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ABSTRACT

A stoichiometric and a non-stoichiometric multiphase reactive flash algorithm
were developed. These algorithms used a successive substitution mechanism to update
fugacity coefficients in an outer loop. A nested inner loop solved the elemental balances
and reaction equilibria requirements with a Newton-Raphson procedure. The inner loops
in both cases were convex and quickly converged. Average chemical potentials for each

species were used to define the reference phase chemical potentials.

The reactive flash routines were initiated with the maximum number of phases:
one more than the number of components. Phases were combined as they became
identical at each iteration. The tangent plane distance was incorporated into the
unnormalized mole fractions of each phase so that phase stability could easily be
examined during each iteration of the outer loop. This feature allowed incipient phases to

be determined.

Both algorithms performed well in predicting the multiphase equilibria of
methanol synthesis from carbon dioxide and hydrogen. An excess free energy mixing
rule for a cubic equation of state was developed and used with the non-stoichiometric
algorithm to calculate the conversion of methanol and isobutene to MTBE over a range of
compositions. An association model for sulfur allotropes and sulfanes was used with the
non-stoichiometric technique to successfully predict sulfur vapour pressures, enthalpies

of vapourization and sulfur solubilities in hydrogen sulfide.

An algorithm to calculate isobaric lines of constant phase fraction in a
polydisperse polymer/solvent system was developed. When a phase fraction of 0 or 1
was used, the lines represented the cloud and shadow point curves. A functional
approach to continuous thermodynamics was employed using the Sanchez-Lacombe
equation of state to model the components. Five scalar equations defined a single point
on a curve and could be solved quickly using a Newton-Raphson method. Required
integrations were done using a fifth order Runge-Kutta technique or a Gaussian

quadrature technique.
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The cloud point curves for a polyethylene/n-hexane system (M, = 8000,
M,, = 177000) showed an unstable critical point and a LLL point when the polyethylene
was modeled with a log-normal distribution. Polyethylene modeled with the Shultz-Flory
distribution did not show the same three phase point nor the unstable critical point.

A preliminary investigation into a multiphase polymer flash using continuous
thermodynamics was done. The Sanchez-Lacombe equation of state was used to
represent the components. Both a successive substitution approach and a Newton-
Raphson approach were used to solve the scalar equations that defined the equilibrium.
The development of the algorithm allowed incipient phases to be determined.

It was found that a damped successive substitution method was more reliable than
using a combination of the successive substitution and Newton-Raphson techniques.
Additional studies into initiation techniques and the effective use of a Newton-Raphson

step to decrease convergence time are recommended.

iv



ACKNOWLEDGEMENTS

I would like to acknowledge and thank my supervisor, Dr. Robert Heidemann, for
his guidance, assistance and support in completing this work. Time and time again, his
insight was beneficial in overcoming many of the computational and conceptual hurdles

encountered in this work.

I would also like to thank my many friends and colleagues at the University of
Calgary. They quite often helped me to step back, examine my objectives and then return

to my tasks with a renewed vigour and a fresh approach.

Funding for this work was provided by the Natural Sciences and Engineering
Council of Canada and the [zaak Walter Killam Foundation. It is greatly appreciated.



Dedicated to my family

Their unconditional support of my endeavours has always been

the comerstone of my success.



TABLE OF CONTENTS

ABSTRACT i
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vii
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF SYMBOLS xiv
1. INTRODUCTION 1
L1 MOUVAHON. .....ccouiireerneecnteteeneesesessesesessssssssssssssssessensessessssssnsosesesasssessnsrens |

1.2 Reactive Flash AIGOrithms...............ooemvremeieieeeeeeieeceeee s eeecseeeeeseeeseasens 2

1.3 Continuous ThermOodyNamIUCS ...........c.cceeverererereereererrerresresersresssssessssssssessnsssenns 3

1.4 Cloud and Shadow Point Calculations...............cccveevevemeeermererreneeeerensescsssennns 3

1.5 Polymer Flash AIOFItAIMS ...........cvoeieeiiieeeeieete oo eeeeeeeeeeeseeseessessasamenns 4

1.6 DiSSETLAtION OVETVIEW .....uceueueeeecerrerenrereneeerenesienessesseeneessesesesssnsasesssasssensssess 5

2. REACTIVE FLASH ALGORITHMS 6
2.1 INEOQUCHION......cou ettt eeeeetese s s et sses e see e e sensssese s s memseeonas 6

2.2 Terminology and Equilibrium Requirements .........ccc.cccoveverereremeuerererrerernerennn. 7

221 GENEIAl e e entae 7

2.2.2 Reactions, Reaction Extents and Elemental Balances...................... 7

2.2.3 Equilibrium Requirements..............c.cooeevveerreemereeenevernerreeesveeenssens 9

2.2.4 Stoichiometric and Non-Stoichiometric Methods ......................... 11

2.3 Literature Review of Chemical and Phase Equilibria Calculations................ 11

2.3.1 Literature ReVIEW.........ccuceereeecreeeeeeneeeeereeneeeeenesesnnsesensesennssenes 11

2.3.2 COMIMENLS ..cccoiereeeererereernceeeneeereesssessneessesnessaesseesennsensesnenee 23

2.4 The Stoichiometric AIgOTithm............cceceererereeececieeeeeereee e eceee e eeseaeaeeas 24

2.4.1 System Definition and Algorithm Objectives..........cecvveeccererernnne 24

2.4.2 The Reference Phase Chemical Potentials........c.ccceeueerecrereervennenee 25

2.4.3 Tangent Plane Stability Criteria...........ccoeeevcreurnenncnncccrrerereernsennnnn 26

2.4.4 Phase Distribution Variables and Material Balances..................... 27

245 The INNEr LOOP ...ttt et e e e sensesesnsnsaesenes 29

2.4.6 The OULEr LOOP.....ocouirerrercrnrecreeeieeneesaesensessesaesssssessessessessessnsnns 31

247 INIHAHON coocicccicceeeieeeeeeeneseseese e nnessnesteesesanasassessessnssesenenne 32

2.4.8 Computational CONCEmS........c.ccceeeeverueercrscrcncrcseencecenessocsasncnscees 36

2.5 The Non-Stoichiometric AIgOrithim.............cceeeeeeeereeeceeeeeeeeneresnesessseaensenenens 37

2.5.1 System Definition and Algorithm Objectives..........cccecvucivencucnnes 37

25.2 TheINNEr LOOP ..ireririeeceerreenieeeesececreneeneeeacsassssasassssnsnsees 38



2.5.3 The OULEr LOOP.....c oot reseeereeeeeeeeeeeeesesesees e esssssens 41

2.5.4 Initiation rreereseseesseeaee s as e aasteeaestenssenrnennsnne 41

2.5.5 Computational CONCEIMS.........c..cecueueeremreerenreeeneseseeeenseaessoensenans 43

2.6 SUMIMATY ..o.uooerrcereneeeertieeesteecesescnsnsassssesesesesessesesereesesssnsssssesessasesenssssensemmens 44
3. REACTIVE FLASH CALCULATIONS 45
3.1 INPOUCHON ...ttt et e sese e soeem e aneasesesasemessesenes 45
3.2 Methanol SYNhESIS.......ccocceerieniereeeeeeee et e e oo tee st esssee e e eesssssaes 45
3.3 MTBE ProdUCHON.......c.euoueeeceerceeeteeeeeeeeee e seerecsssee s en s oeenseecssesessasssessssesens 57
3.4 Sulfur-Hydrogen Sulfide Systems ...........uoeeemeeemeicceneeemeeeeeeeeeeeeeeeeeesesnnns 63
3.4.1 Introduction to Sulfur ChemiStry..........cceccoeeeveureeeeinrceeereeereeeerunenn 63

3.4.2 The Sulfur Association Model.............coueeevreereneereeeeeeeeceeeeeenne. 64

3.4.3 Sulfur Solubility in Hydrogen Sulfide ..o 69

3.5 Summary .......ccceeeceeercereneane rtreeereere s teeses sttt e ene s e nearanten 75
4. CONTINUOUS THERMODYNAMICS OF POLYMER SYSTEMS .....cccee... .76
4.1 INTOUCHON........eceiieeieeeceeccrreeernnteresec s s seeseesesssesceensesesease s msasneemsessnneas 76
4.2 Literature REVIEW.......cocciuiiieeiecrniireereeire et e ssesssssseesesenessssmsensns 77
4.2.1 Method of MOMENLS...........cuueieieereeeeceeeceeceeeesereeeeeeee e eenens 77

4.2.2 Functional Approach..............cceeeeeeeeiveeneeeeeccreeeeeeeseseesens 79

4.3 TermMINOIOZY .......orceieeieeiineireeneerertenteeeseeese s e seseeeensos st sesaneneassseasesserasans 84
4.3.1 The Segmental Distribution Function..............cceeeevevreveeeeereeennnen. 84

4.3.2 Chemical Potentials ............oocoveeeeeeeereeeericeieeceeeeceeeeeeeaesesenns 86

4.4 DIStIDUHONS. ...ttt ettt e ae st e st oesaseseeseseaeeesa e rees 89
44.1 Log-normal Distribution...........ccccceeeverrverreerremreeeeeceeeeeeeeseene 89

4.4.2 Shultz-Flory Distribution..............cceeueeeemeeneiimeeeeeeneeeeeceeeeseesnns 91

4.43 Distribution COmpariSon.............c.eovceeieereeerceeeeieeeeeeeeeeeessanns 91

4.5 Integration ROULNE .........cooreieieeititeneereeceete et e e e e s seaneneesaseessaesssses 94
4.5.1 High Precision ROutine..........cccoeceermeererereeneeeceeeneeeee e 94

4.5.2 Gaussian QUAdratUre.............ccveeeevereeeeeeeeeeereeeereeesseeseesseeensaens 97

4.6 The Sanchez-Lacombe Equation of State.................c.ccoeeveeeveeeereeeeeeneenvennne. 99
4.7 The VOIUME SOIVET ........coiiicieereeintert ettt ee e sessessesne s eeneee 102
4.8 SUIMMATY ....cceooniiiinireieeeecreereetetntnessaseaesesaesseesssseseesnsessnsssssssssssensesssones 104
5. CLOUD AND SHADOW POINT CURVE CALCULATIONS 105
5.1 INPOQUCHION.......coueiiniciirieintieccecreereneeteesreteseeseeneessesne e rasessneessessseesnnsseses 105
5.2 Algorithm Development .............coeionirereeenreriererereeeereesseesesaeseessesesens 107
5.2.1 Background ... ee e 107

5.2.2 Problem Definition..........ceiieoeeeeeceeeeeeeecreeeeneeereensenseeaenene 108

5.2.3 Segmental Balances ............ueeeeereeeneeeeeeereeeneeeennneeeeesnenseeesennns 110

5.2.4 Defining the Segment Fractions and Distributions...................... 110

5.2.5 Equality of Chemical Potentials.............ccccerueeeecrcereerecreneeeennees 113

5.2.6 Summation Requirement ..............cocceouereevereeereeeceercersensersnensenene 114

5.2.7 The Specification Variable............ccceeecureeecrecrrieeeeeeceececneeeenee 115

5.2.8 Updating Procedure ereeessseste e atenteses e nesesssaesrasaessnesaraens 116



5.2.9 Specification Variable Progression............ccceoeveeereeneeererceenecnnnes. 118

5.2.10 Convergence of Integrals ................cuu....... ceereereeeee 120
5.2.11 Program OVETVIEW ...........cccceeeeueereerveremereeneenseseressensreresesssssssesnns 123
5.3 EXAMPIES ....eeorireiiirceeteneerseeeseeesessesessesessssessessessesssnessesensasseenssnsana 125
5.3.1 Polyethylene/n-Hexane at 6 Bar ..............cooveeemeeeeeerncrnceceencncnnes 125
5.3.2 Polyethylene/Ethylene at 1750 Bar........coceeeeeeemerrerceeeseeeeenenes 137
3.4 SUMIMATY .....coouirriiirirrieneeneereeserssessessssesserssssessesssessessessnssessesnsssassssssassemnes 138
6. A CONTINUOUS THERMODYNAMIC MULTIPHASE POLYMER FLASH
PROCEDURE 140
6.1 INTOAUCHON.........cootiiieeccrteeetee et rne s eessese s resesessssnassennes 140
6.2 Algorithm Development ................eeeeeeeeeeieceeceeeecteeseereereeaessese s scnsensaens 141
6.2.1 Background ...ttt ne e 141
6.2.2 Problem Definition............ccoveveieenrceeceeeceereeeeeeese e 143
6.2.3 Equality of Chemical Potentials..............cccevrreerereereercrrnceerencnnes 144
6.2.4 Stability Criteria........cccoeereerrreeeeeerrieeecreeeereereneseeeesssessnseseseeneees 145
6.2.5 Normalized and Unnormalized Segment Fractions ..................... 147
6.2.6 Segmental Balances and Summation Requirements.................... 149
6.2.7 Defining the Reference Phase Fugacity Coefficients .................. 151
6.2.8 Eliminating the Functional Equations............ccccoceeereerrenrreenennnee. 151
6.2.9 Solving the EQUAtiOnS .........ccccoeveeremeeeecenceneestenaeescsiesnssesesnes 155
6.2.10 INIHAON ..ottt ea e eten e aee 160
6.2.11 Procedure OVEIVIEW..........cceceeeeemeccecverereeneneecensessnseessneseesesenens 165
6.3 Example CalCulations ....... ...cccoeueceueemereereieneereeeeseereesenesenesereeseaesesessssssssssnns 167
6.4 SUIMIMATY ......cormiririretcceinerinrereeeesessesesseseesesssssessneseseessesesessessasessssssssessaos 171
7. CONCLUSIONS AND RECOMMENDATIONS 173
7.1 INOQUOCHION.....c..eceeeiiiieeenicreeceerieteeteereetreeeeeeres s eesasseesssssesssrsessrssesassennens 173
7.2 Reactive Flash Calculations..............ccooeveeveeuemereeervervessseessessesesnssesssesessenens 173
7.3 Continuous Thermodynamics and Polymer Phase Equilibria ...................... 175
7.4 FUUFE WOTK ......coeeieiiticnicnneeetntetenreeenenectessensesssessesesssesssesessesasssnssnnssansens 176
LITERATURE CITED 178
APPENDIX A - DEVELOPMENT OF THE Gt MIXING RULE 191
Al INOQUCHON . ..o cceeecieeientteeteeeeete e eeereeeesaeesereersnssessnsnssssessseesssessessessssrnns 191
A2 TREOTY ettt et cteeseesseestreense s saaae e e e e esnasseasassssssssansseneans 193
A.2.1 Standard States.............ccceveecrerrceereneererrenerreeceesenarseetseesnersessens vene 193
A.2.2 Development of the Standard State Transcendental Equations ...195
A.2.3 Fugacity CoeffiCients.........cccoceevererereereeerrrreeccerecsennencsescsssaesessenens 199
A.2.4 Mixing Rules forb,cand d ........ccceceeevemeieeceeercrueceescerneseesennenne. 204
A.3 Example Calculations .........c..cccuieeeeereeieereerecrereeeceeecsnscsnsesecsseaserssesasesnnens 205
A.3.1 VLE Predictions of Typical Binary Systems..........ccccecevccrernenee. 207
A.3.2 Benzene-Water Three Phase Line Calculations..................ucu...... 210
A4 SUMMATY ......ovvieereerreeciierieninenrnesenessssesssesssssessssesssesnesssansessssssassssasssssasssensonss 212



APPENDIX B - DERIVATIVES FOR THE CLOUD AND SHADOW POINT
CURVE ALGORITHM

B.1 The Objective Functions........ ceeeereenesseste e nesseeasansenae
B.2 The Jacobian Derivatives ............cccceoreeeererereneeeveeneseennnns

B.3 Segment Fraction DETIVAtIVES ...........ccoeeerrerereeerceererrinrerneeeeenesesscssesseesesonse
B.4 Number Average Number of Segments Denvanv&s ....................................

B.5 Derivatives of the Sanchez Lacombe Activity Coefficients. ....................... 218
B.6 Volume Derivatives for the Sanchez-Lacombe EOS................coeuereunennn.

APPENDIX C - DERIVATIVES FOR THE NEWTON-RAPHSON FLASH
ALGORITHM

C.1 The ObjJective FUNCHONS ........ccocoeeeemirerrrrerererreessnecnenesessesereesessssessesssenens

C.2 TRE JACODIAN......ccoeeeeeeeeieeeeeeeeeeeeeeecneasteeessseesasaeeeaseeeassesannssssssssssssssssssensessses

C.3 Segment Fraction DETIVALIVES ............ceceeereerereercereereeerereseeseseeeesneeessssens
C.4 Number Average Number of Segments Derivatives.............coceurueeereunnennee.

C.5 Reference Phase DEriVAtIVES ..........eeeeceeeeereeeeeeeeeeeeeeereereesseeseesssessessssnnessees
C.6 VOIUME DEIIVALIVES. ... .uveeeneeieeeeceeeeeeeereeceeeessessseeseeessessssesssssesssseessssssssssssns



LIST OF TABLES

Table 3-1 - Pure Component Critical Properties, Acentric Factors and Enthalpies of

FOMMAtION. ...t se e s seassenssstsans 46
Table 3-2 - Pure Component Ideal Gas Gibbs FUNCtion..............coeceeueeeeememeceeeenenenns 46
Table 3-3 - SRK Interaction Parameters. ............e.ueueeeeeeecmeececncneceeesessesessssecssssmseneseens 48
Table 3-4 - Methanol Synthesis at 30 MPa and 473.15 K. .....comeeeecoemeeeeeceeeeeeeeeeennns 48
Table 3-5 - Methanol Synthesis with Octadecane at 10.13 MPa and 473.15K. ............. 49
Table 3-6 - Methanol Synthesis Iteration COURLS. .............ooueeuemeeeemeeeceemeneeenremeeeeesssmannn 51
Table 3-7 - Stoichiometric and Non-Stoichiometric Computation Times........................ 54
Table 3-8 - Iteration Count and Break Down of Computer Time...........ccceuvveemrueeuncnmene. 54
Table 3-9 - Pure Component Properties for MTBE Production. .............ccccecureeveimncnecne.. 59
Table 3-10 - Wilson Model A; and A;; Parameters. .............ceeeeeeerecememeeeeeeeceesensecsensssensnns 59
Table 3-11 - Ideal Gas Gibbs Function Values for MTBE Synthesis Components. ....... 59
Table 3-12 - MTBE Dew and Bubble Point Curve Data. P = 101.325 kPa.................... 62
Table 4-1 - Distribution Parameters for Polyethylene. M, = 8000, M, = 177 000......... 92
Table 4-2 - Cash-Karp Parameters for Runge-Kutta Method .............coereueeemeeceemeunnnncnee. 96
Table 4-3 - Integration TOIETANCES........c.cceeueviuenrereeeieeeeeeceeeeeneeeeeeeeeeeeseseeesese e asmeesesensans 97
Table 5-1 - Sanchez-Lacombe Pure Component Parameters..............cccoemevemereeemnneenns 124
Table 5-2 - Cloud and Shadow Point Phase Properties. .............coccovuvreeeereveereecsenrnnnes 129
Table 5-3 - Cloud and Shadow Point K ValUes. ..............cecevereueereerveennereerererceresseenns 130
Table 5-4 - Comparison of Integration ROULINES. ..............oeveememeueeeereereerieenneeersernas 136
Table 6-1 - Polyethylene/n-Hexane Flash Calculations..............cc.cevveereerrereeeenervererennns 168
Table 6-2 - Iteration Counts for Flash Calculations.............c.coeeeeveeeeeeruenereeenerecnensennene 169
Table A-1 - TBMC EOS a Parameter Temperature Dependence Coefficients. ............ 205
Table A-2 - Pure Component Critical Properties and TBMC EOS Parameters. ........... 206
Table A-3 - NRTL Parameters and Sources For Binary Mixtures. .........c.ccoceceeereneunnees 206



LIST OF FIGURES

Figure 3-1 - Comparison of Stoichiometric and Non-Stoichiometric Algorithms in

Methanol Synthesis. .........ccoierereereeeeeccereeereeeceeee e e e eesens 52
Figure 3-2 - MTBE Production Dew and Bubble Point Curves. P = 101.325 kPa......... 60
Figure 3-3 - Pure Sulfur Vapour PreSSures. .............ccourvememmeeeneereemenenenencnsnssessencemssesseses 66
Figure 3-4 - Pure Sulfur Enthalpy of Vapourization.....................cccueueueemememenecscesreens 67
Figure 3-5 - Pure Sulfur Vapour COMPOSItIONS. .......c.cveuevemcreeeeeemrencerecseisesessssensssesesson 68
Figure 3-6 - Pure Sulfur Liquid COMPOSILIONS. .......c.cvrveeeemrieceeeeceeencscescseseenssesessesenene 68
Figure 3-7 - Solubility of Sulfur in Hydrogen Sulfide. Without Sulfanes...................... 70
Figure 3-8 - Solubility of Liquid Sulfur in Hydrogen Sulfide. With Sulfanes. .............. 73
Figure 4-1 - Log-Normal and Shultz-Flory Distributions. Semi-Log Plot. (Polyethylene
with M, = 8000 and M, = 177 000) ....cccerreereernereerereereenenereserneseesenssennes 93
Figure 4-2 - Log-Normal and Shultz-Flory Distributions. Log-Log Plot. (Polyethylene
with M, = 8000 and M,, = 177 000) ......ccoereeererererererreeeererereereensersneennns 93
Figure 4-3 - Molecule Count of Log-Normal and Shultz Distributions. (Polyethylene
with M, = 8000 and M,, = 177 000) .....c.coueereeerreererereeecrrereereeaeeneecenesnes 94
Figure 5-1 - Representative Polymer Cloud Point CUIVes.............cccoeeeeeeiecreenevenenens 106
Figure 5-2 - Flowsheet of Cloud and Shadow Point Calculation Algorithm................ 122
Figure 5-3 - Cloud and Shadow Curves of Polyethylene in n-Hexane.......................... 126
Figure 5-4 - Liquid-Vapour Cloud and Shadow Point Curves of Polyethylene in n-
HEXANE. ...ttt eescuete e sts e e aee e s e nnaesens 128
Figure 5-5 - Molecular Weight Distributions of Polyethylene in n-Hexane.................. 129
Figure 5-6 - Failure of Cloud Point Calculation with Log-Normal Distribution........... 131
Figure 5-7 - Cloud and Shadow Point Curves for Polyethylene/n-Hexane Using a
Shultz-Flory DistribUtion. ..........cccceecereeeiereentnracereneeeeececsnessesnseseesssees 133
Figure 5-8 - Cloud Point Curve of Polyethylene in n-Hexane. 10 Point Hermitian
QUATALUTE. .........eeeeeeeeeeceeereeenicetreenreresaseessseenessassssenessssessosssesssnsssessssnns 134
Figure 5-9 - Cloud Point Curve of Polyethylene in n-Hexane. 30 Point Hermitian
QUATALUTE. ........oooeeeeeieereeeceneene e eeeeneesiesresesessnesessesaenssesnesansosas 135
Figure 5-10 - Cloud and Shadow Point Curves for Polyethylene/ethylene. .................. 138
Figure 6-1 - General Flowsheet for Multiphase Polymer Flash.............cccccecovrueueeeennene 162
Figure 6-2 - Successive Substitution INNET LOOP.......c.coceeemruermrrereeerensecsssesssesesesnscseens 163
Figure 6-3 - Full Newton-Raphson FIOWSheeL...........cccoeeereemmreiremenreeeeneeseenensessenceasaseans 164

xii



Figure A-1 - Methanol-Benzene VLE Using the Peng-Robinson EOS and Heidemann-

Kokal Mixing Rule With the NRTL Activity Model. 207
Figure A-2 - Acetone-Water VLE With the Peng-Robinson EOS and Heidemann-Kokal
Mixing Rule With the NRTL Activity Model..... 208
Figure A-3 - Isopropanol-Water VLE Using the Peng-Robinson EOS and Heidemann-
Kokal Mixing Rule With the NRTL Activity Model. ............................ 208
Figure A-4 - Ethanol-Water VLE Using the Trebble-Bishnoi EOS and Heidemann-
Kokal Mixing Rule With the NRTL Activity Model. ............................ 209
Figure A-5 - Benzene-Water Three Phase Line CompoSitions...............cceccervermeemeneenene. 211

Xiii



LIST OF SYMBOLS

Scalar Variables (Roman)

A -
AK -
A -

1

.PI 8 c;k e-hl ‘3‘ L--k
R

IR
(] ) )

-

.QNI Q.eih %>
S
1 (]

-~

o QO
»~

8

[¥els
l-lq

SH 0 6
o
) L [} L

SRS

component independent porition of 43,. in Chapter 6

component independent portion of In K (r) defined by equation (5.17)
chemical formula of component i in Chapter 2

component independent portion of In ¢; and In ¢g;(r) in Chapter 6
component independent portion of In K (r) defined by equation (5.18)
Wilson activity coefficient model parameters (cal/mol) in Chapter 3
NRTL activity coefficient model parameters (mol/cal) in Appendix A
equation of state parameter

Sanchez-Lacombe equation of state parameters using continuous
thermodynamics

parameters in the Runge-Kutta integration routine

amount of element k£ in component i

coefficient of 7 in the definition of In K(r) defined by equation (5.17)
coefficient of r in the definition of In K(r) defined by equation (5.19)

coefficient of r in the definition of @, in Chapter 6

coefficient of r in the definitions of In ¢; and In ¢,(r) in Chapter 6
equation of state parameter

Sanchez-Lacombe equation of state parameters using continuous
thermodyanamics

total moles of element &

total moles of elements in modified feed vector, z°

number of components

number of discrete components in the discretized system of Chapter 6
coefficients in temperature dependent expression of K,
Trebble-Bishnoi equation of state parameter in Appendix A

coefficients in the 5® order Runge-Kutta integration routine in Chapter 4
Mathias-Copeman coefficients in Appendix A

cubic extrapolation coefficients in cloud point curve calculations
tangent plane distance of test phase j

Villar’s (1959) deviation from reaction equilibrium

Gateaux derivative of the Gibbs free energy in the direction of J,.
Trebble-Bishnoi equation of state parameter in Appendix A

weighted sum of K values for component i, equations (2.43) and (6.21)
total Gibbs free energy

generic function in integration routine definitions

equations (A.25) and (A.26) defining the zero pressure standard state in
Appendix A

Xiv



fi - reference phase fugacity of component i

- standard state fugacity of pure component
Ji - fugacity of component / in phase j
G - total Gibbs free energy
g - residues in the cloud point curve algorithm of Chapter 5
&; - error in equilibrium criteria in Chapters 2 and 6
84j> aij - errors in the successive substitution routine in Chapter 6
Hu) - George et al. (1976) molar transformation function
h - standard state compressibility in Appendix A
h - step size in Runge-Kutta integration routine
hyly - optimality criteria defined by equations (2.50) and (2.51)
hy; - error in In K; values in Chapter 6
hgy - error in In Kj; values in Chapter 6
K, - segmental K value for solvent in Chapter 5
Kyr) - segmental K value for polymer in Chapter 5
Kp; - interaction parameter for d parameter in the Trebble-Bishnoi equation of
state
K; - thermodynamic distribution variable of component i in phase j (K value)
K, - reaction equilibrium constant for reaction k
K, - sulfane reaction equilibrium constant
k - Mathias-Copeman coefficient in Appendix A
k, - intermediate variables in the Runge-Kutta integration routine
k; - interaction parameter
l; - summation requirement residues in Chapter 6
¢ - Lagrangian function
InkK, - component independent portion of In K;; and In K;(r) in Chapter 6
InKj; - coefficient of  in the definitions of In K; and In K(r) in Chapter 6
M - number of elements
M, - molecular weight distribution parameter used by Koak (1997)
M, - mass fraction polymer
M, - number average molecular weight
M, - mass average molecular weight
m - successive substitution damping factor in Chapter 6
N - number of quadrature points
N; - initial guess for total number of moles of component i in the
stoichiometric algorithm
NS - number of source components in the association model
n - total number of segments in a disperse system
n, - number of discrete components in a semi-continuous system
n - total moles of component {
n - initial moles of component i
n; - total number of segments of component i in a disperse system

differential variable representing a change in the number of segments at »’

=
'

,-



v

S YYD RR

L

NSNS

total number of moles in a system

total number of moles in phase j

moles of component i in phase j

absolute pressure

critical pressure (MPa)

pure component Sanchez-Lacombe pressure parameter
objective function to be minimized

Brinkley’s (1947) modified feed composition of component i
gas constant

number of reactions (in indices).

ration of methanol to isobutene in the feed for production of MTBE
segment count of polymer molecules

number average number of segments

reference phase number average number of segments
segmental distribution parameter

segment count of solvent i

damping parameter in the Newton-Raphson step of the non-stoichiometric
algorithm

specification parameter in Chapter 5

absolute temperature

normal boiling point (K)

critical temperature (K)

pure component Sanchez-Lacombe temperature parameter
temperature of NRTL correlation in Appendix A

limit variable in the Gateaux derivative

convergence tolerance in the successive substitution routine of Chapter 6
George et al. (1976) molar transformation variable
specific volume of component i (cm*/mol)

specific volume

Sanchez-Lacombe volume parameter

intensive segmental distribution function

reference phase segmental distribution function

extensive segmental distribution function

transformation variable in the integration routines
unnormalized mole fraction of component i in phase j
reference phase mole fraction of component i

mole fraction of component i in phase j

initial mole fraction of component i in the feed



Scalar Variables (Greek)

a - a/bRT in Appendix A

a - composition independent portion of chemical potentials, equation (2.49)

a; - specification variable in Chapter 5

a; - NRTL model parameter in Appendix A

B - segmental distribution parameter

B - extrapolation coefficient in Appendix A

B - number of moles in phase j in Chapters 2 and 3

B - segmental phase fraction of phase j in Chapter 6

X - extrapolation parameter in Appendix A

) - defined by equation (A.14) in Appendix A

5.(r) - Dirac delta function centered at r’

Arax - maximum tolerance in the Runge-Kutta integration routine

A4E - excess Helmholtz free energy

AGF - excess Gibbs free energy

AHg,, - enthalpy of formation at 0 K (kJ/mol)

An;, - small change in the number of moles of component i

£, & - parameters in the Runge-Kutta integration routine

& - Sanchez-Lacombe energy parameter

¢ - phase segment fraction in Chapter 5

@, - reference phase fugacity coefficient

&; - fugacity coefficient of component i in phase j

¢,;.’ - initial guess for the fugacity coefficient for component i in phase j within
the non-stoichiometric algorithm

A; - Wilson activity coefficient model parameters

¥ ¥Ar) - segment-molar activity coefficient in Chapters 4-6

Y - activity coefficient of component { in phase j

K - mass of a polymer segment

A - damping parameter in cloud point curve calculations

A - Lagrange multiplier associated with element j

H - segmental chemical potential

A, - reference phase chemical potential of component i

u - standard state chemical potential of component i

H; - chemical potential of component i in phase j

V; - stoichiometric coefficient of component / in reaction j

/4 - number of phases

6 - dimensionless tangent plane distance of test phase j

o - pure component Sanchez-Lacombe density parameter

o - divergence parameter



)
1

SERNTRTQS L DN

Y, ¥, -

reduced temperature
NRTL parameter

acentric factor

weighting factor for node & in quadrature integration
slack variable

weighting function in quadrature integration
dimensionless zero pressure standard state density in Appendix A
defined by equations (A.16) and (A.17) in Appendix A
reaction extent of reaction j

initial guess for the reaction extent of reaction j
unnormalized segment fraction

normalized segment fraction

reference phase segment fraction

defined on page 195 of Appendix A

Matrices and Vectors (Roman)

> >

FEmn oo
=
-]
] [} ] 1

>

= ZFE T~
R

N <8

N N
'

elemental composition matrix

modified elemental composition matrix

elemental abundance vector

modified elemental abundance vector

vector of the residues in the cloud point curve algorithm in Chapter 5
Hessian matrix

vectors of optimality criteria defined by equations (2.50) and (2.51)
vectors of errors in In K ; and In Kj; values in Chapter 6

identity matrix

Jacobian matrix

vector of summation requirement residues in Chapter 6

vector of In K,; values

vector of In Kj; values

matrix of reaction stoichiometric coefficients

vector of total number of moles

vector of the total number of moles in each phase

symmetric decomposition of the Hessian matrix

(MxR) full matrix defined by equation (2.63)

vector of initial feed compositions

modified feed composition vector

xviii



Matrices and Vectors (Greek)

a

B
Aax

A
Vi

3

Subscripts

A

B

i,J, k,
I,m

r

’

Superscripts

I
I
F
L
V

vector of independent variables in Chapter 5

vector of phase mole numbers in Chapters 2 and 3

Newton-Raphson change in the cloud point curve independent variables
vector of Lagrange multipliers

vector of stoichiometric coefficients of reaction j

vector of reaction extents

solvent
polymer
indices

reference phase
segment count which Dirac delta function is centered upon

phase I
phase 1

liquid
vapour



1. INTRODUCTION

“In an extensive program of computations, the author has employed clerical
personnel in all numerical portions of the work.” (Brinkley, 1947)

1.1 Motivation
In Brinkley’s 1947 paper on the computation of chemical equilibrium in

homogeneous systems and heterogeneous systems with pure solids, repetitive
calculations were performed using a number of clerical personnel. Techniques to
calculate chemical equilibrium had to be simple and robust because of the slow and
tedious nature of the work. Since 1947, the development of powerful, fast computers has
made the use of clerical personnel obsolete, but the goal to increase the speed of the

computations and to improve the confidence in their results remains the same.

This dissertation looks at two different areas of computational thermodynamics:
reactive flash algorithms and polymer phase equilibrium calculations. The goal is to
briefly review the current techniques used to perform these caiculations and to develop
alternative approaches which may provide additional information about the equilibrium

solutions.



L2 Reactive Flash Algorithms
Reactive distillation columns are examples of unit operations where simultaneous

phase and reaction equilibria occur. These columns combine traditional reactors and
distillation columns into one unit, resulting in lower capital and operational costs. By
combining the reactor and separators into one column, separation azeotropes may be
avoided and higher conversions may be achieved (Doherty and Buzad, 1992). The
production of methyl tertiary butyl ether (MTBE) and methy! acetate are two processes

which may use reactive distillation columns.

In an ideal situation, the vapour and liquid leaving each tray in a reactive
distillation column are in chemical equilibrium. Therefore, each tray can be modeled by
a reactive flash calculation. The equilibrium solution sets limits on the total conversion
and separation achieved on each tray. In the case of non-ideal trays, the equilibrium
solution can still be used to establish the driving forces in the simulation’s mass transfer
relationships. Many reactive flash calculations may be needed to model the complete
distillation column. As more calculations are required, the efficiency and reliability of

the algorithm become more important.

A reactive flash algorithm can be used to model any reactive system with the
potential of forming multiple phases. Esterification reactions and low temperature
reactors that produce methanol are two additional cases where both phase and reaction

equilibrium may be important.

Equilibrium solutions are important in simulations, but significant information
can also be found in knowledge of the system’s incipient phases. That is, knowing how
close potential phases are to being in equilibrium gives insight into the nature of the
equilibrium solution and how changes in system parameters might cause an additional

phase to evolve.

In this work, two multiphase reactive flash algorithms were developed. One uses
a stoichiometric method and the other uses a non-stoichiometric method to enforce the

elemental balances. In the algorithms, incipient phases are calculated at the same time
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the equilibrium solution is found. This development is covered in chapter 2 and the
algorithms are analyzed using a methanol production example, a MTBE synthesis

example and a sulfur association exarrple in chapter 3.

1.3 Continuous Thermodynamics
Polymer systems usually contain a distribution of molecular weights instead of

easily identifiable discrete components. Therefore, it becomes important to determine
how best to characterize the polymer species when modeling polymer systems. A
standard approach is to discretize the polymer molecular weight distribution into a
specified number of pseudocomponents which are then used in thermodynamic
calculations. In this dissertation, the integrity of the molecular weight distribution is
maintained by using a segmental distribution function to describe the polymer rather than
a finite set of discrete components. By using a function to represent the distribution, the
extended tails of the molecular weight distribution are included in the thermodynamic
calculations and are not neglected as they might be if the distribution were discretized. It
will be seen that these tails can have a significant affect on the phase behaviour of

polymer systems.

This continuous thermodynamic approach has been studied by Ritzsch and
coworkers (1985, 1986, 1989) and by Cotterman, Bender and Prausnitz (1985) to name
two groups of workers. The development of the theory of continuous thermodynamics is

covered in chapter 4.

1.4 Cloud and Shadow Point Calculations
In polymer systems, the cloud and shadow point curves are analogous to

multicomponent bubble- and dew-point curves. If the pressure and composition of a
system is fixed, a cloud point is the temperature at which a polymer solution first shows
two phase behaviour. The corresponding shadow point is the temperature and
composition of the incipient phase. If the temperature is fixed, the cloud and shadow

point pressure is the pressure where two phases first appear. The locus of points formed
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as the composition of the cloud point is varied are called the cloud and shadow point

curves.

The disperse nature of polymer molecular weights leads to cloud and shadow
point curves which reflect very interesting phase behaviour. The curves can show three
phase points, stable and unstable critical points, lower and upper precipitation threshold
temperatures, multiple liquid-liquid regions and a liquid-vapour region. A detailed

discussion of these curves is given in chapter 5.

The potential complex behaviour shown by polymer systems requires robust
algorithms to calculate the complete cloud and shadow point curves. Chapter 5 develops
an algorithm for finding isobaric lines of fixed phase fraction in a polymer system. When
the phase fraction is 0 or 1, the lines correspond to cloud and shadow curves.

1.5  Polymer Flash Algorithms
Polymer flash calculations are in the early development stages. They are used to

model polymer fractionation procedures and to determine polymer solubilities in various
solvents. Because of the large molecular weights and broad molecular weight
distributions, polymer/solvent systems are very asymmetrical. That is, it is very likely to
find phases with extremely low quantities of the polymer in them. The asymmetry of the
system makes it difficult for flash procedures to converge to even a two phase solution

unless a very good initial guess is supplied.

The majority of polymer flash algorithms in the literature deal with two phase
equilibria. A typical way of achieving convergence in a two phase polymer flash is to
discretize the polymer distribution and, with a reasonable initial guess, use a damped
successive substitution technique to solve the thermodynamic equations (Koak, 1997).
This approach works but convergence can be very slow. An alternative approach could
be to utilize a second order procedure like the Newton-Raphson technique to solve all the

necessary equations at the same time and expedite the convergence.
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In chapter 6 of this work, the necessary equations for a multiphase polymer flash
algorithm are developed within a continuous thermodynamics framework. The equations
are developed such that incipient and stable phases are found simultaneously. The initial
solution procedure uses a damped successive substitution technique. A preliminary
investigation into the use of a Newton-Raphson procedure to solve all the equilibrium

equations simultaneously is also performed.

