the

stopband frequencies where the attenuation is maximum. With reference to Figure
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a(w) A

Omin

I I
| I
I I
I I

w3 Wo Wy w

Figure 5.5: w,, ws and wy in the Type I asymmetric-slope band-pass filters.

5.5 and Table 5.1, we arrive at the following equation

Umin n
=2 =1~ .
Tog (2 Om(1+ m(l a)) (5.4)
which in turn yields
Cnin, = 20m(1 + —:;(1 - a))log(g—%) (5.5)
o

for frequencies greater than w,. Here, ap;, is the maximum attenuation in the stop-

band. For frequencies less than w,, we have the following equation

—COmin n
= =20m(l — —(1 — & 5.6
e (1-2(1-a)) (5)
which in turn yields
tmin = 20m(1 = (1~ a))log(2) (57)
3

The relationship between w,, ws and w4 can then be found

W, = \/wél—ﬁ(l—a))wl§1+;%(l—a)) (5.8)

by equating equations (5.5) and (5.7).
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Figure 5.6: m®" order passive prototype models of Type II asymmetric-slope
band-pass filter.

For the Type I m* order inductor-based asymmetric-slope band-pass filter, the

center frequency is given by

Wp = \/wgl‘%"‘)wf*%“) (5.9)
using the same method.

5.2.2 Type II Asymmetric-Slope Band-pass Passive Prototypes

Consider the m** order passive prototypes Type II asymmetric-slope band-pass filter
shown in Figures 5.6(a) and 5.6(b). Normal band-pass filter in Figure 5.2(a) converts
to Type II asymmetric-slope band-pass filter if at least one of the resistors is replaced
by a fractional capacitor of equal fractal capacitance and fractal order c.. Figure 5.6(a)
shows passive prototype Type II asymmetric band-pass filter using maximum number

of fractional capacitors. The transfer function of the proposed Type II inductor based
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Frequency Type II inductor-based
Slope (dB/dec) o)
w<Lw, |20m<20m(l+ 2a)<40m | (1 + 2a)
W > W 0<20m(l—2a) <20m | BE(Za—1)
(a)
Frequency Type II FDNR-based
Slope (dB/dec) ¢

wLw, |20m<20m(l+2(1—0a)) <40m | Z5(1+ 2(1 - «))
W > Wo 0<20m(l —2(1—-a)) <20m T(2(1—0a)—1)

(b)

Table 5.2: Slopes for Type II m* order asymmetric-slope band-pass filter.

NIS |3

filter is given by

aBmgmlit+ial

Hurls) = §2m 4, 4 aBmsmlitme 4 4 2m (5.10)

where m is order of the filter, n is number of fractional-order capacitor used in the
filter, B is bandwidth, w, is the center frequency and a = ﬁ%

Likewise, the Type II passive prototype in Figure 5.6(b)i=clan be obtained from the
normal band-pass filter in Figure 5.3(b) if each capacitor in Figure 5.3(b) is replaced

by a fractional capacitor of equal fractal capacitance and fractal order.

The transfer function of the filter is given by

a‘BmSm[l—% (a—1)]

Hrv(s) = P T 2 T (5.11)

where m is order of the filter, n is number of fractional-order capacitor used in the
filter, B is the bandwidth, w, is the center frequency and a = ﬁﬁ% Table 5.2
shows the slopes and phases of the proposed Type II inductor—b;;éd filter is Figure
5.6(a) and FDNR-based filter in Figure 5.6(b).

It is to be noted that the maximum number of fractional capacitor is used in all
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Omin

w3 Wo W4 W

Figure 5.7: w,, w3 and w4 in the Type II asymmetric-slope band-pass filters.

four circuits in Figures 5.4 and 5.6.
Figure 5.7 shows the relationship between center frequency, ws and wy for the mt*
order Type II inductor-based asymmetric-slope band-pass filter. With reference to

Figure 5.7 and Table 5.2, we arrive at the following equation

Umin n
M — 20m(l — — A2
Tog (%) 0m(1 ma) (5.12)
which in turn yields
_ _ n Wy
Qmin, = 20m(1 —a)log(—wO) (5.13)

at frequencies greater than w,. For frequencies less than w,, we have the following

equation
—min n
= —20m(l + — 14
Tog(%) om(1 + ma) (5.14)
which in turn yields
i = 20m(1 + %a)log(g—o) (5.15)
3

The relationship between w,, ws and wy can then be found

Wo = \/wéH"%a)wil_%a) (5.16)
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Figure 5.8: Passive prototype model of a fourth order Type I FDNR-based filter
using one fractional capacitor.

by equating equations (5.13) and (5.15).
For the Type II m* order FDNR-based asymmetric-slope band-pass filter, the

center frequency is given by

wo = w0, (i) (5.17)

using the same method.

Finally, it is clear from Table 5.1 that increasing the number of fractional ca-
pacitors in the Type I FDNR and inductor based filters decreases the slope at low
frequencies and increases it at high frequencies. On the other hand, Table 5.2 reveals
that having greater number of fractional capacitors in the Type II filters leads to

sharper slopes at low frequencies and slighter slopes at high frequencies.

5.3 Fourth-Order Asymmetric-Slope Band-pass Filter

5.3.1 Fourth-Order Type I FDNR-~Based Filter
5.3.1.1 Passive Prototype

Consider the fourth order passive prototype Type I filter shown in Figure 5.8 which

deploys only one fractional capacitor. The transfer function of this filter is
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Figure 5.9: Magnitude response of the proposed fourth-order Type I filter in
(5.18) to various values of a.

dsl+a
Hi(s) = 5.18
18 = et b7 e 4o 4 dsa o5 ¥ fso 4 g (5.18)
C(D1+D2) Coy ., _ RiDi+R:Dy g _ CCa — C(Ri+Rs)
where a = =5 52, b= Fb, ¢ = FHPEEE, d = 555, e = mEpiny | = R2D1D2
and g = m. The transfer function converts to
20
~ cs
H(s) = (5.19)

st + as?to + bs? + cs? + ds® + ¢

if C' is replaced by another fractional capacitor (C,,) with the same fractal order

: 3 — (Cu D1+C<!2D1+C¢12D2) Ry D1+Rp D, —. Ca1Cay —_
in Figure 5.8. Here, a = D.b, b= 38055 ¢= Dp,r & =
(R1Ca; +R1Cay+R2Cay) — )

RiRD.D, and e = g D1 p;- Figure 5.9 shows the magnitude response for

the filter in (5.18) at a =c=e=2,b=f =15,d=0.05and g = 1.

