
Hindawi Publishing Corporation
International Journal of Stochastic Analysis
Volume 2010, Article ID 347105, 21 pages
doi:10.1155/2010/347105

Research Article
Diffusion Approximations of
the Geometric Markov Renewal Processes and
Option Price Formulas

Anatoliy Swishchuk1 and M. Shafiqul Islam2

1 Department of Mathematics and Statistics, University of Calgary, 2500 University Drive, NW, Calgary,
Alberta, Canada T2N 1N4

2 Department of Mathematics and Statistics, University of Prince Edward Island, 550 University Avenue,
Charlottetown, PE, Canada C1A 4P3

Correspondence should be addressed to M. Shafiqul Islam, sislam@upei.ca

Received 3 August 2010; Accepted 8 November 2010

Academic Editor: Aihua Xia

Copyright q 2010 A. Swishchuk and M. S. Islam. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We consider the geometric Markov renewal processes as a model for a security market and study
this processes in a diffusion approximation scheme. Weak convergence analysis and rates of
convergence of ergodic geometric Markov renewal processes in diffusion scheme are presented.
We present European call option pricing formulas in the case of ergodic, double-averaged, and
merged diffusion geometric Markov renewal processes.

1. Introduction

Let N(t) be a standard Poisson process and (Yk)k∈Z+
be i.i.d. random variables which are

independent ofN(t) and S∗
0 > 0. The geometric compound Poisson processes

S∗
t = S

∗
0

N(t)∏

k=1

(1 + Yk), t > 0, (1.1)

is a trading model in many financial applications with pure jumps [1, page 214]. Motivated
by the geometric compound Poisson processes (1.1), Swishchuk and Islam [2] studied
the Geometric Markov renewal processes (2.5) (see Section 2) for a security market in
a series scheme. The geometric Markov renewal processes (2.5) are also known as a
switched-switching process. Averaging and diffusion approximation methods are important



2 International Journal of Stochastic Analysis

approximation methods for a switched-switching system. Averaging schemes of the
geometric Markov renewal processes (2.5)were studied in [2].

The singular perturbation technique of a reducible invertible-operator is one of
the techniques for the construction of averaging and diffusion schemes for a switched-
switching process. Strong ergodicity assumption for the switching process means that the
singular perturbation problem has a solution with some additional nonrestrictive conditions.
Averaging and diffusion approximation schemes for switched-switching processes in the
form of random evolutions were studied in [3, page 157] and [1, page 41]. In this paper, we
introduce diffusion approximation of the geometric Markov renewal processes. We study a
discreteMarkov-modulated (B, S)-security market described by a geometric Markov renewal
process (GMRP). Weak convergence analysis and rates of convergence of ergodic geometric
Markov renewal processes in diffusion scheme are presented. We present European call
option pricing formulas in the case of ergodic, double-averaged, and merged diffusion
geometric Markov renewal processes.

The paper is organized as follows. In Section 2 we review the definition of the
geometric Markov renewal processes (GMRP) from [2]. Moreover we present notation and
summarize results such as random evolution of GMRP, Markov renewal equation for GMRP,
infinitesimal operator of GMRP, and martingale property of GMRP. In Section 3 we present
diffusion approximation of GMRP in ergodic, merged, and double-averaging schemes. In
Section 4 we present proofs of the above-mentioned results. Section 4 contains solution of
martingale problem, weak convergence, rates of convergence for GMRP, and characterization
of the limit measure. In Section 5 we present merged diffusion GMRP in the case of two
ergodic classes. European call option pricing formula for ergodic, merged, and diffusion
GMRP are presented in Section 6.

2. The Geometric Markov Renewal Processes (GMRP)

In this section we present the Geometric Markov renewal processes. We closely follow [2].
Let (Ω,B,Ft,P) be a standard probability space with complete filtration Ft and let

(xk)k∈Z+
be a Markov chain in the phase space (X,X) with transition probability P(x,A),

where x ∈ X,A ∈ X. Let (θk)k∈Z+
be a renewal process which is a sequence of independent

and identically distributed (i.i.d.) random variables with a common distribution function
F(x) := P{w : θk(w) ≤ x}. The random variables (θk)k∈Z+

can be interpreted as lifetimes
(operating periods, holding times, renewal periods) of a certain system in a random
environment. From the renewal process (θk)k∈Z+

we can construct another renewal process
(τk)k∈Z+

defined by

τk :=
k∑

n=0

θn. (2.1)

The random variables τk are called renewal times (or jump times). The process

v(t) := sup{k : τk ≤ t} (2.2)

is called the counting process.
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Definition 2.1 (see [1, 4]). A homogeneous two-dimensional Markov chain (xn, θn)n∈Z+
on the

phase space X × R+ is called a Markov renewal process (MRP) if its transition probabilities
are given by the semi-Markov kernel

Q(x,A, t) = P{xn+1 ∈ A, θn+1 ≤ t | xn = x}, ∀x ∈ X, A ∈ X, t ∈ R+. (2.3)

Definition 2.2. The process

x(t) := xv(t) (2.4)

is called a semi-Markov process.

The ergodic theorem for a Markov renewal process and a semi-Markov process
respectively can be found in [3, page 195], [1, page 66], and [4, page 113].