1.6  Dissertation Overview
The dissertation can be thought of as containing two distinct parts. The first past

focuses on multiphase reactive flash calculations for non-polymer systems (chapters 2
and 3). The second section contains the development of polymer phase equilibria
procedures using continuous thermodynamics (chapters 4-6). These two divisions are

completely independent of each other and can each stand on their own.

Appendix A outlines an investigation into an excess free energy mixing rule for
cubic equations of state. It is not directly related to either of the two thesis sections but
could be used to calculate the fugacity coefficients required for the reactive flash

calculations.

Appendix B lists the derivatives used in the cloud and shadow curve algorithm
outlined in chapter 5. Appendix C gives the derivatives required for both the successive

substitution and Newton-Raphson polymer flash routines discussed in chapter 6.

This thesis describes a number of tools that can stand on their own or be used as
an integral part of a larger simulator. For example, the reactive flash algorithms proposed
could be used to model kinetically limited reactive systems by adding a time dependent
constraint on the conversion. The restricted chemical equilibrium algorithm could then
become part of a larger module used to simulate a kinetically controlled multiphase
reactor. The framework by which the tools presented could be used in simulators is not

discussed.



2. REACTIVE FLASH ALGORITHMS

2.1  Introduction
There is an extensive literature on phase and chemical equilibria calculations,

most of which concentrates on ideal gas systems with a possibility of pure condensed, or
solid, phases. Non-ideal systems have been a concern, but not a focus, in the
computational aspects of chemical equilibria until recently when computers and the
algorithms became sophisticated enough to deal with the non-linearity presented in non-
ideal systems. The driving force behind much of the initial research was the need to have
a fast, reliable means of calculating the equilibrium state of combustion products from
rocket fuels. Currently, the motivation for this area of research is the accurate design and

reliable control of chemical process units involving chemical reactions.

This chapter focuses on the development of two non-ideal multiphase reactive
flash algorithms: one using a stoichiometric technique, the other a non-stoichiometric
technique. Each algorithm is based upon Abdel-Ghani’s (1995) multiphase flash which
uses an average chemical potential over all the phases present as a reference phase and
initiates the flash with the number of phases equal to the number of components in the
system plus one. After a review of the subject terminology and the developments in
reactive flash algorithms within the literature, the multiphase stoichiometric reactive flash
algorithm and then the non-stoichiometric algorithm will be described. An emphasis is
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placed upon the problem of initiation and computational concerns. Specific examples

will be given and analyzed in the following chapter.

2.2  Terminology and Equilibrium Requirements

2.2.1 General
To clarify the discussion of phase and chemical equilibria algorithms, some

terminology needs to be defined. Each chemical compound within a system being
studied, regardless of which phase or state it is in, will be termed a component or
constituent of that system, and the number of components will be represented by C. Each
component is composed of elements, the total moles of these elements in the system
being conserved. The number of different types of elements will be termed M. a,, will

represent the number of times element & appears in constituent i, and the matrix

an a; aic
ax an st axc

A=| | : . ) (2.1)
am Aamn st aMmc

will be called the elemental composition matrix. Some of the components may react with
each other to form the other components. It may be assumed that (C - M) of the
components can be formed in (C- M) linearly independent reactions using the M
remaining constituents as reactants, one component being formed from each reaction
(Brinkley, 1946). The M reactant constituents will be called the base components of the
system while the (C — M) product constituents will be termed the derived components.
The procedures to define the elements, base components, derived components and the

reactions relating them, will be discussed in later sections.

2.2.2 Reactions, Reaction Extents and Elemental Balances
Brinkley (1946) showed that the chemical formulae for the (C - M) derived

components could be generated through a linear combination of the base component

formulae:



M
Auij =D vidi ; 1Sj<C-M (2.2)

i=1
where 4, represents the chemical formula for the #* constituent. These (C- M)
combinations are, in essence, reactions between the base components to form the derived

components and v; is called the stoichiometric coefficient of component  in reaction .

Within this dissertation a reaction such as equation (2.2) will be rewritten as
c
ZV,']-A,-=O ; 1€jsC-M. (2.3)
i=l

In such a form, the stoichiometric coefficients will be positive for products of the ;j*

reaction, negative for reactants and zero for constituents not involved in the reaction.

& is said to be the reaction extent of the j* reaction if, for a reaction written in the
form of equation (2.3), the number of moles of constituent i, 4,, which has been produced
through reaction j is equal to & v,

Regardless of the reactions occurring in the system or their reaction extents, the

elemental abundance constraints of the system must be satisfied. These constraints are

given by:
An-b=0 (2.4)
n={nm,nz,...,nc}" (2.5)
b={b,bs,....bu}" (2.6)

where n; represents the total number of moles of constituent i in the system and b,
represents the total number of moles of element % in the system and is invariant. If an
initial composition of the system and the (C — M) reactions within the system are known,

the elemental abundance constraint can be reformulated as

. 0 C—M .a . . y
ni=n+ Y v ; 1Si<C .7
j=l



where n! is the initial number of moles of component i.

In the case of a multiphase system the constituents are distributed amongst
different phases. The elemental abundance constraint, equation (2.4), must still be
satisfied, but in a multiphase system the »; in equation (2.5) are the sum of the moles of

component i in all the phases. That is
n=Yn; ;1<i<C (2.8)

where n; represents the number of moles of the i* component in the j* phase and there are
7z phases. If £ is the total number of moles in the j* phase and x; is the mole fraction of

the i* constituent in the /* phase, then equation (2.8) can be written as

n-Y.Bx; =0 ; 1<i<C. (2.9)

i=l

2.2.3 Equilibrium Requirements
Each component in the system will have a chemical potential associated with it of

the form
py = 1+ RT(f, / £°) (2.10)

where 4! is the standard state chemical potential of pure component i and f; is its fugacity
in phase j. f,'is the pure component reference fugacity which equals 1 bar for ideal gas
species. The fugacity, f;, is a function of temperature, pressure and composition of phase
J. It can be found through ideal approximations, activity coefficient models or equations

of state to name only a few of the methods available.

At constant temperature and pressure, the total Gibbs free energy of the system

can be expressed as
T
G=Y

J=ti

Ma

n;ui . (2.11)

[}
—
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At equilibrium, this energy will be at a global minimum and the elemental balance
constraints, equation (2.4), will be satisfied.

Gibbs (1876) showed that at this minimum, the chemical potential, and thus, the
fugacities of each component i must be the same in all the phases where it appears. That
is,

M =4 ; 1<Si<C V jwhere component i exists.

In terms of fugacities, this can be written as

f,.l. =_f,. ; 1<i<C V jwhere component i exists. (2.12)

where /. is the common chemical potential and f, is the common fugacity of

component ;.

Gibbs (1876) also showed that at this minimum, the reaction affinity must be
zero. That is, the stoichiometrically weighted sum of the chemical potentials of reactants
must equal the stoichiometrically weighted sum of the chemical potential of the products.
In the case of reactions written in the form of equation (2.3) this equilibrium criteria can

be stated as

C
Dvaki =0 ; 1<k<C-M. (2.13)

=]
Substituting equation (2.10) into equation (2.13) yields the familiar mass action
relationship:
l < < b ik
EZV&/‘?=""(H[ﬁ/ﬂOI )=—an,‘ ; 1<k<C-M (2.14)
i=l i=]
where K, is the reaction equilibrium constant of the * reaction at system temperature and

pressure.

It is important to note that in a reactive multiphase system if the equal fugacity

requirements stated in equation (2.12) are met and the reaction equilibrium condition
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given by equation (2.13) or equation (2.14) is satisfied, the reaction equilibrium condition

will be satisfied in all the phases where the reactive components exist.

2.2.4 Stoichiometric and Non-Stoichiometric Methods
When developing a computer algorithm to determine reactive phase equilibria, the

necessary conditions of equilibrium may be developed using the method of Lagrange
multipliers to minimize the free energy subject to the elemental balance constraints or by
equating the chemical potentials of each component between each phase where the
elemental balance constraints are written in terms of the reaction stoichiometry, equations
(2.7) and (2.8). These two approaches have been called the stoichiometric method and
the non-stoichiometric method respectively (Smith, 1980), and can be shown to be
identical in nature (Smith and Missen, 1982). This classification of computational
algorithms differs slightly from van Zeggeren and Storey (1970) who chose to classify
chemical equilibria computations into either minimization techniques or non-linear
equation techniques. For the most part, what van Zeggeren and Storey (1970) term a
minimization technique, Smith and Missen (1982) call a non-stoichiometric technique,
and the algorithms that van Zeggeren and Storey categorize as non-linear equation

techniques, Smith and Missen classify as stoichiometric techniques.

2.3  Literature Review of Chemical and Phase Equilibria Calculations

2.3.1 Literature Review
There are many review papers on methods of calculating chemical and phase

equilibria. Zeleznik and Gordon (1968) reviewed the methods prior to 1968, van
Zeggeren and Storey (1970) published the first monograph dedicated to this area, Smith
(1980) wrote an additional review of the material just prior to Smith and Missen’s (1982)
compilation of a second text dedicated to chemical and phase equilibria calculations.
Additional reviews include those by Seider er al. (1980), Mather (1986) and, most
recently, the review by Seider and Widagdo (1996).
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Brinkley (1947) gave an outline of what is considered to be the first algorithm for
calculating general chemical and phase equilibria. The algorithm described could be used
for calculations of multiphase, non-ideal systems. It was what now is considered to be a
non-stoichiometric technique where the reaction equilibrium relationships are satisfied on
each iteration while convergence is defined upon the material balances. Multiple phases
were accounted for by the use of different standard state chemical potentials, /13-, for
constituents in each phase. After determining which constituents were to be used as base
components and which were to be considered derived components, reactions of the form

of equation (2.2) were formed. The elemental abundance constraints were rewritten as
x C
Z{”ﬂt+ zvij"ik}:qj s 1<sjsM (2.15)
k=1 =M+l

where
M
Y ajq; =b;. (2.16)
j=l

The set of g; may be thought of as the number of moles of component j required to satisfy
the elemental abundance constraints if there are no derived components in the system. A
detailed description of the procedures used to choose the components and the reactions is

given by Kandiner and Brinkley (1950).

A reference phase is chosen for each constituent, not necessarily the same phase
for all constituents and identified by a subscript ». A thermodynamic distribution

coefficient is then defined for each species in each phase.
InKy =) - ]/RT ; 15j<C 2.17)
The mole fractions of the constituents in each phase can then be expressed as

Kav.
xp = 2L (2.18)
7

where , is the activity coefficient of the /* constituent in the &* phase.
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The reaction equilibrium constants, K, can be written as

1 | & 0 0 .
thj:E[EV'jM"#jr] s M+1<;<C (2.19)

and the mole fractions of the derived components are rewritten in terms of the reacticn

equilibrium constants:
M(lx v 17
x,,:KjI‘[[[”"—"]] . M+1<j<C. (2.20)

By substituting equation (2.20) into equation (2.18) all of the mole fractions of the
derived components are in terms of the mole fractions of the base components and the
reaction equilibrium constants. In this manner, the Brinkley algorithm ensures that at

each iterative step the reaction equilibrium equations are satisfied.

If B, is the number of moles in phase & then the mole numbers of each constituent,
ny, in equations (2.15) can be rewritten as fx; and equations (2.15) plus constraints that
the mole fractions of each phase must sum to unity give M + x equations in M + «
unknowns, £ and x,. Brinkley (1947) suggested solving for these unknowns using two
nested loops: a primary loop which used the composition estimates to determine the
activity coefficients and a secondary loop contained within the primary loop to solve for
B and x, using a Newton-Raphson procedure. Brinkley suggested using ideal activity
coefficients on the first iteration of the primary loop and subsequent iterations would be
the equivalent of a successive substitution algorithm. In the case of an ideal system, only
one pass through the primary loop would be required. In either situation, ideal or non-
ideal, this algorithm has difficulties converging when constituents have mole numbers

close to zero.

Kandiner and Brinkley (1950) simplified Brinkley’s original algorithm to one of
an ideal gas system with pure condensed phases and suggested using a successive
substitution method to solve for the mole numbers in the gas phase. They also pointed

out the inherent difficulties of trying to ‘guess’ which condensed phases may be present.
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Guessing a solid phase to be absent when in reality it was present would not show up in
the calculations at all. Guessing a solid phase to be present when it was not would lead to
a negative molar amount of solid. Boll (1961) removed this difficulty by proposing that
the equality constraints on the mole fraction summation be changed to an inequality of

the form
C
Xx;<1 ; 1<sj<x. (2.21)
i=1

Initially, all phases were to be considered present and if the sum of the mole fractions for
a phase dropped below one during the course of the iterations, that phase was removed

from consideration.

Krieger and White (1948) rewrote the expression for the derived components in
terms of their logarithms and used the mole fractions instead of mole numbers in an ideal
system. Using the logarithms of the mole fractions is important because it helps
eliminate the problems of constituents with small mole numbers and the mole fractions

are easier to approximate than the mole numbers.

White, Johnson and Dantzig (1958) proposed a different approach to solving the
reaction equilibrium problem in an ideal gas system. Their method has become known as
the RAND algorithm. The primary difference between the Brinkley algorithm and the
RAND algorithm is that at each iteration in the Brinkley Algorithm the reaction
equilibrium equations are satisfied and the mass balance equations are the equations
being solved whereas in the RAND algorithm, the material balance constraints are
satisfied at each iteration while the reaction equilibrium equations are iteratively solved.

The RAND algorithm is considered to be a non-stoichiometric technique.

The RAND algorithm is formulated as a constrained minimization problem where
the function to be minimized is the Gibbs free energy of the system. For the ideal system

considered, the Gibbs free energy is expressed as

C ”_o n.
F(n,,n,,....nc) = Zni(—R%T-+lnP+ln-n—‘) (2.22)

T
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subject to the elemental abundance constraint, equation (2.4),

where np=J.n,. (2.23)

i=l
Equation (2.22) is expanded in a Taylor series about a point that satisfies the elemental

balances and truncated after the first order terms. The expansion is minimized subject to
the elemental abundance constraints given in equation (2.4) using the method of
Lagrangian multipliers. One Lagrangian multiplier, 4, was used for each of the M
constraints. In essence, the method of Lagrangian multipliers converts the constrained
minimization in C independent variables into an unconstrained minimization problem of

C + M independent variables:

M C
minQ(n,,nz,...,nc,/l,,...AM) = F(n,,nz,...,nc)—le(Zaﬁn,. —bj) .

J=1 i=l

Setting (@/a‘h,):O gives an expression for the mole numbers of each

constituent in terms of the Lagrange multipliers and the total number of moles, n.
Substituting these expressions into the elemental abundance constraints plus equation

(2.23) give M + I linear equations in the M + / unknowns, 4; and n. These are solved to

give the next iteration’s approximations to 4; and n. Convergence is enhanced through
the use of a line search along the independent variable’s direction of change, a line search

which can also be utilized to ensure that mole numbers remain positive.

White, Johnson and Dantzig (1958) recognized that the Lagrangian multipliers
corresponding to the elemental abundance constraints may be thought of as reduced
chemical potentials for the elements of the system. They suggest using this fact to give
better estimates of the moles of trace constituents not considered in the original

computation through the equation:

0

5 M
n, =nexp{—%;-lnP+Zaﬁlj}. 2.24)
=i
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Boynton (1960) extends the RAND algorithm to include condensed phases and
suggests calculating the free energy of multiple trials with different combinations of
condensed phases in order to determine which set of condensed phases should actually be

included in the final solution.

In the White er al. paper (1958), an algorithm is also given for the computation of
chemical equilibrium through a linear approximation of the Gibbs free energy surface and
through the use of standard simplex linear programming techniques to arrive at an
estimate of the final solution.

Villars (1959) first proposed a stoichiometric technique for the solution of ideal
gas systems containing multiple reactions. This method has been termed the method of
successive reaction adjustments. Given the initial moles of the constituents in a system
and a set of reactions with their reaction equilibrium constants, X, the material balance
constraints are incorporated into the problem through the use of reaction extents as given
in equation (2.7). At any composition, the K, are found from the expressions for the
reaction equilibrium constants and the deviation of each reaction from equilibrium is

found from
D‘.- =——-1. (2.25)

The reaction corresponding to the deviation, D;, with the largest absolute value is forced
to satisfy the equilibrium relationship by modifying its reaction extent until X, equals
the numerical K. This adjustment is done while keeping all other reaction extents
constant. The new constituent mole numbers are recalculated, a new set of reaction
deviations are found and the process continues until the absolute value of all the reaction
deviations as found from equation (2.25) are less than a specified tolerance. Precautions
must be taken to avoid negative mole numbers and the convergence of this method can be

extremely slow when intermediate reaction constituents have small mole numbers.

Cruise (1964) modified Villars’ approach by automatically choosing the base

components at each iteration to be the linearly independent constituents present in the
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greatest amounts. Cruise also updated the reaction extents for all condensed derived
components upon each iteration using a Newton-Raphson step. The mole count of
gaseous derived components were updated every fourth iteration. Smith and Missen
(1968) built upon the changes Cruise had proposed by using a linear programming
procedure to determine the base components and initial compositions by minimizing the

linear system
c
G=)nu’ (2.26)
i=l

with respect to n,. With this change, the process of choosing the base components need
only be done once at the start of the computations. Villars’ technique (1959) as modified
first by Cruise (1964) and then by Smith and Missen (1968) is referred to in the literature
as the VCS method.

Another significant approach to multiphase reaction equilibrium was developed
through NASA research by Huff, Gordon and Morrell (1951). The primary difference
between the NASA algorithm and the RAND and Brinkley algorithms is that within the
NASA algorithm, the base components are chosen to be the elemental species and at each
iteration, neither the elemental abundance constraints nor the chemical equilibrium
relationships are satisfied. Lagrange multipliers are not used in the 1951 version of the
algorithm. Instead, a Newton-Raphson technique is used to zero the error functions
generated from the elemental abundance constraints and the equilibrium relationships.
The iteration variables were the mole numbers of the base components and the logarithm
of the mole numbers of the derived components. Zeleznik and Gordon (1968) give a
good review of the NASA equations and how they relate to the RAND equations.

Gordon and McBride (1971) generalized the original NASA algorithm such that
the base components were not necessarily the elements and such that Lagrange
multipliers were used in a similar fashion to the RAND algorithm to ensure that the

elemental abundance constraints were satisfied. The iteration variables were the mole



18
numbers of the derived components, the logarithms of the base component mole

numbers, the total number of moles in the system and the Lagrange multipliers.

The Brinkley, NASA and RAND algorithms form the basis of many non-
stoichiometric computer algorithms used to calculate phase and chemical equilibrium.
These algorithms are similar enough that Smith and Missen (1982) have termed them the
BNR algorithm. The BNR algorithms were primarily developed for calculations with an
ideal gaseous phase however Smith and Missen (1988) describe a modification to the
BNR algorithm (primarily the NASA algorithm) to allow their use for non-ideal systems.

Sanderson and Chien (1973) proposed a two phase stoichiometric method and
included a detailed description of how to include non-ideal phases by using an activity
coefficient model for liquid phases and an equation of state for the vapour phase. They
suggested that at each iteration of a reactive flash, new reaction extents, £, and total
number of moles first be determined from the current estimates of the fugacity
coefficients and activity coefficients while neglecting the phase equilibria. Given these
new reaction extents, the phase compositions and vapour fraction could then be
calculated using a non-reactive flash. The new compositions could be used to update
activity coefficients and fugacity coefficients before the next iteration started. They
determined the reaction extents and total number of moles by minimizing a penalty
function using Marquardt’s method. Xiao et al. (1989) modified Sanderson and Chien’s
stoichiometric algorithm by rearranging the iterative loops: the outer loop solved the
phase equilibrium equations while the inner loop solved the reaction equilibrium for &
and the total number of moles in the system using Marquardt’s unconstrained
minimization technique. Both these techniques separated the phase equilibrium

calculation from the chemical equilibrium calculation.

George et al. (1976) eliminated the non-negativity constraints on the constituents

through the use of a variable transformation

n; =n?H(u,) 2.27)
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1
l+e™

where H(u) = (2.28)

With this transformation, the non-stoichiometric equations are minimized with respect to
u; using Powell’s method in either a one, two or three phase system. Castillo and
Grossmann (1981) state that the transformation given in equations (2.27) and (2.28) can

lead to ill-conditioned matrices at lower temperatures.

In their paper, Castillo and Grossmann (1981) also outline a non-stoichiometric
method for performing a reactive flash calculation using a non-linear programming
technique. It is initiated with a maximum number of phases which are kept throughout
the computations. Phase fractions for unstable phases are set to 10™° instead of O but
become stable if the Kuhn-Tucker conditions indicate that doing so would lower the total

Gibbs free energy of the system.

Myers and Myers (1986) present a second order stoichiometric technique for
ideal, single phase systems. They focus on describing an initialization technique which
chooses the system’s components such that each linearly independent reaction associated
with the system has a reaction equilibrium constant, K, less than 1. In this fashion, the
equilibrium reactions extents will be small and positive, the initial guess of £=0 is a

good one and numerical problems are avoided during calculations.

A non-stoichiometric algorithm for multiphase ideal solutions was presented by
Michelsen (1989). He sets up the equations for the Gibbs free energy in terms of a
different standard state chemical potential for each component in each phase, and through
the use of Lagrange multipliers, 4;, converts the constrained problem into an
unconstrained one. By use of a duality transformation, the iteration variables are then
switched from n, and 4; to 4; and f,, the phase amounts. The transformed problem is
then minimized using one of two techniques both of which are initiated with Smith and
Missen’s (1968) linear programming technique. The first technique is to use a few
successive substitution iterations to improve the initial guess in the Lagrange multipliers

by assuming that the phase mole numbers are fixed and then complete the convergence
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using a full Newton-Raphson technique. The second method utilizes a penalty function
with the original first estimates. Both these methods were documented to work well.

Castier, Rasmussen and Fredenslund (1989) developed a stoichiometric technique
using Michelsen’s (1982a) stability check to see if additional phases should be added.
They initialized their reaction extents with a modification to the Myers and Myers (1986)
initiation to suit the needs of non-ideal, multiphase systems, and they initialized the phase
splits using the method proposed by Michelsen (1982a, b). Convergence in the initiation
procedure was achieved by iterating through inner and outer loops: the inner loop was
used to update the mole numbers of components in each phase given constant partitioning
coefficients, K, and reaction extents, &, and the outer loop was used to update the
reaction extents, phase fractions and partitioning coefficients. Initially, & was found
using successive substitution for the first 5 iterations of the outer loop and after additional
phases were added, the outer loop alternated between successive substitution and general
dominant eigenvalue methods. The inner loop, which performed the phase split
calculations used Rachford-Rice type equations with a Newton-Raphson algorithm. Final
convergence was found by minimizing the Gibbs free energy of the system with respect
to the reaction extents and the phase fractions using the second order Murray

minimization technique (1972) while checking for phase stability at each iteration.

In 1991, Gupta, Bishnoi and Kalogerakis outlined a stoichiometric technique
which incorporated the reactive/non-reactive flash and phase stability calculations into a
single set of coupled non-linear equations. They selected a reference phase, indicated by

a phase index r, and chose to minimize the function

M=
Ma

C T
G=lei.uir +.Zln’j(l"j —l‘ir)+ Vikgk.uir (2'29)
i= j=

J=Er

k=1¢

Il
—
i}
-

subject to an additional constraint on the phase fraction:
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C
x Z”a
B=1-2p8 ;B =" - (2.30)

J=1
Jmr

Using Lagrangian multipliers, equations (2.29) and (2.30) form the equation

C

L z Zn‘j

G =G+ A4|B-" / (2.31)

it T
Vi ld

which is minimized with respect to n;, & and . A/n; can be related to the tangent plane

distance of phase j and either 8, or 4, must be zero. This condition can be written as

B6;=0
A . 2.32
9j= ! >0 ’ ﬂ/' >0 ( )
n.RT

They solved these equations using nested loops: the inner loop solving for £, 6 and &
given composition independent fugacity coefficients and the outer loop using the n; from
the inner loop to calculate the new mole fractions and new fugacity coefficients and to

combine identical phases.

Smith et al. (1993) used the definition of a system’s Gibbs free energy subject to
clemental constraints to define a reactive tangent plane criteria for reactive phase
equilibria and stability. This criteria is similar to the tangent plane criteria used to

describe phase equilibrium by Gibbs (1876), Baker et al. (1982) and Michelsen (1982a).

Greiner (1991) gives a description of a full Newton-Raphson method for
calculating phase and reaction equilibrium in non-ideal systems. The technique is a
minimization of the Gibbs free energy which has been developed for both stoichiometric
and non-stoichiometric methods. Because it is a full Newton-Raphson technique and
does not contain any mechanism to eliminate or add phases during the computations, it
requires a good initial guess of the equilibrium compositions and number of phases as

determined from a generalized linear programming solution.
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Michelsen (1994) describes a method for calculating equilibrium reaction extents,

phase fractions and compositions given composition independent fugacity coefficients
and a set of reactions. Because of the form of the equations used, Michelsen was able to
show that the objective function used was convex and thus its one global minimum was
easily found using a Newton-Raphson technique. The number of unknowns in the
problem was equal to the number of independent reactions plus the number of non-pure

phases.

Hildebrandt and Glasser (1994) discuss the use of a geometric approach using
convex hulls to find the global minimum of a system’s free energy. A stoichiometric
technique was used for reactive systems but few examples or calculation details were
given. Another geometric look into reactive flashes was outlined by Jiang et al. (1996)
where they noted that the mathematical formulation describing a reactive flash was
similar to the formulation of the tangent plane criteria for a non-reactive flash. They
formulated the reactive flash problem such that a non-reactive flash was a special case
and showed that the presence of reaction stoichiometry gave additional constraints on the

placement of the equilibrium tangent planes.

Ung and Doherty (1995) have developed a set of transformations to give a set of
reaction independent composition variables. These variables can be used to eliminate
extra dimensions when visualizing reactive phase diagrams and they can be used to assist

in determining where reactive azeotropes may exist.

McDonald and Floudas (1995) have given a detailed description of a
minimization algorithm and variable transformation that can be used when a NRTL
model is used for liquid phases and the vapour phase is ideal. The method guarantees
convergence to a global minimum in the Gibbs free energy using a Global Optimization

Procedure. A procedure that is too complex to cover in this work.

Recently, Cisneros et al. (1997) have derived a new approach to a multiphase,
non-ideal reactive flash by rewriting the equations in the same form as a traditional

multiphase flash. In this case, elements are treated like components and the necessary



23
conditions of equilibrium are the chemical potentials of these elements are identical over

all the phases and that the total number of moles of each element is conserved.

2.3.2 Comments
All of the reactive flash algorithms mentioned in the previous section are either

directly minimizing the Gibbs free energy of a multicomponent system subject to
elemental constraints or solving the equations which describe multiphase reactive
equilibrium. With this in mind, the differences in the procedures lie in their formulation
of the equilibrium or minimization equations, their choice of independent variables, their
methods of initiating and solving the equations and their methods chosen to check for the

stability of phases.

The earlier BNR algorithms and the methods of Myers and Myers (1986) and
Michelsen (1989) were second order minimizations for ideal gaseous systems. However,
the BNR algorithms and Michelsen’s 1989 algorithm were also developed for the
presence of pure condensed (solid) phases. More recently, non-ideal multiphase reactive
flashes were described by the algorithms of Sanderson and Chien (1973), Castillo and
Grossmann (1981), Castier et al. (1989), Gupta ef al. (1991) and Cisneros et al. (1997), to
name a few. Many of the algorithms first minimize the Gibbs free energy of an ideal
system using a linear programming technique to determine an initial guess for their flash

routine as outlined by Smith and Missen (1982).

A robust way to set up the equations for a non-ideal reactive flash involves
nesting two loops to solve the required system of equations. The inner loop assumes
composition independent fugacity coefficients and solves the pseudo-ideal flash problem,
potentially with the method described by Michelsen (1994). The outer loop updates the
fugacity coefficients. (See the papers by Brinkly, 1947, and Gupta et al., 1991, to name

two.)

The main drawbacks of the current algorithms for multiphase reactive flashes are
that they require phase stability checks after each converged solution to see if an
additional phase should be added (Castier et al., 1989; Cisneros et al., 1997) and/or they
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require the algorithm to choose one of the phases to act as a reference phase which at
some point might disappear from the active set of phases (Castier et al., 1989; Gupta et
al., 1991; Cisneros et al., 1997). The following sections address both of these problems
in the development of a stoichiometric and a non-stoichiometric reactive flash algorithm.
The flashes are initiated with a number of phases equal to the number of components plus
one and the stability of each phase is determined from the sum of the unnormalized mole
fractions in the phase. By weighting the chemical potentials of each component in a
phase by the phase fraction, a weighted average chemical potential is used as the
reference chemical potential in both algorithms. Thus, the reference chemical potentials
are not defined to be from a single active phase in the system.

2.4  The Stoichiometric Algorithm

2.4.1 System Definition and Algorithm Objectives
Consider a system at constant temperature and pressure, T and P. Assume that the

system contains 7 phases and C components which define an elemental composition
matrix of rank M. The objective of this section is to develop a stoichiometric reactive
flash algorithm which will perform a PT reactive flash given an initial feed composition,
pressure and temperature without a priori knowledge of the final solution. The
converged solution will contain information about the equilibrium phases and phase
amounts as well as information about incipient phases. The algorithm will automatically
determine a linearly independent set of R reactions (R =C-M) given the elemental

compositions of the components.

Like Abdel-Ghani’s flash algorithm (1995), the reactive flash algorithm consists
of two nested loops. In the outer loop, the thermodynamic properties of the phases are
updated using a successive substitution technique and in the inner loop the phase mole
numbers, phase compositions and reaction extents are found assuming composition
independent fugacity coefficients. The development of the algorithm follows the
development proposed by Michelsen (1994) for a multiphase reactive flash but is
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modified to account for a novel choice in the reference phase chemical potentials and to

facilitate phase stability calculations.

2.4.2 The Reference Phase Chemical Potentials
Following Abdel-Ghani (1995), the reference chemical potential for component i

is the average of the chemical potential of component 7 over all the phases of the system,

each potential being weighted by its phase fraction. That is:

=2 Buy | 2B, (2.33)

J=1 A=l

where £, is the number of moles in phase ;.

With equation (2.10), the reference fugacities can be found from:

1nf,.=1n£,.¢3,.1>=iﬂ, Inf; Zﬂ (2.34)

j=1 a=i

If a phase is incipient, that is it does not exist, it has a phase mole number, B, equal to
zero and will not contribute to the reference fugacity. As will be shown shortly, the

reference phase composition, X, is found from the material balances. The reference

phase fugacity coefficient, ¢;,., can be found from equation (2.34) and a knowledge of the

reference phase composition.

In terms of the new reference phase, the condition of equality of chemical

potentials between the phases, equation (2.12), can be rewritten as

-~

fi=fi ; 1sisC (2.35)

for each phase j which exists (8 > 0). The condition of zero reaction affinity, equation

(2.13), can be expressed as

C
D vt =0 ; 1<k<C-M. (2.36)

i=]
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If equation (2.36) holds for the reference phase and equation (2.35) is also true, then the
reaction affinity condition will be satisfied in all the phases with positive phase amounts.

2.4.3 Tangent Plane Stability Criteria
Michelsen (1982a) describes a mechanism for determining phase stability using

tangent plane criteria. An apparent equilibrium is defined by a plane that is tangent to the
free energy surfaces. This is the “reference” tangent plane. If the distance from the
reference tangent plane to the free energy surface is greater than zero at each point on the
surface, the reference equilibrium is stable. But if the distance is less than zero at any
point, the reference equilibrium is unstable and the free energy of the system can be
further reduced with a different combination of phases.

In terms of the chemical potentials, this criteria can be written as

C
D, =Y x;(m; - i)20 ;1sj<x. 2.37)

i=l
It is difficult to scan the entire Gibbs free energy surface for compositions that result in a
negative tangent plane distance. Michelsen (1982a) shows that it is sufficient to
determine that the minimum values of the tangent plane distance (stationary points) are
all positive in order to determine that the reference equilibrium is stable. The stationary
points can be thought of as points along the Gibbs free energy surfaces that have a
tangent plane parallel to the tangent plane of the reference equilibrium and D; is the
distance from the tangent plane that defines the equilibrium and the Gibbs free energy of
the stationary point.

Mathematically the stationary points can be found by minimizing equation (2.37)
with respect to the mole fractions, x;, subject to the constraint that the sum of the mole

fractions must be one. The unconstrained Lagrangian of this minimization problem is

[(x,j,gj)=Dj/RT-0j(ixy —1).

i=]

Therefore, the conditions for the stationary point of D, are
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[c‘;i) (4 -4)/RT-8,=0 ;12iscC

§

Note that §, is independent of the component and is a property of the stationary point. It
can easily be shown that § = D/RT. In the procedures developed, these stationary points
are found through successive substitution, a procedure which results in the desired

minima being found rather than potential maxima or saddle points.

If there are = stationary points, in terms of the fugacities, the tangent plane

stability criteria can be expressed as

Inf,~Inf,-6,=0 ; 1<i<C, 1<j<x

6,=D;/RT20  ; l<j<~x (2.38)

If phase j is present, 3> 0 and § = 0, and if phase is incipient, 8, =0 and 6,> 0.

2.4.4 Phase Distribution Variables and Material Balances
Starting from the tangent plane criteria, equation (2.38) and inserting the

definition of fugacities in terms of mole fractions and fugacity coefficients results in

equation (2.39).

P X,
Ky =3rexpl-6)= =" = (2.39)

1 ]

RRS

The phase distribution variable, K;, determines the partitioning of component i into phase
J and the X are the unnormalized mole fractions equal to x,exp(-8). Knowing the

unnormalized mole fractions, the normalized mole fractions, x;, can be found from

C
=X/ X,. (2.40)

n=l
Assuming that the C- M =R linearly independent reactions of the system are
known, the total number of moles of component i in the system using the stoichiometric

formulation is given by
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R
no=n'+Y v.& (2.41)
=]

where n is the initial number of moles of component i, and V,n is the stoichiometric
coefficient which corresponds to the /* component in the m”* reaction. The exact
procedure for determining the independent reactions will be covered in the section on
initiation.

Recognizing that the mole fractions, x; can be defined using equation (2.39), the

conservation of species i over all the phases can be expressed as

Z,ley —Z,BIK X, exp( ) . (2.42)

j=1 J=1

Since X, is independent of the phase index and Sexp(6) always equals B, the reference

phase compositions can be defined to be

n;

£ = (2.43)

n;
i .4 Ei *
LAk,
The normalized mole fractions and unnormalized mole fractions can then be written in

terms of the distribution variables as is shown in equations (2.44) and (2.45) respectively.

x, =exp(6, )K,n, [E, (2.44)

X, = K;n, |E, (2.45)

C C
Since D x; =1, it should be noted that if phase j is incipient (§>0), Y. X, <1. The

i=l =l

value of  can be found from the unnormalized mole fractions:

C
> X,) . (2.46)
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2.4.5 The Inner Loop
The purpose of the inner loop in the algorithm is to return phase amounts, mole

fractions and reaction extents given composition independent K values, an initial feed
composition and the reaction stoichiometry. Since the unnormalized mole fractions are a
function of K;; and g, if there are 7 phases and R = C - M reactions, the inner loop finds

7+ R unknowns, £, and &,. The equations used to solve for these variables are the 7 mole

fraction constraints:
c =0 ; §,>0
- ; 1</ <
1 ;XVLO . = s 1<j<rx (2.47)
and the R reaction affinity requirements:
C
D vah=0 ; 1<k<R- (2.36)

p

Insight into this non-linear set of equations can be gained by looking at
Michelsen’s (1994) objective function for determining B, and & given composition
independent K; values. By reformulating his objective function to account for the use of
an average reference phase and for the use of unnormalized mole fractions, the solution to
equations (2.47) and (2.36) can be thought of as finding the minimum point of the scalar

objective function:

x C
o(B..) =2 8 +2.n(a,+Inn, —InE, +Ing 1) (2.48)
f=1 i=l
where
7y
a =R—'T+lnP. (2.49)

The fact that the minimum of equation (2.48) and the solution of equations (2.47) and
(2.36) are the same can be seen by calculating the optimality criteria of (2.48):
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(a0 . nK; c =0 ; B;,>0
h.=(——J=1—Z =1- x..{>0 B =0 (2.50)

k E(%)=iva(ai+m{% =ivikﬁi=o (2.51)

=]

The significance of this new formulation is that by examining the objective
function’s Hessian matrix, H, in the same fashion as Michelsen (1994), it can be shown

that O(B, &) is a convex function.

The Hessian matrix, H, has the form

where b = {h,, hy, ..., he}, 1= {l, L ..., L},

oh. c
(ZBLJ =ZXiiXm/"n (2.52)
k i=]
C
(%) - (%} = =2 Va X, [, (2.53)
C
e (55) = 2 VaVial; (2.54)

Therefore, it is easily shown that H = VVT where H is a (7+ R) x (z+ R) matrix and V is

a (7 + R) x C matrix with elements

Ve=Xz/n, s 1<ks<zw
Vk.i=—vi.k—t/\/n—i s T<k<R+m

Since any square matrix which can be written as the product of another matrix and its

transpose is at least positive semi-definite, the Hessian matrix must be at least positive
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semi-definite. Therefore, the objective function, (B, &) must be convex with a unique

minimum corresponding to a unique solution of the original problem.

The convexity of Q can be exploited in the inner loop by using a Newton-
Raphson procedure to quadratically converge to the unique solution of equations (2.50)
and (2.51). The Jacobian needed in the Newton-Raphson procedure is the same as the
Hessian matrix and is easily calculated using equations (2.52) through (2.54).

2.4.6 The Outer Loop
The objective of the outer loop is to update the K; values, the reference phase and

the number of phases based upon the new phase amounts and mole fractions returned
from the inner loop. Since the inner loop guarantees that the reaction equilibrium will be
satisfied, establishing that the necessary conditions for phase equilibrium are met in the

outer loop is sufficient to ensure both phase and reaction equilibrium has been reached.