The step response of the filter can be obtained by substituting for the non-integer
Laplacian operator s* with the the equation (3.1). Figure 5.10 shows the step response
of the fourth order FDNR-based filter in (5.19) at a =b=d=2,c=e =1 and
a=0.5.
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Figure 5.10: Step response of the fourth order FDNR based filter in (5.19) at
a=b=d=2,c=e=1and a=0..

5.3.1.2 Simulation and Experimental Results

The circuit of Figure 5.8 can be easily realized actively by appropriately replacing the
FDNR by their active realizations which can employ operational amplifiers (opamps)
[2], OTAs [6], current conveyors [29,30], Active-R [33] and even hybrid realizations
[35]. In the case of the Type I realization one such realization that uses opamps is
shown in Figure 5.11 which employs a GIC based FDNR, connected to the passive
filter section which employs the resistor Ry, the capacitor C) and the fractional-order
capacitor C,. The proposed filter was simulated in SPICE using LT1364 opamps
(rated bandwidth 70MHz) biased with 15V supplies. Carlson’s method {7] was used
once again to simulate the fractional-order capacitor C, having C' = 1uF and o = 0.5.
The values of the capacitors and resistors in the approximated model shown in Table
3.1 were calculated such that C, has an operating range of 100Hz—10kHz. Figure
5.12 shows the simulation results for the fourth order Type I FDNR-based circuit
of Figure 5.11 taking Ry = 1.5k2, R = 1.68k}, C' = 0.1uF and C; = 0.0LuF. The
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Figure 5.11: Possible realization of fourth-order Type I FDNR-based
asymmetric-slope band-pass filter.
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Figure 5.12: SPICE and experimental results of the filter in Figure 5.11.

expected quality factor and center frequency were Q) = 25.15 and w, = 1kHz. The
circuit was also constructed on breadboard and tested. Experimental result for the
circuit is also shown within Figure 5.12. The slope at frequencies lower than f, was
measured as 30 dB/dec while it was measured as —50dB/dec at frequencies greater
than f, confirming the asymmetric nature of the band-pass filters and the accuracy

of realizing Table 5.1(a). The measured (Q, f,) for the circuit were (23,1.04kHz).
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Figure 5.13: Measured transient response of the fourth order Type I FDNR-based
band-pass filter in Figure 5.11 confirming stability at o = 0.5.

To confirm stability, the steady state transient response of the filter in Figure 5.11 is
shown in Figure 5.13.
The fourth order Type I transfer function in (5.19) was tested experimentally

using an AN231E04 FPAA from Anadigm [45]. Substituting (3.1) into (5.19) yields

an eighth order transfer function which can be written in the form

)@ 1 (82 + g5+ wn (5 + 525 + W)
1(s) =Gr
(82 + Gobs + wp, ) (82 + G225 + wp,) (87 + G5 + wpy ) (82 + ks -I—c:m) )
5.20

after replacing s with s/w, where w, = Wy, Wy,Wpswyp,. This rearrangement in bi-
quadratic terms is needed for the FPAA realization. The eighth order transfer
function in (5.20) can be tested in FPAA using four biquadratic filter CAMs cas-
caded and wired together to the desired input and output ports in the Anadig-
mDesigner design environment as shown in Figure 5.14. Two biquadratic filters
were setup in the low-pass configuration and two of them were setup in the pole-
zero configuration. Figure 5.15 shows the experimental result realizing a filter with
(a,a,b,¢,d,e) = (0.1,2,2,2,2,1) which theoretically yields @ = 30.5 and f, =

53kHz. With reference to (5.19), the zeros quality factor and center frequency in
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Figure 5.14: Approximated fourth order Type I band-pass filter in (5.20) using
four biquadratic filter CAMs.

CHL B/R__log HAG 18 dB/ REF O dB 14.415 dB

igs 54,072 1775 kH JELECT

3 X

c! B: 1.§1345kHE SPACE
gzdassikn

a; 29,767
14,448 .d

aL.F:  -214.57763:KH.

DONE

POER ~13 dom 1.498_ksec CANCEL

F Bl 2 Hz SHUP
START $.3 kHz STOP 539 kHz

Figure 5.15: Experimental result using an FPAA for fourth order Type I
asymmetric-slope filter in (5.19) with & = 0.1,@ = 30.5.

kHz are respectively (Q.,,ws,, @z, wz) = (0.249,32.694,0.249, 32.694), the poles
quality factor and center frequency in kH z are (Qpy, Wpy , @psr Wpa s @ps s Wpg, @pay Wpy) =
(5.16,54.168, 29.36, 54.213, 0.499, 162.68, 0.499, 10.322) and G = 0.44. The measured
quality factor was 29.767 and the center frequency f, was 54.077kH z which are very
close to the expected values. It is important to note here that the pole and zero values
of (5.20) are rounded off by the FPAA.

Another design example for (o, a,b,c,d,e) = (0.5,2,2,1,2.28,1) with @ = 31
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Figure 5.16: Experimental result using an FPAA for fourth order Type I
asymmetric-slope filter in (5.19) with o = 0.1,Q = 30.5.
and f, = 45kHz is shown in Figure 5.16. With reference to (5.19), the zeros
quality factor and center frequency in kHz are respectively (Q.,,ws, Qa,Ws) =
(0.223,13.41,0.223, 13.41), the poles quality factor and center frequency in kHz are
(@1 Wors @as Wrz> Qras Wrg> Dpar Wpa) =(0.5,9.79,0.5,270.4,1.07, 43.26,30.19, 44.7) and
Grr = 0.933. The measured quality factor and center frequency were () = 29.472 and

fo = 44.355kH z which are very close to the theoretical values.
5.3.2 Fourth Order Type I inductor-Based Filter

5.3.2.1 Passive Prototype

Consider the fourth order passive prototype Type I filter shown in Figure 5.17 which

deploys only one fractional capacitor. The transfer function of the filter is

dsz—a
HH §) = 5.21
(s) st4+asd +bs3%+cs? +ds>~*+es+ fsl~@+g (5.21)
— R — Lat+Lo . LiCy+LoLy — R _ R _ C14-Co
where a = Ly? b L1L2Cq, ? ¢= L1L2C1C2 ? T L1LaCy? e= L1LsCh ’f T L1L3C1C2Cq

and g = LIL—glc'ch The transfer function in (5.21) can be obtained from the Type I

transfer function in (5.18) if « is replaced by 1 — a. We have the following transfer
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Figure 5.17: Passive prototype model of fourth order Type I inductor-based filter
using one fractional capacitor.