Let (xn, θn)n∈Z+
be a Markov renewal process on the phase space X ×R+ with the semi-

Markov kernelQ(x,A, t) defined in (2.3), and let x(t) := xv(t) be a semi-Markov process where
the counting process v(t) is defined in (2.2). Let ρ(x) be a bounded continuous function on X
such that ρ(x) > −1. We define the geometric Markov renewal process (GMRP) {St}t∈R+

as a
stochastic functional St defined by

St := S0

v(t)∏

k=1

(
1 + ρ(xk)

)
, t ∈ R+, (2.5)

where S0 > 0 is the initial value of St. We call this process (St)t∈R+
a geometricMarkov renewal

process by analogy with the geometric compound Poisson processes

S∗
t = S

∗
0

N(t)∏

k=1

(1 + Yk), (2.6)

where S∗
0 > 0, N(t) is a standard Poisson process, (Yk)k∈Z+

are i.i.d. random variables. The
geometric compound Poisson processes {S∗

t }t∈R+
in (2.6) is a trading model in many financial

applications as a pure jump model [5, 6]. The geometric Markov renewal processes {St}t∈R+

in (2.5) will be our main trading model in further analysis.
Jump semi-Markov random evolutions, infinitesimal operators, and Martingale

property of the GMRP were presented in [2]. For the convenience of readers we repeat them
again in the following.

2.1. Jump Semi-Markov Random Evolutions

Let C0(R+) be the space of continuous functions on R+ vanishing at infinity, and let us define
a family of bounded contracting operators D(x) on C0(R+) as follows:

D(x)f(s) := f
(
s
(
1 + ρ(x)

)
, x ∈ X, s ∈ R+. (2.7)
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With these contraction operators D(x) we define the following jump semi-Markov random
evolution (JSMRE) V (t) of the geometric Markov renewal processes {St}t∈R+

in (2.5):

V (t) =
v(t)∏

k=1

D(xk) := D
(
xv(t)
) ◦D(xv(t)−1

) ◦ · · · ◦D(x1). (2.8)

Using (2.7) we obtain from (2.8)

V (t)f(s) =
v(t)∏

k=1

D(xk)f(s) = f

(
s
v(t)∏

k=1

(
1 + ρ(xk)

)
)

= f(St), (2.9)

where St is defined in (2.5) and S0 = s. Let Q(x,A, t) be a semi-Markov kernel for Markov
renewal process (xn; θn)n∈Z+

, that is,Q(x,A, t) = P(x,A)Gx(t), where P(x,A) is the transition
probability of the Markov chain (xn)n∈Z+

and Gx(t) is defined by Gx(t) := P(θn+1 ≤ t | xn = x).
Let

u(t, x) := Ex
[
V (t)g(x(t))

]
:= E
[
V (t)g(x(t)) | x(0) = x] (2.10)

be the mean value of the semi-Markov random evolution V (t) in (2.9).
The following theorem is proved in [1, page 60] and [4, page 38].

Theorem 2.3. The mean value u(t, x) in (2.10) of the semi-Markov random evolution V (t) given by
the solution of the following Markov renewal equation (MRE):

u(t, x) −
∫ t

0

∫

X

Q
(
x, dy, ds

)
D
(
y
)
u
(
t − s, y) = Gx(t)g(x), (2.11)

where Gx(t) = 1 − Gx(t), Gx(t) := P(θn+1 ≤ t | xn = x), g(x) is a bounded and continuous function
on X.

2.2. Infinitesimal Operators of the GMRP

Let

1ρT (x) :=
ρ(x)
T

, T > 0, (2.12)

STt := S0

v(tT)∏

k=1

(
1 + ρT (xk)

)
= S0

v(tT)∏

k=1

(
1 + T−1ρ(xk)

)
. (2.13)

A detailed information about ρT (x) and STt can be found in Section 4 of [2]. It can be easily
shown that

ln
STt
S0

=
v(tT)∑

k=1

ln
(
1 +

ρ(xk)
T

)
. (2.14)
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To describe martingale properties of the GMRP (St)t∈R+
in (2.5) we need to find an

infinitesimal operator of the process

η(t) :=
v(t)∑

k=1

ln
(
1 + ρ(xk)

)
. (2.15)

Let γ(t) := t − τv(t) and consider the process (x(t), γ(t)) on X ×R+. It is a Markov process with
infinitesimal operator

Q̂f(x, t) :=
df

dt
+
gx(t)

Gx(t)

∫

X

[
P
(
x, dy

)
f
(
y, 0
) − f(x, t)], (2.16)

where gx(t) := dGx(t)/dt, Gx(t) = 1 − Gx(t), where f(x, t) ∈ C(X × R+). The infinitesimal
operator for the process lnS(t) has the form:

Âf(z, x) =
gx(t)

Gx(t)

∫

X

P
(
x, dy

)[
f
(
z + ln

(
1 + ρ
(
y
)
, x
) − f(z, x) ], (2.17)

where z := lnS0. The process (lnS(t), x(t), γ(t)) is a Markov process on R+ ×X × R+ with the
infinitesimal operator

L̂f(z, x, t) = Âf(z, x, t) + Q̂f(z, x, t), (2.18)

where the operators Â and Q̂ are defined in (2.17) and (2.18), respectively. Thus we obtain
that the process

m̂(t) := f
(
lnS(t), x(t), γ(t)

) − f(z, x, 0) −
∫ t

0

(
Â + Q̂

)
f
(
lnS(u), x(u), γ(u)

)
du (2.19)

is an F̂t-martingale, where F̂t := σ(x(s), γ(s); 0 ≤ s ≤ t). If x(t) := xv(t) is a Markov process
with kernel