With the new phase amounts and mole fractions, a thermodynamic model is used
to calculate the new fugacity coefficients and the reference phase chemical potentials are
recalculated using equation (2.34). The updating procedure for the K values is a
successive substitution method that can be derived from the tangent plane criteria stated

in equation (2.38):

g, =Inf,~Inf, -6, (2.55)

S

X..Q. X..
& = ‘“(_Q %= “(?".exv(-%)) -‘"[Z’.) =K -k (2.56)
it ! (']
which can be written as

anij.k»l) = an;k) -g

G

(2.57)

In equation (2.57) the superscripts represent the iteration count and g;; are the residuals of

the equations being solved.
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If two phases in the inner loop become identical, the Jacobian matrix used in the
Newton-Raphson procedure becomes singular. To avoid this problem, after updating the
K; values in the outer loop the new phase distribution variables and specific volumes of
each phase are compared. If there are two or more phases where all distribution variables
and the specific volumes are within 5%, the phases are combined before the K, values are

passed to the inner loop.

The outer loop terminates when the scaled sum of the square of the residuals is

less than a specified tolerance, say 10

C =x

2.2 /(ﬂC) <107, (2.58)

i=] j=l

2.4.7 Initiation

Given a normalized feed composition, z = {z,, z,, ..., z-}", the ideal gas chemical
potentials at the system temperature, p®= {u? 43, ...,u%}7, and the elemental
composition matrix A, as defined by equation (2.1), the initiation procedure must
determine the number of linearly independent reactions within the system, an initial
reaction extent for those reactions, the number of phases to consider and the K; value for
each component in each phase. The problem of choosing the linearly independent
reactions will be discussed first and will be followed by a description of how to find

initial reaction extents, phases and distribution variables.

To find a set of linearly independent reactions, the linear programming technique
as described by Smith and Missen (1968) is used. If the system energy is assumed to be a
linear combination of the ideal gas standard state potentials, minimizing the Gibbs free
energy subject to the linear elemental balance and the non-negativity constraints will
result in a modified feed vector, z, which can be considered an approximation to the
overall composition after chemical reaction equilibrium has been established.

Specifically, an initial elemental abundance vector b = Az is found and

G(z) =2"p° (2.59)
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is minimized with respect to z subject to the equality constraints

Az=Db (2.60)
and the non-negativity constraints
z20. (2.61)

Equations (2.59) to (2.61) define a linear system with linear constraints and is
solved using the linear programming method outlined in Chapter 10 of Fraleigh and
Beauregard (1990). The solution consists of a modified feed vector, z', a modified
elemental abundance vector, b’, and a modified elemental composition matrix A" which

obey the relationship
Az =b". (2.62)

The rank of the modified vector, b’, and matrix will be less than the rank of their originals
if two or more of the constituent equations were linearly dependent. The linear
programming procedure was modified to detect this singularity and remove any
degenerate elements from the problem and modify the constituent equation count, M,
accordingly. The number of linearly independent reactions in the system is then found to
be R=C-M. The discussion from this point forward assumes that there are M linearly

independent constituent equations.

The modified feed vector, z’, is representative of the components that will be the
most abundant in the equilibrium mixture of an ideal gas system. There will be M non-
zero elements in this vector. The M columns of A" which correspond to the M non-zero
components of z° will form a M x M identity matrix and A’ can be rearranged through

column interchanges to have the form
A" =[1] Z] (2.63)

where I is the M x M identity matrix and Z is a M x R full matrix. The first M columns of
the A" matrix shown in equation (2.63) correspond to the non-zero components in the

modified feed and represent the base components. The R remaining columns of A’
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correspond to the components with a zero mole number in modified feed which are the

derived components in the system.

As described in Chapter 2 of Smith and Missen (1982), the stoichiometric
coefficients of the R independent reactions can be found easily by forming the Cx R

matrix

oH

The i row of N corresponds to the same component as the i* column of A’ in equation
(2.63). The ;/* column of N, denoted v;= {v;, vy, ..., v;}", represents the stoichiometric
coefficients of the /* independent reaction, v; being positive for products and negative for
reactants. Because the base components correspond to the first M rows of N, equation
(2.64) indicates that each of the R independent reactions defined by N represents the
formation of one of the R derived components from the set of M base components. Thus,
the number of moles of the derived components will be equal to the reaction extent of

their corresponding formation reaction.

With the reaction stoichiometry and feed compositions defined, an initial guess of

the reaction extents can be found through an ideal gas approximation to the reaction

affinity requirements:
M b‘
& =b, expiK, -2 v,In ;—} (2.65)
i=l tot
where
M L]
b = Z b; (2.66)
i=l
and

C
K, ==Y va,. (2.67)

i=1
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The overall mole numbers used to initiate the non-ideal stoichiometric Gibbs free energy

minimization can then be found from

R
N.=z+Q v;& ; 1<i<C (2.68)

j=1
and n’, the initial feed mole numbers for the flash, are defined by

N,
n=—"— ;1<i<C. (2.69)

£ C

>N,

j=l

A check should be done to ensure that all the component mole numbers remain
positive when forming the initial compositions. If the reaction extents are such that a
mole number becomes negative, all the reaction extents should be multiplied by a scaling
factor to eliminate this problem. Because of the minimization which was done to
determine the base and the derived components, the final mole numbers of the derived
components should be small and therefore their corresponding reaction extents should be

small. This should help eliminate the numerical difficulties of catastrophic cancellation.

Once the reactions and initial feed composition has been established, to initiate
the non-ideal stoichiometric flash algorithm, the number of initial phases is set equal to
the number of components plus one. According to the Gibbs phase rule, this number
gives a non-reacting system one degree of freedom. As well, this allows the program to
initiate the reactive flash with C liquid phases each phase being rich in one of the
components and an additional vapour phase having the same composition as the feed

determined by equation (2.69). To ensure that material balances are satisfied, the initial

phase fractions, £, and mole factions, x;, are set to be

y(C-f-l) =1

By =m0 c (2.70)

c+1) ;28 7<C+1
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n; ; j=1;1<isC
x; =40.99+0.01n] ;2</<C+1;i=j-1 (2.71)
0.01n? ;2<j<C+1;i# -1

Using the compositions as defined by equation (2.71) to determine initial fugacity
coefficients, ¢, the initial phase distribution variables are defined by

K; =g, - 2.72)

With the initial guess defined by equations (2.65) through (2.72) the
stoichiometric reactive flash will be started with reaction extents close to the equilibrium

extents and with a phase distribution covering all the corners in composition space.

2.4.8 Computational Concerns
The outer loop of the stoichiometric reactive flash is a straight forward successive

substitution routine. Like all successive substitution flash routines, near a critical point it
converges quite slowly. By using an acceleration routine as Abdel-Ghani (1995) did, the
convergence rate may be improved. Other alternatives would be to switch to a single
loop, full Newton-Raphson technique as is done in the polymer flash described in
Chapter 6. However, a full Newton-Raphson technique requires a very good initial guess
to achieve convergence to the proper solution, and the more robust successive
substitution routine is adequate for all the flash calculations performed in the examples of

the following chapter.

Precautions need to be taken within the inner loop to ensure that a Newton-
Raphson step in the solution of equations (2.50) and (2.51) does not result in more than
one phase becoming incipient at a time and that no mole numbers become negative. This
is accomplished by using a single variable to scale the changes in independent variables
calculated at each Newton-Raphson step. The value of the scaling parameter is initially

set to 1 and then decreased if either the total number of moles of a component as

calculated by (2.68) is negative or more than one phase amount, 5, becomes less than

zero. If a phase amount is to become negative, the scaling variable is set to a value such
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that the phase amount becomes only slightly negative, say a value of -10™. If after the
Newton-Raphson step, a phase amount is less than zero, the phase amount is set to zero
and the phase is considered incipient during the next iteration. If the Newton-Raphson
step results in a phase amount becoming positive, the phase is considered to be active

during the next iteration.

At each iteration within the inner loop, care must be taken to ensure that incipient
phases do not affect the changes in the independent variables associated with the active
phases. This is accomplished by setting all the elements of a column in the Jacobian
associated with an incipient phase to zero save for the element along the diagonal before
the Newton-Raphson step is calculated.

25 The Non-Stoichiometric Algorithm

2.5.1 System Definition and Algorithm Objectives
The non-stoichiometric reactive flash algorithm performs a flash calculation under

the same conditions as the stoichiometric algorithm and has the same objectives except
that a set of independent reactions which characterize the system does not need to be
found. Instead, the algorithm uses the elemental balances as written in equation (2.4) to
constrain a minimization of the system'’s Gibbs free energy. The proposed algorithm is
closely related to Michelsen’s (1989) ideal non-stoichiometric chemical equilibrium
algorithm but incorporates non-ideality and muitiple mixed phases. Once again, the
reference chemical potentials are weighted averages as described by equations (2.33) and
(2.34). Phase stability is based upon the tangent plane criteria of section 2.4.3 and is

determined by the sum of the unnormalized mole fractions in each phase.

Like the stoichiometric algorithm, the non-stoichiometric algorithm consists of
two nested loops. Again, the outer loop updates thermodynamic properties using a
successive substitution technique and the inner loop solves for phase mole numbers and
phase compositions using composition independent fugacity coefficients supplied by the

outer loop. The primary difference in the inner loop is that it does not calculate reaction
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extents. In fact, no set of reactions are determined at all. Additionally, phase distribution

variables, K, are not used in this formulation.

2.5.2 The Inner Loop
The inner loop minimizes the Gibbs free energy of a multiphase system given the

system feed composition and composition independent fugacity coefficients. It is
formally the same as the ideal solution minimization problem solved in Michelsen’s non-

stoichiometric algorithm (1989). The Gibbs free energy of a multiphase system can be

expressed as
Gn) &< (#-" J
RT ;Z.:"” T KA @73)
subject to the constraints
An, -b=0 (2.74)
where
C
ey = 2o
n:={n,n, ..., nc}" and n={n,, n,, ..., nc;, Ny ..., Nex}’. N, TEpresents the total

number of moles of component i in the system:

m=3n,.

j=
If a; is defined as in equation (2.49), and we use the method of Lagrange
multipliers to convert the minimization of equation (2.73) subject to the constraints (2.74)
into an unconstrained minimization problem, the resulting objective function, ¢, is given
by

tn, )=iing.(a,.+mxﬁ¢y)—iz{ii@nﬁ-bk]-z':zc:nymi, 2.75)

j= inl k=l j=t i=l jul il
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where the Lagrange multipliers associated with the elemental balances are 4, and the
slack variables @; can be used to enforce the non-negativity constraints on the mole
numbers. For brevity, n,/n;; has been replaced by the unnormalized mole fraction, X, for
reasons that will be become apparent shortly. In all the calculations, n; are forced to be
positive; therefore @, is assumed to be zero and the final term of equation (2.75) will be

dropped from further discussions.

This problem contains Cz + M unknowns, n and A. Recalling that in the inner

loop, the fugacity coefficients are assumed to be independent of composition, at its

minimum, the derivatives of (2.75) with respect to n and A will equal:

—|=L-D 44, =a, +InX,+Ing - Y L, 4, =0 (2.76)
\dlij RT k=1 * / ¢,! k=1 Lo

(d x C

2] 5 -33 tun, =0, @m
\ A, j= i=l

The middle expression in equation (2.76) shows that the elemental Lagrange
multipliers, 4,, can be thought of as reduced elemental potentials: linear combinations of
the reduced elemental potentials determine the reduced chemical potentials of all the
components.

To reduce the number of variables in the system a duality transformation can be

made. Rearranging equation (2.76) to isolate In X; yields the following equation:

M
InX, =kZA,A,a.—a,.—ln¢y.. (2.78)
=]
Substituting this into equation (2.75) results in a new objective function to be minimized:
M
o) =~2 4, 2.79)

k=t

which is subject to the constraints
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1-)X,20 ; 1sj<x (2.80)

and where X; is defined by equation (2.78). Using Lagrange multipliers for the
constraints in equation (2.80) gives a new Lagrangian function:

e(x,@:-?{a,b, -2‘4(1-_2',(5). (2.81)

This problem is one containing only M+ 7 equations, in M + 7 unknowns,
A={A, Ay ..., 44} and B = {B,, B, ..., Bx}". It should be noted that the X defined by
equation (2.78) are unnormalized mole fractions.

The optimality conditions are given by

x C
= =b, + Zﬂ;(z A, X ,) =0 (2.82)
ﬂk J=l i=]
A & =0 ; B, >0
d = _ - _ -
- B; ;X" l{<0 : B, =0 (2.83)

The two possible right hand sides of equation (2.83) are a result of the Kuhn-Tucker
conditions of constrained optimization problems. The Lagrange multipliers, £, must be
positive if the constraint is active and they must be 0 if the constraint is inactive.
Otherwise, the objective function could be further minimized (Fletcher, 1981).
Examining equation (2.82) reveals that the Lagrange multiplier 5, is representative of the

total number of moles in phase j.

Since it can be shown that the Gibbs function with constant fugacity coefficients
is convex, the dual problem given in equation (2.81) must also be convex and contain a
unique minimum. Therefore a Newton-Raphson procedure is a good choice to solve
equations (2.82) and (2.83) to find the Gibbs free energy minimum. The derivatives used
to form the Jacobian can be found readily and are given in equations (2.84) through
(2.86).
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e =i.4.‘,4_,.n. ;on =iﬂ,‘Xﬁ (2.84)
ﬂ'j&n iwl . ‘ ) k=l
7l _Yax (2.85)
&jaﬁk —i=l s .
Va4
575" (2.86)

Like the stoichiometric algorithm, each Newton-Raphson step should be scaled to ensure
that at most only one phase becomes incipient during a single iteration. Convergence is
achieved when the sum of the square of the residues, given by equation (2.82) and the
active phases of equation (2.83), is smaller than a specified tolerance. After converging,

the g values are calculated using equation (2.46) and the normalized mole fractions, X

are determined and returned to the outer loop.

2.5.3 The Quter Loop
The purpose of the outer loop in the non-stoichiometric algorithm is the same as

the outer loop of the stoichiometric method: it updates the fugacity coefficients to reflect
the new phase compositions returned from the inner loop and determines the overall
convergence of the calculation. A thermodynamic model is used with the compositions
returned from the inner loop to calculate the new fugacity coefficients and fugacities.
The new fugacities and phase fractions are used to calculate the reference fugacities using
equation (2.34) and the residuals are determined using equation (2.55). Convergence is
defined as it was in equation (2.58). If the sum of the squares of the residuals exceeds the
tolerance, the inner loop is executed with the new fugacity coefficients. In a similar
fashion as the stoichiometric algorithm, before entering the inner loop, phases which have

compositions and specific volumes within 5% are combined.

2.5.4 Initiation
To initiate the non-stoichiometric procedure, the linear programming solution

which Michelsen (1989) suggested is used with some small modifications. This
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technique is the same as the linear programming initiation described for the
stoichiometric algorithm, but instead of only minimizing with respect to C variables, this
linear programming problem is one involving Cr variables, one for each component in
each phase. The initial number of potential phases is set equal to the number of

components plus one. The objective function being minimized is
G(z) =2z"p°

subject to the linear constraints Az=b and the normal non-negativity constraints. The
difference between this problem and the linear programming problem described for the
stoichiometric problem is that the feed vector z and the standard state chemical potential
vector, p’, contain one element for each component in each phase, and the elemental

composition matrix, A, also has one column for each component in each phase.

To determine the Cr ranked standard state chemical potential vector, initial
fugacity coefficients for each component in each phase are found based upon the inital
composition guess defined by equation (2.71). The elements in the expanded standard

state chemical potential vector are found from

7 K
g P 2.87
RT = RT T IW (2.87)

and the multiphase, linear system is minimized.

The linear programming procedure returns a modified feed vector, z', of a
dimension equal to Cx, but where only M of the elements of the vector are non-zero, and
a modified elemental composition matrix, A", where the leading M x M matrix is an
identity matrix. The M non-zero elements of z* can be used to determine an initial guess
at the number of active phases present, the moles in the phases and the compositions of
the phases. That is, from z’ initial estimates of B and n can be found. An initial guess for
the Lagrange multipliers is the chemical potentials of the first M components:

0

A,- +1n¢,,,,q s 1<k< M. (2.88)
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Note that these base components do not need to be in the same phase and care must be

taken within the linear programming procedure to ensure that component and phase

indices associated with the base components are properly recorded.

New compositions for each phase are found from equation (2.78), normalized and
then used in a thermodynamic model to give the initial fugacity coefficients passed to the

inner loop.

2.5.5 Computational Concerns
Before each Newton-Raphson step in the inner loop is calculated, the effect of the

incipient phases on the active phases is eliminated by setting each element in the columns
associated with the incipient phase amounts equal to zero save for the diagonal elements.
Care must also be taken during calculations to ensure that not more than M phases have
positive phase amounts at any one time otherwise the Jacobian becomes singular and the

calculation procedure fails.

As in the stoichiometric algorithm, the Newton-Raphson step within the inner
loop is scaled. Unlike the stoichiometric method, two independent scaling variables are
used: one to control the change in the phase amounts and the other to control the change
in the Lagrange multipliers. The Newton-Raphson step taken on any iteration is
controlled to ensure that at most only one phase becomes incipient at a time. A phase
becomes incipient if its £, becomes negative or zero after an iteration. If £ <0, it is set
equal té zero. The change in the Lagrange multipliers is scaled to ensure that each
multiplier does not vary by more than 10% of its value upon each Newton-Raphson step.
That is, a factor S <1 is chosen to scale the changes in the Lagrange multipliers such that

Sl%— <010 ; 1<k M.
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A phase becomes active when the sum of the unnormalized mole fractions in that

phase is greater than 1, the sum is the greatest of all the phase mole fraction sums and, by
its addition, the number of active phases will not surpass M. In the case where a phase

becomes active, its phase amount, £, is set equal to 10,

2.6 Summary
The stoichiometric and non-stoichiometric algorithms developed in this chapter

are similar in structure but differ in their implementations of the elemental constraints.
Both use successive substitution in an outer loop to update thermodynamic properties of
the phases and a Newton-Raphson procedure in the inner loop to determine phase
amounts and mole fractions. In both algorithms, the inner loop is certain to converge to a
unique solution due to the convex form of the problem. The inner loop of the
stoichiometric method has (C-M) + x unknowns while the non-stoichiometric algorithm
only uses M + 7 unknowns in its inner loop. This difference in the number of
independent variables is important when deciding which algorithm to use and will be
discussed more in the following chapter where multiple examples of the utility of these

algonthms will be given and analyzed.



45

3. REACTIVE FLASH CALCULATIONS

3.1 Introduction
This chapter uses both the stoichiometric and non-stoichiometric reactive flash

algorithms to study three multiphase reactive systems. The first example is the simple
reaction between carbon monoxide, carbon dioxide and hydrogen to produce methanol
and water. The reaction is also carried out in the presence of an inert heavy hydrocarbon
to illustrate three phase reaction equilibrium. The second example illustrates the use of
the non-stoichiometric algorithm to calculate the phase and reaction equilibrium when
methyl rert-butyl ether (MTBE) is produced from methanol and isobutene in the presence
of inert n-butane. The third example shows the use of a reactive flash algorithm to
predict the properties and solubilities of an associating compound such as sulfur which

can exist as S, (commonly, x =1, 2, ..., 8).

3.2  Methanol Synthesis
The production of methanol from carbon dioxide and water has the potential to

show multiphase behaviour. Using the pure component properties shown in Table 3-1
and Table 3-2, two example methanol synthesis calculations were performed using the
SRK equation of state with conventional mixing rules. The interaction parameters

reported by Castier ez al. (1989) were used in these calculations and shown in Table 3-3.
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The Gibbs function of the pure component ideal gas standard states were fitted to the
polynomial shown in Table 3-2 in order to determine the standard state chemical
potentials over a broad temperature range.

The calculations were based on methanol production from synthesis gas in the
presence of inert methane. The feed to the system consisted of CH,, CO, H,, CO,, and,

Species T P. ® AH’,,
(K) (MPa) (kJ/mol)

CH, 190.40 4.60 0.011 -66.505
CO | 13290 | 350 | 0066 | -113.820

H,(eq) 33.20 1.30 -0.218 0.000
Co, 304.10 7.38 0.239 | -393.140
CH,OH | 512.60 8.09 0.556 | -190.121
H,0O 647.30 22.12 0.344 | -238.915
C,oH,; | 748.00 | 120 | 0790 | -317.920

Table 3-1 - Pure Component Critical Properties, Acentric Factors and Enthalpies
of Formation. Data from Reid, Prausnitz and Poling (1985).

T K) 300 400 500 600 700 800
CH, | -152.88 | -162.67 | -170.62 | -177.44 | -183.59 | -189.20
co | -168.62 | -177.00 | -183.51 | -188.85 | -193.40 | -197.37

Hy(eq) | -102.35 | -110.55 | -116.93 | -122.18 | -126.62 | -130.49
CO, | -182.45 | -191.77 | -199.43 | -206.04 | -211.88 | -217.15

CH,OH | -201.58 | -212.93 | -222.33 | -230.59 | -238.09 | -245.04

H,0 | -155.71 | -16528 | -172.76 | -17892 | -184.19 | -188.82

CieH,s | -581.84 | -669.12 | -747.95 | -821.46 | -891.58 | -957.04

Gibbs Function fit to: [GP-AH o VT = A/T + AIn T + A, + AT + A, T2 + A0

Table 3-2 - Pure Component Ideal Gas Gibbs Function. Values in J/mol (Marsh,
198S).
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when three phase behaviour was examined, C,,H;,. Including the products, CH,OH and
H,O, in the list of species, the problem can be seen to have six components and four
elements when octadecane is omitted (C=6, M =4), and seven components and five
elements when it is included (C=7, M=5). The reactions used in the stoichiometric
algorithm were determined by the methods described in the previous chapter.

A reactive flash done at 30 MPa and 473.15 K, without octadecane resulted in a
vapour and liquid phase as indicated in Table 3-4. The results agree well with those of
Castier et al. (1989) and with the vapour phase predictions by Gupta et al. (1991). The
small deviations seen are most likely due to differences in pure component chemical
potentials. The liquid phase predictions by Gupta er al. are notably different from both
the work of Castier et al. and from this work. It is unknown why this discrepancy exists.

Table 3-4 also shows the two reactions used to initiate the stoichiometric flash
algorithm and their corresponding equilibrium reaction extents. Methanol is classified as
a reactant because the linear programming initiation procedure determined that methanol,
hydrogen and water would be the components present in greatest quantities at
equilibrium. The linear programming solution redefined the feed in terms of these three
base components plus the inert methane before establishing the reactions required to
derive the remaining two components, carbon dioxide and carbon monoxide. The small
reaction extents, 1.92 x 10”° and 2.18 x 10*, indicate that the initial choice of reactions,
base components, and derived components were close to the equilibrium solution. An
ineffective initial guess would have resulted in larger values of the equilibrium reaction

extents.
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CH,

0.0322] cCoO

-0.0222[ 0.0804] H,

0.0933] -0.0315] -0.3426] CO,

-0.2500] -0.2881| 0.0000] 0.0148] CH,OH

0.5000] 0.0603| -0.2500] 0.0737| -0.0789] H,0
0.0000] 0.0000] 0.0000] 0.0000] 0.0000]  0.4000

Table 3-3 - SRK Interaction Parameters. Data from Castier et al. (1989).

Vapour Liquid
Species Feed Castier Gupta | Current | Castier Gupta | Current
CH, 3.00 8.78 9.15 8.80 2.46 1.56 2.44
60) 15.00 0.01 0.01 0.01 0.00 0.00 0.00
H, 74.00 65.89 66.93 66.06 9.62 4.02 9.44
Co, 8.00 0.06 0.04 0.06 0.02 0.01 0.02
CH,OH 0.00 20.52 20.40 20.38 63.54 67.09 63.69
H,O 0.00 4.73 3.47 4.69 24.36 27.32 24 41
Phase Fraction: 0.4889 | 0.5258 | 0.4890 | 0.5111 0.4742 | 0.5110
Compressibility: 1.0290 1.0190 | 1.0320 | 0.4588 0.3006 | 0.4585
Reaction: CH,0H = CO +2H, H,0 + CH,0H = CO, + 3H,
Extents: 1.92E-05 2.18E-04
Iterations: Stoichiometric - 21 Non-Stoichiometric - 20
Equilibrium Moles/Feed Moles:  0.5405 " Inert Species.

Table 3-4 - Methanol Synthesis at 30 MPa and 473.15 K. Values given are mole
percentages.
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Vapour Liquid I Liquid II
Species Feed Castier |Current Castier [Current Castier |Current
CH,’ 2.14 5.46 538 0.04 0.04 1.92 1.89
co 10.71 0.11 0.10 0.00 0.00 0.02 0.02
H, 52.86 57.31 57.35 0.58 0.56 11.59 11.48
CoO, 5.71 534 5.50 0.24 0.24 2.70 2.78
CH,0H 0.00 1441 14.30 22.05 21.86 27.53 27.37
H,O 2143 17.22 17.22 77.09 77.31 11.16 11.17
C,His 7.15 0.15 0.15 0.00 0.00 45.07 45.29
Phase Fraction: 04671 | 04740 | 03136 | 03082 | 0.2193 | 0.2178
Compressibility: 09623 | 09635 | 0.0978 | 0.0976 | 0.7515 | 0.7534
Reactions: H, + CO, = H,0 + CO CO, + 3H, = H,0 + CH,0H
Extents: 3.79E-04 1.40E-01
Iterations: Stoichiometric - 25 Non-Stoichiometric - 17
Equilibrium Moles/Feed Moles:  0.7197 " Inert Species.

Table 3-5 - Methanol Synthesis with Octadecane at 10.13 MPa and 473.15 K.
Values given are mole percentages.

A reactive flash with octadecane in the feed was done at 10.13 MPa and 473.15 K.

The results, shown in Table 3-5, indicate a vapour phase, an aqueous phase and a heavy

hydrocarbon phase present at equilibrium. The reactions calculated for the stoichiometric
The base

technique were different than the ones found in the previous example.

components in this case were hydrogen, carbon dioxide, water and the inerts were

methane and octadecane. Methanol and carbon monoxide were the derived species.

As the table indicates, the reaction extent associated with the production of CO

was small (3.79 x 10®), but the reaction extent associated with the production of

methanol was significant (1.40 x 10™"). This may account for the 25 iterations required by
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the stoichiometric technique in this case whereas the non-stoichiometric technique only
took 17 iterations. Again, the results agreed well with Castier et al. (1989).

The outer loop iteration count for both the 6 component (no octadecane) and the 7
component (with octadecane) example were evaluated. The 6 component system was
flashed at 30 MPa and 473.15 °K while the 7 component system was flashed at pressures
from 0.1 MPa to 65 MPa. The 7 component system showed both 2 phase and 3 phase
regions over the pressure range studied. As listed in Table 3-6 and illustrated in Figure
3-1, at pressures below 8 MPa, a vapour-hydrocarbon liquid region exists. The vapour is
rich in hydrogen. As the pressure increases past 8 MPa, the water and hydrocarbon liquid
becomes unstable and a region containing a hydrogen-rich vapour phase, an aqueous
liquid phase and a hydrocarbon liquid phase evolves. As the pressure continues to
increase, the hydrogen-rich vapour is absorbed into the hydrocarbon liquid until the
vapour phase completely disappears into the hydrocarbon phase at a pressure of 40 MPa.
The aqueous liquid and hydrocarbon liquid are stable at the higher pressures tested.

Increasing the pressure increased the equilibrium conversion of carbon dioxide to
methanol. However, at a pressure of 30 MPa, almost all of the carbon content is
converted into methanol. Further pressure increases showed negligible improvements in
conversion. At this pressure, the majority of the methanol was held in the aqueous phase

and hydrocarbon phases.

Figure 3-1 shows the presence of incipient phases during the calculation. The
dotted line gives the value of the stability variable, 6, corresponding to an incipient phase.
Recall that the stability variable is positive for incipient phases and O for phases that are
present in non-zero amounts. At pressures below 8 MPa, it is evident from observing the
incipient stability variable that as the pressure increases the incipient phase becomes
closer to being stable. That is, as the pressure increases, 8 approaches 0. At 8 MPa, 6
becomes zero and the wqueous phase appears. Conversely, at a pressure of 40 MPa, the

hydrogen rich vapour becomes incipient as & becomes positive. At pressures above
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Iterations Methanol Reaction Reaction Vapour Agqueous HC
P(MPa) St NSt Produced Extentl Extent2 Phase Phase  Phase
0.1 6 7 0.0000 3.86E-03 3.82E-05 0.9654 (0.0079) 0.0347
0.5 7 7 0.0010 3.82E-03 1.02E-03 0.9346 (0.0410) 0.0654
1 8 7 0.0040 3.64E-03 4.00E-03 09292 (0.0840) 0.0708
2 10 6 0.0138 3.08E-03 1.38E-02 0.9223 (0.1824) 0.0777
4 12 11  0.0376 2.03E-03 3.76E-02 0.9068 (0.4348) 0.0932
6 13 12 0.0599 1.36E-03 5.99E-02 0.8858 (0.7367) 0.1142
8 18 14 0.0867 9.24E-04 8.67E-02 0.8111 0.0415  0.1474
10 25 17 0.1381 4.05E-04 1.38E-01 0.4899 0.2957 0.2145
10.13 2§ 17 0.1402 3.79E-04 1.40E-01 0.4740 03082 0.2178
12 20 17 0.1553 1.64E-04 8.72E-03 03374 0.4133  0.2493
14 21 23 0.1601 8.51E-05 3.98E-03 02760 0.4552  0.2688
16 21 21  0.1620 5.07E-05 2.14E-03 02397 0.4755  0.2848
18 21 21 0.1629 3.28E-05 1.28E-03 0.2128 0.4876  0.2996
20 21 21 0.1634 2.25E-05 8.18E-04 0.1903 04956  0.3141
25 21 22 0.1639 1.04E-05 3.31E-04 0.1421 0.5078  0.3501
30 22 23 0.1640 5.65E-06 1.63E-04 0.0982 0.5147  0.3871
35 23 24 0.1641 3.40E-06 9.0SE-05 0.0552 0.5194 04254
40 22 24 0.1641 2.20E-06 5.51E-05 0.0120 0.5227  0.4653
45 23 25 0.1642 1.64E-06 3.87E-05 (0.9794) 0.5295  0.4705
50 31 31  0.1642 1.29E-06 2.90E-05 (0.9554) 0.5370 0.4630
55 43 42 0.1642 1.05E-06 2.23E-05 (0.9358) 0.5437  0.4563
60 24 27 0.1642 8.58E-07 1.7SE-05 0.5496  0.4504
65 23 25 0.1642 7.14E-07 1.39E-05 0.5550  0.4450
Feed - CH,: 0.0214 CO0:0.1071 H,: 0.5286 CO,: 0.0571
CH,OH: 0.0000 H,0:0.2143 C,H,: 0.0715
Temperature is 473.15 K and methane is inert in all runs.
* Subsequent Reactions are: H,+C0,=CO0+H,0 3H,+C0O,=CH,0H+H,0
|’ Subsequent Reactions are: CH,OH=CO+2H, CH,0H+H,0=3H,+CO,

¢ Parenthesis indicate an incipient phase, the number being the sum of the mole fractions.

Table 3-6 - Methanol Synthesis Iteration Counts.
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Figure 3-1 - Comparison of Stoichiometric and Non-Stoichiometric Algorithms in
Methanol Synthesis. Methane is inert. Temperature is 473.15 K.

55 MPa, the composition belonging to the incipient vapour phase becomes locally

unstable and no longer appear in the calculations.

The stability variable can be used to judge how close a phase is to being in
equilibrium. Analyzing change of this variable as system conditions are modified gives
an indication of how the system conditions can be varied to either make the incipient
phase appear or to ensure that it does not become stable. As well, by examining the
composition and volume of the incipient phase, the type of phase it represents can be

determined.

In Figure 3-1, outer loop iteration counts are plotted for the stoichiometric and
non-stoichiometric algorithms over the pressure range studied. It is apparent from the
figure that the outer loop iteration count is comparable between the two techniques at all

pressures except around 10 MPa.

At 10.13 MPa, the stoichiometric algorithm converges in 25 outer loop iteration

whereas the non-stoichiometric algorithm converges in only 17. This difference can be
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attributed to the reactions defined in the stoichiometric algorithm. At pressures below
12 MPa, the linear programming procedure discussed in the previous chapter determined
that hydrogen, carbon dioxide and water would be the components present in the greatest
quantities at equilibrium. As a result, the two reactions defining the system were

H,+CO,=H,0+CO and CO,+ 3H,= H,0 + CH,0H.

As given in Table 3-5, the reaction extent corresponding to the second reaction at
10.13 MPa was high enough to account for the conversion of almost all of the carbon in
the system to methanol. This is an indication that the choice of base components was
wrong and methanol would have been a better choice than carbon dioxide as a base
component. The ideal gas minimization used to determine the base components did not

recognize this fact.

On the positive side, as soon as the pressure exceeded 12 MPa, the linear
programming procedure gave methanol, water and hydrogen as the two reacting base

components. The reactions associated with them were
CH,OH=CO+2H, and CH,0H +H,0 = 3H, + CO,.

These two reactions resulted in reaction extents of 1.64 x 10™ and 8.72 x 103, two values
that indicate that methanol was a good choice for a base component. The stoichiometric
algorithm iteration count dropped to 20 due to this change, a value close to the non-

stoichiometric’s 17.

The outer loop iteration count for both the stoichiometric and non-stoichiometric
peaked just over 40 iterations at a pressure of 55 MPa. This corresponds to the point
were the incipient vapour phase becomes locally unstable. This instability is the likely

cause of the high iteration count at this point.

It is difficult to conclude that either of the algorithms is superior given the
iteration counts in these examples. However, outer loop iterations is only one criteria

which can be used to rank the procedures. To gain a better picture of the relative
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performance of these two algorithms, the outer loop iterations can be considered along

with the total computational time needed for convergence under a number of conditions.

Table 3-7 shows the time required to reach convergence for the two algorithms at
473.15 °K and different pressures. The 6 component system refers to the methanol
synthesis example without octadecane while the 7 component system refers to the

methanol example including octadecane. The table indicates that the non-stoichiometric

Calculation 6 Component 7 Component System
Technique P=30MPa | P=5MPa | 10.13MPa | 30 MPa 50 MPa
Stoichiometric 129.250 143.919 306.790 193.904 | 266.315
Non-Stoichiometric 132.481 138.366 182.162 | 219.515 | 263.446

Table 3-7 - Stoichiometric and Non-Stoichiometric Computation Times. Times
are in milliseconds and calculated on a 100 MHz Intel Pentium
Processor.

Temperature is 473.15 °C.

Iterations Iteration Average
Ave. Inner Therm. Time Time
P Outer | Inner Loop Package Therm. Book-
Syste | (MPa) | Loop Loop Time Calls Package Keeping

m

300 | 21/20 | 4.7/3.6 | 0.415/0.459 | 2.8/3.8 | 0.489/0.508 | 2.44/2.71

10.13 | 25/17 | 3.8/4.5 | 0.507/0.768 | 3.7/5.0 | 0.717/0.584 | 7.36/3.62

A
B 5.0 13/11 | 4.0/4.7 | 0.595/0.704 | 4.2/5.6 | 0.715/0.588 | 4.98/5.09
B
B

30.0 | 22/23 | 4.4/4.1 | 0.579/0.837 | 4.3/53 | 0.577/0.611 | 3.10/2.35

B 50.0 | 31/31 | 3.6/4.1 | 0.655/0.823 | 4.2/5.0 | 0.642/0.569 | 3.10/2.31

Table 3-8 - Iteration Count and Break Down of Computer Time. Times are in
milliseconds on a 100 MHz Intel Pentium Processor.

(Stoichiometric/Non-Stoichiometric)
System A - 6 Component Methanol Synthesis Example (T = 473.15 °K).
System B - 7 Component Methanol Synthesis Example (T = 473.15 °K).
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technique was faster than the stoichiometric technique except for the flashes of the 6
component system at 30 MPa and of the 7 component system at 30 MPa.

The deviation between the convergence time for the two algorithm was within
15% except for the 7 component flash at 10.13 MPa. At this pressure the stoichiometric
algorithm was 68% slower than the non-stoichiometric algorithm. The longer
convergence time is likely due to the 25 outer loop iterations required by the
stoichiometric algorithm compared to the 17 needed by the non-stoichiometric technique.

The cause of the increased iteration count at this point was discussed earlier.

Table 3-8 can be used to anmalyze the performance of the inner loops and to
contrast the three main time consuming elements in the algorithms. It lists the outer loop
iterations and the average number of inner loop iterations per outer loop pass. It displays
the average number of calls to the thermodynamic package during each outer loop
iteration and the average time for each call. Finally, it gives the average time for each

inner loop iteration and the average time spent bookkeeping per outer loop iteration.

The inner loops of both algorithms are using an average of 4 - 5 iterations to
converge. In actuality, the inner loops are repeated around 10 - 15 times in the early
stages of the equilibrium computation but quickly drop to around 3 iterations as
equilibrium is neared. In both cases, the inner loop solves the material balances and
reaction equilibrium relationships using initial guesses from the previously converged
solution and equations that are at least positive semi-definite. These two factors give rise

to the quick convergence of the inner loop.

The average time per inner loop iteration is noticeably higher for the non-
stoichiometric algorithm. This is a result of the problem formulation. The inner loop of
the stoichiometric algorithm solves for R + 7 variables where R is the number of
reactions and = is the number of phases. In all the above calculations, R =2. The inner

loop of the non-stoichiometric technique solves for M + r variables where M is the
number of elements. In the 7 component system, M = 5. Therefore, since the number of

phases are the same, the inner loop of the stoichiometric algorithm has to solve for an
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additional 3 variables. Consequently, the time per iteration of its inner loop is greater. If
the number of independent reactions, R = C - M, was larger than the number of elements,

the inner loop of the stoichiometric algorithm would be slowest.

A call is made to the thermodynamic package each time the fugacities of a single
phase need to be determined. The average number of calls to the thermodynamic package
per outer loop iteration is therefore a good indication of the average number of phases
included in the computation. Table 3-8 shows that the non-stoichiometric technique has
an average of one more phase per outer loop iteration than the stoichiometric technique.
Since both routines are initiated with C + 1 phases, the phases in the non-stoichiometric
technique must not have merged to similar compositions and volumes as quickly as in the
stoichiometric technique. It should be noted that more computational time is required in

both the inner and outer loops if more phases are present.

The average bookkeeping time per outer loop iteration gives an idea of the
amount of general work required to maintain the information. flow in the algorithms.
“Bookkeeping” includes keeping track of phase indices, initiation and combining
identical phases. There is no real trend in the time required for these activities which is
readily apparent from the table.

The average time for a call to the thermodynamics package turns out to be a
significant factor in the analysis of these two algorithms in this case. Comparing the
overall computational times in Table 3-7 to the average call times to the thermodynamic
package, it becomes apparent that the algorithm with the faster thermodynamic package
had the faster overall convergence time. This might not be the case when the number of
equations to be solved in the inner loop of the stoichiometric algorithm is drastically
different from the number in the non-stoichiometric algorithm. In this case, however, the
difference is not significant, and the speed of the calls to the thermodynamic package are

important.