function for the fourth order passive prototype model in (5.17) if R is replaced by a

fractional order capacitor (Cy,) with the same fractal order

" c 82—20:
Hp(s) = 5.22
(s) st 4+ as3~* 4 bs? 4 cs?2 722 L dsl~* t e (5:22)
Whel‘e a = (Llccq +L10a2+L2002) b — L101+L202 c= 1 — (C]Ca2+01ca1 +CZGa2)
L1L2Cu;Cay ’ InL2C1Co ? L1 LaCL1Cr? L1L2C1C2C0; Cay

and e = ;7. Likewise, it is worth noting that the transfer function in (5.22) can
be obtained from the transfer function in (5.19) if « is replaced by 1 — . Figure 5.18
shows the magnitude response of the filter in (5.21) at a =c=e=2,b= f = 1.5,
d = 0.05 and g = 1. The step response of the filter can be obtained by substituting
for the non-integer Laplacian operator s* with the the equation in (3.1) into transfer
functions in (5.21) and (5.22). Clearly the step response of the Type I FDNR based
filters in (5.18) and (5.19) can be used for the fourth order Type I inductor-based filter
if for the identical a,b,c,d, e, f and g, « is replaced by 1 — o. Therefore, Figure 5.10
shows the step response of fourth order filter in (5.22) ata=b=d=2,c=e=1

and o« = 0.5.

5.3.2.2 Simulation and Experimental Results

The fourth order Type I inductor based circuit using a floating inductor based on
Riordan technique is shown in Figure 5.19 [38]. The circuit was first simulated using

LT1364 opamps (rated bandwidth 70MHz) biased with £15V supplies in SPICE
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Figure 5.18: Magnitude response of the proposed fourth-order Type I filter in
(5.21) to various values of a.
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Figure 5.19: Possible realization of fourth-order Type I inductor-based
asymmetric-slope band-pass filter.

as shown in Figure 5.20. The fractional-order capacitor C, having C =1uF and
o = 0.5 was approximated by Carlson’s method such that it has an operating range
of 100Hz — 10kH z. The value of components in the approximated model is shown in
Table 3.1.

The circuit was constructed on breadboard and tested. The comparison between
simulation and experimental results taking R = Rz = 6k, Ry = Ry = 4k, Ry =
8k, C = 2.2nF and C; = 0.33uF is also shown in Figure 5.20. The expected quality

factor and center frequency were @ = 22 and w, = 1kHz. The slope at frequencies



91

o} =~ =~ = Experimental result

= Simulated result

Gain in dB

2 * 3 4
10 10 10
Frequency(Hz)

Figure 5.20: SPICE and experimental results of the filter in Figure 5.19.

lower than f, was measured as 30 dB/dec while it was measured as —50dB/dec at
frequencies greater than f, confirming the asymmetric nature of the band-pass filter
and the accuracy of realizing Table 5.1(b). The measured (Q, f,) for the circuit were
(18.2,1.04kHz). To confirm stability, the steady state transient response of the filter

in Figure 5.19 is shown in Figure 5.21.
5.3.3 Fourth Order Type II Inductor-Based Filter

5.3.3.1 Passive Prototype

Consider the fourth order passive prototype Type II filter shown in Figure 5.22 which
deploys only one fractional capacitor and grounded inductors. The transfer function

of the proposed passive prototype is

c S2+a

Hi(s) =
_ru( ) P + ag3+a + bg3 + cg2ta + ds? -+ eslta + f.S' + g

(5.23)
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Figure 5.21: Measured transient response of the fourth order Type I
inductor-based band-pass filter in Figure 5.19 confirming stability at o = 0.5.
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Figure 5.22: Passive prototype model of fourth order Type II inductor-based filter
using one fractional capacitor.

Coy C1+Cs Cy L1Cy+L,C. Ca Li+Ly
—_ e — — — £1C1+LoCh — 1 —
Where a = 1! b RC1Ca? c RC.C2? L1L2C1Cs ? e LoC1Cy? f RLyL2C1C2 and
-1 ;
9= g co;- Lhe transfer function converts to
n b32+2a
Hirr(s) (5.24)

T oAt qsPte + bg2tex g2 f dsite e

if R is replaced by another fractional capacitor (Cy,) with the same fractal order

. . _ (€10 +C2Ca; +C2Cq,) _ CoayCay _ L1Cy+-LaC. _
in Figure 5.22. Here, a = e , b= ol ¢ = L Es, d =

(£1Cay +L10ay+L2C0x,)
L1L2C1C>

the filter in (5.23) at a =e=05,b=d=f=2,¢=0.05and g = 1.

and e = EL;—CI@ Figure 5.23 shows the magnitude response for

The step response of the filter can be obtained by substituting for the non-integer
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Figure 5.23: Magnitude response of the proposed fourth-order Type II filter in
(5.23) to various values of a.

Amplitude

5 1'0 1‘5 2'0 éS 30 3'5 4.0 45
Time(sec)
Figure 5.24: Step response of the fourth order inductor based filter in (5.24) at
a=b=d=2,c=e=1and a=0.5.
Laplacian operator s® with the the equation in (3.1) into the transfer functions in
(5.23) and (5.24). Figure 5.24 shows the step response of the fourth order Type II

inductor-based filter in (5.24) at a =b=d=2,c=e=1and a=0.5
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Figure 5.25: Possible realization of fourth-order Type II inductor-based
asymmetric-slope band-pass filter.

5.3.3.2 Simulation and Experimental Results

The fourth order Type II realization using grounded inductor of the Antonio GIC
variety whose impedance is Z; = R R2C's and one fractional-order capacitor is shown
in Figure 5.25. The proposed filter was simulated in SPICE using LT1364 opamps
biased with 15V supplies. Carlson’s method [7] was used to simulate the fractional-
order capacitor C, having C = 1uF and a = 0.5, as shown in Figure 3.1. Figure
5.26 shows the simulation result for the fourth order Type II inductor-based circuit of
Figure 5.25 taking R; = Ry = R = 1.5k, Rz = 10092 and C) = 0.1uF. The expected
quality factor and center frequency were @) = 22 and w, = 1kHz. Experimental
result for the circuit is also shown within Figure 5.26. The slope at frequencies
lower than f, was measured as 50 dB/dec while it was measured as —30dB/dec at
frequencies greater than f, confirming the asymmetric nature of the band-pass filter
and the accuracy of realizing Table 5.2(a). The measured (@, f,) for the circuit
were (19.798, 1.066k H z), respectively. To confirm stability, the steady state transient
response of the filter in Figure 5.25 is shown in Figure 5.27.

The fourth order Type II transfer function in (5.24) was tested experimentally
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Figure 5.26: SPICE and experimental results of the filter in Figure 5.25.
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Figure 5.27: Measured transient response of the fourth order Type II
inductor-based band-pass filter in Figure 5.25 confirming stability at « = 0.5.

using AN231E04 FPAA from Anadigm [45]. Substituting (3.1) into (5.24) yields an

eighth order transfer function which can be written in the form
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Figure 5.28: Approximated fourth order Type II band-pass filter in (5.25) using
four biquadratic filter CAMs.