Q(x,A, t) = P(x,A)
(
1 − e−λ(x)t

)
, (2.20)

namely, Gx(t) = 1 − e−λ(x)t, then gx(t) = λ(x)e−λ(x)t, Ĝx(t) = e−λ(x)t, gx(t)/Ĝx(t) = λ(x), and
the operator Â in (2.17) has the form:

Âf(z) = λ(x)
∫

X

P
(
x, dy

)[
f
(
z + ln

(
1 + ρ
(
y
))) − f(z)]. (2.21)

The process (lnS(t), x(t)) on R+ ×X is a Markov process with infinitesimal operator

L̂f(z, x) = Âf(z, x) +Qf(z, x), (2.22)
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where

Qf(z, x) = λ(x)
∫

X

P
(
x, dy

)(
f
(
y
) − f(x)). (2.23)

It follows that the process

m(t) := f(lnS(t), x(t)) − f(z, x) −
∫ t

0

(
Â +Q

)
f(lnS(u), x(u))du (2.24)

is an Ft-martingale, where Ft := σ(x(u); 0 ≤ u ≤ t).

2.3. Martingale Property of the GMRP

Consider the geometric Markov renewal processes (St)t∈R+

St = S0

v(t)∏

k=1

(
1 + ρ(xk)

)
. (2.25)

For t ∈ [0, T] let us define

Lt := L0

v(t)∏

k=1

h(xk), EL0 = 1, (2.26)

where h(x) is a bounded continuous function such that

∫

X

h
(
y
)
P
(
x, dy

)
= 1,

∫

X

h
(
y
)
P
(
x, dy

)
p
(
y
)
= 0. (2.27)

If ELT = 1, then geometric Markov renewal process St in (2.25) is an (Ft, P
∗)-martingale,

where measure P ∗ is defined as follows:

dP ∗

dP
= LT ,

Ft := σ(x(s); 0 ≤ s ≤ t).
(2.28)

In the discrete case we have

Sn = S0

n∏

k=1

(
1 + ρ(xk)

)
. (2.29)

Let Ln := L0
∏n

k=1h(xk), EL0 = 1, where h(x) is defined in (2.27). If ELN = 1, then Sn is an
(Ft, P

∗)-martingale, where dP ∗/dP = LN , and Fn := σ(xk; 0 ≤ k ≤ n).
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3. Diffusion Approximation of the Geometric Markov
Renewal Process (GMRP)

Under an additional balance condition, averaging effect leads to diffusion approximation of
the geometric Markov renewal process (GMRP). In fact, we consider the counting process
v(t) in (2.5) in the new accelerated scale of time tT2, that is, v ≡ v(tT2). Due to more rapid
changes of states of the system under the balance condition, the fluctuations are described by
a diffusion processes.

3.1. Ergodic Diffusion Approximation

Let us suppose that balance condition is fulfilled for functional STt = S0
∏v(tT)

k=1 (1 + ρT (xk)):

ρ̂ =

∫
X p(dx)

∫
X P
(
x, dy

)
ρ
(
y
)

m
= 0, (3.1)

where p(x) is ergodic distribution of Markov chain (xk)k∈Z+
. Then Ŝ(t) = S0, for all t ∈ R+.

Consider STt in the new scale of time tT2:

ST (t) := STtT2 = S0

v(tT2)∏

k=1

(
1 + T−1ρ(xk)

)
. (3.2)

Due to more rapid jumps of v(tT2) the process ST (t) will be fluctuated near the point S0

as T → +∞. By similar arguments similar to (4.3)–(4.5) in [2], we obtain the following
expression:

ln
ST (t)
S0

= T−1
v(tT2)∑

k=1

ρ(xk) − 1
2
T−2

v(tT2)∑

k=1

ρ2(xk) + T−2
v(tT2)∑

k=1

r
(
T−1ρ(xk)

)
ρ2(xk). (3.3)

Algorithms of ergodic averaging give the limit result for the second term in (3.3) (see [1, page
43] and [4, page 88]):

lim
T→+∞

1
2
T−2

v(tT2)∑

k=1

ρ2(xk) =
1
2
tρ̂2, (3.4)

where ρ̂2 :=
∫
X p(dx)

∫
X P(x, dy)ρ

2(y)/m. Using algorithms of diffusion approximation with
respect to the first term in (3.3) we obtain [4, page 88]:

lim
T→+∞

T−1
v(tT2)∑

k=1

ρ(xk) = σρw(t), (3.5)

where σ2
ρ :=

∫
X p(dx)[1/2

∫
X P(x, dy)ρ

2(y) +
∫
X P(x, dy)ρ(y)R0P(x, dy)ρ(y)]/m, R0 is a

potential [3, page 68], of (xn)n∈Z+
, w(t) is a standard Wiener process. The last term in (3.3)
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goes to zero as T → +∞. Let Ŝ(t) be the limiting process for ST (t) in (3.3) as T → +∞. Taking
limit on both sides of (3.3) we obtain

lim
T→+∞

ln
ST (t)
S0

= ln
Ŝ(t)
S0

= σρw(t) − 1
2
tρ̂2, (3.6)

where σ2
ρ and ρ̂2 are defined in (3.4) and (3.5), respectively. From (3.6)we obtain

Ŝ(t) = S0e
σρw(t)−(1/2)tρ̂2 = S0e

−(1/2)tρ̂2eσρw(t). (3.7)

Thus, Ŝ(t) satisfies the following stochastic differential equation (SDE):

dŜ(t) = Ŝ(t)
[
1
2

(
σ2
ρ − ρ̂2

)
dt + σρdw(t)

]
. (3.8)

In this way we have the following corollary.