In the calculations performed, the same thermodynamics package was used for
both algorithms. This implies that the time difference for the calls to the package must be
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the result of some overhead inherent in the two algorithms. By determining what this
overhead is and reducing it, the computational speed of the algorithms could be

improved.

The stoichiometric and non-stoichiometric algorithms spend about 28% of their
computational time in the inner loop, 28% in the thermodynamic package and 40% with
bookkeeping. The significant time spent in these three areas indicates that improvements
in the variable management to reduce bookkeeping time or improvements in the speed of
the thermodynamics package would substantially reduce the computation time of both
algorithms. Thus, the need for fast, efficient thermodynamic models and proper coding
procedures. Emphasis was not placed upon optimizing the computational time of these
algorithms in this work.

3.3  MTBE Production
Methy! terz-butyl ether (MTBE) is a fuel additive used to reduce engine knock. It

is synthesized from the reaction between methanol and isobutene and is usually carried
out in the presence of inert C,’s like n-butane. Papers have been presented by Barbosa
and Doherty (1988), Doherty and Buzad (1992), DeGarmo et al. (1992), Jacobs and
Krishna (1993), Ung and Doherty (1995) and Okasinski and Doherty (1997), to name a
few, which look at the behaviour of this reacting system and how it can be modeled
within reacting distillation columns. An important aspect of modeling the production of
MTBE in a reactive distillation column is the calculation of simultaneous phase and
reaction equilibrium on each reactive tray of the column. The stoichiometric and non-

stoichiometric algorithms are both well suited to this task.

Chemical and phase equilibrium calculations of systems containing methanol,
isobutene, MTBE and n-butane where performed to illustrate the reactive flash
calculations required when modeling a reactive distillation column used to produce
MTBE. The non-stoichiometric algorithm was used with the SRK equation of state.
Because methanol forms strong lower temperature azeotropes with MTBE and isobutene,

standard equations of state can not accurately represent the liquid activity coefficients.
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For these systems, activity coefficients correlated in the low pressure region give much
more accurate phase equilibrium predictions at low pressures than an equation of state
alone. As a result, the modified Heidemann-Kokal excess free energy mixing rule
outlined in Appendix A was used to determine the mixture a parameter in the equation of
state. This mixing rule allows an activity coefficient model to be used in conjunction
with an equation of state to improve the low pressure liquid-vapour equilibrium while

maintaining consistency between the liquid and vapour models.

Wilson’s activity coefficient model was used in the Heidemann-Kokal mixing
rule with parameters taken from Ung and Doherty (1995). Ung and Doherty used the
Wilson model to represent the liquid phase and assumed an ideal vapour, a procedure
which could lead to inconsistencies between the liquid and vapour models at higher

pressures and temperatures.

Pure component critical properties were taken from Reid et al. (1987). All the
pure component information and activity model parameters are given in Table 3-9 and
Table 3-10. The ideal gas standard state chemical potentials were calculated from the
Gibbs Function values given in Table 3-11 and the correlation function given in Table

3-2.

At first glance, a system composed of MTBE, methanol, isobutene and an inert n-
butane would seem to contain 4 components and 4 elements (C, O, H and n-butane).
However, the elemental composition of MTBE is a linear combination of the elemental
composition of methanol and isobutene and the elemental abundance matrix is of rank 3,
not 4. Thus there is one independent reaction in the system describing the formation of
MTBE from methanol and isobutene:

CH3OH + CHIC(CH3)2 = CH}‘O‘C(CH})}
(Methanol) + (Isobutene) = (MTBE)
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Component | T. (K) | P. (MPa) @ T, (K) | AHg, (K/mol) | V,; (cm*/mol)
MTBE 496.4 337 [0.2690 | 328.3 0.000 118.80
Methanol | 512.6 8.09 | 0.5560 [ 337.7 -190.120 44.44
Isobutene | 417.9 400 [0.1940 | 266.2 4.100 93.33
n-butane | 4252 3.80 [0.1990 | 272.7 -97.150 100.39

Table 3-9 - Pure Component Properties for MTBE Production.

Critical properties, acentric factors and normal boiling points from Reid ez al. (1987).
Molar volumes from Ung and Doherty (1995).
Enthalpies of formation from TRC Thermodynamic Tables (Marsh, 1985).
(AHg,, for MTBE arbitrarily assigned.)

MTBE Methanol Isobutene n-butane

MTBE 0.0000 -406.3902 271.5669 AL=1.00
Methanol 1483.2478 0.0000 2576.8532 2283.8726
Isobutene -30.2477 169.9953 0.0000 A, =1.00
n-butane A,=1.00 382.3429 As;=1.00 0.0000
Table 3-10 - Wilson Model A, and A;; Parameters. A Parameters in cal/mol. (Ung

and Doherty, 1995). A; =0 or A; =1 implies ideal binary mixture.
Component 200K 273.15K | 298.15K 300K 400 K 560K
MTBE -1108.84 | -1104.88 | -950.53 -865.93
Methanol -186.38 -198.01 -201.25 -201.58 -212.93 -222.33
Isobutene -236.27 -236.65 -254.80 -271.00
n-butane -221.84 -245.31 -245.68 -265.94 -284.34

Table 3-11 - Ideal Gas Gibbs Function Values for MTBE Synthesis Components.
Values in J/mol and from the TRC Thermodynamic Tables (Marsh,

1985).

Values for MTBE were back calculated from reaction AG® values given by Ung and
Doherty (1995).
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Suppose that the reactive MTBE, methanol, isobutene and n-butane system
contains 2 phases. According to the Gibbs phase rule with reactions there will be
F=C-7+2-R=4-2+2-1=3 degrees of freedom. If pressure is fixed, the degrees
of freedom becomes 2. If the system is further constrained by stating that the vapour
fraction is either 0 or 1 (bubble point and dew point respectively), the degrees of freedom
is 1, and a single temperature will be defined for each overall composition. In fact, if
there is no MTBE in the feed and the mole fractions of methanol and isobutene in the
feed are fixed to a specific ratio, 7, a pseudobinary plot can be made of the equilibrium
dew and bubble point temperatures as a function of feed n-butane. Figure 3-2 shows a
series of these dew and bubble point plots at 1 atmosphere and at feed methanol to
isobutene mole fraction ratios of 0.7, 1.0 and 1.4.

325
315 | \
305 |

295

T(K)

285 +

275

265

0.0 0.2 04 0.6 0.8 1.0
Mole Fraction n-butane in Feed

Figure 3-2 - MTBE Production Dew and Bubble Point Curves.
P =101.325 kPa

r= (zMeOH /zlsobuteue)
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The figure indicates that as the mole fraction of inert n-butane in the feed
increases, as expected, both the dew and bubble point temperatures approach the pure
n-butane vapour pressure. However, the behaviour of the curve in the lean concentrations
of n-butane is dependent upon the ratio of the reactants in the feed. The dew and bubble
point temperatures in systems lean in n-butane are the highest when the reactants are fed
in stoichiometric proportions (= 1.0). The dew and bubble points are the lowest when
the feed contains excess isobutene (» = 0.7) rather than excess methanol (= 1.4). The
figure also shows a possible liquid-vapour equilibrium in the reactive system when there
are no inerts and the ratio of feed methanol to isobutene is 0.7. At all points the
temperatures are below the normal boiling point of MTBE (328.3 K) and of methanol
(337.7K).

Examining the dew and bubble point curves when the n-butane mole fraction in
the feed is 0.20 helps explain this behaviour. Table 3-12 lists the principle and incipient
phase compositions, temperatures and total MTBE yield per mole of feed at the three
methanol/isobutene ratios tested. The table shows that the highest yield of MTBE occurs
when the reactants are fed in stoichiometric proportions. Stoichiometric proportions
minimizes the wasted reactants. When the ratio of methanol to isobutene in the feed is
0.7, the principle phase at both the dew and bubble point contains over 20 mole per cent
isobutene. The low boiling point of isobutene (266.2 K) significantly lowers the dew and
bubble point temperatures below their values when the feed was stoichiometric.
Conversely, when the feed contains an excess of methanol, the equilibrium dew and
bubble point compositions have over 20 mole per cent methanol. As seen in Table 3-9,
methanol has a boiling point that is over 9 degrees higher than MTBE'’s boiling point.
The depression in the dew and bubble point curves with a methanol rich feed cannot be
ascribed to Raoult’s Law, but can be attributed to the minimum boiling azeotrope
observed in binary mixtures of MTBE and methanol (Ung and Doherty, 1995).
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Dew Point r=0.7 r=1.0 r=14

x y x y x y
MTBE 0.8282 0.4697 0.8582 0.5543 0.5986 0.4726
Methanol 0.0072 0.0144 0.0387 0.0674 0.3495 0.2146
Isobutene 0.0797 0.2219 0.0222 0.0674 0.0036 0.0182
n-butane 0.0849 0.2940 0.0808 0.3109 0.0483 0.2945
MTBE Yield
Temp. (K) 311.92 315.42 315.55
Bubble Point r=0.7 r=1.0 r=14

x y x y x y
MTBE 0.4905 0.1043 0.6386 0.2047 0.4963 0.1469
Methanol 0.0005 0.0006 0.0168 0.0192 0.2019 0.0665
Isobutene 0.2109 0.3592 0.0168 0.0329 0.0025 0.0058
n-butane 0.2981 0.5359 0.3277 0.7431 0.2993 0.7808
MTBE Yield
Temp. (K) 288.48 297.06 293.93

Table 3-12 - MTBE Dew and Bubble Point Curve Data. P = 101.325 kPa.
Zobatane = 0.20

r= (ZMeOH /Zuow)

The amount of MTBE produced per mole of feed increased as the amount of inert

n-butane in the system decreased. The primary reason for this increase is the additional

reactants in the feed. The inerts can not be eliminated entirely because they help absorb

the heat of the reaction in the reactive distillation column and they, along with any excess

methanol, reduce any polymerization of the isobutene. If a reactive distillation column

were to be simulated, the reactive flash algorithms proposed could be used in conjunction

with enthalpy balances, material transport relationships between plates and even kinetics

to optimize the composition of the feed, the number of equilibrium plates needed, the
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feed location in the column and how many reactive zones would be needed. The
algorithms presented are one of many components necessary to model a complex

chemical process such as a reactive distillation column.

3.4  Sulfur-Hydrogen Sulfide Systems

3.4.1 Introduction to Sulfur Chemistry
The utility of a reactive flash can be seen by looking at a sulfur/hydrogen sulfide

system. Sulfur is an interesting compound because under process conditions it can be
present in allotropes from S, up to S; where the association of sulfur atoms to form an S,
allotrope can be thought of as a reaction. Since the total amount of each allotrope is
usually not known and the relationship between the allotropes can be written as reactions,
phase equilibrium calculations involving sulfur systems are well suited for reactive flash
algorithms. Specifically, in H,S-sulfur systems where there are only 2 independent
elements but many association reactions between sulfur allotropes and H,S, the non-
stoichiometric algorithm can be used to reduce the number of equation solved in the inner

loop.

The association of sulfur molecules to form short chains leads to interesting
thermodynamic properties of the pure compound. West and Menzies (1929) found that
pure sulfur exhibited a minimum in its enthalpy of vapourization due to the dissociation
of the allotropes. This minimum value of 281 kJ/kg occurred around a temperature of
640 K. It has been found that a sulfur model that neglects the associative nature of the
molecules is not able to reproduce this interesting behaviour (Karan et al., 1998).

Brunner and Woll (1980) measured the solubility of sulfur in H,S. They found
that the solubility increased with decreasing temperature at pressures below 40 MPa
while it increased with increasing temperature at higher pressures. They attributed this
property to the changing density of hydrogen sulfide.

Another interesting property of sulfur chemistry is that it can associate with other
gas molecules to produce polysulfides. Hyne er al. (1966) have established that sulfur
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can combine with H,S to form sulfanes (H,S +S, = H,S,,,). This additional association
reaction could affect the solubility of sulfur in H,S and vice versa.

Karan et al. (1998) have examined the ability of the Peng-Robinson equation of
state to match sulfur vapour pressure and sulfur/hydrogen sulfide solubilities. They
considered only the S; form of sulfur and matched the sulfur vapour pressure by
correlating the equation of state a parameter. As stated above, they found that their non-
associative model was unable to reproduce the minimum observed in the sulfur enthalpy
of vapourization curve. They also found that their model under predicted the solubility of
sulfur in H,S at low pressures but showed the proper qualitative behaviour as described
by Brunner and Woll (1980).

The following example uses the non-stoichiometric reactive flash algorithm to
expand on the work by Karan er al. (1998). S, molecules are considered to be formed
from reactions with S,, one reaction for each molecule S,. The a parameter of the Peng-
Robinson equation of state will be matched to sulfur vapour pressure data and the
enthalpies of vapourization will be calculated. The solubilities of sulfur in H,S will then
be calculated taking into account the potential association between sulfur and H,S.

3.4.2 The Sulfur Association Model
An association model can be used to represent the sulfur species S, to S,. If S, is

considered the main component, the remaining sulfur species, S_, can be considered as the

product of the molecular decomposition of S;:

Assuming that a cubic equation of state is used as a thermodynamic model, the
equation of state parameters, a and b, for the derived components S, can be derived from
the S; parameters. Using the technique developed by Heidemann and Prausnitz (1976)

for associating systems, the equation of state parameters for S, are
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x

and b, ==b .
8

a is the temperature dependent attractive term in a cubic equation of state while b is the

hard sphere volume. b is not usually temperature dependent.

Karan et al. (1998) modeled sulfur systems using the Peng-Robinson equation of
state:

po AT a(7)
Tv-b vi42bv-b?"

They estimated the value of bs by simultaneously matching both a s, and b; to the

sulfur liquid density and vapour pressure at 413.15K. They found that
bs, =0.13122 x 10 m*/mol. The same b value was used for S, in this work while the a

value was re-correlated over a range of vapour pressures. In mixtures the a and b

parameters were found from the following mixing rules:

C C

a=ZZx,.xl.a,7 ;a; = a,.al.(l—k,.j) 3.1)
i=l j=1
C
b= inbi . (3.2)
i=]
The interaction parameter, &;, between sulfur allotropes was 0.

The ideal gas chemical potentials for S, to S; can be found in the JANAF
Thermochemical Tables (1985). These 8 sulfur components are related through 7
reactions. If pure sulfur with these allotropes exists in two phases, it will only have one
degree of freedom. That is, at a specified temperature, two phases will exist at a single
pressure. Therefore, a reactive flash algorithm can be used to determine the vapour
pressure and sulfur compositions at a specified temperature by adjusting the pressure until
a two phase system appears. It should be noted that a point on a vapour pressure line is
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Figure 3-3 - Pure Sulfur Vapour Pressures. Data from West and Menzies (1929)
and Rau ez al (1973).

difficult to find, but can be located quickly by changing the pressure such that the

stability variable associated with an incipient phase approaches zero. Since b, is known,

as, can be adjusted such that the calculated vapour pressure matches experimental data.
Using this technique, the sulfur vapour pressures of West and Menzies (1929)

were used to determine ag values for temperatures from 393.15 K to 873.15K. The set

of ag values found were then fit to an expansion of inverse temperature to give:

4 <12371— 47725 . 35631x10° _ 87494 x 10* . 9.1054 x 10"°

S T’ T T
A plot of the pure sulfur vapour pressures found using this correlation and the S, through
S; association model is shown in Figure 3-3. The vapour pressure data of West and
Menzies (1929) and high temperature data of Rau et al. (1973) are also plotted. The
correlation predicts the vapour pressure well up to 900 K but over-predicts the saturation

pressure at higher temperatures where a(7) is extrapolated.
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Figure 3-4 - Pure Sulfur Enthalpy of Vapourization. Data from West
(1950).

The enthalpies of each component in each phase can be found from enthalpies of
formation and standard departure functions. These enthalpies can be used to calculate an
enthalpy of vapourization. A plot of the enthalpy of vapourization versus temperature is
given in Figure 3-4 for a system of pure sulfur allotropes using an association model.
Like West and Menzies (1929), a minimum in the enthalpy of vapourization is observed.
The minimum occurs at 703 K with a value of 270.6 kJ/kg compared to West and
Menzies’ 640 K and 281 kJ/kg. The fit to the data is acceptable.

Extrapolating the enthalpies to higher temperatures shows a maximum in the
enthalpy of vapourization of 405.3 kJ/kg at 1083 K. At even higher temperatures, the
enthalpy of vapourization quickly approaches zero as a critical point is reached. The
reported critical temperature ranges from 1209 K to 1314.2 K (Rau et al., 1973) while the
critical pressure varies from 11.75 MPa (West, 1950) to 18.2 MPa (Rau et al., 1973). The
critical temperature and pressure of sulfur using the association model are about 1236 K

and 16.4 MPa respectively.
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The compositions of both liquid and vapour phase can also be examined along the

pure sulfur liquid-vapour saturation line. Figure 3-5 and Figure 3-6 show the saturated
vapour phase and saturated liquid phase compositions as a function of temperature. At
temperatures below 850K, S, is the dominant species in the vapour phase. At higher
temperatures, S, has the highest saturated mole fraction. The liquid phase is rich in S; at
temperatures below 1100 K after which S, becomes the dominant liquid species. Finding
that S; is the dominant component in both liquid and vapour phases at lower temperatures
Justifies the common approximation that sulfur is all S, at low temperatures. The liquid

and vapour phase compositions approach each other as the critical point is neared.

3.4.3  Sulfur Solubility in Hydrogen Sulfide
Adding hydrogen sulfide to the pure sulfur system increases the degrees of

freedom by one. Therefore, in a two phase mixture of sulfur and H,S at fixed pressure
and temperature, the compositions of the two phases will be fixed. This allows solubility
of sulfur in a H,S vapour to be calculated using a two phase flash algorithm.

Treating H,S as an inert species, the association model described above was used
to model a sulfur-H,S system. The non-stoichiometric reactive flash algorithm was used
to determine the composition of the equilibrium vapour phase and, thus, the sulfur
solubility in H,S. The interaction parameter between sulfur and H,S, &;, was found to be
0.08206 by matching the predicted solubility of sulfur in H,S vapour at 393.15 K and
40 MPa to 0.09960 g S/g (Brunner and Woll, 1980). Increasing the interaction parameter

decreased the solubility of sulfur in the vapour phase.

Figure 3-7 plots the solubility of sulfur in a H,S vapour at 393.15 K, 413.14 K and
433.15 K over a pressure range of 5 MPa to 60 MPa. The experimental solubilities found
by Brunner and Woll (1980) are also shown. It is clear that the model under-predicts the
solubility at pressures below 40 MPa. It does, however, show that the solubility
decreases with increasing temperature at pressures below 40 MPa and that the solubility
increases with increasing temperature at higher pressures. This is the same qualitative

behaviour observed by Brunner and Woll in their experiments (1980).
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Figure 3-7 - Solubility of Sulfur in Hydrogen Sulfide. Without Sulfanes.

Karan et al. (1998) show that by modeling sulfur with only the S, allotrope the
same general predictions are observed. The solubility of sulfur in H,S was under-
predicted at pressures below 40 MPa. The solubility decreased with increasing
temperatures when the pressure was below 40 MPa and it increased with increasing
temperature when the pressure was above 40 MPa. The similarity between the
association model and the pure S; model is easily explained by noting that the association
model predicts that pure liquid sulfur is over 95 mole % S; and pure sulfur vapour is over
80 mole % S, at 400 K.

There has been experimental evidence for the presence of sulfanes or polysulfides

(H,S)) in sulfur/H,S systems (Hyne et al, 1966). It is possible to include these

components in the model generating chemical reactions which form H,S,,, from H,S and

S;:

H,S + xSy/8 = H,S..,. (3.3)
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The pure component a and b parameters plus the cross terms used to determine

the mixture a parameter, a;, can be found from the pure component properties of S, and
H,S. In general, consider there to be NS source components from which all the other
components are derived. Reactions which describe the formation of both source and

derived components can be written as
NS
A; =D v;4 ; NS+1<j<C. (3.4)
i=]

When 4; refers to a source component, v; =1 and v; =0 for i # ;.

The pure component and cross terms for the a parameter were calculated as

NS NS
a; = ;;Vkivy\/akal (l‘ku) (3.5)

and the b parameter was found from

NS
b=Y vb,. (3.6)

j=1

It is important to note that the cross terms a; represent the a parameter for pure

component ;.

This method of determining the a; and b, terms used in the mixing rules presented
in equations (3.1) and (3.2) is a modification of the mixing rule for associating fluid
proposed by Heidemann and Prausnitz (1976) to incorporate binary interaction
parameters between source components. It is the same technique used by Heidemann and
Rizvi (1986) for associating ammonia-water systems but more generalized. These rules
imply that the covolume parameter of the associated molecules, b, are the linear sum of
the covolumes of the molecule’s source components. They also state that the pure
component energy terms, a;, and energy cross terms, a; are functions only of the
interactions between the source components constituting the associated molecules. That
is, there are no energy effects due to association that are not already included in the

interactions between source components. Hendriks ez al. (1997) used this notion that the
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a parameter of a mixture of associating monomers can be determined from the
interactions of the monomers alone to develop a mixing rule for his generalized

association model.

In the case of the sulfane reaction shown in equation (3.3), the source components
can be taken as H,S and S;. The stoichiometric coefficients associated with H,S and S, in
equation (3.4) will be 1 and x/8 respectively. The only interaction parameter needed is
the H,S-S; interaction parameter. Similar reactions can be written for the production of
S, from S;. In these reactions, the stoichiometric coefficient associated with the hydrogen
sulfide will be 0.

All equation of state parameters are defined either by the source component
parameters, or by equations (3.5) and (3.6) and conventional mixing rules. The only
additional information needed to define a non-stoichiometric reactive flash are the ideal

gas chemical potentials of the sulfanes.

There is no information available on the ideal gas chemical potential of sulfanes.
In this work, these chemical potentials were calculated by assuming that a single reaction
equilibrium constant, K, , could be used to define each sulfane reaction equilibrium
constant. If a value for K, is chosen, the ideal gas chemical potential of H,S,., can be

calculated from:
#2,s,,. = —RTanq +,u:,15 +,u;." ;

Assuming that a single reaction equilibrium constant can be used for all sulfane formation
reactions, is the equivalent of assuming that adding a single sulfur molecule to either S,
or H,S,., will result in identical changes in the Gibbs free energy of the two molecules.

This assumption keeps the number of adjustable parameters to a minimum.

Conceptually, there is one reaction added to the system for each sulfane species
added. Therefore, the total degrees of freedom of the system is not changed and a two
phase system at a specified temperature and pressure will have fixed compositions. The
solubility of sulfur in H,S can be found by examining the total elemental sulfur, less the
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H,S sulfur, held in the vapour phase. Isothermal solubility curves similar to those shown
in Figure 3-7 can be found by analyzing the vapour phase compositions during a series of

reactive flash calculations over a range of pressures.

If three sulfanes, H,S,, H,S, and H,S,, are included in the solubility calculations,
the solubility curves found for a sulfur-H,S system are shown in Figure 3-8. The figure
was generated using the a parameter correlation for S; covered in the last section. The a
and b parameters for H,S were calculated from its critical properties listed in Reid,
Prausnitz and Poling (1985) using the standard procedures listed in the same reference.

The two remaining adjustable parameters, k; and K, were found by fitting the
solubility curves to the experimental data of Brunner and Woll (1980). K., is assumed to
be related to temperature through two constants, C, and C,:

InK, =C, +GC,/T.
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Figure 3-8 - Solubility of Liquid Sulfur in Hydrogen Sulfide. With Sulfanes.
H,S,, H,S, and H,S, included in calculations.
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The interaction parameter, k; =0.093, and one value of K,, at 433.15 K were found by
matching the calculated solubilities at 433.15 K to the experimental ones at 19.6 MPa and
60 MPa. A second value for K, was then found by matching the calculated and
experimentally measured solubility at 393.15 K and 15 MPa. The two values of K, were
used to determine C, and C,. The final expression for In X, is

InK, =-20.791+12 788/T.

The solubility curves in Figure 3-8 match the experimental data better than the
solubility curves produced without including sulfanes components. At lower pressures,
the sulfane molecules, H,S,, H,S; and H,S, are light enough that the additional solvating
power provided by the hydrogen sulfide molecule is enough to favourably partition the
sulfanes into the vapour phase. This partitioning increases the sulfur content in the
vapour, correcting for the under prediction of the solubilities without sulfanes. If heavier

sulfanes are used, this favourable partitioning is not observed.

At higher pressures, the reactions favour the production of the heavier S,
molecules due to Le Chatelier’s principle. This reduces the amount of light sulfanes in
the system. Since the S; selectively partitions into the liquid phase, the result is that the
sulfur solubility in H,S at the higher pressure is not significantly greater than if no
sulfanes were considered at all. It should be noted that if the H,S, sulfane had been
included in the model, higher pressures would have favoured its production. This heavy
sulfane would partition into the vapour phase at high pressures and increased the overall

solubility of sulfur in H,S at high pressures.

The focus of the current section was not to analyze the performance of the
reactive flash algorithms, but to show their utility in calculating phase equilibria in
complex systems. No difficulties were encountered in any of the calculations performed

using the non-stoichiometric technique.
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3.5 Summary
The stoichiometric and non-stoichiometric multiphase reactive flash algorithms

presented were able to quickly perform non-ideal chemical and phase equilibrium
calculations using fugacity coefficients from conventional thermodynamic models like
the SRK equation of state (methanol synthesis example) or more sophisticated models
such as the SRK with an excess free energy mixing rule (MTBE example). The example
calculations involving methanol synthesis gave a good indication that both algorithms
could quickly predict multiphase equilibrium while accounting for possible incipient
phases. Considering that each flash was initiated with a phase count equal to the number
of components plus one, the low outer loop iteration counts can attest that reasonably

effective initiation procedures were used.

Systems that self-associate, such as the sulfur systems discussed, are important
areas for the application of reactive flash algorithms since the association of similar
species can be modeled as a reaction. It was shown that the association model for sulfur
predicted complex thermodynamic properties of the pure element such as the minimum
point in the enthalpy of vapourization curve. As well, the association of sulfur and
hydrogen sulfide to form sulfanes could be used to help predict the solubilities of sulfur
in a hydrogen sulfide vapour.

In general, the two examples showed that the reactive flash algorithms developed
in chapter 2 can be used to perform phase and reaction equilibrium on complex, non-ideal
systems. No clear advantage of one algorithm over the other was seen in the methanol
synthesis example, but it is recommended that the algorithm which results in the fewest
number of inner loop equations to be solved should be used. That is, if C - M =R (the
number of reactions) is greater than M (the number of elements), the non-stoichiometric

technique is recommended. Otherwise, the stoichiometric technique should be used.
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4. CONTINUOUS THERMODYNAMICS OF POLYMER SYSTEMS

4.1 Introduction
Systems containing heavy oils, asphaltenes or polymers may contain a very large

number of components with similar structure. It is quite often difficult to determine the
exact mole fractions of these components or to even determine their structures. Even if
the components could be characterized exactly, it would be impractical to perform phase
boundary or flash calculations on a system with an infinite number of individual species.
Typically, the characterization of these disperse compounds is accomplished by looking
at the distribution of a physical property of the components. For example, the boiling
point distribution of a heavy oil or a molecular weight distribution of a polymer sample

may be used.

The two alternatives for modeling the system are to either choose a fixed number
of discrete pseudocomponents or to use a continuous function of the distributed property,
r, to represent the disperse component. The latter technique is called continuous
thermodynamics. If the system contains both discrete and continuous species, the
technique is called semi-continuous thermodynamics. In the following chapters, the term
continuous thermodynamics will refer to both a continuous and a semi-continuous

system.
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This chapter will discuss the history of continuous and semi-continuous
thermodynamics and will introduce the terminology used in the two subsequent chapters.
As well, this chapter will describe the numerical integration routines used, the two
distribution functions employed and the continuous form of the Sanchez-Lacombe
equation of state. Chapter S will cover the development of an algorithm to determine the
cloud and shadow point curves of polymer/solvent system and Chapter 6 will describe a

multiphase flash for continuous and semi-continuous systems.

4.2  Literature Review
The development of continuous thermodynamics has taken two distinct branches.

Phase equilibrium and material balance equations are solved either using the method of
moments or the more rigorous functional method. Both approaches are still in use but the
functional method has become the technique of choice in the current literature. A review
of both frameworks for continuous thermodynamics is given by Cotterman and Prausnitz
(1991).

4.2.1 Method of Moments
In the method of moments, thermodynamic properties and material balances of the

system are defined in terms of the moments of a distribution. The continuous component
in each phase is assumed to have a specific distribution and the equilibrium relationships
and material balances are solved using distribution parameters as the independent

variables.

Consider a system that contains a single dispersed component characterized by a
distribution W(r; o, B,...) and a discrete solvent. W(r; «, f,...) represents the
distribution of a conserved quantity such as number of moles,  is the distribution variable
and ¢, B, ... are the distribution parameters. If y; is the overall fraction of dispersed
component B in a phase, the material balance for B in a two phase mixture can be written

as

viw (raf, 85, )=puiw (ria’, B",..)+(1-g)yiWi(r;a, B*,..).  (&D)
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Multiplying equation (4.1) by 7* and integrating over the range of r results in a material

balance equation in terms of the n* moment of #(r):

vi M (", B°,..)=dwiM! (. 0" ,.. )+ (1-Q)wiMi(at, B4,..). (42)
The superscripts, F, ¥ and L refer to either the feed, vapour or liquid phases respectively
and ¢ indicates the equilibrium vapour fraction. A standard, discrete, material balance is
used for the solvent.

Since the chemical potential of the disperse component must be the same in each

phase, the following equilibrium relationship must hold:
wviW' (ria”, B...)e (r) = wiwt(r;at, B, .. )0k (r) (4.3)

where @y(r) represents the fugacity coefficient of the disperse component. @g(r) can be
found from any suitable thermodynamic model. A similar, discrete, expression holds for

the solvent.

If the distribution function, W(r), contains k parameters, the solution technique
usually involves using & moment balance equations, equation (4.2), to determine the
relationship between the feed, vapour and liquid distribution parameters. ¢, y) and y/}
are found from the solvent material balance and the equality of chemical potential

requirements.

Cotterman and Prausnitz (1985) and Cotterman et al. (1985) developed a flash
algorithm using this framework and gave an example calculation using a petroleum
mixture and a cubic equation of state. They assumed that the feed, liquid and vapour
phase distributions were three parameter gamma distributions. When the ratio of fugacity

coefficients for the disperse component could be written as

L

¢a(r)
mh————==C +C,r
ey(ry '

the ratio, y; /wr, could be found analytically.
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Willman and Teja (1986) used the same approach as Cotterman et al. (1985) to
determine the dew points of natural gas and petroleum mixtures. They used a bivariate
log-normal distribution function with the boiling point and specific gravity as the
distribution variables. They also used a two parameter gamma function with an effective
carbon number as the distribution variable (1987a, b). They first used an ideal solution
approximation (1987a) and then improved upon it using a virial expansion and regular
solution theory (1987b).

Du and Mansoori (1986) formulate an expression for the Gibbs free energy of a
two phase system. Their Gibbs free energy is a function of the distribution parameters
and molar volumes of each phase. The equilibrium state is found by minimizing the
Gibbs free energy with respect to the distribution parameters and ensuring that the
pressures of both phases equal the system pressure.

It has been shown that the method of moments fails to satisfy both the material
balances and thermodynamic equilibrium at all values of the distribution variable (Luks
et al., i990; Liu and Wong, 1997). By assuming that the distribution in each of the
phases are identical in form, the material balances cannot be satisfied and the equality of
chemical potential criteria can not be met over the complete range of the distribution
variable. Despite these shortcomings, the method of moments is used as a reasonably

efficient and accurate technique to calculate phase equilibria (Lira-Galeana et al., 1991).

4.2.2 Functional Approach
To eliminate the inconsistent material balances and chemical potential inequalities

associated with the method of moments, a functional approach can be used. Unlike the
method of moments, in a functional approach a specific distribution function is chosen
for the disperse components in the feed stream only. The phase distributions are found
from the material balances and by equating the chemical potentials of the disperse and

discrete components over the entire range of the distribution variable.

Ans and Gavalas (1966) first used functional analysis theory to define a

functional form for the chemical potential of a continuous component, (r). Their work
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looked at single phase, ideal systems and focused on the functional relationships which
define an infinite number of reactions in the system. Kramarz and Wyczesany (1993)
have also looked at reactions in continuous mixtures by using functions to represent the
chemical properties of homologous series of alkanes and alkenes. Otherwise, the focus of
continuous thermodynamics has shifted away from reactions and to the problem of phase
equilibrium.

The equations which describe phase equilibrium in a semi-continuous system are
the material balances for the discrete and the disperse components and the equality of the
chemical potential of components in each phase. For a disperse species, B, the material
balance in a LV flash is given by equation (4.1) and the equality of chemical potentials

can be expressed as

a3 (r) = py (r). (4.4)

That is, in the functional method, the chemical potentials are equated over the entire

range of the distribution variable.

Kehlen et al. (1985) used functional analysis to derive the continuous
thermodynamic expressions of state variable, molar properties and partial molar
properties. They also derived continuous forms of Raoult’s law, the NRTL model and

the Flory-Huggins model for polymer systems.

Rétzsch and Kehlen (1985) used the methods described by Kehlen er al. (1985) to
examine the effect of polydispersivity on the liquid-liquid behaviour of polymer/solvent
solutions. Ritzsch et al. (1986) and Ritzsch et al. (1989) looked at polymer/polymer
systems and copolymer/copolymer blends, respectively. A review of their work in these
areas is given by Ritzsch and Kehlen (1989).

Ritzsch and coworkers characterize a polydisperse polymer by a segmental
distribution, #W(r). In a segmental distribution, W(r)dr represents the fraction of polymer
segments in the polymer molecules having segment counts between r and r+dr.
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Polymer chemical potentials are defined in terms of an ideal solution Flory-Huggins
model and a deviation from that ideality, RTIn y;:

,u,(r) = ,u,.°(r, T, P) + RT{ln w,.W,.(r) +1- g] + rRTln}',.(r). 4.5)

u(r,T,P) is the pure component chemical potential, the second term is the Flory-
Huggins contribution for an ideal polymer solution and y; is the overall segment fraction
of component i. 7 is the number average number of segments that a molecule within a
phase would contain. In the case of a polymer(B)/solvent(A) system, it can be shown to
be

1 W,
LN 7T f v (4.6)
r rA r

r

For a polymer/solvent system, they developed the equations to calculate cloud
point curves in terms of the independent variables, y, , 7” and the cloud point
temperature. The superscript /I indicates that the variables refer to the incipient phase. In
the two phase flash routine that they developed, the independent variables were )/, 7”
and the phase fraction @§. Ritzsch and Kehlen (1985) state that using continuous
thermodynamics reduces computation time by 10-20% over methods using

pseudocomponents to characterize the polymer.
Cotterman and Prausnitz (1985) developed a practical way to perform equilibrium
calculations for a continuous system using Gaussian quadrature methods. If the integrand

of an integral can be written as the product of a standard weighting function, Xr), and a
function, f{r), then the integral can be approximated by a summation:

IQ(r) f(r)dr = zN:a)k f (rk ) . 4.7

k=l

In equation (4.7), N is the number of quadrature points, @, is a weighting factor and r, is

the discrete r value corresponding to the weighting @, For a specified weighting
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function and number of quadrature points, tables of optimum values of @, and r, are
available (Abramowitz and Stegun, 1972).

As proposed by Cotterman and Prausnitz (1985), if the disperse component in the
feed can be represented by a distribution function, Gaussian quadrature can be used to
determine an appropriate set of pseudocomponents and mole fractions to best represent
the system. The pseudocomponents are defined by the values of r, and their mole
fractions can be related to @,. Their routine is the same as characterizing a disperse
system by a set of discrete components; however any arbitrariness in the choice of

pseudocomponents has been removed.

After a set of discrete pseudocomponents have been found to represent the
disperse component in the feed, flash and phase boundary calculations can be done with
conventional algorithms. The number of equations is directly related to the number of
quadrature points used.

Peng et al. (1987) used the quadrature technique to predict the dew points of oil
reservoir fluid systems. They modeled the fluid with a gamma distribution and used the
Peng-Robinson equation of state as a thermodynamic model. They concluded that
quadrature techniques did not perform well in this case since the dew point temperature
varied with the number of quadrature points used. They attributed this behaviour to the
higher molecular weight components included in the computation when higher orders of

quadrature were used.

Distribution variables typically range from 0 to infinity. Cotterman et al. (1986)
and Shibata er al. (1987) have looked at using truncated distribution functions with the
quadrature method to find the dew point pressures of hydrocarbon mixtures. These
truncated distributions could be used to eliminate pseudocomponents with unrealistically
high or low molecular weights.

Polymers systems have often been modeled using the quadrature method. Sako et
al. (1989) have used it with a modified cubic equation of state to model high pressure
polyethylene/ethylene systems. More recently, Koak (1997) has used quadrature to
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determine pseudocomponents of a disperse polyethylene system to perform flash and
cloud point calculations. Although he does not classify his technique as continuous
thermodynamics, the method is identical to the quadrature technique described by
Cotterman and Prausnitz (1985).

Another functional approach to continuous thermodynamics is the work by Ying
and coworkers. Ying et al. (1989) developed a method of fitting distributions with cubic
splines. The cubic splines allowed easy integration of the necessary phase equilibrium
equations and allowed more versatility than standard distribution functions. Ying et al.
(1989) successfully applied cubic spline fits to a hydrocarbon system using a cubic
equation of state for thermodynamic properties. The computation times were comparable
to quadrature and pseudocomponent techniques when the same number of nodes were
used. Hu er al. (1993) used cubic spline fits to predict cloud point curves and critical
points of polymer systems.

Moore and Anthony (1989) introduced a method of approximating distributions
with a Fourier series expansion. Required integrals became the sum of Fourier series
expansion terms. This has applications when looking at chromatographic
characterization of petroleum fractions.

Similarly, Liu and Wong (1997) expanded distributions into series of orthogonal
polynomials. They showed how these series could reduce to the same quadrature
technique as proposed by Cotterman and Prausnitz (1985). They also demonstrate the
errors in the material balances and equality of chemical potential when the method of
moments and cubic spline methods are used to represent a continuous hydrocarbon
distribution.

Kincaid et al. (1987) and Schlijper (1987) both developed a perturbation method
to solve the continuous flash problem. In essence, they divided the disperse component
into a number of discrete pseudocomponents which were used in a standard flash
calculation to give a reference solution. The effect of polydispersity on the solution was

found through a perturbation expansion of the thermodynamic models about the
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pseudocomponent approximation. Schlijper’s results were comparable to the quadrature

technique when first order expansions were used.