= A( ) =G ' 52 (32"‘%3"‘“21)(32'*‘%%3‘“”@)
sy = Grrr

(82 + g2 s+ wp ) (82 + s +wp,) (8% + s+ wpy )(s? + Gts +(wp4))

5.25

after replacing s with s/w, where Wy = Wy, Wp,Wpswp,. The eighth order transfer func-
tion in (5.25) can be tested by FPAA using four biquadratic filter CAMs cascaded
and wired to the desired input and output ports in the AnadigmDesigner design
environment as shown in Figure 5.28. Two biquadratic filters were setup in the
band-pass configuration and two of them were setup in the pole-zero configuration.
Figure 5.29 shows the experimental result realizing a filter with (o, a,b,c,d,e) =
(0.1,0.5,0.015,2,0.5,1) which theoretically yields @ = 32 and f, = 38kHz. With
reference to (5.25), the zeros quality factor and center frequency in kHz are re-
spectively (Q,,Ws, @z, w2 ) = (0.249, 32.694,0.249, 32.694), the poles quality factor
and center frequency in kHz are respectively (Qp,,Wp;, @ps» Wpyr Qpss Wpgr @pys Wpy) =
(2.17,36.529, 31.562, 37.508, 0.499, 169, 0.499, 12.028) and Gy;r = 1.984. The mea-
sured quality factor was 31.464 and the center frequency f, was 37.8kHz which
are very close to the expected values. The slope at frequencies lower than f, was

44 dB/dec while it was measured as 36 dB/dec at frequencies greater than f, which
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Figure 5.29: Experimental result using an FPAA for fourth order Type II
asymmetric-slope band-pass filter in (5.24) with a = 0.1,Q = 32.

yields an almost symmetric characteristics about f, because of small .

Another design example for (¢, a,b,¢,d,e) = (0.5,0.1,0.01,2,0.1,1) with Q = 42
and f, = 38kHz is shown in Figure 5.30. With reference to (5.25), the zeros
quality factor and center frequency in kHz are respectively (Q,,,Ws, @, Ws) =
(0.223,16.994, 0.223, 16.994), the poles quality factor and center frequency in kHz are
(Qp1> Wp1 > Qpa s Wpas Qs W, @pa, Wy, )=(0.5, 368, 0.5,20.306, 10.311, 38.506, 44.227, 36.23)
and Grrr = 0.933. The measured quality factor and center frequency were ¢ = 40.801

and f, = 36.052kH z which are very close to the theoretical values.

5.3.4 Fourth Order Type 1I FDNR-based Filter
5.3.4.1 Passive Prototype

Consider the fourth order passive prototype Type I filter shown in Figure 5.31 which
deploys only one fractional capacitor. The transfer function of the proposed passive
prototype is

c s3—a

5.26
s*+ast= 4+ bs3 +cs3* 4+ ds? +es? 2+ fs+g (5:26)

HIv(.S‘) =
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Figure 5.30: Experimental result using an FPAA for fourth order Type II
asymmetric-slope band-pass filter in (5.24) with o = 0.5, Q = 42.
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Figure 5.31: Passive prototype model of fourth order Type II FDNR-based
asymmetric band-pass filter using one fractional capacitor.

— fu+tRe — 1 — 1 — RaDi1+RoDy — D1+4-Do —
where o = 5 70 © = TRCT RiR;D:D; 7 FiFD1 DsCay )

Emc #d g = 5 pp;- The transfer function in (5.26) can be obtained from the
fourth order Type II transfer function in (5.23) if o is replaced by 1 — a. We have
the following transfer function for the fourth order passive prototype model in Figure

5.31 if C is replaced by another fractional order capacitor (C,,) with the same fractal

order
2—2¢¢
- cs
H Ivis) = 5.27
(s) s+ ast=* 4 bsi=2¢ 4 cs? +- ds?~* +e (5.27)
_ (R1Co+R1Cay+R2Ca,) _ 1 — R1D1+ReDs
where the parameters are a = FiFaCa, Oy b= % FataCon? C = RILDiDy

d —_ (cha2+D2Ca1 +D2Ca2) and e =

R By D Dan ot oD, Clearly the fourth order Type II transfer
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Figure 5.32: Magnitude response of the proposed fourth-order Type II filter in
(5.26) to various values of a.

function in (5.27) can be obtained from the transfer function in (5.24) if « is replaced
by 1 — o. Figure 5.32 shows the magnitude response of the filter in (5.26) at a =
e=05b=d=f=2,¢c=0.06 and g = 1. The step response of the filter can be
obtained by replacing the non-integer Laplacian operator s* in transfer functions in
(5.26) and (5.27) with the equation (3.1). It is to be noted that the step response of
the fourth order Type II inductor-based filters in (5.23) and (5.24) can be used for
the fourth order Type IT FDNR-based filter if for the identical a,b,¢,d, e, f and g, &
is replaced by 1 — c. Therefore, Figure 5.24 shows the step response of fourth order

filterin (5.27) at a=b=d=2,c=e=1and a =0.5.

5.3.4.2 Simulation and Experimental Results

The fourth order Type II realization using floating FDNR whose input impedance
is Z; = C1CaRy Ry /(R3s%) and one fractional-order capacitor C,, is shown in Figure
5.33. The circuit was first simulated using AD844 opamps biased with %15V sup-

plies in SPICE as shown in Figure 5.34. The fractional-order capacitor C,, having
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Figure 5.33: Possible realization of fourth-order Type II FDNR-based
asymmetric-slope band-pass filter.

A——

10

= =~ =~ Experimental result
0r 'I —— Simulated result
1
At
i
=10} 1\
A
T\
) ' N
< (i
o -20} y X
g 4 N
‘s 'l NS N
O -301 4 S
4 e
,I ~ N
4 S
’ N N
—40}- g
’
’
4
’
—50!
-60 " 5
10 10 10
Frequency(Hz)

Figure 5.34: SPICE and experimental results of the filter in Figure 5.33.

C =3.7uF and oy = 0.5 was approximated by Carlson’s method such that it has an
operating range of 1kHz — 100kH z. The value of components is shown in Table 3.2.