Corollary 3.1. The ergodic diffusion GMRP has the form

Ŝ(t) = S0e
−(1/2)tρ̂2eσρw(t), (3.9)

and it satisfies the following SDE:

dŜ(t)

Ŝ(t)
=

1
2
(
σρ − ρ̂2

)
dt + σρdw(t). (3.10)

3.2. Merged Diffusion Approximation

Let us suppose that the balance condition satisfies the following:

ρ̂(k) =

∫
Xk
pk(dx)

∫
Xk
P
(
x, dy

)
ρ
(
y
)

m(k)
= 0, (3.11)

for all k = 1, 2, . . . , r where (xn)n∈Z+
is the supporting embedded Markov chain, pk is the

stationary density for the ergodic component Xk, m(k) is defined in [2], and conditions of
reducibility of X are fulfilled. Using the algorithms of merged averaging [1, 3, 4] we obtain
from the second part of the right hand side in (3.3):

lim
T→+∞

1
2
T−1

v(tT2)∑

k=1

ρ2(xk) =
1
2

∫ t

0
ρ̂2(x̂(s))ds, (3.12)
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where

ρ̂2(k) :=

∫
Xk
pk(dx)

∫
Xk
P
(
x, dy

)
ρ2
(
y
)

m(k)
(3.13)

using the algorithm of merged diffusion approximation that [1, 3, 4] obtain from the first part
of the right hand side in (3.3):

lim
T→+∞

T−1
v(tT2)∑

k=1

ρ(xk) =
∫ t

0
σ̂ρ(x̂(s))dw(s), (3.14)

where

σ̂2
ρ(k) :=

∫

Xk

pk(dx)
∫

Xk

P
(
x, dy

)
ρ2
(
y
)
+
∫

Xk

P
(
x, dy

)
ρ
(
y
)
R0

∫

Xk

P
(
x, dy

)
ρ
(
y
)

m(k)
. (3.15)

The third term in (3.3) goes to 0 as T → +∞. In this way, from (3.3)we obtain:

lim
T→+∞

ln
ST (t)
S0

= ln
S̃(t)
S0

=
∫ t

0
σ̂ρ(x̂(s))dw(s) − 1

2

∫ t

0
ρ̂2(x̂(s))ds, (3.16)

where S̃(t) is the limit ST (t) as T → +∞. From (3.16) we obtain

S̃(t) = S0e
−(1/2) ∫ t0 ρ̂2(x̂(s))ds+

∫ t
0 σ̂ρ(x̂(s))dw(s). (3.17)

Stochastic differential equation (SDE) for Š(t) has the following form:

dS̃(t)

S̃(t)
=

1
2

(
σ̂2
ρ(x̂(t)) − ρ̂2(x̂(t))

)
dt + σ̂ρ(x̂(t))dw(t), (3.18)

where x̂(t) is a merged Markov process.
In this way we have the following corollary.

Corollary 3.2. Merged diffusion GMRP has the form (3.17) and satisfies the SDE (3.18).

3.3. Diffusion Approximation under Double Averaging

Let us suppose that the phase space X̂ = {1, 2, . . . , r} of the merged Markov process x̂(t)
consists of one ergodic class with stationary distributions (p̂k; k = {1, 2, . . . r}). Let us also
suppose that the balance condition is fulfilled:

r∑

k=1

p̂kρ̂(k) = 0. (3.19)
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Then using the algorithms of diffusion approximation under double averaging (see [3, page
188], [1, page 49] and [4, page 93]) we obtain:

lim
T→+∞

ln
ST (t)
S0

= ln
Š(t)
S0

= σ̌ρw(t) − 1
2
p̌2t, (3.20)

where

σ̌2
ρ :=

r∑

k=1

p̂kσ̂
2
ρ(k), p̌2 :=

r∑

k=1

p̂kρ̂2(k), (3.21)

and ρ̂2(k) and σ̂2
ρ(k) are defined in (3.13) and (3.15), respectively. Thus, we obtain from (3.20):

Š(t) = S0e
−(1/2)p̌2t+σ̌ρw(t). (3.22)

Corollary 3.3. The diffusion GMRP under double averaging has the form

Š(t) = S0e
−(1/2)ρ̌2t+σ̌ρw(t), (3.23)

and satisfies the SDE

dŠ(t)
Š(t)

=
1
2

(
σ̌2
ρ − ρ̌2

)
dt + σ̌ρdw(t). (3.24)

4. Proofs

In this section we present proofs of results in Section 3. All the above-mentioned results are
obtained from the general results for semi-Markov random evolutions [3, 4] in series scheme.
The main steps of proof are (1) weak convergence of STt in Skorokhod space DR[0,+∞) [7,
page 148]; (2) solution of martingale problem for the limit process Ŝ(t); (3) characterization of
the limit measure for the limit process Ŝ(t); (4) uniqueness of solution of martingale problem.
We also give here the rate of convergence in the diffusion approximation scheme.