Hendriks (1987) published an important paper which showed how the number of
equations required for a continuous thermodynamic flash could be minimized. He
grouped components (discrete or disperse) into families. Families were groups of
components that had a zero interaction parameter within their family but shared constant
interaction parameters between families. If there were & families, the maximum number
of equations for a two phase PT flash was 3k + 1. This number was reduced if families
consisted of a single discrete component. The independent variables in the equations
were the liquid fraction, the ratio of the vapour fraction of a family to its liquid fraction
and the similar ratio of the family-averaged equation of state parameters. Integration was
performed through Gaussian quadrature methods. An important aspect of the work was
that the number of equations was independent of the number of quadrature points used.
Hendriks developed the equations for a two parameter equation of state and compared his

results to the petroleum example given by Cotterman et al. (1985).

4.3 Terminology
The terminology used in this dissertation will closely follow the notation used by

Ritzsch and coworkers (Ritzsch and Kehlen, 1985; Ritzsch and Kehlen, 1989).

4.3.1 The Segmental Distribution Function
A polymer system can be composed of both discrete components and polydisperse

polymer components. In the following discussion, a system is considered to be composed
of C components, n, discrete components and C - n, polymers. For notational purposes,
when indexing species, the first n, components will be the discrete ones. A polymer
species is considered to be a single component because its disperse nature will be

described by a single distribution function.

A polymer may be considered to be constructed of a number of identical
segments. Sometimes these segments correspond to the repeating unit of the polymer
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chain, sometimes they do not. In most cases the size of the segment is defined by the
thermodynamic model used to represent the polymer. The thermodynamic model can
also be used to define the number of segments which constitute a discrete component in

the system. Segment sizes are not necessarily the same for discrete and polymer species.

Polydisperse polymer systems in this dissertation will be modeled with segmental
distribution functions. The segment count, r, is the number of segments which a
molecule contains and is considered to range from zero to infinity. An extensive
segmental distribution function, w(r), is defined such that w(r)dr represents the total
number of polymer segments contained in polymer molecules having segment counts

between r and r + dr.

Each polymer species on a solvent free basis has its own distribution function.
The total number of segments which belong to a polymer i can be calculated from

n, = [wl()dr ; n, <i<C. (4.8)

r=0
The number of segments associated with a discrete component is given by
n,=nr, ; 1<i<n,

where 7, represents the number of moles of component i and 7; is the number of segments

which constitute that component.

The total number of segments in the system is found from
C
A=) W, (4.9)
inl

An intensive distribution function, #(r), can be defined such that W(r)dr is the
fraction of a polymer’s segments contained in molecules having segment counts between

rand r + dr. It is the normalized extensive segmental distribution function.
u’i("):'wi(")/ﬁi s ng<isC (4.10)

The integral of #{(r) over the range of r is 1.
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A segment fraction y; is defined as

v = (4.11)

3 =

and represents the fraction of all segments which are associated with component i. The
sum of all segment fractions must be 1.

Let n(r)dr = w{(r)dr/r represent the number of polymer molecules with segment
counts between r and r + dr. As well, let n represent the total number of molecules in a
system. The number average number of segments in a system, 7, can then be found as

follows.

;=["z‘,,.,,,.+ 5 jm,.(r)dr]/.=['z‘rin,.+ 5 'jw,,(r)dr]/,

i=] imng+1l p=0 in} inny+1 pmQ

=Y, i f v, (4.12)

4.3.2 Chemical Potentials
For a discrete multicomponent system, the total Gibbs free energy can be written

G(T,P,n,.)=—TS+PV+iy,.n,.. (4.13)

i=]
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The chemical potential, 4, is defined to be the partial derivative of the Gibbs free energy

with respect to the moles of component i:

M = ég = lim G(T’Pv"n""”i +A"iv---”c)-G(TrP’"l’-"’"C) . (4.14)
ch T.Pa am =0 An,

i i

Now consider a polymer system where the polymer segment distribution is
defined by a segmental distribution function, w(r). The Gibbs free energy of the system

now becomes a functional of w:
G(T,P;w)=-TS + PV + [ g(r)w(r)dr . (4.15)
r=0

The segmental chemical potential, denoted by (r), can be related to the Géteaux
derivative of the Gibbs free energy with respect to a change in the number of segments

associated with molecules of segment count .

If &,.(r) represents the Dirac delta function centered at r', w(r)+t5.(r)

represents the addition of ¢ segments to the segmental distribution function at r' (since
Tt5.(r)dr=t). The Gateaux derivative of G in the direction of &,(r) is defined as
0o

(Tapia, 1971):

DG(5,)= lim G(T,P;w+ té’;. )-G(T, P;w) .

By inserting equation (4.15) into the above definition and assuming that &(r) is
independent of w, the relationship between the Géateaux derivative and the segmental

chemical potential can be seen:
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TECNr)+ 15, (rlar - Bl
DG(5, )= lim? °
. Alrks, (r)dr

= a(r')

~

Ot §

- tm [, (e

Given an expression for the Gibbs free energy of a continuous system, the
segmental chemical potentials can be found from the limiting process used above. An
alternative, more practical method would be to take the derivative of the Gibbs free

energy with respect to an increase of segments at r’, (8G/dm,. ), ,, use the chain rule, and
replace (ow(r)/om,.),, with &,.(r), the Dirac delta function (Kehlen er al., 1985).
(6G/am, ), , will be equal to z(r’).

Ritzsch and Kehlen (1989) have defined the segment-molar activity coefficients

for discrete and continuous components, y; and y(r) respectively, by

r.

$ t Ll

o . 1 1 1
H =-"—I'—=/1'. +RT|:—[nl//,.+———_'}+RT1n}’,- (4.16)
r. r: r
and

a(r)= 4’) =i + RT{%MWEWE(r)i-;I:—%:I-P RTIny,(r). (4.17)

These equations are written in the format of the original Flory-Huggins expression where
volume fractions have been replaced by segment fractions. As is evident in these
equations, the segmental chemical potentials, 4, can be thought of as the molar chemical
potential per segment.

The second terms on the right hand side of equations (4.16) and (4.17) are the

athermal Flory-Huggins contributions and the third terms on the right hand side represent
the deviations from the athermal Flory-Huggins model. These segment-molar activity
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coefficients depend upon the thermodynamic model used to represent the components of

the system.

Equations (4.16) and (4.17) will be the form of the segmental chemical potentials
that will be used in this dissertation.

4.4  Distributions
In this thesis, two different distributions were used to represent polymer

distributions: the log-normal distribution and the Shuitz-Flory distribution. Both
distributions were defined such that W{(r)dr represents the fraction of polymer segments

that are contained in molecules with segment counts between r and » + dr.

4.4.1 Log-normal Distribution
The log-normal segmental distribution has the form

1 Inr —Inr, )’
A% ""P{“(T) } (*18)

where r, is related to the mode of the distribution and S to its breadth. If xis the mass of

wi(r) =

a segment, the number average molecular weight, M,, and weight average molecular

weight, M, of the polymer described by the distribution are

M, = rr, exp{~ B /4} (4.19)
and

M, = rr, exp{p?/4}. (4.20)

If M, and M,, of a polymer sample are known, these relationships can be used to find the

log-normal parameters, £ and r,:

B=\2mn(M,/M,) 4.21)

L= Mu exp{ﬂz 4}/’( (4'22)
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Koak (1997) also uses the number average and mass average molecular weights to

find the parameters of a log-normal molecular weight distribution. His log-normal
distribution, F(M), was defined such that F(M)d(InM) represented the fraction of polymer
molecules with molecular weights between M and M + dM. His distribution parameters

were S and M, where § was given by equation (4.21) but the value for M, was given by
M, = M, exp{- B[4} = .

M, does not equal xr, because F(M)d(InM) represents a number of molecules
whereas W(r)dr represents a number of segments. W(r)dr/r represents a number of

molecules. The two distributions are related in the following manner:

F(M)__F(rx)_ 1 expd Inrc-In M, ? _ w(r) r
Mo el xp{( 2 J} T

Since the denominator of equation (4.23) is equal to exp{5’/4}/r,, the relationship
between F(M) and W(r) can be simplified to

F(M)/M = F(rx)/rx =r, W(r)exp{-—ﬂ2 4}/r.

After substituting in the definition of a log-normal distribution and some algebraic

manipulation, the relationship between r, and M, is found to be

K, = M, exp{ﬂ’/z} i
The log-normal distribution is divergent. That is, the distribution converges more

slowly than the exponential, exp(-or) where o is any positive value (Solc, 1970). Using

limits, this behaviour can also be described by

lim#(r)explor) == V o:0>0.

As will be shown in the following chapter, many integrals associated with the calculation

of cloud point curves have the factor W(r)exp(or) in their integrand. Because the log-
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normal distribution is divergent, cloud point calculations using it will have to be
approximated using flash calculations.

4.4.2 Shultz-Flory Distribution
An example of a convergent distribution is the Shultz-Flory distribution given in

equation (4.24). It is a two parameter gamma distribution.

s
() [
w(r)= ("o) ST+ 1) exp{- - } (4.29)

Like the log-normal distribution, this form has two parameters which can be defined by

the polymer sample’s M, and M,:
M, =xr, (4.25)
1
and M, = x(ﬂ ; )ro. (4.26)

The parameters, £ and r, as functions of M, and M, are given in equations (4.27) and

eyt -

rn=M,/x (4.28)

(4.28) respectively.

4.4.3 Distribution Comparison
Table 4-1 gives the log-normal and Shultz-Flory distribution parameters for

polyethylene with a number average molecular weight of 8000 and a weight average
molecular weight of 177 000. Using the Sanchez-Lacombe equation of state as described
in a later section, the mass per mol of segments is x=11.477. These parameters are
those used in the following chapter to represent a polyethylene distribution and will be
used to compare the log-normal and the Shultz-Flory distribution in the following

discussion.
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Parameter | Log-Normal Distribution | Shultz-Flory Distribution
r 3278.7 697.04
I3 2.4886 0.0473
rB+1) n/a 0.9748

Table 4-1 - Distribution Parameters for Polyethylene. M, = 8000,
M, =177 000. x«=11.477 using the Sanchez-Lacombe
equation of state.

Figure 4-1 plots the log-normal and Shultz-Flory distributions versus the
loganithm of dimensionless molecular weight. It can be seen that the Shultz-Flory
distribution is a much flatter one with more of the segments found in the lower molecular
weight region. In order to better view the behaviour of the two distributions at higher
molecular weights a log-log plot was made. Figure 4-2 shows this plot. It is evident
from this plot that the Shultz-Flory distribution converges to 0 at higher molecular
weights much more quickly than the divergent log-normal distribution.

The number of molecules corresponding to a segment count of r is equal to
W(r)drir. Figure 4-3 shows a graph of the molecule count versus the molecular weight.
It is important to note that the log-normal distribution is bounded at » =0 whereas the
Shultz-Flory distribution shows a singularity at the origin if #< 1. This fact is important
in numerical integration routines where difficulties occur near singular points. The
singularity could be avoided by formally truncating the distribution at a finite lower value
of r or by using a three parameter gamma distribution. As well, the singularity would not
exist if the distribution was chosen to represent the number of molecules instead of the
number of segments. However, the unmodified Shultz-Flory distribution was used in this

work.
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4.5  Integration Routine
Euler’s method, Rhomberg’s method, Runge-Kutta techniques of various orders

and Gaussian quadrature were initially evaluated for the necessary numerical integration
in this work. Two algorithms were chosen: a high precision fifth order Runge-Kutta
algorithm was used for high precision integration and a Gaussian quadrature technique

was used for less accurate, but much faster, integration.

4.5.1 High Precision Routine
A fifth order Runge-Kutta integration routine with adaptive step size control was

used for high precision integration. The theory of the routine and the exact algorithm can
be found in the text by Press et al. (1992).

The integral y = [ f(x)dx is treated as the solution of the ordinary differential

equation
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(@v/dx)= £(x) ; x€[s.]
Initial Condition: x=s= y=0.

The fifth order Runge-Kutta method determines successive values of y, y,.,, which
correspond to the integral from s up to x,,,. y,., is based upon six evaluations of the

denivative, f{x), and the prior value of y, y,:
Vuut = Yu ¥k, +Cky + ks + c ik, + ik + cokg + O(R®)

where

k, = hf(x,)
k, = hf(x, +a,h)

ks = hf (x,, + ash)
h is a step size parameter and the constants g, are dependent upon the development of the
fifth order routine. The Cash-Karp parameters were used (Press et al., 1992):
{a,.a;.....a5} = {15,310, 3/5,1,7/8} .

The step size, A, indicates the amount the variable x is changed at each step. That is,

X, =x,+h

The benefit of this format is that a fourth order Runge-Kutta method is embedded
within the same formulation. That is, a fourth order approximation to y,., can be found

from the same k; used in the fifth order method.
y;-u =V +cl.kl +C;k2 +c;k3 +c.k, +cgk; +cokg + O(hs)

The parameters for both c; and c; are given in Table 4-2.



C; c,.'
37 2825
378 27648

0 0
250 18575
621 48384
125 13525
594 55296

0 277

14336
512 1
1771 4
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Table 4-2 - Cash-Karp Parameters for Runge-Kutta Method

This fourth order approximation is used to give an estimate of the error in the fifth
order approximation, A=y,,, —y.,,. If this error is larger than a set tolerance, A, the

step size, &, can be decreased. Conversely, if the error is smaller than desired, # can be
increased. The adaptive step size allows the integration routine to take smaller steps
when the integrand is complex, but still allows large step sizes when the integrand is well
behaved.

The upper and lower limits of integration in this thesis are typicaily 0 and infinity
and the integrands sometimes are not defined at either limit. If the integral being
calculated has the form,

I= T f(r)dr, (4.29)

the upper limit of integration can be changed to a finite value using the transformation

X= r/ ("o + r) . The resulting integral becomes
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I= J'°f2;¥:°;)zx)a. (4.30)

X=0

For practical calculations, the limits of integration are taken to be s =0 + &, and
t=1-¢,. These limits and the maximum error allowed at each integration step were
manipulated so that the numerically calculated weight average and number average
molecular weights of the distribution in question were within 0.5% of the analytical
solutions. An additional criteria was that the number average segment count of the feed
had to be within 0.1% of the analytic solution. The tolerances used are given in Table 4-
3. For the log-normal distribution, these parameters give values for M, M, and ¥ within
0.01% accuracy. For the Shultz-Flory distribution, the small value of & was needed
because the integrand required to find M,, W(r)/r, had a strong singularity near r = 0 (see
Figure 4-3). However, in this case, it was found that setting &, = 1x10™"? did not change
the calculated cloud and shadow point curves significantly.

Distribution A & &

Log-Normal | 1x10" | 1x10™ | 1x107
Shultz-Flory | 1x107 | 1x10® | 1x10™

Table 4-3 - Integration Tolerances

4.5.2 Gaussian Quadrature
Cheney and Kincaid (1985) review the fundamental theory of Gaussian

quadrature. The main result of Gaussian quadrature is that for specific weighting
functions, {Xx), the integral of £Xx)f{x) can be approximated by a summation of N points.
That is,

= [Qx)f(x)dx = Zij,. f(x). (4.31)

i=l
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The summation is exactly equal to the integral if f{x) is a polynomial of degree less than
or equal to 2V - 1. The weighting factors, @, and quadrature points, x, are dependent
upon the weighting function and the number of quadrature points.

If (Xx)=exp(-x’), the quadrature technique used is called Gauss-Hermite
quadrature. If £Xx) = exp(-x), the technique is called Gauss-Laguerre quadrature. The
weighting factors and quadrature points for both of these techniques can be found in texts
(Abramowitz and Stegun, 1972) or through calculation methods as outlined by Press et
al. (1992). The computational approach was used in this work.

Gauss-Hermite quadrature was used when the log-normal distribution was
employed. If an integral to be calculated has the form

T 1 [0 in*(r r,)
I—,J:)f(r)W(r)dr-ﬂ\[;J‘ , exP{‘ ﬂz }dr,

the variable transformation, u = In(r/r,)/, results in

I= # ]’ F(r(w)e™ du. (4.32)

y=—w

This last equation has the same form as equation (4.31) when the weighting function

equals exp{-«’}. It shows that as long as the integrand contains the log-normal

distribution function, the integral can be approximated using Gauss-Hermite quadrature.
Similarly, when the distribution function is the Shultz-Flory distribution given by

equation (4.24), a variable transformation, u = Sr/r,, gives the following integral:

1

This integral also has the form of equation (4.31) if the weighting function is exp{-u}.
Thus all integrals using the Shultz-Flory distribution can be approximated with Gauss-
Laguerre quadrature.
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An important point to note about Gaussian quadrature techniques is that they only

give good approximations to an integral if the function f{x) can be closely approximated

with a polynomial. That is, they work best with smooth functions. Since the weightings

and quadrature points depend only on the weighting function, these values only have to

be calculated once at the start of the main program. After this initial calculation, the same
weightings and quadrature points can be used for each required integral.

The number of quadrature points used in this thesis was 10 unless otherwise
stated.

4.6  The Sanchez-Lacombe Equation of State
The Sanchez-Lacombe equation of state (Sanchez and Lacombe,1976; Sanchez

and Lacombe, 1978) is a mean ficld lattice gas equation of state where pressure effects

are introduced through the use of “holes” in the lattice.

Starting with the Sanchez-Lacombe equation of state as given by Koak and
Heidemann (1996) for discrete thermodynamics,

— -2 —hE
P (-7 F (v br)_a RT 433)

—_— e

RT v b v v

the chemical potentials for individual components are formulated as

S P G

-r[Zbe /b- Im(” v"’) 1]-—;}:”, (4.34)

i=] in}

+[1+m( :;’T) be,,‘/b——)]

i=]

where

c C
b= ZZxx by 3 by =rrjv; =nr; (v,.,- +vjl-)/2, (4.35)

i=l j=1



100

c C
a= ZZxx ay 5 ay =rnra; =r;.rjag.(v,.,- +vj,-)/2, (4.36)

i=] j=1

and F=2 xr. (4.37)

Mo

[}
~—

[

The cross energy term, &, is related to the pure component energy parameters through

& =(1-k; \eey - (4.38)

A pure component is defined by three parameters, namely 7, v, and &, which can
be found from the standard Sanchez-Lacombe parameters, 7;', P° and p through the
equations¢; = RT, ,v; =¢,/P andr,= M,/p’v, .

Recall the previous section on segmental distributions, section 4.4. The mass per

segment, k, was defined such that a molecule of mass M, and a segment count r, were
related by

M i = Ia" . (4.39)

By comparing equation (4.39) to the definition of r; given by the Sanchez-Lacombe

equation of state parameters, the definition of x for the Sanchez-Lacombe equation of
stateis k = p,v,.

Suppose a system contains n, discrete components and (C - n,) polymers with

continuous distributions. The above equations are rewritten for the continuous

components by replacing a mole fractions with segment fractions through the following

equations:
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These definitions are inserted into equations (4.33) through (4.36) and the summation
signs in equations are replaced with integration when a disperse component is considered.
The result is a continuous form of the Sanchez-Lacombe equation of state:

P 1-F 1 (v-#¥b) @ RT
£ — - (4.40)

\4 1 4

The expression for the number average number of segments, equation (4.37), is replaced

with equation (4.12).

Assuming that v; and ¢; are independent of the concentration and distribution of

polymer, the equation of state parameters become

C C
a= ’TZZZ'/’:"/’/"‘":'I'V-J' ’ (4.41)
i=l jul
- C C
b= v (442)
il j=l
C
a = Zy/ja,.jv.y. . (4.43)
j=1
- C
and b, = Z Vivg - (4.44)

1 1
+—=——+Iny;, ; 1<i<n, (4.45)
r, F

73 1 1
——.—.——:;lnq//.W.(r)+;-—;+lnyi(r) ; ng<i<C  (4.46)

where
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; v

5 v WRT " b7 7

1. (7] 2|5
SRVE TP

d - 5 A : - .
- (& ) ln(v-Fb)-;-l 2a;r Zb,. P MmesisC (4.48)
b v WRT " 57 7

Equations (4.47) and (4.48) are the segment molar activity coefficients as defined
by Ritzsch and Kehlen (1989) and represent the deviation of the thermodynamics from
the Flory-Huggins model. All thermodynamic pressure dependencies are contained
within these values.

It is important to note that the equation of state parameters given in the above
equations do not depend upon the details of the segmental distributions of the polymer
species. They only depend upon the segment fractions of each component and the
number average number of segments as defined by equation (4.12). That is, if the
segment fractions and the 7 are known for a particular phase, the equation of state
parameters can be found. This independence on the details of the segmental distributions
results from the assumption that segment-segment interactions are independent of the size
of the polymer chains involved. The interactions are dependent only upon the average
distributions of the different segments throughout the system: average distributions

which are described by the segment fractions.

With the equation of state parameters determined, equation (4.40) can be solved
for a molar volume, v, which can be used in equations (4.47) and (4.48) to calculate the

segment molar activity coefficients. The following section describes the volume solver.

4.7  The Volume Solver
The method used to solve the Sanchez-Lacombe equation of state for a volume

root is the same as used by Koak (1997). The solver returns either a liquid root or a
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vapour root. It is passed the temperature, pressure, equation of state parameters and type
of root to find. The procedure first determines the number of roots which exist and then
uses a Newton-Raphson technique to find the liquid or vapour root desired.

The number of roots is found by first calculating a critical temperature from the

parameters given:
T, = 2a/FR(1+F) .

If the temperature is above the critical temperature, only one root exists and it is assumed
to be vapour-like. If the temperature is below the critical temperature, three roots may
exist. To determine if there are three roots, the limits of mechanical stability are found by

locating the two volumes where (o'P/ d:)r =0 using a Newton-Raphson procedure. The

initial guess to find the higher mechanical stability limit volume is 1.1 times the critical

volume:
Ve = Fb (I +F ) .

The initial guess to find the lower mechanical stability limit volume is 1.1 times the hard

sphere limit, v = 75 . These two volumes define the upper and lower mechanical stability
limits on pressure and if the system pressure is between them, three roots exist.
Otherwise, if the pressure is above the upper mechanical stability limit pressure, a liquid-
type root is sought, and if the pressure is below the lower mechanical stability limit

pressure a vapour-type root is sought.

The volume returned from the volume solver is found using a standard Newton-
Raphson procedure. If a vapour-type root is being found the Newton-Raphson procedure
is initiated with volume guess of v=09RT/P. If a liquid-type root is being found, an

initial guess of v = 1175 is used. This technique worked without trouble in almost all
cases; however, it was found that the Newton-Raphson step size had to be monitored
when finding a liquid root to ensure that the volume did not become smaller than the hard

sphere volume.
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4.8  Summary
Of the two techniques for continuous thermodynamic calculations, the functional

approach is used the most. The Gaussian quadrature technique developed by Cotterman
and Prausnitz (1985) is the most practical of these methods. This technique uses
Gaussian quadrature to divide a polydisperse component into pseudocomponents which
can then be utilized in traditional multicomponent calculations. The more quadrature
points used, the more equations need to be solved.

The following two chapters differ from the quadrature method by developing
cloud point curve calculations and muitiphase flash calculations without dividing the
disperse polymer into pseudocomponents. Instead, functional objective functions and
residues will be developed. This eliminates a number of equations that would be
necessary if a pseudocomponent method was used. Even if a Gaussian quadrature
technique is employed to perform the integration within the functionals, the number of
equations to be solved will be unaffected by the number of quadrature points used.
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5. CLOUD AND SHADOW POINT CURVE CALCULATIONS IN POLYMER
SYSTEMS

5.1 Introduction
As a vapour cools at constant pressure, the temperature at which the first drop of

liquid forms is called the dew point temperature. At this temperature, the vapour phase
will have the same composition as the initial vapour had, but the liquid phase will likely
have a very different composition. The liquid phase has negligible mass and is called the

incipient or conjugate phase.

An analogous development can be made for varying the temperature of a liquid
phase until it splits into two liquids. The temperature at which two phases first appear is
called the cloud point temperature. The liquid corresponding to the initial phase is called
the cloud phase whereas the liquid present in negligible amounts is named the shadow
phase. The cloud phase has the same composition as the initial, or feed, liquid and the
shadow phase will likely have a different composition. By plotting the cloud point
temperature versus the cloud phase composition, a cloud point curve is formed. The
corresponding plot of cloud point temperature versus shadow phase composition is the

shadow point curve.

It is important to recognize that liquid-liquid instabilities can occur on decreasing

the temperature and/or on increasing the temperature. If the liquid-liquid split occurs as
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the temperature decreases, the system can be described as following UCST (Upper
Critical Solution Temperature) type behaviour. If the liquid-liquid split occurs as the
temperature increases, the system can be described as following LCST (Lower Critical
Solution Temperature) type behaviour. It is quite possible for a polymer system to show
both LCST and UCST types of behaviour.

Figure 5-1 shows some representative cloud and shadow point curves. Part (a) is
an example of LCST type behaviour while part (b) is UCST type behaviour. Because
polymer systems contain a distribution of molecular weights and molecules with very
high molecular weights, these cloud and shadow point curves can show very interesting
behaviour. Part (a) in Figure 5-1 shows a cloud point curve having a three phase point
(indicated by a crossover of the cloud point curve with itself), an unstable critical point
(intersection of cloud and shadow point curves) and two liquid-liquid regions (above and
below the three phase point). Part (b) illustrates a cloud point curve having a stable
critical point at the intersection of the cloud and shadow point curves. A potential liquid-

A
‘ PR 4
«® .

(a) b

Cloud Point Curve

. — — Shadow Point Curve

- -+ = Unstable Cloud Point Curve
""" Unstable Shadow Point Curve

A - Three Phase Point

® - Stable Cntical Point

O - Unstable Critical Point
8 - Cloud Point

O - Shadow Point

Mass Fraction Polymer

Figure 5-1 - Representative Polymer Cloud Point Curves.



107
vapour region is not shown in the figure but may appear at higher temperatures (Koak,
1997).

This chapter formulates a method for finding lines of constant phase segment
fraction, ¢, in polymer/solvent systems using the continuous thermodynamic form of the
Sanchez-Lacombe equation of state (see section 4.6). The curves are generated at a fixed
pressure, but in principle, the pressure could be used as an independent variable in the
following development. The algorithm is designed using the functional approach to
continuous thermodynamics and is developed in a fashion which results in only five
equations in five unknown variables. When ¢=0 or ¢ =1, the curves found correspond

to cloud and shadow point curves.

5.2  Algorithm Development

5.2.1 Background
A review of developments in continuous thermodynamics was given in the

previous chapter. Cloud and shadow point calculations with a functional approach to
continuous thermodynamics were covered in depth by Ritzsch and Kehlen (1989). Their
calculations were meant to find curves at a fixed phase segment fraction of $=0 or = 1.
The independent variables of their formulation were the polymer segment fractions, ;,
and the number average number of segments in the shadow phase, 7. No information on
how complete curves were generated was given for cases when numerical integration was

necessary in the Ritzsch and Kehlen publications.

Michelsen (1980) developed an algorithm for calculating phase envelopes of
hydrocarbon systems at constant composition. With a specified feed composition, his
method used a Newton-Raphson procedure to converge on points of a fixed phase
fraction. The independent variables that he used were the logarithms of the distribution
variables, the temperature and pressure (InK, InT and In P). C + I equations were
formed for these C + 2 variables from the equilibrium requirements and the material

balance constraints. The remaining equation was found by choosing one of the
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independent variables to be a specification variable, a, which was forced to a value,

a; = §, where S is a specified constant. The curves corresponding to fixed phase fractions
were traced by finding points corresponding to incremental values of S. The choice of
specification variable could change along the length of a curve by examining the
derivatives of the independent variables with respect to the specification constant, S. The
variable with largest magnitude derivative with respect to the specification constant
became the specification variable. Initial guesses for consecutive points along the curve
were found from a cubic extrapolation of the independent variables using values of the

independent variables and their derivatives at two previous points.

Koak (1997) used the same principles to develop an algorithm for calculating the
phase boundary of discretized polymer systems at constant pressures. However, in
Koak’s work the mass fraction of polymer in the feed could be used as a specification

variable.

3.2.2 Problem Definition
The terminology introduced in the previous chapter can be written for a

polymer/solvent system. In this case the number of discrete components is 1 and the total
number of components is 2. The solvent is denoted by 4 and the polydisperse polymer
by B. The number average number of segments, 7, can be calculated from equation
(4.12) in the form:

= 5.1)

Vo, [,

r, r

N | =

If the entire system is considered as a single phase, it can be thought of as the feed
phase. The overall polymer segment fraction, ¥, and intensive polymer segmental
distribution function, W, (r), define the feed phase composition. The solvent segment
fraction in the feed phase is simply w7 =1-y[ . If the feed phase splits into two phases
at a specified temperature and pressure, the two phases can be designated phase I and
phase /I. Variables associated with either the feed phase, phase I or phase IJ will be
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denoted by the superscripts F, 7 and [T respectively. The fraction of the total system

segments that are in phase /7 is called the phase fraction, ¢ =7" /(7' +7")=r"[n" .
As in chapter 4, the overbar indicates that n is a segmental value as opposed to a

molecular value.

Consider that the feed has split into two phases. Assume that the phase fraction,

¢, is fixed and that the pressure and feed polymer distribution are specified. The
remaining variables that define the composition, polymer distribution and temperature of
the system are w,, ., W5, ¥4, ¥s . T, W, (r),and W2 (r). These are 6 scalar variables
and 2 functions that need to be determined. That means 6 scalar equations and 2
functional equations are needed to fully define the system. It can be shown that 2 scalar
equations and 1 functional equation result from the polymer and solvent segment
balances, 2 scalar equations and 1 functional equation come from the equilibrium
requirements and 1 scalar equation results from the requirement that the segment
fractions in a phase must sum to unity. This totals 5 scalar equations and 2 functional
equations for 6 scalar variables and 2 functions, leaving one degree of freedom in the
system. Therefore, if the composition of one phase were fixed, the temperature and the
composition of the second phase in equilibrium with the first could be found. A plot of
the equilibrium temperature versus the compositions of the two phases would result in
two distinct lines of constant phase fraction in the isobaric temperature-composition

plane.

Given an isobaric polymer/solvent system, the objective of the following sections
is to develop an algorithm capable of finding the equilibrium temperature-composition
curves corresponding to a constant phase fraction. Three criteria need to be met: the total
number of solvent segments must be conserved, the total number of polymer segments at
each value of r must be conserved and the chemical potentials of both solvent and
polymer must be the same in each of the two phases.
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5.2.3 Segmental Balances
If the feed splits into two phases, the number of segments of solvent must be

conserved:
—F _ =1 , =II
n, = +n,. (5.2)

Dividing equation (5.2) by 77, the total segments in the feed, yields

A _mgAl A Al
7t alaft A" gf
which can be simplified to
wi=1-yf=yi(1-¢)+v’s (5.3)

The segmental balance for the polymer can be expressed in terms of the extensive
segmental distributions as
wy (r) = wy(r) +wi(r). (5.4)
This equality is written such that the segmental balance must be satisfied over the entire
range of r. By dividing equation (5.4) by #© and noting that

)

equation (5.4) can be rewritten as
wi Wy (r) = (1- @)y () + oy W' (). (5.5)
Equations (5.3) and (5.5) are the two segmental balances of the system.

5.2.4 Defining the Segment Fractions and Distributions
A segmental distribution variable, K, can be defined as the ratio of a component’s

segment fraction in phase /7 to its segment fraction in phase /. The K values for the
solvent and polymer species are given by equations (5.6) and (5.7) respectively.

Ke=vilvi (5.6)
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ws Wy (r)

Ky(r) = waW, (r)

-7

Note that K, is a function of the polymer segment count, r, and not a scalar value. In
essence, equation (5.7) defines a K value for each value of ». These K values are
analogous to the K values in traditional discrete flash calculations, but instead of mole
fractions, they use segment fractions.

If y; and y, are fixed and sum to one, arbitrary K, and K,(r) values define in

vy and y, values which do not necessarily sum to one and vice versa. It is
advantageous to write equations (5.6) and (5.7) in terms of unnormalized segment

fractions, 'V, instead of the normalized segment fractions, y. The constraint that the sum
of the segment fractions in each phase must sum to unity then becomes an additional

equation to be solved.

The segment fractions and segmental distribution functions can be expressed in
terms of the X values by using the segmental balances. Recognizing that ¥” = K ¥/,

equation (5.3) can be solved for the unnormalized segment fractions ¥/ and ¥/ :

. / NV )R
W1_1+¢[1<,—1]’ s 1 G-8

Similarly, since w; W, (r) = K,(r)y;W;(r), the polymer segmental balance given by

I_W: ) u (I_W:)K
K

equation (5.5) can be used to find expressions for ¥, W,(r) :

ws Wy (r)K,(r)
1+ K, (1) -1]

wsWs ()
1+ g[Ky(r) -1]

wiwl(r) = wriw)(r) = (5.9)
Because the integrals of W, (r) and W, (r) over the range of r must be unity, the
unnormalized polymer segment fractions in each phase can be found by integrating

equations (5.9):
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/ W, (r) a_ | ¥sWs (NK,(r)
¥ = Jl+¢[K (r)- 1] ¥s = jl+¢[K (r)- 1]d

(5.10)

If the K values, the feed composition and the feed polymer distribution function
are known, equations (5.8) and (5.10) can be used to calculate the unnormalized solvent
and polymer segment fractions. Inserting the polymer segment fractions into equation
(5.9) gives the segmental distributions in each phase:

wsWs (r) ¥y veW  (PK,(r), 2
1+ 4Ky (r)-1] ° 1+4[K,(r) - 1]

The unnormalized segment fractions cannot be used in thermodynamic models

II( )_

w,(r) = (5.11)

and must be normalized. These y values are found before using a thermodynamics

model from equation (5.12).
w! =¥ (PL+¥)) s v =" (P + D). (5.12)

Definitions for the segmental distribution functions can be inserted into equation
(5.1) to give expressions for the number average number of segments in phase / and
phase [I. Because the number average number of segments is based upon the normalized
segment fractions and the expressions for W,(r) and W, (r) are in terms of the
unnormalized fractions, each term in the expression for 7 must contain a normalizing

factor:

1 LP;+J WF(r)rrr

=0 (5.13)
1y . J ws W, (r)K,(r).r

U+ 0K, () 1] dr| [(¥F +w¥r)

With v, , v,, W,(r) and 7 defined for both phases in terms of the K values, the
K values need to be defined in a useful form. The chemical equilibrium requirements

allow this form to be found.
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3.2.5 Equality of Chemical Potentials
A necessary condition for two phase equilibrium is that the chemical potential of

the solvent must be the same in both phases and the chemical potential of the polymer
must be the same in both phases for every value of r. This is equivalent to stating that the
chemical potential per segment is the same in both phases:

=1 _ —=n

Hqy = Hy

7 () = B () 14

Inserting the definitions of the segmental chemical potentials as given by

equations (4.45) and (4.46) into equation (5.14), the two X values, X, and K,(r), canbe

written as:

n 4 1 I I
InK, =lny, -lny, =r, F_”— r—lny,/ +Iny, (5.15)

1 1
nK,(r) =y W' (r)-ny)w](r) = rl:F—”—rj;—lny;'(r) +1ny;(r)] (5.16)

Combining equation (5.16) with the Sanchez-Lacombe segment molar activity

coefficient, equation (4.48), it can be seen that K,(r) has the form

nK,(r) = A +rBy = A, +r(B] - BY) (5.17)

Flb~l F”E”
where A, = o ok (5.18)

and

Noting that the definitions of Iny,, 4, and B, are independent of the segment count, r,
and the segmental distribution function, the rightmost equality in equation (5.17) allows



114
K,(r) to be defined by two scalar equations for two new independent variables, 4, and
B,.
Equations (5.15) and (5.17) now define three scalar equations in five scalar
unknowns, In K, 4, By, In Tand Iny/ :

g(InK,, A, Be.InT,Iny} )= 4, -4, =0 (5.20)

g(InK,, A¢,By,InT,Iny;) =B, +B? -B' =0 (5.21)

1 1
g,(mK,,AK,BK,lnT,lnw:)ﬂnK,—rA{F—,,-F—,—ln(rf/r:)}w (522)

The logarithms of temperature and feed polymer segment fraction are used as variables to

help scale the variables.

If equations (5.20) and (5.21) are satisfied, the chemical potentials of all polymer
molecules are equal in both phases. When equation (5.22) equals 0, the chemical
potential of the solvent is equal in both phases.

3.2.6 Summation Requirement
The summation of the unnormalized polymer and solvent segmental fractions

must be unity in both phase 7 and phase /I. Because the K values and material balances
relate the compositions of one phase to the composition of the other, the two summation
restraints (one for each phase) are linearly dependent. Therefore, a single summation
requirement is formulated in the same fashion as was proposed by Rachford and Rice

(1952). This summation forms a fourth scalar equation:
g(inK,, 4¢.B,.InT.Iny] ) =(¥; - %7 )+(¥; - ¥) ) =0.

Inserting equations (5.8) and (5.10) into this equation gives

(1 K ) Wy (r)1- K, (r)
B = 1+¢[;)£1 ~1] H 1+¢[)E:' (5 1]]} G2
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When equation (5.23) is satisfied, the sum of the segment fractions in both phases will
equal 1 and the segmental balance constraints used to define i, and y; in terms of the K

values will be met.

3.2.7 The Specification Variable
Up to this point, equations g,, g,, g; and g, define four scalar equations in 5 scalar

unknowns. The final equation needed to define the system is formulated to fix one of the
independent variables to a specified value, S. The variable chosen to be fixed is called
the specification variable and the value, S, is called the specification parameter. By
repeated solution of the equilibrium equations at incremental values of the specification
parameter, the constant phase fraction curves can be drawn. This is similar to the

techniques used by Michelsen (1980) and by Koak (1997).

If the independent variables are placed in a vector a= {InK,, 4y, B,, InT,
Iny, }", the * independent variable is @;. For example, By is @,. Since the specification
variable can be any of the independent variables, the generic form of the remaining scalar

equation can be written as
g =a-5S=0. (5.29)

The choice of the initial specification variable is arbitrary. The feed polymer
segment fraction was used as the specification variable in most of the calculations
performed because it was a value with easily described physical significance. However,
as will be noted, the temperature and solvent K value were also at times used as the
specification variable. The method used for choosing an incrementing S to trace curves is

described in a later section.
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5.2.8 Updating Procedure
The five scalar, non-linear equations which define the fixed phase fraction

equilibrium problem for the Sanchez-Lacombe equation of state are given by:

gla)=4,-4,=0 (5.25)

g.(a)=B+B/ -B; =0 (5.26)

g(a)=mkK, 4{;1,7—%—111(}'5’/?1)}:0 (5.27)
(1-ws)1-k ) e (rfi- K0

g.(a)= 1+¢K, -] 1+¢[1< (r) - 1] =0 (5-28)

gla)=a,-5=0 (5.29)

The vector a = {In K, A, By, In T, Iny[ }" holds the five independent scalar unknowns.