The comparison between simulation and experimental results for the fourth-order
Type II FDNR-based asymmetric-slope band-pass filter of Figure 5.33 using R = 8kX2,
Ry, = 14kQ, Ry = 8.2kQ2, Ry = 38k, C) = 4.TnF, C, = 2.2nF and C = InF is
also shown in Figure 5.34 . The expected quality factor and center frequency were
@ = 20 and f, = 10kHz. The slope at frequencies lower than f, was measured

as 50dB /dec while it was measured as —30dB/dec at frequencies greater than f,
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Figure 5.35: Measured transient response of the fourth order Type II FDNR-based
asymmetric-slope band-pass filter in Figure 5.33 confirming stability at o = 0.5.

confirming the asymmetric nature of the band-pass filter. The measured (@, f,) for

the circuit were (16.95,10.6kH z), respectively. To confirm stability, the steady state

transient response of the filter in Figure 5.33 is shown in Figure 5.35.



CHAPTER 6

Conclusions and future work

6.1 Conclusion

In this work, new approaches were proposed for realizing high-Q continuous-time
asymmetrical-slope band-pass filters based on concepts of fractional-order filters [15],
[16], [18]. Two types of asymmetric-slope band-pass filters were presented and the
symmetry in the relationship of one transfer function to the next was highlighted.
Exact expressions for w, and approximate expressions for the ¢ of two types of
second-order filters were presented. The two approaches were verified experimentally
using discrete components and an FPAA technique. For the discrete realizations, the
overhead of using an emulation of the fractional capacitor is still acceptable given the
complexity of other techniques. The overhead of the FPAA technique, as clear from
(3.2) and (3.3), is that a fourth-order transfer function is realized instead of the actual
second-order functions in (1.5), (1.6), (1.7) and (1.8); due to employing the fractional
Laplacian operator. The non-ideal effects of second-order asymmetric-slope band-pass
filters were studied as well. The effects of parasitic capacitors in the non-ideal FDNR
and resistor in non-ideal inductor were considered and four non-ideal transfer func-
tions were introduced for each Type of second-order filters. Furthermore, the effects
of current and voltage tracking errors in non-ideal current conveyors and the finite
gain-band width product in operational amplifiers were considered for second-order
filters and the amplitude response of the non-ideal transfer functions were compared

to the ideal response curves.
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The techniques used in the second-order filters were then extended to higher-order
filters as well. mt* order band-pass filters with two different slopes in the stopband
were introduced for proof of the concept. Two types of fourth-order asymmetric-slope
band-pass filter were proposed, simulated in SPICE and verified experimentally using
discrete components and FPAA technique. Using the FPAA technique two eighth
order transfer functions were realized after substituting the Laplacian operator s®

with the second order approximation in equations (5.19) and (5.24).

6.2 Contribution

The main contributions of this thesis have been divided into two areas. First in
the design of second-order asymmetric-slope band-pass filters which can obtain very
large quality factors and secondly extending the same techniques to design higher
order asymmetric-slope band-pass filters.

This work introduced methods by which asymmetric band-pass filters can be real-
ized, based on fractional-order transfer functions. All available techniques that have
been proposed up until now for the design of such filters were microwave-based tech-
niques (see [20,21]) that have only been verified using micro-strip based circuits. In
this work we not only introduce a new theory for the design of asymmetric filters
but verify its functionality using classical discrete circuit topologies as well as by
using an FPAA. The use of standard inductor, FDNR and MAB filter structures,
which are classical and widely known structures, serves to show that the proposed
fractional-order transfer functions can still rely on available classical techniques of fil-
ter circuit design. Compared to other design techniques for asymmetric filter design,
this overhead is less and the design process is easier.

Coupled with obtaining asymmetrical characteristics, we also show that the pro-
posed technique can achieve high-Q filters, which by itself is a challenging problem.

Hence, the advantage of using fractional-order transfer functions in achieving together
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two properties, which are otherwise very difficult to achieve, is clear. To obtain high
quality factor we used fractional capacitors which yields fractional terms in the trans-
fer function of the filters. The non-integer Laplacian operator in the denominator of
the transfer function of band-pass filters played the main role in placing the poles
very close to the stability boundary and obtaining high quality factors whereas the

operator in the numerator was considered to obtain asymmetric-slope characteristics.

6.3 Future Work

This work has focused on the importing of concepts from fractional calculus into the
design of filters to create asymmetric-slope fractional-order filters with high quality
factors. Although no commercial fractional capacitors are available as yet, the re-
search on fractals in [8,11,12,46,47] appears promising and lends itself to this work.
Furthermore, even though low frequencies were used in the experiments, with the
advent of commercial or in-house fractional capacitors it is conceivable that this work
could be naturally extended to higher frequencies. Further research would have to be
done to investigate the behavior of these circuits at higher frequencies and beyond
the operational range of the fractional capacitances. Likewise the sharp and different
phase responses for frequencies greater than or less than w, for both types of circuits,
suggest that these circuits may find other applications or uses in phase discriminators.
The nature of the networks in Figures 5.4 and 5.6 suggest that these principles could
potentially be expanded to the Butterworth, Chebychev, Inverse Chebychev and El-
liptic filter approximations. In addition, further research could be done to generate
and design asymmetric notch filters.

The entirety of this work focused on the continuous time second-order band-pass
filters with asymmetric-slope characteristics and high quality factors. The design
equations and process to create second-order band-pass filters were presented for

two types of filters. The concept was expanded to higher order filters, however the
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closed-loop expressions for center frequency and quality factor are unexplored. The
concept was proved by giving simulation and experimental results for Type I and
Type II fourth order filters in Chapter 5. Further work could be done to determine
the generalized method to design higher order asymmetric-slope band-pass filters and
find expressions for center frequency and quality factor.

Finally, further work could be done on designing and implementing high quality
factor symmetric band-pass filters using fractional capacitor showing the potential to

become commercially available.
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APPENDIX A

Approximated Fractional Capacitor Realization

An approximated fractional capacitor must be built to simulate the proposed asymmetric-
slope band-pass filters. Carlson’s method was used to simulate the fractional capacitor
whose impedance is Z,, = 'CT;'w)&" where C,, is the value of capacitor and 0 < o < 1.
It is possible to approximate the term (1/s)" for n = % > 1 using this method.

The following function is used in the newton process for this approximation

_ (n=1az"+ (n+1)(1/s)
F@) = ey (n = D(1/5)

(A1)

where 2z is the previous iteration. It is clear from A.1 that the order and accuracy of
the approximation increases as the number of iteration increases.