4.1. Diffusion Approximation (DA)

Let

GT
t := T−1

v(tT2)∑

k=0

ρ(xk), GT
n := GT

τnT−1 , GT
0 = ln s, (4.1)

and the balance condition is satisfied:

ρ̂ :=
∫

X

p(dx)
∫

X

P
(
x, dy

)
ρ
(
y
)
= 0. (4.2)
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Let us define the functions

φT (s, x) := f(s) + T−1φ1
f(s, x) + T

−2φ2
f(s, x), (4.3)

where φ1
f and φ

2
f are defined as follows:

(P − I)φ1
f(s, x) = ρ(x)f(s),

(P − I)φ2
f(s, x) =

[
−A(x) + Â

]
f(s),

(4.4)

where

Â :=
∫

X

p(dx)A(x), (4.5)

andA(x) := [ρ2(x)/2+ρ(x)(R0−I)ρ(x)]d2/ds2. From the balance condition (4.2) and equality
Π(Â − A(x)) = 0 it follows that both equations in (4.3) simultaneously solvable and the
solutions φi

f
(s, x) are bounded functions, i = 1, 2.

We note that

f
(
STn+1

)
− f
(
GT
n

)
=

1
T
ρ(xn)

df(xn)
ds

(4.6)

and define

φT (s, x) := f(s) + T−1φ1
f(s, x) + T

−2φ2
f(s, x), (4.7)

where φ1
f
(s, x) and φ2

f
(s, x) are defined in (4.4) and (4.5), respectively. We note, that GT

n+1 −
GT
n = T−1ρ(xn).

4.2. Martingale Problem for the Limiting Problem G0(t) in DA

Let us introduce the family of functions:

ψT (s, t) : = φT
(
GT

[tT2], x[tT2]

)
− φT
(
GT

[st2], x[sT2]

)

−
[tT2]−1∑

j=[sT2]
E
[
φT
(
GT
j , xj+1

)
− φT
(
GT
j , xj
)
| Fj

]
,

(4.8)

where φT are defined in (4.7) and GT
j is defined by

GT
τn/T

=
1
T

n∑

k=0

ρ(xk). (4.9)
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Functions ψT (s, t) are F[tT2]-martingale by t. Taking into account the expression (4.6) and
(4.7), we find the following expression:

ψT (s, t) = f
(
GT

[tT2]

)
− f
(
GT

[sT2]

)
+ ε
[
φ1
f

(
GT

[tT2], x[tT2]

)
− φ1

f

(
GT

[st2], x[sT2]

)]

+ ε2
[
φ2
f

(
GT

[tT2], x[tT2]

)
− φ2

f

(
GT

[sT2], x[sT2]

)]

− T−1
[tT2]−1∑

j=[sT2]

⎧
⎨

⎩ρ
(
xj
)df
(
GT
j

)

dg
+ E
(
φ1
f

(
GT
j , xj+1

)
− φ2

f

(
GT
j , xj
)
| Fj

)
⎫
⎬

⎭

− T−2
[tT2]−1∑

j=[sT2]

⎧
⎪⎨

⎪⎩
2−1ρ2

(
xj
)df
(
GT
j

)

dg
+ ρ
(
xj
)
E

⎛
⎜⎝
dφ1

f

(
GT
j , xj+1

)

dg
| Fj

⎞
⎟⎠

+E
[
φ2
f

(
GT
j , xj+1

)
− φ2

f

(
GT
j , xj
)
| Fj

]
⎫
⎬

⎭ + o
(
T−2
)

= f
(
GT

[tT2]

)
− f
(
GT

[sT2]

)
+
[
φ1
f

(
GT

[tT2], x[tT2]

)
− φ1

f

(
GT

[sT2], x[sT2]

)]

+ T−2
[
φ2
f

(
GT

[tT2], x[tT2]

)
− φ2

f

(
GT

[sT2], x[sT2]

)]
− T−2

[tT2]−1∑

j=[sT2]
Âf
(
GT
j

)
+O
(
T−2
)
,

(4.10)

where O(T−2) is the sum of terms with T−2nd order. Since ψT (0, t) is F[tT2]-martingale with
respect to measure QT , generated by process GT (t) in (4.1), then for every scalar linear
continuous functional ηs0 we have from (4.8)-(4.10):

0 = ET
[(
ψT (s, t)ηs0

]

= ET
⎡

⎣

⎛
⎝f

(
GT

[tT2]

)
− f
(
GT

[sT2]

)
− T−2

[tT2]−1∑

j=[sT2]
Âf
(
GT
j

)
⎞
⎠ηs0

⎤

⎦

− T−1ET
[(

φ1
f

(
GT

[tT2], x[tT2]

)
− φ1

f

(
GT

[sT2], x[sT2]

))
ηs0

]

− T−2ET
[(

φ2
f

(
GT

[tT2], x[tT2]

)
− φ2

f

(
GT

[sT2], x[sT2]

))
ηs0

]
−O
(
T−2
)
,

(4.11)
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where ET is a mean value by measure QT . If the process GT
[tT2] converges weakly to some

process G0(t) as T → +∞, then from (4.11) we obtain

0 = ET
[(

f(G0(t)) − f(G0(s)) −
∫ t

s

Âf(G0(u))du

]
, (4.12)

that is, the process

f(G0(t)) − f(G0(s)) −
∫ t

s

Âf(G0(u))du (4.13)

is a continuous QT -martingale. Since Â is the second order differential operator and
coefficient σ2

1 is positively defined, where

σ2
1 :=
∫

X

π(dx)

[
ρ2(x)
2

+ ρ(x)R0ρ(x)