The five equations to be zeroed is represented by the vector g(at) = {g,, £, &3, &> &5} -

To solve this system of equations, a Newton-Raphson procedure can be used. The
Newton-Raphson procedure is a second order technique for the solution of non-linear
equations. It works by finding successive approximations to the solution using a linear

approximation of the problem. A single Newton-Raphson iteration is written as

(n#l)

=a" + Aa®™ (5.30)
I aa™ = —gla'). (5.31)

Aa is the change in the independent variables during a single Newton step. The
superscripts in parenthesis represent the iteration count. J represents the Jacobian, a
matrix containing the derivatives of g with respect to the independent variables. The

structure of the Jacobian is shown below.
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7@) r@.) (&)

\ X, | \da, \ ;5 )

ag (& (@z (@z\
J=(£)= \a‘f‘l \ 9, \ s ) (5.32)

fé,) fa;,) (&)

_\&z, \aaz \5"5)_

The derivatives (&/dz) can be found in Appendix B.

On each iteration, the independent variables, o™, are used to calculate g* and the

Jacobian, J*. The change in the independent variables, Aa®, can be found from equation
(5-31) using any routine to solve a set of linear equations. LU decomposition with back
substitution was used in this work and is described in detail by Press et al. (1992).

Convergence is achieved when the error determined by g is smaller than an
assigned tolerance. The error is defined to be the sum of the squares of g; divided by the

number of equations, 5:
Err=g'g/s (5.33)
Newton-Raphson iterations continued until Err was less than 10"

The Newton-Raphson technique gives second order convergence in regions near
the actual solution. If initial guesses are not close to the solution, convergence may be

slow or not happen at all. Sometimes the region of convergence can be improved by
damping each Newton-Raphson step. This is accomplished by multiplying Aa; with a
scalar quantity, 4; < 1, before updating a;:

" =a™ + 2Aq,. (5.34)

However, it should be noted that this scaling has the adverse affect of slowing
convergence.

When seeking a solution using a poor initial guess, scaling the Newton-Raphson

step with a factor of 4,=0.1 for changes in In K, 4,, B, and Iny; and with a factor of
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A;=0.001 for the changes in In T, worked well. These damping factors were used for the
first 20 iterations and at any time when the error was greater than 10°. The higher
damping factor for temperature changes was needed due to the large changes introduced
to temperature if o was far from the solution. If the initial guess was good (initiated with
a prior solution), no scaling was required and convergence occurred in three to five

iterations.

3.2.9 Specification Variable Progression
Solving equations (5.25) through (5.29) gives the compositions, segmental

distributions and temperature corresponding to the specification parameter, S, and the
constant phase fraction, g. To generate the entire fixed phase fraction curves, the value of
the parameter S can be changed after each individual equilibrium solution is found and
repeated solutions will generate a locus of equilibrium points. The initial guess for the
new solution can be found using the previous solution or by extrapolation of the
independent variables. With enough points, the entire fixed phase fraction curves can be
drawn.

If extrapolation of a is desired between points, one possible technique is cubic
extrapolation as proposed by Michelsen (1980). It uses the current and previous values of
o and the derivatives of o with respect to the specification parameter to determine the

appropriate polynomial coefficients.

The derivatives of a can be found by taking the derivative of equation (5.31) with

respect to S:

%)%
J(dS =zs)" (5.35)
Since (dg/dS) = {0, 0, 0, 0, -1}7, the vector (do/dS) can quickly be determined using the

same linear equation solver as used in the Newton-Raphson procedure. It is convenient,

therefore to use the LU factorization method in the Newton-Raphson procedure since the
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factorization of J at the converged solution can be used in equation (5.35) to determine

(da/dS).

A cubic extrapolation can be done for each independent variable. Consider an

extrapolating polynomial with the form
a,(S) = ¢,y + ¢, S+, 5% +¢,,8°

where there is a distinct set of four coefficient, c;, for each independent variable. If
equilibrium points have been found at two values of S, and values for both « and (da/dS)
are known at these points, enough information is known to find all of the extrapolations
coefficients, c;. Consequently, if a new value of § is chosen, S, an initial guess of

a = o(S,.,) can be found from the polynomial.

It was found that cubic extrapolation did not yield good initial estimates for « in
the polymer/solvent cloud point curve calculations. A linear extrapolation was tried but
also resulted in poor initial guesses unless the step change in S was limited to very small
values. The reasons for this deficiency were not examined. In the end, it was found that
with small enough step changes in S, calculations along the cloud point curve were
adequately initiated by the converged solution to the previous cloud point while neither
extrapolation technique offered any particular benefit to the calculation procedure.

The size of the increments in S used to trace the fixed phase fraction curves can be
changed after each equilibrium solution is found. By examining the number of iterations
required to converge to the last solution, the step size can be increased if the previous
number of iterations was too small, and it can be decreased if too many iteration were
taken. It stands to reason that larger changes in S will result in greater error in the initial
guess. If the initial guess is worse, more iterations will be required to reach the final
solution. Therefore, by decreasing the step change in § when iteration counts are high
and increasing the step change when iteration counts are low, a crude adaptive method
can be implemented to optimize the change in S along the curves. A reasonable approach

for the polymer/solvent system was to decrease the step size if more than 5 Newton-
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Raphson iterations were needed and to increase the step size if less than 3 iterations were
needed. The maximum step size allowed was 0.01, regardless of the specification

variable chosen.

It is also possible to automatically switch between specification variables along
the length of the fixed phase fraction curve (Michelsen, 1980). The choice of
independent variable represented by ¢; in equation (5.29) can change after finding each
equilibrium point by examining the derivatives of the independent variables with respect
to S. By selecting ¢; to represent the variable with the largest magnitude derivative,
&z, /35 , the change of the other independent variables between each equilibrium point
would be minimized. This automated procedure was not used in this work, but it was
found that the choice of specification variable could greatly affect the ease in which cloud
point curves could be followed. This result will be discussed in more detail in the

examples to follow.

3.2.10 Convergence of Integrals
Equations (5.10) are used to calculate segment fractions before normalization:

1 _ 'I’:WI;F(") ] a_ QW:WBF(")Ks(") "
—Jl+¢[K,(r)—1]dr L ",[1+¢[1<,(r)-1]d G-10

r=0 r=0

The form of these two integrals is typical of all integrals in continuous thermodynamics.
If the definition of K as given by equation (5.17) is inserted into these integrals, they can

be rewritten as

. T FoF
l{}’ = J’ '/,:WBF(r) - dr : “P;I = J'WB WB (r)Cexp{rBK} dl’ (536)
l+¢[Cexp{rBK} —1] 1+¢[Cexp{rBK} -1]

r=0 r=0

where C=exp{4,}. The true cloud and shadow point curves are represented by these
equations when the phase fraction is either 0 or 1. In the case of ¢ = 0, equations (5.36)

become
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¥, = Iow: Wy (rYdr=vw; ; ¥ = [wiW (r)Cexp{rB,}dr (5.3

r=0

and when ¢ = 1, they become

¥, = [wiW/ (r)exp{-rBy}dr/C ; W¥I = Iowi Wr(r)dr=y]. (5.38)
r=Q r=

The sign of By cannot be fixed as positive or negative. Therefore, equations
(5.37) and (5.38) show that an integral defining ¥, along a phase boundary could have

the form:

-]

¥, =C' [Wf(r)exp{or}dr ; o>0.
r=0

As covered in the previous chapter in the discussion about distribution functions, when
Wy (r) is a divergent distribution like the log-normal distribution, these integrals are
unbounded as r approaches infinity. If the Shultz-Flory distribution is used, the integrals
are convergent and can be found analytically (Ritzsch and Kehlen, 1989).

The integrals are also convergent when the log-normal distribution is used and the
phase fraction is between 0 and 1 (Ritzsch and Kehlen, 1989). Therefore, to avoid
possibly divergent integrals, the cloud and shadow point curves using a log-normal

distribution can be approximated by performing the calculations at a fixed phase fraction
close to the limiting values, say ¢ = 0.0001 or ¢ = 0.9999.

A segmental phase fraction of 0.9999 was used to approximate the cloud point
curves found in this work. During numerical integration, the value K (r) was calculated
only if In Ky(r) = A, + rB, was between -500 and 500. Otherwise the numerical limit of
the integrand as K, — 0 was used when In Kj(r) < -500 and the limit as K, — o was used
when In Ky(r)>500. No overflow or underflow errors were encountered during

integration when this procedure was followed.
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Figure 5-2 - Flowsheet of Cloud and Shadow Point Calculation Algorithm.
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5.2.11 Program Overview
Figure 5-2 displays a flowsheet for the cloud and shadow point curve algorithm.

It consists of two loops: an inner loop for determining a single equilibrium point and an
outer loop to control the tracing of the curves. The inner loop is the Newton-Raphson
procedure discussed in section 5.2.8 and the outer loop is the specification variable

progression covered in the section 5.2.9.

The problem is initially defined by inputting the Sanchez-Lacombe parameters for
the pure solvent and polymer. The system pressure, distribution function parameters,
fixed phase fraction and starting specification parameter are also read from a file. The
initial vector of independent variables, a, is usually determined from a priori information
obtained from experimental results or a two phase flash algorithm. After the problem
parameters have been defined and the initial guess determined, the outer and inner loops

are entered.

Within the inner loop, the first task (box A in Figure 5-2) is to use the In ],

InK,, Ay and By values held in a to determine the segment fractions and number average
number of segments in each phase. This is done using equations (5.8), (5.10), (5.12) and
(5.13). These values are then used to determine the Sanchez-Lacombe equation of state
parameters for each phase (box B). The equation of state can then be solved for the molar
volumes of phase I and phase /I, and subsequently, the values of 4, B, and In y, in each
phase can be determined from equations (5.18), (5.19) and (4.50) respectively. It should
be noted that the volume root found depends on the type of phase being considered. That
is, if a vapour phase is considered, the vapour root of the Sanchez-Lacombe equation of
state is sought whereas if a liquid phase is of interest (as is normally the case for polymer
systems), a liquid root is sought. The technique for finding the volume roots is discussed

in section 4.7.

The residuals of the objective functions are calculated using equations (5.25)
through (5.29) and the error as defined by equation (5.33) is found (box C). If the error is

greater than the tolerance, 10", the inner loop continues in box D where the Jacobian is
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determined and the change in the independent variables is found from equation (5.31).
The error and iteration count is examined to determine if the Newton-Raphson step needs
to be scaled. The damping parameters 4; are set in Box E using the technique described
in the Updating Procedure section. The final step in the inner loop before returning to
box A is to update the independent variables.

If the error calculated in box C is less than the tolerance, the inner loop has
converged to an equilibrium point, and the outer loop increments the specification
parameter, S (box F). This incrementing procedure is described in section 5.2.9. If the
specification variable moves outside of a user defined set of bounds, the outer loop is
stopped and the program terminated. Otherwise, the inner loop is reentered and an
additional point along the fixed phase fraction curve is found.

Cloud and shadow point curves can be found in the above fashion by setting ¢ to
0.9999 or 0.0001. The integrations required can be done using one of the numerical
techniques discussed in the previous chapter. Second order convergence was achieved
when the independent variables are close to the final solution. Results from this
algorithm in predicting the cloud and shadow point curves of a polyethylene/n-hexane

system and a polyethylene/ethylene system are given in the following section.

Component T (K) P’ (bar) P (kg/m®)
n-hexane’ 476 2980 775
Ethylene' 327 2026.5 515
Polyethylene 649 4250 904

Table 5-1 - Sanchez-Lacombe Pure Component Parameters.

* Data from Sanchez and Lacombe (1978).

' Data from Kiszka er al. (1988).
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5.3  Examples

3.3.1 Polyethylene/n-Hexane at 6 Bar
Koak (1997) modeled a mixture of n-hexane and polyethylene (M, = 8000,

M, =177000) using the Sanchez-Lacombe equation of state. He divided the disperse
polymer into 10 initial pseudocomponents using the quadrature technique of Cotterman
and Prausnitz (1985) to approximate the molecular weight distribution. He discarded the
components with molecular weights lighter than the solvent.

In this work, a log-normal segmental distribution was used to model the
polyethylene. The pure component parameters are shown in Table 5-1 and an interaction
parameter of k; = -0.1297 was used (Koak, 1997). The number average molecular weight
and mass average molecular weight were used to determine the log-normal parameters,
B =2.4886 and r, = 3278.67 (see Table 4-1). As discussed in the previous chapter, these
log-normal distribution parameters are related algebraically to Koak’s (1997) parameters,

f and M,, and result in exactly the same molecular weight distribution.

This systemn exhibited LCST type behaviour. The cloud and shadow curves found
in the region of the lower precipitation threshold temperature (lowest temperature point
on the cloud point curve) were calculated using the fifth order Runge-Kutta integration
routine. These curves are shown in Figure 5-3. Because the log-normal distribution is
divergent (Solc, 1975), the cloud and shadow point curves were approximated by finding
the boundary associated with a phase segment fraction of ¢=0.9999. Once an initial
point on the curve was found, the change in the specification parameter was adjusted such
that each successive point on the curves was found in between 3 to 5 Newton-Raphson
steps. The actual step size would depend upon the complexity of the curve being traced
and the specification variable being used.
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Figure 5-3 - Cloud and Shadow Curves of Polyethylene in n-Hexane.
k; =-0.1297, P = 6 bar. Data from Kennis (1990).

Koak (1997) found the interaction parameter, -0.1297, by matching the
precipitation threshold temperature of the discretized system with the experimental
precipitation threshold found by Kennis (1990). As can be seen in Figure 5-3, the
continuous system also matches the precipitation threshold temperature well with a
temperature of 128 °C. A three phase liquid-liquid-liquid point is indicated on the figure
at 137 °C by a crossover in the cloud point curve. This point separates two stable liquid-
liquid equilibrium regions. A three phase liquid-liquid-vapour point can be seen at a
temperature of 138.8 °C. At cloud point temperatures higher than this, the stable polymer

rich liquid is in equilibrium with a solvent rich vapour shadow phase.

Metastable cloud points are indicated by extensions of the cloud point lines
through the three phase points. The crossover at 137 °C extends to a metastable lower
cusp at 135.8 °C. An upper cusp was difficult to locate because the associated cloud and
shadow point curves slowly merged together. These lines were followed up to a

temperature of 172 °C before calculations were ceased. Metastable liquid-liquid and
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liquid-vapour lines are shown as the extensions of the cloud point curves to the left of the
three phase point at 138.8 °C.

Koak (1997) found that the metastable upper cusp extending from the 137 °C
three phase point is in the region of an unstable critical point. A critical point would be
indicated in the figure by an intersection of the cloud and shadow point curves. As can be
seen from Figure 5-3, the stable cloud points at temperatures below the 137 °C three
phase point are leaner in polynier than their corresponding shadow points (the cloud
points lie to the left of the shadow points). Also, the stable cloud points at temperatures
above 137 °C are richer in polymer than their shadow points. This indicates that the
cloud and shadow point curves must intersect in the metastable region above 137 °C
supporting Koak’s statement that an unstable critical point exists in the upper cusp.
Figure 5-1 (a) shows how this unstable intersection might appear. Additionally, the cloud
and shadow phases would have the same composition and molar volume at this unstable
critical point. Identical phases would result in a singular Jacobian, accounting for the
numerical difficulties encountered in finding the upper, metastable cusp.

It should be noted that Solc (1975) observed similar phenomena using the Flory-
Huggins model to represent a polymer solution. In their study of log-normal distributions
of polymers exhibiting UCST type behaviour, depressions in the cloud point curve were
observed near a liquid-liquid-liquid three phase point. As Solc increased the maximum
molecular weight which was included in his model, the metastable cloud point curve
extending down from the three phase point merged with the shadow point curve. As
well, the cusp formed by the metastable cloud point curve moved to lower and lower
temperatures. This is analogous to the upper cusp of Figure 5-2 where the cloud and
shadow point curves merge. The primary difference in Solc’s system is that it exhibited
UCST type behaviour and the cusp which was difficult to find was not associated with an
unstable critical point. From his analysis, Solc concluded that the observed extension of
the metastable cusp was due to the significant quantities of high molecular weight

molecules inherent with a log-normal distribution.
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Further calculations at higher temperatures showed that the Sanchez-Lacombe

model results in a hypothetical liquid-vapour critical point at a temperature of 963°C.

This complete phase envelope, with its shadow point curve, is given in Figure 5-4.

Although it is evident that the polymer would degrade long before the high temperatures

shown could be reached, the figure is given to indicate the ability of the algorithm and the
model to predict high temperature liquid-vapour behaviour.

The segmental distribution of the polymer in both the cloud and shadow phases
were examined at three separate temperatures along the cloud point curve. The segmental
distributions corresponding to a liquid-vapour equilibrium at 145.8 °C, a liquid-liquid
equilibrium at 138.3 °C and the left hand branch of the cloud point curve at 131.8 °C
were plotted on a solvent free basis in Figure 5-5. The segmental distribution of the
liquid cloud point in each case is identical and indicated by the solid line. The shadow
phase segmental distributions are drawn with dashed lines.
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Figure 5-4 - Liquid-Vapour Cloud and Shadow Point Curves of Polyethylene in
n-Hexane. k; =-0.1297, P =6 bar.
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Figure 5-5 - Molecular Weight Distributions of Polyethylene in n-Hexane.

The polymer component in the incipient “vapour” phase at 145.8 °C is primarily
the light polymer molecules, as is to be expected. The incipient liquid phase at 138.3 °C
has a polymer distribution which is similar to the cloud point distribution but is especially
lean in the higher molecular weight molecules. The segmental distribution of the
incipient liquid phase at 131.8 °C indicates that it is enriched in the heavy polymer
molecules. The polymer mass fraction, polymer segment fraction, number average
number of segments and X values for these three points are shown in Table 5-2 and Table
5-3.

r'¢o M, My Va v 7 y

131.8 1.54x107% | 5.62x10° | 1.38x107? | 5.18x10° | 8.473 8.356

138.3 1.29x107 | 2.47x10% | 1.16x107 | 2.22x10% | 8.452 8.543

145.8 1.52x10* | 0.323 1.36x10* [ 0.300 8.352 11.876
Table 5-2 - Cloud and Shadow Point Phase Properties.

Phase / is incipient phase. Phase I is the feed phase.
M; is the mass fraction polymer.




130

In Ky(r) = Ag + 1B,
T(°C) Ink, A, B,
131.8 1.39x107 | 1.18x102 | -1.14x10"
1383 1.08x10° | -9.30x10° | 1.67x107
145.8 3.57x107 3.59 0.788

Table 5-3 - Cloud and Shadow Point K Values.

It is clear from Table 5-2 and Table 5-3 that the shadow point (phase /) is richer in
polymer than its cloud point (phase /T) at 131.8 °C. It is leaner in polymer than its cloud
points at the other two temperatures. This switch from a polymer rich shadow phase to a
polymer lean shadow phase occurs at the unstable critical point. As the critical point is
approached from the liquid-liquid region below 137°C, InK, and A, change from
positive values to zero at the critical point and then become negative. The opposite holds

true for B,.

An interesting observation can be made by examining the cloud and shadow
points at 131.8 °C. If the segmental distribution for phase /I is plotted and compared
against the feed segmental distribution which was plotted in Figure 5-5, the two show
quite different behaviours at high molecular weights. Figure 5-6 illustrates that at high
molecular weights phase /7 at 131.8 °C contains less high molecular weight polymer than
the feed. Additionally, the polymer segment fraction in phase /I is 5.18x10° whereas the
segment fraction of the feed used was 5.04x 10, a deviation of 2.8%. If phase /I were the
true cloud point, its segmental distribution and polymer segment fraction would be the
same as the feed distribution. This shortcoming is the result of the small polymer
segment fraction in the feed and the fixed segmental phase fraction being 0.9999 instead
of 1. The small polymer segment fraction in the feed reduces the significance of the
polymer distribution in the calculations. As a result the error introduced by using a
segmental phase fraction of 0.9999 instead of 1 is magnified.
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Figure 5-6 - Failure of Cloud Point Calculation with Log-Normal Distribution.

A statement should be made about the “light ends” in the polymer distributions.
Each distribution was assumed to represent molecular weights extending from zero to
infinity. In a real system, polymer molecules do not have molecular weights less than
that of their repeating monomer unit, and the unrealistic range of molecular weights was
chosen solely for mathematical convenience. As seen in Figure 5-5, these “light ends™
partition into a vapour phase at higher temperatures leading to a potentially false
impression that the polymer is more volatile than it is. These light ends would have more
impact on vapour-liquid equilibria than on liquid-liquid equilibria. To avoid this
misrepresentation of the polymer distribution, the distribution could be truncated at
molecular weights below the weight of a single monomer by simply starting the
integration at an r value corresponding to the molecular weight of the monomer and

renormalizing W(r).

The choice of specification variable dictated the ease by which the cloud and
shadow point curves were found. The feed polymer segment fraction was used as the

specification variable for all the cloud point curve calculations except in the region of the
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near vertical cloud point curve between 300 °C and 900 °C (right hand side of Figure
5-4). In this region, the temperature was used as the specification variable because
changing the temperature resulted in a comparatively small change in the other
independent variables. Changing the feed polymer segment fraction would have resulted
in significant changes in temperature and may have even forced the segment fraction
outside of the phase envelope.

The different branches of the cloud point curve were found by tracing each branch
separately and then plotting all the branches on a single figure. The initial guess for the
branch of Figure 5-3 corresponding to the lower precipitation threshold was found by
using the results published by Koak (1997). Initial guesses for the other branches were
found by trial and error.

It is possible that one of either In K,, 4, or B, would be more effective as the
specification variable in the metastable regions. As is visible in Figure 5-3, a single
polymer segment fraction can represent four distinct cloud point lines. Each of these
lines, however, has unique X values associated with it. This suggests that generating the
curves in these complex regions using a K value as the specification variable might
smoothly progress from one cloud point branch to another. This aspect of the
calculations was not explored in this dissertation, but is an area to be examined in future

work.

A Shultz-Flory distribution was also used to model the polyethylene/n-hexane
system. The parameters, §=0.04734 and r, = 697.04, were chosen such that the number
average molar mass and mass average molar mass would equal 8000 and 177000
respectively (see Table 4-1). The cloud and shadow point curves in the region of the
lower precipitation threshold temperature were found using a phase segment fraction of
0.9999. These liquid-liquid cloud and shadow curves are shown in Figure 5-7. Again,
the fifth order Runge-Kutta integration technique was used. The obvious difference
between the cloud point curves using the Shultz-Flory distribution and the log-normal
distribution is that the former did not result in a second liquid-liquid instability. This is
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Figure 5-7 - Cloud and Shadow Point Curves for Polyethylene/n-Hexane Using a
Shultz-Flory Distributioa. k; =-0.1297, P =6 bar. Data from
Kennis (1990).

seen in the lack of a low temperature, liquid-liquid-liquid three phase point. Instead the
cloud and shadow curves intersect in a stable critical point at a temperature of 131.7 °C.
The lower precipitation threshold temperature is 130.8 °C, 2.8 ° higher than the log-
normal distribution with the same M, and M,. Liquid-vapour equilibrium curves were

not calculated for this example.

An interesting conclusion from this observation is that although the polyethylene
sample modeled in each case showed the same M, and M,, the phase behaviour can be
significantly affected by changes in the shape of the distribution. Indeed, Solc (1975)
noted the presence of three phase points on cloud point curves when log-normal
distributions were used to model UCST type phase behaviour. This phenomenon was not
visible when a convergent distribution such as the Shultz-Flory distribution was used.
The additional liquid-liquid instability in the log-normal distributions can be attributed to
the higher concentrations of large molecular weight polymers (r — o) that exist because
of the nature of the distribution.
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The cloud and shadow point curves of this system were also found using a log-
normal distribution and the Hermitian quadrature integration method. The quadrature
points and weightings are found before calculations start and are used each time an
integral appears in an equation. This is different from the quadrature technique used by
Cotterman and Prausnitz (1985) and Koak (1997) because they used the quadrature
technique to divide the feed distribution into pseudocomponents. In their technique, the
number of equations solved was proportional to the number of quadrature points used. In
this work, the number of quadrature points utilized has no effect on the number of

equations.

Using a 10 point Hermitian quadrature technique to integrate, the cloud point
curve around the lower precipitation threshold temperature was generated and it is shown
in Figure 5-8. The graph compares the quadrature technique (solid line) to the fifth order
Runge-Kutta technique (dashed line). It shows that the quadrature technique matches the
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Figure 5-8 - Cloud Point Curve of Polyethylene in n-Hexane. 10 Point
Hermitian Quadrature.
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Figure 5-9 - Cloud Point Curve of Polyethylene in n-Hexane. 30 Point Hermitian
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precipitation threshold temperature well, but shows a significant aberration in the cloud
point line around a polymer mass fraction of 0.004. This “oscillation” about the high
precision solution is apparent throughout the entire cloud and shadow point curve, even
in the liquid-vapour region. It should be noted that the oscillation shown in Figure 5-8 is

the most significant one.

For comparison, the cloud point curve was generated using Hermitian quadrature
with 30 quadrature points. The curve around the lower precipitation threshold
temperature is shown in Figure 5-9. Comparing the 10 node quadrature to the 30 node
quadrature, it can be seen that the larger number of nodes improves the precision of the
results (using the fifth order Runge-Kutta routine as the “exact” solution). The oscillation
about the high precision solution is still present, but smaller. As well, the significant
aberration apparent in Figure 5-8 has moved left to a polymer mass fraction of
approximately 0.002. Smaller oscillations to the left of this point are also apparent. The

cause of the oscillations was not determined, but the cloud and shadow point curves
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found approached the fifth order Runge-Kutta solution as the number of quadrature nodes

increased.

It is important to note that the Hermitian quadrature techniques were orders of
magnitude faster than the Runge-Kutta technique. Table 5-4 compares the computation
time required to complete one Newton-Raphson step using the three integration
techniques examined. It displays the total time, the time spent performing the necessary
integrations, the percentage of the total time devoted to integration and the “Integration
Speed Ratio”. The integration speed ratio compares the integration speed of each
technique to that of the 10 node quadrature method. It is clear from this table that the 5®
order Runge-Kutta method is over 300 times slower than the 30 node quadrature method
and over 600 times slower than the 10 node quadrature technique.

It is easy to see that this speed difference is a result of the number of integrand
evaluations required to integrate a function. The number of integrand evaluations is
directly related to the number of times the feed segmental distribution function was
called. In the course of one Newton-Raphson step, the distribution function was
evaluated 110 times when using the 10 node quadrature, 315 times when using the 30
node quadrature and 46851 times when using the Runge-Kutta technique. The
extraordinary number of integrand evaluations occurring when the Runge-Kutta
integration method is employed is a result of the adaptive step size used to ensure high
precision. By decreasing the step size used in the integration to achieve the specified

Integration Technique Total Integration % of Total Integration
Time (ms) | Time (ms) Time in Speed Ratio
Integration
10 Node Quadrature 89.651 3.993 45 1.0
30 Node Quadrature 103.205 7.539 7.3 1.9
5" Order Runge-Kutta | 2541.406 | 2457.23 96.7 615

Table 54 - Comparison of Integration Routines.
Computations performed on a 100MHz Intel Pentium Processor
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tolerance, the number of steps required to complete the integration is increased thereby

increasing the computation time.

In practical simulators, the time required to perform the integration using a fifth
order Runge-Kutta technique is unacceptable. As well, the oscillations resulting from the
use of the 10 node quadrature technique cast doubt upon the validity of the results.
Therefore, more study needs to be directed towards finding an effective numerical
integration routine for these problems. One possibility is to increase the number of
quadrature nodes and find a compromise between accuracy and computational time.
Another potential way to improve the accuracy of integration is to use the cubic spline
techniques proposed by Hu and coworkers (1993, 1995). It may also be possible to
reformulate the equations such that the quadrature technique does not result in
oscillations around the high precision solution. The remaining results in this chapter
were found using the fifth order Runge-Kutta technique in order to ensure that they best
represented the model’s true solution to the problem.

5.3.2 Polyethylene/Ethylene at 1750 Bar
As a final indication of this algorithm’s performance, the cloud and shadow

curves of a polyethylene/ethylene system were found. The polyethylene considered had a
number average molecular weight of 56000 and a mass average molecular weight of
99000. It was modeled using a log-normal segmental distribution. The binary interaction
parameter used was -0.0334 as suggested by Koak (1998). The calculated cloud and
shadow point curves at a pressure of 1750 bar show a stable critical point at 163.6 °C and
an upper precipitation threshold temperature of 176.2 °C. These curves are illustrated in

Figure 5-10.



138

——Cloud Point Curve

120 : 4
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Mass Fraction Polyethylene

Figure 5-10 - Cloud and Shadow Point Curves for Polyethylene/ethylene.
k, =-0.0334, P = 1750 bar.

The algorithm had little difficulties along the main branches of the curves, but
care had to be taken near the critical point due to the ill conditioned Jacobian matrix at
that point. The cloud and shadow point curves were found on the left and right hand
sides of the critical point and extrapolated to find the intersection. The feed polymer

segment fraction was used as the specification variable with no troubles.

5.4  Summary
The algorithm presented allows curves of fixed phase fraction to be traced for a

disperse polymer/solvent system. The polymer can be modeled using a continuous
thermodynamic form of the Sanchez-Lacombe equation of state. The Newton-Raphson
formulation for locating one point along these curves consists of only 5 scalar equations
in 5 scalar unknowns. The algorithm traces the curves by solving the set of 5 equations at

each increment of an assigned specification parameter, S.

The algorithm located the cloud and shadow point curves of a polyethylene/n-
hexane system exhibiting LCST type behaviour at 6 bar. It was also able to model the



139
UCST type behaviour of the polyethylene/ethylene system at 1750 bar. Complex phase
behaviour such as three phase points, unstable and stable critical points were easily
identified by the phase boundaries generated. The Sanchez-Lacombe model also
predicted a hypothetical, high temperature liquid-vapour critical point in the
polyethylene/n-hexane system.

It was found that when modeling the polyethylene/n-hexane system, the choice of
the segmental distribution function affected the phase behaviour observed. When a
divergent log-normal distribution was used, a liquid-liquid-liquid three phase point was
present. This three phase point was not observed when polyethylene with the same
polydispersity was modeled with the convergent Shultz-Flory distribution. This
behavioural difference was attributed to the larger number of high molecular weight
molecules present in a system modeled with the log-normal segmental distribution.

A fifth order Runge-Kutta integration routine was compared with 10 node and 30
node Hermitian quadrature integration methods. The Runge-Kutta technique was too
slow to be of practical use, but gave more reliable resuits than the faster quadrature
techniques. The *“oscillation” observed when the quadrature methods were used
decreased as the number of quadrature nodes increased. Further investigation is required

to optimize the choice of integration routine.

The following chapter uses the same principles of continuous thermodynamics to
develop a Newton-Raphson multiphase flash for polymer systems. It can be used to
determine initial guesses for the cloud point calculations or to explore the phase

behaviour around the boundaries determined by the cloud point algorithm.
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6. A CONTINUOUS THERMODYNAMIC MULTIPHASE POLYMER FLASH
PROCEDURE

6.1 Introduction
Knowing the phase boundaries of polymer/solvent systems is important in

establishing feasible operating regions for polymer processes. The boundaries allow two
phase regions to be located and avoided if necessary. However, it is also desirable to be
able to perform polymer flash calculations. Given a defined feed composition, a PT-flash
calculation determines the number of equilibrium phases, their compositions and
quantities at a specified temperature and pressure. These flash calculations can be used
with polymer systems in order to study polymer fractionation processes and solvent-

polymer separation stages.

This chapter combines the principles of continuous thermodynamics developed in
chapter 4 with the principles of a multiphase flash algorithm discussed in chapter 2. An
algorithm to compute multiphase equilibrium in systems containing polymers is
generated. Unlike the fixed phase fraction computation of chapter 5, the feed in the
multiphase flash may contain numerous disperse polymers and numerous discrete
components. Continuous thermodynamics is used to describe the disperse polymers.
Again, the equations are developed for use with the Sanchez-Lacombe equation of state.
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6.2  Algorithm Development

6.2.1 Background
Polymer systems can contain both large polymer molecules and small simple

molecules. This disparity in molecular size can cause numerical difficulties in flash
computations as the systems tend to be quite asymmetrical. Formulations which are
based upon the mole fractions of the components can lead to numerical difficulties
because of the extremely low polymer mole fractions which are often encountered. Using
equations based upon segment fractions or mass fractions helps to avoid this numerical
problem because the segment and mass fractions of the polymer will not be as small as

their corresponding mole fractions.

Ritszch and coworkers published a number of papers describing a two phase
polymer flash which utilizes a functional approach to continuous thermodynamics
(Ritszch and Kehlen, 1985; Ritszch er al., 1986; Ritszch and Kehlen, 1989). They
established the equilibrium relationships for systems containing any number of discrete
components and any number of polymers. The independent variables in their PT-flash
equations were the segment fractions of each component, the number average number of
segments in each phase and the phase fraction. They did not describe how integrals were

calculated or how initial guesses to the solution were obtained.

Chen et al. (1993) developed a two phase flash for polymer/solvent/antisolvent
systems where a disperse polymer is treated as a set of pseudocomponents. Components
were modeled with the statistical associating fluid theory (SAFT). Their flash uses X
values based upon mole fractions to define the dl'stribution of each component between
the phases. They state that the traditional technique of using two nested loops to solve
the phase equilibrium requirements is not suited to polymer systems because the fugacity
coefficients are highly dependent upon composition. As a result, they formulate their
equilibrium requirements such that all the equations defining equilibrium are solved at
the same time using a Newton-Raphson procedure. They divide the Jacobian of their

system into blocks in order to allow the equations to be solved more quickly (Block-
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Algebra technique). No information is given describing how an initial guess was formed

for their iterative process.

Kosinski and Anderko (1996) describe a multiphase polymer flash algorithm.
Their system of equations is based upon a disperse polymer being divided into
pseudocomponents. Beginning with a single phase, they alternately used a modified
version of Michelsen’s tangent plane stability test to determine if a new phase should be
added (Michelsen, 1982) and a successive substitution/free energy minimization method
to determine the equilibrium phase compositions and amounts. The stability test
determined initial guesses for new phases used in the equilibrium calculation. The flash
calculation was a combination of nested loop successive substitution and direct Gibbs
free energy minimization. In the successive substitution formulation, an outer loop
updated fugacity coefficients while an inner loop solved the material balances using a
Newton-Raphson procedure to solve the convex objective function defined by Michelsen
(1994). The X values used in this procedure were based upon the mass fractions of each
component. The reference phase for each component was chosen to be the phase where
the component had the smallest mass fraction based activity coefficient. The number of
equations to be solved was directly proportional to the number of pseudocomponents

chosen to represent a disperse polymer. No example calculations were given in their
paper.

Koak (1997) has also modified a multiphase flash algorithm for use with polymer
systems. He modified the algorithm proposed by Abdel-Ghani er al. (1996) to use the
Sanchez-Lacombe equation of state. Disperse polymers were characterized by
pseudocomponents as determined by the quadrature method outlined by Cotterman and
Prausnitz (1985). The number of equations solved was directly proportional to the
number of quadrature points chosen to represent the system. K values were defined in
terms of component mole fractions. The nested successive substitution algorithm needed

to be heavily damped in order to converge.
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The multiphase algorithm developed herein is also based upon the procedure
described by Abdel-Ghani et al. (1996), but it has been developed using continuous
thermodynamics and uses segment fractions as variables instead of mole fractions. It will
be seen that the number of equations will be related only to the number of polymer
species and discrete components in the system, not to the number of nodes used to

perform the integrations.

6.2.2 Problem Definition
Suppose that a system contains n, discrete components and n, continuous

components such that n, + n. = C. For indexing purposes, the first n, components in the
system will be the discrete components while the remaining C - n, components will have
continuous distributions. Assume also that the system is divided into 7 phases. An
intensive segmental distribution function, W(r), is associated with each continuous
component i in each phase j. The extensive segmental distribution function, w(r), is
defined to be w,(r) = 7, W,(r) = 1,y W;(r) where 7;is the total number of segments of

component / in phase j, #; is the total number of segments in phase j and y; is the

segment fraction of component / in phase j. 7; represents the number average number of

segments in phase j and is defined by equation (4.12). The segmental phase fraction, or
phase fraction, of phase j will be denoted by £.

Given a feed composition defined by segment fractions for all components and an
extensive segmental distribution function for each disperse polymer, the objective of the
multiphase flash algorithm is to find the equilibrium number of phases, the compositions
and quantities of those phases and the distributions of the disperse polymers in each of
the equilibrium phases. The pressure and temperature are assumed to be fixed. Like the
reactive flash algorithms, the multiphase polymer flash algorithm will also be capable of
determining incipient phases (phases with a O phase fraction but a Gibbs free energy
tangent parallel to the equilibrium Gibbs free energy tangent).
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For phase equilibrium to be established, the segmental chemical potential of each
component needs to be the same in each of the phases present. Additionally, the
segmental balances for each of the components must be satisfied, and the segment
fractions in each phase must sum to 1 if the phase fraction for that phase is greater than 0.

The algorithm is developed such that no single phase acts as a reference phase.
Instead, the chemical potentials of each component are weighted according to the phase
fraction of each phase and averaged to form the reference chemical potentials. In the
development which follows, variables that describe the reference phase are denoted by a

carat sign over the variable.

6.2.3 Egquality of Chemical Potentials
The equality of chemical potentials of each component for all phases in which it is

present can be written as

;7,,=,ﬁ, ; 1<i<n,

— -~ . for all j which contain component i 6.1)
B0)=A0) 5 <i< c}

where the carat sign denotes a common reference phase (defined below) and j denotes the
phase index,j = 1, ..., & Using the segmental chemical potentials as expressed in
equations (4.45) and (4.46), these equations become

lny/y—§+r;ln7,.,.=lxw7,.—%+r;lnf,. ; 1<isn,
F. F
L . . (6.2)
lny/,.,.W.,,.(r)-7+rlny,.i(r)=lny?iﬂ’,.(r)—-?—-f-rhlfi(r) s n, <i<C
r.

/

Equations (6.2) can be rewritten more compactly in terms of fugacities if a
discrete and continuous fugacity coefficient can be defined by equations (6.3) and (6.4)
respectively.