The first iteration approximation of (1/s)* using an initial assumption z, = 1

yields
1/8(1%(a2+3a+2)s2+(8—2a2)s+(a2—3a+2) (A2)
(a2 —3a+2)s?+ (8 —2a%)s+ (a? + 3a +2) )
and the second iterate approximation is given by
44 ped 2
1/SaNas+ s° +cs*+ds+e (A.3)

Test+dsd+cs2+bs+a

where a = o — 10a® + 3502 — 50a + 24, b = —4a* + 2003 + 400% — 320 + 384,
c = 6a* — 15002 + 864, d = —4a* — 2002 + 4002 + 3200 + 384 and e = a* + 100 +
3502 + 50 +24. It is to be noted that equations in (A.2) and (A.3) approximate the
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Figure A.1l: Comparison between magnitude responses of the approximated
fractional capacitor and ideal fractional capacitor at C = 1uF and o = 0.75.

fractional order capacitor around the frequency 1rad/s. As an example the following

Carlson’s approximation can be used for second iteration of 1/s%7.

15075 o 39s% + 206453 + 1333852 + 108685 + 1463 (Ad)
™ 14635 + 1086853 + 1333852 + 29645 + 39 '

the comparison between the magnitude responses of this approximation and ideal
fractional capacitor of impedance Z.(s) = ﬁ is shown in Figure A.1l. Using the
approximation in (A.3) the fractional capacitor can be realized using the RC ladder

network in Figure A.2 whose input impedance is

1 1 1 1

Zin = {ln
Rin+ 01(8 + R]_Ol) + 02(8 + chlg) + 03(8 + R3C3) + 04(8 + R404)

(A.5)

The values of components can be found by equating equations in (A.3) and (A.5).
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Figure A.2: RC tree to realize fourth order approximated fractional Laplacian
operator based on Carlson’s approximation technique.

As an example the equation in (A.4) can be rewritten in the form

0.332 0.505 0.28 0.709
075 — 0.0 '
1/s77=0026+ —=—o + 001 T 510267 T 51 5.95 (A.6)

and the values of components are R;, = 0.02652, R; = 0.119Q2, Ry = 0.278Q0, R3 =
1.04692, Ry = 36.041Q2, Cy = 1.408F, Cy = 3.0LF, C3 = 3.57F and C, = 1.977F.

It is worth noting that the fractional capacitor with the capacitance of C, can
be approximated around any frequency, w,., by applying magnitude and frequency
scaling factors to the values of R and C in the RC ladder network. The values of

components after scaling are

R = Rk, (A7)
C = C/Kpks (A.8)

where k, = 1/(Cow?) is the magnitude scaling factor and k; = w, is frequency
scaling factor. Figure A.3 and A.4 show the magnitude and phase responses of the
approximated fractional capacitors used in this work compared to the ideal fractional
capacitors.

Figure A.5 shows the code used to generate the values of components for fractional

capacitor Cy having C = 1uF and a = 0.5 with the center frequency of f, = 1kHz.
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[This program generates any series RC tree for any value of alpha, center frequency and capacitance C

> restart;
with(numtheory):
wo:=evalf(2*Pi* (1le3)): This is the desired center frequency
alpha:=0.5: This is the desired value of alpha

> k£:=wo: This is the desired frequency scaling factor
> km:=1/C/ (wo”0.5) : This is the desired magnitude scaling factor

[> n:=8: Expand to the order of s"4
[> outl:=cfrac((1l+x)*beta, x, n, 'simple’):
[> x:=s

> sa_h:=cfrac(outl):

> total:=sa_h:
total:=normal (total,expanded):
total:=sort(total,s,descending):
s_alpha:=collect(total,s):

>beta:=-alpha: Flip the value of the function needed.
| s_alpha:=normal(s_alpha}:

> s_alpha:=simplify(%);

§_alpha

C:=1le~6: These values represent the desired Capacitance and the center frequency wo of the approximation

_30.5% 42964, 5 +13338. 5 2 + 10868. 5 + 1463.

> num:=numer (s_alpha) :num:=collect (num,s):

a:=coeff(num,s,3)/coeff(num,s, 4);
b:=coeff(num,s,2) /coeff(num,s,4);
ci=coeff(num,s, 1) /coeff(num,s,4);
s=coeff (num,s,0) /coeff(num,s,4);

a =76.00000000

b =342.0000000

¢ = 278.6666667

o =37.51282051

>

1463. 5 * + 10868, .53 + 13338, 5 >+ 2064, 5 -+ 39.

> y:=Rin + (1/C1)/(s + 1/R1/C1l) + (1/€2)/(s + 1/R2/C2) + (1/C3)/(s +
1/R3/C3) + (1/C4)/(s + 1/R4/c4);This is the input impedance of RC network

118
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yo=Rin + -+ + +

b

>test:=(s"4 + a*s"3 + b¥*s"2 + c*s + d)/(d¥s"4 + ¢*s"3 + b¥s™2 + a*s + 1);
I use this to check that the partial fraction expansion matches the unscaled R's anc C's

5 447600000000 s * -+ 342.0000000 5 2 + 278.6666667 5 +37.51282051

et =
37.51282051 5 * + 278.6666667 5 ° + 342.0000000 5 > + 76.00000000 s + 1

> out:=convert(test,parfrac,s,real);
out = 0.02665755298 -+ 0.3322203021 " 0.5058089777 + 0.2800354153 + 0.7098817949

s+ 1192550328 5 +0.01403407795 & +0.2674945446 5 + 5954492479

> xi=fsolve (denom(test)=0,s);
&= -5.954492479, -1.192550328, -0.2674945446, -0.01403407795

> fg:=g->out;
Jo =8 = o

> resl:=residue(fg(s),s=x[1]);
res2:=residue(fg(s),s=x[2]);
res3:=residue(£fg(s),s=x[31);
resd:=residue (fg(s),s=x[4]);

res/  =0,7098817947

res?2 =0.3322203021

res3  =0.2800354153

resf/ =0.5058089777

[> Calculate the new scaled and shifted values of R's and C's

> Rin:=1/d;
Cl:=1/resl;Rl:=-vesl/x([1];
C2:=1/res2;R2:=-yvas2/x[2];
C3:=1/res3;R3:=-res3/x[3};
Cd:=1l/resd;Re:=-resd/x[4];
Rin =0.02665755298

¢/ =1.408685231
R/ =0.1192178506
€2 =3.010050842
R?2 =0.2785796912
C3 =3.570976903
£3 =1.046882716
C7 = 1977030943
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[ R =136.04148270
> Rin := Rin*km;

€l := C1l/kE/km;

€2 = C2/kf/km;

€3 := C3/kf/km;

C4 = C4/kE/km;

Rl := Rl¥km;

R2 := R2+%km;

R3 := R3*km;

R4 := R4*km;

Rin = 4242681328
C7 =2241992177 10"
€2 = 4790644702 107
€3 = 5683386255 107
Cf = 3.146542471 107

RI =189.7411023

R7 = 4433733490

R3 = 1666.165591

R4 =57361.80128

NS VOV

Figure A.5: Maple code to generate component values for the RC ladder network
of a fractional capacitor Z,, (jw) = W at a center frequency of 1kHz.