]
, (4.14)

then the process G0(t) is a Wiener process with variance σ2
1 in (4.14): G0(t) = σw(t). Taking

into account the renewal theorem for v(t), namely, T−1v(tT2)→ T→+∞t/m, and the following
representation

GT (t) = T−1
v(tT2)∑

k=0

ρ(xk) = T−1
[tT2]∑

k=0

ρ(xk) + T−1
v(tT2)∑

k=[tT2]+1
ρ(xk) (4.15)

we obtain, replacing [tT2] by v(tT2), that processGT (t) converges weakly to the process Ĝ0(t)
as T → +∞, which is the solution of such martingale problem:

f
(
Ĝ0(t)

)
− f
(
Ĝ0(s)

)
−
∫ t

s

Â0f
(
Ĝ0(u)

)
du (4.16)

is a continuous QT -martingale, where Â0 := Â/m, and Â is defined in (4.5)-(4.5).

4.3. Weak Convergence of the Processes GT(t) in DA

From the representation of the process GT (t) it follows that

ΔT (s, t) : = |GT (t) −GT (s)| =
∣∣∣∣∣∣
T−1

v(tT2)∑

k=v(sT2)+1
ρ(xk)

∣∣∣∣∣∣

≤ T−1 sup
x
ρ(x)
∣∣∣v
(
tT2
)
− v
(
sT2
)
− 1
∣∣∣.

(4.17)
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This representation gives the following estimation:

|ΔT (t1, t2)||ΔT (t2, t3)| ≤ T−2
(
sup
x
ρ(x)
)2∣∣∣v
(
t3T

2
)
− v
(
t1T

2
)∣∣∣

2
. (4.18)

Taking into account the same reasonings as in [2] we obtain the weak convergence of the
processes GT (t) in DA.

4.4. Characterization of the Limiting Measure Q for QT as T → +∞ in DA

From Section 4.3 (see also Section 4.1.4 of [2]) it follows that there exists a sequence Tn
such that measures QTn converge weakly to some measure Q on DR[0,+∞) as T → +∞,
where DR[0,+∞) is the Skorokhod space [7, page 148]. This measure is the solution of such
martingale problem: the following process

m(s, t) := f
(
Ĝ0(t)

)
− f
(
Ĝ0(s)

)
−
∫ t

s

Â0f
(
Ĝ0(u)

)
du (4.19)

is a Q-martingale for all f(g) ∈ C2(R) and

Em(s, t)ηs0 = 0, (4.20)

for scalar continuous bounded functional ηs0, E is a mean value by measure Q. From (4.19) it
follows thatETmT (s, t)ηs0 = 0, and it is necessary to show that the limiting passing in (4.1) goes
to the process in (3.12) as T → +∞. From equality (4.11)we find that limTn →+∞ETnm(s, t)ηs0 =
Em(s, t)ηs0. Moreover, from the following expression

∣∣∣ETm(s, t)ηs0 − Em(s, t)ηs0
∣∣∣ ≤
∣∣∣
(
ET − E

)
m(s, t)ηs0

∣∣∣ + ET
∣∣∣m(s, t) −mT (s, t)

∣∣∣
∣∣∣ηs0
∣∣∣−→T→+∞0,

(4.21)

we obtain that there exists the measureQ onDR[0,+∞)which solves the martingale problem
for the operator Â0 (or, equivalently, for the process Ĝ0(t) in the form (4.12)). Uniqueness of
the solution of the martingale problem follows from the fact that operator Â0 generates the
unique semigroup with respects to the Wiener process with variance σ2

1 in (4.14). As long as
the semigroup is unique then the limit process Ĝ0(t) is unique. See [3, Chapter 1].

4.5. Calculation of the Quadratic Variation for GMRP

If GT
n = GT

T−1τn
, the sequence

mT
n := GT

n −GT
0 −

n−1∑

k=0

E
[
GT
k+1 −GT

k | Fk

]
, GT

0 = g, (4.22)
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is Fn-martingale, where Fn := σ{xk, θk; 0 ≤ k ≤ n}. From the definition it follows that the
characteristic 〈mT

n〉 of the martingalemT
n has the form

〈
mT
n

〉
=

n−1∑

k=0

E

[(
mT
k+1 −mT

k

)2 | Fk

]
. (4.23)

To calculate 〈mT
n〉 let us representmT

n in (4.22) in the form of martingale-difference:

mT
n =

n−1∑

k=0

[
GT
k+1 − E

(
GT
k+1 | Fk

)]
. (4.24)

From representation

GT
n+1 −GT

n =
1
T
ρ(xn) (4.25)

it follows that E(GT
k+1 | Fk) = GT

k + T
−1ρ(xk), that is why

GT
k+1 − E

(
GT
k+1 | Fk

)
= T−1(ρ(xk) − Pρ(xk)

)
. (4.26)

Since from (4.22) it follows that

mT
k+1 −mT

k = GT
k+1 − E

(
GT
k+1 | Fk

)
= T−1(ρ(xk) − Pρ(xk)

)
, (4.27)

then substituting (4.27) in (4.23)we obtain

〈
mT
n

〉
= T−2

n−1∑

k=0

[
(I − P)ρ(xk)

]2
. (4.28)

In an averaging scheme (see [2]) for GMRP in the scale of time tT we obtain that 〈mT
[tT]〉 goes

to zero as T → +∞ in probability, which follows from (4.27):

〈
mT

[tT]

〉
= T−2

[tT]−1∑

k=0

[
(I − P)ρ(xk)