Ing, = r,(Iny, -7 )+1 (6.3)

Ing, (r) = {Iny,; (A - Y7 ) +1 (6.4)
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These fugacity coefficients allow the equal chemical potential requirement to be written

as
lnfg.=lnf,. ; 1<i<n,
Inf;(r)=Inf,(r) ;n, <isC ©.5)
where fi = vy (6.6)
and () =w,; W, (r)g;. 6.7

The discrete and continuous reference phase fugacities, f, , have the same definitions as

equations (6.6) and (6.7) respectively.
The chemical potential can be written in terms of these fugacities as

M; =4 +RTInf, ; 1€i<n,
;lij(r)=y,.°(r)+RTlnf,7(r) ; n,<i<C

where 4 is a standard state chemical potential that drops out of the equations in the end.

6.2.4 Stability Criteria
As covered in chapter 2, Michelsen (1982a) defined a stability criterion for

discrete systems with respect to the addition of phase j as

o
D;= Zl:"y(l‘y "‘i)zo
Rewriting this criterion in terms of segment counts and using integration instead of
summation for each continuous component, the stability criterion for a semi-continuous

system using a segmental basis becomes

" R c wy.(r
D=3 (w - )+ !

=1 7 i=ng+l
! ‘¢ r=0

(#0)- 4()dr =0 68)

r
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where n; is the total number of segments of component i in phase ;. n; [r represents the

number of moles of discrete component i, and w,(r)dr /r represents the number of moles

of the continuous component i with segment counts between r and r + dr.

Michelsen shows that D; must be non-negative at all stationary points for the
system to be stable with respect to the addition of phase j. The stationary points can be
found by locating the minimum points of D, subject to the constraint that the sum of the
total moles in the test phase j must be constant:

-]
L]

$h. 5 [0

=1 ¥ i=ng+l

Using the method of Lagrange multipliers to convert the constrained minimization of D,
to an unconstrained minimization problem, gives the Lagrangian function, Q.

y
=i T i=ay+l
g ‘ r=0

LI c T "
o7;.w;.6)=D, - ajx{z"_ + > w"r(r) dr - nm,J : (6.9)

Recognizing that the derivatives of Q with respect to 7; and w; must be O at a

minimum gives the conditions for a stationary point:

-

,llii—,lli=r}(/7,-l-—;:l:-)=9]-RT=Dj ; 1<i<n,

4~ 40 =Ag()-;(0)=6RT=D, ;n <isc’ 10

It should be noted that the value é is independent of the component considered and the
polymer segment count . Geometrically, it represents the closest dimensionless distance
from the tangent plane defined by the reference phase to the Gibbs free energy surface at

the test phase j. § can be used to determine the stability of phase j and is called the
stability variable. If test phase; is in equilibrium with the reference phase, 6, will be 0. If
the test phase is incipient, § will be greater than O and if the reference phase is unstable
with respect to the addition of the test phase, § will be less than 0. It should be noted
when § = 0, equation (6.5) is satisfied.
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Equations (6.10) give the relationship between the reference phase and stationary

point composition as
H; = i +O.RT.

Since the segmental chemical potentials are related to the fugacities by

My = 4 +RThn Si»
the criteria for a phase ; to be a stationary point with respect to the reference phase is

g.;=lnf,;—lnﬁ-6',-=0 ; 1<i<n,

g; (=l f;(r)-Inf,(r)-6,=0 ; n, <i<C’ 6.11)

where the first equation is a scalar expression used for the discrete components and the

second equation is a function of the segment count r and is used for the continuous

components. Once again, 6, is independent of the component considered.

The algorithm proposed converges to the stationary points of the system. Each
stationary point represents a potential phase. The values of the stability variables at these

points indicate which phases are stable and which phases are incipient.

6.2.5 Normalized and Unnormalized Segment Fractions
The normalized segment fractions of each component in each phase can be found

from equations (6.11) by inserting the definitions of f;

v, =v.K; fix;i(aj) ; 1<i S n, . 6.12)
w,;W,(r) = v, W,(r)K; exp(Hj) s ny<i<C
The K values are defined by
K; =¢/¢, ; 1<i<n, (6.13)

K,(r)=4(r)/¢,(r) :n,<isC

and, if phase j is stable at equilibrium, K; will be equal to the ratio of the segment fraction

of component i in phase j to the segment fraction of component i in the reference phase.
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These K;; are analogous to the K values used in chapter 5 where the reference phase was
phase 1.

Since the normalized segment fractions must sum to unity in each phase, for
phase /,

2V = (Z vk + 2 | ﬁiﬁ’.-(r)Ky(r)dr] exp(6;)=1. (6.14)

Noting that §, 20, e 01) is a quantity greater than 1. The exponential factor can be
factored out of the right hand side of this equation and into the segment fractions in the

left hand summation. The result is

C [ ny C o "
Z%, exp(_gj) = any =(Z v.K, + 'Z Il/;,.W,.(r)K.y.(r)er <1, (6.15)

where ‘¥, are the unnormalized segment fractions defined by

p ; 1<i<n,

q’y = '/;iK
T s : (6.16)
¥, = [w.W,(r)K;(r)dr ; n,<i<C

re0
If the reference phase 7, and W,(r) are known along with the K, values,
equations (6.16) fully define the unnormalized segment fractions in each phase. The

normalized segment fractions, y;, can be found from
v, =¥ kzcl‘{’b. 6.17)

Comparing equations (6.14) and (6.15), it can be seen that the sum of the unnormalized

segment fractions for phase j defines the stability variable:

6, =-|n(il{'y). (6.18)
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It is apparent from equation (6.18) that when the unnormalized segment fractions

of phase j sum to unity, § will be zero and phase j is in equilibrium with the reference
phase. When they sum to a value less than unity, 6, will be greater than 0 and phase j will

be an incipient phase.

Thus, the X values and reference phase define the unnormalized segment fractions
which in turn can be used to find the stability variables. The stability variables can then

be used to determine if a phase is in stable equilibrium or whether it is an incipient phase.

The X values also define the segmental distribution functions as

W,,(") = l/7,~W,-(f)Kg,~(") ; ng <i<C.

6.2.6 Segmental Balances and Summation Requirements
The previous discussion has referred to an abstract, undefined reference phase.

The segmental balances can be used to determine the reference phase composition and
segmental distributions in terms of the K values, the feed composition and continuous

component distributions.

Recall that 4 denotes the fraction of total feed segments present in phase j.

Assume that the 7 phases of the system include both stable, present phases and incipient
phases. The stable phases will have phase fractions greater than 0 while the incipient
phases will have phase fractions of 0. Segmental balances on component i yield

Zﬂj'/’y=’//ir s 1<isn,
= (6.19)

Zﬂjwiju,ij(r)= veWe(r) 5 n,<isC

Jje=l
where y, is the segment fraction of component i in the feed and W,{r) is the intensive
segment distribution function for component / in the feed. These equations are analogous

to the segmental balances used in chapter 5 to develop the algorithm for fixed phase

fraction equilibrium calculations.
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The reference phase segment fractions and distributions can be determined from
the material balances by substituting equations (6.12) into equations (6.19) and

recognizing that Sexp(6) = £, since either £, is zero or 6, is zero.

V;i='/’iF/Ei ; 1<i<n,

G )= WY EG) : n, <isC (6:20)

The E; and E(r) variables represent the weighted K value average for discrete and

continuous components respectively:

Ei=ZﬂjKii ; 1<i<n,
- . (6.21)
E(r)= Z,B,Ky(r) ;ny<i<C

J=t
Substituting the definition of the reference phase composition, equations (6.20),
into equation (6.15) yields the following summation requirement on the segment fractions
in each phase:

C
1/=1‘Z'"Pii

i=l

~1-| YK, JE, + i vl K,0) | [=0 5 £>0 (622)
- i=l Vie y/ ! immy+1 Ei(") >0 ; ﬂi=0 ,
r=0
The equality sign holds if phase j is present and the inequality holds if it is incipient. The
independent variables in this equation are the discrete and continuous component X

values and the phase fractions, f. Equation (6.22) is the continuous thermodynamic,
segmental form of equation (2.50).

If the K;; are known and assumed to be constant, equations (6.22) give r equations
for # unknowns, £. This set of equations can be solved using a Newton-Raphson
technique.
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6.2.7 Defining the Reference Phase Fugacity Coefficients
The reference phase segment fractions,y;,, and polymer segment fractions,
wW,(r), are defined using the material balances and can be calculated from equations
(6.20). However, the reference phase fugacity coefficients still need to be defined. To
avoid the bookkeeping required if an existing phase is chosen as the reference phase, the
average chemical potentials of each component over all the existing phases are used to
define the reference phase chemical potentials. Doing so eliminates the problem of

dealing with a reference phase becoming incipient.

The average chemical potential of each component is found by weighting the
chemical potentials in a phase with their corresponding phase fraction. That is, the

reference phase chemical potentials are defined as

[2,.=Z,Bj,u.y. ; 1<i<n,

J=l

ﬁi(r)=iﬂjy,.i(r) s n, <isC.

J=i

After inserting the definitions of a chemical potential, the resulting expressions for the

reference phase fugacities are

mﬁ:iﬂ,mf,,. s 1<i<n,
= (6.23)

lnf}(r)=iﬂjlnf,.j(r) s ng<i<C

j=t
The reference phase fugacity coefficients can then be found from

é=1.1v. s 1<i<n, -
&(r)= ()6 H(r) 5 n <isC (624)

6.2.8 Eliminating the Functional Equations
Consider a fixed temperature and pressure multiphase flash where the feed

composition is fully defined and where the number of phases (both present and incipient)



152
is #. The unknown variables that define the equilibrium system are the » phase fractions,
B, the Cr segment fractions, ¥, and the (C-n,)r disperse component segment
distributions, #(r). The Cx scalar and functional X values defined by equations (6.13)
can be used to calculate the unnormalized segment fractions (equation (6.16)) and thus
can replace the segment fractions as independent variables. The (C - n,)x functional X
values for the polymers can also be used to define the polymer segmental distribution
functions. Therefore, the unknowns that define the system become the x phase fractions,
the n 7 scalar K values and the (C - n))7 K value functions.

The summation requirements give z scalar equations. The remaining equations

come from the stationary point requirements of equations (6.11):
g;=Inf,—-Inf,-0,=0 ;I<i<n, I<j<=x (6.25)
g;(r)=nf,(r)+Imf;(r)-6,=0 ;n, <i<Cils<jsnx. (6.26)

Equations (6.25) and (6.26) can be rewritten using the definitions of the scalar and
functional fugacities:

W" ¢?,' . .
g,].=ln(-'l—;'f-J—ln(Z;J—9i=O 1<i<n,

gy(,)=m(w]-m($f(')]-aj =0 ;n,<is<C

V‘}iﬁ’i(’) ¢v (r)

Recognizing that In(y, /i%,) and Inly,,(r)/é#,(r)) are equal to In K; and In Ky(r)
respectively at equilibrium, these stationary criteria can be written in terms of the K

values:

g; =InK; -Ing, +Ing, -6, =0 ;1<i<nm, 1<j<zm 6.27)

g;(r)=mnK, (r)-ng,(r)+Ing;(r)-6, =0 ;n, <i<Cl<j<m. (6.28)
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Equation (6.28) is a functional equation and could be thought of as a set of scalar
equations, one for each value of r. Computationaily, an infinite number of equations is
difficult to deal with.

However, equation (6.28) can be broken up into two scalar equations in two scalar
unknowns using the same technique as was used in chapter 5. Combining the definition
of the fugacity coefficients given in equations (6.3) and (6.4) with the definition for the
Sanchez-Lacombe segment molar activity coefficient, equations (4.47) and (4.48), it is
seen that both the discrete and functional forms of the fugacity coefficients have the form:

Fb. b, b. _ V. —r.g.\
ln¢y.(r)={l({#]+l}+r{2~y_ —_i...[—f—-l:'(vj—?jbj)ln('—'—’
Vi bir;  Fb;|b; Vi

(6.29)
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where the segment count r is replaced by 7; if component i is discrete. The first term on
the right hand side of this expression is only dependent upon the phase considered, not
the component of interest. The second term is the product of the segment count r and a
factor only dependent upon the phase considered, the component considered and the
mixture properties of the phase. That is, the terms in brackets do not depend upon the
segment count, nor do they depend explicitly upon the form of a segmental distribution
functions. Therefore, the expression for the fugacity coefficient can be compactly written

as
Ing,(r) = 4, +rB; (6.30)
where, once again, r is replaced by r; if component i is discrete.

A; and B; in equation (6.30) are defined by:

Fb.
A = SEAER +1 (6.31)
J vj
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and ' '25 ' ’) (6.32)

The equation of state parameters are the same as defined by equations (4.41) through
(4.44) except that the phase index j has been added. It should be noted that equation
(6.31) for A; is only dependent upon the phase index ; and is the same for all components

in phase j, discrete or continuous.

Assume that the logarithms of the K values are linear functions of the segment

count r:
InK, =InK, +r,InK,;, ;1<i<n,
InK,(r)=InK, +rinK,; ;n,<i<C

Since equation (6.30) defines the logarithm of the fugacity coefficients as linear functions

of r, it can be shown that the reference phase fugacity coefficients will be linear functions

of r:
Ing(r)=A+rB,. (6.33)
where, assuming Zﬂ; =1,
j=t
A=Y p[mk, +4,+6] (6.34)
j=l
and B, =) gk, +B,]. (6.35)

Jj=1

Using these definitions of the fugacity coefficients and the reference phase
fugacity coefficients, equations (6.27) and (6.28) become:
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g, =K, +rinKy ~A-rB.+4,+rB;-6,=0 ;1<i<n, (6.36)

g,(r)=mK, +rnK, —A-rB,+4,+rB, -8, =0 ;n, <i<C.(637

Equations (6.36) and (6.37) can be seem to be linear in terms of the variables 7,
and r respectively. Therefore, it is possible to replace the n 7 scalar equations in (6.36)
and the (C - n)x functional equations in (6.37) by a total of (C + 1)« scalar equations if
terms of like powers of 7, and r in equations (6.36) and (6.37) are isolated and set equal to

zero. The new scalar objective functions are
hy; =InK, +B,~B, =0 ;1<i<C, 1<jsx (6.38)

hy=mK,+A,~4-6,=0 ; 1<j<nx. (6.39)

These two equations effectively eliminate the functional equations for In K(r) and
replace them with manageable scalar equations.

If In K;; and In K,; are known, they can be used to find the segment fractions and
segmental distribution functions within each phase. These values then determine the
number average number of segments in all phases and the equation of state parameters for
each phase. The equation of state is used to find the volumes of each phase which allows
the fugacity coefficients of each component in each phase to be calculated.

6.2.9 Solving the Equations
Equations (6.38) and (6.39) are the objective functions that define the K values of

the system. Equation (6.22) defines the objective functions due to the material balances
and summation constraints. Together, these objective functions are (C + 2)x scalar
equations in (C + 2)r scalar unknowns, In Kj;, In K; and 8. They can be solved using a
variety of techniques including a Newton-Raphson technique or a successive substitution
method.

The Newton-Raphson technique determines successive approximations to the

solution of a non-linear set of equations using a linear approximation to the set of
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equations. Let the residues defined by equations (6.38), (6.39) and (6.22) on any given

iteration can be represented in vector notation by
T
hy = [hmn Bgars--os hgcrs Rgyzs-ees hsc:] ’
T
h, = [h.n shizsens hAx] and

1=[1.0,......]

respectively. As well, define three vectors of independent variables such that

T

InK; = [anam InKpys..os InKpey, In Ky, ..o, anBCx] ’

K, =[InK,,nK,,,...nkK,, | and

T
B=[8.4...8]
The Newton-Raphson procedure for updating the independent variables can then be
written as
Ik (n+1) InK , () & (x)
nK, =/nK, | +|AlnK, (6.40)
p B AB

where the superscript in parenthesis indicates the iteration count. The rightmost term in

this equation can be found by solving the linear set of equations defined by

(n)

(n)
AlnK b,
J™ AWK, | =-{h,
AR 1

where the Jacobian, J*™ has the structure
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(2] (2) (3
) (&) &) e

ax) &) (5.

The analytic derivatives required to determine each element of the Jacobian are given in

Appendix C. Iterations are ceased when the sum of the squares of the residues is less
than (C+2)xx 10", It should be noted that residues, /, are only included in the error
evaluation if phase j is present (5, > 0).

Since Newton-Raphson procedures only converge well with good initial guesses,
a successive substitution technique may be used to provide a larger convergence region.
The successive substitution approach is identical to the approach used in the
stoichiometric reactive flash of chapter 2. An inner loop and an outer loop are used to
solve the objective functions. The inner loop solves the material balances and summation
constraints assuming composition independent K values using a Newton-Raphson

procedure while the outer loop updates the X values.

The inner loop is given the K values and uses them to determine phase fractions,
B. The objective functions and their residues in this inner loop are given by equation
(6.22). The phase fractions are updated using B“"" = B™ + AB™ where AB™ is found
from the solution of J;AB™ = -1. J is defined by

A3

where the derivatives required are the same as those defined in Appendix C. Iterations

continue until the sum of the square of the residuals for present phases is less than 10°.

The outer loop takes the phase fractions found from the inner loop and calculates
the segment fractions and fugacities of each component in each phase. It uses the
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fugacities found to update the In K; and In Kj; values for the next iteration. The updating
formulae are determined from the definitions of the K values in the following manner.

Consider the equal fugacity requirement as given in equation (6.11):

g,}-=lnfﬁ—lnf}—0j ; 1<i<n,

g;()=nf;(r)-Inf,(r)-6, ;n,<is<C (6.11)

A relationship between the residuals, g, the segment fractions and the fugacity
coefficients can be found by inserting the definition of fugacity into these equations.

é Vi :
m(ay_ - —'/;-% _ej—gq=0 M lStSnd

f:_(:)_)_ M - - r)= yon, <Ii<
%) ““(«;..vﬁ.m) Gmal)=0 s mcisC

Let the iteration which defines g; be the n* iteration. Equation (6.12) shows that
the K values on the n* iteration can be defined in terms of the segment fractions and

tangent plane distances:

aniﬁ'") = ln('/’,,/!&, )(") - 0}") ; 1<i< n,
a o2 (x)
K () = n(w, W, ()6, W) " -6 5 m, <is<C

The K values defined by the ratio of fugacity coefficients, equation (6.13), correspond to
the next iteration’s value. Thus, equation (6.11) can be written as

(nel) _ (=) (n) . .
K™ =K} - g ; 1<i<n,

K (r) =K (r)-g'(r) ; n,<i<C’ (6.43)

Michelsen (1982b) showed that convergence of this successive substitution

algorithm requires that the eigenvalues of the variable transformation matrix H should
satisfy |A] <1, where H is defined by
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() (e

o AR  GaKTTO)
() ()

and the successive substitution updating procedure is represented by

InK"*" nK*
=H .
InK " (r) InK " (r)
Michelsen (1982b) also provided an explanation for the poor convergence of successive

substitution near critical points where two eigenvalues of H approach A=1.

Convergence in these cases is monotonic.

More recently, Heidemann and Michelsen (1995) identified a class of equilibrium
problems where successive substitution can show oscillatory divergent behaviour. They

showed that typical polymer-solvent equilibrium calculations can fail in this manner. The

divergence results when one or more eigenvalues of H are less than -1 (4 < -1).

As Heidemann and Michelsen (1995) and Koak (1997) showed, the stability of
the solution method can be improved by damping the updating procedure. If the damping
factor is denoted by m (m < 1), the damped successive substitution procedure is

(nel) _ (n) _ (n) . .
an,.j —an.y- mg; ; 1<i<n,

, 6.44
K" (r) =K (r)-mg(r) ; n,<i<C (€49

If the initial formulation has an eigenvalue represented by 4, equations (6.44) result in an
effective eigenvalue of 4,,=1- m(1 - 1). As Koak (1997) points out, as m approaches 0,
the effective eigenvalues of the variable transformation matrix approach unity and
convergence slows, but there is a possibility of locating an “optimal” 0 <m < 1 providing

the “best” convergence behaviour.

The second equation of (6.44) is a functional equation and is inconvenient to use.

Consider the fact that In Kj; can be represented as
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nK® =K +rnk®

and that g; may be written as
g = (kP + 49 - 49 — g} + (K ® + BY - 50}

By substituting these expressions into equations (6.44) and grouping terms with similar
dependencies on r together, (6.44) can be represented by two sets of scalar equations:

Ky =(1-m)inKy) - m{B{ - B)

- ;i A A o 15isCi 1sj<x.  (6.45)
K™ =(1-m)inKY - m{ 4" - 4 — ’)}

The error in the In Kj;; and In K ;; can be calculated from

(k) _ k (k) &)
gy =Ky + BY — B

Bij

- 1<i<C; 1<j<nr. 6.46
ga:-'=mK;;'+A;"—A‘"-e,<"} (SCirsysr (646

If the inner loop of a successive substitution routine returns a segment fractions and phase
fractions which allow 4,, B; and 6, values to be calculated, equation (6.45) can be used to

determine the K values used for the next iteration.

Convergence is achieved when the sum of the square of the residuals associated

with 4 and B are less than (C + 1)x x tol, where tol is a specified tolerance.

6.2.10 Initiation
A good initial guess is important to the flash routine. The better the initial guess,

the faster the equilibrium solution will be found. The proposed muitiphase polymer flash
algorithm was initiated using a preliminary successive substitution flash for a discretized

system.

The C-n, continuous components were characterized by a set of 7
pseudocomponents. The segment count and molar mass of the 7 pseudocomponents were
found through quadrature techniques described by Cotterman and Prausnitz (1985) and
Koak (1997). The polymer pseudocomponents shared the same Sanchez-Lacombe
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parameters and interaction parameters as the original continuous components. The
segment fractions of the pseudocomponents summed to give the same segment fraction of

their parent continuous component.

The new system contained C,=n,+ 7(C-n,) discrete components and 0
continuous components. Using the equations as developed in the earlier sections of this
chapter, the In K, and In K, values were defined for each component, and the successive
substitution updating procedure was utilized to determine an approximation of the

continuous equilibrium solution. Iterations proceeded until the error was less than

(C,+ D= 10,

The preliminary flash was initiated with the number of phases equal to the number
of discrete components plus one. That is, #=C,+ 1. The compositions of the initial
phases were chosen such that the first phase was a vapour with the feed composition, n,
phases were almost pure solvents (the original discrete components) and the remaining
C, - n, phases were each rich in one of the polymer pseudocomponents. Specifically, the

initial segment fractions and phase fractions were given by:

(wF ; j=1; 1<i<C,

099 +001y| ; 2<j<n,+1;i=j~1
w; =1001y,” s 2Sj<Smg+1; 0% -1

030+0.70y; ; n,+1<j<m;i=j~1

0.70y,” s ng+l<jsmyiej-1

p=lYr ;1<j<nr.

This initial guess worked better than starting with a phase in each corner of composition

space because the polymer components rarely partition into a nearly pure polymer phase.

Once the approximate solution was found, the segment fractions of the
pseudocomponents were combined to give the segment fractions of the original
continuous component in all of the phases. These new segment fractions were used to

initiate the continuous polymer flash.
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Input S-L parameters and
system parameters. (P, T, W, y,5)

v

Discretize the continuous
components using quadrature.

v

@ Use successive substitution to
determine a good initial guess.

Combing discrete components
into their original continuous
components.

<1

Combine duplicate
phases.

¥

@ With fixed In K; and In K,
solve for B; and y; using NR.

Y

‘ @ Use y; to update In K,; and In K,

using damped successive
substitution.

- No err < tol?

Yes

@ Update In K;, In K; and
B; using NR.

Figure 6-1 - General Flowsheet for Multiphase Polymer Flash.
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@ With fixed In K, In K,; and
current B; values, calculate ¥/,
y;and 7.

@ Calculate Jg, 1, 6; and
the error.

v

Eliminate depencies on
incipient phases from Jacobian.

err < 10157 Yes >—

No

Calculate AB; using LU -
decomposition and back InEan?oS
substitution. T 00p

Scale AB; to ensure that at most
one additional phase becomes
incipient and no B, becomes > 1.

Update §,.

- ]

Figure 6-2 - Successive Substitution Inner Loop. Expansion of
Block C from Figure 6-1.
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Figure 6-3 - Full Newton-Raphson Flowsheet. Expansion of Block E from
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6.2.11 Procedure Overview
An flowsheet of the entire procedure is given in Figure 6-1. After inputting the

system definition (P, T, y;- and W,(r)), the disperse polymer components are temporarily
discretized and the discrete system is passed to a successive substitution routine to gain a
rough estimate of the equilibrium (Block A). The structure of this initial flash is the same

as the continuous successive substitution routine described below.

The segment fractions and K values retummed from the discrete successive
substitution block are used to supply an initial guess to the continuous successive
substitution procedure indicated by blocks B,C and D. This portion of the code consists
of two nested loops: an inner loop shown by block C and an outer loop shown by blocks

B, D and the convergence check.

The inner loop uses a Newton-Raphson procedure to solve for phase fractions at
fixed K values. A flowsheet for this inner loop is given in Figure 6-2. Upon entering the
inner loop, block C1 uses equations (6.16), (6.17) and (4.12) to calculate ¥, y;and F;
respectively. 6 is found using equation (6.18). In block C2, the 7 x x Jacobian, Jj, is
found using equation (6.42) and the residuals are determined using equations (6.22). The
inner loop error is defined to be the sum of the square of the residuals corresponding to
phases with non-zero phase fractions. Because incipient phases should not affect the

material balances of the phases that are present, the columns of the Jacobian

corresponding to incipient phases are set to zero save for the diagonal elements.
If the error calculated is less than 10" the inner loop has converged and is exited.

If the error is greater, A is found by solving the linear Newton-Raphson equations using

LU decomposition (see Press er al., 1992). AP is scaled to ensure that, at most, one

additional phase becomes incipient (phase fraction becomes 0) and to ensure that none of
the 8 become greater than 1. The new approximations to  are found using the scaled

AP values and the inner loop starts over at block C1.
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Once the phase fractions and phase compositions are determined in the inner loop,

the Sanchez-Lacombe parameters for each phase are found. The volume for each phase is

found and 4, B; A and ﬁi are calculated from equations (6.31), (6.32), (6.34) and (6.35)

y’
respectively. The error in the outer loop is determined from

err = i{gii +ig§,.j}/(c+l)7z

J=l i=l

where g,; and gg; are defined by equation (6.46). If the error is less than a specified
tolerance (10 is shown to work well in the next section), the full Newton-Raphson flash
routine is entered (block E of Figure 6-1). Otherwise In K; and In K, are updated using
equation (6.44). The outer loop checks compares the K values and molar volumes of any
two phases and combines them into one phase if all of the values are within 1% (block

B). The inner loop is reentered with the new K values.

Once the successive substitution routine is exited, the Newton-Raphson routine is
entered at block E. The flowsheet of this program section is given in Figure 6-3. It is
very similar to the inner loop of the successive substitution section except the K values
are not considered fixed. At the top of each Newton-Raphson loop, the K values and

molar volumes are compared and any phases with less than 1% difference in these

variables are combined (block E1). The values ‘¥';, y; and 7, are calculated in block El

and 6, is determined from equation (6.18) in block E2. The Jacobian, J, in block E2 is a
(C + 2)nx (C + 2)x matrix defined by equation (6.41) and the residuals are found from
equations (6.22), (6.38) and (6.39). Once the Jacobian and residuals have been found, the
Jacobian is modified so that the columns associated with zero phase fractions are zero
except for the diagonal element. This eliminates the dependencies of the material

balances on phases which do not exist.

The error in the loop is calculated from the sum of the square of the residuals:
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X

err = i{hj, +§C:hf,,.,}+ 22| Ac+2)x.

J=l i=l J=l
5,50

If the error is less than 10 the procedure has converged and is exited. Otherwise the
change in the independent variables are calculated using a LU decomposition and back
substitution procedure. The changes to the phase fractions are scaled to ensure that, at
most, one new phase becomes incipient (5, = 0) and that no phase fraction exceeds 1. The
independent variables are then updated and the top of the loop is reentered at block E1.

The converged solution will consist of a set of 7 phases representing the
stationary points of the system with respect to reference phase. The phase stability
variables and phase fractions will determine which of the phases are incipient and which

are stable equilibrium phases.

6.3  Example Calculations
Example flash calculations were done on a polyethylene/n-hexane system similar

to the one studied in chapter 5. The polyethylene had a polydispersivity of 22.125
(M, = 8000, M, =177000) and was modeled with a log-normal distribution. The
distribution parameters are given in Table 4-1 and the Sanchez-Lacombe equation of state
parameters are shown in Table 5-1. All of the calculations were performed at a pressure
of 6 bar and a feed n-hexane segment fraction of 0.9845 (1.7 wt% polyethylene). The
flash calculations were done at temperatures of 120 °C, 127 °C, 129 °C, 133 °C, 137 °C
and 141 °C. This temperature range covered a single liquid phase, a two liquid phase and
a liquid-vapour phase region. All integration was performed using a 30 node Hermitian
quadrature technique.

The damping factor used in the initiation procedure was m = 0.1. The discretized
system converged to an error of 10* in about 70 iterations. At 120, 127 and 129 °C the
discretized system converged to a stable liquid, an incipient liquid and an incipient
vapour phase. At 133 °C and 137 °C, it converged to a stable liquid-liquid solution with
an incipient vapour phase. At 141 °C, it converged to a stable liquid-vapour solution
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with an incipient second liquid phase. These phases were used to initiate the continuous
form of the successive substitution algorithm.

Table 6-1 shows the equilibrium solutions as found from the continuous
successive substitution algorithm with a damping factor of m = 0.5. The tolerance of the
routine was set to 10" so that no Newton-Raphson steps occurred after the successive
substitution algorithm had converged. The solutions consisted of up to three phases and
the table lists the mass fractions of n-hexane and polyethylene in each of the phases. As
well, the phase fraction, f, is listed for phases that are present. The stability variable, 6,
is listed in parenthesis for incipient phases.

It can be seen from the decreasing vapour phase stability variable that as the
temperature is raised from 120 °C to 137 °C, the incipient vapour becomes closer to
being stable. At 141 °C the vapour phase becomes stable with a phase fraction of 0.945.
From 120 to 133 °C, the one stable phase is a liquid phase with the same composition as
the feed. However at 133 °C, both an incipient vapour and an incipient liquid rich in
solvent exist. At 137 °C, the second liquid phase becomes stable and a liquid-liquid

equilibrium solution exists.

T Vapour Liquid Liquid
°C) M M A6 Mg Mg y: )} M M AO
120 1.000 0.000 | (0.171) - - - 0.983 | 0.017 | 1.000
127 1.000 | 0.000 | (0.104) - - - 0.983 | 0.017 | 1.000
129 1.000 | 0.000 | (0.085) - - - 0.983 | 0.017 | 1.000

133 1.000 | 0.000 |(0.048)] 0.997 | 0.003 | (<.01) | 0.983 | 0.017 | 1.000

137 1.000 | 0.000 | (0.013)}{ 0.999 | 0.001 | 0.430 | 0.974 | 0.026 | 0.570

141 1.000 | 0.000 | 0.925 - - - 0.776 | 0.224 | 0.075

Table 6-1 - Polyethylene/n-Hexane Flash Calculations.

P =6 bar

M, Mg - mass fractions n-hexane and polyethylene respectively
Feed: 98.3 wt% n-hexane, 1.7 wt% polyethylene

30 node Hermitian quadrature integration
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These results agree with the cloud and shadow point curve shown in Figure 5-3.

At a feed composition of 1.7 wt% polyethylene, a single liquid phase splits into two
liquids phases around 135.5°C, while a liquid-vapour equilibrium is stable at
temperatures above 139 °C. It should be noted that the liquid-liquid solution found in the
flash corresponds to the left hand branch of the cloud point curve at 137 °C; the branch
running next to the ordinate axis. This left hand branch was more readily found than the
right hand branch because the right hand branch is closer to the critical point and results
in very similar compositions between the two equilibrium phases. Additional work needs
to be done on the initiation process in order to find the solutions which are closer to the
critical point. The three phase compositions in the same reason are also close to the

critical point and were not found with the algorithm as presented.

The effect of varying the damping factor in the successive substitution routine can
be seen by examining the first 5 columns of Table 6-2. This table lists two numbers in
each cell, the first number being the total iterations and the second number being the total

T m=03 | m=05 | m=07 | m=08 | m=05 | m=05]| m=05
(°C) t0l=10" | tol=10" | 10l=10" | tol=10"" | 10l=10* | tol=10° | tol=10""
120 38/0 21/0 NC NC 15/9 19/1 20/1
127 39/0 21/0 30/0 NC 16/10 20/1 211
129 41/0 54/0 NC 136/0 16/10 35/1 38/1
133 53/0 51/0 NC NC 9/3 40/3 48/2
137 2323/0 1390/0 238/0 NC 9/3 18/4 866/5
141 NC 60/0 67/0 49/0 NC 88/9 89/1

Table 6-2 - Iteration Counts for Flash Calculations.
(Total Iterations/Newton-Raphson Iterations)

P=6 bar

"Newton-Raphson converged to only 2 phases. Solvent rich liquid phase not found.

m = successive substitution damping factor
tol = error at which Newton-Raphson iterations are started

NC = no convergence
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number of Newton-Raphson iterations. In the case of the first five columns, the
convergence criteria for the successive substitution procedure was set to ol = 102 and no

Newton-Raphson iterations were performed.

When the damping factor was 0.3 the iteration counts were higher than when the
damping factor was 0.5. An exception to this occurs at 129 °C where the former damping
factor resulted in 10 fewer iterations. At 141 °C, the lower damping factor resulted in no
noticeable change in the residuals after 200 iterations and calculations were ceased. The
generally higher iteration count when a damping factor of 0.3 was used instead of 0.5 is
due to the smaller eigenvalues of the damped system. The majority of iteration counts
occurred as the error was reduced from 10 to 10", particularly in the system at 137 °C
where the iteration count surpassed 1000.

At higher damping factors, the successive substitution algorithm tended to
oscillate. The errors in the outer loop often jumped from low values to extremely high
values. This instability is likely due to the larger eigenvalues of the damped system.
When trials at the larger damping factor converged, they resulted in higher iteration

counts than when a damping factor of 0.5 was used because of the oscillations.

When studying the Newton-Raphson procedure, a damping factor of 0.5 was used
in the leading successive substitution procedure to ensure that it would converge to the
specified tolerance, fol. After the successive substitution algorithm converged, the
Newton-Raphson iterations were run until the error was less than 10'%. As can be seen
from the right three columns of Table 6-2, the iteration count using the Newton-Raphson
procedure was usually significantly lower than when the successive substitution

algorithm alone was used.

In general, the more that the tolerance on the successive substitution algorithm
was relaxed (to/ becomes larger), the less total iterations were needed to converge to a
solution. The exception to this statement can be seen at a temperature of 141 °C where
tol =10™. In this case, the Newton-Raphson iterations moved away from the solution and
resulted in errors on the order 10° within 3 iterations. It is likely that the initial guess
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when tol = 10 was not close enough to the actual solution at this temperature to validate
using a Newton-Raphson procedure. It can also be seen that the total number of iterations
required when the Newton-Raphson procedure was used at 141 °C increased over the
number of iterations when only the successive substitution procedure was used. The
increase is deceptive because it is due to an increased number of successive substitution
iterations, not due to Newton-Raphson iterations. The reason why the successive
substitution procedure required more iterations to converge to a less stringent tolerance

was not found.

The number of Newton-Raphson iterations was usually quite low, ranging from 1
to 10. More steps were required when the Newton-Raphson procedure was initiated
further from the equilibrium solution. This low number of iterations shows the ability of
a Newton-Raphson procedure to quickly converge to a solution where the successive
substitution technique might take much longer. However, it should be noted that the
Newton-Raphson procedure did not converge to the liquid incipient phase at 133 °C, nor
to the stable solvent rich liquid phase at 137 °C. The missing phase may possibly be
located if a line search along the Newton-Raphson step direction ensured that the Gibbs
free energy of the system was minimized by constraining the Newton-Raphson step size.
These options were not explored in this work.

6.4 Summary
A multiphase polymer flash algorithm was developed which used continuous

thermodynamics to model the polymer. The equations were formulated such that either a
successive substitution technique and/or a Newton-Raphson procedure could be used.
Incipient phases could be tracked through the use of a stability variable incorporated into
the segment fraction variables.

Successful multiphase flashes were performed for a disperse polyethylene/n-
hexane system over a range of temperatures. These flashes illustrated liquid-liquid and
liquid-vapour equilibrium, and showed the development of a stable vapour phase from an

incipient one.
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The successive substitution algorithm tended to be more reliable than the
rudimentary Newton-Raphson algorithm used, but it was also much slower. As this was
a preliminary investigation into multiphase polymer flashes, a lot of additional work
needs to be done to optimize the use of both successive substitution and Newton-Raphson
procedures. In particular, initiation procedures need to be developed to ensure that
difficult polymer equilibrium near the critical points can be found using a flash routine.
An additional area of future research is to develop a technique to ensure that a Newton-
Raphson step does not needlessly eliminate a phase from consideration.
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7. CONCLUSIONS AND RECOMMENDATIONS

7.1  Introduction
There were two distinct focuses of this dissertation. Chapters 2 and 3 examined

multiphase reactive flash algorithms while chapters 4 through 6 looked at continuous
thermodynamics in polymer phase equilibrium calculations. The objective was to
provide background on the current tools available in each of these areas and to develop

new tools which could be used.

7.2  Reactive Flash Calculations
Two non-ideal multiphase flash algorithms for chemically reacting systems were

developed in chapter 2 and tested in chapter 3. The first of these used a stoichiometric
approach to deal with the elemental balances and track species conversions. The second
used a non-stoichiometric approach to ensure the conservation of elements. The novelty
of these two techniques lies in their use of an average of the chemical potentials to define
reference phase chemical potentials and their ability to track incipient phases throughout
a calculation. Calculations were initiated with a maximum number of phases which were

then reduced as phases became identical.

It was found that both of the two algorithms worked well to predict phase and
reaction equilibrium in a system where methanol was produced from synthesis gas. A
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SRK equation of state with conventional mixing rules was used to model each of the
phases. The algorithms were tested over a range of pressures which resulted in either two
or three phase solutions. The incipient phases were successfully located and tracked as

pressure was varied and they became stable.

The computational time of these algorithms were similar over all the calculations
compared, but the non-stoichiometric technique was better on average. If the system
contains many more reactions than elements, the non-stoichiometric algorithm would be
preferred due to the smaller number of equations. Conversely, if the number of elements
is high and the number of reactions low, the stoichiometric algorithm would be the

method of choice as it would use less equations.