APPENDIX B

Alternative Second-order Type II Inductor-based Circuit

In this section we present an alternative second-order Type II inductor-based filter
supported by simulation and experimental results. A second order Type II inductor-
based asymmetric-slope band-pass filter using a grounded inductor, whose impedance
is Z; = RR1C1s (see Figure B.1(a)) is shown in Figure B.1(b) [48]. The circuit realizes
(1.7) with ks =1, a = C,/Cy and b = 1/(RR,CC}).

The proposed circuit was simulated in SPICE using LT1364 opamps (rated band-
width 7T0MHz) biased with £15V supplies. Carlson’s method [7] was used to simulate
the fractional-order capacitor C, having C' = 1uF and « = 0.5, as shown in Figure
3.1. The values of the capacitors and resistors in the approximated model shown in
Table 3.1 were calculated such that C, has an operating range of 100H z—10kH z.

The comparison between simulation and experimental results for the proposed
filter taking R= Ry = 1.59k(2, C = 0.1uF and C; = 0.215uF is shown in Figure B.2.
The filter was designed to achieve a quality factor of 25 and a center frequency of
fo = 1kHz. The measured (Q, f,) were respectively (23.956,1.0213kHz). Also the
measured slope at frequencies lower than f, was 30 dB/dec while it was —10dB/dec

at frequencies greater than f, as expected from Table 2.2.
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Figure B.1: Grounded inductor whose input impedance is Z;, = RR;C}s used in
second order Type II inductor-based asymmetric-slope band-pass filter and (b)
Possible realization of the Type II asymmetric-slope band-pass filter realizing (1.7).
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Figure B.2: SPICE and experimental results of the filter in Figure B.1(b).



APPENDIX C

Percentage Variability of Center Frequency and Quality Factor for Type
I FDNR-Based Filter

The Matlab codes to generate Figures 4.11(a) and 4.11(b) for the Type I FDNR-based
circuit are provided below. These codes were used to find the percentage variability

of Aw,/w, and AQ/Q versus « and a for b = 1 and w; = 1000w,
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close all;clear all;clc;
points=6001;
b=1;
N=10;
alpha_a=(linspace(0.05,N,N))/N;
aa=(linspace(0.05,N,N))/N;
for 1l=1l:size(alpha_a,2)
for k=1l:size(aa,2)
a=aa(k);
alpha=alpha_a(l);
% Solve for the exact wo according to equation (2.3) and (2.4) of thex
thesis.
£ = @(y)2*y + alpha*(y — log(b*exp(y) + a*exp(2*y)*cos(alpha*pi/2)));
zo = fzero(£,0.05);
wo = exp(zo/alpha); % Ideal wo based on a and b and the ideal equation.

wt=1000*wo; % opamp Gain Bandwidth Product. Typically much greater than wo
tau = 100/wt; % Experimental

w=logspace(—2,logl0(wt),points);

s=j *W;

Hsn = 2*wt*a*tau*(s+s.”"2*tautwt)./(2*s.” (—alpha+3)*wtrtau+2*tau™2*s.” (-«
alpha+2)*wt*b+2*tau”2*s.” (—alpha+3)*b+2*tau”2*wt*a*s. 2+2*tau”2*s. " 3*a+2*s. "«
(~alpha+4)*tau+2*s.” (—alpha+2)*b*tau+2*s.” (—alpha+3)+2+wt*a*tau*s+s.” (-«
alpha)*wt"2*b*tau+2*a*tau*s.”2+wt"2*a*tauts. " (—alpha+2)*wt"2*tau+2*s.” (~«
alpha+l)*wt*b*tau+2*s.” (—alphat2)*wt);

Mag=20*logl0O(abs(Hsn));

% Find the frequency at which the maximum occurs in the Magnitude plot
[Y,Index]=max(Mag);

wo_new=w(Index); % Find the frequency at which we get the peak mag result
wo; .

Peécentage_change(l,k) = (wo_new — wo)*100/wo;

end
end

surf(alpha_a,aa,Percentage change);
grid on

axis square

ylabel(’a’);

xlabel(‘\alpha’);
zlabel ( 'Percentage Change’});

max (max (Percentage change))
min(nin(Percentage_ change))

Figure C.1: The Matlab Code used to find the percentage variability of Aw,/w,
shown in Figure 4.11(a).
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close all;clear all;clc;

points=10001;

b=1;

N=10;

alpha_a=(linspace(0.05,N,N}))/N;

aa=(linspace(0.05,N,N))/N;

for l=l:size(alpha_a,2)

for k=1l:size(aa,2)

a=aa(k);

alpha=alpha a(l);

% Solve for the exact wo according to equation (2.3) and (2.4) of the
% thesis.

£ = @(y)2*y + alpha*(y — log(b¥exp(y) + a*exp(2*y)*cos(alpha*pi/2)));
fzero(£,0.05);

exp(zo/alpha); % Ideal wo based on a and b and the ideal equation.

20 =
wo =
wt=1000*wo; % opamp Gain Bandwidth Product. Typically much greater than wo
tau = 100/wt; % Experimental

w=logspace(—2,logl0(wt),points);

s=j*w;

Hsn = 2*wt*a*tau*(s+s."2*tautwt)./(2*s.”(—~alpha+3)*wt*taut+t2*tau™2*s.” (—e
alpha+2)*wt¥*b+2*tau”2*s.” (—alpha+3)*b+2*tau”2*wt¥a*s. 2+2*tau*2*s."3*a+2*s. "«
(—alpha+4)*tau+2*s.” (—alpha+2)*b*taut+2*s.” (—alpha+3)+2*wt*a*tau*s+s.” (-«
alpha)*wt”2*b*tau+2*a*tau*s.” 2+wt"2*a*tauts.” (—alpha+2)*wt"2*taut2*s.” (~«
alpha+l)*wt*b¥*tau+2*s.” (—alphat+2)*wt);

magdb=20*logl0(abs(Hsn));

[maxgaindb, Index]=max(magdb);

wo_new=w(Index); % Find the frequency at which we get the peak mag result

% This section finds the Q of the magnitude response for the nonideal TF
wl spline(magdb(1l:Index-1),w(1l:Index-1), (maxgaindb-3.01));

w2 spline(magdb(Index+l:points),w(Index+l:points), (maxgaindb-3.01));
w0_amp = pchip(magdb,w, (maxgaindb));

Q inter = w0_amp/abs(wl — w2);

% This sections looks at the ideal Transfer function and computes the Ideal
% Q

Hs=2*g."alpha*a./(b+s."”alpha*a+t+s."2);

Magideal=20*1ogl0(abs(Hs));

[maxdb, Indx]=max(Magideal);

wlIdeal = spline(Magideal(l:Indx-1),w(l:Indx-1),(maxdb—3.01));

w2Ideal = spline(Magideal(Indx+l:points),w(Indx+l:points), (maxdb-3.01));

Q _ideal = wo/abs(wlIdeal — w2Ideal);
Percentage Change(l,k) = (Q_inter - Q_ideal)*100/Q_ideal;

end

end
surf(alpha_a,aa,Percentage_Change)
grid on

axis square

ylabel(’a’);

xlabel(’\alpha’);
zlabel ( 'Percentage Change’);

Figure C.2: The Matlab Code used to find the percentage variability of AQ/Q
shown in Figure 4.11(b).