]2 −→ 0 as T −→ +∞ (4.29)

for all t ∈ R+. In the diffusion approximation scheme for GMRP in scale of time tT2 from
(4.27)we obtain that characteristic 〈mT

[tT2]〉 does not go to zero as T → +∞ since

〈
mT

[tT2]

〉
= T−2

[tT2]−1∑

k=0

[
(I − P)ρ(xk)

]2 −→ tσ2
1 , (4.30)

where σ2
1 :=
∫
X π(dx)[(I − P)ρ(x)]2.
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4.6. Rates of Convergence for GMRP

Consider the representation (4.22) for martingalemT
n . It follows that

GT
n = g +mT

n +
n−1∑

k=0

E
[
GT
k+1 −GT

k | Fk

]
. (4.31)

In diffusion approximation scheme for GMRP the limit for the process GT
[tT2] as T → +∞will

be diffusion process Ŝ(t) (see (3.10)). If m0(t) is the limiting martingale for mT
[tT2] in (4.22) as

T → +∞, then from (4.31) and (3.10) we obtain

E

[
GT

[tT2] − Ŝ(t)
]
= E
[
mT

[tT2] −m0(t)
]
+ T−1

[tT2]−1∑

k=0

ρ(xk) − Ŝ(t). (4.32)

Since E[mT
[tT2] −m0(t)] = 0, (because mT

[tT2] and m0(t) are zero-mean martingales) then from
(4.32)we obtain:

∣∣∣∣E
[
GT

[tT2] − Ŝ(t)
]∣∣∣∣ ≤ T−1

∣∣∣∣∣∣

[tT2]−1∑

k=0

ρ(xk) − Ŝ(t)T
∣∣∣∣∣∣
. (4.33)

Taking into account the balance condition
∫
X π(dx)ρ(x) = 0 and the central limit theorem for

a Markov chain [4, page 98], we obtain

∣∣∣∣∣∣

[tT2]−1∑

k=0

ρ(xk) − Ŝ(t)T
∣∣∣∣∣∣
= C1(t0), (4.34)

where C1(t0) is a constant depending on t0,t ∈ [0, t0]. From (4.33), (4.2), and (4.32)we obtain:

∣∣∣∣E
[
GT

[tT2] − Ŝ(t)
]∣∣∣∣ ≤ T−1C1(t0). (4.35)

Thus, the rates of convergence in diffusion scheme has the order T−1.

5. Merged Diffusion Geometric Markov Renewal Process in
the Case of Two Ergodic Classes

5.1. Two Ergodic Classes

Let P(x,A) := P{xn+1 ∈ A | xn = x} be the transition probabilities of supporting embedded
reducible Markov chain {xn}n≥0 in the phase space X. Let us have two ergodic classes X0 and
X1 of the phase space such that:

X = X0 ∪X1, X0 ∩X1 = ∅. (5.1)
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Let {X̂ = {0, 1},V} be the measurable merged phase space. A stochastic kernel P0(x,A) is
consistent with the splitting (5.1) in the following way:

P0(x,Xk) = 1k :=

⎧
⎨

⎩
1, x ∈ Xk,

0, x /∈Xk,
k = 0, 1. (5.2)

Let the supporting embedded Markov chain (xn)n∈Z+
with the transition probabilities

P0(x,A) be uniformly ergodic in each class Xk, k = 0, 1 and have a stationary distribution
πk(dx) in the classes Xk, k = 0, 1:

πk(A) =
∫

Xk

πk(dx)P0(x,A), A ⊂ Xk, k = 0, 1. (5.3)

Let the stationary escape probabilities of the embeddedMarkov chain (xn)n∈Z+
with transition

probabilities P(x,A) := P{xn+1 ∈ A | xn = x} be positive and sufficiently small, that is,

qk(A) =
∫

Xk

πk(dx)P(x,X \Xk) > 0, k = 0, 1. (5.4)

Let the stationary sojourn time in the classes of states be uniformly bounded, namely,

0 ≤ C1 ≤ mk :=
∫

Xk

πk(dx)m(x) ≤ C2, k = 0, 1, (5.5)

where

m(x) :=
∫∞

0
Gx(t)dt. (5.6)

5.2. Algorithms of Phase Averaging with Two Ergodic Classes

The merged Markov chain (x̂n)n∈Z+
in merged phase space X̂ is given by matrix of transition

probabilities

P̂ =
(
p̂kr
)
k,r=0,1;

p̂01 = 1 − p̂11 =
∫

X1

π1(dx)P(x,X0) = 1 −
∫

X1

π1(dx)P(x,X1);

p̂01 = 1 − p̂00 =
∫

X0

π0(dx)P(x,X1) = 1 −
∫

X0

π0(dx)P(x,X0).

(5.7)
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As p̂kr /= 0, k = 0, 1, then x̂n has virtual transitions. Intensities Λ̂k of sojourn times θ̂k, k = 0, 1,
of the merged MRP are calculated as follows:

Λ̂k =
1
mk

, mk =
∫

Xk

πk(dx)m(x), k = 0, 1. (5.8)

And, finally, the merged MRP (x̂n, θ̂)n∈Z+
in the merged phase space X̂ is given by the

stochastic matrix

Q̂(t) =
(
Q̂kr

)

k,r=0,1
:= p̂kr

(
1 − e−Λ̂kt

)
, k, r = 0, 1. (5.9)

Hence, the initial semi-Markov system is merged to a Markov system with two classes.