»

The modified Heidemann-Kokal excess free energy mixing rule developed in
Appendix A was used with the Soave-Redlich-Kwong equation of state and the non-
stoichiometric reactive flash algorithm to calculate the chemical equilibrium in MTBE
synthesis reactions. The excess free energy mixing rule used the Wilson activity
coefficient model to calculate the equation of state a parameter and improve low pressure
liquid-vapour equilibrium predictions. The reactive flash calculations were able to show
the equilibrium conversions of methanol and isobutene to MTBE in the presence of n-
butane over a range of initial feed compositions. The equilibrium results showed that by
using the excess free energy mixing rule, the negative deviations from Raoult’s Law
could be calculated in the methano/MTBE mixtures. The maximum production of
MTBE occurred when the methanol and isobutene were reacted in stoichiometric

proportions.

It was also shown that the non-stoichiometric algorithm could be used with an
association model to adequately predict sulfur vapour pressures and enthalpies of
vapourization. The association model defined reactions between the different allotropes
of pure sulfur, S, to S, and allowed the pure component properties of each allotrope to be
determined from the properties of S,. Additionally, associations between hydrogen
sulfide and sulfur to produce sulfanes were easily included in this model. Including the
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lower molecular weight sulfanes, H,S,, H,S; and H,S,, in solubility calculations,
improved the predictions of sulfur solubility in hydrogen sulfide vapour

7.3  Continuous Thermodynamics and Polymer Phase Equilibria
The common method of dealing with a components like disperse polymers is to

divide the continuous distribution into a set of pseudocomponents using Gaussian
quadrature techniques (Cotterman and Prausnitz, 1985). The number of equations to be
solved in a standard flash or cloud point problem increases as the number of quadrature

points increases.

A set of 5 scalar equations in 5 scalar unknowns was developed to describe
isobaric two phase equilibrium at a fixed phase fraction in a polymer/solvent system. The
equations developed were specific to the Sanchez-Lacombe equation of state. The
algorithm described to solve these equations allowed temperature-mass fraction curves of
constant phase fraction to be traced. If the fixed phase fraction was 0 or 1, the curves

corresponded to the shadow and cloud point curves.

It was found that the choice of the distribution function chosen to represent the
polymer was an important factor in the predicted phase behaviour. When polydisperse
polyethylene was modeled with a log-normal distribution, the Sanchez-Lacombe equation
of state accurately predicted the lower precipitation threshold temperature of a
polyethylene/n-hexane system when the interaction parameter was -0.1297. The
predicted cloud and shadow point curves also showed an unstable critical point, a liquid-
liquid-liquid point, a liquid-liquid-vapour point and a hypothetical high temperature
liquid-vapour critical point. When a polymer with the same M, and M,, was modeled
with a Shultz-Flory distribution the liquid-liquid-liquid three phase point was not seen
and the lower precipitation threshold temperature was 2.8 °C higher.

Using the same principles as were used to develop the reactive flash algorithm, a
multiphase polymer flash routine was developed for use with continuous
thermodynamics. The algorithm is different from other polymer/solvent equilibrium
methods because of the average chemical potential used as a reference phase chemical
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potential and its ability to track incipient phases. The equilibrium equations were
developed for the Sanchez-Lacombe equation of state, and both a successive substitution
and a full Newton-Raphson procedure were developed to solve these equations. In a
limited study of the two solation techniques in polyethylene/n-hexane flash calculations,
it was found that the successive substitution method was more reliable than the Newton-
Raphson technique. If the Newton-Raphson technique was not initiated with values close
to the final solution, it could diverge. When the Newton-Raphson solution step was used,
equilibrium phases were incorrectly eliminated from the final solution.

7.4  Future Work
The reactive flash algorithms developed in chapter 2 need to be optimized. It is

possible for both of the techniques to be rewritten using a complete Newton-Raphson
solution procedure instead of a nested successive substitution procedure. The procedures
can also be modified to include solid precipitation. A multiphase reactive flash algorithm
with solids capability could be useful for reactions which produce solids such as
asphaltene precipitation and liquid phase coking.

The primary problem with polymer phase equilibrium calculations is in
generating a good initial guess from which to start the solution routines. This was seen in
both the cloud and shadow point curve calculations and in the multiphase polymer flash
algorithm. An important area of future research in polymer thermodynamics is to find
generic algorithms capable of determining good initial guesses for flash routines.

Integration techniques used in the continuous thermodynamic procedures need to
be examined and optimized for accuracy and speed.

The means by which the specification parameter in the cloud and shadow point
curve algorithm is incremented needs to be studied. A better extrapolation could be
utilized to improve the initial guess between consecutive cloud points. More importantly,
an automated procedure needs to be developed to switch between optimum choices in the
specification variable as the curves are being generated. The proposal given by

Michelsen (1980) would be a good starting point to approach this problem.
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Further work on the multiphase polymer flash algorithm needs to be done in order

to determine the optimum way to utilize a Newton-Raphson step. Techniques such as

trust region methods or line searches along the Newton-Raphson step vector may help
improve the reliability and speed.
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APPENDIX A - DEVELOPMENT OF THE G* MIXING RULE

A.1  Introduction
A four parameter equation of state allows a greater flexibility in matching pure

component data than a two parameter equation of state. Trebble and Bishnoi (1987) have
proposed a four parameter, cubic equation of state, the TB equation of state shown in

equation (A.1), which matches pure component data well.

_ RT a
Tv=b 2 +(b+c)v—(bc+d2)

P (A.1)

An advantage of this equation of state is that it easily reduces to many of the familiar two
or three parameter equations of state. For example, if c=-b and d=b, the van der Waals
equation of state results; if c=b and d=0, you get the Peng-Robinson equation of state; if
c¢=d=0, it reduces to the Redlich-Kwong equation of state, and if =0, the TB equation of
state yields the three parameter Patel-Teja equation of state (1982).

When applying an equation of state to mixtures, each of the parameters needs to
be determined from the pure component parameters and mole fractions. Work has been
done to establish various different types of mixing rules for each parameter. One

technique which shows a great potential for giving good mixture behaviour is to use the a
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parameter to match excess Gibbs energy as given by an activity coefficient model, such

as the NRTL model, at the system temperature.

There have been many papers describing excess free energy mixing rules for two
parameter, cubic equations of state, and a review of the literature has been compiled by
Heidemann (1995). Huron and Vidal (1979) matched the excess free energies from an
activity coefficient model and the modified Redlich-Kwong equation of state at infinite
pressure. Since excess free energy models are correlated at low to medium pressures and
the Huron-Vidal type mixing rule needs accurate activity coefficients at infinite pressure,
Soave (1986) presented a method of estimating infinite pressure activity coefficients for
use with these mixing rules. Mollerup (1986) first outlined the alternative route of using
a low (or zero) pressure reference state to combine an activity coefficient model with the
van der Waals and Redlich-Kwong equations of state. Heidemann and Kokal (1990)
presented a zero pressure, excess free energy mixing rule for the van der Waals, Redlich-
Kwong and Peng-Robinson equations of state which involved solving a transcendental
equation for the mixture reference state. Their method also required an extrapolation for
the pure component reference states if the component’s reduced temperature was above
about 0.85. Other zero pressure excess free energy mixing rules have been proposed by
numerous authors such as, but not limited to, Dahl and Michelsen (1990), Michelsen
(1990a, 1990b), and Kolar and Kojima (1993). All of the zero pressure excess free
energy mixing rules have matched experimental data well at the low pressures where the
activity models used were correlated, but their success at higher pressures has varied.
Michelsen and Heidemann (1995) have compiled a detailed criticism of the performance
of the different excess free energy mixing rules. There has been no published work for
similar excess free energy mixing rules incorporated into four parameter, cubic equations

of state.

In this appendix, the Heidemann-Kokal mixing rules are extended to the four
parameter TB equation of state. As with two parameter equations of state, the mixing
rule is “exact” at lower temperatures but must use an extrapolation at higher

temperatures. The extrapolation proposed by Heidemann and Kokal (1990) results in a
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transcendental equation with no solution at high temperatures or in systems with large
positive excess free energies. Therefore, a new high temperature extrapolation is
proposed which will alleviate this computational problem. As well, the form of the TB
EOS of state dictates that this development of the Heidemann-Kokal mixing rule for the
TB EOS given will also yield the equations required for all the other equations of state
which are a subset of the TB equation of state.

A.2  Theory

A.2.1 Standard States
A zero pressure liquid volume root must be found for each pure component.

These volume roots represent the standard states of the pure components and can only be
calculated from equation (A.1) when:

a ¢ ’ a ¢ (4.
(b,.RT—E_IJ Z{b,-RT_b—,._(_bTJ ] (A.2)

A dimensionless zero pressure standard state density for each component is

defined as & =54/, ¢& can be found from (A.1) at zero pressure as long as (A.2) is
satisfied:

(A3)

i
I
[

where a; = a/bRT.

In terms of the compressibility, A, = Pv,/RT , the zero pressure condition for pure

components is:
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h.-(é—)=1_1 - % 7 =0 (A4)
1+é+é,§—§-’§—é{b—f)

i

In the case where the zero pressure liquid root does not exist for a pure component, a root

can be extrapolated in the same manner by which Heidemann and Kokal (1990)

extrapolated one. From equation (A.2), the minimum value of @; where a liquid root

2
=3+ 49 2-(5) (A.5)
a" b', bi -

For computational purposes extrapolations will be done when a pure component « value

may be found is

falls below the limiting « value, @;;,, which will be taken as A times the minimum as

determined from equation (A.S).

c FAN
Q; lim = 4 3+E':-+2 2—(3%) (A.6)

Heidemann and Kokal (1990) suggested 1.15 as an appropriate value for A4, and this same

value is again recommended in this work.

For «; values less than this limiting value, a standard state extrapolation is
accomplished by assuming that at ¢; < a;,,,, the dimensionless standard state densities of

the pure component can be approximated by
E(a) =1+ fa’ + ya’. (A.7)

The values of § and y can be found by matching the values of & and (3&/dx) as
determined from equations (A.3) and (A.7) at ;= a;,,. Thatis,

B= [3(!" 1~ 1) ~ V2% jim ]/ &/ jim (A-8)

2=-[2& ~1)-v20,jm /@i (A9)
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where y, = &(a,,..) as evaluated by equation (A.3),

pe l+.9(a)'”2(a-§— ) 2(a-§-1+.9(a)"2)
v, =(_) - — - - (A.10)
)|, o Y- 2(") ( c (d)zJ
t=“L.um — — — - 2 —_— — — —_
“la=a; lim
and
2 2
C 0?0 6E (5) _ 4(1)
Ha)=«a Zab+6b+ p 6a + 5 +1. (A.11)

The form of equation (A.7) ensures that & will reflect the Huron-Vidal assumption that v,
= b, at infinite pressure, and it should be noted that by using an extrapolated standard
state, h; as defined by equation (A.4) does not equal zero.

Having determined the standard state ¢; and & values, the standard state of the

mixture can be determined.

A.2.2 Development of the Standard State Transcendental Equations
The excess Helmholtz free energy for an equation of state can be shown to be

AME c v
=T =1, —gx,.{l,. +I.n(;)} (A.12)

where

(P 1
= !(R_T'C)d" (A.13)

and the subscript m refers to the mixture properties and the subscript { refers to the pure

component properties.

For the TB equation of state, if
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o0=1+6— +( ) A(d)z (A.14)

then, in the standard states, / is of the form

I= ln(llﬁ) -aég (A.15)
where if 6> 0:
e 1 - 2+[l+§+\/3]§ A6
V& 2+[1+§—~/§]§ .
aﬁdifé’<0:
L 2+—1+§]§ .

Assuming that the excess Helmholtz free energy and the excess Gibbs free energy
are equal in the zero pressure standard state, by combining equations (A.12), (A.13) and
(A.15)

GE E 1 C b c 1-&
ART =A.:_T=-h( ég) a§g+2x(a.§g,) Ex‘m(b-iJ+§x‘m(—f_) (A-18)

where equations (A.16) and (A.17) define &g and £g; when either the mixture parameters

or the pure component parameters, respectively, are used.

G gh.-(é) (A.19)

Heidemann and Kokal (1990) used equation (A.19) to force the mixture standard
state Helmholtz and Gibbs free energies to be identical and used equations (A.18) and
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(A.19) as two equations with two unknowns, a and & Since both equations are linear

with respect to a, @ could be eliminated between them to give:

ro-feseii-e-ol) Hitg o)
_A(T;E +ix{a§g. ln(lj)ﬂn(%)} (A.20)

i=1

Given an expression for the excess free energy of a mixture and provided a solution

exists, this transcendental equation could be solved for & using a Newton-Rhapson
scheme. The solution exists if the right hand side of equation (A.20) is greater than the
minimum possible value of the left hand side, f,,,. f.. is dependent upon x,, A, b, c and d,
and Heidemann and Kokal (1990) give approximate expressions for the f, values of
some two parameter equations of state. The right hand side is largely dependent upon the
non-ideality of the mixture. In fact, for systems with large positive deviations from
Raoult’s law, no solution to equation (A.20) may exist, especially at higher temperatures
where lower ¢; values and lower & values can significantly decrease the value of the

equation’s right hand side.

To eliminate the hazard of potentially having no solution for the mixture £, an
alternative method for determining & and & has been developed. An extrapolation for the
mixture & value is used which mirrors the extrapolation for the pure component standard

state &; values and which simuitaneously solves for the mixture « value.

The two equations which can be used to determine the mixture & and a parameters

when a > ¢, are

fila.d)= a¢g+m(lf) AGE-ix{a:g. m(‘f)ﬂn(%)}ﬂm.zn

and
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fz(a,5)=1+5(1+§)—5{%-(%)2)-@(1—5):0. (A22)

While if a is less than o, when q,, is defined as
c d\?
et (@) |
Xy {3+b+22 =) | (A.23)

file, &) =&-(1+pa? + ga*) =0. (A24)

then

In equation (A.23), 4 is a scaling factor used to move the limiting & value away from the
critical value, and S and y are as defined by equations (A.8) through (A.11).

Compactly, the new set of two equations in two unknowns, £ and «, can be

written

- £ c _E )
fl(a,f)=aég+ln(l 55)+A5T -in{a,-ég.- +ln(1—§_—§)+ln(i—')}=om.2s)

fyla.d) = 1+5(1+§)'52(§'(%)2)'“’5(1' )=0 ; aza, (A.26)

5—(1+ﬂa2+za3)=0 » @<y

To solve equations (A.25) and (A.26), a Newton-Rhapson procedure can be used
with initial guesses for £ and a given by equations (A.27) and (A.28).

C
a® =3 xq, (A.27)
<

C
V=Y xe (A.28)
i=l

The updating procedure can be summarized as follows:
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a (k+1) P (k) Aa (k)
(5) = (5) *(45) (A-29)

where

(é’%a) (@'%C) (k)(da)(k)= fx)w.
(é%a ) (03%5) 4z /2

The Jacobian matrix can be calculated at each iteration along with the residues, £; and £,

(A.30)

and a simple linear solver will give the step change in £ and a. The required derivatives
are given in equations (A.31) through (A.34).

(%) =48 (A.31)

(%J B 1+§(1+§) _c; (;*(%)ZJ ';(11_;) (A32)

(%) B {— (zéf(i_ ;,)(az) Z i Z:: (A.33)

(%) e 25& +(§) 2] +a(2£-1) ; azay, w3
1 . a<ay,

A.2.3 Fugacity Coefficients
The partial fugacity coefficients can be expressed as

v

o P RT
RTlng, = | (&—) -~ |4V -RTnz (A.35)
191V

which, for the TBS equation of state, can be written in the form:
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= RT )" 6 \RT )78y 25N ) @y |*
L L

@2 cb—ch (vb+£+2J£[ﬁJ (A.36)
v ebra)—(cb+d?)| " T T 27 2 )6\ an

where J is given by equation (A.14), g(b/) is analogous to g& given in equations (A.16)
and (A.17), and

&) 1 c (5)2 (1)2) c . d
n(a’)_b{-b,(sbu 5) *85) |+6e+20, 084, 50 (A37)

J

The terms c; and 4, in the above equations are derivatives of the mixture parameters and

will be defined in the next section.

In order to determine the fugacity coefficients, the derivatives (cha/chy) are
needed. Equations (A.25) and (A.26) can be rewritten as

- n £ C =& X
fl(na,f,n)=na§g+nln(1§‘5)+ ‘:; —Zn,-{a,.;g,.ﬂn(%)-ﬁln(%’)} (A.38)

i=l

c c (d)?
n+n§(1+—)—n 2(——(—) ]—na 1- y azaq
fz(na,é’n) - b é b b é( :) lim (A.39)
é-—(l+ﬂ(na)2/n2+z(na)3/n3) ; @<y
where n denotes the vector {n,, n,, ..., n.}. To determine the required partial derivatives,

the total derivatives of equations (A.38) and (A.39) are used.

(£21%)-3E)-{2)

J

(2)%2)-(2)&)-{2)

(A.40)
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When a and & have been found, equation set (A.40) defines a linear set of

equations in two unknowns, (cha/dhy) and (35/ch), which are easily determined with a
linear equation solver. The derivatives which make up the coefficients of this linear

system are given in equations (A.41) through (A.46).

where

(%=l+f(l+s) EENERE

b b \b

(8)-d5) 5 oo

J J
LA AR
m(é,]_ b+b-1

(ﬁ)={ ge-1) D a2y

cha -(2ﬁa+3za2)/n » A < Gy

_ n[1+§_25(§+(%)2J+a(25—1)J D a2y,
[(1 g)(c —cb—-) -2¢— ( %’)]Jf
[%)=< 1+5(1+5)-52(3+(5)2J

(2] {2 e,

I J

;X2 Qi

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)



The derivatives of fand y contained in equation (A.46) are given below.

5(2+§+ 5%)

&8

b

i ()
o]

a1 )-e(+(2))]

P

(Apn'))_1(a8)_,8
\ & ) n\&y) Tn
(0'(2' ns)\ -L(EI_\_}I_
( &, ) n\ay) Tat
—re aalim _ﬂ_
‘%m(a—h;)‘#’z( on, J}/alfm"za“m
o
.)—alim ;L;J‘V’z( a::mJ}/ I?m-3;f:
Acd)) 1 ( b,)
a, ) m\“ "
Ad.b)’ d ( b,)
{ an; =2nb2 d"-d?
. 2 2
=l{(a(w))_[a(«u») ) / 2-(9) }
) o, b
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(A.47)

(A.48)

(A.49)

(A.50)

(A.51)

(A.52)

(A.53)

(A.54)
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s=a?-2a5+6%+(S) —eara(®) 41 as9)
SRR R CAECTRC
)
EHEHENET

P i as

1"‘(‘1—2—) J8 a—§—1+\/:9_

v = " - (A.60)
( aahm ) [ o'(c b)) (_fi_'_g_J Fod J_
v, ; h; T3 ;) a-p-l+ '9(55)
[ &lj) = » - Py ey (A.61)
A ERR T .t
( é’wz] Jo |\ o, o 298 on,
oh; 2¢ (A62)

1+(a_§-3)ﬁ &) (o) a-S-1+F( 4
257 (az-)'(ar-)/“ 263 (o‘hj)

J J

These derivatives were found to be correct through numerical differentiation.
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A.2.4 Mixing Rules for b, c and d
It is important to recall that in the above development, a linear mixing rule for 5

was assumed.

(A.63)

The mixing rules for ¢ and d may be defined in any manner, but it must be noted
that when referring to a mixture in the development of equations (A.36) and (A.37)

ohe
c,=—— (A.64)
J a'hj
ohd
and d; = ;,)T (A.65)
For example, in the case where
c
c=2.xc, (A.66)
i=l
ohe
then ;‘h—] =c; (A.67)
cc
and where d=22 x;x,dd;(1- Ky (A.68)
i=l j=1
ond 3 A.69
then I:sz,.d,.dj(l-Kdﬁ)—d (A.69)

J i=l

All of the above equations reduce to the same expressions as found by Heidemann
and Kokal (1990) when values of ¢ and d are chosen such that the TB EOS reduces to a

two parameter equation of state.
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A.3  Example Calculations
Two types of example calculations were performed to illustrate the Heidemann-

Kokal mixing rules: bubble point curves were generated for methanol-benzene, acetone-
water, isopropanol-water and ethanol-water systems, and the three phase line of a
benzene-water system was found. For all the calculations save the bubble point curve
generation of the ethanol-water system, the Peng-Robinson equation of state was used.
For the ethanol-water system, the Trebble-Bishnoi equation of state with modifications
described later was utilized with a linear mixing rule for ¢ and a quadratic mixing rule for
d. The pure component TBMC a parameter temperature dependence coefficients are
summarized in Table A-1 while the pure component critical properties used from the
DIPPR data compilation (1984) are summarized in Table A-2. In all the systems studied,
the NRTL activity coefficient model was incorporated into the mixing rule.

In the bubble point calculations, a simple temperature dependence was used
within the NRTL model which had the form:

T
o ref
=1 = (A.70)

where 7} is the energy parameter as calculated from the NRTL parameter correlations and
ij

T, is the temperature at which the parameters were correlated. This temperature
dependence ensures that the excess free energy of the system goes to zero at infinite

temperatures. The NRTL parameters used for each system are summarized in Table A-3.

Component c (N Cs k
Acetone 0.322455 | 1.037966 | -1.433200 | 0.322455

Benzene 0.523618 | -0.035834 | 1.004951 | 0.523618
Ethanol 0.668444 | 1.761781 | -3.200180 | 0.668444
Methanol | 0.573466 | 1.129855 | -2.101343 | 0.573466

Water 0.402648 | 0.820637 | -1.274822 | 0.402648

2-Propanol | 0.643317 | 2.631510 | -4.655585 | 0.643317

Table A-1 - TBMC EOS a Parameter Temperature
Dependence Coefficients.
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—— New Extrapolation
6000 - - - - Old Extrapolation
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Figure A-1 - Methanol-Benzene VLE Using the Peng-Robinson EOS and
Heidemann-Kokal Mixing Rule With the NRTL Activity Model.

A.3.1 VLE Predictions of Typical Binary Systems
Figure A-1 shows the bubble point curve generated for a methanol-benzene

system using the Peng-Robinson equation of state and both the previous version of the
Heidemann-Kokal mixing rule, and the version presented in this paper. The results show
that both versions accurately predict the experimental data by Butcher and Medani (1968)
at low temperatures, but at 220°C, the previous method of extrapolation fails to produce a
complete result due to lack of a solution of the transcendental. The new extrapolation not
only completes the bubble point curve calculations, but shows reasonable agreement with
the high temperature experimental data. Similarly, the bubble point curve of the acetone-
water system is illustrated in Figure A-2, and it shows that both the new and old
extrapolation methods give equally good fits to the data of Griswold and Wong (1952).
A further example of the performance of the Heidemann-Kokal mixing rule with the new
extrapolation is given in Figure A-3 where the high pressure bubble point curves of an
isopropanol-water system are plotted along with the data of Barr-David and Dodge
(1959). The predicted bubble point pressures are high at greater temperatures, but it can
be seen that the mixing rule is capable of producing acceptable phase equilibrium
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—— New Extrapolation
-~- Oid Extrapolation

P (kPa)

200°C

2000
1000 :g":_‘_' — -] Q o 100°C :
0 £ 2—558——o- A0 o Dt e O e AT E DU e XTI e O |
0.0 0.2 04 0.6 08 1.0

Mole Fraction Acetone

Figure A-2 - Acetone-Water VLE With the Peng-Robinson EOS and Heidemann-
Kokal Mixing Rule With the NRTL Activity Model.
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Figure A-3 - Isopropanol-Water VLE Using the Peng-Robinson EOS and
Heidemann-Kokal Mixing Rule With the NRTL Activity Model.
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Figure A4 - Ethanol-Water VLE Using the Trebble-Bishnoi EOS and
Heidemann-Kokal Mixing Rule With the NRTL Activity Model.

calculations well past the critical temperature of the isopropanol. By modifying the
temperature dependence of the NRTL parameters, it would be possible to arrive at a

better fit to the experimental data.

In order to illustrate the added degree of freedom given by the K, interaction
parameter in the Trebble-Bishnoi equation of state, the bubble point curves for an
ethanol-water system were generated with K, values of -0.2, 0.0 and +0.2. This plot is
shown in Figure A-4. In order to generate this curve, the pure component equation of
state parameters were calculated from pure component critical properties as outlined by
the generalized approach Trebble and Bishnoi (1987). In generating the following figure,
the temperature dependence is removed from the co-volume parameter as suggested by
Salim and Trebble (1991), and the temperature dependence of the a parameter has a
Mathias-Copeman form below the critical temperature (Satyro and Trebble, 1996) and the
form suggested by Trebble and Bishnoi (1987) above the critical temperature. If a. is the
value of the a parameter at the critical point, then the temperature dependence of a can be

summarized as:
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a=ac(l+¢r+c,r? +c31.'3)2 for T, <1 (A.71)
a=acexp(k[1-T,) for T, > 1 (A.72)

where
r=1-T . (A.73)

The coefficients c,, ¢, c;, and k are chosen such that the first temperature
derivatives of a as determined from equations (A.71) and (A.72) are equal at the critical
temperature. The pure component d parameter is correlated in conjunction with the
Mathias-Copeman parameters in order to best fit vapour pressure data. The TB equation
of state using these modifications will be referred to as the TBMC equation of state.

The bubble point curves in Figure A-4 show that in this case, the general shape of
the bubble point curves was not affected by changing K, but at the higher temperatures,
the lower the interaction parameter, the lower the bubble point pressure. The effect
which the interaction parameter had on the location of the curve increased with increasing
temperature. In fact, varying K, seemed to have virtually no effect at 200°C, while there
was quite a noticeable change at 275°C. This behaviour could be advantageous if fine
tuning of high temperature bubble point pressures was required.

A.3.2 Benzene-Water Three Phase Line Calculations
The example calculations showed that the Heidemann-Kokal mixing rule could be

used to generate phase diagrams at high temperatures: temperatures away from where the
activity coefficient model was correlated. One instance where activity coefficient models
have been more useful than equation of state models alone is in the calculation of phase
behaviour in hydrocarbon-water systems. In particular, it has been difficult for equations
of state to accurately predict the solubility of hydrocarbons in an aqueous solution.
Tsonopoulos and Wilson (1983) have approached the problem of extremely low
hydrocarbon solubility in an aqueous phase by determining empirical correlations for

these solubilities. Using an equation of state with an excess free energy mixing rule
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Figure A-5 - Benzene-Water Three Phase Line Compositions. Data from
Tsonopoulos and Wilson (1983). Peng-Robinson Equation of State
with NRTL Activity Model.

which can reproduce the mutual solubilities of hydrocarbon and water should give the
equation of state the ability to reproduce this difficult phase behaviour.

Using the benzene-water three phase data published by Tsonopoulos and Wilson
(1983), the NRTL energy parameters 7,, and 7,, were determined by adjusting the energy
parameters as they were used within the Heidemann-Kokal mixing rule to match the
fugacities of the liquid phases of the experimental three phase data using a secant method
solution algorithm. A non-linear regression of the 7; values was then done to result in the

following two expressions for the NRTL energy parameters:

-5671 4303x10° 6513x10°

N 2 T A.74
9178 9567x10° 1868 x10° (A.74)
Tzl = T + T2 - TJ

These two correlations were used in the NRTL model incorporated into a Peng-
Robinson equation of state to generate the three phase compositions shown in Figure A-5.
Excluding the experimental critical endpoint of the three phase line, the mean error in the



212
predicted three phase pressures was 3.8%, the mean error of the water mole fraction in the
benzene phase was 0.5% and the mean error of the benzene in the water phase was 5.0%.
The predicted three phase critical endpoint where the vapour and hydrocarbon phase
become critical was at 525K and 7.8 MPa. This is substantially different from the
experimental 541K and 9.4 MPa, but it is believed that a better correlation of the NRTL
energy parameters would improve this result. Otherwise, the performance of the equation
of state with the Heidemann-Kokal mixing rule is more than adequate in predicting this
difficult phase behaviour.

A4  Summary
The Heidemann-Kokal excess free energy mixing rule was extended to include the

four parameter TB equation of state. A new method of extrapolating the pure component
and mixture standard states to high temperatures was developed. The new extrapolation
ensures that a solution to the mixture standard state transcendental equations exist.

The mixing rule was tested on a number of binary systems and it was able to
match the vapour-liquid equilibrium data well at low temperatures. At temperatures
above where the activity coefficient models were correlated, the mixing rule was still able
to match experimental data adequately. The excess free energy mixing rule was also
shown to be effective in calculating the simultaneous solubility of water in benzene and
the solubility of benzene and water, a calculation which an equation of state with

conventional mixing rules cannot do well.
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APPENDIX B - DERIVATIVES FOR THE CLOUD AND SHADOW POINT
CURVE ALGORITHM

B.1  The Objective Functions
The objective functions for determining a cloud and shadow point of a polymer

solvent system using the Sanchez-Lacombe equation of state were

g&=4,-4,=0 (B.1)
g,=B,+B/ -B; =0 (B.2)
1 1 _—
g =K, -r, ;—T“F_l"ln(}'a/74) =0 (B.3)
_ F
P Ul 79 U Y IR B LA [ d 1) | R B4
1+¢4lK, -1] 1+¢[K (r)- 1]
g=a-5=0 (B.5)

where

7Bt Fip
Af=|'“( vl )—In( v ’ (B.6)
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and a; represents the chosen iteration variable, the #* component of the vector of

independent variables, & = {In K, 4y, By, n T, Iny} }.

B.2  The Jacobian Derivatives
The derivatives used in the Jacobian of the Newton-Raphson procedure are listed

below.

555 o
(i)z(?%(ﬁ’)_(gj ®B.9)
(3)-o{( () ) ()

andif ne{K,,T.vl},

(-5} )30
ﬁlnq F” a” b I f” vll @7 (B.l l)
_[L(i') +;( ')_J_(éi)]}
'—,I 5’7 bl &7 Vl a”

@) -AFHE)




()-8 {5 () () (o

The remaining derivatives required for the Jacobian are

(2) =_%FI( HACTN

1+ K, (r)-1])°

(&) e J ( (K 0)

By ) 1+ d[K,(r)-1])°
&, _ (1_'//:)
(aanA) =K (1+¢[KA -1 )2

&, | _ F QWBF(’)[I'KB(’)] 1-K,
(ﬂnw:)_%U 1+ 4K, (r)-1] dr_““’["a“:]

r=0

(@5) 0 ; idoes not correspond to the iteration variable
da;) |1 ; icorresponds to the iteration variable

B.3  Segment Fraction Derivatives
vi =¥ /(¥ +¥) =¥ /nt

()2

where 77 € {AK,BK,KA,T,W:} .
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(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)
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EANEARCANEANEANEA
\an)‘:(an):\&xJ: ﬁsz d<4 - a(.( =0 ®-22)
(a{;j\ —(aPAH\ -(a{_,;\ _(aysll\ _
ar )=Uar )= )= ) =0 B.23)
o"*’j) (¥1)'6 (ai':’) . _(2i)e
=— , =¥, - = .24
(d(,q (1-‘//:) d<d (1_'/’3 )KA ®29
o’ 1 M/ K,
(éwi) 1+¢K, -1 (aw:)_ 1+4k, -1] ®-29)
f W, (”)K (r)¢ (ay;') F?W,"(,-)K,(r)[l—(ﬁ]d 26
u T Vs 2 -26)
J1+¢[K (r)- 1] a, )Y J (1+ 4k, () -1)) r @
()t [ ()[R,
By (1+¢[1< (r) )y \e )T J (1+ 4k, () -1))’
(a&") J wE () (ap;’) j 7 KG) ©28)
owf 1+ @K, (r) - 1] owk 1+ K, (r)- 1] '
B.4  Number Average Number of Segments Derivatives
) ()« oyl L(22) A
(dflx) (r ) ( A, (r ) [rA A, njy J ,(1+¢[KB(,-)_1])2 g
r=0 (B.29)
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(B.34)
()% }f :r;,z'w}
(;_;)=_(Fl)z(%)=_(F,)z %(Wl) s r(l+¢TK(()) 1])
el ]
(575 ) -2 r(lT¢EK)K( ; )1])
(B.36)
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B.5  Derivatives of the Sanchez Lacombe Activity Coefficients.
Let ne {AK,BK,KA,T,W:} , then for each phase,

(532423

B35)
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B.7  Mixture Parameter Derivatives for the Sanchez-Lacombe Equation of State

(%J _ 272{[("4544"4.4 +WU8ABV48(%) +[WA843V45 +W3533V33(%)}

a(F)y o

Z(3)
(2) oo (%) e (22) @
CIRCORES
(%):2{[!//AVM F WYV ep ZAJ+[WAV“+WBVBB](%J} (B.44)
(ij v, [%) . v,,(a;”;) (B.45)
)-8

where 77 € {AK,BK,KA,T,V/:}.
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APPENDIX C - DERIVATIVES FOR THE NEWTON-RAPHSON FLASH
ALGORITHM

C.1  The Objective Functions
The necessary conditions for phase equilibrium in a 7 phase, C component
polymer PT-flash where the first n, components are discrete can be stated as

hy; =InKp, + B, - B, =
hy,=InK,+A4, -0,=0 ;1<j<nx (C.1)

where

¥, = I We(r)K,(r) (C2)

InK; =InK,; +r,InK,, ;1<i<n,

nK;(r)=InK, +rinkK,, ;n,<i<C (C.3)



E'.=ZﬂjK.-j ; 1<i<n,

j=i

E,(r):iﬂqu.(r) ;ny, <i$C.

J=1

and
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(C4)

The variables in this system are In K, In K,; and the segment fractions in each phase, 5.

This gives (C + 2) r unknowns in the same number of equations.

C.2  The Jacobian
The Jacobian matrix will have the generalized form:

(o) () (%)
-l () () (5

() (@) (B)

where

B =[Apis Agasees Bacrs Aoz oo Bace | »

By =[hashgyeenshyg] s

1=[4 b 2]

0K, =[InKp,,, Ky, ooy 10K pey, MK pry ooy K, |

K, =[inK,,InK,,,....nk,,|"

and  B=[4.4,..5].

The derivatives in the Jacobian matrix are:

hy; B; B,
( = )=6(i—l,j—-m)+( : J—( : ) y 1il<C
Jink,, K, ) \OmKp,

(C.5)

(C.6)

(C.D

(C.8)

(C.9)

(C.10)

(C.11)

(C.12)
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(dlaii )__[ B; ) ( dgi ) 1gi<C 13

dnkK, ) \émK,) \énkK, » Isis (C.13)
A, B. B

(ﬁg):(aﬂ:)-(z) ; 1<i<C (C.14)
h,; N A, A c ¥, ) c . '

(ah‘Kab-)_(a"an,,.,)—(aanm +[§(am1{m kz..% ; 1<i,1<C (C.15)

o, P c( ¥, ) c
mnK,, -(aan,,]J'[,z.:'(aanA_ ] ,Z,;‘P” (.16

R (C.17)

( A, =-( . ) . 1<1<C (C.18)

JnK,, onK,, ) ' ‘

EAN.EY

dinkK,, ——i-l JnkK,, (C.19)
a, c (¥,

and (a"ﬂ,,) =—§(a"ﬂ_) (C-20)

where m and j are phase indices which may vary from 1 to 7.

C.3  Segment Fraction Derivatives
The derivatives of the unnormalized segment fractions, ‘¥, are given by:

r KI' (.
( . ) 6(1'—1)“"‘;:"" [J(j—m)-é—'la] ; 1<i<n,
— 7 = = —_ K, (r (C.21)
onK,, 5(i_1)me'l'£%P[§£(L)[5(j—m)-—éf(z’% r ; n, <is<C
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nk )= W O(j —m) + B. ;ls<isC (C.22)
and
BRAA
- ; 1si<n,
(éy‘") v C.23)
=< - W K K s ( .
%ﬂl _WlFJ' lF(r)E:;E:; all(r) dr ; nd <[SC

From these, the derivatives of the normalized mole fractions, y;, can be found from

(a;;)={(§)‘wi( )} ,Z.,"p (C29)

where 7 represents any one of In Kj,,,, In K, or £,.

C.4  Number Average Number of Segments Derivatives
The derivatives of the number average number of segments in each phase, F;, can

be expressed as

r(}l_ 1)(513\;%) ;w ; 1<1<n, (C.25)
L[(ali‘i;gm) l(aan )] ”Z:\y” o n, <l<C
—%(5124) %aifé.)

+Z (aan ) 1.2(51?;( )} .Z..:‘P

l:l
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-=(2)-(3Y
ri\a8,) \ &,

“ 1 (apy) _§ I%,W,.,(r)Ki(r)Km(r)

- i=l %- =ng+1 rE,'z (r) dr ) (C.27)
1 C &P., C
"7 Z( 8, )} 2%

C.5  Reference Phase Derivatives
The reference phase is defined by the two variables, 4 and B,, such that

x

(o
y =Zﬂj[anAj +4, - Z'P,,)] (C.28)

j=l n=]

and

) [k, +8,] ;1=isc. (C.29)

J=t

The required derivatives of these variables are

5/2 _ L4 aAj C a.y‘j ) c .
(ﬁana,,.)'gtﬂ"{(amx,b)’g(amxm /Z“’} s 1=1<C (C-30)
( x 0‘34 c &Y,‘J.J c

(ﬁﬁ)_ : (5,4,) c( ) c c
B, —gﬁj{ 2. —kz-‘ . ;‘P,y +InK, +4, - kz.lkph) (C.32)
B,

)3 o8, '
\Fnk, Bidli=tj—m)+| o=t ; 1<iI<C (C.33)
Bim 1=l Bim

( ‘ ‘ (OB )'1<'<C C.34)
k)~ 2P\omx) ¢ 1SES .
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and

C.6 Volume Derivatives
(d’f) { 1 (’ﬁj) (“F;) Vi [&?'i)m[vi—?j:)
E7 R I o o 2 e L
’ - _ _ (C.36)
Y% g(i)+—(@] 2a; _(1":')_ T
I;}(vj—FjEj) Non) \ om ViRT v, v, —rb;

.~
(ﬁ) - l(ﬁ) — fﬁ) _1 (ﬁ) (C.37)
AT A AT A
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Derivatives of the Sanchez-Lacombe Equation of State Parameters

ﬁ = .a;j. ﬁ =2 % ﬁy/y) (%)} \Y
(&])_27,-(&7)“" ,‘;Z;{[@, Vi TVl gy ) [GaVe (C.39)
(%J - g(%)*’*”* (C.40)

pb ) < ¢
[% "2 (iv:f)”’“”"f(a;/:)}”* (C41)

wn =i(a::)"“' (C42)
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