APPENDIX D

Non-ideal Transfer Function of Type I MAB-based Circuit

Examining the MAB based circuit of Figure 2.18(b), reveals that there are no complex
zeroes in its non-ideal transfer function. The transfer function is of order s% in the

integer terms and s%*% in the fractal terms as shown in the Figure D.1.
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[> restart;

> soln:=solve ({Vx=Al*(Va-Vb),
(Vin-Va)/R5 + (Vo-Va)/R6=0,
(Vz-Vb) /R4 + (Vx-Vb)/R3=0,Vy=A2+Vm,
(Vx~Vm) /R1+ (Vy-Vm) *CLl*s=0, Vz=A3*Vn,
(Vy-Vn) /R2+(Vz-Vn) *C2%5=0,
(Vz-¥p) *Ca*s”alpha+(Vo-Vp) /Ra=0,
Vo=A4*Vp},{Vin,Vo,Va,Vb,Vx,Vy,Vz,Vm,Vn,Vp}) :Node analysis for the circuit

Y

assign(soln):R3:=c*R4:RS:=d*R6:Cl:=taul/R1:C2:=tau2/R2:Ca:=tau/Ra:
> Hsl:=Vo/Vin:Hsl:=collect (Hsl,s):

> Hsideal:=limit(Hsl,Al=infinity):
Hsideal:=limit (Hsideal ,A2=infinity):Hsideal:=1limit(Hsideal ,A3=infinity) :Hsi

> Hsideal:=-(tau*(l+c)*s”alpha)/(taul*tau2* (1+d)*s"2+d*taufalpha}* (l+c)*sal
phatc* (d+1) ) ; The ideal transfer function
t(ctDs?

of 2 (1 td)s 2hd tele+ D el +d)

Hsideal = -

> Bl:=wt/s:A2:=wt/s:A3:=wt/s:Ad:=wt/s:

> Hsnl:=algsubs(c=b*taul*tau2, Hsn) :Hsnl:=algsubs (d=a*taul*tau2/ (tauttaul*tau
2% (b*tau-a) ) ,Hsnl) : The non-ideal transfer function
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Figure D.1: The non-ideal transfer function of Type I MAB based circuit of
Figure 2.18(Db).



APPENDIX E

Non-ideal Transfer Function of Type I Inductor-based Circuit

The non-ideal transfer function for the Type I inductor-based asymmetric-slope band-
pass filter of Figure 2.20 is of order s° in the integer terms and s5* in the fractal

terms as shown in Figure E.1.
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[> restart;

> soln:=solve ({
(Vin-Vx)*C2*s+(Vy-Vx) /R=0,
Vy=A*(Vx-Vz),

(Vp~Vz) /R1+ (Vy-Vz) *Cl*s=0,
Vp=A*(Vx-Vm),

(Vn-vm) /R3+ (Vp-~Vm) /R2=0,
Va=A* (Vo-Vn),

(Va-Vb) /R1+(Vd-Vb) *Cl¥ s=0,
Vd=p* (Vo-¥b) ,

(Vm-Vn) /R3+ (Va~Vn) /R2=0,
(Vo~-vd) /R+Vo*Ca*s"alpha=0}, {Vin,Vx,Vy,Vz,Vp,Vm,Vn,Va,Vb,Vd,Vo}) :Node analysis
for the circuit

assign(soln):

Hs:=Vo/Vin:

T

v

Hsl:=collect(Hs,s):A:=wt/s:C2:=c/R:Rl:=taul/Cl:R3:=tau3*R2:Ca:=C2¥%d/c:Hsl:
=collect(Hsl,s):

v

Hsni=simplify(Hsl):

v

Hsnl:=algsubs (d=1/taul/tau3/a,Hsn):

> Hsnl:=algsubs (c=1/taul/tau3/b,Hsnl) :Hsnl:=simplify(Hsnl) :Hsnl:=collect(Hsn
1,s) ; The non-ideal transfer function of the circuit
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Figure E.1: The non-ideal transfer function of Type I Inductor based circuit of
Figure 2.20.



APPENDIX F

Non-ideal Transfer Functioh of Type II M AB-based Circuit

The non-ideal transfer function for the Type II MAB-based asymmetric-slope band-
pass filter of Figure 2.22(b) is of order s° in the integer terms and s in the fractal

terms as shown in Figure F.1.
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[> restart;

> solns=solve ({Vx=Al%*(Vin-Vb),
(Vo~Vb) /R4+(Vz~Vb) /R5+ (Vx~Vb) /R3=0,
Yy=-A2*Vm,
(Vx~Vm) /R1+ (Vy-Vm) *CLl* =0,
Vz=~A3*Vn,
(Vy-Vn) /R2+ (Vz~Vn) *C2*5=0,
o=-A4*Vp,
(Vy-Vp)*Ca*s”alpha+(Vo-Vp) /Ra=0},{Vin,Vo,Va,Vb,Vx,Vy,Vz,Vm,Vn,Vp}):

Gvak

assign(soln):R3:=c*R4:R4:=d*RE/c:Cl:=taul/R1:C2:=tau2/R2:Cas=tau/Ra:

v

Hsl:=Vo/Vin:

> Hsideal:=limit(Hsl,Al=infinity):Hsideal:=limit(Hsideal, R2=infinity):Hsidea
1:=1imit (Hsideal,A3=infinity):Hsideal:=limit (Hsideal,Ad=infinity):

> Hsideal:=collect (Hsideal,s) ;The ideal transfer function

Hsideal = (52 ctres®de2 ves®2)s

o/ @25 2hrs® 2 es 4

> Al:=wk/s:A2:=wt/s5:A3:=wt/s:84:=wt/s:

[> Hsnl:=algsubs (d=b*taul*tau2, Hsn) :Hsnl:=algsubs (c=a¥taul/tau,Hsnl):

> Hsnl:=collect (Hsnl,s); The non-ideal transfer function
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Figure F.1: The non-ideal transfer function of Type II MAB based circuit of
Figure 2.22(b).