5.3. Merged Diffusion Approximation in the Case of Two Ergodic Classes

The merged diffusion GMRP in the case of two ergodic classes has the form:

S̃(t) = S0e
−(1/2) ∫ t0 ρ̂2(x̂(s))ds+

∫ t
0 σ̂ρ(x̂(s))dw(s) (5.10)

which satisfies the stochastic differential equation (SDE):

dS̃(t)

S̃(t)
=

1
2

(
σ̂2
ρ(x̂(t)) − ρ̂2(x̂(t))

)
dt + σ̂ρ(x̂(t))dw(t), (5.11)

where

ρ̂2(1) :=
∫

X1

p1(dx)
∫

X1

P
(
x, dy

)
ρ2
(
y
)

m(1)
,

ρ̂2(0) :=
∫

X0

p0(dx)
∫

X0

P
(
x, dy

)
ρ2
(
y
)

m(0)
,

σ̂2
ρ(1) :=

∫

X1

p1(dx)
∫

X1

P
(
x, dy

)
ρ2
(
y
)
+
∫

X1

P
(
x, dy

)
ρ
(
y
)
R0

∫

X1

P
(
x, dy

)
ρ
(
y
)

m(1)
,

σ̂2
ρ(0) :=

∫

X0

p0(dx)
∫

X0

P
(
x, dy

)
ρ2
(
y
)
+
∫

X0

P
(
x, dy

)
ρ
(
y
)
R0

∫

X0

P
(
x, dy

)
ρ
(
y
)

m(0)
,

(5.12)

x̂(t) is a merged Markov process in X̂ = {0, 1} with stochastic matrix Q̂(t) in (5.9).
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6. European Call Option Pricing Formulas for Diffusion GMRP

6.1. Ergodic Geometric Markov Renewal Process

As we have seen in Section 3, an ergodic diffusion GMRP Ŝ(t) satisfies the following SDE
(see (3.10)):

dŜ(t)

Ŝ(t)
=

1
2
(
σρ − ρ̂2

)
dt + σρdw(t), (6.1)

where

ρ̂2 =
∫

X

p(dx)
∫

X

P
(
x, dy

)
ρ2
(
y
)

m
, (6.2)

σ2
ρ =
∫

X

p(dx)

[
1
2

∫

X

P
(
x, dy

)
ρ2
(
y
)
+
∫

X

P
(
x, dy

)
ρ
(
y
)
R0P
(
x, dy

)
ρ
(
y
)

m
. (6.3)

The risk-neutral measure P ∗ for the process in (6.1) is:

dP ∗

P
= exp

{
−θt − 1

2
θ2w(t)

}
, (6.4)

where

θ =

(
(1/2)

(
σρ − ρ̂2

) − r)

σρ
. (6.5)

Under P ∗, the process e−rtŜt is a martingale and the process w∗(t) = w(t) + θt is a Brownian
motion. In this way, in the risk-neutral world, the process Ŝt has the following form

dŜ(t)

Ŝ(t)
= rdt + σρdw∗(t). (6.6)

Using Black-Scholes formula (see [8])we obtain the European call option pricing formula for
our model (6.6):

C = S0Φ(d+) −Ke−rTΦ(d−), (6.7)

where

d+ =
ln(S0/K) +

(
r + (1/2)σρt

)

σρ
√
t

,

d− =
ln(S0/K) +

(
r − (1/2)σρt

)

σρ
√
t

,

(6.8)

Φ(x) is a normal distribution and σρ is defined in (6.3).
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6.2. Double Averaged Diffusion GMRP

Using the similar arguments as in (6.1)–(6.7), we can get European call option pricing formula
for a double averaged diffusion GMRP in (3.24):

dŠ(t)
Š(t)

=
1
2

(
σ̌2
ρ − ρ̌2

)
dt + σ̌ρdw(t), (6.9)

where σ̌2
ρ and ρ̌2 are defined in (3.21), (see also (3.13)), and (3.15). Namely, the European call

option pricing formula for a double averaged diffusion GMRP is:

C = S0Φ(d+) −Ke−rTΦ(d−), (6.10)

where

d+ =
ln(S0/K) +

(
r + (1/2)σ̌ρt

)

σ̌ρ
√
t

,

d− =
ln(S0/K) +

(
r − (1/2)σ̌ρt

)

σ̌ρ
√
t

,

(6.11)

Φ(x) is a normal distribution and σ̌ρ is defined in (3.21).

6.3. European Call Option Pricing Formula for Merged Diffusion GMRP

From Section 3.2, the merged diffusion GMRP has the following form:

dS̃(t)

S̃(t)
=

1
2

(
σ̂2
ρ(x̂(t)) − ρ̂2(x̂(t))

)
dt + σ̂ρ(x̂(t))dw(t), (6.12)

where σ̂2
ρ and ρ̂2 are defined in Section 3.2 (see (3.18). Taking into account the result on

European call option pricing formula for regime-switching geometric Brownian motion (see
[4, page 224, corollary]), we obtain the option pricing formula for the merged diffusion
GMRP:

C =
∫
CBS
T

(( z
T

)2−1
, T, S0

)
FxT (dz), (6.13)

where CBS
T is a Black-Scholes value and FxT (dz) is a distribution of the random variable

zxT =
∫T

0
σ̂2
ρ(x̂(t))ds, (6.14)

where x̂(t) is a merged Markov process.
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